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Preface

This book is intended for a graduate econometrics course on panel data. The prerequisites
include a good background in mathematical statistics and econometrics at the level of Greene
(2003). Matrix presentations are necessary for this topic.

Some of the major features of this book are that it provides an up-to-date coverage of
panel data techniques, especially for serial correlation, spatial correlation, heteroskedasticity,
seemingly unrelated regressions, simultaneous equations, dynamic models, incomplete panels,
limited dependent variables and nonstationary panels. I have tried to keep things simple,
illustrating the basic ideas using the same notation for a diverse literature with heterogeneous
notation. Many of the estimation and testing techniques are illustrated with data sets which
are available for classroom use on the Wiley web site (www.wiley.com/go/baltagi3e). The
book also cites and summarizes several empirical studies using panel data techniques, so
that the reader can relate the econometric methods with the economic applications. The book
proceeds from single equation methods to simultaneous equation methods as in any standard
econometrics text, so it should prove friendly to graduate students.

The book gives the basic coverage without being encyclopedic. There is an extensive amount
of research in this area and not all topics are covered. The first conference on panel data was
held in Paris more than 25 years ago, and this resulted in two volumes of the Annales de l’INSEE
edited by Mazodier (1978). Since then, there have been eleven international conferences on
panel data, the last one at Texas A&M University, College Station, Texas, June 2004.

In undertaking this revision, I benefited from teaching short panel data courses at the Uni-
versity of California-San Diego (2002); International Monetary Fund (IMF), Washington,
DC (2004, 2005); University of Arizona (1996); University of Cincinnati (2004); Insti-
tute for Advanced Studies, Vienna (2001); University of Innsbruck (2002); Universidad del
of Rosario, Bogotá (2003); Seoul National University (2002); Centro Interuniversitario de
Econometria (CIDE)-Bertinoro (1998); Tor Vergata University-Rome (2002); Institute for Eco-
nomic Research (IWH)-Halle (1997); European Central Bank, Frankfurt (2001); University of
Mannheim (2002); Center for Economic Studies (CES-Ifo), Munich (2002); German Institute
for Economic Research (DIW), Berlin (2004); University of Paris II, Pantheon (2000); Inter-
national Modeling Conference on the Asia-Pacific Economy, Cairns, Australia (1996). The
third edition, like the second, continues to use more empirical examples from the panel data
literature to motivate the book. All proofs given in the appendices of the first edition have been
deleted. There are worked out examples using Stata and EViews. The data sets as well as the
output and programs to implement the estimation and testing procedures described in the book
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xii Preface

are provided on the Wiley web site (www.wiley.com/go/baltagi3e). Additional exercises have
been added and solutions to selected exercises are provided on the Wiley web site. Problems
and solutions published in Econometric Theory and used in this book are not given in the
references, as in the previous editions, to save space. These can easily be traced to their source
in the journal. For example, when the book refers to problem 99.4.3, this can be found in
Econometric Theory, in the year 1999, issue 4, problem 3.

Several chapters have been revised and in some cases shortened or expanded upon. More
specifically, Chapter 1 has been updated with web site addresses for panel data sources as well
as more motivation for why one should use panel data. Chapters 2, 3 and 4 have empirical
studies illustrated with Stata and EViews output. The material on heteroskedasticity in Chapter
5 is completely revised and updated with recent estimation and testing results. The material
on serial correlation is illustrated with Stata and TSP. A simultaneous equation example using
crime data is added to Chapter 7 and illustrated with Stata. The Hausman and Taylor method is
also illustrated with Stata using PSID data to estimate an earnings equation. Chapter 8 updates
the dynamic panel data literature using newly published papers and illustrates the estimation
methods using a dynamic demand for cigarettes. Chapter 9 now includes Stata output on
estimating a hedonic housing equation using unbalanced panel data. Chapter 10 has an update
on spatial panels as well as heterogeneous panels. Chapter 11 updates the limited dependent
variable panel data models with recent papers on the subject and adds an application on
estimating nurses’ labor supply in Norway. Chapter 12 on nonstationary panels is completely
rewritten. The literature has continued to explode, with several theoretical results as well as
influential empirical papers appearing in this period. An empirical illustration on purchasing
power parity is added and illustrated with EViews. A new section surveys the literature on
panel unit root tests allowing for cross-section correlation.

I would like to thank my co-authors for allowing me to draw freely on our joint work. In
particular, I would like to thank Jan Askildsen, Georges Bresson, Young-Jae Chang, Peter
Egger, Jim Griffin, Tor Helge Holmas, Chihwa Kao, Walter Krämer, Dan Levin, Dong Li, Qi
Li, Michael Pfaffermayr, Nat Pinnoi, Alain Pirotte, Dan Rich, Seuck Heun Song and Ping Wu.
Many colleagues who had direct and indirect influence on the contents of this book include
Luc Anselin, George Battese, Anil Bera, Richard Blundell, Trevor Breusch, Chris Cornwell,
Bill Griffiths, Cheng Hsiao, Max King, Kajal Lahiri, G.S. Maddala, Roberto Mariano, László
Mátyás, Chiara Osbat, M. Hashem Pesaran, Peter C.B. Phillips, Peter Schmidt, Patrick Sevestre,
Robin Sickles, Marno Verbeek, Tom Wansbeek and Arnold Zellner. Clint Cummins provided
benchmark results for the examples in this book using TSP. David Drukker provided help with
Stata on the Hausman and Taylor procedure as well as EC2SLS in Chapter 7. Also, the Baltagi
and Wu LBI test in Chapter 9. Glenn Sueyoshi provided help with EViews on the panel unit
root tests in Chapter 12. Thanks also go to Steve Hardman and Rachel Goodyear at Wiley for
their efficient and professional editorial help, Teri Tenalio who typed numerous revisions of
this book and my wife Phyllis whose encouragement and support gave me the required energy
to complete this book. Responsibilities for errors and omissions are my own.



JWBK024-01 JWBK024-Baltagi March 30, 2005 4:0 Char Count= 0

1

Introduction

1.1 PANEL DATA: SOME EXAMPLES

In this book, the term “panel data” refers to the pooling of observations on a cross-section of
households, countries, firms, etc. over several time periods. This can be achieved by surveying a
number of households or individuals and following them over time. Two well-known examples
of US panel data are the Panel Study of Income Dynamics (PSID) collected by the Institute
for Social Research at the University of Michigan (http://psidonline.isr.umich.edu) and the
National Longitudinal Surveys (NLS) which is a set of surveys sponsored by the Bureau of
Labor Statistics (http://www.bls.gov/nls/home.htm).

The PSID began in 1968 with 4800 families and has grown to more than 7000 families in
2001. By 2003, the PSID had collected information on more than 65 000 individuals spanning as
much as 36 years of their lives. Annual interviews were conducted from 1968 to 1996. In 1997,
this survey was redesigned for biennial data collection. In addition, the core sample was reduced
and a refresher sample of post-1968 immigrant families and their adult children was introduced.
The central focus of the data is economic and demographic. The list of variables include income,
poverty status, public assistance in the form of food or housing, other financial matters (e.g.
taxes, interhousehold transfers), family structure and demographic measures, labor market
work, housework time, housing, geographic mobility, socioeconomic background and health.
Other supplemental topics include housing and neighborhood characteristics, achievement
motivation, child care, child support and child development, job training and job acquisition,
retirement plans, health, kinship, wealth, education, military combat experience, risk tolerance,
immigration history and time use.

The NLS, on the other hand, are a set of surveys designed to gather information at multiple
points in time on labor market activities and other significant life events of several groups of
men and women:

(1) The NLSY97 consists of a nationally representative sample of approximately 9000 youths
who were 12–16 years old as of 1997. The NLSY97 is designed to document the transition
from school to work and into adulthood. It collects extensive information about youths’
labor market behavior and educational experiences over time.

(2) The NLSY79 consists of a nationally representative sample of 12 686 young men and
women who were 14–24 years old in 1979. These individuals were interviewed annually
through 1994 and are currently interviewed on a biennial basis.

(3) The NLSY79 children and young adults. This includes the biological children born to
women in the NLSY79.

(4) The NLS of mature women and young women: these include a group of 5083 women who
were between the ages of 30 and 44 in 1967. Also, 5159 women who were between the
ages of 14 and 24 in 1968. Respondents in these cohorts continue to be interviewed on a
biennial basis.

1
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(5) The NLS of older men and young men: these include a group of 5020 men who were
between the ages of 45 and 59 in 1966. Also, a group of 5225 men who were between the
ages of 14 and 24 in 1966. Interviews for these two cohorts ceased in 1981.

The list of variables include information on schooling and career transitions, marriage and
fertility, training investments, child care usage and drug and alcohol use. A large number of
studies have used the NLS and PSID data sets. Labor journals in particular have numerous
applications of these panels. Klevmarken (1989) cites a bibliography of 600 published articles
and monographs that used the PSID data sets. These cover a wide range of topics including
labor supply, earnings, family economic status and effects of transfer income programs, family
composition changes, residential mobility, food consumption and housing.

Panels can also be constructed from the Current Population Survey (CPS), a monthly national
household survey of about 50 000 households conducted by the Bureau of Census for the Bureau
of Labor Statistics (http://www.bls.census.gov/cps/). This survey has been conducted for more
than 50 years. Compared with the NLS and PSID data, the CPS contains fewer variables, spans
a shorter period and does not follow movers. However, it covers a much larger sample and is
representative of all demographic groups.

Although the US panels started in the 1960s, it was only in the 1980s that the European
panels began setting up. In 1989, a special section of the European Economic Review pub-
lished papers using the German Socio-Economic Panel (see Hujer and Schneider, 1989), the
Swedish study of household market and nonmarket activities (see Björklund, 1989) and the
Intomart Dutch panel of households (see Alessie, Kapteyn and Melenberg, 1989). The first
wave of the German Socio-Economic Panel (GSOEP) was collected by the DIW (German
Institute for Economic Research, Berlin) in 1984 and included 5921 West German house-
holds (www.diw.de/soep). This included 12 290 respondents. Standard demographic variables
as well as wages, income, benefit payments, level of satisfaction with various aspects of life,
hopes and fears, political involvement, etc. are collected. In 1990, 4453 adult respondents in
2179 households from East Germany were included in the GSOEP due to German unification.
The attrition rate has been relatively low in GSOEP. Wagner, Burkhauser and Behringer (1993)
report that through eight waves of the GSOEP, 54.9% of the original panel respondents have
records without missing years. An inventory of national studies using panel data is given at
(http://psidonline.isr.umich.edu/Guide/PanelStudies.aspx). These include the Belgian Socio-
economic Panel (www.ufsia.ac.be/CSB/sep nl.htm) which interviews a representative sample
of 6471 Belgian households in 1985, 3800 in 1988 and 3800 in 1992 (including a new sample
of 900 households). Also, 4632 households in 1997 (including a new sample of 2375 house-
holds). The British Household Panel Survey (BHPS) which is an annual survey of private house-
holds in Britain first collected in 1991 by the Institute for Social and Economic Research at
the University of Essex (www.irc.essex.ac.uk/bhps). This is a national representative sample of
some 5500 households and 10 300 individuals drawn from 250 areas of Great Britain. Data col-
lected includes demographic and household characteristics, household organization, labor mar-
ket, health, education, housing, consumption and income, social and political values. The Swiss
Household Panel (SHP) whose first wave in 1999 interviewed 5074 households comprising
7799 individuals (www.unine.ch/psm). The Luxembourg Panel Socio-Economique “Liewen zu
Letzebuerg” (PSELL I) (1985–94) is based on a representative sample of 2012 households and
6110 individuals. In 1994, the PSELL II expanded to 2978 households and 8232 individuals.
The Swedish Panel Study Market and Non-market Activities (HUS) were collected in 1984,
1986, 1988, 1991, 1993, 1996 and 1998 (http://www.nek.uu.se/faculty/klevmark/hus.htm).
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Data for 2619 individuals were collected on child care, housing, market work, income and
wealth, tax reform (1993), willingness to pay for a good environment (1996), local taxes,
public services and activities in the black economy (1998).

The European Community Household Panel (ECHP) is centrally designed and coordinated
by the Statistical Office of the European Communities (EuroStat), see Peracchi (2002). The
first wave was conducted in 1994 and included all current members of the EU except Austria,
Finland and Sweden. Austria joined in 1995, Finland in 1996 and data for Sweden was ob-
tained from the Swedish Living Conditions Survey. The project was launched to obtain com-
parable information across member countries on income, work and employment, poverty and
social exclusion, housing, health, and many other diverse social indicators indicating living
conditions of private households and persons. The EHCP was linked from the beginning to
existing national panels (e.g. Belgium and Holland) or ran parallel to existing panels with
similar content, namely GSOEP, PSELL and the BHPS. This survey ran from 1994 to 2001
(http://epunet.essex.ac.uk/echp.php).

Other panel studies include: the Canadian Survey of Labor Income Dynamics (SLID)
collected by Statistics Canada (www.statcan.ca) which includes a sample of approximately
35 000 households located throughout all ten provinces. Years available are 1993–2000. The
Japanese Panel Survey on Consumers (JPSC) collected in 1994 by the Institute for Research
on Household Economics (www.kakeiken.or.jp). This is a national representative sample of
1500 women aged 24 and 34 years in 1993 (cohort A). In 1997, 500 women were added
with ages between 24 and 27 (cohort B). Information gathered includes family composition,
labor market behavior, income, consumption, savings, assets, liabilities, housing, consumer
durables, household management, time use and satisfaction. The Russian Longitudinal Moni-
toring Survey (RLMS) collected in 1992 by the Carolina Population Center at the University
of North Carolina (www.cpc.unc.edu/projects/rlms/home.html). The RLMS is a nationally
representative household survey designed to measure the effects of Russian reforms on eco-
nomic well-being. Data includes individual health and dietary intake, measurement of ex-
penditures and service utilization and community level data including region-specific prices
and community infrastructure. The Korea Labor and Income Panel Study (KLIPS) available
for 1998–2001 surveys 5000 households and their members from seven metropolitan cities
and urban areas in eight provinces (http://www.kli.re.kr/klips). The Household, Income and
Labor Dynamics in Australia (HILDA) is a household panel survey whose first wave was
conducted by the Melbourne Institute of Applied Economic and Social Research in 2001
(http://www.melbourneinstitute.com/hilda). This includes 7682 households with 13 969 mem-
bers from 488 different neighboring regions across Australia. The Indonesia Family Life
Survey (http://www.rand.org/FLS/IFLS) is available for 1993/94, 1997/98 and 2000. In 1993,
this surveyed 7224 households living in 13 of the 26 provinces of Indonesia.

This list of panel data sets is by no means exhaustive but provides a good selection of panel
data sets readily accessible for economic research. In contrast to these micro panel surveys,
there are several studies on purchasing power parity (PPP) and growth convergence among
countries utilizing macro panels. A well-utilized resource is the Penn World Tables available at
www.nber.org. International trade studies utilizing panels using World Development Indicators
are available from the World Bank at www.worldbank.org/data, Direction of Trade data and
International Financial Statistics from the International Monetary Fund (www.imf.org). Several
country-specific characteristics for these pooled country studies can be obtained from the CIA’s
“World Factbook” available on the web at http://www.odci.gov/cia/publications/factbook. For
issues of nonstationarity in these long time-series macro panels, see Chapter 12.
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Virtually every graduate text in econometrics contains a chapter or a major section on the
econometrics of panel data. Recommended readings on this subject include Hsiao’s (2003)
Econometric Society monograph along with two chapters in the Handbook of Econometrics:
chapter 22 by Chamberlain (1984) and chapter 53 by Arellano and Honoré (2001). Maddala
(1993) edited two volumes collecting some of the classic articles on the subject. This collection
of readings was updated with two more volumes covering the period 1992–2002 and edited by
Baltagi (2002). Other books on the subject include Arellano (2003), Wooldridge (2002) and a
handbook on the econometrics of panel data which in its second edition contained 33 chapters
edited by Mátyás and Sevestre (1996). A book in honor of G.S. Maddala, edited by Hsiao et al.
(1999); a book in honor of Pietro Balestra, edited by Krishnakumar and Ronchetti (2000);
and a book with a nice historical perspective on panel data by Nerlove (2002). Recent survey
papers include Baltagi and Kao (2000) and Hsiao (2001). Recent special issues of journals on
panel data include two volumes of the Annales D’Economie et de Statistique edited by Sevestre
(1999), a special issue of the Oxford Bulletin of Economics and Statistics edited by Banerjee
(1999), two special issues (Volume 19, Numbers 3 and 4) of Econometric Reviews edited
by Maasoumi and Heshmati, a special issue of Advances in Econometrics edited by Baltagi,
Fomby and Hill (2000) and a special issue of Empirical Economics edited by Baltagi (2004).

The objective of this book is to provide a simple introduction to some of the basic issues of
panel data analysis. It is intended for economists and social scientists with the usual background
in statistics and econometrics. Panel data methods have been used in political science, see Beck
and Katz (1995); in sociology, see England et al. (1988); in finance, see Brown, Kleidon and
Marsh (1983) and Boehmer and Megginson (1990); and in marketing, see Erdem (1996) and
Keane (1997). While restricting the focus of the book to basic topics may not do justice to this
rapidly growing literature, it is nevertheless unavoidable in view of the space limitations of
the book. Topics not covered in this book include duration models and hazard functions (see
Heckman and Singer, 1985; Florens, Forgére and Monchart, 1996; Horowitz and Lee, 2004).
Also, the frontier production function literature using panel data (see Schmidt and Sickles,
1984; Battese and Coelli, 1988; Cornwell, Schmidt and Sickles, 1990; Kumbhakar and Lovell,
2000; Koop and Steel, 2001) and the literature on time-varying parameters, random coefficients
and Bayesian models, see Swamy and Tavlas (2001) and Hsiao (2003). The program evaluation
literature, see Heckman, Ichimura and Todd (1998) and Abbring and Van den Berg (2004), to
mention a few.

1.2 WHY SHOULD WE USE PANEL DATA? THEIR BENEFITS
AND LIMITATIONS

Hsiao (2003) and Klevmarken (1989) list several benefits from using panel data. These include
the following.

(1) Controlling for individual heterogeneity. Panel data suggests that individuals, firms,
states or countries are heterogeneous. Time-series and cross-section studies not controlling
this heterogeneity run the risk of obtaining biased results, e.g. see Moulton (1986, 1987). Let
us demonstrate this with an empirical example. Baltagi and Levin (1992) consider cigarette
demand across 46 American states for the years 1963–88. Consumption is modeled as a
function of lagged consumption, price and income. These variables vary with states and time.
However, there are a lot of other variables that may be state-invariant or time-invariant that may
affect consumption. Let us call these Zi and Wt , respectively. Examples of Zi are religion and
education. For the religion variable, one may not be able to get the percentage of the population
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that is, say, Mormon in each state for every year, nor does one expect that to change much
across time. The same holds true for the percentage of the population completing high school
or a college degree. Examples of Wt include advertising on TV and radio. This advertising is
nationwide and does not vary across states. In addition, some of these variables are difficult to
measure or hard to obtain so that not all the Zi or Wt variables are available for inclusion in
the consumption equation. Omission of these variables leads to bias in the resulting estimates.
Panel data are able to control for these state- and time-invariant variables whereas a time-series
study or a cross-section study cannot. In fact, from the data one observes that Utah has less than
half the average per capita consumption of cigarettes in the USA. This is because it is mostly
a Mormon state, a religion that prohibits smoking. Controlling for Utah in a cross-section
regression may be done with a dummy variable which has the effect of removing that state’s
observation from the regression. This would not be the case for panel data as we will shortly
discover. In fact, with panel data, one might first difference the data to get rid of all Zi -type
variables and hence effectively control for all state-specific characteristics. This holds whether
the Zi are observable or not. Alternatively, the dummy variable for Utah controls for every
state-specific effect that is distinctive of Utah without omitting the observations for Utah.

Another example is given by Hajivassiliou (1987) who studies the external debt repayments
problem using a panel of 79 developing countries observed over the period 1970–82. These
countries differ in terms of their colonial history, financial institutions, religious affiliations and
political regimes. All of these country-specific variables affect the attitudes that these countries
have with regards to borrowing and defaulting and the way they are treated by the lenders. Not
accounting for this country heterogeneity causes serious misspecification.

Deaton (1995) gives another example from agricultural economics. This pertains to the
question of whether small farms are more productive than large farms. OLS regressions of
yield per hectare on inputs such as land, labor, fertilizer, farmer’s education, etc. usually find
that the sign of the estimate of the land coefficient is negative. These results imply that smaller
farms are more productive. Some explanations from economic theory argue that higher output
per head is an optimal response to uncertainty by small farmers, or that hired labor requires
more monitoring than family labor. Deaton (1995) offers an alternative explanation. This
regression suffers from the omission of unobserved heterogeneity, in this case “land quality”,
and this omitted variable is systematically correlated with the explanatory variable (farm size).
In fact, farms in low-quality marginal areas (semi-desert) are typically large, while farms in
high-quality land areas are often small. Deaton argues that while gardens add more value-added
per hectare than a sheep station, this does not imply that sheep stations should be organized as
gardens. In this case, differencing may not resolve the “small farms are productive” question
since farm size will usually change little or not at all over short periods.

(2) Panel data give more informative data, more variability, less collinearity among the vari-
ables, more degrees of freedom and more efficiency. Time-series studies are plagued with mul-
ticollinearity; for example, in the case of demand for cigarettes above, there is high collinearity
between price and income in the aggregate time series for the USA. This is less likely with a
panel across American states since the cross-section dimension adds a lot of variability, adding
more informative data on price and income. In fact, the variation in the data can be decomposed
into variation between states of different sizes and characteristics, and variation within states.
The former variation is usually bigger. With additional, more informative data one can produce
more reliable parameter estimates. Of course, the same relationship has to hold for each state,
i.e. the data have to be poolable. This is a testable assumption and one that we will tackle in
due course.
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(3) Panel data are better able to study the dynamics of adjustment. Cross-sectional distri-
butions that look relatively stable hide a multitude of changes. Spells of unemployment, job
turnover, residential and income mobility are better studied with panels. Panel data are also well
suited to study the duration of economic states like unemployment and poverty, and if these
panels are long enough, they can shed light on the speed of adjustments to economic policy
changes. For example, in measuring unemployment, cross-sectional data can estimate what
proportion of the population is unemployed at a point in time. Repeated cross-sections can show
how this proportion changes over time. Only panel data can estimate what proportion of those
who are unemployed in one period can remain unemployed in another period. Important policy
questions like determining whether families’ experiences of poverty, unemployment and wel-
fare dependence are transitory or chronic necessitate the use of panels. Deaton (1995) argues
that, unlike cross-sections, panel surveys yield data on changes for individuals or households.
It allows us to observe how the individual living standards change during the development
process. It enables us to determine who is benefiting from development. It also allows us to
observe whether poverty and deprivation are transitory or long-lived, the income-dynamics
question. Panels are also necessary for the estimation of intertemporal relations, lifecycle and
intergenerational models. In fact, panels can relate the individual’s experiences and behavior
at one point in time to other experiences and behavior at another point in time. For example, in
evaluating training programs, a group of participants and nonparticipants are observed before
and after the implementation of the training program. This is a panel of at least two time periods
and the basis for the “difference in differences” estimator usually applied in these studies; see
Bertrand, Duflo and Mullainathan (2004).

(4) Panel data are better able to identify and measure effects that are simply not detectable
in pure cross-section or pure time-series data. Suppose that we have a cross-section of women
with a 50% average yearly labor force participation rate. This might be due to (a) each woman
having a 50% chance of being in the labor force, in any given year, or (b) 50% of the wo-
men working all the time and 50% not at all. Case (a) has high turnover, while case (b) has
no turnover. Only panel data could discriminate between these cases. Another example is the
determination of whether union membership increases or decreases wages. This can be better
answered as we observe a worker moving from union to nonunion jobs or vice versa. Holding
the individual’s characteristics constant, we will be better equipped to determine whether
union membership affects wage and by how much. This analysis extends to the estimation of
other types of wage differentials holding individuals’ characteristics constant. For example,
the estimation of wage premiums paid in dangerous or unpleasant jobs. Economists studying
workers’ levels of satisfaction run into the problem of anchoring in a cross-section study, see
Winkelmann and Winkelmann (1998) in Chapter 11. The survey usually asks the question: “how
satisfied are you with your life?” with zero meaning completely dissatisfied and 10 meaning
completely satisfied. The problem is that each individual anchors their scale at different levels,
rendering interpersonal comparisons of responses meaningless. However, in a panel study,
where the metric used by individuals is time-invariant over the period of observation, one can
avoid this problem since a difference (or fixed effects) estimator will make inference based
only on intra- rather than interpersonal comparison of satisfaction.

(5) Panel data models allow us to construct and test more complicated behavioral models
than purely cross-section or time-series data. For example, technical efficiency is better studied
and modeled with panels (see Baltagi and Griffin, 1988b; Cornwell, Schmidt and Sickles, 1990;
Kumbhakar and Lovell, 2000; Baltagi, Griffin and Rich, 1995; Koop and Steel, 2001). Also,
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fewer restrictions can be imposed in panels on a distributed lag model than in a purely time-
series study (see Hsiao, 2003).

(6) Micro panel data gathered on individuals, firms and households may be more accurately
measured than similar variables measured at the macro level. Biases resulting from aggregation
over firms or individuals may be reduced or eliminated (see Blundell, 1988; Klevmarken, 1989).
For specific advantages and disadvantages of estimating life cycle models using micro panel
data, see Blundell and Meghir (1990).

(7) Macro panel data on the other hand have a longer time series and unlike the problem of
nonstandard distributions typical of unit roots tests in time-series analysis, Chapter 12 shows
that panel unit root tests have standard asymptotic distributions.

Limitations of panel data include:
(1) Design and data collection problems. For an extensive discussion of problems that arise

in designing panel surveys as well as data collection and data management issues see Kasprzyk
et al. (1989). These include problems of coverage (incomplete account of the population of
interest), nonresponse (due to lack of cooperation of the respondent or because of interviewer
error), recall (respondent not remembering correctly), frequency of interviewing, interview
spacing, reference period, the use of bounding and time-in-sample bias (see Bailar, 1989).1

(2) Distortions of measurement errors. Measurement errors may arise because of faulty
responses due to unclear questions, memory errors, deliberate distortion of responses (e.g.
prestige bias), inappropriate informants, misrecording of responses and interviewer effects
(see Kalton, Kasprzyk and McMillen, 1989). Herriot and Spiers (1975), for example, match
CPS and Internal Revenue Service data on earnings of the same individuals and show that
there are discrepancies of at least 15% between the two sources of earnings for almost 30%
of the matched sample. The validation study by Duncan and Hill (1985) on the PSID also
illustrates the significance of the measurement error problem. They compare the responses of
the employees of a large firm with the records of the employer. Duncan and Hill (1985) find
small response biases except for work hours which are overestimated. The ratio of measurement
error variance to the true variance is found to be 15% for annual earnings, 37% for annual work
hours and 184% for average hourly earnings. These figures are for a one-year recall, i.e. 1983
for 1982, and are more than doubled with two years’ recall. Brown and Light (1992) investigate
the inconsistency in job tenure responses in the PSID and NLS. Cross-section data users have
little choice but to believe the reported values of tenure (unless they have external information)
while users of panel data can check for inconsistencies of tenure responses with elapsed time
between interviews. For example, a respondent may claim to have three years of tenure in one
interview and a year later claim six years. This should alert the user of this panel to the presence
of measurement error. Brown and Light (1992) show that failure to use internally consistent
tenure sequences can lead to misleading conclusions about the slope of wage-tenure profiles.

(3) Selectivity problems. These include:
(a) Self-selectivity. People choose not to work because the reservation wage is higher than

the offered wage. In this case we observe the characteristics of these individuals but not
their wage. Since only their wage is missing, the sample is censored. However, if we do
not observe all data on these people this would be a truncated sample. An example of
truncation is the New Jersey negative income tax experiment. We are only interested in
poverty, and people with income larger than 1.5 times the poverty level are dropped
from the sample. Inference from this truncated sample introduces bias that is not helped
by more data, because of the truncation (see Hausman and Wise, 1979).
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(b) Nonresponse. This can occur at the initial wave of the panel due to refusal to participate,
nobody at home, untraced sample unit, and other reasons. Item (or partial) nonresponse
occurs when one or more questions are left unanswered or are found not to provide a
useful response. Complete nonresponse occurs when no information is available from
the sampled household. Besides the efficiency loss due to missing data, this nonresponse
can cause serious identification problems for the population parameters. Horowitz and
Manski (1998) show that the seriousness of the problem is directly proportional to the
amount of nonresponse. Nonresponse rates in the first wave of the European panels vary
across countries from 10% in Greece and Italy where participation is compulsory, to
52% in Germany and 60% in Luxembourg. The overall nonresponse rate is 28%, see
Peracchi (2002). The comparable nonresponse rate for the first wave of the PSID is
24%, for the BHPS (26%), for the GSOEP (38%) and for PSELL (35%).

(c) Attrition. While nonresponse occurs also in cross-section studies, it is a more serious
problem in panels because subsequent waves of the panel are still subject to nonresponse.
Respondents may die, or move, or find that the cost of responding is high. See Björklund
(1989) and Ridder (1990, 1992) on the consequences of attrition. The degree of attrition
varies depending on the panel studied; see Kalton, Kasprzyk and McMillen (1989) for
several examples. In general, the overall rates of attrition increase from one wave to
the next, but the rate of increase declines over time. Becketti et al. (1988) study the
representativeness of the PSID after 14 years since it started. The authors find that only
40% of those originally in the sample in 1968 remained in the sample in 1981. However,
they do find that as far as the dynamics of entry and exit are concerned, the PSID is
still representative. Attrition rates between the first and second wave vary from 6% in
Italy to 24% in the UK. The average attrition rate is about 10%. The comparable rates
of attrition from the first to the second wave are 12% in the BHPS, 12.4% for the West
German sample and 8.9% for the East German sample in the GSOEP and 15% for
PSELL, see Peracchi (2002). In order to counter the effects of attrition, rotating panels
are sometimes used, where a fixed percentage of the respondents are replaced in every
wave to replenish the sample. More on rotating and pseudo-panels in Chapter 10. A
special issue of the Journal of Human Resources, Spring 1998, is dedicated to attrition
in longitudinal surveys.

(4) Short time-series dimension. Typical micro panels involve annual data covering a short
time span for each individual. This means that asymptotic arguments rely crucially on the
number of individuals tending to infinity. Increasing the time span of the panel is not without
cost either. In fact, this increases the chances of attrition and increases the computational
difficulty for limited dependent variable panel data models (see Chapter 11).

(5) Cross-section dependence. Macro panels on countries or regions with long time series
that do not account for cross-country dependence may lead to misleading inference. Chapter 12
shows that several panel unit root tests suggested in the literature assumed cross-section in-
dependence. Accounting for cross-section dependence turns out to be important and affects
inference. Alternative panel unit root tests are suggested that account for this dependence.

Panel data is not a panacea and will not solve all the problems that a time series or a cross-
section study could not handle. Examples are given in Chapter 12, where we cite econometric
studies arguing that panel data will yield more powerful unit root tests than individual time
series. This in turn should help shed more light on the purchasing power parity and the growth
convergence questions. In fact, this led to a flurry of empirical applications along with some
sceptics who argued that panel data did not save the PPP or the growth convergence problem,
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see Maddala (1999), Maddala, Wu and Liu (2000) and Banerjee, Marcellino and Osbat (2004,
2005). Collecting panel data is quite costly, and there is always the question of how often one
should interview respondents. Deaton (1995) argues that economic development is far from
instantaneous, so that changes from one year to the next are probably too noisy and too short-
term to be really useful. He concludes that the payoff for panel data is over long time periods,
five years, ten years, or even longer. In contrast, for health and nutrition issues, especially those
of children, one could argue the opposite case, i.e., those panels with a shorter time span are
needed in order to monitor the health and development of these children.

This book will make the case that panel data provides several advantages worth its cost.
However, as Griliches (1986) argued about economic data in general, the more we have of it,
the more we demand of it. The economist using panel data or any data for that matter has to
know its limitations.

NOTE

1. Bounding is used to prevent the shifting of events from outside the recall period into the recall period.
Time-in-sample bias is observed when a significantly different level for a characteristic occurs in the
first interview than in later interviews, when one would expect the same level.
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2
The One-way Error Component

Regression Model

2.1 INTRODUCTION

A panel data regression differs from a regular time-series or cross-section regression in that it
has a double subscript on its variables, i.e.

yit = α + X ′
i tβ + uit i = 1, . . . , N ; t = 1, ..., T (2.1)

with i denoting households, individuals, firms, countries, etc. and t denoting time. The i
subscript, therefore, denotes the cross-section dimension whereas t denotes the time-series
dimension. α is a scalar, β is K × 1 and Xit is the i t th observation on K explanatory vari-
ables. Most of the panel data applications utilize a one-way error component model for the
disturbances, with

uit = µi + νi t (2.2)

where µi denotes the unobservable individual-specific effect and νi t denotes the remainder
disturbance. For example, in an earnings equation in labor economics, yit will measure earnings
of the head of the household, whereas Xit may contain a set of variables like experience,
education, union membership, sex, race, etc. Note that µi is time-invariant and it accounts for
any individual-specific effect that is not included in the regression. In this case we could think of
it as the individual’s unobserved ability. The remainder disturbance νi t varies with individuals
and time and can be thought of as the usual disturbance in the regression. Alternatively,
for a production function utilizing data on firms across time, yit will measure output and
Xit will measure inputs. The unobservable firm-specific effects will be captured by the µi

and we can think of these as the unobservable entrepreneurial or managerial skills of the
firm’s executives. Early applications of error components in economics include Kuh (1959)
on investment, Mundlak (1961) and Hoch (1962) on production functions and Balestra and
Nerlove (1966) on demand for natural gas. In vector form (2.1) can be written as

y = αιN T + Xβ + u = Zδ + u (2.3)

where y is N T × 1, X is N T × K , Z = [ιN T , X ], δ′ = (α′, β ′) and ιN T is a vector of ones of
dimension N T . Also, (2.2) can be written as

u = Zµµ + ν (2.4)

where u′ = (u11, . . . , u1T , u21, . . . , u2T , . . . , uN1, . . . , uN T ) with the observations stacked
such that the slower index is over individuals and the faster index is over time. Zµ = IN ⊗ ιT

where IN is an identity matrix of dimension N , ιT is a vector of ones of dimension T and ⊗
denotes Kronecker product. Zµ is a selector matrix of ones and zeros, or simply the matrix of in-
dividual dummies that one may include in the regression to estimate the µi if they are assumed to
be fixed parameters. µ′ = (µ1, . . . , µN ) and ν ′ = (ν11, . . . , ν1T , . . . , νN1, . . . , νN T ). Note that

11
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Zµ Z ′
µ = IN ⊗ JT where JT is a matrix of ones of dimension T and P = Zµ(Z ′

µ Zµ)−1 Z ′
µ, the

projection matrix on Zµ, reduces to IN ⊗ J̄ T where J̄ T = JT /T . P is a matrix which averages
the observation across time for each individual, and Q = IN T − P is a matrix which obtains
the deviations from individual means. For example, regressing y on the matrix of dummy
variables Zµ gets the predicted values Py which has a typical element yi. = ∑T

t=1 yit/T re-
peated T times for each individual. The residuals of this regression are given by Qy which
has a typical element

(
yit − yi.

)
. P and Q are (i) symmetric idempotent matrices, i.e. P ′ = P

and P2 = P . This means that rank(P) = tr(P) = N and rank(Q) = tr(Q) = N (T − 1). This
uses the result that the rank of an idempotent matrix is equal to its trace (see Graybill, 1961,
theorem 1.63). Also, (ii) P and Q are orthogonal, i.e. P Q = 0 and (iii) they sum to the identity
matrix P + Q = IN T . In fact, any two of these properties imply the third (see Graybill, 1961,
theorem 1.68).

2.2 THE FIXED EFFECTS MODEL

In this case, the µi are assumed to be fixed parameters to be estimated and the remainder
disturbances stochastic with νi t independent and identically distributed IID

(
0, σ 2

ν

)
. The Xit

are assumed independent of the νi t for all i and t . The fixed effects model is an appropriate
specification if we are focusing on a specific set of N firms, say, IBM, GE, Westinghouse, etc.
and our inference is restricted to the behavior of these sets of firms. Alternatively, it could be
a set of N OECD countries, or N American states. Inference in this case is conditional on the
particular N firms, countries or states that are observed. One can substitute the disturbances
given by (2.4) into (2.3) to get

y = αιN T + Xβ + Zµµ + ν = Zδ + Zµµ + ν (2.5)

and then perform ordinary least squares (OLS) on (2.5) to get estimates of α, β and µ. Note
that Z is N T × (K + 1) and Zµ, the matrix of individual dummies, is N T × N . If N is large,
(2.5) will include too many individual dummies, and the matrix to be inverted by OLS is large
and of dimension (N + K ). In fact, since α and β are the parameters of interest, one can obtain
the LSDV (least squares dummy variables) estimator from (2.5), by premultiplying the model
by Q and performing OLS on the resulting transformed model:

Qy = Q Xβ + Qν (2.6)

This uses the fact that Q Zµ = QιN T = 0, since P Zµ = Zµ. In other words, the Q matrix
wipes out the individual effects. This is a regression of ỹ = Qy with typical element (yit − ȳi.)
on X̃ = Q X with typical element (Xit,k − X̄i.,k) for the kth regressor, k = 1, 2, . . . , K . This
involves the inversion of a (K × K ) matrix rather than (N + K ) × (N + K ) as in (2.5). The
resulting OLS estimator is

β̃ = (
X ′ Q X

)−1
X ′ Qy (2.7)

with var(̃β) = σ 2
ν (X ′ Q X )−1 = σ 2

ν (X̃ ′ X̃ )−1. β̃ could have been obtained from (2.5) using re-
sults on partitioned inverse or the Frisch–Waugh–Lovell theorem discussed in Davidson and
MacKinnon (1993, p. 19). This uses the fact that P is the projection matrix on Zµ and
Q = IN T − P (see problem 2.1). In addition, generalized least squares (GLS) on (2.6), using
the generalized inverse, will also yield β̃ (see problem 2.2).



JWBK024-02 JWBK024-Baltagi March 23, 2005 11:46 Char Count= 0

The One-way Error Component Regression Model 13

Note that for the simple regression

yit = α + βxit + µi + νi t (2.8)

and averaging over time gives

ȳi. = α + β x̄i. + µi + ν̄i. (2.9)

Therefore, subtracting (2.9) from (2.8) gives

yit − ȳi. = β(xit − x̄i.) + (νi t − ν̄i.) (2.10)

Also, averaging across all observations in (2.8) gives

ȳ.. = α + β x̄.. + ν̄.. (2.11)

where we utilized the restriction that
∑N

i=1 µi = 0. This is an arbitrary restriction on the dummy
variable coefficients to avoid the dummy variable trap, or perfect multicollinearity; see Suits
(1984) for alternative formulations of this restriction. In fact only β and (α + µi ) are estimable
from (2.8), and not α and µi separately, unless a restriction like

∑N
i=1 µi = 0 is imposed. In

this case, β̃ is obtained from regression (2.10), α̃ = ȳ.. − β̃ x̄.. can be recovered from (2.11)
and µ̃i = ȳi. − α̃ − β̃ x̄i. from (2.9). For large labor or consumer panels, where N is very large,
regressions like (2.5) may not be feasible, since one is including (N − 1) dummies in the
regression. This fixed effects (FE) least squares, also known as least squares dummy variables
(LSDV), suffers from a large loss of degrees of freedom. We are estimating (N − 1) extra
parameters, and too many dummies may aggravate the problem of multicollinearity among
the regressors. In addition, this FE estimator cannot estimate the effect of any time-invariant
variable like sex, race, religion, schooling or union participation. These time-invariant variables
are wiped out by the Q transformation, the deviations from means transformation (see (2.10)).
Alternatively, one can see that these time-invariant variables are spanned by the individual
dummies in (2.5) and therefore any regression package attempting (2.5) will fail, signaling
perfect multicollinearity. If (2.5) is the true model, LSDV is the best linear unbiased estimator
(BLUE) as long as νi t is the standard classical disturbance with mean 0 and variance–covariance
matrix σ 2

ν IN T . Note that as T → ∞, the FE estimator is consistent. However, if T is fixed and
N → ∞ as is typical in short labor panels, then only the FE estimator of β is consistent; the
FE estimators of the individual effects (α + µi ) are not consistent since the number of these
parameters increases as N increases. This is the incidental parameter problem discussed by
Neyman and Scott (1948) and reviewed more recently by Lancaster (2000). Note that when the
true model is fixed effects as in (2.5), OLS on (2.1) yields biased and inconsistent estimates of
the regression parameters. This is an omission variables bias due to the fact that OLS deletes
the individual dummies when in fact they are relevant.

(1) Testing for fixed effects. One could test the joint significance of these dummies, i.e.
H0; µ1 = µ2 = · · · = µN−1 = 0, by performing an F-test. (Testing for individual effects will
be treated extensively in Chapter 4.) This is a simple Chow test with the restricted residual
sums of squares (RRSS) being that of OLS on the pooled model and the unrestricted residual
sums of squares (URSS) being that of the LSDV regression. If N is large, one can perform the
Within transformation and use that residual sum of squares as the URSS. In this case

F0 = (RRSS − URSS)/(N − 1)

URSS/(N T − N − K )

HO∼ FN−1,N (T −1)−K (2.12)
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(2) Computational warning. One computational caution for those using the Within regression
given by (2.10). The s2 of this regression as obtained from a typical regression package divides
the residual sums of squares by N T − K since the intercept and the dummies are not included.
The proper s2, say s∗2 from the LSDV regression in (2.5), would divide the same residual
sums of squares by N (T − 1) − K . Therefore, one has to adjust the variances obtained from
the Within regression (2.10) by multiplying the variance–covariance matrix by (s∗2/s2) or
simply by multiplying by [N T − K ]/[N (T − 1) − K ].

(3) Robust estimates of the standard errors. For the Within estimator, Arellano (1987)
suggests a simple method for obtaining robust estimates of the standard errors that allow for a
general variance–covariance matrix on the νi t as in White (1980). One would stack the panel
as an equation for each individual:

yi = Ziδ + µi ιT + νi (2.13)

where yi is T × 1, Zi = [ιT , Xi ], Xi is T × K , µi is a scalar, δ′ = (α, β ′), ιT is a vector of
ones of dimension T and νi is T × 1. In general, E(νiν

′
i ) = �i for i = 1, 2, . . . , N , where

�i is a positive definite matrix of dimension T . We still assume E(νiν
′
j ) = 0, for i �= j . T is

assumed small and N large as in household or company panels, and the asymptotic results
are performed for N → ∞ and T fixed. Performing the Within transformation on this set of
equations (2.13) one gets

ỹi = X̃iβ + ν̃i (2.14)

where ỹ = Qy, X̃ = Q X and ν̃ = Qν, with ỹ = (̃y′
1, . . . , ỹ′

N )′ and ỹi = (IT − J̄ T )yi . Com-
puting robust least squares on this system, as described by White (1980), under the restriction
that each equation has the same β one gets the Within estimator of β which has the following
asymptotic distribution:

N 1/2(̃β − β) ∼ N (0, M−1V M−1) (2.15)

where M = plim(X̃ ′ X̃ )/N and V = plim
∑N

i=1(X̃ ′
i�i X̃ i )/N . Note that X̃i = (IT − J̄ T )Xi

and X̃ ′ Q diag[�i ]Q X̃ = X̃ ′diag[�i ]X̃ (see problem 2.3). In this case, V is estimated by
Ṽ = ∑N

i=1 X̃ ′
i ũi ũ′

i X̃ i/N , where ũi = ỹi − X̃i β̃. Therefore, the robust asymptotic variance–
covariance matrix of β is estimated by

var(̃β) = (X̃ ′ X̃ )−1

[
N∑

i=1

X̃ ′
i ũi ũ

′
i X̃ i

]
(X̃ ′ X̃ )−1 (2.16)

2.3 THE RANDOM EFFECTS MODEL

There are too many parameters in the fixed effects model and the loss of degrees of freedom
can be avoided if the µi can be assumed random. In this case µi ∼ IID(0, σ 2

µ), νi t ∼ IID(0, σ 2
ν )

and the µi are independent of the νi t . In addition, the Xit are independent of the µi and νi t ,
for all i and t . The random effects model is an appropriate specification if we are drawing N
individuals randomly from a large population. This is usually the case for household panel
studies. Care is taken in the design of the panel to make it “representative” of the population we
are trying to make inferences about. In this case, N is usually large and a fixed effects model
would lead to an enormous loss of degrees of freedom. The individual effect is characterized as
random and inference pertains to the population from which this sample was randomly drawn.
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But what is the population in this case? Nerlove and Balestra (1996) emphasize Haavelmo’s
(1944) view that the population “consists not of an infinity of individuals, in general, but of an
infinity of decisions” that each individual might make. This view is consistent with a random
effects specification. From (2.4), one can compute the variance–covariance matrix

� = E(uu′) = ZµE(µµ′)Z ′
µ + E(νν ′) (2.17)

= σ 2
µ(IN ⊗ JT ) + σ 2

ν (IN ⊗ IT )

This implies a homoskedastic variance var(uit ) = σ 2
µ + σ 2

ν for all i and t , and an equicorrelated
block-diagonal covariance matrix which exhibits serial correlation over time only between the
disturbances of the same individual. In fact,

cov(uit , u js) = σ 2
µ + σ 2

ν for i = j, t = s

= σ 2
µ for i = j, t �= s

and zero otherwise. This also means that the correlation coefficient between uit and u js is

ρ = correl(uit , u js) = 1 for i = j, t = s
= σ 2

µ/(σ 2
µ + σ 2

ν ) for i = j, t �= s

and zero otherwise. In order to obtain the GLS estimator of the regression coefficients, we
need �−1. This is a huge matrix for typical panels and is of dimension N T × N T . No brute
force inversion should be attempted even if the researcher’s application has a small N and T .1

We will follow a simple trick devised by Wansbeek and Kapteyn (1982b, 1983) that allows
the derivation of �−1 and �−1/2.2 Essentially, one replaces JT by T J̄ T and IT by (ET + J̄ T )
where ET is by definition (IT − J̄ T ). In this case

� = T σ 2
µ(IN ⊗ J̄ T ) + σ 2

ν (IN ⊗ ET ) + σ 2
ν (IN ⊗ J̄ T )

Collecting terms with the same matrices, we get

� = (T σ 2
µ + σ 2

ν )(IN ⊗ J̄ T ) + σ 2
ν (IN ⊗ ET ) = σ 2

1 P + σ 2
ν Q (2.18)

where σ 2
1 = T σ 2

µ + σ 2
ν . (2.18) is the spectral decomposition representation of �, with σ 2

1

being the first unique characteristic root of � of multiplicity N and σ 2
ν the second unique

characteristic root of � of multiplicity N (T − 1). It is easy to verify, using the properties of
P and Q, that

�−1 = 1

σ 2
1

P + 1

σ 2
ν

Q (2.19)

and

�−1/2 = 1

σ1
P + 1

σν

Q (2.20)

In fact, �r = (σ 2
1 )r P + (σ 2

ν )r Q where r is an arbitrary scalar. Now we can obtain GLS as a
weighted least squares. Fuller and Battese (1973, 1974) suggested premultiplying the regression
equation given in (2.3) by σν�

−1/2 = Q + (σν/σ1)P and performing OLS on the resulting
transformed regression. In this case, y∗ = σν�

−1/2 y has a typical element yit − θ ȳi. where
θ = 1 − (σν/σ1) (see problem 2.4). This transformed regression inverts a matrix of dimension
(K + 1) and can easily be implemented using any regression package.
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The best quadratic unbiased (BQU) estimators of the variance components arise naturally
from the spectral decomposition of �. In fact, Pu ∼ (0, σ 2

1 P) and Qu ∼ (0, σ 2
ν Q) and

σ̂ 2
1 = u′ Pu

tr(P)
= T

N∑
i=1

ū2
i./N (2.21)

and

σ̂ 2
ν = u′ Qu

tr(Q)
=

∑N
i=1

∑T
t=1(uit − ūi.)2

N (T − 1)
(2.22)

provide the BQU estimators of σ 2
1 and σ 2

ν , respectively (see problem 2.5).
These are analyses of variance-type estimators of the variance components and are min-

imum variance-unbiased under normality of the disturbances (see Graybill, 1961). The true
disturbances are not known and therefore (2.21) and (2.22) are not feasible. Wallace and
Hussain (1969) suggest substituting OLS residual ûOLS instead of the true u. After all, under
the random effects model, the OLS estimates are still unbiased and consistent, but no longer
efficient. Amemiya (1971) shows that these estimators of the variance components have a
different asymptotic distribution from that knowing the true disturbances. He suggests using
the LSDV residuals instead of the OLS residuals. In this case ũ = y − α̃ιN T − X β̃ where
α̃ = ȳ.. − X̄ ′

..β̃ and X̄ ′
.. is a 1 × K vector of averages of all regressors. Substituting these ũ for

u in (2.21) and (2.22) we get the Amemiya-type estimators of the variance components. The
resulting estimates of the variance components have the same asymptotic distribution as that
knowing the true disturbances:(√

N T (σ̂ 2
ν − σ 2

ν )√
N (σ̂ 2

µ − σ 2
µ)

)
∼ N

(
0,

(
2σ 4

ν 0
0 2σ 4

µ

))
(2.23)

where σ̂ 2
µ = (σ̂ 2

1 − σ̂ 2
ν )/T .3

Swamy and Arora (1972) suggest running two regressions to get estimates of the vari-
ance components from the corresponding mean square errors of these regressions. The first
regression is the Within regression, given in (2.10), which yields the following s2:

̂̂σ 2
ν = [y′ Qy − y′ Q X (X ′ Q X )−1 X ′ Qy]/[N (T − 1) − K ] (2.24)

The second regression is the Between regression which runs the regression of averages across
time, i.e.

ȳi. = α + X̄ ′
i.β + ūi. i = 1, . . . , N (2.25)

This is equivalent to premultiplying the model in (2.5) by P and running OLS. The only caution
is that the latter regression has N T observations because it repeats the averages T times for
each individual, while the cross-section regression in (2.25) is based on N observations. To
remedy this, one can run the cross-section regression

√
T ȳi. = α

√
T +

√
T X̄ ′

i.β +
√

T ūi. (2.26)

where one can easily verify that var(
√

T ūi.) = σ 2
1 . This regression will yield an s2 given by

̂̂σ 2
1 = (y′ Py − y′ P Z (Z ′ P Z )−1 Z ′ Py)/(N − K − 1) (2.27)
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Note that stacking the following two transformed regressions we just performed yields(
Qy
Py

)
=

(
Q Z
P Z

)
δ +

(
Qu
Pu

)
(2.28)

and the transformed error has mean 0 and variance–covariance matrix given by(
σ 2

ν Q 0
0 σ 2

1 P

)
Problem 2.7 asks the reader to verify that OLS on this system of 2N T observations yields OLS
on the pooled model (2.3). Also, GLS on this system yields GLS on (2.3). Alternatively, one
could get rid of the constant α by running the following stacked regressions:(

Qy
(P − J̄ N T )y

)
=

(
Q X

(P − J̄ N T )X

)
β +

(
Qu

(P − J̄ N T )u

)
(2.29)

This follows from the fact that QιN T = 0 and (P − J̄ N T )ιN T = 0. The transformed error has
zero mean and variance–covariance matrix(

σ 2
ν Q 0
0 σ 2

1 (P − J̄ N T )

)
OLS on this system yields OLS on (2.3) and GLS on (2.29) yields GLS on (2.3). In fact,

β̂GLS = [(X ′ Q X/σ 2
ν ) + X ′(P − J̄N T )X/σ 2

1 ]−1[(X ′ Qy/σ 2
ν )

+X ′(P − J̄ N T )y/σ 2
1 ] (2.30)

= [WX X + φ2 BX X ]−1[WX y + φ2 BX y]

with var(̂βGLS) = σ 2
ν [WX X + φ2 BX X ]−1. Note that WX X = X ′ Q X, BX X = X ′(P − J̄ N T )X

and φ2 = σ 2
ν /σ 2

1 . Also, the Within estimator of β is β̃Within = W −1
X X WX y and the Between

estimator of β is β̂Between = B−1
X X BX y . This shows that β̂GLS is a matrix weighted average of

β̃Within and β̂Between weighing each estimate by the inverse of its corresponding variance. In fact

β̂GLS = W1β̃Within + W2β̂Between (2.31)

where

W1 = [WX X + φ2 BX X ]−1WX X

and

W2 = [WX X + φ2 BX X ]−1(φ2 BX X ) = I − W1

This was demonstrated by Maddala (1971). Note that (i) if σ 2
µ = 0 then φ2 = 1 and β̂GLS

reduces to β̂OLS. (ii) If T → ∞, then φ2 → 0 and β̂GLS tends to β̃Within. Also, if WX X is huge
compared to BX X then β̂GLS will be close to β̃Within. However, if BX X dominates WX X then β̂GLS

tends to β̂Between. In other words, the Within estimator ignores the Between variation, and the
Between estimator ignores the Within variation. The OLS estimator gives equal weight to the
Between and Within variations. From (2.30), it is clear that var(̃βWithin)−var(̂βGLS) is a positive
semidefinite matrix, since φ2 is positive. However, as T → ∞ for any fixed N , φ2 → 0 and
both β̂GLS and β̃Within have the same asymptotic variance.

Another estimator of the variance components was suggested by Nerlove (1971a). His
suggestion is to estimate σ 2

µ as
∑N

i=1(µ̂i − µ̂)2/(N − 1) where µ̂i are the dummy coefficients
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estimates from the LSDV regression. σ 2
ν is estimated from the Within residual sums of squares

divided by N T without correction for degrees of freedom.4

Note that, except for Nerlove’s (1971a) method, one has to retrieve σ̂ 2
µ as ( σ̂ 2

1 − σ̂ 2
ν )/T . In

this case, there is no guarantee that the estimate of σ̂ 2
µ would be nonnegative. Searle (1971)

has an extensive discussion of the problem of negative estimates of the variance components
in the biometrics literature. One solution is to replace these negative estimates by zero. This
in fact is the suggestion of the Monte Carlo study by Maddala and Mount (1973). This study
finds that negative estimates occurred only when the true σ 2

µ was small and close to zero. In
these cases OLS is still a viable estimator. Therefore, replacing negative σ̂ 2

µ by zero is not a
bad sin after all, and the problem is dismissed as not being serious.5

How about the properties of the various feasible GLS estimators of β? Under the ran-
dom effects model, GLS based on the true variance components is BLUE, and all the
feasible GLS estimators considered are asymptotically efficient as either N or T → ∞. Mad-
dala and Mount (1973) compared OLS, Within, Between, feasible GLS methods, MINQUE,
Henderson’s method III, true GLS and maximum likelihood estimation using their Monte
Carlo study. They found little to choose among the various feasible GLS estimators in small
samples and argued in favor of methods that were easier to compute. MINQUE was dismissed
as more difficult to compute and the applied researcher given one shot at the data was warned
to compute at least two methods of estimation, like an ANOVA feasible GLS and maximum
likelihood to ensure that they do not yield drastically different results. If they do give different
results, the authors diagnose misspecification.

Taylor (1980) derived exact finite sample results for the one-way error component model.
He compared the Within estimator with the Swamy–Arora feasible GLS estimator. He found
the following important results:

(1) Feasible GLS is more efficient than LSDV for all but the fewest degrees of freedom.
(2) The variance of feasible GLS is never more than 17% above the Cramer–Rao lower bound.
(3) More efficient estimators of the variance components do not necessarily yield more efficient

feasible GLS estimators.

These finite sample results are confirmed by the Monte Carlo experiments carried out by
Maddala and Mount (1973) and Baltagi (1981a).

Bellmann, Breitung and Wagner (1989) consider the bias in estimating the variance com-
ponents using the Wallace and Hussain (1969) method due to the replacement of the true
disturbances by OLS residuals, also the bias in the regression coefficients due to the use of
estimated variance components rather than the true variance components. The magnitude of
this bias is estimated using bootstrap methods for two economic applications. The first ap-
plication relates product innovations, import pressure and factor inputs using a panel at the
industry level. The second application estimates the earnings of 936 full-time working German
males based on the first and second wave of the German Socio-Economic Panel. Only the first
application revealed considerable bias in estimating σ 2

µ. However, this did not affect the bias
much in the corresponding regression coefficients.

2.3.1 Fixed vs Random

Having discussed the fixed effects and the random effects models and the assumptions un-
derlying them, the reader is left with the daunting question, which one to choose? This is
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not as easy a choice as it might seem. In fact, the fixed versus random effects issue has gen-
erated a hot debate in the biometrics and statistics literature which has spilled over into the
panel data econometrics literature. Mundlak (1961) and Wallace and Hussain (1969) were
early proponents of the fixed effects model and Balestra and Nerlove (1966) were advocates
of the random error component model. In Chapter 4, we will study a specification test pro-
posed by Hausman (1978) which is based on the difference between the fixed and random
effects estimators. Unfortunately, applied researchers have interpreted a rejection as an adop-
tion of the fixed effects model and nonrejection as an adoption of the random effects model.6

Chamberlain (1984) showed that the fixed effects model imposes testable restrictions on the
parameters of the reduced form model and one should check the validity of these restric-
tions before adopting the fixed effects model (see Chapter 4). Mundlak (1978) argued that
the random effects model assumes exogeneity of all the regressors with the random individ-
ual effects. In contrast, the fixed effects model allows for endogeneity of all the regressors
with these individual effects. So, it is an “all” or “nothing” choice of exogeneity of the re-
gressors and the individual effects, see Chapter 7 for a more formal discussion of this subject.
Hausman and Taylor (1981) allowed for some of the regressors to be correlated with the in-
dividual effects, as opposed to the all or nothing choice. These over-identification restrictions
are testable using a Hausman-type test (see Chapter 7). For the applied researcher, perform-
ing fixed effects and random effects and the associated Hausman test reported in standard
packages like Stata, LIMDEP, TSP, etc., the message is clear: Do not stop here. Test the re-
strictions implied by the fixed effects model derived by Chamberlain (1984) (see Chapter 4) and
check whether a Hausman and Taylor (1981) specification might be a viable alternative (see
Chapter 7).

2.4 MAXIMUM LIKELIHOOD ESTIMATION

Under normality of the disturbances, one can write the likelihood function as

L(α, β, φ2, σ 2
ν ) = constant − N T

2
log σ 2

ν + N

2
log φ2 − 1

2σ 2
ν

u′�−1u (2.32)

where � = σ 2
ν �, φ2 = σ 2

ν /σ 2
1 and � = Q + φ−2 P from (2.18). This uses the fact that | � |=

product of its characteristic roots = (σ 2
ν )N (T −1) (σ 2

1 )N = (σ 2
ν )N T (φ2)−N . Note that there is a

one-to-one correspondence between φ2 and σ 2
µ. In fact, 0 ≤ σ 2

µ < ∞ translates into 0 < φ2 ≤
1. Brute force maximization of (2.32) leads to nonlinear first-order conditions (see Amemiya,
1971). Instead, Breusch (1987) concentrates the likelihood with respect to α and σ 2

ν . In this
case, α̂mle = ȳ.. − X̄ ′

..β̂mle and σ̂ 2
ν,mle = (1/N T )̂u′�̂−1û where û and �̂ are based on maximum

likelihood estimates of β, φ2 and α. Let d = y − X β̂mle then α̂mle = (1/N T )ι′N T d and û =
d − ιN T α̂mle = d − J̄ N T d . This implies that σ̂ 2

ν,mle can be rewritten as

σ̂ 2
ν,mle = d ′[Q + φ2(P − J̄ N T )]d/N T (2.33)

and the concentrated likelihood becomes

LC (β, φ2) = constant − N T

2
log{d ′[Q + φ2(P − J̄ N T )]d} + N

2
log φ2 (2.34)
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Maximizing (2.34) over φ2, given β (see problem 2.9), yields

φ̂2 = d ′ Qd

(T − 1)d ′(P − J̄ N T )d
=

∑ ∑
(dit − d̄i.)2

T (T − 1)
∑

(d̄i. − d̄..)2
(2.35)

Maximizing (2.34) over β, given φ2, yields

β̂mle = [X ′(Q + φ2(P − J̄ N T ))X ]−1 X ′[Q + φ2(P − J̄ N T )]y (2.36)

One can iterate between β and φ2 until convergence. Breusch (1987) shows that provided
T > 1, any i th iteration β, call it βi , gives 0 < φ2

i+1 < ∞ in the (i + 1)th iteration. More
importantly, Breusch (1987) shows that these φ2

i have a “remarkable property” of forming a
monotonic sequence. In fact, starting from the Within estimator of β, for φ2 = 0, the next φ2

is finite and positive and starts a monotonically increasing sequence of φ2. Similarly, starting
from the Between estimator of β, for (φ2 → ∞) the next φ2 is finite and positive and starts
a monotonically decreasing sequence of φ2. Hence, to guard against the possibility of a local
maximum, Breusch (1987) suggests starting with β̃Within and β̂Between and iterating. If these two
sequences converge to the same maximum, then this is the global maximum. If one starts with
β̂OLS for φ2 = 1, and the next iteration obtains a larger φ2, then we have a local maximum at the
boundary φ2 = 1. Maddala (1971) finds that there are at most two maxima for the likelihood
L(φ2) for 0 < φ2 ≤ 1. Hence, we have to guard against one local maximum.

2.5 PREDICTION

Suppose we want to predict S periods ahead for the i th individual. For the GLS model, knowing
the variance–covariance structure of the disturbances, Goldberger (1962) showed that the best
linear unbiased predictor (BLUP) of yi,T +S is

ŷi,T +S = Z ′
i,T +ŜδGLS + w′�−1ûGLS for s ≥ 1 (2.37)

where ûGLS = y − Z δ̂GLS and w = E(ui,T +Su). Note that for period T + S

ui,T +S = µi + νi,T +S (2.38)

and w = σ 2
µ(li ⊗ ιT ) where li is the i th column of IN , i.e., li is a vector that has 1 in the i th

position and 0 elsewhere. In this case

w′�−1 = σ 2
µ(l ′i ⊗ ι′T )

[
1

σ 2
1

P + 1

σ 2
ν

Q

]
= σ 2

µ

σ 2
1

(l ′i ⊗ ι′T ) (2.39)

since (l ′i ⊗ ι′T )P = (l ′i ⊗ ι′T ) and (l ′i ⊗ ι′T )Q = 0. Using (2.39), the typical element of
w′�−1ûGLS becomes ((T σ 2

µ/σ 2
1 )̂ui.,GLS) where ûi.,GLS = ∑T

t=1 ûi t,GLS/T . Therefore, in (2.37),
the BLUP for yi,T +S corrects the GLS prediction by a fraction of the mean of the GLS residuals
corresponding to that i th individual. This predictor was considered by Taub (1979).

Baillie and Baltagi (1999) consider the practical situation of prediction from the error com-
ponent regression model when the variance components are not known. They derive both
theoretical and simulation evidence as to the relative efficiency of four alternative predic-
tors: (i) an ordinary predictor, based on the optimal predictor given in (2.37), but with MLEs
replacing population parameters; (ii) a truncated predictor that ignores the error component
correction, given by the last term in (2.37), but uses MLEs for its regression parameters;
(iii) a misspecified predictor which uses OLS estimates of the regression parameters; and (iv)
a fixed effects predictor which assumes that the individual effects are fixed parameters that can
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be estimated. The asymptotic formula for MSE prediction are derived for all four predictors.
Using numerical and simulation results, these are shown to perform adequately in realistic
sample sizes (N = 50 and 500 and T = 10 and 20). Both the analytical and sampling results
show that there are substantial gains in mean square error prediction by using the ordinary
predictor instead of the misspecified or the truncated predictors, especially with increasing
ρ = σ 2

µ/(σ 2
µ + σ 2

ν ) values. The reduction in MSE is about tenfold for ρ = 0.9 and a little more
than twofold for ρ = 0.6 for various values of N and T . The fixed effects predictor performs
remarkably well, being a close second to the ordinary predictor for all experiments. Simulation
evidence confirms the importance of taking into account the individual effects when making
predictions. The ordinary predictor and the fixed effects predictor outperform the truncated
and misspecified predictors and are recommended in practice.

For an application in actuarial science to the problem of predicting future claims of a risk
class, given past claims of that and related risk classes, see Frees, Young and Luo (1999). See
also Chamberlain and Hirano (1999) who suggest optimal ways of combining an individual’s
personal earnings history with panel data on the earnings trajectories of other individuals to
provide a conditional distribution for this individual’s earnings.

2.6 EXAMPLES

2.6.1 Example 1: Grunfeld Investment Equation

Grunfeld (1958) considered the following investment equation:

Iit = α + β1 Fit + β2Cit + uit (2.40)

where Iit denotes real gross investment for firm i in year t , Fit is the real value of the firm
(shares outstanding) and Cit is the real value of the capital stock. These panel data consist of
10 large US manufacturing firms over 20 years, 1935–54, and are available on the Wiley web
site as Grunfeld.fil. This data set, even though dated, is of manageable size for classroom use
and has been used by Zellner (1962) and Taylor (1980). Table 2.1 gives the OLS, Between

Table 2.1 Grunfeld’s Data. One-way Error Component Results

β1 β2 ρ σµ σν

OLS 0.116 0.231
(0.006)* (0.025)*

Between 0.135 0.032
(0.029) (0.191)

Within 0.110 0.310
(0.012) (0.017)

WALHUS 0.110 0.308 0.73 87.36 53.75
(0.011) (0.017)

AMEMIYA 0.110 0.308 0.71 83.52 52.77
(0.010) (0.017)

SWAR 0.110 0.308 0.72 84.20 52.77
(0.010) (0.017)

IMLE 0.110 0.308 0.70 80.30 52.49
(0.010) (0.017)

∗ These are biased standard errors when the true model has error component
disturbances (see Moulton, 1986).
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and Within estimators for the slope coefficients along with their standard errors. The Between
estimates are different from the Within estimates and a Hausman (1978) test based on their
difference is given in Chapter 4. OLS and feasible GLS are matrix-weighted combinations
of these two estimators. Table 2.1 reports three feasible GLS estimates of the regression
coefficients along with the corresponding estimates of ρ, σµ and σν . These are WALHUS,
AMEMIYA and SWAR. EViews computes the Wallace and Hussain (1969) estimator as an
option under the random effects panel data procedure. This EViews output is reproduced in
Table 2.2. Similarly, Table 2.3 gives the EViews output for the Amemiya (1971) procedure
which is named Wansbeek and Kapteyn (1989) in EViews, since the latter paper generalizes
the Amemiya method to deal with unbalanced or incomplete panels, see Chapter 9. Table 2.4
gives the EViews output for the Swamy and Arora (1972) procedure. Note that in Table 2.4,
σ̂µ = 84.2, σ̂ν = 52.77 and ρ̂ = σ̂ 2

µ/(σ̂ 2
µ + σ̂ 2

ν ) = 0.72. This is not θ̂ , but the latter can be
obtained as θ̂ = 1 − (σ̂ν/σ̂1) = 0.86. Next, Breusch’s (1987) iterative maximum likelihood
estimation is performed (IMLE). This procedure converged to a global maximum in three
to four iterations depending on whether one started from the Between or Within estimators.
There is not much difference among the feasible GLS estimates or the iterative MLE and they
are all close to the Within estimates. This is understandable given that θ̂ for these estimators is
close to 1.

Table 2.2 Grunfeld’s Data: Wallace and Hussain RE Estimator

Dependent variable: I
Method: Panel EGLS (cross-section random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wallace and Hussain estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C −57.86253 29.90492 −1.934883 0.0544
F 0.109789 0.010725 10.23698 0.0000
K 0.308183 0.017498 17.61207 0.0000

Effects Specification

Cross-section random S.D./rho 87.35803 0.7254
Idiosyncratic random S.D./rho 53.74518 0.2746

Weighted Statistics

R-squared 0.769410 Mean dependent variance 19.89203
Adjusted R-squared 0.767069 S.D. dependent variance 109.2808
S.E. of regression 52.74214 Sum squared residual 548001.4
F-statistic 328.6646 Durbin–Watson statistic 0.683829
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803285 Mean dependent variance 145.9582
Sum squared residual 1841243 Durbin–Watson statistic 0.203525
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Table 2.3 Grunfeld’s Data: Amemiya/Wansbeek and Kapteyn RE Estimator

Dependent variable: I
Method: Panel EGLS (cross-section random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wansbeek and Kapteyn estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C −57.82187 28.68562 −2.015710 0.0452
F 0.109778 0.010471 10.48387 0.0000
K 0.308081 0.017172 17.94062 0.0000

Effects Specification

Cross-section random S.D./rho 83.52354 0.7147
Idiosyncratic random S.D./rho 52.76797 0.2853

Weighted Statistics

R-squared 0.769544 Mean dependent variance 20.41664
Adjusted R-squared 0.767205 S.D. dependent variance 109.4431
S.E. of regression 52.80503 Sum squared residual 549309.2
F-statistic 328.9141 Durbin–Watson statistic 0.682171
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803313 Mean dependent variance 145.9582
Sum squared residual 1840981 Durbin–Watson statistic 0.203545

2.6.2 Example 2: Gasoline Demand

Baltagi and Griffin (1983) considered the following gasoline demand equation:

ln
Gas

Car
= α + β1 ln

Y

N
+ β2 ln

PMG

PGDP
+ β3 ln

Car

N
+ u (2.41)

where Gas/Car is motor gasoline consumption per auto, Y/N is real per capita income,
PMG/PGDP is real motor gasoline price and Car/N denotes the stock of cars per capita. This
panel consists of annual observations across 18 OECD countries, covering the period 1960–78.
The data for this example are given as Gasoline.dat on the Wiley web site. Table 2.5 gives the
parameter estimates for OLS, Between, Within and three feasible GLS estimates of the slope
coefficients along with their standard errors, and the corresponding estimates of ρ, σµ and σν .
Breusch’s (1987) iterative maximum likelihood converged to a global maximum in four to six
iterations depending on whether one starts from the Between or Within estimators. For the
SWAR procedure, σ̂µ = 0.196, σ̂ν = 0.092, ρ̂ = 0.82 and θ̂ = 0.89. Once again the estimates
of θ are closer to 1 than 0, which explains why feasible GLS is closer to the Within estimator
than the OLS estimator. The Between and OLS price elasticity estimates of gasoline demand
are more than double those for the Within and feasible GLS estimators.



JWBK024-02 JWBK024-Baltagi March 23, 2005 11:46 Char Count= 0

24 Econometric Analysis of Panel Data

Table 2.4 Grunfeld’s Data: Swamy and Arora RE Estimator

Dependent variable: I
Method: Panel EGLS (cross-section random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C −57.83441 28.88930 −2.001932 0.0467
F 0.109781 0.010489 10.46615 0.0000
K 0.308113 0.017175 17.93989 0.0000

Effects Specification

Cross-section random S.D./rho 84.20095 0.7180
Idiosyncratic random S.D./rho 52.76797 0.2820

Weighted Statistics

R-squared 0.769503 Mean dependent variance 20.25556
Adjusted R-squared 0.767163 S.D. dependent variance 109.3928
S.E. of regression 52.78556 Sum squared residual 548904.1
F-statistic 328.8369 Durbin–Watson statistic 0.682684
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803304 Mean dependent variance 145.9582
Sum squared residual 1841062 Durbin–Watson statistic 0.203539

Table 2.5 Gasoline Demand Data. One-way Error Component Results

β1 β2 β3 ρ σµ σν

OLS 0.890 −0.892 −0.763
(0.036)* (0.030)* (0.019)*

Between 0.968 −0.964 −0.795
(0.156) (0.133) (0.082)

Within 0.662 −0.322 −0.640
(0.073) (0.044) (0.030)

WALHUS 0.545 −0.447 −0.605 0.75 0.197 0.113
(0.066) (0.046) (0.029)

AMEMIYA 0.602 −0.366 −0.621 0.93 0.344 0.092
(0.066) (0.042) (0.027)

SWAR 0.555 −0.402 −0.607 0.82 0.196 0.092
(0.059) (0.042) (0.026)

IMLE 0.588 −0.378 −0.616 0.91 0.292 0.092
(0.066) (0.046) (0.029)

∗ These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).
Source: Baltagi and Griffin (1983). Reproduced by permission of Elsevier Science Publishers B.V. (North-Holland).
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2.6.3 Example 3: Public Capital Productivity

Following Munnell (1990), Baltagi and Pinnoi (1995) considered the following Cobb–Douglas
production function relationship investigating the productivity of public capital in private
production:

ln Y = α + β1 ln K1 + β3 ln K2 + β3 ln L + β4 Unemp + u (2.42)

where Y is gross state product, K1 is public capital which includes highways and streets,
water and sewer facilities and other public buildings and structures, K2 is the private capital
stock based on the Bureau of Economic Analysis national stock estimates, L is labor input
measured as employment in nonagricultural payrolls, Unemp is the state unemployment rate
included to capture business cycle effects. This panel consists of annual observations for 48
contiguous states over the period 1970–86. This data set was provided by Munnell (1990)
and is given as Produc.prn on the Wiley web site. Table 2.6 gives the estimates for a one-way
error component model. Note that both OLS and the Between estimators report that public
capital is productive and significant in the states private production. In contrast, the Within and
feasible GLS estimators find that public capital is insignificant. This result was also reported by
Holtz-Eakin (1994) who found that after controlling for state-specific effects, the public-sector
capital has no role in affecting private production.

Tables 2.7 and 2.8 give the Stata output reproducing the Between and Within estimates in
Table 2.6. This is done using the xtreg command with options (,be) for between and (,fe) for
fixed effects. Note that the fixed effects regression prints out the F-test for the significance
of the state effects at the bottom of the output. This is the F-test described in (2.12). It tests
whether all state dummy coefficients are equal and in this case it yields an F(47,764) = 75.82
which is statistically significant. This indicates that the state dummies are jointly significant.
It also means that the OLS estimates which omit these state dummies suffer from an omission
variables problem rendering them biased and inconsistent. Table 2.9 gives the Swamy and Arora
(1972) estimate of the random effects model. This is the default option in Stata and is obtained
from the xtreg command with option (,re). Finally, Table 2.10 gives the Stata output for the
maximum likelihood estimator. These are obtained from the xtreg command with option (,mle).

Table 2.6 Public Capital Productivity Data. One-way Error Component Results

β1 β2 β3 β4 ρ σµ σν

OLS 0.155 0.309 0.594 −0.007
(0.017)* (0.010)* (0.014)* (0.001)*

Between 0.179 0.302 0.576 −0.004
(0.072) (0.042) (0.056) (0.010)

Within −0.026 0.292 0.768 −0.005
(0.029) (0.025) (0.030) (0.001)

WALHUS 0.006 0.311 0.728 −0.006 0.82 0.082 0.039
(0.024) (0.020) (0.025) (0.001)

AMEMIYA 0.002 0.309 0.733 −0.006 0.84 0.088 0.038
(0.024) (0.020) (0.025) (0.001)

SWAR 0.004 0.311 0.730 −0.006 0.82 0.083 0.038
(0.023) (0.020) (0.025) (0.001)

IMLE 0.003 0.310 0.731 −0.006 0.83 0.085 0.038
(0.024) (0.020) (0.026) (0.001)

*These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).
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Table 2.7 Public Capital Productivity Data: The Between Estimator

. xtreg lny lnk1 lnk2 lnl u, be

Between regression (regression Number of obs = 816
on group means)

Group variable (i) : stid Number of groups = 48

R-sq: within = 0.9330 Obs per group: min = 17
between = 0.9939 avg = 17.0
overall = 0.9925 max = 17

F(4,43) = 1754.11
sd(u i + avg(e i.))= 0.0832062 Prob > F = 0.0000

---------------------------------------------------------------------
lny | Coef. Std. Err. t P>|t| [95% Conf. Interval]

------+--------------------------------------------------------------
lnk1 | .1793651 .0719719 2.49 0.017 .0342199 .3245104
lnk2 | .3019542 .0418215 7.22 0.000 .2176132 .3862953
lnl | .5761274 .0563746 10.22 0.000 .4624372 .6898176
u | -.0038903 .0099084 -0.39 0.697 -.0238724 .0160918

cons | 1.589444 .2329796 6.82 0.000 1.119596 2.059292
---------------------------------------------------------------------

Table 2.8 Public Capital Productivity Data: Fixed Effects Estimator

. xtreg lny lnk1 lnk2 lnl u, fe

Fixed-effects (within) regression Number of obs = 816
Group variable (i) : stid Number of groups = 48

R-sq: within = 0.9413 Obs per group: min = 17
between = 0.9921 avg = 17.0
overall = 0.9910 max = 17

F(4,764) = 3064.81
corr(u i, xb) = 0.0608 Prob > F = 0.0000

---------------------------------------------------------------------
lny | Coef. Std. Err. t P>|t| [95% Conf. Interval]

--------+------------------------------------------------------------
lnk1 | -.0261493 .0290016 -0.90 0.368 -.0830815 .0307829
lnk2 | .2920067 .0251197 11.62 0.000 .2426949 .3413185
lnl | .7681595 .0300917 25.53 0.000 .7090872 .8272318
u | -.0052977 .0009887 -5.36 0.000 -.0072387 -.0033568

cons | 2.352898 .1748131 13.46 0.000 2.009727 2.696069
--------+------------------------------------------------------------
sigma u | .09057293
sigma e | .03813705

rho | .8494045 (fraction of variance due to u i)
---------------------------------------------------------------------
F test that all u i=0: F(47, 764) = 75.82 Prob > F = 0.0000
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Table 2.9 Public Capital Productivity Data: Swamy and Arora Estimator

. xtreg lny lnk1 lnk2 lnl u, re theta

Random-effects GLS regression Number of obs = 816
Group variable (i) : stid Number of groups = 48

R-sq: within = 0.9412 Obs per group: min = 17
between = 0.9928 avg = 17.0
overall = 0.9917 max = 17

Random effects u i ∼ Gaussian Wald chi2(4) = 19131.09
corr(u i, X) = 0 (assumed) Prob > chi2 = 0.0000
theta = 0.8888353

---------------------------------------------------------------------
lny | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------+------------------------------------------------------------
lnk1 | .0044388 .0234173 0.19 0.850 -.0414583 .0503359
lnk2 | .3105483 .0198047 15.68 0.000 .2717317 .3493649
lnl | .7296705 .0249202 29.28 0.000 .6808278 .7785132
u | -.0061725 .0009073 -6.80 0.000 -.0079507 -.0043942

cons | 2.135411 .1334615 16.00 0.000 1.873831 2.39699
--------+------------------------------------------------------------
sigma u | .0826905
sigma e | .03813705

rho | .82460109 (fraction of variance due to u i)
---------------------------------------------------------------------

Table 2.10 Public Capital Productivity Data: The Maximum Likelihood Estimator

. xtreg lny lnk1 lnk2 lnl u, mle

Random-effects ML regression Number of obs = 816
Group variable (i) : stid Number of groups = 48

Random effects u i ∼ Gaussian Obs per group: min = 17
avg = 17.0
max = 17

LR chi2(4) = 2412.91
Log likelihood = 1401.9041 Prob > chi2 = 0.0000

---------------------------------------------------------------------
lny | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-----------------------------------------------------------
lnk1 | .0031446 .0239185 0.13 0.895 -.0437348 .050024
lnk2 | .309811 .020081 15.43 0.000 .270453 .349169
lnl | .7313372 .0256936 28.46 0.000 .6809787 .7816957
u | -.0061382 .0009143 -6.71 0.000 -.0079302 -.0043462

cons | 2.143865 .1376582 15.57 0.000 1.87406 2.413671
---------+-----------------------------------------------------------
/sigma u | .085162 .0090452 9.42 0.000 .0674337 .1028903
/sigma e | .0380836 .0009735 39.12 0.000 .0361756 .0399916
---------------------------------------------------------------------

rho | .8333481 .0304597 .7668537 .8861754
---------------------------------------------------------------------
Likelihood ratio test of sigma u=0: chibar2(01)= 1149.84 Prob>=
chibar2 = 0.000

27
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2.7 SELECTED APPLICATIONS

There are far too many applications of the error component model in economics to be exhaustive
and here we only want to refer the reader to a few applications. These include:

(1) Owusu-Gyapong (1986) who studied the strike activity of 60 Canadian manufacturing
industries over the period 1967–79.

(2) Cardellichio (1990) who modeled the production behavior of 1147 sawmills in the state
of Washington, observed biennially over the period 1972–84.

(3) Behrman and Deolalikar (1990) who estimated the effect of per capita income on the
calorie intake using the panel data collected by the International Crops Research Institute
for the Semi-Arid Tropics Village level studies in rural south India.

(4) Johnson and Lahiri (1992) who estimated a production function for ambulatory care using
panel data on 30 health care centers in New York state over the years 1984–87.

(5) Conway and Kniesner (1992) who used the Panel Study of Income Dynamics to study the
sensitivity of male labor supply function estimates to how the wage is measured and how
the researcher models individual heterogeneity.

(6) Cornwell and Rupert (1997) who used panel data from the NLSY to show that much of the
wage premium normally attributed to marriage is associated with unobservable individual
effects that are correlated with marital status and wages.

(7) Lundberg and Rose (2002) who used panel data from the PSID to estimate the effects
of children and the differential effects of sons and daughters on men’s labor supply and
hourly wage rate. Their fixed effects estimates indicate that, on average, a child increases
a man’s wage rate by 4.2% and his annual hours of work by 38 hours per year.

(8) Glick and Rose (2002) who studied the question of whether leaving a currency union
reduces international trade. They used panel data on bilateral trade among 217 countries
over the period 1948–97.

2.8 COMPUTATIONAL NOTE

There is no magical software written explicitly for all panel data estimation and testing proce-
dures. For a software review of LIMDEP, RATS, SAS, TSP and GAUSS with special attention
to the panel data procedures presented in this book, see Blanchard (1996). My students use
SAS or Stata especially when large database management is needed. For hard to program
estimation or testing methods, OX and GAUSS have a comparative advantage. Simple panel
data estimators can be done with LIMDEP, TSP, EViews or Stata. In fact, the results reported in
examples 2.1, 2.2 and 2.3 have been verified using TSP, EViews and Stata. Also, TSP, Stata and
EViews use one or all three of these data sets as benchmarks to illustrate these panel methods.

NOTES

1. For example, if we observe N = 20 firms over T = 5 time periods, � will be 100 by 100.
2. See also Searle and Henderson (1979) for a systematic method for deriving the characteristic roots

and vectors of � for any balanced error component model.
3. It is important to note that once one substitutes OLS or LSDV residuals in (2.21) and (2.22), the

resulting estimators of the variance components are no longer unbiased. The degrees of freedom
corrections required to make these estimators unbiased involve traces of matrices that depend on
the data. These correction terms are given in Wallace and Hussain (1969) and Amemiya (1971),
respectively. Alternatively, one can infer these correction terms from the more general unbalanced
error component model considered in Chapter 9.
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4. One can also apply Rao’s (1970, 1972) MINQUE (minimum norm quadratic unbiased estimation)
procedure or Henderson’s method III as described by Fuller and Battese (1973). These methods are
studied in detail in Baltagi (1995, Appendix 3) for the two-way error component model and in Chapter
9 for the unbalanced error component model. Unfortunately, these methods have not been widely used
in the empirical economics literature.

5. Berzeg (1979) generalizes the one-way error component model to the case where the individual effects
(µi ) and the remainder disturbances (νi t ) are correlated for the same individual i . This specification
ensures a nonnegative estimate of the error component variance. This is applied to the estimation of
US demand for motor gasoline (see Berzeg, 1982).

6. Hsiao and Sun (2000) argue that fixed versus random effects specification is better treated as an issue
of model selection rather than hypothesis testing. They suggest a recursive predictive density ratio as
well as the Akaike and Schwartz information criteria for model selection. Monte Carlo results indicate
that all three criteria perform well in finite samples. However, the Schwartz criterion was found to be
the more reliable of the three.

PROBLEMS

2.1 Prove that β̃ given in (2.7) can be obtained from OLS on (2.5) using results on partitioned
inverse. This can easily be obtained using the Frisch–Waugh–Lovell theorem of Davidson
and MacKinnon (1993, p. 19). Hint: This theorem states that the OLS estimate of β from
(2.5) will be identical to the OLS estimate of β from (2.6). Also, the least squares residuals
will be the same.

2.2 (a) Using generalized inverse, show that OLS or GLS on (2.6) yields β̃, the Within
estimator given in (2.7).

(b) Show that (2.6) satisfies the necessary and sufficient condition for OLS to be equiv-
alent to GLS (see Baltagi, 1989). Hint: Show that var(Qν) = σ 2

ν Q which is positive
semidefinite and then use the fact that Q is idempotent and is its own generalized
inverse.

2.3 Verify that by stacking the panel as an equation for each individual in (2.13) and per-
forming the Within transformation as in (2.14) one gets the Within estimator as OLS on
this system. Verify that the robust asymptotic var(̃β) is the one given by (2.16).

2.4 (a) Verify (2.17) and check that �−1� = I using (2.18).
(b) Verify that �−1/2�−1/2 = �−1 using (2.20) and (2.19).
(c) Premultiply y by σν�

−1/2 from (2.20), and show that the typical element is yit − θ ȳi.

where θ = 1 − (σν/σ1).
2.5 Using (2.21) and (2.22), show that E(σ̂ 2

1 ) = σ 2
1 , and E(σ̂ 2

ν ) = σ 2
ν . Hint: E(u′ Qu) =

E{tr(u′ Qu)} = E{tr(uu′ Q)} = tr{E(uu′)Q} = tr(�Q).
2.6 (a) Show that ̂̂σ 2

ν , given in (2.24) is unbiased for σ 2
ν .

(b) Show that ̂̂σ 2
1 given in (2.27) is unbiased for σ 2

1 .
2.7 (a) Perform OLS on the system of equations given in (2.28) and show that the resulting

estimator is δ̂OLS = (Z ′ Z )−1 Z ′y.
(b) Perform GLS on the system of equations given in (2.28) and show that the resulting

estimator is δ̂GLS = (Z ′�−1 Z )−1 Z ′�−1 y where �−1 is given in (2.19).
2.8 Using the var(̂βGLS) expression below (2.30) and var(̃βWithin) = σ 2

ν W −1
X X , show that

(var(̂βGLS))−1 − (var(̃βWithin))−1 = φ2 BX X/σ 2
ν

which is positive semidefinite. Conclude that var(̃βWithin)−var(̂βGLS) is positive
semidefinite.
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2.9 (a) Using the concentrated likelihood function in (2.34), solve ∂LC/∂φ2 = 0 and verify
(2.35).

(b) Solve ∂LC/∂β = 0 and verify (2.36).
2.10 (a) For the predictor yi,T +S given in (2.37), compute E(ui,T +Suit ) for t = 1, 2, . . . , T

and verify that w = E(ui,T +Su) = σ 2
µ(li ⊗ ιT ) where li is the i th column of IN .

(b) Verify (2.39) by showing that (l ′i ⊗ ι′T )P = (l ′i ⊗ ι′T ).
2.11 Using Grunfeld’s data given as Grunfeld.fil on the Wiley web site, reproduce Table 2.1.
2.12 Using the gasoline demand data of Baltagi and Griffin (1983), given as Gasoline.dat on

the Wiley web site, reproduce Table 2.5.
2.13 Using the Monte Carlo set-up for the one-way error component model, given in Maddala

and Mount (1973), compare the various estimators of the variance components and
regression coefficients studied in this chapter.

2.14 For the random one-way error component model given in (2.1) and (2.2), consider the OLS
estimator of var(uit ) = σ 2, which is given by s2 = û′

OLSûOLS/(n − K ′), where n = N T
and K ′ = K + 1.
(a) Show that E(s2) = σ 2 + σ 2

µ[K ′ − tr(IN ⊗ JT )Px ]/(n − K ′).
(b) Consider the inequalities given by Kiviet and Krämer (1992) which state that

0 ≤ mean of (n − K ′) smallest roots of � ≤ E(s2)

≤ mean of (n − K ′) largest roots of � ≤ tr(�)/(n − K ′)

where � = E(uu′). Show that for the one-way error component model, these bounds
are

0 ≤ σ 2
ν + (n − T K ′)σ 2

µ/(n − K ′) ≤ E(s2) ≤ σ 2
ν + nσ 2

µ/(n − K ′)

≤ nσ 2/(n − K ′)

As n → ∞, both bounds tend to σ 2, and s2 is asymptotically unbiased, irrespective
of the particular evolution of X . See Baltagi and Krämer (1994) for a proof of this
result.

2.15 Using the public capital productivity data of Munnell (1990), given as Produc.prn on the
Wiley web site, reproduce Table 2.6.

2.16 Using the Monte Carlo design of Baillie and Baltagi (1999), compare the four predictors
described in Section 2.5.

2.17 Heteroskedastic fixed effects models. This is based on problem 96.5.1 in Econometric
Theory by Baltagi (1996). Consider the fixed effects model

yit = αi + uit i = 1, 2, . . . , N ; t = 1, 2, . . . , Ti

where yit denotes output in industry i at time t and αi denotes the industry fixed effect.
The disturbances uit are assumed to be independent with heteroskedastic variances σ 2

i .
Note that the data are unbalanced with different number of observations for each industry.
(a) Show that OLS and GLS estimates of αi are identical.
(b) Let σ 2 = ∑N

i=1 Tiσ
2
i /n, where n = ∑N

i=1 Ti , be the average disturbance variance.
Show that the GLS estimator of σ 2 is unbiased, whereas the OLS estimator of σ 2 is
biased. Also show that this bias disappears if the data are balanced or the variances
are homoskedastic.
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(c) Define λ2
i = σ 2

i /σ 2 for i = 1, 2, . . . , N . Show that for α′ = (α1, α2, . . . , αN )

E[estimated var(̂αOLS) − true var(̂αOLS)]

= σ 2[(n −
N∑

i=1

λ2
i )/(n − N )] diag (1/Ti ) − σ 2 diag (λ2

i /Ti )

This problem shows that in case there are no regressors in the unbalanced panel data
model, fixed effects with heteroskedastic disturbances can be estimated by OLS, but
one has to correct the standard errors. See solution 96.5.1 in Econometric Theory by
Kleiber (1997).
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3
The Two-way Error Component

Regression Model

3.1 INTRODUCTION

Wallace and Hussain (1969), Nerlove (1971b) and Amemiya (1971), among others, considered
the regression model given by (2.1), but with two-way error components disturbances:

uit = µi + λt + νi t i = 1, . . . , N ; t = 1, . . . , T (3.1)

where µi denotes the unobservable individual effect discussed in Chapter 2, λt denotes the
unobservable time effect and νi t is the remainder stochastic disturbance term. Note that λt

is individual-invariant and it accounts for any time-specific effect that is not included in the
regression. For example, it could account for strike year effects that disrupt production; oil
embargo effects that disrupt the supply of oil and affect its price; Surgeon General reports
on the ill-effects of smoking, or government laws restricting smoking in public places, all of
which could affect consumption behavior. In vector form, (3.1) can be written as

u = Zµµ + Zλλ + ν (3.2)

where Zµ, µ and ν were defined earlier. Zλ = ιN ⊗ IT is the matrix of time dummies that
one may include in the regression to estimate the λt if they are fixed parameters, and λ′ =
(λ1, . . . , λT ). Note that Zλ Z ′

λ = JN ⊗ IT and the projection on Zλ is Zλ(Z ′
λ Zλ)−1 Z ′

λ = J̄ N ⊗
IT . This last matrix averages the data over individuals, i.e., if we regress y on Zλ, the predicted
values are given by (J̄N ⊗ IT )y which has typical element ȳ.t = ∑N

i=1 yit/N .

3.2 THE FIXED EFFECTS MODEL

If the µi and λt are assumed to be fixed parameters to be estimated and the remainder dis-
turbances stochastic with νi t ∼ IID(0, σ 2

ν ), then (3.1) represents a two-way fixed effects error
component model. The Xit are assumed independent of the νi t for all i and t . Inference in this
case is conditional on the particular N individuals and over the specific time periods observed.
Recall that Zλ, the matrix of time dummies, is N T × T . If N or T is large, there will be too
many dummy variables in the regression {(N − 1) + (T − 1)} of them, and this causes an enor-
mous loss in degrees of freedom. In addition, this attenuates the problem of multicollinearity
among the regressors. Rather than invert a large (N + T + K − 1) matrix, one can obtain
the fixed effects estimates of β by performing the following Within transformation given by
Wallace and Hussain (1969):

Q = EN ⊗ ET = IN ⊗ IT − IN ⊗ J̄ T − J̄ N ⊗ IT + J̄ N ⊗ J̄ T (3.3)

where EN = IN − J̄ N and ET = IT − J̄ T . This transformation “sweeps” the µi and λt effects.
In fact, ỹ = Qy has a typical element ỹi t = (yit − ȳi. − ȳ.t + ȳ..) where ȳ.. = ∑

i

∑
t yi t/

N T, and one would perform the regression of ỹ = Qy on X̃ = Q X to get the Within estimator
β̃ = (X ′ Q X )−1 X ′ Qy.

33
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Note that by averaging the simple regression given in (2.8) over individuals, we get

ȳ.t = α + β x̄.t + λt + ν̄.t (3.4)

where we have utilized the restriction that
∑

i µi = 0 to avoid the dummy variable trap.
Similarly the averages defined in (2.9) and (2.11) still hold using

∑
t λt , = 0, and one can

deduce that

(yit − ȳi. − ȳ.t + ȳ..) = (xit − x̄i. − x̄.t + x̄..)β + (νi t − ν̄i. − ν̄.t + ν̄..) (3.5)

OLS on this model gives β̃, the Within estimator for the two-way model. Once again, the
Within estimate of the intercept can be deduced from α̃ = ȳ.. − β̃ x̄.. and those of µi and λt are
given by

µ̃i = (ȳi. − ȳ..) − β̃(x̄i. − x̄..) (3.6)

λ̃t = (ȳ.t − ȳ..) − β̃(x̄.t − x̄..) (3.7)

Note that the Within estimator cannot estimate the effect of time-invariant and individual-
invariant variables because the Q transformation wipes out these variables. If the true model
is a two-way fixed effects model as in (3.2), then OLS on (2.1) yields biased and inconsistent
estimates of the regression coefficients. OLS ignores both sets of dummy variables, whereas
the one-way fixed effects estimator considered in Chapter 2 ignores only the time dummies. If
these time dummies are statistically significant, the one-way fixed effects estimator will also
suffer from omission bias.

3.2.1 Testing for Fixed Effects

As in the one-way error component model case, one can test for joint significance of the dummy
variables:

H0 : µ1 = . . . = µN−1 = 0 and λ1 = . . . = λT −1 = 0

The restricted residual sums of squares (RRSS) is that of pooled OLS and the unrestricted
residual sums of squares (URSS) is that from the Within regression in (3.5). In this case,

F1 = (RRSS − URSS)/(N + T − 2)

URSS/(N − 1)(T − 1) − K

H0∼ F(N+T −2),(N−1)(T −1)−K (3.8)

Next, one can test for the existence of individual effects allowing for time effects, i.e.

H2 : µ1 = . . . = µN−1 = 0 allowing λt �= 0 for t = 1, . . . , T − 1

The URSS is still the Within residual sum of squares. However, the RRSS is the regression
with time-series dummies only, or the regression based upon

(yit − ȳ.t ) = (xit − x̄.t )β + (uit − ū.t ) (3.9)

In this case the resulting F-statistic is F2
H0∼ F(N−1),(N−1)(T −1)−K . Note that F2 differs from F0

in (2.12) in testing for µi = 0. The latter tests H0 : µi = 0 assuming that λt = 0, whereas the
former tests H2 : µi = 0 allowing λt �= 0 for t = 1, . . . , T − 1. Similarly, one can test for the
existence of time effects allowing for individual effects, i.e.

H3 : λ1 = . . . = λT −1 = 0 allowing µi �= 0; i = 1, . . . , (N − 1)
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The RRSS is given by the regression in (2.10), while the URSS is obtained from the regression

(3.5). In this case, the resulting F-statistic is F3
H0∼ F(T −1),(N−1)(T −1)−K .

Computational Warning

As in the one-way model, s2 from the regression in (3.5) as obtained from any standard
regression package has to be adjusted for loss of degrees of freedom. In this case, one divides
by (N − 1)(T − 1) − K and multiplies by (N T − K ) to get the proper variance–covariance
matrix of the Within estimator.

3.3 THE RANDOM EFFECTS MODEL

If µi ∼ IID(0, σ 2
µ), λt ∼ IID(0, σ 2

λ ) and νi t ∼ IID(0, σ 2
ν ) independent of each other, then this

is the two-way random effects model. In addition, Xit is independent of µi , λt and νi t for all
i and t . Inference in this case pertains to the large population from which this sample was
randomly drawn. From (3.2), one can compute the variance–covariance matrix

� = E(uu′) = ZµE(µµ′)Z ′
µ + ZλE(λλ′)Z ′

λ + σ 2
ν IN T (3.10)

= σ 2
µ(IN ⊗ JT ) + σ 2

λ (JN ⊗ IT ) + σ 2
ν (IN ⊗ IT )

The disturbances are homoskedastic with var(uit ) = σ 2
µ + σ 2

λ + σ 2
ν for all i and t ,

cov(uit , u js) = σ 2
µ i = j, t �= s

= σ 2
λ i �= j, t = s

(3.11)

and zero otherwise. This means that the correlation coefficient

correl(uit , u js) = σ 2
µ/(σ 2

µ + σ 2
λ + σ 2

ν ) i = j, t �= s
= σ 2

λ /(σ 2
µ + σ 2

λ + σ 2
ν ) i �= j, t = s

= 1 i = j, t = s
= 0 i �= j, t �= s

(3.12)

In order to get �−1, we replace JN by N J̄ N , IN by EN + J̄ N , JT by T J̄ T and IT by ET + J̄ T

and collect terms with the same matrices. This gives

� =
4∑

i=1

λi Qi (3.13)

where λ1 = σ 2
ν , λ2 = T σ 2

µ + σ 2
ν , λ3 = Nσ 2

λ + σ 2
ν and λ4 = T σ 2

µ + Nσ 2
λ + σ 2

ν . Correspond-
ingly, Q1 = EN ⊗ ET , Q2 = EN ⊗ J̄ T , Q3 = J̄ N ⊗ ET and Q4 = J̄ N ⊗ J̄ T , respectively.
The λi are the distinct characteristic roots of � and the Qi are the corresponding matrices of
eigenprojectors. λ1 is of multiplicity (N − 1)(T − 1), λ2 is of multiplicity (N − 1), λ3 is of
multiplicity (T − 1) and λ4 is of multiplicity 1.1 Each Qi is symmetric and idempotent with
its rank equal to its trace. Moreover, the Qi are pairwise orthogonal and sum to the identity
matrix. The advantages of this spectral decomposition are that

�r =
4∑

i=1

λr
i Qi (3.14)



JWBK024-03 JWBK024-Baltagi March 22, 2005 9:21 Char Count= 0

36 Econometric Analysis of Panel Data

where r is an arbitrary scalar so that

σν�
−1/2 =

4∑
i=1

(σν/λ
1/2
i )Qi (3.15)

and the typical element of y∗ = σν�
−1/2 y is given by

y∗
i t = yit − θ1 ȳi. − θ2 ȳ.t + θ3 ȳ.. (3.16)

where θ1 = 1 − (σν/λ
1/2
2 ), θ2 = 1 − (σν/λ

1/2
3 ) and θ3 = θ1 + θ2 + (σν/λ

1/2
4 ) − 1. As a result,

GLS can be obtained as OLS of y∗ on Z∗, where Z∗ = σν�
−1/2 Z . This transformation was

first derived by Fuller and Battese (1974), see also Baltagi (1993).
The best quadratic unbiased (BQU) estimators of the variance components arise naturally

from the fact that Qi u ∼ (0, λi Qi ). Hence,

λ̂i = u′ Qi u/tr(Qi ) (3.17)

is the BQU estimator of λi for i = 1, 2, 3. These ANOVA estimators are minimum variance
unbiased (MVU) under normality of the disturbances (see Graybill, 1961). As in the one-way
error component model, one can obtain feasible estimates of the variance components by
replacing the true disturbances by OLS residuals (see Wallace and Hussain, 1969). OLS is still
an unbiased and consistent estimator under the random effects model, but it is inefficient and
results in biased standard errors and t-statistics. Alternatively, one could substitute the Within
residuals with ũ = y − α̃ιN T − X β̃, where α̃ = ȳ.. − X̄ ′

..β̃ and β̃ is obtained by the regression
in (3.5). This is the method proposed by Amemiya (1971). In fact, Amemiya (1971) shows
that the Wallace and Hussain (1969) estimates of the variance components have a different
asymptotic distribution from that knowing the true disturbances, while the Amemiya (1971)
estimates of the variance components have the same asymptotic distribution as that knowing
the true disturbances:

√
N T (σ̂ 2

ν − σ 2
ν )√

N (σ̂ 2
µ − σ 2

µ)√
T (σ̂ 2

λ − σ 2
λ )

 ∼ N

0,

 2σ 4
ν 0 0

0 2σ 4
µ 0

0 0 2σ 4
λ

 (3.18)

Substituting OLS or Within residuals instead of the true disturbances in (3.17) introduces bias in
the corresponding estimates of the variance components. The degrees of freedom corrections
that make these estimates unbiased depend upon traces of matrices that involve the matrix
of regressors X . These corrections are given in Wallace and Hussain (1969) and Amemiya
(1971), respectively. Alternatively, one can infer these correction terms from the more general
unbalanced error component model considered in Chapter 9.

Swamy and Arora (1972) suggest running three least squares regressions and estimating
the variance components from the corresponding mean square errors of these regressions. The
first regression corresponds to the Within regression which transforms the original model by
Q1 = EN ⊗ ET . This is equivalent to the regression in (3.5), and yields the following estimate
of σ 2

ν :

̂̂λ1 = ̂̂σ 2
ν = [y′ Q1 y − y′ Q1 X (X ′ Q1 X )−1 X ′ Q1 y]/[(N − 1)(T − 1) − K ] (3.19)
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The second regression is the Between individuals regression which transforms the original
model by Q2 = EN ⊗ J̄ T . This is equivalent to the regression of (ȳi. − ȳ..) on (X̄i. − X̄ ..) and
yields the following estimate of λ2 = T σ 2

µ + σ 2
ν :̂̂λ2 = [y′ Q2 y − y′ Q2 X (X ′ Q2 X )−1 X ′ Q2 y]/[(N − 1) − K ] (3.20)

from which one obtains ̂̂σ 2
µ = (̂̂λ2 − ̂̂σ 2

ν)/T . The third regression is the Between time-periods
regression which transforms the original model by Q3 = J̄ N ⊗ ET . This is equivalent to the
regression of (ȳ.t − ȳ..) on (X̄ .t − X̄ ..) and yields the following estimate of λ3 = Nσ 2

λ + σ 2
ν :̂̂λ3 = [y′ Q3 y − y′ Q3 X (X ′ Q3 X )−1 X ′ Q3 y]/[(T − 1) − K ] (3.21)

from which one obtains ̂̂σ 2
λ = (̂̂λ3 − ̂̂σ 2

ν)/N . Stacking the three transformed regressions just
performed yields  Q1 y

Q2 y
Q3 y

 =
 Q1 X

Q2 X
Q3 X

 β +
 Q1u

Q2u
Q3u

 (3.22)

since Qi ιN T = 0 for i = 1, 2, 3, and the transformed error has mean 0 and variance–covariance
matrix given by diag[λi Qi ] with i = 1, 2, 3. Problem 3.4 asks the reader to show that OLS on
this system of 3N T observations yields the same estimator of β as OLS on the pooled model
(2.3). Also, GLS on this system of equations (3.22) yields the same estimator of β as GLS on
(2.3). In fact,

β̂GLS = [(X ′ Q1 X )/σ 2
ν + (X ′ Q2 X )/λ2 + (X ′ Q3 X )/λ3]−1 (3.23)

×[(X ′ Q1 y)/σ 2
ν + (X ′ Q2 y)/λ2 + (X ′ Q3 y)/λ3]

= [WX X + φ2
2 BX X + φ2

3CX X ]−1[WX y + φ2
2 BX y + φ2

3CX y]

with var(̂βGLS) = σ 2
ν [WX X + φ2

2 BX X + φ2
3CX X ]−1. Note that WX X = X ′ Q1 X , BX X = X ′ Q2 X

and CX X = X ′ Q3 X with φ2
2 = σ 2

ν /λ2, φ2
3 = σ 2

ν /λ3. Also, the Within estimator of β is β̃W =
W −1

X X WX y , the Between individuals estimator of β is β̂B = B−1
X X BX y and the Between time-

periods estimator of β is β̂C = C−1
X X CX y . This shows that β̂GLS is a matrix-weighted average

of β̃W , β̂B and β̂C . In fact,

β̂GLS = W1β̃W + W2β̂B + W3β̂C (3.24)

where

W1 = [WX X + φ2
2 BX X + φ2

3CX X ]−1WX X

W2 = [WX X + φ2
2 BX X + φ2

3CX X ]−1(φ2
2 BX X )

W3 = [WX X + φ2
2 BX X + φ2

3CX X ]−1(φ2
3CX X )

This was demonstrated by Maddala (1971). Note that (i) if σ 2
µ = σ 2

λ = 0, φ2
2 = φ2

3 = 1 and
β̂GLS reduces to β̂OLS; (ii) as T and N → ∞, φ2

2 and φ2
3 → 0 and β̂GLS tends to β̃W ; (iii) if

φ2
2 → ∞ with φ2

3 finite, then β̂GLS tends to β̂B ; (iv) if φ2
3 → ∞ with φ2

2 finite, then β̂GLS tends
to β̂C .

Wallace and Hussain (1969) compare β̂GLS and β̃Within in the case of nonstochastic (repetitive)
X and find that both are (i) asymptotically normal, (ii) consistent and unbiased and that
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(iii) β̂GLS has a smaller generalized variance (i.e. more efficient) in finite samples. In the
case of nonstochastic (nonrepetitive) X they find that both β̂GLS and β̃Within are consistent,
asymptotically unbiased and have equivalent asymptotic variance–covariance matrices, as
both N and T → ∞. The last statement can be proved as follows: the limiting variance of the
GLS estimator is

1

N T
lim
N→∞
T →∞

(X ′�−1 X/N T )−1 = 1

N T
lim
N→∞
T →∞

[
3∑

i=1

1

λi
(X ′ Qi X/N T )

]−1

(3.25)

but the limit of the inverse is the inverse of the limit, and

lim
N→∞
T →∞

X ′ Qi X

N T
for i = 1, 2, 3 (3.26)

all exist and are positive semidefinite, since lim N→∞
T →∞

(X ′ X/N T ) is assumed finite and positive
definite. Hence

lim
N→∞
T →∞

1

(Nσ 2
λ + σ 2

ν )

(
X ′ Q3 X

N T

)
= 0

and

lim
N→∞
T →∞

1

(T σ 2
µ + σ 2

ν )

(
X ′ Q2 X

N T

)
= 0

Therefore the limiting variance of the GLS estimator becomes

1

N T
lim
N→∞
T →∞

σ 2
ν

(
X ′ Q1 X

N T

)−1

which is the limiting variance of the Within estimator.
One can extend Nerlove’s (1971a) method for the one-way model, by estimating σ 2

µ as∑N
i=1(µ̂i − µ̂)2/(N − 1) and σ 2

λ as
∑T

t=1(̂λt − λ̂)2/(T − 1) where the µ̂i and λ̂t are obtained
as coefficients from the least squares dummy variables regression (LSDV). σ 2

ν is estimated
from the Within residual sums of squares divided by N T . Baltagi (1995, appendix 3) develops
two other methods of estimating the variance components. The first is Rao’s (1970) minimum
norm quadratic unbiased estimation (MINQUE) and the second is Henderson’s method III as
described by Fuller and Battese (1973). These methods require more notation and development
and may be skipped in a brief course on this subject. Chapter 9 studies these estimation methods
in the context of an unbalanced error component model.

Baltagi (1981a) performed a Monte Carlo study on a simple regression equation with two-
way error component disturbances and studied the properties of the following estimators:
OLS, the Within estimator and six feasible GLS estimators denoted by WALHUS, AMEMIYA,
SWAR, MINQUE, FUBA and NERLOVE corresponding to the methods developed by Wallace
and Hussain (1969), Amemiya (1971), Swamy and Arora (1972), Rao (1972), Fuller and
Battese (1974) and Nerlove (1971a), respectively. The mean square error of these estimators
was computed relative to that of true GLS, i.e. GLS knowing the true variance components.

To review some of the properties of these estimators: OLS is unbiased, but asymptotically
inefficient, and its standard errors are biased; see Moulton (1986) for the extent of this bias
in empirical applications. In contrast, the Within estimator is unbiased whether or not prior
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information about the variance components is available. It is also asymptotically equivalent to
the GLS estimator in case of weakly nonstochastic exogenous variables. Early in the literature,
Wallace and Hussain (1969) recommended the Within estimator for the practical researcher,
based on theoretical considerations but more importantly for its ease of computation. In Wallace
and Hussain’s (1969, p. 66) words the “covariance estimators come off with a surprisingly
clear bill of health”. True GLS is BLUE, but the variance components are usually not known
and have to be estimated. All of the feasible GLS estimators considered are asymptotically
efficient. In fact, Prucha (1984) showed that as long as the estimate of σ 2

ν is consistent, and
the probability limits of the estimates σ 2

µ and σ 2
λ are finite, the corresponding feasible GLS

estimator is asymptotically efficient. Also, Swamy and Arora (1972) proved the existence
of a family of asymptotically efficient two-stage feasible GLS estimators of the regression
coefficients. Therefore, based on asymptotics only, one cannot differentiate among these two-
stage GLS estimators. This leaves undecided the question of which estimator is the best to use.
Some analytical results were obtained by Swamy (1971) and Swamy and Arora (1972). These
studies derived the relative efficiencies of (i) SWAR with respect to OLS, (ii) SWAR with
respect to Within and (iii) Within with respect to OLS. Then, for various values of N , T , the
variance components, the Between groups, Between time-periods and Within groups sums of
squares of the independent variable, they tabulated these relative efficiency values (see Swamy,
1971, chapters II and III; Swamy and Arora, 1972, p. 272). Among their basic findings is the
fact that, for small samples, SWAR is less efficient than OLS if σ 2

µ and σ 2
λ are small. Also,

SWAR is less efficient than Within if σ 2
µ and σ 2

λ are large. The latter result is disconcerting,
since Within, which uses only a part of the available data, is more efficient than SWAR, a
feasible GLS estimator, which uses all of the available data.

3.3.1 Monte Carlo Experiment

Baltagi (1981a) considered the following simple regression equation:

yit = α + βxit + uit (3.27)

with

uit = µi + λt + νi t i = 1, . . . , N ; t = 1, . . . , T (3.28)

The exogenous variable x was generated by a similar method to that of Nerlove (1971a).
Throughout the experiment α = 5, β = 0.5, N = 25, T = 10 and σ 2 = 20. However, ρ =
σ 2

µ/σ 2 and ω = σ 2
λ /σ 2 were varied over the set (0, 0.01, 0.2, 0.4, 0.6, 0.8) such that (1 −

ρ − ω) is always positive. In each experiment 100 replications were performed. For every
replication (N T + N + T ) independent and identically distributed normal IIN(0, 1) random
numbers were generated. The first N numbers were used to generate the µi as IIN(0, σ 2

µ). The
second T numbers were used to generate the λt as IIN(0, σ 2

λ ) and the last N T numbers were
used to generate the νi t as IIN(0, σ 2

ν ). For the estimation methods considered, the Monte Carlo
results show the following:

(1) For the two-way model, the researcher should not label the problem of negative variance
estimates “not serious” as in the one-way model. This is because we cannot distinguish between
the case where the model is misspecified (i.e. with at least one of the variance components
actually equal to zero) and the case where the model is properly specified (i.e. with at least
one of the variance components relatively small but different from zero). Another important
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reason is that we may not be able to distinguish between a case where OLS is equivalent to
GLS according to the MSE criterion and a case where it is not. For these cases, the practical
solution seems to be the replacement of a negative estimate by zero. Of course, this will affect
the properties of the variance components estimates, especially if the actual variances are
different from zero. The Monte Carlo results of Baltagi (1981a) report that the performance
of the two-stage GLS methods is not seriously affected by this substitution.

(2) As long as the variance components are not relatively small and close to zero, there
is always gain according to the MSE criterion in performing feasible GLS rather than least
squares or least squares with dummy variables.

(3) All the two-stage GLS methods considered performed reasonably well according to
the relative MSE criteria. However, none of these methods could claim to be the best for all
the experiments performed. Most of these methods had relatively close MSEs which therefore
made it difficult to choose among them. This same result was obtained in the one-way model
by Maddala and Mount (1973).

(4) Better estimates of the variance components do not necessarily give better second-round
estimates of the regression coefficients. This confirms the finite sample results obtained by
Taylor (1980) and extends them from the one-way to the two-way model.

Finally, the recommendation given in Maddala and Mount (1973) is still valid, i.e. always
perform more than one of the two-stage GLS procedures to see whether the estimates obtained
differ widely.

3.4 MAXIMUM LIKELIHOOD ESTIMATION

In this case, the normality assumption is needed on our error structure. The loglikelihood
function is given by

log L = constant − 1

2
log | � | −1

2
(y − Zγ )′�−1(y − Zγ ) (3.29)

where � and �−1 were given in (3.13) and (3.14). The maximum likelihood estimators of
γ, σ 2

ν , σ 2
µ and σ 2

λ are obtained by simultaneously solving the following normal equations:

∂ log L

∂γ
= Z ′�−1 y − (Z ′�−1 Z )γ = 0

∂ log L

∂σ 2
ν

= −1

2
tr �−1 + 1

2
u′�−2u = 0

∂ log L

∂σ 2
µ

= −1

2
tr �−1(IN ⊗ JT ) + 1

2
u′�−2(IN ⊗ JT )u = 0

∂ log L

∂σ 2
λ

= −1

2
tr �−1(JN ⊗ IT ) + 1

2
u′�−2(JN ⊗ IT )u = 0 (3.30)

Even if the u were observable, these would still be highly nonlinear and difficult to solve
explicitly. However, Amemiya (1971) suggests an iterative scheme to solve (3.30). The resulting
maximum likelihood estimates of the variance components are shown to be consistent and
asymptotic normal with an asymptotic distribution given by (3.18).
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Following Breusch (1987) one can write the likelihood for the two-way model as

L(α, β, σ 2
ν , φ2

2 , φ
2
3) = constant − (N T/2) log σ 2

ν + (N/2) log φ2
2 + (T/2) log φ2

3

−(1/2) log[φ2
2 + φ2

3 − φ2
2φ

2
3] − (1/2σ 2

ν )u′�−1u (3.31)

where � = σ 2
ν � = σ 2

ν (
∑4

i=1 Qi/φ
2
i ) from (3.13) with φ2

i = σ 2
ν /λi for i = 1, . . . , 4. The likeli-

hood (3.31) uses the fact that | � |−1 = (σ 2
ν )−N T (φ2

2)N−1(φ2
3)T −1φ2

4 . The feasibility conditions
∞ > λi ≥ σ 2

ν are equivalent to 0 < φ2
i ≤ 1 for i = 1, 2, 3, 4. Following Breusch (1987), we

define d = y − Xβ, therefore u = d − ιN T α. Given arbitrary values of β, φ2
2 , φ2

3 , one can con-
centrate this likelihood function with respect to α and σ 2

ν . Estimates of α and σ 2
ν are obtained

later as α̂ = ι′N T d/N T and σ̂ 2
ν = (u′�−1u/N T ). Substituting the maximum value of α in u

one gets u = d − ιN T α̂ = (IN T − J̄ N T )d . Also, using the fact that

(IN T − J̄ N T )�−1(IN T − J̄ N T ) = Q1 + φ2
2 Q2 + φ2

3 Q3

one gets σ̂ 2
ν = d ′[Q1 + φ2

2 Q2 + φ2
3 Q3]d/N T , givenβ,φ2

2 andφ2
3 . The concentrated likelihood

function becomes

LC (β, φ2
2 , φ

2
3) = constant − (N T/2) log[d ′(Q1 + φ2

2 Q2 + φ2
3 Q3)d] (3.32)

+(N/2) log φ2
2 + (T/2) log φ2

3 − (1/2) log[φ2
2 + φ2

3 − φ2
2φ

2
3]

Maximizing LC over β, given φ2
2 and φ2

3 , Baltagi and Li (1992a) get

β̂ = [X ′(Q1 + φ2
2 Q2 + φ2

3 Q3)X ]−1 X ′(Q1 + φ2
2 Q2 + φ2

3 Q3)y (3.33)

which is the GLS estimator knowing φ2
2 and φ2

3 . Similarly, maximizing LC over φ2
2 , given β

and φ2
3 , one gets2

δLC

δφ2
2

= − N T

2

d ′ Q2d

d ′[Q1 + φ2
2 Q2 + φ2

3 Q3]d
+ N

2

1

φ2
2

− 1

2

(1 − φ2
3)

[φ2
2 + φ2

3 − φ2
2φ

2
3]

= 0 (3.34)

which can be written as

aφ4
2 + bφ2

2 + c = 0 (3.35)

where a = −[N (T − 1) + 1](1 − φ2
3)(d ′ Q2d), b = (1 − φ2

3)(N − 1)d ′[Q1 + φ2
3 Q3]d − φ2

3
(T − 1)N (d ′ Q2d) and c = Nφ2

3d ′[Q1 + φ2
3 Q3]d. We will fix φ2

3 , where (0 < φ2
3 < 1) and

focus on iterating between β and φ2
2 .3 For a fixed φ2

3 , if φ2
2 = 0, then (3.33) becomes

β̂BW = [X ′(Q1 + φ2
3 Q3)X ]−1 X ′(Q1 + φ2

3 Q3)y, which is a matrix-weighted average of the
Within estimator β̂W = (X ′ Q1 X )−1 X ′ Q1 y and the Between time-periods estimator β̂C =
(X ′ Q3 X )−1 X ′ Q3 y. If φ2

2 → ∞, with φ2
3 fixed, then (3.33) reduces to the Between individuals

estimator β̂B = (X ′ Q2 X )−1 X ′ Q2 y. Using standard assumptions, Baltagi and Li (1992a) show
that a < 0 and c > 0 in (3.35). Hence b2 − 4ac > b2 > 0, and the unique positive root of
(3.35) is

φ̂2
2 =

[
−b −

√
b2 − 4ac

]
/2a =

[
b +

√
b2 + 4 | a | c

]
/2 | a | (3.36)

Since φ2
3 is fixed, we let Q̄1 = Q1 + φ2

3 Q3, then (3.33) becomes

β̂ = [X ′(Q̄1 + φ2
2 Q2)X ]−1 X ′(Q̄1 + φ2

2 Q2)y (3.37)
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Iterated GLS can be obtained through the successive application of (3.36) and (3.37). Baltagi
and Li (1992a) show that the update of φ2

2(i + 1) in the (i + 1)th iteration will be positive
and finite even if the initial β(i) value is β̂BW (from φ2

2(i) = 0) or β̂B (from the limit as
φ2

2(i) → ∞). More importantly, Breusch’s (1987) “remarkable property” extends to the two-
way error component model in the sense that the φ2

2 form a monotonic sequence. Therefore, if
one starts with β̂BW , which corresponds to φ2

2 = 0, the sequence of φ2
2 is strictly increasing.

On the other hand, starting with β̂B , which corresponds to φ2
2 → ∞, the sequence of φ2

2 is
strictly decreasing. This remarkable property allows the applied researcher to check for the
possibility of multiple local maxima. For a fixed φ2

3 , starting with both β̂BW and β̂B as initial
values, there is a single maximum if and only if both sequences of iterations converge to
the same φ2

2 estimate.4 Since this result holds for any arbitrary φ2
3 between zero and one, a

search over φ2
3 in this range will guard against multiple local maxima. Of course, there are other

computationally more efficient maximum likelihood algorithms. In fact, two-way MLE can
be implemented using TSP. The iterative algorithm described here is of value for pedagogical
reasons as well as for guarding against a local maximum.

3.5 PREDICTION

How does the best linear unbiased predictor look for the ith individual, S periods ahead for the
two-way model? From (3.1), for period T + S

ui,T +S = µi + λT +S + νi,T +S (3.38)

and

E(ui,T +Su jt ) = σ 2
µ for i = j (3.39)

= 0 for i �= j

and t = 1, 2, . . . , T . Hence, for the BLUP given in (2.37), w = E(ui,T +Su) = σ 2
µ(li ⊗ ιT )

remains the same where li is the i th column of IN . However, �−1 is given by (3.14), and

w′�−1 = σ 2
µ(l ′i ⊗ ι′T )

[
4∑

i=1

1

λi
Qi

]
(3.40)

Using the fact that

(l ′i ⊗ ι′T )Q1 = 0 (l ′i ⊗ ι′T )Q2 = (l ′i ⊗ ι′T ) − ι′N T /N
(l ′i ⊗ ι′T )Q3 = 0 (l ′i ⊗ ι′T )Q4 = ι′N T /N

(3.41)

one gets

w′�−1 = σ 2
µ

λ2
[(l ′i ⊗ ι′T ) − ι′N T /N ] + σ 2

µ

λ4
(ι′N T /N ) (3.42)

Therefore, the typical element of w′�−1ûGLS where ûGLS = y − Z δ̂GLS is

T σ 2
µ

(T σ 2
µ + σ 2

ν )
(̂ui.,GLS − û..,GLS) + T σ 2

µ

(T σ 2
µ + Nσ 2

λ + σ 2
ν )

û..,GLS (3.43)
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or

T σ 2
µ

(T σ 2
µ + σ 2

ν )
ûi.,GLS + T σ 2

µ

[
1

λ4
− 1

λ2

]
û..,GLS

where ûi.,GLS = ∑T
t=1 ûi t,GLS/T and û..,GLS = ∑

i

∑
t ûi t,GLS/N T . See problem 88.1.1 in

Econometric Theory by Baltagi (1988) and its solution 88.1.1 by Koning (1989). In gen-
eral, û..,GLS is not necessarily zero. The GLS normal equations are Z ′�−1ûGLS = 0. However,
if Z contains a constant, then ι′N T �−1ûGLS = 0, and using the fact that ι′N T �−1 = ι′N T /λ4 from
(3.14), one gets û..,GLS = 0. Hence, for the two-way model, if there is a constant in the model,
the BLUP for yi,T +S corrects the GLS prediction by a fraction of the mean of the GLS residuals
corresponding to that i th individual

ŷi,T +S = Z ′
i,T +ŜδGLS +

(
T σ 2

µ

T σ 2
µ + σ 2

ν

)
ûi.,GLS (3.44)

This looks exactly like the BLUP for the one-way model but with a different �. If there is no
constant in the model, the last term in (3.44) should be replaced by (3.43).

3.6 EXAMPLES

3.6.1 Example 1: Grunfeld Investment Equation

For Grunfeld’s (1958) example considered in Chapter 2, the investment equation is estimated
using a two-way error component model. Table 3.1 gives OLS, Within, three feasible GLS
estimates and the iterative MLE for the slope coefficients. The Within estimator yields a β̃1

estimate at 0.118 (0.014) and a β̃2 estimate at 0.358 (0.023). In fact, Table 3.2 gives the EViews
output for the two-way fixed effects estimator. This is performed under the panel option with
fixed individual and fixed time effects. For the random effects estimators, both the SWAR and
WALHUS report negative estimates of σ 2

λ and this is replaced by zero. Table 3.3 gives the
EViews output for the random effects estimator of the two-way error component model for
the Wallace and Hussain (1969) option. Table 3.4 gives the EViews output for the Amemiya

Table 3.1 Grunfeld’s Data. Two-way Error Component Results

β1 β2 σµ σλ σν

OLS 0.116 0.231
(0.006)∗ (0.025)∗

Within 0.118 0.358
(0.014) (0.023)

WALHUS 0.110 0.308 87.31 0 55.33
(0.010) (0.017)

AMEMIYA 0.111 0.324 89.26 15.78 51.72
(0.011) (0.019)

SWAR 0.110 0.308 84.23 0 51.72
(0.011) (0.017)

IMLE 0.110 0.309 80.41 3.87 52.35
(0.010) (0.020)

∗These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).
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Table 3.2 Grunfeld’s Data. Two-way Within Estimator

Dependent variable: I
Method: Panel least squares

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200

Variable Coefficient Std. Error t-Statistic Prob.

C −80.16380 14.84402 −5.400409 0.0000
F 0.117716 0.013751 8.560354 0.0000
K 0.357916 0.022719 15.75404 0.0000

Effects Specification

Cross-section fixed (dummy variables)
Period fixed (dummy variables)

R-squared 0.951693 Mean dependent variance 145.9582
Adjusted R-squared 0.943118 S.D. dependent variance 216.8753
S.E. of regression 51.72452 Akaike information criterion 10.87132
Sum squared residual 452147.1 Schwarz criterion 11.38256
Loglikelihood −1056.132 F-statistic 110.9829
Durbin–Watson statistic 0.719087 Prob(F-statistic) 0.000000

Table 3.3 Grunfeld’s Data. Two-way Wallace and Hussain Estimator

Dependent variable: I
Method: Panel EGLS (two-way random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wallace and Hussain estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C −57.81705 28.63258 −2.019275 0.0448
F 0.109776 0.010473 10.48183 0.0000
K 0.308069 0.017186 17.92575 0.0000

Effects Specification

Cross-section random S.D./rho 87.31428 0.7135
Period random S.D./rho 0.000000 0.0000
Idiosyncratic random S.D./rho 55.33298 0.2865

Weighted Statistics

R-squared 0.769560 Mean dependent variance 20.47837
Adjusted R-squared 0.767221 S.D. dependent variance 109.4624
S.E. of regression 52.81254 Sum squared residual 549465.3
F-statistic 328.9438 Durbin–Watson statistic 0.681973
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803316 Mean dependent variance 145.9582
Sum squared residual 1840949 Durbin–Watson statistic 0.203548

44
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Table 3.4 Grunfeld’s Data. Two-way Amemiya/Wansbeek and Kapteyn Estimator

Dependent variable: I
Method: Panel EGLS (two-way random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wansbeek and Kapteyn estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C −63.89217 30.53284 −2.092573 0.0377
F 0.111447 0.010963 10.16577 0.0000
K 0.323533 0.018767 17.23947 0.0000

Effects Specification

Cross-section random S.D./rho 89.26257 0.7315
Period random S.D./rho 15.77783 0.0229
Idiosyncratic random S.D./rho 51.72452 0.2456

Weighted Statistics

R-squared 0.748982 Mean dependent variance 18.61292
Adjusted R-squared 0.746433 S.D. dependent variance 101.7143
S.E. of regression 51.21864 Sum squared residual 516799.9
F-statistic 293.9017 Durbin–Watson statistic 0.675336
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.798309 Mean dependent variance 145.9582
Sum squared residual 1887813 Durbin–Watson statistic 0.199923

(1971) estimator. In this case the estimate of σλ is 15.8, the estimate of σµ is 89.3 and the
estimate of σν is 51.7. This means that the variance of the time effects is only 2.3% of the total
variance, while the variance of the firm effects is 73.1% of the total variance, and the variance
of the remainder effects is 24.6% of the total variance. Table 3.5 gives the EViews output for
the Swamy and Arora (1972) estimator. The iterative maximum likelihood method yields β̂1

at 0.110 (0.010) and β̂2 at 0.309 (0.020). This was performed using TSP.

3.6.2 Example 2: Gasoline Demand

For the motor gasoline data in Baltagi and Griffin (1983) considered in Chapter 2, the gasoline
demand equation is estimated using a two-way error component model. Table 3.6 gives OLS,
Within, three feasible GLS estimates and iterative MLE for the slope coefficients. The Within
estimator is drastically different from OLS. The WALHUS and SWAR methods yield negative
estimates of σ 2

λ and this is replaced by zero. IMLE is obtained using TSP.

3.6.3 Example 3: Public Capital Productivity

For the Munnell (1990) public capital data considered by Baltagi and Pinnoi (1995) in Chap-
ter 2, the Cobb–Douglas production function is estimated using a two-way error component
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Table 3.5 Grunfeld’s Data. Two-way Swamy and Arora Estimator

Dependent variable: I
Method: Panel EGLS (two-way random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C −57.86538 29.39336 −1.968655 0.0504
F 0.109790 0.010528 10.42853 0.0000
K 0.308190 0.017171 17.94833 0.0000

Effects Specification

Cross-section random S.D./rho 84.23332 0.7262
Period random S.D./rho 0.000000 0.0000
Idiosyncratic random S.D./rho 51.72452 0.2738

Weighted Statistics

R-squared 0.769400 Mean dependent variance 19.85502
Adjusted R-squared 0.767059 S.D. dependent variance 109.2695
S.E. of regression 52.73776 Sum squared residual 547910.4
F-statistic 328.6473 Durbin–Watson statistic 0.683945
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803283 Mean dependent variance 145.9582
Sum squared residual 1841262 Durbin–Watson statistic 0.203524

Table 3.6 Gasoline Demand Data. Two-way Error Component Results

β1 β2 β3 σµ σλ σν

OLS 0.889 −0.892 −0.763
(0.036)* (0.030)* (0.019)

Within 0.051 −0.193 −0.593
(0.091) (0.043) (0.028)

WALHUS 0.545 −0.450 −0.605 0.197 0 0.115
(0.056) (0.039) (0.025)

AMEMIYA 0.170 −0.233 −0.602 0.423 0.131 0.081
(0.080) (0.041) (0.026)

SWAR 0.565 −0.405 −0.609 0.196 0 0.081
(0.061) (0.040) (0.026)

IMLE 0.231 −0.254 −0.606 0.361 0.095 0.082
(0.091) (0.045) (0.026)

*These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).
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Table 3.7 Public Capital Data. Two-way Error Component Results

β1 β2 β3 β4 σµ σλ σν

OLS 0.155 0.309 0.594 −0.007
(0.017)* (0.010)* (0.014)* (0.001)*

Within −0.030 0.169 0.769 −0.004
(0.027) (0.028) (0.028) (0.001)

WALHUS 0.026 0.258 0.742 −0.005 0.082 0.016 0.036
(0.023) (0.021) (0.024) (0.001)

AMEMIYA 0.002 0.217 0.770 −0.004 0.154 0.026 0.034
(0.025) (0.024) (0.026) (0.001)

SWAR 0.018 0.266 0.745 −0.005 0.083 0.010 0.034
(0.023) (0.021) (0.024) (0.001)

IMLE 0.020 0.250 0.750 −0.004 0.091 0.017 0.035
(0.024) (0.023) (0.025) (0.001)

*These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).

model. Table 3.7 gives OLS, Within, three feasible GLS estimates and iterative MLE for
the slope coefficients. With the exception of OLS, estimates of the public capital coefficient
are insignificant in this production function. Also, none of the feasible GLS estimators yield
negative estimates of the variance components.

3.7 SELECTED APPLICATIONS

(1) For an application of the two-way fixed effects model to a study of the effects of foreign
aid on public sector budgets of 46 developing countries observed over the period 1975–80, see
Cashel-Cordo and Craig (1990).

(2) For an application of the two-way random effects model to study the determinants of
secondary market prices for developing country syndicated loans, see Boehmer and Megginson
(1990). Their panel consisted of 10 countries observed over 32 months beginning in July 1985
and ending in July 1988.

(3) Carpenter, Fazzari and Petersen (1998) estimate a two-way fixed effects model to provide
evidence of the importance of the firm’s financing constraints in explaining the dramatic cycles
in inventory investments. Using quarterly firm panel data obtained from the Compustat tapes,
they conclude that cash flow is much more successful than cash stocks or coverage in explaining
inventory investment across firm size, different inventory cycles and different manufacturing
sectors.

(4) Baltagi, Egger and Pfaffermayr (2003) consider an unbalanced panel of bilateral export
flows from the EU15 countries, the USA and Japan to their 57 most important trading partners
over the period 1986–98. They estimate a three-way gravity equation with importer, exporter
and time fixed effects as well as pairwise interaction effects. These effects include time-invariant
factors like distance, common borders, island nation, land-locked, common language, colonies,
etc. These fixed effects as well as the interaction terms are found to be statistically significant.
Omission of these effects can result in biased and misleading inference.

NOTES

1. These characteristic roots and eigenprojectors were first derived by Nerlove (1971b) for the two-way
error component model. More details are given in appendix 1 of Baltagi (1995).
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2. Alternatively, one can maximize LC over φ2
3 , given β and φ2

2 . The results are symmetric and are left
as an exercise. In fact, one can show (see problem 3.6) that φ2

3 will satisfy a quadratic equation like
(3.35) with N exchanging places with T, φ2

2 replacing φ2
3 and Q2 exchanging places with Q3 in a, b

and c, respectively.
3. The case where φ2

3 = 1 corresponds to σ 2
λ = 0, i.e. the one-way error component model where

Breusch’s (1987) results apply.
4. There will be no local maximum interior to 0 < φ2

2 ≤ 1 if starting from β̂BW we violate the nonneg-
ative variance component requirement, φ2

2 ≤ 1. In this case, one should set φ2
2 = 1.

PROBLEMS

3.1 (a) Prove that the Within estimator β̃ = (X ′ Q X )−1 X ′ Qy with Q defined in (3.3) can be
obtained from OLS on the panel regression model (2.3) with disturbances defined
in (3.2). Hint: Use the Frisch–Waugh–Lovell theorem of Davidson and MacKinnon
(1993, p. 19). Also, the generalized inverse matrix result given in problem 9.6.

(b) Within two-way is equivalent to two Withins one-way. This is based on problem
98.5.2 in Econometric Theory by Baltagi (1998). Show that the Within two-way
estimator of β can be obtained by applying two Within (one-way) transformations.
The first is the Within transformation ignoring the time effects followed by the
Within transformation ignoring the individual effects. Show that the order of these
two Within (one-way) transformations is unimportant. Give an intuitive explanation
for this result. See solution 98.5.2 in Econometric Theory by Li (1999).

3.2 (a) Using generalized inverse, show that OLS or GLS on (2.6) with Q defined in
(3.3) yields β̃, the Within estimator.

(b) Show that (2.6) with Q defined in (3.3) satisfies the necessary and sufficient condition
for OLS to be equivalent to GLS (see Baltagi, 1989).

3.3 (a) Verify (3.10) and (3.13) and check that �−1� = I using (3.14).
(b) Verify that �−1/2�−1/2 = �−1 using (3.14).
(c) Premultiply y by σν�

−1/2 from (3.15) and show that the typical element is given by
(3.16).

3.4 (a) Perform OLS on the system of equations given in (3.22) and show that the resul-
ting estimate is β̂OLS = (X (IN T − J̄ N T )X )−1 X ′(IN T − J̄ N T )y.

(b) Perform GLS on this system of equations and show that β̂GLS reduces to the ex-
pression given by (3.23).

3.5 Show that the Swamy and Arora (1972) estimators of λ1, λ2 and λ3 given by (3.19),
(3.20) and (3.21) are unbiased for σ 2

ν , λ2 and λ3, respectively.
3.6 (a) Using the concentrated likelihood function in (3.32), solve ∂LC/∂β = 0, given φ2

2
and φ2

3 , and verify (3.33).
(b) Solve ∂LC/∂φ2

2 = 0, given φ2
3 and β, and verify (3.34).

(c) Solve ∂LC/∂φ2
3 = 0, given φ2

2 and β, and show that the solution φ2
3 satisfies

aφ4
3 + bφ2

3 + c = 0

where

a = −[T (N − 1) + 1](1 − φ2
2)(d ′ Q3d)

b = (1 − φ2
2)(T − 1)d ′[Q1 + φ2

2 Q2]d − φ2
2 T (N − 1)d ′ Q3d
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and

c = T φ2
2d ′(Q1 + φ2

2 Q2)d

Note that this is analogous to (3.35), with φ2
2 replacing φ2

3 , N replacing T , and Q2

replacing Q3 and vice versa, wherever they occur.
3.7 Predicting yi,T +S .

(a) For the two-way error component model in (3.1), verify (3.39) and (3.42).
(b) Also, show that if there is a constant in the regression, ι′N T �−1ûGLS = 0 and

û..,GLS = 0.
3.8 Using Grunfeld’s data given on the Wiley web site as Grunfeld.fil, reproduce Table 3.1.
3.9 Using the gasoline demand data of Baltagi and Griffin (1983), given as Gasoline.dat on

the Wiley web site, reproduce Table 3.6.
3.10 Using the public capital data of Munnell (1990), given as Produc.prn on the Wiley web

site, reproduce Table 3.7.
3.11 Using the Monte Carlo set-up for the two-way error component model given in (3.27) and

(3.28) (see Baltagi, 1981a), compare the various estimators of the variance components
and regression coefficients studied in this chapter.

3.12 Variance component estimation under misspecification. This is based on problem 91.3.3
in Econometric Theory by Baltagi and Li (1991). This problem investigates the conse-
quences of under- or overspecifying the error component model on the variance compo-
nents estimates. Since the one-way and two-way error component models are popular in
economics, we focus on the following two cases.
(1) Underspecification. In this case, the true model is two-way, see (3.1):

uit = µi + λt + νi t i = 1, . . . , N ; t = 1, . . . , T

while the estimated model is one-way, see (2.2):

uit = µi + νi t

µi ∼ IID(0, σ 2
µ), λt ∼ IID(0, σ 2

λ ), νi t ∼ IID(0, σ 2
ν ) independent of each other and

among themselves.
(a) Knowing the true disturbances (uit ), show that the BQUE of σ 2

ν for the misspecified
one-way model is biased upwards, while the BQUE of σ 2

µ remains unbiased.
(b) Show that if the uit are replaced by the one-way least squares dummy variables

(LSDV) residuals, the variance component estimate of σ 2
ν given in part (a) is incon-

sistent, while that of σ 2
µ is consistent.

(2) Overspecification. In this case, the true model is one-way, given by (2.2), while the
estimated model is two-way, given by (3.1).

(c) Knowing the true disturbances (uit ), show that the BQUE of σ 2
µ, σ 2

λ and σ 2
ν for the

misspecified two-way model remain unbiased.
(d) Show that if the uit are replaced by the two-way (LSDV) residuals, the variance

components estimates given in part (c) remain consistent. (Hint: See solution 91.3.3
in Econometric Theory by Baltagi and Li (1992). See also Deschamps (1991) who
shows that an underspecified error component model yields inconsistent estimates
of the coefficient variances.)

3.13 For the random two-way error component model described by (2.1) and (3.1), consider
the OLS estimator of var(uit ) = σ 2, which is given by s2 = û′

OLSûOLS/(n − K ′) where
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n = N T and K ′ = K + 1.
(a) Show that

E(s2) = σ 2 − σ 2
µ[tr(IN ⊗ JT )Px − K ′]/(n − K ′)

−σ 2
λ [tr(JN ⊗ IT )Px − K ′]/(n − K ′)

(b) Consider the inequalities given by Kiviet and Krämer (1992) which are reproduced
in problem 2.14, part (b). Show that for the two-way error component model, these
bounds are given by the following two cases.

(1) For T σ 2
µ < Nσ 2

λ :

0 ≤ σ 2
ν + σ 2

µ(n − T )/(n − K ′) + σ 2
λ (n − N K ′)/(n − K ′) ≤ E(s2)

≤ σ 2
ν + σ 2

µ[n/(n − K ′)] + σ 2
λ [n/(n − K ′)] ≤ σ 2(n/n − K ′)

(2) For T σ 2
µ > Nσ 2

λ :

0 ≤ σ 2
ν + σ 2

µ(n − T K ′)/(n − K ′) + σ 2
λ (n − N )/(n − K ′) ≤ E(s2)

≤ σ 2
ν + σ 2

µ[n/(n − K ′)] + σ 2
λ [n/(n − K ′)] ≤ σ 2(n/n − K ′)

In either case, as n → ∞, both bounds tend to σ 2 and s2 is asymptotically unbiased,
irrespective of the particular evolution of X . See Baltagi and Krämer (1994) for a proof
of this result.

3.14 Nested effects. This is based on problem 93.4.2 in Econometric Theory by Baltagi (1993).
In many economic applications, the data may contain nested groupings. For example,
data on firms may be grouped by industry, data on states by region and data on individuals
by profession. In this case, one can control for unobserved industry and firm effects using
a nested error component model. Consider the regression equation

yi j t = x ′
i j tβ + ui jt for i = 1, . . . , M ; j = 1, . . . , N ; t = 1, 2, . . . , T

where yi j t could denote the output of the j th firm in the i th industry for the t th time
period. xi j t denotes a vector of k inputs, and the disturbance is given by

ui jt = µi + νi j + εi j t

where µi ∼ IID(0, σ 2
µ), νi j ∼ IID(0, σ 2

ν ) and εi j t ∼ IID(0, σ 2
ε ), independent of each other

and among themselves. This assumes that there are M industries with N firms in each
industry observed over T periods.
(1) Derive � = E(uu′) and obtain �−1and �−1/2.
(2) Show that y∗ = σε�

−1/2 y has a typical element

y∗
i j t = (yi j t − θ1 ȳi j. + θ2 ȳi..)

where θ1 = 1 − (σε/σ1) with σ 2
1 = (T σ 2

ν + σ 2
ε ); θ2 = −(σε/σ1) + (σε/σ2) with

σ 2
2 = (N T σ 2

µ + T σ 2
ν + σ 2

ε ); ȳi j. = ∑T
t=1 yi j t/T and ȳi.. = ∑N

j=1

∑T
t=1 yi j t/N T .

See solution 93.4.2 in Econometric Theory by Xiong (1995).
3.15 Ghosh (1976) considered the following error component model:

uitq = µi + λt + ηq + νi tq
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where i = 1, . . . , N ; T = 1, . . . , T and q = 1, . . . , M . Ghosh (1976) argued that in in-
ternational or interregional studies, there might be two rather than one cross-sectional
components; for example, i might denote countries and q might be regions within that
country. These four independent components are assumed to be random with µi ∼
IID(0, σ 2

µ), λt ∼ IID(0, σ 2
λ ), ηq ∼ IID(0, σ 2

η ) and νi tq ∼ IID(0, σ 2
ν ). Order the observa-

tions such that the faster index is q, while the slower index is t, so that

u′ = (u111, . . . , u11M , u121, . . . , u12M , . . . , u1N1, . . . ,

u1N M , . . . , uT 11, . . . , uT 1M , . . . , uT N1, . . . , uT N M )

(a) Show that the error has mean zero and variance–covariance matrix

� = E(uu′) = σ 2
ν (IT ⊗ IN ⊗ IM ) + σ 2

λ (IT ⊗ JN ⊗ JM )

+σ 2
µ(JT ⊗ IN ⊗ JM ) + σ 2

η (JT ⊗ JN ⊗ IM )

(b) Using the Wansbeek and Kapteyn (1982b) trick, show that � = ∑5
j=1 ξ j Vj

where ξ1 = σ 2
ν , ξ2 = N Mσ 2

λ + σ 2
ν , ξ3 = T Mσ 2

µ + σ 2
ν , ξ4 = N T σ 2

η + σ 2
ν and ξ5 =

N Mσ 2
λ + T Mσ 2

µ + N T σ 2
η + σ 2

ν . Also

V1 = IT ⊗ IN ⊗ IM − IT ⊗ J̄ N ⊗ J̄ M − J̄T ⊗ IN ⊗ J̄ M

− J̄ T ⊗ J̄ N ⊗ IM + 2 J̄ T ⊗ J̄ N ⊗ J̄ M

V2 = ET ⊗ J̄ N ⊗ J̄ M where ET = IT − J̄ T

V3 = J̄ T ⊗ EN ⊗ J̄ M

V4 = J̄ T ⊗ J̄ N ⊗ EM and V5 = J̄T ⊗ J̄ N ⊗ J̄ M

all symmetric and idempotent and sum to the identity matrix.
(c) Conclude that �−1 = ∑5

j=1(1/ξ j )Vj and σν�
−1/2 = ∑5

j=1(σν/
√

ξ j )Vj with the
typical element of σν�

−1/2 y being

ytiq − θ1 ȳt.. − θ2 ȳ.i. − θ3 ȳ..q − θ4 ȳ...

where the dot indicates a sum over that index and a bar means an average. Here,
θ j = 1 − σν/

√
ξ j+1 for j = 1, 2, 3 while θ4 = θ1 + θ2 + θ3 − 1 + (σν/

√
ξ5).

(d) Show that the BQU estimator of ξ j is given by u′Vj u/tr(Vj ) for j = 1, 2, 3, 4. Show
that BQU estimators of σ 2

ν , σ 2
µ, σ 2

η and σ 2
λ can be obtained using the one-to-one

correspondence between the ξ j and σ 2.
This problem is based on Baltagi (1987). For a generalization of this four-component
model as well as an alternative class of decompositions of the variance–covariance ma-
trix, see Wansbeek and Kapteyn (1982a). More recently, Davis (2001) gives an elegant
generalization to the multi-way unbalanced error component model, see Chapter 9.

3.16 A mixed-error component model. This is based on problem 95.1.4 in Econometric Theory
by Baltagi and Krämer (1995). Consider the panel data regression equation with a two-
way mixed error component model described by (3.1) where the individual-specific
effects are assumed to be random, with µi ∼ (0, σ 2

µ) and νi t ∼ (0, σ 2
ν ) independent of

each other and among themselves. The time-specific effects, i.e. the λt ’s, are assumed to
be fixed parameters to be estimated. In vector form, this can be written as

y = Xβ + Zλλ + w (1)
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where Zλ = ιN ⊗ IT , and

w = Zµµ + ν (2)

with Zµ = IN ⊗ ιT . By applying the Frisch–Waugh–Lovell (FWL) theorem, one gets

Qλy = Qλ Xβ + Qλw (3)

where Qλ = EN ⊗ IT with EN = IN − J̄ N and J̄ N = ιN ι′N /N . This is the familiar
Within time-effects transformation, with the typical element of Qλy being yit − ȳ.t

and ȳ.t = ∑N
i=1 yit/N . Let � = E(ww′), this is the familiar one-way error component

variance–covariance matrix given in (2.17).
(a) Show that the GLS estimator of β obtained from (1) by premultiplying by �−1/2

first and then applying the FWL theorem yields the same estimator as GLS on (3)
using the generalized inverse of Qλ�Qλ. This is a special case of a more general
result proved by Fiebig, Bartels and Krämer (1996).

(b) Show that pseudo-GLS on (3) using � rather than Qλ�Qλ for the variance of the
disturbances yields the same estimator of β as found in part (a). In general, pseudo-
GLS may not be the same as GLS, but Fiebig et al. (1996) provided a necessary and
sufficient condition for this equivalence that is easy to check in this case. In fact, this
amounts to checking whether X ′ Qλ�

−1 Zλ = 0. See solution 95.1.4 in Econometric
Theory by Xiong (1996a).

For computational purposes, these results imply that one can perform the Within time-
effects transformation to wipe out the matrix of time dummies and then do the usual
Fuller–Battese (1974) transformation without worrying about the loss in efficiency of
not using the proper variance–covariance matrix of the transformed disturbances.
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4

Test of Hypotheses with Panel Data

4.1 TESTS FOR POOLABILITY OF THE DATA

The question of whether to pool the data or not naturally arises with panel data. The restricted
model is the pooled model given by (2.3) representing a behavioral equation with the same
parameters over time and across regions. The unrestricted model, however, is the same be-
havioral equation but with different parameters across time or across regions. For example,
Balestra and Nerlove (1966) considered a dynamic demand equation for natural gas across
36 states over six years. In this case, the question of whether to pool or not to pool boils
down to the question of whether the parameters of this demand equation vary from one year
to the other over the six years of available data. One can have a behavioral equation whose
parameters may vary across regions. For example, Baltagi and Griffin (1983) considered panel
data on motor gasoline demand for 18 OECD countries. In this case, one is interested in test-
ing whether the behavioral relationship predicting demand is the same across the 18 OECD
countries, i.e. the parameters of the prediction equation do not vary from one country to the
other.

These are but two examples of many economic applications where time-series and cross-
section data may be pooled. Generally, most economic applications tend to be of the first
type, i.e. with a large number of observations on individuals, firms, economic sectors, regions,
industries and countries but only over a few time periods. In what follows, we study the tests
for the poolability of the data for the case of pooling across regions keeping in mind that the
other case of pooling over time can be obtained in a similar fashion.

For the unrestricted model, we have a regression equation for each region given by

yi = Ziδi + ui i = 1, 2, . . . , N (4.1)

where y′
i = (yi1, . . . , yiT ), Zi = [ιT , Xi ] and Xi is T × K . δ′

i is 1 × (K + 1) and ui is T × 1.
The important thing to notice is that δi is different for every regional equation. We want to test
the hypothesis H0 : δi = δ for all i , so that under H0 we can write the restricted model given
in (4.1) as

y = Zδ + u (4.2)

where Z ′ = (Z ′
1, Z ′

2, . . . , Z ′
N ) and u′ = (u′

1, u′
2, . . . , u′

N ). The unrestricted model can also be
written as

y =


Z1 0 . . . 0
0 Z2 . . . 0
...

. . .
...

0 0 . . . Z N




δ1

δ2
...

δN

 + u = Z∗δ∗ + u (4.3)

where δ∗′ = (δ′
1, δ

′
2, . . . , δ

′
N ) and Z = Z∗ I ∗ with I ∗ = (ιN ⊗ IK ′ ), an N K ′ × K ′ matrix, with

K ′ = K + 1. Hence the variables in Z are all linear combinations of the variables in Z∗.

53
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4.1.1 Test for Poolability under u ∼ N(0, σ2INT )

Assumption 4.1 u ∼ N (0, σ 2 IN T )

Under assumption 4.1, the minimum variance unbiased estimator for δ in equation (4.2) is

δ̂OLS = δ̂mle = (Z ′ Z )−1 Z ′y (4.4)

and therefore

y = Z δ̂OLS + e (4.5)

implying that e = (IN T − Z (Z ′ Z )−1 Z ′)y = My = M(Zδ + u) = Mu since M Z = 0. Simi-
larly, under assumption 4.1, the MVU for δi is given by

δ̂i,OLS = δ̂i,mle = (Z ′
i Zi )

−1 Z ′
i yi (4.6)

and therefore

yi = Zi δ̂i,OLS + ei (4.7)

implying that ei = (IT − Zi (Z ′
i Zi )−1 Z ′

i )yi = Mi yi = Mi (Ziδi + ui ) = Mi ui since Mi Zi =
0, and this is true for i = 1, 2, . . . , N . Also, let

M∗ = IN T − Z∗(Z∗′ Z∗)−1 Z∗′ =


M1 0 . . . 0
0 M2 . . . 0
...

. . .
...

0 0 . . . MN


One can easily deduce that y = Z ∗̂δ∗ + e∗ with e∗ = M∗y = M∗u and δ̂∗ = (Z∗′ Z∗)−1 Z∗′y.
Note that both M and M∗ are symmetric and idempotent with M M∗ = M∗. This easily follows
since

Z (Z ′ Z )−1 Z ′ Z∗(Z∗′ Z∗)−1 Z∗′ = Z (Z ′ Z )−1 I ∗′ Z∗′ Z∗(Z∗′ Z∗)−1 Z∗′

= Z (Z ′ Z )−1 Z ′

This uses the fact that Z = Z∗ I ∗. Under assumption 4.1, e′e − e∗′e∗ = u′(M − M∗)u and
e∗′e∗ = u′M∗u are independent since (M − M∗)M∗ = 0. Also, both quadratic forms when
divided by σ 2 are distributed as χ 2 since (M − M∗) and M∗ are idempotent. Dividing these
quadratic forms by their respective degrees of freedom and taking their ratio leads to the
following test statistic:1

Fobs = (e′e − e∗′e∗)/(tr(M) − tr(M∗))

e∗′e∗/tr(M∗)

Fobs = (e′e − e′
1e1 − e′

2e2 − . . . − e′
N eN )/(N − 1)K ′

(e′
1e1 + e′

2e2 + . . . + e′
N eN )/N (T − K ′)

(4.8)

Under H0, Fobs is distributed as an F((N − 1)K ′, N (T − K ′)). Hence the critical region for
this test is defined as

{Fobs > F((N − 1)K ′, N T − N K ′; α0)}
where α0 denotes the level of significance of the test. This is exactly the Chow test presented
by Chow (1960) extended to the case of N linear regressions. Therefore if an economist has
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reason to believe that assumption 4.1 is true, and wants to pool his data across regions, then it
is recommended that he or she test for the poolability of the data using the Chow test given in
(4.8). However, for the variance component model, u ∼ (0, �) and not (0, σ 2 IN T ). Therefore,
even if we assume normality on the disturbances two questions remain: (1) is the Chow test
still the right test to perform when u ∼ N (0, �)? and (2) does the Chow statistic still have an
F-distribution when u ∼ N (0, �)? The answer to the first question is no, the Chow test given
in (4.8) is not the right test to perform. However, as will be shown later, a generalized Chow
test will be the right test to perform. As for the second question, it is still relevant to ask because
it highlights the problem of economists using the Chow test assuming erroneously that u is
N (0, σ 2 IN T ) when in fact it is not. For example, Toyoda (1974), in treating the case where
the ui are heteroskedastic, found that the Chow statistic given by (4.8) has an approximate
F-distribution where the degree of freedom of the denominator depends upon the true variances.
Hence for specific values of these variances, Toyoda demonstrates how wrong it is to apply
the Chow test in case of heteroskedastic variances.

Having posed the two questions above, we can proceed along two lines: the first is to find the
approximate distribution of the Chow statistic (4.8) in case u ∼ N (0, �) and therefore show
how erroneous it is to use the Chow test in this case (this is not pursued in this book). The
second route, and the more fruitful, is to derive the right test to perform for pooling the data in
case u ∼ N (0, �). This is done in the next subsection.

4.1.2 Test for Poolability under the General Assumption u ∼ N(0,Ω)

Assumption 4.2 u ∼ N (0, �)

In case � is known up to a scalar factor, the test statistic employed for the poolability of
the data would be simple to derive. All we need to do is transform our model (under both
the null and alternative hypotheses) such that the transformed disturbances have a variance of
σ 2 IN T , then apply the Chow test on the transformed model. The later step is legitimate because
the transformed disturbances have homoskedastic variances and the analysis of the previous
subsection applies in full. Given � = σ 2�, we premultiply the restricted model given in (4.2)
by �−1/2 and we call �−1/2 y = ẏ, �−1/2 Z = Ż and �−1/2u = u̇. Hence

ẏ = Żδ + u̇ (4.9)

with E(u̇u̇′) = �−1/2 E(uu′)�−1/2′ = σ 2 IN T . Similarly, we premultiply the unrestricted model
given in (4.3) by �−1/2 and we call �−1/2 Z∗ = Ż∗. Therefore

ẏ = Ż∗δ∗ + u̇ (4.10)

with E(u̇u̇′) = σ 2 IN T .
At this stage, we can test H0 : δi = δ for every i = 1, 2, . . . , N , simply by using the Chow

statistic, only now on the transformed models (4.9) and (4.10) since they satisfy assumption 4.1
of homoskedasticity of the normal disturbances. Note that Ż = Ż∗ I ∗, which is simply obtained
from Z = Z∗ I ∗ by premultiplying by �−1/2. Defining Ṁ = IN T − Ż (Ż ′ Ż )−1 Ż ′ and Ṁ∗ =
IN T − Ż∗(Ż∗′ Ż∗)−1 Ż∗′, it is easy to show that Ṁ and Ṁ∗ are both symmetric, idempotent and
such that Ṁ Ṁ∗ = Ṁ∗. Once again the conditions for lemma 2.2 of Fisher (1970) are satisfied,
and the test statistic

Ḟobs = (ė′ė − ė∗′ė∗)/(tr(Ṁ) − tr(Ṁ∗))

ė∗′ė∗/tr(Ṁ∗)
∼ F((N − 1)K ′, N (T − K ′)) (4.11)
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where ė = ẏ − Ż̂̇δOLS and̂̇δOLS = (Ż ′ Ż )−1 Ż ′ ẏ implying that ė = Ṁ ẏ = Ṁu̇. Similarly, ė∗ =
ẏ − Ż ∗̂δ̇

∗
OLS and ̂̇δ∗

OLS = (Ż∗′ Ż∗)−1 Ż∗′ ẏ implying that ė∗ = Ṁ∗ ẏ = Ṁ∗u̇. Using the fact that
Ṁ and Ṁ∗ are symmetric and idempotent, we can rewrite (4.11) as

Ḟobs = (ẏ′Ṁ ẏ − ẏ′Ṁ∗ ẏ)/(N − 1)K ′

ẏ′Ṁ∗ ẏ/N (T − K ′)

= (y′�−1/2 Ṁ�−1/2 y − y′�−1/2 Ṁ∗�−1/2 y)/(N − 1)K ′

y′�−1/2 Ṁ∗�−1/2 y/N (T − K ′)
(4.12)

But

Ṁ = IN T − �−1/2 Z (Z ′�−1 Z )−1 Z ′�−1/2′

and

Ṁ∗ = IN T − �−1/2 Z∗(Z∗′�−1 Z∗)−1 Z∗′�−1/2′

so that

�−1/2 Ṁ�−1/2 = �−1 − �−1 Z (Z ′�−1 Z )−1 Z ′�−1

and

�−1/2 Ṁ∗�−1/2 = �−1 − �−1 Z∗(Z∗′�−1 Z∗)−1 Z∗′�−1

Hence we can write (4.12) in the form

Ḟobs = y′[�−1(Z∗(Z∗′�−1 Z∗)−1 Z∗′ − Z (Z ′�−1 Z )−1 Z ′)�−1]y/(N − 1)K ′

(y′�−1 y − y′�−1 Z∗(Z∗′�−1 Z∗)−1 Z∗′�−1 y)/N (T − K ′)
(4.13)

and Ḟobs , has an F-distribution with ((N − 1)K ′, N (T − K ′)) degrees of freedom. It is im-
portant to emphasize that (4.13) is operational only when � is known. This test is a special
application of a general test for linear restrictions described in Roy (1957) and used by Zellner
(1962) to test for aggregation bias in a set of seemingly unrelated regressions. In case � is
unknown, we replace � in (4.13) by a consistent estimator (say �̂) and call the resulting test
statistics F̂obs .

One of the main motivations behind pooling a time series of cross-sections is to widen our
database in order to get better and more reliable estimates of the parameters of our model.
Using the Chow test, the question of whether “to pool or not to pool” reduced to a test of the
validity of the null hypothesis H0 : δi = δ for all i . Imposing these restrictions (true or false)
will reduce the variance of the pooled estimator, but may introduce bias if these restrictions are
false. This motivated Toro-Vizcarrondo and Wallace (1968, p. 560) to write, “if one is willing
to accept some bias in trade for a reduction in variance, then even if the restriction is not true
one might still prefer the restricted estimator”. Baltagi (1995, pp. 54–58) discusses three mean
square error criteria used in the literature to test whether the pooled estimator restricted by
H0 is better than the unrestricted estimator of δ*. It is important to emphasize that these MSE
criteria do not test whether H0 is true or false, but help us to choose on “pragmatic grounds”
between two sets of estimators of δ* and hence achieve, in a sense, one of the main motivations
behind pooling. A summary table of these MSE criteria is given by Wallace (1972, p. 697).
McElroy (1977) extends these MSE criteria to the case where u ∼ N (0, σ 2�).
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Monte Carlo Evidence

In the Monte Carlo study by Baltagi (1981a), the Chow test is performed given that the data
are poolable and the model is generated as a two-way error component model. This test gave a
high frequency of rejecting the null hypothesis when true. The reason for the poor performance
of the Chow test is that it is applicable only under assumption 4.1 on the disturbances. This
is violated under a random effects model with large variance components. For example, in
testing the stability of cross-section regressions over time, the high frequency of type I error
occurred whenever the variance components due to the time effects are not relatively small.
Similarly, in testing the stability of time-series regressions across regions, the high frequency
of type I error occurred whenever the variance components due to the cross-section effects are
not relatively small.

Under this case of nonspherical disturbances, the proper test to perform is the Roy–Zellner
test given by (4.13). Applying this test knowing the true variance components or using the
Amemiya (1971) and the Wallace and Hussain (1969)-type estimates of the variance compo-
nents leads to low frequencies of committing a type I error. Therefore, if pooling is contemplated
using an error component model, then the Roy–Zellner test should be used rather than the Chow
test.

The alternative MSE criteria, developed by Toro-Vizcarrondo and Wallace (1968) and Wal-
lace (1972), were applied to the error component model in order to choose between the pooled
and the unpooled estimators. These weaker criteria gave a lower frequency of committing a
type I error than the Chow test, but their performance was still poor when compared to the
Roy–Zellner test. McElroy’s (1977) extension of these weaker MSE criteria to the case of
nonspherical disturbances performed well when compared with the Roy–Zellner test, and is
recommended.

Recently, Bun (2004) focused on testing the poolability hypothesis across cross-section units
assuming constant coefficients over time. In particular, this testing applies to panel data with a
limited number of cross-section units, like countries or states observed over a long time period,
i.e., with T larger than N . Bun (2004) uses Monte Carlo experiments to examine the actual size
of various asymptotic procedures for testing the poolability hypothesis. Dynamic regression
models as well as nonspherical disturbances are considered. Results show that the classical
asymptotic tests have poor finite sample performance, while their bootstrapped counterparts
lead to more accurate inference. An empirical example is given using panel data on GDP
growth and unemployment rates in 14 OECD countries over the period 1966–90. For this
data set, it is shown that the classical asymptotic tests reject poolability while their bootstrap
counterparts do not.

4.1.3 Examples

Example 1: Grunfeld Investment Equation

For the Grunfeld data, Chow’s test for poolability across firms as in (4.1) gives an observed
F-statistic of 27.75 and is distributed as F(27, 170) under H0 : δi = δ for i = 1, . . . , N . The
RRSS = 1755850.48 is obtained from pooled OLS, and the URSS = 324728.47 is obtained
from summing the RSS from 10 individual firm OLS regressions, each with 17 degrees of
freedom. There are 27 restrictions and the test rejects poolability across firms for all co-
efficients. One can test for poolability of slopes only, allowing for varying intercepts. The
restricted model is the Within regression with firm dummies. The RRSS = 523478, while the
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unrestricted regression is the same as above. The observed F-statistic is 5.78 which is dis-
tributed as F(18, 170) under H0 : βi = β for i = 1, . . . , N . This again is significant at the
5% level and rejects poolability of the slopes across firms. Note that one could have tested
poolability across time. The Chow test gives an observed value of 1.12 which is distributed as
F(57, 140). This does not reject poolability across time, but the unrestricted model is based on
20 regressions each with only 7 degrees of freedom. As is clear from the numerator degrees of
freedom, this F-statistic tests 57 restrictions. The Roy–Zellner test for poolability across firms,
allowing for one-way error component disturbances, yields an observed F-value of 4.35 which
is distributed as F(27, 170) under H0 : δi = δ for i = 1, . . . , N . This still rejects poolability
across firms even after allowing for one-way error component disturbances. The Roy–Zellner
test for poolability over time, allowing for a one-way error component model, yields an F-value
of 2.72 which is distributed as F(57, 140) under H0 : δt = δ for t = 1, . . . , T .

Example 2: Gasoline Demand

For the gasoline demand data in Baltagi and Griffin (1983), Chow’s test for poolability across
countries yields an observed F-statistic of 129.38 and is distributed as F(68, 270) under
H0 : δi = δ for i = 1, . . . , N . This tests the stability of four time-series regression coefficients
across 18 countries. The unrestricted SSE is based upon 18 OLS time-series regressions, one for
each country. For the stability of the slope coefficients only, H0 : βi = β, an observed F-value
of 27.33 is obtained which is distributed as F(51, 270) under the null. Chow’s test for poolabil-
ity across time yields an F-value of 0.276 which is distributed as F(72, 266) under H0 : δt = δ

for t = 1, . . . , T . This tests the stability of four cross-section regression coefficients across 19
time periods. The unrestricted SSE is based upon 19 OLS cross-section regressions, one for
each year. This does not reject poolability across time periods. The Roy–Zellner test for poola-
bility across countries, allowing for a one-way error component model, yields an F-value of
21.64 which is distributed as F(68, 270) under H0 : δi = δ for i = 1, . . . , N . The Roy–Zellner
test for poolability across time yields an F-value of 1.66 which is distributed as F(72, 266)
under H0 : δt = δ for t = 1, . . . , T . This rejects H0 at the 5% level.

4.1.4 Other Tests for Poolability

Ziemer and Wetzstein (1983) suggest comparing pooled estimators (like δ̂OLS) with nonpooled
estimators (like δ̂i,OLS) according to their forecast risk performance. Using a wilderness recre-
ation demand model, they show that a Stein rule estimator gives a better forecast risk perfor-
mance than the pooled or individual cross-section estimators. The Stein rule estimator for δi

in (4.1) is given by

δ̂∗
i = δ̂OLS +

(
1 − c

Fobs

) (̂
δi,OLS − δ̂OLS

)
(4.14)

where δ̂i,OLS is given in (4.6) and δ̂OLS is given in (4.4). Fobs is the F-statistic to test H0 : δi = δ,
given in (4.8), and the constant c is given by c = ((N − 1)K ′ − 2)/(N T − N K ′ + 2). Note
that δ̂∗

i shrinks δ̂i,OLS towards the pooled estimator δ̂OLS. More recently, Maddala (1991) argued
that shrinkage estimators appear to be better than either the pooled estimator or the individual
cross-section estimators.

Brown, Durbin and Evans (1975) derived cumulative sum and cumulative sum of squares
tests for structural change based on recursive residuals in a time-series regression. Han and
Park (1989) extend these tests of structural change to the panel data case. They apply these
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tests to a study of US foreign trade of manufacturing goods. They find no evidence of structural
change over the period 1958–76. Baltagi, Hidalgo and Li (1996) derive a nonparametric test
for poolability which is robust to functional form misspecification. In particular, they consider
the following nonparametric panel data model:

yit = gt (xit ) + εi t i = 1, . . . , N ; t = 1, . . . , T

where gt (.) is an unspecified functional form that may vary over time. xit is a k × 1 column
vector of predetermined explanatory variables with (p ≥ 1) variables being continuous and
k − p (≥ 0). Poolability of the data over time is equivalent to testing that gt (x) = gs(x) almost
everywhere for all t and s = 1, 2, . . . , T versus gt (x) �= gs(x) for some t �= s with probability
greater than zero. The test statistic is shown to be consistent and asymptotically normal and is
applied to an earnings equation using data from the PSID.

4.2 TESTS FOR INDIVIDUAL AND TIME EFFECTS

4.2.1 The Breusch–Pagan Test

For the random two-way error component model, Breusch and Pagan (1980) derived a Lagrange
multiplier (LM) test to test H0 : σ 2

µ = σ 2
λ = 0. The loglikelihood function under normality of

the disturbances is given by (3.29) as

L(δ, θ) = constant − 1

2
log | � | −1

2
u′�−1u (4.15)

where θ ′ = (σ 2
µ, σ 2

λ , σ 2
ν ) and � is given by (3.10) as

� = σ 2
µ(IN ⊗ JT ) + σ 2

λ (JN ⊗ IT ) + σ 2
ν IN T (4.16)

The information matrix is block-diagonal between θ and δ. Since H0 involves only θ , the
part of the information matrix due to δ is ignored. In order to reconstruct the Breusch and
Pagan (1980) LM statistic, we need the score D(̃θ ) = (∂L/∂θ ) |̃θmle

, the first derivative of the
likelihood with respect to θ , evaluated at the restricted MLE of θ under H0, which is denoted
by θ̃mle. Hartley and Rao (1967) or Hemmerle and Hartley (1973) give a useful general formula
to obtain D(θ ):

∂L/∂θr = 1

2
tr[�−1(∂�/∂θr )] + 1

2
[u′�−1(∂�/∂θr )�−1u] (4.17)

for r = 1, 2, 3. Also, from (4.16), (∂�/∂θr ) = (IN ⊗ JT ) for r = 1; (JN ⊗ IT ) for r = 2 and
IN T for r = 3. The restricted MLE of � under H0 is �̃ = σ̃ 2

ν IN T where σ̃ 2
ν = ũ ′̃u/N T and ũ

are the OLS residuals. Using tr(IN ⊗ JT ) = tr(JN ⊗ IT ) = tr(IN T ) = N T , one gets

D(̃θ ) =


− 1

2 tr[(IN ⊗ JT )/σ̃ 2
ν ] + 1

2 [̃u′(IN ⊗ JT )̃u/σ̃ 4
ν ]

− 1
2 tr[(JN ⊗ IT )/σ̃ 2

ν ] + 1
2 [̃u′(JN ⊗ IT )̃u/σ̃ 4

ν ]

− 1
2 tr[IN T /σ̃ 2

ν ] + 1
2 [̃u ′̃u/σ̃ 4

ν ]



= −N T

2σ̃ 2
ν


1 − ũ′(IN ⊗ JT )̃u

ũ ′̃u

1 − ũ′(JN ⊗ IT )̃u

ũ ′̃u
0

 (4.18)
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The information matrix for this model is

J (θ ) = E

[
∂2L

∂θ∂θ ′

]
= [Jrs] for r, s = 1, 2, 3

where

Jrs = E[−∂2L/∂θr∂θs] = 1

2
tr [�−1(∂�/∂θr )�−1(∂�/∂θs)] (4.19)

(see Harville, 1977). Using �̃−1 = (1/σ̃ 2
ν )IN T and tr[(IN ⊗ JT )(JN ⊗ IT )] = tr(JN T ) = N T,

tr(IN ⊗ JT )2 = N T 2 and tr(JN ⊗ IT )2 = N 2T , one gets

J̃ = 1

2σ̃ 4
ν

 tr(IN ⊗ JT )2 tr(JN T ) tr(IN ⊗ JT )
tr(JN T ) tr(JN ⊗ IT )2 tr(JN ⊗ IT )
tr(IN ⊗ JT ) tr(JN ⊗ IT ) tr(IN T )


= N T

2σ̃ 4
ν

 T 1 1
1 N 1
1 1 1

 (4.20)

with

J̃−1 = 2σ̃ 4
ν

N T (N − 1)(T − 1)

 (N − 1) 0 (1 − N )
0 (T − 1) (1 − T )

(1 − N ) (1 − T ) (N T − 1)

 (4.21)

Therefore

LM = D̃′ J̃−1 D̃

= N T

2(N − 1)(T − 1)

[
(N − 1)

[
1 − ũ′(IN ⊗ JT )̃u

ũ ′̃u

]2

(4.22)

+(T − 1)

[
1 − ũ′(JN ⊗ IT )̃u

ũ ′̃u

]2
]

LM = LM1 + LM2

where

LM1 = N T

2(T − 1)

[
1 − ũ′(IN ⊗ JT )̃u

ũ ′̃u

]2

(4.23)

and

LM2 = N T

2(N − 1)

[
1 − ũ′(JN ⊗ IT )̃u

ũ ′̃u

]2

(4.24)

Under H0, LM is asymptotically distributed as a χ2
2 . This LM test requires only OLS residuals

and is easy to compute. This may explain its popularity. In addition, if one wants to test
H a

0 : σ 2
µ = 0, following the derivation given above, one gets LM1 which is asymptotically

distributed under H a
0 as χ2

1 . Similarly, if one wants to test H b
0 : σ 2

λ = 0, by symmetry, one
gets LM2 which is asymptotically distributed as χ2

1 under H b
0 . This LM test performed well in

Monte Carlo studies (see Baltagi, 1981a), except for small values of σ 2
µ and σ 2

λ close to zero.



JWBK024-04 JWBK024-Baltagi March 23, 2005 11:49 Char Count= 0

Test of Hypotheses with Panel Data 61

These are precisely the cases where negative estimates of the variance components are most
likely to occur.2

4.2.2 King and Wu, Honda and the Standardized Lagrange Multiplier Tests

One problem with the Breusch–Pagan test is that it assumes that the alternative hypothesis is
two-sided when we know that the variance components are nonnegative. This means that the
alternative hypotheses should be one-sided. Honda (1985) suggests a uniformly most powerful
test for H a

0 : σ 2
µ = 0 which is based upon

HO ≡ A =
√

N T

2(T − 1)

[
ũ′(IN ⊗ JT )̃u

ũ ′̃u
− 1

]
Ha

0→ N (0, 1) (4.25)

Note that the square of this N (0, 1) statistic is the Breusch and Pagan (1980) LM1 test statistic
given in (4.23). Honda (1985) finds that this test statistic is robust to nonnormality.3 Moulton
and Randolph (1989) showed that the asymptotic N (0, 1) approximation for this one-sided
LM statistic can be poor even in large samples. This occurs when the number of regressors is
large or the intraclass correlation of some of the regressors is high. They suggest an alternative
standardized Lagrange multiplier (SLM) test whose asymptotic critical values are generally
closer to the exact critical values than those of the LM test. This SLM test statistic centers and
scales the one-sided LM statistic so that its mean is zero and its variance is one:

SLM = HO − E(HO)√
var( HO)

= d − E(d)√
var(d)

(4.26)

where d = ũ′ Dũ/̃u ′̃u and D = (IN ⊗ JT ). Using the results on moments of quadratic forms
in regression residuals (see e.g. Evans and King, 1985), we get

E(d) = tr(D P̄Z )/p (4.27)

and

var(d) = 2{p tr(D P̄Z )2 − [tr(D P̄Z )]2}/p2(p + 2) (4.28)

where p = n − (K + 1) and P̄Z = In − Z (Z ′ Z )−1 Z ′. Under the null hypothesis H a
0 , SLM has

an asymptotic N (0, 1) distribution. King and Wu (1997) suggest a locally mean most powerful
(LMMP) one-sided test, which for H a

0 coincides with Honda’s (1985) uniformly most powerful
test (see Baltagi, Chang and Li, 1992b).

Similarly, for H b
0 : σ 2

λ = 0, the one-sided Honda-type LM test statistic is

B =
√

N T

2(N − 1)

[
ũ′(JN ⊗ IT )̃u

ũ ′̃u
− 1

]
(4.29)

which is asymptotically distributed as N (0, 1). Note that the square of this statistic is the
corresponding two-sided LM test given by LM2 in (4.24). This can be standardized as in (4.26)
with D = (JN ⊗ IT ). Also, the King and Wu (1997) LMMP test for H b

0 coincides with Honda’s
uniformly most powerful test given in (4.29).

For H c
0 : σ 2

µ = σ 2
λ = 0, the two-sided LM test, given by Breusch and Pagan (1980), is

A2 + B2 ∼ χ2(2). Honda (1985) does not derive a uniformly most powerful one-sided test for
H c

0 , but he suggests a “handy” one-sided test given by (A + B)/
√

2 which is distributed as
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N (0, 1) under H c
0 . Following King and Wu (1997), Baltagi et al. (1992b) derived the LMMP

one-sided test for Hc
0. This is given by

KW =
√

T − 1√
N + T − 2

A +
√

N − 1√
N + T − 2

B (4.30)

which is distributed as N (0, 1) under H c
0 . See problem 4.6.

Following the Moulton and Randolph (1989) standardization of the LM test for the one-way
error component model, Honda (1991) suggested a standardization of his ‘handy’ one-sided
test for the two-way error component model. In fact, for HO = (A + B)/

√
2, the SLM test is

given by (4.26) with d = ũ′ Dũ/̃u ′̃u, and

D = 1

2

√
N T

(T − 1)
(IN ⊗ JT ) + 1

2

√
N T

(N − 1)
(JN ⊗ IT ) (4.31)

Also, one can similarly standardize the KW test given in (4.30) by subtracting its mean and
dividing by its standard deviation, as in (4.26), with d = ũ′ Dũ/̃u ′̃u and

D =
√

N T√
2
√

N + T − 2
[(IN ⊗ JT ) + (JN ⊗ IT )] (4.32)

With this new D matrix, E(d) and var(d) can be computed using (4.27) and (4.28). Un-
der H c

0 : σ 2
µ = σ 2

λ = 0, these SLM statistics are asymptotically N (0, 1) and their asymptotic
critical values should be closer to the exact critical values than those of the corresponding
unstandardized tests.

4.2.3 Gourieroux, Holly and Monfort Test

Note that A or B can be negative for a specific application, especially when one or both variance
components are small and close to zero. Following Gourieroux, Holly and Monfort (1982),
hereafter GHM, Baltagi et al. (1992b) proposed the following test for H c

0 :

χ2
m =


A2 + B2 if A > 0, B > 0
A2 if A > 0, B ≤ 0
B2 if A ≤ 0, B > 0
0 if A ≤ 0, B ≤ 0

(4.33)

χ2
m denotes the mixed χ2 distribution. Under the null hypothesis,

χ2
m ∼

(
1

4

)
χ2(0) +

(
1

2

)
χ2(1) +

(
1

4

)
χ2(2)

where χ2(0) equals zero with probability one.4 The weights
(

1
4

)
,
(

1
2

)
and

(
1
4

)
follow from the

fact that A and B are asymptotically independent of each other and the results in Gourieroux
et al. (1982). This proposed test has the advantage over the Honda and KW tests in that it is
immune to the possible negative values of A and B.

4.2.4 Conditional LM Tests

When one uses HO given in (4.25) to test H a
0 : σ 2

µ = 0 one implicitly assumes that the time-
specific effects do not exist. This may lead to incorrect decisions especially when the variance
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of the time effects (assumed to be zero) is large. To overcome this problem, Baltagi et al.
(1992b) suggest testing the individual effects conditional on the time-specific effects (i.e.
allowing σ 2

λ > 0). The corresponding LM test for testing H d
0 : σ 2

µ = 0 (allowing σ 2
λ > 0) is

derived in appendix 2 of Baltagi et al. (1992b) and is given by

LMµ =
√

2σ̃ 2
2 σ̃ 2

ν√
T (T − 1)[σ̃ 4

ν + (N − 1)σ̃ 4
2 ]

D̃µ (4.34)

where

D̃µ = T

2

{
1

σ̃ 2
2

[
ũ′( J̄N ⊗ J̄T )̃u

σ̃ 2
2

− 1

]
+ (N − 1)

σ̃ 2
ν

[
ũ′(EN ⊗ J̄T )̃u

(N − 1)σ̃ 2
ν

− 1

]}
(4.35)

with σ̃ 2
2 = ũ′( J̄N ⊗ IT )̃u/T and σ̃ 2

ν = ũ′(EN ⊗ IT )̃u/T (N − 1). LMµ is asymptotically dis-
tributed as N (0, 1) under H d

0 . The estimated disturbances ũ denote the one-way GLS residuals
using the maximum likelihood estimates σ̃ 2

ν and σ̃ 2
2 . One can easily check that if σ̃ 2

λ → 0, then
σ̃ 2

2 → σ̃ 2
ν and LMµ given in (4.34), tends to the one-sided Honda test given in (4.25).

Similarly, the alternative LM test statistic for testing H e
0 : σ 2

λ = 0 (allowing σ 2
µ > 0) can be

obtained as follows:

LMλ =
√

2σ̃ 2
1 σ̃ 2

ν√
N (N − 1)[σ̃ 4

ν + (T − 1)σ̃ 4
1 ]

D̃λ (4.36)

where

D̃λ = N

2

{
1

σ̃ 2
1

[
ũ′( J̄N ⊗ J̄T )̃u

σ̃ 2
1

− 1

]
+ (T − 1)

σ̃ 2
ν

[
ũ′( J̄N ⊗ ET )̃u

(T − 1)σ̃ 2
ν

− 1

]}
(4.37)

with σ̃ 2
1 = ũ′(IN ⊗ J̄T )̃u/N , σ̃ 2

ν = ũ′(IN ⊗ ET )̃u/N (T − 1). The test statistic LMλ is asymp-
totically distributed as N (0, 1) under H e

0 .

4.2.5 ANOVA F and the Likelihood Ratio Tests

Moulton and Randolph (1989) found that the ANOVA F-test, which tests the significance of
the fixed effects, performs well for the one-way error component model. The ANOVA F-test
statistics have the following familiar general form:

F = y′M D(D′M D)− D′My/(p − r )

y′Gy/[N T − (̃k + p − r )]
(4.38)

Under the null hypothesis, this statistic has a central F-distribution with p − r and N T − (̃k +
p − r ) degrees of freedom. For H a

0 : σ 2
µ = 0, D = IN ⊗ ιT , M = P̄Z , k̃ = K ′, p = N , r =

K ′ + N− rank(Z , D) and G = P̄(Z ,D) where P̄Z = I − PZ and PZ = Z (Z ′ Z )−1 Z ′. For details
regarding other hypotheses, see Baltagi et al. (1992b).

The one-sided likelihood ratio (LR) tests all have the following form:

LR = −2 log
l(res)

l(unres)
(4.39)

where l(res) denotes the restricted maximum likelihood value (under the null hypothesis),
while l(unres) denotes the unrestricted maximum likelihood value. The LR tests require MLE



JWBK024-04 JWBK024-Baltagi March 23, 2005 11:49 Char Count= 0

64 Econometric Analysis of Panel Data

estimators of the one-way and the two-way models and are comparatively more expensive
than their LM counterparts. Under the null hypotheses considered, the LR test statistics have
the same asymptotic distributions as their LM counterparts (see Gourieroux et al., 1982).
More specifically, for H a

0 , H b
0 , H d

0 and H e
0 , LR ∼ ( 1

2 )χ2(0) + ( 1
2 )χ2(1) and for H c

0 , LR ∼
( 1

4 )χ2(0) + ( 1
2 )χ2(1) + ( 1

4 )χ2(2).

4.2.6 Monte Carlo Results

Baltagi et al. (1992b) compared the performance of the above tests using Monte Carlo experi-
ments on the two-way error component model described in Baltagi (1981a). Each experiment
involved 1000 replications. For each replication, the following test statistics were computed:
BP, Honda, KW, SLM, LR, GHM and the F-test statistics. The results can be summarized as
follows: when H a

0 : σ 2
µ = 0 is true but σ 2

λ is large, all the usual tests for H a
0 perform badly

since they ignore the fact that σ 2
λ > 0. In fact, the two-sided BP test performs the worst, over-

rejecting the null, while HO, SLM, LR and F underestimate the nominal size. As σ 2
µ gets large,

all the tests perform well in rejecting the null hypothesis H a
0 . But, for small σ 2

µ > 0, the power
of all the tests considered deteriorates as σ 2

λ increases.
For testing H d

0 : σ 2
µ = 0 (allowing σ 2

λ > 0), LMµ, LR and F perform well with their esti-
mated size not significantly different from their nominal size. Also, for large σ 2

µ all these tests
have high power rejecting the null hypothesis in 98–100% of cases. The results also suggest
that overspecifying the model, i.e. assuming the model is two-way (σ 2

λ > 0) when in fact it is
one-way (σ 2

λ = 0), does not seem to hurt the power of these tests. Finally, the power of all tests
improves as σ 2

λ increases. This is in sharp contrast to the performance of the tests that ignore
the fact that σ 2

λ > 0. The Monte Carlo results strongly support the fact that one should not
ignore the possibility that σ 2

λ > 0 when testing σ 2
µ = 0. In fact, it may be better to overspecify

the model rather than underspecify it in testing the variance components.
For the joint test H c

0 : σ 2
µ = σ 2

λ = 0, the BP, HO, KW and LR significantly underestimate
the nominal size, while GHM and the F-test have estimated sizes that are not significantly
different from the nominal size. Negative values of A and B make the estimated size for HO
and KW underestimate the nominal size. For these cases, the GHM test is immune to negative
values of A and B, and performs well in the Monte Carlo experiments. Finally, the ANOVA
F-tests perform reasonably well when compared to the LR and LM tests, for both the one-way
and two-way models and are recommended. This confirms similar results on the F-statistic by
Moulton and Randolph (1989) for the one-way error component model.

Baltagi, Bresson and Pirotte (2003b) compared the performance of the usual panel estimators
and a pretest estimator for the two-way error component model using Monte Carlo experiments.
The only type of misspecification considered is whether one or both variance components are
actually zero. The pretest estimator is based on the application of the GHM test first, followed
by the conditional LM tests of Baltagi et al. (1992b), i.e., LMµ and LMλ. If GHM does not
reject the null, the pretest estimator reduces to OLS. If the null is rejected, LMµ and LMλ

are performed and depending on the outcome, the pretest estimator reduces to a one-way
or two-way feasible GLS estimator. Some of the Monte Carlo results are the following: the
correct FGLS or MLE are the best in terms of relative MSE performance with respect to true
GLS. However, the researcher does not have perfect foresight regarding the true specification.
The pretest estimator is a close second in MSE performance to the correct FGLS estimator
for all type of misspecification considered. The wrong fixed effects or random effects FGLS



JWBK024-04 JWBK024-Baltagi March 23, 2005 11:49 Char Count= 0

Test of Hypotheses with Panel Data 65

estimators suffer from a huge loss of MSE. These results were checked for the nonnormality
assumption as well as using double the significance levels (10% rather than 5%) for the pretest
estimator.

4.2.7 An Illustrative Example

The Monte Carlo results show that the test statistics A and/or B take on large negative values
quite often under some designs. A natural question is whether a large negative A and/or B is
possible for real data. In this subsection, we apply the tests considered above to the Grunfeld
(1958) investment equation. Table 4.1 gives the observed test statistics. The null hypotheses
H c

0 : σ 2
µ = σ 2

λ = 0, as well as H a
0 : σ 2

µ = 0 and H d
0 : σ 2

µ = 0 (allowing σ 2
λ > 0) are rejected

by all tests considered. Clearly, all the tests strongly suggest that there are individual-specific
effects. However, for testing time-specific effects, except for the two-sided LM (BP) test which
rejects H b

0 : σ 2
λ = 0, all the tests suggest that there are no time-specific effects for this data.

The conflict occurs because B takes on a large negative value (−2.540) for this data set. This
means that the two-sided LM test is B2 = 6.454, which is larger than the χ2

1 critical value
(3.841), whereas the one-sided LM, SLM, LR and F-tests for this hypothesis do not reject
H b

0 . In fact, the LMλ test proposed by Baltagi et al. (1992b) for testing H e
0 : σ 2

λ = 0 (allowing
σ 2

µ > 0) as well as the LR and F-tests for this hypothesis do not reject H e
0 . These data clearly

support the use of the one-sided test in empirical applications. Stata reports the LM (BP) test
for H a

0 : σ 2
µ = 0 using (xttest0). This is given in Table 4.2 for the Grunfeld data and computes

the A2 term in (4.23) of 798.16 which is the number reported in Table 4.1. Stata also reports
the LR test for H a

0 at the bottom of the MLE results using (xtreg,mle). This replicates the
observed LR test statistic of 193.04 in Table 4.1. The Stata output is not reproduced here but

Table 4.1 Test Results for the Grunfeld Example*

Null Hypothesis H a
0 H b

0 H c
0 H d

0 H e
0

Tests σ 2
µ = 0 σ 2

λ = 0 σ 2
µ = σ 2

λ = 0 σ 2
µ = 0/σ 2

λ > 0 σ 2
λ = 0/σ 2

µ > 0

BP 798.162 6.454 804.615 — —
(3.841) (3.841) (5.991)

HO 28.252 −2.540 18.181 — —
(1.645) (1.645) (1.645)

KW 28.252 −2.540 21.832 — —
(1.645) (1.645) (1.645)

SLM 32.661 −2.433 — — —
(1.645) (1.645)

GHM — — 798.162 — —
(4.231)

F 49.177 0.235 17.403 52.672 1.142
(1.930) (1.645) (1.543) (1.648) (1.935)

LR 193.091 0 193.108 193.108 0.017
(2.706) (2.706) (4.231) (2.706) (2.706)

LMµ — — — 28.252 —
(2.706)

LMλ — — — — 0.110
(2.706)

*Numbers in parentheses are asymptotic critical values at the 5% level.
Source: Baltagi et al. (1992b). Reproduced by permission of Elsevier Science Publishers B.V. (North Holland).
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Table 4.2 Grunfeld’s Data. Breusch and Pagan Lagrangian Multiplier Test.

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects:

I[fn,t] = Xb + u[fn] + e[fn,t]

Estimated results:
| Var sd = sqrt(Var)

---------+-----------------------------
I | 47034.89 216.8753
e | 2784.458 52.76796
u | 7089.8 84.20095

Test: Var(u) = 0
chi2(1) = 798.16

Prob > chi2 = 0.0000

one can refer to the Stata results in Table 2.10 where we reported the MLE for the public capital
productivity data. The bottom of Table 2.10 reports the observed LR test statistic of 1149.84.
This shows that the random state effects are significant and their variance is not 0. Also note
that the fixed effects Stata output (xtreg,fe) reports the F-test for the significance of the fixed
individual effects. For the Grunfeld data, this replicates the F(9,188) value of 49.18 which is
the number reported in Table 4.1. The Stata output is not reproduced here, but one can refer
to the Stata results in Table 2.8 where we reported the fixed effects estimates for the public
capital productivity data. The bottom of Table 2.8 reports the observed F(47,764) value of
75.82. This shows that the fixed state effects are significant.

4.3 HAUSMAN’S SPECIFICATION TEST

A critical assumption in the error component regression model is that E(uit/Xit ) = 0. This is
important given that the disturbances contain individual invariant effects (the µi ) which are
unobserved and may be correlated with the Xit . For example, in an earnings equation these µi

may denote unobservable ability of the individual and this may be correlated with the schooling
variable included on the right-hand side of this equation. In this case, E(uit/Xit ) �= 0 and the
GLS estimator β̂GLS becomes biased and inconsistent forβ. However, the Within transformation
wipes out these µi and leaves the Within estimator β̃Within unbiased and consistent for β.
Hausman (1978) suggests comparing β̂GLS and β̃Within, both of which are consistent under
the null hypothesis H0 : E(uit/Xit ) = 0, but which will have different probability limits if H0

is not true. In fact, β̃Within is consistent whether H0 is true or not, while β̂GLS is BLUE, consistent
and asymptotically efficient under H0, but is inconsistent when H0 is false. A natural test statistic
would be based on q̂1 = β̂GLS − β̃Within. Under H0, plim q̂1 = 0 and cov(̂q1, β̂GLS) = 0.

Using the fact that β̂GLS − β = (X ′�−1 X )−1 X ′�−1u and β̃Within − β = (X ′ Q X )−1 X ′ Qu,

one gets E (̂q1) = 0 and

cov(̂βGLS, q̂1) = var(̂βGLS) − cov(̂βGLS, β̃Within)

= (X ′�−1 X )−1 − (X ′�−1 X )−1 X�−1 E(uu′)Q X (X ′ Q X )−1

= (X ′�−1 X )−1 − (X ′�−1 X )−1 = 0
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Using the fact that β̃Within = β̂GLS − q̂1, one gets

var(̃βWithin) = var(̂βGLS) + var(̂q1)

since cov(̂βGLS, q̂1) = 0. Therefore

var(̂q1) = var(̃βWithin) − var(̂βGLS) = σ 2
ν (X ′ Q X )−1 − (X ′�−1 X )−1 (4.40)

Hence, the Hausman test statistic is given by

m1 = q̂ ′
1[var(̂q1)]−1q̂1 (4.41)

and under H0 is asymptotically distributed as χ2
K where K denotes the dimension of slope

vector β. In order to make this test operational, � is replaced by a consistent estimator �̂, and
GLS by its corresponding feasible GLS.

An alternative asymptotically equivalent test can be obtained from the augmented regression

y∗ = X∗β + X̃γ + w (4.42)

where y∗ = σν�
−1/2 y, X∗ = σν�

−1/2 X and X̃ = Q X . Hausman’s test is now equivalent to
testing whether γ = 0. This is a standard Wald test for the omission of the variables X̃ from
(4.42).5 It is worthwhile to rederive this test. In fact, performing OLS on (4.42) yields(

β̂

γ̂

)
=

[
X ′(Q + φ2 P)X X ′ Q X

X ′ Q X X ′ Q X

]−1 (
X ′(Q + φ2 P)y

X ′ Qy

)
(4.43)

where σν�
−1/2 = Q + φP and φ = σν/σ1 (see (2.20)). Using partitioned inverse formulas,

one can show that (
β̂

γ̂

)
=

[
E −E

−E (X ′ Q X )−1 + E

] (
X ′(Q + φ2 P)y

X ′ Qy

)
(4.44)

where E = (X ′ P X )−1/φ2. This reduces to

β̂ = β̂Between = (X ′ P X )−1 X ′ Py (4.45)

and

γ̂ = β̃Within − β̂Between (4.46)

Substituting the Within and Between estimators of β into (4.46) one gets

γ̂ = (X ′ Q X )−1 X ′ Qν − (X ′ P X )−1 X ′ Pu (4.47)

It is easy to show that E(γ̂ ) = 0 and

var(γ̂ ) = E(γ̂ γ̂ ′) = σ 2
ν (X ′ Q X )−1 + σ 2

1 (X ′ P X )−1

= var(̃βWithin) + var(̂βBetween) (4.48)

since the cross-product terms are zero. The test for γ = 0 is based on γ̂ = β̃Within − β̂Between = 0
and the corresponding test statistic would therefore be γ̂ ′(var(γ̂ ))−1γ̂ , which looks different
from the Hausman m1 statistic given in (4.41). These tests are numerically exactly identical (see
Hausman and Taylor, 1981). In fact, Hausman and Taylor (1981) showed that H0 can be tested
using any of the following three paired differences: q̂1 = β̂GLS − β̃Within; q̂2 = β̂GLS − β̂Between;
or q̂3 = β̃Within − β̂Between. The corresponding test statistics can be computed as mi = q̂ ′

i V
−1

i q̂i ,
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where Vi = var(̂qi ). These are asymptotically distributed as χ2
K for i = 1, 2, 3 under H0.

6

Hausman and Taylor (1981) proved that these three tests differ from each other by nonsingular
matrices. This easily follows from the fact that

β̂GLS = W1β̃Within + (I − W1)̂βBetween

derived in (2.31). So q̂1 = β̂GLS − β̃Within = (I − W1)(̂βBetween − β̃Within) = �q̂3, where � =
W1 − I. Also, var(̂q1) = �var(̂q3)�′ and

m1 = q̂ ′
1[var(̂q1)]−1q̂1 = q̂ ′

3�
′[�var(̂q3)�′]−1�q̂3

= q̂ ′
3[var(̂q3)]−1q̂3 = m3

This proves that m1 and m3 are numerically exactly identical. Similarly one can show that
m2 is numerically exactly identical to m1 and m3. In fact, problem 4.13 shows that these mi

are also exactly numerically identical to m4 = q̂ ′
4V −1

4 q̂4 where q̂4 = β̂GLS − β̂OLS and V4 =
var(̂q4). In the Monte Carlo study by Baltagi (1981a), the Hausman test is performed given
that the exogeneity assumption is true. This test performed well with a low frequency of type
I errors.

More recently, Arellano (1993) provided an alternative variable addition test to the Hausman
test which is robust to autocorrelation and heteroskedasticity of arbitrary form. In particular,
Arellano (1993) suggests constructing the following regression:(

y+
i

ȳi

)
=

[
X+

i 0
X̄ ′

i X̄ ′
i

] (
β

γ

)
+

(
u+

i
ūi

)
(4.49)

where y+
i = (y+

i1, . . . , y+
iT )′ and X+

i = (X+
i1, . . . , X+

iT )′ is a T × K matrix and u+
i =

(u+
i1, . . . , u+

iT )′. Also

y+
i t =

[
T − t

T − t + 1

]1/2 [
yit − 1

(T − t)
(yi,t+1 + . . . + yiT )

]
t = 1, 2, . . . , T − 1

defines the forward orthogonal deviations operator, ȳi = �T
t=1 yit/T , X+

i t , X̄i , u+
i t and ūi are

similarly defined. OLS on this model yields β̂ = β̃Within and γ̂ = β̂Between − β̃Within. Therefore,
Hausman’s test can be obtained from the artificial regression (4.49) by testing for γ = 0. If the
disturbances are heteroskedastic and/or serially correlated, then neither β̃Within nor β̂GLS are
optimal under the null or alternative. Also, the standard formulae for the asymptotic variances
of these estimators are no longer valid. Moreover, these estimators cannot be ranked in terms
of efficiency so that the var(q) is not the difference of the two variances var(̃βW ) − var(̂βGLS).
Arellano (1993) suggests using White’s (1984) robust variance–covariance matrix from OLS
on (4.49) and applying a standard Wald test for γ = 0 using these robust standard errors. This
can easily be calculated using any standard regression package that computes White robust
standard errors. This test is asymptotically distributed as χ2

K under the null.
Chamberlain (1982) showed that the fixed effects specification imposes testable restrictions

on the coefficients from regressions of all leads and lags of dependent variables on all leads and
lags of independent variables. Chamberlain specified the relationship between the unobserved
individual effects and Xit as follows:

µi = X ′
i1λ1 + . . . + X ′

iT λT + εi (4.50)
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where each λt is of dimension K × 1 for t = 1, 2, . . . , T . Let y′
i = (yi1, . . . , yiT ) and X ′

i =
(X ′

i1, . . . , X ′
iT ) and denote the “reduced form” regression of y′

i on X ′
i by

y′
i = X ′

iπ + ηi (4.51)

The restrictions between the reduced form and structural parameters are given by

π = (IT ⊗ β) + λι′T (4.52)

with λ′ = (λ′
1, . . . , λ

′
T ).7 Chamberlain (1982) suggested estimation and testing be carried out

using the minimum chi-square method where the minimand is a χ2 goodness-of-fit statistic
for the restrictions on the reduced form. However, Angrist and Newey (1991) showed that this
minimand can be obtained as the sum of T terms. Each term of this sum is simply the degrees
of freedom times the R2 from a regression of the Within residuals for a particular period on all
leads and lags of the independent variables. Angrist and Newey (1991) illustrate this test using
two examples. The first example estimates and tests a number of models for the union–wage
effect using five years of data from the National Longitudinal Survey of Youth (NLSY). They
find that the assumption of fixed effects in an equation for union–wage effects is not at odds
with the data. The second example considers a conventional human capital earnings function.
They find that the fixed effects estimates of the return to schooling in the NLSY are roughly
twice those of ordinary least squares. However, the over-identification test suggest that the
fixed effects assumption may be inappropriate for this model.

Modifying the set of additional variables in (4.49) so that the set of K additional regressors
are replaced by KT additional regressors Arellano (1993) obtains(

y+
i

ȳi

)
=

[
X+

i 0
X̄ ′

i X ′
i

] (
β

λ

)
+

(
u+

i
ūi

)
(4.53)

where Xi = (X ′
i1, . . . , X ′

iT )′ and λ is KT × 1. Chamberlain’s (1982) test of correlated effects
based on the reduced form approach turns out to be equivalent to testing for λ = 0 in (4.53).
Once again this can be made robust to an arbitrary form of serial correlation and heteroskedas-
ticity by using a Wald test for λ = 0 using White’s (1984) robust standard errors. This test is
asymptotically distributed as χ2

T K . Note that this clarifies the relationship between the Hausman
specification test and Chamberlain omnibus goodness-of-fit test. In fact, both tests can be
computed as Wald tests from the artificial regressions in (4.49) and (4.53). Hausman’s test
can be considered as a special case of the Chamberlain test for λ1 = λ2 = . . . = λT = γ /T .
Arellano (1993) extends this analysis to dynamic models and to the case where some of the
explanatory variables are known to be uncorrelated or weakly correlated with the individual
effects.

Recently, Ahn and Low (1996) showed that Hausman’s test statistic can be obtained from
the artificial regression of the GLS residuals (y*

i t − X*′
i t β̂GLS) on X̃ and X̄ , where X̃ has typical

element X̃i t,k and X̄ is the matrix of regressors averaged over time. The test statistic is N T
times the R2 of this regression. Using (4.42), one can test H0 : γ = 0 by running the Gauss–
Newton regression (GNR) evaluated at the restricted estimators under the null. Knowing θ,

the restricted estimates yield β̂ = β̂GLS and γ̂ = 0. Therefore, the GNR on (4.42) regresses the
GLS residuals (y*

i t − X*′
i t β̂GLS) on the derivatives of the regression function with respect to β

and γ evaluated at β̂GLS and γ̂ = 0. These regressors are X*
i t and X̃i t , respectively. But X*

i t and

X̃i t span the same space as X̃i t and X̄i.. This follows immediately from the definition of X*
i t and
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X̃i t given above. Hence, this GNR yields the same regression sums of squares and therefore,
the same Hausman test statistic as that proposed by Ahn and Low (1996), see problem 97.4.1
in Econometric Theory by Baltagi (1997).

Ahn and Low (1996) argue that Hausman’s test can be generalized to test that each Xit is
uncorrelated with µi and not simply that X̄i is uncorrelated with µi . In this case, one computes
N T times R2 of the regression of GLS residuals (y∗

i t − X∗′
i t β̂GLS) on X̃i t and [X ′

i1, . . . , X ′
iT ].

This LM statistic is identical to Arellano’s (1993) Wald statistic described earlier if the same
estimates of the variance components are used. Ahn and Low (1996) argue that this test is
recommended for testing the joint hypothesis of exogeneity of the regressors and the stability
of the regression parameters over time. If the regression parameters are nonstationary over
time, both β̂GLS and β̃Within are inconsistent even though the regressors are exogenous. Monte
Carlo experiments were performed that showed that both the Hausman test and the Ahn and
Low (1996) test have good power in detecting endogeneity of the regressors. However, the
latter test dominates if the coefficients of the regressors are nonstationary. For Ahn and Low
(1996), rejection of the null does not necessarily favor the Within estimator since the latter
estimator may be inconsistent. In this case, the authors recommend performing Chamberlain’s
(1982) test or the equivalent test proposed by Angrist and Newey (1991).

4.3.1 Example 1: Grunfeld Investment Equation

For the Grunfeld data, the Within estimates are given by (̃β1, β̃2) = (0.1101238, 0.310065)
with a variance–covariance matrix:

var(̃βWithin) =
[

0.14058 −0.077468
0.3011788

]
× 10−3

The Between estimates are given by (0.1346461, 0.03203147) with variance–covariance
matrix:

var(̂βBetween) =
[

0.82630142 −3.7002477
36.4572431

]
× 10−3

The resulting Hausman test statistic based on (4.46) and (4.48) and labeled as m3 yields an
observed χ2

2 statistic of 2.131. This is not significant at the 5% level and we do not reject the
null hypothesis of no correlation between the individual effects and the Xit . As a cautionary
note, one should not use the Hausman command in Stata to perform the Hausman test based on
a contrast between the fixed effects (FE) and Between (BE) estimators. This will automatically
subtract the variance–covariance matrices of the two estimators, rather than add them as re-
quired in (4.48). However, the Hausman test statistic can be properly computed in Stata based
upon the contrast between the RE (feasible GLS) estimator and fixed effects (FE). This is the
Hausman statistic labeled as m1 in (4.41) based on the contrast q̂1 and var(̂q1) given in (4.40).
Table 4.3 gives the Stata output using the Hausman command which computes (4.41). This
yields an m1 statistic of 2.33 which is distributed as χ2

2 . This does not reject the null hypothesis
as obtained using m3. Note that the feasible GLS estimator in Stata is SWAR and is computed
whenever the RE option is invoked. One can also compute m2 based on q̂2 which is the contrast
between the SWAR feasible GLS estimator and the Between estimator. Table 4.4 gives the
Stata output that replicates this Hausman test yielding an m2 statistic of 2.13. As expected,
this statistic is not significant and does not reject the null hypothesis as obtained using m1 and
m3. Hence, one does not reject the null hypothesis that the RE estimator is consistent. Finally,
the augmented regression, given in (4.42) based on the SWAR feasible GLS estimates of θ ,
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Table 4.3 Grunfeld’s Data. Hausman Test FE vs RE

. hausman fe re

---- Coefficients ----
-----------------------------------

| (b) (B) (b-B) sqrt(diag(V b-V B))
| fe re Difference S.E.

-----------+--------------------------------------------------------
F | .1101238 .1097811 .0003427 .0055213
C | .3100653 .308113 .0019524 .0024516

--------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)’[(V b-V B)^(-1)](b-B)
= 2.33

Prob>chi2 = 0.3119

yields the following estimates: β̂ = (0.135, 0.032) and γ̂ = (−0.025, 0.278) with an observed
F-value for H0 : γ = 0 equal to 1.066. This is distributed under H0 as an F(2, 195). This is
again not significant at the 5% level and leads to nonrejection of H0.

4.3.2 Example 2: Gasoline Demand

For the Baltagi and Griffin (1983) gasoline data, the Within estimates are given by (̃β1, β̃2, β̃3) =
(0.66128, −0.32130, −0.64015) with variance–covariance matrix:

var(̃βWithin) =
 0.539 0.029 −0.205

0.194 0.009
0.088

 × 10−2

Table 4.4 Grunfeld’s Data. Hausman Test BE vs RE

. hausman be re

---- Coefficients ----
-----------------------------------

| (b) (B) (b-B) sqrt(diag(V b-V B))
| be re Difference S.E.

---------+---------------------------------------------------------
F | .1346461 .1097811 .0248649 .026762
C | .0320315 .308113 -.2760815 .1901633

-------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)’[(V b-V B) ^ (-1)](b-B)
= 2.13

Prob>chi2 = 0.3445
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The Between estimates are given by (0.96737, −0.96329, −0.79513) with variance–
covariance matrix:

var(̂βBetween) =
 2.422 −1.694 −1.056

1.766 0.883
0.680

 × 10−2

The resulting Hausman χ2
3 test statistic is m3 = 26.507 which is significant. Hence we reject the

null hypothesis of no correlation between the individual effects and the Xit . One can similarly
compute m2 = 27.45, based on the contrast between the SWAR feasible GLS estimator and the
Between estimator, and m1 = 302.8 based on the contrast between the SWAR feasible GLS
estimator and the fixed effects estimator. These were obtained using Stata. Although m1 gives a
drastically different value of the Hausman statistic than m2 or m3, all three test statistics lead to
the same decision. The null is rejected and the RE estimator is not consistent. The augmented
regression, given in (4.42) based on the iterative MLE estimate of θ , yields the following
estimates: β̂Between = (0.967, −0.963, −0.795) and γ̂ = β̃Within − β̂Between = (−0.306, 0.642,

0.155) with an observed F-value for H0 : γ = 0 equal to 4.821. This is distributed under H0

as an F(3, 335), and leads to the rejection of H0.

4.3.3 Example 3: Strike Activity

Owusu-Gyapong (1986) considered panel data on strike activity in 60 Canadian manufacturing
industries for the period 1967–79. A one-way error component model is used and OLS, Within
and GLS estimates are obtained. With K ′ = 12 regressors, N = 60 and T = 13, an F-test
for the significance of industry-specific effects described in (2.12) yields an F-value of 5.56.
This is distributed as F59,709 under the null hypothesis of zero industry-specific effects. The
null is soundly rejected and the Within estimator is preferred to the OLS estimator. Next,
H0 : σ 2

µ = 0 is tested using the Breusch and Pagan (1980) two-sided LM test given as LM1 in
(4.23). This yields a χ2-value of 21.4, which is distributed as χ2

1 under the null hypothesis of
zero random effects. The null is soundly rejected and the GLS estimator is preferred to the OLS
estimator. Finally, for a choice between the Within and GLS estimators, the author performs a
Hausman (1978)-type test to test H0 : E(µi/Xit ) = 0. This is based on the difference between
the Within and GLS estimators as described in (4.41) and yields a χ2 value equal to 3.84. This
is distributed as χ2

11 under the null and is not significant. The Hausman test was also run as
an augmented regression-type test described in (4.42). This also did not reject the null of no
correlation between the µi and the regressors. Based on these results, Owusu-Gyapong (1986)
chose GLS as the preferred estimator.

4.3.4 Example 4: Production Behavior of Sawmills

Cardellichio (1990) estimated the production behavior of 1147 sawmills in the state of
Washington observed biennially over the period 1972–84. A one-way error component model
is used and OLS, Within and GLS estimates are presented. With K ′ = 21 regressors, N = 1147
and T = 7 , an F-test for the stability of the slope parameters over time was performed which
was not significant at the 5% level. In addition, an F-test for the significance of sawmill effects
described in (2.12) was performed which rejected the null at the 1% significance level. Finally,
a Hausman test was performed and it rejected the null at the 1% significance level. Cardelli-
chio (1990) concluded that the regression slopes are stable over time, sawmill dummies should
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be included and the Within estimator is preferable to OLS and GLS since the orthogonality
assumption between the regressors and the sawmill effects is rejected.

4.3.5 Example 5: The Marriage Wage Premium

Cornwell and Rupert (1997) estimated the wage premium attributed to marriage using the
1971, 1976, 1978 and 1980 waves of the NLSY. They find that the Within estimates of the
marriage premium are smaller than those obtained from feasible GLS. A Hausman test based
on the difference between these two estimators rejects the null hypothesis. This indicates
the possibility of important omitted individual-specific characteristics which are correlated
with both marriage and the wage rate. They conclude that the marriage premium is purely an
intercept shift and no more than 5% to 7% . They also cast doubt on the interpretation that
marriage enhances productivity through specialization.

4.3.6 Example 6: Currency Union and Trade

Glick and Rose (2002) consider the question of whether leaving a currency union reduces
international trade. Using annual data on bilateral trade among 217 countries from 1948 through
1997, they estimate an augmented gravity model controlling for several factors. These include
real GDP, distance, land mass, common language, sharing a land border, whether they belong
to the same regional trade agreement, land-locked, island nations, common colonizer, current
colony, ever a colony and whether they remained part of the same nation. The focus variable is
a binary variable which is unity if country i and country j use the same currency at time t . They
apply OLS, FE, RE, and their preferred estimator is FE based on the Hausman test. They find
that a pair of countries which joined/left a currency union experienced a near-doubling/halving
of bilateral trade. The data set along with the Stata logs are available on Rose’s web site, see
problem 4.19.

4.3.7 Hausman’s Test for the Two-way Model

For the two-way error component model, Hausman’s (1978) test can still be based on the dif-
ference between the fixed effects estimator (with both time and individual dummies) and the
two-way random effects GLS estimator. Also, the augmented regression, given in (4.42),
can still be used as long as the Within and GLS transformations used are those for the
two-way error component model. But, what about the equivalent tests described for the one-
way model? Do they extend to the two-way model? Not quite. Kang (1985) showed that a
similar equivalence for the Hausman test does not hold for the two-way error component
model, since there would be two Between estimators, one between time periods β̂T and one
between cross-sections β̂C . Also, β̂GLS is a weighted combination of β̂T , β̂C and the Within
estimator β̃W . Kang (1985) shows that the Hausman test based on (̂βW − β̂GLS) is not equiva-
lent to that based on (̂βC − β̂GLS) nor that based on (̂βT − β̂GLS). But there are other types of
equivalencies (see Kang’s table 2). More importantly, Kang classifies five testable hypotheses:

(1) Assume that µi are fixed and test E(λt/Xit ) = 0 based upon β̃W − β̂T .
(2) Assume the µi are random and test E(λt/Xit ) = 0 based upon β̂T − β̂GLS.
(3) Assume the λt are fixed and test E(µi/Xit ) = 0 based upon β̃W − β̂C .
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(4) Assume the λt , are random and test E(µi/Xit ) = 0 based upon β̂C − β̂GLS.
(5) Compare two estimators, one which assumes both the µi and λT are fixed, and another

that assumes both are random such that E(λt/Xit ) = E(µi/Xit ) = 0. This test is based
upon β̂GLS − β̃W .

4.4 FURTHER READING

Li and Stengos (1992) proposed a Hausman specification test based on root-N consistent
semiparametric estimators. Also, Baltagi and Chang (1996) proposed a simple ANOVA F-
statistic based on recursive residuals to test for random individual effects and studied its size
and power using Monte Carlo experiments. Chesher (1984) derived a score test for neglected
heterogeneity, which is viewed as causing parameter variation. Also, Hamerle (1990) and
Orme (1993) suggest a score test for neglected heterogeneity for qualitative limited dependent
variable panel data models.

The normality assumption on the error components disturbances may be untenable. Horowitz
and Markatou (1996) show how to carry out nonparametric estimation of the densities of the
error components. Using data from the Current Population Survey, they estimate an earnings
model and show that the probability that individuals with low earnings will become high
earners in the future are much lower than that obtained under the assumption of normality.
One drawback of this nonparametric estimator is its slow convergence at a rate of 1/(log N )
where N is the number of individuals. Monte Carlo results suggest that this estimator should be
used for N larger than 1000. Blanchard and Mátyás (1996) perform Monte Carlo simulations
to study the robustness of several tests for individual effects with respect to nonnormality of
the disturbances. The alternative distributions considered are the exponential, lognormal, t(5)
and Cauchy distributions. The main findings are that the F-test is robust against nonnormality
while the one-sided and two-sided LM and LR tests are sensitive to nonnormality.

Davidson and MacKinnon (1993) showed that the double-length artificial regression (DLR)
can be very useful in choosing between, and testing the specification of, models that are linear or
loglinear in the dependent variable. Baltagi (1997) extends this DLR to panel data regressions,
where the choice between linear and loglinear models is complicated by the presence of error
components. This DLR can easily be extended to test jointly for functional form and random
individual effects (see problem 97.1.3 in Econometric Theory by Baltagi (1997) and its solution
by Li (1998)).

NOTES

1. An elegant presentation of this F-statistic is given in Fisher (1970).
2. Baltagi (1996) shows that testing for random individual and time effects can be obtained from a variable

addition test using two extra variables, one that involves the average of least squares residuals over
time and another that involves the average of these residuals across individuals. In fact, this test applies
to nonlinear regression models with error components disturbances. This variable addition test is an
application of the Gauss–Newton regression (GNR) described in detail in Davidson and MacKinnon
(1993). For other applications of the GNR in panel data, see Baltagi (1999).

3. Häggström (2002) studies the properties of Honda’s tests for random individual effects in nonlinear
regression models. Two corrections for Honda’s test statistic are suggested when random time effects
are present.

4. Critical values for the mixed χ2
m are 7.289, 4.321 and 2.952 for α = 0.01, 0.05 and 0.1, respectively.
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5. Hausman (1978) tests γ = 0 from (4.42) using an F-statistic. The restricted regression yields OLS of
y∗ on X∗. This is the Fuller and Battese (1973) regression yielding GLS as described below (2.20).
The unrestricted regression adds the matrix of Within regressors X̃ as in (4.42).

6. For an important discussion of what null hypothesis is actually being tested using the Hausman test,
see Holly (1982).

7. For more on the Chamberlain approach, read Crépon and Mairesse (1996).

PROBLEMS

4.1 Verify the relationship between M and M∗, i.e. M M∗ = M∗, given below (4.7). Hint:
Use the fact that Z = Z∗ I ∗ with I ∗ = (ιN ⊗ IK ′ ).

4.2 Verify that Ṁ and Ṁ∗ defined below (4.10) are both symmetric, idempotent and satisfy
Ṁ Ṁ∗ = Ṁ∗.

4.3 For Grunfeld’s data given as Grunfeld.fil on the Wiley web site, verify the testing for
poolability results given in example 1, section 4.1.3.

4.4 For the gasoline data given as Gasoline.dat on the Wiley web site, verify the testing for
poolability results given in example 2, section 4.1.3.

4.5 Under normality of the disturbances, show that for the likelihood function given in (4.15):
(a) The information matrix is block-diagonal between θ ′ = (σ 2

µ, σ 2
λ , σ 2

ν ) and δ.

(b) For H c
0 : σ 2

µ = σ 2
λ = 0, verify (4.18), (4.20) and (4.22).

4.6 Using the results of Baltagi et al. (1992b), verify that the King–Wu (1997) test for
H c

0 : σ 2
µ = σ 2

λ = 0 is given by (4.30).
4.7 For H c

0 : σ 2
µ = σ 2

λ = 0: (a) Verify that the standardized Lagrange multiplier (SLM) test

statistics for Honda’s (1991) (A + B)/
√

2 statistic is as described by (4.26) and (4.31).
(b) Also, verify that the King and Wu (1997) standardized test statistic is as described by
(4.26) and (4.32).

4.8 Using the Monte Carlo set-up for the two-way error component model described in
Baltagi (1981a):
(a) Compare the performance of the Chow F-test and the Roy–Zellner test for various

values of the variance components.
(b) Compare the performance of the BP, KW, SLM, LR, GHM and F-test statistics as

done in Baltagi et al. (1992b).
(c) Perform Hausman’s specification test and discuss its size for the various experiments

conducted.
4.9 For the Grunfeld data, replicate Table 4.1.
4.10 For the gasoline data, derive a similar table to test the hypotheses given in Table 4.1.
4.11 For the public capital data, derive a similar table to test the hypotheses given in Table

4.1.
4.12 Using partitioned inverse on (4.43), verify (4.44) and deduce (4.45) and (4.46).
4.13 (a) Verify that m2 is numerically exactly identical to m1 and m3, where mi = q̂ ′

i V
−1

i q̂i

defined below (4.48).
(b) Verify that these are also exactly numerically identical to m4 = q̂ ′

4V −1
4 q̂4 where q̂4

= β̂GLS − β̂OLS and V4 = var(̂q4). Hint: See problem 89.3.3 in Econometric Theory
by Baltagi (1989) and its solution by Koning (1990).

4.14 Testing for correlated effects in panels. This is based on problem 95.2.5 in Econometric
Theory by Baltagi (1995). This problem asks the reader to show that Hausman’s test,
studied in section 4.3, can be derived from Arellano’s (1993) extended regression by
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using an alternative transformation of the data. In particular, consider the transformation
given by H = (C ′, ιT /T )′ where C is the first (T − 1) rows of the Within transformation
ET = IT − J̄T , IT is an identity matrix of dimension T and J̄T = ιT ι′T /T with ιT a
vector of 1’s of dimension T .
(a) Show that the matrix C satisfies the following properties: CιT = 0, C ′(CC ′)−1C =

IT − J̄T ; see Arellano and Bover (1995).
(b) For the transformed model y+

i = H yi = (y*′
i , ȳi )′, where y*

i = Cyi and ȳi =
�T

t=1 yit/T . The typical element of y*
i is given by y*

i t = [yit − ȳi ] for t =
1, 2, . . . , T − 1. Consider the extended regression similar to (4.49)[

y*
i

ȳi

]
=

[
X*′

i 0
X̄ ′

i X̄ ′
i

] [
β

γ

]
+

[
u*

i
ūi

]
and show that GLS on this extended regression yields β̂ = β̂Within and γ̂ = β̂Between −
β̂Within, where β̂Within and β̂Between are the familiar panel data estimators. Conclude
that Hausman’s test for H0 : E(µi/Xi ) = 0 can be based on a test for γ = 0, as
shown by Arellano (1993). See solution 95.2.5 in Econometric Theory by Xiong
(1996).

4.15 For the Grunfeld data, replicate the Hausman test results given in example 1 of section
4.3.

4.16 For the gasoline demand data, replicate the Hausman test results given in example 2 of
section 4.3.

4.17 Perform Hausman’s test for the public capital data.
4.18 The relative efficiency of the Between estimator with respect to the Within estimator.

This is based on problem 99.4.3 in Econometric Theory by Baltagi (1999). Consider the
simple panel data regression model

yit = α + βxit + uit i = 1, 2, . . . , N ; t = 1, 2, . . . , T (1)

where α and β are scalars. Subtract the mean equation to get rid of the constant

yit − ȳ.. = β(xit − x̄..) + uit − ū.. (2)

where x̄.. = �N
i=1�

T
t=1xit/N T and ȳ.. and ū.. are similarly defined. Add and subtract x̄i.

from the regressor in parentheses and rearrange

yit − ȳ.. = β(xit − x̄i.) + β(x̄i. − x̄..) + uit − ū.. (3)

where x̄i. = �T
t=1xit/T . Now run the unrestricted least squares regression

yit − ȳ.. = βw(xit − x̄i.) + βb(x̄i. − x̄..) + uit − ū.. (4)

where βw is not necessarily equal to βb.
(a) Show that the least squares estimator of βw from (4) is the Within estimator and that

of βb is the Between estimator.
(b) Show that if uit = µi + νi t where µi ∼ IID(0, σ 2

µ) and νi t ∼ IID(0, σ 2
ν ) independent

of each other and among themselves, then ordinary least squares (OLS) is equivalent
to generalized least squares (GLS) on (4).

(c) Show that for model (1), the relative efficiency of the Between estimator with respect
to the Within estimator is equal to (BX X/WX X )[(1 − ρ)/(Tρ + (1 − ρ))], where
WX X = �N

i=1�
T
t=1(xit − x̄i.)2 denotes the Within variation and BX X = T �N

i=1(x̄i. −
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x̄..)2 denotes the Between variation. Also, ρ = σ 2
µ/(σ 2

µ + σ 2
ν ) denotes the equicorre-

lation coefficient.
(d) Show that the square of the t-statistic used to test H0 : βw = βb in (4) yields exactly

Hausman’s (1978) specification test. See solution 99.4.3 in Econometric Theory by
Gurmu (2000).

4.19 Using the Glick and Rose (2002) data set, downloadable from Rose’s web site at
http://haas.berkeley.edu)
(a) Replicate their results for the FE, RE, Between and MLE estimators reported in table

4 of their paper.
(b) Perform the Hausman test based on FE vs RE as well as Between vs RE using Stata.
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5
Heteroskedasticity and Serial Correlation

in the Error Component Model

5.1 HETEROSKEDASTICITY

The standard error component model given by equations (2.1) and (2.2) assumes that the
regression disturbances are homoskedastic with the same variance across time and individ-
uals. This may be a restrictive assumption for panels, where the cross-sectional units may
be of varying size and as a result may exhibit different variation. For example, when deal-
ing with gasoline demand across OECD countries, steam electric generation across various
size utilities or estimating cost functions for various US airline firms, one should expect to
find heteroskedasticity in the disturbance term. Assuming homoskedastic disturbances when
heteroskedasticity is present will still result in consistent estimates of the regression coeffi-
cients, but these estimates will not be efficient. Also, the standard errors of these estimates
will be biased and one should compute robust standard errors correcting for the possible pres-
ence of heteroskedasticity. In this section, we relax the assumption of homoskedasticity of the
disturbances and introduce heteroskedasticity through the µi as first suggested by Mazodier
and Trognon (1978). Next, we suggest an alternative heteroskedastic error component specifi-
cation, where only the νi t are heteroskedastic. We derive the true GLS transformation for these
two models. We also consider two adaptive heteroskedastic estimators based on these models
where the heteroskedasticity is of unknown form. These adaptive heteroskedastic estimators
were suggested by Li and Stengos (1994) and Roy (2002).

Mazodier and Trognon (1978) generalized the homoskedastic error component model to the
case where the µi are heteroskedastic, i.e. µi ∼ (0, w2

i ) for i = 1, . . . , N , but νi t ∼ IID(0, σ 2
ν ).

In vector form, µ ∼ (0, �µ) where �µ = diag[w2
i ] is a diagonal matrix of dimension N × N ,

and ν ∼ (0, σ 2
ν IN T ). Therefore, using (2.4), one gets

� = E(uu′) = Zµ�µ Z ′
µ + σ 2

ν IN T (5.1)

This can be written as

� = diag[w2
i ] ⊗ JT + diag[σ 2

ν ] ⊗ IT (5.2)

where diag[σ 2
ν ] is also of dimension N × N . Using the Wansbeek and Kapteyn (1982b, 1983)

trick, Baltagi and Griffin (1988a) derived the corresponding Fuller and Battese (1974) trans-
formation as follows:

� = diag[T w2
i + σ 2

ν ] ⊗ J̄ T + diag[σ 2
ν ] ⊗ ET

Therefore

�r = diag[(τ 2
i )r ] ⊗ J̄ T + diag[(σ 2

ν )r ] ⊗ ET (5.3)

with τ 2
i = T w2

i + σ 2
ν , and r is any arbitrary scalar. The Fuller–Battese transformation for the

79
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heteroskedastic case premultiplies the model by

σν�
−1/2 = diag[σν/τi ] ⊗ J̄ T + (IN ⊗ ET ) (5.4)

Hence, y* = σν�
−1/2 y has a typical element y*

i t = yit − θi yi. where θi = 1 − (σν/τi ) for
i = 1, . . . , N .

Baltagi and Griffin (1988a) provided feasible GLS estimators including Rao’s (1970, 1972)
MINQUE estimators for this model. Phillips (2003) argues that this model suffers from the
incidental parameters problem and the variance estimates of µi (the ω2

i ) cannot be estimated
consistently, so there is no guarantee that feasible GLS and true GLS will have the same
asymptotic distributions. Instead, he suggests a stratified error component model where the
variances change across strata and provides an EM algorithm to estimate it. It is important
to note that Mazodier and Trognon (1978) had already suggested stratification in a two-way
heteroskedastic error component model. Also, that one can specify parametric variance func-
tions which avoid the incidental parameter problem and then apply the GLS transformation
described above. As in the cross-section heteroskedastic case, one has to know the variables
that determine heteroskedasticity, but not necessarily the form. Adaptive estimation of het-
eroskedasticity of unknown form has been suggested for this model by Roy (2002). This
follows similar literature on adaptive estimation for cross-section data.

Alternatively, one could keep the µi homoskedastic with µi ∼ IID(0, σ 2
µ) and impose the

heteroskedasticity on the νi t , i.e. vi t ∼ (0, w2
i ) (see problem 88.2.2 by Baltagi (1988) and its

solution by Wansbeek (1989) in Econometric Theory). In this case, using (2.4) one obtains

� = E(uu′) = diag[σ 2
µ] ⊗ JT + diag[w2

i ] ⊗ IT (5.5)

Replacing JT by T J̄ T and IT by ET + J̄T , we get

� = diag[T σ 2
µ + w2

i ] ⊗ J̄T + diag[w2
i ] ⊗ ET

and

�r = diag[(τ 2
i )r ] ⊗ J̄T + diag[(w2

i )r ] ⊗ ET (5.6)

where τ 2
i = T σ 2

µ + w2
i , and r is an arbitrary scalar. Therefore

�−1/2 = diag[1/τi ] ⊗ J̄T + diag[1/wi ] ⊗ ET (5.7)

and y* = �−1/2 y has a typical element

y*
i t = (ȳi./τi ) + (yit − ȳi.)/wi

Upon rearranging terms, we get

y*
i t = 1

wi
(yit − θi ȳi.) where θi = 1 − (wi/τi )

One can argue that heteroskedasticity will contaminate both µi and νi t and it is hard to claim
that it is in one component and not the other. Randolph (1988) gives the GLS transformation for
a more general heteroskedastic model where both the µi and the νi t are assumed heteroskedastic
in the context of an unbalanced panel. In this case, the var(µi ) = σ 2

i and E(νν ′) = diag[σ 2
i t ]

for i = 1, . . . , N and t = 1, . . . , Ti . More recently, Li and Stengos (1994) considered the
regression model given by (2.1) and (2.2) with µi ∼ IID

(
0, σ 2

ν

)
and E

[
vi t |X ′

i t

] = 0 with
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var
[
νi t |X ′

i t

] = γ
(
X ′

i t

) ≡ γi t . So that the heteroskedasticity is on the remainder error term and
it is of an unknown form.

Therefore σ 2
i t = E

[
u2

i t |Xit
] = σ 2

µ + γi t and the proposed estimator of σ 2
µ is given by:

σ̂ 2
µ =

N∑
i=1

T∑
t �=s

ûi t ûis

N T (T − 1)

where ûi t denotes the OLS residual. Also

γ̂i t =

N∑
j=1

T∑
s=1

û2
js Kit, js

N∑
j=1

T∑
s=1

Kit, js

− σ̂ 2
µ

where the kernel function is given by Kit, js = K
(

X ′
i t −X ′

js

h

)
and h is the smoothing parameter.

These estimators of the variance components are used to construct a feasible adaptive GLS
estimator of β which they denote by GLSAD. The computation of their feasible GLS estimator
is simplified into an OLS regression using a recursive transformation that reduces the general
heteroskedastic error components structure into classical errors, see Li and Stengos (1994) for
details.

Roy (2002) considered the alternative heteroskedastic model E
[
µi |X ′

i.

]
= 0 with

var
[
µi |X ′

i.

]
= ω

(
X

′
i.

)
≡ ωi

with X
′
i. =

T∑
t=1

X ′
i t/T and vi t ∼ IID

(
0, σ 2

ν

)
. So that the heteroskedasticity is on the individual

specific error component and it is of an unknown form. Roy (2002) used the usual estimator
of σ 2

ν which is the MSE of the Within regression, see (2.24), and this can be written as

σ̂ 2
ν =

N∑
i=1

T∑
t=1

[(
yit − yi.

)− (Xit − Xi.
)′

β̃
]2

N (T − 1) − k

where β̃ is the fixed effects or Within estimator of β given in (2.7). Also

ω̂i =

N∑
j=1

T∑
t=1

û2
j t Ki., j.

N∑
j=1

T∑
t=1

Ki., j.

− σ̂ 2
ν

where the kernel function is given by:

Ki., j. = K

(
X

′
i. − X

′
j.

h

)
Using these estimators of the variance components, Roy (2002) computed a feasible GLS
estimator using the transformation derived by Baltagi and Griffin (1988a) and given in (5.4).
This was denoted by EGLS.
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Both Li and Stengos (1994) and Roy (2002) performed Monte Carlo experiments based
on the simple regression model given in (2.8). They compared the following estimators: (1)
OLS; (2) fixed effects or Within estimator (Within); (3) the conventional GLS estimator for
the one-way error component model that assumes the error term uit is homoskedastic (GLSH);
and (4) their own adaptive heteroskedastic estimator denoted by (EGLS) for Roy (2002) and
(GLSAD) for Li and Stengos (1994). Li and Stengos (1994) found that their adaptive estimator
outperforms all the other estimators in terms of relative MSE with respect to true GLS for
N = 50, 100 and T = 3 and for moderate to severe degrees of heteroskedasticity. Roy (2002)
also found that her adaptive estimator performs well, although it was outperformed by fixed
effects in some cases where there were moderate and severe degrees of heteroskedasticity.
Recently, Baltagi, Bresson and Pirotte (2005a) checked the sensitivity of the two proposed
adaptive heteroskedastic estimators under misspecification of the form of heteroskedasticity.
In particular, they ran Monte Carlo experiments using the heteroskedasticity set-up of Li
and Stengos (1994) to see how the misspecified Roy (2002) estimator performs. Next, they
used the heteroskedasticity set-up of Roy (2002) to see how the misspecified Li and Stengos
(1994) estimator performs. They also checked the sensitivity of these results to the choice
of the smoothing parameters, the sample size and the degree of heteroskedasticity. Baltagi
et al. (2005a) found that in terms of loss in efficiency, misspecifying the adaptive form of
heteroskedasticity can be costly when the Li and Stengos (1994) model is correct and the
researcher performs the Roy (2002) estimator. This loss in efficiency is smaller when the true
model is that of Roy (2002) and one performs the Li and Stengos (1994) estimator. The latter
statement is true as long as the choice of bandwidth is not too small. Both papers also reported
the 5% size performance of the estimated t-ratios of the slope coefficient. Li and Stengos (1994)
found that only GLSAD had the correct size while OLS, GLSH and Within over-rejected the
null hypothesis. Roy (2002) found that GLSH and EGLS had the correct size no matter what
choice of h was used. Baltagi et al. (2005a) found that OLS and GLSAD (small h) tend to over-
reject the null when true no matter what form of adaptive heteroskedasticity. In contrast, GLSH,
EGLS and Within have size not significantly different from 5% when the true model is that of
Roy (2002) and slightly over-reject (7–8%) when the true model is that of Li and Stengos (1994).

In Chapter 2, we pointed out that Arellano (1987) gave a neat way of obtaining standard
errors for the fixed effects estimator that are robust to heteroskedasticity and serial correlation of
arbitrary form, see equation (2.16). In Chapter 4, we discussed how Arellano (1993) suggested
a Hausman (1978) test as well as a Chamberlain (1982) omnibus goodness-of-fit test that are
robust to heteroskedasticity and serial correlation of arbitrary form, see equations (4.49) and
(4.53). Li and Stengos (1994) suggested a modified Breusch and Pagan test for significance
of the random individual effects, i.e., H0 : σ 2

µ = 0, which is robust to heteroskedasticity of
unknown form in the remainder error term.

5.1.1 Testing for Homoskedasticity in an Error Component Model

Verbon (1980) derived a Lagrange multiplier test for the null hypothesis of homoskedasticity
against the heteroskedastic alternative µi ∼ (0, σ 2

µi

)
and νi t ∼ (0, σ 2

νi

)
. In Verbon’s model,

however, σ 2
µi

and σ 2
νi

are, up to a multiplicative constant, identical parametric functions of
time-invariant exogenous variables Zi , i.e., σ 2

µi
= σ 2

µ f (Ziθ2) and σ 2
νi

= σ 2
ν f (Ziθ1) . Lejeune

(1996), on the other hand, dealt with maximum likelihood estimation and Lagrange multiplier
testing of a general heteroskedastic one-way error components regression model assuming
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that µi ∼ (0, σ 2
µi

)
and νi t ∼ (0, σ 2

νi t

)
where σ 2

µi
and σ 2

νi t
are distinct parametric functions

of exogenous variables Zit and Fi , i.e., σ 2
νi t

= σ 2
ν hv (Zitθ1) and σ 2

µi
= σ 2

µhµ (Fiθ2). In the
context of incomplete panels, Lejeune (1996) derived two joint LM tests for no individual
effects and homoskedasticity in the remainder error term. The first LM test considers a random
effects one-way error component model with µi ∼ IIN

(
0, σ 2

µ

)
and a remainder error term that

is heteroskedastic νi t ∼ N
(
0, σ 2

νi t

)
with σ 2

νi t
= σ 2

ν hν (Zitθ1) . The joint hypothesis H0 : θ1 =
σ 2

µ = 0 renders OLS the restricted MLE. Lejeune argued that there is no need to consider
a variance function for µi since one is testing σ 2

µ equal to zero. While the computation of
the LM test statistic is simplified under this assumption, i.e., µi ∼ IIN

(
0, σ 2

µ

)
, this is not in

the original spirit of Lejeune’s ML estimation where both µi and νi t have general variance
functions. Lejeune’s second LM test considers a fixed effects one-way error component model
where µi is a fixed parameter to be estimated and the remainder error term is heteroskedastic
with νi t ∼ N

(
0, σ 2

νi t

)
and σ 2

νi t
= σ 2

ν hv (Zitθ1) . The joint hypothesis is H0 : µi = θ1 = 0 for all
i = 1, 2, . . . , N . This renders OLS the restricted MLE.

Holly and Gardiol (2000) derived a score test for homoskedasticity in a one-way error
component model where the alternative model is that the µi ’s are independent and distributed
as N (0, σ 2

µi
) where σ 2

µi
= σ 2

µhµ (Fiθ2). Here, Fi is a vector of p explanatory variables such that
Fiθ2 does not contain a constant term and hµ is a strictly positive twice differentiable function
satisfying hµ(0) = 1 with h′

µ(0) �= 0 and h′′
µ(0) �= 0. The score test statistic for H0 : θ2 = 0

turns out to be one half the explained sum of squares of the OLS regression of (ŝ/s̄) − ιN

against the p regressors in F as in the Breusch and Pagan test for homoskedasticity. Here
ŝi = û′

i J̄T ûi and s =∑N
i=1 ŝi/N where û denotes the maximum likelihood residuals from the

restricted model under H0 : θ2 = 0. This is a one-way homoskedastic error component model
with µi ∼ N (0, σ 2

µ). The reader is asked to verify this result in problem 5.3.
In the spirit of the general heteroskedastic model of Randolph (1988) and Lejeune (1996),

Baltagi, Bresson and Pirotte (2005b) derived a joint Lagrange multiplier test for homoskedas-
ticity, i.e., H0 : θ1 = θ2 = 0. Under the null hypothesis, the model is a homoskedastic one-way
error component regression model. Note that this is different from Lejeune (1996), where under
his null, σ 2

µ = 0, so that the restricted MLE is OLS and not MLE on a one-way homoskedas-
tic error component model. Allowing for σ 2

µ > 0 is more likely to be the case in panel data
where heterogeneity across the individuals is likely to be present even if heteroskedasticity
is not. The model under the null is exactly that of Holly and Gardiol (2000), but it is more
general under the alternative since it does not assume a homoskedastic remainder error term.
Next, Baltagi et al. (2005b) derived an LM test for the null hypothesis of homoskedasticity
of the individual random effects assuming homoskedasticity of the remainder error term, i.e.,
θ2 = 0 | θ1 = 0. Not surprisingly, they get the Holly and Gardiol (2000) LM test. Last but not
least, Baltagi et al. (2005b) derived an LM test for the null hypothesis of homoskedasticity
of the remainder error term assuming homoskedasticity of the individual effects, i.e., θ1 = 0 |
θ2 = 0. The details for the derivations and the resulting statisitics are not provided here and
the reader is referred to their paper. Monte Carlo experiments showed that the joint LM test
performed well when both error components were heteroskedastic, and performed second best
when one of the components was homoskedastic while the other was not. In contrast, the
marginal LM tests performed best when heteroskedasticity was present in the right error com-
ponent. They yielded misleading results if heteroskedasticity was present in the wrong error
component.
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5.2 SERIAL CORRELATION

The classical error component disturbances given by (2.2) assume that the only correlation
over time is due to the presence of the same individual across the panel. In Chapter 2, this
equicorrelation coefficient was shown to be correl(uit , uis) = σ 2

µ/(σ 2
µ + σ 2

ν ) for t �= s. Note
that it is the same no matter how far t is from s. This may be a restrictive assumption for
economic relationships, like investment or consumption, where an unobserved shock this
period will affect the behavioral relationship for at least the next few periods. This type of
serial correlation is not allowed for in the simple error component model. Ignoring serial
correlation when it is present results in consistent but inefficient estimates of the regression
coefficients and biased standard errors. This section introduces serial correlation in the νi t , first
as an autoregressive process of order one AR(1), as in the Lillard and Willis (1978) study on
earnings. Next, as a second-order autoregressive process AR(2), also as a special fourth-order
autoregressive process AR(4) for quarterly data and finally as a first-order moving average
MA(1) process. For all these serial correlation specifications, a simple generalization of the
Fuller and Battese (1973) transformation is derived and the implications for predictions are
given. Testing for individual effects and serial correlation is taken up in the last subsection.

5.2.1 The AR(1) Process

Lillard and Willis (1978) generalized the error component model to the serially correlated case,
by assuming that the remainder disturbances (the νi t ) follow an AR(1) process. In this case
µi ∼ IID(0, σ 2

µ), whereas

νi t = ρνi,t−1 + εi t (5.8)

| ρ | < 1 and εi t ∼ IID(0, σ 2
ε ). The µi are independent of the νi t and νi0 ∼ (0, σ 2

ε /(1 − ρ2)).
Baltagi and Li (1991a) derived the corresponding Fuller and Battese (1974) transformation for
this model. First, one applies the Prais–Winsten (PW) transformation matrix

C =


(1 − ρ2)1/2 0 0 · · · 0 0 0

−ρ 1 0 · · · 0 0 0· · ·...
...

... · · · ...
...

...
0 0 0 · · · −ρ 1 0
0 0 0 · · · 0 −ρ 1


to transform the remainder AR(1) disturbances into serially uncorrelated classical errors. For
panel data, this has to be applied for N individuals. The transformed regression disturbances
are in vector form

u∗ = (IN ⊗ C)u = (IN ⊗ CιT )µ + (IN ⊗ C)ν (5.9)

Using the fact that CιT = (1 − ρ)ιαT , where ια′
T = (α, ι′T −1) and α = √

(1 + ρ)/(1 − ρ), one
can rewrite (5.9) as

u∗ = (1 − ρ)(IN ⊗ ιαT )µ + (IN ⊗ C)ν (5.10)

Therefore, the variance–covariance matrix of the transformed disturbances is

�∗ = E(u∗u∗′) = σ 2
µ(1 − ρ)2[IN ⊗ ιαT ια′

T ] + σ 2
ε (IN ⊗ IT )
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since (IN ⊗ C)E(νν ′)(IN ⊗ C ′) = σ 2
ε (IN ⊗ IT ). Alternatively, this can be rewritten as

�∗ = d2σ 2
µ(1 − ρ)2[IN ⊗ ιαT ια′

T /d2] + σ 2
ε (IN ⊗ IT ) (5.11)

where d2 = ια′
T ιαT = α2 + (T − 1). This replaces J α

T = ιαT ια′
T by d2 J̄ α

T , its idempotent coun-
terpart, where J̄α

T = ιαT ια′
T /d2. Extending the Wansbeek and Kapteyn trick, we replace IT by

Eα
T + J̄ α

T , where Eα
T = IT − J̄ α

T . Collecting terms with the same matrices, one obtains the
spectral decomposition of �∗,

�∗ = σ 2
α (IN ⊗ J̄ α

T ) + σ 2
ε (IN ⊗ Eα

T ) (5.12)

where σ 2
α = d2σ 2

µ(1 − ρ)2 + σ 2
ε . Therefore

σε�
∗−1/2 = (σε/σα)(IN ⊗ J̄ α

T ) + (IN ⊗ Eα
T ) = IN ⊗ IT − θα(IN ⊗ J̄ α

T ) (5.13)

where θα = 1 − (σε/σα).
Premultiplying the PW transformed observations y∗ = (IN ⊗ C)y by σε�

∗−1/2 one gets
y∗∗ = σε�

∗−1/2 y∗. The typical elements of y∗∗ = σε�
∗−1/2 y∗ are given by

(y∗
i1 − θααbi , y∗

i2 − θαbi , . . . , y∗
iT − θαbi )

′ (5.14)

where bi = [(αy∗
i1 +∑T

2 y∗
i t )/d2] for i = 1, . . . , N .1 The first observation gets special atten-

tion in the AR(1) error component model. First, the PW transformation gives it a special
weight

√
1 − ρ2 in y∗. Second, the Fuller and Battese transformation gives it a special weight

α = √
(1 + ρ)/(1 − ρ) in computing the weighted average bi and the pseudo-difference in

(5.14). Note that (i) if ρ = 0, then α = 1, d2 = T, σ 2
α = σ 2

1 and θα = θ . Therefore, the typical
element of y∗∗

i t reverts to the familiar (yit − θ ȳi.) transformation for the one-way error compo-
nent model with no serial correlation. (ii) If σ 2

µ = 0, then σ 2
α = σ 2

ε and θα = 0. Therefore, the
typical element of y∗∗

i t reverts to the PW transformation y∗
i t .

The BQU estimators of the variance components arise naturally from the spectral decompo-
sition of �*. In fact, (IN ⊗ Eα

T )u* ∼ (0, σ 2
ε [IN ⊗ Eα

T ]) and (IN ⊗ J̄ α

T )u* ∼ (0, σ 2
α [IN ⊗ J̄ α

T ])
and

σ̂ 2
ε = u*′(IN ⊗ Eα

T )u*/N (T − 1) and σ̂ 2
α = u*′(IN ⊗ J̄ α

T )u*/N (5.15)

provide the BQU estimators of σ 2
ε and σ 2

α , respectively. Baltagi and Li (1991a) suggest es-
timating ρ from Within residuals ν̃i t as ρ̃ =∑N

i=1

∑T
t=1 ν̃i t ν̃i,t−1/

∑N
i=1

∑T
t=2 ν̃2

i,t−1. Then,
σ̂ 2

ε and σ̂ 2
α are estimated from (5.15) by substituting OLS residuals û* from the PW trans-

formed equation using ρ̃. Using Monte Carlo experiments, Baltagi and Li (1997) found that
ρ̃ performs poorly for small T and recommended an alternative estimator of ρ which is
based on the autocovariance function Qs = E(uit ui,t−s). For the AR(1) model given in (5.8),
it is easy to show that Qs = σ 2

µ + σ 2
ν ρs . From Q0, Q1 and Q2, one can easily show that

ρ + 1 = (Q0 − Q2)/(Q0 − Q1). Hence, a consistent estimator of ρ (for large N ) is given by

ρ̂ = Q̃0 − Q̃2

Q̃0 − Q̃1
− 1 = Q̃1 − Q̃2

Q̃0 − Q̃1

where Q̃s =∑N
i=1

∑T
t=s+1 ûi t ûi,t−s/N (T − s) and ûi t denotes the OLS residuals on (2.1). σ̂ 2

ε

and σ̂ 2
α are estimated from (5.15) by substituting OLS residuals û* from the PW transformed

equation using ρ̂ rather than ρ̃.
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Therefore, the estimation of an AR(1) serially correlated error component model is consid-
erably simplified by (i) applying the PW transformation in the first step, as is usually done in
the time-series literature, and (ii) subtracting a pseudo-average from these transformed data as
in (5.14) in the second step.

Empirical Applications

Lillard and Weiss (1979) apply the first-order autoregressive error component model to study
the sources of variation in the earnings of American scientists over the decade 1960–70. The
disturbances are assumed to be of the form

uit = µi + ξi (t − t) + νi t

with νi t = ρνi,t−1 + εi t as in (5.8), εi t ∼ IID(0, σ 2
ε ) and(

µi

ξi

)
∼ (0, �µξ )

Unlike the individual effect µi which represents unmeasured characteristics like ability that
affect the levels of earnings and persist throughout the period of observation, ξi represents
the effect of omitted variables which affect the growth in earnings. ξi could be the individ-
ual’s learning ability, so it is highly likely that µi and ξi are correlated. Lillard and Weiss
(1979) derive the MLE and GLS for this model and offer two generalizations for the error
structure.

Berry, Gottschalk and Wissoker (1988) apply the one-way error component model with first-
order autoregressive remainder disturbances to study the impact of plant closing on the mean
and variance of log earnings. The data are drawn from the Panel Study of Income Dynamics
(PSID) and includes male heads of households who were less than 65 years old and not retired.
The sample period considered spans seven years (1975–81) and allows observation over the
pre- and post-displacement earnings histories. The sample is not limited only to displaced
workers and therefore naturally provides a control group. Their findings show that during
the period of displacement, mean earnings decline while the variance of earnings increases
sharply. This causes a dramatic increase in the proportion of persons earning less than $10 000.
However, this is temporary, as the mean earnings increase in the post-displacement period and
the variance of earnings declines back to its pre-displacement level.

5.2.2 The AR(2) Process

This simple transformation can be extended to allow for an AR(2) process on the νi t , i.e.

νi t = ρ1νi,t−1 + ρ2νi,t−2 + εi t (5.16)

where εi t ∼ IIN(0, σ 2
ε ), | ρ2 | < 1 and | ρ1 | < (1 − ρ2). Let E(νiν

′
i ) = σ 2

ε V , where ν ′
i =

(νi1, . . . , νiT ) and note that V is invariant to i = 1, . . . , N . The unique T × T lower triangular
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matrix C with positive diagonal elements which satisfies CV C ′ = IT is given by

C =



γ0 0 0 0 . . . 0 0 0 0
−γ2 γ1 0 0 . . . 0 0 0 0
−ρ2 −ρ1 1 0 . . . 0 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 . . . −ρ2 −ρ1 1 0
0 0 0 0 . . . 0 −ρ2 −ρ1 1


where γ0 = σε/σν , γ1 =

√
1 − ρ2

2 , γ2 = γ1[ρ1/(1 − ρ2)] and σ 2
ν = σ 2

ε (1 − ρ2)/(1 + ρ2)[(1 −
ρ2)2 − ρ2

1 ]. The transformed disturbances are given by

u∗ = (IN ⊗ C)u = (1 − ρ1 − ρ2)(IN ⊗ ιαT )µ + (IN ⊗ C)ν (5.17)

Using the fact that CιT = (1 − ρ1 − ρ2)×(the new ιαT ) where ια′
T = (α1, α2, ι

′
T −2), α1 =

σε/σν(1 − ρ1 − ρ2), and α2 = √
(1 + ρ2)/(1 − ρ2).

Similarly, one can define

d2 = ια′
T ιαT = α2

1 + α2
2 + (T − 2), J α

T , Eα
T , etc.

as in section 5.2.1, to obtain

�* = d2σ 2
µ(1 − ρ1 − ρ2)2[IN ⊗ J̄ α

T ] + σ 2
ε [IN ⊗ IT ] (5.18)

as in (5.11). The only difference is that (1 − ρ1 − ρ2) replaces (1 − ρ) and ιαT is defined
in terms of α1 and α2 rather than α. Similarly, one can obtain σε�*−1/2 as in (5.13) with
σ 2

α = d2σ 2
µ(1 − ρ1 − ρ2)2 + σ 2

ε . The typical elements of y** = σε�*−1/2 y* are given by

(y*
i1 − θαα1bi , y*

i2 − θαα2bi , y*
i3 − θαbi , . . . , y*

iT − θαbi ) (5.19)

where bi = [(α1 y*
i1 + α2 y*

i2 +∑T
3 y*

i t )/d2]. The first two observations get special attention in
the AR(2) error component model. First in the matrix C defined above (5.17) and second in
computing the average bi and the Fuller and Battese transformation in (5.19). Therefore, one
can obtain GLS on this model by (i) transforming the data as in the time-series literature by the C
matrix defined above (5.17) and (ii) subtracting a pseudo-average in the second step as in (5.19).

5.2.3 The AR(4) Process for Quarterly Data

Consider the specialized AR(4) process for quarterly data, i.e. νi t = ρνi,t−4 + εi t , where
| ρ |< 1 and εi t ∼ IIN(0, σ 2

ε ). The C matrix for this process can be defined as follows: u*
i = Cui

where

u*
i t =

√
1 − ρ2 uit for t = 1, 2, 3, 4 (5.20)

= uit − ρui,t−4 for t = 5, 6, . . . , T

This means that the µi component of uit gets transformed as
√

1 − ρ2 µi for t = 1, 2, 3, 4 and
as (1 − ρ)µi for t = 5, 6, . . . , T . This can be rewritten as α(1 − ρ)µi for t = 1, 2, 3, 4 where
α = √

(1 + ρ)/(1 − ρ), and (1 − ρ)µi for t = 5, . . . , T . So that u* = (IN ⊗ C)u is given by
(5.9) with a new C , the same α, but ια′

T = (α, α, α, α, ι′T −4), d2 = ια′
T ιαT = 4α2 + (T − 4), and
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the derivations �* and σε�*−1/2 in (5.12) and (5.13) are the same. The typical elements of
y** = σε�*−1/2 y* are given by

(y*
i1 − θααbi , . . . , y*

i4 − θαbi , y*
i5 − θαbi , . . . , y*

iT − θαbi ) (5.21)

where bi = [(α(
∑4

t=1 y*
i t ) +∑T

t=5 y*
i t )/d2]. Once again, GLS can easily be computed by ap-

plying (5.20) to the data in the first step and (5.21) in the second step.

5.2.4 The MA(1) Process

For the MA(1) model, defined by

νi t = εi t + λεi,t−1 (5.22)

where εi t ∼ IIN(0, σ 2
ε ) and | λ |< 1, Balestra (1980) gives the following C matrix, C =

D−1/2 P where D = diag{at , at−1} for t = 1, . . . , T ,

P =


1 0 0 . . . 0
λ a1 0 . . . 0
λ2 a1λ a2 . . . 0
...

...
...

...
λT −1 a1λ

T −2 a2λ
T −3 . . . aT −1


and at = 1 + λ2 + . . . + λ2t with a0 = 1. For this C matrix, one can show that the new ιαT =
CιT = (α1, α2, . . . , αT )′ where these αt can be solved for recursively as follows:

α1 = (a0/a1)1/2 (5.23)

αt = λ(at−2/at−1)1/2αt−1 + (at−1/at )
1/2 t = 2, . . . , T

Therefore, d2 = ια′
T ιαT =∑T

t=1 α2
t , σ

2
α = d2σ 2

µ + σ 2
ε and the spectral decomposition of �* is

the same as that given in (5.12), with the newly defined ιαT and σ 2
α . The typical elements of

y** = σε�*−1/2 y* are given by

(y*
i1 − θαα1bi , . . . , y*

iT − θααT bi ) (5.24)

where bi = [
∑T

t=1 αt y*
i t /d2]. Therefore, for an MA(1) error component model, one applies

the recursive transformation given in (5.23) in the first step and subtracts a pseudo-average
described in (5.24) in the second step; see Baltagi and Li (1992b) for more details. In order to
implement the estimation of an error component model with MA(1) remainder errors, Baltagi
and Li (1997) proposed an alternative transformation that is simple to compute and requires
only least squares. This can be summarized as follows.

Let γs = E(νi tνi,t−s) denote the autocovariance function of νi t and r = γ1/γ0. Note that
when νi t follows an MA(1) process, we have Qs = σ 2

µ + γs for s = 0, 1 and Qs = σ 2
µ for

s > 1. Hence we have γτ = Qτ − Qs(τ = 0, 1) for some s > 1.

Step 1. Compute y∗
i1 = yi1/

√
g1 and y∗

i t = [yit − (r y∗
i,t−1)/

√
gt−1]/

√
gt for t = 2, . . . , T ,

where g1 = 1 and gt = 1 − r2/gt−1 for t = 2, . . . , T . Note that this transformation
depends only on r , which can be estimated by r̂ = γ̂1/γ̂0 = (Q̃1 − Q̃s)/(Q̃0 − Q̃s) for
some s > 1.
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Step 2. Compute y∗∗ using the result that ιαT = CιT = (α1, . . . , αT )′ with α1 = 1 and αt =
[1 − r/

√
gt−1]/

√
gt for t = 2, . . . , T . Note that in this case σ 2 = γ0. The estimators

of σ 2
α and σ 2 are simply given by σ̂ 2

α = (
∑T

t=1 α̂2
t )σ̂ 2

µ + σ̂ 2 and σ̂ 2 = γ̂0 = Q̃0 − Q̃s

for some s > 1 with σ̂ 2
µ = Q̃s for some s > 1. Finally δ̂ = 1 −√γ̂0/σ̂ 2

α . Again, the
OLS estimator on the (∗∗) transformed equation is equivalent to GLS on (2.1).

The advantages of this approach are by now evident: σ̂ 2 = γ̂0 is trivially obtained from OLS
residuals. This is because we did not choose σ 2

ε = σ 2 as in Baltagi and Li (1991a). Next we
estimated γ ’s rather than the moving average parameter λ. The γ̂ ’s require only linear least
squares, whereas λ̂ requires nonlinear least squares. Finally, our proposed estimation procedure
requires simple recursive transformations that are very easy to program. This should prove
useful for panel data users.

In summary, a simple transformation for the one-way error component model with serial
correlation can easily be generalized to any error process generating the remainder disturbances
νi t as long as there exists a simple T × T matrix C such that the transformation (IN ⊗ C)ν
has zero mean and variance σ 2 IN T .

Step 1. Perform the C transformation on the observations of each individual y′
i =

(yi1, . . . , yiT ) to obtain y∗
i = Cyi free of serial correlation.

Step 2. Perform another transformation on the y∗
i t ’s, obtained in step 1, which subtracts from

y∗
i t a fraction of a weighted average of observations on y∗

i t , i.e.,

y∗∗
i t = y∗

i t − θααt (�
T
s=1αs y∗

is)/(�T
s=1α

2
s )

where the αt ’s are the elements of ιαT = CιT ≡ (α1, α2, . . . , αT )′ and θα = 1 − (σ/σα)
with σ 2

α = σ 2
µ(�T

t=1α
2
t ) + σ 2. See Baltagi and Li (1994) for an extension to the MA(q)

case and Galbraith and Zinde-Walsh (1995) for an extension to the ARMA(p,q)
case.

5.2.5 Unequally Spaced Panels with AR(1) Disturbances

Some panel data sets cannot be collected every period due to lack of resources or cuts in
funding. Instead, these panels are collected over unequally spaced time intervals. For example,
a panel of households could be collected over unequally spaced years rather than annually.
This is also likely when collecting data on countries, states or firms where, in certain years,
the data are not recorded, are hard to obtain, or are simply missing. Other common examples
are panel data sets using daily data from the stock market, including stock prices, commodity
prices, futures, etc. These panel data sets are unequally spaced when the market closes on
weekends and holidays. This is also common for housing resale data where the pattern of
resales for each house occurs at different time periods and the panel is unbalanced because
we observe different numbers of resales for each house. Baltagi and Wu (1999) extend the
Baltagi and Li (1991a) results to the estimation of an unequally spaced panel data regression
model with AR(1) remainder disturbances. A feasible generalized least squares procedure is
proposed as a weighted least squares that can handle a wide range of unequally spaced panel
data patterns. This procedure is simple to compute and provides natural estimates of the serial
correlation and variance components parameters. Baltagi and Wu (1999) also provide a locally
best invariant (LBI) test for zero first-order serial correlation against positive or negative serial
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Table 5.1 Grunfeld’s Data. Random Effects and AR(1) Remainder Disturbances

. xtregar I F C , re lbi

RE GLS regression with AR(1) Number of obs = 200
disturbances

Group variable (i): fn Number of groups = 10

R-sq: within = 0.7649 Obs per group: min = 20
between = 0.8068 avg = 20.0
overall = 0.7967 max = 20

Wald chi2(3) = 360.31
corr(u i, Xb) = 0 (assumed) Prob > chi2 = 0.0000

--------------------------------------------------------------------
I | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+---------------------------------------------------------
F | .0949215 .0082168 11.55 0.000 .0788168 .1110262
C | .3196589 .0258618 12.36 0.000 .2689707 .3703471

cons | -44.38123 26.97525 -1.65 0.100 -97.25175 8.489292
----------+---------------------------------------------------------

rho ar | .67210608 (estimated autocorrelation coefficient)
sigma u | 74.517098
sigma e | 41.482494
rho fov | .7634186 (fraction of variance due to u i)
theta | .67315699

--------------------------------------------------------------------
modified Bhargava et al. Durbin-Watson = .6844797
Baltagi-Wu LBI = .95635623

correlation in case of unequally spaced panel data. Details are given in that paper. This is
programed in Stata under the (xtregar,re lbi) command. Table 5.1 gives the Stata output for
Grunfeld’s investment equation, given in (2.40), with random effects and an AR(1) remainder
disturbance term. The bottom of Table 5.1 produces the Baltagi–Wu LBI statistic of 0.956
and the Bhargava, Franzini and Narendranathan (1982) Durbin–Watson statistic for zero first-
order serial correlation described in (5.44) below. Both tests reject the null hypothesis of no
first-order serial correlation. The estimate of ρ for the AR(1) remainder disturbances is 0.67
while σ̂µ = 74.52 and σ̂ν = 41.48. Note that β̂1 in (2.41) drops from 0.110 for a typical random
effects GLS estimator reported in Table 2.1 to 0.095 for the random effects GLS estimator with
AR(1) remainder disturbances in Table 5.1. This is contrasted to an increase in β̂2 from 0.308
in Table 2.1 to 0.320 in Table 2.5. Table 5.2 gives the TSP output for the maximum likelihood
estimates of the random effects model with AR(1) remainder disturbances under the normality
assumption. The results are similar to the feasible GLS estimates reported in Table 5.1. Note
that if we have missing data on say 1951 and 1952, Stata computes this unequally spaced panel
estimation for the random effects with AR(1) disturbances. Table 5.3 reproduces this output.
Note that it is based on 180 observations, due to the loss of two years of data for all 10 firms.
The Baltagi–Wu LBI statistic is 1.139 and the Bhargava et al. (1982) Durbin–Watson statistic
is 0.807, exactly as reported in table 1 of Baltagi and Wu (1999, p. 822). Both test statistics
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Table 5.2 Grunfeld’s Data. MLE Random Effects with AR(1) Disturbances

Balanced data: N= 10, T I= 20, NOB= 200
Working space used: 3981
CONVERGENCE ACHIEVED AFTER 13 ITERATIONS

32 FUNCTION EVALUATIONS.

Schwarz B.I.C. = 1052.412710 Log likelihood = -1039.166917

---------------------------------------------------------------------
Standard

Parameter Estimate Error t-statistic P-value
C -40.79118966 29.05697837 -1.403834533 [.160]
F .0937033982 .7963697796E-02 11.76631769 [.000]
K .3135856916 .0319818319 9.805119753 [.000]
RHO .8155980082 .0711931733 11.45612662 [.000]
RHO I .7580118599 .1187601536 6.382712018 [.000]
SIGMA2 6958.604792 3306.005910 2.104837372 [.035]

Standard Errors computed from analytic second derivatives (Newton)

Standard
Parameter Estimate Error t-statistic P-value
S2 I 5274.704961 3318.394021 1.589535458 [.112]
S2 IT 1683.899831 174.4331156 9.653555893 [.000]

---------------------------------------------------------------------
This TSP output is available at (http://www.stanford.edu/∼clint
/bench/grar1rei.out).

reject the null hypothesis of no first-order serial correlation. Problem 5.19 asks the reader to
replicate these results for other patterns of missing observations.

5.2.6 Prediction

In section 2.5 we derived Goldberger’s (1962) BLUP of yi,T +S for the one-way error component
model without serial correlation. For ease of reference, we reproduce equation (2.37) for
predicting one period ahead for the ith individual

ŷi,T +1 = Z ′
i,T +1̂δGLS + w′�−1ûGLS (5.25)

where ûGLS = y − Z δ̂GLS and w = E(ui,T +1u). For the AR(1) model with no error compo-
nents, a standard result is that the last term in (5.25) reduces to ρûi,T , where ûi,T is the Tth GLS
residual for the ith individual. For the one-way error component model without serial correla-
tion (see Taub, 1979 or section 2.5), the last term of (5.25) reduces to [T σ 2

µ/(T σ 2
µ + σ 2

ν )]̂ui.,

where ûi. =∑T
t=1 ûi t/T is the average of the ith individual’s GLS residuals. This section

summarizes the Baltagi and Li (1992b) derivation of the last term of (5.25) when both error
components and serial correlation are present. This provides the applied researcher with a
simple way of augmenting the GLS predictions obtained from the Fuller and Battese (1973)
transformation described above.
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Table 5.3 Grunfeld’s Data. Unequally Spaced Panel

. xtregar I F C if yr!=1951 & yr!= 1952 , re lbi

RE GLS regression with AR(1) Number of obs = 180
disturbances

Group variable (i): fn Number of groups = 10

R-sq: within = 0.7766 Obs per group: min = 18
between = 0.8112 avg = 18.0
overall = 0.8024 max = 18

Wald chi2(3) = 341.38
corr(u i, Xb) = 0 (assumed) Prob > chi2 = 0.0000

---------------------------------------------------------------------
I | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+----------------------------------------------------------
F | .0919986 .0083459 11.02 0.000 .0756409 .1083563
C | .3243706 .0266376 12.18 0.000 .2721618 .3765793

cons | -43.01923 27.05662 -1.59 0.112 -96.04924 10.01077
----------+----------------------------------------------------------

rho ar | .68934342 (estimated autocorrelation coefficient)
sigma u | 74.002133
sigma e | 41.535675
rho fov | .76043802 (fraction of variance due to u i)
theta | .6551959

---------------------------------------------------------------------
modified Bhargava et al. Durbin-Watson = .80652308
Baltagi-Wu LBI = 1.1394026

For the one-way error component model with AR(1) remainder disturbances, considered in
section 5.2.1, Baltagi and Li (1992b) find that

w′�−1ûGLS = ρûi,T +
(

(1 − ρ)2σ 2
µ

σ 2
α

)[
αû*

i1 +
T∑

t=2

û*
i t

]
(5.26)

Note that the first PW-transformed GLS residual receives an α weight in averaging across
the ith individual’s residuals in (5.26). (i) If σ 2

µ = 0, so that only serial correlation is present,
(5.26) reduces to ρûi,T . Similarly, (ii) if ρ = 0, so that only error components are present,
(5.26) reduces to [T σ 2

µ/(T σ 2
µ + σ 2

ν )]̂ui..

For the one-way error component model with remainder disturbances following an AR(2)
process, considered in section 5.2.2, Baltagi and Li (1992b) find that

w′�−1ûGLS = ρ1ûi,T −1 + ρ2ûi,T −2 (5.27)

+
[

(1 − ρ1 − ρ2)2σ 2
µ

σ 2
α

][
α1û*

i1 + α2û*
i2 +

T∑
t=3

û*
i t

]
where

α1 = σε/σν(1 − ρ1 − ρ2) α2 =
√

(1 + ρ2)/(1 − ρ2)

σ 2
α = d2σ 2

µ(1 − ρ1 − ρ2)2 + σ 2
ε

d2 = α2
1 + α2

2 + (T − 2)
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and

û*
i1 = (σε/σν )̂ui1

û*
i2 =

√
1 − ρ2

2 [̂ui2 − (ρ1/(1 − ρ2))̂ui1]

û*
i t = ûi t − ρ1ûi,t−1 − ρ2ûi,t−2 for t = 3, . . . , T

Note that if ρ2 = 0, this predictor reduces to (5.26). Also, note that for this predictor, the first
two residuals are weighted differently when averaging across the ith individual’s residuals in
(5.27).

For the one-way error component model with remainder disturbances following the special-
ized AR(4) process for quarterly data, considered in section 5.2.3, Baltagi and Li (1992b) find
that

w′�−1ûGLS = ρûi,T −3 +
[

(1 − ρ)2σ 2
µ

σ 2
α

][
α

4∑
t=1

û*
i t +

T∑
t=5

û*
i t

]
(5.28)

where α = √
(1 + ρ)/(1 − ρ), σ 2

α = d2(1 − ρ)2σ 2
µ + σ 2

ε , d2 = 4α2 + (T − 4) and

u*
i t =

√
1 − ρ2 uit for t = 1, 2, 3, 4

= uit − ρui,t−4 for t = 5, 6, . . . , T

Note, for this predictor, that the first four quarterly residuals are weighted by α when averaging
across the ith individual’s residuals in (5.28).

Finally, for the one-way error component model with remainder disturbances following an
MA(1) process, considered in section 5.2.4, Baltagi and Li (1992c) find that

w′�−1ûGLS = −λ

(
aT −1

aT

)1/2

û∗
iT

+
[

1 + λ

(
aT −1

aT

)1/2

αT

](
σ 2

µ

σ 2
α

)[
T∑

t=1

αt û
∗
i t

]
(5.29)

where the û∗
i t can be solved for recursively as follows:

û∗
i1 = (a0/a1)1/2ûi1

û∗
i t = λ(at−2/at−1)1/2û∗

i,t−1 + (at−1/at )
1/2ûi,t t = 2, . . . , T

If λ = 0, then from (5.23) at = αt = 1 for all t and (5.29) reduces to the predictor for the error
component model with no serial correlation. If σ 2

µ = 0, the second term in (5.29) drops out
and the predictor reduces to that of the MA(1) process.

5.2.7 Testing for Serial Correlation and Individual Effects

In this section, we address the problem of jointly testing for serial correlation and individual
effects. Baltagi and Li (1995) derived three LM statistics for an error component model with
first-order serially correlated errors. The first LM statistic jointly tests for zero first-order serial
correlation and random individual effects. The second LM statistic tests for zero first-order
serial correlation assuming fixed individual effects, and the third LM statistic tests for zero
first-order serial correlation assuming random individual effects. In all three cases, Baltagi and
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Li (1995) showed that the corresponding LM statistic is the same whether the alternative is
AR(1) or MA(1). Also, Baltagi and Li (1995) derived two extensions of the Burke, Godfrey and
Termayne (1990) AR(1) vs MA(1) test from the time series to the panel data literature. The first
extension tests the null of AR(1) disturbances against MA(1) disturbances, and the second the
null of MA(1) disturbances against AR(1) disturbances in an error component model. These
tests are computationally simple, requiring only OLS or Within residuals. In what follows, we
briefly review the basic ideas behind these tests.

Consider the panel data regression given in (2.3)

yit = Z ′
i tδ + uit i = 1, 2, . . . , N ; t = 1, 2, . . . , T (5.30)

where δ is a (K + 1) × 1 vector of regression coefficients including the intercept. The distur-
bance follows a one-way error component model

uit = µi + νi t (5.31)

where µi ∼ IIN(0, σ 2
µ) and the remainder disturbance follows a stationary AR(1) process:

νi t = ρνi,t−1 + εi t with | ρ |< 1, or an MA(1) process: νi t = εi t + λεi,t−1 with | λ |< 1, and
εi t ∼ IIN(0, σ 2

ε ). In what follows, we will show that the joint LM test statistic for H a
1 : σ 2

µ = 0;
λ = 0 is the same as that for H b

1 : σ 2
µ = 0; ρ = 0.

A Joint LM Test for Serial Correlation and Random Individual Effects

Let us consider the joint LM test for the error component model where the remainder distur-
bances follow an MA(1) process. In this case, the variance–covariance matrix of the distur-
bances is given by

� = E(uu′) = σ 2
µ IN ⊗ JT + σ 2

ε IN ⊗ Vλ (5.32)

where

Vλ =


1 + λ2 λ 0 . . . 0

λ 1 + λ2 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 + λ2

 (5.33)

and the loglikelihood function is given by L(δ, θ) in (4.15) with θ = (λ, σ 2
µ, σ 2

ε )′. In order
to construct the LM test statistic for H a

1 : σ 2
µ = 0; λ = 0, one needs D(θ ) = ∂L(θ )/∂θ and

the information matrix J (θ ) = E[∂2L(θ )/∂θ∂θ ′] evaluated at the restricted maximum likeli-
hood estimator θ̂ . Note that under the null hypothesis �−1 = (1/σ 2

ε )IN T . Using the general
Hemmerle and Hartley (1973) formula given in (4.17), one gets the scores

∂L(θ )/∂λ = N T
N∑

i=1

T∑
t=2

ûi t ûi,t−1/

N∑
i=1

T∑
t=2

û2
i t ≡ N T (̂u ′̂u−1/̂u ′̂u) (5.34)

∂L(θ )/∂σ 2
µ = −(N T/2σ̂ 2

ε )[1 − û′(IN ⊗ JT )̂u/(̂u ′̂u)]

where û denotes the OLS residuals and σ̂ 2
ε = û ′̂u/N T . Using (4.19), see Harville (1977), one
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gets the information matrix

Ĵ = (N T/2σ̂ 4
ε )

 T 2(T − 1)σ̂ 2
ε /T 1

2(T − 1)σ̂ 2
ε /T 2σ̂ 4

ε (T − 1)/T 0
1 0 1

 (5.35)

Hence the LM statistic for the null hypothesis H a
1 : σ 2

µ = 0; λ = 0 is given by

LM1 = D̂′ Ĵ−1 D̂ = N T 2

2(T − 1)(T − 2)
[A2 − 4AB + 2TB2] (5.36)

where A = [̂u′(IN ⊗ JT )̂u/(̂u ′̂u)] − 1 and B = (̂u ′̂u−1/̂u ′̂u). This is asymptotically distributed
(for large N ) as χ2

2 under H a
1 .

It remains to show that LM1 is exactly the same as the joint test statistic for H b
1 : σ 2

µ = 0; ρ =
0, where the remainder disturbances follow an AR(1) process (see Baltagi and Li, 1991b). In
fact, if we repeat the derivation given in (5.32)–(5.36), the only difference is to replace the Vλ

matrix by its AR(1) counterpart

Vρ =


1 ρ . . . ρT −1

ρ 1 . . . ρT −2

...
...

. . .
...

ρT −1 ρT −2 . . . 1


Note that under the null hypothesis, we have (Vρ)ρ=0 = IT = (Vλ)λ=0 and

(∂Vρ/∂ρ)ρ=0 = G = (∂Vλ/∂λ)λ=0

where G is the bidiagonal matrix with bidiagonal elements all equal to one. Using these
results, problem 5.14 asks the reader to verify that the resulting joint LM test statistic is the
same whether the residual disturbances follow an AR(1) or an MA(1) process. Hence, the joint
LM test statistic for random individual effects and first-order serial correlation is independent
of the form of serial correlation, whether it is AR(1) or MA(1). This extends the Breusch and
Godfrey (1981) result from a time series regression to a panel data regression using an error
component model.

Note that the A2 term is the basis for the LM test statistic for H2 : σ 2
µ = 0 assuming there

is no serial correlation (see Breusch and Pagan, 1980). In fact, LM2 = √
N T/2(T − 1)A is

asymptotically distributed (for large N ) as N (0, 1) under H2 against the one-sided alternative
H ′

2 : σ 2
µ > 0, see (4.25). Also, the B2 term is the basis for the LM test statistic for H3 : ρ = 0

(or λ = 0) assuming there are no individual effects (see Breusch and Godfrey, 1981). In fact,
LM3 =

√
N T 2/(T − 1)B is asymptotically distributed (for large N ) as N (0, 1) under H3

against the one-sided alternative H ′
3 : ρ (or λ) > 0. The presence of an interaction term in the

joint LM test statistic, given in (5.36), emphasizes the importance of the joint test when both
serial correlation and random individual effects are suspected. However, when T is large the
interaction term becomes negligible.

Note that all the LM tests considered assume that the underlying null hypothesis is that
of white noise disturbances. However, in panel data applications, especially with large la-
bor panels, one is concerned with individual effects and is guaranteed their existence. In
this case, it is inappropriate to test for serial correlation assuming no individual effects as is
done in H3. In fact, if one uses LM3 to test for serial correlation, one is very likely to re-
ject the null hypothesis of H3 even if the null is true. This is because the µi are correlated
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for the same individual across time and this will contribute to rejecting the null of no serial
correlation.

An LM Test for First-order Serial Correlation in a Random Effects Model

Baltagi and Li (1995) also derived a conditional LM test for first-order serial correlation given
the existence of random individual effects. In case of an AR(1) model, the null hypothesis
is H b

4 : ρ = 0 (given σ 2
µ > 0) vs H b′

4 : ρ �= 0 (given σ 2
µ > 0). The variance–covariance matrix

(under the alternative) is

�1 = σ 2
µ(IN ⊗ JT ) + σ 2

ν (IN ⊗ Vρ) (5.37)

Under the null hypothesis H b
4 , we have

(�−1
1 )ρ=0 = (1/σ 2

ε )IN ⊗ ET + (1/σ 2
1 )IN ⊗ J̄ T

(∂�1/∂ρ) |ρ=0 = σ 2
ε (IN ⊗ G)

(∂�1/∂σ 2
µ) |ρ=0 = (IN ⊗ JT )

(∂�1/∂σ 2
ε ) |ρ=0 = (IN ⊗ IT )

where J̄ T = ιT ι′T /T, ET = IT − J̄ T , G is a bidiagonal matrix with bidiagonal elements all
equal to one, and σ 2

1 = T σ 2
µ + σ 2

ε .
When the first-order serial correlation is of the MA(1) type, the null hypothesis becomes

H a
4 : λ = 0 (given that σ 2

µ > 0) vs H a′
4 : λ �= 0 (given that σ 2

µ > 0). In this case, the variance–
covariance matrix is

�2 = σ 2
µ(IN ⊗ JT ) + σ 2

ε (IN ⊗ Vλ) (5.38)

and under the null hypothesis H a
4 ,

(�−1
2 )λ=0 = (1/σ 2

ε )(IN ⊗ ET ) + (1/σ 2
1 )(IN ⊗ J̄ T ) = (�−1

1 )ρ=0

(∂�2/∂λ)λ=0 = σ 2
ε (IN ⊗ G) = (∂�1/∂ρ) |ρ=0

(∂�2/∂σ 2
µ) |λ=0 = (IN ⊗ JT ) = (∂�1/∂σ 2

µ) |ρ=0

(∂�2/∂σ 2
ε ) |λ=0 = (IN ⊗ IT ) = (∂�1/∂σ 2

ε ) |ρ=0

Using these results, problem 5.15 asks the reader to verify that the test statistic for H a
4 is the

same as that for H b
4 . This conditional LM statistic, call it LM4, is not given here but is derived

in Baltagi and Li (1995).
To summarize, the conditional LM test statistics for testing first-order serial correlation,

assuming random individual effects, are invariant to the form of serial correlation (i.e. whether
it is AR(1) or MA(1)). Also, these conditional LM tests require restricted mle of a one-way
error component model with random individual effects rather than OLS estimates as is usual
with LM tests.

Bera, Sosa-Escudero and Yoon (2001) criticize this loss of simplicity in computation of
LM tests that use OLS residuals and suggest an adjustment of these LM tests that are robust
to local misspecification. Instead of LMµ = N T A2/2(T − 1) = LM2

2 for testing H2 : σ 2
µ = 0

which ignores the possible presence of serial correlation, they suggest computing

LM*
µ = N T (2B − A)2

2(T − 1)(1 − (2/T ))
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This test essentially modifies LMµ by correcting the mean and variance of the score ∂L/∂σ 2
µ

for its asymptotic correlation with ∂L/∂ρ. Under the null hypothesis, LM*
µ is asymptotically

distributed as χ2
1 . Under local misspecification, this adjusted test statistic is equivalent to

Neyman’s C(α) test and shares its optimality properties. Similarly, they suggest computing

LM*
ρ = N T 2[B − (A/T )]2

(T − 1)(1 − (2/T ))

instead of LMρ = NT2 B2/(T − 1) =LM2
3 to test H3 : ρ = 0, against the alternative thatρ �= 0,

ignoring the presence of random individual effects. They also show that

LM*
µ + LMρ = LM*

ρ + LMµ = LM1

where LM1 is the joint LM test given in (5.36). In other words, the two-directional LM test for
σ 2

µ and ρ can be decomposed into the sum of the adjusted one-directional test of one type of
alternative and the unadjusted form of the other hypothesis. Bera et al. (2001) argue that these
tests use only OLS residuals and are easier to compute than the conditional LM tests derived
by Baltagi and Li (1995). Bera et al. (2001) perform Monte Carlo experiments that show the
usefulness of these modified Rao–Score tests in guarding against local misspecification.

For the Grunfeld data, we computed LMµ = 798.162 in Table 4.2 using the xttest0 com-
mand in Stata. Using TSP, LMρ = 143.523, LM*

µ = 664.948, LM*
ρ = 10.310 and the joint

LM1 statistic in (5.36) is 808.471. The joint test rejects the null of no first-order serial corre-
lation and no random firm effects. The one-directional tests LMρ and LM*

ρ reject the null of
no first-order serial correlation, while the one-directional tests LMµ and LM*

µ reject the null
of no random firm effects.

An LM Test for First-order Serial Correlation in a Fixed Effects Model

The model is the same as (5.30), and the null hypothesis is H b
5 : ρ = 0 given that the µi are

fixed parameters. Writing each individual’s variables in a T × 1 vector form, we have

yi = Ziδ + µi ιT + νi (5.39)

where yi = (yi1, yi2, . . . , yiT )′, Zi is T × (K + 1) and νi is T × 1. νi ∼ N (0, �ρ) where �ρ =
σ 2

ε Vρ for the AR(1) disturbances. The loglikelihood function is

L(δ, ρ, µ, σ 2
ε ) = constant − 1

2
log | � |

− 1

2σ 2
ε

N∑
i=1

[(yi − Ziδ − µi ιT )′V −1
ρ (yi − Ziδ − µi ιT )] (5.40)

where � = IN ⊗ �ρ is the variance–covariance matrix of ν ′ = (ν ′
1, . . . , ν

′
N ). One can easily

check that the maximum likelihood estimator of µi is given by µ̂i = {(ι′T V −1
ρ ιT )−1[ι′T V −1

ρ (yi −
Zi δ̂)]}ρ=0 = ȳi. − Z̄ ′

i .̂δ, where δ̂ is the maximum likelihood estimator of δ, ȳi. =∑T
t=1 yit/T

and Z̄i. is a (K + 1) × 1 vector of averages of Zit across time.
Write the loglikelihood function in vector form of ν as

L(δ, µ, θ) = constant − 1

2
log | � | −1

2
ν ′�−1ν (5.41)
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where θ ′ = (ρ, σ 2
ε ). Now (5.41) has a similar form to (4.15). By following a similar derivation

as that given earlier, one can easily verify that the LM test statistic for testing H b
5 is

LM = [N T 2/(T − 1)](̂ν ′̂ν−1/̂ν
′̂ν)2 (5.42)

which is asymptotically distributed (for large T ) as χ2
1 under the null hypothesis H b

5 . Note
that ν̂i t = yit − Z ′

i t δ̂ − µ̂i = (̃yit − Z̃ ′
i t δ̂) + (ȳi. − Z̄ ′

i .̂δ − µ̂i ) where ỹi t = yit − ȳi. is the usual
Within transformation. Under the null of ρ = 0, the last term in parentheses is zero since
{µ̂i }ρ=0 = ȳi. − Z̄ ′

i .̂δ and {̂νi t }ρ=0 = ỹi t − Z̃i t δ̂ = ν̃i t . Therefore, the LM statistic given in
(5.42) can be expressed in terms of the usual Within residuals (the ν̃) and the one-sided
test for H b

5 (corresponding to the alternative ρ > 0) is

LM5 =
√

N T 2/(T − 1)(̃ν ′̃ν−1/̃ν
′̃ν) (5.43)

This is asymptotically distributed (for large T ) as N (0, 1).
By a similar argument, one can show that the LM test statistic for H a

5 : λ = 0, in a fixed
effects model with MA(1) residual disturbances, is identical to LM5.

Note also that LM5 differs from LM3 only by the fact that the Within residuals ν̃ (in LM5)
replace the OLS residuals û (in LM3). Since the Within transformation wipes out the individual
effects whether fixed or random, one can also use (5.43) to test for serial correlation in the
random effects models.

The Durbin–Watson Statistic for Panel Data

For the fixed effects model described in (5.39) with νi t following an AR(1) process, Bhargava,
Franzini and Narendranathan (1982), hereafter BFN, suggested testing for H0 : ρ = 0 against
the alternative that | ρ |< 1, using the Durbin–Watson statistic only based on the Within
residuals (the ν̃i t ) rather than OLS residuals:

dp =
N∑

i=1

T∑
t=2

(̃νi t − ν̃i,t−1)2/

N∑
i=1

T∑
t=1

ν̃2
i t (5.44)

BFN showed that for arbitrary regressors, dp is a locally most powerful invariant test in
the neighborhood of ρ = 0. They argued that exact critical values using the Imhof rou-
tine are both impractical and unnecessary for panel data since they involve the computa-
tion of the nonzero eigenvalues of a large N T × N T matrix. Instead, BFN show how one
can easily compute upper and lower bounds of dp, and they tabulate the 5% levels for
N = 50, 100, 150, 250, 500, 1000, T = 6, 10 and k = 1, 3, 5, 7, 9, 11, 13, 15. BFN remark
that dp would rarely be inconclusive since the bounds will be very tight even for moderate
values of N . Also, for very large N , BFN argue that it is not necessary to compute these bounds,
but simply test whether dp is less than two when testing against positive serial correlation.

BFN also suggested the Berenblut–Webb statistic to test H0 : ρ = 0 because it is a locally
most powerful invariant test in the neighborhood of ρ = 1. This is given by

gp =
N∑

i=1

T∑
t=2

�û2
i t/

N∑
i=1

T∑
t=1

ν̃2
i t (5.45)

where �ûi t denotes the OLS residuals obtained from the first-differenced version of the regres-
sion equation given in (5.30), and ν̃i t denotes the Within residuals. BFN show that gp and dp
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have similar exact powers when N = 30, T = 10, k = 2, α = 0.05 and ρ = 0.25, 0.40, 0.50.
Also, the two tests are equivalent if N is large.

BFN also suggest a test for random walk residuals, i.e. H0 : ρ = 1 vs the alternative that
| ρ |< 1. This is based on the statistic

Rp = �û′�û

(�û)′F*(�û)
(5.46)

where �û are the differenced OLS residuals used in gp. F* = IN ⊗ F with F being a (T −
1) × (T − 1) symmetric matrix with elements given by

Fjs = (T − j)s/T if j ≥ s ( j, s = 1, . . . , T − 1)

For general regressors, BFN show that Rp ≤ gp ≤ dp where gp and dp are now being consid-
ered under the random walk null hypothesis. BFN also tabulate 5% lower and upper bounds
for Rp and suggest that the bounds for Rp may be used in practice for gp and dp. However,
when N → ∞, as in typical panels, all three tests are equivalent, Rp = gp = dp, and BFN
recommend only the Durbin–Watson dp be calculated for testing the random walk hypothesis.

Testing AR(1) Against MA(1) in an Error Component Model

Testing AR(1) against MA(1) has been studied extensively in the time series literature; see King
and McAleer (1987) for a Monte Carlo comparison of nonnested, approximate point optimal,
as well as LM tests.3 In fact, King and McAleer (1987) found that the nonnested tests perform
poorly in small samples, while King’s (1983) point optimal test performs the best. Recently
Burke, Godfrey and Termayne (1990) (hereafter BGT) derived a simple test to distinguish
between AR(1) and MA(1) processes. Baltagi and Li (1995) proposed two extensions of the
BGT test to the error component model. These tests are simple to implement, requiring Within
or OLS residuals.

The basic idea of the BGT test is as follows: under the null hypothesis of an AR(1) process,
the remainder error term νi t satisfies

correl(νi t , νi,t−τ ) = ρτ = (ρ1)τ τ = 1, 2, . . . (5.47)

Therefore, under the null hypothesis

ρ2 − (ρ1)2 = 0 (5.48)

Under the alternative hypothesis of an MA(1) process on νi t , ρ2 = 0 and hence ρ2 − (ρ1)2 < 0.
Therefore, BGT recommend a test statistic based on (5.48) using estimates of ρ obtained from
OLS residuals. One problem remains. King (1983) suggests that any “good” test should have
a size which tends to zero, asymptotically, for ρ > 0.5. The test based on (5.48) does not
guarantee this property. To remedy this, BGT proposed supplementing (5.48) with the decision
to accept the null hypothesis of AR(1) if ρ̂1 > 1

2 + 1/
√

T .
In an error component model, the Within transformation wipes out the individual effects,

and one can use the Within residuals of ũi t (= ν̃i t ) instead of OLS residuals ûi t to construct
the BGT test. Let

(̃ρ1)i =
T∑

t=2

ũi t ũi,t−1/

T∑
t=1

ũ2
i t
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and

(̃ρ2)i =
T∑

t=3

ũi t ũi,t−2/

T∑
t=1

ũ2
i t for i = 1, . . . , N

The following test statistic, based on (5.48),

γ̃i =
√

T [(̃ρ2)i − (̃ρ2
1 )i ]/[1 − (̃ρ2)i ] (5.49)

is asymptotically distributed (for large T ) as N (0, 1) under the null hypothesis of an AR(1).
Using the data on all N individuals, we can construct a generalized BGT test statistic for the
error component model

γ̃ =
√

N

(
N∑

i=1

γ̃i/N

)
=

√
N T

N∑
i=1

[
(̃ρ2)i − (̃ρ2

1 )i

1 − (̃ρ2)i

]
/N (5.50)

γ̃i are independent for different i since the ũi are independent. Hence γ̃ is also asymptotically
distributed (for large T ) as N (0, 1) under the null hypothesis of an AR(1) process. The test
statistic (5.50) is supplemented by

r̃1 =
N∑

i=1

(̃r1)i/N ≡ 1

N

N∑
i=1

[
T∑

t=2

ũi t ũi,t−1/

T∑
t=1

ũ2
i t

]
(5.51)

and the Baltagi and Li (1995) proposed BGT1 test can be summarized as follows:

(1) Use the Within residuals ũi t to calculate γ̃ and r̃1 from (5.50) and (5.51).
(2) Accept the AR(1) model if γ̃ > cα , or r̃1 > 1

2 + 1/
√

T , where Pr[N (0, 1) ≤ cα] = α.

The bias in estimating ρs (s = 1, 2) by using Within residuals is of O(1/T ) as N → ∞ (see
Nickell, 1981). Therefore, BGT1 may not perform well for small T . Since for typical labor
panels, N is large and T is small, it would be desirable if an alternative simple test can be
derived which performs well for large N rather than large T . In the next section we will give
such a test.

An Alternative BGT-type Test for Testing AR(1) vs MA(1)

Let the null hypothesis be H7 : νi t = εi t + λεi,t−1 and the alternative be H ′
7 : νi t = ρνi,t−1 +

εi t , where εi t ∼ N (0, σ 2
ε ). Note that this test differs from the BGT1 test in that the null hypoth-

esis is MA(1) rather than AR(1). The alternative BGT-type test uses autocorrelation estimates
derived from OLS residuals and can be motivated as follows. Let

Q0 =
∑∑

u2
i t

N T
= u′u/N T

and

Qs =
∑∑

uit ui,t−s

N (T − s)
= u′(IN ⊗ Gs)u/N (T − s) for s = 1, . . . , S

where Gs = 1
2 Toeplitz(ιs), ιs is a vector of zeros with the (s + 1)th element being one. s =

1, . . . , S with S ≤ (T − 1) and S is finite.4 Given the true residuals (the u), and assuming[
u′ Au

n
− E

(
u′ Au

n

)]
P→ 0
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where n = N T and A is an arbitrary symmetric matrix, Baltagi and Li (1995) proved the
following results, as N → ∞:

(1) For the MA(1) model

plim Q0 = σ 2
µ + σ 2

ν = σ 2
µ + σ 2

ε (1 + λ2)

plim Q1 = σ 2
µ + λσ 2

ε (5.52)

plim Qs = σ 2
µ for s = 2, . . . , S

(2) For the AR(1) model

plim Q0 = σ 2
µ + σ 2

ν (5.53)

plim Qs = σ 2
µ + ρsσ 2

ν for s = 1, . . . , S

see problem 5.17. Baltagi and Li (1995) showed that for large N one can distinguish the
AR(1) process from the MA(1) process based on the information obtained from Qs − Qs+l ,
for s ≥ 2 and l ≥ 1. To see this, note that plim(Qs − Qs+l) = 0 for the MA(1) process and
plim(Qs − Qs+l) = σ 2

ν ρs(1 − ρl) > 0 for the AR(1) process.
Hence, Baltagi and Li (1995) suggest an asymptotic test of H7 against H ′

7 based upon

γ =
√

N/V (Q2 − Q3) (5.54)

where V = 2 tr{[(σ 2
µ JT + σ 2

ε Vλ)(G2/(T − 2) − G3/(T − 3))]2}. Under some regularity con-
ditions, γ is asymptotically distributed (for large N ) as N (0, 1) under the null hypothesis of an
MA(1) process.5 In order to calculate V , we note that for the MA(1) process, σ 2

ν = σ 2
ε (1 + λ2)

and σ 2
ε Vλ = σ 2

v IT + σ 2
ε λG. Therefore we do not need to estimate λ in order to compute the

test statistic γ , all we need to get are some consistent estimators for σ 2
ν , λσ 2

ε and σ 2
µ. These

are obtained as follows:

σ̂ 2
v = Q̂0 − Q̂2

λσ̂ 2
ε = Q̂0 − Q̂1

σ̂ 2
µ = Q̂2

where Q̂s are obtained from Qs by replacing uit by the OLS residuals ûi t . Substituting these
consistent estimators into V we get V̂ , and the test statistic γ becomes

γ̂ =
√

N/V̂ (Q̂2 − Q̂3) (5.55)

where

(Q̂2 − Q̂3) =
N∑

i=1

N∑
t=3

ûi t ûi,t−2/N (T − 2) −
N∑

i=1

T∑
t=4

ûi t ûi,t−3/N (T − 3)

and

V̂ = 2 tr{[(σ̂ 2
µ JT + σ̂ 2

ν IT + σ 2
ε λ̂G)/(G2/(T − 2) + G3/(T − 3))]2}

γ̂ is asymptotically distributed (for large N ) as N (0, 1) under the null hypothesis H7 and is
referred to as the BGT2 test.

Baltagi and Li (1995) perform extensive Monte Carlo experiments using the regression
model set-up considered in Chapter 4. However, the remainder disturbances are now allowed
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Table 5.4 Testing for Serial Correlation and Individual Effects

Null Hypothesis Alternative Hypothesis Asymptotic Distribution
H0 HA Test Statistics under H0

1a H a
1 : σ 2

µ = 0; λ = 0 σ 2
µ or λ �= 0 LM1 χ 2

2

1b H b
1 : σ 2

µ = 0; ρ = 0 σ 2
µ or ρ �= 0 LM1 χ 2

2

2 H2 : σ 2
µ = 0 σ 2

µ > 0 LM2 N (0, 1)
3a H a

3 : λ = 0 λ > 0 LM3 N (0, 1)
3b H b

3 : ρ = 0 ρ > 0 LM3 N (0, 1)
4a H a

4 : λ = 0(σ 2
µ > 0) λ > 0(σ 2

µ > 0) LM4 N (0, 1)
4b H b

4 : ρ = 0(σ 2
µ > 0) ρ > 0(σ 2

µ > 0) LM4 N (0, 1)
5a H a

5 : λ = 0(µi fixed) λ > 0(µi fixed) LM5 N (0, 1)
5b H b

5 : ρ = 0(µi fixed) ρ > 0(µi fixed) LM5 N (0, 1)
6 H6 : AR(1) MA(1) BGT1 N (0, 1)
7 H7 : MA(1) AR(1) BGT2 N (0, 1)

Source: Baltagi and Li (1995). Reproduced by permission of Elsevier Science Publishers B.V. (North Holland).

to follow the AR(1) or MA(1) process. Table 5.4 gives a summary of all tests considered. Their
main results can be summarized as follows.

(1) The joint LM1 test performs well in testing the null of H1 : ρ = σ 2
µ = 0. Its estimated

size is not statistically different from its nominal size. Let ω = σ 2
µ/σ 2 denote the proportion

of the total variance that is due to individual effects. Baltagi and Li (1995) find that in the
presence of large individual effects (ω > 0.2), or high serial correlation ρ (or λ) > 0.2, LM1

has high power rejecting the null in 99−100% of cases. It only has low power when ω = 0
and ρ (or λ) = 0.2, or when ω = 0.2 and ρ (or λ) = 0.

(2) The test statistic LM2 for testing H2 : σ 2
µ = 0 implicitly assumes that ρ (or λ) = 0. When

ρ is indeed equal to zero, this test performs well. However, as ρ moves away from zero and
increases, this test tends to be biased in favor of rejecting the null. This is because a large serial
correlation coefficient (i.e. large ρ) contributes to a large correlation among the individuals in
the sample, even though σ 2

µ = 0. For example, when the null is true (σ 2
µ = 0) but ρ = 0.9, LM2

rejects in 100% of cases. Similar results are obtained in case νi t follows an MA(1) process.
In general, the presence of positive serial correlation tends to bias the case in favor of finding
nonzero individual effects.

(3) Similarly, the LM3 test for testing H3 : ρ = 0 implicitly assumes σ 2
µ = 0. This test

performs well when σ 2
µ = 0. However, as σ 2

µ increases, the performance of this test deteriorates.
For example, when the null is true (ρ = 0) but ω = 0.9, LM3 rejects the null hypothesis in
100% of cases. The large correlation among the µi contributes to the rejection of the null
hypothesis of no serial correlation. These results strongly indicate that one should not ignore
the individual effects when testing for serial correlation.

(4) In contrast to LM3, both LM4 and LM5 take into account the presence of individual
effects. For large values of ρ or λ (greater than 0.4), both LM4 and LM5 have high power,
rejecting the null more than 99% of the time. However, the estimated size of LM4 is closer to
the 5% nominal value than that of LM5. In addition, Baltagi and Li (1995) show that Bhargava
et al.’s (1982) modified Durbin–Watson performs better than LM5 and is recommended.

(5) The BGT1 test, which uses Within residuals and tests the null of an AR(1) against the
alternative of an MA(1), performs well if T ≥ 60 and T > N . However, when T is small, or T
is of moderate size but N is large, BGT1 will tend to over-reject the null hypothesis. Therefore
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BGT1 is not recommended for these cases. For typical labor panels, N is large and T is small.
For these cases, Baltagi and Li (1995) recommend the BGT2 test, which uses OLS residuals
and tests the null of an MA(1) against the alternative of an AR(1). This test performs well
when N is large and does not rely on T to achieve its asymptotic distribution. The Monte Carlo
results show that BGT2’s performance improves as either N or T increases.

Baltagi and Li (1997) perform Monte Carlo experiments to compare the finite sample rela-
tive efficiency of a number of pure and pre-test estimators for an error component model with
remainder disturbances that are generated by an AR(1) or an MA(1) process. These estimators
are: (1) OLS; (2) the Within estimator; (3) conventional GLS which ignores the serial correla-
tion in the remainder disturbances but accounts for the random error components structure –
this is denoted by CGLS; (4) GLS assuming random error components with the remainder dis-
turbances following an MA(1) process – this is denoted by GLSM; (5) GLS assuming random
error components with the remainder disturbances following an AR(1) process – this is denoted
by GLSA; (6) a pre-test estimator which is based on the results of two tests – this is denoted by
PRE. The first test is LM4 which tests for the presence of serial correlation given the existence
of random individual effects. If the null is not rejected, this estimator reduces to conventional
GLS. In case serial correlation is found, the BGT2 test is performed to distinguish between the
AR(1) and MA(1) process and GLSA or GLSM is performed. (7) A generalized method of
moments (GMM) estimator, where the error component structure of the disturbances is ignored
and a general variance–covariance matrix is estimated across the time dimension. Finally (8)
true GLS, which is denoted by TGLS, is obtained for comparison purposes. In fact, the relative
efficiency of each estimator is obtained by dividing its MSE by that of TGLS. It is important to
emphasize that all the estimators considered are consistent as long as the explanatory variables
and the disturbances are uncorrelated, as N → ∞, with T fixed. The primary concern here is
with their small sample properties. The results show that the correct GLS procedure is always
the best, but the researcher does not have perfect foresight on which one it is: GLSA for an
AR(1) process, or GLSM for an MA(1) process. In this case, the pre-test estimator is a viable
alternative given that its performance is a close second to correct GLS whether the true serial
correlation process is AR(1) or MA(1).

5.2.8 Extensions

Other extensions include the fixed effects model with AR(1) remainder disturbances considered
by Bhargava et al. (1982), and also Kiefer (1980) and Schmidt (1983) who extend the fixed
effects model to cover cases with an arbitrary intertemporal covariance matrix. There is an
extension to the MA(q) case, by Baltagi and Li (1994) and a treatment of the autoregressive
moving average ARMA(p, q) case on the νi t , by MaCurdy (1982) and more recently Galbraith
and Zinde-Walsh (1995). For an extension to the two-way model with serially correlated
disturbances, see Revankar (1979) who considers the case where the λt follow an AR(1)
process. Also, Karlsson and Skoglund (2004) for the two-way error component model with an
ARMA process on the time-specific effects. They derive the maximum likelihood estimator
under normality of the disturbances and propose LM tests for serial correlation and for the
choice between the AR(1) and MA(1) specification for the time-specific effects following
Baltagi and Li (1995). Magnus and Woodland (1988) generalize this Revankar (1979) model to
the multivariate error component model case and derive the corresponding maximum likelihood
estimator. Chamberlain (1982, 1984) allows for arbitrary serial correlation and heteroskedastic
patterns by viewing each time period as an equation and treating the panel as a multivariate
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set-up. Testing for serial correlation in a dynamic error component model will be studied in
Chapter 8. Li and Hsiao (1998) propose three test statistics in the context of a semiparametric
partially linear panel data model

yit = x ′
i tβ + θ (wi t ) + uit

with uit satisfying E(uit/wi t , xit ) = 0. The functional form of θ(.) is unknown and
E(u2

i t/xit , wi t ) is not specified. The first test statistic tests the null of zero first-order serial
correlation. The second tests for the presence of higher-order serial correlation and the third
tests for the presence of individual effects. The asymptotics are carried out for N → ∞ and
fixed T . Monte Carlo experiments are performed to study the finite sample performance of these
tests. More recently, Hong and Kao (2004) suggest wavelet-based testing for serial correlation
of unknown form in panel data.

NOTES

1. An alternative derivation of this transformation is given by Wansbeek (1992). Bhargava, et al. (1982)
give the corresponding transformation for the one-way error component model with fixed effects and
first-order autoregressive disturbances.

2. Let a = (a1, a2, . . . , an)′ denote an arbitrary n × 1 vector, then Toeplitz(a) is an n × n symmetric
matrix generated from the n × 1 vector a with the diagonal elements all equal to a1, second diagonal
elements equal to a2, etc.

3. Obviously, there are many different ways to construct such a test. For example, we can use Q2 + Q3 −
2Q4 instead of Q2 − Q3 to define the γ test. In this case

V = 2tr{[(σ 2
µ JT + σ 2

ε Vλ)(G2/(T − 2) + G3/(T − 3) − 2G4/(T − 4))]2}

PROBLEMS

5.1 (a) For the one-way error component model with heteroskedastic µi , i.e. µi ∼ (0, w2
i ),

verify that � = E(uu′) is given by (5.1) and (5.2).
(b) Using the Wansbeek and Kapteyn (1982b) trick show that � can also be written as

in (5.3).
5.2 (a) Using (5.3) and (5.4), verify that ��−1 = I and that �−1/2�−1/2 = �−1.

(b) Show that y∗ = σν�
−1/2 y has a typical element y∗

i t = yit − θi ȳi. where θi = 1 −
(σν/τi ) and τ 2

i = T w2
i + σ 2

ν for i = 1, . . . , N .

5.3 Holly and Gardiol (2000) derived a score test for homoskedasticity in a one-way error
component model where the alternative model is that the µi ’s are independent and dis-
tributed as N (0, σ 2

µi
) where σ 2

µi
= σ 2

µhµ (Fiθ2). Here, Fi is a vector of p explanatory
variables such that Fiθ2 does not contain a constant term and hµ is a strictly positive
twice-differentiable function satisfying hµ(0) = 1 with h′

µ(0) �= 0 and h′′
µ(0) �= 0. Show

that the score test statistic for H0 : θ2 = 0 is equal to one half the explained sum of squares
of the OLS regression of (ŝ/s̄) − ιN against the p regressors in F as in the Breusch and
Pagan test for homoskedasticity. Here ŝi = û′

i J̄ T ûi and s =∑N
i=1 ŝi/N where û denote

the maximum likelihood residuals from the restricted model under H0 : θ2 = 0.
5.4 (a) For the one-way error component model with heteroskedastic remainder distur-

bances, i.e. νi t ∼ (0, w2
i ), verify that � = E(uu′) is given by (5.5).
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(b) Using the Wansbeek and Kapteyn (1982b) trick show that � can also be written as
in (5.6).

5.5 (a) Using (5.6) and (5.7), verify that ��−1 = I and �−1/2�−1/2 = �−1.
(b) Show that y* = �−1/2 y has a typical element y*

i t = (yit − θi ȳi.)/wi where θi =
1 − (wi/τi ) and τ 2

i = T σ 2
µ + w2

i for i = 1, . . . , N .
5.6 (a) For the one-way error component model with remainder disturbances νi t following

a stationary AR(1) process as in (5.8), verify that �* = E(u*u*′) is that given by
(5.11).

(b) Using the Wansbeek and Kapteyn (1982b) trick, show that �* can be written as in
(5.12).

5.7 (a) Using (5.12) and (5.13), verify that �*�*−1 = I and �*−1/2�*−1/2 = �*−1.
(b) Show that y** = σε�*−1/2 y* has a typical element given by (5.14).
(c) Show that for ρ = 0, (5.14) reduces to (yit − θ ȳi.).
(d) Show that for σ 2

µ = 0, (5.14) reduces to y*
i t .

5.8 Prove that σ̂ 2
ε and σ̂ 2

α given by (5.15) are unbiased for σ 2
ε and σ 2

α , respectively.
5.9 (a) For the one-way error component model with remainder disturbances νi t following

a stationary AR(2) process as in (5.16), verify that �* = E(u*u*′) is that given by
(5.18).

(b) Show that y** = σε�*−1/2 y* has a typical element given by (5.19).
5.10 For the one-way error component model with remainder disturbances νi t following a

specialized AR(4) process νi t = ρνi,t−4 + εi t with | ρ |< 1 and εi t ∼ IIN(0, σ 2
ε ), verify

that y** = σε�
−1/2 y* is given by (5.21).

5.11 For the one-way error component model with remainder disturbances νi t following an
MA(1) process given by (5.22), verify that y** = σε�

−1/2 y* is given by (5.24).
5.12 For the BLU predictor of yi,T +1 given in (5.25), show that when νi t follows:

(a) the AR(1) process, the GLS predictor is corrected by the term in (5.26);
(b) the AR(2) process, the GLS predictor is corrected by the term given in (5.27);
(c) the specialized AR(4) process, the GLS predictor is corrected by the term given in

(5.28);
(d) the MA(1) process, the GLS predictor is corrected by the term given in (5.29).

5.13 Using (4.17) and (4.19), verify (5.34) and (5.35) and derive the LM1 statistic given in
(5.36).

5.14 (a) Verify that (∂Vρ/∂ρ)ρ=0 = G = (∂Vλ/∂λ)λ=0 where G is the bidiagonal matrix with
bidiagonal elements all equal to one.

(b) Using this result verify that the joint LM statistic given in (5.36) is the same whether
the residual disturbances follow an AR(1) or an MA(1) process, i.e., the joint LM
test statistic for H a

1 : σ 2
µ = 0; λ = 0 is the same as that for H b

1 : σ 2
µ = 0; ρ = 0.

5.15 For H b
4 : ρ = 0 (given σ 2

µ > 0):
(a) Derive the score, the information matrix and the LM statistic for H b

4 .
(b) Verify that for H a

4 : λ = 0 (given σ 2
µ > 0) one obtains the same LM statistic as in

part (a).
5.16 For H b

5 : ρ = 0 (given the µi are fixed):
(a) Verify that the likelihood is given by (5.40) and derive the MLE of the µi .
(b) Using (5.34) and (5.35), verify that the LM statistic for H b

5 is given by (5.42).
(c) Verify that for H a

5 : λ = 0 (given the µi are fixed) one obtains the same LM statistic
as in (5.42).
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5.17 (a) Verify (5.52) for the MA(1) model. Hint: Use the fact that lim E(u′u)/(N T ) = lim
tr(�)/(N T ) for deriving plim Q0. Similarly, use the fact that

lim E(u′(IN ⊗ G1)u)/N (T − 1) = lim tr[�(IN ⊗ G1)]/N (T − 1)

for deriving plim Q1. Also,

lim E(u′(IN ⊗ Gs)u)/N (T − s) = lim tr[�(IN ⊗ Gs)]/N (T − s)

for deriving plim Qs for s = 2, . . . , S.
(b) Verify (5.53) for the AR(1) model.

5.18 Using the Monte Carlo set-up in Baltagi and Li (1995), study the performance of the tests
proposed in Table 5.4.

5.19 For the Grunfeld data:
(a) Perform the tests described in Table 5.4.
(b) Using the unbalanced patterns described in table 1 of Baltagi and Wu (1999), replicate

the Baltagi–Wu LBI and Bhargava et al. (1982) Durbin–Watson test statistics reported
in that table. This can easily be done using the (xtregar,re lbi) command in Stata.

5.20 For the gasoline data given on the Wiley web site, perform the tests described in Table
5.4.

5.21 For the public capital data, given on the Wiley web site, perform the tests described in
Table 5.4.
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6
Seemingly Unrelated Regressions with

Error Components

6.1 THE ONE-WAY MODEL

In several instances in economics, one needs to estimate a set of equations. This could be a set
of demand equations, across different sectors, industries or regions. Other examples include
the estimation of a translog cost function along with the corresponding cost share equations.
In these cases, Zellner’s (1962) seemingly unrelated regressions (SUR) approach is popular
since it captures the efficiency due to the correlation of the disturbances across equations.
Applications of the SUR procedure with time-series or cross-section data are too numerous
to cite. In this chapter, we focus on the estimation of a set of SUR equations with panel
data.

Avery (1977) seems to be the first to consider the SUR model with error component distur-
bances. In this case, we have a set of M equations

y j = Z jδ j + u j j = 1, . . . , M (6.1)

where y j is N T × 1, Z j is N T × k ′
j , δ

′
j = (α j , β

′
j ), β j is k j × 1 and k ′

j = k j + 1 with

u j = Zµµ j + ν j j = 1, . . . , M (6.2)

where Zµ = (IN ⊗ ιT ) and µ′
j = (µ1 j , µ2 j , . . . , µN j ) and ν ′

j = (ν11 j , . . . , ν1T j , . . . , νN1 j ,

. . . , νN T j ) are random vectors with zero means and covariance matrix

E

(
µ j

ν j

)
(µ′

l , ν
′
l ) =

[
σ 2

µ jl
IN 0

0 σ 2
ν jl

IN T

]
(6.3)

for j, l = 1, 2, . . . , M . This can be justified as follows: µ ∼ (0, �µ ⊗ IN ) and ν ∼ (0, �ν ⊗
IN T ) where µ′ = (µ′

1, µ
′
2, . . . , µ

′
M ), ν ′ = (ν ′

1, ν
′
2, . . . , ν

′
M ), �µ = [σ 2

µ jl
] and �ν = [σ 2

ν jl
] for

j, l = 1, 2, . . . , M . In other words, each error component follows the same standard
Zellner (1962) SUR assumptions imposed on classical disturbances. Using (6.2), it follows
that

� jl = E(u j u
′
l) = σ 2

µ jl
(IN ⊗ JT ) + σ 2

ν jl
(IN ⊗ IT ) (6.4)

In this case, the covariance matrix between the disturbances of different equations has the same
one-way error component form. Except now, there are additional cross-equations variance
components to be estimated. The variance–covariance matrix for the set of M equations is
given by

� = E(uu′) = �µ ⊗ (IN ⊗ JT ) + �ν ⊗ (IN ⊗ IT ) (6.5)

where u′ = (u′
1, u′

2, . . . , u′
M ) is a 1 × M N T vector of disturbances with u j defined in (6.2)

for j = 1, 2, . . . , M . �µ = [σ 2
µ jl

] and �ν = [σ 2
ν jl

] are both M × M matrices. Replacing JT by
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T J̄ T and IT by ET + J̄ T , and collecting terms one gets

� = (T �µ + �ν) ⊗ (IN ⊗ J̄T ) + �ν ⊗ (IN ⊗ ET ) (6.6)

= �1 ⊗ P + �ν ⊗ Q

where �1 = T �µ + �ν . Also, P = IN ⊗ J̄T and Q = IN T − P were defined below (2.4).
(6.6) is the spectral decomposition of � derived by Baltagi (1980), which means that

�r = �r
1 ⊗ P + �r

ν ⊗ Q (6.7)

where r is an arbitrary scalar (see also Magnus, 1982). For r = −1, one gets the inverse �−1

and for r = − 1
2 one gets

�−1/2 = �
−1/2
1 ⊗ P + �−1/2

ν ⊗ Q (6.8)

Kinal and Lahiri (1990) suggest obtaining the Cholesky decomposition of �ν and �1 in (6.8)
to reduce the computation and simplify the transformation of the system.

One can estimate �ν by �̂ν = U ′ QU/N (T − 1) and �1 by �̂1 = U ′ PU/N where U =
[u1, . . . , uM ] is the N T × M matrix of disturbances for all M equations. Problem 6.7 asks the
reader to verify that knowing U , �̂ν and �̂1 are unbiased estimates of �ν and �1, respectively.
For feasible GLS estimates of the variance components, Avery (1977), following Wallace
and Hussain (1969) in the single equation case, recommends replacing U by OLS residuals,
while Baltagi (1980), following Amemiya’s (1971) suggestion for the single equation case,
recommends replacing U by Within-type residuals.

For this model, a block-diagonal � makes GLS on the whole system equivalent to GLS
on each equation separately, see problem 6.3. However, when the same X appear in each
equation, GLS on the whole system is not equivalent to GLS on each equation separately (see
Avery, 1977). As in the single equation case, if N and T → ∞, then the Within estimator
of this system is asymptotically efficient and has the same asymptotic variance–covariance
matrix as the GLS estimator. In fact, Prucha (1984) shows that as long as �ν is estimated
consistently and the estimate of �µ has a finite positive definite limit then the corresponding
feasible SUR–GLS estimator is asymptotically efficient. This implies the existence of a large
family of asymptotically efficient estimators of the regression coefficients.

6.2 THE TWO-WAY MODEL

It is easy to extend the analysis to a two-way error component structure across the system of
equations. In this case (6.2) becomes

u j = Zµµ j + Zλλ j + ν j j = 1, . . . , M (6.9)

where λ′
j = (λ1 j , . . . , λT j ) is a random vector with zero mean and covariance matrix given by

the following:

E

µ j

λ j

ν j

 (µ′
l , λ

′
l , ν

′
l ) =

σ 2
µ jl

IN 0 0
0 σ 2

λ jl
IT 0

0 0 σ 2
ν jl

IN T

 (6.10)

for j, l = 1, 2, . . . , M . In this case, λ ∼ (0, �λ ⊗ IT ) where λ′ = (λ1, λ2, . . . , λT ) and �λ =
[σ 2

λ jl
] is M × M . Like µ and ν, the λ follow a standard Zellner SUR-type assumption.
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Therefore

� jl = E(u j u
′
l) = σ 2

µ jl
(IN ⊗ JT ) + σ 2

λ jl
(JN ⊗ IT ) + σ 2

ν jl
(IN ⊗ IT ) (6.11)

As in the one-way SUR model, the covariance between the disturbances of different equations
has the same two-way error component form. Except now, there are additional cross-equations
variance components to be estimated. The variance–covariance matrix of the system of M
equations is given by

� = E(uu′) = �µ ⊗ (IN ⊗ JT ) + �λ ⊗ (JN ⊗ IT ) + �ν ⊗ (IN ⊗ IT ) (6.12)

where u′ = (u′
1, u′

2, . . . , u′
M ) with u j defined in (6.9). Using the Wansbeek and Kapteyn

(1982b) trick one gets (see problem 6.5):

� =
4∑

i=1


i ⊗ Qi (6.13)

where 
1 = �ν, 
2 = T �µ + �ν, 
3 = N�λ + �ν and 
4 = T �µ + N�λ + �ν, with Qi

defined below (3.13). This is the spectral decomposition of � (see Baltagi, 1980), with

�r =
4∑

i=1


r
i ⊗ Qi (6.14)

for r an arbitrary scalar. When r = −1 one gets the inverse �−1 and when r = − 1
2 one gets

�−1/2 =
4∑

i=1



−1/2
i ⊗ Qi (6.15)

Once again, the Cholesky decompositions of the 
i can be obtained in (6.15) to reduce the
computation and simplify the transformation of the system (see Kinal and Lahiri, 1990).
Knowing the true disturbances U , quadratic unbiased estimates of the variance components
are obtained from

�̂ν = U ′ Q1U

(N − 1)(T − 1)
, 
̂2 = U ′ Q2U

(N − 1)
and 
̂3 = U ′ Q3U

(T − 1)
(6.16)

see problem 6.7. Feasible estimates of (6.16) are obtained by replacing U by OLS residuals or
Within-type residuals. One should check for positive definite estimates of �µ and �λ before
proceeding. The Within estimator has the same asymptotic variance–covariance matrix as GLS
when N and T → ∞. Also, as long as the estimate of �ν is consistent and the estimates of �µ

and �λ have a finite positive definite probability limit, the corresponding feasible SUR–GLS
estimate of the regression coefficients is asymptotically efficient.

6.3 APPLICATIONS AND EXTENSIONS

Verbon (1980) applies the SUR procedure with one-way error components to a set of four labor
demand equations, using data from the Netherlands on 18 industries over 10 semiannual periods
covering the period 1972–79. Verbon (1980) extends the above error component specification
to allow for heteroskedasticity in the individual effects modeled as a simple function of p
time-invariant variables. He applies a Breusch and Pagan (1979) LM test to check for the
existence of heteroskedasticity.
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Beierlein, Dunn and McConnon (1981) estimated the demand for electricity and natural gas
in the northeastern United States using a SUR model with two-way error component distur-
bances. The data were collected for nine states comprising the Census Bureau’s northeastern
region of the USA for the period 1967–77. Six equations were considered corresponding to
the various sectors considered. These were residential gas, residential electric, commercial
gas, commercial electric, industrial gas and industrial electric. Comparison of the error com-
ponents SUR estimates with those obtained from OLS and single equation error component
procedures showed substantial improvement in the estimates and a sizable reduction in the
empirical standard errors.

Brown et al. (1983) apply the SUR model with error components to study the size-related
anomalies in stock returns. Previous empirical evidence has shown that small firms tend to
yield returns greater than those predicted by the capital asset pricing model. Brown et al. (1983)
used a panel of 566 firms observed quarterly over the period June 1967 to December 1975.
They find that size effects are sensitive to the time period studied.

Howrey and Varian (1984) apply the SUR with one-way error component disturbances to
the estimation of a system of demand equations for electricity by time of day. Their data are
based on the records of 60 households whose electricity usage was recorded over a five-month
period in 1976 by the Arizona Public Service Company. Using these panel data, the authors
calculate the fraction of the population which would prefer such pricing policies to flat rate
pricing.

Magnus (1982) derives the maximum likelihood estimator for the linear and nonlinear
multivariate error component model under various assumptions on the errors. Sickles (1985)
applies Magnus’s multivariate nonlinear error components analysis to model the technology
and specific factor productivity growth in the US airline industry.

Wan, Griffiths and Anderson (1992) apply a SUR model with two-way error component
disturbances that are heteroskedastic to estimate the rice, maize and wheat production in China.
These production functions allow for positive or negative marginal risks of output. The panel
data cover 28 regions of China over the 1980–83 period. Their findings indicate that increases
in chemical fertilizer and sown area generally increase the output variance. However, organic
fertilizer and irrigation help stabilize Chinese cereal production.

Baltagi et al. (1995) estimate a SUR model consisting of a translog variable cost function and
its corresponding input share equations for labor, fuel and material. The panel data consists of
24 US airlines over the period 1971–86. Firm and time dummies are included in the variable cost
equation, and symmetry as well as adding-up restrictions on the share equations are imposed.
A general Solow-type index of technical change is estimated and its determinants are in turn
analyzed. One of the main findings of this study is that despite the slowing of productivity
growth in the 1980s, deregulation does appear to have stimulated technical change due to more
efficient route structure.

Biorn (2004) considers the problem of estimating a system of regression equations with
random individual effects from unbalanced panel data. The unbalancedness is due to random
attrition. Biorn (2004) shows that GLS on this system can be interpreted as a matrix-weighted
average of group-specific GLS estimators with weights equal to the inverse of their respec-
tive variance–covariance matrices. The grouping of individuals in the panel is according to
the number of times they are observed (not necessarily the same period and not necessarily
consecutive periods). Biorn also derives a stepwise algorithm for obtaining the MLE under
normality of the disturbances.
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PROBLEMS

6.1 Using the one-way error component structure on the disturbances of the j th equation
given in (6.2) and (6.3), verify that � jl , the variance–covariance matrix between the j th
and lth equation disturbances, is given by (6.4).

6.2 Using (6.6) and (6.7), verify that ��−1 = I and �−1/2�−1/2 = �−1.
6.3 Consider a set of two equations with one-way error components disturbances.

(a) Show that if the variance–covariance matrix between the equations is block-diagonal,
then GLS on the system is equivalent to GLS on each equation separately (see Avery,
1977; Baltagi, 1980).

(b) Show that if the explanatory variables are the same across the two equations, GLS
on the system does not necessarily revert to GLS on each equation separately (see
Avery, 1977; Baltagi, 1980).

(c) Does your answer to parts (a) and (b) change if the disturbances followed a two-way
error component model?

6.4 Using the two-way error component structure on the disturbances of the j th equation
given in (6.9) and (6.10), verify that � jl , the variance–covariance matrix between the
j th and lth equation disturbances, is given by (6.11).

6.5 Using the form of � given in (6.12) and the Wansbeek and Kapteyn (1982b) trick, verify
(6.13).

6.6 Using (6.13) and (6.14), verify that ��−1 = I and �−1/2�−1/2 = �−1.
6.7 (a) Using (6.6), verify that �̂ν = U ′ QU/N (T − 1) and �̂1 = U ′ PU/N yield unbiased

estimates of �ν and �1, respectively.
(b) Using (6.13), verify that (6.16) results in unbiased estimates of �ν , 
2 and 
3,

respectively.
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7
Simultaneous Equations with Error

Components

7.1 SINGLE EQUATION ESTIMATION

Endogeneity of the right-hand regressors is a serious problem in econometrics. By endogeneity
we mean the correlation of the right-hand side regressors and the disturbances. This may
be due to the omission of relevant variables, measurement error, sample selectivity, self-
selection or other reasons. Endogeneity causes inconsistency of the usual OLS estimates and
requires instrumental variable (IV) methods like two-stage least squares (2SLS) to obtain
consistent parameter estimates. The applied literature is full of examples of endogeneity:
demand and supply equations for labor, money, goods and commodities to mention a few.
Also, behavioral relationships like consumption, production, investment, import and export
are just a few more examples in economics where endogeneity is suspected. We assume that
the reader is familiar with the identification and estimation of a single equation and a system of
simultaneous equations. In this chapter we focus on the estimation of simultaneous equations
using panel data.

Consider the following first structural equation of a simultaneous equation model:

y1 = Z1δ1 + u1 (7.1)

where Z1 = [Y1, X1] and δ′
1 = (γ ′

1, β
′
1). As in the standard simultaneous equation literature,

Y1 is the set of g1 right-hand side endogenous variables, and X1 is the set of k1 included exo-
genous variables. Let X = [X1, X2] be the set of all exogenous variables in the system. This
equation is identified with k2, the number of excluded exogenous variables from the first
equation (X2) being larger than or equal to g1.

Throughout this chapter we will focus on the one-way error component model

u1 = Zµµ1 + ν1 (7.2)

where Zµ = (IN ⊗ ιT ) and µ′
1 = (µ11, . . . , µN1) and ν ′

1 = (ν111, . . . , νN T 1) are random vec-
tors with zero means and covariance matrix

E

(
µ1

ν1

)
(µ′

1, ν
′
1) =

[
σ 2

µ11
IN 0

0 σ 2
ν11

IN T

]
(7.3)

This differs from the SUR set-up in Chapter 6 only in the fact that there are right-hand side
endogenous variables in Z1.

1 In this case,

E(u1u′
1) = �11 = σ 2

ν11
IN T + σ 2

µ11
(IN ⊗ JT ) (7.4)

In other words, the first structural equation has the typical variance–covariance matrix of a
one-way error component model described in Chapter 2. The only difference is that now a
double subscript (1, 1) is attached to the variance components to specify that this is the first
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equation. One can transform (7.1) by Q = IN T − P with P = IN ⊗ J̄T , to get

Qy1 = Q Z1δ1 + Qu1 (7.5)

Let ỹ1 = Qy1 and Z̃1 = Q Z1. Performing 2SLS on (7.5) with X̃ = Q X as the set of instru-
ments, one gets Within 2SLS (or fixed effects 2SLS)

δ̃1,W2SLS = (Z̃ ′
1 PX̃ Z̃1)−1 Z̃ ′

1 PX̃ ỹ1 (7.6)

with var(̂δ1,W2SLS) = σ 2
ν11

(Z̃ ′
1 PX̃ Z̃1)−1. This can be obtained using the Stata command (xtivreg,

fe) specifying the endogenous variables Y1 and the set of instruments X. Within 2SLS can also
be obtained as GLS on

X̃ ′̃y1 = X̃ ′ Z̃1δ1 + X̃ ′̃u1 (7.7)

see problem 7.1. Similarly, if we let ȳ1 = Py1 and Z̄1 = P Z1, we can transform (7.1) by P
and perform 2SLS with X̄ = P X as the set of instruments. In this case, we get the Between
2SLS estimator of δ1

δ̂1,B2SLS = (Z̄ ′
1 PX̄ Z̄1)−1 Z̄ ′

1 PX̄ ȳ1 (7.8)

with var(̂δ1,B2SLS) = σ 2
111

(Z̄ ′
1 PX̄ Z̄1)−1 where σ 2

111
= T σ 2

µ11
+ σ 2

ν11
. This can also be obtained

using the Stata command (xtivreg,be) specifying the endogenous variables Y1 and the set of
instruments X. Between 2SLS can also be obtained as GLS on

X̄ ′ ȳ1 = X̄ ′ Z̄1δ1 + X̄ ′ū1 (7.9)

Stacking these two transformed equations in (7.7) and (7.9) as a system, as in (2.28) and noting
that δ1 is the same for these two transformed equations, one gets(

X̃ ′̃y1

X̄ ′ ȳ1

)
=

(
X̃ ′ Z̃1

X̄ ′ Z̄1

)
δ1 +

(
X̃ ′̃u1

X̄ ′ū1

)
(7.10)

where

E

(
X̃ ′̃u1

X̄ ′ū1

)
= 0 and var

(
X̃ ′̃u1

X̄ ′ū1

)
=

[
σ 2

v11
X̃ ′ X̃ 0
0 σ 2

111
X̄ ′ X̄

]
Performing GLS on (7.10) yields the error component two-stage least squares (EC2SLS)
estimator of δ1 derived by Baltagi (1981b):

δ̂1,EC2SLS =
[

Z̃ ′
1 PX̃ Z̃1

σ 2
ν11

+ Z̄ ′
1 PX̄ Z̄1

σ 2
111

]−1 [
Z̃ ′

1 PX̃ ỹ1

σ 2
ν11

+ Z̄ ′
1 PX̄ ȳ1

σ 2
111

]
(7.11)

with var(̂δ1,EC2SLS) given by the first inverted bracket in (7.11), see problem 7.2. Note that
δ̂1,EC2SLS can also be written as a matrix-weighted average of δ̃1,W2SLS and δ̂1,B2SLS with the
weights depending on their respective variance–covariance matrices:

δ̂1,EC2SLS = W1̂δ1,W2SLS + W2̂δ1,B2SLS (7.12)

with

W1 =
[

Z̃ ′
1 PX̃ Z̃1

σ 2
ν11

+ Z̄ ′
1 PX̄ Z̄1

σ 2
111

]−1 [
Z̃ ′

1 PX̃ Z̃1

σ 2
ν11

]
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and

W2 =
[

Z̃ ′
1 PX̃ Z̃1

σ 2
ν11

+ Z̄ ′
1 PX̄ Z̄1

σ 2
111

]−1 [
Z̄ ′

1 PX̄ Z̄1

σ 2
111

]
Consistent estimates of σ 2

ν11
and σ 2

111
can be obtained from W2SLS and B2SLS residuals,

respectively. In fact

σ̂ 2
ν11

= (y1 − Z 1̃δ1,W2SLS)′ Q(y1 − Z 1̃δ1,W2SLS)/N (T − 1) (7.13)

σ̂ 2
111

= (y1 − Z 1̂δ1,B2SLS)′ P(y1 − Z 1̂δ1,B2SLS)/N (7.14)

Substituting these variance components estimates in (7.11) one gets a feasible estimate of
EC2SLS. Note that unlike the usual 2SLS procedure, EC2SLS requires estimates of the variance
components. One can correct for degrees of freedom in (7.13) and (7.14) especially for small
samples, but the panel is assumed to have large N . Also, one should check that σ̂ 2

µ11
= (σ̂ 2

111
−

σ̂ 2
ν11

)/T is positive.

Alternatively, one can premultiply (7.1) by �
−1/2
11 where �11 is given in (7.4), to get

y∗
1 = Z∗

1δ1 + u∗
1 (7.15)

with y∗
1 = �

−1/2
11 y1, Z∗

1 = �
−1/2
11 Z1 and u∗

1 = �
−1/2
11 u1. In this case, �

−1/2
11 is given by (2.20)

with the additional subscripts (1, 1) for the variance components, i.e.

�
−1/2
11 = (P/σ111 ) + (Q/σν11 ) (7.16)

Therefore, the typical element of y∗
1 is y∗

1i t
= (y1i t − θ1 ȳ1i. )/σv11 where θ1 = 1 − (σν11/σ111 )

and ȳ1i. = ∑T
t=1 y1i t /T .

Given a set of instruments A, then 2SLS on (7.15) using A gives

δ̂1,2SLS = (Z∗′
1 PA Z∗

1 )−1 Z∗′
1 PA y∗

1 (7.17)

where PA = A(A′ A)−1 A′. Using the results in White (1986), the optimal set of instrumental
variables in (7.15) is

X∗ = �
−1/2
11 X = Q X

σν11

+ P X

σ111

= X̃

σν11

+ X̄

σ111

Using A = X∗, one gets the Balestra and Varadharajan-Krishnakumar (1987) generalized
two-stage least squares (G2SLS):

δ̂1,G2SLS = (Z∗′
1 PX∗ Z∗

1 )−1 Z∗′
1 PX∗ y∗

1 (7.18)

Cornwell, Schmidt and Wyhowski (1992) showed that Baltagi’s (1981b) EC2SLS can be
obtained from (7.17), i.e. using a 2SLS package on the transformed equation (7.15) with the
set of instruments A = [Q X, P X ] = [X̃ , X̄ ]. In fact, Q X is orthogonal to P X and PA =
PX̃ + PX̄ . This also means that

PA Z∗
1 = (PX̃ + PX̄ )[�−1/2

11 Z1] (7.19)

= (PX̃ + PX̄ )

[
Q

σν11

+ P

σ111

]
Z1 = PX̃ Z̃1

σν11

+ PX̄ Z̄1

σ111
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with

Z∗′
1 PA Z∗

1 =
(

Z̃ ′
1 PX̃ Z̃1

σ 2
ν11

+ Z̄ ′
1 PX̄ Z̄1

σ 2
111

)
and

Z∗′
1 PA y∗

1 =
(

Z̃ ′
1 PX̃ ỹ1

σ 2
ν11

+ Z̄ ′
1 PX̄ ȳ1

σ 2
111

)
Therefore, δ̂1,EC2SLS given by (7.11) is the same as (7.17) with A = [X̃ , X̄ ].

So, how is Baltagi’s (1981b) EC2SLS given by (7.11) different from the Balestra and
Varadharajan-Krishnakumar (1987) G2SLS given by (7.18)? It should be clear to the reader
that the set of instruments used by Baltagi (1981b), i.e. A = [X̃ , X̄ ], spans the set of instruments
used by Balestra and Varadharajan-Krishnakumar (1987), i.e. X* = [X̃/σν11 + X̄/σ111 ]. In fact,
one can show that A = [X̃ , X̄ ], B = [X*, X̃ ] and C = [X*, X̄ ] yield the same projection, and
therefore the same 2SLS estimator given by EC2SLS (see problem 7.3). Without going into
proofs, we note that Baltagi and Li (1992c) showed that δ̂1,G2SLS and δ̂1,EC2SLS yield the same
asymptotic variance–covariance matrix. Therefore, using White’s (1986) terminology, X̃ in
B and X̄ in C are redundant with respect to X*. Redundant instruments can be interpreted
loosely as additional sets of instruments that do not yield extra gains in asymptotic efficiency;
see White (1986) for the strict definition and Baltagi and Li (1992c) for the proof in this context.

For applications, it is easy to obtain EC2SLS using a standard 2SLS package.

Step 1. Run W2SLS and B2SLS using a standard 2SLS package on (7.5) and (7.9), i.e., run
2SLS of ỹ on Z̃ using X̃ as instruments and run 2SLS of ȳ on Z̄ using X̄ as instruments.
This yields (7.6) and (7.8), respectively.2 Alternatively, this can be computed using the
(xtivreg,fe) and (xtivreg,be) commands in Stata, specifying the endogenous variables
and the set of instruments.

Step 2. Compute σ̂ 2
ν11

and σ̂ 2
111

from (7.13) and (7.14) and obtain y∗
1 , Z∗

1 and X∗ as described

below (7.17). This transforms (7.1) by �̂
−1/2
11 as in (7.15).

Step 3. Run 2SLS on this transformed equation (7.15) using the instrument set A = X* or
A = [Q X, P X ] as suggested above, i.e., run 2SLS of y*

1 on Z*
1 using X* as instruments

to get G2SLS, or [X̃ , X̄ ] as instruments to get EC2SLS. This yields (7.18) and (7.11),
respectively. These computations are easy. They involve simple transformations on the
data and the application of 2SLS three times. Alternatively, this can be done with Stata
using the (xtivreg,re) command to get G2SLS and (xtivreg,re ec2sls) to get EC2SLS.

7.2 EMPIRICAL EXAMPLE: CRIME IN NORTH CAROLINA

This section replicates the study by Cornwell and Trumbull (1994), hereafter (CT),
who estimated an economic model of crime using panel data on 90 counties in North
Carolina over the period 1981–87. It is based on Baltagi (2005). The empirical model re-
lates the crime rate (which is an FBI index measuring the number of crimes divided by the
county population) to a set of explanatory variables which include deterrent variables as well
as variables measuring returns to legal opportunities. All variables are in logs except for the re-
gional and time dummies. The explanatory variables consist of the probability of arrest (which
is measured by the ratio of arrests to offenses), probability of conviction given arrest (which
is measured by the ratio of convictions to arrests), probability of a prison sentence given a
conviction (measured by the proportion of total convictions resulting in prison sentences),
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Table 7.1 Economics of Crime Estimates for North Carolina, 1981–87
(standard errors in parentheses)

Fixed
lcrmrte Between Effects FE2SLS BE2SLS EC2SLS

lprbarr −0.648 −0.355 −0.576 −0.503 −0.413
(0.088) (0.032) (0.802) (0.241) (0.097)

lprbconv −0.528 −0.282 −0.423 −0.525 −0.323
(0.067) (0.021) (0.502) (0.100) (0.054)

lprbpris 0.297 −0.173 −0.250 0.187 −0.186
(0.231) (0.032) (0.279) (0.318) (0.042)

lavgsen −0.236 −0.002 0.009 −0.227 −0.010
(0.174) (0.026) (0.049) (0.179) (0.027)

lpolpc 0.364 0.413 0.658 0.408 0.435
(0.060) (0.027) (0.847) (0.193) (0.090)

ldensity 0.168 0.414 0.139 0.226 0.429
(0.077) (0.283) (1.021) (0.102) (0.055)

lwcon 0.195 −0.038 −0.029 0.314 −0.007
(0.210) (0.039) (0.054) (0.259) (0.040)

lwtuc −0.196 0.046 0.039 −0.199 0.045
(0.170) (0.019) (0.031) (0.197) (0.020)

lwtrd 0.129 −0.021 −0.018 0.054 −0.008
(0.278) (0.040) (0.045) (0.296) (0.041)

lwfir 0.113 −0.004 −0.009 0.042 −0.004
(0.220) (0.028) (0.037) (0.306) (0.029)

lwser −0.106 0.009 0.019 −0.135 0.006
(0.163) (0.019) (0.039) (0.174) (0.020)

lwmfg −0.025 −0.360 −0.243 −0.042 −0.204
(0.134) (0.112) (0.420) (0.156) (0.080)

lwfed 0.156 −0.309 −0.451 0.148 −0.164
(0.287) (0.176) (0.527) (0.326) (0.159)

lwsta −0.284 0.053 −0.019 −0.203 −0.054
(0.256) (0.114) (0.281) (0.298) (0.106)

lwloc 0.010 0.182 0.263 0.044 0.163
(0.463) (0.118) (0.312) (0.494) (0.120)

lpctmle −0.095 0.627 0.351 −0.095 −0.108
(0.158) (0.364) (1.011) (0.192) (0.140)

lpctmin 0.148 — — 0.169 0.189
(0.049) (0.053) (0.041)

west −0.230 — — −0.205 −0.227
(0.108) (0.114) (0.100)

central −0.164 — — −0.173 −0.194
(0.064) (0.067) (0.060)

urban −0.035 — — −0.080 −0.225
(0.132) (0.144) (0.116)

cons −2.097 — — −1.977 −0.954
(2.822) (4.001) (1.284)

Time dummies were included except for Between and BE2SLS. The number of observations is 630. The F-statistic for
significance of county dummies in fixed effects is F(89,518) = 36.38. The corresponding F-statistic using FE2SLS
is 29.66. Both are significant. Hausman’s test for (fixed effects – random effects) is χ2 (22) = 49.4 with p-value of
0.0007. The corresponding Hausman test for (FE2SLS – EC2SLS) is χ2 (22) = 19.5 with p-value of 0.614.
Source: Baltagi (2005). Reproduced by permission of John Wiley & Sons Ltd.
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average prison sentence in days as a proxy for sanction severity, the number of police per
capita as a measure of the county’s ability to detect crime, the population density (which is
the county population divided by county land area), a dummy variable indicating whether
the county is in the SMSA with population larger than 50 000, percent minority (which
is the proportion of the county’s population that is minority or non-white), percent young
male (which is the proportion of the county’s population that is male and between the ages
of 15 and 24), regional dummies for western and central counties. Opportunities in the legal
sector are captured by the average weekly wage in the county by industry. These industries are:
construction; transportation, utilities and communication; wholesale and retail trade; finance,
insurance and real estate; services; manufacturing; and federal, state and local government.

Table 7.1 replicates the Between and fixed effects estimates of CT using Stata. Fixed effects
results show that the probability of arrest, the probability of conviction given arrest and the
probability of imprisonment given conviction all have a negative and significant effect on
the crime rate with estimated elasticities of −0.355, −0.282 and −0.173, respectively. The
sentence severity has a negative but insignificant effect on the crime rate. The greater the
number of police per capita, the greater the number of reported crimes per capita. The estimated
elasticity is 0.413 and it is significant. This could be explained by the fact that the larger the
police force, the larger the reported crime. Alternatively, this could be an endogeneity problem
with more crime resulting in the hiring of more police. The higher the density of the population
the higher the crime rate, but this is insignificant. Returns to legal activity are insignificant
except for wages in the manufacturing sector and wages in the transportation, utilities and
communication sector. The manufacturing wage has a negative and significant effect on crime
with an estimated elasticity of −0.36, while the transportation, utilities and communication
sector wage has a positive and significant effect on crime with an estimated elasticity of 0.046.
Percent young male is insignificant at the 5% level.

Cornwell and Trumbull (1994) argue that the Between estimates do not control for county
effects and yield much higher deterrent effects than the fixed effects estimates. These Between
estimates, as well as the random effects estimates are rejected as inconsistent by a Hausman
(1978) test. In our replication, this statistic yields a value of 49.4 which is distributed as χ2(22)
and is significant with a p-value of 0.0007. CT worried about the endogeneity of police per
capita and the probability of arrest. They used as instruments two additional variables. Offense
mix is the ratio of crimes involving face-to-face contact (such as robbery, assault and rape) to
those that do not. The rationale for using this variable is that arrest is facilitated by positive
identification of the offender. The second instrument is per capita tax revenue. This is justified
on the basis that counties with preferences for law enforcement will vote for higher taxes to fund
a larger police force. The fixed effects 2SLS estimates are reported in Table 7.1. All deterrent
variables had insignificant t-statistics. These include the probability of arrest, the probability
of conviction given arrest as well as the probability of imprisonment given conviction. Also
insignificant were sentence severity and police per capita. CT also report 2SLS estimates
ignoring the heterogeneity in the county effects for comparison. However, they warn against
using biased and inconsistent estimates that ignore county effects. In fact, county effects were
always significant, see the F-statistics reported in Table 7.1.

Another way of dealing with the endogeneity problem is to run a random effects 2SLS
estimator that allows for the endogeneity of police per capita and the probability of arrest.
This estimator is a matrix-weighted average of Between 2SLS and fixed effects 2SLS and
was denoted by EC2SLS in (7.11). The Stata output for EC2SLS is given in Table 7.2 using
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Table 7.2 EC2SLS Estimates for the Crime Data

. xtivreg lcrmrte lprbconv lprbpris lavgsen ldensity lwcon lwtuc
< lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west
< central urban d82 d83 d84 d85 d86 d87 (lprbarr lpolpc= ltaxpc
< lmix), ec2sls

EC2SLS Random-effects regression Number of obs = 630
Group variable: county Number of groups = 90

R-sq: within = 0.4521 Obs per group: min = 7
between = 0.8158 avg = 7.0
overall = 0.7840 max = 7

Wald chi2(26) = 575.74
corr(u i, X) = 0 (assumed) Prob > chi2 = 0.0000

--------------------------------------------------------------------
lcrmrte | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+--------------------------------------------------------
lprbarr | -.4129261 .097402 -4.24 0.000 -.6038305 -.2220218
lpolpc | .4347492 .089695 4.85 0.000 .2589502 .6105482

lprbconv | -.3228872 .0535517 -6.03 0.000 -.4278465 -.2179279
lprbpris | -.1863195 .0419382 -4.44 0.000 -.2685169 -.1041222
lavgsen | -.0101765 .0270231 -0.38 0.706 -.0631408 .0427877

ldensity | .4290282 .0548483 7.82 0.000 .3215275 .536529
lwcon | -.0074751 .0395775 -0.19 0.850 -.0850455 .0700954
lwtuc | .045445 .0197926 2.30 0.022 .0066522 .0842379
lwtrd | -.0081412 .0413828 -0.20 0.844 -.0892499 .0729676
lwfir | -.0036395 .0289238 -0.13 0.900 -.0603292 .0530502
lwser | .0056098 .0201259 0.28 0.780 -.0338361 .0450557
lwmfg | -.2041398 .0804393 -2.54 0.011 -.361798 -.0464816
lwfed | -.1635108 .1594496 -1.03 0.305 -.4760263 .1490047
lwsta | -.0540503 .1056769 -0.51 0.609 -.2611732 .1530727
lwloc | .1630523 .119638 1.36 0.173 -.0714339 .3975384

lpctymle | -.1081057 .1396949 -0.77 0.439 -.3819026 .1656912
lpctmin | .189037 .0414988 4.56 0.000 .1077009 .2703731

west | -.2268433 .0995913 -2.28 0.023 -.4220387 -.0316479
central | -.1940428 .0598241 -3.24 0.001 -.3112958 -.0767898
urban | -.2251539 .1156302 -1.95 0.052 -.4517851 .0014772
d82 | .0107452 .0257969 0.42 0.677 -.0398158 .0613062
d83 | -.0837944 .0307088 -2.73 0.006 -.1439825 -.0236063
d84 | -.1034997 .0370885 -2.79 0.005 -.1761918 -.0308076
d85 | -.0957017 .0494502 -1.94 0.053 -.1926223 .0012189
d86 | -.0688982 .0595956 -1.16 0.248 -.1857036 .0479071
d87 | -.0314071 .0705197 -0.45 0.656 -.1696232 .1068091
cons| -.9538032 1.283966 -0.74 0.458 -3.470331 1.562725

-----------+--------------------------------------------------------
sigma u| .21455964
sigma e| .14923892

rho | .67394413 (fraction of variance due to u i)
--------------------------------------------------------------------
Instrumented: lprbarr lpolpc
Instruments: lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd

lwfir lwser lwmfg lwfed lwsta lwloc lpctymle
lpctmin west central urban d82 d83 d84 d85 d86 d87
ltaxpc lmix
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Table 7.3 Random Effects 2SLS for Crime Data (G2SLS)

. xtivreg lcrmrte lprbconv lprbpris lavgsen ldensity lwcon lwtuc
< lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west
< central urban d82 d83 d84 d85 d86 d87 (lprbarr lpolpc= ltaxpc
< lmix), re

G2SLS Random-effects regression Number of obs = 630
Group variable: county Number of groups = 90

R-sq: within = 0.4521 Obs per group: min = 7
between = 0.8036 avg = 7.0
overall = 0.7725 max = 7

Wald chi2(26) = 542.48
corr(u i, X) = 0 (assumed) Prob > chi2 = 0.0000
--------------------------------------------------------------------

lcrmrte | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------+--------------------------------------------------------

lprbarr | -.4141383 .2210496 -1.87 0.061 -.8473875 .0191109
lpolpc | .5049461 .2277778 2.22 0.027 .0585098 .9513824

lprbconv | -.3432506 .1324648 -2.59 0.010 -.6028768 -.0836244
lprbpris | -.1900467 .0733392 -2.59 0.010 -.333789 -.0463045
lavgsen | -.0064389 .0289407 -0.22 0.824 -.0631617 .0502838
ldensity | .4343449 .0711496 6.10 0.000 .2948943 .5737956

lwcon | -.0042958 .0414226 -0.10 0.917 -.0854826 .0768911
lwtuc | .0444589 .0215448 2.06 0.039 .0022318 .0866859
lwtrd | -.0085579 .0419829 -0.20 0.838 -.0908428 .073727
lwfir | -.0040305 .0294569 -0.14 0.891 -.0617649 .0537038
lwser | .0105602 .0215823 0.49 0.625 -.0317403 .0528608
lwmfg | -.201802 .0839373 -2.40 0.016 -.3663161 -.0372878
lwfed | -.2134579 .2151046 -0.99 0.321 -.6350551 .2081393
lwsta | -.0601232 .1203149 -0.50 0.617 -.295936 .1756896
lwloc | .1835363 .1396775 1.31 0.189 -.0902265 .4572992

lpctymle | -.1458703 .2268086 -0.64 0.520 -.5904071 .2986664
lpctmin | .1948763 .0459385 4.24 0.000 .1048384 .2849141

west | -.2281821 .101026 -2.26 0.024 -.4261894 -.0301747
central | -.1987703 .0607475 -3.27 0.001 -.3178332 -.0797075
urban | -.2595451 .1499718 -1.73 0.084 -.5534844 .0343942
d82 | .0132147 .0299924 0.44 0.660 -.0455692 .0719987
d83 | -.0847693 .032001 -2.65 0.008 -.1474901 -.0220485
d84 | -.1062027 .0387893 -2.74 0.006 -.1822284 -.0301769
d85 | -.0977457 .0511681 -1.91 0.056 -.1980334 .002542
d86 | -.0719451 .0605819 -1.19 0.235 -.1906835 .0467933
d87 | -.0396595 .0758531 -0.52 0.601 -.1883289 .1090099
cons | -.4538501 1.702983 -0.27 0.790 -3.791636 2.883935

-----------+--------------------------------------------------------
sigma u | .21455964
sigma e | .14923892
rho | .67394413 (fraction of variance due to u i)

--------------------------------------------------------------------
Instrumented: lprbarr lpolpc
Instruments: lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd

lwfir lwser lwmfg lwfed lwsta lwloc lpctymle
lpctmin west
central urban d82 d83 d84 d85 d86 d87 ltaxpc lmix
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(xtreg,re ec2sls) and the results are summarized in Table 7.1. All the deterrent variables are
significant with slightly higher elasticities in absolute value than those reported by fixed effects:
−0.413 for the probability of arrest as compared to −0.355; −0.323 for the probability of
conviction given arrest as compared to −0.282; −0.186 for the probability of imprisonment
given conviction as compared to −0.173. The sentence severity variable is still insignificant
and police per capita is still positive and significant. Manufacturing wage is negative and
significant and percent minority is positive and significant. Obtaining an estimate of the last
coefficient is an advantage of EC2SLS over the fixed effects estimators, because it allows us
to recapture estimates of variables that were invariant across time and wiped out by the fixed
effects transformation, see also Hausman and Taylor (1981) and section 7.4. Table 7.3 gives the
random effects (G2SLS) estimator described in (7.18) using (xtreg,re). G2SLS gives basically
the same results as EC2SLS but the standard errors are higher. Remember that EC2SLS uses
more instruments than G2SLS. Problem 04.1.1 in Econometric Theory by Baltagi (2004)
suggests a Hausman test based on the difference between fixed effects 2SLS and random
effects 2SLS. For the crime data, this yields a Hausman statistic of 19.50 which is distributed
as χ2(22) and is insignificant with a p-value of 0.614. This does not reject the null hypothesis
that EC2SLS yields a consistent estimator. This can be computed using the Hausman command
after storing the EC2SLS and FE2SLS estimates. Recall that the random effects estimator was
rejected by Cornwell and Trumbull (1994) based on the standard Hausman (1978) test. This was
based on the contrast between fixed effects and random effects assuming that the endogeneity
comes entirely from the correlation between the county effects and the explanatory variables.
This does not account for the endogeneity of the conventional simultaneous equation type
between police per capita and the probability of arrest and the crime rate. This alternative
Hausman test based on the contrast between fixed effects 2SLS and EC2SLS failed to reject
the null hypothesis. This result should be tempered by the fact that FE2SLS is imprecise for
this application and its consistency depends on the legitimacy of the instruments chosen by
CT. We also ran the first stage regressions to check for weak instruments. For the probability
of arrest, the F-statistic of the fixed effects first-stage regression was 15.6 as compared to
4.62 for the between first stage regression. Similarly, for the police per capita, the F-statistic
of the fixed effects first-stage regression was 9.27 as compared to 2.60 for the between first
stage regression. This indicates that these instruments may be weaker in the between first stage
regressions (for between 2SLS) than in the fixed effects first stage regressions (for fixed effects
2SLS).

7.3 SYSTEM ESTIMATION

Consider the system of identified equations:

y = Zδ + u (7.20)

where y′ = (y′
1, . . . , y′

M ), Z = diag[Z j ], δ′ = (δ′
1, . . . , δ

′
M ) and u′ = (u′

1, . . . , u′
M ) with Z j =

[Y j , X j ] of dimension N T × (g j + k j ), for j = 1, . . . , M . In this case, there are g j included
right-hand side Y j and k j included right-hand side X j . This differs from the SUR model only in
the fact that there are right-hand side endogenous variables in the system of equations. For the
one-way error component model, the disturbance of the j th equation u j is given by (6.2) and
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� jl = E(u j u′
l) is given by (6.4) as in the SUR case. Once again, the covariance matrix between

the disturbances of different equations has the same error component form. Except now, there
are additional cross-equations variance components to be estimated. The variance–covariance
matrix of the set of M structural equations � = E(uu′) is given by (6.5) and �−1/2 is given
by (6.8). Premultiplying (7.20) by (IM ⊗ Q) yields

ỹ = Z̃δ + ũ (7.21)

where ỹ = (IM ⊗ Q)y, Z̃ = (IM ⊗ Q)Z and ũ = (IM ⊗ Q)u. Performing 3SLS on (7.21)
with (IM ⊗ X̃ ) as the set of instruments, where X̃ = Q X , one gets the Within 3SLS esti-
mator:

δ̃W3SLS = [Z̃ ′(
−1
ν ⊗ PX̃ )Z̃ ]−1[Z̃ ′(
−1

ν ⊗ PX̃ )̃y] (7.22)

Similarly, transforming (7.20) by (IM ⊗ P) yields

ȳ = Z̄δ + ū (7.23)

where ȳ = (IM ⊗ P)y, Z̄ = (IM ⊗ P)Z and ū = (IM ⊗ P)u. Performing 3SLS on the trans-
formed system (7.23) using (IM ⊗ X̄ ) as the set of instruments, where X̄ = P X , one gets the
Between 3SLS estimator:

δ̂B3SLS = [Z̄ ′(
−1
1 ⊗ PX̄ )Z̄ ]−1[Z̄ ′(
−1

1 ⊗ PX̄ )ȳ] (7.24)

Next, we stack the two transformed systems given in (7.21) and (7.23) after premultiplying
by (IM ⊗ X̃ ′) and (IM ⊗ X̄ ′), respectively. Then we perform GLS noting that δ is the same
for these two transformed systems (see problem 7.5). The resulting estimator of δ is the error
components three-stage least squares (EC3SLS) given by Baltagi (1981b):

δ̂EC3SLS = [Z̃ ′(
−1
ν ⊗ PX̃ )Z̃ + Z̄ ′(
−1

1 ⊗ PX̄ )Z̄ ]−1

×[Z̃ ′(
−1
ν ⊗ PX̃ )̃y + Z̄ ′(
−1

1 ⊗ PX̄ )ȳ] (7.25)

Note that δ̂EC3SLS can also be written as a matrix-weighted average of δ̂W3SLS and δ̂B3SLS as
follows:

δ̂EC3SLS = W1̂δW3SLS + W2̂δB3SLS (7.26)

with

W1 = [Z̃ ′(
−1
ν ⊗ PX̃ )Z̃ + Z̄ ′(
−1

1 ⊗ PX̄ )Z̄ ]−1[Z̃ ′(
−1
ν ⊗ PX̃ )Z̃ ]

and

W2 = [Z̃ ′(
−1
ν ⊗ PX̃ )Z̃ + Z̄ ′(
−1

1 ⊗ PX̄ )Z̄ ]−1[Z̄ ′(
−1
1 ⊗ PX̄ )Z̄ ]

Consistent estimates of 
ν and 
1 can be obtained as in (7.13) and (7.14) using W2SLS and
B2SLS residuals with

σ̂ 2
v jl

= (y j − Z j δ̃ j,W2SLS)′ Q(yl − Zl̃δl,W2SLS)/N (T − 1) (7.27)

σ̂ 2
1 jl

= (y j − Z j δ̂ j,B2SLS)′ P(yl − Zl̂δl,B2SLS)/N (7.28)

One should check whether 
̂µ = (
̂1 − 
̂ν)/T is positive definite.
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Using �−1/2 from (6.8), one can transform (7.20) to get

y∗ = Z∗δ + u∗ (7.29)

with y∗ = �−1/2 y, Z∗ = �−1/2 Z and u∗ = �−1/2u. For an arbitrary set of instruments A, the
3SLS estimator of (7.29) becomes

δ̂3SLS = (Z*′ PA Z*)−1 Z*′ PA y* (7.30)

Using the results of White (1986), the optimal set of instruments is

X* = �−1/2(IM ⊗ X ) = (
−1/2
ν ⊗ Q X ) + (
−1/2

1 ⊗ P X )

Substituting A = X* in (7.30), one gets the efficient three-stage least squares (E3SLS) esti-
mator:

δ̂E3SLS = (Z*′ PX* Z*)−1 Z*′ PX* y* (7.31)

This is not the G3SLS estimator suggested by Balestra and Varadharajan-Krishnakumar (1987).
In fact, Balestra and Varadharajan-Krishnakumar (1987) suggest using

A = �1/2 diag[�−1
j j ](IM ⊗ X )

= 
1/2
ν diag

(
1

σ 2
ν j j

)
⊗ X̃ + 


1/2
1 diag

(
1

σ 2
1 j j

)
⊗ X̄ (7.32)

Substituting this A in (7.30) yields the G3SLS estimator of δ. So, how are G3SLS, EC3SLS
and E3SLS related? Baltagi and Li (1992c) show that Baltagi’s (1981b) EC3SLS estimator
can be obtained from (7.30) with A = [IM ⊗ X̃ , IM ⊗ X̄ ]. From this it is clear that the set of
instruments [IM ⊗ X̃ , IM ⊗ X̄ ] used by Baltagi (1981b) spans the set of instruments [
−1/2

ν ⊗
X̃ + 


−1/2
1 ⊗ X̄ ] needed for E3SLS. In addition, we note without proof that Baltagi and Li

(1992c) show that δ̂EC3SLS and δ̂E3SLS yield the same asymptotic variance–covariance matrix.
Problem 7.6 shows that Baltagi’s (1981b) EC3SLS estimator has redundant instruments with
respect to those used by the E3SLS estimator. Therefore, using White’s (1984) terminology,
the extra instruments used by Baltagi (1981b) do not yield extra gains in asymptotic efficiency.
However, Baltagi and Li (1992c) also show that both EC3SLS and E3SLS are asymptotically
more efficient than the G3SLS estimator corresponding to the set of instruments given by
(7.32). In applications, it is easy to obtain EC3SLS using a standard 3SLS package.

Step 1. Obtain W2SLS and B2SLS estimates of each structural equation as described in the
first step of computing EC2SLS.

Step 2. Compute estimates of 
̂1 and 
̂ν as described in (7.27) and (7.28).
Step 3. Obtain the Cholesky decomposition of 
̂−1

1 and 
̂−1
ν and use those instead of 
̂

−1/2
1

and 
̂
−1/2
ν in the transformation described in (7.29), i.e., obtain y∗, Z∗ and X∗ as

described below (7.30).
Step 4. Apply 3SLS to this transformed system (7.29) using as a set of instruments A = X∗

or A = [IM ⊗ X̃ , IM ⊗ X̄ ], i.e., run 3SLS of y∗ on Z∗ using as instruments X∗ or
[IM ⊗ X̃ , IM ⊗ X̄ ]. These yield (7.31) and (7.25), respectively. The computations are
again easy, requiring simple transformations and a 3SLS package.

Baltagi (1981b) shows that EC3SLS reduces to EC2SLS when the disturbances of the
different structural equations are uncorrelated with each other, but not necessarily when all the
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structural equations are just identified. This is different from the analogous conditions between
2SLS and 3SLS in the classical simultaneous equations model (see problem 7.7).

Baltagi (1984) also performs Monte Carlo experiments on a two-equation simultaneous
model with error components and demonstrates the efficiency gains in terms of mean squared
error in performing EC2SLS and EC3SLS over the standard simultaneous equation counter-
parts, 2SLS and 3SLS. EC2SLS and EC3SLS also performed better than a two- or three-stage
variance components method suggested by Maddala (1977) where right-hand side endogenous
variables are replaced by their predicted values from the reduced form and the standard error
component GLS is performed in the second step. Also, Baltagi (1984) demonstrates that better
estimates of the variance components do not necessarily imply better estimates of the structural
or reduced form parameters.3 Mátyás and Lovrics (1990) performed Monte Carlo experiments
on a just identified two-equation static model and compared OLS, Within-2SLS, true EC2SLS
and a feasible EC2SLS for various generated exogenous variables and a variety of N and T .
They recommend the panel data estimators as long as N and T are both larger than 15. Prucha
(1985) derives the full information maximum likelihood (FIML) estimator of the simultane-
ous equation model with error components assuming normality of the disturbances. Prucha
shows that this FIML estimator has an instrumental variable representation. The instrumental
variable form of the normal equations of the FIML estimator is used to generate a wide class
of instrumental variable estimators. Prucha also establishes the existence of wide asymptotic
equivalence classes of full and limited information estimators of which Baltagi’s EC2SLS and
EC3SLS are members. Balestra and Varadharajan-Krishnakumar (1987) derive the limiting
distributions of both the coefficient estimators and covariance estimators of the FIML method
for the SEM with error components. Krishnakumar (1988) provides a useful summary of the
simultaneous equations with error components literature, which is updated in her chapter in
Mátyás and Sevestre (1996).

For an application of Within-2SLS to estimate regional supply and demand functions for
the Southern Pine lumber industry, see Shim (1982). See Nguyen and Bernier (1988) for
an application of Within-2SLS to a system of simultaneous equations which examines the
influence of a firm’s market power on its risk level using Tobin’s q. See Baltagi and Blien
(1998) for an application of Within-2SLS to the estimation of a wage curve for Germany
using data for 142 labor market regions over the period 1981–90. Briefly, the wage curve
describes the negative relationship between the local unemployment rate and the level of wages.
Baltagi and Blien (1998) find that ignoring endogeneity of the local employment rate yields
results in favor of the wage curve only for younger and less qualified workers. Accounting for
endogeneity of the unemployment rate yields evidence in favor of the wage curve across all
types of workers. In particular, the wages of less qualified workers are more responsive to local
unemployment rates than the wages of more qualified workers. Also, the wages of men are
slightly more responsive to local unemployment rates than the wages of women. Applications
of EC2SLS and EC3SLS include: (i) an econometric rational-expectations macroeconomic
model for developing countries with capital controls (see Haque, Lahiri and Montiel, 1993),
and (ii) an econometric model measuring income and price elasticities of foreign trade for
developing countries (see Kinal and Lahiri, 1993).

7.4 THE HAUSMAN AND TAYLOR ESTIMATOR

Let us reconsider the single equation estimation case but now focus on endogeneity occurring
through the unobserved individual effects. Examples where µi and the explanatory variables
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may be correlated include an earnings equation, where the unobserved individual ability may be
correlated with schooling and experience; also a production function, where managerial ability
may be correlated with the inputs. Mundlak (1978) considered the one-way error component
regression model in (2.5) but with the additional auxiliary regression

µi = X̄ ′
i.π + εi (7.33)

where εi ∼ IIN(0, σ 2
ε ) and X̄ ′

i. is a 1 × K vector of observations on the explanatory variables
averaged over time. In other words, Mundlak assumed that the individual effects are a linear
function of the averages of all the explanatory variables across time. These effects are uncor-
related with the explanatory variables if and only if π = 0. Mundlak (1978) assumed, without
loss of generality, that the X are deviations from their sample mean. In vector form, one can
write (7.33) as

µ = Z ′
µ Xπ/T + ε (7.34)

where µ′ = (µ1, . . . , µN ), Zµ = IN ⊗ ιT and ε′ = (ε1, . . . , εN ). Substituting (7.34) in (2.5),
with no constant, one gets

y = Xβ + P Xπ + (Zµε + ν) (7.35)

where P = IN ⊗ J̄T . Using the fact that the ε and the ν are uncorrelated, the new error in
(7.35) has zero mean and variance–covariance matrix

V = E(Zµε + ν)(Zµε + ν)′ = σ 2
ε (IN ⊗ JT ) + σ 2

ν IN T (7.36)

Using partitioned inverse, one can verify (see problem 7.8), that GLS on (7.35) yields

β̂GLS = β̃Within = (X ′ Q X )−1 X ′ Qy (7.37)

and

π̂GLS = β̂Between − β̃Within = (X ′ P X )−1 X ′ Py − (X ′ Q X )−1 X ′ Qy (7.38)

with

var(π̂GLS) = var(̂βBetween) + var(̃βWithin)

= (T σ 2
ε + σ 2

ν )(X ′ P X )−1 + σ 2
ν (X ′ Q X )−1 (7.39)

Therefore, Mundlak (1978) showed that the best linear unbiased estimator of (2.5) becomes the
fixed effects (Within) estimator once these individual effects are modeled as a linear function
of all the Xit as in (7.33). The random effects estimator on the other hand is biased because
it ignores (7.33). Note that Hausman’s test based on the Between minus Within estimators is
basically a test for H0 : π = 0 and this turns out to be another natural derivation for the test
considered in Chapter 4, namely,

π̂ ′
GLS(var(π̂ ′

GLS))−1π̂GLS
H0→ χ2

K

Mundlak’s (1978) formulation in (7.35) assumes that all the explanatory variables are related
to the individual effects. The random effects model on the other hand assumes no correla-
tion between the explanatory variables and the individual effects. The random effects model
generates the GLS estimator, whereas Mundlak’s formulation produces the Within estimator.
Instead of this “all or nothing” correlation among the X and the µi , Hausman and Taylor (1981)
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consider a model where some of the explanatory variables are related to the µi . In particular,
they consider the following model:

yit = Xitβ + Ziγ + µi + νi t (7.40)

where the Zi are cross-sectional time-invariant variables. Hausman and Taylor (1981), hereafter
HT, split X and Z into two sets of variables: X = [X1; X2] and Z = [Z1; Z2] where X1

is n × k1, X2 is n × k2, Z1 is n × g1, Z2 is n × g2 and n = N T . X1 and Z1 are assumed
exogenous in that they are not correlated with µi , and νi t while X2 and Z2 are endogenous
because they are correlated with the µi , but not the νi t . The Within transformation would
sweep the µi and remove the bias, but in the process it would also remove the Zi and hence the
Within estimator will not give an estimate of γ . To get around that, HT suggest premultiplying
the model by �−1/2 and using the following set of instruments: A0 = [Q, X1, Z1], where
Q = IN T − P and P = (IN ⊗ J̄T ). Breusch, Mizon and Schmidt (1989), hereafter BMS, show
that this set of instruments yields the same projection and is therefore equivalent to another set,
namely AHT = [Q X1, Q X2, P X1, Z1]. The latter set of instruments AHT is feasible, whereas
A0 is not.4 The order condition for identification gives the result that k1 the number of variables
in X1 must be at least as large as g2 the number of variables in Z2. Note that X̃1 = Q X1, X̃2 =
Q X2, X̄1 = P X1 and Z1 are used as instruments. Therefore X1 is used twice, once as averages
and another time as deviations from these averages. This is an advantage of panel data allowing
instruments from within the model. Note that the Within transformation wipes out the Zi and
does not allow the estimation of γ . In order to get consistent estimates of γ, HT propose
obtaining the Within residuals and averaging them over time

d̂i = ȳi. − X̄ ′
i.β̃W (7.41)

Then, (7.40) averaged over time can be estimated by running 2SLS of d̂i on Zi with the set of
instruments A = [X1, Z1]. This yields

γ̂2SLS = (Z ′ PA Z )−1 Z ′ PAd̂ (7.42)

where PA = A(A′ A)−1 A′. It is clear that the order condition has to hold (k1 ≥ g2) for (Z ′ PA Z )
to be nonsingular. Next, the variance components estimates are obtained as follows:

σ̃ 2
ν = ỹ′ P̄X̃ ỹ/N (T − 1) (7.43)

where ỹ = Qy, X̃ = Q X, P̄A = I − PA and

σ̃ 2
1 = (yit − Xit β̃W − Zi γ̂2SLS)′ P(yit − Xit β̃W − Zi γ̂2SLS)

N
(7.44)

This last estimate is based upon an N T vector of residuals. Once the variance components
estimates are obtained, the model in (7.40) is transformed using �̂−1/2 as follows:

�̂−1/2 yit = �̂−1/2 Xitβ + �̂−1/2 Ziγ + �̂−1/2uit (7.45)

The HT estimator is basically 2SLS on (7.45) using AHT = [X̃ , X̄1, Z1] as a set of instruments.

(1) If k1 < g2, then the equation is under-identified. In this case β̂HT = β̃W and γ̂HT does not
exist.

(2) If k1 = g2, then the equation is just-identified. In this case, β̂HT = β̃W and γ̂HT = γ̂2SLS

given by (7.42).
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(3) If k1 > g2, then the equation is over-identified and the HT estimator obtained from (7.45)
is more efficient than the Within estimator.

A test for over-identification is obtained by computing

m̂ = q̂ ′[var(̃βW ) − var(̂βHT)]−q̂ (7.46)

with q̂ = β̂HT − β̃W and σ̂ 2
ν m̂

H0→ χ2
l where l = min[k1 − g2, N T − K ].

Note that y∗ = σ̂ν�̂
−1/2 y has a typical element y∗

i t = yit − θ̂ ȳi. where θ̂ = 1 − σ̂ν/σ̂1 and
similar terms exist for X∗

i t and Z∗
i . In this case 2SLS on (7.45) yields(

β̂

γ̂

)
=

[(
X∗′

Z∗′

)
PA(X∗, Z∗)

]−1 (
X∗′

Z∗′

)
PA y∗ (7.47)

where PA is the projection matrix on AHT = [X̃ , X̄1, Z1].
Amemiya and MaCurdy (1986), hereafter AM, suggest a more efficient set of instruments

AAM = [Q X1, Q X2, X∗
1, Z1] where X∗

1 = X0
1 ⊗ ιT and

X0
1 =

 X11 X12 . . . X1T
...

... . . .
...

X N1 X N2 . . . X N T

 (7.48)

is an (N × k1T ) matrix. So X1 is used (T + 1) times, once as X̃1 and T times as X∗
1 . The

order condition for identification is now more likely to be satisfied (T k1 > g2). However,
this set of instruments requires a stronger exogeneity assumption than that of Hausman and
Taylor (1981). The latter requires only uncorrelatedness of the mean of X1 from the µi ,
i.e.

plim

(
1

N

N∑
i=1

X̄1i.µi

)
= 0

while Amemiya and MaCurdy (1986) require

plim

(
1

N

N∑
i=1

X1i tµi

)
= 0 for t = 1, . . . , T

i.e. uncorrelatedness at each point in time. Breusch et al. (1989) suggest yet a more efficient
set of instruments

ABMS = [Q X1, Q X2, P X1, (Q X1)∗, (Q X2)∗, Z1]

so that X1 is used (T + 1) times and X2 is used T times. This requires even more exogene-
ity assumptions, i.e. X̃2 = Q X2 should be uncorrelated with the µi effects. The BMS order
condition becomes T k1 + (T − 1)k2 ≥ g2.

For the Hausman and Taylor (1981) model given in (7.40), Metcalf (1996) shows that using
less instruments may lead to a more powerful Hausman specification test. Asymptotically,
more instruments lead to more efficient estimators. However, the asymptotic bias of the less
efficient estimator will also be greater as the null hypothesis of no correlation is violated.
Metcalf argues that if the bias increases at the same rate as the variance (as the null is violated)
for the less efficient estimator, then the power of the Hausman test will increase. This is due
to the fact that the test statistic is linear in variance but quadratic in bias.
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Computational Note

The number of instruments used by the AM and BMS procedures can increase rapidly as T and
the number of variables in the equation get large. For large N panels, small T and reasonable k,
this should not be a problem. However, even for T = 7, k1 = 4 and k2 = 5 as in the empirical
illustration used in the next section, the number of additional instruments used by HT is 4 as
compared to 28 for AM and 58 for BMS.5

7.5 EMPIRICAL EXAMPLE: EARNINGS EQUATION
USING PSID DATA

Cornwell and Rupert (1988) apply these three instrumental variable (IV) methods to a returns
to schooling example based on a panel of 595 individuals observed over the period 1976–82
and drawn from the Panel Study of Income Dynamics (PSID). A description of the data is given
in Cornwell and Rupert (1988) and is put on the Wiley web site as Wage.xls. In particular,
log wage is regressed on years of education (ED), weeks worked (WKS), years of full-time
work experience (EXP), occupation (OCC = 1, if the individual is in a blue-collar occupation),
residence (SOUTH = 1, SMSA = 1, if the individual resides in the South, or in a standard
metropolitan statistical area), industry (IND = 1, if the individual works in a manufacturing
industry), marital status (MS = 1, if the individual is married), sex and race (FEM = 1,
BLK = 1, if the individual is female or black), union coverage (UNION = 1, if the individual’s
wage is set by a union contract) and time dummies to capture productivity and price level
effects. Baltagi and Khanti-Akom (1990) replicate this study and some of their results in table
II are reproduced in Table 7.4. The conventional GLS indicates that an additional year of
schooling produces a 10% wage gain. But conventional GLS does not account for the possible
correlation of the explanatory variables with the individual effects. The Within transformation
eliminates the individual effects and all the Zi variables, and the resulting Within estimator
is consistent even if the individual effects are correlated with the explanatory variables. The
Within estimates are quite different from those of GLS, and the Hausman test based on the
difference between these two estimates yields χ2

9 = 5075 which is significant. This rejects
the hypothesis of no correlation between the individual effects and the explanatory variables.
This justifies the use of the IV methods represented as HT and AM in Table 7.4. We let X1 =
(OCC, SOUTH, SMSA, IND), X2 = (EXP, EXP2, WKS, MS, UNION), Z1 = (FEM, BLK)
and Z2 = (ED). Table 7.5 reproduces the Hausman and Taylor (1981) estimates using the
(xthtaylor) command in Stata. The coefficient of ED is estimated as 13.8%, 38% higher than
the estimate obtained using GLS (10%). A Hausman test based on the difference between HT
and the Within estimator yields χ2

3 = 5.26, which is not significant at the 5% level. There are
three degrees of freedom since there are three over-identifying conditions (the number of X1

variables minus the number of Z2 variables).
Therefore, we cannot reject that the set of instruments X1 and Z1 chosen are legitimate.

Table 7.6 reproduces the Amemiya and MaCurdy (1986) estimates using the (xthtaylor) com-
mand in Stata with the (amacurdy) option. These estimates are close to the HT estimates. The
additional exogeneity assumptions needed for the AM estimator are not rejected using a Haus-
man test based on the difference between the HT and AM estimators. This yields χ2

13 = 14.67,
which is not significant at the 5% level. The BMS estimates (not reported here but available in
Baltagi and Khanti-Akom (1990)) are similar to those of AM. Again, the additional exogeneity
assumptions needed for the BMS estimator are not rejected using a Hausman test based on the
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Table 7.4 Dependent Variable: Log Wage*

GLS Within HT AM

Constant 4.264 — 2.913 2.927
(0.098) (0.284) (0.275)

WKS 0.0010 0.0008 0.0008 0.0008
(0.0008) (0.0006) (0.0006) (0.0006)

SOUTH − 0.017 −0.002 0.007 0.007
(0.027) (0.034) (0.032) (0.032)

SMSA − 0.014 −0.042 −0.042 −0.042
(0.020) (0.019) (0.019) (0.019)

MS − 0.075 −0.030 −0.030 −0.030
(0.023) (0.019) (0.019) (0.019)

EXP 0.082 0.113 0.113 0.113
(0.003) (0.002) (0.002) (0.002)

EXP2 −0.0008 −0.0004 −0.0004 −0.0004
(0.00006) (0.00005) (0.00005) (0.00005)

OCC −0.050 −0.021 −0.021 −0.021
(0.017) (0.014) (0.014) (0.014)

IND 0.004 0.019 0.014 0.014
(0.017) (0.015) (0.015) (0.015)

UNION 0.063 0.033 0.033 0.032
(0.017) (0.015) (0.015) (0.015)

FEM −0.339 — −0.131 −0.132
(0.051) (0.127) (0.127)

BLK −0.210 — −0.286 −0.286
(0.058) (0.156) (0.155)

ED 0.100 — 0.138 0.137
(0.006) (0.021) (0.021)

χ 2
9 = 5075 χ2

3 = 5.26 χ 2
13 = 14.67

* X2 (OCC, SOUTH, SMSA, IND), Z1 = (FEM, BLK).
Source: Baltagi and Khanti-Akom (1990). Reproduced by permission of John Wiley & Sons Ltd.

difference between the AM and BMS estimators. This yields χ2
13 = 9.59, which is not signi-

ficant at the 5% level. Bowden and Turkington (1984) argue that canonical correlations are a
useful device for comparing different sets of instruments. In fact, as far as asymptotic efficiency
is concerned, one should use instruments for which the canonical correlations with the regres-
sors are maximized. Baltagi and Khanti-Akom (1990) compute the canonical correlations for
these three sets of instruments. The geometric average of the canonical correlations (which is
a measure of the squared correlations between the set of instruments and the regressors) gives
an idea of the gains in asymptotic efficiency for this particular data set as one moves from AHT

to AAM to ABMS. These are 0.682 for HT, 0.740 for AM and 0.770 for BMS.
For another application of the HT, AM and BMS estimators to a study of the impact of health

on wages, see Contoyannis and Rice (2001). This paper considers the effect of self-assessed
general and psychological health on hourly wages using longitudinal data from the six waves
of the British Household Panel Survey. Contoyannis and Rice show that reduced psychological
health reduces the hourly wage for males, while excellent self-assessed health increases the
hourly wage for females. Recently, Egger and Pfaffermayr (2004b) used a Hausman–Taylor
SUR model to study the effects of distance as a common determinant of exports and foreign
direct investment (FDI) in a three-factor New Trade Theory model. They used industry-level
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Table 7.5 Hausman and Taylor Estimates of a Mincer Wage Equation

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk
ed, endog (exp exp2 wks ms union ed)

Hausman-Taylor estimation Number of obs = 4165
Group variable (i): id Number of groups = 595

Obs per group: min = 7
avg = 7
max = 7

Random effects u i ~ i.i.d. Wald chi2(12) = 6891.87
Prob > chi2 = 0.0000

--------------------------------------------------------------------
lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

------------+-------------------------------------------------------
TVexogenous |

occ|-.0207047 .0137809 -1.50 0.133 -.0477149 .0063055
south| .0074398 .031955 0.23 0.816 -.0551908 .0700705
smsa|-.0418334 .0189581 -2.21 0.027 -.0789906-.0046761
ind| .0136039 .0152374 0.89 0.372 -.0162608 .0434686

TVendogenous|
exp| .1131328 .002471 45.79 0.000 .1082898 .1179758
exp2|-.0004189 .0000546 -7.67 0.000 -.0005259-.0003119
wks| .0008374 .0005997 1.40 0.163 -.0003381 .0020129
ms|-.0298508 .01898 -1.57 0.116 -.0670508 .0073493

union| .0327714 .0149084 2.20 0.028 .0035514 .0619914
TIexogenous |

fem|-.1309236 .126659 -1.03 0.301 -.3791707 .1173234
blk|-.2857479 .1557019 -1.84 0.066 -.5909179 .0194221

TIendogenous|
ed| .137944 .0212485 6.49 0.000 .0962977 .1795902

|
cons| 2.912726 .2836522 10.27 0.000 2.356778 3.468674

------------+-------------------------------------------------------
sigma u| .94180304
sigma e| .15180273

rho| .97467788 (fraction of variance due to u i)
--------------------------------------------------------------------
note: TV refers to time-varying; TI refers to time-invariant.

data of bilateral outward FDI stocks and exports of the USA and Germany to other countries
between 1989 and 1999. They find that distance exerts a positive and significant impact on
bilateral stocks of outward FDI of both the USA and Germany. However, the effect of dis-
tance on exports is much smaller in absolute size and significantly negative for the USA but
insignificant for Germany.

7.6 EXTENSIONS

Cornwell et al. (1992) consider a simultaneous equation model with error components that
distinguishes between two types of exogenous variables, namely singly exogenous and doubly
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Table 7.6 Amemiya and MaCurdy Estimates of a Mincer Wage Equation

. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk
ed, endog (exp exp2 wks ms union ed) amacurdy

Amemiya-MaCurdy estimation Number of obs = 4165
Group variable (i): id Number of groups = 595

Obs per group: min = 7
avg = 7
max = 7

Random effects u i ~ i.i.d. Wald chi2(12) = 6879.20
Prob > chi2 = 0.0000

--------------------------------------------------------------------
lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

------------+-------------------------------------------------------
TVexogenous |

occ| -.0208498 .0137653 -1.51 0.130 -.0478292 .0061297
south| .0072818 .0319365 0.23 0.820 -.0553126 .0698761
smsa| -.0419507 .0189471 -2.21 0.027 -.0790864 -.0048149
ind| .0136289 .015229 0.89 0.371 -.0162194 .0434771

TVendogenous|
exp| .1129704 .0024688 45.76 0.000 .1081316 .1178093
exp2| -.0004214 .0000546 -7.72 0.000 -.0005283 -.0003145
wks| .0008381 .0005995 1.40 0.162 -.0003368 .002013
ms| -.0300894 .0189674 -1.59 0.113 -.0672649 .0070861

union| .0324752 .0148939 2.18 0.029 .0032837 .0616667
TIexogenous |

fem| -.132008 .1266039 -1.04 0.297 -.380147 .1161311
blk| -.2859004 .1554857 -1.84 0.066 -.5906468 .0188459

TIendogenous|
ed| .1372049 .0205695 6.67 0.000 .0968894 .1775205

|
cons| 2.927338 .2751274 10.64 0.000 2.388098 3.466578

------------+-------------------------------------------------------
sigma u| .94180304
sigma e| .15180273

rho| .97467788 (fraction of variance due to u i)
--------------------------------------------------------------------
note: TV refers to time-varying; TI refers to time-invariant.

exogenous variables. A singly exogenous variable is correlated with the individual effects
but not with the remainder noise. These are given the subscript (2). On the other hand, a
doubly exogenous variable is uncorrelated with both the effects and the remainder disturbance
term. These are given the subscript (1). Cornwell et al. extend the results of HT, AM and
BMS by transforming each structural equation by its �−1/2 and applying 2SLS on the trans-
formed equation using A = [Q X, P B] as the set of instruments in (7.47). B is defined as
follows:

(1) BHT = [X (1), Z(1)] for the Hausman and Taylor (1981)-type estimator. This BHT is the set
of all doubly exogenous variables in the system.
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(2) BAM = [X∗
(1), Z(1)] for the Amemiya and MaCurdy (1986)-type estimator. The (∗) nota-

tion has been defined in (7.48).
(3) BBMS = [X∗

(1), Z(1), (Q X (2))∗] for the Breusch et al. (1989)-type estimator. They also de-
rive a similar set of instruments for the 3SLS analogue and give a generalized method
of moments interpretation to these estimators. Finally, they consider the possibility of a
different set of instruments for each equation, say A j = [Q X, P B j ] for the j th equation,
where for the HT-type estimator, B j consists of all doubly exogenous variables of equation
j (i.e. exogenous variables that are uncorrelated with the individual effects in equation j).
Wyhowski (1994) extends the HT, AM and BMS approaches to the two-way error com-
ponent model and gives the appropriate set of instruments. Revankar (1992) establishes
conditions for exact equivalence of instrumental variables in a simultaneous two-way
error component model.

Baltagi and Chang (2000) compare the performance of several single and system estimators
of a two-equation simultaneous model with unbalanced panel data. The Monte Carlo design
varies the degree of unbalancedness in the data and the variance components ratio due to the
individual effects. Many of the results obtained for the simultaneous equation error component
model with balanced data carry over to the unbalanced case. For example, both feasible EC2SLS
estimators considered performed reasonably well and it is hard to choose between them. Simple
ANOVA methods can still be used to obtain good estimates of the structural and reduced form
parameters even in the unbalanced panel data case. Replacing negative estimates of the variance
components by zero did not seriously affect the performance of the corresponding structural
or reduced form estimates. Better estimates of the structural variance components do not
necessarily imply better estimates of the structural coefficients. Finally, do not make the data
balanced to simplify the computations. The loss in root mean squared error can be huge.

Most applied work in economics has made the choice between the RE and FE estimators
based upon the standard Hausman (1978) test. This is based upon a contrast between the FE
and RE estimators. If this standard Hausman test rejects the null hypothesis that the conditional
mean of the disturbances given the regressors is zero, the applied researcher reports the FE
estimator. Otherwise, the researcher reports the RE estimator, see the discussion in Chapter
4 and the two empirical applications by Owusu-Gyapong (1986) and Cardellichio (1990).
Baltagi, Bresson and Pirotte (2003a) suggest an alternative pre-test estimator based on the
Hausman and Taylor (1981) model. This pre-test estimator reverts to the RE estimator if the
standard Hausman test based on the FE vs the RE estimators is not rejected. It reverts to
the HT estimator if the choice of strictly exogenous regressors is not rejected by a second
Hausman test based on the difference between the FE and HT estimators. Otherwise, this pre-
test estimator reverts to the FE estimator. In other words, this pre-test alternative suggests that
the researcher consider a Hausman–Taylor model where some of the variables, but not all, may
be correlated with the individual effects. Monte Carlo experiments were performed to compare
the performance of this pre-test estimator with the standard panel data estimators under various
designs. The estimators considered were: OLS, fixed effects (FE), random effects (RE) and
the Hausman–Taylor (HT) estimators. In one design, some regressors were correlated with the
individual effects, i.e., a Hausman–Taylor world. In another design, the regressors were not
allowed to be correlated with the individual effects, i.e., an RE world. Results showed that the
pre-test estimator is a viable estimator and is always second best to the efficient estimator. It
is second in RMSE performance to the RE estimator in an RE world and second to the HT
estimator in an HT world. The FE estimator is a consistent estimator under both designs but
its disadvantage is that it does not allow the estimation of the coefficients of the time-invariant
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regressors. When there is endogeneity among the regressors, Baltagi et al. (2003a) show that
there is substantial bias in OLS and the RE estimators and both yield misleading inference.
Even when there is no correlation between the individual effects and the regressors, i.e., in an
RE world, inference based on OLS can be seriously misleading. This last result was emphasized
by Moulton (1986).

NOTES

1. The analysis in this chapter can easily be extended to the two-way error component model; see the
problems at the end of this chapter and Baltagi (1981b).

2. As in the classical regression case, the variances of W2SLS have to be adjusted by the factor (N T −
k1 − g1 + 1)/[N (T − 1) − k1 − g1 + 1], whenever 2SLS is performed on the Within transformed
equation (see Pliskin, 1991). Note also that the set of instruments is X̃ and not X as emphasized in
(7.6).

3. This is analogous to the result found in the single equation error component literature by Taylor
(1980) and Baltagi (1981a).

4. Gardner (1998) shows how to modify the Hausman and Taylor (1981) instrumental variable estimator
to allow for unbalanced panels. This utilizes the �−1/2 transformation derived for the unbalanced
panel data model by Baltagi (1985), see equation (9.5), and the application of the IV interpretation
of the HT estimator by Breusch et al. (1989) given above.

5. Im et al. (1999) point out that for panel data models, the exogeneity assumptions imply many
more moment conditions than the standard random and fixed effects estimators use. Im et al. (1999)
provide the assumptions under which the efficient GMM estimator based on the entire set of available
moment conditions reduces to these simpler estimators. In other words, the efficiency of the simple
estimators is established by showing the redundancy of the moment conditions that they do not
use.

PROBLEMS

7.1 Verify that GLS on (7.7) yields (7.6) and GLS on (7.9) yields (7.8), the Within 2SLS and
Between 2SLS estimators of δ1, respectively.

7.2 Verify that GLS on (7.10) yields the EC2SLS estimator of δ1 given in (7.11) (see Baltagi,
1981b).

7.3 Show that A = [X̃ , X̄ ], B = [X*, X̃ ] and C = [X*, X̄ ] yield the same projection, i.e.
PA = PB = PC and hence the same EC2SLS estimator given by (7.11) (see Baltagi and
Li, 1992c).

7.4 Verify that 3SLS on (7.21) with (IM ⊗ X̃ ) as the set of instruments yields (7.22). Similarly,
verify that 3SLS on (7.23) with (IM ⊗ X̄ ) as the set of instruments yields (7.24). These
are the Within 3SLS and Between 3SLS estimators of δ1, respectively.

7.5 Verify that GLS on the stacked system (7.21) and (7.23) each premultiplied by (IM ⊗ X̃ ′)
and (IM ⊗ X̄ ′), respectively, yields the EC3SLS estimator of δ given in (7.25) (see Baltagi,
1981b).

7.6 (a) Prove that A = (IM ⊗ X̃ , IM ⊗ X̄ ) yields the same projection as B = (H ⊗ X̃ , G ⊗
X̄ ) or C = [(H ⊗ X̃ + G ⊗ X̄ ), H ⊗ X̃ ] or D = [H ⊗ X̃ + G ⊗ X̄ ), G ⊗ X̄ ] where
H and G are nonsingular M × M matrices (see Baltagi and Li, 1992c). Conclude
that these sets of instruments yield the same EC3SLS estimator of δ given by (7.25).

(b) Let H = 

−1/2
ν and G = 


−1/2
1 , and note that A is the set of instruments proposed

by Baltagi (1981b) while B is the optimal set of instruments X* defined below (7.30).
Conclude that H ⊗ X̃ is redundant in C and G ⊗ X̄ is redundant in D with respect
to the optimal set of instruments X*.
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7.7 (a) Consider a system of two structural equations with one-way error component distur-
bances. Show that if the disturbances between the two equations are uncorrelated,
then EC3SLS is equivalent to EC2SLS (see Baltagi, 1981b).

(b) Show that if this system of two equations with one-way error component disturbances
is just-identified, then EC3SLS does not necessarily reduce to EC2SLS (see Baltagi,
1981b).

7.8 (a) Using partitioned inverse, show that GLS on (7.35) yields β̂GLS = β̃Within and π̂GLS =
β̂Between − β̃Within as given in (7.37) and (7.38).

(b) Verify that var(π̂GLS) = var(̂βBetween) + var(̃βWithin) as given in (7.39).
7.9 For the two-way error component model given in (6.9) and the covariance matrix � jl

between the jth and lth equation disturbances given in (6.11):
(a) Derive the EC2SLS estimator for δ1 in (7.1).
(b) Derive the EC3SLS estimator for δ in (7.20) (Hint: See Baltagi, 1981b).
(c) Repeat problem 7.7 parts (a) and (b) for the two-way error component EC2SLS and

EC3SLS.
7.10 Using the Monte Carlo set-up for a two-equation simultaneous model with error com-

ponent disturbances, given in Baltagi (1984), compare EC2SLS and EC3SLS with the
usual 2SLS and 3SLS estimators that ignore the error component structure.

7.11 Using the Cornwell and Trumbull (1994) panel data set described in the empirical example
in section 7.1 and given on the Wiley web site as crime.dat, replicate Table 7.1 and the
associated test statistics.

7.12 Using the Cornwell and Rupert (1988) panel data set described in the empirical example
in section 7.4 and given on the Wiley web site as wage.xls, replicate Table 7.4 and the
associated test statistics.

7.13 A Hausman test based on the difference between fixed effects two-stage least squares and
error components two-stage least squares. This is based on problem 04.1.1 in Econo-
metric Theory by Baltagi (2004). Consider the first structural equation of a simultaneous
equation panel data model given in (7.1). Hausman (1978) suggests comparing the FE
and RE estimators in the classic panel data regression. With endogenous right-hand
side regressors like Y1 this test can be generalized to test H0 : E(u1 | Z1) = 0 based on
q̂1 = δ̃1,FE2SLS − δ̂1,EC2SLS where δ̃1,FE2SLS is defined in (7.6) and δ̂1,EC2SLS is defined in
(7.11).
(a) Show that under H0 : E(u1 | Z1) = 0, plim q̂1 = 0 and the asymptotic cov(̂q1,

δ̂1,EC2SLS) = 0.
(b) Conclude that var(̂q1) = var(̃δ1,FE2SLS)− var(̂δ1,EC2SLS), where var denotes the asymp-

totic variance. This is used in computing the Hausman test statistic given by
m1 = q̂ ′

1[var(̂q1)]−1q̂1. Under H0, m1 is asymptotically distributed as χ2
r , where r

denotes the dimension of the slope vector of the time-varying variables in Z1. This
can easily be implemented using Stata.

(c) Compute the usual Hausman test based on FE and RE and this alternative Hausman
test based on FE2SLS and EC2SLS for the crime data considered in problem 7.12.
What do you conclude?
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8

Dynamic Panel Data Models

8.1 INTRODUCTION

Many economic relationships are dynamic in nature and one of the advantages of panel data
is that they allow the researcher to better understand the dynamics of adjustment. See, for
example, Balestra and Nerlove (1966) on dynamic demand for natural gas, Baltagi and Levin
(1986) on dynamic demand for an addictive commodity like cigarettes, Holtz-Eakin (1988)
on a dynamic wage equation, Arellano and Bond (1991) on a dynamic model of employment,
Blundell et al. (1992) on a dynamic model of company investment, Islam (1995) on a dynamic
model for growth convergence, and Ziliak (1997) on a dynamic lifecycle labor supply model.
These dynamic relationships are characterized by the presence of a lagged dependent variable
among the regressors, i.e.

yit = δyi,t−1 + x ′
i tβ + uit i = 1, . . . , N ; t = 1, . . . , T (8.1)

where δ is a scalar, x ′
i t is 1 × K and β is K × 1. We will assume that the uit follow a one-way

error component model

uit = µi + νi t (8.2)

where µi ∼ IID(0, σ 2
µ) and νi t ∼ IID(0, σ 2

ν ) independent of each other and among themselves.
The dynamic panel data regression described in (8.1) and (8.2) is characterized by two sources
of persistence over time. Autocorrelation due to the presence of a lagged dependent variable
among the regressors and individual effects characterizing the heterogeneity among the indi-
viduals. In this chapter, we review some of the recent econometric studies that propose new
estimation and testing procedures for this model.

Let us start with some of the basic problems introduced by the inclusion of a lagged dependent
variable. Since yit is a function of µi , it immediately follows that yi,t−1 is also a function of µi .
Therefore, yi,t−1, a right-hand regressor in (8.1), is correlated with the error term. This renders
the OLS estimator biased and inconsistent even if the νi t are not serially correlated. See Sevestre
and Trognon (1985) for the magnitude of this asymptotic bias in dynamic error component
models. For the fixed effects (FE) estimator, the Within transformation wipes out the µi (see
Chapter 2), but (yi,t−1 − ȳi.−1) where ȳi.−1 = ∑T

t=2 yi,t−1/(T − 1) will still be correlated with
(νi t − ν̄i.) even if the νi t are not serially correlated. This is because yi,t−1 is correlated with ν̄i.

by construction. The latter average contains νi,t−1 which is obviously correlated with yi,t−1.
In fact, the Within estimator will be biased of O(1/T ) and its consistency will depend upon
T being large; see Nickell (1981). More recently, Kiviet (1995) derives an approximation for
the bias of the Within estimator in a dynamic panel data model with serially uncorrelated
disturbances and strongly exogenous regressors. Kiviet (1995) proposed a corrected Within
estimator that subtracts a consistent estimator of this bias from the original Within estimator.1

Therefore, for the typical labor panel where N is large and T is fixed, the Within estimator is
biased and inconsistent. It is worth emphasizing that only if T → ∞ will the Within estimator
of δ and β be consistent for the dynamic error component model. For macro panels, studying

135



JWBK024-08 JWBK024-Baltagi March 23, 2005 12:1 Char Count= 0

136 Econometric Analysis of Panel Data

for example long-run growth, the data covers a large number of countries N over a moderate
size T , see Islam (1995). In this case, T is not very small relative to N . Hence, some researchers
may still favor the Within estimator arguing that its bias may not be large. Judson and Owen
(1999) performed some Monte Carlo experiments for N = 20 or 100 and T = 5, 10, 20 and
30 and found that the bias in the Within estimator can be sizeable, even when T = 30. This
bias increases with δ and decreases with T . But even for T = 30, this bias could be as much
as 20% of the true value of the coefficient of interest.2

The random effects GLS estimator is also biased in a dynamic panel data model. In order
to apply GLS, quasi-demeaning is performed (see Chapter 2), and (yi,t−1 − θ ȳi.,−1) will be
correlated with (ui,t − θ ūi.,−1). An alternative transformation that wipes out the individual
effects is the first difference (FD) transformation. In this case, correlation between the prede-
termined explanatory variables and the remainder error is easier to handle. In fact, Anderson
and Hsiao (1981) suggested first differencing the model to get rid of the µi and then using
�yi,t−2 = (yi,t−2 − yi,t−3) or simply yi,t−2 as an instrument for �yi,t−1 = (yi,t−1 − yi,t−2).
These instruments will not be correlated with �νi t = νi,t − νi,t−1, as long as the νi t them-
selves are not serially correlated. This instrumental variable (IV) estimation method leads to
consistent but not necessarily efficient estimates of the parameters in the model because it
does not make use of all the available moment conditions (see Ahn and Schmidt, 1995), and
it does not take into account the differenced structure on the residual disturbances (�νi t ).
Arellano (1989) finds that for simple dynamic error components models, the estimator that
uses differences �yi,t−2 rather than levels yi,t−2 for instruments has a singularity point and
very large variances over a significant range of parameter values. In contrast, the estimator
that uses instruments in levels, i.e. yi,t−2, has no singularities and much smaller variances and
is therefore recommended. Arellano and Bond (1991) proposed a generalized method of mo-
ments (GMM) procedure that is more efficient than the Anderson and Hsiao (1982) estimator,
while Ahn and Schmidt (1995) derived additional nonlinear moment restrictions not exploited
by the Arellano and Bond (1991) GMM estimator. This literature is generalized and extended
by Arellano and Bover (1995) and Blundell and Bond (1998) to mention a few. In addition,
an alternative method of estimation of the dynamic panel data model is proposed by Keane
and Runkle (1992). This is based on the forward filtering idea in time-series analysis. We
focus on these studies and describe their respective contributions to the estimation and testing
of dynamic panel data models. This chapter concludes with recent developments and some
applications.

8.2 THE ARELLANO AND BOND ESTIMATOR

Arellano and Bond (1991) argue that additional instruments can be obtained in a dynamic
panel data model if one utilizes the orthogonality conditions that exist between lagged values
of yit and the disturbances νi t . Let us illustrate this with the simple autoregressive model with
no regressors:

yit = δyi,t−1 + uit i = 1, . . . , N ; t = 1, . . . , T (8.3)

where uit = µi + νi t with µi ∼ IID(0, σ 2
µ) and νi t ∼ IID(0, σ 2

ν ), independent of each other
and among themselves. In order to get a consistent estimate of δ as N → ∞ with T fixed, we
first difference (8.3) to eliminate the individual effects

yit − yi,t−1 = δ(yi,t−1 − yi,t−2) + (νi t − νi,t−1) (8.4)
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and note that (νi t − νi,t−1) is MA(1) with unit root. For t = 3, the first period we observe this
relationship, we have

yi3 − yi2 = δ(yi2 − yi1) + (νi3 − νi2)

In this case, yi1 is a valid instrument, since it is highly correlated with (yi2 − yi1) and not
correlated with (νi3 − νi2) as long as the νi t are not serially correlated. But note what happens
for t = 4, the second period we observe (8.4):

yi4 − yi3 = δ(yi3 − yi2) + (νi4 − νi3)

In this case, yi2 as well as yi1 are valid instruments for (yi3 − yi2), since both yi2 and yi1

are not correlated with (νi4 − νi3). One can continue in this fashion, adding an extra valid
instrument with each forward period, so that for period T , the set of valid instruments becomes
(yi1, yi2, . . . , yi,T −2).

This instrumental variable procedure still does not account for the differenced error term in
(8.4). In fact,

E(�νi �ν ′
i ) = σ 2

ν (IN ⊗ G) (8.5)

where �ν ′
i = (νi3 − νi2, . . . , νiT − νi,T −1) and

G =


2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


is (T − 2) × (T − 2), since �νi is MA(1) with unit root. Define

Wi =


[yi1] 0

[yi1, yi2]
. . .

0 [yi1, . . . , yi,T −2]

 (8.6)

Then, the matrix of instruments is W = [W ′
1, . . . , W ′

N ]′ and the moment equations described
above are given by E(W ′

i �νi ) = 0. These moment conditions have also been pointed out by
Holtz-Eakin (1988), Holtz-Eakin, Newey and Rosen (1988) and Ahn and Schmidt (1995).
Premultiplying the differenced equation (8.4) in vector form by W ′, one gets

W ′�y = W ′(�y−1)δ + W ′�ν (8.7)

Performing GLS on (8.7) one gets the Arellano and Bond (1991) preliminary one-step consis-
tent estimator

δ̂1 = [(�y−1)′W (W ′(IN ⊗ G)W )−1W ′(�y−1)]−1 (8.8)

×[(�y−1)′W (W ′(IN ⊗ G)W )−1W ′(�y)]
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The optimal GMM estimator of δ1 à la Hansen (1982) for N → ∞ and T fixed using only the
above moment restrictions yields the same expression as in (8.8) except that

W ′(IN ⊗ G)W =
N∑

i=1

W ′
i GWi

is replaced by

VN =
N∑

i=1

W ′
i (�νi )(�νi )

′Wi

This GMM estimator requires no knowledge concerning the initial conditions or the distribu-
tions of νi and µi . To operationalize this estimator, �ν is replaced by differenced residuals
obtained from the preliminary consistent estimator δ̂1. The resulting estimator is the two-step
Arellano and Bond (1991) GMM estimator:

δ̂2 = [(�y−1)′W V̂ −1
N W ′(�y−1)]−1[(�y−1)′W V̂ −1

N W ′(�y)] (8.9)

A consistent estimate of the asymptotic var(̂δ2) is given by the first term in (8.9),

v̂ar(̂δ2) = [(�y−1)′W V̂ −1
N W ′(�y−1)]−1 (8.10)

Note that δ̂1 and δ̂2 are asymptotically equivalent if the νi t are IID(0, σ 2
ν ).

8.2.1 Testing for Individual Effects in Autoregressive Models

Holtz-Eakin (1988) derives a simple test for the presence of individual effects in dynamic panel
data models. The basic idea of the test can be explained using the simple autoregressive model
given in (8.3). Assume there are only three periods, i.e. T = 3. Then (8.3) can be estimated
using the last two periods. Under the null hypothesis of no individual effects, the following
orthogonality conditions hold:

E(yi,2ui,3) = 0 E(yi,1ui,3) = 0 E(yi,1ui,2) = 0

Three conditions to identify one parameter, the remaining two over-identifying restrictions can
be used to test for individual effects. We can reformulate these orthogonality restrictions as
follows:

E[(yi,1(ui,3 − ui,2)] = 0 (8.11a)

E(yi,1ui,2) = 0 (8.11b)

E(yi,2ui,3) = 0 (8.11c)

The first restriction can be used to identify δ even if there are individual effects in (8.3). The
null hypothesis of no individual effects imposes only two additional restrictions (8.11b) and
(8.11c) on the data. Intuitively, the test for individual effects is a test of whether the sample
moments corresponding to these restrictions are sufficiently close to zero; contingent upon
imposing (8.11a) to identify δ.

Stacking the following equations:

(y3 − y2) = (y2 − y1)δ + (u3 − u2)

y3 = y2δ + u3

y2 = y1δ + u2
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we can write

y∗ = Y ∗δ + u∗ (8.12)

where y∗′ = (y′
3 − y′

2, y′
3, y′

2), Y ∗′ = (y′
2 − y′

1, y′
2, y′

1) and u∗′ = (u′
3 − u′

2, u′
3, u′

2). Holtz-
Eakin (1988) estimates this system of simultaneous equations with different instrumental
variables for each equation. This is due to the dynamic nature of these equations. Variables
which qualify for use as IVs in one period may not qualify in earlier periods. Let W = diag[Wi ]
for i = 1, 2, 3 be the matrix of instruments such that plim(W ′u∗/N ) = 0 as N → ∞. Perform
GLS on (8.12) after premultiplying by W ′. In this case, � = W ′E(u∗u∗′)W is estimated by
�̂ = (

∑N
i=1 û∗

i,r û∗
i,s W ′

i,r Wi,s) where û∗
r denotes 2SLS residuals on each equation separately,

δ̂ = [Y ∗′W �̂−1W ′Y ∗]−1Y ∗′W �̂−1W ′y∗

Let SSQ be the weighted sum of the squared transformed residuals:

SSQ = (y∗ − Y ∗̂δ)′W �̂−1W ′(y∗ − Y ∗̂δ)/N

This has χ2 distribution with degrees of freedom equal to the number of over-identifying
restrictions as N grows. Compute L = SSQR − SSW where SSQR is the sum of squared
residuals when imposing the full set of orthogonality conditions implied by the null hypothesis,
SSW is the sum of squared residuals that impose only those restrictions needed for the first-
differenced version. The same estimate of � should be used in both computations, and � should
be estimated under the null. Holtz-Eakin generalizes this to an AR(p) where p is unknown and
applies this test to a dynamic wage equation based on a subsample of 898 males from the Panel
Study of Income Dynamics (PSID) observed over the years 1968–81. He finds evidence of
individual effects and thus support for controlling heterogeneity in estimating a dynamic wage
equation.

Recently, Jimenez-Martin (1998) performed Monte Carlo experiments to study the perfor-
mance of the Holtz-Eakin (1988) test for the presence of individual heterogeneity effects in
dynamic small T unbalanced panel data models. The design of the experiment included both
endogenous and time-invariant regressors in addition to the lagged dependent variable. The
test behaved correctly for a moderate autoregressive coefficient. However, when this autore-
gressive coefficient approached unity, the presence of an additional regressor sharply affected
the power and the size of the test. The results of the Monte Carlo show that the power of this
test is higher when the variance of the specific effects increases (they are easier to detect), when
the sample size increases, when the data set is balanced (for a given number of cross-section
units) and when the regressors are strictly exogenous.

8.2.2 Models with Exogenous Variables

If there are additional strictly exogenous regressors xit as in (8.1) with E(xitνis) = 0 for
all t, s = 1, 2, . . . , T, but where all the xit are correlated with µi , then all the xit are valid
instruments for the first-differenced equation of (8.1). Therefore, [x ′

i1, x ′
i2, . . . , x ′

iT ] should be
added to each diagonal element of Wi in (8.6). In this case, (8.7) becomes

W ′�y = W ′(�y−1)δ + W ′(�X )β + W ′�ν
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where �X is the stacked N (T − 2) × K matrix of observations on �xit . One- and two-step
estimators of (δ, β ′) can be obtained from(

δ̂

β̂

)
= ([�y−1, �X ]′W V̂ −1

N W ′[�y−1, �X ])−1([�y−1, �X ]′W V̂ −1
N W ′�y) (8.13)

as in (8.8) and (8.9).
If xit are predetermined rather than strictly exogenous with E(xitνis) �= 0 for s < t , and zero

otherwise, then only [x ′
i1, x ′

i2, . . . , x ′
i(s−1)] are valid instruments for the differenced equation

at period s. This can be illustrated as follows: for t = 3, the first-differenced equation of (8.1)
becomes

yi3 − yi2 = δ(yi2 − yi1) + (x ′
i3 − x ′

i2)β + (νi3 − νi2)

For this equation, x ′
i1 and x ′

i2 are valid instruments, since both are not correlated with (νi3 − νi2).
For t = 4, the next period we observe this relationship,

yi4 − yi3 = δ(yi3 − yi2) + (x ′
i4 − x ′

i3)β + (νi4 − νi3)

and we have additional instruments since now x ′
i1, x ′

i2 and x ′
i3 are not correlated with (νi4 − νi3).

Continuing in this fashion, we get

Wi =


[yi1, x ′

i1, x ′
i2] 0

[yi1,yi2, x ′
i1, x ′

i2, x ′
i3]

. . .
0 [yi1, . . . , yi,T −2, x ′

i1, . . . , x ′
i,T −1]


(8.14)

and one- and two-step estimators are again given by (8.13) with this choice of Wi .
In empirical studies, a combination of both predetermined and strictly exogenous variables

may occur rather than the above two extreme cases, and the researcher can adjust the matrix of
instruments W accordingly. Also, not all the xit have to be correlated with µi . As in Hausman
and Taylor (1981), we can separate xit = [x1i t , x2i t ] where x1i t is uncorrelated with µi , while
x2i t is correlated with µi . For the predetermined xit case, Arellano and Bond (1991) count T
additional restrictions from the level equations (8.1), i.e. E(ui2x1i1) = 0 and E(uit x1i t ) = 0 for
t = 2, . . . , T . All additional linear restrictions from the level equations are redundant given
those already exploited from the first-differenced equations. Define ui = (ui2, . . . , uiT )′ and
ν+

i = (�ν ′
i , u′

i )
′, where we stack the differenced disturbances from period t = 3 to t = T on

top of the undifferenced disturbances from period t = 2 to t = T . Now, let

ν+ = y+ − y+
−1δ − X+β (8.15)

with ν+ = (ν+′
1 , . . . , ν+′

N )′ and y+, y+
−1 and X+ defined similarly. The optimal matrix of in-

struments becomes

W +
i =


Wi 0

[x ′
1i1, x ′

1i2]
x ′

1i3
. . .

0 x ′
i1T

 (8.16)
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where Wi is given by (8.14). The two-step estimator is of the same form as (8.13) with
y+, y+

−1, X+ and W + replacing �y, �y−1, �X and W , respectively.
If x1i t is strictly exogenous, the observations for all periods become valid instruments in the

level equations. However, given those previously exploited in first differences we only have
T extra restrictions which Arellano and Bond (1991) express as E(

∑T
s=1 x1i t uis/T ) = 0 for

t = 1, . . . , T . Thus, the two-step estimator would just combine the (T − 1) first-differenced
equations and the average level equation.

Arellano and Bond (1991) propose a test for the hypothesis that there is no second-order
serial correlation for the disturbances of the first-differenced equation. This test is important
because the consistency of the GMM estimator relies upon the fact that E[�νi t�νi,t−2] = 0.
The test statistic is given in equation (8) of Arellano and Bond (1991, p. 282) and will not
be reproduced here. This hypothesis is true if the νi t are not serially correlated or follow a
random walk. Under the latter situation, both OLS and GMM of the first-differenced version
of (8.1) are consistent and Arellano and Bond (1991) suggest a Hausman-type test based on
the difference between the two estimators.

Additionally, Arellano and Bond (1991) suggest Sargan’s test of over-identifying restrictions
given by

m = �ν̂ ′W

[
N∑

i=1

W ′
i (�ν̂i )(�ν̂i )

′Wi

]−1

W ′(�ν̂) ∼ χ2
p−K−1

where p refers to the number of columns of W and �ν̂ denotes the residuals from a two-step
estimation given in (8.13).3 Other tests suggested are Sargan’s difference statistic to test nested
hypotheses concerning serial correlation in a sequential way, or a Griliches and Hausman
(1986)-type test based on the difference between the two-step GMM estimators assuming the
disturbances in levels are MA(0) and MA(1), respectively. These are described in more detail
in Arellano and Bond (1991, p. 283).

A limited Monte Carlo study was performed based on 100 replications from a simple
autoregressive model with one regressor and no constant, i.e. yit = δyi,t−1 + βxit + µi +
νi t with N = 100 and T = 7. The results showed that the GMM estimators have negligible
finite sample biases and substantially smaller variances than those associated with simpler
IV estimators à la Anderson and Hsiao (1981). However, the estimated standard error of
the two-step GMM estimator was found to be downward biased. The tests proposed above
also performed reasonably well. These estimation and testing methods were applied to a
model of employment using a panel of 140 quoted UK companies for the period 1979–84.
This is the benchmark data set used in Stata to obtain the one-step and two-step estimators
described in (8.8) and (8.10) as well as the Sargan test for over-identification using the command
(xtabond,twostep), see problem 8.9.

Windmeijer (2005) attributes the small sample downward bias of the estimated asymptotic
standard errors of the two-step efficient GMM estimator to the estimation of the weight matrix
W. He suggests a correction term based on a Taylor series expansion that accounts for the
estimation of W. He shows that this correction term provides a more accurate approximation
in finite samples when all the moment conditions are linear. These corrected standard errors
are available using xtabond2 in Stata.

Using Monte Carlo experiments, Bowsher (2002) finds that the use of too many moment
conditions causes the Sargan test for over-identifying restrictions to be undersized and have
extremely low power. Fixing N at 100, and letting T increase over the range (5, 7, 9, 11, 13,
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15), the performance of Sargan’s test using the full set of Arellano–Bond moment conditions
is examined for δ = 0.4. For T = 5, the Monte Carlo mean of the Sargan χ2

5 statistic is 5.12
when it should be 5, and its Monte Carlo variance is 9.84 when it should be 10. The size of
the test is 0.052 at the 5% level and the power under the alternative is 0.742. For T = 15, the
Sargan χ2

90 statistic has a Monte Carlo mean of 91.3 when its theoretical mean is 90. However,
its Monte Carlo variance is 13.7 when it should be 180. This underestimation of the theoretical
variance results in zero rejection rate under the null and alternative. In general, the Monte
Carlo mean is a good estimator of the mean of the asymptotic χ2 statistic. However, the Monte
Carlo variance is much smaller than its asymptotic counterpart when T is large. The Sargan
test never rejects when T is too large for a given N. Zero rejection rates under the null and
alternative were also observed for the following (N, T) pairs: (125, 16), (85, 13), (70, 112),
and (40, 10). This is attributed to poor estimates of the weighting matrix in GMM rather than
to weak instruments.

Another application of the Arellano and Bond GMM estimator is given by Blundell et al.
(1992), who used a panel of 532 UK manufacturing companies over the period 1975–86 to
determine the importance of Tobin’s Q in the determination of investment decisions. Tobin’s
Q was allowed to be endogenous and possibly correlated with the firm-specific effects. A
GMM-type estimator was utilized using past variables as instruments, and Tobin’s Q effect
was found to be small but significant. These results were sensitive to the choice of dynamic
specification, exogeneity assumptions and measurement error in Q. Similar findings using
Tobin’s Q model were reported by Hayashi and Inoue (1991) based on a panel of 687 quoted
Japanese manufacturing firms over the period 1977–86.

8.3 THE ARELLANO AND BOVER ESTIMATOR

Arellano and Bover (1995) develop a unifying GMM framework for looking at efficient IV
estimators for dynamic panel data models. They do that in the context of the Hausman and
Taylor (1981) model given in (7.40), which in static form is reproduced here for convenience:

yit = x ′
i tβ + Z ′

iγ + uit (8.17)

where β is K × 1 and γ is g × 1. The Zi are time-invariant variables whereas the xit vary over
individuals and time. In vector form, (8.17) can be written as

yi = Wiη + ui (8.18)

with the disturbances following a one-way error component model

ui = µi ιT + νi (8.19)

where yi = (yi1, . . . , yiT )′, ui = (ui1, . . . , uiT )′, η′ = (β ′, γ ′), Wi = [Xi , ιT Z ′
i ], Xi = (xi1,

. . . , xiT )′ and ιT is a vector of ones of dimension T . In general, E(ui u′
i/wi ) will be unrestricted

depending on wi = (x ′
i , Z ′

i )
′ where xi = (x ′

i1, . . . , x ′
iT )′. However, the literature emphasizes

two cases with cross-sectional homoskedasticity:

Case 1. E(ui u′
i ) = � independent of wi , but general to allow for arbitrary � as long as it is

the same across individuals, i.e. � is the same for i = 1, . . . , N
Case 2. the traditional error component model where � = σ 2

ν IT + σ 2
µιT ι′T .
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Arellano and Bover transform the system of T equations in (8.18) using the nonsingular
transformation

H =
[

C
ι′T /T

]
(8.20)

where C is any (T − 1) × T matrix of rank (T − 1) such that CιT = 0. For example, C could
be the first (T − 1) rows of the Within group operator or the first difference operator.4 Note
that the transformed disturbances

u+
i = Hui =

[
Cui

ūi

]
(8.21)

have the first (T − 1) transformed errors free of µi . Hence, all exogenous variables are valid
instruments for these first (T − 1) equations. Let mi denote the subset of variables of wi

assumed to be uncorrelated in levels with µi and such that the dimension of mi is greater than or
equal to the dimension of η. In the Hausman and Taylor study, X = [X1, X2] and Z = [Z1, Z2]
where X1 and Z1 are exogenous of dimension N T × k1 and N × g1. X2 and Z2 are correlated
with the individual effects and are of dimension N T × k2 and N × g2. In this case, mi includes
the set of X1 and Z1 variables and mi would be based on (Z ′

1,i , x ′
1,i1, . . . , x ′

1iT )′. Therefore, a
valid IV matrix for the complete transformed system is

Mi =


w′

i 0
. . .

w′
i

0 m ′
i

 (8.22)

and the moment conditions are given by

E(M ′
i Hui ) = 0 (8.23)

Defining W = (W ′
1, . . . , W ′

N )′, y = (y′
1, . . . , y′

N )′, M = (M ′
1, . . . , M ′

N )′, H̄ = IN ⊗ H and
�̄ = IN ⊗ �, and premultiplying (8.18) in vector form by M ′H̄ one gets

M ′H̄ y = M ′H̄ Wη + M ′H̄u (8.24)

Performing GLS on (8.24) one gets the Arellano and Bover (1995) estimator

η̂ = [W ′H̄ ′M(M ′H̄�̄H̄ ′M)−1 M ′H̄ W ]−1W ′H̄ ′M(M ′H̄�̄H̄ ′M)−1 M ′H̄ y (8.25)

In practice, the covariance matrix of the transformed system �+ = H�H ′ is replaced by a
consistent estimator, usually

�̂+ =
N∑

i=1

û+
i û+′

i /N (8.26)

where û+
i are residuals based on consistent preliminary estimates. The resulting η̂ is the opti-

mal GMM estimator of η with constant � based on the above moment restrictions. Further
efficiency can be achieved using Chamberlain’s (1982) or Hansen’s (1982) GMM-type esti-
mator which replaces (

∑
i M ′

i �
+Mi ) in (8.25) by (

∑
i M ′

i û
+
i û+′

i Mi ). For the error component
model, �̃+ = H�̃H ′ with �̃ = σ̃ 2

ν IT + σ̃ 2
µιT ι′T , where σ̃ 2

ν and σ̃ 2
µ denote consistent estimates

σ 2
ν and σ 2

µ.

The Hausman and Taylor (1981) (HT) estimator, given in section 7.3, is η̂ with �̃+ and
mi = (Z ′

1,i , x̄ ′
1,i )

′ where x̄ ′
i = ι′T Xi/T = (x̄ ′

1,i , x̄ ′
2,i ). The Amemiya and MaCurdy (1986) (AM)
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estimator is η̂ with �̃+ and mi = (Z ′
1i , x ′

1,i1, . . . , x ′
1,iT )′. The Breusch et al. (1989) (BMS)

estimator exploits the additional moment restrictions that the correlation between x2,i t , and
µi is constant over time. In this case, x̃2,i t = x2,i t − x̄2,i are valid instruments for the last
equation of the transformed system. Hence, BMS is η̂ with �̃+ and mi = (Z ′

1,i , x ′
1,i1, . . . ,

x ′
1,iT , x̃ ′

2,i1, . . . , x̃ ′
2,iT )′.

Because the set of instruments Mi is block-diagonal, Arellano and Bover show that η̂ is
invariant to the choice of C. Another advantage of their representation is that the form of �−1/2

need not be known. Hence, this approach generalizes the HT, AM, BMS-type estimators to a
more general form of � than that of error components, and it easily extends to the dynamic
panel data case as can be seen next.5

Let us now introduce a lagged dependent variable into the right-hand side of (8.17):

yit = δyi,t−1 + x ′
i tβ + Z ′

iγ + uit (8.27)

Assuming that t = 0 is observed, we redefine η′ = (δ, β ′, γ ′) and Wi = [yi(−1), Xi,ιT Z ′
i ] with

yi(−1) = (yi,0, . . . , yi,T −1)′. Provided there are enough valid instruments to ensure identifica-
tion, the GMM estimator defined in (8.25) remains consistent for this model. The matrix of
instruments Mi is the same as before, adjusting for the fact that t = 0 is now the first period
observed, so that wi = [x ′

i0, . . . , x ′
iT , Z ′

i ]
′. In this case yi(−1) is excluded despite its presence in

Wi . The same range of choices for mi are available, for example, mi = (Z ′
1i , x ′

1i , x̃ ′
2,i1, . . . x̃ ′

2,iT )
is the BMS-type estimator. However, for this choice of mi the rows of C Xi are linear combi-
nations of mi . This means that the same instrument set is valid for all equations and we can
use Mi = IT ⊗ m ′

i without altering the estimator. The consequence is that the transformation
is unnecessary and the estimator can be obtained by applying 3SLS to the original system of
equations using mi as the vector of instruments for all equations:

η̂ =
∑

i

(Wi ⊗ mi )
′
(

�̂ ⊗
∑

i

mi m
′
i

)−1 ∑
i

(Wi ⊗ mi )

−1 ∑
i

(Wi ⊗ mi )
′

×
(

�̂ ⊗
∑

i

mi m
′
i

)−1 ∑
i

(yi ⊗ mi )

(8.28)

Arellano and Bover (1995) prove that this 3SLS estimator is asymptotically equivalent to the
limited information maximum likelihood procedure with�unrestricted developed by Bhargava
and Sargan (1983).

Regardless of the existence of individual effects, the previous model assumes unrestricted
serial correlation in the νi t implying that yi,t−1 is an endogenous variable. If the νi t are not
serially correlated, additional orthogonality restrictions can easily be incorporated in estimating
(8.27) provided that the transformation C is now upper triangular in addition to the previous
requirements. In this case, the transformed error in the equation for period t is independent
of µi and (νi1, . . . , νi,t−1) so that (yi0, yi1, . . . , yi,t−1) are additional valid instruments for this
equation (see section 8.2). Therefore, the matrix of instruments Mi becomes

Mi =


(w′

i , yi0) 0
(w′

i , yi0, yi1)
. . .

(w′
i , yi0, . . . , yi,T −2)

0 m ′
i

 (8.29)
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Once again, Arellano and Bover (1995) show that the GMM estimator (8.25) that uses (8.29)
as the matrix of instruments is invariant to the choice of C provided C satisfies the above
required conditions.

8.4 THE AHN AND SCHMIDT MOMENT CONDITIONS

Ahn and Schmidt (1995) show that under the standard assumptions used in a dynamic panel data
model, there are additional moment conditions that are ignored by the IV estimators suggested
by Anderson and Hsiao (1981), Holtz-Eakin et al. (1988) and Arellano and Bond (1991). In
this section, we explain how these additional restrictions arise for the simple dynamic model
and show how they can be utilized in a GMM framework.

Consider the simple dynamic model with no regressors given in (8.3) and assume that
yi0, . . . , yiT are observable. In vector form, this is given by

yi = δyi−1 + ui (8.30)

where y′
i = (yi1, . . . , yiT ), y′

i−1 = (yi0, . . . , yi,T −1) and u′
i = (ui1, . . . , uiT ). The standard as-

sumptions on the dynamic model (8.30) are that:

(A.1) For all i, νi t is uncorrelated with yi0 for all t .
(A.2) For all i, νi t is uncorrelated with µi for all t .
(A.3) For all i, the νi t are mutually uncorrelated.

Ahn and Schmidt (1995) argue that these assumptions on the initial value yi0 are weaker than
those often made in the literature (see Bhargava and Sargan, 1983 and Blundell and Smith,
1991).

Under these assumptions, one obtains the following T (T − 1)/2 moment conditions:

E(yis�uit ) = 0 t = 2, . . . , T ; s = 0, . . . , t − 2 (8.31)

These are the same moment restrictions given below (8.6) and exploited by Arellano and
Bond (1991). However, Ahn and Schmidt (1995) find T − 2 additional moment conditions not
implied by (8.31). These are given by

E(uiT �uit ) = 0 t = 2, . . . , T − 1 (8.32)

Therefore, (8.31) and (8.32) imply a set of T (T − 1)/2 + (T − 2) moment conditions which
represent all of the moment conditions implied by the assumptions that the νi t are mutually
uncorrelated among themselves and with µi and yi0. More formally, the standard assumptions
impose restrictions on the following covariance matrix:

� = cov



νi1

νi1
...

νiT

yi0

µi


=



σ11 σ12 . . . σ1T σ10 σ1µ

σ21 σ22 . . . σ2T σ20 σ2µ

...
...

...
...

...
σT 1 σT 2 . . . σT T σT 0 σT µ

σ01 σ02 . . . σ0T σ00 σ0µ

σµ1 σµ2 . . . σµT σµ0 σµµ


(8.33)
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But, we do not observe µi and νi t , only their sum uit = µi + νi t which can be written in
terms of the data and δ. Hence to get observable moment restrictions, we have to look at the
following covariance matrix:

 = cov


µi + νi1

µi + νi2
...

µi + νiT

yi0

 =


λ11 λ12 . . . λ1T λ10

λ21 λ22 . . . λ2T λ20
...

...
...

...
λT 1 λT 2 . . . λT T λT 0

λ01 λ02 . . . λ0T λ00



=


(σµµ + σ11 + 2σµ1) (σµµ + σ12 + σµ1 + σµ2)

(σµµ + σ12 + σµ1 + σµ2) (σµµ + σ22 + 2σµ2)
...

...
(σµµ + σ1T + σµ1 + σµT ) (σµµ + σ2T + σµ2 + σµT )

(σ0µ + σ01) (σ0µ + µ02)

(8.34)

. . . (σµµ + σ1T + σµ1 + σµT ) (σ0µ + σ01)

. . . (σµµ + σ2T + σµ2 + σµT ) (σ0µ + σ02)

. . .
...

...
. . . (σµµ + σT T + 2σµT ) (σ0µ + σ0T )
. . . (σ0µ + σ0T ) σ00


Under the standard assumptions (A.1)–(A.3), we have σts = 0 for all t �= s, and σµt = σ0t =

0 for all t . Then  simplifies as follows:

� =


(σµµ + σ11) σµµ . . . σµµ σ0µ

σµµ (σµµ + σ22) . . . σµµ σ0µ

...
...

...
...

σµµ σµµ . . . (σµµ + σT T ) σ0µ

σ0µ σ0µ . . . σ0µ σ00

 (8.35)

There are T − 1 restrictions, that λ0t = E(yi0uit ) is the same for t = 1, . . . , T ; and [T (T −
1)/2] − 1 restrictions, that λts = E(uisuit ) is the same for t, s = 1, . . . , T , t �= s. Adding the
number of restrictions, we get T (T − 1)/2 + (T − 2).

In order to see how these additional moment restrictions are utilized, consider our simple
dynamic model in differenced form along with the last period’s observation in levels:

�yit = δ�yi,t−1 + �uit t = 2, 3, . . . , T (8.36)

yiT = δyi,T −1 + uiT (8.37)

The usual IV estimator, utilizing the restrictions in (8.31), amounts to estimating the first-
differenced equations (8.36) by three-stage least squares, imposing the restriction that δ

is the same in every equation, where the instrument set is yi0 for t = 2; (yi0, yi1) for
t = 3; . . . ; (yi0, . . . , yi,T −2) for t = T (see section 8.2). Even though there are no legitimate
observable instruments for the levels equation (8.37), Ahn and Schmidt argue that (8.37) is
still useful in estimation because of the additional covariance restrictions implied by (8.32),
i.e. that uiT is uncorrelated with �uit for t = 2, . . . , T − 1. Ahn and Schmidt show that any
additional covariance restrictions besides (8.32) are redundant and implied by the basic mo-
ment conditions given by (8.31). Ahn and Schmidt also point out that the moment conditions
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(8.31) and (8.32) hold under weaker conditions than those implied by the standard assumptions
(A.1)–(A.3). In fact, one only needs:

(B.1) cov(νi t , yi0) is the same for all i and t instead of cov(νi t , yi0) = 0, as in (A.1).
(B.2) cov(νi t , µi ) is the same for all i and t instead of cov(νi t , µi ) = 0, as in (A.2).
(B.3) cov(νi t , νis) is the same for all i and t �= s, instead of cov(νi t , νis) = 0, as in (A.3).

Problem 8.7 asks the reader to verify this claim in the same way as described above. Ahn
and Schmidt (1995) show that GMM based on (8.31) and (8.32) is asymptotically equivalent
to Chamberlain’s (1982, 1984) optimal minimum distance estimator, and that it reaches the
semiparametric efficiency bound. Ahn and Schmidt also explore additional moment restrictions
obtained from assuming the νi t homoskedastic for all i and t and the stationarity assumption
of Arellano and Bover (1995) that E(yitµi ) is the same for all t . The reader is referred to their
paper for more details. For specific parameter values, Ahn and Schmidt compute asymptotic
covariance matrices and show that the extra moment conditions lead to substantial gains in
asymptotic efficiency.

Ahn and Schmidt also consider the dynamic version of the Hausman and Taylor (1981)
model studied in section 8.3 and show how one can make efficient use of exogenous variables
as instruments. In particular, they show that the strong exogeneity assumption implies more
orthogonality conditions which lie in the deviations from mean space. These are irrelevant
in the static Hausman–Taylor model but are relevant for the dynamic version of that model.
For more details on these conditions, see Schmidt, Ahn and Wyhowski (1992) and Ahn and
Schmidt (1995).

8.5 THE BLUNDELL AND BOND SYSTEM GMM ESTIMATOR

Blundell and Bond (1998) revisit the importance of exploiting the initial condition in generating
efficient estimators of the dynamic panel data model when T is small. They consider a simple
autoregressive panel data model with no exogenous regressors,

yit = δyi,t−1 + µi + νi t (8.38)

with E(µi ) = 0, E(νi t ) = 0 and E(µiνi t ) = 0 for i = 1, 2, . . . , N ; t = 1, 2, . . . , T . Blundell
and Bond (1998) focus on the case where T = 3 and therefore there is only one orthogonality
condition given by E(yi1�νi3) = 0, so that δ is just-identified. In this case, the first-stage IV
regression is obtained by running �yi2 on yi1. Note that this regression can be obtained from
(8.38) evaluated at t = 2 by subtracting yi1 from both sides of this equation, i.e.

�yi2 = (δ − 1)yi,1 + µi + νi2 (8.39)

Since we expect E(yi1µi ) > 0, (δ − 1) will be biased upwards with

plim(̂δ − 1) = (δ − 1)
c

c + (σ 2
µ/σ 2

u )
(8.40)

where c = (1 − δ)/(1 + δ). The bias term effectively scales the estimated coefficient on the
instrumental variable yi1 towards zero. They also find that the F-statistic of the first-stage IV
regression converges to χ2

1 with noncentrality parameter

τ = (σ 2
u c)2

σ 2
µ + σ 2

u c
→ 0 as δ → 1 (8.41)
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As τ → 0, the instrumental variable estimator performs poorly. Hence, Blundell and Bond
attribute the bias and the poor precision of the first-difference GMM estimator to the problem
of weak instruments and characterize this by its concentration parameter τ.6

Next, Blundell and Bond (1998) show that an additional mild stationarity restriction on
the initial conditions process allows the use of an extended system GMM estimator that uses
lagged differences of yit as instruments for equations in levels, in addition to lagged levels of
yit as instruments for equations in first differences, see Arellano and Bover (1995). The system
GMM estimator is shown to have dramatic efficiency gains over the basic first-difference GMM
as δ → 1 and (σ 2

µ/σ 2
u ) increases. In fact, for T = 4 and (σ 2

µ/σ 2
u ) = 1, the asymptotic variance

ratio of the first-difference GMM estimator to this system GMM estimator is 1.75 for δ = 0
and increases to 3.26 for δ = 0.5 and 55.4 for δ = 0.9. This clearly demonstrates that the levels
restrictions suggested by Arellano and Bover (1995) remain informative in cases where first-
differenced instruments become weak. Things improve for first-difference GMM as T increases.
However, with short T and persistent series, the Blundell and Bond findings support the use of
the extra moment conditions. These results are reviewed and corroborated in Blundell and Bond
(2000) and Blundell, Bond and Windmeijer (2000). Using Monte Carlo experiments, Blundell
et al. (2000) find that simulations that include the weakly exogenous covariates exhibit large
finite sample bias and very low precision for the standard first-differenced estimator. However,
the system GMM estimator not only improves the precision but also reduces the finite sample
bias. Blundell and Bond (2000) revisit the estimates of the capital and labor coefficients in a
Cobb–Douglas production function considered by Griliches and Mairesse (1998). Using data
on 509 R&D performing US manufacturing companies observed over 8 years (1982–89), the
standard GMM estimator that uses moment conditions on the first-differenced model finds a low
estimate of the capital coefficient and low precision for all coefficients estimated. However, the
system GMM estimator gives reasonable and more precise estimates of the capital coefficient
and constant returns to scale is not rejected. Blundell et al. conclude that “a careful examination
of the original series and consideration of the system GMM estimator can usefully overcome
many of the disappointing features of the standard GMM estimator for dynamic panel models”.

Hahn (1999) examined the role of the initial condition imposed by the Blundell and Bond
(1998) estimator. This was done by numerically comparing the semiparametric information
bounds for the case that incorporates the stationarity of the initial condition and the case that
does not. Hahn (1999) finds that the efficiency gain can be substantial.

Bond and Windmeijer (2002) project the unobserved individual effects on the vector of
observations of the lagged dependent variable. This approach yields the Arellano and Bond
(1991) estimator when no restrction is imposed on the initial conditions except for the as-
sumption that they are uncorrelated with later shocks of the autoregressive process. It yields
the Blundell and Bond (1998) estimator when the initial conditions satisfy mean stationarity.
Bond and Windmeijer suggest a simple linear estimator for the case where the initial conditions
satisfy covariance stationarity.

8.6 THE KEANE AND RUNKLE ESTIMATOR

Let y = Xβ + u be our panel data model with X containing a lagged dependent variable. We
consider the case where E(uit/Xit ) �= 0, and there exists a set of predetermined instruments
W such that E(uit/Wis) = 0 for s ≤ t , but E(uit/Wis) �= 0 for s > t . In other words, W may
contain lagged values of yit . For this model, the 2SLS estimator will provide a consistent
estimator for β. Now consider the random effects model or any other kind of serial correlation
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which is invariant across individuals, �TS = E(uu′) = IN ⊗ �TS. In this case, 2SLS will not
be efficient. Keane and Runkle (1992), henceforth KR, suggest an alternative more efficient
algorithm that takes into account this more general variance–covariance structure for the dis-
turbances based on the forward filtering idea from the time-series literature. This method of
estimation eliminates the general serial correlation pattern in the data, while preserving the
use of predetermined instruments in obtaining consistent parameter estimates. First, one gets
a consistent estimate of �−1

TS and its corresponding Cholesky’s decomposition P̂TS. Next, one
premultiplies the model by Q̂TS = (IN ⊗ P̂TS) and estimates the model by 2SLS using the
original instruments. In this case

β̂KR = [X ′ Q̂′
TS PW Q̂TS X ]−1 X ′ Q̂′

TS PW Q̂TS y (8.42)

where PW = W (W ′W )−1W ′ is the projection matrix for the set of instruments W . Note that
this allows for a general covariance matrix �T S and its distinct elements T (T + 1)/2 have to
be much smaller than N . This is usually the case for large consumer or labor panels where
N is very large and T is very small. Using the consistent 2SLS residuals, say ûi for the i th
individual, where ûi is of dimension T × 1, one can form

�̂TS = Û ′Û/N =
N∑

i=1

ûi û
′
i/N

where Û ′ = [̂u1, û2, . . . , ûN ] is of dimension (T × N ).7

First-differencing is also used in dynamic panel data models to get rid of individual specific
effects. The resulting first-differenced errors are serially correlated of an MA(1) type with
unit root if the original νi t are classical errors. In this case, there will be gain in efficiency in
performing the KR procedure on the first-differenced (FD) model. Get �̂FD from FD-2SLS
residuals and obtain Q̂FD = IN ⊗ P̂FD, then estimate the transformed equation by 2SLS using
the original instruments.

Underlying this estimation procedure are two important hypotheses that are testable. The
first is HA : the set of instruments W are strictly exogenous. In order to test HA, KR propose a
test based on the difference between fixed effects 2SLS (FE-2SLS) and first-difference 2SLS
(FD-2SLS). FE-2SLS is consistent only if HA is true. In fact if the W are predetermined
rather than strictly exogenous, then E(Wit ν̄i.) �= 0 and our estimator would not be consistent.
In contrast, FD-2SLS is consistent whether HA is true or not, i.e. E(Wit�νi t ) = 0 rain or
shine. An example of this is when yi,t−2 is a member of Wit, then yi,t−2 is predetermined
and not correlated with �νi t as long as the νi t are not serially correlated. However, yi,t−2 is
correlated with ν̄i. because this last average contains νi,t−2. If HA is not rejected, one should
check whether the individual effects are correlated with the set of instruments. In this case,
the usual Hausman and Taylor (1981) test applies. This is based on the difference between
the FE and GLS estimator of the regression model. The FE estimator would be consistent
rain or shine since it wipes out the individual effects. However, the GLS estimator would be
consistent and efficient only if E(µi/Wit ) = 0, and inconsistent otherwise. If HA is rejected,
the instruments are predetermined and the Hausman–Taylor test is inappropriate. The test for
HB : E(µi/Wit ) = 0 will now be based on the difference between FD-2SLS and 2SLS. Under
HB , both estimators are consistent, but if HB is not true, FD-2SLS remains consistent while
2SLS does not.
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These tests are Hausman (1978)-type tests except that

var(̂βFE−2SLS − β̂FD−2SLS) = (X̃ ′ PW X̃ )−1(X̃ ′ PW �̃FE−2SLS PW X̃ )(X̃ ′ PW X̃ )−1

−(X̃ ′ PW X̃ )−1(X̃ ′ PW �̃FEFD PW XFD)(X ′
FD PW XFD)−1

−(X ′
FD PW XFD)−1(X ′

FD PW �̃FEFD PW X̃ )(X̃ ′ PW X̃ )−1

+(X ′
FD PW XFD)−1(X ′

FD PW �̂FD−2SLS PW XFD)(X ′
FD PW XFD)−1

(8.43)

where �̃FE−2SLS = Ũ ′
FEŨFE/N , �̂FD−2SLS = Û ′

FDÛFD/N and �̂FEFD = Ũ ′
FEÛFD/N . As de-

scribed above, Ũ ′
FE = [̃u1, . . . , ũN ]FE denotes the FE-2SLS residuals and Ũ ′

FD =
[̃u1, . . . , ũN ]FD denotes the FD-2SLS residuals. Recall that for the Keane–Runkle approach,
� = IN ⊗ �.

Similarly, the var(̂β2SLS − β̂FD−2SLS) is computed as above with X̃ being replaced by X,

�̃FE−2SLS by �̂2SLS and �̃FEFD by �̂2SLSFD. Also, �̂2SLS = Û ′
2SLSÛ2SLS/N and �̂2SLSFD =

Û ′
2SLSÛFD/N .
The variances are complicated because KR do not use the efficient estimator under the null

as required by a Hausman-type test (see Schmidt et al. 1992). Keane and Runkle (1992) apply
their testing and estimation procedures to a simple version of the rational expectations lifecycle
consumption model. Based on a sample of 627 households surveyed between 1972 and 1982
by the Michigan Panel Study on Income Dynamics (PSID), KR reject the strong exogeneity of
the instruments. This means that the Within estimator is inconsistent and the standard Hausman
test based on the difference between the standard Within and GLS estimators is inappropriate.
In fact, for this consumption example the Hausman test leads to the wrong conclusion that
the Within estimator is appropriate. KR also fail to reject the null hypothesis of no correlation
between the individual effects and the instruments. This means that there is no need to first-
difference to get rid of the individual effects. Based on the KR-2SLS estimates, the authors
cannot reject the simple lifecycle model. However, they show that if one uses the inconsistent
Within estimates for inference one would get misleading evidence against the lifecycle model.

8.7 FURTHER DEVELOPMENTS

The literature on dynamic panel data models continues to exhibit phenomenal growth. This is
understandable given that most of our economic models are implicitly or explicitly dynamic
in nature. This section summarizes some of the findings of these recent studies. In section 8.4,
we pointed out that Ahn and Schmidt (1995) gave a complete count of the set of orthogonality
conditions corresponding to a variety of assumptions imposed on the disturbances and the
initial conditions of the dynamic panel data model. Many of these moment conditions were
nonlinear in the parameters. More recently, Ahn and Schmidt (1997) propose a linearized
GMM estimator that is asymptotically as efficient as the nonlinear GMM estimator. They also
provide simple moment tests of the validity of these nonlinear restrictions. In addition, they
investigate the circumstances under which the optimal GMM estimator is equivalent to a linear
instrumental variable estimator. They find that these circumstances are quite restrictive and go
beyond uncorrelatedness and homoskedasticity of the errors. Ahn and Schmidt (1995) provide
some evidence on the efficiency gains from the nonlinear moment conditions which in turn
provide support for their use in practice. By employing all these conditions, the resulting GMM
estimator is asymptotically efficient and has the same asymptotic variance as the MLE under
normality. In fact, Hahn (1997) showed that GMM based on an increasing set of instruments
as N → ∞ would achieve the semiparametric efficiency bound.
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Hahn (1997) considers the asymptotic efficient estimation of the dynamic panel data model
with sequential moment restrictions in an environment with i.i.d. observations. Hahn shows
that the GMM estimator with an increasing set of instruments as the sample size grows attains
the semiparametric efficiency bound of the model. He also explains how Fourier series or
polynomials may be used as the set of instruments for efficient estimation. In a limited Monte
Carlo comparison, Hahn finds that this estimator has similar finite sample properties as the
Keane and Runkle (1992) and/or Schmidt et al. (1992) estimators when the latter estimators
are efficient. In cases where the latter estimators are not efficient, the Hahn efficient estimator
outperforms both estimators in finite samples.

Wansbeek and Bekker (1996) consider a simple dynamic panel data model with no exoge-
nous regressors and disturbances uit and random effects µi that are independent and normally
distributed. They derive an expression for the optimal instrumental variable estimator, i.e., one
with minimal asymptotic variance. A striking result is the difference in efficiency between the
IV and ML estimators. They find that for regions of the autoregressive parameter δ which are
likely in practice, ML is superior. The gap between IV (or GMM) and ML can be narrowed
down by adding moment restrictions of the type considered by Ahn and Schmidt (1995). Hence,
Wansbeek and Bekker (1996) find support for adding these nonlinear moment restrictions and
warn against the loss in efficiency as compared with MLE by ignoring them.

Ziliak (1997) asks the question whether the bias/efficiency tradeoff for the GMM estimator
considered by Tauchen (1986) for the time series case is still binding in panel data where the
sample size is normally larger than 500. For time series data, Tauchen (1986) shows that even for
T = 50 or 75 there is a bias/efficiency tradeoff as the number of moment conditions increases.
Therefore, Tauchen recommends the use of suboptimal instruments in small samples. This
result was also corroborated by Andersen and Sørensen (1996) who argue that GMM using
too few moment conditions is just as bad as GMM using too many moment conditions. This
problem becomes more pronounced with panel data since the number of moment conditions
increases dramatically as the number of strictly exogenous variables and the number of time
series observations increase. Even though it is desirable from an asymptotic efficiency point
of view to include as many moment conditions as possible, it may be infeasible or impractical
to do so in many cases. For example, for T = 10 and five strictly exogenous regressors, this
generates 500 moment conditions for GMM. Ziliak (1997) performs an extensive set of Monte
Carlo experiments for a dynamic panel data model and finds that the same tradeoff between
bias and efficiency exists for GMM as the number of moment conditions increases, and that
one is better off with suboptimal instruments. In fact, Ziliak finds that GMM performs well
with suboptimal instruments, but is not recommended for panel data applications when all the
moments are exploited for estimation. Ziliak estimates a lifecycle labor supply model under
uncertainty based on 532 men observed over 10 years of data (1978–87) from the panel study
of income dynamics. The sample was restricted to continuously married, continuously working
prime age men aged 22–51 in 1978. These men were paid an hourly wage or salaried and could
not be piece-rate workers or self-employed. Ziliak finds that the downward bias of GMM is
quite severe as the number of moment conditions expands, outweighing the gains in efficiency.
Ziliak reports estimates of the intertemporal substitution elasticity which is the focal point of
interest in the labor supply literature. This measures the intertemporal changes in hours of
work due to an anticipated change in the real wage. For GMM, this estimate changes from
0.519 to 0.093 when the number of moment conditions used in GMM is increased from 9 to
212. The standard error of this estimate drops from 0.36 to 0.07. Ziliak attributes this bias
to the correlation between the sample moments used in estimation and the estimated weight
matrix. Interestingly, Ziliak finds that the forward filter 2SLS estimator proposed by Keane
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and Runkle (1992) performs best in terms of the bias/efficiency tradeoff and is recommended.
Forward filtering eliminates all forms of serial correlation while still maintaining orthogonality
with the initial instrument set. Schmidt et al. (1992) argued that filtering is irrelevant if one
exploits all sample moments during estimation. However, in practice, the number of moment
conditions increases with the number of time periods T and the number of regressors K and can
become computationally intractable. In fact for T = 15 and K = 10, the number of moment
conditions for Schmidt et al. (1992) is T (T − 1)K/2 which is 1040 restrictions, highlighting
the computational burden of this approach. In addition, Ziliak argues that the over-identifying
restrictions are less likely to be satisfied possibly due to the weak correlation between the
instruments and the endogenous regressors. In this case, the forward filter 2SLS estimator is
desirable yielding less bias than GMM and sizeable gains in efficiency. In fact, for the lifecycle
labor example, the forward filter 2SLS estimate of the intertemporal substitution elasticity was
0.135 for 9 moment conditions compared to 0.296 for 212 moment conditions. The standard
error of these estimates dropped from 0.32 to 0.09.

The practical problem of not being able to use more moment conditions as well as the
statistical problem of the tradeoff between small sample bias and efficiency prompted Ahn
and Schmidt (1999a) to pose the following questions: “Under what conditions can we use a
smaller set of moment conditions without incurring any loss of asymptotic efficiency? In other
words, under what conditions are some moment conditions redundant in the sense that utilizing
them does not improve efficiency?” These questions were first dealt with by Im et al. (1999)
who considered panel data models with strictly exogenous explanatory variables. They argued
that, for example, with ten strictly exogenous time-varying variables and six time periods, the
moment conditions available for the random effects (RE) model is 360 and this reduces to
300 moment conditions for the FE model. GMM utilizing all these moment conditions leads
to an efficient estimator. However, these moment conditions exceed what the simple RE and
FE estimators use. Im et al. (1999) provide the assumptions under which this efficient GMM
estimator reduces to the simpler FE or RE estimator. In other words, Im et al. (1999) show the
redundancy of the moment conditions that these simple estimators do not use. Ahn and Schmidt
(1999a) provide a more systematic method by which redundant instruments can be found and
generalize this result to models with time-varying individual effects. However, both papers deal
only with strictly exogenous regressors. In a related paper, Ahn and Schmidt (1999b) consider
the cases of strictly and weakly exogenous regressors. They show that the GMM estimator
takes the form of an instrumental variables estimator if the assumption of no conditional
heteroskedasticity (NCH) holds. Under this assumption, the efficiency of standard estimators
can often be established showing that the moment conditions not utilized by these estimators are
redundant. However, Ahn and Schmidt (1999b) conclude that the NCH assumption necessarily
fails if the full set of moment conditions for the dynamic panel data model is used. In this case,
there is clearly a need to find modified versions of GMM, with reduced sets of moment
conditions that lead to estimates with reasonable finite sample properties.

Crépon, Kramarz and Trognon (1997) argue that for the dynamic panel data model, when
one considers a set of orthogonal conditions, the parameters can be divided into parameters of
interest (like δ) and nuisance parameters (like the second-order terms in the autoregressive error
component model). They show that the elimination of such nuisance parameters using their
empirical counterparts does not entail an efficiency loss when only the parameters of interest
are estimated. In fact, Sevestre and Trognon in chapter 6 of Mátyás and Sevestre (1996) argue
that if one is only interested in δ, then one can reduce the number of orthogonality restrictions
without loss in efficiency as far as δ is concerned. However, the estimates of the other nuisance
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parameters are not generally as efficient as those obtained from the full set of orthogonality
conditions.

The Alonso-Borrego and Arellano (1999) paper is also motivated by the finite sample bias
in panel data instrumental variable estimators when the instruments are weak. The dynamic
panel model generates many over-identifying restrictions even for moderate values of T. Also,
the number of instruments increases with T, but the quality of these instruments is often poor
because they tend to be only weakly correlated with first-differenced endogenous variables that
appear in the equation. Limited information maximum likelihood (LIML) is strongly preferred
to 2SLS if the number of instruments gets large as the sample size tends to infinity. Hillier
(1990) showed that the alternative normalization rules adopted by LIML and 2SLS are at
the root of their different sampling behavior. Hillier (1990) also showed that a symmetrically
normalized 2SLS estimator has properties similar to those of LIML. Following Hillier (1990),
Alonso-Borrego and Arellano (1999) derive a symmetrically normalized GMM (SNM) and
compare it with ordinary GMM and LIML analogues by means of simulations. Monte Carlo
and empirical results show that GMM can exhibit large biases when the instruments are poor,
while LIML and SNM remain essentially unbiased. However, LIML and SNM always had a
larger interquartile range than GMM. For T = 4, N = 100, σ 2

µ = 0.2 and σ 2
ν = 1, the bias for

δ = 0.5 was 6.9% for GMM, 1.7% for SNM and 1.7% for LIML. This bias increases to 17.8%
for GMM, 3.7% for SNM and 4.1% for LIML for δ = 0.8.

Alvarez and Arellano (2003) studied the asymptotic properties of FE, one-step GMM and
nonrobust LIML for a first-order autoregressive model when both N and T tend to infinity
with (N/T) → c for 0 ≤ c < 2. For this autoregressive model, the FE estimator is inconsis-
tent for T fixed and N large, but becomes consistent as T gets large. GMM is consistent for
fixed T, but the number of orthogonality conditions increases with T. The common conclu-
sion among the studies cited above is that GMM estimators that use the full set of moments
available can be severely biased, especially when the instruments are weak and the num-
ber of moment conditions is large relative to N. Alvarez and Arellano show that for T < N,
GMM bias is always smaller than FE bias and LIML bias is smaller than the other two.
In a fixed T framework, GMM and LIML are asymptotically equivalent, but as T increases,
LIML has a smaller asymptotic bias than GMM. These results provide some theoretical sup-
port for LIML over GMM.8 Alvarez and Arellano (2003) derive the asymptotic properties of
the FE, GMM and LIML estimators of a dynamic model with random effects. When both
T and N → ∞, GMM and LIML are consistent and asymptotically equivalent to the FE es-
timator. When T/N → 0, the fixed T results for GMM and LIML remain valid, but FE, al-
though consistent, still exhibits an asymptotic bias term in its asymptotic distribution. When
T/N → c, where 0 < c ≤ 2, all three estimators are consistent. The basic intuition behind
this result is that, contrary to the structural equation setting where too many instruments pro-
duce over-fitting and undesirable closeness to OLS; here, a larger number of instruments is
associated with larger values of T and closeness to FE is desirable since the endogeneity
bias → 0 as T → ∞. Nevertheless, FE, GMM and LIML exhibit a bias term in their asymp-
totic distributions; the biases are of order 1/T, 1/N and 1/(2N − T), respectively. Provided
T < N, the asymptotic bias of GMM is always smaller than the FE bias, and the LIML bias
is smaller than the other two. When T = N, the asymptotic bias is the same for all three
estimators.

Alvarez and Arellano (2003) also consider a random effects MLE that leaves the mean
and variance of the initial conditions unrestricted but enforces time-series homoskedasticity.
This estimator has no asymptotic bias because it does not entail incidental parameters in the
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N and T dimensions, and it becomes robust to heteroskedasticity as T → ∞. For the simple
autoregressive model in (8.38) with | δ |< 1, νi t being iid across time and individuals and
independent of µi and yi0, Alvarez and Arellano (2003) find that as T → ∞, regardless of
whether N is fixed or tends to ∞, provided N/T3 → 0,

√
N T

[̃
δFE −

(
δ − 1

T
(1 + δ)

)]
→ N (0, 1 − δ2) (8.44)

Also, as N, T → ∞ such that (log T2)/N → 0, δ̂GMM → δ. Moreover, provided T/N → c,
0 < c < ∞,

√
N T

[̂
δGMM −

(
δ − 1

N
(1 + δ)

)]
→ N (0, 1 − δ2) (8.45)

when T → ∞, the number of GMM orthogonality conditions T(T − 1)/2 → ∞. In spite of this
fact, δ̂GMM → δ. Also, as N, T → ∞ provided T/N → c, 0 ≤ c ≤ 2, δ̂LIML → δ. Moreover,

√
N T

[̂
δLIML −

(
δ − 1

2N − T
(1 + δ)

)]
→ N (0, 1 − δ2) (8.46)

LIML like GMM is consistent for δ despite T → ∞ and T/N → c. Provided T < N, the bias of
LIML < bias of GMM < bias of FE. In fact, for δ = 0.2, T = 11, N = 100, the median of 1000
Monte Carlo replications yields an estimate for δ of 0.063 for FE, 0.188 for GMM and 0.196
for LIML. For δ = 0.8, T = 11, N = 100, the median of 1000 Monte Carlo replications yields
an estimate for δ of 0.554 for FE, 0.763 for GMM and 0.792 for LIML. When we increase T
to 51, N = 100 and δ = 0.8, the median of 1000 Monte Carlo replications yields an estimate
for δ of 0.760 for FE, 0.779 for GMM and 0.789 for LIML.

Wansbeek and Knapp (1999) consider a simple dynamic panel data model with heteroge-
neous coefficients on the lagged dependent variable and the time trend, i.e.

yit = δi yi,t−1 + ξi t + µi + uit (8.47)

This model results from Islam’s (1995) version of Solow’s model on growth convergence among
countries. Wansbeek and Knapp (1999) show that double-differencing gets rid of the individual
country effects (µi ) on the first round of differencing and the heterogeneous coefficient on the
time trend (ξi ) on the second round of differencing. Modified OLS, IV and GMM methods
are adapted to this model and LIML is suggested as a viable alternative to GMM to guard
against the small sample bias of GMM. Simulations show that LIML is the superior estimator
for T ≥ 10 and N ≥ 50. Macroeconomic data are subject to measurement error and Wansbeek
and Knapp (1999) show how these estimators can be modified to account for measurement
error that is white noise. For example, GMM is modified so that it discards the orthogonality
conditions that rely on the absence of measurement error.

Andrews and Lu (2001) develop consistent model and moment selection criteria and down-
ward testing procedures for GMM estimation that are able to select the correct model and
moments with probability that goes to one as the sample size goes to infinity. This is applied
to dynamic panel data models with unobserved individual effects. The selection criteria can be
used to select the lag length for the lagged dependent variables, to determine the exogeneity
of the regressors, and/or to determine the existence of correlation between some regressors
and the individual effects. Monte Carlo experiments are performed to study the small sample
performance of the selection criteria and the testing procedures and their impact on parameter
estimation.
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Hahn and Kuersteiner (2002) consider the simple autoregressive model given in (8.38) with
νi t ∼ N (0, �) iid across i, 0 < lim(N/T ) = c < ∞, | δ |< 1 and

∑N
i=1 y2

i0/N = O(1) and∑N
i=1 µ2

i /N = O(1). The MLE of δ is the FE estimator which is inconsistent for fixed T and
N → ∞. For large T, large N, as in cross-country studies, such that lim(N/T) = c is finite,
Hahn and Kuersteiner derive a bias-corrected estimator which reduces to

δ̂c =
(

T + 1

T

)
δ̃FE + 1

T

with
√

N T (̂δc − δ) → N (0, 1 − δ2). Under the assumption of normality of the disturbances,
δ̂c is assymptotically efficient as N, T → ∞ at the same rate. Monte Carlo results for T = 5,
10, 20 and N = 100, 200 show that this bias-corrected MLE has comparable bias properties
to the Arellano and Bover (1995) GMM estimator and often dominates in terms of RMSE for
T = 10, 20 and N = 100, 200. Kiviet (1995) showed that a bias-corrected MLE (knowing δ) has
much more desirable finite sample properties than various instrumental variable estimators.
However, in order to make this estimator feasible, an initial instrumental variable for δ is
used and its asymptotic properties are not derived. In contrast, Hahn and Kuersteiner’s (2002)
correction does not require a preliminary estimate of δ and its asymptotic properties are well
derived. They also showed that this bias-corrected MLE is not expected to be asymptotically
unbiased under a unit root (δ = 1).

Hahn, Hausman and Kuersteiner (2003) consider the simple autoregressive panel data model
in (8.38) with the following strong assumptions: (i) νi t ∼ IIN(0, σ 2

ν ) over i and t, (ii) station-

arity conditions (yi0/µi ) ∼ N ( µi

1−δ
,

σ 2
ν

1−δ2 ) and µi ∼ N (0, σ 2
µ). They show that the Arellano and

Bover (1995) GMM estimator, based on the forward demeaning transformation described in
problem 8.4, can be represented as a linear combination of 2SLS estimators and therefore
may be subject to a substantial finite sample bias. Based on 5000 Monte Carlo replications,
they show that this indeed is the case for T = 5, 10, N = 100, 500 and δ = 0.1, 0.3, 0.5, 0.8
and 0.9. For example, for T = 5, N = 100 and δ = 0.1, the %bias of the GMM estimator is
−16%, for δ = 0.8, this %bias is −28% and for δ = 0.9, this %bias is −51%. Hahn et al.
attempt to eliminate this bias using two different approaches. The first is a second-order Taylor
series-type approximation and the second is a long-difference estimator. The Monte Carlo
results show that the second-order Taylor series-type approximation does a reasonably good
job except when δ is close to 1 and N is small. Based on this, the bias-corrected (second-order
theory) should be relatively free of bias. Monte Carlo results show that this is the case unless δ

is close 1. For T = 5, N = 100 and δ = 0.1, 0.8, 0.9 the %bias for this bias-corrected estimator
is 0.25%, −11% and −42%, respectively.

The second-order asymptotics fails to be a good approximation around δ = 1. This is due
to the weak instrument problem, see Blundell and Bond (1998) in section 8.5. In fact, the
latter paper argued that the weak IV problem can be alleviated by assuming stationarity on
the initial observation yi0. The stationarity condition turns out to be a predominant source
of information around δ = 1, as noted by Hahn (1999). The stationarity condition may or
may not be appropriate for particular applications, and substantial finite sample biases due to
inconsistency will result under violation of stationarity. Hahn et al. turn to the long-difference
estimator to deal with weak IV around the unit circle avoiding the stationarity assumption:

yit − yi1 = δ(yit − yi0) + νi t − νi1

Here yi0 is a valid instrument. The residuals (yi,T −1 − δyi,T −2), . . . , (yi,2 − δyi,1) are also valid
instruments. To make it operational, they suggest using the Arellano and Bover estimator for the
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first step and iterating using the long-difference estimator. The bias of the 2SLS (GMM)
estimator depends on four factors, the sample size, the number of instruments, the covariance
between the stochastic disturbance of the structural equation and the reduced form equation and
the explained variance of the first-stage reduced form. The long-difference estimator increases
the R2, but decreases the covariance between the stochastic disturbance of the structural equa-
tion and the reduced form equation. This alleviates the weak instruments problem. Further,
the number of instruments is smaller for the long-difference specification than for the first-
difference GMM and therefore one should expect smaller bias. The actual properties of the
long-difference estimator turn out to be much better than those predicted by higher-order theory,
especially around the unit circle. Monte Carlo results show that the long-difference estimator
does better than the other estimators for large δ and not significantly different for moderate δ.

Hahn et al. analyze the class of GMM estimators that exploit the Ahn and Schmidt (1997)
complete set of moment conditions and show that a strict subset of the full set of moment
restrictions should be used in estimation in order to minimize bias. They show that the long-
difference estimator is a good approximation to the bias minimal procedure. They report
the numerical values of the biases of the Arellano and Bond, Arellano and Bover and Ahn
and Schmidt estimators under near unit root asymptotics and compare them with biases for
the long-difference estimator as well as the bias minimal estimator. Despite the fact that the
long-difference estimator does not achieve small bias reduction, as the fully optimal estimator
it has significantly less bias than the more commonly used implementations of the GMM
estimator.

8.8 EMPIRICAL EXAMPLE: DYNAMIC DEMAND
FOR CIGARETTES

Baltagi and Levin (1992) estimate a dynamic demand model for cigarettes based on panel data
from 46 American states. This data, updated from 1963–92, is available on the Wiley web site
as cigar.txt. The estimated equation is

ln Cit = α + β1 ln Ci,t−1 + β2 ln Pi,t + β3 ln Yit + β4 ln Pnit + uit (8.48)

where the subscript i denotes the i th state (i = 1, . . . , 46) and the subscript t denotes the t th
year (t = 1, . . . , 30). Cit is real per capita sales of cigarettes by persons of smoking age (14
years and older). This is measured in packs of cigarettes per head. Pit is the average retail price
of a pack of cigarettes measured in real terms. Yit is real per capita disposable income. Pnit

denotes the minimum real price of cigarettes in any neighboring state. This last variable is a
proxy for the casual smuggling effect across state borders. It acts as a substitute price attracting
consumers from high-tax states like Massachusetts with 26 � c per pack to cross over to New
Hampshire where the tax is only 12� c per pack. The disturbance term is specified as a two-way
error component model:

uit = µi + λt + νi t i = 1, . . . , 46; t = 1, . . . , 30 (8.49)

where µi denotes a state-specific effect, and λt denotes a year-specific effect. The time-period
effects (the λt ) are assumed fixed parameters to be estimated as coefficients of time dummies
for each year in the sample. This can be justified given the numerous policy interventions as
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well as health warnings and Surgeon General’s reports. For example:

(1) The imposition of warning labels by the Federal Trade Commission effective January 1965.
(2) The application of the Fairness Doctrine Act to cigarette advertising in June 1967, which

subsidized antismoking messages from 1968 to 1970.
(3) The Congressional ban on broadcast advertising of cigarettes effective January 1971.

The µi are state-specific effects which can represent any state-specific characteristic including
the following:

(1) States with Indian reservations like Montana, New Mexico and Arizona are among the
biggest losers in tax revenues from non-Indians purchasing tax-exempt cigarettes from the
reservations.

(2) Florida, Texas, Washington and Georgia are among the biggest losers of revenues due to
the purchasing of cigarettes from tax-exempt military bases in these states.

(3) Utah, which has a high percentage of Mormon population (a religion which forbids smok-
ing), has a per capita sales of cigarettes in 1988 of 55 packs, a little less than half the
national average of 113 packs.

(4) Nevada, which is a highly touristic state, has a per capita sales of cigarettes of 142 packs
in 1988, 29 more packs than the national average.

These state-specific effects may be assumed fixed, in which case one includes state dummy
variables in equation (8.48). The resulting estimator is the Within estimator reported in
Table 8.1. Note that OLS, which ignores the state and time effects, yields a low short-run
price elasticity of −0.09. However, the coefficient of lagged consumption is 0.97 which im-
plies a high long-run price elasticity of −2.98. The Within estimator with both state and time

Table 8.1 Pooled Estimation Results.* Cigarette Demand Equation 1963–92

ln Ci,t−1 ln Pit ln Pnit ln Yit

OLS 0.97 −0.090 0.024 −0.03
(157.7) (6.2) (1.8) (5.1)

Within 0.83 −0.299 0.034 0.10
(66.3) (12.7) (1.2) (4.2)

2SLS 0.85 −0.205 0.052 −0.02
(25.3) (5.8) (3.1) (2.2)

2SLS-KR 0.71 −0.311 0.071 −0.02
(22.7) (13.9) (3.7) (1.5)

Within-2SLS 0.60 −0.496 −0.016 0.19
(17.0) (13.0) (0.5) (6.4)

FD-2SLS 0.51 −0.348 0.112 0.10
(9.5) (12.3) (3.5) (2.9)

FD-2SLS-KR 0.49 −0.348 0.095 0.13
(18.7) (18.0) (4.7) (9.0)

GMM-one-step 0.84 −0.377 −0.016 0.14
(52.0) (11.7) (0.4) (3.8)

GMM-two-step 0.80 −0.379 −0.020 0.24
(3.7) (8.0) (0.4) (0.9)

* Numbers in parentheses are t-statistics. All regressions except OLS and 2SLS include time dummies.
Source: Some of the results in this table are reported in Baltagi, Griffin and Xiong (2000).
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effects yields a higher short-run price elasticity of −0.30, but a lower long-run price elasticity
of −1.79. Both state and time dummies were jointly significant with an observed F-statistic
of 7.39 and a p-value of 0.0001. The observed F-statistic for the significance of state dum-
mies (given the existence of time dummies) is 4.16 with a p-value of 0.0001. The observed
F-statistic for the significance of time dummies (given the existence of state dummies) is 16.05
with a p-value of 0.0001. These results emphasize the importance of including state and time
effects in the cigarette demand equation. This is a dynamic equation and the OLS and Within
estimators do not take into account the endogeneity of the lagged dependent variable. Hence,
we report 2SLS and Within-2SLS using as instruments the lagged exogenous regressors. These
give lower estimates of lagged consumption and higher estimates of own price elasticities. The
Hausman-type test based on the difference between Within-2SLS and FD-2SLS and discussed
in section 8.6 yields a χ2

4 statistic = 118.6. This rejects the consistency of the Within-2SLS
estimator. The Hausman-type test based on the difference between 2SLS and FD-2SLS yields
a χ2

4 statistic = 96.6. This rejects the consistency of 2SLS. The FD-2SLS-KR estimator yields
the lowest coefficient estimate of lagged consumption (0.49). The own price elasticity is −0.35
and significant. The income effect is very small (0.13) but significant and the bootlegging effect
is small (0.095) and significant. The last two rows give the Arellano and Bond (1991) GMM
one-step and two-step estimators. The lagged consumption coefficient estimate is 0.80 while
the own price elasticity is −0.38 and significant. Table 8.2 gives the Stata output replicating
the two-step estimator using (xtabond,twostep). Note that the two-step Sargan test for over-
identification does not reject the null, but this could be due to the bad power of this test for
N = 46 and T = 28. The test for first-order serial correlation rejects the null of no first-order
serial correlation, but it does not reject the null that there is no second-order serial correla-
tion. This is what one expects in a first-differenced equation with the original untransformed
disturbances assumed to be not serially correlated.

8.9 FURTHER READING

Hsiao (2003) has an extensive discussion of the dynamic panel data model under the various
assumptions on the initial values; see also Anderson and Hsiao (1981, 1982) and Bhargava and
Sargan (1983). In particular, Hsiao (2003) shows that for the random effects dynamic model
the consistency property of MLE and GLS depends upon various assumptions on the initial
observations and on the way in which N and T tend to infinity. Read also the Arellano and Honoré
(2001) chapter in the Handbook of Econometrics. The latter chapter pays careful attention to
the implications of strict exogeneity for identification of the regression parameters controlling
for unobserved heterogeneity and contrasts those with the case of predetermined regressors.
Arellano’s (2003) recent book has an excellent discussion on dynamic panel data models.

For applications of the dynamic error component model, see Becker, Grossman and Murphy
(1994) who estimate a rational addiction model for cigarettes using a panel of 50 states (and
the District of Columbia) over the period 1955–85. They apply fixed effects 2SLS to estimate
a second-order difference equation in consumption of cigarettes, finding support for forward-
looking consumers and rejecting myopic behavior. Their long-run price elasticity estimate is
−0.78 as compared to −0.44 for the short-run. Baltagi and Griffin (2001) apply the FD-2SLS,
FE-2SLS and GMM dynamic panel estimation methods studied in this chapter to the Becker
et al. rational addiction model for cigarettes. Although the results are in general supportive
of rational addiction, the estimates of the implied discount rate are not precise. Baltagi and
Griffin (1995) estimate a dynamic demand for liquor across 43 states over the period 1960–82.
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Table 8.2 Arellano and Bond Estimates of Cigarette Demand

. xtabond lnc lnrp lnrpn lnrdi dum3-dum29, lag(1) twostep

Arellano-Bond dynamic panel data Number of obs = 1288
Group variable (i) : state Number of groups = 46

Wald chi2(31) = 19321.43

Time variable (t) : yr min number of obs = 28
max number of obs = 28
mean number of obs = 28

Two-step results
--------------------------------------------------------------------
lnc | Coef. Std. Err. z P > |z| [95% Conf. Interval]
-----------+--------------------------------------------------------
lnc |

LD | .8036647 .2200745 3.65 0.000 .3723267 1.235003
lnrp |

D1 | -.3786939 .0471325 -8.03 0.000 -.4710719 -.2863159
lnrpn |

D1 | -.0197172 .0495158 -0.40 0.690 -.1167663 .0773319
lnrdi |

D1 | .239147 .2778919 0.86 0.389 -.3055111 .783805

--------------------------------------------------------------------
The time dummies are not shown here to save space.

Sargan test of over-identifying restrictions:
chi2(405) = 15.40 Prob > chi2 = 1.0000

Arellano-Bond test that average autocovariance in residuals of
order 1 is 0:

H0: no autocorrelation z = -3.53 Pr > z = 0.0004
Arellano-Bond test that average autocovariance in residuals of
order 2 is 0:

H0: no autocorrelation z = 1.63 Pr > z = 0.1028

Fixed effects 2SLS as well as FD-2SLS-KR are performed. A short-run price elasticity of
−0.20 and a long-run price elasticity of −0.69 are reported. Their findings support strong
habit persistence, a small positive income elasticity and weak evidence of bootlegging from
adjoining states.

Alternative estimation methods of a static and dynamic panel data model with arbitrary
error structure are considered by Chamberlain (1982, 1984). Chamberlain (1984) considers
the panel data model as a multivariate regression of T equations subject to restrictions and
derives an efficient minimum distance estimator that is robust to residual autocorrelation of
arbitrary form. Chamberlain (1984) also first-differences these equations to get rid of the in-
dividual effects and derives an asymptotically equivalent estimator to his efficient minimum
distance estimator based on 3SLS of the (T − 2) differenced equations. Building on Cham-
berlain’s work, Arellano (1990) develops minimum chi-square tests for various covariance
restrictions. These tests are based on 3SLS residuals of the dynamic error component model
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and can be calculated from a generalized linear regression involving the sample autocovari-
ance and dummy variables. The asymptotic distribution of the unrestricted autocovariance es-
timates is derived without imposing the normality assumption. In particular, Arellano (1990)
considers testing covariance restrictions for error components or first-difference structures
with white noise, moving average or autoregressive schemes. If these covariance restrictions
are true, 3SLS is inefficient and Arellano (1990) proposes a GLS estimator which achieves
asymptotic efficiency in the sense that it has the same limiting distribution as the optimal
minimum distance estimator. Meghir and Windmeijer (1999) argue that it is important to
model the higher-order moments of the dynamic process using panel data. For example, in a
model for income dynamics and uncertainty, it is likely that persons at different levels of the
income distribution face a different variance of their time–income profile. Meghir and Wind-
meijer model the dynamic variance process as an ARCH-type variance with multiplicative
individual effects. They derive orthogonality conditions for estimating the coefficients of the
conditional variance using GMM. This is done for nonautocorrelated errors, moving aver-
age errors and for models allowing for time-varying individual effects. Monte Carlo results
show that large sample sizes are needed for estimating this conditional variance function with
precision.

Li and Stengos (1992) propose a Hausman specification test based on
√

N -consistent semi-
parametric estimators. They apply it in the context of a dynamic panel data model of the
form

yit = δyi,t−1 + g(xit ) + uit i = 1, . . . , N ; t = 1, . . . , T (8.50)

where the function g(.) is unknown, but satisfies certain moment and differentiability condi-
tions. The xit observations are IID with finite fourth moments and the disturbances uit are
IID(0, σ 2) under the null hypothesis. Under the alternative, the disturbances uit are IID in the
i subscript but are serially correlated in the t subscript. Li and Stengos base the Hausman test
for H0 : E(uit |yi,t−1) = 0 on the difference between two

√
N -consistent instrumental variables

estimators for δ, under the null and the alternative respectively. In other papers, Li and Stengos
(1996) derived a

√
N -consistent instrumental variable estimator for a semiparametric dynamic

panel data model, while Li and Stengos (1995) proposed a nonnested test for parametric vs
semiparametric dynamic panel data models. Baltagi and Li (2002) proposed new semipara-
metric instrumental variable (IV) estimators that avoid the weak instrument problem which
the Li and Stengos (1996) estimator may suffer from. Using Monte Carlo experiments, they
show that these estimators yield substantial gains in efficiency over the estimators suggested
by Li and Stengos (1996) and Li and Ullah (1998).

Kniesner and Li (2002) considered a semiparametric dynamic panel data model

yit = γ zit + f (yi,t−1, xit ) + uit

where the functional form of f (.) is unknown to the researcher. They considered the common
case of N large and T small, and proposed a two-step semiparametric

√
N -consistent estimation

procedure for this model. Kniesner and Li (2002) also used labor panel data to illustrate
the advantages of their semiparametric approach, vs OLS or IV approaches, which treat the
parameters as constants. They argued that when the regression function is unknown, imposing
a false parametric functional form may not only lead to inconsistent parameter estimation, but
may aggravate the problem of individual heterogeneity. For a survey of nonparametric and
semiparametric panel data models, see Ullah and Roy (1998).
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Holtz-Eakin et al. (1988) formulate a coherent set of procedures for estimating and testing
vector autoregressions (VAR) with panel data. The model builds upon Chamberlain’s (1984)
study and allows for nonstationary individual effects. It is applied to the study of dynamic
relationships between wages and hours worked in two samples of American males. The data are
based on a sample of 898 males from the PSID covering the period 1968–81. Two variables are
considered for each individual, log of annual average hourly earnings and log of annual hours of
work. Some of the results are checked using data from the National Longitudinal Survey of Men
45–59. Tests for parameter stationarity, minimum lag length and causality are performed. Holtz-
Eakin et al. (1988) emphasize the importance of testing for the appropriate lag length before
testing for causality, especially in short panels. Otherwise, misleading results on causality can
be obtained. They suggest a simple method of estimating VAR equations with panel data that
has a straightforward GLS interpretation. This is based on applying instrumental variables to the
quasi-differenced autoregressive equations. They demonstrate how inappropriate methods that
deal with individual effects in a VAR context can yield misleading results. Another application
of these VAR methods with panel data is Holtz-Eakin, Newey and Rosen (1989) who study
the dynamic relationships between local government revenues and expenditures. The data are
based on 171 municipal governments over the period 1972–80. It is drawn from the Annual
Survey of Governments between 1973 and 1980 and the Census of Governments conducted
in 1972 and 1977. The main findings include the following:

(1) Lags of one or two years are sufficient to summarize the dynamic interrelationships in
local public finance.

(2) There are important intertemporal linkages among expenditures, taxes and grants.
(3) Results of the stationarity test cast doubt over the stability of parameters over time.
(4) Contrary to previous studies, this study finds that past revenues help predict current ex-

penditures, but past expenditures do not alter the future path of revenues.

NOTES

1. This corrected Within estimator performed well in simulations when compared with eight other con-
sistent instrumental variable or GMM estimators discussed later in this chapter. Kiviet (1999) later
extends this derivation of the bias to the case of weakly exogenous variables and examines to what
degree this order of approximation is determined by the initial conditions of the dynamic panel data
model.

2. Judson and Owen (1999) recommended the corrected Within estimator proposed by Kiviet (1995) as
the best choice, followed by GMM as the second best choice. For long panels, they recommended the
computationally simpler Anderson and Hsiao (1982) estimator.

3. Arellano and Bond (1991) warn about circumstances where their proposed serial correlation test is
not defined, but where Sargan’s over-identification test can still be computed. This is evident for
T = 4 where no differenced residuals two periods apart are available to compute the serial correlation
test. However, for the simple autoregressive model given in (8.3), Sargan’s statistic tests two linear
combinations of the three moment restrictions available, i.e. E[(νi3 − νi2)yi1] = E[(νi4 − νi3)yi1] =
E[(νi4 − νi3)yi2] = 0.

4. Arellano and Bover (1995) also discuss a forward orthogonal deviations operator as another example
of C which is useful in the context of models with predetermined variables. This transformation
essentially subtracts the mean of future observations available in the sample from the first (T − 1)
observations, see problem 8.4.

5. Arellano and Bover (1995) derive the Fisher information bound for η in order to assess the efficiency
of the GMM estimators proposed in this section.

6. See the growing literature on weak instruments by Angrist and Kreuger (1995) and Staiger and Stock
(1997) to mention a few.
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7. It may be worth emphasizing that if T > N , this procedure will fail since �TS will be singular with
rank N. Also, the estimation of an unrestricted PTS matrix will be difficult with missing data.

8. An alternative one-step method that achieves the same asymptotic efficiency as robust GMM or
LIML estimators is the maximum empirical likelihood estimation method, see Imbens (1997). This
maximizes a multinomial pseudo-likelihood function subject to the orthogonality restrictions. These
are invariant to normalization because they are maximum likelihood estimators. See also Newey and
Smith (2004) who give general analytical bias corrected versions of GMM and generalized empirical
likelihood estimators.

PROBLEMS

8.1 For the simple autoregressive model with no regressors given in (8.3):
(a) Write the first-differenced form of this equation for t = 5 and t = 6 and list the set

of valid instruments for these two periods.
(b) Show that the variance–covariance matrix of the first-difference disturbances is given

by (8.5).
(c) Verify that (8.8) is the GLS estimator of (8.7).

8.2 Consider the Monte Carlo set-up given in Arellano and Bond (1991, p. 283) for a simple
autoregressive equation with one regressor with N = 100 and T = 7.
(a) Compute the bias and mean-squared error based on 100 replications of the following

estimators: OLS, Within, one-step and two-step Arellano and Bond GMM estimators,
two Anderson and Hsiao-type estimators that use �yi,t−2 and yi,t−2 as an instrument
for �yi,t−1, respectively. Compare with table 1, p. 284 of Arellano and Bond (1991).

(b) Compute Sargan’s test of over-identifying restrictions given below (8.16) and count
the number of rejections out of 100 replications. Compare with table 2 of Arellano
and Bond (1991).

8.3 For T = 5, list the moment restrictions available for the simple autoregressive model
given in (8.3). What over-identifying restrictions are being tested by Sargan’s statistic
given below (8.16)?

8.4 Consider three (T − 1) × T matrices defined in (8.20) as follows: C1 = the first (T − 1)
rows of (IT − J̄ T ), C2 = the first-difference operator, C3 = the forward orthogonal de-
viations operator which subtracts the mean of future observations from the first (T − 1)
observations. This last matrix is given by Arellano and Bover (1995) as

C3 = diag

[
T − 1

T
, . . . ,

1

2

]1/2

×


1 − 1

(T −1) − 1
(T −1) . . . − 1

(T −1) − 1
(T −1) − 1

(T −1)

0 1 − 1
(T −2) . . . − 1

(T −2) − 1
(T −2) − 1

(T −2)
...

...
...

...
...

...
0 0 0 . . . 1 − 1

2 − 1
2

0 0 0 . . . 0 1 −1


Verify that each one of these C matrices satisfies:
(a) C j ιT = 0 for j = 1, 2, 3.
(b) C ′

j (C j C ′
j )

−1C j = IT − J̄ T , the Within transformation, for j = 1, 2, 3.
(c) For C3, show that C3C ′

3 = IT −1 and C ′
3C3 = IT − J̄ T . Hence C3 = (C ′C)−1/2C for

any upper triangular C such that CιT = 0.
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8.5 (a) Verify that GLS on (8.24) yields (8.25).
(b) For the error component model with �̃ = σ̃ 2

ν IT + σ̃ 2
µ JT and σ̃ 2

ν and σ̃ 2
µ denoting

consistent estimates of σ 2
v and σ 2

µ, respectively, show that η̂ in (8.25) can be written
as

η̂ =
 N∑

i=1

W ′
i (IT − J̄ T )Wi + θ̃2T

N∑
i=1

w̄i m
′
i

(
N∑

i=1

mi m
′
i

)−1 N∑
i=1

mi w̄
′
i

−1

×
 N∑

i=1

W ′
i (IT − J̄ T )yi + θ̃2T

N∑
i=1

w̄i m
′
i

(
N∑

i=1

mi m
′
i

)−1 N∑
i=1

mi ȳi


where w̄i = W ′

i ιT /T and θ̃2 = σ̃ 2
ν /(T σ̃ 2

µ + σ̃ 2
ν ). These are the familiar expressions for

the HT, AM and BMS estimators for the corresponding choices of mi . (Hint: See the
proof in the appendix of Arellano and Bover (1995)).

8.6 For T = 4 and the simple autoregressive model considered in (8.3):
(a) What are the moment restrictions given by (8.31)? Compare with problem 8.3.
(b) What are the additional moment restrictions given by (8.32)?
(c) Write down the system of equations to be estimated by 3SLS using these additional

restrictions and list the matrix of instruments for each equation.
8.7 Using the notation in (8.33)–(8.35), show that (8.31) and (8.32) hold under the weaker

conditions (B.1)–(B.3) than those implied by assumptions (A.1)−(A.3).
8.8 Consider the Baltagi and Levin (1992) cigarette demand example for 46 states described

in section 8.8. This data, updated from 1963–92, is available on the Wiley web site as
cigar.txt.
(a) Estimate equation (8.48) using 2SLS, FD-2SLS and their Keane and Runkle (1992)

version. (Assume only ln Ci,t−1 is endogenous.)
(b) Estimate question (8.48) using the Within and FE-2SLS and perform the Hausman-

type test based on FE-2SLS vs FD-2SLS.
(c) Perform the Hausman-type test based on 2SLS vs FD-2SLS.
(d) Perform the Anderson and Hsiao (1981) estimator for equation (8.48).
(e) Perform the Arellano and Bond (1991) GMM estimator for equation (8.48).
Hint: Some of the results are available in table 1 of Baltagi et al. (2000).

8.9 Consider the Arellano and Bond (1991) employment equation for 140 UK companies
over the period 1979–84. Replicate all the estimation results in table 4 of Arellano and
Bond (1991, p. 290).
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9

Unbalanced Panel Data Models

9.1 INTRODUCTION

So far we have dealt only with “complete panels” or “balanced panels”, i.e. cases where the
individuals are observed over the entire sample period. Incomplete panels are more likely to be
the norm in typical economic empirical settings. For example, in collecting data on US airlines
over time, a researcher may find that some firms have dropped out of the market while new
entrants emerged over the sample period observed. Similarly, while using labor or consumer
panels on households, one may find that some households moved and can no longer be included
in the panel. Additionally, if one is collecting data on a set of countries over time, a researcher
may find some countries can be traced back longer than others. These typical scenarios lead
to “unbalanced” or “incomplete” panels. This chapter deals with the econometric problems
associated with these incomplete panels and how they differ from the complete panel data case.
Throughout this chapter the panel data are assumed to be incomplete due to randomly missing
observations. Nonrandomly missing data and rotating panels will be considered in Chap-
ter 10.1 Section 9.2 starts with the simple one-way error component model case with unbalanced
data and surveys the estimation methods proposed in the literature. Section 9.4 treats the more
complicated two-way error component model with unbalanced data. Section 9.5 looks at how
some of the tests introduced earlier in the book are affected by the unbalanced panel, while
section 9.6 gives some extensions of these unbalanced panel data methods to the nested error
component model.

9.2 THE UNBALANCED ONE-WAY ERROR
COMPONENT MODEL

To simplify the presentation, we analyze the case of two cross-sections with an unequal number
of time-series observations and then generalize the analysis to the case of N cross-sections.
Let n1 be the shorter time series observed for the first cross-section (i = 1), and n2 be the
extra time-series observations available for the second cross-section (i = 2).2 Stacking the
n1 observations for the first individual on top of the (n1 + n2) observations on the second
individual, we get (

y1

y2

)
=

(
X1

X2

)
β +

(
u1

u2

)
(9.1)

where y1 and y2 are vectors of dimensions n1 and n1 + n2, respectively. X1 and X2 are matrices
of dimensions n1 × K and (n1 + n2) × K , respectively. In this case, u′

1 = (u11, . . . , u1,n1 ),
u′

2 = (u21, . . . , u2,n1 , . . . , u2,n1+n2 ) and the variance–covariance matrix is given by

� =

σ 2
ν In1 + σ 2

µ Jn1n1 0 0

0 σ 2
ν In1 + σ 2

µ Jn1n1 σ 2
µ Jn1n2

0 σ 2
µ Jn2n1 σ 2

ν In2 + σ 2
µ Jn2n2

 (9.2)

165
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where u′ = (u′
1, u′

2), Ini denotes an identity matrix of order ni and Jni n j denotes a matrix of
ones of dimension ni × n j . Note that all the nonzero off-diagonal elements of � are equal to
σ 2

µ. Therefore, if we let Tj = ∑ j
i=1 ni for j = 1, 2, then � is clearly block-diagonal, with the

j th block

� j = (Tjσ
2
µ + σ 2

ν ) J̄ Tj + σ 2
ν ETj (9.3)

where J̄ Tj = JTj /Tj , ETj = ITj − J̄ Tj and there is no need for the double subscript anymore.
Using the Wansbeek and Kapteyn (1982b) trick extended to the unbalanced case, Baltagi
(1985) derived

�r
j = (Tjσ

2
µ + σ 2

ν )r J̄ Tj + (σ 2
ν )r ETj (9.4)

where r is any scalar. Let w2
j = Tjσ

2
µ + σ 2

ν , then the Fuller and Battese (1974) transformation
for the unbalanced case is the following:

σν�
−1/2
j = (σν/w j ) J̄ Tj + ETj = ITj − θ j J̄ Tj (9.5)

where θ j = 1 − σν/w j , and σν�
−1/2
j y j has a typical element (y jt − θ j ȳ j.) with ȳ j. =∑Tj

t=1 y jt/Tj . Note that θ j varies for each cross-sectional unit j depending on Tj . Hence
GLS can be obtained as a simple weighted least squares (WLS) as in the complete panel data
case. The basic difference, however, is that in the incomplete panel data case, the weights are
crucially dependent on the lengths of the time series available for each cross-section.

The above results generalize in two directions: (i) the same analysis applies no matter how the
observations for the two firms overlap; (ii) the results extend from the two cross-sections to the
N cross-sections case. The proof is simple. Since the off-diagonal elements of the covariance
matrix are zero for observations belonging to different firms, � remains block-diagonal as
long as the observations are ordered by firms. Also, the nonzero off-diagonal elements are all
equal to σ 2

µ. Hence �
−1/2
j can be derived along the same lines shown above.

In general, the regression model with unbalanced one-way error component disturbances is
given by

yit = α + X ′
i tβ + uit i = 1, . . . , N ; t = 1, . . . , Ti (9.6)

uit = µi + νi t

where Xit is a (K − 1) × 1 vector of regressors, µi ∼ IIN(0, σ 2
µ) and independent of νi t ∼

IIN(0, σ 2
ν ). This model is unbalanced in the sense that there are N individuals observed over

varying time-period length (Ti for i = 1, . . . , N ). Writing this equation in vector form, we
have

y = αιn + Xβ + u = Zδ + u (9.7)

u = Zµµ + ν

where y and Z are of dimensions n × 1 and n × K , respectively, Z = (ιn, X ), δ′ = (α′, β ′),
n = ∑

Ti , Zµ = diag(ιTi ) and ιTi is a vector of ones of dimension Ti . µ = (µ1, µ2, . . . , µN )′

and ν = (ν11, . . . , ν1T1 , . . . , νN1, . . . , νN TN )′.
The ordinary least squares (OLS) on the unbalanced data is given by

δ̂OLS = (Z ′ Z )−1 Z ′y (9.8)
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OLS is the best linear unbiased estimator when the variance component σ 2
µ is equal to zero.

Even when σ 2
µ is positive, OLS is still unbiased and consistent, but its standard errors are biased

(see Moulton, 1986). The OLS residuals are denoted by ûOLS = y − Z δ̂OLS.
The Within estimator can be obtained by first transforming the dependent variable y and X ,

the exogenous regressors excluding the intercept, using the matrix Q = diag(ETi ), and then
applying OLS to the transformed data:

β̃ = (X̃ ′ X̃ )−1 X̃ ′̃y (9.9)

where X̃ = Q X , ỹ = Qy. The estimate of the intercept can be retrieved as follows: α̃ =
(ȳ.. − X̄ ..β̃) where the dot indicates summation and the bar indicates averaging, for example,
ȳ.. = ∑ ∑

yit/n. Following Amemiya (1971), the Within residuals ũ for the unbalanced panel
are given by

ũ = y − α̃ιn − X β̃ (9.10)

The Between estimator δ̂Between is obtained as follows:

δ̂Between = (Z ′ P Z )−1 Z ′ Py (9.11)

where P = diag[ J̄ Ti ], and the Between residuals are denoted by ûb = y − Z δ̂Between.
GLS using the true variance components is obtained as follows:

δ̂GLS = (Z ′�−1 Z )−1 Z ′�−1 y (9.12)

where � = σ 2
ν 	 = E(uu′) with

	 = In + ρZµ Z ′
µ = diag(ETi ) + diag[(1 + ρTi ) J̄ Ti ] (9.13)

and ρ = σ 2
µ/σ 2

ν . Note that (1 + ρTi ) = (w2
i /σ

2
ν ) where w2

i = (Tiσ
2
µ + σ 2

ν ) was defined in (9.4).
Therefore, GLS can be obtained by applying OLS on the transformed variables y∗ and Z∗, i.e.

δ̂ = (Z∗′ Z∗)−1 Z∗′y∗

where Z∗ = σν�
−1/2 Z , y∗ = σν�

−1/2 y and

σν�
−1/2 = diag(ETi ) + diag[(σν/wi ) J̄ Ti ] (9.14)

as described in (9.5).
We now focus on methods of estimating the variance components, which are described in

more detail in Baltagi and Chang (1994).

9.2.1 ANOVA Methods

The ANOVA method is one of the most popular methods in the estimation of variance compo-
nents. The ANOVA estimators are method of moments-type estimators, which equate quadratic
sums of squares to their expectations and solve the resulting linear system of equations. For
the balanced model, ANOVA estimators are best quadratic unbiased (BQU) estimators of the
variance components (see Searle, 1971). Under normality of the disturbances, these ANOVA
estimators are minimum variance unbiased. For the unbalanced one-way model, BQU estima-
tors of the variance components are a function of the variance components themselves (see
Townsend and Searle, 1971). Still, unbalanced ANOVA methods are available (see Searle,



JWBK024-09 JWBK024-Baltagi March 30, 2005 4:11 Char Count= 0

168 Econometric Analysis of Panel Data

1987), but optimal properties beyond unbiasedness are lost. In what follows, we generalize
some of the ANOVA methods described in Chapter 2 to the unbalanced case. In particular, we
consider the two quadratic forms defining the Within and Between sums of squares:

q1 = u′ Qu and q2 = u′ Pu (9.15)

where Q = diag[ETi ] and P = diag[ J̄ Ti ]. Since the true disturbances are not known, we follow
the Wallace and Hussain (1969) suggestion by substituting OLS residuals ûOLS for u in (9.15).
Upon taking expectations, we get

E (̂q1) = E(û′
OLS QûOLS) = δ11σ

2
µ + δ12σ

2
ν

E (̂q2) = E(û′
OLS PûOLS) = δ21σ

2
µ + δ22σ

2
ν (9.16)

where δ11, δ12, δ21, δ22 are given by

δ11 = tr((Z ′ Z )−1 Z ′ Zµ Z ′
µ Z ) − tr((Z ′ Z )−1 Z ′ P Z (Z ′ Z )−1 Z ′ Zµ Z ′

µ Z )

δ12 = n − N − K + tr((Z ′ Z )−1 Z ′ P Z )

δ21 = n − 2tr((Z ′ Z )−1 Z ′ Zµ Z ′
µ Z ) + tr((Z ′ Z )−1 Z ′ P Z (Z ′ Z )−1 Z ′ Zµ Z ′

µ Z )

δ22 = N − tr((Z ′ Z )−1 Z ′ P Z )

Equating q̂i to its expected value E (̂qi ) in (9.16) and solving the system of equations, we get
the Wallace and Hussain (WH)-type estimators of the variance components.

Alternatively, we can substitute Within residuals in the quadratic forms given in (9.15) to
get q̃1 = ũ′ Qũ and q̃2 = ũ′ Pũ as suggested by Amemiya (1971) for the balanced case. The
expected values of q̃1 and q̃2 are given by

E (̃q1) = (n − N − K + 1)σ 2
v

E (̃q2) = (N − 1 + tr[(X ′ Q X )−1 X ′ P X ] − tr[(X ′ Q X )−1 X ′ J̄ n X ])σ 2
ν (9.17)

+
[

n −
(

N∑
i=1

T 2
i /n

)]
σ 2

µ

Equating q̃i to its expected value E (̃qi ) in (9.17), we get the Amemiya-type estimators of the
variance components

σ̂ 2
ν = ũ′ Qũ/(n − N − K + 1) (9.18)

σ̂ 2
µ = ũ′ Pũ − {N − 1 + tr[(X ′ Q X )−1 X ′ P X ] − tr[(X ′ Q X )−1 X ′ J̄ n X ]}σ̂ 2

ν

n − ∑N
i=1 T 2

i /n

Next, we follow the Swamy and Arora (1972) suggestion of using the Between and Within
regression mean square errors to estimate the variance components. In fact, their method
amounts to substituting Within residuals in q1 and Between residuals in q2, to get q̃1 = ũ′ Qũ
and q̂b

2 = ûb′ Pûb. Since q̃1 is exactly the same as that for the Amemiya method, the Swamy
and Arora (SA)-type estimator of σ̂ 2

ν is the same as that given in equation (9.18). The expected
value of q̂b

2 is given by

E(q̂b
2 ) = [n − tr((Z ′ P Z )−1 Z ′ Zµ Z ′

µ Z )]σ 2
µ + (N − K )σ 2

ν (9.19)
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Equating E(q̂b
2 ) to q̂b

2 one gets the following estimator of σ 2
µ:

σ̂ 2
µ = ûb′ Pûb − (N − K )σ̂ 2

ν

n − tr((Z ′ P Z )−1 Z ′ Zµ Z ′
µ Z )

(9.20)

Note that ûb′
Pûb can be obtained as the OLS residual sum of squares from the regression

involving
√

Ti ȳi. on
√

Ti Z̄i..
Finally, we consider Henderson’s method III (see Fuller and Battese, 1974) which will be

denoted by HFB. This method utilizes the fitting constants method described in Searle (1971,
p. 489). Let

R(µ) = y′ Zµ(Z ′
µ Zµ)−1 Z ′

µy =
N∑

i=1

(y2
i./Ti ); R(δ | µ) = ỹ′ X̃ (X̃ ′ X̃ )−1 X̃ ′ ỹ

R(δ) = y′ Z (Z ′ Z )−1 Z ′y and R(µ | δ) = R(δ | µ) + R(µ) − R(δ)

Then Henderson’s (1953) method III estimators are given by

σ̂ 2
ν = y′y − R(δ | µ) − R(µ)

n − K − N + 1

σ̂ 2
µ = R(µ | δ) − (N − 1)σ̂ 2

ν

n − tr(Z ′
µ Z (Z ′ Z )−1 Z ′ Zµ)

(9.21)

9.2.2 Maximum Likelihood Estimators

Maximum likelihood (ML) estimates of the variance components and regression coefficients
are obtained by maximizing the following loglikelihood function:

log L = −(n/2) log(2π ) − (n/2) log σ 2
v − 1

2 log |	|
−(y − Zδ)′	−1(y − Zδ)/2σ 2

ν (9.22)

where ρ and 	 are given in (9.13). The first-order conditions give closed form solutions for
δ̂ and σ̂ 2

ν conditional on ρ̂:

δ̂ = (Z ′	̂−1 Z )−1 Z ′	̂−1 y

σ̂ 2
ν = (y − Zδ)′	̂−1(y − Zδ)/n (9.23)

However, the first-order condition based on ρ is nonlinear in ρ even for known values of δ and
σ 2

ν :

0 = ∂ log L

∂ρ
= 1

2
tr(Z ′	−1 Z ) + 1

2σ 2
ν

(y − Zδ)′	−1 Zµ Z ′
µ	−1(y − Zδ) (9.24)

A numerical solution by means of iteration is necessary for ρ̂. The second derivative of log L
with respect to ρ is given by

∂2 log L

∂ρ∂ρ
= 1

2
tr{(Z ′

µ	−1 Zµ)(Z ′
µ	−1 Zµ)}

− 1

σ 2
ν

{(y − Zδ)′	−1 Zµ(Z ′
µ	−1 Zµ)Z ′

µ	−1(y − Zδ)} (9.25)
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Starting with an initial value of ρ0, one obtains 	̂0 from (9.13) and δ̂0 and σ̂ 2
ν0 from (9.23).

The updated value ρ1 is given from the following formula:

ρ1 = ρ0 − s

[
∂2 log L

∂ρ∂ρ

]−1

0

[
∂ log L

∂ρ

]
0

(9.26)

where the subscript zero means evaluated at 	̂0, δ̂0 and σ̂ 2
ν0 and s is a step size which is

adjusted by step halving.3 For the computational advantage of this algorithm as well as other
algorithms like the Fisher scoring algorithm, see Jennrich and Sampson (1976) and Harville
(1977). Maximum likelihood estimators are functions of sufficient statistics and are consistent
and asymptotically efficient; see Harville (1977) for a review of the properties, advantages and
disadvantages of ML estimators.

The ML approach has been criticized on grounds that it does not take into account the
loss of degrees of freedom due to the regression coefficients in estimating the variance com-
ponents. Patterson and Thompson (1971) remedy this by partitioning the likelihood function
into two parts, one part depending only on the variance components and free of the regres-
sion coefficients. Maximizing this part yields the restricted maximum likelihood estimator
(REML). REML estimators of the variance components are asymptotically equivalent to the
ML estimators, however, little is known about their finite sample properties, and they reduce to
the ANOVA estimators under several balanced data cases. For details, see Corbeil and Searle
(1976a,b).

9.2.3 Minimum Norm and Minimum Variance Quadratic Unbiased Estimators
(MINQUE and MIVQUE)

Under normality of the disturbances, Rao’s (1971a) MINQUE and MIVQUE procedures for
estimating the variance components are identical. Since we assume normality, we will fo-
cus on MIVQUE. Basically, the MIVQUE of a linear combination of the variance compo-
nents, pµσ 2

µ + pνσ
2
ν , is obtained by finding a symmetric matrix G such that var(y′Gy) = 2

tr{σ 2
µ(G Zµ Z ′

µ) + σ 2
ν G}2 is minimized subject to the conditions that y′Gy is an unbiased esti-

mator of (pµσ 2
µ + pνσ

2
ν ) and is invariant to any translation of the δ parameter. These yield the

following constraints:

1. GZ = 0.
2. tr(G Zµ Z ′

µ) = pµ and tr(G) = pν .

Rao (1971b) showed that the MIVQUE estimates of the variance components are given by[
σ̂ 2

µ

σ̂ 2
ν

]
=

[
γ11 γ12

γ12 γ22

]−1 [
δ1

δ2

]
where γ11 = tr(Zµ Z ′

µ RZµ Z ′
µ R), γ12 = tr(Zµ Z ′

µ R R), γ22 = tr(R R), δ1 = y′ RZµ Z ′
µ Ry, δ2 =

y′ R Ry and R = (	−1 − 	−1 Z (Z ′	−1 Z )−1 Z ′	−1)/σ 2
ν . It is clear that MIVQUE requires

a priori values of the variance components, and the resulting estimators possess the mini-
mum variance property only if these a priori values coincide with the true values. Therefore,
MIVQUE are only “locally best” and “locally minimum variance”. If one iterates on the initial
values of the variance components, the iterative estimators (IMIVQUE) become biased after
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the first iteration and MINQUE properties are not preserved. Two priors for the MINQUE
estimator used in practice are: (i) the identity matrix, denoted by (MQ0) and (ii) the ANOVA
estimator of Swamy and Arora, denoted by (MQA). Under normality, if one iterates until con-
vergence, IMINQUE, IMIVQUE and REML will be identical (see Hocking and Kutner, 1975;
Swallow and Monahan, 1984).4

9.2.4 Monte Carlo Results

Baltagi and Chang (1994) performed an extensive Monte Carlo study using a simple as well
as a multiple regression with unbalanced one-way error component disturbances. The degree
of unbalance in the sample as well as the variance component ratio ρ were varied across the
experiments. The total number of observations as well as the total variance were fixed across
the experiments to allow comparison of MSE for the various estimators considered. Some of
the basic results of the Monte Carlo study suggest the following:

(1) As far as the estimation of regression coefficients is concerned, the simple ANOVA-type
feasible GLS estimators compare well with the more complicated estimators such as ML,
REML and MQA and are never more than 4% above the MSE of true GLS. However,
MQ0 is not recommended for large ρ and unbalanced designs.

(2) For the estimation of the remainder variance component σ 2
ν the ANOVA, MIVQUE(A), ML

and REML estimators show little difference in relative MSE performance. However, for
the individual specific variance component estimation, σ 2

µ, the ANOVA-type estimators
perform poorly relative to ML, REML and MQA when the variance component ratio
ρ > 1 and the pattern is severely unbalanced. MQ0 gives an extremely poor performance
for severely unbalanced patterns and large ρ and is not recommended for these cases.

(3) Better estimates of the variance components, in the MSE sense, do not necessarily imply
better estimates of the regression coefficients. This echoes similar findings for the balanced
panel data case.

(4) Negative estimates of the variance components occurred when the true value of σ 2
µ was

zero or close to zero. In these cases, replacing these negative estimates by zero did not lead
to much loss in efficiency.

(5) Extracting a balanced panel out of an unbalanced panel by either maximizing the number
of households observed or the total number of observations in the balanced panel leads in
both cases to an enormous loss in efficiency and is not recommended.5

9.3 EMPIRICAL EXAMPLE: HEDONIC HOUSING

Baltagi and Chang (1994) apply the various unbalanced variance components methods to the
data set collected by Harrison and Rubinfeld (1978) for a study of hedonic housing prices and
the willingness to pay for clean air. This data is available on the Wiley web site as Hedonic.xls.
The total number of observations is 506 census tracts in the Boston area in 1970 and the number
of variables is 14. Belsley, Kuh and Welsch (1980) identify 92 towns, consisting of 15 within
Boston and 77 in its surrounding area. Thus, it is possible to group these data and analyze
them as an unbalanced one-way model with random group effects. The group sizes range from
one to 30 observations. The dependent variable is the median value (MV) of owner-occupied
homes. The regressors include two structural variables, RM the average number of rooms, and
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AGE representing the proportion of owner units built prior to 1940. In addition there are eight
neighborhood variables: B, the proportion of blacks in the population; LSTAT, the proportion of
population that is lower status; CRIM, the crime rate; ZN, the proportion of 25 000 square feet
residential lots; INDUS, the proportion of nonretail business acres; TAX, the full value property
tax rate ($/$10 000); PTRATIO, the pupil–teacher ratio; and CHAS, the dummy variable for
Charles River = 1 if a tract bounds the Charles. There are also two accessibility variables, DIS
the weighted distances to five employment centers in the Boston region and RAD the index
of accessibility to radial highways. One more regressor is an air pollution variable NOX, the
annual average nitrogen oxide concentration in parts per hundred million.6 Moulton (1987)
performed the Breusch and Pagan (1980) Lagrange multiplier (LM) test on this data set and
found compelling evidence against the exclusion of random group effects.7

Table 9.1 shows the OLS, Within, ANOVA, ML, REML and MIVQUE-type estimates using
the entire data set of 506 observations for 92 towns. Unlike the drastic difference between OLS
and the Within estimators which were analyzed in Moulton (1987), the various ANOVA, MLE

Table 9.1 One-way Unbalanced Variance Components Estimates for the Harrison–Rubinfeld
Hedonic Housing Equation. Dependent Variable: MV

OLS Within SA WH HFB ML REML MQ0 MQA

Intercept 9.76 — 9.68 9.68 9.67 9.68 9.67 9.68 9.67
(0.15) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)

CRIM −0.12 −0.63 −0.72 −0.74 −0.72 −0.72 −0.71 −0.73 −0.71
(0.12) (0.10) (0.10) (0.11) (0.10) (0.10) (0.10) (0.11) (0.10)

ZN 0.08 — 0.04 0.07 0.02 0.03 0.01 0.06 0.01
(0.51) (0.69) (0.68) (0.70) (0.69) (0.71) (0.69) (0.71)

INDUS 0.02 — 0.21 0.16 0.24 0.22 0.24 0.18 0.24
(0.24) (0.43) (0.43) (0.45) (0.44) (0.46) (0.43) (0.45)

CHAS 0.91 −0.45 −0.01 −0.06 −0.13 −0.12 −0.14 −0.08 −0.14
(0.33) (0.30) (0.29) (0.30) (0.29) (0.29) (0.29) (0.30) (0.29)

NOX −0.64 −0.56 −0.59 −0.58 −0.59 −0.59 −0.59 −0.59 −0.59
(0.11) (0.14) (0.12) (0.13) (0.12) (0.12) (0.12) (0.13) (0.12)

RM 0.63 0.93 0.92 0.91 0.92 0.92 0.92 0.91 0.92
(0.13) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)

AGE 0.09 −1.41 −0.93 −0.87 −0.96 −0.94 −0.97 −0.90 −0.96
(0.53) (0.49) (0.46) (0.49) (0.46) (0.46) (0.46) (0.48) (0.46)

DIS −1.91 0.80 −1.33 −1.42 −1.27 −1.30 −1.25 −1.38 −1.26
(0.33) (0.71) (0.46) (0.46) (0.46) (0.47) (0.47) (0.46) (0.47)

RAD 0.96 — 0.97 0.96 0.97 0.97 0.98 0.96 0.97
(0.19) (0.28) (0.28) (0.29) (0.28) (0.30) (0.28) (0.29)

TAX −0.42 — −0.37 −0.38 −0.37 −0.37 −0.37 −0.38 −0.37
(0.12) (0.19) (0.19) (0.19) (0.19) (0.20) (0.19) (0.20)

PTRATIO −3.11 — −2.97 −2.95 −2.99 −2.98 −2.99 −2.96 −2.99
(0.50) (0.98) (0.96) (1.01) (0.98) (1.02) (0.97) (1.02)

B 0.36 0.66 0.58 0.57 0.58 0.58 0.58 0.57 0.58
(0.10) (0.10) (0.10) (0.11) (0.10) (0.10) (0.10) (0.10) (0.10)

LSTAT −3.71 −2.45 −2.85 −2.90 −2.82 −2.84 −2.82 −2.88 −2.82
(0.25) (0.26) (0.24) (0.25) (0.24) (0.24) (0.24) (0.25) (0.24)

σ̂ 2
ν — — 0.017 0.020 0.017 0.017 0.017 0.019 0.017

σ̂ 2
µ — — 0.017 0.016 0.019 0.018 0.020 0.017 0.020

∗ Approximate standard errors are given in parentheses. n = 506 observations for N = 92 towns.
Source: Baltagi and Chang (1994). Reproduced by permission of Elsevier Science Publishers B.V. (North-Holland).
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and MIVQUE-type estimators reported in Table 9.1 give similar estimates. Exceptions are ZN,
INDUS and CHAS estimates which vary across methods, but are all statistically insignificant.
For the statistically significant variables, AGE varies from −0.87 for WH to −0.97 for REML,
and DIS varies from −1.25 for REML to −1.42 for WH.8 These results were verified using Stata
and TSP. The higher the crime rate, air pollution, tax rate, pupil–teacher ratio, proportion of the
population in lower status, the older the home and the greater the distance from employment
centers in Boston, the lower is the median value of the house. Similarly, the more rooms a
house has and the more accessible to radial highways the higher is the median value of that
home. Table 9.2 produces the maximum likelihood estimates using Stata. The likelihood ratio
for H0 : σ 2

µ = 0 is 172.7. This is asymptotically distributed as χ2
1 and is significant. The

Breusch–Pagan LM test for H0 is 240.8. This is asymptotically distributed as χ2
1 and is also

significant. The Hausman specification test based on the contrast between the fixed effects and
random effects estimators in Stata yields a χ2

8 statistic of 66.1 which is statistically significant.
Table 9.3 reproduces the Swamy and Arora estimator using Stata.

Table 9.2 Hedonic Housing Equation: Maximum Likelihood Estimator

Random-effects ML regression Number of obs = 506
Group variable (i) : town Number of groups = 92

Random effects u i ~ Gaussian Obs per group: min = 1
avg = 5.5
max = 30

LR chi2(13) = 604.11
Log likelihood = 236.26918 Prob > chi2 = 0.0000

---------------------------------------------------------------------
mv | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-----------------------------------------------------------
crim | -.0071948 .0010277 -7.00 0.000 -.009209 -.0051806
zn | .0000286 .0006894 0.04 0.967 -.0013226 .0013799

indus | .0022167 .0043906 0.50 0.614 -.0063887 .0108221
chas | -.0119739 .028971 -0.41 0.679 -.0687561 .0448083
nox | -.0058672 .0012282 -4.78 0.000 -.0082744 -.00346
rm | .0092024 .0011643 7.90 0.000 .0069204 .0114843
age | -.000943 .0004614 -2.04 0.041 -.0018473 -.0000387
dis | -.1298569 .0469261 -2.77 0.006 -.2218304 -.0378834
rad | .0971024 .0284233 3.42 0.001 .0413938 .152811
tax | -.0003741 .0001895 -1.97 0.048 -.0007456 -2.59e-06
pt | -.0297989 .0097987 -3.04 0.002 -.0490041 -.0105938
b | .5778527 .0999609 5.78 0.000 .381933 .7737724

lst | -.2837924 .02405 -11.80 0.000 -.3309295 -.2366552
cons | 9.675679 .2069417 46.76 0.000 9.270081 10.08128

---------------------------------------------------------------------
/sigma u | .1337509 .0132895 10.06 0.000 .107704 .1597979
/sigma e | .1304801 .0045557 28.64 0.000 .1215512 .1394091
---------------------------------------------------------------------

rho | .5123767 .0546929 .4060176 .6178576
---------------------------------------------------------------------
Likelihood ratio test of sigma u=0: chibar2(01)= 172.71
Prob=chibar2 = 0.000
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Table 9.3 Hedonic Housing Equation: Swamy–Arora Estimator

Random-effects GLS regression Number of obs = 506
Group variable (i) : town Number of groups = 92

R-sq: within = 0.6682 Obs per group: min = 1
between = 0.8088 avg = 5.5
overall = 0.7875 max = 30

Random effects u i ~ Gaussian Wald chi2(13) = 1169.62
corr(u i, X) = 0 (assumed) Prob > chi2 = 0.0000

theta

-----------------------------------------------
min 5% median 95% max

0.2915 0.2915 0.5514 0.7697 0.8197

---------------------------------------------------------------------
mv | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-----------------------------------------------------------
crim | -.0072338 .0010346 -6.99 0.000 -.0092616 -.0052061
zn | .0000396 .0006878 0.06 0.954 -.0013084 .0013876

indus | .0020794 .0043403 0.48 0.632 -.0064273 .0105861
chas | -.0105913 .0289598 -0.37 0.715 -.0673515 .046169
nox | -.005863 .0012455 -4.71 0.000 -.0083041 -.0034219
rm | .0091774 .0011792 7.78 0.000 .0068662 .0114885
age | -.0009272 .0004647 -2.00 0.046 -.0018379 -.0000164
dis | -.1328825 .0456826 -2.91 0.004 -.2224186 -.0433463
rad | .0968634 .0283495 3.42 0.001 .0412994 .1524274
tax | -.0003747 .000189 -1.98 0.047 -.0007452 -4.25e-06
pt | -.029723 .0097538 -3.05 0.002 -.0488402 -.0106059
b | .5750649 .101031 5.69 0.000 .3770479 .773082

lst | -.2851401 .0238546 -11.95 0.000 -.3318942 -.2383859
cons | 9.677802 .2071417 46.72 0.000 9.271811 10.08379

---------+-----------------------------------------------------------
sigma u | .12973801
sigma e | .13024876

rho | .49803548 (fraction of variance due to u i)
---------------------------------------------------------------------

In conclusion, for the regression coefficients, both the Monte Carlo and the empirical illus-
tration indicate that the computationally simple ANOVA estimates compare favorably with
the computationally demanding ML, REML and MQA-type estimators. For the variance
components, the ANOVA methods are recommended except when ρ is large and the un-
balancedness of the data is severe. For these cases, ML, REML or MQA are recommended.
As a check for misspecification, one should perform at least one of the ANOVA methods and
one of the ML methods to see if the estimates differ widely. This is the Maddala and Mount
(1973) suggestion for the balanced data case and applies as well for the unbalanced data case.

In another application studying the damage associated with proximity to a hazardous waste
site, Mendelsohn et al. (1992) use panel data on repeated single family home sales in the
harbor area surrounding New Bedford, MA over the period 1969–88. Note that one observes
the dependent variable, in this case the value of the house, only when an actual sale occurs.
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Therefore, these data are “unbalanced” with different time-period intervals between sales,
and different numbers of repeated sales for each single family house over the period observed.
These comprised 780 properties and 1916 sales. Mendelsohn et al. (1992) used first-differenced
and fixed effects estimation methods to control for specific individual housing characteristics.
Information on the latter variables are rarely available or complete. They find a significant
reduction in housing values, between 7000 and 10 000 (1989 dollars), as a result of these
houses’ proximity to hazardous waste sites.9

9.4 THE UNBALANCED TWO-WAY ERROR
COMPONENT MODEL

Wansbeek and Kapteyn (1989), henceforth WK, consider the regression model with unbalanced
two-way error component disturbances:

yit = X ′
i tβ + uit i = 1, . . . , Nt ; t = 1, . . . , T (9.27)

uit = µi + λt + νi t

where Nt (Nt ≤ N ) denotes the number of individuals observed in year t , with n = ∑
t Nt . Let

Dt be the Nt × N matrix obtained from IN by omitting the rows corresponding to individuals
not observed in year t . Define

� = (�1, �2) ≡

 D1 D1ιN
...

. . .
DT DT ιN

 (9.28)

where �1 = (D′
1, . . . , D′

T )′ is n × N and �2 = diag[Dt ιN ] = diag[ιNt ] is n × T . The matrix
� gives the dummy-variable structure for the incomplete data model. Note that WK order the
data on the N individuals in T consecutive sets, so that t runs slowly and i runs fast. This
is exactly the opposite ordering that has been used so far in the text. For complete panels,
�1 = (ιT ⊗ IN ) and �2 = IT ⊗ ιN .

9.4.1 The Fixed Effects Model

If theµi andλt are fixed, one has to run the regression given in (9.27) with the matrix of dummies
given in (9.28). Most likely, this will be infeasible for large panels with many households or
individuals and we need the familiar Within transformation. This was easy for the balanced case
and extended easily to the unbalanced one-way case. However, for the unbalanced two-way
case, WK showed that this transformation is a little complicated but nevertheless manageable.
To see this, we need some more matrix results.

Note that �N ≡ �′
1�1 = diag[Ti ] where Ti is the number of years individual i is observed in

the panel. Also, �T ≡ �′
2�2 = diag[Nt ] and �T N ≡ �′

2�1 is the T × N matrix of zeros and
ones indicating the absence or presence of a household in a certain year. For complete panels,
�N = T IN , �T = N IT and �T N = ιT ι′N = JT N . Define P[�] = �(�′�)−�′, then the Within
transformation is Q[�] = In − P[�]. For the two-way unbalanced model with � = (�1, �2)
given by (9.28), WK show that

P[�] = P�1 + P[Q[�1]�2] (9.29)
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The proof is sketched out in problem 9.6. Therefore,

Q[�] = Q[�1] − Q[�1]�2(�′
2 Q[�1]�2)−�′

2 Q[�1] (9.30)

Davis (2001) generalizes the WK Within transformation to the three-way, four-way and higher-
order error component models. Davis shows that the Within transformation can be applied in
stages to the variables in the regression, just like in (9.30). This reduces the computational
burden considerably. For example, consider a three-way error component model, representing
products sold at certain locations and observed over some time period. These fixed effects are
captured by three dummy variables matrices� = [�1, �2, �3]. In order to get the Within trans-
formation, Davis (2001) applies (9.29) twice and obtains Q[�] = Q[A] − P[B] − P[C] where
A = �1, B = Q[A]�2 and C = Q[B] Q[A]�3, see problem 9.27. This idea generalizes readily
to higher-order fixed effects error components models.

9.4.2 The Random Effects Model

In vector form, the incomplete two-way random effects model can be written as

u = �1µ + �2λ + ν (9.31)

where µ′ = (µ1, . . . , µN ), λ′ = (λ1, . . . , λT ) and ν are random variables described exactly as
in the two-way error component model considered in Chapter 3. µ, λ and ν are independent of
each other and among themselves with zero means and variances σ 2

µ, σ 2
λ and σ 2

ν , respectively.
In this case,

� = E(uu′) = σ 2
ν In + σ 2

µ�1�
′
1 + σ 2

λ �2�
′
2

= σ 2
ν (In + φ1�1�

′
1 + φ2�2�

′
2) = σ 2

ν 	 (9.32)

with φ1 = σ 2
µ/σ 2

ν and φ2 = σ 2
λ /σ 2

ν . Using the general expression for the inverse of (I + X X ′),
see problem 9.8, Wansbeek and Kapteyn (1989) obtain the inverse of 	 as

	−1 = V − V �2 P̃−1�′
2V (9.33)

where

V = In − �1�̃
−1
N �′

1 (n × n)

P̃ = �̃T − �T N �̃−1
N �′

T N (T × T )

�̃N = �N + (σ 2
ν /σ 2

µ)IN (N × N )

�̃T = �T + (σ 2
ν /σ 2

λ )IT (T × T )

Note that we can no longer obtain the simple Fuller and Battese (1973) transformation for the
unbalanced two-way model. The expression for 	−1 is messy and asymmetric in individuals
and time, but it reduces computational time considerably relative to inverting 	 numerically.
Davis (2001) shows that the WK results can be generalized to an arbitrary number of random
error components. In fact, for a three-way random error component, like the one considered in
problem 9.7, the added random error component η adds an extra σ 2

η �3�
′
3 term to the variance–

covariance given in (9.32). Therefore, 	 remains of the (I + X X ′) form and its inverse can
be obtained by repeated application of this inversion formula. This idea generalizes readily
to higher-order unbalanced random error component models. WK suggest an ANOVA-type
quadratic unbiased estimator (QUE) of the variance components based on the Within residuals.
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In fact, the MSE of the Within regression is unbiased for σ 2
ν even under the random effects

specification. Let e = y − X β̃ where β̃ denotes the Within estimates and define

qW = e′ Q[�]e (9.34)

qN = e′�2�
−1
T �′

2e = e′ P[�2]e (9.35)

qT = e′�1�
−1
N �′

1e = e′ P[�1]e (9.36)

By equating qW , qN and qT to their expected values and solving these three equations one
gets QUE of σ 2

ν , σ 2
µ and σ 2

λ . WK also derive the ML iterative first-order conditions as well as
the information matrix under normality of the disturbances. These will not be reproduced here
and the reader is referred to the WK article for details. A limited Monte Carlo experiment was
performed using 50 replications and three kinds of data designs: complete panel data, 20%
random attrition and a rotating panel. This was done using a simple regression with a Nerlove
type X for fixed σ 2

µ = 400, σ 2
λ = 25 and σ 2

ν = 25. The regression coefficients were fixed at
α = 25 and β = 2, and the number of individuals and time periods were N = 100 and T = 5,
respectively. The results imply that the QUE of the variance components are in all cases at least
as close to the true value as the MLE so that iteration on these values does not seem to pay off.
Also, GLS gives nearly identical results to MLE as far as the regression coefficient estimates
are concerned. Therefore, WK recommend GLS over MLE in view of the large difference in
computational cost.

Baltagi, Song and Jung (2002a) reconsider the unbalanced two-way error component given
in (9.27) and (9.28) and provide alternative analysis of variance (ANOVA), minimum norm
quadratic unbiased (MINQUE) and restricted maximum likelihood (REML) estimation pro-
cedures. These are similar to the methods studied in section 9.2 for the unbalanced one-way
error component model. The mean squared error performance of these estimators is compared
using Monte Carlo experiments. Focusing on the estimates of the variance components, the
computationally more demanding MLE, REML, MIVQUE estimators are recommended es-
pecially if the unbalanced pattern is severe. However, focusing on the regression coefficients
estimates, the simple ANOVA methods perform just as well as the computationally demanding
MLE, REML and MIVQUE methods and are recommended.

9.5 TESTING FOR INDIVIDUAL AND TIME EFFECTS USING
UNBALANCED PANEL DATA

In Chapter 4, we derived the Breusch and Pagan (1980) LM test for H0 : σ 2
µ = σ 2

λ = 0 in a
complete panel data model with two-way error component disturbances. Baltagi and Li (1990)
derived the corresponding LM test for the unbalanced two-way error component model. This
model is given by (9.27) and the variance–covariance matrix of the disturbances is given by
(9.32). Following the same derivations as given in section 4.2 (see problem 9.8), one can show
that under normality of the disturbances

∂�/∂σ 2
µ = �1�

′
1, ∂�/∂σ 2

λ = �2�
′
2 and ∂�/∂σ 2

ν = In (9.37)

with

tr(�2�
′
2) = tr(�′

2�2) = tr(diag[Nt ]) =
T∑

t=1

Nt = n (9.38)
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and

tr(�′
1�1) = tr(diag[Ti ]) =

N∑
i=1

Ti = n (9.39)

Substituting these results in (4.17) and noting that under H0, �̃−1 = (1/σ̃ 2
ν )In, where σ̂ 2

ν =
ũ ′̃u/N T and ũ denote the OLS residuals, one gets

D̃ = (∂L/∂θ ) |θ=θ̃ = (n/2σ̃ 2
ν )

 A1

A2

0

 (9.40)

where θ ′ = (σ 2
µ, σ 2

λ , σ 2
ν ) and θ̃ denotes the restricted MLE of θ under H0. Also, Ar =

[(̃u′�r�
′
r ũ/̃u ′̃u) − 1] for r = 1, 2. Similarly, one can use (4.19) to obtain the information

matrix

J̃ = (n/2σ̃ 4
ν )

 M11/n 1 1
1 M22/n 1
1 1 1

 (9.41)

where M11 = ∑N
i=1 T 2

i and M22 = ∑T
t=1 N 2

t . This makes use of the fact that

tr(�2�
′
2)2 =

T∑
t=1

N 2
t , tr(�1�

′
1)2 =

N∑
i=1

T 2
i (9.42)

and

tr[(�1�
′
1)(�2�

′
2)] =

T∑
t=1

tr[(Dt D′
t )JNt ] =

T∑
t=1

tr(JNt ) =
T∑

t=1

Nt = n

Using (9.40) and (9.41) one gets the LM statistic

LM = D̃
′
J̃

−1
D̃ = ( 1

2 )n2[A2
1/(M11 − n) + A2

2/(M22 − n)] (9.43)

which is asymptotically distributed as χ2
2 under the null hypothesis. For computational pur-

poses, one need not form the �r matrices to compute Ar (r = 1, 2). In fact,

ũ�1�
′
1ũ =

N∑
i=1

ũ2
i. where ũi. =

Ti∑
t=1

ũi t (9.44)

and

ũ′�2�
′
2ũ =

T∑
t=1

ũ2
.t where ũ.t =

Nt∑
i=1

ũi t (9.45)

(9.45) is obvious, since �2 = diag[ιNt ], and (9.44) can be similarly obtained, by restacking
the residuals such that the faster index is t . The LM statistic given in (9.43) is easily computed
using least squares residuals, and retains a similar form to that of the complete panel data case.
In fact, when Nt = N , (9.43) reverts back to the LM statistic derived in Breusch and Pagan
(1980). Also, (9.43) retains the additive property exhibited in the complete panel data case, i.e.
if H0 : σ 2

µ = 0, the LM test reduces to the first term of (9.43), whereas if H0 : σ 2
λ = 0, the LM

test reduces to the second term of (9.43). Both test statistics are asymptotically distributed as
χ2

1 under the respective null hypotheses.
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These variance components cannot be negative and therefore H0 : σ 2
µ = 0 has to be against

a one-sided alternative H1 : σ 2
µ > 0. Moulton and Randolph (1989) derived the one-sided LM1

statistic

LM1 = n[2(M11 − n)]−1/2 A1 (9.46)

which is the square root of the first term in (9.43). Under weak conditions as n → ∞ and
N → ∞ the LM1 statistic has an asymptotic standard normal distribution under H0. However,
Moulton and Randolph (1989) showed that this asymptotic N (0, 1) approximation can be poor
even in large samples. This occurs when the number of regressors is large or the intraclass
correlation of some of the regressors is high. They suggest an alternative standardized Lagrange
multiplier SLM given by

SLM = LM1 − E(LM1)√
var(LM1)

= d − E(d)√
var(d)

(9.47)

where d = (ũ′ Dũ)/ũ′ũ and D = �1�
′
1. Using the results on moments of quadratic forms in

regression residuals (see, for example, Evans and King, 1985), we get

E(d) = tr(D P̄Z )/p

where p = [n − (K + 1)] and

var(d) = 2{p tr(D P̄Z )2 − [tr(D P̄Z )]2}/p2(p + 2)

Under H0, this SLM has the same asymptotic N (0, 1) distribution as the LM1 statistic. However,
the asymptotic critical values for the SLM are generally closer to the exact critical values than
those of the LM1 statistic. Similarly, for H0 : σ 2

λ = 0, the one-sided LM test statistic is the
square root of the second term in (9.43), i.e.

LM2 = n[2(M22 − n)]−1/2 A2 (9.48)

Honda’s (1985) “handy” one-sided test for the two-way model with unbalanced data is simply

HO = (LM1 + LM2)/
√

2

It is also easy to show, see Baltagi, Chang and Li (1998), that the locally mean most powerful
(LMMP) one-sided test suggested by King and Wu (1997) for the unbalanced two-way error
component model is given by

KW =
√

M11 − n√
M11 + M22 − 2n

LM1 +
√

M22 − n√
M11 + M22 − 2n

LM2 (9.49)

where LM1 and LM2 are given by (9.46) and (9.48), respectively. Both HO and KW are
asymptotically distributed as N (0, 1) under H0. These test statistics can be standardized and
the resulting SLM given by {d − E(d)}/√var(d) where d = ũ′ Dũ/ũ′ũ with

D = 1

2

n√
M11 − n

(�1�
′
1) + 1

2

n√
M22 − n

(�2�
′
2) (9.50)

for Honda’s (1985) version, and

D = n√
2
√

M11 + M22 − 2n
[(�1�

′
1) + (�2�

′
2)] (9.51)
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for the King and Wu (1997) version of this test. E(d) and var(d) are obtained from the same
formulas shown below (9.47) using the appropriate D matrices.

Since LM1 and LM2 can be negative for a specific application, especially when one or both
variance components are small and close to zero, one can use the Gourieroux et al. (1982)
(GHM) test which is given by

χ2
m =


LM2

1 + LM2
2 if LM1 > 0, LM2 > 0

LM2
1 if LM1 > 0, LM2 ≤ 0

LM2
2 if LM1 ≤ 0, LM2 > 0

0 if LM1 ≤ 0, LM2 ≤ 0

(9.52)

χ2
m denotes the mixed χ2 distribution. Under the null hypothesis,

χ2
m ∼

(
1
4

)
χ2(0) + (

1
2

)
χ2(1) + (

1
4

)
χ2(2)

where χ2(0) equals zero with probability one.11 The weights 1
4 , 1

2 and 1
4 follow from the fact

that LM1 and LM2 are asymptotically independent of each other and the results in Gourieroux
et al. (1982). This proposed test has the advantage over the Honda and KW tests in that it is
immune to the possible negative values of LM1 and LM2.

Baltagi et al. (1998) compare the performance of these tests using Monte Carlo experiments
for an unbalanced two-way error component model. The results of the Monte Carlo experiments
show that the nominal sizes of the Honda and King–Wu tests based on asymptotic critical
values are inaccurate for all unbalanced patterns considered. However, the nominal size of the
standardized version of these tests is closer to the true significance value and is recommended.
This confirms similar results for the unbalanced one-way error component model by Moulton
and Randolph (1989). In cases where at least one of the variance components is close to zero,
the Gourieroux et al. (1982) test is found to perform well in Monte Carlo experiments and
is recommended. All the tests considered have larger power as the number of individuals N
in the panel and/or the variance components increase. In fact, for typical labor or consumer
panels with large N , the Monte Carlo results show that the power of these tests is one except
for cases where the variance components comprise less than 10% of the total variance.12

9.6 THE UNBALANCED NESTED ERROR COMPONENT MODEL

Baltagi, Song and Jung (2001) extend the ANOVA, MINQUE and MLE estimation procedures
described in section 9.2 to the unbalanced nested error component regression model. For this
model, the incomplete panel data exhibits a natural nested grouping. For example, data on
firms may be grouped by industry, data on states by region, data on individuals by profession
and data on students by schools.13 The unbalanced panel data regression model is given by

yi j t = x ′
i j tβ + ui jt i = 1, . . . , M ; j = 1, . . . , Ni ; t = 1, . . . , Ti (9.53)

where yi j t could denote the output of the jth firm in the ith industry for the tth time period. xi j t

denotes a vector of k nonstochastic inputs. The disturbances are given by

ui jt = µi + νi j + εi j t i = 1, . . . , M ; j = 1, . . . , Ni ; t = 1, . . . , Ti (9.54)

where µi denotes the ith unobservable industry-specific effect which is assumed to be
IID(0, σ 2

µ), νi j denotes the nested effect of the jth firm within the ith industry which is as-
sumed to be IID(0, σ 2

ν ), and εi j t denotes the remainder disturbance which is also assumed to
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be IID(0, σ 2
ε ). The µi ’s, νi j ’s and εi j t ’s are independent of each other and among themselves.

This is a nested classification in that each successive component of the error term is imbedded
or “nested” within the preceding component, see Graybill (1961, p. 350). This model allows
for unequal number of firms in each industry as well as different number of observed time
periods across industries. Detailed derivation of the variance–covariance matrix �, the Fuller
and Battese (1973) transformation, as well as ANOVA, MINQUE and MLE methods are given
in Baltagi et al. (2001) and will not be reproduced here. Baltagi et al. (2001) compared the per-
formance of these estimators using Monte Carlo experiments. While the MLE and MIVQUE
methods perform the best in estimating the variance components and the standard errors of
the regression coefficients, the simple ANOVA methods perform just as well in estimating the
regression coefficients. These estimation methods are also used to investigate the productivity
of public capital in private production. In a companion paper, Baltagi, Song and Jung (2002b)
extend the Lagrange multiplier tests described in section 9.4 to the unbalanced nested error
component model. Later, Baltagi, Song and Jung (2002c) derived the Lagrange multiplier
tests for the unbalanced nested error component model with serially correlated disturbances.

9.6.1 Empirical Example

In Chapter 2, example 3, we estimated a Cobb–Douglas production function investigating
the productivity of public capital in each state’s private output. This was based on a panel of
48 states over the period 1970–86. The data was provided by Munnell (1990). Here we group
these states into nine geographical regions with the Middle Atlantic region for example contain-
ing three states: New York, New Jersey and Pennsylvania and the Mountain region containing
eight states: Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah and Nevada.
In this case, the primary group would be the regions, the nested group would be the states
and these are observed over 17 years. The dependent variable y is the gross state product
and the regressors include the private capital stock (K) computed by apportioning the Bureau
of Economic Analysis (BEA) national estimates. The public capital stock is measured by its
components: highways and streets (KH), water and sewer facilities (KW), and other public
buildings and structures (KO), all based on the BEA national series. Labor (L) is measured
by the employment in nonagricultural payrolls. The state unemployment rate is included to
capture the business cycle in a given state. All variables except the unemployment rate are
expressed in natural logarithms:

yi j t = α + β1Ki j t + β2KHi j t + β3KWi j t + β4KOi j t + β5Li j t + β6Unempi j t + uit (9.55)

where i = 1, 2, . . . , 9 regions, j = 1, . . . , Ni with Ni equaling three for the Middle Atlantic
region and eight for the Mountain region and t = 1, 2, . . . , 17. The data is unbalanced only
in the differing number of states in each region. The disturbances follow the nested error
component specification given by (9.54).

Table 9.4 gives the OLS, Within, ANOVA, MLE, REML and MIVQUE-type estimates using
this unbalanced nested error component model. The OLS estimates show that the highways and
streets and water and sewer components of public capital have a positive and significant effect
upon private output whereas that of other public buildings and structures is not significant.
Because OLS ignores the state and region effects, the corresponding standard errors and
t-statistics are biased, see Moulton (1986). The Within estimator shows that the effects of
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KH and KW are insignificant whereas that of KO is negative and significant. The primary
region and nested state effects are significant using several LM tests developed in Baltagi et al.
(2002b). This justifies the application of the feasible GLS, MLE and MIVQUE methods. For
the variance components estimates, there are no differences in the estimate of σ 2

ε , but estimates
of σ 2

µ and σ 2
ν vary. σ̂ 2

µ is as low as 0.0015 for SA and MLE and as high as 0.0029 for HFB.
Similarly, σ̂ 2

ν is as low as 0.0043 for SA and as high as 0.0069 for WK. This variation had little
effect on estimates of the regression coefficients or their standard errors. For all estimators of
the random effects model, the highways and streets and water and sewer components of public
capital had a positive and significant effect, while the other public buildings and structures had
a negative and significant effect upon private output. These results were verified using TSP.

Other empirical applications of the nested error component model include Montmarquette
and Mahseredjian (1989) who study whether schooling matters in educational achievements in
Montreal’s Francophone public elementary schools. Also, Antweiler (2001) who derives the
maximum likelihood estimator for an unbalanced nested three-way error component model.
This is applied to the problem of explaining the determinants of pollution concentration
(measured by the log of atmospheric sulfuric dioxide) at 293 observation stations located in
44 countries over the time period 1971–96. This data is highly unbalanced in that out of a total
of 2621 observations, about a third of these are from stations in one country, the United States.
Also, the time period of observation is not necessarily continuous. Comparing the results of
maximum likelihood for a nested vs a simple (nonnested) unbalanced error component model,
Antweiler (2001) finds that the scale elasticity coefficient estimate for the nested model is less
than half that for the nonnested model. Scale elasticity is the coefficient of log of economic
intensity as measured by GDP per square kilometer. This is also true for the estimate of the
income effect which is negative and much lower in absolute value for the nested model than
the nonnested model. Finally, the estimate of the composition effect which is the coefficient
of the log of the country’s capital abundance is higher for the nested model than for the
nonnested model.

Davis (2001) applies OLS, Within, MIVQUE and MLE procedures to a three-way unbal-
anced error component model using data on film revenues for six movie theaters near New
Haven, CT, observed over a six-week period in 1998. Some of the reasons for unbalancedness
in the data occur because (i) not all films are shown at all locations, (ii) films start and stop being
shown at theaters during the observation period, and (iii) data on revenues are missing due to
nonresponse. The estimates obtained reveal a complex set of asymmetric cross-theater price
elasticities of demand. These estimates are useful for the analysis of the impact of mergers on
pricing, and for determining the appropriate extent of geographic market definition in these
markets.

NOTES

1. Other methods of dealing with missing data include: (i) inputing the missing values and analyzing
the filled-in data by complete panel data methods; (ii) discarding the nonrespondents and weighting
the respondents to compensate for the loss of cases; see Little (1988) and the section on nonresponse
adjustments in Kasprzyk et al. (1989).

2. This analysis assumes that the observations of the individual with the shortest time series are nested
in a specific manner within the observations of the other individual. However, the same derivations
apply for different types of overlapping observations.

3. Note that if the updated value is negative, it is replaced by zero and the iteration continues until the
convergence criterion is satisfied.
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4. It is important to note that ML and restricted ML estimates of the variance components are by
definition nonnegative. However, ANOVA and MINQUE methods can produce negative estimates
of the variance component σ 2

µ. In these cases, the negative variance estimates are replaced by zero.
This means that the resulting variance component estimator is σ̃ 2

µ = max(σ̂ 2
µ, 0) which is no longer

unbiased.
5. Problem 90.2.3 in Econometric Theory by Baltagi and Li (1990) demonstrated analytically that for

a random error component model, one can construct a simple unbiased estimator of the variance
components using the entire unbalanced panel that is more efficient than the BQU estimator using
only the subbalanced pattern (see problem 9.5). Also, Chowdhury (1991) showed that for the fixed
effects error component model, the Within estimator based on the entire unbalanced panel is efficient
relative to any Within estimator based on a subbalanced pattern. Mátyás and Lovrics (1991) performed
some Monte Carlo experiments to compare the loss in efficiency of Within and GLS based on the
entire incomplete panel data and complete subpanel. They found the loss in efficiency is negligible
if N T > 250, but serious for N T < 150.

6. The variable descriptions are from table IV of Harrison and Rubinfeld (1978). See Belsley et al.
(1980) for a listing of the data and further diagnostic analysis of these data. Moulton (1986) used
these data to show the inappropriate use of OLS in the presence of random group effects and Moulton
(1987) applied a battery of diagnostic tools to this data set.

7. Later, Moulton and Randolph (1989) found that asymptotic critical values of the one-sided LM test can
be very poor, and suggested a standardized LM test whose asymptotic critical value approximations
are likely to be much better than those of the LM statistic. They applied it to this data set and rejected
the null hypothesis of no random group effect using an exact critical value.

8. Note that the Amemiya-type estimator is not calculated for this data set since there are some regressors
without Within variation.

9. Another application of unbalanced panels include the construction of a number of quality-adjusted
price indexes for personal computers in the USA over the period 1989–92, see Berndt, Griliches and
Rappaport (1995).

10. If the data were arranged differently, one would get the generalized inverse of an N × N matrix
rather than that of a T × T one as in P . Since N > T in most cases, this choice is most favorable
from the point of view of computations.

11. Critical values for the mixed χ 2
m are 7.289, 4.321 and 2.952 for α = 0.01, 0.05 and 0.1, respectively.

12. A Gauss program for testing individual and time effects using unbalanced panel data is given in the
appendix of Baltagi et al. (1998, pp. 16–19).

13. See problem 3.14 for an introduction to the balanced nested error component model.

PROBLEMS

9.1 (a) Show that the variance–covariance matrix of the disturbances in (9.1) is given by
(9.2).

(b) Show that the two nonzero block matrices in (9.2) can be written as in (9.3).
(c) Show that σν�

−1/2
j y j has a typical element (y jt − θ j ȳ j.), where θ j = 1 − σν/ω j and

ω2
j = Tjσ

2
µ + σ 2

ν .

9.2 (a) Verify the E (̂q1) and E (̂q2) equations given in (9.16).
(b) Verify E (̃q1) and E (̃q2) given in (9.17).
(c) Verify E(q̂b

2 ) given in (9.19).
9.3 Using the Monte Carlo set-up for the unbalanced one-way error component model con-

sidered by Baltagi and Chang (1994), compare the various estimators of the variance
components and the regression coefficients considered in section 9.2.4.

9.4 Using the Harrison and Rubinfeld (1978) data published in Belsley et al. (1980) and
provided on the Wiley web site as Hedonic.xls, reproduce Table 9.1. Perform the Hausman
test based on the fixed effects and the random effects contrast. Perform the LM test for
H0 : σ 2

µ = 0.
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9.5 This exercise is based on problem 90.2.3 in Econometric Theory by Baltagi and Li (1990).
Consider the following unbalanced one-way analysis of variance model:

yit = µi + νi t i = 1, . . . , N ; t = 1, 2, . . . , Ti

where for simplicity’s sake no explanatory variables are included. yit could be the output
of firm i at time period t and µi could be the managerial ability of firm i, whereas
νi t is a remainder disturbance term. Assume that µi ∼ IIN(0, σ 2

µ) and νi t ∼IIN(0, σ 2
ν )

independent of each other. Let T be the maximum overlapping period over which a
complete panel could be established (T ≤ Ti for all i). In this case the corresponding
vector of balanced observations on yit is denoted by yb and is of dimension N T . One
could estimate the variance components using this complete panel as follows:

σ̂ 2
ν = y′

b(IN ⊗ ET )yb/N (T − 1)

and

σ 2
µ = [y′

b(IN ⊗ J̄ T )yb/N T ] − (σ̂ 2
ν /T )

where ET = IT − J̄ T , J̄ T = JT /T and JT is a matrix of ones of dimension T . σ̂ 2
ν and

σ̂ 2
µ are the best quadratic unbiased estimators (BQUE) of the variance components based

on the complete panel. Alternatively, one could estimate the variance components from
the entire unbalanced panel as follows:

σ̃ 2
ν = y′diag(ETi )y/(n − N )

where n = ∑N
i=1 Ti and ETi = ITi − J̄ Ti . Also, σ 2

i = (Tiσ
2
µ + σ 2

ν ) can be estimated by
σ̃ 2

i = y′
i J̄ Ti yi , where yi denotes the vector of Ti observations on the ith individual. There-

fore, there are N estimators of σ 2
µ obtained from (σ̃ 2

i − σ̃ 2
ν )/Ti for i = 1, . . . , N . One

simple way of combining them is to take the average

σ̃ 2
µ =

N∑
i=1

[(σ̃ 2
i − σ̃ 2

ν )/Ti ]/N =
{

y′diag[ J̄ Ti /Ti ]y −
N∑

i=1

σ̃ 2
ν /Ti

}
/N

(a) Show that σ̃ 2
ν and σ̃ 2

µ are unbiased estimators σ 2
ν and σ 2

µ.
(b) Show that var(σ̃ 2

ν ) ≤ var(σ̂ 2
ν ) and var(σ̃ 2

µ) ≤ var(σ̂ 2
µ). (Hint: See solution 90.2.3 in

Econometric Theory by Koning (1991).)
9.6 For X = (X1, X2), the generalized inverse of (X ′ X ) is given by

(X ′ X )− =
[

(X ′
1 X1)− 0
0 0

]
+

[−(X ′
1 X1)− X ′

1 X2

I

]
(X ′

2 Q[X1] X2)−[−X ′
2 X1(X ′

1 X1)− I ]

see Davis (2001), appendix A. Use this result to show that P[X ] = P[X1] + P[Q[X1] X2].

(Hint: Premultiply this expression by X , and postmultiply by X ′.) This verifies (9.29).
9.7 Consider the three-way error component model described in problem 3.15. The panel

data can be unbalanced and the matrices of dummy variables are � = [�1, �2, �3] with

u = �1µ + �2λ + �3η + ν

where µ, λ and ν are random variables defined below (9.31) and the added random error
η has mean zero and variance σ 2

η . All random errors are independent among themselves
and with each other. Show that P[�] = P[A] + P[B] + P[C] where A = �1, B = Q[A]�2
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and C = Q[B] Q[A]�3. This is Corollary 1 of Davis (2001). (Hint: Apply (9.29) twice. Let
X1 = �1 and X2 = (�2, �3). Using problem 9.6, we get P[X ] = P[�1] + P[Q[�1] X2]. Now,
Q[�1] X2 = Q[�1](�2, �3) = [B, Q[A]�3]. Applying (9.29) again we get P[B,Q[A]�3] =
P[B] + P[Q[B] Q[A]�3].)

9.8 (a) For �1 and �2 defined in (9.28), verify that �N ≡ �′
1�1 = diag[Ti ] and �T ≡

�′
2�2 = diag[Nt ]. Show that for the complete panel data case �1 = ιT ⊗ IN , �2 =

IT ⊗ ιN , �N = T IN and �T = N IT .

(b) Under the complete panel data case, verify that �T N ≡ �′
2�1 is JT N and Q =

ET ⊗ EN , see Chapter 3, equation (3.3) and problem 3.1.
(c) Let X = (X1, X2) with |I + X X ′| 	= 0. Using the result that [In + X X ′]−1 = In −

X (I + X ′ X )−1 X ′, apply the partitioned inverse formula for matrices to show that (I +
X X ′)−1 = Q̃[X2] − Q̃[X2] X1S−1 X ′

1 Q̃[X2] where Q̃[X2] = I − X2(I + X ′
2 X2)−1 X ′

2 =
(I + X2 X ′

2)−1 and S = I + X ′
1 Q̃[X2] X1. This is lemma 2 of Davis (2001).

(d) Apply the results in part (c) using X = ( σµ

σν
�1,

σλ

σν
�2) to verify 	−1 given in (9.33).

Hint: Show that V = Q̃�1 and S = φ2 P∗.
(e) Derive E(qW ), E(qN ) and E(qT ) given in (9.34), (9.35) and (9.36).

9.9 Using the Monte Carlo set-up for the unbalanced two-way error component model con-
sidered by Wansbeek and Kapteyn (1989), compare the MSE performance of the variance
components and the regression coefficients estimates.

9.10 Assuming normality on the disturbances, verify (9.37), (9.40) and (9.41).
9.11 Verify that the King and Wu (1997) test for the unbalanced two-way error component

model is given by (9.49).
9.12 Verify that the SLM version of the KW and HO tests are given by (9.47) with D defined

in (9.50) and (9.51).
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Special Topics

10.1 MEASUREMENT ERROR AND PANEL DATA

Micro panel data on households, individuals and firms are highly likely to exhibit measurement
error. In Chapter 1, we cited Duncan and Hill (1985) who found serious measurement error in
average hourly earnings in the Panel Study of Income Dynamics (PSID). This got worse for a
two-year recall as compared to a one-year recall. Bound et al. (1990) use two validation data
sets to study the extent of measurement error in labor market variables. The first data set is the
Panel Study of Income Dynamics Validation Study (PSIDVS) which uses a two-wave panel
survey taken in 1983 and 1987 from a single large manufacturing company. The second data set
matches panel data on earnings from the 1977 and 1978 waves of the US Current Population
Survey (CPS) to Social Security earnings records for those same individuals. They find that
biases from measurement errors could be very serious for hourly wages and unemployment
spells, but not severe for annual earnings.1 In analyzing data from household budget surveys,
total expenditure and income are known to contain measurement error. Aasness, Biorn and
Skjerpen (1993) estimate a system of consumer expenditure functions from a Norwegian
panel of households over the years 1975–77. The hypothesis of no measurement error in total
expenditure is soundly rejected and substantial biases in Engle function elasticities are found
when measurement error in total expenditure is ignored. Altonji and Siow (1987) find that
measurement error in micro panel data sets has a strong influence on the relationship between
consumption and income. Based on data from the 1968–81 PSID individuals tape, they show
that ignoring the measurement error in the income process, a Keynesian model of consumption
cannot be rejected. However, when one accounts for this measurement error, the results are
supportive of the rational expectations lifecycle model of consumption and reject the Keynesian
model.

Econometric textbooks emphasize that measurement error in the explanatory variables re-
sults in bias and inconsistency of the OLS estimates, and the solution typically involves the
existence of extraneous instrumental variables or additional assumptions to identify the model
parameters (see Maddala, 1977). Using panel data, Griliches and Hausman (1986) showed that
one can identify and estimate a variety of errors in variables models without the use of external
instruments. Let us illustrate their approach with a simple regression with random individual
effects:

yit = α + βx*
i t + uit i = 1, . . . , N ; t = 1, . . . , T (10.1)

where the error follows a one-way error component model

uit = µi + νi t (10.2)

and the x*
i t are observed only with error

xit = x*
i t + ηi t (10.3)

187
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In this case, µi ∼ IID(0, σ 2
µ), νi t ∼ IID(0, σ 2

ν ) and ηi t ∼ IID(0, σ 2
η ) are all independent of

each other. Additionally, x*
i t is independent of uit and ηi t . In terms of observable variables, the

model becomes

yit = α + βxit + εi t (10.4)

where

εi t = µi + νi t − βηi t (10.5)

It is clear that OLS on (10.4) is inconsistent, since xit is correlated with ηi t and therefore εi t .

We follow Wansbeek and Koning (1991) by assuming that the variance–covariance matrix of
x denoted by �x (T × T ) is the same across individuals, but otherwise of general form over
time. In vector form, the model becomes

y = αιN T + xβ + ε (10.6)

with

ε = (ιT ⊗ µ) + ν − βη; µ′ = (µ1, . . . , µN )

ν = (ν11, . . . , νN1, . . . , ν1T , . . . , νN T )

and

η′ = (η11, . . . , ηN1, . . . , η1T , . . . , ηN T )

Note that the data are ordered such that the faster index is over individuals. Now consider
any matrix P that wipes out the individual effects. P must satisfy PιT = 0 and let Q = P ′ P
For example, P = IT − (ιT ι′T /T ) is one such matrix, and the resulting estimator is the Within
estimator. In general, for any Q, the estimator of β is given by

β̂ = x ′(Q ⊗ IN )y/x ′(Q ⊗ IN )x

= β + x ′(Q ⊗ IN )(ν − βη)/x ′(Q ⊗ IN )x (10.7)

For a fixed T, taking probability limits as the limit of expectations of the numerator and
denominator as N → ∞, we get

1

N
E[x ′(Q ⊗ IN )(ν − βη)] = − 1

N
β tr[(Q ⊗ IN )E(ηη′)] = −βσ 2

η trQ

1

N
E[x ′(Q ⊗ IN )x] = 1

N
tr[(Q ⊗ IN )(�x ⊗ IN )] = trQ�x

and

plimβ̂ = β − βσ 2
η (trQ/trQ�x ) (10.8)

= β(1 − σ 2
η φ)

where φ ≡ (trQ/trQ�x ) > 0. Griliches and Hausman (1986) used various Q transformations
like the Within estimator and difference estimators to show that although these transformations
wipe out the individual effect, they may aggravate the measurement error bias. Also, consistent
estimators of β and σ 2

η can be obtained by combining these inconsistent estimators. There
are actually 1

2 T (T − 1) − 1 linearly independent Q transformations. Let Q1 and Q2 be two
choices for Q and φi = tr(Qi )/tr(Qi�x ) be the corresponding choices for φ, for i = 1, 2. Then
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plimβ̂i = β(1 − σ 2
η φi ), and by replacing plimβ̂i by β̂i itself, one can solve these two equations

in two unknowns to get

β̂ = φ1β̂2 − φ2β̂1

φ1 − φ2
(10.9)

and

σ̂ 2
η = β̂2 − β̂1

φ1β̂2 − φ2β̂1
(10.10)

In order to make these estimators operational, φi is replaced by φ̂i , where φ̂i = tr(Qi )/tr
(Qi �̂x ). Note that P = IT − (ιT ι′T )/T yields the Within estimator, while P = L ′, where L ′

is the (T − 1) × T matrix defined in Chapter 8, yields the first-difference estimator. Other
P matrices suggested by Griliches and Hausman (1986) are based on differencing the data
j periods apart, (yit − yi,t− j ), thus generating “different lengths” difference estimators. The
remaining question is how to combine these consistent estimators of β into an efficient estimator
of β. The generalized method of moments (GMM) approach can be used and this is based upon
fourth-order moments of the data. Alternatively, under normality one can derive the asymptotic
covariance matrix of the β̂i which can be consistently estimated by second-order moments of
the data. Using the latter approach, Wansbeek and Koning (1991) showed that for m different
consistent estimators of β given by b = (̂β1, . . . , β̂m)′ based on m different Qi

√
N [b − β(ιm − σ 2

η φ)] ∼ N (0, V )

where

φ = (φ1, . . . , φm)′ (10.11)

V = F ′{σ 2
v �x ⊗ IT + β2σ 2

η (�x + σ 2
η IN ) ⊗ IT }F

and F is the (T 2 × m) matrix with ith column fi = vecQi/(trQi�x ). By minimizing [b −
β(ιm − σ 2

η φ)]′V −1[b − β(ιm − σ 2
η φ)] one gets the asymptotically efficient estimators (as far

as they are based on b) of β and σ 2
v given by

β̂ =
{

φ′V̂ −1b

φ′V̂ −1φ
− ι′V̂ −1b

ι′V̂ −1φ

} / {
φ′V̂ −1ι

φ′V̂ −1φ
− ι′V̂ −1ι

ι′V̂ −1φ

}
(10.12)

and

σ̂ 2
ν =

{
φ′V̂ −1ι

φ′V̂ −1b
− ι′V̂ −1ι

ι′V̂ −1b

} / {
φ′V̂ −1φ

φ′V̂ −1b
− ι′V̂ −1φ

ι′V̂ −1b

}
(10.13)

with
√

N (̂β − β, σ̂ 2
ν − σ 2

ν ) asymptotically distributed as N (0, W ) and

W = 1




[
β2φ′V −1φ β(ιm − σ 2

η φ)′V −1φ

(ιm − σ 2
η φ)′V −1(ιm − σ 2

η φ)

]
(10.14)

where


 = β2(ιm − σ 2
η φ)′V −1(ιm − σ 2

η φ)(φ′V −1φ) − β2[φ′V −1(ιm − σ 2
η φ)]2 (10.15)
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Griliches and Hausman (1986) argue that their results can be extended to the case of several
independent variables provided that the measurement errors in the explanatory variables are
mutually uncorrelated, or correlated with a known correlation structure. Under some strin-
gent assumptions these results can be extended to the case of serially correlated ηi t . Griliches
and Hausman (1986) illustrate their approach by estimating a labor demand relationship us-
ing data on N = 1242 US manufacturing firms over six years (1972–77) drawn from the
National Bureau of Economic Research R&D panel. For some applications of measurement
error in panel data, see Hamermesh (1989) for the case of academic salaries in the USA
and Björklund (1989) for the case of job mobility in Sweden and Abowd and Card (1989)
on the covariance structure of earnings and hours changes. Extensions of this model to the
case where the measurement error itself follows an error component structure are given by
Biorn (1992). Biorn (1996) also gives an extensive treatment for the case where the model
disturbances uit in equation (10.1) are white noise, i.e. without any error component, and
the case where ηi t , the measurement error, is autocorrelated over time. For all cases consid-
ered, Biorn derives the asymptotic bias of the Within, Between, various difference estimators
and the GLS estimator as either N or T tend to ∞. Biorn shows how the different panel
data transformations implied by these estimators affect measurement error differently. Biorn
and Klette (1998) consider GMM estimation of a simple static panel data regression with
errors in variables, as described in (10.4). Assuming µi to be fixed effects and the measure-
ment error to be not autocorrelated, Biorn and Klette show that only the one-period and a
few two-period differences are essential, i.e., relevant for GMM estimation. The total num-
ber of orthogonality conditions is T (T − 1)(T − 2)/2 while the essential set of orthogonality
conditions is only a fraction 2/(T − 1) of the complete set, i.e., T (T − 2). Among these
essential conditions, (T − 1)(T − 2) are based on one-period differences and (T − 2) on two-
period differences. Exploiting only the nonredundant moment conditions reduces the com-
putational burden considerably. For a moderate size panel with T = 9, the essential moment
conditions are one-fourth of the complete set of orthogonality conditions and involve in-
verting a 63 × 63 matrix rather than a 252 × 252 matrix to compute GMM. Biorn (2000)
proposes GMM estimators that use either (A) equations in differences with level values as
instruments or (B) equations in levels with differenced values as instruments. The conditions
needed for the consistency of the (B) procedures under individual heterogeneity are stronger
than for the (A) procedures. These procedures are illustrated for a simple regression of log
of gross production on log of material input for the manufacture of textiles. The data uses
N = 215 firms observed over T = 8 years 1983–90 and obtained from the annual Norwegian
manufacturing census. For this empirical illustration, Biorn shows that adding the essential
two-period difference orthogonality conditions to the one-period conditions in the GMM al-
gorithm may significantly increase estimation efficiency. However, redundant orthogonality
conditions are of little practical use. Overall, the GMM estimates based on the level equa-
tions are more precise than those based on differenced equations. Recently, Wansbeek (2001)
presented a simple approach to derive moment conditions for the panel data model with a
single mismeasured variable under a variety of assumptions. For other extensions, see Kao
and Schnell (1987a, b) for the fixed effects logit model and the random effects probit model
using panel data with measurement error, and Hsiao (1991) for identification conditions of
binary choice errors in variables models as well as conditions for consistency and asymp-
totic normality of the maximum likelihood estimators when the explanatory variables are
unbounded.
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10.2 ROTATING PANELS

Biorn (1981) considers the case of rotating panels, where in order to keep the same number
of households in the survey, the fraction of households that drops from the sample in the
second period is replaced by an equal number of new households that are freshly surveyed.
This is a necessity in survey panels where the same household may not want to be interviewed
again and again. In the study by Biorn and Jansen (1983) based on data from the Norwegian
household budget surveys, half the sample is rotated in each period. In other words, half the
households surveyed drop from the sample each period and are replaced by new households.2

To illustrate the basics of rotating panels, let us assume that T = 2 and that half the sample is
being rotated each period. In this case, without loss of generality, households 1, 2, . . . , (N/2)
are replaced by households N + 1, N + 2, . . . , N + (N/2) in period 2. It is clear that only
households (N/2) + 1, (N/2) + 2, . . . , N are observed over two periods.3 In this case there
are 3N/2 distinct households, only N/2 households of which are observed for two periods. In
our case, the first and last N/2 households surveyed are only observed for one period. Now
consider the usual one-way error component model

uit = µi + νi t

with µi ∼ IID(0, σ 2
µ) and νi t ∼ IID(0, σ 2

ν ) independent of each other and the xit . Order
the observations such that the faster index is that of households and the slower index
is that of time. This is different from the ordering we used in Chapter 2. In this case,
u′ = (u11, u21, . . . , uN1, uN/2+1,2, . . . , u3N/2,2) and

E(uu′) = � =


σ 2 IN/2 0 0 0

0 σ 2 IN/2 σ 2
µ IN/2 0

0 σ 2
µ IN/2 σ 2 IN/2 0

0 0 0 σ 2 IN/2

 (10.16)

where σ 2 = σ 2
µ + σ 2

ν . It is easy to see that � is block-diagonal and that the middle block has
the usual error component model form σ 2

µ(J2 ⊗ IN/2) + σ 2
ν (I2 ⊗ IN/2). Therefore

�−1/2 =


1

σ
IN/2 0 0

0

(
1

σ ∗
1

J̄2 + 1

σν

E2

)
⊗ IN/2 0

0 0 1
σ

IN/2

 (10.17)

where E2 = I2 − J̄2, J̄2 = J2/2 and σ ∗2
1 = 2σ 2

µ + σ 2
ν . By premultiplying the regression model

by �−1/2 and performing OLS one gets the GLS estimator of the rotating panel. In this case,
one divides the first and last N/2 observations by σ . For the middle N observations, with i =
(N/2) + 1, . . . , N and t = 1, 2, quasi-demeaning similar to the usual error component trans-
formation is performed, i.e. (yit − θ* ȳi.)/σν with θ* = 1 − (σν/σ

*
1 ) and ȳi. = (yi1 + yi2)/2.

A similar transformation is also performed on the regressors. In order to make this GLS esti-
mator feasible, we need estimates of σ 2

µ and σ 2
ν . One consistent estimator of σ 2

ν can be obtained
from the middle N observations or simply the households that are observed over two periods.
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For these observations, σ 2
ν is estimated consistently from the Within residuals

σ̃ 2
ν =

2∑
t=1

N∑
i=N/2+1

[(yit − ȳi.) − (xit − x̄i.)
′β̃Within]2/N (10.18)

whereas the total variance can be estimated consistently from the least squares mean square
error over the entire sample

σ̃ 2 = σ̃ 2
ν + σ̃ 2

µ =
2∑

t=1

3N/2∑
i=1

(yit − x ′
i t β̂OLS)2/(3N/2) (10.19)

Note that we could have reordered the data such that households observed over one period
are stacked on top of households observed over two time periods. This way the rotating panel
problem becomes an unbalanced panel problem with N households observed over one period
and N/2 households observed for two periods. In fact, except for this different way of ordering
the observations, one can handle the estimation as in Chapter 9.

This feasible GLS estimation can easily be derived for other rotating schemes. In fact, the
reader is asked to do that for T = 3 with N/2 households rotated every period, and T = 3 with
N/3 households rotated every period (see problem 10.2). For the estimation of more general
rotation schemes as well as maximum likelihood estimation under normality, see Biorn (1981).
The analysis of rotating panels can also easily be extended to a set of seemingly unrelated
regressions, simultaneous equations or a dynamic model. Biorn and Jansen (1983) consider a
rotating panel of 418 Norwegian households, one half of which are observed in 1975 and 1976
and the other half in 1976 and 1977. They estimate a complete system of consumer demand
functions using maximum likelihood procedures.

Rotating panels allow the researcher to test for the existence of “time-in-sample” bias effects
mentioned in Chapter 1. These correspond to a significant change in response between the initial
interview and a subsequent interview when one would expect the same response.4 With rotating
panels, the fresh group of individuals that are added to the panel with each wave provide a
means of testing for time-in-sample bias effects. Provided that all other survey conditions
remain constant for all rotation groups at a particular wave, one can compare these various
rotation groups (for that wave) to measure the extent of rotation group bias. This has been done
for various labor force characteristics in the Current Population Survey. For example, several
studies have found that the first rotation reported an unemployment rate that is 10% higher
than that of the full sample (see Bailar, 1975). While the findings indicate a pervasive effect of
rotation group bias in panel surveys, the survey conditions do not remain the same in practice
and hence it is hard to disentangle the effects of time-in-sample bias from other effects.

10.3 PSEUDO-PANELS

For some countries, panel data may not exist. Instead the researcher may find annual house-
hold surveys based on a large random sample of the population. Examples of some of these
cross-sectional consumer expenditure surveys include: the UK Family Expenditure Survey
which surveys about 7000 households annually, and also a number of household surveys from
less developed countries like the World Bank’s poverty net inventory of household surveys.
This is available at http://www.world.bank.org/poverty/data/index.htm. Examples of repeated
cross-section surveys in the USA include the Current Population Survey, the National Health
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Interview Survey, the Consumer Expenditure Survey, the National Crime Survey, the Monthly
Retail Trade Survey and the Survey of Manufacturers’ Shipments, Inventories and Orders.
See Bailar (1989) for the corresponding data sources. Also, the adult education and life-
long learning surveys and the early childhood program participation surveys available from
the National Center for Education Statistics at http://nces.ed.gov/surveys/, the general social
survey available from the National Opinion Research Center at http://www.norc.uchicago.
edu/gss/homepage.htm and the survey of small business finances from the Federal Reserve
Board at http://www.federalreserve.gov/ssbf/, to mention a few. For these repeated cross-
section surveys, it may be impossible to track the same household over time as required in a
genuine panel. Instead, Deaton (1985) suggests tracking cohorts and estimating economic re-
lationships based on cohort means rather than individual observations. One cohort could be the
set of all males born between 1945 and 1950. This birth cohort is well-defined, and can easily
be identified from the data. Deaton (1985) argued that these pseudo-panels do not suffer the
attrition problem that plagues genuine panels, and may be available over longer time periods
compared to genuine panels.5 In order to illustrate the basic ideas involved in constructing a
pseudo-panel, we start with the set of T independent cross-sections given by

yit = x ′
i tβ + µi + νi t t = 1, . . . , T (10.20)

Note that the individual subscript i corresponds to a new and most likely different set of
individuals in each period. This is why it is denoted by i(t) to denote that each period different
individuals are sampled, making these individuals time-dependent. For ease of exposition,
we continue the use of the subscript i and assume that the same number of households N is
randomly surveyed each period. Define a set of C cohorts, each with a fixed membership that
remains the same throughout the entire period of observation. Each individual observed in
the survey belongs to exactly one cohort. Averaging the observations over individuals in each
cohort, one gets

ȳct = x̄ ′
ctβ + µ̄ct + ν̄ct c = 1, . . . , C ; t = 1, . . . , T (10.21)

where ȳct is the average of yit over all individuals belonging to cohort c at time t . Since the
economic relationship for the individual includes an individual fixed effect, the corresponding
relationship for the cohort will also include a fixed cohort effect. However, µ̄ct now varies
with t , because it is averaged over a different number of individuals belonging to cohort c at
time t . These µ̄ct are most likely correlated with the xit and a random effect specification will
lead to inconsistent estimates. On the other hand, treating the µ̄ct as fixed effects leads to an
identification problem, unless µ̄ct = µ̄c and is invariant over time. The latter assumption is
plausible if the number of observations in each cohort is very large. In this case,

ȳct = x̄ ′
ctβ + µ̄c + ν̄ct c = 1, . . . , C ; t = 1, . . . , T (10.22)

For this pseudo-panel with T observations on C cohorts, the fixed effects estimator β̃W , based
on the Within cohort transformation ỹct = ȳct − ȳc, is a natural candidate for estimating β.
Note that the cohort population means are genuine panels in that, at the population level,
the groups contain the same individuals over time. However, as Deaton (1985) argued, the
sample-based averages of the cohort means, ȳct , can only estimate the unobserved population
cohort means with measurement error. Therefore, one has to correct the Within estimator
for measurement error using estimates of the errors in the measurement variance–covariance
matrix obtained from the individual survey data. Details are given in Deaton (1985), Verbeek
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(1996) and Verbeek and Nijman (1993). Deaton (1985) shows that his proposed measurement
error-corrected within groups estimator for the static model with individual effects is consistent
for a fixed number of observations per cohort. Verbeek and Nijman (1993) modify Deaton’s
estimator to achieve consistency for a fixed number of time periods and a fixed number of
individuals per cohort. If the number of individuals in each cohort is large, so that the average
cohort size nc = N/C tends to infinity, then the measurement errors as well as their estimates
tend to zero and the Within cohort estimator of β is asymptotically identical to Deaton’s (1985)
estimator of β, denoted by β̃D . In fact, when nc is large, most applied researchers ignore the
measurement error problem and compute the Within cohort estimator of β (see Browning,
Deaton and Irish, 1985).

There is an obvious tradeoff in the construction of a pseudo-panel. The larger the number
of cohorts, the smaller is the number of individuals per cohort. In this case, C is large and
the pseudo-panel is based on a large number of observations. However, the fact that nc is not
large implies that the sample cohort averages are not precise estimates of the population cohort
means. In this case, we have a large number C of imprecise observations. In contrast, a pseudo-
panel constructed with a smaller number of cohorts (C) and therefore more individuals per
cohort (nc) is trading a large pseudo-panel with imprecise observations for a smaller pseudo-
panel with more precise observations. Verbeek and Nijman (1992b) study the consistency
properties of the above two estimators as the number of cohorts C , the number of individuals
per cohort nc, and N and T are fixed or tend to infinity. They find that nc → ∞ is a crucial
condition for the consistency of the Within estimator. On the other hand, Deaton’s estimator
is consistent for β, for finite nc when either C or T tend to infinity. Verbeek and Nijman
(1992b) also find that the bias in the Within estimator may be substantial even for large
nc. They also emphasize the importance of choosing the cohorts under study very carefully.
For example, in order to minimize the measurement error variance, the individuals in each
cohort should be as homogeneous as possible. Additionally, to maximize the variation in the
pseudo-panel, and get precise estimates, the different cohorts should be as heterogeneous as
possible.

Moffitt (1993) extends Deaton’s (1985) analysis to the estimation of dynamic models with
repeated cross-sections. By imposing certain restrictions, Moffitt shows that linear and nonlin-
ear models, with and without fixed effects, can be identified and consistently estimated with
pseudo-panels. Moffitt (1993) gives an instrumental variable interpretation for the Within esti-
mator based on the pseudo-panel using cohort dummies, and a set of time dummies interacted
with the cohort dummies. Because nc is assumed to tend to ∞, the measurement error problem
is ignored. Since different individuals are sampled in each period, the lagged dependent vari-
able is not observed. Moffitt suggests replacing the unknown yi,t−1 by a fitted value obtained
from observed data at time t − 1. Moffitt (1993) illustrates his estimation method for the lin-
ear fixed effects lifecycle model of labor supply using repeated cross-sections from the US
Current Population Survey (CPS). The sample included white males, ages 20–59, drawn from
21 waves over the period 1968–88. In order to keep the estimation problem manageable, the
data were randomly subsampled to include a total of 15 500 observations. Moffitt concludes
that there is a considerable amount of parsimony achieved in the specification of age and
cohort effects. Also, individual characteristics are considerably more important than either
age, cohort or year effects. Blundell, Meghir and Neves (1990) use the annual UK Family
Expenditure Survey covering the period 1970–84 to study the intertemporal labor supply and
consumption of married women. The total number of households considered was 43 671. These
were allocated to ten different cohorts depending on the year of birth. The average number of
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observations per cohort was 364. Their findings indicate reasonably sized intertemporal labor
supply elasticities.

Collado (1997) proposes measurement error-corrected estimators for dynamic models with
individual effects using time series of independent cross-sections. A GMM estimator corrected
for measurement error is proposed that is consistent as the number of cohorts tends to infin-
ity for a fixed T and a fixed number of individuals per cohort. In addition, a measurement
error-corrected within groups estimator is proposed which is consistent as T tends to infinity.
Monte Carlo simulations are performed to study the small sample properties of the estimators
proposed. Some of the main results indicate that the measurement error correction is important,
and that corrected estimators reduce the bias obtained. Also, for small T , GMM estimators are
better than within groups estimators.

Verbeek and Vella (2004) review the identification conditions for consistent estimation
of a linear dynamic model from repeated cross-sections. They show that Moffitt’s (1993)
estimator is inconsistent, unless the exogenous variables are either time-invariant or exhibit no
autocorrelation. They propose an alternative instrumental variable estimator, corresponding to
the Within estimator applied to the pseudo-panel of cohort averages. This estimator is consistent
under the same conditions as those suggested by Collado (1997). However, Verbeek and Vella
argue that those conditions are not trivially satisfied in applied work.

Girma (2000) suggests an alternative GMM method of estimating linear dynamic models
from a time series of independent cross-sections. Unlike the Deaton (1985) approach of aver-
aging across individuals in a cohort, Girma suggests a quasi-differencing transformation across
pairs of individuals that belong to the same group. The asymptotic properties of the proposed
GMM estimators are based upon having a large number of individuals per group/time cell. This
is in contrast to the Deaton-type estimator which requires the number of group/time periods
to grow without limit. Some of the other advantages of this method include the fact that no
aggregation is involved, the dynamic response parameters can freely vary across groups, and
the presence of unobserved individual specific heterogeneity is explicitly allowed for.

McKenzie (2001) considers the problem of estimating dynamic models with unequally
spaced pseudo-panel data. Surveys in developing countries are often taken at unequally spaced
intervals and this unequal spacing, in turn, imposes nonlinear restrictions on the parameters.6

Nonlinear least squares, minimum distance and one-step estimators are suggested that are
consistent and asymptotically normal for finite T as the number of individuals per cohort is
allowed to pass to infinity. In another paper, McKenzie (2004) allows for parameter hetero-
geneity amongst cohorts, and argues that in many practical applications, it is important to
investigate whether there are systematic differences between cohorts. McKenzie (2004) devel-
ops an asymptotic theory for pseudo-panels using sequential and diagonal path limit techniques
following the work of Phillips and Moon (1999) for nonstationary panels. McKenzie uses 20
years of household survey data (1976–96) from the Taiwanese personal income distribution
survey, to quantify the degree of intercohort parameter heterogeneity. He finds that younger
cohorts experienced faster consumption growth over the sample period than older cohorts.

10.4 ALTERNATIVE METHODS OF POOLING TIME
SERIES OF CROSS-SECTION DATA

This book has focused on the error component model as a popular method in economics
for pooling time series of cross-section data. Another alternative method for pooling these
data is described in Kmenta (1986) using timewise autocorrelated and cross-sectionally
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heteroskedastic disturbances. The basic idea is to allow for first-order autoregressive dis-
turbances

uit = ρi ui,t−1 + εi t i = 1, . . . , N ; t = 1, . . . , T (10.23)

where the autoregressive parameter can vary across cross-sections with | ρi |< 1. Also, the
remainder error εi t is assumed to be normal with zero mean and a general variance–covariance
matrix that allows for possible heteroskedasticity as well as correlation across cross-sections,
i.e.

E(εε′) = � ⊗ IT where ε′ = (ε11, . . . , ε1T , . . . , εN1, . . . , εN T ) (10.24)

and � is N × N . The initial values are assumed to have the following properties:

ui0 ∼ N

(
0,

σi i

1 − ρ2
i

)
and E(ui0u j0) = σi j

1 − ρiρ j
i, j = 1, 2, . . . , N

Kmenta (1986) describes how to obtain feasible GLS estimators of the regression coefficients.7

In the first step, OLS residuals are used to get consistent estimates of the ρi . Next, a Prais–
Winsten transformation is applied using the estimated ρ̂i to get a consistent estimate of �

from the resulting residuals. In the last step, GLS is applied to the Prais–Winsten transformed
model using the consistent estimate of �. This can be done using the xtgls command in
Stata. This may be a suitable pooling method for N small and T very large, but for typical
labor or consumer panels where N is large and T is small it may be infeasible. In fact, for
N > T , the estimate of � will be singular. Note that the number of extra parameters to be
estimated for this model is N (N + 1)/2, corresponding to the elements of � plus N distinct
ρi . This is in contrast to the simple one-way error component model with N extra parameters
to estimate for the fixed effects model or two extra variance components to estimate for the
random effects model. For example, even for a small N = 50, the number of extra parameters
to estimate for the Kmenta technique is 1325 compared to 50 for fixed effects and two for
the random effects model. Baltagi (1986) discusses the advantages and disadvantages of the
Kmenta and the error components methods and compares their performance using Monte
Carlo experiments. For typical panels with N large and T small, the error component model
is parsimonious in its estimation of variance–covariance parameters compared to the timewise
autocorrelated, cross-sectionally heteroskedastic specification and is found to be more robust to
misspecification.

Some economic applications of the Kmenta method include: (1) van der Gaag et al. (1977)
who applied the timewise autocorrelated cross-sectionally heteroskedastic technique to esti-
mate a dynamic model of demand for specialist medical care in the Netherlands. The panel
data covered 11 provinces (N = 11) in the Netherlands collected over the period 1960–72
(T = 13). The disturbances were allowed to be timewise autocorrelated with differing ρi

cross-sectionally heteroskedastic and correlated across regions. (2) Wolpin (1980) used annual
observations on robberies covering the period 1955–71 for three countries: Japan, England
and the USA (represented by California). Per capita robbery rate in country i at time t was
modeled as a loglinear function of a set of deterrence variables, a set of environment vari-
ables and a time-invariant “culture” variable which is related to the propensity to commit
robbery. Country-specific dummy variables were used to capture these cultural effects. The
remainder error was assumed cross-sectionally heteroskedastic and timewise autocorrelated
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with a different ρi for each country. In addition, the disturbances were allowed to be correlated
across countries. (3) Griffin (1982) applied the Kmenta technique to estimate the demand for a
long-distance telephone service. The panel data consisted of seasonally adjusted quarterly data
for the period 1964–78, for five southwestern states. Per capita intrastate long-distance mes-
sages were modeled as a distributed lag of real per capita income, advertising exposure and
the real price of message telecommunication service. Additionally, population and population
squared were used to measure the effect of market size, since the quantity of long-distance
service depends on the number of possible calling combinations. A dummy variable was in-
cluded for each state with the remainder error assumed to be first-order autocorrelated with a
different ρ for each state, heteroskedastic, and not correlated across states. Griffin (1982) found
a long-run price elasticity of −0.6 and a statistically significant effect of advertising. This price
elasticity, coupled with marginal costs between one-fourth and one-half price, indicated a large
welfare loss in the long-distance market.

In this context, Baltagi, Chang and Li (1992a) considered the case where all cross-sections
in (10.23) have the same autoregressive parameter ρ, with | ρ |< 1 and εi t ∼ IIN(0, σ 2

ε ), but
where the initial disturbance ui1 ∼ IIN(0, σ 2

ε /τ ) where τ is an arbitrary positive number. They
show that the resulting disturbances are heteroskedastic unless τ = (1 − ρ2) or the process
started a long time ago. With panel data, no matter when the process started, one can translate
this starting date into an “effective” initial variance assumption. This initial variance can be
estimated and tested for departures from homoskedasticity. Using Monte Carlo experiments,
the authors show that for short time series (T = 10, 20), if τ �= (1 − ρ2), the conventional MLE
which assumes τ = 1 − ρ2 performs poorly relative to the MLE that estimates the arbitrary τ .

Finally, Larson and Watters (1993) suggested a joint test of functional form and non-
spherical disturbances for the Kmenta model with fixed effects using the Box–Cox trans-
formation and an artificial linear regression approach. They apply this test to a model of
intrastate long-distance demand for Southwestern Bell’s five-state region observed quarterly
over the period 1979–88. Their results reject the logarithmic transformation on both the de-
pendent and independent variables and is in favor of correcting for serial correlation and
heteroskedasticity.

10.5 SPATIAL PANELS

In randomly drawn samples at the individual level, one does not usually worry about cross-
section correlation. However, when one starts looking at a cross-section of countries, regions,
states, counties, etc., these aggregate units are likely to exhibit cross-sectional correlation that
has to be dealt with. There is an extensive literature using spatial statistics that deals with
this type of correlation. These spatial dependence models are popular in regional science and
urban economics. More specifically, these models deal with spatial interaction (spatial auto-
correlation) and spatial structure (spatial heterogeneity) primarily in cross-section data, see
Anselin (1988, 2001) for a nice introduction to this literature. Spatial dependence models
may use a metric of economic distance which provides cross-sectional data with a structure
similar to that provided by the time index in time series. With the increasing availability of
micro as well as macro level panel data, spatial panel data models are becoming increasingly
attractive in empirical economic research. See Case (1991), Holtz-Eakin (1994), Driscoll
and Kraay (1998), Bell and Bockstael (2000) and Baltagi and Li (2004) for a few applica-
tions. For example, in explaining per capita R&D expenditures and spillover effects across
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countries, one can model the spatial correlation as well as the heterogeneity across countries
using a spatial error component regression model:

yti = X ′
tiβ + uti i = 1, . . . , N ; t = 1, . . . , T (10.25)

where yti is the observation on the i th country for the t th time period, Xti denotes the k × 1
vector of observations on the nonstochastic regressors and uti is the regression disturbance. In
vector form, the disturbance vector of (10.25) is assumed to have random country effects as
well as spatially autocorrelated remainder disturbances, see Anselin (1988):

ut = µ + εt (10.26)

with

εt = λWεt + νt (10.27)

where µ′ = (µ1, . . . , µN ) denotes the vector of random country effects which is assumed to
be IIN(0, σ 2

µ). λ is the scalar spatial autoregressive coefficient with | λ |< 1. W is a known
N × N spatial weight matrix whose diagonal elements are zero. W also satisfies the condition
that (IN − λW ) is nonsingular. ν ′

t = (νt1, . . . , νt N ), where νti is assumed to be IIN(0, σ 2
ν ) and

also independent of µi . One can rewrite (10.27) as

εt = (IN − λW )−1νt = B−1νt (10.28)

where B = IN − λW and IN is an identity matrix of dimension N . The model (10.25) can be
rewritten in matrix notation as

y = Xβ + u (10.29)

where y is now of dimension N T × 1, X is N T × k, β is k × 1 and u is N T × 1. X is
assumed to be of full column rank and its elements are assumed to be bounded in absolute
value. Equation (10.26) can be written in vector form as

u = (ιT ⊗ IN )µ + (IT ⊗ B−1)ν (10.30)

where ν ′ = (ν ′
1, . . . , ν

′
T ). Under these assumptions, the variance–covariance matrix for u is

given by

� = σ 2
µ(JT ⊗ IN ) + σ 2

ν (IT ⊗ (B ′ B)−1) (10.31)

This matrix can be rewritten as

� = σ 2
ν

[
J̄T ⊗ (T φ IN + (B ′ B)−1) + ET ⊗ (B ′ B)−1

]
= σ 2

ν � (10.32)

where φ = σ 2
µ/σ 2

ν , J̄T = JT /T and ET = IT − J̄T . Using results in Wansbeek and Kapteyn
(1983), �−1 is given by

�−1 = J̄T ⊗ (T φ IN + (B ′ B)−1)−1 + ET ⊗ B ′ B (10.33)

Also, |�| = |T φ IN + (B ′ B)−1| · |(B ′ B)−1|T −1. Under the assumption of normality, the
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loglikelihood function for this model was derived by Anselin (1988, p. 154) as

L = − N T

2
ln 2πσ 2

ν − 1

2
ln |�| − 1

2σ 2
ν

u′�−1u

= − N T

2
ln 2πσ 2

ν − 1

2
ln[|T φ IN + (B ′ B)−1|] + (T − 1)

2
ln |B ′ B|

− 1

2σ 2
ν

u′�−1u (10.34)

with u = y − Xβ. For a derivation of the first-order conditions of MLE as well as the LM test
for λ = 0 for this model, see Anselin (1988). As an extension to this work, Baltagi, Song and
Koh (2003) derived the joint LM test for spatial error correlation as well as random country
effects. Additionally, they derived conditional LM tests, which test for random country effects
given the presence of spatial error correlation. Also, spatial error correlation given the presence
of random country effects. These conditional LM tests are an alternative to the one-directional
LM tests that test for random country effects ignoring the presence of spatial error correlation
or the one-directional LM tests for spatial error correlation ignoring the presence of random
country effects. Extensive Monte Carlo experiments are conducted to study the performance
of these LM tests as well as the corresponding likelihood ratio tests.

More recently, generalized method of moments has been proposed for spatial cross-section
models by Conley (1999) and Kelejian and Prucha (1999) and an application of the latter method
to housing data is given in Bell and Bockstael (2000). Frees (1995) derives a distribution-free
test for spatial correlation in panels. This is based on Spearman rank correlation across pairs of
cross-section disturbances. Driscoll and Kraay (1998) show through Monte Carlo simulations
that the presence of even modest spatial dependence can impart large bias to OLS standard errors
when N is large. They present conditions under which a simple modification of the standard
nonparametric time series covariance matrix estimator yields estimates of the standard errors
that are robust to general forms of spatial and temporal dependence as T → ∞. However, if T is
small, they conclude that the problem of consistent nonparametric covariance matrix estimation
is much less tractable. Parametric corrections for spatial correlation are possible only if one
places strong restrictions on their form, i.e., knowing W . For typical micropanels with N much
larger than T , estimating this correlation is impossible without imposing restrictions, since the
number of spatial correlations increases at the rate N 2, while the number of observations grows
at rate N . Even for macro panels where N = 100 countries observed over T = 20 to 30 years,
N is still larger than T and prior restrictions on the form of spatial correlation are still needed.

Baltagi and Li (2004) derive the best linear unbiased predictor for the random error com-
ponent model with spatial correlation using a simple demand equation for cigarettes based
on a panel of 46 states over the period 1963–92. They compare the performance of several
predictors of the states demand for cigarettes for one year and five years ahead. The estimators
whose predictions are compared include OLS, fixed effects ignoring spatial correlation, fixed
effects with spatial correlation, random effects GLS estimator ignoring spatial correlation and
random effects estimator accounting for the spatial correlation. Based on the RMSE criteria,
the fixed effects and the random effects spatial estimators gave the best out-of-sample forecast
performance. For the estimation and testing of spatial autoregressive panel models as well as
an extensive set of references on spatial studies, read Anselin (1988, 2001).

ML estimation, even in its simplest form, entails substantial computational problems when
the number of cross-sectional units N is large. Kelejian and Prucha (1999) suggested a
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generalized moments (GM) estimation method which is computationally feasible even when N
is large. Kapoor, Kelejian and Prucha (2004) generalized this GM procedure from cross-section
to panel data and derived its large sample properties when T is fixed and N → ∞.

The basic regression model is the same as in (10.29), however the disturbance term u follows
the first-order spatial autoregressive process

u = λ(IT ⊗ W )u + ε (10.35)

with

ε = (ιT ⊗ IN )µ + ν (10.36)

where µ, ν and W were defined earlier. This is different from the specification described
in (10.26) and (10.27) since it also allows the individual country effects µ to be spatially
correlated.

Defining ū = (IT ⊗ W )u, ū = (IT ⊗ W )ū and ε̄ = (IT ⊗ W )ε, Kapoor et al. (2004) suggest
a GM estimator based on the following six moment conditions:

E[ε′ Qε/N (T − 1)] = σ 2
ν

E[ε̄′ Qε̄/N (T − 1)] = σ 2
ν tr(W ′W )/N

E[ε̄′ Qε/N (T − 1)] = 0 (10.37)

E(ε′ Pε/N ) = T σ 2
µ + σ 2

ν = σ 2
1

E(ε̄′ P ε̄/N ) = σ 2
1 tr(W ′W )/N

E(ε̄′ Pε/N ) = 0

From (10.35), ε = u − λū and ε̄ = ū − λū, substituting these expressions in (10.37) we obtain
a system of six equations involving the second moments of u, ū and ū. Under the random effects
specification considered, the OLS estimator of β is consistent. Using β̂OLS one gets a consistent
estimator of the disturbances û = y − X β̂OLS. The GM estimator of σ 2

1 , σ 2
ν and λ is the solution

of the sample counterpart of the six equations in (10.37).
Kapoor et al. (2004) suggest three GM estimators. The first involves only the first three

moments in (10.37) which do not involve σ 2
1 and yield estimates of λ and σ 2

ν . The fourth
moment condition is then used to solve for σ 2

1 given estimates of λ and σ 2
ν . Kapoor et al. (2004)

give the conditions needed for the consistency of this estimator as N → ∞. The second GM
estimator is based upon weighing the moment equations by the inverse of a properly normalized
variance–covariance matrix of the sample moments evaluated at the true parameter values. A
simple version of this weighting matrix is derived under normality of the disturbances. The
third GM estimator is motivated by computational considerations and replaces a component of
the weighting matrix for the second GM estimator by an identity matrix. Kapoor et al. (2004)
perform Monte Carlo experiments comparing MLE and these three GM estimation methods.
They find that on average, the RMSE of ML and their weighted GM estimators are quite
similar. However, the first unweighted GM estimator has a RMSE that is 17% to 14% larger
than that of the weighted GM estimators.

10.6 SHORT-RUN VS LONG-RUN ESTIMATES IN
POOLED MODELS

Applied studies using panel data find that the Between estimator (which is based on the cross-
sectional component of the data) tends to give long-run estimates while the Within estimator
(which is based on the time-series component of the data) tends to give short-run estimates.
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This agrees with the folk wisdom that cross-sectional studies tend to yield long-run responses
while time-series studies tend to yield short-run responses (see Kuh, 1959; Houthakker, 1965).
Both are consistent estimates of the same regression coefficients as long as the disturbances
are uncorrelated with the explanatory variables. In fact, Hausman’s specification test is based
on the difference between these estimators (see Chapter 4). Rejection of the null implies that
the random individual effects are correlated with the explanatory variables. This means that
the Between estimator is inconsistent while the Within estimator is consistent since it sweeps
away the individual effects. In these cases, the applied researcher settles on the Within estimator
rather than the Between or GLS estimators. (See Mundlak, 1978 for additional support of the
Within estimator.) Baltagi and Griffin (1984) argue that in panel data models, the difference
between the Within and Between estimators is due to dynamic misspecification. The basic idea
is that even with a rich panel data set, long-lived lag effects coupled with the shortness of the
time series is a recipe for dynamic underspecification. This is illustrated using Monte Carlo
experiments. In this context, Pirotte (1999) showed that the probability limit of the Between
estimator for a static panel data regression converges to the long-run effect. This occurs despite
the fact that the true model is a dynamic error components model. The only requirements are that
the number of individuals tend to infinity with the time periods held fixed and the coefficients
of the model are homogeneous among individual units. Egger and Pfaffermayr (2004a) show
that the asymptotic bias of the Within and Between estimators as estimates of short-run and
long-run effects depend upon the memory of the data generating process, the length of the time
series and the importance of the cross-sectional variation in the explanatory variables. Griliches
and Hausman (1986) attribute the difference between the Within and Between estimators to
measurement error in panel data (see section 10.1). Mairesse (1990) tries to explain why these
two estimators differ in economic applications using three samples of large manufacturing
firms in France, Japan and the USA over the period 1967–79, and a Cobb–Douglas production
function. Mairesse (1990) compares OLS, Between and Within estimators using levels and
first-differenced regressions with and without constant returns to scale. Assuming constant
returns to scale, he finds that the Between estimates of the elasticity of capital are of the order
of 0.31 for France, 0.47 for Japan and 0.22 for the USA, whereas the Within estimates are
lower, varying from 0.20 for France to 0.28 for Japan and 0.21 for the USA. Mairesse (1990)
argues that if the remainder error νi t is correlated with the explanatory variables, then the
Within estimator will be inconsistent, while the Between estimator is much less affected by
these correlations because the νi t are averaged and practically wiped out for large enough
T . This is also the case when measurement error in the explanatory variables is present. In fact,
if these measurement errors are not serially correlated from one year to the next, the Between
estimator tends to minimize their importance by averaging. In contrast, the Within estimator
magnifies the variability of these measurement errors and increases the resulting bias. (For
additional arguments in favor of the Between estimator, see Griliches and Mairesse, 1984.)

10.7 HETEROGENEOUS PANELS

For panel data studies with large N and small T , it is usual to pool the observations, assuming
homogeneity of the slope coefficients. The latter is a testable assumption which is quite often
rejected, see Chapter 4. Moreover, with the increasing time dimension of panel data sets,
some researchers including Robertson and Symons (1992) and Pesaran and Smith (1995) have
questioned the poolability of the data across heterogeneous units. Instead, they argue in favor
of heterogeneous estimates that can be combined to obtain homogeneous estimates if the
need arises. To make this point, Robertson and Symons (1992) studied the properties of some
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panel data estimators when the regression coefficients vary across individuals, i.e., they are
heterogeneous but are assumed homogeneous in estimation. This is done for both stationary
and nonstationary regressors. The basic conclusion is that severe biases can occur in dynamic
estimation even for relatively small parameter variation. They consider the case of say two
countries (N = 2), where the asymptotics depend on T → ∞. Their true model is a simple
heterogeneous static regression model with one regressor:

yit = βi xi t + νi t i = 1, 2; t = 1, . . . , T (10.38)

where νi t is independent for i = 1, 2, and βi varies across i = 1, 2. However, their estimated
model is dynamic and homogeneous with β1 = β2 = β and assumes an identity covariance
matrix for the disturbances:

yit = λyi,t−1 + βxit + wi t i = 1, 2 (10.39)

The regressors are assumed to follow a stationary process xit = ρxi,t−1 + εi t with | ρ |< 1
but different variances σ 2

i for i = 1, 2. Seemingly unrelated regression estimation with the
equality restriction imposed and an identity covariance matrix reduces to OLS on this system
of two equations. Robertson and Symons (1992) obtain the probability limits of the resulting λ̂

and β̂ as T → ∞. They find that the coefficient λ of yi,t−1 is overstated, while the mean effect
of the regressors (the xit ) is underestimated. In case the regressors are random walks (ρ = 1),
then plim λ̂ = 1 and plim β̂ = 0. Therefore, false imposition of parameter homogeneity, and
dynamic estimation of a static model when the regressors follow a random walk lead to perverse
results. Using Monte Carlo experiments they show that the dynamics become misleading even
for T as small as 40, which corresponds to the annual postwar data period. Even though
these results are derived for N = 2, one regressor and no lagged dependent variable in the true
model, Robertson and Symons (1992) show that the same phenomenon occurs for an empirical
example of a real wage equation for a panel of 13 OECD countries observed over the period
1958–86. Parameter homogeneity across countries is rejected and the true relationship appears
dynamic. Imposing false equality restriction biases the coefficient of the lagged wage upwards
and the coefficient of the capital–labor ratio downwards.

For typical labor or consumer panels where N is large but T is fixed, Robertson and Symons
(1992) assume that the true model is given by (10.35) with βi ∼ IID(β, σ 2

β ) for i = 1, . . . , N ,
and νi t ∼ IID(0, 1). In addition, xit is AR(1) with innovations εi t ∼ IID(0, 1) and xi0 = νi0 = 0.
The estimated model is dynamic as given by (10.36), with known variance–covariance matrix
I , and βi = β imposed for i = 1, . . . , N . For fixed T, and random walk regressors, plim λ̂ > 0
and plim β̂ < β as N → ∞, so that the coefficient of yi,t−1 is overestimated and the mean
effect of the βi is underestimated. As T → ∞, one gets the same result obtained previously,
plim λ̂ = 1 and plim β̂ = 0. If the regressor xit is white noise, no biases arise. These results are
confirmed with Monte Carlo experiments for T = 5 and N = 50, 100 and 200. The dynamics
are overstated even for N = 50 and T = 5, but they disappear as the regressor approaches white
noise, and remain important for autoregressive regressors with ρ = 0.5. Finally, Robertson
and Symons (1992) reconsider the Anderson and Hsiao (1982) estimator of a dynamic panel
data model that gets rid of the individual effects by first-differencing and uses lagged first-
differences of the regressors as instruments. Imposing false equality restrictions renders these
instruments invalid unless xit is white noise or follows a random walk. Only the second case
is potentially important because many economic variables are well approximated by random
walks. However, Robertson and Symons (1992) show that if xit is a random walk, the instrument
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is orthogonal to the instrumented variable and the resulting estimator has infinite asymptotic
variance, a result obtained in the stationary case by Arellano (1989). Using levels (yi,t−2) as
instruments as suggested by Arellano (1989) will not help when xit is a random walk, since the
correlation between the stationary variable (yi,t−1 − yi,t−2) and the I (1) variable yi,t will be
asymptotically zero. Using Monte Carlo experiments, with T = 5 and N = 50, Robertson and
Symons (1992) conclude that the Anderson and Hsiao (1982) estimator is useful only when
xit is white noise or a random walk. Otherwise, severe biases occur when xit is stationary and
autocorrelated.

Pesaran and Smith (1995) consider the problem of estimating a dynamic panel data model
when the parameters are individually heterogeneous and illustrate their results by estimating
industry-specific UK labor demand functions. In this case the model is given by

yit = λi yi,t−1 + βi xi t + uit i = 1, . . . , N ; t = 1, . . . , T (10.40)

where λi is IID(λ, σ 2
λ ) and βi is IID(β, σ 2

β ). Further, λi and βi are independent of yis , xis and
uis for all s. The objective in this case is to obtain consistent estimates of the mean values of
λi and βi . Pesaran and Smith (1995) present four different estimation procedures:

(1) aggregate time series regressions of group averages;
(2) cross-section regressions of averages over time;
(3) pooled regressions allowing for fixed or random intercepts; or
(4) separate regressions for each group, where coefficients estimates are averaged over these

groups.

They show that when T is small (even if N is large), all the procedures yield inconsistent
estimators. The difficulty in obtaining consistent estimates for λ and β can be explained by
rewriting (10.37) as

yit = λyi,t−1 + βxit + νi t (10.41)

where νi t = uit + (λi − λ)yi,t−1 + (βi − β)xit . By continuous substitution of yi,t−s it is easy
to see that νi t is correlated with all present and past values of yi,t−1−s and xit−s for s � 0. The
fact that νi t is correlated with the regressors of (10.38) renders the OLS estimator inconsistent,
and the fact that νi t is correlated with (yi,t−1−s, xi,t−s) for s > 0 rules out the possibility of
choosing any lagged value of yit and xit as legitimate instruments. When both N and T are
large, Pesaran and Smith (1995) show that the cross-section regression procedure will yield
consistent estimates of the mean values of λ and β. Intuitively, when T is large, the individual
parameters λi and βi can be consistently estimated using T observations of each individual
i , say λ̂i and β̂i , then averaging these individual estimators,

∑N
i=1 λ̂i/N and

∑N
i=1 β̂i/N , will

lead to consistent estimators of the mean values of λ and β.
Maddala et al. (1997) on the other hand argued that the heterogeneous time series esti-

mates yield inaccurate estimates and even wrong signs for the coefficients, while the panel
data estimates are not valid when one rejects the hypothesis of homogeneity of the coef-
ficients. They argued that shrinkage estimators are superior to either heterogeneous or ho-
mogeneous parameter estimates, especially for prediction purposes. In fact, Maddala et al.
(1997) considered the problem of estimating short-run and long-run elasticities of residential
demand for electricity and natural gas for each of 49 states over the period 1970–90. They con-
clude that individual heterogeneous state estimates were hard to interpret and had the wrong
signs. Pooled data regressions were not valid because the hypothesis of homogeneity of the
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coefficients was rejected. They recommend shrinkage estimators if one is interested in obtain-
ing elasticity estimates for each state since these give more reliable results.

In the context of dynamic demand for gasoline across 18 OECD countries over the period
1960–90, Baltagi and Griffin (1997) argued for pooling the data as the best approach for ob-
taining reliable price and income elasticities. They also pointed out that pure cross-section
studies cannot control for unobservable country effects, whereas pure time-series studies can-
not control for unobservable oil shocks or behavioral changes occurring over time. Baltagi
and Griffin (1997) compared the homogeneous and heterogeneous estimates in the context
of gasoline demand based on the plausibility of the price and income elasticities as well as
the speed of adjustment path to the long-run equilibrium. They found considerable variability
in the parameter estimates among the heterogeneous estimators, some implausible estimates,
while the homogeneous estimators gave similar plausible short-run estimates that differed only
in estimating the long-run effects. Baltagi and Griffin (1997) also compared the forecast per-
formance of these homogeneous and heterogeneous estimators over one-, five- and ten-year
horizons. Their findings show that the homogeneous estimators outperformed their heteroge-
neous counterparts based on mean squared forecast error. This result was replicated using a
panel data set of 21 French regions over the period 1973–98 by Baltagi, Bresson, Griffin and
Pirotte (2003). Unlike the international OECD gasoline data set, the focus on the interregional
differences in gasoline prices and income within France posed a different type of data set for
the heterogeneity vs homogeneity debate. The variations in these prices and income were much
smaller than international price and income differentials. This in turn reduces the efficiency
gains from pooling and favors the heterogeneous estimators, especially given the differences
between the Paris region and the rural areas of France. Baltagi et al. (2003) showed that the
time series estimates for each region are highly variable, unstable and offer the worst out-of-
sample forecasts. Despite the fact that the shrinkage estimators proposed by Maddala et al.
(1997) outperformed these individual heterogeneous estimates, they still had a wide range and
were outperformed by the homogeneous estimators in out-of-sample forecasts. Baltagi et al.
(2000) carried out this comparison for a dynamic demand for cigarettes across 46 US states
over 30 years (1963–92). Once again the results showed that the homogeneous panel data
estimators beat the heterogeneous and shrinkage-type estimators in RMSE performance for
out-of-sample forecasts. In another application, Driver et al. (2004) utilize the Confederation
of British Industry’s (CBI) survey data to measure the impact of uncertainty on UK invest-
ment authorizations. The panel consists of 48 industries observed over 85 quarters 1978(Q1)
to 1999(Q1). The uncertainty measure is based on the dispersion of beliefs across survey re-
spondents about the general business situation in their industry. The heterogeneous estimators
considered are OLS and 2SLS at the industry level, as well as the unrestricted SUR estimation
method. Fixed effects, random effects, pooled 2SLS and restricted SUR are the homogeneous
estimators considered. The panel estimates find that uncertainty has a negative, nonnegligible
effect on investment, while the heterogeneous estimates vary considerably across industries.
Forecast performance for 12 out-of-sample quarters 1996(Q2) to 1999(Q1) are compared.
The pooled homogeneous estimators outperform their heterogeneous counterparts in terms of
RMSE.

Baltagi et al. (2002) reconsidered the two US panel data sets on residential electricity and
natural gas demand used by Maddala et al. (1997) and compared the out-of-sample fore-
cast performance of the homogeneous, heterogeneous and shrinkage estimators. Once again
the results show that when the data is used to estimate heterogeneous models across states,
individual estimates offer the worst out-of-sample forecasts. Despite the fact that shrinkage
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estimators outperform these individual estimates, they are outperformed by simple homoge-
neous panel data estimates in out-of-sample forecasts. Admittedly, these are additional case
studies, but they do add to the evidence that simplicity and parsimony in model estimation of-
fered by the homogeneous estimators yield better forecasts than the more parameter consuming
heterogeneous estimators.

Hsiao and Tahmiscioglu (1997) use a panel of 561 US firms over the period 1971–92 to study
the influence of financial constraints on company investment. They find substantial differences
across firms in terms of their investment behavior. When a homogeneous pooled model is
assumed, the impact of liquidity on firm investment is seriously underestimated. The authors
recommend a mixed fixed and random coefficients framework based on the recursive predictive
density criteria.

Pesaran, Smith and Im (1996) investigated the small sample properties of various estimators
of the long-run coefficients for a dynamic heterogeneous panel data model using Monte Carlo
experiments. Their findings indicate that the mean group estimator performs reasonably well
for large T . However, when T is small, the mean group estimator could be seriously biased,
particularly when N is large relative to T . Pesaran and Zhao (1999) examine the effectiveness
of alternative bias correction procedures in reducing the small sample bias of these estimators
using Monte Carlo experiments. An interesting finding is that when the coefficient of the lagged
dependent variable is greater than or equal to 0.8, none of the bias correction procedures seems
to work. Hsiao, Pesaran and Tahmiscioglu (1999) suggest a Bayesian approach for estimating
the mean parameters of a dynamic heterogeneous panel data model. The coefficients are
assumed to be normally distributed across cross-sectional units and the Bayes estimator is
implemented using Markov chain Monte Carlo methods. Hsiao et al. (1999) argue that Bayesian
methods can be a viable alternative in the estimation of mean coefficients in dynamic panel
data models, even when the initial observations are treated as fixed constants. They establish
the asymptotic equivalence of this Bayes estimator and the mean group estimator proposed
by Pesaran and Smith (1995). The asymptotics are carried out for both N and T → ∞ with√

N/T → 0. Monte Carlo experiments show that this Bayes estimator has better sampling
properties than other estimators for both small and moderate size T . Hsiao et al. also caution
against the use of the mean group estimator unless T is sufficiently large relative to N. The
bias in the mean coefficient of the lagged dependent variable appears to be serious when
T is small and the true value of this coefficient is larger than 0.6. Hsiao et al. apply their
methods to estimate the q-investment model using a panel of 273 US firms over the period
1972–93. Baltagi et al. (2004) reconsider the Tobin q-investment model studied by Hsiao et
al. (1999) using a slightly different panel of 337 US firms over the period 1982–98. They
contrast the out-of-sample forecast performance of 9 homogeneous panel data estimators and
11 heterogeneous and shrinkage Bayes estimators over a five-year horizon. Results show
that the average heterogeneous estimators perform the worst in terms of mean squared error,
while the hierarchical Bayes estimator suggested by Hsiao et al. (1999) performs the best.
Homogeneous panel estimators and iterative Bayes estimators are a close second. In conclusion,
while the performance of various estimators and their corresponding forecasts may vary in
ranking from one empirical example to another, the consistent finding in all these studies is
that homogeneous panel data estimators perform well in forecast performance mostly due to
their simplicity, their parsimonious representation and the stability of the parameter estimates.
Average heterogeneous estimators perform badly due to parameter estimate instability caused
by the estimation of several parameters with short time series. Shrinkage estimators did well
for some applications, especially iterative Bayes and iterative empirical Bayes.
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NOTES

1. Peracchi and Welch (1995) use the Current Population Survey (CPS) to illustrate some problems
that arise from analyzing panel data constructed by matching person records across files of rotating
cross-section surveys. In particular, the matched CPS is studied to understand the process of attrition
from the sample and the nature of measurement error.

2. Estimation of the consumer price index in the USA is based on a complex rotating panel survey, with
20% of the sample being replaced by rotation each year (see Valliant, 1991).

3. In general, for any T , as long as the fraction of the sample being rotated is greater than or equal to
half, then no individual will be observed more than twice.

4. The terms “panel conditioning”, “reinterview effect” and “rotation group bias” are also used in the
literature synonymously with “time-in-sample bias” effects.

5. Blundell and Meghir (1990) also argue that pseudo-panels allow the estimation of lifecycle models
which are free from aggregation bias. In addition, Moffitt (1993) explains that many researchers in
the USA prefer to use pseudo-panels like the CPS because it has larger, more representative samples
and the questions asked are more consistently defined over time than the available US panels.

6. Table 1 of McKenzie (2001) provides examples of unequally spaced surveys and their sources.
7. Two special cases of this general specification are also considered. The first assumes that � is diagonal,

with no correlation across different cross-sections but allowing for heteroskedasticity. The second
special case uses the additional restriction that all the ρi are equal for i = 1, 2, . . . , N . Since OLS is
still unbiased and consistent under this model, it can be used to estimate the ρi ’s and �. Also, it can be
used to obtain robust estimates of the variance–covariance of the OLS estimator, see Beck and Katz
(1995). This can be done using the xtpcse command in Stata.

PROBLEMS

10.1 This problem is based upon Griliches and Hausman (1986). Using the simple regression
given in (10.1)–(10.3):
(a) Show that for the first-difference (FD) estimator of β, the expression in (10.8) reduces

to

plim β̂FD = β

(
1 − 2σ 2

η

var(
x)

)
where 
xit = xit − xi,t−1.

(b) Also show that (10.8) reduces to

plim β̃W = β

(
1 − T − 1

T

σ 2
η

var(̃x)

)

where β̃W denotes the Within estimator and x̃i t = xit − x̄i .

(c) For most economic series, the x∗
i t are positively serially correlated exhibiting a de-

clining correlogram, with

var(
x) <
2T

T − 1
var(̃x) for T > 2

Using this result, conclude that

| bias β̂FD |>| bias β̃W |
(d) Solve the expressions in parts (a) and (b) for β and σ 2

η and verify that the expressions
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in (10.9) and (10.10) reduce to

β̂ = [2β̃W /var(
x) − (T − 1)̂βFD/T var(̃x)]

[2/var(
x) − (T − 1)/T var(̃x)]

σ 2
η = (̂β − β̂FD) var(
x)/2β̂

(e) For T = 2, the Within estimator is the same as the first-difference estimator since
1
2
xit = x̃i t . Verify that the expressions in part (a) and (b) are also the same.

10.2 For the rotating panel considered in section 10.2, assume that T = 3 and that the number
of households being replaced each period is equal to N/2.
(a) Derive the variance–covariance of the disturbances �.
(b) Derive �−1/2 and describe the transformation needed to make GLS a weighted least

squares regression.
(c) How would you consistently estimate the variance components σ 2

µ and σ 2
ν ?

(d) Repeat this exercise for the case where the number of households being replaced
each period is N/3. How about 2N/3?

10.3 Using the Grunfeld data, perform
(a) the common ρ and
(b) the varying ρ estimation methods, described in Baltagi (1986). Compare with the

error component estimates obtained in Chapter 2.
10.4 Using the gasoline data, perform

(a) the common ρ and
(b) the varying ρ estimation methods, described in Baltagi (1986). Compare with the

error component estimates obtained in Chapter 2.
10.5 Using the Monte Carlo set-up of Baltagi (1986), compare the timewise autocorrelated,

cross-sectionally heteroskedastic estimation method with the error component method
and observe which method is more robust to misspecification.

10.6 Prediction in the spatially autocorrelated error component model. This is based on prob-
lem 99.2.4 in Econometric Theory by Baltagi and Li (1999). Consider the panel data
regression model described in (10.25) with random country effects and spatially autocor-
related remainder disturbances described by (10.26) and (10.27). Using the Goldberger
(1962) best linear unbiased prediction results discussed in section 2.5, equation (2.37),
derive the BLUP of yi,T +S for the ith country at period T + S for this spatial panel model.
Hint: See solution 99.2.4 in Econometric Theory by Song and Jung (2000).

10.7 Download the Maddala et al. (1997) data set on residential natural gas and electricity
consumption for 49 states over 21 years (1970–90) from the Journal of Business and
Economic Statistics web site www.amstat.org/publications/jbes/ftp.html.
(a) Using this data set, replicate the individual OLS state regressions for electricity, given

in table 6 and natural gas, given in table 8 of Maddala et al. (1997).
(b) Replicate the shrinkage estimates for electricity and natural gas given in tables 7 and

9, respectively.
(c) Replicate the fixed effects estimator given in column 1 of table 2 and the pooled OLS

model given in column 2 of that table.
(d) Replicate the average OLS, the average shrinkage estimator and the average Stein

rule estimator in table 2.
(e) Redo parts (c) and (d) for the natural gas equation as given in table 4 in that paper.
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11
Limited Dependent Variables

and Panel Data

In many economic studies, the dependent variable is discrete, indicating for example that a
household purchased a car or that an individual is unemployed or that he or she joined a
labor union or defaulted on a loan or was denied credit. This dependent variable is usually
represented by a binary choice variable yit = 1 if the event happens and 0 if it does not for
individual i at time t . In fact, if pit is the probability that individual i participated in the labor
force at time t , then E(yit ) = 1 · pit + 0 · (1 − pit ) = pit , and this is usually modeled as a
function of some explanatory variables

pit = Pr[yit = 1] = E(yit/xit ) = F(x ′
i tβ) (11.1)

For the linear probability model, F(x ′
i tβ) = x ′

i tβ and the usual panel data methods apply
except that ŷi t is not guaranteed to lie in the unit interval. The standard solution has been
to use the logistic or normal cumulative distribution functions that constrain F(x ′

i tβ) to be
between zero and one. These probability functions are known in the literature as logit and
probit, corresponding to the logistic and normal distributions, respectively.1 For example, a
worker participates in the labor force if his offered wage exceeds his unobserved reservation
wage. This threshold can be described as

yit = 1 if y∗
i t > 0

= 0 if y∗
i t ≤ 0

(11.2)

where y∗
i t = x ′

i tβ + uit . So that

Pr[yit = 1] = Pr[y∗
i t > 0] = Pr[uit > −x ′

i tβ] = F(x ′
i tβ) (11.3)

where the last equality holds as long as the density function describing F is symmetric around
zero. This is true for the logistic and normal density functions.

11.1 FIXED AND RANDOM LOGIT AND PROBIT MODELS

For panel data, the presence of individual effects complicates matters significantly. To see this,
consider the fixed effects panel data model, y∗

i t = x ′
i tβ + µi + νi t with

Pr[yit = 1] = Pr[y∗
i t > 0] = Pr[νi t > −x ′

i tβ − µi ] = F(x ′
i tβ + µi ) (11.4)

where the last equality holds as long as the density function describing F is symmetric around
zero. In this case, µi and β are unknown parameters and as N → ∞, for a fixed T , the number
of parameters µi increases with N . This means that µi cannot be consistently estimated for a
fixed T . This is known as the incidental parameters problem in statistics, which is discussed
by Neyman and Scott (1948) and reviewed more recently by Lancaster (2000). For the linear
panel data regression model, when T is fixed, only β was estimated consistently by first getting
rid of the µi using the Within transformation.2 This was possible for the linear case because

209
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the MLE of β and µi are asymptotically independent (see Hsiao, 2003). This is no longer
the case for a qualitative limited dependent variable model with fixed T as demonstrated by
Chamberlain (1980). For a simple illustration of how the inconsistency of the MLE of µi is
transmitted into inconsistency for β̂mle, see Hsiao (2003). This is done in the context of a logit
model with one regressor xit that is observed over two periods, with xi1 = 0 and xi2 = 1. Hsiao
shows that as N → ∞ with T = 2, plim β̂mle = 2β, see also problem 11.4. Greene (2004a)
shows that despite the large number of incidental parameters, one can still perform maximum
likelihood for the fixed effects model by brute force, i.e., including a large number of dummy
variables. Using Monte Carlo experiments, he shows that the fixed effects MLE is biased even
when T is large. For N = 1000, T = 2 and 200 replications, this bias is 100%, confirming
the results derived by Hsiao (2003). However, this bias improves as T increases. For example,
when N = 1000 and T = 10 this bias is 16% and when N = 1000 and T = 20 this bias
is 6.9%.

The usual solution around this incidental parameters problem is to find a minimal sufficient
statistic for µi . For the logit model, Chamberlain (1980) finds that

∑T
t=1 yit is a minimum suf-

ficient statistic for µi . Therefore, Chamberlain suggests maximizing the conditional likelihood
function

Lc =
N∏

i=1

Pr

(
yi1, . . . , yiT /

T∑
t=1

yit

)
(11.5)

to obtain the conditional logit estimates for β. By definition of a sufficient statistic, the dis-
tribution of the data given this sufficient statistic will not depend on µi . For the fixed effects
logit model, this approach results in a computationally convenient estimator and the basic idea
can be illustrated for T = 2. The observations over the two periods and for all individuals are
independent and the unconditional likelihood is given by

L =
N∏

i=1

Pr (yi1)Pr (yi2) (11.6)

The sum (yi1 + yi2) can be 0, 1 or 2. If it is 0, both yi1 and yi2 are 0 and

Pr [yi1 = 0, yi2 = 0/yi1 + yi2 = 0] = 1 (11.7)

Similarly, if the sum is 2, both yi1 and yi2 are 1 and

Pr [yi1 = 1, yi2 = 1/yi1 + yi2 = 2] = 1 (11.8)

These terms add nothing to the conditional loglikelihood since log 1 = 0. Only the observations
for which yi1 + yi2 = 1 matter in log Lc and these are given by

Pr [yi1 = 0, yi2 = 1/yi1 + yi2 = 1] and Pr [yi1 = 1, yi2 = 0/yi1 + yi2 = 1]

The latter can be calculated as Pr[yi1 = 1, yi2 = 0]/Pr[yi1 + yi2 = 1] with

Pr [yi1 + yi2 = 1] = Pr [yi1 = 0, yi2 = 1] + Pr [yi1 = 1, yi2 = 0]

since the latter two events are mutually exclusive. From (11.4), the logit model yields

Pr [yit = 1] = eµi +x ′
i t β

1 + eµi +x ′
i t β

(11.9)
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Therefore

Pr [yi1 = 1, yi2 = 0 | yi1 + yi2 = 1] = ex ′
i1β

ex ′
i1β + ex ′

i2β
= 1

1 + e(xi2−xi1)′β (11.10)

Similarly

Pr [yi1 = 0, yi2 = 1 | yi1 + yi2 = 1] = ex ′
i2β

ex ′
i1β + ex ′

i2β
= e(xi2−xi1)′β

1 + e(xi2−xi1)′β (11.11)

and neither probability involves the µi . Therefore, by conditioning on yi1 + yi2, we swept away
the µi . The product of terms such as these with yi1 + yi2 = 1 gives the conditional likelihood
function which can be maximized with respect to β using conventional maximum likelihood
logit programs. In this case, only the observations for individuals who switched status are
used in the estimation. A standard logit package can be used with x ′

i2 − x ′
i1 as explanatory

variables and the dependent variable taking the value one if yit switches from 0 to 1, and zero
if yit switches from 1 to 0. This procedure can easily be generalized for T > 2 (see prob-
lem 11.1).

In order to test for fixed individual effects one can perform a Hausman-type test based on
the difference between Chamberlain’s conditional MLE and the usual logit MLE ignoring the
individual effects. The latter estimator is consistent and efficient only under the null of no
individual effects and inconsistent under the alternative. Chamberlain’s estimator is consistent
whether H0 is true or not, but it is inefficient under H0 because it may not use all the data. Both
estimators can easily be obtained from the usual logit ML routines. The constant is dropped
and estimates of the asymptotic variances are used to form Hausman’s χ2 statistic. This will
be distributed as χ2

K under H0. For an application of Chamberlain’s conditional MLE see
Björklund (1985) who studied the linkage between unemployment and mental health problems
in Sweden using the Swedish Level of Living Surveys. The data was based on a random sample
of 6500 individuals between the ages of 15 and 75 surveyed in 1968, 1974 and 1981. Another
application is Winkelmann and Winkelmann (1998) who applied the conditional logit approach
to study the effect of unemployment on the level of satisfaction. Using data from the first six
waves of the GSOEP over the period 1984–89, the authors showed that unemployment had
a large detrimental effect on satisfaction. This effect became even larger after controlling for
individual-specific effects. The dependent variable was based on the response to the question
“How satisfied are you at present with your life as a whole?” An ordinal scale from 0 to
10 is recorded, where 0 meant “completely dissatisfied” and 10 meant “completely satisfied”.
Winkelmann and Winkelmann constructed a binary variable taking the value 1 if this score was
above 7 and 0 otherwise. They justified this on the basis that average satisfaction was between
7 and 8 and this was equivalent to classifying individuals into those who reported above
and those who reported below average satisfaction. The explanatory variables included a set of
dummy variables indicating current labor market status (unemployed out of the labor force) with
employed as the reference category. A good health variable defined as the absence of any chronic
condition or handicap. Age, age-squared, marital status and the duration of unemployment
and its square. Since unemployment reduces income which in turn may reduce satisfaction,
household income was included as a control variable to measure the nonpecuniary effect of
unemployment holding income constant. Of particular concern with the measurement of life
satisfaction is that individuals “anchor” their scale at different levels, rendering interpersonal
comparisons of responses meaningless. This problem bears a close resemblance to the issue of
cardinal vs ordinal utility. Any statistic that is calculated from a cross-section of individuals, for
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instance an average satisfaction, requires cardinality of the measurement scale. This problem
is closely related to the unobserved individual-specific effects. Hence anchoring causes the
estimator to be biased as long as it is not random but correlated with the explanatory variables.
Panel data help if the metric used by individuals is time-invariant. Fixed effects makes inference
based on intra- rather than interpersonal comparisons of satisfaction. This avoids not only the
potential bias caused by anchoring, but also bias caused by other unobserved individual-specific
factors. Hausman’s test based on the difference between a standard logit and a fixed effects logit
yielded a significant χ2 variable. After controlling for individual-specific effects, this study
found that unemployment had a significant and substantial negative impact on satisfaction.
The nonpecuniary costs of unemployment by far exceeded the pecuniary costs associated with
loss of income while unemployed.

In cases where the conditional likelihood function is not feasible, Manski (1987) shows that
it is possible to relax the logistic assumption in (11.9). Manski allows for a strictly increasing
distribution function which differs across individuals, but not over time for a given individual.
For T = 2, the identification of β is based on the fact that, under certain regularity conditions
on the distribution of the exogenous variables,

sgn [Pr (yi2 = 1/xi1, xi2, µi ) − Pr (yi1 = 1/xi1, xi2, µi )] = sgn [(xi2 − xi1)′β]

This prompted Manski (1987) to suggest a conditional version of his maximum score estimator
which can be applied to the first differences of the data in the subsample for which yi1 �= yi2.
This estimator leaves the distribution of the errors unspecified but it requires these disturbances
to be stationary conditional on the sequence of explanatory variables. Unlike the conditional
logit approach, Manski’s estimator is not root-N consistent nor asymptotically normal.3 It is
consistent as N → ∞ if the conditional distribution of the disturbances uit given µi , xit and
xi,t−1 is identical to the conditional distribution of ui,t−1 conditional on µi , xit and xi,t−1. This
does not allow for the presence of lagged dependent variables among the regressors. Manski’s
approach is semiparametric and does not require the specification of the distribution of the
disturbances. Hence, unlike standard MLE, it is robust to misspecification of the likelihood.
However, this semiparametric approach cannot be used to generate predicted probabilities
conditional on the regressors as in the parametric approach. Chamberlain (1993) showed that
even if the distribution of the disturbances is known, the logit model is the only version of
(11.4) for which β can be estimated at rate root-N . Honoré and Lewbel (2002) show that
Chamberlain’s negative result can be overturned as long as there is one explanatory variable
which is independent of the fixed effects and the νi t ’s, conditional on the other explanatory
variables and on a set of instruments. This assumption allows the root-N consistent estimation
of the parameters of the binary choice model with individual-specific effects which are valid
even when the explanatory variables are predetermined as opposed to strictly exogenous.
See also Magnac (2004) who shows that in a two-period, two-state model, the sum of two
binary variables is a sufficient statistic for the individual effect, under necessary and sufficient
conditions that are much less restrictive than the conditional logit approach. He also shows
that if the covariates are unbounded, then consistent estimation at a

√
N rate is possible if and

only if the sum of the binary variables is a sufficient statistic.
In contrast to the fixed effects logit model, the conditional likelihood approach does not yield

computational simplifications for the fixed effects probit model. But the probit specification has
been popular for the random effects model. In this case, uit = µi + νi t where µi ∼ IIN(0, σ 2

µ)
and νi t ∼ IIN(0, σ 2

ν ) independent of each other and the xit . Since E(uit uis) = σ 2
µ for t �= s,
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the joint likelihood of (y1t , . . . , yNt ) can no longer be written as the product of the marginal
likelihoods of the yit . This complicates the derivation of maximum likelihood which will now
involve T-dimensional integrals.4 This gets to be infeasible if T is big. However, by conditioning
on the individual effects, this T -dimensional integral problem reduces to a single integral
involving the product of a standard normal density and T differences of two normal cumulative
density functions. This can be evaluated using the Gaussian quadrature procedure suggested by
Butler and Moffitt (1982). This approach has the advantage of being computationally feasible
even for fairly large T . The accuracy of this quadrature procedure increases with the number
of evaluation points. For an application of the random effects probit model, see Sickles and
Taubman (1986) who estimated a two-equation structural model of the health and retirement
decisions of the elderly using five biennial panels of males drawn from the Retirement History
Survey. Both the health and retirement variables were limited dependent variables and MLE
using the Butler and Moffitt (1982) Gaussian quadrature procedure was implemented. Sickles
and Taubman found that retirement decisions were strongly affected by health status, and that
workers not yet eligible for social security were less likely to retire.

Heckman (1981b) performed some limited Monte Carlo experiments on a probit model with
a single regressor and a Nerlove (1971a)-type xit . For N = 100, T = 8, σ 2

ν = 1 and σ 2
µ = 0.5, 1

and 3, Heckman computed the bias of the fixed effects MLE of β using 25 replications. He
found at most 10% bias for β = 1 which was always towards zero. Replicating Heckman’s
design and using 100 replications, Greene (2004a) finds that the bias of the fixed effects MLE
of β is of the order of 10–24% always away from zero. Another Monte Carlo study by Guilkey
and Murphy (1993) showed that ignoring the random effects and performing a standard probit
analysis results in misleading inference since the coefficient standard errors are badly biased.
However, a probit estimator with a corrected asymptotic covariance matrix performed as well
as MLE for almost all parametric configurations. LIMDEP and Stata provide basic routines
for the random and fixed effects logit and probit model. In fact, in Stata these are the (xtprobit
and xtlogit) commands with the (fe and re) options.

Underlying the random effects probit model is the equicorrelation assumption between
successive disturbances belonging to the same individual. Avery, Hansen and Hotz (1983)
suggest a method of moments estimator that allows for a general type of serial correlation
among the disturbances. They apply their “orthogonality condition” estimators to the study
of labor force participation of married women. They reject the hypothesis of equicorrelation
across the disturbances. However, these random effects probit methods assume that the µi and
xit are uncorrelated and this may be a serious limitation. If exogeneity is rejected, then one
needs to put more structure on the type of correlation between µi and the xit to estimate this
model. This is what we will turn to next.

Chamberlain (1980, 1984) assumes that µi is correlated with xit as follows:

µi = x ′
i a + εi (11.12)

where a′ = (a′
1, . . . , a′

T ), x ′
i = (x ′

i1, . . . , x ′
iT ) and εi ∼ IID(0, σ 2

ε ) independent of νi t . In this
case,

yit = 1 if (x ′
i tβ + x ′

i a + εi + νi t ) > 0 (11.13)

and the distribution of yit conditional on xit but marginal on µi has the probit form

Pr [yit = 1] = �[(1 + σ 2
ε )−1/2(x ′

i tβ + x ′
i t a)] (11.14)
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where � denotes the cumulative normal distribution function. Once again, MLE involves
numerical integration, but a computationally simpler approach suggested by Chamberlain is
to run simple probit on this equation to get �̂. In this case, � satisfies the restriction

� = (1 + σ 2
ε )−1/2(IT ⊗ β ′ + ιT a′) (11.15)

Therefore, Chamberlain suggests a minimum distance estimator based on (π̂ − π ), where π =
vec(�′), that imposes this restriction. For details, see Chamberlain (1984).

Chamberlain (1984) applies both his fixed effects logit estimator and his minimum distance
random effects probit estimator to a study of the labor force participation of 924 married women
drawn from the PSID. These estimation methods give different results, especially with regard
to the effect of the presence of young children on labor force participation. These different
results could be attributed to the misspecification of the relationship between µi and the xit

in the random effects specification or a misspecification of the fixed effects logit model in its
omission of leads and lags of the xit from the structural equation.

For another application of Chamberlain’s (1984) approach to panel data probit estimation,
see Laisney, Lechner and Pohlmeier (1992) who studied the process innovation behavior of
1325 West German exporting firms observed over the 1984–88 period. Also, Lechner (1995)
who suggests several specification tests for the panel data probit model. These are generalized
score and Wald tests employed to detect omitted variables, neglected dynamics, heteroskedas-
ticity, nonnormality and random coefficient variations. The performance of these tests in small
samples is investigated using Monte Carlo experiments. In addition, an empirical example
is given on the probability of self-employment in West Germany using a random sample of
1926 working men selected from the German Socio-Economic Panel and observed over the
period 1984–89. Extensive Monte Carlo simulations comparing the performance of several
simple GMM estimators for the panel data probit model are given by Lechner and Breitung
(1996), Bertschek and Lechner (1998) and Breitung and Lechner (1999). Their results show
that the efficiency loss for GMM when compared to maximum likelihood is small. In addition,
these GMM estimators are easy to compute and are robust to serial correlation in the error.
Asymptotically optimal GMM estimators based on the conditional mean function are obtained
by using both parametric and nonparametric methods. The Monte Carlo results indicate that
the nonparametric method is superior in small samples. Bertschek and Lechner (1998) apply
these GMM procedures to the product innovation decisions of 1270 German firms observed
over the period 1984–88. Greene (2004b) reconsiders the binomial panel data probit model
studied by Bertschek and Lechner (1998) and argues that full maximum likelihood estimation
for their data set is feasible. Although GMM and MLE are based on different assumptions,
Greene (2004b) argues that the estimation of the full covariance matrix is revealing about the
structure of the model in a way that would not be evident from the Bertschek and Lechner GMM
approach. Greene additionally applies two alternative panel-based discrete choice models to
this data set. These are the random parameters models and the latent class model. The compu-
tation of the latent class model is simple. However, the computation of the random parameters
model is intensive and requires the maximization of a simulated loglikelihood function, see
section 11.2.

Bover and Arellano (1997) provide extensions of the random effects probit model of
Chamberlain (1984) which has applications in the analysis of binary choice, linear regression
subject to censoring and other models with endogenous selectivity. They propose a simple
two-step Within estimator for limited dependent variable models, which may include lags of
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the dependent variable, other exogenous variables and unobservable individual effects. This
estimator is based on reduced form predictions of the latent endogenous variables. It can be
regarded as a member of Chamberlain’s class of random effects minimum distance estima-
tors, and as such it is consistent and asymptotically normal for fixed T . However, this Within
estimator is not asymptotically efficient within the minimum distance class, since it uses a
nonoptimal weighting matrix. Therefore, Bover and Arellano (1997) show how one can obtain
in one more step a chi-squared test statistic for over-identifying restrictions and linear GMM
estimators that are asymptotically efficient. The drawbacks of this approach are the same as
those for the Chamberlain probit model. Both require the availability of strictly exogenous
variables, and the specification of the conditional distribution of the effects. Labeaga (1999)
applies the Bover and Arellano (1997) method to estimate a double-hurdle rational addiction
model for tobacco consumption using an unbalanced panel of households drawn from the
Spanish Permanent Survey of Consumption (SPSC). This is a panel collected by the Spanish
Statistical Office for approximately 2000 households between 1977 and 1983.

11.2 SIMULATION ESTIMATION OF LIMITED DEPENDENT
VARIABLE MODELS WITH PANEL DATA

Keane (1994) derived a computationally practical simulation estimator for the panel data probit
model. The basic idea of simulation estimation methods is to replace intractable integrals by un-
biased Monte Carlo probability simulators. This is ideal for limited dependent variable models
where for a multinominal probit model, the choice probabilities involve multivariate integrals.5

In fact, for cross-section data, McFadden’s (1989) method of simulated moments (MSM) in-
volves an M − 1 integration problem, where M is the number of possible choices facing the
individual. For panel data, things get more complicated, because there are M choices facing
any individual at each period. This means that there are MT possible choice sequences facing
each individual over the panel. Hence the MSM estimator becomes infeasible as T gets large.
Keane (1994) sidesteps this problem of having to simulate MT possible choice sequences
by factorizing the method of simulated moments first-order conditions into transition prob-
abilities. The latter are simulated using highly accurate importance sampling techniques (see
Keane, 1993, 1994 for details). This method of simulating probabilities is referred to as the
Geweke, Hajivassiliou and Keane (GHK) simulator because it was independently developed
by these authors. Keane (1994) performs Monte Carlo experiments and finds that even for large
T and small simulation sizes, the bias in the MSM estimator is negligible. When maximum
likelihood methods are feasible, Keane (1994) finds that the MSM estimator performs well
relative to quadrature-based maximum likelihood methods even where the latter are based on
a large number of quadrature points. When maximum likelihood is not feasible, the MSM
estimator outperforms the simulated MLE even when the highly accurate GHK probability
simulator is used. Keane (1994) argues that MSM has three advantages over the other practical
nonmaximum likelihood estimators considered above, i.e. Chamberlain’s (1984) minimum
distance estimator and the Avery et al. (1983) orthogonality condition estimator. First, MSM
is asymptotically as efficient as maximum likelihood (in simulation size) while the other esti-
mators are not. Second, MSM can easily be extended to handle multinominal probit situations
whereas the extension of the other estimators is computationally burdensome. Third, MSM
can be extended to handle nonlinear systems of equations which are intractable with max-
imum likelihood. Keane (1994) also finds that MSM can estimate random effects models
with autoregressive moving average error in about the same time necessary for estimating a
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simple random effects model using maximum likelihood quadrature. The extension of limited
dependent variable models to allow for a general pattern of serial correlation is now possible
using MSM and could prove useful for out-of-sample predictions. An example of the MSM
estimator is given by Keane (1993), who estimates probit employment equations using data
from the National Longitudinal Survey of Youth (NLSY). This is a sample of 5225 males aged
14–24 and interviewed 12 times over the period 1966–81. For this example, Keane (1993)
concludes that relaxing the equicorrelation assumption by including an MA(1) or AR(1) com-
ponent to the error term had little effect on the parameter estimates. Keane (1993) discusses
simulation estimation of models more complex than probit models. He argues that it is diffi-
cult to put panel data selection models and Tobit models in an MSM framework and that the
method of simulated scores (MSS) may be a preferable way to go. Keane (1993) applies the
MSS estimator to the same data set used by Keane, Moffitt and Runkle (1988) to study
the cyclical behavior of real wages. He finds that the Keane et al. conclusion of a weakly
procyclical movement in the real wage appears to be robust to relaxation of the equicorrelation
assumption. For another application, see Hajivassiliou (1994) who reconsiders the problem
of external debt crisis of 93 developing countries observed over the period 1970–88. Using
several simulation estimation methods, Hajivassiliou concludes that allowing for flexible cor-
relation patterns changes the estimates substantially and raises doubts over previous studies
that assumed restrictive correlation structures.

More recently, Zhang and Lee (2004) argue that the statistical performance of the GHK
simulator may be adequate for panels with small T, but this performance deteriorates when T
is larger than 50 (for a moderate amount of simulation draws). In fact, the bias of the SML
estimator may become larger than its standard deviation. Zhang and Lee suggest applying the
accelerated importance sampling (AIS) procedure to SML estimation of dynamic discrete
choice models with long panels. Using Monte Carlo experiments, they show that this can
improve upon the GHK sampler when T is large and they illustrate their method using an
application on firm’s dividend decisions. They collect data on quarterly dividends and earnings
per share from COMPUSTAT tapes. The sample period is 54 quarters (1987:1 to 2002:2). Two
quarters were used for getting the initial value for each firm, so T = 52. The final sample used
included N = 150 large US industrial firms and the total number of observations NT = 7800.
The results confirm that the AIS improves the performance of the GHK sampler.

11.3 DYNAMIC PANEL DATA LIMITED DEPENDENT
VARIABLE MODELS

So far the model is static implying that, for example, the probability of buying a car is indepen-
dent of the individual’s past history of car purchases. If the probability of buying a car is more
likely if the individual has bought a car in the past than if he or she has not, then a dynamic
model that takes into account the individual’s past experience is more appropriate. Heckman
(1981a,b,c) gives an extensive treatment of these dynamic models and the consequences of
various assumptions on the initial values on the resulting estimators. Heckman (1981c) also
emphasizes the importance of distinguishing between true state dependence and spurious state
dependence. In the “true” case, once an individual experiences an event like unemployment,
his preferences change and he or she will behave differently in the future as compared with an
identical individual that has not experienced this event in the past. In fact, it is observed that
individuals with a long history of unemployment are less likely to leave unemployment. They
may be less attractive for employers to hire or may become discouraged in looking for a job.
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In the “spurious” case, past experience has no effect on the probability of experiencing the
event in the future. It is the individual’s characteristics that make him or her less likely to leave
unemployment. However, one cannot properly control for all the variables that distinguish
one individual’s decision from another’s. In this case, past experience which is a good proxy
for these omitted variables shows up as a significant determinant of the future probability of
occurrence of this event. Testing for true vs spurious state dependence is therefore important
in these studies, but it is complicated by the presence of the individual effects or heterogeneity.
In fact, even if there is no state dependence, Pr[yit/xit , yi,t−l] �= Pr[yit/xit ] as long as there
are random individual effects present in the model. If in addition to the absence of the state
dependence, there is also no heterogeneity, then Pr[yit/xit , yi,t−l] = Pr[yit/xit ]. A test for this
equality can be based on a test for γ = 0 in the model

Pr [yit = 1/xit , yit−1] = F(x ′
i tβ + γ yi,t−1)

using standard maximum likelihood techniques. If γ = 0 is not rejected, we ignore the hetero-
geneity issue and proceed as in conventional limited dependent variable models not worrying
about the panel nature of the data. However, rejecting the null does not necessarily imply
that there is heterogeneity since γ can be different from zero due to serial correlation in the
remainder error or due to state dependence. In order to test for time dependence one has to
condition on the individual effects, i.e. test Pr[yit/yi,t−l , xit , µi ] = Pr[yit/xit , µi ]. This can
be implemented following the work of Lee (1987). In fact, if γ = 0 is rejected, Hsiao (2003)
suggests testing for time dependence against heterogeneity. If heterogeneity is rejected, the
model is misspecified. If heterogeneity is not rejected then one estimates the model correcting
for heterogeneity. See Heckman (1981c) for an application to married women’s employment
decisions based on a three-year sample from the PSID. One of the main findings of this study
is that neglecting heterogeneity in dynamic models overstates the effect of past experience on
labor market participation. Das and van Soest (1999) use the October waves of 1984 till 1989
from the Dutch Socio-Economic Panel to study household subjective expectations about fu-
ture income changes. Ignoring attrition and sample selection problems which could be serious,
the authors estimate a static random effects probit model and a fixed effects conditional logit
model as discussed in section 11.1 and extend them to the case of ordered response. Using
Heckman’s (1981b) procedure, they also estimate a dynamic random effects model which
includes a measure of permanent and transitory income. They find that income change ex-
pectations depend strongly on realized income changes in the past. In particular, those whose
income fell were more pessimistic than others, while those whose income rose were more
optimistic. The paper rejects rational expectations finding that households whose income has
decreased in the past underestimate their future income growth. Other applications dealing with
heterogeneity and state dependence include Heckman and Willis (1977), Heckman and Borjas
(1980), Vella and Verbeek (1999) and Hyslop (1999). In marketing research, one can attribute
consumers’ repeated purchases of the same brands to either state dependence or heterogeneity,
see Keane (1997). For a recent application using household-level scanner panel data on six
frequently purchased packaged products: ketchup, peanut butter, liquid detergent, tissue, tuna
and sugar, see Erdem and Sun (2001). The authors find evidence of state dependence for all
product categories except sugar.

Chamberlain’s fixed effects conditional logit approach can be generalized to include lags of
the dependent variable, provided there are no explanatory variables and T ≥ 4, see Chamberlain
(1985). Assuming the initial period yi0 is observed but its probability is unspecified, the model
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is given by

Pr[yi0 = 1/µi ] = p0(µi )

Pr[yit = 1/µi , yi0, yi1, . . . , yi,t−1] = eγ yi,t−1+µi

1 + eγ yi,t−1+µi
t = 1, . . . , T (11.16)

where p0(µi ) is unknown but the logit specification is imposed from period 1 to T . Consider
the two events

A = {yi0 = d0, yi1 = 0, yi2 = 1, yi3 = d3} (11.17)

B = {yi0 = d0, yi1 = 1, yi2 = 0, yi3 = d3} (11.18)

where d0 and d3 are either 0 or 1. If T = 3, inference on γ is based upon the fact that
Pr[A/yi1 + yi2 = 1, µi ] and Pr[B/yi1 + yi2 = 1, µi ] do not depend upon µi , see problem
11.2. Honoré and Kyriazidou (2000b) consider the identification and estimation of panel data
discrete choice models with lags of the dependent variable and strictly exogenous variables that
allow for unobservable heterogeneity. In particular, they extend Chamberlain’s (1985) fixed
effects logit model in (11.16) to include strictly exogenous variables x ′

i = (xi1, . . . , xiT ), i.e.,

Pr[yi0 = 1/x ′
i , µi ] = p0(x ′

i , µi ) (11.19)

Pr[yit = 1/x ′
i , µi , yi0, . . . , yi,t−1] = ex ′

i t β+γ yi,t−1+µi

1 + ex ′
i t β+γ yi,t−1+µi

t = 1, . . . , T

The crucial assumption is that the errors in the threshold-crossing model leading to (11.19) are
IID over time with logistic distributions and independent of (x ′

i , µi , yi0) at all time periods.
Honoré and Kyriazidou (2000b) show that Pr(A/x ′

i , µi ,A∪B) and Pr(B/x ′
i , µi ,A∪B) will still

depend upon µi . This means that a conditional likelihood approach will not eliminate the fixed
effects. However, if x ′

i2 = x ′
i3, then the conditional probabilities

Pr(A/x ′
i , µi , A∪B, x ′

i2 = x ′
i3) = 1

1 + e(xi1−xi2)′β+γ (d0−d3)
(11.20)

Pr(B/x ′
i , µi , A∪B, x ′

i2 = x ′
i3) = e(xi1−xi2)′β+γ (d0−d3)

1 + e(xi1−xi2)′β+γ (d0−d3)

do not depend on µi , see problem 11.3. If all the explanatory variables are discrete and
Pr[x ′

i2 = x ′
i3] > 0, Honoré and Kyriazidou (2000b) suggest maximizing a weighted likelihood

function based upon (11.20) for observations that satisfy x ′
i2 = x ′

i3 and yi1 + yi2 = 1. The
weakness of this approach is its reliance on observations for which x ′

i2 = x ′
i3 which may

not be useful for many economic applications. However, Honoré and Kyriazidou suggest
weighing the likelihood function with weights that depend inversely on x ′

i2 − x ′
i3, giving more

weight to observations for which x ′
i2 is close to x ′

i3. This is done using a kernel density
K (x ′

i2 − x ′
i3/hN )where hN is a bandwidth that shrinks as N increases. The resulting estimators

are consistent and asymptotically normal under standard assumptions. However, their rate of
convergence will be slower than

√
N and will depend upon the number of continuous covariates

in x ′
i t . The results of a small Monte Carlo study suggest that this estimator performs well and

that the asymptotics provide a reasonable approximation to the finite sample behavior of the
estimator. Honoré and Kyriazidou also consider identification in the semiparametric case where
the logit assumption is relaxed. A conditional maximum score estimator à la Manski (1987)



JWBK024-11 JWBK024-Baltagi March 30, 2005 4:13 Char Count= 0

Limited Dependent Variables and Panel Data 219

is proposed which is shown to be consistent.6 In addition, Honoré and Kyriazidou discuss an
extension of the identification result to multinomial discrete choice models and to the case
where the dependent variable is lagged twice.

Chintagunta, Kyriazidou and Perktold (2001) apply the Honoré and Kyriazidou (2000b)
method to study yogurt brand loyalty in South Dakota. They use household panel data with
at least two purchases of Yoplait and Nordica yogurt brands over approximately a two-year
period. They control for household effects, difference in price and whether the brand was
featured in an advertisement that week or displayed in the store. They find that a previous
purchase of a brand increases the probability of purchasing that brand in the next period.
They also find that if one ignores household heterogeneity, this previous purchase effect is
overstated.

Contoyannis, Jones and Rice (2004) utilize seven waves (1991–97) of the British Household
Panel Survey (BHPS) to analyze the dynamics of individual health and to decompose the
persistence in health outcomes in the BHPS data into components due to state dependence,
serial correlation and unobserved heterogeneity. The indicator of health is defined by a binary
response to the question: “Does your health in any way limit your daily activities compared to
most people of your age?” A sample of 6106 individuals resulting in 42 742 panel observations
is used to estimate static and dynamic panel probit models by maximum simulated likelihood
using the GHK simulator with antithetic acceleration. The dynamic models show strong positive
state dependence.

Hahn (2001) considers two simple dynamic panel logit models with fixed effects for T = 3.
The first model has only the lagged dependent variable as an explanatory variable. Hahn shows
that even though the conditional MLE is

√
N -consistent for this model, its asymptotic variance

is strictly larger than the semiparametric asymptotic variance bound. In the second model, time
dummies are added and the semiparametric information bound is shown to be singular.

Arellano and Carrasco (2003) consider a binary choice panel data model with predetermined
variables. A semiparametric random effects specification is suggested as a compromise to the
fixed effects specification that leaves the distribution of the individual effects unrestricted.
Dependence is allowed through a nonparametric specification of the conditional expectation
of the effects given the predetermined variables. The paper proposes a GMM estimator which
is shown to be consistent and asymptotically normal for fixed T and large N . This method is
used to estimate a female labor force participation equation with predetermined children using
PSID data.

11.4 SELECTION BIAS IN PANEL DATA

In Chapter 9, we studied incomplete panels that had randomly missing data. In section 10.2
we studied rotating panels where, by the design of the survey, households that drop from
the sample in one period are intentionally replaced in the next period. However, in many
surveys, nonrandomly missing data may occur due to a variety of self-selection rules. One
such self-selection rule is the problem of nonresponse of the economic agent. Nonresponse
occurs, for example, when the individual refuses to participate in the survey, or refuses to
answer particular questions. This problem occurs in cross-section studies, but it becomes
aggravated in panel surveys. After all, panel surveys are repeated cross-sectional interviews.
So, in addition to the above kinds of nonresponse, one may encounter individuals that refuse
to participate in subsequent interviews or simply move or die. Individuals leaving the survey
cause attrition in the panel. This distorts the random design of the survey and questions the
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representativeness of the observed sample in drawing inference about the population we are
studying. Inference based on the balanced subpanel is inefficient even in randomly missing
data since it is throwing away data. In nonrandomly missing data, this inference is misleading
because it is no longer representative of the population. Verbeek and Nijman (1996) survey
the reasons for nonresponse and distinguish between ignorable and nonignorable selection
rules. This is important because, if the selection rule is ignorable for the parameters of interest,
one can use the standard panel data methods for consistent estimation. If the selection rule
is nonignorable, then one has to take into account the mechanism that causes the missing
observations in order to obtain consistent estimates of the parameters of interest. In order to
reduce the effects of attrition, refreshment samples are used which replace individuals who
dropped from the panel by new individuals randomly sampled from the population. With
these refreshment samples, it may be possible to test whether the missing data is ignorable or
nonignorable, see Hirano et al. (2001).

For the one-way error component regression model

yit = x ′
i tβ + µi + νi t (11.21)

where µi ∼ IID(0, σ 2
µ) and νi t ∼ IIN(0, σ 2

ν ) independent of each other and the xit . Observations
on yit (and possibly xit ) are missing if a selection variable rit = 0 and not missing if rit = 1. The
missing data mechanism is ignorable of order one for β if E(µ + νi/ri ) = 0 for i = 1, . . . , N ,
whereµ′ = (µ1, . . . , µN ), ν ′

i = (νi1, . . . , νiT ) and r ′
i = (ri1, . . . , riT ). In this case, both GLS on

the unbalanced panel and the balanced subpanel are consistent if N → ∞. The Within estimator
is consistent for both the unbalanced and balanced subpanel as N → ∞ if E (̃νi/ri ) = 0 where
ν̃ ′

i = (̃νi1, . . . , ν̃iT ) and ν̃i t = νi t − νi .7

We now consider a simple model of nonresponse in panel data. Following the work of
Hausman and Wise (1979), Ridder (1990, 1992) and Verbeek and Nijman (1996), we assume
that yit is observed, i.e. rit = 1, if a latent variable r∗

i t ≥ 0. This latent variable is given by

r∗
i t = z′

i tγ + εi + ηi t (11.22)

where zit is a set of explanatory variables possibly including some of the xit .8 The one-way
error component structure allows for heterogeneity in the selection process. The errors are
assumed to be normally distributed εi ∼ IIN(0, σ 2

ε ) and ηi t ∼ IIN(0, σ 2
η ) with the only nonzero

covariances being cov(εi , µi ) = σµε and cov(ηi t , νi t ) = σην. In order to get a consistent esti-
mator for β, a generalization of Heckman’s (1979) selectivity bias correction procedure from
the cross-sectional to the panel data case can be employed. The conditional expectation of uit

given selection now involves two terms. Therefore, instead of one selectivity bias correction
term, there are now two terms corresponding to the two covariances σµε and σην . However,
unlike the cross-sectional case, these correction terms cannot be computed from simple pro-
bit regressions and require numerical integration. Fortunately, this is only a one-dimensional
integration problem because of the error component structure. Once the correction terms are
estimated, they are included in the regression equation as in the cross-sectional case and OLS
or GLS can be run on the resulting augmented model. For details, see Verbeek and Nijman
(1996) who also warn about heteroskedasticity and serial correlation in the second step re-
gression if the selection rule is nonignorable. Verbeek and Nijman (1996) also discuss MLE for
this random effect probit model with selection bias. The computations require two-dimensional
numerical integration for all individuals with rit = 0 for at least one t . Verbeek (1990) also
considers the estimation of a fixed effects model with selection bias using the marginal
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maximum likelihood principle. As in the random effects case, the computation is reduced
to a two-dimensional numerical integration problem but it is simpler in this case because the
two variables over which we are integrating are independent. Verbeek’s (1990) model is a
hybrid of a fixed individual effect (µi ) in the behavioral equation, and a random individual
effect (εi ) in the selectivity equation. Zabel (1992) argues that if µi and xit are correlated then
it is highly likely (though not necessary) that εi and zit are correlated. If the latter is true, the
estimates of γ and β will be inconsistent. Zabel suggests modeling the εi as a function of the
zi , arguing that this will reduce the inconsistency. Zabel also criticizes Verbeek’s specification
because it excludes economic models that have the same individual effect in both the behavioral
and selectivity equation. For these models both effects should be either fixed or random.

Before one embarks on these complicated estimation procedures one should first test whether
the selection rule is ignorable. Verbeek and Nijman (1992a) consider a Lagrange multiplier
(LM) test for H0 : σνη = σµε = 0. The null hypothesis is a sufficient condition for the selection
rule to be ignorable for the random effects model. Unfortunately, this also requires numerical
integration over a maximum of two dimensions and is cumbersome to use in applied work. In
addition, the LM test is highly dependent on the specification of the selectivity equation and the
distributional assumptions. Alternatively, Verbeek and Nijman (1992a) suggest some simple
Hausman-type tests based on GLS and Within estimators for the unbalanced panel and the bal-
anced subpanel.9 All four estimators are consistent under the null hypothesis that the selection
rule is ignorable and all four estimators are inconsistent under the alternative. This is different
from the usual Hausman-type test where one estimator is consistent under both the null and
alternative hypotheses, whereas the other estimator is efficient under the null, but inconsistent
under the alternative. As a consequence, these tests may have low power, especially if under the
alternative these estimators have close asymptotic biases. On the other hand, the advantages
of these tests are that they are computationally simple and do not require the specification of
a selection rule to derive these tests. Let δ̂ = (̃βW (B), β̃W (U ), β̂GLS(B), β̂GLS(U )) where β̃W

denotes the Within estimator and β̂GLS denotes the GLS estimator, β̂(B) corresponds to an
estimator of β from the balanced subpanel and β̂(U ) corresponds to an estimator of β from
the unbalanced panel. Verbeek and Nijman (1992a) show that the variance–covariance matrix
of δ̂ is given by

var(̂δ) =


V11 V22 V33 V44

V22 V22V −1
11 V13 V44

V33 V44

V44

 (11.23)

where V11 = var(̃βW (B), V22 = var(̃βW (U )), V33 = var(̂βGLS(B) and V44 = var(̂βGLS(U )).
Therefore an estimate of var(̂δ) can be obtained from the estimated variance–covariance ma-
trices of the four estimation procedures. Hausman-type tests can now be performed on say
H0 : Rδ = 0, where R is a known matrix, as follows:

m = N δ̂′ R′[R var(̂δ)R′]− Rδ̂ (11.24)

and this is distributed as χ2 under the null with degrees of freedom equal to the rank
of [R var(̂δ)R′]. Natural candidates for R are R1 = [I, 0, −I, 0], R2 = [0, I, 0, −I ], R3 =
[I, −I, 0, 0] and R4 = [0, 0, I − I ]. The first two are the standard Hausman tests based on
the difference between the Within and GLS estimators for the balanced subpanel (R1) and the
unbalanced panel (R2). The third is based on the difference between the Within estimators from
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the balanced and unbalanced panels (R3), while the last is based on the difference between the
GLS estimators from the balanced and unbalanced panels (R4). For all four cases considered,
the variance of the difference is the difference between the two variances and hence it is easy
to compute. Verbeek and Nijman (1992a) perform some Monte Carlo experiments verifying
the poor power of these tests in some cases, but also illustrating their usefulness in other cases.
In practice, they recommend performing the tests based on R2 and R4.

Wooldridge (1995) derives some simple variable addition tests of selection bias as well as
easy-to-apply estimation techniques that correct for selection bias in linear fixed effects panel
data models. The auxiliary regressors are either Tobit residuals or inverse Mills ratios and the
disturbances are allowed to be arbitrarily serially correlated and unconditionally heteroskedas-
tic. Wooldridge (1995) considers the fixed effects model where the µi ’s are correlated with
xit . However, the remainder disturbances νi t are allowed to display arbitrary serial correlation
and unconditional heteroskedasticity. The panel is unbalanced with the selection indicator vec-
tor for each individual i denoted by s ′

i = (si1, si2, . . . , sit ). When sit = 1, it is assumed that
(x ′

i t , yit ) is observed. The fixed effects estimator is given by

β̃ =
(

N∑
i=1

T∑
t=1

sit x̃i t x̃
′
i t

)−1 (
N∑

i=1

T∑
t=1

sit x̃i t ỹi t

)
(11.25)

where x̃ ′
i t = x ′

i t −
(∑T

r=1 sir x ′
ir/Ti

)
, ỹi t = yit −

(∑T
r=1 sir yir/Ti

)
and Ti =∑T

i=1 sit . A suffi-

cient condition for the fixed estimator to be consistent and asymptotically normal, as N → ∞,
is that E(νi t/µi , x ′

i , s ′
i ) = 0 for t = 1, 2, . . . , T . Recall that x ′

i = (x ′
i1, . . . , x ′

iT ). Under this
assumption, the selection process is strictly exogenous conditional on µi and x ′

i .
Wooldridge (1995) considers two cases. The first is when the latent variable determining

selection is partially observed. Define a latent variable

h∗
i t = δt0 + x ′

i1δt1 + . . . + x ′
iT δtT + εi t (11.26)

where εi t is independent of (µi , x ′
i ), δtr is a K × 1 vector of unknown parameters for r =

1, 2, . . . , T and εi t ∼ N (0, σ 2
t ).

The binary selection indicator is defined as sit = 1 if h∗
i t > 0. For this case, the censored

variable hit = max(0, h∗
i t ) is observed. For example, this could be a wage equation, and selection

depends on whether or not individuals are working. If a person is working, the working hours
hit are recorded, and selection is determined by nonzero hours worked. This is what is meant
by partial observability of the selection variable.

Because si is a function of (x ′
i , ε

′
i ) where ε′

i = (εi1, . . . , εiT ), a sufficient condition
for the fixed effects estimator to be consistent and asymptotically normal as N → ∞ is
E(νi t/µi , x ′

i , ε
′
i ) = 0 for t = 1, 2, . . . , T . The simplest alternative that implies selectivity bias

is E(νi t/µi , x ′
i , ε

′
i ) = E(νi t/εi t ) = γ εi t for t = 1, 2, . . . , T , with γ being an unknown scalar.

Therefore,

E(yit/µi , x ′
i , ε

′
i , s ′

i ) = E(yit/µi , x ′
i , ε

′
i ) = µi + x ′

i tβ + γ εi t (11.27)

It follows that, if we could observe εi t when sit = 1, then we could test for selectivity bias by
including the εi t as an additional regressor in fixed effects estimation and testing H0 : γ = 0
using standard methods. While εi t cannot be observed, it can be estimated whenever sit = 1
because εi t is simply the error of a Tobit model.
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When hit is observed, Wooldridge’s (1995) test for selection bias is as follows.

Step 1. For each t = 1, 2, . . . , T , estimate the equation

hit = max(0, x ′
iδt + εi t ) (11.28)

by standard Tobit, where δ′
t = (δt0, δ

′
t1, . . . , δ

′
tT ) and xi now has unity as its first ele-

ment. For sit = 1, let ε̂i t = hit − x ′
i δ̂t denote the Tobit residuals.

Step 2. Estimate the equation

ỹi t = x̃ ′
i tβ + γ ε̃i t + residuals (11.29)

by pooled OLS using those observations for which sit = 1. x̃i t and ỹi t were defined
above, and

ε̃i t = ε̂i t −
(

T∑
r=1

sir ε̂ir/T

)
(11.30)

Step 3. Test H0 : γ = 0 using the t-statistic for γ̂ . A serial correlation and heteroskedasticity-
robust standard error should be used unless E[νiν

′
i/µi , x ′

i , si ] = σ 2
ν IT . This robust

standard error is given in the appendix to Wooldridge’s (1995) paper.

The second case considered by Wooldridge is when hit is not observed. In this case, one
conditions on si rather than εi . Using iterated expectations, this gives

E(yit/µi , x ′
i , s ′

i ) = µi + x ′
i tβ + γ E(εi t/µi , x ′

i , s ′
i ) (11.31)

= µi + x ′
i tβ + γ E(εi t/x ′

i , s ′
i )

If the εi t were independent across t , then E(εi t/x ′
i , s ′

i ) = E(εi t/x ′
i , sit ). The conditional ex-

pectation we need to estimate is E[εi t/x ′
i , sit = 1] = E[εi t/x ′

i , εi t > −x ′
iδt ]. Assuming that

the var(εi t ) = 1, we get E[εi t/x ′
i , εi t > − x ′

iδt ] = λ(x ′
iδt ) where λ(.) denotes the inverse Mills

ratio.
When hit is not observed, Wooldridge’s (1995) test for selection bias is as follows.

Step 1. For each t = 1, 2, . . . , T , estimate the equation

Pr[sit = 1/x ′
i ] = �(x ′

iδt ) (11.32)

using standard probit. For sit = 1, compute λ̂i t = λ(x ′
i δ̂t ).

Step 2. Estimate the equation

ỹi t = x̃ ′
i tβ + γ λ̃i t + residuals (11.33)

by pooled OLS using those observations for which sit = 1. x̃i t and ỹi t were defined
above, and

λ̃i t = λ̂i t −
(

T∑
r=1

sir λ̂ir/Ti

)
Step 3. Test H0 : γ = 0 using the t-statistic for γ = 0. Again, a serial correlation and

heteroskedasticity-robust standard error is warranted unless

E(νiν
′
i/µi , x ′

i , si ) = σ 2 IT under H0.
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Both tests proposed by Wooldridge (1995) are computationally simple, involving variable
addition tests. These require either Tobit residuals or inverse Mills ratios obtained from probit
estimation for each time period. This is followed by fixed effects estimation.

For the random effects model, Verbeek and Nijman (1992a) suggest including three simple
variables in the regression to check for the presence of selection bias. These are (i) the number
of waves the i th individual participates in the panel, Ti ; (ii) a binary variable taking the
value 1 if and only if the i th individual is observed over the entire sample,

∏T
r=1 sir ; and

(iii) si,t−1 indicating whether the individual was present in the last period. Intuitively, testing
the significance of these variables checks whether the pattern of missing observations affects
the underlying regression. Wooldridge (1995) argues that the first two variables have no time
variation and cannot be implemented in a fixed effects model. He suggested other variables
to be used in place of λ̂i t in a variable addition test during fixed effects estimation. These are∑T

r �=t sir and
∏T

r �=t sir . Such tests have the computational simplicity advantage and the need to
only observe xit when sit = 1.10

Das (2004) considers a multiperiod random effects panel model with attrition in one period
followed by reappearance in a future period. Das suggests a nonparametric two-step estimator
that corrects for attrition bias by including estimates of retention probabilities, one for each
period that experiences attrition. Asymptotic normality of a class of functionals of this model
is derived, including as special cases the linear and partially linear versions of this model.

11.5 CENSORED AND TRUNCATED PANEL DATA MODELS

So far, we have studied economic relationships, say labor supply, based on a random sample
of individuals where the dependent variable is 1 if the individual is employed and 0 if the
individual is unemployed. However, for these random samples, one may observe the number
of hours worked if the individual is employed. This sample is censored in that the hours
worked are reported as zero if the individual does not work and the regression model is
known as the Tobit model (see Maddala, 1983).11 Heckman and MaCurdy (1980) consider
a fixed effects Tobit model to estimate a lifecycle model of female labor supply. They argue
that the individual effects have a specific meaning in a lifecycle model and therefore cannot be
assumed independent of the xit . Hence, a fixed effects rather than a random effects specification
is appropriate. For this fixed effects Tobit model:

y∗
i t = x ′

i tβ + µi + νi t (11.34)

with νi t ∼ IIN(0, σ 2
ν ) and

yit = y∗
i t if y∗

i t > 0
= 0 otherwise

(11.35)

where yit could be the expenditures on a car or a house, or the number of hours worked. This will
be zero if the individual does not buy a car or a house or if the individual is unemployed.12 As in
the fixed effects probit model, the µi cannot be swept away and as a result β and σ 2

ν cannot be
estimated consistently for T fixed, since the inconsistency in the µi is transmitted to β and σ 2

ν .
Heckman and MaCurdy (1980) suggest estimating the loglikelihood using iterative methods.
Using Monte Carlo experiments with N = 1000, T = 2, 3, 5, 8, 10 and 20, Greene (2004a)
finds that the MLE for the Tobit model with fixed effects exhibits almost no bias even though in
each data set in the design, roughly 40–50% of the observations were censored. For the truncated
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panel data regression model, Greene finds some downward bias in the estimates towards 0. He
also finds that the estimated standard deviations are biased downwards in all cases.

Honoré (1992) suggested trimmed least absolute deviations and trimmed least squares esti-
mators for truncated and censored regression models with fixed effects defined in (11.34). These
are semiparametric estimators with no distributional assumptions necessary on the error term.
The main assumption is that the remainder error νi t is independent and identically distributed
conditional on the xit and the µi for t = 1, . . . , T . Honoré (1992) exploits the symmetry in
the distribution of the latent variables and finds that when the true values of the parameters are
known, trimming can transmit the same symmetry in distribution to the observed variables.
This generates orthogonality conditions which must hold at the true value of the parameters.
Therefore, the resulting GMM estimator is consistent provided the orthogonality conditions are
satisfied at a unique point in the parameter space. Honoré (1992) shows that these estimators
are consistent and asymptotically normal. Monte Carlo results show that as long as N ≥ 200,
the asymptotic distribution is a good approximation of the small sample distribution. How-
ever, if N is small, the small sample distribution of these estimators is skewed.13 Kang and
Lee (2003) use the Korean Household Panel Survey for 1996–98 to study the determinants of
private transfers. The results are based on two balanced panels for (1996–97) and (1997–98)
containing 3692 and 3674 households, respectively. Applying the Honoré (1992) fixed effects
censored estimator, the paper finds that private transfers are altruistically motivated. Also, that
there is a strong almost dollar-for-dollar crowding effect of public transfers on private transfers.

Honoré and Kyriazidou (2000a) review recent estimators for censored regression and sample
selection panel data models with unobserved individual-specific effects and show how they can
easily be extended to other Tobit-type models. The proposed estimators are semiparametric and
do not require the parametrization of the distribution of the unobservables. However, they do
require that the explanatory variables be strictly exogenous. This rules out lags of the dependent
variables among the regressors. The general approach exploits stationarity and exchangeability
assumptions on the models’ transitory error terms in order to construct moment conditions that
do not depend on the individual-specific effects.

Kyriazidou (1997) studies the panel data sample selection model, also known as the Type 2
Tobit model, with

y∗
1i t = x ′

1i tβ1 + µ1i + ν1i t (11.36)

y∗
2i t = x ′

2i tβ2 + µ2i + ν2i t (11.37)

where

y1i t = 1 if y∗
1i t > 0

= 0 otherwise

and

y2i t = y∗
2i t if y1i t = 1

= 0 otherwise

Kyriazidou suggests estimating β1 by one of the estimation methods for discrete choice mod-
els with individual effects that were discussed in section 11.1. Next, µ2i is eliminated by
first-differencing the data for which y∗

2i t is observed. With this sample selection, Kyriazidou
(1997) focuses on individuals for whom x ′

1i tβ1 = x ′
1isβ1. For these individuals, the same first-

differencing that will eliminate the fixed effects will also eliminate the sample selection. This
suggests a two-step Heckman procedure where β1 is estimated in the first step and then β2 is
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estimated by applying OLS to the first differences but giving more weight to observations for
which (x1i t − x1is)′β̂1 is close to zero. This weighting can be done using a kernel whose
bandwidth hN shrinks to zero as the sample size increases. The resulting estimator is

√
NhN -

consistent and asymptotically normal. Monte Carlo results for N = 250, 1000 and 4000 and
T = 2 indicate that this estimator works well for sufficiently large data sets. However, it is
quite sensitive to the choice of the bandwidth parameters.

Charlier, Melenberg and van Soest (2001) apply the methods proposed by Kyriazidou (1997)
to a model of expenditure on housing for owners and renters using an endogenous switching
regression. The data is based on three waves of the Dutch Socio-Economic Panel from 1987–89.
The share of housing in total expenditure is modeled using a household-specific effect, family
characteristics, constant quality prices and total expenditure, where the latter is allowed to be
endogenous. Estimates from a random effects model are compared to estimates from a linear
panel data model in which selection only enters through the fixed effects, and a Kyriazidou-type
estimator allowing for fixed effects and a more general type of selectivity. Hausman-type tests
reject the random effects and linear panel data models as too restrictive. However, the over-
identification restrictions of the more general semiparametric fixed effects model of Kyriazidou
(1997) were rejected, suggesting possible misspecification.

Honoré (1993) also considers the dynamic Tobit model with fixed effects, i.e.

y∗
i t = x ′

i tβ + λyi,t−1 + µi + νi t (11.38)

with yit = max{0, y∗
i t } for i = 1, . . . , N ; t = 1, . . . , T . The basic assumption is that νi t is

IID(0, σ 2
ν ) for t = 1, . . . , T, conditional on yi0, xit and µi . Honoré (1993) shows how to trim

the observations from a dynamic Tobit model so that the symmetry conditions are preserved
for the observed variables at the true values of the parameters. These symmetry restrictions
are free of the individual effects and no assumption is needed on the distribution of the µi

or their relationship with the explanatory variables. These restrictions generate orthogonality
conditions which are satisfied at the true value of the parameters. The orthogonality conditions
can be used in turn to construct method of moments estimators. Honoré (1993) does not prove
that the true values of the parameters are the only values in the parameter space where the
orthogonality conditions are satisfied. This means that the resulting GMM estimator is not
necessarily consistent. Using Monte Carlo experiments, Honoré (1993) shows that MLE for a
dynamic Tobit model with fixed effects performs poorly, whereas the GMM estimator performs
quite well, when λ is the only parameter of interest. The assumption that the νi t are IID is too
restrictive, especially for a dynamic model. Honoré (1993) relaxes this assumption to the case
of stationary νi t for t = 1, . . . , T conditional on the xit and the µi . Still, this assumption is
likely to be violated by many interesting economic models. In another paper, Honoré and Hu
(2004) provide regularity conditions under which a related set of moment conditions is uniquely
satisfied at the true parameter values. They prove that the GMM estimator is consistent and
asymptotically normal in this case. Kyriazidou (2001), on the other hand, derives a kernel-
weighted GMM estimator for the dynamic sample selection model and shows that this estimator
is

√
NhN -consistent and asymptotically normal.

Hu (2002) proposes a method for estimating a censored dynamic panel data model with
individual fixed effects and lagged latent dependent variables. Censoring destroys a certain
symmetry between the latent variables. Hu shows that one can artificially truncate the observa-
tions in such a way that the symmetry is restored. Based on the restored symmetry, orthogonality
conditions are constructed and GMM estimation can be implemented. Although it is hard to
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prove identification for nonlinear GMM, Hu shows that based on the moment conditions, one
can still construct valid asymptotic confidence intervals for the parameters of interest. This is
applied to matched data from the 1973 and 1978 March CPS and social security administration
earnings records to estimate a dynamic earnings model for a sample of men living in the South
during 1957–73, by race. The results suggest that white men’s earnings’ process appears to be
more persistent than that of black men (conditional on individual heterogeneity).

Arellano, Bover and Labeaga (1999) consider a linear autoregressive model for a latent
variable which is only partly observed due to a selection mechanism:

y∗
i t = αy∗

i,t−1 + µi + νi t (11.39)

with |α| < 1 and E(νi t/y∗
i1, . . . , y∗

i,t−1) = 0. The variable y∗
i t is observed subject to endogenous

selection. Arellano et al. (1999) show that the intractability of this dynamic model subject to
censoring using a single time series can be handled successfully using panel data by noting
that individuals without censored past observations are exogenously selected. They propose
an asymptotic least squares method to estimate features of the distribution of the censored
endogenous variable conditional on its past. They apply these methods to a study of female
labor supply and wages using two different samples from the PSID covering the periods 1970–
76 and 1978–84.

Vella and Verbeek (1999) suggest two-step estimators for a wide range of parametric panel
data models with censored endogenous variables and sample selection bias. This generalizes
the treatment of sample selection models by Ridder (1990) and Nijman and Verbeek (1992) to a
wide range of selection rules. This also generalizes the panel data dummy endogenous regressor
model in Vella and Verbeek (1998) by allowing for other forms of censored endogenous
regressors. In addition, this analysis shows how Wooldridge’s (1995) estimation procedures
for sample selection can be applied to more general specifications. The two-step procedure
derives estimates of the unobserved heterogeneity responsible for the endogeneity/selection
bias in the first step. These in turn are included as additional regressors in the primary equation.
This is computationally simple compared to maximum likelihood procedures, since it requires
only one-dimensional numerical integration. The panel nature of the data allows adjustment,
and testing, for two forms of endogeneity and/or sample selection bias. Furthermore, it allows
for dynamics and state dependence in the reduced form. This procedure is applied to the
problem of estimating the impact of weekly hours worked on the offered hourly wage rate:

wi t = x ′
1,i tβ1 + x ′

2,i tβ2 + m(hoursi t ; β3) + µi + ηi t (11.40)

hours∗
i t = x ′

3,i tθ1 + hoursi,t−1θ2 + αi + νi t

hoursi t = hours∗
i t if hours∗

i t > 0

hoursi t = 0 wi t not observed if hours∗
i t ≤ 0

Here, wi t represents log of the hourly wage for individual i at time t ; x1,i t and x3,i t are vari-
ables representing individual characteristics, x2,i t are workplace characteristics for individual
i ; hours∗

i t and hoursi t represent desired and observed number of hours worked; m denotes
a polynomial of known length with unknown coefficients β3. This is estimated using data
for young females from the NLSY for the period 1980–87. This included a total of 18 400
observations of which 12 039 observations report positive hours of work in a given period.

Lee (2001) proposes a semiparametric first-difference estimator for panel censored selec-
tion models where the selection equation is of the Tobit type. This estimator minimizes a
convex function and does not require any smoothing. This estimator is compared with that of
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Wooldridge (1995) and Honoré and Kyriazidou (2000a) using Monte Carlo experiments. The
results show that all three estimators are quite robust to model assumption violation.

11.6 EMPIRICAL APPLICATIONS

There are many empirical applications illustrating the effects of attrition bias; see Hausman and
Wise (1979) for a study of the Gary Income Maintenance Experiment. For this experimental
panel study of labor supply response, the treatment effect is an income guarantee/tax rate
combination. People who benefit from this experiment are more likely to remain in the sample.
Therefore, the selection rule is nonignorable, and attrition can overestimate the treatment effect
on labor supply. For the Gary Income Maintenance Experiment, Hausman and Wise (1979)
found little effect of attrition bias on the experimental labor supply response. Similar results
were obtained by Robins and West (1986) for the Seattle and Denver Income Maintenance
Experiments. For the latter sample, attrition was modest (11% for married men and 7% for
married women and single heads during the period studied) and its effect was not serious
enough to warrant extensive correction procedures.

Ridder (1992) studied the determinants of the total number of trips using the first seven waves
of the Dutch Transportation Panel (DTP). This panel was commissioned by the Department of
Transportation in the Netherlands to evaluate the effect of price increases on the use of public
transportation. The first wave of interviews was conducted in March 1984. There is heavy
attrition in the DTP, with only 38% of the original sample participating in all seven waves
of the panel. Ridder (1992) found that nonrandom attrition from the DTP did not bias time-
constant regression coefficients. However, it did bias the time-varying coefficients. Ridder
(1992) also found that the restrictions imposed by the standard Hausman and Wise (1979)
model for nonrandom attrition on the correlations between individual effects and random
shocks may even prevent the detection of nonrandom attrition.

Keane et al. (1988) studied the movement of real wages over the business cycle for panel
data drawn from the National Longitudinal Survey of Youth (NLSY) over the period 1966–81.
They showed that failure to account for self-selection biased the behavior of real wages in a
procyclical direction.

Nijman and Verbeek (1992) studied the effects of nonresponse on the estimates of a simple
lifecycle consumption function using a Dutch panel of households interviewed over the period
April 1984–March 1987. Several tests for attrition bias were performed, and the model was
estimated using (i) one wave of the panel, (ii) the balanced subpanel and (iii) the unbalanced
panel. For this application, attrition bias was not serious. The balanced subpanel estimates
had implausible signs, while the one-wave estimates and the unbalanced panel estimates gave
reasonably close estimates with the latter having lower standard errors.

Ziliak and Kniesner (1998) examine the importance of sample attrition in a lifecycle labor
supply using both a Wald test comparing attriters to nonattriters and variable addition tests
based on formal models of attrition. Estimates using waves I–XXII of the PSID (interview
years 1968–89) show that nonrandom attrition is of little concern when estimating prime age
male labor supply because the effect of attrition is absorbed into fixed effects in labor supply.

Dionne, Gagné and Vanasse (1998) estimate a cost model based on an incomplete panel of
Ontario trucking firms. The data consists of 445 yearly observations of general freight carriers
in Ontario observed over the period 1981–88. It includes 163 firms for which information is
available for 2.7 years on average. The cost-input demand system is jointly estimated with a
bivariate probit selection model of entry and exit from the sample. A test for selectivity bias
reveals potential bias related to exit but not entry from the sample.
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Vella and Verbeek (1998) estimate the union premium for young men over a period of
declining unionization (1980–87). The panel data is taken from the NLSY and includes 545
full-time working males who completed their schooling by 1980. The probability of union
membership is estimated using a dynamic random effects probit model. The coefficient of
lagged union status is estimated at 0.61 with a standard error of 0.07, indicating a positive
and statistically significant estimate of state dependence. OLS estimates of the wage equation
yield a union wage effect of 15–18% depending on whether occupational status dummies are
included or not. These estimates are contaminated by endogeneity. The corresponding fixed
effects estimates are much lower, yielding 7.9–8.0%. These estimates eliminate only the endo-
geneity operating through the individual-specific effects. Thus, any time-varying endogeneity
continues to contaminate these estimates. Including correction terms based on the estimated
union model yields negative significant coefficients and reveals selection bias. This indicates
that workers who receive lower wages, after conditioning on their characteristics and in the
absence of unions, are most likely to be in the union. This is consistent with the findings
that minority groups who are lower paid for discriminatory reasons have a greater tendency
to seek union employment than whites. Vella and Verbeek conclude that the union effect is
approximately 21% over the period studied. However, the return to unobserved heterogene-
ity operating through union status is substantial, making the union premium highly variable
among individuals. Moreover, this union premium is sensitive to the pattern of sorting into
union employment allowed in the estimation.

11.7 EMPIRICAL EXAMPLE: NURSES’ LABOR SUPPLY

Shortage of nurses is a problem in several countries. It is an unsettled question whether increas-
ing wages constitute a viable policy for extracting more labor supply from nurses. Askildsen,
Baltagi and Holmås (2003) use a unique matched panel data set of Norwegian nurses covering
the period 1993–98 to estimate wage elasticities. The data set collected from different official
data registers and Statistics Norway includes detailed information on 19 638 individuals over
six years totalling 69 122 observations. Female nurses younger than 62 years of age who were
registered with a complete nursing qualification and employed by municipalities or counties
were included in the sample. For the sample of female nurses considered, the average age was
37 years, with 35% of the nurses being single. The majority of these nurses worked in somatic
hospitals (62%) or nursing homes (20%), with the remaining nurses engaged in home nursing
(10%), at psychiatric institutions (5%), in health services (1%) and others (3%). Senior nurses
comprised only 2% of the sample, while 16% were ward nurses, 20% were nursing specialists
and the remaining majority (62%) worked as staff nurses. The average years of experience
during the sample period was 12.5 years, and the average number of children below 18 years
of age was 1.2. Nurses with children below the age of 3 comprised 22% of the sample, while
those with children between the ages of 3 and 7 comprised 29% of the sample.

Verbeek and Nijman (1992a) proposed simple tests for sample selection in panel data models.
One test is to include variables measuring whether the individual is observed in the previous
period, whether the individual is observed in all periods and the total number of periods the
individual is observed, see section 11.4. The null hypothesis says that these variables should
not be significant in our model if there are no sample selection problems. Another test, a
Hausman-type test, compares the fixed effects estimator from the balanced sample as opposed
to an unbalanced sample. Both tests rejected the null hypothesis of no sample selection.

Table 11.1 reproduces the conditional logit model estimates as the first step of the
Kyriazidou (1997) estimator. A number of variables were used that characterized the regions
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Table 11.1 Participation Equation. Conditional Logit

Educated as nursing specialist 0.6155**
(0.0685)

Age 0.1125**
(0.034)

Age2 −0.0035**
(0.0004)

Single −0.1256*
(0.055)

Number of children −0.2640**
(0.0457)

Children < 3 −0.1424**
(0.0424)

Children 3–7 0.0725
(0.0385)

Children > 7 −0.0619
(0.0369)

Disable −1.2678**
(0.224)

Hospital in municipality 0.6463**
(0.0617)

Availability kindergarten 0.3303
(0.2511)

Participation rate 0.0345**
(0.0073)

East Norway 0.5275**
(0.1198)

South Norway 0.8874**
(0.1448)

West Norway −0.8383**
(0.1318)

Mid Norway 1.4610**
(0.1429)

Municipality size −0.0082**
(0.0003)

Centrality level 1 −0.0471
(0.1615)

Centrality level 2 −0.5202**
(0.1809)

Centrality level 3 −0.5408**
(0.1387)

Loglikelihood −22287.461

Number of observations 61464

Standard errors in parentheses. ** and * is statistically different from zero at
1% and 5% significance level, respectively.
Source: Askildsen et al. (2003). Reproduced by permission of John Wiley &
Sons, Ltd.
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and municipalities where the individuals live (centrality, female work participation rates, avail-
ability of kindergarten and whether there is a hospital in the municipality). These variables
were closely connected to the participation decision, and conditional on this are assumed not
to affect hours of work. Job-related variables were excluded since they were not observed
for those who did not participate. The conditional logit estimates were then used to construct
kernel weights with the bandwidth set to h = 1. A Hausman test based on the weighted and
unweighted estimates gave a value of the test statistic (χ2

23 = 821.27) that clearly rejected the
null hypothesis of no selection. As instruments for the wage of nurses, the authors used the fi-
nancial situation of the municipality, measured by lagged net financial surplus in the preceding
period. Also, the lagged mean wage of auxiliary nurses working in the same municipality as
the nurse, and each nurse’s work experience. These variables are assumed to affect wages of
nurses but not their hours of work. The instruments pass the Hausman test of over-identifying
restrictions. The results of the Kyriazidou instrumental variable estimator are given in Table
11.2. Age had a significant negative effect. Nurses worked shorter hours as they became older
but to a diminishing degree. The effect of family variables was as expected. Being single
had a positive and significant effect on hours of work. The presence of children in the home
had a negative impact on hours of work. Nurses working in psychiatric institutions worked
longer hours compared to the base category somatic hospitals, whereas shorter hours were
supplied by nurses engaged in home nursing, as well as in nursing homes. Labor supply was
highest in the less densely populated Northern Norway (the base category). This may reflect
the fact that hours of work were not allowed to vary as much in these areas. Compared to a
staff nurse, which served as the base work type category, nursing specialists, ward nurses and
senior nurses all worked longer hours. The estimated wage elasticity after controlling for indi-
vidual heterogeneity, sample selection and instrumenting for possible endogeneity was 0.21.
Individual and institutional features were statistically significant and important for working
hours. Contractual arrangements as represented by shift work were also important for hours of
work, and omitting information about this common phenomenon will underestimate the wage
effect.

11.8 FURTHER READING

One should read the related nonlinear panel data model literature, see for example Abrevaya
(1999) who proposes a leapfrog estimator for the monotonic transformation panel data model
of the type

ht (yit ) = x ′
i tβ + µi + νi t

where ht (.) is assumed to be strictly increasing. The trick here is to difference across pairs
of individuals at a given time period, rather than across time periods. This semiparametric
estimator is shown to be

√
N -consistent and asymptotically normal. Examples of this model

include the multiple-spell proportional hazards model and dependent variable transformation
models with fixed effects. Abrevaya (2000) introduces a class of rank estimators that consis-
tently estimate the coefficients of a generalized fixed effects regression model. This model
allows for censoring, places no parametric assumptions on the error disturbances and allows
the fixed effects to be correlated with the covariates. The maximum score estimator for the
binary choice fixed effects model proposed by Manski (1987) is a member of this class of es-
timators. The class of rank estimators converge at less than

√
N rate, while smoothed versions

of these estimators converge at rates approaching the
√

N rate. Some of the limitations of this
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Table 11.2 Nurses’ Labor Supply

Ln wage 0.2078*
(0.0942)

Shift work −0.0111**
(0.0007)

Shift work 2 −0.00000
(0.00001)

Hour 35.5 −0.0397**
(0.0053)

Disable −0.2581**
(0.0261)

Age −0.0098*
(0.0048)

Age2 0.0003**
(0.00003)

Single 0.0205**
(0.0035)

Number of children −0.0991**
(0.0035)

Children < 3 −0.0495**
(0.0028)

Children 3–7 −0.0177**
(0.0024)

Children > 7 −0.0307**
(0.0021)

Psychiatric 0.0466**
(0.0092)

Home nursing −0.0206**
(0.0067)

Health service −0.0567**
(0.0148)

Nursing home −0.0177**
(0.0059)

Other 0.0024
(0.0078)

Nursing specialist 0.0144*
(0.0067)

Ward nurse −0.0004
(0.0076)

Senior nurse 0.0057
(0.0123)

East Norway −0.0622**
(0.0131)

South Norway −0.0802**
(0.017)
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Table 11.2 (Continued)

West Norway −0.1157**
(0.0218)

Mid Norway −0.1011**
(0.0188)

Municipality size 0.0002*
(0.00007)

Constant −0.0068**
(0.0014)

Number of observations 121 622

Standard errors in parentheses. ** and * is statistically different from zero at
1% and 5% significance level, respectively.
Source: Askildsen et al. (2003). Reproduced by permission of John Wiley &
Sons, Ltd.

approach are that the estimation relies on a strict exogeneity assumption and does not deal with
the inclusion of lagged dependent variables. Also, the coefficients of time-invariant covariates
are not identified by this class of estimators.

Wooldridge (1997) considers the estimation of multiplicative, unobserved components panel
data models without imposing a strict exogeneity assumption on the conditioning variables.
A robust method of moments estimator is proposed which requires only a conditional mean
assumption. This applies to binary choice models with multiplicative unobserved effects, and
models containing parametric nonlinear transformations of the endogenous variables. This
model is particularly suited to nonnegative explained variables, including count variables.
In addition, it can also be applied to certain nonlinear Euler equations. Wooldridge (1999)
offers some distribution-free estimators for multiplicative unobserved components panel data
models. Requiring only the correct specification of the conditional mean, the multinomial
quasi-conditional MLE is shown to be consistent and asymptotically normal. This estima-
tion method is popular for estimating fixed effects count models, see Hausman et al. (1984).
Wooldridge’s results show that it can be used to obtain consistent estimates even when the
dependent variable yit is not a vector of counts. In fact, yit can be a binary response variable, a
proportion, a nonnegative continuously distributed random variable, or it can have discrete and
continuous characteristics. Neither the distribution of yit nor its temporal dependence are re-
stricted. Additional orthogonality conditions can be used in a GMM framework to improve the
efficiency of the estimator. Finally, Wooldridge (2000) proposes a method of estimating very
general, nonlinear, dynamic, unobserved effects panel data models with feedback. Wooldridge
shows how to construct the likelihood function for the conditional maximum likelihood esti-
mator in dynamic, unobserved effects models where not all conditioning variables are strictly
exogenous. A useful innovation is the treatment of the initial conditions which offers a flexible,
relatively simple alternative to existing methods.

Hansen (1999) considers the estimation of threshold panel regressions with individual-
specific effects. This is useful for situations where the regression function is not identical
across all observations in the sample. In fact, the observations are divided into two regimes
depending on whether a threshold variable qit is smaller or larger than the threshold γ :

yit = µi + β ′
1xit 1(qit ≤ γ ) + β ′

2xit 1(qit > γ ) + νi t
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where 1(.) is the indicator function. The regimes are distinguished by differing slopes β1 and
β2. Hansen (1999) proposes a least squares procedure to estimate the threshold and regression
slopes using fixed effects transformations. Nonstandard asymptotic theory with T fixed and
N → ∞ is developed to allow the construction of confidence intervals and tests of hypotheses.
This method is applied to a panel of 565 US firms observed over the period 1973–87 to test
whether financial constraints affect investment decisions. Hansen finds overwhelming evidence
of a double threshold effect which separates the firms based on their debt-to-asset ratio. The
weakness of this approach is that it does not allow for heteroskedasticity, lagged dependent
variables, endogenous variables and random effects.

Hahn and Newey (2004) consider two approaches to reducing the bias from fixed effects
estimators in nonlinear models as T gets large. The first is a panel jacknife that uses the varia-
tion in the fixed effects estimators as each time period is dropped, one at a time, to form a bias
corrected estimator. The second is an analytic bias correction using the bias formula obtained
from an asymptotic expansion as T grows. They show that if T grows at the same rate as N ,
the fixed effects estimator is asymptotically biased, so that the asymptotic confidence intervals
are incorrect. However, these are correct for the panel jacknife. If T grows faster than N 1/3, the
analytical bias correction yields an estimator that is asymptotically normal and centered at the
truth.

NOTES

1. For the probit model

F(x ′
i tβ) = �(x ′

i tβ) =
∫ x ′

i t β

−∞

1√
2π

e−u2/2du

and for the logit model

F(x ′
i tβ) = ex ′

i t β

1 + ex ′
i t β

2. Note that for this nonlinear panel data model, it is not possible to get rid of the µi by taking differences
or performing the Within transformation as in Chapter 2.

3. Charlier, Melenberg and van Soest (1995) provide a smoothed maximum score estimator for the
binary choice panel data model which has an asymptotic normal distribution but a convergence rate
that is slower than root-N . Lee (1999) proposes a

√
N -consistent semiparametric estimator which

does not depend on a smoothing parameter and is asymptotically normal.
4. On the other hand, if there are no random individual effects, the joint likelihood will be the product

of the marginals and one can proceed as in the usual cross-sectional limited dependent variable case,
see Maddala (1983).

5. For good surveys of simulation methods, see Hajivassiliou and Ruud (1994) for limited dependent
variable models and Gourieroux and Monfort (1993) with special reference to panel data. The methods
surveyed include simulation of the likelihood, simulation of the moment functions and simulation of
the score. For the use of the Gibbs sampling method to estimate panel data models, see Chib (1996).

6. In both the logistic and semiparametric case, the main limitations of the Honoré and Kyriazidou
(2000b) approach are (i) the assumption that the errors in the underlying threshold-crossing model
are independent over time and (ii) the assumption that x ′

i2 − x ′
i3 has support in a neighborhood of 0.

The latter restriction rules out time dummies.
7. Other sufficient conditions for consistency of these estimators are given by Verbeek and Nijman

(1996). These are derived for specific selection rules. One interesting and practical sufficient condition
that emerges is that the Within estimator is consistent and free of selectivity bias if the probability
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of being in the sample is constant over time. In this case, the correction for selectivity bias is time-
invariant and hence is absorbed in the individual effect term.

8. If the selection rule is unknown, identification problems arise regarding the parameters of interest
(see Verbeek and Nijman, 1996). Also, for a more comprehensive analysis of the attrition problem
in panel data studies with an arbitrary number of waves, see Ridder (1990).

9. Verbeek and Nijman (1992a) show that under nonresponse, the conditions for consistency of the
Within estimator are weaker than those for the random effects GLS estimator. This means that the
Within estimator is more robust to nonresponse bias than GLS.

10. It is important to point out that both Verbeek and Nijman (1992a) as well as Wooldridge (1995)
assume that the unobservable effects and the idiosyncratic errors in the selection process are nor-
mally distributed. Kyriazidou’s (1997) treatment of sample selection leaves the distributions of all
unobservables unspecified.

11. Alternatively, one could condition on the set of continuously working individuals, i.e. use only the
sample with positive hours of work. In this case the sample is considered truncated (see Maddala,
1983).

12. Researchers may also be interested in panel data economic relationships where the dependent variable
is a count of some individual actions or events. For example, the number of patents filed, the number
of drugs introduced, the number of hospital visits or the number of jobs held. These models can
be estimated using Poisson panel data regressions (see Hausman, Hall and Griliches, 1984) and the
monographs on count data by Cameron and Trivedi (1998) and Winkelmann (2000).

13. For the special case of only one regressor and two panels (T = 2), Campbell and Honoré (1993) show
that the semiparametric estimator derived by Honoré (1992) is median unbiased in finite samples
under (basically) the same conditions that are used to derive its asymptotic distribution.

PROBLEMS

11.1 In section 11.1 we considered the fixed effects logit model with T = 2.
(a) In this problem, we look at T = 3 and ask the reader to compute the conditional prob-

abilities that would get rid of the individual effects by conditioning on
∑3

t=1 yit . Note
that this sum can now be 0, 1, 2 or 3. (Hint: First show that terms in the conditional
likelihood function, which are conditioned upon

∑3
t=1 yit = 0 or 3 add nothing to

the likelihood. Then focus on terms that condition on
∑3

t=1 yit = 1 or 2.)
(b) Show that for T = 10, one has to condition on the sum being 1, 2, . . . , 9. One can

see that the number of probability computations is increasing. To convince yourself,
write down the probabilities conditioning on

∑10
t=1 yit = 1.

11.2 Consider the Chamberlain (1985) fixed effects conditional logit model with a lagged
dependent variable given in (11.16). Show that for T = 3, Pr[A/yil + yi2 = 1, µi ] and
therefore Pr[B/yi1 + yi2 = 1, µi ] do not depend on µi . Note that A and B are defined
in (11.17) and (11.18), respectively.

11.3 Consider the Honoré and Kyriazidou (2000b) fixed effects logit model given in (11.19).
(a) Show that for T = 3, Pr[A/x ′

i , µi ,A∪B] and Pr[B/x ′
i , µi , A∪B] both depend on µi .

This means that the conditional likelihood approach will not eliminate the fixed effect
µi .

(b) If x ′
i2 = x ′

i3, show that Pr[A/x ′
i , µi , A∪B, x ′

i2 = x ′
i3] and Pr[B/x ′

i , µi , A∪B, x ′
i2 =

x ′
i3] do not depend on µi .

11.4 Fixed effects logit model. This is based on Abrevaya (1997). Consider the fixed effects
logit model given in (11.4) with T = 2. In (11.10) and (11.11) we showed the conditional
maximum likelihood of β, call it β̂CML, can be obtained by running a logit estimator of
the dependent variable 1(�y = 1) on the independent variables �x for the subsample
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of observations satisfying yi1 + yi2 = 1. Here 1(�y = 1) is an indicator function taking
the value one if �y = 1. Therefore, β̂CML maximizes the loglikelihood

ln Lc(β) =
∑
iεϑ

[1(�y = 1) ln F(�xβ) + 1(�y = −1) ln(1 − F(�xβ))]

where ϑ = {i : yi1 + yi2 = 1}.
(a) Maximize the unconditional loglikelihood for (11.4) given by

ln L(β, µi ) =
N∑

i=1

2∑
t=1

[yit ln F(x ′
i tβ + µi ) + (1 − yit ) ln(1 − F(x ′

i tβ + µi ))]

with respect to µi and show that i

µ̂i =


−∞ if yi1 + yi2 = 0
−(xi1 + xi2)′β/2 if yi1 + yi2 = 1
+∞ if yi1 + yi2 = 2

(b) Concentrate the likelihood by plugging µ̂i in the unconditional likelihood and show
that

ln L(β, µ̂i ) =
∑
iεϑ

2[1(�y = 1) ln F(�x ′β/2) + 1(�y = −1) ln(1 − F(�x ′β/2))]

Hint: Use the symmetry of F and the fact that

1(�y = 1) = yi2 = 1 − yi1 and 1(�y = −1) = yi1 = 1 − yi2 for iεϑ .

(c) Conclude that ln L(β, µ̂i ) = 2 ln Lc(β/2). This shows that a scale adjusted maximum
likelihood estimator is equivalent to the conditional maximum likelihood estimator,
i.e., β̂ML = 2β̂CML. Whether a similar result holds for T > 2 remains an open ques-
tion.

11.5 Binary response model regression (BRMR). This is based on problem 95.5.4 in Econo-
metric Theory by Baltagi (1995). Davidson and MacKinnon (1993) derive an artificial
regression for testing hypotheses in a binary response model. For the fixed effects model
described in (11.4), the reader is asked to derive the BRMR to test Ho : µi = 0, for
i = 1, 2, . . . , N . Show that if F(.) is the logistic (or normal) cumulative distribution
function, this BRMR is simply a weighted least squares regression of logit (or probit)
residuals, ignoring the fixed effects, on the matrix of regressors X and the matrix of indi-
vidual dummies. The test statistic in this case is the explained sum of squares from this
BRMR. See solution 95.5.4 in Econometric Theory by Gurmu (1996).

11.6 Using the Vella and Verbeek (1998) data set posted on the Journal of Applied Economet-
rics web site:
(a) Replicate their descriptive statistics given in table I and confirm that the unconditional

union premium is around 15%.
(b) Replicate their random effects probit estimates of union membership given in table

II.
(c) Replicate the wage regressions with union effects given in table III.
(d) Replicate the wage regressions under unrestricted sorting given in table V.
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Nonstationary Panels

12.1 INTRODUCTION

With the growing use of cross-country data over time to study purchasing power parity, growth
convergence and international R&D spillovers, the focus of panel data econometrics has shifted
towards studying the asymptotics of macro panels with large N (number of countries) and large
T (length of the time series) rather than the usual asymptotics of micro panels with large N
and small T . The limiting distribution of double indexed integrated processes has been stud-
ied extensively by Phillips and Moon (1999, 2000). The fact that T is allowed to increase
to infinity in macro panel data generated two strands of ideas. The first rejected the homo-
geneity of the regression parameters implicit in the use of a pooled regression model in favor
of heterogeneous regressions, i.e., one for each country, see Pesaran and Smith (1995), Im,
Pesaran and Shin (2003), Lee, Pesaran and Smith (1997), Pesaran, Shin and Smith (1999) and
Pesaran and Zhao (1999), to mention a few. This literature critically relies on T being large to
estimate each country’s regression separately. This literature warns against the use of standard
pooled estimators such as FE to estimate the dynamic panel data model, arguing that they are
subject to large potential bias when the parameters are heterogeneous across countries and the
regressors are serially correlated. Another strand of literature applied time series procedures to
panels, worrying about nonstationarity, spurious regressions and cointegration.1 Consider, for
example, the Penn World Tables which have been used to study growth convergence among
various countries, see /www.nber.org/. Phillips and Moon (2000) argue that the time series
components of the variables used in these tables, like per capita GDP growth, have strong
nonstationarity, a feature which we have paid no attention to in the previous chapters. This is
understandable given that micro panels deal with large N and small T . With large N , large T
macro panels, nonstationarity deserves more attention. In particular, time series fully modified
estimation techniques that account for endogeneity of the regressors and correlation and hetero-
skedasticity of the residuals can now be combined with fixed and random effects panel estima-
tion methods. Some of the distinctive results that are obtained with nonstationary panels are
that many test statistics and estimators of interest have normal limiting distributions. This is in
contrast to the nonstationary time series literature where the limiting distributions are compli-
cated functionals of Weiner processes. Several unit root tests applied in the time series literature
have been extended to panel data. When the panel data are both heterogeneous and nonsta-
tionary, issues of combining individual unit root tests applied on each time series are tackled
by Im et al. (2003), Maddala and Wu (1999) and Choi (2001). Using panel data, one can avoid
the problem of spurious regression, see Kao (1999) and Phillips and Moon (1999). Unlike the
single time series spurious regression literature, the panel data spurious regression estimates
give a consistent estimate of the true value of the parameter as both N and T tend to ∞. This is
because, the panel estimator averages across individuals and the information in the independent
cross-section data in the panel leads to a stronger overall signal than the pure time series case.
Of course, letting both N and T tend to ∞ brings in a new host of issues dealing with how to
do asymptotic analysis. This is studied by Phillips and Moon (1999, 2000) and Kauppi (2000).

237



JWBK024-12 JWBK024-Baltagi March 22, 2005 10:15 Char Count= 0

238 Econometric Analysis of Panel Data

One can find numerous applications of time series methods applied to panels in recent
years, especially panel unit root tests, panel cointegration tests and the estimation of long-run
average relations. Examples from the purchasing power parity literature and real exchange
rate stationarity include Frankel and Rose (1996), Jorion and Sweeney (1996), MacDonald
(1996), Oh (1996), Wu (1996), Coakley and Fuertes (1997), Papell (1997), O’Connell (1998),
Groen and Kleibergen (2003), Choi (2001), Canzoneri, Cumby and Diba (1999), Groen (2000),
Pedroni (2001) and Smith et al. (2004), to mention a few. On interest rates, see Wu and Chen
(2001); on real wage stationarity, see Fleissig and Strauss (1997). On the inflation rate, see
Culver and Papell (1997); on the current account balance, see Wu (2000); on the consumption–
income ratio stationarity, see Sarantis and Stewart (1999). On health care expenditures, see
McCoskey and Selden (1998); on growth and convergence, see Islam (1995), Bernard and
Jones (1996), Evans and Karras (1996), Sala-i-Martin (1996), Lee et al. (1997) and Nerlove
(2000). On international R&D spillovers, see Kao, Chiang and Chen (1999). On savings and
investment models, see Coakely, Kulasi and Smith (1996) and Moon and Phillips (1999).

However, the use of such panel data methods is not without their critics, see Maddala et al.
(2000) who argue that panel data unit root tests do not rescue purchasing power parity (PPP).
In fact, the results on PPP with panels are mixed depending on the group of countries studied,
the period of study and the type of unit root test used. More damaging is the argument by
Maddala et al. (2000) that for PPP, panel data tests are the wrong answer to the low power
of unit root tests in single time series. After all, the null hypothesis of a single unit root
is different from the null hypothesis of a panel unit root for the PPP hypothesis. Using the
same line of criticism, Maddala (1999) argued that panel unit root tests did not help settle the
question of growth convergence among countries. However, it was useful in spurring much
needed research into dynamic panel data models. Also, Quah (1996) argued that the basic
issues of whether poor countries catch up with the rich can never be answered by the use
of traditional panels. Instead, Quah suggested formulating and estimating models of income
dynamics. Recently, Smith (2000) warned about the mechanical application of panel unit root
or cointegration tests, arguing that the application of these tests requires that the hypotheses
involved be interesting in the context of the substantive application. The latter is a question
of theory rather than statistical technique. See also Banerjee et al. (2004) in the empirical
section of this chapter, who criticize existing panel unit root tests for assuming that cross-unit
cointegrating relationships among the countries are not present. They warn that the empirical
size of these tests is substantially higher than their nominal size. Panel unit root tests have
also been criticized because they assume cross-sectional independence. This is restrictive as
macro time series exhibit significant cross-sectional correlation among the countries in the
panel. This correlation has been modeled using a dynamic factor model by Bai and Ng (2004),
Bai (2004), Moon and Perron (2004a,b), Moon, Perron and Phillips (2003) and Phillips and
Sul (2003). Alternative panel unit root tests that account for cross-section dependence include
Choi (2002), Chang (2002, 2004) and Pesaran (2003).

Early surveys on nonstationary panels include Phillips and Moon (2000) on multi-indexed
processes, Banerjee (1999), Baltagi and Kao (2000) and Smith (2000) on panel unit roots
and cointegration tests. This chapter studies panel unit root tests assuming cross-sectional
independence in section 12.2, while section 12.3 discusses panel unit root tests allowing for
cross-sectional dependence. Section 12.4 studies the spurious regression in panel models, while
section 12.5 considers various panel cointegration tests. Section 12.6 discusses estimation and
inference in panel cointegration models, while section 12.7 illustrates the panel unit root tests
using a purchasing power parity example. Section 12.8 gives some additional readings.
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12.2 PANEL UNIT ROOTS TESTS ASSUMING
CROSS-SECTIONAL INDEPENDENCE

Testing for unit roots in time series studies is now common practice among applied researchers
and has become an integral part of econometric courses. However, testing for unit roots in
panels is recent, see Levin, Lin and Chu (2002), Im et al. (2003), Harris and Tzavalis (1999),
Maddala and Wu (1999), Choi (2001) and Hadri (2000).2 Exceptions are Bhargava et al. (1982),
Boumahdi and Thomas (1991), Breitung and Meyer (1994) and Quah (1994). Bhargava et al.
(1982) proposed a test for random walk residuals in a dynamic model with fixed effects. They
suggested a modified Durbin–Watson (DW) statistic based on fixed effects residuals and two
other test statistics based on differenced OLS residuals. In typical micro panels with N → ∞,

they recommended their modified DW statistic. Boumahdi and Thomas (1991) proposed a
generalization of the Dickey–Fuller (DF) test for unit roots in panel data to assess the efficiency
of the French capital market using 140 French stock prices over the period January 1973 to
February 1986. Breitung and Meyer (1994) applied various modified DF test statistics to test
for unit roots in a panel of contracted wages negotiated at the firm and industry level for
Western Germany over the period 1972–87. Quah (1994) suggested a test for unit root in a
panel data model without fixed effects where both N and T go to infinity at the same rate
such that N/T is constant. Levin et al. (2002), hereafter LLC, generalized this model to allow
for fixed effects, individual deterministic trends and heterogeneous serially correlated errors.
They assumed that both N and T tend to infinity. However, T increases at a faster rate than
N with N/T → 0. Even though this literature grew from time series and panel data, the way
in which N , the number of cross-section units, and T , the length of the time series, tend to
infinity is crucial for determining asymptotic properties of estimators and tests proposed for
nonstationary panels, see Phillips and Moon (1999). Several approaches are possible, including
(i) sequential limits where one index, say N , is fixed and T is allowed to increase to infinity,
giving an intermediate limit. Then by letting N tend to infinity subsequently, a sequential limit
theory is obtained. Phillips and Moon (2000) argued that these sequential limits are easy to
derive and are helpful in extracting quick asymptotics. However, Phillips and Moon provided a
simple example that illustrates how sequential limits can sometimes give misleading asymptotic
results. (ii) A second approach, used by Quah (1994) and Levin et al. (2002), is to allow the
two indexes, N and T , to pass to infinity along a specific diagonal path in the two-dimensional
array. This path can be determined by a monotonically increasing functional relation of the
type T = T (N ) which applies as the index N → ∞. Phillips and Moon (2000) showed that
the limit theory obtained by this approach is dependent on the specific functional relation
T = T (N ) and the assumed expansion path may not provide an appropriate approximation
for a given (T, N ) situation. (iii) A third approach is a joint limit theory allowing both N and
T to pass to infinity simultaneously without placing specific diagonal path restrictions on the
divergence. Some control over the relative rate of expansion may have to be exercised in order
to get definitive results. Phillips and Moon argued that, in general, joint limit theory is more
robust than either sequential limit or diagonal path limit. However, it is usually more difficult to
derive and requires stronger conditions such as the existence of higher moments that will allow
for uniformity in the convergence arguments. The multi-index asymptotic theory in Phillips
and Moon (1999, 2000) is applied to joint limits in which T, N → ∞ and (T/N ) → ∞, i.e., to
situations where the time series sample is large relative to the cross-section sample. However,
the general approach given there is also applicable to situations in which (T/N ) → 0, although
different limit results will generally obtain in that case.
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12.2.1 Levin, Lin and Chu Test

LLC argued that individual unit root tests have limited power against alternative hypotheses
with highly persistent deviations from equilibrium. This is particularly severe in small samples.
LLC suggest a more powerful panel unit root test than performing individual unit root tests
for each cross-section. The null hypothesis is that each individual time series contains a unit
root against the alternative that each time series is stationary.

The maintained hypothesis is that

�yit = ρyi,t−1 +
pi∑

L=1

θi L�yit−L + αmi dmt + εi t m = 1, 2, 3 (12.1)

with dmt indicating the vector of deterministic variables and αmi the corresponding vector of
coefficients for model m = 1, 2, 3. In particular, d1t = {empty set}, d2t = {1} and d3t = {1, t}.
Since the lag order pi is unknown, LLC suggest a three-step procedure to implement their test.

Step 1. Perform separate augmented Dickey–Fuller (ADF) regressions for each cross-section:

�yit = ρi yi,t−1 +
pi∑

L=1

θi L�yi,t−L + αmi dmt + εi t m = 1, 2, 3 (12.2)

The lag order pi is permitted to vary across individuals.
For a given T , choose a maximum lag order pmax and then use the t-statistic of θ̂i L

to determine if a smaller lag order is preferred. (These t-statistics are distributed N (0, 1)
under the null hypothesis (θi L = 0), both when ρi = 0 and when ρi < 0.)

Once pi is determined, two auxiliary regressions are run to get orthogonalized
residuals:

Run �yit on �yi,t−L (L =1, . . . , pi ) and dmt to get residuals êi t

Run yi,t−1 on �yi,t−L (L =1, . . . , pi ) and dmt to get residuals ν̂i,t−1

Standardize these residuals to control for different variances across i

ẽi t = êi t/σ̂εi and ν̃i,t−1 = ν̂i t/σ̂εi

where σ̂εi = standard error from each ADF regression, for i = 1, . . . , N .

Step 2. Estimate the ratio of long-run to short-run standard deviations. Under the null hypoth-
esis of a unit root, the long-run variance of (12.1) can be estimated by

σ̂ 2
yi =

1

T −1

T∑
t=2

�y2
i t +2

K̄∑
L=1

wK̄ L

[
1

T −1

T∑
t=2+L

�yit�yi,t−L

]
(12.3)

where K̄ is a truncation lag that can be data-dependent. K̄ must be obtained in a manner
that ensures the consistency of σ̂ 2

yi . For a Bartlett kernel, wK̄ L = 1 − (L/(K̄ + 1)). For
each cross-section i , the ratio of the long-run standard deviation to the innovation
standard deviation is estimated by ŝi = σ̂yi/σ̂εi . The average standard deviation is
estimated by ŜN = 1

N

∑N
i=1 ŝi .

Step 3. Compute the panel test statistics. Run the pooled regression

ẽi t = ρν̃i,t−1 + ε̃i t
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based on N T̃ observations where T̃ = T − p̄ − 1. T̃ is the average number of obser-
vations per individual in the panel with p̄ = ∑N

i=1 pi/N . p̄ is the average lag order of
individual ADF regressions. The conventional t-statistic for H0 : ρ = 0 is tρ = ρ̂

σ̂ (̂ρ) ,
where

ρ̂ =
N∑

i=1

T∑
t=2+pi

ν̃i,t−1̃eit

/
N∑

i=1

T∑
t=2+pi

ν̃2
i,t−1

σ̂ (̂ρ) = σ̂̃ε

/[
N∑

i=1

Ti∑
t=2+pi

ν̃2
i,t−1

]1/2

and

σ̂ 2
ε̃ = 1

N T̃

N∑
i=1

T∑
t=2+pi

(̃eit − ρ̂ν̃i,t−1)2

is the estimated variance of ε̃i t .
Compute the adjusted t-statistic

t∗
ρ = tρ − N T̃ ŜN σ̂−2

ε̃ σ̂ (̂ρ)µ∗
mT̃

σ ∗
mT̃

(12.4)

where µ∗
mT̃

and σ ∗
mT̃

are the mean and standard deviation adjustments provided by
table 2 of LLC. This table also includes suggestions for the truncation lag parameter
K̄ for each time series T̃ . LLC show that t∗

ρ is asymptotically distributed as N (0, 1).

The asymptotics require
√

NT /T → 0 where NT emphasizes that the cross-sectional di-
mension N is an arbitrary monotonically increasing function of T . LLC argue that this is
relevant for micro panel data where T is allowed to grow slower than NT . Other divergence
speeds such as NT /T → 0 and NT /T → constant are sufficient, but not necessary.

Computationally, the LLC method requires a specification of the number of lags used in
each cross-section ADF regression (pi ), as well as kernel choices used in the computation of
SN . In addition, you must specify the exogenous variables used in the test equations. You
may elect to include no exogenous regressors, or to include individual constant terms (fixed
effects), or to employ constants and trends.

LLC suggest using their panel unit root test for panels of moderate size with N between 10
and 250 and T between 25 and 250. They argue that the standard panel procedures may not
be computationally feasible or sufficiently powerful for panels of this size. However, for very
large T , they argue that individual unit root time series tests will be sufficiently powerful to
apply for each cross-section. Also, for very large N and very small T, they recommend the
usual panel data procedures. The Monte Carlo simulations performed by LLC indicate that
the normal distribution provides a good approximation to the empirical distribution of the test
statistic, even in relatively small samples. Also, that the panel unit root test provides dramatic
improvements in power over separate unit root tests for each cross-section.

The proposed LLC test has its limitations. The test crucially depends upon the independence
assumption across cross-sections and is not applicable if cross-sectional correlation is present.
Second, the assumption that all cross-sections have or do not have a unit root is restrictive.
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Harris and Tzavalis (1999) also derived unit root tests for (12.1) with dmt = {empty set}, {1}
or {1, t} when the time dimension of the panel T is fixed. This is the typical case for micro
panel studies. The main results are:

dmt ρ̂

{empty set} √
N (̂ρ − 1) ⇒ N

(
0, 2

T (T −1)

)
{1} √

N
(̂
ρ − 1 + 3

T +1

) ⇒ N
(

0,
3(17T 2−20T +17)

5(T −1)(T +1)3

)
{1, t} √

N
(
ρ̂ − 1 + 15

2(T +2)

)
⇒ N

(
0,

15(193T 2−728T +1147)
112(T +2)3(T −2)

) (12.5)

Harris and Tzavalis (1999) also showed that the assumption that T tends to infinity at a faster
rate than N , as in Levin and Lin, rather than T fixed, as in the case of micro panels, yields tests
which are substantially undersized and have low power especially when T is small.

Frankel and Rose (1996), Oh (1996) and Lothian (1996) tested the PPP hypothesis using
panel data. All of these articles use Levin and Lin tests and some of them report evidence
supporting the PPP hypothesis. O’Connell (1998), however, showed that the Levin and Lin tests
suffered from significant size distortion in the presence of correlation among contemporaneous
cross-sectional error terms. O’Connell highlighted the importance of controlling for cross-
sectional dependence when testing for a unit root in panels of real exchange rates. He showed
that, controlling for cross-sectional dependence, no evidence against the null of a random walk
can be found in panels of up to 64 real exchange rates.

Most of the recent literature on panel unit root testing deals with cross-sectional dependence
and this will be surveyed later on in this chapter.

12.2.2 Im, Pesaran and Shin Test

The Levin, Lin and Chu test is restrictive in the sense that it requires ρ to be homogeneous
across i . As Maddala (1999) pointed out, the null may be fine for testing convergence in growth
among countries, but the alternative restricts every country to converge at the same rate. Im
et al. (2003) (IPS) allow for a heterogeneous coefficient of yit−1 and propose an alternative
testing procedure based on averaging individual unit root test statistics. IPS suggest an average
of the ADF tests when uit is serially correlated with different serial correlation properties
across cross-sectional units, i.e., the model given in (12.2). The null hypothesis is that each
series in the panel contains a unit root, i.e., H0 : ρi = 0 for all i and the alternative hypothesis
allows for some (but not all) of the individual series to have unit roots, i.e.,

H1 :

{
ρi < 0 for i = 1, 2, . . . , N1

ρi = 0 for i = N1 + 1, . . . , N
(12.6)

Formally, it requires the fraction of the individual time series that are stationary to be nonzero,
i.e., limN→∞(N1/N ) = δ where 0 < δ ≤ 1. This condition is necessary for the consistency of
the panel unit root test. The IPS t-bar statistic is defined as the average of the individual ADF
statistics as

t = 1

N

N∑
i=1

tρi (12.7)

where tρi is the individual t-statistic for testing H0 : ρi = 0 for all i in (12.6). In case the lag order
is always zero (pi = 0 for all i), IPS provide simulated critical values for t̄ for different number
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of cross-sections N , series length T and Dickey–Fuller regressions containing intercepts only
or intercepts and linear trends. In the general case where the lag order pi may be nonzero
for some cross-sections, IPS show that a properly standardized t̄ has an asymptotic N (0, 1)
distribution. Starting from the well-known result in time series that for a fixed N

tρi ⇒
∫ 1

0 Wi Z dWi Z[∫ 1
0 W 2

i Z

]1/2 = tiT (12.8)

as T → ∞, where
∫

W (r ) dr denotes a Weiner integral with the argument r suppressed in
(12.8), IPS assume that tiT are IID and have finite mean and variance. Then

√
N

(
1
N

∑N
i=1 tiT − 1

N

∑N
i=1 E [tiT |ρi = 0]

)
√

1
N

∑N
i=1 var [tiT |ρi = 0]

⇒ N (0, 1) (12.9)

as N → ∞ by the Lindeberg–Levy central limit theorem. Hence

tIPS =
√

N
(

t − 1
N

∑N
i=1 E [tiT |ρi = 0]

)
√

1
N

∑N
i=1 var [tiT |ρi = 0]

⇒ N (0, 1) (12.10)

as T → ∞ followed by N → ∞ sequentially. The values of E [tiT |ρi = 0] and var[tiT |ρi = 0]
have been computed by IPS via simulations for different values of T and pi ’s. In Monte Carlo
experiments, they show that if a large enough lag order is selected for the underlying ADF
regressions, then the small sample performance of the t-bar test is reasonably satisfactory and
generally better than the LLC test.

12.2.3 Breitung’s Test

The LLC and IPS tests require N → ∞ such that N/T → 0, i.e., N should be small enough
relative to T . This means that both tests may not keep nominal size well when either N is small
or N is large relative to T . In fact, the simulation results of Im et al. (2003) show that both
IPS and LLC have size distortions as N gets large relative to T . Breitung (2000) studies the
local power of LLC and IPS test statistics against a sequence of local alternatives. Breitung
finds that the LLC and IPS tests suffer from a dramatic loss of power if individual-specific
trends are included. This is due to the bias correction that also removes the mean under the
sequence of local alternatives. Breitung suggests a test statistic that does not employ a bias
adjustment whose power is substantially higher than that of LLC or the IPS tests using Monte
Carlo experiments. The simulation results indicate that the power of LLC and IPS tests is very
sensitive to the specification of the deterministic terms.

Breitung’s (2000) test statistic without bias adjustment is obtained as follows. Step 1 is the
same as LLC but only �yi,t−L is used in obtaining the residuals êi t and ν̂i,t−1. The residuals
are then adjusted (as in LLC) to correct for individual-specific variances. Step 2, the residuals
êi t are transformed using the forward orthogonalization transformation employed by Arellano
and Bover (1995):

e∗
i t =

√
T − t

(T − t + 1)

(̃
eit − ẽi,t+1 + . . . + ẽi,T

T − t

)



JWBK024-12 JWBK024-Baltagi March 22, 2005 10:15 Char Count= 0

244 Econometric Analysis of Panel Data

Also,

ν∗
i,t−1 = ν̃i,t−1 − ν̃i,1 − t − 1

T
ν̃iT with intercept and trend

= ν̃i,t−1 − ν̃i,1 with intercept, no trend

= ν̃i,t−1 with no intercept or trend

The last step is to run the pooled regression

e∗
i t = ρν∗

i,t−1 + ε∗
i t

and obtain the t-statistic for H0 : ρ = 0 which has in the limit a standard N (0, 1) distribution.
Note that no kernel computations are required.

McCoskey and Selden (1998) applied the IPS test for testing unit root for per capita national
health care expenditures (HE) and gross domestic product (GDP) for a panel of 20 OECD
countries. McCoskey and Selden rejected the null hypothesis that these two series contain unit
roots. Gerdtham and Löthgren (2000) claimed that the stationarity found by McCoskey and
Selden is driven by the omission of time trends in their ADF regression in (12.6). Using the IPS
test with a time trend, Gerdtham and Löthgren found that both HE and GDP are nonstationary.
They concluded that HE and GDP are cointegrated around linear trends. Wu (2000) applied
the IPS test to the current account balances for 10 OECD countries over the period 1977Q1 to
1997Q4. Current account balances measure changes in national net indebtedness. Persistent
deficits could have serious effects. Wu does not reject current account stationarity, which
in turn is consistent with the sustainability of external debts among the industrial countries
considered.

12.2.4 Combining p-Value Tests

Let GiTi be a unit root test statistic for the i th group in (12.1) and assume that as the time series
observations for the i th group Ti → ∞, GiTi ⇒ Gi where Gi is a nondegenerate random
variable. Let pi be the asymptotic p-value of a unit root test for cross-section i , i.e., pi =
F

(
GiTi

)
, where F(·) is the distribution function of the random variable Gi . Maddala and Wu

(1999) and Choi (2001) proposed a Fisher-type test

P = −2
N∑

i=1

ln pi (12.11)

which combines the p-values from unit root tests for each cross-section i to test for unit root in
panel data. Note that −2 ln pi has a χ2 distribution with 2 degrees of freedom. This means that
P is distributed as χ2 with 2N degrees of freedom as Ti → ∞ for finite N . Maddala and Wu
(1999) argued that the IPS and Fisher tests relax the restrictive assumption of the LLC test that
ρi is the same under the alternative. Both the IPS and Fisher tests combine information based
on individual unit root tests. However, the Fisher test has the advantage over the IPS test in that
it does not require a balanced panel. Also, the Fisher test can use different lag lengths in the
individual ADF regressions and can be applied to any other unit root tests. The disadvantage is
that the p-values have to be derived by Monte Carlo simulations. Maddala and Wu (1999) find
that the Fisher test with bootstrap-based critical values performs the best and is the preferred
choice for testing nonstationary as the null and also in testing for cointegration in panels.



JWBK024-12 JWBK024-Baltagi March 22, 2005 10:15 Char Count= 0

Nonstationary Panels 245

Choi (2001) proposes two other test statistics besides Fisher’s inverse chi-square test statistic
P . The first is the inverse normal test Z = 1√

N

∑N
i=1 
−1(pi ), where 
 is the standard normal

cumulative distribution function. Since 0 ≤ pi ≤ 1, 
−1(pi ) is a N (0, 1) random variable and
as Ti → ∞ for all i , Z ⇒ N (0, 1). The second is the logit test L = ∑N

i=1 ln( pi

1−pi
) where

ln( pi

1−pi
) has the logistic distribution with mean 0 and variance π2/3. As Ti → ∞ for all i ,√

mL ⇒ t5N+4 where m = 3(5N+4)
π2 N (5N+2) . Choi (2001) echoes similar advantages for these three

combining p-value tests: (1) the cross-sectional dimension, N , can be either finite or infinite;
(2) each group can have different types of nonstochastic and stochastic components; (3) the
time series dimension, T , can be different for each i ; and (4) the alternative hypothesis would
allow some groups to have unit roots while others may not.

When N is large, Choi (2001) proposed a modified P test,

Pm = 1

2
√

N

∑N

i=1
(−2 ln pi − 2) (12.12)

since E [−2 ln pi ] = 2 and var[−2 ln pi ] = 4. Applying the Lindeberg–Lévy central limit the-
orem to (12.12) we get Pm ⇒ N (0, 1) as Ti → ∞ followed by N → ∞.3 The distribution of
the Z statistic is invariant to infinite N , and Z ⇒ N (0, 1) as Ti → ∞ and then N → ∞. Also,
the distribution of

√
mL ≈ 1√

π2 N/3

∑N
i=1 ln( pi

1−pi
) ⇒ N (0, 1) by the Lindeberg–Lévy central

limit theorem as Ti → ∞ and then N → ∞. Therefore, Z and
√

mL can be used without
modification for infinite N . Simulation results for N = 5, 10, 25, 50 and 100, and T = 50 and
100 show that the empirical size of all the tests is reasonably close to the 0.05 nominal size
when N is small. P and Pm show mild size distortions at N = 100, while Z and IPS show the
most stable size. All tests become more powerful as N increases. The combined p-value tests
have superior size-adjusted power to the IPS test. In fact, the power of the Z test is in some
cases more than three times that of the IPS test. Overall, the Z test seems to outperform the
other tests and is recommended.

Choi (2001) applied the combining p-value tests and the IPS test given in (12.7) to panel data
of monthly US real exchange rates sampled from 1973:3 to 1996:3. The combining p-value
tests provided evidence in favor of the PPP hypothesis, while the IPS test did not. Choi claimed
that this is due to the improved finite sample power of the combination tests. Maddala and Wu
(1999) and Maddala et al. (2000) find that the Fisher test is superior to the IPS test, which in
turn is more powerful than the LLC test. They argue that these panel unit root tests still do not
rescue the PPP hypothesis. When allowance is made for the deficiency in the panel data unit
root tests and panel estimation methods, support for PPP turns out to be weak.

Choi (2002) considers four instrumental variable estimators of an error component model
with stationary and nearly nonstationary regressors. The remainder disturbances follow an
autoregressive process whose order as well as parameters vary across individuals. The IV
estimators considered include the Within–IV, Within–IV–OLS, Within–IV–GLS and IV–GLS
estimators. Using sequential and joint limit theories, Choi shows that, under proper conditions,
all the estimators have normal distributions in the limit as N and T → ∞. Simulation results
show that the efficiency rankings of the estimators depend crucially on the type of regressor and
the number of instruments. The Wald tests for coefficient restrictions keep reasonable nominal
size as N → ∞ and its power depends upon the number of instruments and the degree of serial
correlation and heterogeneity in the errors.
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12.2.5 Residual-Based LM Test

Hadri (2000) derives a residual-based Lagrange multiplier (LM) test where the null hypothesis
is that there is no unit root in any of the series in the panel against the alternative of a unit root
in the panel. This is a generalization of the KPSS test from time series to panel data. It is based
on OLS residuals of yit on a constant, or on a constant and a trend. In particular, Hadri (2000)
considers the following two models:

yit = rit + εi t i = 1, . . . , N ; t = 1, . . . , T

and

yit = rit + βi t + εi t (12.13)

where rit = ri,t−1 + uit is a random walk. εi t ∼ IIN(0, σ 2
ε ) and uit ∼ IIN(0, σ 2

µ) are mutually
independent normals that are IID across i and over t . Using back substitution, model (12.13)
becomes

yit = rio + βi t +
t∑

s=1

uis + εi t = rio + βi t + νi t (12.14)

where νi t = ∑t
s=1 uis + εi t . The stationarity hypothesis is simply H0 : σ 2

u = 0, in which case
νi t = εi t . The LM statistic is given by

LM1 = 1

N

(
N∑

i=1

1

T 2

T∑
t=1

S2
i t

) /
σ̂ 2

ε

where Sit = ∑t
s=1 ε̂is are the partial sum of OLS residuals ε̂is from (12.14) and σ̂ 2

ε is a con-
sistent estimate of σ 2

ε under the null hypothesis H0. A possible candidate is σ̂ 2
ε = 1

N T

∑N
i=1∑T

t=1 ε̂2
i t .

Hadri (2000) suggested an alternative LM test that allows for heteroskedasticity across i ,
say σ 2

εi . This is in fact

LM2 = 1

N

(
N∑

i=1

(
1

T 2

T∑
t=1

S2
i t

/
σ̂ 2

εi

))
The test statistic is given by Z = √

N (L M − ξ1)/ζ and is asymptotically distributed as N (0, 1),
where ξ = 1

6 and ζ = 1
45 if the model only includes a constant, and ξ = 1

15 and ζ = 11
6300 ,

otherwise. EViews computes both test statistics. Hadri (2000) shows, using Monte Carlo
experiments, that the empirical size of the test is close to its nominal 5% level for sufficiently
large N and T .

Yin and Wu (2000) propose stationarity tests for a heterogeneous panel data model. The
authors consider the case of serially correlated errors in the level and trend stationary models.
The proposed panel tests utilize the Kwiatkowski et al. (1992) test and the Leybourne and
McCabe (1994) test from the time series literature. Two different ways of pooling information
from the independent tests are used. In particular, the group mean and the Fisher-type tests
are used to develop the panel stationarity tests. Monte Carlo experiments are performed that
reveal good small sample performance in terms of size and power.

Extensive simulations have been conducted to explore the finite sample performance of
panel unit root tests. Choi (2001), for example, studied the small sample properties of the IPS
t-bar test in (12.7) and Fisher’s test in (12.11). Choi’s major findings were the following.
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(1) The empirical sizes of the IPS and the Fisher test are reasonably close to their nominal size
0.05 when N is small. But the Fisher test shows mild size distortions at N = 100, which
is expected from the asymptotic theory. Overall, the IPS t-bar test has the most stable
size.

(2) In terms of the size-adjusted power, the Fisher test seems to be superior to the IPS t-bar
test.

(3) When a linear time trend is included in the model, the power of all tests decreases consid-
erably.

Karlsson and Löthgren (2000) compare the LLC and IPS tests for various size panels. They
warn that for large T , panel unit root tests have high power and there is the potential risk of
concluding that the whole panel is stationary even when there is only a small proportion of
stationary series in the panel. For small T , panel unit root tests have low power and there is the
potential risk of concluding that the whole panel is nonstationary even when there is a large
proportion of stationary series in the panel. They suggest careful analysis of both the individual
and panel unit root test results to fully assess the stationarity properties of the panel.

12.3 PANEL UNIT ROOTS TESTS ALLOWING FOR
CROSS-SECTIONAL DEPENDENCE

Pesaran (2004) suggests a simple test of error cross-section dependence (CD) that is applicable
to a variety of panel models including stationary and unit root dynamic heterogeneous panels
with short T and large N . The proposed test is based on an average of pairwise correlation
coefficients of OLS residuals from the individual regressions in the panel rather than their
squares as in the Breusch–Pagan LM test:

CD =
√

2T

N (N − 1)

(
N−1∑
i=1

N∑
j=i+1

ρ̂i j

)

where ρ̂i j = ∑T
t=1 eit e jt/(

∑T
t=1 e2

i t )
1/2(

∑T
t=1 e2

j t )
1/2, with eit denoting the OLS residuals based

on T observations for each i = 1, . . . , N . Monte Carlo experiments show that the standard
Breusch–Pagan LM test performs badly for N > T panels, whereas Pesaran’s CD test performs
well even for small T and large N .

Dynamic factor models have been used to capture cross-section correlation.3 Moon and
Perron (2004c) consider the following model:

yit = αi + y0
i t

y0
i t = ρi y0

i,t−1 + εi t

where εi t are unobservable error terms with a factor structure and αi are fixed effects. εi t is
generated by M unobservable random factors ft and idiosyncratic shocks eit as follows:

εi t = �′
i ft + eit

where �i are nonrandom factor loading coefficient vectors and the number of factors M is
unknown. Each εi t contains the common random factor ft , generating the correlation among
the cross-sectional units of εi t and yit . The extent of the correlation is determined by the factor
loading coefficients �i , i.e., E(yit y jt ) = �′

i E( ft f ′
t )� j . Moon and Perron treat the factors as

nuisance parameters and suggest pooling defactored data to construct a unit root test. Let Q�
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be the matrix projecting onto the space orthogonal to the factor loadings. The defactored data
is Y Q� and the defactored residuals eQ� no longer have cross-sectional dependence, where
Y is a T × N matrix whose i th column contains the observations for cross-sectional unit i .

Let σ 2
e,i be the variance of eit , w2

e,i be the long-run variance of eit and λe,i be the one-sided
long run variance of eit . Also, σ 2

e , w2
e and λe be their cross-sectional averages, and φ4

e be the
cross-sectional average of w4

e,i . The pooled bias-correlated estimate of ρ is

ρ̂+
pool = tr(Y−1 Q�Y ′) − N T λN

e

tr(Y−1 Q�Y ′
−1)

where Y−1 is the matrix of lagged data. Moon and Perron suggest two statistics to test H0 :
ρi = 1 for all i = 1, . . . , M against the alternative hypothesis HA : ρi < 1 for some i . These
are

ta =
√

N T (̂ρ+
pool − 1)√
2φ4

e
w4

e

and

tb =
√

N T (̂ρ+
pool − 1)

√
1

N T 2
tr (Y−1 Q�Y ′

−1)
w2

e

φ4
e

These tests have a standard N (0, 1) limiting distribution where N and T tend to infinity such that
N/T → 0. Moon and Perron also show that estimating the factors by principal components
and replacing w2

e and φ4
e by consistent estimates leads to feasible statistics with the same

limiting distribution.
Phillips and Sul (2003) consider the following common time factor model on the disturbances

that can impact individual series differently:

uit = δiθt + εi t

where θt ∼ IIN(0, 1) across time. δi are “idiosyncratic share” parameters that measure the
impact of the common time effects on series i . εi t ∼ IIN(0, σ 2

i ) over t , with εi t independent
of ε js and θs for all i 
= j and for all s, t. This model is in effect a one-factor model which is
independently distributed over time. E(uit u js) = δiδ j and there is no cross-sectional correla-
tion if δi = 0 for all i, and identical cross-section correlation when δi = δ j = δ0 for all i, j.
Phillips and Sul propose an orthogonalization procedure based on iterated method of moments
estimation to eliminate the common factor which is different from principal components. They
suggest a series of unit root tests based on these orthogonalized data. The statistic that performs
best in their simulation is a combination of p-values of individual unit root tests as in Choi
(2001), i.e., Z = 1√

N

∑N−1
i=1 
−1(pi ). The sum is over N − 1 components, since the orthog-

onalization they propose reduces the cross-sectional dimension by 1. The null hypothesis is
rejected for large values of the Z statistic.

Bai and Ng (2004) consider the following dynamic factor model:

yit = αi + �′
i ft + y0

i t

y0
i t = ρi y0

i,t−1 + εi t

They test separately the stationarity of the factors and the idiosyncratic component. To do so,
they obtain consistent estimates of the factors regardless of whether residuals are stationary
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or not. They accomplish this by estimating factors on first-differenced data and cumulating
these estimated factors. Bai and Ng suggest pooling results from individual ADF tests on
the estimated defactored data by combining p-values as in Maddala and Wu (1999) and Choi
(2001):

Pc
ê = −2

∑N
i=1 ln pc

ê(i) − 2N√
4N

d→ N (0, 1)

where pc
ê(i) is the p-value of the ADF test (without any deterministic component) on the

estimated idiosyncratic shock for cross-section i .
Choi (2002) uses an error component model given by

yit = αi + ft + y0
i t

y0
i t = ρi y0

i,t−1 + εi t

This is a restricted factor model where the cross-sections respond homogeneously to the single
common factor ft in contrast to the factor models considered above. Choi suggests demeaning
the data by GLS as in Elliott, Rothenberg and Stock (1996) and taking cross-sectional means
to obtain a new variable ỹi t � y0

i t − y0
i1 which is independent in the cross-sectional dimension

as both N and T tend to infinity. Choi combines p-values from individual ADF tests as in Choi
(2001). The resulting tests have a standard N (0, 1) distribution. In addition, Choi suggests
using an ADF test for the hypothesis that the common component ft is nonstationary. To
do so, he proposes using the cross-sectional means (at each t) of the residuals from the GLS
regression used to demean the data, i.e.,

f̂t = 1

N

N∑
i=1

(yit − α̂i )

Pesaran (2003) suggests a simpler way of geting rid of cross-sectional dependence than
estimating the factor loading. His method is based on augmenting the usual ADF regression
with the lagged cross-sectional mean and its first difference to capture the cross-sectional
dependence that arises through a single factor model. This is called the cross-sectionally
augmented Dickey–Fuller (CADF) test. This simple CADF regression is

�yit = αi + ρ∗
i yi,t−1 + d0 yt−1 + d1�yt + εi t

where yt is the average at time t of all N observations. The presence of the lagged cross-
sectional average and its first difference accounts for the cross-sectional dependence through
a factor structure. If there is serial correlation in the error term or the factor, the regression
must be augmented as usual in the univariate case, but lagged first-differences of both yit and
yt must be added, which leads to

�yit = αi + ρ∗
i yi,t−1 + d0 yt−1 +

p∑
j=0

d j+1�yt− j +
p∑

k=1

ck�yi,t−k + εi t

where the degree of augmentation can be chosen by an information criterion or sequential
testing. After running this CADF regression for each unit i in the panel, Pesaran averages the
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t-statistics on the lagged value (called CADFi ) to obtain the CIPS statistic

CIPS = 1

N

N∑
i=1

CADFi

The joint asymptotic limit of the CIPS statistic is nonstandard and critical values are provided
for various choices of N and T . The t-tests based on this regression should be devoid of �′

i ft

in the limit and therefore free of cross-sectional dependence. The limiting distribution of these
tests is different from the Dickey–Fuller distribution due to the presence of the cross-sectional
average of the lagged level. Pesaran uses a truncated version of the IPS test that avoids the
problem of moment calculation. In addition, the t-tests are used to formulate a combination
test based on the inverse normal principle. Experimental results show that these tests perform
well.

12.4 SPURIOUS REGRESSION IN PANEL DATA

Entorf (1997) studied spurious fixed effects regressions when the true model involves inde-
pendent random walks with and without drifts. Entorf found that for T → ∞ and N finite,
the nonsense regression phenomenon holds for spurious fixed effects models and inference
based on t-values can be highly misleading. Kao (1999) and Phillips and Moon (1999) de-
rived the asymptotic distributions of the least squares dummy variable estimator and various
conventional statistics from the spurious regression in panel data.

Suppose that yt and Xt are unit root nonstationary time series variables with long-run
variance matrix

� =
(

�yy �yx

�xy �xx

)
Then β = �yx�

−1
xx can be interpreted as a classical long-run regression coefficient relating

the two nonstationary variables yt and Xt . When � has deficient rank, β is a cointegrating
coefficient because yt − β Xt is stationary. Even in the absence of time series cointegration, β

is a measure of a statistical long-run correlation between yt and Xt . Phillips and Moon (1999)
extend this concept to panel regressions with nonstationary data. In this case, heterogeneity
across individuals i can be characterized by heterogeneous long-run covariance matrices �i .
Then �i are randomly drawn from a population with mean � = E(�i ). In this case

β = E(�yi xi )E(�xi xi )
−1 = �yx�

−1
xx

is the regression coefficient corresponding to the average long-run covariance matrix �.
Phillips and Moon (1999) studied various regressions between two panel vectors that may

or may not have cointegrating relations, and present a fundamental framework for studying
sequential and joint limit theories in nonstationary panel data. The panel models considered
allow for four cases: (i) panel spurious regression, where there is no time series cointegration;
(ii) heterogeneous panel cointegration, where each individual has its own specific cointegration
relation; (iii) homogeneous panel cointegration, where individuals have the same cointegra-
tion relation; and (iv) near-homogeneous panel cointegration, where individuals have slightly
different cointegration relations determined by the value of a localizing parameter. Phillips and
Moon (1999) investigated these four models and developed panel asymptotics for regression
coefficients and tests using both sequential and joint limit arguments. In all cases considered
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the pooled estimator is consistent and has a normal limiting distribution. In fact, for the spu-
rious panel regression, Phillips and Moon (1999) showed that under quite weak regularity
conditions, the pooled least squares estimator of the slope coefficient β is

√
N -consistent for

the long-run average relation parameter β and has a limiting normal distribution. Also, Moon
and Phillips (1998) showed that a limiting cross-section regression with time-averaged data is
also

√
N -consistent for β and has a limiting normal distribution. This is different from the pure

time series spurious regression where the limit of the OLS estimator of β is a nondegenerate
random variate that is a functional of Brownian motions and is therefore not consistent for
β. The idea in Phillips and Moon (1999) is that independent cross-section data in the panel
adds information and this leads to a stronger overall signal than the pure time series case.
Pesaran and Smith (1995) studied limiting cross-section regressions with time-averaged data
and established consistency with restrictive assumptions on the heterogeneous panel model.
This differs from Phillips and Moon (1999) in that the former use an average of the cointe-
grating coefficients which is different from the long-run average regression coefficient. This
requires the existence of cointegrating time series relations, whereas the long-run average
regression coefficient β is defined irrespective of the existence of individual cointegrating re-
lations and relies only on the long-run average variance matrix of the panel. Phillips and Moon
(1999) also showed that for the homogeneous and near homogeneous cointegration cases, a
consistent estimator of the long-run regression coefficient can be constructed which they call
a pooled FM estimator. They showed that this estimator has a faster convergence rate than the
simple cross-section and time series estimators. Pedroni (2000) and Kao and Chiang (2000)
also investigated limit theories for various estimators of the homogeneous panel cointegration
regression model. See also Phillips and Moon (2000) for a concise review. In fact, the latter
paper also shows how to extend the above ideas to models with individual effects in the data
generating process. For the panel spurious regression with individual-specific deterministic
trends, estimates of the trend coefficients are obtained in the first step and the detrended data
is pooled and used in least squares regression to estimate β in the second step. Two different
detrending procedures are used based on OLS and GLS regressions. OLS detrending leads to
an asymptotically more efficient estimator of the long-run average coefficient β in pooled re-
gression than GLS detrending. Phillips and Moon (2000) explain that “the residuals after time
series GLS detrending have more cross-section variation than they do after OLS detrending
and this produces great variation in the limit distribution of the pooled regression estimator of
the long run average coefficient”.

Moon and Phillips (1999) investigate the asymptotic properties of the Gaussian MLE of the
localizing parameter in local to unity dynamic panel regression models with deterministic and
stochastic trends. Moon and Phillips find that for the homogeneous trend model, the Gaussian
MLE of the common localizing parameter is

√
N -consistent, while for the heterogeneous

trends model, it is inconsistent. The latter inconsistency is due to the presence of an infinite
number of incidental parameters (as N → ∞) for the individual trends. Unlike the fixed effects
dynamic panel data model where this inconsistency due to the incidental parameter problem
disappears as T → ∞, the inconsistency of the localizing parameter in the Moon and Phillips
model persists even when both N and T go to infinity. Moon and Phillips (2000) show that the
local to unity parameter in a simple panel near-integrated regression model can be estimated
consistently using pooled OLS. When deterministic trends are present, pooled panel estimators
of the localizing parameter are asymptotically biased. Some techniques are developed to obtain
consistent estimates of this localizing parameter but only in the region where it is negative.
These methods are used to show how to perform efficient trend extraction for panel data. They
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are also used to deliver consistent estimates of distancing parameters in nonstationary panel
models where the initial conditions are in the distant past. The joint asymptotics in the paper
rely on N/T → 0, so that the results are most relevant in panels where T is large relative to N .

Consider the nonstationary dynamic panel data model

yit = αi,0 + αi,1t + y0
i t

y0
i t = βy0

i,t−1 + ui,t

with β = exp(c/T ). Moon and Phillips (2000) focused on estimating the localizing parameter
c in β which characterizes the local behavior of the unit root process. Information about c is
useful for the analysis of the power properties of unit root tests, cointegration tests, the con-
struction of confidence intervals for the long-run autoregressive coefficient, the development
of efficient detrending methods and the construction of point optimal invariant tests for a unit
root and cointegrating rank. Moon and Phillips (2000) show that when c ≤ 0, it is possible to
estimate this local parameter consistently using panel data. In turn, they show how to extract
the deterministic trend efficiently using this consistent estimate of c.

12.5 PANEL COINTEGRATION TESTS

Like the panel unit root tests, panel cointegration tests can be motivated by the search for more
powerful tests than those obtained by applying individual time series cointegration tests. The
latter tests are known to have low power, especially for short T and short span of the data,
which is often limited to post-war annual data. In the case of purchasing power parity and
convergence in growth, economists pool data on similar countries, like G7, OECD or Euro
countries in the hopes of adding cross-sectional variation to the data that will increase the
power of unit root tests or panel cointegration tests.

12.5.1 Residual-Based DF and ADF Tests (Kao Tests)

Consider the panel regression model

yit = x ′
i tβ + z′

i tγ + eit (12.15)

where yit and xit are I (1) and noncointegrated. For zit = {µi }, Kao (1999) proposed DF and
ADF-type unit root tests for eit as a test for the null of no cointegration. The DF-type tests can
be calculated from the fixed effects residuals

êi t = ρêi t−1 + νi t (12.16)

where êi t = ỹi t − x̃
′
i t β̂ and ỹi t = yit − yi.. In order to test the null hypothesis of no cointegra-

tion, the null can be written as H0 : ρ = 1. The OLS estimate of ρ and the t-statistic are given
as

ρ̂ =
∑N

i=1

∑T
t=2 êi t êi t−1∑N

i=1

∑T
t=2 ê2

i t

and

tρ =
(̂ρ − 1)

√∑N
i=1

∑T
t=2 ê2

i t−1

se

(12.17)
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where s2
e = 1

N T

∑N
i=1

∑T
t=2 (̂eit − ρ̂êi t−1)2 . Kao proposed the following four DF-type tests:

DFρ =
√

N T (̂ρ − 1) + 3
√

N√
10.2

DFt =
√

1.25tρ +
√

1.875N

DF∗
ρ =

√
N T (̂ρ − 1) + 3

√
N σ̂ 2

ν

σ̂ 2
0ν√

3 + 36σ̂ 4
ν

5σ̂ 4
0ν

and

DF∗
t =

tρ +
√

6N σ̂ν

2σ̂0ν√
σ̂ 2

0ν

2σ̂ 2
ν

+ 3σ̂ 2
ν

10σ̂ 2
0ν

where σ̂ 2
ν = ∑̂

yy − ∑̂
yx

∑̂−1

xx and σ̂ 2
0ν = �̂yy − �̂yx�̂

−1
xx . While DFρ and DFt are based on

the strong exogeneity of the regressors and errors, DF∗
ρ and DF∗

t are for the cointegration
with endogenous relationship between regressors and errors. For the ADF test, we can run the
following regression:

êi t = ρêi t−1 +
p∑

j=1

ϑ j�̂eit− j + νi tp (12.18)

With the null hypothesis of no cointegration, the ADF test statistic can be constructed as:

ADF =
tADF +

√
6N σ̂ν

2σ̂0ν√
σ̂ 2

0ν

2σ̂ 2
ν

+ 3σ̂ 2
ν

10σ̂ 2
0ν

(12.19)

where tADF is the t-statistic of ρ in (12.18). The asymptotic distributions of DFρ , DFt , DF∗
ρ ,

DF∗
t and ADF converge to a standard normal distribution N (0, 1) by sequential limit theory.

12.5.2 Residual-Based LM Test

McCoskey and Kao (1998) derived a residual-based test for the null of cointegration rather
than the null of no cointegration in panels. This test is an extension of the LM test and
the locally best invariant (LBI) test for an MA unit root in the time series literature. Under
the null, the asymptotics no longer depend on the asymptotic properties of the estimating
spurious regression, rather the asymptotics of the estimation of a cointegrated relationship are
needed. For models which allow the cointegrating vector to change across the cross-sectional
observations, the asymptotics depend merely on the time series results as each cross-section is
estimated independently. For models with common slopes, the estimation is done jointly and
therefore the asymptotic theory is based on the joint estimation of a cointegrated relationship
in panel data.

For the residual based test of the null of cointegration, it is necessary to use an efficient es-
timation technique of cointegrated variables. In the time series literature a variety of methods
have been shown to be efficient asymptotically. These include the fully modified (FM)-OLS
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estimator of Phillips and Hansen (1990) and the dynamic least squares (DOLS) estima-
tor proposed by Saikkonen (1991) and Stock and Watson (1993). For panel data, Kao and
Chiang (2000) showed that both the FM and DOLS methods can produce estimators which
are asymptotically normally distributed with zero means.

The model presented allows for varying slopes and intercepts:

yit = αi + x ′
i tβi + eit (12.20)

xit = xit−1 + εi t (12.21)

eit = γi t + uit (12.22)

and

γi t = γi t−1 + θuit

where uit are IID
(
0, σ 2

u

)
. The null of hypothesis of cointegration is equivalent to θ = 0.

The test statistic proposed by McCoskey and Kao (1998) is defined as follows:

LM =
1
N

∑N
i=1

1
T 2

∑T
t=1 S2

i t

σ̂ 2
e

(12.23)

where Sit is partial sum process of the residuals, Sit = ∑t
j=1 êi j and σ̂ 2

e is defined in McCoskey
and Kao. The asymptotic result for the test is

√
N (LM − µν) ⇒ N (0, σ 2

ν ) (12.24)

The moments, µν and σ 2
ν , can be found through Monte Carlo simulation. The limiting distri-

bution of LM is then free of nuisance parameters and robust to heteroskedasticity.
Urban economists have long sought to explain the relationship between urbanization levels

and output. McCoskey and Kao (1999) revisited this question and test the long-run stability
of a production function including urbanization using nonstationary panel data techniques.
McCoskey and Kao applied the IPS test and LM in (12.23) and showed that a long-run rela-
tionship between urbanization, output per worker and capital per worker cannot be rejected for
the sample of 30 developing countries or the sample of 22 developed countries over the period
1965–89. They do find, however, that the sign and magnitude of the impact of urbanization
varies considerably across the countries. These results offer new insights and potential for
dynamic urban models rather than the simple cross-section approach.

12.5.3 Pedroni Tests

Pedroni (2000, 2004) also proposed several tests for the null hypothesis of cointegration in a
panel data model that allows for considerable heterogeneity. His tests can be classified into
two categories. The first set is similar to the tests discussed above, and involves averaging
test statistics for cointegration in the time series across cross-sections. For the second set, the
averaging is done in pieces so that the limiting distributions are based on limits of piecewise
numerator and denominator terms.

The first set of statistics includes a form of the average of the Phillips and Ouliaris (1990)
statistic:

Z̃ρ =
N∑

i=1

∑T
t=1(êi t−1�êi t − λ̂i )

(
∑T

t=1 ê2
i t−1)

(12.25)
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where êi t is estimated from (12.15) and λ̂i = 1
2

(
σ̂ 2

i − ŝ2
i

)
, for which σ̂ 2

i and ŝ2
i are individual

long-run and contemporaneous variances of the residual êi t . For his second set of statistics,
Pedroni defines four panel variance ratio statistics. Let �̂i be a consistent estimate of �i , the
long-run variance–covariance matrix. Define L̂ i to be the lower triangular Cholesky compo-
sition of �̂i such that in the scalar case L̂22i = σ̂ε and L̂11i = σ̂ 2

u − σ̂ 2
uε/σ̂

2
ε is the long-run

conditional variance. Here we consider only one of these statistics:

Zt
ρ̂N T

=
∑ N

i=1

∑T
t=2 L̂−2

11i (êi t−1�êi t − λ̂i )√
σ̃ 2

N T (
∑N

i=1

∑ T
t=2 L̂−2

11i ê
2
i t−1)

(12.26)

where σ̃N T = 1
N

∑N
i=1

σ̂ 2
i

L̂2
11i

.

It should be noted that Pedroni bases his test on the average of the numerator and denomi-
nator terms, respectively, rather than the average for the statistic as a whole. Using results on
convergence of functionals of Brownian motion, Pedroni finds the following result:

Zt
ρ̂N T

+ 1.73
√

N ⇒ N (0, 0.93)

Note that this distribution applies to the model including an intercept and not including a
time trend. Asymptotic results for other model specifications can be found in Pedroni (2000).
The intuition on these tests with varying slopes is not straightforward. The convergence in
distribution is based on individual convergence of the numerator and denominator terms. What
is the intuition of rejection of the null hypothesis? Using the average of the overall test statistic
allows more ease in interpretation: rejection of the null hypothesis means that enough of the
individual cross-sections have statistics “far away” from the means predicted by theory were
they to be generated under the null.

Pedroni (1999) derived asymptotic distributions and critical values for several residual-
based tests of the null of no cointegration in panels where there are multiple regressors. The
model includes regressions with individual-specific fixed effects and time trends. Considerable
heterogeneity is allowed across individual members of the panel with regard to the associated
cointegrating vectors and the dynamics of the underlying error process. By comparing results
from individual countries and the panel as a whole, Pedroni (2001) rejects the strong PPP
hypothesis and finds that no degree of cross-sectional dependency would be sufficient to
overturn the rejection of strong PPP.

12.5.4 Likelihood-Based Cointegration Test

Larsson, Lyhagen and Löthgren (2001) presented a likelihood-based (LR) panel test of cointe-
grating rank in heterogeneous panel models based on the average of the individual rank trace
statistics developed by Johansen (1995). The proposed LR-bar statistic is very similar to the
IPS t-bar statistic in (12.7)–(12.10). In Monte Carlo simulation, Larsson et al. investigated the
small sample properties of the standardized LR-bar statistic. They found that the proposed test
requires a large time series dimension. Even if the panel has a large cross-sectional dimension,
the size of the test will be severely distorted.

Groen and Kleibergen (2003) proposed a likelihood-based framework for cointegrating
analysis in panels of a fixed number of vector error correction models. This improves on Larsson
et al. (2001) since it allows cross-sectional correlation. Maximum likelihood estimators of the
cointegrating vectors are constructed using iterated generalized method of moments (GMM)
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estimators. Using these estimators, Groen and Kleibergen construct likelihood ratio statistics to
test for a common cointegration rank across the individual vector error correction models, both
with heterogeneous and homogeneous cointegrating vectors. Groen and Kleibergen (2003)
applied this likelihood ratio test to a data set of exchange rates and appropriate monetary
fundamentals. They found strong evidence for the validity of the monetary exchange rate
model within a panel of vector correction models for three major European countries, whereas
the results based on individual vector error correction models for each of these countries
separately are less supportive.

12.5.5 Finite Sample Properties

McCoskey and Kao (1999) conducted Monte Carlo experiments to compare the size and
power of different residual-based tests for cointegration in heterogeneous panel data: varying
slopes and varying intercepts. Two of the tests are constructed under the null hypothesis of
no cointegration. These tests are based on the average ADF test and Pedroni’s pooled tests
in (12.25)–(12.26). The third test is based on the null hypothesis of cointegration which is
based on the McCoskey and Kao LM test in (12.23). Wu and Yin (1999) performed a similar
comparison for panel tests in which they consider only tests for which the null hypothesis is that
of no cointegration. Wu and Yin compared ADF statistics with maximum eigenvalue statistics
in pooling information on means and p-values, respectively. They found that the average ADF
performs better with respect to power and their maximum eigenvalue-based p-value performs
better with regard to size.

The test of the null hypothesis was originally proposed in response to the low power of the
tests of the null of no cointegration, especially in the time series case. Further, in cases where
economic theory predicted a long-run steady state relationship, it seemed that a test of the null
of cointegration rather than the null of no cointegration would be appropriate. The results from
the Monte Carlo study showed that the McCoskey and Kao LM test outperforms the other two
tests.

Of the two reasons for the introduction of the test of the null hypothesis of cointegration,
low power and attractiveness of the null, the introduction of the cross-section dimension of
the panel solves one: all of the tests show decent power when used with panel data. For those
applications where the null of cointegration is more logical than the null of no cointegration,
McCoskey and Kao (1999), at a minimum, conclude that using the McCoskey and Kao LM
test does not compromise the ability of the researcher in determining the underlying nature of
the data.

Gutierrez (2003) performed Monte Carlo experiments and compared some of the panel
cointegration tests proposed by Kao (1999), Pedroni (2000) and Larsson et al. (2001). The
Kao and Pedroni tests assume that either all the relationships are not cointegrated or all the
relationships are cointegrated, while the Larsson et al. (2001) test assume that all N cross-
sections have at most r cointegrating relationships against the alternative of a higher rank.
Gutierrez (2003) finds that for a large T panel, the whole panel may be erroneously modeled
as cointegrated when only a small fraction of the relationships are actually cointegrated. For
N = 10, 25, 100; T = 10, 50, 100 and the proportion of cointegrated relationships varying
between 0, 0.1, 0.2, . . . , 1, Gutierrez (2003) finds that for small T = 10, and as N increases,
Kao’s tests show higher power than the Pedroni tests. But, this power is still fairly low even
when N = 100. As T gets large, the Pedroni tests have higher power than the Kao tests. Both
tests performed better than the Larsson et al. (2001) LR-bar test.
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12.6 ESTIMATION AND INFERENCE IN PANEL
COINTEGRATION MODELS

For panel cointegrated regression models, the asymptotic properties of the estimators of the
regression coefficients and the associated statistical tests are different from those of the time
series cointegration regression models. Some of these differences have become apparent in
recent works by Kao and Chiang (2000), Phillips and Moon (1999) and Pedroni (2000, 2004).
The panel cointegration models are directed at studying questions that surround long-run
economic relationships typically encountered in macroeconomic and financial data. Such a
long-run relationship is often predicted by economic theory and it is then of central interest to
estimate the regression coefficients and test whether they satisfy theoretical restrictions. Chen,
McCoskey and Kao (1999) investigated the finite sample proprieties of the OLS estimator the
t-statistic, the bias-corrected OLS estimator, and the bias-corrected t-statistic. They found that
the bias-corrected OLS estimator does not improve over the OLS estimator in general. The
results of Chen et al. suggested that alternatives, such as the fully modified (FM) estimator or
dynamic OLS (DOLS) estimator, may be more promising in cointegrated panel regressions.
Phillips and Moon (1999) and Pedroni (2000) proposed an FM estimator, which can be seen as
a generalization of Phillips and Hansen (1990). Recently, Kao and Chiang (2000) proposed an
alternative approach based on a panel dynamic least squares (DOLS) estimator, which builds
upon the work of Saikkonen (1991) and Stock and Watson (1993).

Kao and Chiang (2000) consider the following panel regression:

yit = x ′
i tβ + z′

i tγ + uit (12.27)

where {yit } are 1 × 1, β is a k × 1 vector of the slope parameters, zit is the deterministic
component and {uit } are the stationary disturbance terms. {xit } are k × 1 integrated processes
of order one for all i, where

xit = xit−1 + εi t

The assumption of cross-sectional independence is maintained. Under these specifications,
(12.27) describes a system of cointegrated regressions, i.e., yit is cointegrated with xit . The
OLS estimator of β is

β̂OLS =
[

N∑
i=1

T∑
t=1

x̃i t x̃
′
i t

]−1 [
N∑

i=1

T∑
t=1

x̃i t ỹi t

]
(12.28)

It is easy to show that

1

N

∑N

i=1

1

T 2

∑T

t=1
x̃i t x̃

′
i t

p→ lim
N→∞

1

N

∑N

i=1
E [ζ2i ] (12.29)

and

1

N

N∑
i=1

1

T

T∑
t=1

x̃i t ũi t ⇒ lim
N→∞

1

N

N∑
i=1

E [ζ1i ] (12.30)
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using sequential limit theory, where

zit E [ζ1i ] E [ζ2i ]

0 0 1
2

1 0 0

µi − 1
2�εui + �εui

1
6�εi

(µi , t) − 1
2�εui + �εui

1
15�εi

(12.31)

and

�i =
[

�ui �uεi

�εui �εi

]
is the long-run covariance matrix of

(
uit , ε

′
i t

)′
, also �i =

[
�ui �uεi

�εui �εi

]
is the one-sided

long-run covariance. For example, when zit = {µi } , we get

√
N T

(
β̂OLS − β

) −
√

NδN T ⇒ N

(
0, 6�−1

ε

(
lim

N→∞
1

N

N∑
i=1

�u.εi�εi

)
�−1

ε

)
(12.32)

where �ε = lim
N→∞

1
N

∑N
i=1 �εi and

δN T =
[

1

N

N∑
i=1

1

T 2

T∑
t=1

(xit − xi ) (xit − xi )
′
]−1

1

N

[
N∑

i=1

�
1/2
εi

(∫
W̃i dW ′

i

)
�

−1/2
εi �εui + �εui

]
(12.33)

This shows that β̂OLS is inconsistent using panel data. This is in sharp contrast with the con-
sistency of β̂OLS in time series under similar circumstances. Kao and Chiang (2000) suggest
a fully modified (FM) and DOLS estimators in a cointegrated regression and show that their
limiting distribution is normal. Phillips and Moon (1999) and Pedroni (2000) also obtained
similar results for the FM estimator. The reader is referred to the cited papers for further de-
tails. Kao and Chiang also investigated the finite sample properties of the OLS, FM and DOLS
estimators. They found that (i) the OLS estimator has a nonnegligible bias in finite samples,
(ii) the FM estimator does not improve over the OLS estimator in general, and (iii) the DOLS
estimator may be more promising than OLS or FM estimators in estimating the cointegrated
panel regressions.

Kao et al. (1999) apply the asymptotic theory of panel cointegration developed by Kao and
Chiang (2000) to the Coe and Helpman (1995) international R&D spillover regression. Using
a sample of 21 OECD countries and Israel, they re-examine the effects of domestic and foreign
R&D capital stocks on total factor productivity of these countries. They find that OLS with bias
correction, the fully modified (FM) and the dynamic OLS (DOLS) estimators produce different
predictions about the impact of foreign R&D on total factor productivity (TFP), although all the
estimators support the result that domestic R&D is related to TFP. Kao et al.’s empirical results
indicate that the estimated coefficients in the Coe and Helpman’s regressions are subject to
estimation bias. Given the superiority of the DOLS over FM as suggested by Kao and Chiang
(2000), Kao et al. leaned towards rejecting the Coe and Helpman hypothesis that international
R&D spillovers are trade-related.
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Choi (2002) studied instrumental variable estimation for an error component model with
stationary and nearly nonstationary regressors. In contrast to the time series literature, Choi
(2002) shows that IV estimation can be used for panel data with endogenous and nearly
nonstationary regressors. To illustrate, consider the simple panel regression

yit = α + βxit + uit

where xit is nearly nonstationary, uit is I (0) and zt is an instrumental variable yielding the
panel IV (Within) estimator

β̂IV =
[

N∑
i=1

T∑
t=1

(xit − xi.) (zit − zi.)

]−1 [
N∑

i=1

T∑
t=1

(
yit − yi.

)
(zit − zi.)

]
Choi (2002) shows

√
N T (̂βIV − β) has the weak limit as T → ∞ of a standardized sum

(over i = 1, . . . , N ) of zero mean random variables divided by a standardized sum of random
variables. Thus when N is large, and proper conditions hold, the central limit theorem can be
applied which leads to the asymptotic normality result for the panel estimator. In time series,
standard hypothesis testing cannot be performed based on the corresponding IV estimator for
β. The same intuition holds for Within–IV–OLS, IV–GLS and Within–IV–GLS estimators
discussed in Choi (2002). For panel regressions that allow for cross-section correlation, one
can use the SUR approach in the panel unit root test for fixed N , see Mark, Ogaki and Sul
(2000) and Moon and Perron (2004b) who adopt this approach and show that the dynamic
GLS estimator is most efficient.

Kauppi (2000) developed a new joint limit theory where the panel data may be cross-
sectionally heterogeneous in a general way. This limit theory builds upon the concepts of
joint convergence in probability and in distribution for double indexed processes by Phillips
and Moon (1999) and develops new versions of the law of large numbers and the central
limit theorem that apply in panels where the data may be cross-sectionally heterogeneous in
a fairly general way. Kauppi demonstrates how this joint limit theory can be applied to derive
asymptotics for a panel regression where the regressors are generated by a local to unit root with
heterogeneous localizing coefficients across cross-sections. Kauppi discusses issues that arise
in the estimation and inference of panel cointegrated regressions with near integrated regressors.
Kauppi shows that a bias corrected pooled OLS for a common cointegrating parameter has an
asymptotic normal distribution centered on the true value irrespective of whether the regressor
has near or exact unit root. However, if the regression model contains individual effects and/or
deterministic trends, then Kauppi’s bias corrected pooled OLS still produces asymptotic bias.
Kauppi also shows that the panel FM estimator is subject to asymptotic bias regardless of how
individual effects and/or deterministic trends are contained if the regressors are nearly rather
than exactly integrated. This indicates that much care should be taken in interpreting empirical
results achieved by the recent panel cointegration methods that assume exact unit roots when
near unit roots are equally plausible.

12.7 EMPIRICAL EXAMPLE: PURCHASING POWER PARITY

Banerjee et al. (2005) survey the empirical literature on the validity of purchasing power
parity. The strong version of PPP tests whether the real exchange rate is stationary. A common
finding is that PPP holds when tested in panel data, but not when tested on a country by
country basis. The usual explanation is that panel tests for unit roots are more powerful than
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their univariate counterparts. Banerjee et al. (2005) offer an alternative explanation. Their
results indicate that this mismatch may be due simply to the over-sizing that is present when
cointegrating relationships link the countries of the panel together. Existing panel unit root tests
assume that cross-unit cointegrating relationships among the countries are not present. Banerjee
et al. (2005) show through simulations that when this assumption is violated, the empirical
size of the tests is substantially higher than the nominal level and the null hypothesis of a unit
root is rejected too often when it is true. They demonstrate this using quarterly data on real
exchange rates for the period 1975:1–2002:4 for 18 OECD countries. Computing the ADF
test on a country by country basis using both the USA and Germany in turn as numeraire,
Banerjee et al. (2005) fail to reject the null hypothesis of a unit root for each country at any
choice of lag length except for France and Korea, when Germany is the numeraire. The panel
unit roots (assuming no cross-country cointegration), on the other hand, reject the null of unit
root in 13 out of 16 cases with the USA as numeraire. These 16 cases correspond to four
tests and four different lag-length choices. The four tests include two versions of the IPS test
on (t and LM), the LLC test and the Maddala and Wu (1999) Fisher test. If Germany is the
numeraire, the corresponding rejections are in 12 out of 16 cases. Using critical values adjusted
for the presence of cross-country cointegration, these rejections decrease. For example, with
14 bivariate cointegrating relationships, the unit root hypothesis is rejected in only 2 out of 16
cases with the USA as the numeraire and never with Germany as the numeraire. The authors
conclude that this finding warns against the “automatic” use of panel methods for testing for
unit roots in macroeconomic time series.

Table 12.1 performs panel unit root tests on the Banerjee et al. (2005) data on real exchange
rates with Germany as the numeraire. This is done using EViews. This data was kindly provided
by Chiara Osbat. The EViews options allow for the choice of exogenous variables, in this case,
the inclusion of individual effects. Also, the automatic selection of maximum lags, or the
choice of a user-specified lag. In fact, Table 12.2 performs these panel unit root tests with a
user-specified lag of 1. Note that EViews performs the LLC, Breitung, IPS and Fisher-type tests
of Maddala and Wu (1999) and Choi (2001) using ADF and Phillips–Perron type individual
unit root tests. Both Tables 12.1 and 12.2 confirm the results in Banerjee et al. (2005), i.e., that
all panel unit root tests including individual effects reject the null hypothesis of a common unit
root. EViews also computes the Hadri’s (2000) residual-based LM test which reverses the null
hypothesis. In this case, it rejects the null hypothesis of no unit root in any of the series in the
panel in favor of a common unit root in the panel. Problem 12.3 asks the reader to replicate
these results and check their sensitivity to user-specified lags as well as the choice of Germany
or USA as the numeraire.

Banerjee et al. (2004) also show that both univariate and multivariate panel cointegra-
tion tests can be substantially over-sized in the presence of cross-unit cointegration. They
argue that the panel cointegration literature assume a unique cointegrating vector in each unit,
either homogeneous (Kao, 1999) or heterogeneous (Pedroni, 1999) across the units of the
panel. Groen and Kleibergen (2003) and Larsson et al. (2001) have developed techniques, à la
Johansen’s maximum likelihood method, that allow for multiple cointegrating vectors in each
unit. These models allow for cross-unit dependence through the effects of the dynamics of
short-run, but no account is taken of the possibility of long-run cross-unit dependence induced
by the existence of cross-unit cointegrating relationships. Banerjee et al. (2004) show through
Monte Carlo simulations that the consequences of using panel cointegrated methods when the
restriction of the no cross-unit cointegration is violated are dramatic. They also confirm the
gains in efficiency when the use of the panel approach is justified. Hence, they suggest testing



JWBK024-12 JWBK024-Baltagi March 22, 2005 10:15 Char Count= 0

Nonstationary Panels 261

Table 12.1 Panel Unit Root Test (Automatic Lag) for Real Exchange Rates: Germany as Numeraire

Pool unit root test: Summary
Sample: 1975Q1 2002Q4
Series: RER AUSTRIA, RER BELGIUM, RER CANADA,

RER DENMARK, RER FINLAND, RER FRANCE,
RER GREECE, RER ITALY, RER JAPAN, RER KOREA,
RER NETHERLANDS, RER NORWAY, RER PORTUGAL,
RER SPAIN, RER SWEDEN, RER SWITZ, RER UK, RER US

Exogenous variables: Individual effects
Automatic selection of maximum lags
Automatic selection of lags based on SIC: 0 to 8
Newey–West bandwidth selection using Bartlett kernel

Method Statistic Prob.∗∗ Cross-sections Obs.

Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t∗ −1.83839 0.0330 18 1970
Breitung t-stat −3.06048 0.0011 18 1952

Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W -stat −3.42675 0.0003 18 1970
ADF-Fisher chi-square 63.6336 0.0030 18 1970
PP-Fisher chi-square 58.1178 0.0112 18 1998

Null: No unit root (assumes common unit root process)
Hadri Z -stat 9.43149 0.0000 18 2016

∗∗Probabilities for Fisher tests are computed using an asympotic chi-square distribution. All other tests assume
asymptotic normality.

for the validity of the no cross-unit cointegration hypothesis prior to applying panel cointegra-
tion methods. Specifically, they recommend the extraction of the common trends from each
unit using the Johansen ML method, and then testing for cointegration among these trends
to rule out the existence of cross-unit cointegration. Their simulation results show that this
procedure works well in practice.

12.8 FURTHER READING

Cermeño (1999) extends Andrews’ (1993) median-unbiased estimation for autoregressive/unit
root time series to panel data dynamic fixed effects models. This estimator is robust to het-
eroskedasticity and serial correlation in the individual dimension. However, this method is
justified only for a purely autoregressive model. This estimator is used to evaluate condi-
tional convergence among 48 US states, 13 OECD countries and two wider samples from the
Penn World Tables with 57 and 100 countries. Support for conditional convergence is found
only among US states and the 13 OECD countries. Phillips and Sul (2003) extend Cermeño’s
study by developing a class of panel median-unbiased estimators that address a more general
case of cross-section dependence. This allows one to test the homogeneity restrictions on the
dynamics, including the important case of unit root homogeneity.

Pesaran et al. (1999) derived the asymptotics of a pooled mean group (PMG) estimator. The
PMG estimation constrains the long-run coefficients to be identical, but allows the short-run
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Table 12.2 Panel Unit Root Test (Lag = 1) for Real Exchange Rates: Germany as Numeraire

Pool unit root test: Summary
Sample: 1975Q1 2002Q4
Series: RER AUSTRIA, RER BELGIUM, RER CANADA,

RER DENMARK, RER FINLAND, RER FRANCE,
RER GREECE, RER ITALY, RER JAPAN, RER KOREA,
RER NETHERLANDS, RER NORWAY, RER PORTUGAL,
RER SPAIN, RER SWEDEN, RER SWITZ, RER UK, RER US

Exogenous variables: Individual effects
User specified lags at: 1
Newey–West bandwidth selection using Bartlett kernel
Balanced observations for each test

Method Statistic Prob.∗∗ Cross-sections Obs.

Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t∗ −1.71432 0.0432 18 1980
Breitung t-stat −2.86966 0.0021 18 1962

Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W -stat −3.04702 0.0012 18 1980
ADF-Fisher chi-square 59.3350 0.0085 18 1980
PP-Fisher chi-square 58.1178 0.0112 18 1998

Null: No unit root (assumes common unit root process)
Hadri Z -stat 9.43149 0.0000 18 2016

∗∗Probabilities for Fisher tests are computed using an asympotic chi-square distribution. All other tests assume
asymptotic normality.

and adjustment coefficients as the error variances to differ across the cross-sectional dimen-
sion. Binder, Hsiao and Pesaran (2002) considered estimation and inference in panel vector
autoregressions (PVARS) with fixed effects when T is finite and N is large. A quasi-maximum
likelihood estimator as well as unit root and cointegration tests are proposed based on a trans-
formed likelihood function. This QMLE is shown to be consistent and asymptotically normally
distributed irrespective of the unit root and cointegrating properties of the PVAR model. The
tests proposed are based on standard chi-square and normal distributed statistics. Binder et al.
also show that the conventional GMM estimators based on standard orthogonality conditions
break down if the underlying time series contain unit roots. Monte Carlo evidence is provided
which favors MLE over GMM in small samples.

Granger and Hyung (1999) consider the problem of estimating a dynamic panel regression
model when the variables in the model are strongly correlated with individual-specific size
factors. For a large N cross-country panel with small T , the size variable could be country-
specific like its area or time-varying like population or total income. They show that if the
size is not explicitly taken into account, one gets a spurious regression. In particular, they
show that implementing unit root tests is likely to lead to the wrong decision. Moreover, if
the size variable is slightly varying over time or its distribution has thick tails (such as a
panel of countries including Luxembourg and Cyprus as well as China and India), post-sample
predictions are biased. A pooling model appears to fit well in-sample, but forecast poorly
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out-of-sample if the individual-specific size factor has a fat-tailed distribution. A panel model
with individual-specific effects could be problematic if the panel series has a very short time
dimension. Since individual constant terms are estimated poorly, the forecasts based on them
are poor. These problems may be more serious if the individual-specific factor is not constant
but time-varying.

Hall, Lazarova and Urga (1999) proposed an approach based on principal components
analysis to test for the number of common stochastic trends driving the nonstationary series in
a panel data set. The test is consistent even if there is a mixture of I (0) and I (1) series in the
sample. This makes it unnecessary to pretest the panel for unit root. It also has the advantage
of solving the problem of dimensionality encountered in large panel data sets.

Hecq, Palm and Urbain (2000) extend the concept of serial correlation common features
analysis to nonstationary panel data models. This analysis is motivated both by the need to
study and test for common structures and comovements in panel data with autocorrelation
present and by an increase in efficiency due to pooling. The authors propose sequential testing
procedures and test their performance using a small-scale Monte Carlo. Concentrating upon the
fixed effects model, they define homogeneous panel common feature models and give a series
of steps to implement these tests. These tests are used to investigate the liquidity constraints
model for 22 OECD and G7 countries. The presence of a panel common feature vector is
rejected at the 5% nominal level.

Murray and Papell (2000) propose a panel unit root test in the presence of structural change.
In particular, they propose a unit root test for nontrending data in the presence of a one-
time change in the mean for a heterogeneous panel. The date of the break is endogenously
determined. The resultant test allows for both serial and contemporaneous correlation, both
of which are often found to be important in the panel unit roots context. Murray and Papell
conduct two power experiments for panels of nontrending, stationary series with a one time
change in means and find that conventional panel unit root tests generally have very low power.
Then they conduct the same experiment using methods that test for unit roots in the presence
of structural change and find that the power of the test is much improved.

NOTES

1. See the survey by Baltagi and Kao (2000). Chiang and Kao (2001) have put together a fairly com-
prehensive set of subroutines, for studying nonstationary panel data. These can be downloaded from
http://web.syr.edu/˜cdkao.

2. The Levin et al. (2002) paper has its origins in a Levin and Lin working paper in 1992, and most
early applications in economics were based on the latter paper. In fact, this panel unit root test was
commonly cited as the Levin–Lin test.

3. Other tests allowing for cross-section correlation based on a SUR model were suggested by O’Connell
(1998) and Taylor and Sarno (1998).

PROBLEMS

12.1 A simple linear trend model with error components. This is based on problem 97.2.1 in
Econometric Theory by Baltagi and Krämer (1997). Consider the following simple linear
trend model

yit = α + βt + uit i = 1, 2, . . . , N ; t = 1, 2, . . . , T
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where yit denotes the gross domestic product of country i at time t . The disturbances
follow the one-way error component model given by

uit = µi + νi t

where µi ∼ IID(0, σ 2
µ) denote the random country (time-invariant) effects and νi t ∼

IID(0, σ 2
ν ) denote the remainder effects. These error components are assumed to be

independent of each other and among themselves. Our interest is focused on the estimates
of the trend coefficient β, and the estimators to be considered are ordinary least squares
(OLS), first difference (FD), the fixed effects (FE) estimator, assuming the µi ’s are fixed
effects, and the generalized least squares estimator (GLS), knowing the true variance
components, which is the best linear unbiased estimator in this case.
(a) Show that the OLS, GLS and FE estimators of β are identical and given by β̂GLS =

β̂OLS = β̃FE = ∑N
i=1

∑T
t=1 yit (t − t)/N

∑T
t=1(t − t)2 where t = ∑T

t=1 t/T .
(b) Show that the variance of the OLS, GLS and FE estimators of β is given

by var(̂βGLS) = var(̂βOLS) = var(̃βFE) = 12σ 2
ν /N T (T 2 − 1) and is therefore

O(N−1T −3).
(c) Show that this simple linear trend model satisfies the necessary and sufficient con-

dition for OLS to be equivalent to GLS.
(d) Show that the FD estimator of β is given by β̂FD = ∑N

i=1(yiT − yi1)/N (T − 1) with
var(̂βFD) = 2σ 2

ν /N (T − 1)2 of O(N−1T −2).
(e) What do you conclude about the asymptotic relative efficiency of FD with respect

to the other estimators of β as T → ∞? Hint: See solution 97.2.1 in Econometric
Theory by Song and Jung (1998). Also, use the fact that

∑T
t=1 t2 = T (T + 1)(2T +

1)/6 and
∑T

t=1 t = T (T + 1)/2.
12.2 Download the International R&D spillovers panel data set used by Kao et al. (1999)

along with the GAUSS subroutines from http://web.syr.edu/∼cdkao. Using this data set,
replicate the following results.
(a) Perform the Harris and Tzavalis (1999) panel unit root tests on total factor produc-

tivity, domestic R&D and foreign R&D capital stocks. Show that the null hypothesis
of nonstationarity is not rejected for all three variables.

(b) Perform the Kao (1999) and Pedroni (2000) panel cointegration tests on the regres-
sion relating total factor productivity to domestic and foreign R&D stocks. Show
that the null hypothesis of no cointegration is rejected.

(c) Estimate the cointegrating relationship using the Kao and Chiang (2000) procedure.
Note: This example is used by Chiang and Kao (2001).

12.3 Using the Banerjee et al. (2005) quarterly data set on real exchange rate for 18 OECD
countries over the period 1975:1–2002:4:
(a) Replicate the panel unit root test in Table 12.1 with Germany as the numeraire. Check

the sensitivity of these results to a user-specified lag of 1, 2, 3 and 4. Compare with
table 8 of Banerjee et al. (2005).

(b) Perform the panel unit root test as in Table 12.1 but now with the USA as the
numeraire. Check the sensitivity of these results to a user-specified lag of 1, 2, 3 and
4. Compare with table 8 of Banerjee et al. (2005).

(c) Perform the individual ADF unit root tests on a country by country basis for both
parts (a) and (b). Compare with table 7 of Banerjee et al. (2005). What do you
conclude?
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(d) Check the sensitivity of the results in parts (a) and (b) when both individual effects
and individual linear trends are included.

12.4 Using the EViews G7 countries work file containing the GDP of Canada, France,
Germany, Italy, Japan, UK and USA:
(a) Perform the panel unit root tests using individual effects in the deterministic variables.
(b) Check the sensitivity of these results to a user-specified lag of 1, 2, 3 and 4. Show

that all tests are in agreement about the possibility of a common unit root for all
series.

(c) Check the sensitivity of the results in parts (a) and (b) when both individual effects
and individual linear trends are included.
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