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Introduction
Attention to implicit learning

Luis Jiménez
University of Santiago

During the last few years, the empirical study of implicit cognition has be-
come increasingly integrated with the conceptual and philosophical debates
concerning the nature and functions of consciousness (Baars 1997; Flanagan
1997; French & Cleeremans 2002). This progressive integration can be seen
as part of an overall effort designed to implement what Flanagan (1992) called
the natural method for studying consciousness, i.e. a triangulated approach that
aims to take advantage of the combined powers of phenomenology, psychology
and neuroscience, to provide a naturalistic framework within which to explain
consciousness. In this context, the study of implicit cognition plays an impor-
tant role in the search for the functional correlates of consciousness (Atkinson,
Thomas, & Cleeremans 2000), and is specially needed to make functional sense
of the results obtained through the search for its neural correlates (Block 1996;
Chalmers 1998). This volume is intended to contribute toward this goal, by
bringing together a selection of the current research on implicit learning and,
specifically, by reviewing the current knowledge about the functional relation
that exists between implicit learning and attention, about its neural correlates,
and about the implications that this information may have on the conceptual
debate about the nature and functions of consciousness.

This volume on Attention and Implicit Learning provides a comprehensive
overview of the research conducted in this area. It is conceived as a multidisci-
plinary forum of discussion on the question of whether implicit learning – that
is often defined as the learning that takes place without intention and aware-
ness – may also be depicted as a process that runs independently of attention
or whether, on the contrary, it may rely on the same type of attentional medi-
ation that is often considered to govern explicit learning processes. The answer
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to this question will obviously depend on the detailed meaning conveyed by
these expressions and, hence, one of the first conclusions to be reached from
the present debate is that there is not a quick answer to this overall question.
However, after going through all these contributions in detail, I expect that the
reader may end up with the impression that good answers are beginning to
arise from the joint effort of researchers addressing these issues simultaneously
from different standpoints, and becoming increasingly aware of the advantages
provided by the sharing of their perspectives.

An overview of the volume

This volume consists of eleven chapters that address this key question from a
blend of cognitive, neuroscientific, and computational approaches. Chapters 1
and 2 set the stage for the cognitive debate, presenting it from a functional and
empirical perspective. In Chapter 1, Shanks provides a sceptical overview of the
claim that implicit learning can proceed without making extensive demands on
attentional resources, and independently from awareness. He presents new re-
sults that are taken to demonstrate that, under dual-task conditions, not only
the expression, but also the acquisition of sequence learning is impaired. In ad-
dition, he also shows that the knowledge expressed through the indirect mea-
sures of performance is closely associated with that manifested through direct
measures such as those taken from recognition and free generation tasks, which
are usually considered to rely on explicit knowledge.

Consistently with this warning against the potential contamination of the
measures of implicit learning with explicit influences, I point out in Chapter 2
that most of the alleged measures of implicit learning may be sensitive to some
explicit learning as well, and thus that most of the effects of attention on im-
plicit learning measures might inadvertently have a bearing on the effects of
attention on this residual sensitivity to explicit knowledge. Hence, I propose
to use complex, probabilistic structures as a way to circumvent this problem,
and review some results that have shown that when the structure is complex,
implicit sequence learning does not appear to depend on the amount of at-
tentional resources available. These results also indicate that learning in these
conditions requires participants to pay selective attention to the relevant di-
mensions and, therefore, I conclude that this implicit learning might be taken
to be an automatic side-effect of processing, which would associate all the fea-
tures of the environment that undergo enough processing, but only those fea-
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tures that are being selectively attended, as determined by their relevance for
the orienting task.

After having set the stage for this discussion in its cognitive terms, Chap-
ters 3 to 5 address similar issues in neuroscientific terms, by reviewing a set
of neurophysiological and neuropsychological approaches to the role of atten-
tion in implicit learning. In Chapter 3, Hazeltine and Ivry review the neural
structures that are believed to support implicit sequence learning, and separate
two groups of structures which have been shown to respond differently to at-
tentional manipulations. On one hand, the supplementary motor area, along
with a number of areas within the parietal lobe and the basal ganglia, are taken
to constitute a non-attentional, implicit learning system, that could encode a
series of responses even under conditions of distraction. On the other hand, a
second learning system comprising anterior regions, including the prefrontal
and premotor cortex, is posited to produce implicit learning effects only when
full attention can be devoted without interruption to the main task.

Ashby and Casale undertake a similar localizing task in Chapter 4, for the
paradigm of category learning. They start by recognizing the use of a different
notion of implicit learning in these tasks, in which participants are typically in-
structed to learn, and in which they receive feedback about their categorization
performance. However, they still consider that learning under these circum-
stances can be taken to be implicit if participants gain no conscious access to
the system that mediates such learning, and if they remain unable to verbalize
the underlying knowledge. Within this paradigm, Ashby and Casale report on
different sources of behavioral and neuropsychological evidence, and propose
to distinguish between three different learning subsystems. First, a rule-based,
explicit categorization system is taken to be mediated by the prefrontal lobe
and the anterior cingulate, and would be specially useful to learn about single-
dimension categorization tasks. Second, an implicit, procedural memory sys-
tem is characterized as a reward-mediated system that would be modulated by
the release of dopamine from the substantia nigra, and in which the caudate nu-
cleus within the basal ganglia would play a major role. This learning is depicted
as resistant to distraction, and would affect performance specially in what the
authors call “information-integration tasks”. Finally, a third implicit learning
mechanism is described to rely on a perceptual representation memory sys-
tem, and is taken to play a major role in prototype distortion tasks. Unlike the
procedural learning system, this perceptual learning system is described as be-
ing based on a form of long-term potentiation, and it could be implemented
through a non-competitive, Hebbian learning algorithm.
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After this brief journey through the categorization tasks, Chapter 5 takes
us back to sequence learning. In this chapter, Dominey analyzes the effects of
temporal, serial, and abstract structure in the standard serial, reaction-time
(SRT) task, and he reports on behavioral results, neuropsychological evidence,
and computational simulations that allow him to distinguish between two dif-
ferent learning systems in terms of their attentional requirements. The implicit
learning system is taken to be independent from attention and is computa-
tionally described as a temporal recurrent network that learns to predict the
next output based on its current encoding of the temporal context. Just as the
procedural learning system depicted by Ashby and Casale, this implicit learn-
ing system is described as performing a reinforcement algorithm that would
involve the connections between the caudate nucleus and the prefrontal cor-
tex, and that would be modulated by the dopaminergic input coming from the
substantia nigra. On the other hand, the abstract learning subsystem resembles
the rule-based learning system described by Ashby and Casale, in that it also
depends on the integrity of attentional resources, and relies on structures that
are closely related to those involved in language processing.

The computational analysis undertaken by Dominey is continued and
deepened throughout Chapters 6 and 7, that put more emphasis on the func-
tional implications of the models, and less on the neural implementation de-
tails. In Chapter 6, Destrebecqz and Cleeremans investigate the temporal dy-
namics of sequence learning, showing that an increase in the response-to-
stimulus interval (RSI) increases explicit sequence learning. To account for
these results, the authors use a new model based on the Simple Recurrent
Network (SRN). Within the framework provided by this recurrent structure,
the new model incorporates the cascade algorithm to capture the time course
of processing during a single trial, and combines the prediction responses
provided by the SRN with the identification responses produced by an auto-
associator. The temporal competition established between these two subsys-
tems provides a straightforward account for the fact that long RSIs allow for
the development of higher-quality, and potentially conscious representations
within the SRN whereas, on the contrary, short SRIs lend a comparatively more
important role to the auto-associator, and hence reduce the role of the recur-
rent structure to that of providing a certain amount of implicit facilitation.

To close this computational section, Wallach and Lebiere present the ACT-
R symbolic architecture and report on a series of simulations through which
they illustrate their main proposal: that explicit learning can be identified with
the learning of declarative chunks, whereas implicit learning could be based on
the ACT-R’s subsymbolic learning algorithms. Specifically, they present simu-
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lations of both the process control task and the sequence learning paradigm,
and show that a mechanism of blending between chunks can account for the
production of new control responses to non-trained contexts, whereas the sub-
symbolic processes of chunk activation can account for the effects of different
RSIs as observed, for instance, in the results of Destrebecqz and Cleeremans.

Throughout the chapters overviewed so far, the reader may thus find var-
ious cognitive, neuroscientific, and computational perspectives on the ques-
tions of how implicit learning works and how attention may affect these effects
of implicit learning. However, the volume also includes two chapters concerned
with the complementary question of whether and how implicit learning affects
the dynamics of attention. Chapter 8, by Lambert, characterizes this issue by
borrowing the Jamesian notion of “derived attention”, and explores the role
of implicit learning in attention through the spatial cueing paradigm. In this
paradigm, different cues are contingently related with the location of a target,
and the propensity of these cues to capture attention is observed to change
by virtue of the learned associations. Jiang and Chun describe a similar strat-
egy in Chapter 9, in which they introduce the contextual cueing paradigm, and
investigate the reciprocal influences that hold between attention and implicit
learning. In this paradigm, a visual search task is manipulated by including
distractors that co-vary with the spatial location of the target, and the authors
demonstrate that participants do implicitly learn about these spatial correla-
tions, but only to the extent that the distractors cannot be efficiently ignored –
i.e., only when the target cannot be preattentively segregated from the distrac-
tor set. Thus, the results of these experiments do strongly indicate that implicit
learning and attention are related in complex and reciprocal ways, so that se-
lective attention does modulate what can be learned implicitly, and implicit
learning shapes the deployment of attention.

After all this discussion concerning the relations between attention and im-
plicit learning, two closing chapters go beyond the limits of this topic, by fixing
its relations with two neighboring topics, such as those of implicit memory and
explicit learning. In Chapter 10, Mulligan and Brown provide an overarching
review of the effects of attention in implicit memory, and they conclude that
attentional manipulations can affect both conceptual and perceptual implicit
memory. Finally, in Chapter 11, Frensch, Haider, Rünger, Neugebauer, Voigt,
and Werg, analyze the relation between implicit learning and consciousness,
and propose an integrated view according to which consciousness of an envi-
ronmental regularity experienced in the course of an incidental learning task
can be taken to be a consequence of implicit learning. They suggest that the
effects of implicit learning may give place to a number of unexpected events –
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for instance, learners may notice an increase in the efficiency of their respond-
ing – and that these unexpected effects may be instrumental in triggering an
intentional search, that could eventually lead to the conscious discovery of the
underlying regularities. This framework is consistent with claims, such as those
made by Lambert or by Jiang and Chun, in the sense that the effects of implicit
learning may drive attentional strategies that, in turn, may further modulate
the effects of learning, either implicit or explicit. From this perspective, there-
fore, implicit and explicit learning would no longer be conceived as the prod-
uct of two completely independent learning modules, but rather as different
results of a single implicit learning system, that would be continuously modu-
lated by an explicit reasoning sytem, that would be in charge of managing the
attentional functions according to the learner’s current goals.

Overall, the view of implicit learning that arises from these chapters is
surely not that of a mysterious faculty of learning without even knowing it,
or that of an experimental curiosity that arises exclusively under heavily con-
trolled experimental settings. Rather, implicit learning is taken to be an ele-
mentary ability of the cognitive systems to extract the structure existing in the
environment, regardless of their intention to do so. Implicit learning, thus,
may produce pervasive effects on the whole dynamics of cognition, and may
continuously shape not only our behavior, but also our representations of the
world, our cognitive processes, and possibly our conscious experience as well.
In fact, the right question to be raised from this viewpoint is not whether im-
plicit learning has been demonstrated to run without awareness beyond any
reasonable doubt, but rather whether “explicit” learning mechanisms exist,
and whether they may be identified with the action of some other learning
processes, different from those subserving implicit learning. Several years ago,
Barsalou (1995:p. 412) advanced a negative answer to this question, by claim-
ing that there is no such thing as a goal-driven learning mechanism that could
be deliberately switched on and off: “people do not have the ability to turn the
storage of information on and off depending on its relevance to their goals”.
Hence, if this proposal is sound, then we should probably accept that implicit
and explicit learning effects do not rely on different storage mechanisms, but
merely result from the effects of different strategic processing operations on the
same basic learning mechanisms. This may allow for a deep change in focus,
by which both implicit and explicit learning might be merely called “learning”
(Cleeremans 1997), but it would not amount to the complete sidestepping of
the issue of implicit learning. Indeed, the analysis of the effects of attention on
different learning paradigms could still tell us something very important about
which kind of regularities our cognitive systems are prepared to capture im-
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mediately, and which other contingencies can be grasped exclusively by relying
on a series of strategic, resource-demanding, and conscious recoding opera-
tions. Of course, this may not be as mysterious as the existence of a learning
ability that may run completely independent from awareness, but this is not to
be expected if consciousness really does have a function in the overall cognitive
economy. Hence, despite the change in focus that may be perceived throughout
these chapters, the question about the role of attention in learning still stands
as an essential topic that is worth pursuing, and which should be of interest to
anyone concerned with improving our current understanding of the dynam-
ics of cognition, and of the overall role that consciousness could play in this
dynamics.
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The cognitive debate





Attention and awareness in “implicit”
sequence learning

David R. Shanks*

University College London

In this chapter I examine two ideas about “implicit” learning, that it can pro-
ceed normally without making demands on central attentional resources and
that it can proceed independently of, and be dissociated from, awareness. Tra-
ditionally, implicit learning has been defined as learning which takes place in-
cidentally, in the absence of deliberate hypothesis-testing strategies, and which
yields a knowledge base that is inaccessible to consciousness. From this sort of
conception the two aforementioned claims follow fairly directly.

The first claim – that implicit learning can occur with minimal demands
on attention – has recently been defended by a number of authors (e.g., Fren-
sch 1998; Frensch, Lin, & Buchner 1998; Frensch, Wenke, & Rünger 1999;
Hayes & Broadbent 1988; Heuer & Schmidtke 1996; Jiménez & Méndez 1999;
Schmidtke & Heuer 1997; Stadler 1995). The idea is that implicit learning,
unlike explicit learning, can proceed normally in the presence of concurrent
resource-demanding tasks and therefore qualifies as an automatic process. The
present chapter scrutinizes some of the key evidence supportive of this con-
ception. The second claim, concerning awareness, is related but tends to focus
on apparent demonstrations of learning accompanied by chance-level perfor-
mance on direct tests of awareness such as recognition and generation tests.
The first part of this chapter concentrates on attention and the second on
awareness.
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. Attention and implicit sequence learning

At first glance the “attentional” claim about implicit learning faces a number
of problems. A large literature has cast doubt on the general notion of auto-
maticity (e.g., Cheng 1985; Kahneman & Chajczyk 1983; McCann, Reming-
ton, & Van Selst 2000; Styles 1997). Genuinely automatic cognitive processes
which make no demands on central capacity have been very hard to find. For
instance, on the basis of the Stroop effect, word reading is often assumed to
be a prototypical automatic process, but Kahneman and Chajczyk (1983) pre-
sented evidence that Stroop interference is diluted by the presence of additional
words in the display and concluded that even word reading is therefore not fully
automatic.

Moreover, several implicit learning studies appear to have shown that the
addition of a secondary task has an adverse effect on learning. For example,
consider the sequential reaction time (SRT) task which is the focus of the
present chapter. This task is especially well-suited for the study of the role of at-
tention in implicit learning as it involves quite low-level perceptual-motor skill
learning and can readily be combined with a variety of concurrent attention-
demanding tasks. In this task, a target such as a dot appears in one of several
possible locations on a computer display and the participant presses as fast
as possible a response key assigned to that location. Instead of appearing at
random across a series of trials, however, the target follows a predictable se-
quence of locations and the issue is whether participants learn (implicitly) this
sequence. Learning is measured chronometrically by changing the sequence af-
ter a number of training blocks; an increase in RTs on this transfer sequence is
evidence that participants have learned something about the training sequence
and were using their knowledge to anticipate the target location on each trial,
thus achieving rapid RTs. Using this task, Cohen, Ivry, and Keele (1990:Exp.
4) obtained evidence suggesting that a concurrent tone-counting task reduced
sequence-learning. That is, switching from the training sequence to the trans-
fer sequence (which was in fact a random sequence) had a small effect on RTs
in a dual-task group, whereas in a single-task group the switch led to a more
substantial increase in RTs. This seems to imply that implicit sequence learning
is attention-demanding, contrary to the proposal. The tone-counting task re-
quired attentional resources and left participants with insufficient capacity to
learn the target sequence. Other studies have confirmed that the RT increase
on transfer trials is smaller under dual-task than single-task conditions (e.g.,
Frensch & Miner 1994; Stadler 1995).
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. Serial reaction time studies with a tone-counting secondary task

In a striking study, Frensch (1998; Frensch et al. 1998) offered an alternative
interpretation of these findings. In the experiments mentioned above, partici-
pants in the dual-task condition performed the tone-counting task both dur-
ing the training blocks and during the transfer block. Thus, Frensch argued,
it is possible that the results reflect a performance effect rather than a learn-
ing deficit. Participants may learn as much about the sequence under dual-
as under single-task conditions, but may be less able to express that knowl-
edge when tested with a concurrent task. This “suppression hypothesis” – the
hypothesis that dual-task testing conditions adversely affect the expression of
sequence knowledge – is supported by the following finding: Suppose partic-
ipants are trained on a sequence under single- or dual-task conditions and
are then tested under both single- and dual-task conditions. The suppression
hypothesis predicts that the measure of sequence learning (the RT increase
on the transfer block) will be lower on the dual-task than on the single-task
test, regardless of training conditions, since the former but not the latter will
suppress the expression of sequence knowledge. Experiments testing this pre-
diction have been somewhat contradictory (see Curran & Keele 1993; Fren-
sch et al. 1999), but to cut a long story short, there is now a fair amount of
evidence in support of the prediction (though see below). For example, in
participants trained under dual-task conditions, Frensch, Wenke, and Rünger
(1999) obtained significantly lower transfer scores on a dual-task than on a
single-task test.

The obvious way to avoid the difficulty created by suppression is to train
some participants under dual-task conditions and others under single-task,
and then test all participants under identical conditions (e.g., under single-task
conditions). Frensch, Lin, and Buchner (1998, Exps. 1a & 1b) report a pair of
experiments essentially of this sort the results of which indicate that a concur-
rent task during the training stage has no effect on sequence learning per se.

In Frensch et al.’s Experiment 1a, participants trained for 7 blocks of trials
on a repeating sequence, with each block comprising 16 repetitions of a 9-
location sequence. The sequence was ABCDEADFC for some participants and
ABCDECFBE for others, where A-F refer to 6 screen locations (the assignment
of A-F to the actual screen locations was varied across participants). On blocks
8 and 9 the structured sequence was replaced by a quasi-random sequence (in
which the frequency of each location was the same as in the structured se-
quence), and then on blocks 10 and 11 the original sequence was reinstated.
Frensch et al. computed the difference in mean RTs between quasi-random
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blocks 8 and 9 versus sequence blocks 7 and 10 and took this transfer score as
their measure of sequence knowledge.

For all participants, the test blocks (7–11) were conducted under single-
task conditions. The major independent variable was the presence of a sec-
ondary task during the training stage. This task, which has been used in many
similar experiments (e.g., Cohen et al. 1990; Nissen & Bullemer 1987), involved
presentation of a high- or low-pitched tone in the interval between the vi-
sual targets. Participants were required to count the number of high-pitched
tones during each block and report the number at the end of the block. For
some participants the training stage (blocks 1–7) was conducted mainly under
single-task conditions whereas for others most of the training blocks included
a secondary task. Specifically, for Group 2-DT/5-ST the first 2 blocks were run
under dual-task (DT) conditions but the remaining 5 blocks were single-task
(ST); for Group 4-DT/3-ST the first 4 blocks were run under dual-task condi-
tions and the remaining 3 were single-task; and for Group 6-DT/1-ST the first
6 blocks were run under dual-task conditions and the remaining block was
single-task. Hence the two extreme groups (2-DT/5-ST, 6-DT/1-ST) compare
conditions of mainly single-task and mainly dual-task training.

The key question is whether this manipulation of training conditions af-
fects sequence learning in circumstances where testing is conducted under
identical (single-task) conditions. The results were clear: Transfer scores were
very nearly identical (approx. 85 msec) in the 3 groups. Thus participants
learned the sequence equally well regardless of the inclusion of a secondary
task. In their Experiment 1b, Frensch et al. (1998) replicated this pattern but in
a situation where sequence knowledge was now assessed under dual-task con-
ditions. Here the learning effect was smaller, with transfer scores of about 55
msec, but again the scores did not vary as a function of how many training
blocks included the secondary task. The fact that the scores were lower over-
all in this experiment supports the suppression hypothesis: The inclusion of a
secondary task during the testing phase tends to reduce transfer scores.

Similar results have been reported by other researchers. Seger (1997) and
Cleeremans and Jiménez (1998) found nearly identical transfer scores in par-
ticipants trained under single- or dual-task conditions when they were tested
under identical conditions. Also, some data reported by McDowall et al. (1995,
Exp. 3) support the same conclusion. These authors trained one group of sub-
jects for 5 blocks under single-task conditions and another group for 4 blocks
under dual-task followed by a final block under single-task conditions. On
block 5, the mean RT of the two groups was comparable. The absolute level of
RTs is probably a poor measure of sequence knowledge, compared to the effect
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of transfer to a random sequence, but nevertheless these results are consistent
with the view that sequence learning under single- and dual-task conditions
does not differ.

Schvaneveldt and Gomez (1998, Exp. 3) found evidence consistent with
Frensch’s hypothesis, albeit with one important proviso. These authors used
probabilistic rather than deterministic sequences, in which each trial had a 90%
chance of being consistent with an underlying sequence and a 10% chance of
being inconsistent. The difference in RTs to these probable and improbable
stimuli provided a continuous measure of sequence knowledge. Schvaneveldt
and Gomez obtained an RT difference of 51 msec at the end of the training
stage in a single-task group and a difference of 56 msec in a group trained
under dual-task conditions and then switched to single-task testing. Again, se-
quence learning (measured by RT) under single- and dual-task conditions did
not differ noticeably. The proviso is that error rates (an error being an incorrect
keypress) were higher in the single-task group at the end of the training stage
than in the dual-to-single task group during the test stage. If we assume that
better sequence knowledge generates more errors with this version of the SRT
task (because a participant who knows the underlying sequence is more likely
to incorrectly anticipate the “consistent” location on an inconsistent trial), then
the error data suggest that sequence learning was after all somewhat better in
the single-task group.

A study by Heuer and Schmidtke (1996, Exp. 1) which again used tone-
counting as the secondary task did obtain a small but reliable difference be-
tween groups trained under single- and dual-task conditions and then tested
under single-task conditions. However, compared to the designs used by Fren-
sch and his colleagues, this study is not ideal. The single-task test phase im-
mediately followed training for participants trained under single-task condi-
tions, whereas the comparable test for participants trained under dual-task
conditions occurred somewhat later in the experiment, after a dual-task test.
The possible contaminating effects of the prior test in the group trained under
dual-task conditions are unknown. Thus, although the results of these various
studies are contradictory, the experiments reported by Frensch, Lin, & Buchner
(1998, Exps. 1a and 1b) seem to come closest to the ideal of a design specifically
intended to allow the performance and learning accounts to be distinguished.

These studies are important because they tend (putting aside Heuer and
Schmidtke’s data) to support a conception of implicit learning in which the role
of attention is rather different from that seen in more typical (explicit) learning
tasks: Full attention seems not to be necessary for implicit sequence learning to
proceed normally. On the other hand, there are some reasons why the results
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should be regarded with a certain amount of caution. For example, Frensch et
al. (1998) gave all of their groups both single- and dual-task training, rather
than giving one group just single-task training and another group just dual-
task. In addition, the training conditions of even the most extreme groups (2-
DT/5-ST vs. 6-DT/1-ST) only differed on 4 blocks of trials. The design Frensch
et al. adopted therefore tends to reduce the likelihood of obtaining a group
difference in transfer scores and their study may therefore constitute a fairly
conservative test of the experimental hypothesis.

Moreover, Frensch et al. included in their analysis all participants whose
average tone-counting error on the dual-task training blocks was 20% or less.
This is a very liberal criterion and means that participants were included in
the analysis who may have been allocating minimal attention to the secondary
task. Such participants would be expected to show large transfer scores since,
functionally, they are performing the task just like single-task participants. Nat-
urally, a strong test of the experimental hypothesis requires some evidence that
dual-task participants were indeed concentrating to an adequate level on the
secondary task. It is not clear why Frensch et al. adopted this liberal criterion
rather than the more common criterion of 10% (e.g., Cohen et al. 1990).

Thirdly, Frensch et al. used training and transfer sequences which have a
number of undesirable properties. For instance, inspection of the training se-
quences (ABCDEADFC and ABCDECFBE) reveals immediately that they con-
tain no reversals, that is, occasions on which the target moves back to the lo-
cation it occupied on the last-but-one trial (e.g., ABA). In contrast, the quasi-
random sequence presented in the test stage does contain reversals. Suppose
participants learn the abstract feature of the training sequences that they con-
tain no reversals. At any moment during the training phase the participant
knows that the target will not appear in 2 of the 6 possible locations: the lo-
cation of the last trial (since there are no immediate repetitions) and the last-
but-one location. In the test phase, the target does sometimes appear in the
reversal location, and RTs would be expected to be particularly slow on such tri-
als. Hence the transfer scores Frensch et al. obtained may have been inflated: In
fact, it is possible that many participants had no specific sequence knowledge at
all. In that case, the fact that the transfer scores did not differ is uninformative.

The presence versus absence of reversals is only one feature that differs
between the training and test sequences Frensch et al. used. Reed and John-
son (1994) have identified several such factors (e.g., rate of coverage, the mean
number of trials required to see the target appearing in each of the possible
locations) and have provided an elegant method for avoiding these difficulties.
Rather than switching participants to a quasi-random sequence, they are trans-
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ferred to a sequence that is structurally identical to the training sequence but
which is instantiated differently in terms of assignment to screen locations.

Shanks and Channon (2002), therefore, conducted a conceptual replica-
tion of Frensch et al.’s Experiment 1a, but presented one group with only single-
task training blocks and another with only dual-task blocks, and we used Reed
and Johnson’s sequences to avoid the problems described above. In Experi-
ment 2 we tested participants under dual-task conditions (as in Frensch et al.’s
Experiment 1b) as well as under single-task conditions.

The training and test sequences in our experiments were A = 1-2-1-3-4-2-
3-1-4-3-2-4 and B = 4-2-4-3-1-2-3-4-1-3-2-1, where 1-4 are screen locations.
These sequences are structurally identical and are related by the transforma-
tion 1↔4. They are balanced for simple location and transition frequency.
Each location (e.g. 1, 2, 3, 4) occurs three times in each 12 trial sequence, and
each possible transition (e.g., 1-2, 1-3, 1-4, etc.) occurs once. But at the level
of three (or more) consecutive locations the two sequences differ. Reed and
Johnson (1994) gave sequences of three locations the name second order condi-
tionals (SOCs), which refers to the fact that the next location in the sequence
of dot movements can be predicted from the last two locations. For example in
sequence A, 1-2 is always followed by 1, whereas in sequence B, it is always fol-
lowed by 3. Because the sequences are structurally identical, any increase in RTs
in the test block must reflect sequence knowledge rather than the confounding
of structural properties such as the frequency of reversals.

Participants were randomly assigned to two critical groups: Single or Dual.
All participants performed 14 blocks of 96 trials in the training phase. Dur-
ing blocks 1–10, the dot followed sequence SOC1. Participants in group Sin-
gle performed the RT task alone, while participants in group Dual performed
the secondary task as well. On blocks 11–14, both groups were treated iden-
tically. On block 11, sequence SOC1 was used under single-task conditions.
Participants in group Dual were informed prior to this block that they were
no longer required to perform the tone-counting task, but that they should
continue to respond to the target as rapidly as possible. On block 12 sequence
SOC2 was used, and on blocks 13–14 sequence SOC1 was re-introduced. The
relative slowing down on block 12 compared to blocks 11 and 13 provided the
main index of sequence knowledge. In the SRT task, four boxes were presented
along the bottom of the computer screen. A dot (2 mm in diameter) appeared
in the center of one of these boxes on each target location trial. Participants
were instructed to indicate locations 1–4 as quickly as possible by using the V,
B, N, and M keys located across the bottom of the keyboard, respectively.
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Each block of target-location trials began at a random point in the se-
quence, and thereafter targets appeared according to the sequence that cor-
responded to the particular condition and block type. A target-location trial
ended when a participant pressed the correct key, at which time the target was
erased. The next trial began 200ms later. Response latencies were measured
from the onset of the targets to the completion of correct responses.

For approximately half the participants in the Single and Dual groups, the
training sequence (designated SOC1) was A and the test sequence (SOC2) was
B. For the remaining participants these were reversed. Each of these 12-item
sequences was repeated 8 times in each block of 96 trials.

Details of the secondary task are as follows. In each block of dual-task RT
trials, a 100-ms computer generated tone was emitted 100-ms after each cor-
rect target location response. Each tone was randomly determined to be either
low (1000Hz) or high (2000Hz), and participants were instructed to count the
number of high tones emitted during each block of trials. At the end of each
block, participants were asked to provide their count. Feedback presented at the
end of the block encouraged them to count the tones accurately. Participants
were excluded from the analysis if they made more than 10% errors on average.

Figure 1 shows mean RTs for each group across blocks. Participants in
group Single rapidly reached a stable level of short RTs which they maintained
across the training blocks. Participants in group Dual were slower initially, but
on blocks 8–10 RTs were equivalent, suggesting that participants in the latter
group had developed the skill of combining the 2 tasks with minimal interfer-
ence of tone-counting on RTs. On block 11, all participants performed the SRT
task under single task conditions, and no RT difference was present.

The principal data concern the changes in RTs on block 12. For group Sin-
gle, the introduction of sequence SOC2 was accompanied by a very substantial
increase in reaction times, but RTs returned to their earlier level on blocks 13–
14. For group Dual, a very small increase in RTs occurred on block 12, with
RTs again returning to their earlier level on blocks 13–14. To assess sequence
knowledge, we computed a difference (D) score based on the difference be-
tween the RT on block 12 and the average RT on blocks 11 and 13. The mean
D scores are shown on the left of Figure 2. Plainly, there was less evidence of
sequence learning under dual-task conditions1.

Shanks and Channon’s (2002) findings are straightforward: Under com-
mon testing conditions, sequence knowledge is substantially greater in a group
trained under single-task conditions than in one trained under dual-task con-
ditions. We thus failed to replicate the null effect reported by Frensch, Lin, and
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Figure 1. Mean reaction times across blocks of trials in Shanks and Channon’s (2002)
Experiment 1. Both groups were trained on sequence SOC1 on blocks 1–10. Group Sin-
gle performed under single-task conditions in all blocks while group Dual performed
under dual-task conditions in blocks 1–10 prior to the removal of the secondary task
on block 11. Sequence SOC1 was used for both groups on blocks 11 and 13–14 while
sequence SOC2 was used on the transfer block, block 12.

Buchner (1998). At variance with the attentional hypothesis of implicit learn-
ing, the results suggest that the division of attention impairs sequence learning.

In a second experiment we (Shanks & Channon 2002:Exp 2) predicted that
transfer scores would again be lower in a dual- than in a single-task training
group even if testing were conducted for both groups under dual-task con-
ditions (contrasting with the results obtained by Frensch, Lin, and Buchner
1998, Exp. 1b). Although D scores might be lower overall under dual- than un-
der single-task testing conditions (because of suppression), we still anticipated
a group difference. Participants were randomly assigned to four groups con-
structed according to whether training took place under single- (groups Sin-
gle/Single and Single/Dual) or dual-task (groups Dual/Single and Dual/Dual)
conditions. During blocks 1–8, participants in groups Single/Single and Sin-
gle/Dual performed the RT task alone while participants in groups Dual/Single
and Dual/Dual performed the secondary task as well. The sequence (SOC1)
was A for roughly half the participants in each group and B for the remain-
der. On blocks 9–11, groups Single/Dual and Dual/Dual performed the SRT
task combined with the tone-counting task whereas the other two groups per-
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Figure 2. Mean (+ s.e.m.) D score (RTs on the transfer block minus the average of
RTs on the preceding and subsequent blocks) in each group of Shanks and Channon’s
(2002) Experiments 1 and 2. S/S: Single/Single, D/S: Dual/Single, S/D: Single/Dual,
D/D: Dual/Dual.

formed it alone. Participants in group Single/Dual were informed prior to this
block about the tone-counting task. On block 10 sequence SOC2 was used, and
on block 11 sequence SOC1 was re-introduced. Only one block with sequence
SOC2 followed the transfer block.

Figure 3 presents mean RTs for each group across blocks. Participants in
groups Single/Single and Single/Dual rapidly reached a stable level of short RTs
which they maintained across blocks 1–8. Participants in groups Dual/Single
and Dual/Dual were considerably slower. On block 9 the new conditions came
into effect and RTs were now considerably longer in the two groups receiv-
ing dual-task conditions (Groups Single/Dual and Dual/Dual). Between blocks
8 and 9 there was an almost perfectly symmetrical relationship between the
speed-up of RTs in group Dual/Single and the slowdown in group Single/Dual.
Block 9 also reveals a form of behavioral contrast: single-task responding is
slower after single- than dual-task training (also evident in Experiment 1) while
dual-task responding is faster after dual- than single-task training.

The principal data concern the change in RTs on block 10. Contrasting with
the results of Frensch et al. (1998, Exp. 1b), the increase was largest in groups
Single/Single and Single/Dual than in the other two groups, for whom the in-
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Figure 3. Mean reaction times across blocks of trials in Shanks and Channon’s (2002)
Experiment 2. Groups Single/Single and Single/Dual performed under single-task con-
ditions in blocks 1–8 while groups Dual/Single and Dual/Dual performed under dual-
task conditions. The secondary tone-counting task was performed concurrently with
the RT task on blocks 9–11 in groups Single/Dual and Dual/Dual, while groups Sin-
gle/Single and Dual/Single performed these blocks under single-task conditions. Se-
quence SOC1 was used for both groups on blocks 1–9 and 11 while sequence SOC2
was used on the transfer block, block 10.

crease was very small. That is to say, there was more disruption in responding
in the groups trained under single-task conditions than in those trained un-
der dual-task conditions, regardless of testing conditions, and this is consistent
with the secondary task interfering with sequence learning. Figure 2 shows this
pattern more clearly in terms of difference scores.

Overall these results are very straightforward: they confirm that under the
conditions used by Shanks and Channon (2002), sequence learning is impaired
by a secondary task. We replicated the results of Experiment 1, with D scores
being larger in group Single/Single than in group Dual/Single, but we also
found the same pattern under dual-task testing conditions. Although testing
conditions had an overall effect on RTs (which were longer under dual- than
single-task conditions), they had no detectable effect on the expression of se-
quence knowledge which continued to be greater for those participants trained
under single-task conditions.
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The findings of Shanks and Channon’s experiments are consistent in sug-
gesting that attention cannot be divided without detrimentally affecting im-
plicit sequence learning. This is most clear in Experiment 2 where dual-task
training conditions impaired sequence learning, independently of testing con-
ditions. Our results are in conflict with Frensch et al.’s in two respects. First, in
both experiments we obtained greater learning scores in groups trained under
single-task conditions than in groups trained under dual-task conditions, re-
gardless of the testing conditions: in their comparable experiments (Frensch et
al. 1998, Exps. 1a and 1b), no such difference was evident. Secondly, our find-
ings do not lend support to the suppression hypothesis. Recall that the suppres-
sion hypothesis states that dual-task testing conditions suppress the expression
of sequence knowledge: group differences are flattened out by the secondary
task. The evidence for this hypothesis comes from a number of experiments:
for instance, Frensch, Lin, and Buchner (1998, Exps. 2a & 2b) trained partici-
pants on a repeating sequence under single- or dual-task conditions and then
tested them under both single- and dual-task conditions. Transfer scores were
generally lower on the dual- than on the single-task test, regardless of train-
ing conditions. In another study, Frensch, Wenke, and Rünger (1999) trained
participants under dual-task conditions and tested them first under dual- and
then single-task conditions, and again found that transfer scores were lower on
the dual- than on the single-task test.

In contrast, sequence knowledge in Experiment 2 was not better expressed
under single- than under dual-task testing conditions: There was no overall
effect of testing conditions in the ANOVA described above. Indeed, in one
specific comparison we find evidence of a “reverse” suppression effect, in
that D scores were numerically greater in group Single/Dual than in group
Dual/Single. This is contrary to the suppression hypothesis because, accord-
ing to Frensch et al., the two groups should have learned the sequence equally
but the former group should have suffered suppression in the test stage.

Why do our results conflict with those of Frensch and his colleagues? The
experiments differ in many ways but we contend that the use of within-subjects
designs in most of the critical suppression studies (e.g., Frensch et al. 1999) is a
significant concern. If participants are first tested under (say) dual-task condi-
tions and then under single-task conditions, the possibility arises of contami-
nation of the later test by the earlier one. We have very little reason to discount
the possibility of such contamination. In Experiments 1 and 2 this issue was cir-
cumvented by the use of between-subjects designs. The suppression hypothesis
predicts larger D scores under single- than dual-task testing conditions. Yet the
pattern of results was the exact converse of this. We contend that Frensch et
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al.’s conclusion – that tone-counting has no effect on transfer scores provided
that common testing conditions are used – is not in general correct. Our results
therefore challenge the idea that implicit learning can be usefully distinguished
from explicit learning on the basis of its attentional requirements, as Frensch
(1998; Frensch et al. 1998; Frensch et al. 1999) and others (e.g., Cleeremans
1997; Hayes & Broadbent 1988; Heuer & Schmidtke 1996; Jiménez & Méndez
1999; Schmidtke & Heuer 1997; Stadler 1995) have suggested.

. Other secondary tasks

The secondary task of tone-counting does appear to affect sequence learning.
I now turn to a consideration of other secondary tasks. As a number of re-
searchers have noted (Frensch et al. 1998; Heuer & Schmidtke 1996; Schmidtke
& Heuer 1997; Stadler 1995), even if a secondary task such as tone-counting
does affect sequence learning, the locus of this need not be at the level of com-
petition for attentional resources. The effects of a secondary task may be due,
for example, to specific interference rather than competition for central ca-
pacity. There is now a sizable body of work attempting to isolate the exact
mechanisms by which different secondary tasks might affect performance.

Stadler (1995) used a memory-load secondary task in the expectation that
this would be a “purer” attention-demanding task than tone-counting. Com-
pared to a single-task group, participants who memorized a 7-letter string at
the outset of each block of SRT trials and who recalled it at the end of the
block showed a significantly reduced transfer effect when shifted to a ran-
dom sequence, although the effect was much smaller than that caused by tone-
counting. Stadler (1995, Exp. 2) downplayed this finding because of a post-hoc
reanalysis of the data according to whether participants were aware or not of
the sequence and concluded that implicit sequence learning is not attention-
demanding. In unaware participants, the difference in sequence learning be-
tween the memory-load group and the single-task control group was reduced.
However, the difference was not eliminated and loss of statistical power makes
the reduction hard to interpret. There remains clear evidence of an overall dis-
ruption of sequence learning as a result of the memory load. Interpretation
is made additionally problematic, though, because Stadler’s experiments con-
founded learning with performance: The secondary task was present in both
the training and transfer blocks. Furthermore, Reed and Johnson (1994) have
documented a number of problems with the sequences Stadler used, and Will-
ingham, Greenberg, and Thomas (1997) were unable to replicate some of his
findings. Thus it is difficult to draw firm conclusions from this study.
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Another study which employed a secondary task other than tone-counting
was conducted by Heuer and Schmidtke (1996). These authors pointed out that
the tone-counting task has two components, memorizing the current number
of tones and classifying each tone as high or low. In contrast to the findings
of Stadler (1995), they (Heuer & Schmidtke 1996, Exp. 2) found that sequence
learning was completely unaffected by 2 secondary tasks (the verbal and visuo-
spatial tasks of Brooks 1967) which impose a memory load without additional
stimulus processing, whereas it was affected by a task (pressing a foot pedal in
response to a high-pitched but not a low-pitched tone) requiring stimulus pro-
cessing without a memory load. On the assumption that the Brooks secondary
tasks were to some degree attention-demanding, Heuer and Schmidtke’s data
represent quite strong evidence that sequence learning in the SRT task does
not require central attentional resources: So long as an appropriate secondary
task is used (i.e., one that does not require stimulus processing in the response-
stimulus interval of the main task), no interference of sequence learning will
be observed. On the other hand, Heuer and Schmidtke’s studies can again be
criticized on the grounds that they used training and transfer sequences which
were not structurally identical and hence which did not control for factors such
as the frequency of targets at each location or rate of reversals.

These memory-load studies, in which participants maintain a memory
load across an entire training block with no trial-by-trial secondary task events,
do hint that implicit sequence learning does not require attention. But some
improvement in methodology seems warranted. In the experiment reported
next I essentially replicate Shanks and Channon’s (2002) Experiment 1 but us-
ing a memory-load rather than a tone-counting secondary task in an attempt
to clarify this issue. There were 24 participants in the experiment, 12 per group.
Those in group Single performed the SRT task alone on blocks 1–10 with se-
quence SOC1 while those in group Dual performed the SRT task in combina-
tion with a memory load task. A string of 7 different consonants (excluding Y)
was presented for 10 sec at the beginning of each block, with a different string
used for each block. Strings were written on separate white cards and partici-
pants were instructed to treat the two tasks as being of equal importance. Im-
mediately after the string was removed, participants commenced the SRT task
for that block, and at the end of the block they reported the string to the ex-
perimenter. All participants were tested under single-task conditions on blocks
11–13 with the memory load task removed. Participants in group Dual were
informed prior to block 11 that there would be no memory load. On block 12
sequence SOC2 was used, and on block 13 sequence SOC1 was re-introduced.
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Figure 4. Mean reaction times across blocks of trials in an experiment in which one
group of participants performed a concurrent memory load task. Both groups were
trained on sequence SOC1 on blocks 1–10. Group Single performed under single-task
conditions in all blocks while group Dual performed under dual-task conditions in
blocks 1–10 prior to the removal of the secondary task on block 11. Sequence SOC1
was used for both groups on blocks 11 and 13 while sequence SOC2 was used on the
transfer block, block 12.

The memory-load task was performed with a high degree of accuracy, par-
ticipants recalling a mean of 6.10/7 letters correctly in position. Performance
did not vary systematically across blocks and no participant achieved an overall
mean of less than 5.10/7 correct.

Figure 4 presents mean RTs for each group across blocks. Participants in
group Dual were somewhat faster than those in group Single across blocks 1–
10. On block 11 all participants performed under single task conditions and
RTs were fairly close. The principal data again concern the change in RTs on
block 12. The increase was very similar, and greater than zero, in the two
groups. The mean D scores, which did not differ, t < 1, were 115 msec in Group
Single and 130 msec in Group Dual. Both scores were significantly greater than
zero, t(11) > 6.52, p < .001.

In contrast to the data obtained when tone-counting was the secondary
task, the present results appear to support the conjecture that sequence learn-
ing does not place significant demands on attentional resources. The findings
endorse the conclusions of Heuer and Schmidtke’s (1996) study and suggest
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that the effect of tone-counting may arise from one of its nonattentional prop-
erties. However, the obvious counterargument is that these memory load tasks
may simply not have been sufficiently taxing. Unlike tone-counting, they do
not necessarily impose a task requirement on every single SRT trial. Perhaps
participants were able to rehearse the letter string sufficiently in the first few
trials of each block to commit it to memory with only occasional “refreshing”
being necessary to maintain it until the end of the block. In that case, full at-
tentional resources would have been available for the SRT task. Indeed, the fact
that RTs were no slower in the Dual than the Single group (if anything, they
were faster) is supportive of this conjecture.

In response to this alternative viewpoint, Jiménez and Méndez (1999, see
Chapter 2, current volume) developed a secondary task which they argued
would avoid the twin problems of being insufficiently demanding and of in-
troducing stimuli (i.e., tones) irrelevant to the primary task. They used a prob-
abilistic sequence learning task in which the target stimulus could be one of 4
symbols; as well as reacting to the location of each target, dual-task participants
had to count the frequency of 2 of the symbols. The attraction is that symbol-
counting imposes a continuous attentional demand but uses stimuli (i.e., the
targets themselves) to which the participant already has to attend to carry out
the primary task. This secondary memory-load task had no detectable effect on
sequence learning. Jiménez and Méndez speculated that the use of a probabilis-
tic sequence was critical in their study for revealing a form of learning which is
independent of attention. In a conceptual replication of this experiment, we (D.
Shanks & S. Banfield, unpublished data) obtained a rather different outcome,
however. We used the probabilistic generation procedure of Schvaneveldt and
Gomez (1998) described previously and gave participants 9 blocks of trials (100
trials/block), either with or without the symbol-counting task, prior to a test
block without the secondary task. Whereas the single-task group showed good
sequence learning (indexed by faster responses to consistent than to inconsis-
tent targets) on the test block, the dual-task group showed almost no sequence
learning. Hence it is not the case that probabilistic sequences necessarily invoke
a form of learning that makes no demands on attention.

But why did we get results different from those of Jiménez and Méndez?
The major difference between the studies is that their one monitored learn-
ing over many thousands of trials whereas ours looked at learning over only
a few hundred trials. This raises the possibility that if we re-ran our experi-
ment with a longer training stage we would now find no difference between
the single- and dual-task groups. This is exactly what we found when we dou-
bled the amount of training. Under these circumstances, both groups showed



Attention, awareness, and implicit learning 

a healthy consistent/inconsistent difference on the final single-task test block.
We therefore offer the following perspective on Jiménez and Méndez’ results:
because participants had had so much training at combining the two tasks,
by the time they began to show evidence of sequence learning the secondary
task had become largely automated and hence made little demand on atten-
tion. Thus the dual-task group showed the same degree of sequence learning
as the single-task group. But if Jiménez and Méndez had used a more easily
learnable sequence and had tested their participants much earlier (as we did in
our study), they would have observed a dual-task decrement. Just because par-
ticipants can eventually combine two tasks with minimal interference does not
mean that learning to perform those tasks efficiently does not require attention.

In the next experiment we used two secondary tasks which, like symbol-
counting, required processing on every trial. These were mental arithmetic and
articulatory suppression. As with symbol-counting, the important element of
these secondary tasks is that although they require trial-by-trial processing, no
external stimuli are presented to the participant in the intertrial intervals and
thus they do not require the sort of categorization process which Heuer and
Schmidtke (1996) suggested was important.

The procedure was very similar to the previous experiment. There were 36
participants, 12 per group. Participants in the Mental Arithmetic group were
given a number, randomly chosen between 500 and 800 (from the set 667, 796,
632, 504, 732, 591, 674, 800, 555, and 694), at the beginning of each block.
They were then required to subtract 3 from that number and say it aloud be-
fore making a keypress in the primary SRT task and to do this on every trial.
Participants in the Articulation group were also given a number from the set
above at the beginning of each block but in this case were required to say that
number aloud once before making each keypress in the primary task. All par-
ticipants were again tested under single-task conditions on blocks 11–13 with
the memory load tasks removed.

Figure 5 presents mean RTs across blocks. RTs were very slow in the Ar-
ticulation group and even slower in the Mental Arithmetic group. On block
11 all participants performed under single task conditions and RTs were very
close. The RT increase on block 12 were much greater in the single-task group
than in the other groups. The mean D scores were 86 msec in Group Single, 24
msec in Group Articulation, and –1 msec in Group Mental Arithmetic. These
scores differ [F(2, 33) = 9.38, p < .05] and plainly suggest that both mental
arithmetic and articulation impair sequence learning (p < .05 in each case).

It might be argued that the detrimental effects of these secondary tasks on
learning are due not to the presence of the secondary task per se but rather are a



 David R. Shanks

M
ea

n
 R

T
 (

m
se

c)

200

700

1200

1700

2200

2700

1 2 3 4 5 6 7 8 9 10 11 12 13

Block

Single Mental Arithmetic Articulation

400

450

500

550

11 12 13
Block

Figure 5. Mean reaction times across blocks of trials in an experiment in which one
group of participants performed a concurrent mental arithmetic task and another per-
formed an articulation task. All groups were trained on sequence SOC1 on blocks 1–10.
Group Single performed under single-task conditions in all blocks while groups Men-
tal Arithmetic and Articulation performed under dual-task conditions in blocks 1–10
prior to the removal of the secondary task on block 11. Sequence SOC1 was used for all
groups on blocks 11 and 13 while sequence SOC2 was used on the transfer block, block
12. The inset figure shows the results from blocks 11–13 in larger scale.

by-product of the change in the timing of the trials that they create. Specifically,
these tasks lead to an increase in the stimulus-stimulus interval of up to 2500
msec in the case of mental arithmetic. However, careful experiments by Will-
ingham, Greenberg, and Thomas (1997) tested this claim directly by looking at
the effects of lengthened response-stimulus intervals on sequence learning. Al-
though they did not examine increases as large as 2500 msec, their results pro-
vided no evidence whatsoever that increasing the effective stimulus-stimulus
interval, or making it more variable, affected learning.

. Summary

Where do these results leave us? There are several related conclusions. It is
not the case that tone-counting only has an effect on performance and not on
learning. Shanks and Channon’s experiments seem to clearly falsify this claim
and to show instead that there is an effect on learning. But that does not mean
that attention is necessary for implicit sequence learning as the critical effects
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of tone-counting might be on some other process (e.g., stimulus processing).
This argument can hardly be made about memory load tasks, which do not
affect learning. However, such tasks may only make minimal attentional de-
mands. Symbol-counting (in some circumstances), mental arithmetic, and ar-
ticulation, tasks in which no stimuli are presented in the inter-trial intervals,
do affect sequence learning.

It does not appear, I conclude, that the attentional independence of im-
plicit learning has been satisfactorily established. To endorse such a claim, one
would have to argue either that memory load tasks are sufficiently demanding
to comprehensively reduce the resources participants have available for learn-
ing the stimulus sequence, or that the adverse effects of symbol-counting, men-
tal arithmetic, and articulation are secondary to their effects on sequence or-
ganization and timing. Neither of these claims seems to be strongly supported
by the available evidence.

. Awareness and implicit sequence learning

In the SRT task, participants’ sequence knowledge may be expressed either
indirectly, via reduction in response latency to predictable targets (priming),
or directly, via recall, recognition, prediction, or generation tests thought to
require conscious knowledge.

It has often been claimed that direct and indirect measures of sequence
knowledge can be dissociated, and such dissociations have been taken to sup-
port the existence of an “implicit” learning process which is independent of
explicit learning. Since implicit sequence learning is proposed to be unrelated
to and dissociable from consciously-accessible knowledge, it is conjectured to
be an unconscious process. In this section I examine in detail whether such
an unconscious learning process needs to be postulated or whether sequence
learning can be understood from the perspective of a unitary learning system.

The case for implicit learning depends crucially on the validity of the tests
used to index awareness. A common distinction is drawn between “subjective”
and “objective” tests, where the former ask the participant to report his/her
state of awareness while the latter demand some forced-choice discrimination.
There is absolutely no doubt that participants’ verbal reports about training
sequences in SRT experiments fail to incorporate all of the information and
serial dependencies that can be detected chronometrically in their primed key-
presses (e.g., Shanks & Johnstone 1998; Willingham, Greeley, & Bardone 1993).
Another way to elicit subjective reports is to ask participants to generate the se-
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quence they were trained on and then give a “metacognitive” assessment of
their confidence in their generation accuracy. For instance, Shanks and John-
stone (1998) initially trained participants on SOC sequences and then asked
them to freely generate those sequences. Participants who reported that they
were guessing in this test nonetheless generated their training sequence far
better than would be expected by chance.

Although such results establish that in at least one sense sequence learning
can be implicit, they may have a rather mundane explanation: As many authors
have pointed out (e.g., Merikle, Smilek, & Eastwood 2001; Reingold & Merikle
1990), an adequate test of awareness must be exhaustive which means that the
test must be sensitive to all of the conscious knowledge of which the participant
is in possession. The exhaustiveness criterion is a problem for subjective tests of
awareness because there is little to guarantee in such tests that the participant
has indeed reported all available knowledge. For example, he or she may simply
choose to withhold conscious knowledge held with low confidence: in signal
detection terms, the participant’s response criterion may be very strict. If that
happens, then an implicit measure may dissociate from a subjective measure
simply because the former is more sensitive to conscious knowledge. To avoid
this problem it would be necessary for the experimenter to induce and moti-
vate the participant to report all relevant knowledge, including hunches and
so on. This has not often been attempted. One way of achieving it is to force
the participant to report a given number of pieces of information, a procedure
which, when compared to unforced recall, can significantly improve perfor-
mance (e.g., Schmidt & Dark 1998). In fact, some studies which have probed
quite thoroughly for all available verbalizable knowledge have even ended up
finding that all knowledge is accessible for report (e.g., Marescaux 1997).

As a reaction to this problem in the interpretation of subjective tests, it has
been widely accepted that objective rather than subjective tests provide the best
measures of awareness, on the grounds that they are more likely to be exhaus-
tive. However, prior examples of dissociations between direct and indirect tests
when the former are objective are rather equivocal. Key results appearing to
demonstrate dissociations have not been replicated (see Curran 1997; Shanks
& Johnstone 1999) or have been criticized (Dienes & Berry 1997; Perruchet
& Amorim 1992; Perruchet & Gallego 1993; Perruchet, Gallego, & Savy 1990;
Shanks & Johnstone 1998; Shanks & St. John 1994) on a variety of method-
ological grounds. To take just one example, it is almost always the case that the
direct and indirect measures are taken at different times in distinct test phases
and this creates a number of potential difficulties: for instance, if the direct test
is administered some time after the indirect test they may be differentially af-
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fected by forgetting. Moreover, with distinct test phases participants may be
inclined to adopt different response sets, response biases, strategies, levels of
motivation and so on which may significantly affect the relative levels of per-
formance obtained in the tests. The availability of a testing method which en-
ables concurrent direct and indirect knowledge assessment would allow many
methodological problems of this sort to be finessed. Shanks and Perruchet
(2002) have introduced and exploited such a method which I describe below.

Many of the key methodological issues at the heart of the debate over im-
plicit learning can be illuminated by reference to a recent study by Destre-
becqz and Cleeremans (2001: see pp. 181–212, current volume). These authors
trained participants on an SRT task in which the target moved according to
a repeating SOC sequence like those used in the experiments described in the
previous section. The learning phase consisted of 15 blocks of 96 trials for a
total of 1440 trials. For half the participants there was a response-stimulus in-
terval (RSI) of 250 msec between the execution of one response and the appear-
ance of the next target while for the remainder the RSI was 0 msec. RTs reduced
somewhat across blocks 1–12 in both groups. Then on block 13 the sequence
was changed to a different SOC sequence with the original sequence being rein-
troduced on blocks 14 and 15. Destrebecqz and Cleeremans found that RTs
were significantly greater in the transfer block (block 13) and concluded that
their participants had learned something about the sequence which permitted
them to anticipate, perhaps unconsciously, where each successive target would
appear and hence make fast, “primed,” responses.

To ascertain whether this sequence knowledge was conscious or uncon-
scious, Destrebecqz and Cleeremans presented two tests following block 15.
First, they informed participants that there had been a repeating sequence and
asked them to generate a sequence of keypresses under both “inclusion” and
“exclusion” conditions following the logic of opposition developed in the pro-
cess dissociation procedure (Jacoby, Toth, & Yonelinas 1993). In the inclusion
test participants were to try to reproduce the sequence they saw in training
while in the exclusion test they were to avoid reproducing the training se-
quence or any of its parts. The key finding was that, at least for participants
in the RSI = 0 msec group, the sequence generated under exclusion conditions
contained more chunks from the training sequence than would be expected
by chance. Thus participants’ sequence knowledge, Destrebecqz and Cleere-
mans argued, was unconscious in the sense that they could not exert voluntary
control over it when explicitly required to exclude it in generating a sequence2.

The second assessment of awareness comprised a recognition test. Partic-
ipants were shown short sequences of 3 targets half of which came from the
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training sequence (e.g., 342, 423) and half of which were new (in fact they
weren’t completely new since they came from the block 13 transfer sequence).
Participants executed each sequence just as in the training stage and then made
an old/new rating on a 6-point confidence scale. The key finding was that
recognition was above chance in the RSI group but not in the no RSI group. If
recognition is indeed a measure of conscious sequence knowledge then the re-
sults of the no RSI group seem to suggest, in line with the exclusion generation
data, that participants’ knowledge of the sequence was entirely implicit. Note
however that the measure of conscious knowledge was obtained in a test con-
ducted some period of time after the transfer test of implicit knowledge. Thus
to conclude that participants possessed implicit but not explicit knowledge re-
quires assuming, amongst other things, that their state of knowledge had not
altered (e.g., by interference or forgetting) during the lengthy interval prior
to the recognition test in which they performed the inclusion and exclusion
generation tests.

Note also that Destrebecqz and Cleeremans tested recognition with 3-item
sequences. Shanks and Johnstone (1999) and Shanks and Perruchet (2002)
have shown that recognition is far superior with 6- than with 3-item sequences.
Moreover, in two of the dual-task experiments described above (one with a
memory load secondary task, the other with mental arithmetic and articula-
tion), recognition was above chance in all groups when tested with 6-item se-
quences. After the final SRT block, participants in those experiments were pre-
sented with test trials comprising 6-location sequences which they responded
to exactly as in the training stage (without a secondary task). Half of these test
sequences were fragments of the training sequence (i.e., old) and others were
not (new). Figure 6 shows the mean recognition ratings for old and new se-
quences for each of the 5 groups and reveals clear old/new discrimination in
all groups, with p < .05 in each case. Consistent with previous research (Per-
ruchet & Amorim 1992; Perruchet, Bigand, & Benoit-Gonin 1997; Shanks &
Johnstone 1999; Shanks & Perruchet 2002), this implies that participants do
have at least some conscious access to their knowledge of the sequence and that
if implicit learning is defined in terms of a lack of awareness, then knowledge
acquired in the SRT task is not unconscious. I conjecture that the lengthy de-
lay that Destrebecqz and Cleeremans’ interposed prior to their recognition test,
together with their use of 3-item test sequences, contributed to their (spurious)
null result. This conjecture is supported by the results of experiments reported
by Shanks, Wilkinson, and Channon (2002) who again found better recogni-
tion with 6- than with 3-item test sequences and who also found that, even
with 3-item sequences, participants performed above-chance in recognition if
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Figure 6. Mean (+ s.e.m.) recognition ratings to old and new test sequences in the
experiments described previously (see Figs 4 and 5). After the final block of the SRT
task, participants were presented in a random order with 24 6-item test sequences, 12
of which were from the SOC1 training sequence (old) and 12 of which were from the
SOC2 sequence (new). They executed each of these sequences prior to making a recog-
nition rating (1 = certain new, 6 = certain old). In each group, the old/new difference
was statistically significant.

the test phase followed the study phase immediately. Shanks et al. were also
unable to detect any qualitative difference between RSI and no RSI conditions.

As described above in regard to Destrebecqz and Cleeremans’ (2001) study,
both generation and recognition tests are amongst those which have been ex-
tensively studied. If participants can be shown by some priming measure to
possess knowledge of sequential structure, but fail to perform above chance on
an objective test, then it is hard to argue that this is simply a problem of sensi-
tivity or exhaustiveness. In a recognition test, for example, the retrieval context
is identical to the learning context and a forced-choice old/new response is
required. Although I have raised concerns over Destrebecqz and Cleeremans’
(2001) results, there is little doubt that priming can be dissociated from per-
formance on an objective test. I now present an example of such a dissociation
from a study by Shanks and Perruchet (2002). However, far from establish-
ing the validity of the implicit/explicit distinction, this example can instead be
used to undermine it. It demonstrates the limited usefulness of dissociations in
inferring mental processes.

Shanks and Perruchet used a recognition test similar to that of Destrebecqz
and Cleeremans and found that participants were able to discriminate old from
new sequences overall (the recognition ratings were similar to those shown in
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Figure 7. Mean (± s.e.m.) reaction time to targets 1–6 of old and new test sequences in
Shanks and Perruchet’s (2002) experiments. For some participants test sequences were
of length 3 while for others they were of length 6. Targets 3–6 are predictable from the
preceding targets whereas targets 1–2 are not. It can be seen that RTs are faster for old
than new sequences after target 2.

Figure 6). However, we also found that participants responded faster in execut-
ing the old sequences. These data are shown in Figure 7. Here test sequences
were of length 3 for some participants and length 6 for others. The graph plots
RT for each position in the test sequences. Priming did not occur for the first
and second targets (i.e., there was no old-new RT difference) because 2 ele-
ments of context are required to discriminate old from new SOC sequences. Af-
ter position 2, however, RTs were reliably faster for old than for new sequences.
The fact that old and new sequences were discriminated both in their (direct)
recognition ratings and in their (indirect) speed of execution allowed us to
look in more detail at the correlation between these measures. This question
was addressed by computing the relative execution speeds for old and new test
trials for which participants gave identical recognition ratings. If, for example,
priming and recognition are dependent on distinct knowledge sources, then
priming might be expected even when old and new sequences are not differen-
tially recognized. Alternatively, if priming and recognition are tightly coupled
then old and new test sequences given identical recognition ratings should be
executed with equivalent latencies.

These results are shown in Figure 8. It is plain that the predictable tar-
gets in old sequences elicited more rapid responses than the corresponding
unpredictable targets in new sequences at each recognition score. Thus the
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Figure 8. Mean (± s.e.m.) response latency (msec) to targets in old and new test se-
quences in Shanks and Perruchet’s (2002) experiments is plotted on the ordinate as a
function of recognition rating (1 = certain new, 6 = certain old) on the abscissa. Data
are based on RTs to target 3 of each sequence in the group that received test sequences
of length 3 and on mean RTs across targets 3–6 of each sequence in the group that re-
ceived 6-element test sequences. Targets 1–2 were unpredictable in both old and new
sequences. The critical result is that old sequences were executed faster than new ones
even when they received the same recognition rating.

direct (recognition) and indirect (priming) measures were dissociable: even
when old and new test sequences received identical recognition ratings, old se-
quences were nevertheless executed more rapidly than new ones. This effect
was quite consistent across participants: averaging across recognition ratings,
47/69 (68%) of participants presented with 3-item sequences and 63/79 (80%)
of those presented with 6-item ones had shorter response latencies overall to
old than new sequences which they did not discriminate in recognition.3 These
results therefore demonstrate response priming of old relative to new sequences
which is not accompanied by differential recognition. Indeed, the priming ef-
fect was significant with 3-item test sequences even for sequences which were
not recognized at all (i.e., which received a rating of 1).

This is the first demonstration of implicit priming of a sequentially-
structured response chain under conditions in which priming and recogni-
tion are assessed concurrently. Previous research (Cleeremans & McClelland
1991; Destrebecqz & Cleeremans 2001; Frensch et al. 1998; Honda et al. 1998;
Jiménez, Méndez, & Cleeremans 1996; Nissen & Bullemer 1987; Perruchet &
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Amorim 1992; Perruchet et al. 1997; Reber & Squire 1998; Reed & Johnson
1994; Stadler 1995; Willingham et al. 1993) has not allied contiguous mea-
surement on direct and indirect tests with the analytic procedure of examin-
ing performance on the indirect test at different levels of performance on the
direct test, which means that fine-grained comparison of measures across test
items has not been possible. Shanks and Perruchet’s study shows that such fine-
grained comparison is essential as global measures of priming and recognition
were strongly associated (i.e., both priming and recognition were significantly
above-chance).

One attractive conclusion from these results is that there exists a form of
learning (i.e., implicit) which is independent of explicit learning and which
can occur in the absence of awareness (i.e., recognition). An alternative pos-
sibility, however, is that a single knowledge source underlies performance on
both types of test, with subtle differences between the retrieval processes re-
cruited by the tests being responsible for the observed dissociations (Kinder &
Shanks 2001; Nosofsky & Zaki 1998). I next present such a model which re-
veals that priming can be dissociated from recognition in the manner found
in the present results even if the two measures depend on the same underlying
memory variable.

. A model of priming and recognition

This model (Shanks & Perruchet 2002), which is conceptually very similar to
standard signal detection theory models for recognition judgments and their
latencies (Pike 1973; Ratcliff & Murdock 1976), starts with the simple assump-
tion that new and old test items are associated with a memory strength vari-
able which we will call familiarity f . Greater degrees of familiarity lead to
higher recognition judgments and faster RTs, and familiarity can be thought of
as some composite but unidimensional function of the perceptual familiarity
of the stimulus sequence and the motor fluency of the executed response se-
quence. In the model f is a uniformly distributed random variable in the inter-
val [0,.8] for new items and in the interval [.2,1] for old items. Thus the mean
familiarity of old items, f old, is slightly higher (by .2) than the mean for new
items, f new. For each participant a single value of familiarity is independently
sampled for new and old items from these distributions. Next, we assume that
RT is a decreasing function of f but with the addition of some random error:

RTold = 200 + 100(1 – f old) + 300e (1)

RTnew = 200 + 100(1 – f new) + 300e (2)
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Figure 9. Mean simulated RTs (msec) to targets in old and new test sequences as a
function of recognition rating. From Shanks and Perruchet (2002).

where e is uniformly distributed random error in the interval [0,1]. The num-
bers in these equations are simply chosen to ensure that RTs are generated be-
tween a maximum of 600 msec when the familiarity of the test item is zero and
a minimum of 200 msec when familiarity is 1. These correspond roughly to
observed response times.

Recognition judgments (J) are also based on familiarity, but include an-
other (independent) source of error:

Jold = 2f old + 3e + 1 (3)

Jnew = 2f new + 3e + 1 (4)

where e is again uniformly distributed random error in the interval [0,1]. J is
rounded to the nearest integer value. These equations generate recognition rat-
ings between a maximum of 6 when the familiarity of the test item approaches
1 and a minimum of 1 when familiarity is 0.

Despite the fact that RTs and recognition judgments depend on the same
variable (f ) in this model, and depend on nothing else apart from noise, the
model nevertheless generates a pattern of data strikingly similar to that shown
in Fig. 8. Figure 9 presents the mean RTs to old and new items at each recog-
nition judgment based on 1000 simulated subjects. RTs are faster to old than
new items simply as an automatic by-product of the fact that the two mea-
sures are affected by the random variation and measurement error that plague
any experimental measure. More specifically, for old and new sequences to be



 David R. Shanks

rated equally in recognition a larger value of e in Eqn. 4 compared to Eqn. 3
is necessary, on average, to offset the larger average value of f old compared to
f new. However, when these same f values are used to determine RTs in Eqns. 1
and 2 they will be combined with independently-generated values of e. Since
the latter are uncorrelated with the e values incorporated in the recognition
judgments, on average they will not differ for old and new items. Hence, as
f old is on average greater than f new, RTold will be lower than RTnew, as observed
empirically in the participants’ behavior.

When error is not included in the model the old-new difference is zero.
This confirms that it is the imperfect relationship between measures of priming
and recognition which is responsible for the effect.

. Summary

The present section supports an empirical conclusion and a theoretical one.
Empirically, previous research has failed to demonstrate convincingly that
above-chance sequence knowledge can be accompanied by null awareness
when the latter is indexed by objective measures such as recognition. However,
Shanks and Perruchet showed that practiced sequences of responses are exe-
cuted faster than unpracticed ones even when the sequences are given identical
recognition ratings. This is a clear confirmation that priming and recognition
can be dissociated. But the theoretical conclusion is that this dissociation is to
be expected from any pair of measures which are less than perfectly correlated
and is not inconsistent with a model in which priming and recognition depend
on the same underlying memory structure.

. Concluding comments

It is not clear that either of the claims about implicit sequence learning de-
scribed at the outset of this chapter has been established. If the goal is to
demonstrate the existence of a form of learning which is both functionally
and neurally separate from explicit learning then I would argue that such a
goal has not yet been achieved. But perhaps a more important message is that
researchers may have been misguided in devoting so much effort to demon-
strating dissociations. Whether it be the dissociation of implicit learning from
attention or from explicit knowledge that is the object of study, the problem
arises that dissociations provide only the weakest constraint on cognitive struc-
ture and process. As the model I have described demonstrates, it is not difficult
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to generate dissociations from single-system theories. Perhaps a better goal of
implicit learning research is to try to develop more adequate computational
models of behavior in so-called “implicit” learning tasks.
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. Our participants were to some extent aware of the training sequence in that they were
able to perform above chance in a free generation test (see below). One might therefore ob-
ject that our results do not speak to the issue of whether implicit sequence learning requires
attention. For learning to be implicit, surely participants must not be in possession of the
sort of sequence knowledge we detected in free generation? In fact, Shanks and Channon
(2002) showed that the dual/single learning difference was independent of explicit knowl-
edge in that even participants who performed poorly in free generation possessed more
sequence knowledge if they had been trained under single- than dual-task conditions. Simi-
larly, in the other experiments reported in this section participants were able to recognize the
training sequence (as described in the next section). But again, the critical single-/dual-task
differences were not related to this recognition ability.

. One might raise concerns over these findings, however. For example, it seems quite likely
that the exclusion task is cognitively very demanding. How can one rule out the possibility
that some participants ignore the instructions and give up trying to exclude known sequence
continuations?

. The old/new difference was largest at the end-points of the rating scale with 3-item se-
quences and around the mid-point of the scale with 6-item ones. Whether anything should
be read into this pattern must remain a question for future studies. The model presented be-
low sometimes yields one pattern and sometimes the other, but these variations are merely
due to sampling error.
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Intention, attention, and consciousness
in probabilistic sequence learning

Luis Jiménez*

University of Santiago

. Introduction

María is a student of Psychology at the University of Santiago. One Monday,
she enters the laboratory and is instructed to perform two different tasks si-
multaneously. First, she is asked to respond as fast as possible on each trial by
pressing a key that corresponds to the current location of a stimulus, and sec-
ond, she simultaneously needs to keep a running count of the number of times
that this target stimulus has the shape of either an “x” or an “*”. By the follow-
ing Friday, after about eight hours and several thousands of trials of practice
with these two tasks, she has learned to respond faster and more accurately to
the locations that are statistically more likely to appear in the context defined
by the previous locations, and to respond more efficiently to those locations
that are predictable by relying on the current response in the counting task.
At that point, however, she still doesn’t believe that there is any predictive rela-
tion between shapes and locations, and neither is she able to use her knowledge
about the sequence of locations to generate the next one when she is directly
told to do so, and under conditions that, otherwise, resemble those of training
with the Serial Reaction-Time (SRT) task.

This specific pattern of results has been reported repeatedly (e.g., Jiménez
& Méndez 1999, 2001), and raises a host of questions of both empirical and
theoretical interest on the relations between learning, intention, attention, and
consciousness. To wit: Was María aware of the fact that there existed a structure
in the series of locations? Was she aware of the specific contingencies she had
been learning, or even of the fact that she has been learning? Was she deliber-
ately trying to learn this structure, or would her learning be larger if she had
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been instructed to do so? Would learning be either larger or better expressed
if she had been trained on the SRT task alone? If the shapes were not relevant
for the counting task, would she still have learned about them? Reciprocally,
if she had been informed about the existence of reliable predictive contingen-
cies between shapes and locations, would she still have learned the redundant
information provided by the sequence of locations? Finally, if she had been
explicitly informed about the predictive value of the shapes, but had to keep
performing the shape-counting task, how could this complex setting have af-
fected the expression of shape learning, as well as the implicit acquisition of
knowledge about the sequence of locations?

The main purpose of this chapter is to summarize the results of a number
of experiments conducted with the probabilistic sequence learning paradigm,
a paradigm that I believe has the potential to provide satisfactory answers to
all these questions. Most of these results have been reported elsewhere, but
their joint review here will allow to draw a broader picture of some of their
theoretical implications. I will devote the next section to highlight the advan-
tages of this probabilistic sequence learning paradigm, and then I will use the
three following sections to review some results that are relevant to questions
raised above. In Section 3, I discuss whether or not the intention to learn and
the intention to use what has been learned plays a relevant role in the acqui-
sition and in the expression of probabilistic sequence learning. In Section 4, I
review the debate on the role of attention in implicit sequence learning, con-
sidering both the selective and resource meanings of attention. In Section 5,
finally, I close with a discussion of what I take to be a reasonable, although
admittedly speculative, framework within which to think about the relations
that may hold between learning and consciousness. By the end of the chap-
ter, I hope to have convinced the reader that implicit sequence learning is just
learning in its most elementary guise, that it can be conceived as an automatic
side-effect of processing (Barsalou 1995), and that it may shape consciousness
but is only indirectly caused by it. Implicit learning, therefore, is viewed as the
obligatory product of attending to any set of structured events, and is caused
not directly by the learners’ conscious intention to learn but, rather, by the way
in which their perceptual skills, attentional priorities, and motivational states,
affect the effective encoding and perception of the information provided by
the environment (see Logan 1998; Logan & Etherton 1994; Logan, Taylor, &
Etherton 1996; 1999 for a similar perspective).
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. The paradigm of probabilistic sequence learning

Implicit learning has been investigated with many different procedures (see
Seger 1994, for an exhaustive list). However, during the last fifteen years, the
sequence learning paradigm, first devised by Nissen and Bullemer (1987),
has become dominant. The SRT task has been adapted in a number of ways
and is particularly well-suited to explore many of the issues of interest in
the area of implicit learning. Some of the most recent summaries of research
conducted with this paradigm can be sampled in this volume, and may be
found, for instance, in Buchner and Frensch (2000), Buchner, Steffens, and
Rothkegel (1998), Destrebecqz and Cleeremans (2001), Hoffmann, Sebald,
and Stöcker (2001), Jiménez and Méndez (1999, 2001), Koch and Hoffmann
(2000), Meulemans, Van der Linden, and Perruchet (1998), P. J. Reber and
Squire (1998), Remillard and Clark (2001), Schvaneveldt and Gomez (1998),
Willingham (1999), Willingham, Wells, Farrell, and Stemwedel (2000), Ziessler
(1998), or Ziessler and Nattkemper (2001).

The description of María’s task, presented in the Introduction to this chap-
ter, may be taken as a rough description of this paradigm. Thus, participants
in these experiments are told to respond as fast as possible to the location of
a stimulus that appears on each trial at one of several possible locations on
a computer screen (typically, between 3 and 6 locations). The series of loca-
tions follows a regularity that is often repeated over many cycles; participants
are usually not informed about the existence of the pattern. Indeed, the lack of
information about the learning situation can be construed as one of the main
strengths of the paradigm as compared, for instance, with those of the gram-
mar learning paradigm (A. Reber 1967; A. Reber & Allen 1978) or the dynamic
systems’ control paradigm (e.g., Berry & Broadbent 1984, 1988). The sequence
learning paradigm is thus unique in allowing the experimenter not only to de-
sign truly incidental learning conditions, but also to assess the amount of learn-
ing without revealing the existence of any learnable structure, by comparing
responses to structured and random trials.

Furthermore, the use of probabilistic sequential structures provides the re-
searcher with some additional advantages over the original version designed by
Nissen and Bullemer (1987). Conceptually, the addition of noise into a sequen-
tial pattern can be taken as a step toward the goal of designing more realistic
replications of what occurs outside the laboratory when one acquires a percep-
tual and motor skill. Indeed, under natural conditions, skills are not typically
acquired through a single session of practice with a fixed and repetitive pattern,
but they accrue rather gradually as a result of a great amount of practice with
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materials that are only loosely structured, and in which the existing regularities
are continuously interspersed with random noise.

Methodologically, the use of probabilistic sequences also provides the ex-
perimenter with some additional advantages. First, the fact that these struc-
tures incorporate stimuli that either conform or do not conform to the tar-
get sequence allows the experimenter to administer large periods of practice
while minimizing the risk of having participants discover and memorize the
sequence. Thus, even in the case where participants might be led to believe
that there exist regularities in the observed sequence, this belief would not lead
participants to systematically base their performance on such knowledge, given
that any hypothesized rule would be often falsified by the continuous appear-
ance of exceptions. Furthermore, the fact that structured and random events
are not presented in blocks but rather appear continuously over training, allows
experimenters to assess learning online, blurring the distinction between train-
ing and test phases that has raised a number of concerns for the deterministic
versions of this paradigm (e.g., Shanks & St. John 1994).

Most of the studies conducted with the probabilistic sequence learning
paradigm have adopted a procedure developed by Cleeremans and McClelland
(1991), in which the structured locations are generated by following a finite-
state grammar, and in which a certain proportion of random trials is inter-
spersed within the structured trials. Figure 1 shows a grammar used by Jiménez
and Méndez (1999, 2001) that presents a number of desirable properties to be
highlighted below.

A

B

C

D

D

C

A

B

#0

#1

#2

#3

#4

#0

Figure 1. Finite state grammar used to generate the series of locations in Jiménez and
Méndez (1999, 2001). See text for details.
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. A second-order conditional grammar

In these experiments, each block of trials starts with five random locations that
serve as buffer trials, and then continues by generating subsequent locations
as determined by the grammar. The current node of the grammar is set to be
node #0 when the buffer trials have been completed, and an arc coming out of
this node is selected at random. The label corresponding to this arc (i.e., either
A or B) is used to determine the location of the stimulus that is assigned to the
selected label in 80% of the trials. This location is replaced by a different one
at chance in the remaining 20% of the trials. The current node is then updated
to be the node pointed to by the selected arc (i.e., #1 or #2), and the procedure
continues indefinitely by selecting another arc at random. As shown in Figure
1, the grammar is re-entrant, which means that the first and the last nodes are
identical, so as to allow the generation of an indefinite number of grammatical
labels. Moreover, each possible label (A, B, C, or D) appears in two different
arcs pointing to different nodes in each case, so that any label predicts every
other label with equal likelihood (see Jiménez & Méndez 1999, for a statistical
analysis of the constraints imposed by this grammar). However, considering
two consecutive labels allows the learner to discriminate between legal and il-
legal transitions, and thus makes this structure a probabilistic structure that
is analogous to what Cohen, Ivry, and Keele (1990) called an “ambiguous” se-
quence. The information provided by farther elements (i.e., higher-order prob-
abilities, see Remillard & Clark 2001) is redundant with respect to the second-
order transition probabilities, and hence the grammar is specially adequate to
analyze learning of second-order conditional information. Learning can be as-
sessed by analyzing whether, with practice, participants come to respond more
efficiently to a given successor (e.g., D) in terms of whether it appears following
a path that it can or cannot legally follow (e.g., ACD vs. BCD). The conditional
probabilities of appearance for legal successors range from .34 to .62, whereas
the conditional probabilities for the illegal successors vary from .13 to .17.

Although most of the studies conducted with the paradigm have adopted
this type of grammar to generate the structured events, there exist a few other
studies that have followed the simpler strategy of adding a certain amount
of noise to an otherwise deterministic series of locations (e.g., Cleeremans &
Jiménez 1998; Schvaneveldt & Gomez 1998). As we will see below, this proce-
dure may be specially useful to analyze the impact of intentional factors on the
acquisition of deterministic and probabilistic sequences.
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. Intention to learn and to use what has been learned

Did María try to learn? Did she intentionally use what she had learned about
the sequential structure to respond to the SRT task? In any case, could the in-
tention to learn make any difference in sequence learning when the structure is
complex and probabilistic? In the following paragraphs, I review the evidence
that bears on these three issues, as it arises from studies that have used both
the deterministic and the probabilistic versions of the paradigm, and which
have generated the probabilistic structures by using either a grammar or a
noisy series.

. Intention to learn

Jiménez, Méndez, and Cleeremans (1996) analyzed the effects of the inten-
tion to learn on the acquisition of knowledge about a probabilistic sequence by
confronting two groups of participants with 20 sessions of practice with a six-
choice SRT task. The series of locations was structured according to a grammar
that contained first-, second-, and third-order information. Half of the partic-
ipants in this study were instructed to look for the underlying rules, and the
other half were presented with the SRT task under standard incidental learning
conditions. To increase the motivation to search for contingencies, all partici-
pants were paid depending on their performance. Participants assigned to the
intentional condition were (1) reminded of the search instructions during each
rest break, (2) informed that they would later be asked to predict each location
in the context of a generation task, and (3) told that generation accuracy would
be used as a factor to multiply the total earnings obtained during the previous
SRT task. Despite of different instructions, both groups performed in much the
same way throughout training, and they showed an equal amount of learning
after a total of 20 sessions. Figure 2 shows the mean RTs of incidental and in-
tentional learners, for different training periods, and separately for trials that
were either predictable or not predictable by relying on first- and second-order
information (no learning was observed concerning third-order conditionals).
The results indicate that, at least in the complex and probabilistic setting of the
experiment, coping with the requirements of the SRT task was just as useful
for the acquistion of knowledge about the sequence as was trying to discover
the underlying structure. The fact that the intentional learners produced con-
sistently slower responses supports the claim that they used a different search
strategy throughout training, and that they did not give up the search for rules
or started to behave like incidental learners. Moreover, the fact that a significant
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Figure 2. Reaction time performance averaged for each session (top panel) or for ev-
ery two sessions (bottom panel) in response to grammatical (G) and non-grammatical
(NG) trials, and plotted separately for incidental (Inc) and intentional (Int) conditions
from Jiménez et al. (1996). Top panel represents trials in which the grammatical or non-
grammatical status of a successor depended on first-order information. Bottom panel
represents trials in which grammaticality depended on second-order information.
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part of the knowledge obtained in both conditions was expressed exclusively in
the indirect measures, and that this knowledge was not manifested in the gen-
eration task, led the authors to conclude that the learning was at least partially
unconscious, and that the equal amount of learning observed under incidental
and intentional conditions cannot be attributed to the fact that all learning was
consciously acquired regardless of the learners’ initial orientation (see Jiménez
et al. 1996; and Reingold & Merikle 1988; for discussions of the assumptions
underlying this conclusion). Hence, at least when the sequential structure is
complex enough, participants seem to be able to learn it in much the same
way, regardless of whether they are instructed to look for a sequence, or just
told to respond to each stimulus in the context of the SRT task.

. Intention to use what has been learned

Research participants learn a complex sequence in about the same way, re-
gardless of whether they are instructed to look for contingencies or just to
respond to each stimulus in the appropriate way. Now, what if participants
were not only provided with search instructions, but also explicitly informed
about the details of the underlying structure? Could such knowledge, if con-
veyed explicitly, be used immediately by participants to improve performance
on the SRT task, or would the effects of the knowledge still depend on fac-
tors such as the complexity of the structure, or the presence of supplementary
attentional demands?

Curran and Keele (1993) presented some results indicating that partic-
ipants that were given explicit information about a deterministic sequence
showed larger effects of learning than did participants who performed the SRT
task under incidental conditions, but only if the task was performed under
conditions of no distraction. On the contrary, if a secondary tone-counting
task was subsequently added to the SRT task, the difference between inten-
tional and incidental learners completely disappeared, and only a reduced ef-
fect of sequence learning remained. The results indicate that the use of ex-
plicit knowledge did require a continuous effort to monitor the sequence, and
that the monitoring process could no longer proceed in the presence of the
secondary task.

Cleeremans and Jiménez (1998), on the other hand, reported a study aimed
at comparing the effects of providing explicit information, and of perform-
ing the SRT task under single- or dual-task conditions, on the expression of
knowledge about either deterministic or probabilistic sequences of different
complexity. We used both unique sequences (i.e., sequences in which each ele-
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ment was fully predictable on the basis of the previous element) and ambigu-
ous sequences (i.e., sequences in which each element could only be predicted
based on the conjunction of the two previous elements), and generated the
probabilistic sequences by replacing 20% of the elements stipulated by the de-
terministic sequences at chance. Different groups of participants were trained
with different types of sequences (unique or ambiguous), under different con-
ditions of noise (deterministic vs. probabilistic generation), different task re-
quirements (single vs. dual task), and different instructions (explicit vs. im-
plicit). The results of this multifactorial study indicate that explicitly acquired
information was only effective when participants responded to determinis-
tic sequences under single-task conditions, but that it was quite ineffective,
if not harmful, for any other combination of noise and distraction (see Fig-
ure 3). This pattern of results could easily be interpreted as suggesting that
the information available to consciousness cannot be translated into perfor-
mance automatically, but that it requires both a deliberate decision to do so
(which might be suspended whenever the information is not completely re-
liable), and enough resources to monitor the series, retrieve the relevant ex-
plicit knowledge, and translate the knowledge into an actual anticipation of
the following response. In the absence of any of these conditions, participants
appear to resort to incidental processing, and consequently, the effects of learn-
ing are roughly equivalent to the effects obtained under incidental conditions.
Hence, according to this interpretation, explicit orientation does not affect per-
formance when participants respond to a probabilistic sequence, not only be-
cause they do not seem to learn more than participants who perform the task
under incidental conditions, but also because any explicit knowledge that they
might have acquired would be of little use when they have to respond to a
noisy sequence.

. Implicit sequence learning in the presence of explicit cues

The conclusion that the intention to learn does not affect the effects of se-
quence learning when the structure is noisy and probabilistic is supported by
another source of evidence: Participants in the SRT task can learn a complex se-
quence of locations even when there exists an explicit and valid cue that allows
the learner to anticipate the next stimulus location, and that arguably removes
any possible motivation for the participant to engage in an explicit search for
sequential contingencies (Cleeremans 1997; Jiménez & Méndez 2001). Cleere-
mans, for instance, showed that a complex sequence of dot locations could be
learned when participants were trained in the presence of an additional cue
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Figure 3. Reaction time differences between responding to predictable and non pre-
dictable trials, plotted separately for type of structure (deterministic vs. probabilistic),
distraction (single vs. dual task), and type of sequence (unique vs. ambiguous) for the
Explicit and Implicit training conditions from Cleeremans and Jiménez (1998).

(i.e., a cross) which, on each trial, appeared at the specific location where the
next dot was going to be presented. In Experiment 2, the cross served as an
exogenous and completely valid cue that allowed participants to anticipate the
next target location with total accuracy. As a result, no effect of sequence learn-
ing was expressed during the training phase. However, even under such highly
redundant conditions, the sequence of locations was learned, and this learning
was expressed during a transfer phase in which the additional cue was removed.

Along the same lines, Jiménez and Méndez (2001) showed that whenever
the information provided by the additional cue required an endogenous elab-
oration process, learning of the sequence of locations was not only produced,
but also expressed together with knowledge about the additional explicit cue,
without any interference between the two sources of knowledge. In this par-
ticular case, the location of the next stimulus was not indicated directly by the
location of an additional cue, but could easily be inferred from the shape of
the current stimulus. For instance, participants might be informed that the
shape “x” predicted the next stimulus to appear in the leftmost location, that
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the shape “*” predicted the next stimulus to appear in the rightmost location,
and so on. The cue-target contingencies were completely reliable during the
first four sessions, and they were fulfilled in 80% of the trials during a fifth test
session. An analysis of response times for the test session shows that informed
participants that performed the SRT task under single-task conditions were ef-
fectively following the rules about the relationship between cues and targets
(Experiment 2, see Figure 4). When the entire training period is taken into ac-
count, RT performance indicates that participants also learned the sequence
of locations. Moreover, sequence learning observed in this condition was not
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Figure 4. Reaction time performance for each of the experimental sessions plotted sep-
arately for grammatical (g) and non-grammatical (ng) locations, and for the conditions
of explicit (E) and implicit (I) shape-learning, from the Experiment 2 of Jiménez and
Méndez (2001). Note that participants in the explicit shape-learning condition pro-
duced faster responses overall, but they produced slower responses when the validity
of the shapes decreased from 1 to .80, (session 5), and when the shapes were com-
pletely removed in session 8. The results indicate that participants were using explicit
knowledge about the shapes to predict the next locations, but they were still able to
learn about the sequence of locations to about the same extent like participants in the
implicit condition.
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significantly different from that observed in conditions in which the partici-
pants remained ignorant about the predictive value of the shapes, or in which
they had to perform the SRT task together with a secondary task that required
them to keep a running count of a pair of target shapes.Therefore, it seems rea-
sonable to conclude that in all conditions, sequence learning proceeded in an
incidental way, and was automatically translated into performance, regardless
of the presence or absence of explicit contingencies, and just as a side-effect of
participants’ consistent attending, and responding, to each successive location.

. Attentional resources and selective attention

Implicit learning has been defined as learning that occurs regardless of the
learners’ intention to learn, and largely in the absence of explicit knowledge
of what has been acquired (Reber 1993). From this definition, it was often sug-
gested that implicit learning ought to be accomplished through completely au-
tomatic learning mechanisms and, hence, that it ought not to be affected by
attentional manipulations. It is therefore not difficult to understand why ques-
tions concerning the relation between attention and implicit learning have pro-
voked a great deal of research, and that they still belong to the most strongly
debated issues in the literature today.

The role of attention in implicit learning has been frequently assessed by
relying on a dual-task procedure (e.g., Dienes, Altman, Kwan, & Goode 1995;
Hayes & Broadbent 1988; Nissen & Bullemer 1987). More specifically, in se-
quence learning studies, the dual-task procedure has been realized by including
a secondary task that typically requires participants to keep a running count of
the number of trials in which an arbitrary event (e.g., a given target tone) ap-
pears in the context of the SRT task. The rationale underlying this procedure
is that the secondary task is hypothesized to exhaust a proportion of the at-
tentional resources available, and that it ought to interfere with the effects of
learning if either the acquisition, the retrieval, or the use of the relevant se-
quence information depends on the integrity of the same attentional resources
(Cleeremans & Jiménez 1998; Cohen, Ivry, & Keele 1990; Frensch, Buchner, &
Lin 1994; Frensch, Lin, & Buchner 1998; Nissen & Bullemer 1987; Reed & John-
son 1994; Shanks & Johnstone 1998; Stadler 1995; Willingham, Greenberg, &
Thomas 1997). In the following paragraphs, I compare the results obtained
with the SRT task depending on whether the sequence is fixed or probabilis-
tic, and I defend the thesis that implicit sequence learning can occur without
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recruiting specific attentional resources, but that it requires participants to pay
selective attention to the predictive cues.

. Attentional resources

The results of the studies that have employed a secondary counting task in
the context of an SRT task with a deterministic sequence of locations largely
indicate that performing a counting task does indeed interfere with sequence
learning expressed through speeded performance (e.g., Cohen, Ivry, & Keele
1990; Nissen & Bullemer 1987). However, it is not clear at all whether this pat-
tern of results must be taken to indicate that implicit sequence learning really
depends on the availability of certain amounts of general processing resources.
On the contrary, interference may arise (1) as an expression deficit that hinders
the retrieval or the use of sequence knowledge, rather than its implicit acquisi-
tion (Frensch 1998; Frensch et al. 1998; but see also Shanks, this volume), (2)
as interference caused by the introduction of disrupting stimuli, and not by
the scarcity of attentional resources (Stadler 1995), and/or (3) as interference
produced over the acquisition or the expression of explicit knowledge, that oc-
curs together with implicit effects, specially when the sequence is deterministic,
and when enough attentional resources are available to allow for an intentional
search and monitoring of the learned regularities.

In support of the latter alternative, Jiménez and Méndez (1999, 2001) have
shown repeatedly that neither the acquisition nor the expression of sequence
learning are affected by the presence of a secondary task when the secondary
task is conducted on the same visual stimuli on which the SRT task is carried
out – thus avoiding the introduction of disrupting stimuli – and when the se-
quential structure is generated according to a noisy, finite-state grammar (see
Figure 5, top panel). Still more to the point, Cleeremans and Jiménez (1998)
also showed that transfer from single- to dual-task conditions hindered the ex-
pression of sequence learning exclusively when participants were trained with
deterministic sequences, but not when they were trained with probabilistic, but
otherwise similar, structures.

As a whole then, and against what has been usually observed with deter-
ministic sequences, our studies with probabilistic structures strongly indicate
that probabilistic sequence learning may not depend on the availability of a
pool of general resources but, rather, that it proceeds regardless of the presence
of a secondary task, provided that processing of the relevant information is
granted by the requirements of the SRT task.1 This conclusion, however, does
not necessarily mean that learning can proceed independently of any form of
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attention, but only that participants will learn about any attribute of the stim-
uli to which they pay selective attention. Hence, the answer to the question
whether attention is necessary for implicit sequence learning may be “no”, if
we refer to the dependence of learning on any set of processing resources be-
yond those required to perform the SRT task, but “yes”, if we refer to the fact
that learners ought to pay selective attention to predictive events, so that they
become associated with the predicted targets. This selective meaning of atten-
tion has been relatively neglected in the empirical studies that have addressed
the relation between attention and implicit learning, but it also deserves a
careful analysis.

. Selective attention

Indeed, from the general framework that I am proposing, it follows rather di-
rectly that, if learning is taken as an obligatory side-effect of processing, then se-
lective processing of predictive features of the stimuli can be seen as the main –
perhaps, even the only – pre-condition of learning. Gordon Logan and his col-
laborators (e.g., Logan 1998; see also Boronat & Logan 1997; Logan & Etherton
1994; Logan, Taylor, & Etherton 1996, 1999) have proposed essentially the same
idea under the label of the “Attention Hypothesis”, according to which attention
to an event is necessary and sufficient for the event to be stored in memory, –
i.e., obligatory encoding –, and for the representations associated with the event
to be retrieved from memory – i.e., obligatory retrieval. If we add to this hy-
pothesis the classical associative assumption that representations of events that
are attended together tend to become associated, then this set of assumptions
immediately leads us to predict that the encoding of a sequence of events can
only be produced when the relevant events are selectively attended to in close
succession. Therefore, even though sequence learning may not depend on the
explicit intention to learn, nor on the amount of general attentional resources
available, selective attention to the relevant events would be necessary for both
the acquisition and the expression of this learning.

This conclusion is consistent with observed difficulties to obtain learning
involving dimensions that are not explicitly relevant for the SRT task (Jiménez
& Méndez 1999, 2001; Jiménez, Méndez, & Lorda 1993; Willingham, Nissen, &
Bullemer 1989; but see Mayr 1996). Jiménez et al. (1993), for instance, found
that participants who responded to the location of different patches of color in
a four-choice SRT task did not learn a number of simple predictive relations
that existed between each color and the following location, whereas they were
able to learn a complex sequence involving the series of locations. Along the
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Figure 5. Reaction time performance for each experimental session from Experiment
1 of Jiménez and Méndez (1999). Top panel shows that, even though participants un-
der conditions of divided attention (D) performed more slowly than participants pre-
sented with conditions of focussed attention (F), they learned the sequence of loca-
tions at about the same rate (i.e., the differences between responses to grammatical
(G) and non-grammatical (NG) trials are equivalent). Bottom panel shows that par-
ticipants presented with conditions of divided attention also learned about the predic-
tive relationships between shapes and locations, as inferred from the differences be-
tween responses to signaled (S) and non-signaled (NS) trials, whereas participants in
the condition of focussed attention did not learn about the shapes.
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same lines, Jiménez and Méndez (1999, 2001) showed that a set of predictive
relations between the shape of each stimulus and the location of the next one
was not learned at all if participants were exclusively instructed to respond to
the locations in the context of a single SRT task, but that the predictive con-
tingencies could be learned implicitly if the learners were forced to pay atten-
tion to the shapes as part of a, supposedly independent, secondary task (see
Figure 5, bottom panel). Interestingly, if participants were told to classify the
four possible shapes (“x”, “*”, “?”, “!”) into two categories (i.e., targets and dis-
tractors), and to keep an aggregated count of the number of target shapes in
each block, their performance showed that they had learned to predict which
pair of locations was more likely to appear after either a target or a distractor
shape, but not which specific location could be expected to follow each specific
shape. Plainly, then, it seems that learning was tightly locked to the specific,
task-relevant response required by the attended stimulus, rather than to the
identity of the stimulus as a whole.

The results of another experiment from the same series (Jiménez & Mén-
dez 1999; Experiment 3) supports this conclusion. In the follow-up experi-
ment, participants were told to keep a running count of a different pair of
target shapes for each successive session, and either the shapes of the stimuli
or the response category (i.e., counting vs. non-counting) were systematically
related to the location in which the next stimulus would appear. The results
of the experiment indicated that learning was produced exclusively when the
next location could be predicted on the basis of the previous response in the
counting task, but not when it depended on the shape of the previous stimulus.
Hence, according to these results, performing a consistent response is necessary
to bring about learning, and just paying attention to a dimension (e.g, attend-
ing to shapes in order to find out whether or not to count it) is not sufficient
to produce the relevant association.

Other studies have found that sequence learning is more narrowly related
to the specific responses required by the orienting task than to other salient,
but task-irrelevant, stimulus features (e.g., Nattkemper & Prinz 1997; Ziessler
1998; Ziessler & Nattkemper 2001). Still other results indicate that it is possible
to learn about a task-irrelevant dimension (e.g., a sequence of locations in the
context of a serial object discrimination task), if the procedural details make
it necessary for the learners to produce any kind of response to the dimension
that is not explicitly relevant. For instance, Willingham et al. (1989) found no
effect of learning about a sequence of locations in a color discrimination task in
which the target stimuli were presented relatively close to each other, but Mayr
(1996) observed spatial learning by requiring a more difficult discrimination
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of the stimuli, and by increasing the distance between the locations at which
the stimuli appeared. According to Mayr’s interpretation of the data, the pro-
cedural changes may have forced the learners to make orienting responses and
eye movements in response to each stimulus, and these minimal, but contin-
gent, responses could have been sufficient to produce learning about the series
of locations.

In sum, all of the results presented in this section can be reconciled with a
response view of sequence learning, but only if we extend the notion of “re-
sponse” beyond its narrow motor connotations, to encompass any kind of
processing operation performed by the learner (Ziessler 1998). In this gen-
eral sense, the response view converges with the “episodic-processing” account,
which claims that people’s encoding of events does heavily depend on how they
process them, and that the effects of prior experience on future performance
also depend on the similarity between the encoding domain and the trans-
fer domain (e.g., Whittlesea 1997). Crucially, this could be true for both im-
plicit and explicit learning and, hence, the difference between them ought not
to be conceived in terms of their relative dependence on selective attention,
but rather in terms of the degree of control that the learner exerts to mod-
ulate the processes of learning: In the implicit case, learning conditions are
narrowly constrained by the environment, or otherwise programmed by the
experimenter whereas, in the explicit case, both encoding and retrieval are, at
least partially, under the learner’s strategic control.

. Consciousness of learning and of the learning results

So far, we have reached the following conclusions concerning María’s learning
experience: (1) María may have learned the probabilistic sequence of locations
without trying to learn, (2) she would not have learned the sequential struc-
ture better if she was instructed to look for the regularity, or (3) if she was not
instructed to perform any secondary task on the stimulus shapes. (4) If she was
not instructed to selectively attend to the stimulus shapes, she would remain
insensitive to the fact that the shapes bear predictive information regarding the
location of the next stimulus.

Based on these conclusions, we can begin to delineate the process of se-
quence learning that occurs in such complex settings: Learning does not de-
pend on the intention to learn or directly on the amount of attentional re-
sources available to the learners, but it crucially depends on whether learners
selectively attend, or respond in any way, to the relevant stimulus dimensions.
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This view of implicit sequence learning is consistent with its characterization
as a by-product of processing, but it tells us nothing about one of the most
intriguing features of implicit learning: that it proceeds in the absence of con-
sciousness. In what follows, I sketch an admittedly speculative view of what I
see as the interactive relation between learning and consciousness. I propose
a definition of learning as an adaptive process that continuously shapes both
behavior and experience but, at the same time, I defend the existence, and the
ecological relevance, of the phenomenon of implicit learning.

Elsewhere, I have argued that a cognitive concept of learning must be
distinguished from any other phenomenon of adaptation by assuming that
learning selectively occurs in experiencing creatures, and that it continuously
changes not only behavior, but also conscious experience (cf. Cleeremans &
Jiménez 2002). This assumption is intended to distinguish between the phe-
nomena of cognitive adaptation that we seek to understand, and a host of par-
tially analogous phenomena that are also adaptive, but that, crucially, lack the
cognitive status of the learning phenomena we are interested in. Adaptation
phenomena that fall beyond our interests may thus range from the processes of
natural selection to the workings of our digestive or immune systems, or even
to the dynamics of many of the so-called “artificial learning” systems. Hence,
the starting point of the proposed framework is that cognitive learning must
operate on a special kind of representations (i.e., cognitive representations )
that are, at least in principle, accessible to consciousness (cf. Searle 1990). If we
do not adopt this cognitive assumption, then it may surely be easier to demon-
strate the existence of learning without consciousness, but we will run the risk
of confusing the cognitive concept of learning with the much broader concept
of adaptation.

Now, if we accept the former definition of learning as those adaptive pro-
cesses that occur in conscious systems, and that continuously change both be-
havior and experience, then how are we to understand the standard definition
of implicit learning, which takes it to be learning that proceeds without con-
sciousness? In trying to address this question, I have found it useful to con-
sider five different meanings of the expression “learning without conscious-
ness”, that differ with respect to the contents of the learning situation that may
be unavailable to consciousness while learning is taking place.

First, the most extreme definition of implicit learning is based on the few
cases in which the term “consciousness” is used, without a qualifier, to refer
to a general property of the learners, rather than to the property of particular
representations held by the learners. In the most extreme case, implicit learn-
ing refers to whatever learning that happens while the learners are completely
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unconscious (e.g., during dreamless sleep, or under the effects of general anes-
thesia). Although a learning situation of this kind has interesting theoretical
implications, its ecological value is severely restricted (see Andrade 1995, 2001,
for reviews).

In a second sense, learning can be thought of as implicit, if it proceeds with-
out awareness of the underlying learning processes. In this category, we can fur-
ther distinguish two very different cases, depending on one’s understanding of
the term “processes”. On the one hand, if one takes processes to refer to whatever
microstructural mechanism that is responsible for the production of represen-
tational changes, then we may end up defending the position that all learning
is implicit, because it is widely acknowledged that we can only gain conscious
access to the results of our mental activities, but not to the actual processes
that bring about mental states (e.g., Jackendoff 1987). If, on the other hand, we
view the contents of consciousness as a succession of goal- and problem-states
during strategic decision making, and cognitive operations as processes that
bring us progressively closer to the solutions of explicit problems (e.g., Newell
& Simon 1972), then we can still talk, in a very realistic sense, about conscious
processes that, no matter how they are ultimately realized at a microstructural
level, can be used as a criterion to distinguish between implicit and explicit
learning. In this third sense, indeed, implicit learning is roughly equivalent to
non-intentional learning (e.g., Frensch 1998) and, thus, it ought to refer to
every learning phenomena that proceed regardless of the agents’ strategic deci-
sions and intentions, no matter whether they rely on the same or on different
microstructural processes compared to explicit learning episodes.

Finally, there are two more uses of the concept of implicit learning, that re-
fer to the consciousness of learning results, rather than to the consciousness of
underlying processes. Here, again, we can think of two different conceptual sce-
narios depending on whether we take implicit learning to be (1) a special case
of learning that causes behavioral change without producing any change what-
soever in phenomenal experience, or (2) an ubiquitous form of elementary
learning that shapes both behavior and experience, but that is still “implicit”
in the sense that the changes are not identified by the learners as a product of
learning, that they do not produce the experience of learning, and that they
do not justify the adoption of an explicit learning strategy. Under the latter
approach, learning can be implicit even if its effects are not reduced to behav-
ioral priming effects, and may include also changes in perceptual experience,
in emotional reactions or in attentional functions.

There may be as many definitions of implicit learning as there are re-
searchers in the field, but I think that a definition of this term that combines
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the criterion of non-intentionality with the production of results that are not
consciously attributed to learning, and hence that do not trigger an intentional
search, has the potential for providing an ecologically valid, and relatively non-
controversial, definition of the empirical phenomenon that we investigate with
standardized paradigms. By relying on this notion of implicit learning, there is
no need to demonstrate the somewhat counter-intuitive claim that behavioral
change can be brought about in the absence of any corresponding change in
phenomenal experience, but it is possible to retain the idea that learning can
occur in the absence of (1) conscious intention to learn, (2) conscious aware-
ness of the fact that we are learning, and (3) conscious attribution of any no-
ticed change to the effects of learning. Thus, implicit learning can be described
as a by-product of processing that can be distinguished from explicit learning
on two grounds: It is not caused by conscious intention to learn, and it does not
initiate the adoption of an explicit search strategy over the course of learning.

From this perspective, finally, it could be argued that complex learning
paradigms such as probabilistic sequence learning provide us with ideal tools
to analyze implicit learning, because they allow the experimenter to produce
and test learning without making explicit the learning requirements of the task.
Moreover, a comparison between similar direct and indirect measures of learn-
ing can be seen as a straightforward way to ascertain whether the observed
learning is implicit or explicit. The indirect measure is believed to reflect any
knowledge that can be brought about by the learners, regardless of whether the
knowledge is consciously identified as relevant, whereas a comparable direct
measure can be taken to be more reliant on explicit metaknowledge, or on the
learner’s judgement about the source and relevance of the retrieved knowledge.
In accordance with this view, our studies have shown that participants produce
faster and more accurate responses to legal successors in a sequence of stim-
uli, even when they predict legal and illegal successors with equal accuracy in
a direct generation task (Jiménez et al. 1996; Jiménez & Méndez 1999, 2001).
Again, the pattern of results should not be taken to indicate that the behavioral
effects of sequence learning can be dissociated completely from their phenom-
enal counterparts, but only to suggest that the knowledge acquired produces
behavioral effects before these effects are consciously attributed to the results
of learning.

On the other hand, this framework also allows us to assume that, with prac-
tice in an implicit learning task, the incidentally encountered regularities may
give rise to a change of the way in which the task is experienced, and that this
change, in turn, may be responsible for the adoption of a search strategy, and
may eventually foster the development of an explicit representation of the se-
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quence (Frensch, Haider, Rünger, Neugebauer, Voigt, and Werg, this volume).
The crux of the argument, however, is not whether implicit learning paradigms
produce explicit outcomes under some conditions, but rather whether there
are other conditions that allow us to study implicit learning before it produces
such effects.

In sum, the view of implicit learning that I am proposing here accepts that
learning can produce a continuous flow of both phenomenal and behavioral
changes (Perruchet & Gallego 1997), and that it is often responsible for the
adoption of an explicit strategy (Frensch et al., this volume). However, these
two facts should not be taken as an argument against the mere existence of
implicit learning, but rather as a warning with respect to the necessity to in-
vestigate implicit learning with procedures designed to discourage the adop-
tion, and to limit the effects, of explicit strategies. From this perspective, the
paradigm of probabilistic sequence learning appears as an ideal tool to fulfil
these purposes.

. Concluding remarks

Throughout this chapter, I have elaborated on a number of ideas that are
common-sense knowledge in the area of skill learning. I have pointed out that,
if María were interested in learning a complex skill, it would not be a good
strategy for her to try to memorize the complete set of rules that apply in that
domain. I have claimed too that it would not be very useful for her either to try
to concentrate on “turning the encoding switches on” or to “completely dis-
regard the stimuli, and to rely passively on unconscious encoding algorithms”.
Instead, I have argued that María needs to pay attention to the relevant dimen-
sions of the stimuli, and to act upon them in all the appropriate ways and in
as many contexts as possible, so that her knowledge and actions become pro-
gressively attuned to the task demands. When she is trained in this way, she
eventually becomes an expert on the task, and it does not make much of a dif-
ference whether she actively tries to learn, or just as actively tries to cope with
the task demands.

With a general description of María’s task as my starting point, I have pro-
posed a definition of implicit learning that can be identified with most of the
processes and effects that arise from her training regime. Hence, implicit learn-
ing can be seen as an ubiquitous phenomenon that is intimately related to pro-
cessing and action, and that changes both the learners’ experience and behav-
ior, even though the altered contents of experience are not usually attributed by
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the learners to the effects of learning. This concept of implicit learning captures
most of the learning processes and effects that take place whenever we are faced
with a complex structure in everyday life, and it can be analyzed idealiter in the
lab by creating a similarly complex learning situation, such as the probabilistic
sequence learning paradigm.

By using this experimental paradigm, we have obtained results that are
consistent with the following claims: (1) Learning without intention is a ubiq-
uitous phenomenon: Conscious intention to learn improves learning only in-
directly – by focusing the learners’ attention on the relevant stimulus dimen-
sions, and by guaranteeing that the appropriate processing operations are car-
ried out – but it is neither necessary nor sufficient for learning to take place.
(2) Learning, with or without intention, does continuously shape both behav-
ior and experience, but often these changes do not include conscious aware-
ness of the learning itself, or the corresponding attribution of the experiential
changes to the effects of learning. This can be taken as an ecologically valid
and relatively non-controversial definition of implicit learning. (3) Learning
requires the allocation of attention to the relevant dimension by performing
a task on the basis of that dimension, but no additional deployment of spe-
cific attentional resources is necessary. It is in this sense that implicit learning
can be considered an automatic process and, at the same time, a by-product of
attention.

Notes
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. Shanks (this volume) has argued that, under these conditions, the secondary task may
become automated with practice, and hence that it could end up making litle demands on
attentional resources. However, this conclusion stands in contradiction with further results
reported by Jiménez and Méndez (1999, Exp. 3). In this experiment, a varied mapping was
introduced between the identity of each shape and the counting responses, by asking par-
ticipants to keep a running count of a different pair of target shapes for each consecutive
session. Even though this manipulation should have hindered the automatization of the sec-
ondary task, sequence learning was still evident, and it was not significantly different from
that obtained under single-task conditions.
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. Introduction

Motor sequence learning is a fundamental component of human behavior. Our
daily lives are filled with behaviors that involve complex sequences of move-
ments, and, when we are sufficiently experienced with these tasks, we perform
them nearly effortlessly. In contrast, when a novel task – even a simple one,
such as operating a new mobile phone – is attempted for the first time, it can
be highly demanding. Without motor learning, our lives would be an endless
series of trivial but all consuming actions.

The primary goal of this paper is to meld concepts arising from behav-
ioral investigations of sequence learning with findings from neuroimaging and
neuropsychological studies. In contrast to the extensive work on perceptual
systems, motor sequence learning remains poorly understood in terms of the
functional differentiation of the implicated neural substrate. Motor learning
clearly involves a distributed network of neural structures, including parietal,
prefrontal, premotor, and motor cortex, as well as subcortical structures such
as the cerebellum to the basal ganglia. However, the functional contributions
of these various structures have remained largely speculative. That is, a siz-
able body of empirical research has established that many regions contribute
to the production of learned motor sequences, but only a few clues have been
uncovered to help distinguish the computations performed by these regions.
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In this paper, we will describe why we believe much can be learned from
the existing neuroimaging literature about the relationship between motor
learning and attention. We will then discuss how behavioral studies have
contributed to the interpretation of results from neuroimaging experiments.
In particular, behavioral findings have suggested that independent sequence
learning systems are engaged depending on the task demands. To identify the
neural substrate of these systems, we focus on the findings from neuroimag-
ing studies, although in some cases, neurophysiological and neuropsycholog-
ical studies have played a critical role in our understanding of the function
of a brain region. Neuroimaging findings have also indicated that sequence
learning may engage distinct systems as a function of task conditions; how to
characterize these systems remains controversial. The remainder of the paper
will focus on the various regions of the brain that have been shown to partici-
pate in motor sequence learning. Each region will be considered in turn, with
an emphasis on the roles that attention, explicit knowledge, and nature of the
sequential information play on neural activity.

. Imaging and the serial reaction time (SRT) task

The advent of neuroimaging has ushered in a plethora of new experimental
techniques to the field of cognitive science. Methods that allow for whole brain
imaging with reasonable spatial resolution, specifically positron emission to-
mography (PET) and functional magnetic resonance imaging (fMRI), have be-
come essential tools for cognitive neuroscience over the last 20 years. There are
many variations in how these technologies are employed, but in the studies de-
scribed below the underlying principle is essentially the same: The scanning
device is able to detect changes in bloodflow that are specific to local regions
of tissue. From these changes in bloodflow, increases or decreases in neural
activity are inferred.

Such techniques provide a valuable complement to traditional neuropsy-
chological approaches to attributing function to neural structures. For in-
stance, one reason for the difficulty in attributing specific functions to the dif-
ferent structures has to do with the distinction between motor learning and
motor performance. Individuals with brain damage may present deficits in
performing learned behaviors, but researchers must determine whether these
deficits reflect problems with learning or problems in production. A person
may possess intact representations of the learned behavior but be unable to ex-
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press the encoded information properly due to damage to the brain structures
that are necessary for producing the movements.

Imaging studies can avoid the “execution vs. learning” problem to some
degree because they identify learning-related changes in a normally function-
ing brain. Thus, there are no disrupted systems to alter the operation of other
intact systems. Moreover, imaging experiments can be designed to maximize
the likelihood that any observed changes in neural signal relate to motor learn-
ing rather than motor execution. Movements are often performed with greater
speed as they become well learned. In fact, the speed at which movements are
performed is often used as a measure of learning. This behavioral phenomenon
has important consequences for researchers using imaging techniques to study
motor learning. A brain region may be sensitive to the rate at which move-
ment is performed simply because there is more motor output within a given
period of time. This type of change in activity should not be considered to nec-
essarily reflect motor learning per se, given that the computation performed by
the underlying region may remain identical as the movement becomes more
practiced. Therefore, most studies have required participants to perform the
movements at a constant rate regardless of the amount of practice. Under
constant-rate conditions, changes in neural activation can be tightly linked
to learning.

For the purposes of the present paper, we will rely primarily on studies
that have used the serial reaction time (SRT) task. In the basic SRT task, partic-
ipants perform a choice reaction time task, often involving visual stimuli with
a spatially compatible S-R mapping. The order of the stimuli can be random
or follow a fixed sequence, typically 6–12 elements long. Sequence learning is
assessed by comparing reaction times of trials in which the stimuli follow a
fixed sequence to trials in which the order of the stimuli is randomly deter-
mined. Because learning can include aspects of the task that are independent
of the sequence per se, such as the strengthening of S-R associations, it is im-
portant that the comparison involve random and sequence trials taken from
similar points in training. Therefore, blocks of random trials are usually intro-
duced near the end of an experimental session to provide a clean measure of
sequence learning.

Literally dozens of imaging studies have been conducted using variants of
the SRT task. This broad empirical base allows for a somewhat detailed consid-
eration of how the brain activation is affected by sequence learning under vary-
ing task demands. While there are clearly advantages to drawing comparisons
across diverse experimental procedures, such an approach also possesses some
potential pitfalls. First, the tasks present different computational demands. For
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example, in trial-and-error versions of the SRT task, the participants are ac-
tively testing hypotheses and using the feedback information to adjust their
performance. In the basic version of the task, no feedback is provided and
the participants simply are instructed that they are to perform a continuous
choice reaction time task. With compatible S-R mappings (or some training
with less compatible mappings), error rates are low and the measure of learn-
ing is based simply on the change in reaction time. With this approach, the
experimenter can influence the degree to which participants become aware
of the presence of a sequence. Indeed, in many conditions, the participants
are unaware of the sequence, allowing the SRT task to be used as a model for
procedural sequence learning.

A second potential pitfall of making comparisons across experiments stems
from the fact that different approaches have been employed for analyzing the
imaging data. Based on neurophysiological studies showing that neurons be-
come more active as the animal learns to perform a particular movement
sequence, most studies have focused on increases in activation during se-
quence learning, although decreases are often observed as well. In some studies
(Grafton, Hazeltine, & Ivry 1995, 1998; Hazeltine, Grafton, & Ivry 1997), a
correlational method was used to identify activation changes that were associ-
ated with learning (see also, Honda et al. 1998). This approach is distinct from
the more traditional subtractive logic applied in imaging studies. For exam-
ple, Doyon, Owen, Petrides, Sziklas, and Evans (1996) report a comparison be-
tween a block in which the stimuli followed a well-learned sequence with a sub-
sequent block in which the successive stimuli were randomly determined (see
also, Catalan, Honda, Weeks, Cohen, & Hallett 1998; Jenkins, Brooks, Nixon,
Frackowiak, & Passingham 1994; Rauch et al. 1995; Sadato, Campbell, Ibanez,
Deiber, & Hallett 1996). The notion that this comparison would reveal areas
associated with sequence knowledge rests on the assumption these areas would
immediately deactivate with the presentation of random stimuli. However, it
is also possible that these areas continue to perform their sequencing-related
computations, even though they are no longer appropriate. If this were so, such
areas would not be detected by this comparison.

Nonetheless, there have been numerous imaging studies of motor sequenc-
ing and an integration of this work reveals some interesting points of similarity
as well as raises some important issues for future work. The investigation of
any psychological process benefits from the application of converging meth-
ods. Given the complexity of sequence learning, progress in identifying the
psychological and neural components is particularly likely to result from com-
parisons across multiple studies. The manipulations employed by individual
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studies may affect multiple components, leading to a plurality of potential in-
terpretations. Evaluating the patterns of results from a range of experiments
should help to isolate the critical task components that affect neural activity in
specific brain regions.

The imaging data is buttressed by a sizeable body of behavioral studies that
have explored the representational nature of human sequence learning. Such
research has provided invaluable constraints on the interpretation of imag-
ing data. For instance, studies that have employed a transfer design (Cohen,
Ivry, & Keele 1990; Hazeltine 2002; Keele, Jennings, Jones, Caulton, & Cohen
1995; Palmer & Meyer 2000; Willingham, Wells, Farrell, & Stemwedel 2000)
indicate that representations formed during sequence learning do not specify
anatomic units (i.e., particular finger movements) but instead involve more ab-
stract codes that possibly include features of the environment. These findings
make clear that much of the changes in neural activity associated with motor
sequence learning do not stem from the encoding of relationships between low-
level muscle commands (see below). Instead, these changes likely reflect the ac-
quisition of movement endpoints (e.g., Willingham et al. 2000) or high-level
action goals (e.g., Hazeltine 2002). This perspective has been slow to be ab-
sorbed by much of the neuroimaging literature; some studies have interpreted
activation strictly in terms of associations between effectors.

. How many forms of sequence learning?

Many studies (e.g., Cohen et al. 1990; Curran & Keele 1993; Jiménez & Méndez
1999; Schmidtke & Heuer 1997; Stadler 1995) have attempted to characterize
the specific benefit of attention on sequence encoding. Since the task’s intro-
duction, it has been recognized that sequence learning is clearly affected by the
availability of attentional resources (Nissen & Bullemer 1987). One major issue
centers on whether there two distinct sequence learning systems, one indepen-
dent of the availability of attention and the other enabled only when sufficient
attentional resources are committed to the sequential task. In describing this
dichotomy, we refer to the former learning system as the “non-attentional”
system and the latter as the “attentional” system. In adopting this terminology,
it is important to bear in mind that the non-attentional system is not unable
to encode information that is attended (c.f. Jiménez & Méndez 1999). Rather,
this system is, under appropriate conditions, able to form associations between
task-relevant items, regardless of the attentional load.
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Researchers have compared learning under single-task conditions, during
which attention can be devoted to the SRT task, and dual-task conditions,
during which attention must be allocated to both a secondary task and the
SRT task. According to adherents of this two-system view, dual-task conditions
prevent the attentional system from encoding sequential relationships in the
SRT task. Thus, the imposition of an appropriate secondary task can serve
to determine whether sequence learning occurs within both systems (when
the secondary task is absent) or only in the non-attentional system (when the
secondary task is present).

Although the two-system view has received considerable empirical sup-
port, it remains a controversial account of a large and complex body of data.
The psychology of learning has emphasized the classical distinction between
implicit and explicit processes. Given the dominance of this theoretical di-
chotomy, it is tempting to equate the attentional system with explicit learn-
ing and the non-attentional system with implicit learning. However, such a
straightforward connection between the two frameworks is simplistic. Implicit
learning is frequently studied under single-task conditions (e.g., Nattkemper &
Prinz 1997; Reed & Johnson 1994; Wachs, Pascual-Leone, Grafman, & Hallett
1994; Willingham & Goedert-Eschmann 1999; Willingham, Nissen, & Bulle-
mer 1989), indicating that the availability of attention is no guarantee that
learning will be explicit.

Other characterizations of distinct learning systems have focused on the
types of information that are encoded rather than the availability of the sys-
tems (c.f. Stadler 1995). Keele, Ivry, Mayr, Hazeltine and Heuer (under review)
have proposed that one learning system is composed of modules that can en-
code sequence information that is restricted to a single input dimension (e.g.,
location or shape). Sequences can be encoded within these modules, but the
encoded representations cannot include information that occurs along other
dimensions. A second, independent system is accessible to inputs from mul-
tiple dimensions, and thus can form complex, multidimensional associations
(as well as unidimensional associations if information is only present on a sin-
gle dimension). The cost of the increased flexibility in the multidimensional
system is that the system can be easily disrupted by sources of unrelated infor-
mation that are attended to by the organism. In contrast, the unidimensional
system, while more limited in the range of sequences it can encode, is able to
identify invariance in individual input streams when multiple sources of infor-
mation impinge on the organism. Explicit knowledge can only emerge from
the multidimensional system.
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Other researchers (e.g., Dienes & Berry 1997; Perruchet & Amorim 1992;
Shanks & St. John 1994, 1996) have raised more fundamental objections to the
two-system view and argued against the proposal that performance on the SRT
and related tasks is mediated by multiple, distinct sequence learning systems.
Differences between implicit and explicit measures may reflect the sensitivities
of the various behavioral tests. According to this view, tasks that purportedly
assess implicit and explicit knowledge tap the same sequence representations.
When individuals are unable to report the sequence but benefit from its pres-
ence during performance of the SRT task, the representation is incomplete or
in a sub-threshold state.

These theories have been constructed to account for behavioral data, but
the neuroimaging literature is replete with experiments that have employed the
SRT task and thus speak to the question of whether distinct learning systems
encode sequence information. Indeed, several imaging studies have attempted
to test the two-system theory by comparing the neural activation associated
with sequence learning during single- and dual-task conditions, or by compar-
ing activation during conditions in which there is explicit knowledge to condi-
tions in which there is only implicit knowledge. The results, described in detail
below, have supported the hypothesis that multiple, non-overlapping neural
systems are involved in sequence learning, and that the degree of their involve-
ment is highly dependent on task conditions. However, as with the behavioral
findings, the data are open to multiple interpretations, and identifying the crit-
ical task components that determine the pattern neural activation has proven
less than straightforward.

To address these issues, the remainder of this paper is organized in terms
of the brain regions that have been implicated in motor sequence learning.
Each region is discussed in terms of how attention, explicit knowledge, and
the nature of the sequential information affect its activation during the per-
formance of SRT-like tasks. Findings from neurophysiological and neuropsy-
chological studies focusing on these regions will also be described. From these
observations, we attempt to sketch some hypotheses about the functional roles
of the brain structures and how they may interact to form distinct sequence
learning systems.

. Motor cortex

An obvious starting point for a tour of the brain structures supporting mo-
tor sequence learning is the primary motor cortex. In their seminal imaging
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study, Roland, Larsen, Lassen, and Skinhoj (1980) reported regional cerebral
blood flow (rCBF) increases in sensorimotor cortex during movements rang-
ing from simple isometric finger flexions to sequences involving the five digits
of the hand. While the importance of motor cortex in volitional movement
is well established, its role in motor learning is less clear. In some studies se-
quence learning is accompanied by increased rates of movement, making un-
clear whether increased activation reflects sequence learning per se or higher
rates (e.g., Schlaug, Knorr, & Seitz 1994). However, the studies of Grafton et
al. (1995) with visual spatial sequence learning and Hazeltine et al. (1997)
with color sequence learning controlled for rate by employing a fixed inter-
val between successive stimuli. That is, the fixed interstimulus interval meant
that responding quickly to the stimuli did not affect the overall rate at which
responses were made. Nonetheless, the researchers found clear evidence of
increased motor cortex activation as sequence learning proceeded.

In these studies, motor cortex activity was consistently observed in the
dual-task conditions, but not in the single task conditions. In fact, most imag-
ing studies using single-task methods have failed to observe significant changes
in motor cortex related to sequence learning (e.g., Berns, Cohen, & Mintun
1997; Doyon et al. 1996; Jenkins et al. 1994; Jueptner et al. 1997; Rauch et al.
1995). There are, however, some intriguing exceptions when the learned rep-
resentations are well developed and awareness is no longer focused on the se-
quencing task (Jenkins et al. 1994; Passingham 1996). In support of such a view
Karni, et al. (1995) found motor cortex activity to increase over many days of
extensive practice on a finger sequencing task.

Pascual-Leone et al. (1994) have reported a similar pattern using transcor-
tical magnetic stimulation (TMS) to measure changes in the size of motor fields
over the course of learning. Early in training the motor fields grew larger in
correspondence with behavioral indices of learning. However, the motor fields
later returned to their original size as soon as subjects developed explicit knowl-
edge of the sequence. Thus, the evidence consistently shows motor cortex in-
volvement in sequence learning, either during dual-task conditions or when
focused attention is not involved. Honda et al. (1998) report increased rCBF
over contralateral motor cortex in single task SRT learning, but only during
the initial stages. This area was not correlated with performance once subjects
began to attend to the sequential nature of the stimuli. In fact, at this point,
the prominent foci were in the right hemisphere, similar to shifts reported by
Grafton et al. (1995) and Hazeltine et al. (1997).

These results have been interpreted as reflecting plasticity within the motor
cortex during motor learning (Karni et al. 1995; Pascual-Leone et al. 1994).
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This interpretation challenges the traditional notion that motor cortex units
activate target muscle groups in a context independent manner and suggests an
expanded role for motor cortex to include encoding of movement sequences.
However, the behavioral phenomena pose some problems for this account.

Sequence learning in tasks such as the SRT task can occur at a relatively
abstract level; sequence knowledge acquired during training with one set of
effectors, such as fingers, can be transferred to other effectors, such as arm,
even when subjects are unaware of the sequence or when they learn the se-
quence under dual-task conditions (Cohen et al. 1990; Keele et al. 1995). Such
transfer across effectors suggests that an abstract sequence representation is
tied to the stimulus properties or response properties (i.e., knowledge of the
locations to which action is directed) rather than to motor processes. There
are certainly situations in which sequential representation arises at the motor
level, but such motor representation seems restricted to very short movement
segments, such as the coordinated muscular events that make up a single letter
stroke in handwriting (see Lindemann & Wright 1998) or between immediately
adjacent strokes in typing by experts (e.g., Jordan 1995).

Beginning with the seminal neurophysiological work of Penfield (Penfield
& Boldrey 1937), a high degree of effector specificity has been assumed to char-
acterize motor cortex. Recent neuroimaging studies provide converging evi-
dence (Grafton, Mazziotta, Woods, & Phelps 1992). It is unclear how effector-
independent sequences would be encoded in motor cortex, a region presumed
to involve effector-specific units. Thus, it is reasonable to question whether the
activation observed in this brain region really reflects sequence encoding.

An alternative hypothesis suggests a different functional role of the motor
cortex in sequence learning. Perhaps the observed increases are not the con-
sequence of its reorganization with learning, but instead reflect an increase in
input to this structure. By this view, sequential learning is restricted to regions
upstream from motor cortex. For example, areas in supplementary motor cor-
tex, having encoded the sequence, may exert a priming effect on their effector-
specific targets in motor cortex. One PET study provides direct support for this
hypothesis (Grafton et al. 1998). Under dual-task conditions, participants were
trained on the SRT task, responding to color stimuli with their fingers. As in
earlier studies, rCBF increased in contralateral motor cortex. After learning was
established, they were transferred to a condition in which the responses were
made with whole-arm movements, first with random stimuli and then with the
original sequence. When the sequence was reinstantiated, an increase in activ-
ity was again observed in motor cortex. However, the center of activity shifted
to a more dorsal position, consistent with the crude somatotopy of this region.
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Studies that control movement rate seem especially sensitive to potential
priming effects given that they introduce relatively long delays between consec-
utive responses. These conditions exist for both the Karni et al. study and the
PET studies (Grafton et al. 1995; Hazeltine et al. 1997). The priming hypothe-
sis is related to the distinction between performance and learning. Does an in-
crease in metabolic activity reflect local reorganization or changes in upstream
processes? A performance-based interpretation is consistent with several neu-
roimaging studies that have failed to find learning-related changes in motor
cortex (Friston, Frith, Passingham, Liddle, & Frackowiak 1992; Jenkins et al.
1994; Rauch et al. 1995; Rauch et al. 1997). Moreover, activity in motor cortex
is comparable when subjects perform simple and complex movements (Roland
et al. 1980; Shibasaki et al. 1993). Finally, when subjects are asked to imagine
producing movement sequences, motor cortex activity remains at baseline lev-
els, suggesting that this region does not play a role in the storage of sequential
knowledge (Decety et al. 1994; Roland et al. 1980).

. Premotor cortex and SMA

Premotor cortex, including both the medial supplementary motor area (SMA)
and lateral regions (referred to here as PMC), has consistently been linked to
sequential behavior. Numerous PET studies have shown increased rCBF during
the production and acquisition of movement sequences, even when the num-
ber of movements is equated across conditions (Grafton et al. 1995; Hazeltine
et al. 1997; Honda et al. 1998; Jenkins et al. 1994; Rauch et al. 1995; Sadato et
al. 1996; Shibasaki et al. 1993). Unlike the results for motor cortex, these ar-
eas are also activated when subjects are asked to imagine producing movement
sequences (Decety et al. 1994; Roland et al. 1980).

These imaging data are supported by findings from lesion studies in both
humans and monkeys. Halsband et al. (1993) report that patients with premo-
tor lesions are impaired in the production of rhythmic, sequential movements,
with the deficit most marked when the lesions encompassed SMA. Similarly,
premotor lesions severely disrupted the ability of monkeys to relearn move-
ment sequences (Passingham 1993). Again, the effect was most evident when
the lesions were made in the medial portion of premotor cortex.

Neurophysiological studies provide perhaps the most compelling evidence
that sequential knowledge is encoded in premotor cortex. Tanji and Shima
(1994; also Mushiake et al. 1991) trained monkeys to perform 3-element se-
quences consisting of push, pull, and turn gestures. Neurons in SMA responded
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selectively in advance of one of the gestures, but only when the gesture was em-
bedded in a particular transition (e.g., a “pull” neuron would respond in the
sequences push-pull-turn and turn-push-pull, but not for the sequences push-
turn-pull and turn-pull-push). Mushiake et al. (1991) also found that cells
in PMC were selectively activated prior to the onset of movement sequences
rather than being linked to particular elements within the sequence.

This is not to say that the role of the two structures is identical. A variety
of hypotheses have been proposed to differentiate the respective contributions
of PMC and SMA, independent from sequence learning. One hypothesis cen-
ters on an external-internal distinction, with the PMC prominent in the con-
trol of externally-driven movements and the SMA associated with internally-
generated movements (Goldberg 1985; Halsband et al. 1993). External move-
ments are those cued by events such as the appearance of a visual stimulus
to be touched or a cue indicating that a movement should be initiated. Inter-
nal movements are those initiated and guided without the assistance of envi-
ronmental cues. Mushiake et al. (1991) classified PMC and SMA neurons on
the basis of whether their activity was related to visually-guided or internally-
generated movement. While the populations overlapped, PMC neurons were
twice as likely to be active during visually-guided movement compared to
internally-generated movement; the reverse was observed for SMA neurons.

An alternative way to characterize the differences between SMA and PMC
focuses on computational requirements that coexist during the performance
of most movements. SMA may play a more prominent role in the representa-
tion and generation of sequential actions (see Tanji & Shima 1994). In addition
to the single-cell research cited previously, lesions of the SMA in humans im-
pair performance on sequencing tasks (Halsband et al. 1993; Watson, Fleet,
Gonzalez-Rothi, & Heilman 1986) and, in the monkey, produce a greater im-
pairment on sequence tasks than do lesions of PMC (Passingham 1993). In
contrast, neurons in PMC underlie associations between stimuli and move-
ments. In this view, PMC may not be involved in sequence representation per
se, but rather in the formation of links between external events and appropri-
ate actions (di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti 1992; Rizzolatti
& Gentilucci 1988). A sequence representation composed of codes that refer
to external events could account for the patterns of behavior in SRT tasks in
which performance benefits are observed in transfer conditions in which the
effectors are changed but the response endpoints or feedback remains the same
(Hazeltine 2002; Keele et al. 1995; Willingham et al. 2000).

An important point here is that these links can be relatively arbitrary. While
in many situations, stimulus-action associations are direct – for example, when
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we reach to catch a thrown ball – many actions involve relatively arbitrary as-
sociations. For example, we learn to stop at a red light or press the remote to
change channels on the television. Wise, di Pellegrino, and Boussaoud (1996)
suggest that PMC is especially critical when the appropriate action does not
conform to the most direct stimulus-response mapping. As reviewed in Pass-
ingham (1993), lesions of PMC in the monkey and human lead to severe
impairments on tasks in which the subjects must learn arbitrary associations.

One way to integrate the internal vs. external perspective with the sequen-
tial vs. arbitrary approach is to consider how the cues guiding sequential ac-
tions can vary with learning. Jenkins et al. (1994) trained subjects to produce
a sequence of eight elements. Feedback signals were provided after each re-
sponse, enabling the subjects to learn the sequence through trial and error.
After mastering one sequence, the subjects repeated the process with another
sequence. In this way, PET scans could be obtained during the performance
of a well-learned sequence and during acquisition of a new one, without con-
founding scan order with skill level. Activation was greater in PMC when sub-
jects were learning a new sequence (see also, Jueptner et al. 1997), and shifted
to SMA when they performed the well-learned one. This can be interpreted as
a change from performance being guided by the external feedback signals to
one in which the subjects have internally encoded the sequence.

It is interesting to note that across many imaging studies of sequence learn-
ing, there has been a consistent dissociation between SMA and PMC. With one
exception (Honda et al. 1998), task-related neural activity has been observed
in one area or the other, but not both. In the SRT PET studies (Grafton et
al. 1995, 1998; Hazeltine et al. 1997), learning related changes were obtained
in SMA under dual-task conditions, whereas under single-task conditions, the
changes were found in PMC.

An account of these differences can be formulated by considering the types
of representations and computations performed within these secondary mo-
tor areas. In the dual-task condition, response sequences may be organized
in relation to each other. That is, the production of one response element in
the sequence primes subsequent responses, and it is this implicit knowledge
of the sequence that is reflected in the SMA activation (and interconnected
parietal cortical regions). This priming effect also spills over into motor cortex
as the sequence-specific SMA and parietal representations activate particular
effectors.

The level of representation in SMA is conceptualized as relatively abstract
in two distinct senses. First, the evidence from single-neuron recording sug-
gests that SMA is involved in coding groups of responses, not single responses,
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and hence also would not be coding for specific movements. Second, as de-
scribed in the previous section, the behavioral evidence suggests that the se-
quence code can be transferred among different movement effectors, and hence
more likely represents response goals. This difference in specificity between
SMA and motor cortex is made clear in one PET study (Grafton, Mazziotta,
Presty et al. 1992). Similar loci of activation were found in SMA for tracking
movements performed with either the finger or tongue. In contrast, effector
specificity was evident in motor cortex; these conditions led to a significant
shift in the center of activation. Similarly, in the SRT transfer study of Grafton
et al. (1998), the SMA focus of activation remains high across scans during
which the sequence is produced with finger or arm movements.

Under single-task conditions, responses are guided by the retrieval of suc-
cessive stimulus-response associations. Learning-related changes in rCBF in
this case occur in PMC as this region provides the essential mapping. According
to this framework, PMC would also be recruited during dual-task performance
when the signals for both tasks are predictive of one another. However, in PET
dual-task studies to date, an increase in PMC activity was not observed across
the sequence blocks because the retrieval of stimulus-response associations al-
ternated between the sequential visual events and the random tones. Because
PMC operates on both types of inputs, the random tones precluded the forma-
tion of a sequential representation. Consistent with this proposal, Rauch et al.
(1995) observed increased rCBF in premotor cortex during single-task learning
when the subjects were unaware of the sequence, although the center of activ-
ity was considerably inferior to the premotor foci reported in the other PET
studies. PMC but not SMA activity is also correlated with sequence complexity
when subjects produce well-learned movement patterns (Catalan et al. 1998;
Sadato et al. 1996).

One exception to this pattern is found in the results of Honda et al. (1998).
Using a correlational analysis similar to Grafton et al. (1995), parallel increases
in PMC and SMA were observed during single task SRT learning. Based on
their continuous assessment of awareness, these changes were initially evi-
dent during the early stages of sequence knowledge, the point where subjects
indicated they believed the stimuli were non-random, but could not report
the sequence. Focusing the analysis on this phase may provide a window in
which metabolic changes can be detected in both learning systems. Interest-
ingly, as in the Grafton studies, the SMA activity was centered in the con-
tralateral hemisphere whereas the PMC activity was lateralized to the ipsilateral
hemisphere. The fact that these studies consistently required participants to re-
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spond with their right hands complicates theorization about the significance of
these results.

. Prefrontal cortex

Activation in the lateral prefrontal cortex (PFC) has been reported in most of
the published SRT PET studies under single-task conditions (Doyon et al. 1996;
Grafton et al. 1995; Hazeltine et al. 1997; Honda et al. 1998; Rauch et al. 1995).
Moreover, a learning related prefrontal increase in rCBF was reported by Berns
et al. (1997), using a different motor sequence task. In their task, the sequence
did not follow a fixed pattern, but instead the successive responses were deter-
mined by a set of implicitly-learned rules applied in a probablistic manner. As
reaction times decreased, activity increased in the right prefrontal region.

There are considerable differences in the exact locus of the learning-related
changes in PFC across these studies. In the Grafton, Berns, Hazeltine, and
Honda studies, increases in rCBF were found in the right PFC. This lateral-
ity pattern is especially intriguing given that in all four studies the responses
were made exclusively with the fingers of the ipsilateral right hand. Doyon et
al. (1996) report greater activity in the right PFC when subjects preformed a se-
quence they could explicitly report compared to the earlier performance of that
sequence when awareness was less developed. When the explicit condition was
compared to a condition in which a new sequence was introduced, however,
PFC activity was observed in the left hemisphere. This finding is similar to the
left PFC activity reported by Rauch et al. (1995), who used a similar compari-
son (explicit-random). It is noteworthy that, unlike in the other experiments,
the movements were bimanual in the Rauch et al. study.

In addition to the laterality issue, the exact loci within prefrontal cortex
varies considerably across studies. Hazeltine et al. (1997) hypothesized the ex-
istence of dimension specific regions within lateral PFC. The linking of spa-
tial stimuli to responses was attributed to a relatively dorsal region (area 46)
of PFC, and the corresponding operation for color stimuli was attributed to
a more ventral region (area 45). However, this picture is not well supported
across the set of sequence learning imaging studies. The area 45 activation in
Rauch et al. and Doyon et al. during spatial sequence learning are quite close
to the focus observed by Hazeltine et al. during color sequence learning. The
activation reported by Berns et al., is also centered in a similar region. More-
over, similar foci were identified by Grafton et al. and Honda et al., but the
former used a spatial sequence and the latter a digit sequence. Thus, there is
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consistent activation of area 45/46 during single-task sequence learning, but
little indication exists for a systematic effect of stimulus type on the locus of
the activity.

These lateral prefrontal regions have been hypothesized to form a criti-
cal component of a working memory system. According to this framework,
transient representations provide links between perceptual-based knowledge
distributed across posterior regions and the task-relevant goals. For example,
in the delayed-matching-to-sample task, the animal must remember a cued
location for a forthcoming response. Thus, the working memory function of
lateral PFC is unlikely to be restricted to sequence learning. Indeed this area
shows activation across a wide range of tasks (e.g., McCarthy et al. 1994; Smith
et al. 1995).

Recent studies of response competition have also emphasized the impor-
tance of lateral PFC. When task conditions suggest inappropriate responses,
either through expectations (Garavan, Ross, & Stein 1999; Konishi, Nakajima,
Uchida, Sekihara, & Miyashita 1998), irrelevant stimuli (Casey et al. 2000;
Hazeltine, Poldrack, & Gabrieli 2000), or contradictory feedback (Fink et al.
1999), activity in the ventral portion of the right lateral prefrontal cortex near
area 45 is frequently observed. Such findings suggest an alternative account for
the similar activity observed during single-task sequence learning. Perhaps as
subjects are better able to anticipate subsequent stimuli, they exert more in-
hibitory control over the responses that are not likely to be immediately pro-
duced. For example, once learning that response 2 follows response 3, the sub-
ject may inhibit responses 1 and 4 to facilitate the response selection processes
and improve performance.

A general feature across the SRT imaging studies is that sequence related
prefrontal activation appears to be restricted to learning that occurs under
single-task conditions, that is, when there are no intervening random events
between successive elements of the sequence. Grafton et al. (1995) did observe
some activation associated with learning during dual-task conditions in the
prefrontal cortex, but the focus was located in a more anterior and medial por-
tion of the frontal lobe than the foci reported in single-task studies (e.g., Berns
et al. 1997; Doyon et al. 1996; Eliassen, Souza, & Sanes 2001; Grafton et al.
1995; Hazeltine et al. 1997; Honda et al. 1998; Jenkins et al. 1994; Jueptner et
al. 1997; Toni, Krams, Turner, & Passingham 1998).

The reports of prefrontal activation share other features as well. In all five
PET SRT studies, as well as Berns et al. (1997), activity in prefrontal cortex
remains high when learned responses are made following the presentation of
visual stimuli. Sequence-specific cells have also been recorded in the lateral PFC
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of the monkey during the production of a spatially cued sequence (Barone &
Joseph 1989). In contrast, no change in activity is observed in this area when
humans produce well-learned sequences from memory (Catalan et al. 1998;
Deiber et al. 1991; Jenkins et al. 1994; Sadato et al. 1996; Shibasaki et al. 1993).
Indeed, the lack of activity is particularly striking given that in the Shibasaki
et al. and Jenkins et al. studies, comparisons were made to a resting condi-
tion. Here, the production of sequential movements was associated with activ-
ity in SMA. This dissociation of prefrontal and SMA activity fits well with the
external-internal account of the differential contributions of lateral and medial
motor pathways.

One issue here is how internally generated motor sequences are learned.
Jenkins et al. (see also Ghiladri et al. 2000, 1994) used tones to indicate whether
responses were correct in a trial and error learning procedure. During the
learning phase, lateral PFC was active compared to rest. However, when sub-
jects performed a well-learned sequence, the activation in the PFC returned
to resting levels. What changes in the course of learning dual-task sequences
or internally generated movements is the utility of external information. The
PFC may serve as a conduit for perceptually-based feedback necessary for se-
quence acquisition, even for internally generated movements. Once the se-
quence is sufficiently encoded and feedback becomes less relevant, this region is
no longer required. Thus, it may be that the PFC is necessary early in learning,
when the sequence representation is insufficient to drive behavior without the
external stimuli that indicate the appropriate responses (see Toni et al. 1998).

Pascual-Leone et al. (1996) found further support for a dissociation be-
tween dorsolateral prefrontal cortex (DLPFC) and SMA during sequence learn-
ing using transcranial magnetic stimulation. They applied transcranial mag-
netic stimulation continuously during SRT training. The magnetic coil was
centered over SMA, ipsilateral DLPFC, or contralateral DLPFC. Magnetic stim-
ulation had minimal effect on overall reaction time for all groups. However,
compared to a control group that did not receive magnetic stimulation, stim-
ulation over contralateral DLPFC significantly reduced sequence learning. The
effect was specific to this area as shown by the fact that stimulation to SMA
and ipsilateral DLPFC did not affect learning. Given that sequence learning
occurred under single-task conditions in this experiment, we would expect the
DLPFC to be essential: Participants responded to the series of visuospatial sig-
nals and there were no intervening random events. Note that the TMS find-
ings are at odds with the patient and imaging studies in one respect; the latter
suggests a prominent role of right PFC even for right-hand movements.
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An interesting prediction derives from this explanation. If this experiment
were repeated under dual-task conditions, stimulation over SMA should dis-
rupt learning, whereas stimulation over DLPFC would have no effect. In ef-
fect, the random tones may act much like transcranial magnetic stimulation
by disrupting the representation of sequential information in DLPFC. Under
such conditions, sequence learning is restricted to the non-attentional learn-
ing system involving SMA. Now, magnetic stimulation of SMA should disable
this system.

A final issue regarding the role of the frontal lobes in sequence learning
focuses on awareness. Frontal lobe function, including working memory, has
have frequently been linked to consciousness, and during single-task learning,
in which prefrontal activity is seen, subjects frequently become explicitly aware
of the sequence (Cohen et al. 1990; Frensch, Buchner, & Lin 1994; Willingham
et al. 1989). Grafton et al. (1995) found that subjects who became aware in
the single-task condition showed significantly greater activation in PFC during
sequence learning than those who did not become aware. Similarly, prefrontal
activation has been correlated with explicit sequence knowledge in the other
SRT PET studies (Doyon et al. 1996; Honda et al. 1998; Rauch et al. 1995).

Other evidence from the imaging literature suggests that lateral PFC activ-
ity may be associated with factors unrelated to the establishment of sequence
awareness. Rauch et al. did not find significant differences in this area dur-
ing the performance of explicitly and implicitly learned sequences. Similarly,
learning related increases in PFC was observed for the unaware subjects in the
Hazeltine et al. (1997) study and the Grafton et al. (1995) study, though sta-
tistically reliable only in the former case. While awareness has proven to be
a thorny problem in the study of implicit motor learning (see Perruchet &
Amorim 1992; Shanks & St. John 1994), Berns et al. (1997) report that their
subjects showed essentially no evidence for awareness in their probablistic se-
quence learning study. Nonetheless, performance was significantly correlated
with increases in lateral PFC. In sum, there are some reports of activation in the
PFC without the development of explicit knowledge, but few reports of explicit
knowledge without PFC activation. Thus, it appears that PFC is a component
of a learning system that is engaged during single-task sequence learning from
which explicit knowledge of the sequence can emerge.
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. Temporal and occipital cortex

In addition to the action-related anterior regions, learning-related changes in
activity are often reported in the occipital and temporal lobes during sequence
learning. Such foci might seem surprising given that these areas are usually
considered to be involved in perception rather than action. However, during
sequence learning in the SRT, stimuli as well as responses can be anticipated
as performance improves. Thus, the most likely interpretation of activation
in these regions is that it reflects stimulus expectations or classical perceptual
learning. To date, none of the imaging studies using dual-task conditions have
reported activity in either the temporal or occipital lobes, suggesting that, as
with the PFC, the availability of attention may be critical for these structures to
participate in the performance of learned sequences.

For example, area 19 consistently shows learning-related activation (Graf-
ton et al. 1995; Hazeltine et al. 1997; Rauch et al. 1995), frequently bilaterally
under single task conditions. Temporal lobe loci were also observed in these
studies. The exact locations are not consistent across the studies. Hazeltine et
al. attributed these differences to stimulus-specific characteristics and the re-
cruitment of distinct neural processes required for analyzing the spatial and
color information used to indicate responses. The loci, however, do not match
up with those identified in imaging studies designed to map human visual cor-
tex. The area 19 focus showing increased rCBF with learning in the color-cued
task of Hazeltine et al. is more lateral and inferior than the color center iden-
tified in PET (Lueck et al. 1989; Zeki et al. 1991) and fMRI studies (Clark et
al. 1997).

That the occipital and temporal regions appear to be active only under
single-task conditions suggests that they are functional linked with the PMC
and lateral PFC. Although activity is not always observed within all three re-
gions in a given experiment (e.g., Doyon et al. 1996; Rauch et al. 1995), the pat-
tern across studies is consistent with the structures forming a sequence learning
system that is engaged when attention is available. The PMC and PFC, which
presumably encode the associations among the sequence elements, may facili-
tate perceptual priming, via either direct or indirect projections from the PFC
to posterior structures (Barbas 1988; Barbas & Pandya 1989). This idea borrows
from current theories concerning how lateral PFC modulates activity in tem-
poral and extrastriate cortex in visual memory (Corbetta, Miezin, Dobmeyer,
Shulman, & Petersen 1991; Desimone, 1996; Desimone & Duncan 1995). Ac-
cording to this framework, activity in the premotor cortex could be due to ad-
ditional priming from PFC or from inputs originating in posterior cortex. This
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account indicates that learning here can be stimulus-based, with the system
anticipating “what” perceptual characteristics will appear next.

To date, all of the PET SRT studies have relied on stimulus sequences that
are restricted to a single input channel (e.g., color or location). However, some
behavioral evidence suggests that without attention, sequence learning may
not be able to form associations across distinct channels of information (e.g.,
Hazeltine, Ivry, & Chan, in preparation; Schmidtke & Heuer 1997). Therefore,
one might suppose that a system comprised by PFC, PMC, and regions with
the temporal and occipital lobes is necessary to learn cross-modal sequences
(Keele et al., under review). Mesulam (1998) associates consciousness with
cross-modal regions of the brain, pointing out that we do not consciously per-
ceive single, unbound features. In this regard, it is interesting to note that this
learning system, and the PFC in particular, are often associated with explicit
knowledge of the sequence (e.g., Doyon et al. 1996; Ghiladri et al. 2000; Grafton
et al. 1995; Hazeltine et al. 1997; Honda et al. 1998; Jenkins et al. 1994).

Indeed, evidence from non-learning tasks is consistent with the proposal
that these structures are well-suited for integrating information across sepa-
rate dimensions. This property is prevalent in theories of processing within the
ventral stream of posterior cortex (Goodale, Milner, Jakobson, & Darey 1991;
Ungerleider & Mishkin 1982). For example, temporal lobe areas are critical in
face recognition and object recognition processes, with computational models
emphasizing that this area can sustain the requisite multidimensional, inte-
grative representations (Desimone & Duncan 1995). Stimulus-based priming
might occur in modality-specific posterior regions, or it might be instantiated
in polysensory regions of the superior temporal cortex (e.g., Watanabe & Iwai
1991) or PFC (see Fuster, Bodner, & Kroger 2000; Mesulam 1998).

. Parietal cortex

Regions within parietal cortex are activated during SRT sequence learning as
frequently as any other region of the brain. When learning occurs under dual-
task conditions, the activation consistently increases in the anterior parietal
lobe. A left hemisphere focus at the border of areas 40 and 7 was identified in
the study using spatial stimuli (Grafton et al. 1995); numerous bilateral foci in
more inferior regions of area 40 were seen with the color stimuli (Grafton et al.
1995; Hazeltine et al. 1997). Parietal foci are also observed to show learning-
related changes during studies of sequence learning under single-task condi-
tions. In contrast to the more anterior area 40 activation observed in the dual-
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task studies, parietal foci under single-task conditions are generally limited to
area 39, especially near the border of area 19.

A potential role for these parietal areas is that they encode action-based
representations for spatially directed movements. Indeed, some theorists of
motor sequence learning propose that sequences are encoded in terms of spa-
tial coordinates (e.g., Hikosaka et al. 1999; Willingham et al. 2000). This pro-
posed role in learning is related to more general accounts of parietal function:
this region has been viewed as a critical component of a system for generating
the spatial characteristics of an action (Crammond 1996). Thus, whereas the
temporal-PFC-PMC network may serve to anticipate the properties of suc-
cessive stimuli, the parietal region appears to provide the spatial codes for
goal-directed actions (Andersen 1994).

This idea is related to the “what-where” distinction of the functions of pos-
terior cortex. In the initial formulation of Ungerlieder and Mishkin (1982), the
dorsal “where” system was essential for computing an object’s position in ex-
ocentric space. More recently, “where” has been extended to include “how”, to
capture the importance of spatial information for the performance of goal-
directed movements (Goodale et al. 1991; Jeannerod et al. 1994; Milner &
Goodale 1995). While the temporal and occipital regions that constitute the
ventral “what” system may process input properties relating to the identity of
identity of the upcoming stimuli, the parietal regions may encode the action-
related information. Although controversial (see Carey 2001), some studies
(e.g., Glover & Dixon 2001; Haffenden & Goodale 1998) have indicated that
visual tasks that presumably engage the “how” system are less sensitive to visual
illusions induced by irrelevant stimulus information than tasks that invoke the
“what” system. This difference in sensitivity parallels the conjecture that there
is one learning system that is disrupted by a secondary task and a second learn-
ing system that is less susceptible to irrelevant information but more limited in
terms of flexibility (Keele et al., under review; Schmidtke & Heuer 1997).

The role of parietal cortex in goal-directed movements is supported by a
wide range of evidence. This area is consistently activated in PET studies dur-
ing the production of voluntary movements in extrapersonal space (Deiber et
al. 1991; Harrington et al. 2000; Jenkins et al. 1994; Roland et al. 1980). Grafton
et al. (1992) report bilateral activation of dorsal parietal cortex during visually
guided finger movements and this activation increases when the spatial com-
plexity of the task is increased. Increases in rCBF in this area are also obtained
during imagined movements (Crammond 1996; Decety, Kawashima, Gulyas, &
Roland 1992). The apraxia literature has also pointed towards the importance
of parietal cortex in the long-term representation of spatially directed action.
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Of note here is that apraxic patients with posterior lesions not only have dif-
ficulty in producing coordinated gestures but are also impaired in perceiving
them (Heilman, Rothi, & Valenstein 1982). Such a deficit suggests a common
representation subserving perception and action.

The well-documented involvement of the parietal lobe in spatial transfor-
mations and its near-ubiquity in SRT learning suggest that its role may re-
late to encoding the movements that constitute the sequence. Behavior SRT
studies have provided considerable evidence that under dual-task conditions,
sequence learning is largely based on representations specifying particular ac-
tions. Hazeltine (2002) found that sequence learning under dual-task condi-
tions was preserved when stimulus order was altered but response order re-
mained the same (see also Nattkemper & Prinz 1997; Willingham et al. 2000).
Thus, it appears that sequence encoding must occur on representations that are
not bound to particular stimulus properties.

However, while the evidence suggests that sequence learning is response-
based, this is not to say that learning under dual-task conditions is restricted
to low-level motor codes, or even locations in egocentric space (Grafton et
al. 1998; Hazeltine 2002). As pointed out above, the learned sequence repre-
sentation appears to include abstract information about the goals or inten-
tions associated with the component movements. “Mirror” neurons, which re-
spond whenever the animal performs or observes others perform particular
actions, might be well-suited for providing goal-based representations that can
guide behavior regardless of how the actions are actually implemented. Mirror
neurons were originally identified in the premotor cortex (di Pellegrino et al.
1992); more recently, similar profiles are observed in parietal neurons (Gallese,
Fadiga, Fogassi, & Rizzolatti, in press). These regions may serve to represent
the constituent actions contained in the learned sequence. In this view, cir-
cuits involving the SMA, along with the basal ganglia (see below), serve to link
representations encoded in the parietal cortex. A similar arrangement may ex-
ist with the PFC and premotor cortex, with the former structure providing
the associations that bind actions represented by the latter structure. However,
learning within PFC-premotor circuit may be easily disrupted by secondary
tasks that demand executive control and working memory processes. Encod-
ing within the parietal lobe, in contrast, appears to be robust across a range of
experimental conditions.
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. Basal ganglia

The basal ganglia seem ideally suited for performing the integrative operations
required for sensorimotor learning. The striatum, the principal input region
of the basal ganglia, is massively innervated by axons originating in many cor-
tical regions, especially the parietal and frontal lobes. The basal ganglia out-
put projects to thalamic nuclei that in turn innervate cortical regions includ-
ing motor, premotor, and prefrontal regions of the frontal lobe. Moreover, the
dopaminergic pathways within the basal ganglia have been hypothesized to be
a critical component of a behavioral reinforcement system. The capability to
selectively reinforce particular actions over others is a necessary component
of learning.

The PET SRT studies have consistently found increased blood flow in the
basal ganglia during dual- and single-task learning. There are two notable dif-
ferences between these two conditions. First, within the striatum, the activation
during dual-task learning (Grafton et al. 1995; Hazeltine et al. 1997) is consid-
erably inferior to that observed during single-task learning (Doyon et al. 1996;
Grafton et al. 1995; Rauch et al. 1995). Second, dual-task learning is associated
with activation of the left side of the basal ganglia whereas single-task learning
is associated with activation on the right side, matching the laterality effects
observed in the cortex.

Patients with basal ganglia pathology are impaired on a range of mo-
tor tasks, especially those that entail sequential movements (Agostino, Be-
rardelli, Formica, Accornero, & Manfredi 1992; Harrington & Haaland 1991;
Roy, Saint-Cyr, Taylor, & Lang 1993). While these deficits may reflect a funda-
mental problem in motor control, it has also been proposed that the basal gan-
glia are essential for the acquisition of novel movement patterns. Indeed, some
theorists have proposed a generalized role for the basal ganglia in procedural
learning (Mishkin, Malamut, & Bachevalier 1984), encompassing both the ac-
quisition of movement sequences and implicit cognitive routines (Knowlton,
Mangels, & Squire 1996; Saint-Cyr, Taylor, & Lang 1988). Lesion studies in an-
imals also support the hypothesis that the basal ganglia are essential for the
performance of movement sequences (e.g., Berridge & Whishaw 1992).

Patients with degenerative disorders of the basal ganglia, have been tested
on the SRT task in a number of studies, always under single-task conditions.
In general, the results indicate a learning deficit, even when performance im-
pairments are taken into consideration. Patients with both Huntington’s dis-
ease (Willingham & Koroshetz 1993) and Parkinson’s disease have been found
to show reduced learning, although the magnitude of the deficit varies across
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studies (Ferraro, Balota, & Connor 1993; Jackson, Jackson, Harrison, Hender-
son, & Kennard 1995; Pascual-Leone et al. 1993). Shin and Ivry (in prepara-
tion) introduced a variant of the SRT task in which the timing between the
successive visual stimuli was manipulated to form a secondary, temporal se-
quence. Three different stimulus-response intervals were employed, with the
length of this sequence identical to that used for the visuospatial sequence. Pa-
tients with Parkinson’s disease were able to learn both the spatial and temporal
sequence (when probed separately), but unlike control participants, they failed
to integrate the two streams of information into a multidimensional sequence.

These findings suggest two possible roles for the basal ganglia in sequence
encoding. First, learned associations may be formed within the basal ganglia.
Sequence-specific cells have been identified in the striatum of the monkey
(Kermadi, Jurquet, Arzi, & Joseph 1993). Computational models have empha-
sized that the dopaminergic pathways of the basal ganglia provide a critical
reinforcement signal for the development of task-relevant associations (Berns
& Sejnowski 1998; Hikosaka 1993; Houk, Adams, & Barto 1995; Schultz et
al. 1995).

Second, a failure of sequence learning may be related to a problem in set
shifting rather than learning per se (Cools 1980; Hayes, Davidson, Keele, &
Rafal 1998; Robertson & Flowers 1990). Performance of learned movement se-
quences may require a shifting operation to schedule the successive elements or
groups of elements in the appropriate order. Single-cell recordings in the basal
ganglia indicate that this structure may play a role in scheduling successive ac-
tions. Chevalier and Deniau (1990) examined the relationship of activity in
the superior colliculus and the inhibitory afferent signal these neurons receive
from the basal ganglia. Discharge patterns in the colliculus were correlated with
eye movements, and this activity was predictive of eye movement parameters
well in advance of movement onset. However, the onset of movement occurred
after the basal ganglia input was itself inhibited. Thus, within this system, the
basal ganglia operate as a gating mechanism, in which movement plans rep-
resented in the colliculus are released through disinhibition (see also, Berns &
Sejnowski 1996).

Brotchie, Iansek, and Horne (1991) have offered a related proposal based
on the interaction between the basal ganglia and supplementary motor area
during the generation of sequential arm movements and have outlining how
shifting may be part of a system for motor priming. When making a series
of wrist movements, an increase in the inhibitory output from the basal gan-
glia to the thalamus is observed near the end of each submovement. Interest-
ingly, these bursts are only evident during the production of learned move-
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ments, again underscoring the role of the basal ganglia in learning. However,
it is unclear if the basal ganglia have learned the movement sequence per se, or
whether they are providing a shifting cue to a sequence represented in other,
cortical structures. The inhibitory process may only be triggered when an input
signal is provided to the basal ganglia indicating the next element in a learned
sequence. In the Brotchie et al. task, it is possible that the SMA provides a rep-
resentation of the learned movement sequence (see Romo & Schultz 1992), and
the basal ganglia provides the signals to allow the animal to shift from one el-
ement to the next. That is, increasing activation within SMA, held in check by
the basal ganglia, could serve as the basis for motor priming. The failure of the
Parkinson patients to integrate temporal and spatial information may reflect
a similar problem in scheduling a series of responses (Shin & Ivry, in prepa-
ration). The fact that the patients exhibited learning of the spatial sequence
would be consistent with the idea that the sequence representation itself is not
dependent on the basal ganglia.

The basal ganglia may interact in a similar manner with the PFC and SMA.
This proposal is plausible given that similar connections exist between these
latter structures and the basal ganglia (e.g., Alexander, Crutcher, & DeLong
1990). It is noteworthy that the dual-task studies activate both the SMA and
putamen, whereas the single-task studies activate PFC and more superior re-
gions of the striatum. This pattern converges with anatomical data showing
that the PFC has relatively more connections to the caudate than putamen,
and the reverse holds for SMA (Bates & Goldman-Rakic 1993). Thus, in a gen-
eralized way, the basal ganglia may implement a switching operation to move
from one sequence chunk to the next with different regions recruited for the
two sequence learning systems.

Clues about the computational role of the basal ganglia are provided by
the observation that this structure is activated across a range of SRT tasks
involving both implicit and explicit knowledge, and both single- and dual-
task conditions. The widespread observations of activation here suggest that
basal ganglia may perform an operation that is tapped by both attentional and
non-attentional learning systems. One possibility is that the basal ganglia serve
to reinforce associations formed between sequence elements as training pro-
gresses. A related hypothesis focuses on the structure’s role in controlling in-
ternally generated responses (e.g., Goldberg 1985; Romo & Schultz 1992). Prior
to learning, movements are triggered by the appearance of unanticipated, ex-
ternal visual cues. At this point, neither the SMA nor PFC has extracted a rep-
resentation of the sequence of responses or of stimuli. Such representations
emerge over the course of learning, entailing a shift from externally guided to
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internally guided control processes. With basal ganglia dysfunction, one would
expect to see a dominance of externally guided processes as well as a loss of
benefit from predictable conditions. Evidence for both of these behavioral phe-
nomena have been reported in studies of Parkinson’s disease (see Georgiou et
al. 1994; Jahanshahi, Brown, & Marsden 1992; Majsak, Kaminski, Gentile, &
Flanagan 1998). As noted above, the apparent impairment in SRT learning in
Parkinson patients may reflect the fact that the keypresses are primarily being
evoked in response to the visual signals rather than by anticipatory priming
on either the response or stimulus side. Priming would be impaired due to
slowness in switching operations, not by lack of sequence learning per se. In
support of such argument, Parkinson patients perform comparably to control
subjects when tracking a random visual cue, but, unlike controls, they show lit-
tle improvement when the cue follows a predictable course (Gabrieli, Stebbins,
Singh, Willingham, & Goetz 1997; Henderson & Goodrich 1993).

. Cerebellum

The cerebellum has traditionally been viewed as central in the production and
acquisition of skilled movement. Patients with cerebellar lesions have difficulty
in terminating a pointing movement at a desired location and are especially
impaired in movements that require the coordination across different muscle
groups. Many experiments have demonstrated that the acquisition of new mo-
tor skills is disrupted (e.g., Ghez 1991; Ito 1984; Sanes, Dimitrov, & Hallett
1990; Thach, Goodkin, & Keating 1992). Studies show that adaptation to new
sensorimotor mappings is either absent or slower to emerge following cerebel-
lar damage (e.g., Martin, Keating, Goodkin, Bastian, & Thach 1996; Ojakangas
& Ebner 1994; Raymond, Lisberger, & Mauk 1996; Thompson 1990).

Some PET studies of motor learning are consistent with the view of the
cerebellum as part of a motor learning system. However, there is a striking
difference in the pattern of activation general observed here: Unlike the other
areas described above, improved performance is typically associated with a de-
crease in cerebellar activation. Jenkins et al. (1994) found that cerebellar acti-
vation was greater when subjects were engaged in explicitly acquiring a new
sequence compared to when they were performing a well-learned sequence.
Friston, Frith, Passingham, Liddle, and Frackowiak (1992) had subjects alter-
nate between periods of sequential finger movements and rest. Whereas the
magnitude of motor cortex activity was constant across the movement phases,
the difference between movement and rest within the cerebellum diminished
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as subjects became more practiced. A decrease in cerebellar activation has also
been observed in a non-motor learning task (Raichle et al. 1994).

The SRT studies present a murkier picture. Consistent with the other imag-
ing studies, Hazeltine et al. (1997) observed decreases in cerebellar activation
over the learning blocks in both their single- and dual-task conditions, al-
though the foci were quite distant from one another. However, other studies
have either failed to find significant changes in the cerebellum (Grafton et al.
1995) or found cerebellar activation to be greater during the production of
learned sequences compared to random blocks (Doyon et al. 1996; Rauch et
al. 1995).

In contrast to the imaging results, neuropsychological studies have found
consistent and striking learning deficits in patients with bilateral lesions due
to cerebellar atrophy (Doyon et al. 1998; Pascual-Leone et al. 1993) and pa-
tients with unilateral focal lesions (Gomez-Beldarrain, Garcia-Monco, Rubio,
& Pascual-Leone 1998; Molinari et al. 1997). For example, Molinari et al.
(1997, Experiment 2) found minimal reduction in RT during sequence training
and no increase with the reintroduction of a random block. Interestingly, the
deficit was comparable for both the ipsilesional and contralesional hands (but
see Gomez-Beldarrain et al. 1998). Further evidence that the problem cannot
be attributed to the patients’ motor impairments comes from experiments in
which the subjects simply watch the visual displays. Here, too, the patients are
unable to learn the sequence (Molinari et al. 1997; Pascual-Leone et al. 1993).

All of the neuropsychological findings have emerged from studies using
single-task conditions, indicating the cerebellum is involved in the attentional
learning system, perhaps through its connections with premotor and prefrontal
cortex (Goldberg 1985; Middleton & Strick 1994). There are some reports that
individuals with cerebellar damage are impaired on tests of explicit knowledge
of sequence learning (Pascual-Leone et al. 1993). Thus, the contribution of the
cerebellum to learning on this task may not be restricted to fine-tuning mo-
tor commands but may also involve encoding more abstract representations.
PET studies on a wide range of motor and non-motor tasks have frequently
reported correlated patterns of activation in prefrontal cortex and cerebellum
(see Fiez et al. 1996). How might the cerebellum contribute to this learning
circuit? One conjecture is that the cerebellum is essential when the sequence is
sufficiently complex that subjects must monitor their current place within the
sequence and retain placeholders for a series of forthcoming responses (Inhoff,
Diener, Rafal, & Ivry 1989; Pascual-Leone et al. 1993). The cerebellum might
be well suited to perform this placeholding function given its central role in the
representation of temporal information (see Ivry 1996).
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Along these lines, Shin and Ivry (in preparation) observed that patients
with cerebellar lesions not only fail to learn the spatial sequence in their SRT
task, but also showed no evidence of incidental temporal sequence learning.
Perhaps the timing deficit contributes to the spatial sequence learning deficit:
The mechanisms required for building associations between successive events
may not only require that the events are contiguous, but also that the temporal
relationships remain relatively constant. Non-temporal associations may be-
come difficult to form when the representation of the temporal relationships
between the events is noisy.

. Summary

Neural activity related to sequence learning has been observed in regions span-
ning nearly the entire brain, although in any given study, the extent of the
activation is more limited. We summarize the findings reviewed in this pa-
per in Table 1. As a whole, the data suggest that distinct sets of neural re-
gions are recruited for sequence encoding depending on the task conditions.
Regions within the prefrontal and premotor cortex become activated during
sequence learning under single-task conditions when attention can be devoted
without interruption to the SRT task. However, there is considerable evidence
that prefrontal activation can be observed in the absence of explicit knowl-
edge. Nonetheless, the prefrontal and premotor cortices may belong to a learn-
ing system that operates only when attention tracks the sequential informa-
tion in an uninterrupted fashion. These regions do not appear to be involved
with sequence learning when attention must be allocated to a secondary task.
Under such dual-task conditions, the SMA and parietal regions show learning-
related activation, although they have also been observed in some studies using
single-task conditions. The SMA and parietal regions, along with the basal gan-
glia, likely represent major components of an implicit learning system that is
capable of encoding a series of responses under a broad range of task demands.

Despite the many imaging studies employing variants of the SRT task,
characterizing the specific computational role of these regions remains contro-
versial. Activation can be interpreted as reflecting many processes, including
perceptual or motor priming, the representation of individual actions, and, of
course, sequence encoding. This paper has offered some preliminary hypothe-
ses about the cognitive operations performed by the neural structures identi-
fied across a range of sequence learning studies. Most of these proposals have
relied considerably on data from behavioral SRT experiments as well as imag-
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Table 1. Summary of the findings from the imaging studies of sequence learning. Xs
indicate that increased activity was identified in the comparison indicated in the third
column. Abbreviations: MC = Motor cortex, PM = Premotor cortex, SMA = supple-
mentary motor area, PFC = prefrontal cortex, ACC = Anterior cingulate cortex, P =
Parietal, T = Temporal, BG = Basal ganglia, C = Cerebellum.

Aware Task/Comparison MC PM SMA PFC ACC P T BG C

Dual-task SRT Tasks

Grafton et al. (1995) No correlational + X X X X X

Grafton et al. (1998) No correlational + X X X X

Retrieval - Random X X X

Hazeltine et al. (1997) No correlational + X X X X

Single-task SRT tasks

Berns et al. (1997) No correlational + X X

correlational - X X X

Doyon et al. (1996) Mix Learned – Random X X X X

Explicit – Learned X

Yes Explicit – New X X

Learned – New X

Eliassen et al. (2001) Yes Learned – Random X X X

Yes Late learning – Early X X

Grafton et al. (1995) Mix correlational + X X X X X

Hazeltine et al. (1997) Mix correlational + X X X X X

Honda et al. (1998) No Implicit, correlational X

Yes Developing Explicit, corr. X X X

Yes Post-Explicit, correlational X X

Yes Explicit accuracy,corr. X X X X

Rauch et al. (1995) Yes Explicit – Random NA X X X

Explicit – Implicit X

Implicit – Random X X X

Toni et al. (1998) Yes correlational + (40 mins) X X

correlational – (40 mins) X X X X X X X

Trial-and-Error Explicit Learning

Ghiladri et al. (2000) Yes New – Prelearned X X X X X

Jenkins et al. (1994) Yes Prelearned - New X X X X

Yes New - Prelearned X X X X X

Jueptner et al. (1997a) Yes New - Prelearned X X X X X X

Yes Attended - Prelearned X X

Yes New - Attended X X X X X X

Sequence Performance

Catalan et al. (1998) Yes Complexity w/ Explicit X X X X

Harrington et al. (2000) Yes Sequence – Repetition X X

Karni et al. (1995) Yes Explicit (MC only) X NA NA NA NA NA NA NA NA

Sadato et al. (1996) Yes Complexity w/ Explicit X X X
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ing studies of seemingly unrelated tasks. In this way, the theorizing about the
neural substrate of sequence learning is connected to diverse topics in psychol-
ogy and neuroscience. Progress here will both require and produce advances in
our understanding of memory, attention, motor control and consciousness.
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There is much recent interest in the question of whether people have available
a single category learning system or a number of qualitatively different systems.
Most proponents of multiple systems have hypothesized an explicit, rule-based
system and some type of implicit system. Although there has been general
agreement about the nature of the explicit system, there has been disagreement
about the exact nature of the implicit system. This chapter explores the ques-
tion of whether there is implicit category learning, and if there is, what form
it might take. First, we examine what the word “implicit” means in the cate-
gorization literature. Next, we review some of the evidence that supports the
notion that people have available one or more implicit categorization systems.
Finally, we consider the nature of implicit categorization by focusing on three
alternatives: an exemplar memory-based system, a procedural memory system,
and an implicit system that uses the perceptual representation memory system.

. The cognitive neuroscience of implicit category learning

Categorization is the act of responding differently to objects and events in the
environment that belong to separate classes or categories. It is a critical process
that every organism must perform in at least a rudimentary form because it
allows them to respond differently, for example, to nutrients and poisons, and
to predators and prey.

Much of the recent categorization literature has focused on the question of
whether people have available a single category learning system or a number of
qualitatively different systems. For example, although the early literature was
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dominated by theories postulating a single system, a number of recent theo-
ries have proposed multiple category learning systems (Ashby, Alfonso-Reese,
Turken, & Waldron 1998; Brooks 1978; Erickson & Kruschke 1998; Pickering
1997). Interestingly, many of these papers have hypothesized at least two sim-
ilar systems: 1) an explicit, rule-based system that is tied to language function
and conscious awareness, and 2) an implicit system that may not have access
to conscious awareness. For example, Ashby et al. (1998) proposed a formal
neuropsychological theory of multiple category learning systems called COVIS
(COmpetition between Verbal and Implicit Systems), which assumes separate
explicit (rule-based) and implicit (procedural learning-based) systems.

There is still much disagreement however. First, the proposal that there
are multiple category learning systems is disputed. In particular, Nosofsky and
his colleagues have argued that single system models can account for many
of the phenomena that have been used to support the notion of multiple sys-
tems (Nosofsky & Johansen 2000; Nosofsky & Kruschke 2002; Nosofsky & Zaki
1998). Second, even among those researchers postulating separate explicit and
implicit systems, there is disagreement about the nature of the implicit sys-
tem. As mentioned above, Ashby et al. (1998) proposed a procedural-memory
based implicit system (see also Ashby & Waldron 1999; Ashby, Waldron, Lee,
& Berkman 2001). In contrast, several researchers have proposed that the im-
plicit system is exemplar-memory based (Erickson & Kruschke 1998; Pickering
1997), and there have also been proposals that the perceptual representation
memory system participates in implicit category learning (Ashby & Ell 2001;
Knowlton, Squire et al. 1996; Reber, Stark, & Squire 1998).

This chapter explores the question of whether there is implicit category
learning. First, we examine what is meant by explicit and implicit categoriza-
tion. These are important questions because both terms are used somewhat
differently in the categorization literature than in the memory literature. Next,
we briefly review evidence supporting the notion that people have available
one or more implicit categorization systems. Finally, we focus on two putative
implicit category learning systems, one that uses procedural memory and one
that uses the perceptual representation memory system.
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. What are explicit and implicit categorization?

. Explicit categorization

Categorization processes are said to be explicit if they are accessible to con-
scious awareness. This would include traditional declarative memory processes
that might be invoked when participants try to memorize responses associ-
ated with the various stimuli. However, it could also include simple rule-based
strategies such as, “the stimulus belongs to category A if it is red, and it belongs
to category B if it is blue.”

One danger with equating explicit processing with conscious awareness is
that this shifts the debate from how to define ‘explicit’ to how to define ‘con-
scious awareness’. Ashby et al. (1998) suggested that one pragmatic solution
to this problem is to adopt the criterion that category learning is explicit if
the subject can verbally describe the categorization rule that he or she used.
This definition works well in most cases, but it seems unlikely that verbaliz-
ability should be a requirement for explicit reasoning. For example, the insight
displayed by Köhler’s (1925) famous apes seems an obvious example of ex-
plicit reasoning in the absence of language. For now we will use the criterion
of verbalizability for explicit category learning but ultimately, a theoretically
motivated criterion for conscious awareness is needed.

One way to develop a theory of conscious awareness is by exploiting the
relationship between awareness and working memory. For example, the con-
tents of working memory are clearly accessible to conscious awareness. In fact,
because of its close association to executive attention, a strong argument can
be made that the contents of working memory define our conscious aware-
ness. When we say that we are consciously aware of some object or event, we
mean that our executive attention has been directed to that stimulus. Its repre-
sentation in our working memory gives it a moment-to-moment permanence.
Working memory makes it possible to link events in the immediate past with
those in the present, and it allows us to anticipate events in the near future. All
of these are defining properties of conscious awareness.

The association between working memory and the prefrontal cortex makes
it possible to formulate cognitive neuroscience models of conscious awareness.
The most influential such model was developed by Francis Crick and Christof
Koch (Crick & Koch 1990, 1995, 1998). The Crick-Koch hypothesis states that
one can have conscious awareness only of activity in brain areas that project
directly to the prefrontal cortex.1 For example, consider two brain areas X and
Y. Suppose area X projects directly to the prefrontal cortex, but area Y projects
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only to area X (i.e., and not directly to the prefrontal cortex). If working mem-
ory and conscious awareness reside in prefrontal cortex, then we can be con-
sciously aware of activity in area X because it can be loaded directly into work-
ing memory. On the other hand, if activity in area Y is transformed by area
X before reaching prefrontal cortex and conscious awareness, then there is no
way to be aware of activity in area Y – only of the transformed activity that
leaves area X.

Primary visual cortex (Area V1) does not project directly to the prefrontal
cortex, so the Crick-Koch hypothesis asserts that we cannot be consciously
aware of activity in V1. Crick and Koch (1995, 1998) described evidence in sup-
port of this prediction. Of course, many other brain regions also do not project
directly to the prefrontal cortex. For example, the basal ganglia do not project
directly to the prefrontal cortex (i.e., they first project through the thalamus),
so the Crick-Koch hypothesis predicts that we are not aware of activity within
the basal ganglia. Memory theorists believe that the basal ganglia mediate pro-
cedural memories (Jahanshahi, Brown, & Marsden 1992; Mishkin, Malamut,
& Bachevalier 1984; Saint-Cyr, Taylor, & Lang 1988; Willingham, Nissen, &
Bullemer 1989), so the Crick-Koch hypothesis provides an explanation of why
we don’t seem to be aware of procedural (e.g., motor) learning.

In summary, although the Crick-Koch hypothesis offers a promising start,
a complete theory of conscious awareness does not yet exist. Therefore, in this
chapter we will adopt the operational definition that a categorization process
is explicit if it can be described verbally.

. Implicit categorization

During the past 10 years, about 120 articles have appeared in the psychologi-
cal literature that discuss implicit category learning or implicit categorization,
whereas the decade of the 1980s saw only about 20 such articles. This recent in-
terest in implicit category learning has profoundly affected the categorization
literature, and has formed bridges to the memory literature, where of course,
the study of implicit processes have a long and rich history. Even so, a memory
researcher interested in implicit categorization may be confused by how the
term “implicit” is used in the categorization literature.

Many memory theorists adopt the strong criterion that a memory is im-
plicit only if there is no conscious awareness of its details and there is no knowl-
edge that a memory has even been stored (e.g., Schacter 1987). In a typical
categorization task, these criteria are impossible to meet because trial-by-trial
feedback is routinely provided. When an observer receives feedback that a re-
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sponse is correct, then this alone makes it obvious that learning has occurred,
even if there is no internal access to the system that is mediating this learning.
Thus, in category learning, a weaker criterion for implicit learning is typically
used in which the observer is required only to have no conscious access to the
nature of the learning, even though he or she would be expected to know that
some learning has occurred.

The stronger criterion for implicit processing that has been adopted in
much of the memory literature could be applied in unsupervised category
learning tasks, in which no trial-by-trial feedback of any kind is provided. In
the typical unsupervised task, observers are told the number of contrasting
categories and are asked to assign stimuli to these categories, but are never told
whether a particular response is correct or incorrect. Free sorting is a similar,
but more unstructured task in which participants are not given feedback about
the accuracy of their responses, nor are they even told the number of contrast-
ing categories (e.g., Ashby & Maddox 1998). Thus, in both unsupervised and
free sorting tasks there is no feedback that observers can use to infer that learn-
ing has occurred. As a result, these tasks are ideal for using the stricter criterion
to test for implicit learning. Even so, to date the only learning that has been
demonstrated in such tasks is explicit (Ashby, Queller, & Berretty 1999; Medin,
Wattenmaker, & Hampson 1997).

. Evidence for separate explicit and implicit category learning systems

. Three different category learning tasks

Much of the data that has been used to argue for multiple category learning
systems came from the observation that changing the nature of the contrasting
categories that subjects were asked to learn sometimes qualitatively changed
learning behavior. Ashby and Ell (2001) identified three different types of cat-
egory structures that are often associated with such qualitative differences in
performance. To anticipate our later discussion, in the next section we will
argue that these three tasks load primarily on three different memory systems.

Rule-based tasks are those in which subjects can learn the category struc-
tures via some explicit reasoning process. In the most common applications,
only one stimulus dimension is relevant, and the subject’s task is to discover
this relevant dimension and then to map the different dimensional values to
the relevant categories. Figure 1 shows the stimuli and category structure of a
recent rule-based task that used 8 exemplars per category (Waldron & Ashby
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2001). The categorization stimuli were colored geometric figures presented on
a colored background. The stimuli varied on four binary-valued dimensions:
background color (blue or yellow; here denoted as light and dark gray, respec-
tively), embedded symbol color (green or red; here denoted as black and white,
respectively), symbol number (1 or 2), and symbol shape (square or circle).
This yields a total of 16 possible stimuli. To create rule-based category struc-
tures, one dimension is selected arbitrarily to be relevant. The two values on
that dimension are then assigned to the two contrasting categories.

An important property of rule-based category learning tasks is that the
optimal rule is often easy to describe verbally (Ashby et al. 1998). As a result,
subjects can learn the category structures via an explicit process of hypothesis
testing (Bruner, Goodnow, & Austin 1956) or theory construction and testing
(Murphy & Medin 1985). Virtually all standard neuropsychological categoriza-
tion tasks are of this type – including the well known Wisconsin Card Sorting
Test (Heaton 1981). Rule-based tasks, which have a long history in cognitive
psychology, have been favored by proponents of the so-called classical theory
of categorization, which assumes that category learning is the process of dis-
covering the set of necessary and sufficient conditions that determine category
membership (Smith & Medin 1981).

In the Figure 1 example, the explicit rule that perfectly separates the stimuli
into the two categories is unidimensional. Although the optimal rule in rule-
based tasks is often unidimensional, this is not a requirement. For example, a
task is rule-based if the optimal rule is a conjunction of the form:

Respond A if the background is blue and the embedded symbol is round;
otherwise respond B.

The critical criterion is that this rule is easy to describe verbally, and to
learn through an explicit reasoning process. Note that according to this cri-
terion, there is no limit on the complexity of the optimal rule in rule-based
tasks. However, as the complexity of the optimal rule increases, its salience de-
creases and it becomes less likely that observers will learn the associated cat-
egories through an explicit reasoning process. In fact, Alfonso-Reese (1997)
found that even simple conjunction rules have far lower salience than unidi-
mensional rules. This does not mean that people can not learn conjunction
rules. Only that they are unlikely to experiment with such rules unless feed-
back compels them in this direction. This discussion should make it clear that
the boundary on what constitutes a rule-based task is fuzzy. Tasks in which the
optimal rule is unidimensional are unambiguously rule-based (at least with
separable stimulus dimensions), and tasks in which the optimal rule is signif-
icantly more complex than a conjunction rule are almost never rule-based. In
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Figure 1. Category structure of a rule-based category learning task. The optimal rule
is: Respond A if the background color is blue (depicted as light gray), and respond B if
the background color is yellow (depicted as dark gray).

between, the classification is not so clear-cut. For this reason, the rule-based
tasks we discuss in this chapter will all have a unidimensional optimal rule.

Information-integration tasks are those in which accuracy is maximized
only if information from two or more stimulus components (or dimensions)
is integrated at some pre-decisional stage (Ashby & Gott 1988). Perceptual in-
tegration could take many forms – from treating the stimulus as a Gestalt to
computing a weighted linear combination of the dimensional values. However,
a conjunction rule is a rule-based task rather than an information-integration
task because separate decisions are first made about each dimension (e.g., small
or large) and then the outcome of these decisions is combined (integration is
not pre-decisional). In many cases, the optimal rule in information-integration
tasks is difficult or impossible to describe verbally (Ashby et al. 1998). The neu-
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Figure 2. Category structure of an information integration category learning task with
only a few exemplars in each category.

ropsychological data reviewed below suggests that performance in such tasks
is qualitatively different depending on the size of the categories – in particular,
when a category contains only a few highly distinct exemplars, memorization is
feasible. However, when the relevant categories contain many exemplars (e.g.,
hundreds), memorization is less efficient.

Figure 2 shows the stimuli and category structure of a recent information-
integration task that used only 8 exemplars per category (Waldron & Ashby
2001). The categorization stimuli are the same as in Figure 1. To create
information-integration category structures, one dimension is arbitrarily se-
lected to be irrelevant. For example, in Figure 2, the irrelevant dimension is
symbol shape. Next, one level on each relevant dimension is arbitrarily as-
signed a value of +1 and the other level is assigned a value of 0. In Figure 2,
a background color of blue (denoted as light gray), a symbol color of green
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Figure 3. Category structure of an information integration category learning task with
many exemplars per category. Each stimulus is a line that varies across trials in length
and orientation. Every black plus depicts the length and orientation of a line in Cate-
gory A and every gray dot depicts the length and orientation of a line in Category B.
The quadratic curve is the boundary that maximizes accuracy.

(denoted as black), and a symbol number of 2 are all assigned a value of +1.
Finally, the category assignments are determined by the following rule:

The stimulus belongs to category A if the sum of values on the relevant
dimensions > 1.5; Otherwise it belongs to category B.

This rule is readily learned by healthy young adults, but even after achiev-
ing perfect performance, they can virtually never accurately describe the rule
they used.2

Figure 3 is an abstract representation of the category structure of an
information-integration task in which there are hundreds of exemplars in each
category (developed by Ashby & Gott 1988). In this experiment, each stimulus
is a line that varies across trials in length and orientation. Each cross in Figure
3 denotes the length and orientation of an exemplar in Category A and each
dot denotes the length and orientation of an exemplar in Category B. The cat-
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egories overlap, so perfect accuracy is impossible in this example. Even so, the
quadratic curve is the boundary that maximizes response accuracy – that is,
accuracy is maximized if subjects respond B to any stimulus falling inside the
quadratic region (in the lower right quadrant), and A to any stimulus falling
outside of this region. Note that such a rule is impossible to describe verbally.
Many experiments have shown that, given enough practice, the performance
of subjects in this task is well described by a quadratic decision boundary (e.g.,
Ashby & Maddox 1992; Maddox & Ashby 1993).

Information-integration tasks with few exemplars per category have been
the favorites of exemplar theorists, who argue that categorization requires ac-
cessing the memory representations of every previously seen exemplar from
each relevant category (e.g., Estes 1986, 1994; Medin & Schaffer 1978; Nosof-
sky 1986; Smith & Minda 2000). In contrast, decision bound theorists, who
argue that category learning is a process of associating category labels with
regions of perceptual space, have traditionally used information-integration
tasks with many exemplars per category (e.g., Ashby & Maddox 1992; Maddox
& Ashby 1993).

Prototype distortion tasks are a third type of category learning task in which
each category is created by first defining a category prototype and then cre-
ating the category members by randomly distorting these prototypes. In the
most popular version of the prototype distortion task, the category exemplars
are random dot patterns (Posner & Keele 1968). An example is shown in Fig-
ure 4. In a typical application, many stimuli are created by randomly placing a
number of dots on the display. One of these dot patterns is then chosen as the
prototype for category A. The others become stimuli not belonging to category
A. The other exemplars in category A are then created by randomly perturbing
the position of each dot in the category A prototype. A consequence of this pro-
cess that will prove important in our later discussions is that the stimuli that are
not in category A have no coherent structure. For this reason, participants are
often instructed to respond “yes” or “no” depending on whether the presented
stimulus is a member of category A, rather than “A” or “B” as in the tasks il-
lustrated in Figures 1–3. As the name suggests, prototype distortion tasks have
been commonly used by prototype theorists, who argue that categorization is
the act of comparing the presented stimulus to the prototype of each contrast-
ing category (Homa, Sterling, & Trepel 1981; Posner & Keele 1968; Minda &
Smith 2001).
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Figure 4. Some exemplars from a prototype distortion category learning task with
random dot patterns.

. Category learning dissociations

We have now observed a number of different dissociations between perfor-
mance in rule-based and information-integration category learning tasks. Col-
lectively, these provide strong evidence that learning in these two types of tasks
is mediated by separate systems. A number of these results show that the na-
ture and timing of trial-by-trial feedback about response accuracy is critical
with information-integration categories but not with rule-based categories.
First, in the absence of any trial-by-trial feedback about response accuracy,
people can learn some rule-based categories, but there is no evidence that
they can learn information-integration categories (Ashby, Queller, & Berretty
1999). Second, even when feedback is provided on every trial, information-
integration category learning is impaired if the feedback signal is delayed by as
little as five seconds after the response. In contrast, such delays have no effect
on rule-based category learning (Maddox, Ashby, & Bohil 2002). Third, simi-
lar results are obtained when observational learning is compared to traditional
feedback learning. Ashby, Maddox, and Bohil (2002) trained subjects on rule-
based and information-integration categories using an observational training
paradigm in which subjects are informed before stimulus presentation of what
category the ensuing stimulus is from. Following stimulus presentation, sub-
jects then pressed the appropriate response key. Traditional feedback training
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was as effective as observational training with rule-based categories, but with
information-integration categories, feedback training was significantly more
effective than observational training.

Another qualitative difference between these two tasks is that information-
integration category learning is more closely tied to motor outputs than rule-
based category learning. Ashby, Ell, and Waldron (2002) had subjects learn
either rule-based or information integration categories using traditional feed-
back training. Next, some subjects continued as before, some switched their
hands on the response keys, and for some the location of the response keys was
switched (so the Category A key was assigned to Category B and vice versa). For
those subjects learning rule-based categories, there was no difference among
any of these transfer instructions, thereby suggesting that abstract category la-
bels are learned in rule-based categorization. In contrast, for those subjects
learning information-integration categories, switching hands on the response
keys caused no interference, but switching the locations of the response keys
caused a significant decrease in accuracy. Thus, it appears that response lo-
cations are learned in information-integration categorization, but not specific
motor programs.

One criticism of all these results is that information-integration tasks are
usually more difficult than rule-based tasks, in the sense that information in-
tegration tasks usually require more training to reach the same level of exper-
tise. Because of this difficulty difference, one concern is that, collectively, these
studies might show only that there are many ways to disrupt learning of dif-
ficult tasks compared to simpler tasks. However, several results argue strongly
against this hypothesis. First, Waldron and Ashby (2001) had subjects learn
rule-based and information-integration categories (shown in Figures 1 and
2, respectively) under typical single-task conditions and when simultaneously
performing a secondary task known to activate frontal cortical structures (i.e., a
numerical Stroop task). If task difficulty was the relevant variable, then the dual
task should interfere more strongly with the difficult information-integration
task than with the simpler rule-based task (since it is harder to do two difficult
things at once than two simple things). However, in contrast to this prediction,
the dual task interfered much more strongly with the ability of subjects to learn
the rule-based task than the information-integration task.

Second, Ashby, Noble et al. (2002) found that the same group of Parkin-
son’s disease patients were much more impaired at rule-based category learn-
ing (the Figure 1 task) than at information integration category learning (the
Figure 2 task). If a single system mediates learning in these two types of cate-
gorization tasks, and if Parkinson’s disease damages this system, then we would
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expect the more serious deficits to occur in the more difficult information
integration tasks.

These dissociations strongly argue that people learn rule-based and
information-integration categories using separate systems. For example, con-
sider just the single Waldron and Ashby (2001) dual-task experiment. Arguably
the most successful existing single-process model of category learning is Kr-
uschke’s (1992) ALCOVE model. Ashby and Ell (2002a) showed that the only
versions of ALCOVE that can fit the Waldron and Ashby data make the strong
prediction that after reaching criterion accuracy on the simple (unidimen-
sional) rule-based structures, participants would have no idea that only one
dimension was relevant in the dual-task conditions. Ashby and Ell reported
empirical evidence that strongly disconfirmed this prediction of ALCOVE.
Thus, the best available single-system model fails to account even for the one
dissociation reported by Waldron and Ashby (2001).

In addition to dissociations in experiments with healthy young adults, a
number of related dissociations have been reported with neuropsychological
patient groups. In particular, Ashby and Ell (2001) reviewed the current neu-
ropsychological category learning data and found evidence of a different set
of dissociations across these three categorization tasks. Presently, there is ex-
tensive category learning data on only a few neuropsychological populations.
The best data come from four different groups: 1) patients with frontal lobe
lesions, 2) patients with medial temporal lobe amnesia, and two types of pa-
tients suffering from a disease of the basal ganglia – either 3) Parkinson’s or 4)
Huntington’s disease. Table 1 summarizes the performance of these groups on
the three different types of category learning tasks.

Note first that Table 1 indicates a double dissociation between frontal
lobe patients and medial temporal lobe amnesiacs on rule-based tasks and
information-integration tasks with few exemplars per category. Specifically,
frontal patients are impaired on rule-based tasks (e.g., the Wisconsin Card
Sorting Test; Kolb & Whishaw 1990) but medial temporal lobe amnesiacs are
normal (e.g., Janowsky, Kritchevsky, & Squire 1989; Leng & Parkin 1988). At
the same time, the available data on information-integration tasks with few
exemplars per category indicates that frontal patients are normal (Knowlton,
Mangels, & Squire 1996), but medial temporal lobe amnesiacs are impaired
(i.e., they show a late-training deficit – that is, they learn normally during
the first 50 trials or so, but thereafter show impaired learning relative to age-
matched controls; Knowlton, Squire, & Gluck 1994). Therefore, the neuropsy-
chological data also support the hypothesis that at least two systems partic-
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Table 1. Performance of various neuropsychological populations on three types of
category learning tasks.

Neuropsychological Task
Group Prototype

Rule-Based Information-Integration Distortion
Many Exemplars Few Exemplars

Frontal Lobe Lesions Impaired ? Normal ?

Parkinson’s Impaired Impaired Impaired ?
Basal Disease

Ganglia Huntington’s
Disease Disease Impaired Impaired Impaired ?

Medial Temporal Lobe Normal Normal Late Training Normal
Amnesia Deficit

ipate in category learning. Of course, until more data are collected on the
information-integration tasks, this conclusion must be considered tentative.

Table 1 can also be used to construct first hypotheses about which neural
structures mediate learning in the various category learning tasks. For example,
patients with frontal or basal ganglia dysfunction are impaired in rule-based
tasks (e.g., Brown & Marsden 1988; Cools et al. 1984; Kolb & Whishaw 1990;
Robinson, Heaton, Lehman, & Stilson 1980), but patients with medial tempo-
ral lobe damage are normal in this type of category learning task (e.g., Janowsky
et al. 1989; Leng & Parkin 1988). Thus, an obvious first hypothesis is that the
prefrontal cortex and the basal ganglia participate in this type of learning, but
the medial temporal lobes do not. Converging evidence for the hypothesis that
these are important structures in rule-based category learning comes from sev-
eral sources. First, an fMRI study of a rule-based task similar to the Wisconsin
Card Sorting Test showed activation in the right dorsal-lateral prefrontal cor-
tex, the anterior cingulate, and the head of the right caudate nucleus (among
other regions) (Rao et al. 1997). Similar results were recently obtained in an
fMRI study of the Wisconsin Card Sorting Test (Monchi et al. 2001). Second,
many studies have implicated these structures as key components of executive
attention (Posner & Petersen 1990) and working memory (e.g., Fuster 1989;
Goldman-Rakic 1987, 1995), both of which are likely to be critically impor-
tant to the explicit processes of rule formation and testing that are assumed
to mediate rule-based category learning. Third, a recent neuroimaging study
identified the (dorsal) anterior cingulate as the site of hypothesis generation
in a rule-based category-learning task (Elliott & Dolan 1998). Fourth, lesion
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studies in rats implicate the dorsal caudate nucleus in rule switching (Winocur
& Eskes 1998).

Next, note that in information integration tasks with large categories, only
patients with basal ganglia dysfunction are known to be impaired (Filoteo,
Maddox, & Davis 2001a; Maddox & Filoteo 2001). In particular, medial tem-
poral lobe patients are normal (Filoteo, Maddox, & Davis 2001b). So a first
hypothesis should be that the basal ganglia are critical in this task, but the me-
dial temporal lobes are not. If the number of exemplars per category is reduced
in this task to a small number (e.g., 4 to 8), then medial temporal lobe amne-
siacs show late training deficits – that is, they learn normally during the first
50 trials or so, but thereafter show impaired learning relative to age-matched
controls (Knowlton, Squire, & Gluck 1994). An obvious possibility in this case,
is that normal observers begin memorizing responses to at least a few of the
more distinctive stimuli – a strategy that is not available to the medial tem-
poral lobe amnesiacs, and which is either not helpful or impossible when the
categories contain many exemplars. Since patients with basal ganglia dysfunc-
tion are also impaired with small categories requiring information-integration
(Knowlton, Mangels et al. 1996; Knowlton, Squire et al. 1996), a first hypoth-
esis should be that learning in such tasks depends on the basal ganglia and on
medial temporal lobe structures.

Finally, to our knowledge, of the patient groups identified in Table 1, only
amnesiacs have been run in prototype distortion tasks. Several studies have re-
ported that this patient group shows normal learning in prototype distortion
tasks, which suggests that learning in this task does not depend on an intact
medial temporal lobe (Knowlton & Squire 1993; Kolodny 1994). Ashby and
Ell (2001) suggested that under certain conditions, learning in prototype dis-
tortion tasks might depend, in part, on the perceptual representation memory
system – through a perceptual learning process. In the random dot pattern ex-
periments, this seems plausible because all category A exemplars are created by
randomly perturbing the positions of the dots that form the category A proto-
type (see Figure 4). Thus, if there are cells in visual cortex that respond strongly
to the category A prototype, they are also likely to respond to the other cate-
gory A exemplars, and perceptual learning will increase their response. If this
occurs, the observer could perform well in this task by responding “yes” to any
stimulus that elicits a strong feeling of visual familiarity. Recent fMRI studies
of subjects in prototype distortion tasks show learning related changes in visual
cortex (Reber et al. 1998), and are thus consistent with this hypothesis. Before
drawing any strong conclusions however, it is vital to obtain category learning
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data on prototype distortion tasks from patients with basal ganglia disease or
frontal lobe lesions.

In artificial grammar learning, subjects must decide whether or not a let-
ter string has a familiar (artificial) grammatical structure (e.g., Reber 1989).
Although seemingly very different from prototype distortion, it has also been
proposed that artificial grammar learning depends on the perceptual represen-
tation memory system (Knowlton, Squire et al. 1992). Indirect support for this
hypothesis comes from a number of studies showing that amnesiacs and basal
ganglia disease patients exhibit normal artificial grammar learning (Knowlton,
Squire et al. 1996; Knowlton, Ramus, & Squire 1992; Meulemans, Peigneux,
& Van der Linden 1998). Future research should explore the possible connec-
tions between prototype distortion category learning and artificial grammar
learning.

. Are there multiple implicit category learning systems?

The results reviewed above suggest that there may be multiple qualitatively
different implicit category learning systems. Two obvious possibilities are a
procedural-learning based system that is mediated, in part, by the basal ganglia,
and a perceptual representation system that relies on perceptual learning in vi-
sual cortex. The next two sections consider these possibilities in some detail. A
third possibility that should also be considered, however, is whether there is an
exemplar memory-based system.

In cognitive psychology, one of the most popular and influential theories
of category learning is exemplar theory (Brooks 1978; Estes 1986; Medin &
Schaffer 1978; Nosofsky 1986), which assumes that categorization decisions
are made by accessing memory representations of all previously seen exem-
plars. Exemplar theorists are careful not to assume that this process of accessing
memory representations is explicit, but most exemplar theorists have not taken
a strong stand about the neural basis by which these memory representations
are encoded. A natural candidate is the hippocampus and other medial tempo-
ral lobe structures (e.g., Pickering 1997). However, this is problematic because
these brain areas are thought to mediate (the consolidation of) episodic mem-
ory, which is considered to be explicit (Fuster 1989; Knowlton & Squire 1993;
Reber & Squire 1994). Certainly people are not consciously aware of recalling
all previously seen exemplars when making categorization decisions.

There are situations in which episodic memory may contribute to cate-
gory learning. In particular, with categories that contain a few highly distinct
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exemplars, people may memorize responses to at least some category mem-
bers. Then, when a particularly distinct exemplar is presented, subjects may use
episodic memory to recall the correct response. As mentioned previously, this
might be the cause of the late-training deficit that has been reported when me-
dial temporal lobe amnesiacs learn information-integration categories. Note,
however, that the possible use of episodic memory to recall the response as-
sociated with the single current stimulus is very different from the processes
hypothesized by exemplar theory. According to exemplar theory, the memory
representations of all previously seen exemplars are accessed on every trial. Al-
though they both seem to involve a similar type of memory trace, psycholog-
ically these two possibilities are very different. Recalling the response to a dis-
tinct stimulus is an explicit process, whereas accessing all previously seen ex-
emplars almost necessarily must be implicit (since subjects report no awareness
of such massive activation). On the other hand, there is evidence that at least
some of the success of exemplar theory is due to the ability of exemplar mod-
els to mimic this explicit recall process. For example, Smith and Minda (2000)
found that the best fits of a powerful exemplar model to category learning data
collected using a popular information integration category structure (with a
few highly distinct stimuli in each category) occurred when the response prob-
abilities were determined almost completely by the presented stimulus. The
representations of other category members were also activated, but the model
parameters were such that these were so dissimilar to the presented stimulus
that they had virtually no effect on the predictions of the model.

In summary, there is some evidence that an explicit, episodic memory-
based process may contribute to category learning in some situations (e.g.,
when categories contain a few highly distinct exemplars). There is also theo-
retical reason to expect that an implicit exemplar memory-based system may
contribute to category learning. However, the only attempts that have been
made to describe the neurobiological basis of such a system have focused on
the hippocampus and related structures that are thought to mediate explicit,
episodic memories (Gluck, Oliver, & Myers 1996; Pickering 1997). Thus, cur-
rently, an unresolved, but extremely important question is whether there exists
some implicit, exemplar-memory based categorization system.

. A procedural learning-based categorization system

Figure 5 shows the circuit of a putative procedural memory-based category
learning system (proposed by Ashby et al. 1998; Ashby & Waldron 1999). The
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Figure 5. A procedural-memory-based category learning system. Excitatory projec-
tions end in solid circles, inhibitory projections end in open circles, and dopaminergic
projections are dashed. PFC = prefrontal cortex, Cau = caudate nucleus, GP = globus
pallidus, and Th = Thalamus.

key structure in this model is the caudate nucleus, a major input structure
within the basal ganglia. In primates, all of extrastriate visual cortex projects
directly to the tail of the caudate nucleus, with about 10,000 visual cortical
cells converging on each caudate cell (Wilson 1995). Cells in the tail of the cau-
date (i.e., medium spiny cells) then project to prefrontal and premotor cortex
(via the globus pallidus and thalamus; e.g., Alexander, DeLong, & Strick 1986).
The model assumes that, through a procedural learning process, each caudate
unit learns to associate a category label, or perhaps an abstract motor program,
with a large group of visual cortical cells (i.e., all that project to it).

Perhaps the best evidence for a basal ganglia contribution to category
learning comes from a long series of lesion studies in rats and monkeys that
show that the tail of the caudate nucleus is both necessary and sufficient for
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visual discrimination learning. Many studies have shown that lesions of the tail
of the caudate nucleus impair the ability of animals to learn visual discrimi-
nations that require one response to one stimulus and a different response to
some other stimulus (e.g., McDonald & White 1993, 1994; Packard, Hirsch, &
White 1989; Packard & McGaugh 1992). For example, in one study, rats with
lesions in the tail of the caudate could not learn to discriminate between safe
and unsafe platforms in the Morris water maze when the safe platform was
marked with horizontal lines and the unsafe platform was marked with ver-
tical lines (Packard & McGaugh 1992). The same animals learned normally,
however, when the cues signaling which platform was safe were spatial. Since
the visual cortex is intact in these animals, it is unlikely that their difficulty
is in perceiving the stimuli. Rather, it appears that their difficulty is in learn-
ing to associate an appropriate response with each stimulus alternative, and in
fact, many researchers have hypothesized that this is the primary role of the
neostriatum (e.g., Rolls 1994; Wickens 1993). Technically, such studies are cat-
egorization tasks with one exemplar per category. It is difficult to imagine how
adding more exemplars to each category could alleviate the deficits caused by
caudate lesions, and it is for this reason that the caudate lesion studies support
the hypothesis that the caudate contributes to normal category learning.

The sufficiency of the caudate nucleus for visual discrimination learning
was shown in a series of studies by Gaffan and colleagues that lesioned all
pathways out of visual cortex except into the tail of the caudate (e.g., pro-
jections into prefrontal cortex were lesioned by Eacott & Gaffan 1991, and
Gaffan & Eacott 1995; projections to the hippocampus and amygdala were
lesioned by Gaffan & Harrison 1987). None of these lesions affected visual
discrimination learning.

The procedural learning that has been hypothesized to occur in the cau-
date nucleus is thought to be facilitated by a dopamine mediated reward sig-
nal from the substantia nigra (pars compacta) (e.g., Wickens 1993). There is a
large literature linking dopamine and reward, and many researchers have ar-
gued that a primary function of dopamine is to serve as the reward signal in
reward-mediated learning (e.g., Beninger 1983; Miller, Sanghera, & German
1981; Montague, Dayan, & Sejnowski 1996; White 1989; Wickens 1993). For
example, it has been shown that rewards, and events that signal reward, elicit
release of dopamine from several brainstem sites (for reviews, see, e.g, Bozarth
1994; Pfaus & Phillips 1991; Phillips, Blaha, Pfaus, & Blackburn 1992), and it is
well known that dopamine antagonists (i.e., neuroleptics) disrupt the reward
signal and render reinforcement ineffective (e.g., Ataly & Wise 1983).
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Figure 6. A closer view of a cortical-striatal synapse. Here, a cortical cell terminal re-
leases glutamate (Glu) onto the dentritic spine of a medium spiny cell of the caudate
nucleus. Dopamine cells of the substantia nigra also project onto medium spiny cells
and upon presentation of reward, release dopamine (DA) into the same synapse.

Fairly specific neurobiological models of this learning process have been
developed (e.g., Wickens 1993). Figure 6 shows a close-up view of a synapse be-
tween the axon of a pyramidal cell originating in visual cortex and the dendrite
of a medium spiny cell in the caudate nucleus. Note that glutamate projections
from visual cortex and dopamine projections from the substantia nigra both
synapse on the dendritic spines of caudate medium spiny cells (DiFiglia, Pasik,
& Pasik 1978; Freund, Powell, & Smith 1984; Smiley et al. 1994). A cortical sig-
nal causes an influx of free Ca2+ into the spines (through NMDA receptors).
Because of its strong positive charge, free Ca2+ is buffered very quickly within
the intracellular medium. The main effect of Ca2+ entering the cell is to activate
Ca-dependent protein kinases, which then perform a number of cellular func-
tions, including strengthening (long term potentiation – LTP) and weakening
(long term depression – LTD) the synapse (e.g., Cooper, Bloom, & Roth 1991;
Lynch et al. 1983; Wickens 1993). Because the spines are somewhat separated
from the bulk of the intracellular medium, free Ca2+ persists for several sec-
onds after entering the cell (Gamble & Koch 1987; MacDermott et al. 1986).
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Under ideal conditions, the dopamine-mediated reward signal will arrive dur-
ing this time, and there is substantial evidence that it will interact with the
glutamate signal. The most popular model of this interaction assumes that af-
ter dopamine binds to the D1 receptor and activates its associated G protein, a
sequence of chemical reactions result that ultimately inhibit the deactivation of
the Ca-dependent protein kinases that are activated after glutamate binds to the
NMDA receptor (Nairn, Hemmings, Walaas, & Greengard 1998; Pessin et al.
1994; Wickens 1990, 1993). The effect of this inhibition is that dopamine locks
the glutamate second messenger in the “on” position, thereby potentiating the
learning effect. Thus, the presence of dopamine strengthens the synapses that
were active on a trial when reward was delivered (e.g., Huang & Kandel 1995).

The model described in Figures 5 and 6 easily accounts for all of the dissoci-
ations between rule-based and information integration category learning tasks
that were described above. First, because the dopamine mediated reward signal
is thought to be necessary for learning (e.g., LTP) to occur in the caudate nu-
cleus, the absence of such a reward signal should greatly interfere with this form
of implicit category learning. For this reason, the model predicts that learning
in information integration tasks should be impaired (relative, say, to learning
in rule-based tasks) during unsupervised categorization, or when the category
label is shown before stimulus presentation (rather than after the response). In
addition, as mentioned above, the timing of the reward signal relative to the
response is critical for this type of learning. In reward-mediated learning, it
is essential to strengthen those (and only those) synapses that actively partici-
pated in the response that elicited the reward. Because there is necessarily some
delay between response and reward delivery, this means, therefore, that some
trace must be maintained that signals which synapses were recently active. In
the case of the medium spiny cells in the caudate nucleus, the morphology
of the dendritic spines allows this trace to exist for several seconds after the
response is initiated (Gamble & Koch 1987; MacDermott et al. 1986). If the re-
ward is delayed by more than this amount, then the ensuing dopamine release
will strengthen inappropriate synapses and learning will be adversely affected.

The model described in this section does not make strong predictions
about the effects of switching hands or response locations after learning is
complete. This is because there are projections from the caudate nucleus to
all frontal areas, including prefrontal, premotor, and motor cortices (via the
globus pallidus and the thalamus; e.g. Alexander et al. 1986). Even so, the neos-
triatum (i.e., the caudate and putamen) has been strongly implicated in proce-
dural motor learning (Jahanshahi et al. 1992; Mishkin et al. 1984; Saint-Cyr et
al. 1988; Willingham et al. 1989), so it is not unexpected that an implicit cat-
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egory learning system situated in the tail of the caudate nucleus would engage
in response learning more strongly than, say, a rule-based system that is largely
mediated within prefrontal cortex.

Finally, the model described here is also consistent with the dual-task study
of Waldron and Ashby (2001). The numerical Stroop task that was used as the
dual task in this study was selected specifically because it is known to acti-
vate frontal cortical areas. As such, it was predicted to interfere more strongly
with the frontal-based explicit reasoning system than with the caudate-based
implicit system.

In addition to accounting for these dissociations, the model described in
Figures 5 and 6 also accounts for the dissociations that have been reported for
various neuropsychological patient groups (i.e., summarized in Table 1). First,
the model predicts category learning deficits in information-integration tasks
in patients with Parkinson’s or Huntington’s disease because both of these pop-
ulations suffer from caudate dysfunction. It also explains why frontal patients
and medial temporal lobe amnesiacs are relatively normal in these tasks – that
is, because neither prefrontal cortex nor medial temporal lobe structures play
a prominent role in the Figure 5 model.

Before closing this section, it should be noted that the model shown in
Figure 5 is strictly a model of visual category learning. However, it is feasible
that a similar system exists in the other modalities, since they almost all also
project directly to the basal ganglia, and then indirectly to frontal cortical ar-
eas (again via the globus pallidus and the thalamus; e.g., Chudler, Sugiyama,
& Dong 1995). The main difference is in where within the basal ganglia they
initially project. For example, auditory cortex projects directly to the body of
the caudate (i.e., rather than to the tail; Arnalud, Jeantet, Arsaut, & Demotes-
Mainard 1996).

. A possible perceptual representation category learning system

No one has yet proposed a detailed category learning model that uses the per-
ceptual representation memory system. However, based on work in the mem-
ory literature, it seems likely that such a category learning system, if it exists,
would be based in sensory cortex (Curran & Schacter 1996; Schacter 1994) and
would involve some form of perceptual learning. As mentioned above, it has
been suggested that such a system might play a prominent role in prototype
distortion tasks (Ashby & Ell 2001).
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Before investigating this possibility further, it is worth noting that even
if the perceptual representation memory system did contribute to learning in
prototype distortion tasks, it is not clear that prototype abstraction would meet
the standard criteria of a separate system (Ashby & Ell 2002b). When the stim-
uli are visual in nature, then any category learning system must receive input
from the visual system. If some category learning system X depends on input
from the brain region mediating prototype abstraction, then system X and the
prototype abstraction system would not be mediated by separate neural path-
ways – a condition often considered necessary for separate systems (e.g., Ashby
& Ell 2002b). For example, under this scenario, a double dissociation between
system X and the prototype system should be impossible. Damage to the neu-
ral structures downstream from visual cortex that mediate system X should
induce deficits in category learning tasks mediated by system X, but not nec-
essarily in prototype abstraction tasks. On the other hand, damage to visual
cortex should impair all types of visual category learning. Thus, if prototype
abstraction is mediated within visual cortex, then any group impaired in pro-
totype abstraction should also be impaired on all other category learning tasks.
In addition, it should be extremely difficult, or impossible, to find neuropsy-
chological patient groups that are impaired in prototype abstraction, but not
in other types of category learning. The available neuropsychological data sup-
ports this prediction, but as Table 1 indicates, only very limited tests of this
prediction are currently possible.

Although the term “perceptual learning” is often broadly defined (e.g.,
Kellman 2002), in this chapter we use the term to refer specifically to learning
related changes in sensory cortex. Perceptual learning of this type is thought to
occur any time repeated presentations of the same stimulus occur during some
relatively brief time interval (Dosher & Lu 1999). Unlike the reward-mediated
learning that is thought to occur in the basal ganglia, no reward seems neces-
sary for perceptual learning (e.g., Kellman 2002). In fact, a response does not
even seem to be required (e.g., Posner & Keele 1968; Homa & Cultice 1984).
Presumably then, perceptual learning is mediated by a form of LTP that is quite
close to classical Hebbian learning. In other words, rather than the three-factor
learning rule described in the previous section in which learning occurs only
in the presence of presynaptic activation, postsynaptic activation, and reward,
apparently with perceptual learning, only pre- and postsynaptic activation are
necessary.

In the visual cortex, LTP has been shown to occur at synapses between
cortical pyramidal cells. Like the LTP that occurs in the procedural learning
system, LTP in the perceptual representation system requires presynaptic acti-
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vation from cortical cells releasing glutamate. However, this system does not
require activation of dopamine receptors for LTP to occur. In the procedural
learning system, the activation of dopamine receptors eventually potentiates
the learning-related effects of the protein kinases that are thought to be acti-
vated by the glutamate signal (Wickens 1993). The most widely known mecha-
nism of cortical LTP also requires activation of NMDA channels. As in medium
spiny cells, activation of NMDA receptors in cortex leads to an increase in in-
tracellular Ca2+, and subsequently to an increase in a protein kinase that has
been shown to mediate LTP (i.e., calcium dependent protein kinase II). Un-
like medium spiny cells in the caudate nucleus, however, this process appar-
ently does not require dopamine (i.e., the cortical protein kinase undergoes
autophosphorylation) (Malenka & Nicoll 1999).

Many different types of categorization experiments have been reported
in the literature. Ashby and Maddox (1998) distinguished between what they
called (A, B) tasks and (A, not A) tasks. In an (A, B) task, subjects are presented
a series of exemplars that are each from some category A or from a contrasting
category B. The task of the subject is to respond with the correct category label
on each trial (i.e., “A” or “B”). In an (A, not A) task, there is a single central cat-
egory A and subjects are presented with a series of stimuli that each are either
an exemplar from category A or a stimulus that does not belong to category A.
The subject’s task is to respond “Yes” or “No” depending on whether the pre-
sented stimulus was or was not a member of category A. Historically, prototype
distortion tasks have been run both in (A, B) form and in (A, not A) form. An
important difference is that in an (A, B) task, the stimuli associated with both
responses each have a coherent structure – that is, they each have a central
prototypical member around which the other category members cluster (and
likelihood tends to decrease monotonically with psychological distance from
the prototype). In an (A, not A) task, this is true of the stimuli associated with
the “A” (or “Yes”) response, but not of the stimuli associated with the “not A”
(or “No”) response. The “not A” stimuli have no central member, no coherent
structure, and over a reasonably large region of stimulus space, any given pat-
tern is as likely to be associated with this response as any other pattern (with the
exception of course, of the part of the space in which the category A exemplars
are clustered).

This digression is important because if the perceptual representation sys-
tem contributes to category learning, then it likely will have very different ef-
fects in (A, not A) and (A, B) tasks. Consider first an (A, not A) task. The
category A prototype will induce a graded pattern of activation throughout vi-
sual cortex. One particular cell (or small group of cells) will fire most rapidly
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to the presentation of this pattern. Call this cell A. In other words, cell A will
fire to a particular range of visually similar patterns that includes the category
A prototype. A low level distortion of the category A prototype will be visually
similar to the prototype and therefore will also likely cause cell A to fire. Thus
cell A will repeatedly fire throughout training on the category A exemplars. As
a result, perceptual learning will cause the magnitude of the cell A response to
increase throughout training. In contrast, the stimuli associated with the “not
A” response will be visually dissimilar to the category A prototype and there-
fore will be unlikely to cause cell A to fire. During the transfer or testing phase
of the experiment, the subject can use the increased sensitivity of cell A to re-
spond accurately. In particular, stimuli from category A are likely to lead to an
enhanced visual response compared to stimuli that do not belong to category
A. From the subject’s perspective, this enhanced visual response might be in-
terpreted as an increased visual familiarity. Thus, to respond with above chance
accuracy, subjects need only respond “A” or “Yes” to any stimulus that elicits a
feeling of familiarity.

Next, consider an (A, B) task. In this case there will be some cell A maxi-
mally tuned to the category A prototype, but there will be some other cell B that
is tuned to the category B prototype. During training, every presented stimulus
is a distortion of either the category A or category B prototype, so it is likely that
either cell A or B will fire on many trials. The actual number will depend on
how much the prototypes are distorted to create the two categories. During the
testing phase, all stimuli are again from either category A or B, and so stimuli
from both categories will be equally likely to elicit an enhanced visual response
(assuming the same level of distortion was used to create both categories). As
a result, almost everything will feel familiar to the subject, so this feeling of
familiarity will not help subjects decide whether to respond “A” or “B”.

The conclusion therefore, is that if the perceptual representation system
involves two-factor Hebbian learning, then that system could greatly assist in
learning in (A, not A) tasks, but it would be of little help in (A, B) tasks.
This is not to say that learning in (A, B) prototype distortion tasks is impos-
sible, only that other learning systems must be used. Kolodny (1994) reported
that amnesiacs learn normally in (A, B) prototype distortion tasks [actually
in (A, B, C) tasks], so it seems unlikely that people memorize the category
label associated with each prototype. One obvious possibility is that they in-
stead use a procedural-memory based system of the type described in the pre-
vious section. If so, then several strong, yet untested predictions follow. First,
patients with basal ganglia disease (e.g., Parkinson’s or Huntington’s disease)
should be normal in (A, not A) prototype distortion tasks, but impaired in
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(A, B) tasks. Second, because feedback is much more important to procedural
learning than perceptual learning, unsupervised prototype distortion category
learning should be better in (A, not A) tasks than in (A, B) tasks. Homa and
Cultice (1984) showed that unsupervised learning is possible in (A, B) tasks if
the category members are all low-level distortions of the prototypes, but to our
knowledge, no one has systematically compared unsupervised learning in (A,
not A) and (A, B) tasks.

Because there is so little available data, the predictions and inferences
drawn in this section are highly speculative. Therefore, much more work needs
to be done before we will have a clear understanding of the role played by the
perceptual representation memory system in category learning.

. Summary and conclusions

The issue of whether human category learning is mediated by one or several
category learning systems is a question of intense current debate. Although this
issue is still unresolved, recent cognitive, neuropsychological, and neuroimag-
ing data support the weaker hypothesis that different memory systems may
participate in different types of category learning tasks. This chapter focused
on two memory systems that may contribute to implicit category learning –
procedural memory and the perceptual representation memory system.

The recent surge of interest in implicit category learning has a number of
practical benefits. First, it immediately ties the categorization literature to the
large and well established memory literature. Second, it organizes new research
efforts, and it encourages collecting data of a qualitatively different nature than
have been collected in the past. Third, it encourages a more critical examina-
tion of categorization theories than has been common in the past – largely
because it adds constraints on both psychological process and neural structure
that historically have not received much attention in the categorization litera-
ture. Thus, no matter how it is eventually resolved, the field will benefit from
the current interest in implicit categorization.

Notes

* This research was supported in part by National Science Foundation Grant BCS99-75037.
We thank Luis Jiménez and Eliot Hazeltine for their helpful comments. Correspondence



Implicit category learning 

concerning this chapter should be addressed to F. Gregory Ashby, Department of Psychol-
ogy, University of California, Santa Barbara, CA 93106 (e-mail: ashby@psych.ucsb.edu).

. Crick and Koch (1998) did not take the strong position that working memory is necessary
for conscious awareness. Even so, they did argue that some short-term memory store is
required. However, they left open the possibility that an extremely transient iconic memory
might be sufficient.

. Note that there is an explicit rule that also yields perfect accuracy, but it involves three
“ands” and two “ors”. Despite running many subjects through the Figure 2 categories, we
have never had a subject describe this explicit rule at the end of training, even though almost
all subjects eventually learn these categories perfectly. For this reason, the Figure 2 task is
better described as an information-integration task, rather than as a rule-based task.

References

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally
segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9,
357–381.

Alfonso-Reese, L. A. (1997). Dynamics of Category Learning. Unpublished doctoral disser-
tation, University of California, Santa Barbara.

Arnalud, E., Jeantet, Y., Arsaut, J., & Demotes-Mainard, J. (1996). Involvement of the caudal
striatum in auditory processing: c-fos response to cortical application of picrotoxin and
to auditory stimulation. Brain Research: Molecular Brain Research, 41, 27–35.

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsy-
chological theory of multiple systems in category learning. Psychological Review, 105,
442–481.

Ashby, F. G., & Ell, S. W. (2001). The neurobiological basis of category learning. Trends in
Cognitive Science, 5, 204–210.

Ashby, F. G., & Ell, S. W. (2002a). Single versus multiple systems of category learning: Reply
to Nosofsky and Kruschke (2002). Psychonomic Bulletin & Review, 9, 175–180.

Ashby, F. G., & Ell, S. W. (2002b). Single versus multiple systems of learning and memory.
In J. Wixted and H. Pashler (Eds.), Stevens’ Handbook of Experimental Psychology: Vol.
4 Methodology in Experimental Psychology (3rd ed., pp. 655–691). New York: Wiley.

Ashby, F. G., Ell, S. W., & Waldron, E. M. (2002). Abstract category labels are learned in rule-
based categorization, but response positions are learned in information-integration
categorization. Manuscript submitted for publication.

Ashby, F. G. & Gott, R. E. (1988). Decision rules in the perception and categorization of
multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 14, 33–53.

Ashby, F. G., & Maddox, W. T. (1992). Complex decision rules in categorization: Contrasting
novice and experienced performance. Journal of Experimental Psychology: Human
Perception & Performance, 18, 50–71.



 F. Gregory Ashby and Michael B. Casale

Ashby, F. G. & Maddox, W. T. (1998). Stimulus categorization. In M. H. Birnbaum (Ed.),
Handbook of perception & cognition: Judgment, Decision Making, and Measurement (Vol.
3). New York: Academic Press.

Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus feedback training
in rule-based and information-integration category learning. Memory & Cognition, 30,
666–677.

Ashby, F. G., Noble, S., Filoteo, J. V., Waldron, E. M., & Ell, S. W. (2002). Category learning
deficits in Parkinson’s disease. Manuscript submitted for publication.

Ashby, F. G., Queller, S., & Berretty, P. T. (1999). On the dominance of unidimensional rules
in unsupervised categorization. Perception & Psychophysics, 61, 1178–1199.

Ashby, F. G. & Waldron, E. M. (1999). The nature of implicit categorization. Psychonomic
Bulletin & Review, 6, 363–378.

Ashby, F. G., Waldron, E. M., Lee, W. W., & Berkman, A. (2001). Suboptimality in human
categorization and identification. Journal of Experimental Psychology: General, 130, 77–
96.

Atalay, J. & Wise, R. A. (1983). Time course of pimozide effects on brain stimulation reward.
Pharmacology, Biochemistry and Behavior, 18, 655–658.

Beninger, R. J. (1983). The role of dopamine in locomotor activity and learning. Brain
Research, 287, 173–196.

Bozarth, M. A. (1994). Opiate reinforcement processes: Re-assembling multiple mecha-
nisms. Addiction, 89, 1425–1434.

Brooks, L. (1978) Nonanalytic concept formation and memory for instances. In E. Rosch
and B. B. Lloyd (Eds.) Cognition and Categorization. Hillsdale, NJ: Erlbaum.

Brown, R. G. & Marsden, C. D. (1988). Internal versus external cures and the control of
attention in Parkinson’s disease. Brain, 111, 323–345.

Bruner, J. S., Goodnow, J., & Austin, G. (1956). A Study of Thinking. New York: Wiley.
Chudler, E. H., Sugiyama, K., & Dong, W. K. (1995). Multisensory convergence and

integration in the neostriatum and globus pallidus of the rat. Brain Research, 674,
33–45.

Cools, A. R., van den Bercken, J. H. L., Horstink, M. W. I., van Spaendonck, K. P. M., &
Berger, H. J. C. (1984). Cognitive and motor shifting aptitude disorder in Parkinson’s
disease. Journal of Neurology, Neurosurgery and Psychiatry, 47, 443–453.

Cooper, J. R., Bloom, F. E., & Roth, R. H. (1991). The Biochemical Basis of Neurophar-
macology (Sixth Edition). New York: Oxford.

Crick, F. & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in
Neuroscience, 2, 2263–2275.

Crick, F. & Koch, C. (1995). Are we aware of neural activity in primary visual cortex? Nature,
375, 121–123.

Crick, F. & Koch, C. (1998). Cousciousness and neuroscience. Cerebral Cortex, 8, 97–107.
Curran, T. & Schacter, D. L. (1996). Memory: Cognitive neuropsychological aspects. In T. E.

Feinberg and M. J. Farah (Eds.), Behavioral Neurology and Neuropsychology (pp. 463–
471). New York: McGraw-Hill.

Difiglia, M., Pasik, T., & Pasik, P. (1978). A Golgi study of afferent fibers in the neostriatum
of monkeys. Brain Research, 152, 341–347.



Implicit category learning 

Dosher, B. A. & Lu, Z. L. (1999). Mechanisms of perceptual learning. Vision Research, 39,
3197–3221.

Eacott, M. J. & Gaffan, D. (1991). The role of monkey inferior parietal cortex in visual
discrimination of identity and orientation of shapes. Behavioural Brain Research, 46,
95–98.

Elliott, R. & Dolan, R. J. (1998). Activation of different anterior cingulate foci in association
with hypothesis testing and response selection. Neuroimage, 8, 17–29.

Erickson, M. A. & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal
of Experimental Psychology: General, 127, 107–140.

Estes, W. K. (1986). Array models for category learning. Cognitive Psychology, 18, 500–549.
Estes, W. K. (1994). Classification and Cognition. Oxford: Oxford University Press.
Filoteo, J. V., Maddox, W. T., & Davis, J. (2001a). A possible role of the striatum in linear

and nonlinear categorization rule learning: Evidence from patients with Huntington’s
disease. Behavioral Neuroscience, 115, 786–798.

Filoteo, J. V., Maddox, W. T., & Davis, J. D. (2001b). Quantitative modeling of category
learning in amnesic patients. Journal of the International Neuropsychological Society, 7,
1–19.

Freund, T. F., Powell, J. F., & Smith, A. D. (1984). Tyrosine hydroxylase-immunoreactive
boutons in synaptic contact with identified striatonigral neurons, with particular
reference to dendritic spine. Neuroscience, 13, 1189–1215.

Fuster, J. M. (1989). The Prefrontal Cortex (2nd Edition). New York: Raven Press.
Gaffan, D. & Eacott, M. J. (1995) Visual learning for an auditory secondary reinforcer by

macaques is intact after uncinate fascicle section: indirect evidence for the involvement
of the corpus striatum. European Journal of Neuroscience, 7, 1866–1871.

Gaffan, D. & Harrison, S. (1987). Amygdalectomy and disconnection in visual learning for
auditory secondary reinforcement by monkeys. Journal of Neuroscience ,7, 2285–2292.

Gamble, E. & Koch, C. (1987). The dynamics of free calcium in dendritic spines in response
to repetitive synaptic input. Science, 236, 1311–1315.

Gluck, M. A., Oliver, L. M., & Myers, C. E. (1996). Late-training amnesic deficits in
probabilistic category learning: A neurocomputational analysis. Learning and Memory,
3, 326–340.

Goldman-Rakic, P. S. (1987). Circuitry of the prefrontal cortex and the regulation of
behavior by representational knowledge. In Plum, F. and Mountcastle, V. (Eds.),
Handbook of Physiology (pp. 373–417). American Physiological Society.

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477–485.
Heaton, R. K. (1981). A manual for the Wisconsin Card Sorting Test. Odessa, FL: Psycho-

logical Assessment Resources.
Homa, D. & Cultice, J. (1984). Role of feedback, category size, and stimulus distortion on the

acquisition and utilization of ill-defined categories. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 10, 83–94.

Homa, D., Sterling, S., & Trepel, L. (1981). Limitations of exemplar-based generalization and
the abstraction of categorical information. Journal of Experimental Psychology: Human
Learning and Memory, 7, 418–439.



 F. Gregory Ashby and Michael B. Casale

Huang, Y. Y. & Kandel, E. R. (1995). D1/D5 receptor agonists induce a protein synthesis-
dependent late potentiation in the CA1 region of the hippocampus. Proceedings of the
National Academy of Sciences of the United States of America, 92, 2446–2450.

Jahanshahi, M., Brown, R. G., & Marsden, C. (1992). The effect of withdrawal of dopa-
minergic medication on simple and choice reaction time and the use of advance
information in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry,
55, 1168–1176.

Janowsky, J. S., Kritchevsky, A. P., & Squire, L. R. (1989). Cognitive impairment following
frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience, 103,
548–560.

Kellman, P. J. (2002). Perceptual learning. In R. Gallistel and H. Pashler (Eds.), Stevens’
Handbook of Experimental Psychology: Vol. 3 Learning, Motivation, and Emotion (3rd
ed., pp. 259–299). New York: Wiley.

Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in
humans. Science, 273, 1399–1402.

Knowlton, B. J., Ramus, S. J., & Squire, L. R. (1992). Intact artificial grammar learning
in amnesia: Dissociation of classification learning and explicit memory for specific
instances. Psychological Science, 3, 172–179.

Knowlton, B. J. & Squire, L. R. (1993). The learning of categories: Parallel brain systems for
item memory and category knowledge. Science, 262, 1747–1749.

Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in
amnesia. Learning and Memory, 1, 106–120.

Knowlton, B. J., Squire, L. R., Paulsen, J. S., Swerdlow, N. R., Swenson, M., & Butters, N.
(1996). Dissociations within nondeclarative memory in Huntington’s disease. Neuro-
psychology, 10, 538–548.

Köhler, W. (1925). The Mentality of Apes. New York: Harcourt, Brace & Co.
Kolb, B., & Whishaw, I. Q. (1990). Fundamentals of Human Neuropsychology (3rd Ed.). New

York: W. H. Freeman & Company.
Kolodny, J. A. (1994). Memory processes in classification learning: An investigation of

amnesic performance in categorization of dot patterns and artistic styles. Psychological
Science, 5, 164–169.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category
learning. Psychological Review, 99, 22–44.

Leng, N. R. & Parkin, A. J. (1988). Double dissociation of frontal dysfunction in organic
amnesia. British Journal of Clinical Psychology, 27, 359–362.

Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., & Schottler, F. (1983). Intracellular
injections of EGTA block induction of hippocampal long-term potentiation. Nature,
305, 719–721.

MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., & Barker, J. L. (1986).
NMDA-receptor activation increases cytoplasmic calcium concentration in cultured
spinal cord neurones. Nature, 321, 519–522.

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar models of
categorization. Perception and Psychophysics, 53, 49–70.

Maddox, W. T. & Ashby, F. G., & Bohil, C. J. (2002). Delayed feedback effects on rule-based
and information-integration category learning. Manuscript under review.



Implicit category learning 

Maddox, W. T., & Filoteo, J. V. (2001). Striatal contribution to category learning: Quan-
titative modeling of simple linear and complex non-linear rule learning in patients with
Parkinson’s disease. Journal of the International Neuropsychological Society, 7, 710–727.

Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation – a decade of progress?
Science, 285, 1870–1874.

McDonald, R. J. & White, N. M. (1993). A triple dissociation of memory systems:
Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107, 3–22.

McDonald, R. J. & White, N. M. (1994). Parallel information processing in the water
maze: Evidence for independent memory systems involving dorsal striatum and
hippocampus. Behavioral and Neural Biology, 61, 260–270.

Medin, D. L. & Schaffer, M. M. (1978) Context theory of classification learning. Psychological
Review, 85, 207–238.

Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1997). Family resemblance,
conceptual cohesiveness, and category construction. Cognitive Psychology, 19, 242–279.

Meulemans, T., Peigneux, P., & Van der Linden, M. (1998). Preserved artificial grammar
learning in Parkinson’s disease. Brain & Cognition, 37, 109–112.

Miller, J. D, Sanghera, M. K., & German, D. C. (1981). Mesencephalic dopaminergic unit
activity in the behaviorally conditioned rat. Life Sciences, 29, 1255–1263.

Minda, J. P., & Smith, J. D. (2001). Prototypes in category learning: The effects of category
size, category structure, and stimulus complexity. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 3, 775–799.

Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural
systems. In G. Lynch, J. L. McGaugh, and N. M. Weinberger (Eds.), Neurobiology of
Human Learning and Memory (pp. 65–77). New York: Guilford.

Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin card sorting
revisited: Distinct neural circuits participating in different stages of the task identified
by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21,
7733–7741.

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic
dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16,
1936–1947.

Murphy, G. L. & Medin, D. L. (1985). The role of theories in conceptual coherence.
Psychological Review, 92, 289–316.

Nairn, A. C., Hemmings, H. C., Walaas, S. I., & Greengard, P. (1988). DARPP-32 and
phosphatase inhibitor-1, two structurally related inhibitors of protein phosphatase-1,
are both present in striatonigral neurons. Journal of Neurochemistry, 50, 257–262.

Nosofsky, R. M. (1986) Attention, similarity, and the identification-categorization
relationship. Journal of Experimental Psychology: General, 115, 39–57.

Nosofsky, R. M. & Johansen, M. K. (2000). Exemplar-based accounts of “multiple-system”
phenomena in perceptual categorization. Psychonomic Bulletin & Review, 7, 375–402.

Nosofsky, R. M. & Kruschke, J. K. (2002). Single-system models and interference in category
learning: Commentary on Waldron and Ashby (2001). Psychonomic Bulletin & Review,
9, 169–174.



 F. Gregory Ashby and Michael B. Casale

Nosofsky, R. M. & Zaki, S. R. (1998). Dissociations between categorization and recognition
in amnesic and normal individuals: An exemplar-based interpretation. Psychological
Science, 9, 247–255.

Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate
nucleus lesions on two radial maze tasks: Evidence for multiple memory systems.
Journal of Neuroscience, 9, 1465–1472.

Packard, M. G. & McGaugh, J. L. (1992). Double dissociation of fornix and caudate nucleus
lesions on acquisition of two water maze tasks: Further evidence for multiple memory
systems. Behavioral Neuroscience, 106, 439–446.

Pessin, M. S., Snyder, G. L., Halpain, S., Giraut, J.-A., Aperia, A., & Greengard, P.
(1994). DARPP-32/protein phosphatase-1/Na+/K+ ATPase system: A mechanism for
bidirectional control of cell function. In K. Fuxe, L F. Agnat, B. Bjelke, and D. Ottoson
(Eds.), Trophic Regulation of the Basal Ganglia (pp. 43–57). New York: Elsevier Science.

Pfaus, J. G. & Phillips, A. G. (1991). Role of dopamine in anticipatory and consummatory
aspects of sexual behavior in the male rat. Behavioral Neuroscience, 105, 727–743.

Phillips, A. G., Blaha, C. D., Pfaus, J. G., & Blackburn, J. R. (1992). Neurobiological correlates
of positive emotional states: Dopamine, anticipation and reward. In: Ken T. Strongman,
Ed. International Review of Studies on Emotion, Vol. 2.. New York, NY: John Wiley &
Sons.

Pickering, A. D. (1997). New approaches to the study of amnesic patients: What can a
neurofunctional philosophy and neural network methods offer? Memory, 5, 255–300.

Posner, M. I. & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental
Psychology, 77, 353–363.

Posner, M. I. & Petersen, S. E. (1990). Attention systems in the human brain. Annual Review
of Neuroscience, 13, 25–42.

Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M.,
Cox, R. W., Stein, E. A., & Binder, J. R. (1997). Functional MRI evidence for subcortical
participation in conceptual reasoning skills. Neuroreport, 27, 1987–1993.

Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental
Psychology: General, 18, 219–235.

Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without
awareness. Learning and Memory, 1, 217–229.

Reber, P. J., Stark, C. E. L., & Squire, L. R. (1998). Contrasting cortical activity associated
with category memory and recognition memory. Learning & Memory, 5, 420–428.

Robinson, A. L., Heaton, R. K., Lehman, R. A. W., & Stilson, D. W. (1980). The utility of the
Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of
Consulting and Clinical Psychology, 48, 605–614.

Rolls, E. T. (1994). Neurophysiology and cognitive functions of the striatum. Revue
Neurologique, 150, 648–660.

Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1988). Procedural learning and neostriatal
dysfunction in man. Brain, 111, 941–959.

Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 13, 501–518.



Implicit category learning 

Schacter, D. L. (1994) Priming and multiple memory systems: Perceptual mechanisms of
implicit memory. In D. L. Schacter and E. Tulving (Eds.), Memory Systems (pp. 233–
268). Cambridge: MIT Press.

Smiley, J. F., Levey, A. I., Ciliax, B. J., & Goldman-Rakic, P. S. (1994). D1 dopamine
receptor immunoreactivity in human and monkey cerebral cortex: predominant and
extrasynaptic localization in dendritic spines. Proceedings of the National Academy of
Sciences of the United States of America, 9, 5720–5724.

Smith, D. J. & Minda, J. P. (2000). Thirty categorization results in search of a model. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 26, 3–27.

Smith, E. E. & Medin, D. L. (1981). Categories and Concepts. Cambridge, MA: Harvard
University Press.

Waldron, E. M. & Ashby, F. G. (2001). The effects of concurrent task interference on category
learning. Psychonomic Bulletin & Review, 8, 168–176.

White, N. M. (1989). A functional hypothesis concerning the striatal matrix and patches:
Mediation of S-R memory and reward. Life Sciences, 45, 1943–1957.

Wickens, J. (1990). Striatal dopamine in motor activation and reward-mediated learning:
Steps towards a unifying model. Journal of Neural Transmission: General Section, 80,
9–31.

Wickens, J. (1993). A Theory of the Striatum. New York: Pergamon Press.
Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural

knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15,
1047–1060.

Wilson, C. J. (1995). The contribution of cortical neurons to the firing pattern of striatal
spiny neurons. In J. C. Houk, J. L. Davis, and D. G. Beiser (Eds.), Models of Information
Processing in the Basal Ganglia (pp. 29–50). Cambridge: Bradford.

Winocur, G. & Eskes, G. (1998). Prefrontal cortex and caudate nucleus in conditional
associative learning: Dissociated effects of selective brain lesions in rats. Behavioral
Neuroscience, 112, 89–101.





Structure and function in sequence learning

Evidence from experimental, neuropsychological
and simulation studies

Peter F. Dominey*

Institut de Sciences Cognitives, CNRS, BRON, France

. Introduction

In this chapter I will identify three different aspects or dimensions of sequen-
tial structure, with the objective of determining to what extent these dimen-
sions rely on common or dissociated neurophysiological and computational
processes, and to what extent attentional processing is required.

Serial structure or order is defined by the relation between an element
or set of elements, and its successor. This dimension can be characterized in
terms of length and complexity. Length is the number of elements in the se-
quence. Complexity refers to the maximum number of elements that must be
remembered in order to know the correct successor. Consider, for example, the
sequence A-B-C-D-A-B-C-E-A-B-C-F. In order to correctly produce “E,” the
system must remember the four previous elements that define the context for
E, thus the complexity of this sequence is four. Temporal structure is defined
in terms of the durations of elements (and the possible pauses that separate
them), and intuitively corresponds to the familiar notion of rhythm. Thus, two
sequences may have identical serial structure and different temporal structure,
or the opposite. Abstract structure is defined in terms of generative rules that
describe relations between repeating elements within a sequence. Thus, the two
sequences A-B-C-B-A-C and D-E-F-E-D-F have different serial structure, but
are both generated from the same abstract structure 123–213, and are thus said
to be isomorphic. While perhaps not exhaustive, these three dimensions at least
partially span the space of possible behavioral sequence structure.
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The following sections will address these three dimensions of sequential
structure from a multidisciplinary approach that includes behavioral, neu-
ropsychological (Parkinson’s disease, schizophrenia, agrammatic aphasia) and
neural network simulation perspectives. The net outcome will be the proposi-
tion of a framework in which the processing of these different dimensions of
sequential structure is realized by dissociable neurophysiological mechanisms
with distinct attentional requirements. In this framework serial and temporal
structure can be accommodated by a neural system based on corticocortical
connections, and connections from cortex to the basal ganglia (the frontostri-
atal system) that operates with minimal attentional requirements. In contrast,
abstract structure is processed by brain systems that are common to those re-
quired for particular aspects of syntax processing, and require elevated levels
of attentional processing.

. Behavioral studies of learning

This section will review behavioral studies of sequence learning, leading to the
following two conclusions. First, that serial and temporal structure appear to be
behaviorally linked or correlated, in that modification of one necessarily influ-
ences the other. This will have important implications in subsequent sections
that address the neurophysiological and computational basis of these func-
tions. The second conclusion will be that while serial and temporal structure
can be acquired without overt attention to these dimensions, robust acquisi-
tion of abstract structure appears to require this overt attention. Again, this
will have important implications in the subsequent sections.

. Interactions between serial and temporal structure

In the serial reaction time (SRT) task, stimuli are presented in a repeating se-
quence, and the reaction times (RTs) for these sequential stimuli become sig-
nificantly reduced with respect to RTs for the same stimuli presented in ran-
dom order. The original studies by Nissen and Bullemer (1987), and numerous
studies that followed used the SRT task to study the interactions between se-
rial structure and attentional processing through the use of an imposed “dual”
task, that typically requires subjects to discriminate tones that accompany each
sequence element as high vs. low pitched, and to maintain a running total of
the high pitched tones. Since its introduction, this dual task SRT learning pro-
tocol has provided a method for the dissociation of different forms of sequence
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learning and their interaction with sequence complexity and attention (e.g.,
Cohen et al. 1990; Willingham et al. 1989; Curran & Keele 1993; Jiménez, Mén-
dez, & Cleeremans 1996). In this line of research, different investigators studied
the degree of transfer of sequence knowledge between single and dual task con-
ditions (and vice versa) in an effort to determine if dissociable attentional and
non-attentional mechanisms could be isolated. Observations of impairments
both in the acquisition and the expression of serial structure in dual task con-
ditions were interpreted as evidence that an attentional form of sequence learn-
ing that yielded superior performance in single task conditions was blocked in
dual task conditions due to the attentional load (Curran & Keele 1993).

Stadler (1995) noted the possibility of an alternative explanation for the
dual task transfer effects. He suggested that the dual task condition disrupts
sequence learning by preventing consistent temporal organization of the se-
quence due to the temporal delays introduced during the response-stimulus
interval (RSI) by the dual task processing. In a new experiment he dissociated
the effects of this temporal disorder from those due to attentional load by test-
ing SRT performance in four conditions: 1) standard SRT task, 2) dual task,
thus introducing both attentional load and temporal disruption, 3) requiring
subjects to retain in memory a list of letters to be reported after the experi-
ment, in order to introduce an attentional load without temporal disruption,
and 4) randomly introducing RSI pauses before half of the trials, in order to in-
troduce a temporal disruption without attentional load. Stadler demonstrated
that, in fact, the dual task performance impairment (condition 2) more closely
resembled the impairment from temporal disruption of the sequence (condi-
tion 4) than the impairment from attentional load of a non-temporal dual task
(condition 3). This indicates that the dual task impairments are linked less to
attentional deprivations, and more to perturbation of the temporal context in
which the sequence is being learned.

Stadler thus suggested a reconsideration of the proposition that attentional
learning acquired in single task conditions could not be expressed in dual task
conditions. He suggested instead, that while the training occurred in one tem-
poral context, the testing occurred in a different temporal context due to the
temporally irregular grouping imposed by the dual task conditions. The fact
that the testing occurred in a different context could be the explanation for the
performance decrement, which could allow the possibility that there was, in
fact, only a single learning mechanism at work, rather than two.

A related effect of the temporal structure on sequence learning has been
reported by Frensch and Miner (1994). They observed that sequential learning
is reduced when RSIs of 500 ms are uniformly increased to 1500 ms in an SRT



 Peter F. Dominey

Human

Model

380

400

420

440

460

480

500

520

540

560

1 2 3 4 5 6 7 8 9

R
ti

m
e 

(m
s)

Figure 1. Serial and temporal structure learning: Human performance in a modified
SRT task that examines temporal structure learning, and comparison with simulation
results (Section 3). Six successive blocks of 80 trails using the sequence B-C-B-D-C-A-
D-A-C-D, and one of the two temporal structures. Transfer to the different temporal
structure occurs in block 7. Block 8 is the same as blocks 1–6, and Block 9 is random.
RTs are expressed as means for the 80 RTs in each block in ms, with the simulation
equivalent to ms as calculated by the linear regression (Section 3). Learning is measured
as the difference in RAND-Seq RTs. RTs in block 7 (Same Serial structure, Different
Temporal Structure) are significantly increased from those in blocks 6 and 8, indicating
the sensitivity to temporal structure. (From Dominey 1998, Experiment 4).

task. They interpreted this learning reduction in terms of a reduced level of
activation of the sequence elements (as induced by the increased RSI) in long-
term memory. This observation contributes to the position that not only the
serial structure but also the temporal structure is an important parameter in
sequence learning. Interestingly, Willingham, Greenberg and Thomas (1997)
propose RT changes induced by RSI timing modifications are attributed to ef-
fects on performance, rather than on learning. This remains consistent with
the idea that the global organization of a sensorimotor sequence is disrupted
by random RSI changes.

If the use of random RSIs perturbs learning, will a structured and coherent
change of RSIs have the same effect? In order to further investigate the interac-
tion between serial and temporal structure, Dominey (1998a) trained subjects
in an SRT task in which each sequence element was associated with a specific
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RSI value. In this sense, serial and temporal structure were tightly coupled.
In the SRT task, subjects were instructed to respond as quickly and rapidly as
possible to stimuli that were presented as single targets on a touch-sensitive
computer display screen. In the test block, the serial structure remained un-
changed, but the temporal structure was changed by systematically changing
the RSI associated with each sequence element. As illustrated in Figure 1, the
effect of this modification was a significant increase in reaction times in this
test block. This is in agreement with the suggestion that both the serial and the
temporal structure can be learned in implicit conditions, and that indeed, they
are learned as a unified structure so that modification of one will yield per-
formance impairments for the expression of the other. This is not inconsistent
with the possibility of an additive effect, such that modification of both serial
and temporal structure will have a greater impact than disruption of only one
at a time.

. Abstract structure

While serial and temporal structure appear to be functionally linked, what is
the status of abstract structure in this relation (reviewed in Dominey, Lelekov,
Ventre-Dominey, Jeannerod 1998)? As noted by Shanks and St. John (1994) the
learning of rules or abstract structure is characterized by a conscious effort to
discover and exploit the appropriate rules, an effort that can be invoked by spe-
cific instructions to make such a conscious effort (Gick & Holyoak 1983). This
position is supported by studies of analogical transfer in problem solving that
involve the extraction of an abstract structure common to several problems
with different serial structures (Gick & Holyoak 1983; Holyoak, Junn, & Bill-
man 1984; Holyoak, Novick, & Melz 1994). Such studies demonstrate that this
process requires the explicit intention to find the abstract structure. In contrast,
the learning of instances or serial structure is oriented towards memorization
of the instances themselves, without a conscious processing effort to search
for common, rule based structure (e.g. Cohen, Ivry, & Keele 1990; Curran &
Keele 1993). These studies suggest the existence of dissociable mechanisms for
processing serial and abstract structure.

.. Abstract structure in artificial grammar learning
In artificial grammar learning tasks, naive subjects examine a set of letter
strings that have been generated by a finite state grammar. Subsequently, the
same subjects are asked to judge a new set of letter strings as “grammatical”
or not, based on the study set. Thus while SRT tasks require an element-by-
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element processing and response, AGL tasks involve processing of the sequence
as a whole. Several studies of artificial grammar learning have provided con-
vincing evidence for the existence of dissociable mechanisms for serial vs. ab-
stract structure representations (Knowlton & Squire 1996; Gomez & Schvan-
eveldt 1994; Gomez 1997). A crucial aspect of these experiments is the mea-
sure of transfer of learning to a new set of letter strings generated by the fi-
nite state grammar, but with each letter systematically replaced by a different
letter. Thus in such “changed letter set” conditions a string ABCBAC might
become BHTHBT. In these changed letter set conditions, any learning must re-
flect knowledge of the abstract rather than the serial structure that has been
learned. Knowlton and Squire demonstrated that both rule adherence (ab-
stract structure) and chunk strength, i.e. similarity of letter bigram and tri-
gram distribution (serial structure) influence grammaticality judgments. Like-
wise, Gomez and Schvaneveldt’s (1994) results indicate that training on legal
letter pairs is sufficient for classification with the same letter set, but that train-
ing with longer strings is required to allow transfer of abstract structure to a
changed letter set. This suggests that pairs provide a source of serial structure,
while abstract structure is only available in strings. These results thus indicate
that in AGL there are dissociable forms of representation for serial and abstract
structure, respectively.

Although artificial grammar learning tasks are often considered to test im-
plicit learning, it is important to note that during the test phase the subjects
are explicitly instructed to apply a set of rules to classify the new objects, and it
is likely that some rule abstraction takes place during this explicit testing phase
(Perruchet & Pacteau 1991; Reddington & Chater 1996). Likewise, Mathews et
al. (1989) have demonstrated that this grammatical knowledge can become at
least partially explicit, and that for grammars that exploit relational properties
like the ones used in our current studies, learning can only occur in truly ex-
plicit conditions. This relation between explicit processing and artificial gram-
mar learning has recently been further clarified by Gomez (1997) who demon-
strated that subjects’ ability to transfer abstract structure learning to changed
letter sets was invariably accompanied by explicit knowledge as revealed in di-
rect tests. Conversely, subjects who learned first-order serial structure depen-
dencies but failed to display transfer of the abstract structure in the changed
letter set condition did not differ from naive controls on the direct tests. Thus
the ability to transfer knowledge of the grammatical structure appears tightly
coupled to some degree of explicit awareness.
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.. Abstract structure in SRT learning
Finally, Gomez (1997) demonstrated that for the same testing materials pre-
sented either in a whole-string AGL task or a letter-by-letter sequence learn-
ing task, transfer and the associated acquisition of explicit knowledge occurred
only in the AGL task. This indicates that, especially in sequencing tasks, the ac-
quisition of abstract structure and its transfer to isomorphic sequences involves
explicit processing.

Dominey et al. (1998) investigated this claim in experiments that stud-
ied the possible learning of serial and abstract structure, and the various at-
tentional conditions under which this learning could occur. In particular, this
study examined how the instructions given to subjects, and the corresponding
attentional states, would affect their ability to learn serial and abstract struc-
ture. Subjects in the Explicit group (N = 10) were shown a schematic repre-
sentation of the rule 123–213 and asked to demonstrate knowledge of the rule
by pointing to B-A-C given A-B-C. They were told to actively try to use such a
rule to help them go as fast as possible in an SRT task. Subjects in the Implicit
group (N = 10) were simply told to go as fast as possible, and were given no
hint that there might be an underlying structure in the stimuli.

Figure 2 illustrates the performance of these two groups of subjects. In
blocks 1–6, and 8, a 12-element sequence with the structure ABCBACDEFEDF
is repeated nine times per block. Note that within this sequence, the abstract
structure 123213 repeats twice. With respect to this abstract structure, we say
that elements in the second triple 213 are predictable, while elements 123 are
non-predictable. In contrast, all elements in a repeating sequence are pre-
dictable with respect to the serial structure. Block 7 is a randomly ordered
sequence that allows a test of overall learning effects. Blocks 9 and 10 use an
isomorphic sequence that has a different serial structure, but shares the same
abstract structure. Thus, blocks 9–10 allow a specific test of the possible trans-
fer of knowledge of the abstract structure to a new isomorphic sequence. As
seen in Figure 2, both groups demonstrated the classic reduction of reaction
times in the initial 6 blocks, and a confirmation of learning as revealed by
the increase RTs in the random block 7. This indicates that both groups ac-
quired knowledge of the serial structure, independent of the attentional condi-
tions. A clear difference in the two groups is seen in terms of the difference
between RTs for responses that are predictable vs. non-predictable with re-
spect to the abstract structure. Subjects in explicit conditions demonstrate a
clear advantage for predictable elements that is not seen in the implicit con-
dition group. More importantly, in the transfer to a new isomorphic sequence
in blocks 9 and 10, this advantage in the explicit group transfers to the new se-
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Figure 2. Serial and abstract structure learning: Mean RTs for responses that are pre-
dictable vs. unpredictable (with respect to the abstract structure) in the 10 blocks of
trials for Explicit and Implicit subjects. Blocks 1–6, and 8 use an abstract rule of the
form 123–213 that recurs in the 12 element sequence, ABCBACDEFEDF that repeats 9
times in each block. Block 7 is a random series of elements. Blocks 9 and 10 each use 9
repetitions of a new, 12 element sequence isomorphic to that used in blocks 1–6 and 8
(i.e. with the same abstract structure, but with a different serial structure). The critical
blocks for learning and transfer assessment are marked in the rounded boxes. Explicit
subjects learn serial and abstract structure and display transfer to blocks 9 and 10. Im-
plicit subjects learn only serial structure, with no transfer. (From Dominey et al. 1998,
Experiment 1).

quence, whereas the implicit group displays no advantage derived from transfer
of abstract structure.

. Discussion of behavioral studies

This review of behavioral studies of learning the serial, temporal and abstract
structure of sensorimotor sequences indicates that serial and temporal struc-
ture can be learned without explicit awareness that there is a structure to be
learned (see Jiménez et al. 1996). In contrast it appears that learning and trans-
ferring abstract structure requires this explicit awareness, with the following
qualifications. It is clear from numerous studies of artificial grammar learning
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that some abstract knowledge can be acquired without explicit awareness of
the abstract structure. The levels of knowledge that are expressed in these AGL
studies are statistically greater than chance, but not at all at the level of com-
plete transfer as seen in Dominey et al. (1998), and in Gomez (1997). Indeed,
the debate continues concerning just exactly what is learned that allows trans-
fer under implicit conditions in AGL tasks. While rather an oversimplification,
one can at least say that by definition, knowledge of an abstract rule that can
be fully transferred to new isomorphic sequences required explicit awareness
of that rule (Gomez 1997; Dominey et al. 1998).

. Neuropsychological studies

The previous experiments revealed behavioral differences in serial, tempo-
ral and abstract structure learning that hinted at, but did not shine much
light on, the possibility of dissociated systems being required for learning
these different dimensions. Studies of neurological patients can shed more
light on these issues, particularly in the critical cases where the neurological
deficit affects a brain system that is believed to support one of the potentially
dissociated systems.

. Parkinson’s disease

Parkinson’s disease results from a degeneration of dopamine-producing neu-
rons in the midbrain (nucleus accumbens, and substantia nigra pars compacta
of the basal ganglia). The most clinically relevant effect is the classic triplet
of motor control dysfunctions that are tremor, rigidity and akinesia. Histor-
ically, it has been considered that the interaction between cortex and basal
ganglia could provide a basis for sensorimotor learning and habit formation
(reviewed in Dominey et al. 1995, and in Section 4). In this context, depletion
of dopamine in the striatum would perturb the functioning of corticostriatal
interactions and thus render sensorimotor learning impaired.

In several recent studies with implicit SRT learning tasks, PD patients dis-
played significant learning impairments for serial structure with respect to
their age matched controls (Ferraro et al. 1993; Jackson et al. 1995; Pascual-
Leone et al. 1993). Likewise, their processing of temporal structure seems also
to be impaired (Pastor et al. 1992). When the task is made more explicit, how-
ever, PD patients’ performance improves to that of control subjects (Pascual-
Leone et al. 1993). In one explicit form, patients were informed that a sequence
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would be presented and were asked to concentrate on the sequence without
making motor responses, and to be prepared to reproduce the sequence at the
end of the test. PD patients’ learning in this explicit task, as measured by the
declarative knowledge of the sequence, was equal to that of the control subjects.
Pascuale-Leone et al. considered that the PD patients’ improvement is due to
the explicit instructions, though the effects of the eliminated motor effort can-
not be ignored. In a related test of the effect of explicit declarative knowledge
on SRT performance, PD patients demonstrated learning equal to that of con-
trol subjects after 30 repetitions of the sequence. These results indicate that the
procedural learning impairment in PD can be reduced or eliminated if tasks
are made explicit.

Based on this hypothesis, one would predict that PD patients should be
able to learn and transfer abstract structure under explicit conditions. To test
this prediction, the sequence learning capabilities of seven (7) non-demented,
non-depressed, right handed patients with early or mid-stage (duration range
1–10 years) idiopathic, levodopa-responsive Parkinson’s disease were exam-
ined. In the SRT task, targets could appear in blocks of two types – random
and sequence. In random blocks, 120 targets were successively presented in
random order. In sequence blocks, 120 targets were successively presented in 5
repetitions of 24 element sequences of the form A-B-C-B-C-D-C-D-E-D-E-F-
E-F-G-F-G-H-G-H-A-H-A-B. This sequence has the interesting property that
the serial structure is quite complex and long, whereas the abstract structure
is short and simple, as revealed by examining the underscored triplets. For a
given triplet of sequence elements, the first two element repeat the previous
two elements, and the third element is unpredictable.

Since the goal is to study the transfer of knowledge between different, iso-
morphic sequences, several sequences must be constructed that meet these re-
quirements. Three such sequences were generated by using the 24 element pat-
tern described above with three different mappings of A-H to the 8 locations on
the touch sensitive screen. Thus, the three resulting 24-element sequences differ
completely in their serial or verbatim ordering of the spatial targets. However,
they are isomorphic in that they all share in a common abstract structure.

Figure 3 displays the performance of the Parkinsonian and control sub-
jects on this task. The values presented indicate the difference in milliseconds
between reaction times for predictable elements minus those for unpredictable
elements. While the effect for the patients has less amplitude than that of the
control subjects, both groups display a significant difference that increases over
the course of the three successive sequence blocks (Dominey et al. 1997).
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Figure 3. Abstract structure learning in PD. The level of abstract structure learning and
transfer is displayed as the progressive change during the three sequence blocks of the
level of analogical schema acquisition, as indexed by difference between Predictable mi-
nus Non-predictable RTs. For both the Control and PD groups, this measure becomes
increasingly significant in the progression from SEQ1 to SEQ3, indicating a significant
level of analogical transfer in both groups. (From Dominey et al. 1997).

These results indicate that under explicit learning conditions, as observed
by Pascuale-Leone et al. (1994), the sequence learning capabilities of Parkin-
sonian patients remains largely intact, and can even be applied to the acquisi-
tion of abstract sequential structure. In contrast, related studies indicate that
in implicit conditions, these patients are impaired in the acquisition of se-
rial structure, though this remains to be confirmed. These observations thus
contribute to the interpretation that the frontostriatal system plays an impor-
tant role in implicit learning of serial structure, and is less involved in learn-
ing under explicit conditions such as those required for acquisition of abstract
structure.

. Schizophrenia and sequence learning

In an interesting counterpoint to Parkinsonian patients, while the cognitive
performance of schizophrenic subjects is largely preserved in implicit or au-
tomatic cognitive functions such as word-stem completion, repetitive prim-
ing and procedural learning, it is impaired in explicit or effortful cognitive
tasks such as the Wisconsin Card Sorting Task. It has been suggested that var-
ious cognitive impairments in schizophrenia may be related to a more cen-
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tral dysfunction, such as an impairment in maintaining and using contex-
tual information, or an impairment in conscious awareness (see Dominey &
Georgieff 1997).

Given this profile, one would expect a behavioral mirror image of the
Parkinsonian patients to be observed in the schizophrenic patients. That is,
one would predict that they should be relatively intact in learning serial struc-
ture, and relatively impaired in capitalizing on awareness for learning abstract
structure. This prediction was tested in a group of 6 schizophrenic patients
and ten matched control subjects. The experimental protocol was identical to
that described in Section 2.2, that allows a separation of RTs for elements that
are predictable, or not, based on knowledge of the abstract structure. Blocks
1–6 and 8 use a repeating 12 element sequence that can asses the learning of
both serial and abstract structure. Block 7 is randomly organized, and blocks
9–10 use a sequence that is “isomorphic” to that in the initial training blocks.
That is, it has the same abstract structure and a different serial structure. The
six schizophrenic subjects were explicitly informed about the existence of the
abstract structure. They were shown a schematic diagram depicting the ab-
stract structure ABCBAC, and were able to successfully supply (by pointing)
the missing fragment (BAC) once shown the initial fragment ABC, where the
letters correspond to spatial targets as on the touch-sensitive screen. Five con-
trol subjects were tested under identical explicit conditions, and the five re-
maining control subjects were tested in implicit conditions in which they were
simply told to point to the spatial targets as quickly and accurately as possible.
The results are displayed in Figure 4.

While schizophrenic subjects displayed significant learning of the serial
structure, as revealed by the RT reduction in blocks 6 and 8 with respect to
random block 7, they failed to learn the abstract structure, as revealed by a lack
of effect for predictability, and a lack of transfer to the isomorphic sequence in
blocks 9 and 10. Indeed, the relative profile of the schizophrenic patients, who
were explicitly informed, is not different from that of the control subjects that
were in implicit conditions (Dominey & Georgieff 1997).

In a task that permits the simultaneous learning of serial and abstract se-
quential structure, Schizophrenic subjects acquired only the serial structure.
This is despite the fact that these patients were fully informed, in an “explicit”
experimental condition. Thus, though explicitly informed, the schizophrenic
patients behave as if they were in implicit conditions. While the Implicit group
had RTs that were overall faster than those for the Schizophrenic group, there
was no significant group x block interaction in either the measure of serial
structure learning, nor in the failed transfer to the isomorphic sequence. In
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Figure 4. Serial and abstract structure learning in schizophrenia. Results from control
subjects in Explicit, and Implicit conditions (as in Figure 2), and from schizophrenic
patients in explicit condition. Schizophrenic patients display a learning profile similar
to that of control subjects in implicit conditions, they learn the serial structure but not
the abstract structure (From Dominey & Georgieff 1997).

other words, apart from a global vertical displacement on the time axis, the
performance of the Schizophrenic group did not differ from that of the Im-
plicit group. This is in agreement with the proposition that explicit processing
is required for processing abstract structure, and that in the absence of this
capability as in schizophrenia, abstract structure will not be learned.

. Abstract structure and syntax in agrammatic patients

Linguistic syntax represents perhaps the ultimate behavioral extension of ab-
stract sequential structure. A major open issue in cognitive neuroscience con-
cerns the search for the functional and neurophysiological bases of this syntac-
tic aspect of language. In almost all languages there is a standard or “cannon-
ical” word order, such as “agent action object” in the sentence “John greeted
Bill” in English. Patients with syntactic processing deficits tend to rely on this
canonical word order, and typically demonstrate problems with sentences that
deviate from this order, such as passive sentences that follow the non-canonical
order “object action agent” as in “Bill was greeted by John” (see Caplan et al.
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1985 and Grodzinsky 2000). Based on the functional parallel between the gen-
erative aspects of syntax, and these same aspects of abstract sequential struc-
ture, Dominey and Lelekov (2000) investigated this question in patients that
were impaired in syntactic processing in order to determine if there is a parallel
impairment in the processing of abstract sequential structure. Abstract struc-
ture processing was examined with a protocol similar to those used in studies of
artificial grammar learning (Gomez 1997; Reber 1967), that tests the ability to
learn and use an abstract structure to classify letter-sequences. The experiment
was conducted with seven aphasic subjects. During an initial familiarization
and training period of 10-15 minutes, the subjects studied a list of 10 letter-
sequences (e.g. HBSBHS, YPBPYB) generated from the non-canonical abstract
structure 123213. The subjects were instructed to study the list in order to de-
cide how to complete the sequence BKT_ _ _. After this training period, sub-
jects demonstrated their understanding of the abstract structure and the task
by completing the above sequence with KBT (to form the sequence BKTKBT,
following the abstract structure 123213).

In a subsequent testing period of 5 minutes, the patients were presented
with 20 new sequences, and were informed that each of the 20 sequences had to
be classified as corresponding, or not, to the abstract structure they extracted in
the study phase. In a separate testing phase, the same procedure was performed
with the canonical abstract structure 123123 for six of the seven patients, as one
became unavailable for subsequent testing. Performance in this non-linguistic
task was then compared with performance in syntactic comprehension as eval-
uated using the 9 sentence-type task of Caplan et al (1985).

Figure 5A illustrates the significant correlation between the impairments
in syntactic comprehension and in the classification of non-canonical letter se-
quences based on their abstract structure (r2 = 0.86, p = 0.003) for 7 aphasic
patients. Note that one patient with a right peri-sylvian lesion (R in Figure 5A)
scored the highest on both tasks, indicating a relative sparing of both functions
in the case of right hemisphere lesion. In contrast, a patient with a left subcor-
tical lesion (L in Figure 5A) performed poorly in the syntactic comprehension
task (Alexander et al. 1987; Lieberman 1992), and also in the abstract struc-
ture classification task. This correlation remains significant when patient R is
removed (r2 = 0.72, p = 0.03), and likewise remains significant when a larger
population of 11 aphasic patients (r2 = 0.60, p = 0.005) is included.

In order to test the more specific prediction that processing of non-
canonical order would be specifically impaired both for linguistic syntax and
for non-linguistic abstract structures, a comparison was made between canon-
ical vs. non-canonical performance (in terms of percentage of correct re-
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Figure 5. Abstract and syntactic structure learning in agrammatic Aphasia. A. Linear
regression for performance on the Abstract Structure Classification task, and the Syn-
tactic Comprehension task. Error-free scores are 20 and 45 respectively for the two
tasks. L – patient 4 with left subcortical lesion, R – patient 7 with right peri-sylvian
lesion. B. Selective impairment for non-canonical structure in linguistic and non-
linguistic tasks. Mean performance values as percentage correct, with standard error
(boxes), and standard deviation (whiskers). A. For the non-linguistic abstract structure
classification task, patients performed significantly better for canonical (92%) vs non-
canonical (45%). B. Likewise, for the linguistic syntactic comprehension task, patients
performed significantly better for canonical (74%) vs non-canonical (34%) task.

sponses) for the linguistic and non-linguistic tasks. Figure 5B illustrates that
for both tasks, non-canonical processing is significantly impaired with respect
to canonical processing. Note that the observed superior performance in the
non-linguistic task is likely attributed to the fact that chance is 50% in the non-
linguistic task (Yes/no response), and below 25% in the linguistic task since
more than half of the sentences have at least 6 possible responses (possible or-
derings of 3 thematic roles). More interestingly, there was also a significant ef-
fect for Order (F(1,5) = 31.7, p = 0.0025), indicating that processing of canoni-
cal order was significantly superior (83%) to processing of non-canonical order
(37%). Finally and most important, the Order x Task interaction was not sig-
nificant (F(1,5) = 0.053, p = 0.8), indicating that this performance impairment
for non-canonical order processing holds both for linguistic (canonical 74%
vs. non-canonical 30%) and non-linguistic (canonical 92% vs. non-canonical
45%) Tasks.

Lelekov et al. (2000) subsequently wanted to determine if this same func-
tional correlation between syntactic and abstract structure processing would be
maintained in schizophrenic patients following up on Dominey and Georgieff
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(1997). It has been repeatedly demonstrated that schizophrenic patients are im-
paired in the comprehension of sentences with complex syntax. Lelekov et al.
(2000) investigated the hypothesis that this syntactic comprehension impair-
ment in schizophrenia is not a purely linguistic dysfunction, but rather the re-
flection of a cognitive sequence processing impairment as observed in the left-
hemisphere lesioned patients. They tested schizophrenic patients (n=10) using
the standard measure of syntactic comprehension, and our non-linguistic se-
quence processing task, both of which required simple and complex transfor-
mation processing. Patients’ performance impairments on the two tasks was
highly correlated (r2 = 0.84), and there was a significant effect for complexity,
independent of the task. These results are quite similar to those of aphasic pa-
tients with left hemisphere lesions. This suggests that syntactic comprehension
deficits in schizophrenia reveal the dysfunction of cognitive sequence process-
ing mechanisms that can be expressed both in linguistic and non-linguistic
sequence tasks.

These results are consistent with the hypothesis that syntactic comprehen-
sion deficits result, at least in part, from an impairment in performing serial
order transformations on non-canonical forms that is not restricted to natu-
ral language. More generally, these results demonstrate that the use of “a new,
highly abstract and precise approach” provides evidence that there is a non-
linguistic correlate to the transformation processing impairment described by
Grodzinsky (2000), and that both within and outside of natural language,
this transformation processing remains highly specific and dissociable from
other sequence processing capabilities, as suggested by previous results from
simulation (Dominey 1997; Dominey et al. 1998), experimental psychology
(Dominey et al. 1998) and neuropsychology (Dominey et al. 1997; Dominey &
Georgieff 1997; Lelekov et al. 2000).

. Discussion of neuropsychological studies

These neuropsychological studies argue in favor of a neurophysiological disso-
ciation between serial and temporal processing on the one hand, and abstract
structure processing on the other. The former rely on the intact functioning
of the corticostriatal system, and are thus impaired in Parkinson’s disease. The
later relies more on the distributed network that includes the peri-sylvian cor-
tex in and around Broca’s area, and is impaired both in left-hemisphere lesions
associated with aphasia, as well as in conditions of more diffuse physiological
dysfunction as in schizophrenia.
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Figure 6. A corticostriatal model of sequence learning. A. sequence model architec-
ture. B. Time course of a sequence reproduction task. C. Schematized sequence model.
Recurrent State network encodes history of sensory inputs, and motor outputs. State-
Output associative memory (wSO synapses) associates internal states with the correct
next response in the sequence, via reinforcement learning.

. Simulation studies

Together, the studies above suggest that dissociable systems may be required
for the treatment of serial and temporal structure on the one hand, and ab-
stract structure on the other. I now examine the contributions of our modeling
studies to this debate. The model is based on a biologically plausible imple-
mentation of a sequence reproduction capability observed in primates (Figure
6). The model was developed (Dominey et al. 1995) to explain the capability of
primates to learn sequences of oculomotor saccades (eye movements), and the
corresponding sequence-encoding activity in neurons of the prefrontal cortex
(PFC). Barone and Joseph (1989) recorded PFC neurons whose spatially and
temporally selective activity encoded the ongoing state of sequence presenta-
tion and execution. From this perspective, the model is based on the principle
that at any point during the presentation or reproduction of a sequence, the in-
ternal state of the system encodes the history of the sensory and motor events
that have so far occurred. At each point during the sequence reproduction,
the current state will become linked, via reinforcement learning in a simple
associative memory, to the correct next output in the sequence.
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In the model presented in Figure 6A, the state representation function is
performed by a network corresponding to prefrontal cortex, or PFC. From a
functional neuroanatomy perspective, during generation of movement (ocu-
lomotor saccade) sequences, continuous inhibition of motor response units in
superior colliculus (SC) by substantia nigra (SNr) is temporarily interrupted
by caudate (CD) inputs. CD saccade-related cells are influenced by topographic
projections from frontal eye fields (FEF) via the parietal cortex (LIP), and also
by modifiable, non-topographic projections from prefrontal cortex (PFC). PFC
combines visual, motor (saccade efferent copy via thalamus – TH), and recur-
rent input in order to generate a time varying sequence of internal states for
each pre-saccade period in the sequence reproduction task. These states or pat-
terns of activity become associated with caudate activity for the correct saccade
by reinforcement learning in an associative memory.

This associative memory allows the activity in PFC encoding sequence state
to command the correct saccades corresponding to each element of the se-
quence. The modeled substrate of this associative memory is in modifiable
synapses connecting PFC (state) to the caudate nucleus or CD (motor out-
put influence). Neurophysiological and anatomical evidence suggest that the
cortico-striatal system may provide a basis for this associative memory (Rolls
& Williams 1987). This suggestion has been substantiated by experiments
demonstrating that intact caudate function is required for sensory-motor asso-
ciation learning (Reading et al. 1991; Robins et al. 1990). Indeed, Kermadi et al
(1993) recorded single units caudate whose activity reflected a conditional as-
sociation between sequence state and associated motor responses. The under-
lying corticostriatal plasticity may be based on dopamine-related modification
of corticostriatal synapses after rewards (or absence of predicted rewards) since
(a) the most significant dopaminergic input to the caudate originates from the
substantia nigra pars compacta (SNc), (b) there is a phasic modulation of this
SNc dopamine release in the striatum related to reward (or in the absence of a
predicted reward) (Ljungberg et al. 1991), and (c) dopamine originating from
SNc participates in synaptic plasticity in the striatum (Calebresi et al. 1992;
Centonze et al. 2001).

Figure 6C displays a more schematic representation of this system. The
recurrent State network encodes history of sensory inputs, and motor outputs.
State-Output associative memory (wSO synapses) associates internal states with
the correct next response in the sequence, via reinforcement learning. Figure
6B shows the progression in time of the reproduction of sequence A-B-C. The
model starts in an initial state ξ0. Presentation of the first visual input A drives
the system to a new state, ξ1. Presentation of input B drives the system from ξ1
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to ξ2. Then presentation of input C drives the system from ξ2 to ξ3. Presentation
of the first go signal (g) drives the model to state ξ4 and triggers the model to
produce a motor output by retrieving from the associative memory the output
currently associated with state ξ4 (dark vertical arrow in 6C).

If the retrieved output is incorrect, the offending association in wSO

synapses is weakened, reducing the probability that the same choice will be
made again. If the output is correct, A’, this association is strengthened, and the
system moves on to state ξ5 which retrieves B’ from the associative memory by
the same process, and so on. By this trial and error learning, this system will
learn the state-output associations (indicated by the heavy arrows in 6B and
C), and thus will reproduce spatiotemporal sequences as the concatenation of
context dependent state-response associations. The next section will consider
the sequence learning performance of this model in the SRT context, and in
particular with respect to the serial, temporal, abstract dissociation.

. Serial and temporal structure

As noted in Section 2.1, a number of studies have examined the interaction
between serial and temporal structure in SRT learning. In particular, based on
the proposal (Stadler 1995) that dual task conditions may perturb sequence
learning by disrupting the temporal organization of sequences, Stadler (1995)
and later Dominey (1998a) investigated the effects of manipulation of the reg-
ularity of temporal structure on SRT learning. Temporal structure was modi-
fied by changing the duration of the Response-to-Stimulus-Interval (RSI), i.e.
the delay between a subject’s response and the presentation of the subsequent
stimulus.

Prior to Stadler’s observation that dual task conditions could be mimicked
by random introduction of response stimulus interval (RSI) pauses, the choice
concerning which parameters to vary in the simulation of dual task conditions
was a conceptual challenge for modelers (Dominey 1998b). Cleeremans and
McClelland (1991), Cleeremans (1993a) simulated dual task conditions of Co-
hen et al. (1990) by introducing random changes (noise) to the activity of hid-
den units in a simple recurrent network (SRN) introduced by Elman (1990).
Keele and Jennings (1992) demonstrated that manipulation of parsing-related
information could also be used to simulate dual task performance impairments
in a recurrent network. Cleeremans (1993b) also modeled discrete attentional
and non-attentional processes to simulate dual task effects on these mecha-
nisms as observed by Curran and Keele (1993), again by the addition of noise.
In such simulation approaches the modeler must make a choice about how
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behavioral parameters of the dual task condition, such as tone perception, dis-
crimination and counting, are to be represented in the model, when in fact
the mapping between experimental and model parameters is not necessarily
direct. Stadler’s temporal processing interpretation offers an interesting alter-
native, in particular for models in which time, including the onset of each stim-
ulus and the RSI for each stimulus, is a parameter that is completely specified.
Such models will not be forced to make a difficult representation choice, but
instead can directly simulate the temporal disorder conditions as those studied
by Stadler (1995).

Simulating real-time temporal structure in recurrent networks is not al-
ways a simple matter, however. The problems occur in the following context:
After an input is presented, and several network cycles occur, an output is gen-
erated and the error is evaluated and corrected. A given recurrent connection
has contributed to the error, but in a different way on each successive cycle of
information passing through this connection in the network. How is this con-
nection’s contribution to the error over these sequential time steps to be unrav-
eled in order to implement the error-reducing learning? One way is to simply
require that only one time step can pass between input/output events and con-
nection updates, so that a connection’s contribution is only made in one pass
through the network. This is the case in the SRN (Elman 1990), in which the
learning algorithm and its application to the recurrent connections requires
that at each time step a new input is provided, an output is generated and
the learning algorithm is applied. Thus, time steps cannot pass independent of
input, output and learning processing.

Otherwise, in order to modify connections in a way that takes into account
the weight’s contribution to error over a number of time steps, one must cal-
culate the effect of that weight change for each of these time steps. One way to
do this is to “unfold” the recurrent network in to an n-layered network where
each layer is a copy of the original network. One update cycle for this cascade
network is equivalent to n time steps in the original recurrent net (Doya 1995).
This and other methods of resolving the problem of learning in recurrent net-
works over multiple time steps are biologically implausible, however, because
they are not consistent with forward running time, and/or because they have
excessive computational and memory storage requirements (Werbos 1995).

In the current temporal recurrent network (TRN) model (Figure 6) there
is no learning in the recurrent part of the network, only in the feedforward
connections between the State units and the Output units, and only at the time
that a response is evaluated. Thus, the above described complexity of recurrent
learning is no longer an issue. Simulation time steps are mapped to real-time
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or experiment time, and are coupled to input, output and learning processing
in a temporally realistic maner. Following the model’s production of a given
response, the response is evaluated and the reinforcement learning rule (de-
scribed below) is applied. The network can then run for an arbitrary num-
ber of time steps (i.e. the experimenter-specified RSI) before the next input is
presented. During this time the State activity is modified due to its recurrent
connections, providing an explicit representation of the effects of time. The
key point is that for this TRN, changing the temporal structure of a sequence
changes the representation of the sequence itself. The model inseparably en-
codes the combined serial and temporal structure. While the TRN is certainly
not unique in the capacity to simulate the passage of time, it is distinguished in
the computational simplicity by which this is achieved (Dominey 1998a, b).

In the TRN, reaction times (RTs) are measured as the delay in simulation
time steps (sts) between the onset of activation of a given Input unit, and the
activation of the corresponding Out unit driven (in part) by the one-to-one
connection from Input. In the SRT task, learning is unsupervised since the
only possible response in Out is the one driven by the single activated Input
unit. Recall that the response units in Out are leaky integrators whose response
latencies are not instantaneous and depend on the strength of their driving
sources. One source comes from the corresponding Input unit in a one-to-
one mapping. This will activate the Out unit with some baseline RT. The other
driving source for Out comes from State, which can change with learning in
the wSO Synapses (Figure 6C). As learning occurs, RTs for elements in learned
sequences will become reduced due to learning-specific influences of State on
Out. This SRT learning in the model is understood in terms of three invari-
ant observations: (1) During exposure to a repeating sequence, a given sub-
sequence reliably generates the same pattern of neural activity in State. (2)
This subsequence is reliably followed by a given element. (3) Learning results in
strengthening of State-Out connections binding that pattern of activity in State
to that sequence element in Out. These strengthened connections yield reduced
reaction times for units in Out, for any element that is reliably preceded by the
same sub-sequence, thus providing an SRT learning capability.

In the standard SRT tasks the presentation of a stimulus follows the pre-
ceding response by a fixed response-stimulus-interval (RSI). In the following
simulations, the standard RSI is 20 simulation time steps. During this period
the State activity continues to evolve, while no input nor output events occur.
With a fixed RSI in a series of sequence trials, the resulting State activity for a
given trial will be equivalent each time the sequence is repeated, thus providing
the basis for learning. Changing the RSIs for each trial allows manipulation of
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the temporal structure of a sequence while leaving its serial order intact. This
will yield modification of the State activity associated with each response. In
simulating the “pauses” conditions where the RSI is increased on a random
election of half of the trials (Stadler 1995), the RSI is augmented to 100 time
steps, on half of the trials in a random fashion. During a pause the activity
in State can significantly change, so that while the serial order remains intact,
the representation of the sequence in State is modified. With random RSI de-
lays, a given trial in one repetition of a sequence may not have the same RSI
in the sequence’s next repetition, thus changing the pattern of activity in State
for that trial, disrupting the learned State-Output association, and yielding an
increase RT.

.. Simulating the effects of Random RSIs (Stadler 1995)
Based on Stadler (1995) the combined effects of temporal organization (pause,
no-pause), block (sequence, random), and sequence complexity (easy, inter-
mediate and hard) on the model were tested (Dominey 1998b). The purpose
was to determine if the model demonstrates the same qualitative patterns of
sensitivity to these parameters as did humans. In particular, can the effects of
dual task conditions be mimicked by the randomized introduction of response
stimulus interval (RSI) pauses?

Ten model “subjects” were produced by using different initial random
weights to initialize network connections. Each subject was separately tested
in each one of 6 conditions that derive from the possible combination of the
two pause conditions (pause, no-pause) and three sequence complexity condi-
tions (easy, intermediate, hard). Each test consisted of 9 sequence blocks of 80
trials, followed by two random blocks of 80 trials. In the pauses tests, the RSI
was randomly changed from 20 to 100 simulation time steps on half of the tri-
als, corresponding to the change introduced by Stadler. The easy sequence was
BCADBCA, and the hard sequence was DADBACBCAB, as in Stadler (1995).
The intermediate sequence was ABCBDC, as used by Curran and Keele (1993)
in Experiments 1–3. Random blocks were made up of a randomized uniform
distribution of elements A-D that was the same for each of the 6 conditions.
A-D correspond to four discrete (x,y) locations on the 5x5 input array, and
responses are generated by activation of the corresponding locations in the
Output layer.

As seen in Figure 7B, single task (no-pause) performance (17.27 sts) was
significantly better than dual task (pause) performance (18.25 sts). There was
also a significant sequence learning effect with Sequence performance (14.8 sts)
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Figure 7. Learning effects of temporal disorganization. Performance in pause and no-
pause conditions for Seq and Rand blocks with three sequences of varying complex-
ity. Easy: BCADBCA, Intermediate: ABCBDC, Hard: DADBACBCAB. RTs for both
Sequence and Random blocks are elevated in the Pauses condition with respect to
No-Pauses. While this RT increase is somewhat uniform for Rand blocks, it is com-
plexity dependent for the Seq blocks. A. Human data from Stadler (1995). B. Simula-
tion data. For humans and simulations, temporal disruption impairs learning, with the
impairment increasing with sequence complexity. (From Dominey 1998b).
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superior to Random performance (20.7 sts). Easy (17.16 sts) and Intermediate
(17.45 sts) RTs were faster than Hard RTs (18.66 sts).

However, as can be seen in Figure 7, the simulation data differed from the
human data in one noticeable aspect. Whereas learning in humans was con-
siderably greater in the No-pause condition than in the Pause condition for
both the easy and hard sequences, for the simulation data this was so only
for the intermediate and hard sequence conditions and not for the easy se-
quence condition. This is due to the fact that the easy sequence was in a sense
too easy, and was not sensitive to the temporal structure perturbation. Nev-
ertheless, the simulation data reveal that learning is more effectively elimi-
nated in the pauses condition as the sequence complexity increases, reflect-
ing the interaction between distraction and complexity observed by Cohen et
al. (1990).

Most importantly for the present purposes, the model is also sensitive to
the effects of temporal disorder induced by introducing RSI increases randomly
in half of the trials which produces a dual task effect as demonstrated by Stadler
(1995). The model displays the classic learning decrement in pause (dual task)
conditions for the sequences of complexity equal or above that used by Cur-
ran and Keele (1993) in Experiments 1–3 (ABCBDC). It is thus reasonable to
consider this RSI pause method as a way to mimic in the model the effects of
a dual task on sequence learning performance. This provides a direct method
to test Stadler’s (1995) suggestion that it is this disruption of temporal order in
a single learning mechanism that may be the explanation for dual-task trans-
fer results in the experiments performed by Curran and Keele (1993). Indeed,
I have quantitatively demonstrated that modifications of temporal structure
induce corresponding changes in the internal representation (in State) of the
sequence, effectively yielding a different sequence (Dominey 1998a, b).

.. Simulating dual task effects (Curran & Keele 1993) with Random RSIs
The simulation described above demonstrates that indeed, the introduction
of random RSI structure can produce performance impairments by changing
the serial-temporal structure of the sequence. The question remains, however,
as to whether an ensemble of behavioral results attributed to dual task effects
can also be explained in terms of disruption of temporal structure. This was
the goal of part of Dominey (1998b) in addressing the results of a set of four
experiments that were presented by Curran and Keele (1993) as evidence for
dissociable forms of sequence learning.

Curran and Keele (1993), studied the degree of transfer of sequence knowl-
edge between single and dual task conditions (and vice versa) in an effort to
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determine if dissociable attentional and non-attentional mechanisms could be
isolated. They observed that the improved learning acquired in single task con-
ditions did not transfer to dual task testing. They interpreted this as evidence
that an attentional form of sequence learning that yielded superior perfor-
mance in single task conditions was blocked in dual task conditions due to
the attentional load.

They also observed that after learning in dual task conditions, there was
no performance improvement when subsequent testing occurred in single task
conditions. This was interpreted as evidence that the attentional mechanism
was blocked in the initial dual task training and thus unable to learn. Thus even
when liberated in the subsequent single task testing, it could not express knowl-
edge that it had never attained. These data together supported the existence of
two dissociable forms of sequence learning: One that required attention both
for learning and expression, and the other that required attention for neither
learning nor expression, but had a low complexity limit.

I set out to determine if these results could be explained in terms of the
temporal disruption of sequences (Dominey 1998b). In a simulation based on
Experiment 1 of Curran and Keele (1993), initial training takes place in single
task (no-pause) conditions, and then testing occurs in dual task (pauses) con-
ditions. This allows the measure of transfer of sequential knowledge acquired
in single task conditions to testing in dual task conditions (Figure 8A).

A population of 10 model subjects was tested. The experiment consisted of
15 blocks of 80 trials each (Figure 8B). Blocks 1–11 used a fixed RSI of 20 sim-
ulation time steps (sts). Blocks 1–9, and 11 each consisted of 80 trials using the
repeating sequence of the form ABCBDC. Block 10 had randomly organized
trials. Blocks 12–15 used a randomized schedule of RSIs of 20 time steps on
half of the trials, and 100 on half. In this “dual task” (pause) portion, block 14
followed the same sequence as in blocks 1–9, and 11. The other blocks in the
“dual task” (pause) testing were randomly organized.

Figure 8 compares C&K’s human results (A) with simulation results (B).
Learning that occurs in the No-Pause condition does not completely transfer
to the Pauses condition, similar to C&K’s results for transfer from single to dual
task conditions. The difference is that for C&K, these variations were linked to
dissociable learning systems, whereas in the current simulations the variations
are functionally attributed to the disruptions of temporal structure.

Figure 9 summarizes the learning measures obtained from the four experi-
ments in Curran and Keele (1993) with those obtained in the Dominey (1998b)
simulations. C&K’s Experiment 1 compared learning expressed in single (no-
pause) vs dual (pause) task conditions after training in single task conditions.
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Figure 8. Dual task processing as temporal disorganization. Learning acquired in sin-
gle task conditions does not completely transfer to dual task testing. The blocks used
for learning and transfer assessment are marked in the curved boxes. R – random block,
S – sequence block. A. Human data from Curran and Keele (1993) Experiment 1 (Fig-
ure 1), median block RTs. Blocks 1, 2, 7, 9, 10, 12 Random; 3–6, 8, 11 Sequence. B.
Simulation of Curran and Keele (1993) Experiment 1. Mean simulated RTs. Blocks 10,
12, 13 and 15 are random, all others are sequence. For both humans and the TRN
model, the expression of learning observed in the dual task (pauses) conditions is sig-
nificantly reduced with respect to that observed in single task (no pauses) conditions.
(From Dominey 1998b).
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Figure 9. Summary of dual task simulations. Comparison of human and simulated
learning in dual (pause) and single (no-pause) task manipulations. Learning (Rand-
Seq) in milliseconds for the single and dual task related conditions in each of Exps 1–4
of C&K 1993 and the corresponding simulations. Learning cannot optimally occur, nor
can it be optimally expressed, in dual task (pauses) conditions. (From Dominey 1998b).

For both the model and humans, the expression of learning was significantly
greater in single (no-pause) than dual (pause) conditions, indicating that the
advantage of single task learning was not fully transferred to the dual task con-
ditions. In C&K’s Experiment 2, one group was trained in dual task and the
other in single task conditions. Both were then tested in dual task conditions.
Both groups displayed significant learning with no Block x Group interaction,
suggesting equivalent sequential knowledge for the two groups. This was true
for both the human and simulation data. Again, this indicates that in both
systems, the advantage of learning without distraction/pauses is lost in the
subsequent presence of distraction/pauses.

In C&K’s Experiment 3, subjects were trained in dual task conditions, and
tested in dual and then single task conditions. For both the human and sim-
ulation data the performance advantage lost in dual task training conditions
was not regained in subsequent single task testing. In C&K’s Experiment 4,
subjects were trained with a more complex sequence in single task conditions
and then tested in single and dual task conditions. The learning expressed in
single task conditions was significantly greater than that in dual task condi-
tions, both in the human and simulation results, indicating again that the
advantage of single task training does not fully transfer to dual task testing.
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In summary, the model demonstrates the following behavior of interest: se-
quence disruption by RSI pauses yields reduced learning, and impairs transfer
of prior learning that occurred during preceding single task (no-pauses) train-
ing (Dominey 1998b), thus providing a possible explanation for these dual task
effects that does not rely on the necessary existence of multiple learning systems
with different attentional requirements.

This issue remains complex however, as it combines two topics that are
themselves questions of ongoing debate. The first topic concerns the functional
disturbance induced by dual task conditions, and the second concerns the rela-
tion between dual task effects and random RSI effects. While Curran and Keele
(1993) demonstrated that dual task conditions effect both the learning and the
expression of sequence knowledge, Frensch, Lin and Buchner (1998), subse-
quently claimed that dual task conditions effects expression, but not learning.
Shanks (this volume) however, using carefully structured test conditions ar-
gues that indeed sequence learning is impaired in dual task conditions. Finally,
Jiménez and Méndez (1999) argue that dual-task conditions do not interfere
either with learning nor with its expression when the sequences are probabilis-
tic. From the perspective of the simulation studies reviewed above, to the extent
that RSI randomization mimics dual task effects, it appears clear that dual tasks
impair both learning and expression, due to the disruption of the sequence
representation. It remains to be investigated if for probabilistic sequences, the
presence of an inherent “disruption” (due to the probabilistic structure) will
reduce or eliminate this effect.

With respect to the effects of RSI manipulation, while Stadler (1995) first
suggested that RSI manipulation will yield a disorganization of the sequence
itself, with resulting impairments in learning and expression, Willingham,
Greenberg, and Thomas (1997) consider that RSI manipulation does not af-
fect learning, but only performance. From the perspective of the simulation
studies reviewed above, this remains consistent with the idea that the global
organization of a sensorimotor sequence is disrupted by random RSI changes.
Future studies should address these issues in more detail.

.. Simulating the learning of structured RSIs (Dominey 1998)
Section 2.1 reviewed evidence that even coherent and systematic changes in
temporal structure can disrupt previously acquired learning. That is, when the
initial training occurs with one coherent temporal structure, and then a dif-
ferent, coherent temporal structure is used in the transfer test, a performance
impairment is observed in the transfer phase. Here I report on simulation of
this effect with the TRN.
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The SRT task allows the comparison between RTs for sequential series us-
ing the same serial structure but different temporal structures. Two coherent
temporal structures T1 and T2 were studied, each consisting of a repeating se-
ries of 10 RSI values of either 0.1 or 0.5 simulation time units (20 or 100 time
steps, respectively). In T1, elements A and D are always preceded by RSIs of
20 time steps, while elements B and C by are preceded by RSIs of 100, and the
opposite in T2.

A set of 5 instances of the model were generated by using different seed
values for the random number generator to initialize the weights in wSO. The
5 models were replicated to yield 2 equivalent groups of 5, according to the
temporal structure used for their training (T1 or T2). The two groups were
trained on 6 blocks of 80 trials with the repeating 10-trial sequence B-C-B-D-
C-A-D-A-C-D using temporal structures T1 and T2, respectively. The trained
models were then tested with the same serial structure while using the same
temporal structure as that used for training (blocks 6 and 8), and with the same
serial but different temporal structure from the one used for training (block 7),
and finally with random serial and the same temporal structure (block 9).

The model’s performance in the SRT task is displayed in Figure 1, where the
RTs for responses after training in sequence blocks 6 and 8 are reduced with re-
spect to those in the transfer block 7 that uses the different temporal structure,
and also with respect to the random block 9. Thus, like the human subjects,
the model was significantly perturbed by a change in the temporal structure in
block 7, despite the fact that the “perturbing” temporal structure was coherent,
rather than random. Given sufficient exposure, this new temporal structure
would likely be learned.

. Abstract structure

While the TRN is sensitive to serial and temporal structure, it fails to learn ab-
stract structure as defined in Section 2.2 (Dominey et al. 1998). In order to per-
mit the representation of abstract structure as we’ve defined it, the model must
be capable of comparing the current sequence element with previous elements
to recognize repetitive structure (i.e. u, u, u, n-2, n-4, n-3 for ABCBAC, where
“u” signifies unpredictable, and “n-2” indicates a repetition of the element 2
places behind, etc.). These functions would rely on the more non-sensorimotor
associative areas of the anterior cortex, and would permit the generalization
of grammar-like rules to new, but “legal” sensorimotor sequences (Dominey
1997). To make this possible, as illustrated in Figure 10, a short term mem-
ory (STM) mechanism is introduced that is continuously updated to store the
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Figure 10. Schematic representation of an anatomically structured model for learn-
ing serial and abstract structure, the Temporal Recurrent Network (TRN) and Abstract
Recurrent Network (ARN) respectively. TRN: Presentation of sequence stimuli to In-
put activates both State and Output. State is a recurrent network whose activity over
time encodes the sequence context, i.e. the history of previous sensory (Input) and
motor (Output) events. At the time of each Output response there is a specific pat-
tern of activity, or context, in State. Connections from State to Output (dotted line)
are modified during sequence learning, thus binding each sequence context in State
with the corresponding response in Output for each sequence element, yielding re-
duced RTs. Abstract model (ARN) extension: A short term memory (STM) encodes
the 7 ± 2 previous responses. Recog encodes repetitions between current response and
previous responses in and provides this input to State. Modifiable connections (dot-
ted line) from State gate the contents of appropriate STM elements to Output when
repetitive structure is predictable, reducing RTs for predictable elements in isomor-
phic sequences. Left: The TRN can learn the serial order of sequence elements 613163
but cannot transfer this knowledge to isomorphic sequence 781871. Right: The ARN
learns the relations between repeating elements in 613163 as u, u, u, n-2, n-4, n-3, the
abstract structure which transfers completely to the isomorphic sequence 781871 (see
text) (From Dominey et al. 1998).
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previous 7 ± 2 responses, and a Recognition mechanism that compares the
current response to the stored STM responses to detect any repeated elements
(Dominey 1997, et al. 1998).

These modifications for the Abstract Recurrent Network (ARN) permit the
recoding of sequences in terms of their abstract structure that is now provided
as input to State. Thus, in terms of the recoded abstract structure representa-
tion provided to State, the two sequences ABCBAC and DEFEDF are equiva-
lent: u, u, u, n-2, n-4, n-3. For sequences that follow this “rule,” the pattern of
activation (context) produced in State by sub-sequence u, u, u, n-2 will reliably
be followed by that context associated with n-4. To exploit this predictability,
the system should then take the contents of the STM for the n-4th element and
direct it to the output, yielding an RT reduction. This is achieved in the fol-
lowing manner: For each STM element (i.e. the structures that store the n-1,
n-2, .. responses) there is a unit that modulates the contents of this structure to
Output. If one of these units is active, the contents of the corresponding STM
structure is directed to Output.

Now, during learning, each time a match is detected between the current
response and an STM element, the connections are strengthened between State
units encoding the current context and the modulation unit for the matched
STM element. The result is that the next time this same pattern of activation
in State occurs (i.e. before a match n-4 corresponding to the learned rule), the
contents of the appropriate STM will be directed to Output in anticipation of
the predicted match, thus yielding a reduced reaction time. In the same sense
that the TRN learns to anticipate specific elements that define a given sequence,
the ARN learns to anticipate repetitive structure that defines a class of isomor-
phic sequences. Two formal models for the treatment of serial/temporal and
abstract structure have thus now been defined, the TRN and ARN respectively,
that together make up the dual process model.

Figure 11 displays the comparison between human subjects in explicit con-
ditions (see Figure 2), and the combined effects of the TRN and ARN. While
these two systems together display performance that approaches that of hu-
mans, it was also clearly demonstrated (Dominey et al. 1998; Dominey & Ra-
mus 2000) that without the ARN, the representation capability necessary to
learn and transfer abstract structure is impossible.

. Discussion of simulation studies and dissociable systems

In theory, different types of information structure must be treated by different
processes, and the inverse: a given processing architecture must be capable of
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Figure 11. Human and simulation performance in abstract structure learning. The
combined “dual process” model for serial and abstract structure, like humans in ex-
plicit conditions, expresses knowledge of both the surface and abstract structure, and
transfers knowledge of the abstract structure to the isomorphic sequence in blocks 9
and 10. Compare to Figure 2. (From Dominey et al. 1998).

treating some but not other information structures. These simulation results
demonstrate that for serial and abstract structure, as defined here, there are
two corresponding sequence learning models that are capable of learning, re-
spectively, only one of these types of sequential structure. Simulation studies
have shown that the combined model that includes the TRN and ARN is ef-
fective in covering substantial behavioral ground. Indeed, though it is beyond
the scope of this chapter, Dominey and Ramus (2000) have demonstrated that
this dual system model is capable of simulating the behavior of human infants
in their sensitivity to serial, temporal and abstract structure in language acqui-
sition, and how this capability can be extended through training, to a form of
adult syntactic comprehension (Dominey 2002).

With respect to dissociable systems, the simulations of dual task SRT con-
ditions as timing (RSI) changes suggest that it is not necessary to invoke dis-
sociable attentional and non-attentional systems to explain dual task results.
However, a dissociable system was required for abstract structure learning. In-
deed, it may seem strange to dismiss the Curran and Keele (1993) two-system
model and then propose a highly similar two-system model. Why couldn’t the
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ARN be invoked to do everything? Interestingly, the ARN will fail on sequences
that have the simplest structure, i.e. those that have no internal repetition with
each element followed by a unique successor, as in ECBAD. The ARN fails here
as each element will be represented as a unique element that does not match
a recent predecessor. That is, the sequence has no abstract structure. Still, it
is clear that multiple sequence learning systems exist. While the TRN simu-
lations demonstrated that a single system could produce performance deficits
similar to those observed in dual task conditions, the results clearly do not deny
the existence of multiple sequence learning systems, nor the relation between
awareness and the functioning of these systems.

. General discussion

At the outset of this chapter I announced the goal of identifying dissociable
dimensions of sequential structure and the corresponding neurophysiological
underpinnings. I also wanted to determine how this partition was associated
with varying degrees of intention or awareness, and finally whether the se-
quence processing aspects of language could fit into this framework. These
issues were separately addressed from the perspectives of human behavior,
neuropsychology and simulation results.

The first conclusion from this multidimensional approach is that serial and
temporal structure can be processed by a common system, whose functional
architecture corresponds to that of the TRN. This learning system appears to
rely on the intact functioning of the cortico-striatal system, and can operate in
the absence of overt attention or awareness of what is to be learned.

The second conclusion is that, in contrast, the learning of abstract structure
is functionally distinct, corresponding to the ARN model. This learning system
appears to exploit processing capabilities related to those involved in particular
aspects of syntactic processing, and requires additional processing capabilities
and attentional awareness of the type of structure to be learned. This conclu-
sion appears to be in conflict with the position evoked by Knowlton & Squire
and others, that limited knowledge of abstract structure can be acquired in the
absence of explicit awareness, and by amnesic patients. However, as pointed out
in Section 2.2, while the levels of transfer in AGL experiments are significantly
above chance, they are far from the robustness required for transfer to mul-
tiple isomorphic sequences as in the SRT task of Section 2.2, or the sequence
classification task in Section 3.3.
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The third related conclusion is that there is a functional relation between
syntactic processing, and the processing of abstract non-linguistic sequences.
Our limited neuropsychological data suggest that this system relies on a dis-
tributed network whose principal component is the left peri-sylvian cortex in
and around Broca’s area. This was revealed in particular by the correlation be-
tween impairments in syntactic and abstract structure processing in aphasic
patients. If this is the case, it would indicate that to the extent that syntactic
processing overlaps with abstract structure processing, and to the extent that
abstract structure processing relies on explicit awareness, then syntactic pro-
cessing will also rely on explicit awareness. While it is often considered that
language acquisition is an implicit process, observation of young children in
the acquisition phase reveals that they are actively and explicitly engaged in
the communicative process of language. Moreover, self observation reveals that
both in the production and comprehension of language, one must be atten-
tively, explicitly and actively involved. This is not to be confused with the argu-
ment that while one can form and recognize well formed sentences, one may
not necessarily be able to describe explicitly the rules by which those sentences
were formed. While likely valid, this argument does not contradict the asser-
tion that language acquisition and use is an active, explicit process. This conclu-
sion implies common neurophysiological processes, then, for these respective
aspects of syntactic and cognitive sequence processing, and will form the ba-
sis for future investigation of the relations between structure and function in
cognitive sequence learning (Hoen & Dominey 2000).

Notes

* This work has been supported by the Cognitique project of the French Education and
Research Ministry, and by the Human Frontiers Science Program. I thank Luis Jiménez,
Eliot Hazeltine, Greg Ashby and Michael Casale for comments on a previous version of the
manuscript.
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. Introduction

Implicit learning is a complex domain in which many issues central to the cog-
nitive neurosciences arise. Indeed, over the past decade or so, the field has come
to embody ongoing questioning about three fundamental issues, namely (1)
consciousness, and specifically how we should conceptualize and measure the
relationships between conscious and unconscious cognition; (2) modularity
and the architecture of the cognitive system, and in particular whether one
should think of implicit learning as being subtended by specific, dedicated re-
gions of the brain or not; and (3) mental representation, and in particular the
complex issue of abstraction.

In this paper, we focus essentially on the first two issues. Based on a theo-
retical perspective (e.g., Cleeremans & Jiménez 2002) that takes it as a starting
point that the differences between implicit and explicit knowledge might be
differences in degree rather than in kind, we explore how the development of
each can be selectively influenced by the time made available to participants
to process each stimulus in a sequence learning situation. We also describe a
computational model of performance in our experimental situation that offers
a graded and single-process account of the interactions between implicit and ex-
plicit knowledge. The central idea embodied by the model is that developing
high-quality, explicit representations of the stimulus material takes time. We
start by offering some background on the reasons why assessing the respec-
tive contributions of implicit vs. explicit knowledge in implicit learning situa-
tions is such a difficult problem, and continue this introduction by discussing
temporal effects in the context of sequence learning situations.
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. Direct and indirect measures in sequence learning

Sequence learning has now become the best behavioral paradigm through
which to study implicit learning (see Clegg, DiGirolamo, & Keele 1998; Cleere-
mans, Destrebecqz, & Boyer 1998 for reviews). A sequence learning task is typ-
ically divided into two phases: (1) a training phase, during which subjects per-
form a serial reaction time (SRT) task, and (2) a test phase, during which (ex-
plicit) knowledge of the sequence is assessed. On each trial of the SRT task, a
stimulus appears at one of several locations (typically 4 to 6) on a computer
screen. Participants are simply asked to respond by pressing as fast and as ac-
curately as they can on one of several keys (each corresponding to one of the
locations at which the stimulus may appear) arranged in a spatially compatible
layout. Unknown to them, the sequence of successive stimuli either follows a
simple repeating pattern (Nissen & Bullemer 1987), or is produced by genera-
tion rules that describe legal transitions between successive sequence elements
(e.g., Cleeremans & McClelland 1991).

In the context of SRT tasks, sensitivity to the sequential structure of the
material can be revealed through comparisons between reaction times to vari-
ous types of stimuli. All these measures assume that reaction time, in general,
will tend to reflect the extent to which the stimulus that is responded to is pre-
dictable or familiar in its temporal context. Thus for instance, reaction times
tend to progressively decrease with practice on a given sequence, but to in-
crease when the repeating pattern is modified in any way (Reed & Johnson
1994) – thus indicating that whatever knowledge participants have acquired
over the course of training is specific to the sequence they have been exposed
to. Reaction times also tend to be faster when the sequence is repeated rather
than random (Frensch & Miner 1994). Finally, participants also respond faster
to grammatical than to ungrammatical stimuli when the sequence is gener-
ated by an artificial grammar (Cleeremans & McClelland 1991). Importantly,
all these measures are indirect measures to the extent that participants are not
told that the material contains sequential structure. The discriminations they
reflect are therefore not directly required by task instructions (Jiménez, Mén-
dez, & Cleeremans 1996), and the corresponding learning effects are thus best
described as incidental.

In the same way, various tasks performed during the test phase have been
used as direct measures of sequence knowledge. The most widely used such
direct measures are generation and recognition tasks. In a generation task,
participants are asked to indicate the location of the next stimulus of the se-
quence rather than to react to the current one. In a recognition task, partici-
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pants are presented with small sequence fragments and asked to classify them as
instances of the training material or not. Most of the studies using such forced-
choice tasks have shown strong associations between performance on these
tests and the indirect measure of learning in the SRT task (e.g., Perruchet &
Amorim 1992; Shanks & Johnstone 1999). These associations are usually taken
as evidence for explicit rather than implicit sequence learning, for they suggest
that whatever knowledge people have acquired over training on the SRT task
can also be deployed intentionally, in response to explicit instructions to do so.

However, this conclusion that sequence learning is based on the conscious
acquisition of sequential knowledge depends on the plausibility of a critical
assumption, namely that the direct task used to assess knowledge of the se-
quence constitutes an exclusive and exhaustive measure of explicit knowledge.
This assumption, however, is simply unwarranted (see Jiménez 1997, for a de-
tailed analysis). There is now extensive evidence that no task can be taken to be
process-pure (Reingold & Merikle 1988; Jacoby 1991), that is, that no task can
be taken to exclusively reflect the operation of a single cognitive process. Rather,
any task will always tend to involve many different cognitive processes operat-
ing simultaneously. In the context of sequence learning research, for instance,
Shanks and Johnstone (1998) have shown that participants who perform above
chance in a generation task may nevertheless believe that they are guessing the
sequence of locations – thus suggesting that whatever knowledge was expressed
during the generation task might also depend on implicit influences rather
than exclusively on explicit recollection.

Assessing the relative contributions of implicit and explicit knowledge on
sequence learning is therefore a critical issue that requires sensitive methods to
be used. With this goal in mind, we recently adapted the process dissociation
procedure (PDP; Jacoby 1991) to sequence learning (Destrebecqz & Cleere-
mans 2001; see also Buchner, Steffens, Erdfelder, & Rothkegel 1997; Buchner,
Steffens, & Rothkegel 1998; Goschke 1997, 1998, for similar attempts). The
process dissociation procedure was originally devised to make it possible to
dissociate implicit and explicit forms of memory. It is based on comparing per-
formance on two tasks that differ only by the instructions: the inclusion and
the exclusion task. In the context of sequence learning, consider for instance a
generation task performed under inclusion instructions. Participants are told
to produce a sequence that resembles the training sequence. To do so, they can
either explicitly recollect the regularities of the training sequence, or they can
guess the location of the next stimulus based on intuition or familiarity. Hence,
under inclusion instructions, both implicit (e.g., intuition) and explicit (e.g.,
recollection) processes can contribute to improve performance. Consider now
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the same generation task, this time performed under exclusion instructions.
Participants are told to generate a sequence that differs as much as possible
from the training sequence. Implicit and explicit influences are now set in op-
position, for the only way to successfully avoid producing familiar sequence
elements is to consciously know what the training sequence was and to pro-
duce something different. Observing the continued generation of familiar ele-
ments under exclusion instructions would thus clearly indicate that generation
is automatically influenced by implicit knowledge.

Based on these ideas, we applied this logic in a previous study (Destre-
becqz & Cleeremans 2001) in which we also attempted to manipulate the ex-
tent to which learning was explicit. To do so, we explored how changes in the
response-to-stimulus interval (RSI; the amount of time that elapses between
the response and the onset of the next stimulus) in the SRT task influenced se-
quence learning. Our main hypothesis was that reducing the value of the RSI
to 0 ms might selectively impair the development of conscious expectations
about the location of the next stimulus. This hypothesis was confirmed. In-
deed, while all participants were able to learn about the sequential regularities
contained in the material and to project this knowledge in a generation task
performed under inclusion instructions, only participants trained with an RSI
of 250 ms were able to successfully exclude their knowledge in a generation
task performed under exclusion instructions. Participants trained with an RSI
of 0 ms instead tended to continue to preferentially reproduce the regulari-
ties of the training sequence under exclusion instructions. We suggested that
these participants lacked conscious control over their sequential knowledge.
This impression was further strengthened by the results of a recognition task
showing that these participants were unable to correctly discriminate between
old and new sequence fragments. In contrast, participants trained with an RSI
of 250 ms were perfectly capable of discriminating between novel and familiar
sequence fragments.

Based on these results, we therefore concluded (1) that direct tasks such
as generation or recognition may indeed be influenced by implicit knowledge,
(2) that our data offered clear evidence that learning can be unconscious to
the extent that the relevant knowledge may influence performance yet remain
outside conscious control and recollection, and (3) that the time available for
processing each stimulus during the SRT task is critical in determining to extent
to which sequence knowledge is available to conscious awareness.

This third conclusion, – that explicit sequence learning depends on the
time available to process each event over the course of the SRT task – is some-
what speculative because existing studies do not offer a coherent picture of the
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influence of temporal factors on sequence learning. In the remainder of this
introduction, we would therefore like to focus on the importance and nature
of these temporal effects in sequence learning.

. Temporal effects in sequence learning

The results of the experiment described above are consistent with some, but
not with all of the previous studies that explored the importance of tempo-
ral factors on sequence learning (e.g., Hsiao & Reber 2001). Such temporal
factors were proposed as a way of understanding the effects of a secondary
task on sequence learning performance. In the “dual-task” version of the SRT
experiment, introduced by Nissen and Bullemer (1987), either a low- or a
high-pitched tone is produced during the RSI. Instructions require participants
not only to respond to each stimulus location (the primary task) but also to
keep a running count of how many low-pitched tones have occurred during
each block (the secondary task). In their original study, Nissen & Bullemer ar-
gued that a secondary tone-counting task impairs sequence learning because it
exhausts participants’ attentional resources.

Other authors have instead suggested that the detrimental effect of the
tone-counting task is due to scheduling conflicts between performing the main
and secondary tasks, rather than to attentional load. Stadler (1995), for in-
stance, argued that a secondary tone-counting task impairs sequence learning,
not because it divides attention, but because it introduces variability in the RSI.
Stadler pointed out that the secondary task lengthens the RSI only for the tar-
get trials in which the tone count must be updated. This incidental lengthening
of the RSI would then have effects similar to those resulting from actually in-
serting a pause between those trials and the next. The pauses would disrupt
participants’ ability to parse the sequence into consistent chunks – a process
which, according to Stadler, is essential to sequence learning.

Frensch and Miner (1994), in contrast, attribute the detrimental effects
of the secondary task to short-term memory limitations: Secondary tasks im-
pair sequence learning not so much because they make it hard for partici-
pants to chunk the sequence consistently, but simply because they lengthen the
response-to-stimulus interval (RSI), and that this lengthening makes it more
difficult for participants to link together the memory traces corresponding to
successive elements of the sequence in short-term memory. Consistently, Fren-
sch and Miner (1994) reported that sequence learning is impaired when the
RSI is increased to the unusual value of 1500 ms.
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Yet another hypothesis about the effects of the RSI on sequence learning
was put forward by Willingham et al. (1997), who argued that lengthening the
RSI does not impair sequence learning per se, but only the expression of knowl-
edge about the sequence. Willingham et al. reported that participants trained
with a 1500 ms RSI showed impaired sequence learning as compared to partic-
ipants trained with a 500 ms RSI. However, when transferred to a shorter RSI,
the former group showed the same level of sequence learning as the latter.

At first sight, the Destrebecqz and Cleeremans (2001) study described
above appears to contradict these results. Indeed, we found that a higher value
of the RSI tends to improve explicit sequence learning. We argued that peo-
ple trained with an RSI of 250 ms are given more opportunities to link to-
gether high-quality memory traces and to develop stronger representations of
the sequential constraints of the training material – an account that is totally
inconsistent with the findings of Frensch and Miner (1994), for instance.

To further explore and clarify the role of temporal factors on sequence
learning, we therefore conducted a new experiment, presented below, in which
we manipulated the RSI over three different values (RSI = 0, 250, or 1500 ms),
and in which performance was assessed through a wider array of objective and
subjective measures. This study had two main goals: (1) to confirm the fact
that sequence learning is implicit when the RSI is reduced to 0 ms, and (2) to
explore the effects on sequence learning of a major increase of the RSI, from
250 ms to 1500 ms. Several predictions are possible about the effects of such a
large RSI on sequence learning performance.

First, we might observe reduced sequence learning, based on the notion
put forward by Frensch and Miner that working memory limitations will make
it more difficult for participants to link together relevant memory traces during
learning. If this were the case, we would thus expect to observe impaired perfor-
mance on both the SRT task and on the subsequent generation and recognition
tasks under RSI = 1500 ms conditions.

Second, it might also be the case, as Willingham et al. argued, that increas-
ing the RSI from 250 ms to 1500 ms would have no effect on sequence learning
in and of itself, but only influence SRT performance. In other words, under RSI
= 1500 ms conditions, we would thus expect to observe a deterioration in SRT
performance, but intact generation and recognition performance.

Finally, based on our own previous findings, we might expect to observe
improved explicit sequence learning under RSI = 1500 ms condition. Indeed,
our theory predicts that people develop stronger (and hence more explicit)
representations with higher values of RSI. If this theory were correct, we would
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thus expect improved explicit sequence learning under RSI = 1500 ms condi-
tion as assessed namely by generation performance.

. Method

. Participants

72 participants, all undergraduate students of the Université Libre de Bruxelles
were randomly assigned to one of three experimental conditions.

. Material

The experiment was run on Macintosh computers. The display consisted of
four dots arranged in a horizontal line on the computer’s screen and separated
by intervals of 3 cm. Each screen position corresponded to a key on the com-
puter’s keyboard. The spatial configuration of the keys was fully compatible
with the screen positions. The stimulus was a small black circle 0.35 cm in di-
ameter that appeared on a white background, centered 1 cm above one of the
four dots.

. Procedure

The experiment consisted of 15 training blocks during which participants were
exposed to a serial four-choice RT task. Each block consisted of 96 trials, for
a total of 1440 trials. On each trial, a stimulus appeared at one of the four
possible screen locations. Participants were instructed to respond as fast and
as accurately as possible by pressing on the corresponding key. The target was
removed as soon as a key had been pressed, and the next stimulus appeared
after either a 0 ms (RSI 0 condition), 250 ms (RSI 250 condition), or 1500
ms (RSI 1500 condition) interval depending on the condition. Erroneous re-
sponses were signaled to participants by means of a tone. Short rest breaks
occurred between any two experimental blocks. Participants were presented
with one of the following twelve elements sequences: 342312143241 (SOC1),
341243142132 (SOC2). Each experimental block consisted of eight repetitions
of the sequence. These sequences consisted entirely of “second order condi-
tional” transitions or SOCs (Reed & Johnson 1994). With SOC sequences, two
elements of temporal context are always necessary to predict the location of the
next stimulus. Both sequences were balanced for stimulus locations and tran-
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sition frequency but differed in terms of the subsequences of three elements
that they contained. For instance, the transition ‘34’ was followed by location
2 in SOC1 and by location 1 in SOC2. In each condition, half of the partici-
pants were trained on SOC1 during the first 12 blocks and during blocks 14
and 15; and on SOC2 during block 13. This design was reversed for the other
half of the participants. Increased RTs during block 13 are thus expected only if
participants have acquired SOC knowledge during training over blocks 1–12.

.. Verbal reports
After the SRT task, participants were presented with the following five proposi-
tions and asked to indicate the one that best described the sequence of stimuli:

1. The sequence of stimuli was random.
2. Some positions occurred more often than others.
3. The movement was often predictable.
4. The same sequence of movements would often appear.
5. The same sequence of movements occurred throughout the experiment.

This questionnaire is identical to the one used by Curran (1997). After com-
pleting the questionnaire, all participants were informed that the sequence of
stimuli was not random. They were then introduced to either the generation
or the recognition task. In each condition, half of the participants performed
the recognition task before the generation task. The opposite order was used
for the other half of the participants to control for a possible order effect.

.. Generation task
In the generation task, participants were presented with a single stimulus that
appeared in a random location, and asked to freely generate a series of 96 trials
that “resembled the training sequence as much as possible”. They were told to
rely on intuition when feeling unable to recollect the location of the next stim-
ulus. After this generation task – performed under inclusion instructions – par-
ticipants were asked to generate another sequence of 96 trials, this time under
exclusion instructions. They were told that they now had to try to avoid repro-
ducing the sequential regularities contained in the training sequence. In both
generation tasks, participants were also told not to repeat responses. The stim-
ulus moved whenever participants had pressed one of the keys, and appeared
at the corresponding location after a delay of either 0 ms, 250 ms or 1500 ms
depending on the condition.
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.. Confidence test
After completion of both generation tasks, participants were asked to perform
a confidence test in which they had to rate, on a scale from 0 to 100, how confi-
dent they were in their generation performance. They had to evaluate how well
they thought they had been able to reproduce the sequence during the inclu-
sion task, and how well they thought they had been able to avoid reproducing
the sequence under exclusion instructions.

.. Recognition test
In the recognition task, participants were presented with 24 fragments of three
trials. Twelve were part of SOC1 and twelve were part of SOC2. Participants
were asked to respond to the stimuli as in the SRT task, and to subsequently
provide a rating of how confident they were that the fragment was part of the
training sequence. Ratings involved a six points scale where 1 = “I’m certain
that this fragment was part of the training sequence”, 2 = “I’m fairly certain
that this fragment was part of the training sequence”, 3 = “I believe that this
fragment was part of the training sequence”, 4 = “I believe that this fragment
was not part of the training sequence”, 5 = “I’m fairly certain that this fragment
was not part of the training sequence”, and 6 = “I’m certain that this fragment
was not part of the training sequence” (Shanks & Johnstone 1999). It was also
emphasized to participants that they had to respond as fast as possible to the
dots. Both ratings and reaction times were recorded.

. Results

. Reaction time task

As the two sub-groups of participants presented in each condition with either
SOC1 or SOC2 were trained identically, their reaction times were combined
for subsequent analyses.

Figure 1 shows the average reaction times obtained over the entire experi-
ment, plotted separately for the three conditions. To analyze the data, we per-
formed an ANOVA with Blocks [15 levels] as a within-subject variable and
Condition [three levels] as a between-subjects variable. This analysis revealed
significant effects of Blocks [F(14, 966) = 29.182, p < .0001, Mse = 54543.548]
and of Condition [F(2, 69) = 11.49, p < .0001, Mse = 1197844.526]. The
Block × Condition interaction also reached significance [F(28, 966) = 3.038,
p < 0.001, Mse = 5678.831]. The significant effect of Condition indicates that
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Figure 1. Mean reaction times for the 15 blocks of the SRT task, plotted separately for
the three conditions.

participants respond reliably faster when the RSI increases. This effect how-
ever may simply stem from improved motor performance rather than from
improved learning.

Indeed, the increase in reaction time between blocks 12 and 13 suggests
that participants learn the sequence in all three conditions. To validate this
impression and assess the magnitude of the transfer effect, we compared RTs
obtained for the transfer block (block 13) with the average of RTs obtained
for blocks 12 and 14. An ANOVA with Condition [three levels] as a between-
subjects variable, and Block [2 levels] as a within-subject variable revealed sig-
nificant effects of Block [F(14, 69) = 86.894, p < .0001, Mse = 136571.450]
and of Condition [F(2, 69) = 7.672, p < .01, Mse = 1197844.526]. The Block
× Condition interaction, however, was not significant. These results therefore
confirm that participants learn about the sequential structure of the material in
all three conditions, and that the magnitude of the transfer effect (our indirect
measure of learning) is not significantly influenced by the value of the RSI.
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. Verbal reports

In this task, participants were presented with a five items questionnaire describ-
ing the structure of the training sequence, and asked to choose the proposition
that best described their subjective appraisal of the material. The five propo-
sitions (1 to 5) described increasing degrees of sequential structure. To quan-
tify participants’ subjective knowledge, we simply scored each participant by
recording the rank of the proposition they chose. A high score is therefore ex-
pected if participants noticed a systematic repeating pattern. Low scores would
indicate that participants considered that the sequence was random. The aver-
age scores of subjective knowledge were 3.83, 3.92, and 3.67 for the RSI 0, RSI
250, and RSI 1500 respectively. A one-way ANOVA performed on these scores
failed to reveal a significant effect of Condition (F < 0.5).

.. Generation task
Because tasks order failed to exert any effect on generation or recognition per-
formance, the data for both groups of participants were collapsed in all three
conditions.

To assess generation performance, we computed the number of generated
chunks of three elements that were part of the training sequence in both inclu-
sion and exclusion tasks. Since the generated sequences consisted of 96 trials,
the maximum number of correct chunks that can be produced is 94. To obtain
inclusion and exclusion scores for each participant, we therefore divided the
corresponding number of correct chunks by 94. As participants were told not
to produce repetitions, chance level is 0.33.

Figure 2 shows average inclusion and exclusion scores for the three con-
ditions. An ANOVA with Condition [3 levels] as a between-subjects variable
and Instructions [2 levels, inclusion vs. exclusion] as a within-subject variable
only revealed a significant effect of Instructions [F(1, 66) = 44.885, p < .0001,
Mse = 1.039]. The Instructions × Condition interaction was marginally sig-
nificant [F(2, 66) = 2.814, p < 0.07, Mse = 0.065]. Condition failed to reach
significance.

T tests were used to compare generation scores to chance level. Inclusion
scores are significantly above chance level in all three conditions, t(23) = 4.57,
p < .001, t(23) = 8.71, p < .001, t(23) = 4.45, p < .001 for the RSI 0, RSI 250 and
RSI 1500 respectively. Planned comparisons performed on inclusion scores did
not reveal any significant differences (all Fs < 1.7). Exclusion scores are also
above chance level in the RSI 0 condition [t(23) = 2.23, p < .05]. By contrast,
they are significantly below chance level in the RSI 250 condition [t(23) = -
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Figure 2. Mean generation scores for the three conditions and under inclusion and
exclusion instructions.

2.18, p < .05]. Exclusion scores did not differ from chance level in the RSI 1500
condition [t(23) = -1.22]. Planned comparisons showed that exclusion scores
were significantly higher in the RSI 0 condition than in both the RSI 250 [F(1,
66) = 7.53, p < .01, Mse = 0.0118] and the RSI 1500 condition [F(1, 66) =
2.814, p < .05, Mse = 0.0118]. Exclusion scores in the latter conditions did not
differ from each other.

Planned comparisons further revealed that the number of generated
chunks corresponding to the training sequence decreased significantly from
inclusion to exclusion instructions in the RSI 250 [F(1,66) = 20.83, p < .0001,
Mse = 0.0231] and RSI 1500 conditions [F(1,66) = 25.863, p < .0001, Mse =
0.0231]. However, this difference was only marginally significant in the RSI 0
condition [F(1,66) = 3.08, p < .06, Mse = 0.0231].

To summarize, these results suggest that participants have control on their
knowledge in the RSI 250 and RSI 1500 conditions, but not in the RSI 0 con-
dition. It is only in this latter condition, indeed, that participants produced
triplets of the training sequence above chance level in both inclusion and
exclusion tasks.

We further analyzed exclusion performance by comparing the number of
produced triplets that are congruent either with the training or the transfer
sequence. As noted by Reed and Johnson (1994) and by Shanks and John-
stone (1999), this analysis is important, for the following reason: Assume par-
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ticipants notice, over training, that the material contains regularities such as
“the number of reversals is low”. Crucially, such regularity is not specific to the
training sequence, but applies just as well to the transfer sequence. During free
generation, participants may thus produce responses that reflect such general
knowledge of the material, and hence end up performing better than chance
(0.33) would predict, despite not having learned the specific SOCs present in
the training material. If this were the case, the “correct” chance level might in
fact be different from 0.33. To control for this possibility, we evaluated how
many generated triplets are congruent with the transfer sequence. The number
of generated triplets that are congruent with the transfer sequence is the appro-
priate control because the training and transfer sequences differ by every SOC
transition but are identical in all other structural aspects. Thus, for instance,
they contain exactly the same number of reversals (such as “121” in SOC1 and
“323” in SOC2).

If participants had learned the training sequence explicitly, then they
should be able to control the expression of their sequential knowledge. We
would thus not expect that they produce more triplets from the training se-
quence than from the transfer sequence in the exclusion task. That is the pat-
tern of results we observed for RSI 250 and RSI 1500 participants, who pro-
duced equal numbers of training and transfer triplets under exclusion instruc-
tions (ps > 0.6). By contrast, RSI 0 participants produced more training (35.75)
than transfer triplets (29.79) in the exclusion task [t(23) = 2.45, p < .05, bilat-
eral]. This result can only be attributed to the automatic influence exerted on
generation performance by sequence knowledge acquired implicitly during the
SRT task in this latter condition.

.. Subjective tests
After each generation task, participants had to rate how confident they were
in their performance on a scale ranging from 0 to 100. Figure 3 shows mean
inclusion and exclusion confidence ratings for the three conditions. The figure
suggests that participants are more confident in their exclusion than in their
inclusion performance. This impression was confirmed by the results of an
ANOVA conducted on these confidence ratings with Condition [three levels]
as a between-subjects variable and Instructions [2 levels] as a within-subject
variable. This analysis revealed a significant effect of Instructions [F(1,66) =
66.482, p < .0001, Mse = 1.937]. Neither Condition nor the Instructions ×
Condition interaction reached significance (Fs < 1.6).

To obtain a more detailed appraisal of the relationships between generation
performance and confidence, we also computed correlations between genera-
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Figure 3. Mean confidence ratings for inclusion and exclusion tasks plotted separately
for the three conditions.

Table 1. Correlations between generation tasks and the corresponding confidence level
for the three conditions

Confidence in inclusion Confidence in exclusion
Inclusion score 0.239

RSI 0 Exclusion score –0.343

Inclusion score –0.082
RSI 250 Exclusion score –0.358

Inclusion score 0.464*
RSI 1500 Exclusion score 0.213

Note. * indicates a significant correlation (p < 0.05)

tion scores and confidence levels in both inclusion and exclusion tasks (see Ta-
ble 1). This analysis showed a significant correlation between inclusion scores
and confidence ratings, but only in the RSI 1500 condition.

.. Recognition task
Participants were presented with 24 short sequences of three elements. Half of
these triplets were part of the training sequence and the other half were part of
the transfer sequence. For each triplet, participants first responded to each of
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Figure 4. Mean recognition ratings for the three conditions and for old and new se-
quences of three elements. A high rating (between (4 and 6) is expected for a new
sequence, and a low rating (between 1 and 3) is expected for an old sequence.

its three elements just as in the SRT task, and were then asked to rate the extent
to which they felt the triplet was part of the training sequence or not.

To control for the possibility that recognition ratings are influenced by
perceptual-motor fluency during the test itself (as could be the case if partic-
ipants responded faster to familiar triplets), we first compared RTs to old and
new items. Because old and new triplets differed exclusively by their third stim-
ulus, our analysis was limited to the RTs associated with responses to the third
element of each triplet. An ANOVA with Condition [3 levels] as a between-
subjects variable and Sequence [2 levels, old vs. new] as a within-subject vari-
able conducted on these data revealed no significant effect. We conclude that
recognition scores can therefore be safely attributed to explicit recollection.

Mean recognition ratings for the three conditions and for both types of
sequence are shown in Figure 4. An ANOVA with Condition [3 levels] as a
between-subjects variable and Sequence [2 levels, old vs. new] as a within-
subject variable conducted on these data revealed significant effects of Se-
quence [F(1, 66) = 23.018, p < .0001, Mse = 7.793] and of Condition [F(2,
66) = 3.475, p < .05, Mse = 2.441]. The Sequence × Condition interaction also
reached significance [F(2, 66) = 3.825, p < .05, Mse = 1.295]. Planned compar-



 Arnaud Destrebecqz and Axel Cleeremans

isons revealed a significant difference between old and new triplets in the RSI
250 [F(1, 23) = 4.764, p < .05, Mse = 0.878] and RSI 1500 [F(1, 23) = 13.735,
p < .01, Mse = 8.56] conditions. Sequence was only marginally significant in
the RSI 0 condition [F(1, 23) = 3.531, p < .08, Mse = 0.946]. These recognition
results suggest that participants trained in the RSI 0 condition lacked explicit
sequence knowledge.

We also compared mean differences between recognition ratings attributed
to old and new triplets. A one-way ANOVA performed on these data revealed a
significant effect of Condition [F(2, 69) = 3.613, p < .05, Mse = 2.59]. Contrasts
indicated that the mean difference between old and new triplets was higher in
the RSI 1500 condition than in the RSI 0 and RSI 250 conditions (ps < .05), but
that it did not differ between the two latter conditions.

. Discussion

In this experiment, participants were trained on a standard SRT task under
three different conditions differing by the length of the interval separating their
response to each stimulus and the onset of the next stimulus (RSI = 0, 250,
or 1500 ms).

Our results show that participants were able to learn about the second-
order contingencies present in a sequence of visual stimuli independently of
the value of the RSI. This is made plain by the fact that all participants ex-
hibited a significant transfer effect when switched to a different sequence dur-
ing Block 13. While reaction times were systematically faster for higher values
of the RSI, the magnitude of the transfer effect failed to differ between the
three conditions. These findings stand in contrast with the results of previous
studies showing faster overall reaction times for shorter values of RSI (Fren-
sch & Miner 1994; Willingham et al. 1997). At this point, we cannot offer a
clear explanation of this discrepancy. It remains possible that various factors
along which this study and previous ones differ – such as the complexity of the
sequence or the amount of practice – interact with the value of the RSI.

Turning now to our direct measures, verbal reports are suggestive that par-
ticipants in all three conditions acquired some knowledge of the fact that tar-
get movements were regular in the SRT task. Verbal reports do not indicate,
however, that RSI influences sequence learning: On average, all participants
expressed that “the same sequence of movements would often appear”.

In contrast with the indirect measure of learning and verbal reports, per-
formance on the generation tasks was clearly suggestive that manipulating the
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RSI influenced sequence learning. Indeed, while inclusion performance was
comparable in all three conditions – indicating that participants were able to
use their knowledge of the sequence when directly instructed to do so, exclu-
sion task results revealed that participants trained in the RSI 0 condition had
no control on their sequential knowledge. In this condition only, participants
tended to keep reproducing the training sequence above chance level in ex-
clusion, despite instructions to the contrary. Moreover, these participants also
tended to produce more second-order transitions characteristic of the train-
ing sequence than transitions characteristic of the transfer sequence, – an in-
dication that their knowledge of these regularities was unconscious. Inclusion
scores were quantitatively higher than exclusion scores but the difference was
only marginally significant. It may therefore be the case that RSI 0 participants
have acquired some explicit sequence knowledge, but their exclusion perfor-
mance is undoubtedly attributable to the uncontrolled influence of implicit
knowledge.

By contrast, in the RSI 250 and RSI 1500 conditions, participants exhibited
control over their sequential knowledge: Inclusion scores exceeded exclusion
scores, and did not appear to be influenced by implicit knowledge, since (1)
exclusion performance was at chance in both conditions, and (2) training se-
quence triplets were not produced more frequently than transfer triplets. These
conclusions are also supported by our recognition results, where only RSI 250
and RSI 1500 participants were able to discriminate between old and novel
sequence fragments.

Did the increase of the RSI between 250 ms and 1500 ms influence se-
quence learning? We aimed to contrast several possible hypotheses: (1) increas-
ing the RSI would impair sequence learning because working memory limita-
tions would make it harder for the relevant memory traces to be linked to-
gether; (2) the increase might have no effect on sequence learning itself; (3) the
increase might actually improve explicit sequence learning by making it pos-
sible for stronger representations of the sequential representations to develop
during training.

Our results seem to favor this latter hypothesis. One way to ascertain the
extent to which knowledge is explicit is to consider the extent to which con-
fidences judgments relate with generation performance. We only found a sig-
nificant correlation for RSI 1500 participants between confidence and inclu-
sion performance. This result is suggestive that these participants only had rel-
evant meta-knowledge about their knowledge. Following Dienes and Perner
(1996), only RSI 1500 participants have attitude explicitness about their knowl-
edge, that is, know that they know something about the sequence. Another
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way to make the same point is to consider the zero-correlation criterion (Dienes
& Berry 1997), according to which learning is above the subjective threshold
when confidence is related to performance and below the subjective threshold
in the opposite case. Applying this analysis to our data suggests that knowledge
is above the subjective threshold only for RSI 1500 participants.

Importantly, the results of the confidence judgment task do not imply in
and of themselves that learning was fully explicit in the RSI 1500 condition and
fully implicit in the RSI 0 and RSI 250 conditions. Rather, they suggest that the
knowledge acquired when the RSI was set at 1500 ms is qualitatively different,
and based on stronger representations of the sequence than with shorter values
of RSI. This notion is also supported by the pattern of results we obtained in
the recognition task, in which the difference between ratings attributed to old
and new triplets was higher in the RSI 1500 than in the RSI 250 condition.

To summarize, we replicated the results of our previous study: RSI 0 par-
ticipants who were denied preparation to the next stimulus in the SRT task
learned the sequence but were unable (1) to refrain from expressing their
knowledge under exclusion instructions and (2) to project this knowledge in
a recognition task. These findings confirm that sequence learning can occur
unconsciously. We also found new evidence suggestive of increasing degrees of
explicitness as the RSI is increased. When the RSI was set at a standard 250 ms,
participants acquired explicit sequence knowledge that they could both control
in the exclusion task as well as recollect in the recognition task. Increasing the
RSI to 1500 ms further allowed participants to acquire meta-knowledge about
their knowledge, as suggested by the pattern of correlations between inclusion
performance and confidence.

What sort of computational mechanisms might account for our data? In
the next section, we propose a novel model of sequence learning that takes it at
a starting point that implicit and explicit learning involve the very same pro-
cesses, and explore the extent to which it is capable of simulating the temporal
effects we have observed in both the SRT task an in the generation tasks to
which our human participants were exposed.

. Mechanisms of sequence learning

A natural starting point from which to begin thinking about how to capture
our empirical results is the simple recurrent network (SRN) first introduced by
Elman (1990) and subsequently adapted to sequence learning by Cleeremans
and McClelland (1991). The SRN (see Figure 5) is a connectionist network that
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Figure 5. The network includes several elements: (1) an auto-associator (on the right),
his task consists in identifying the current stimulus t, (2) the SRN (on the left) which
is trained to predict the stimulus t based on the stimulus (t – 1) and a representation
of the temporal context that the network has itself developed, and (3) a set of response
units (on top) connected with the output layers of the SRN and the auto-associator by a
series of fixed ”one-to-one” connections. The response units integrate the information
brought by the SRN, on the one hand, and the auto-associator, on the other hand, in
order to determine the model’s response.

is trained, through backpropagation (Rumelhart, Hinton, & Williams 1986), to
predict the next element of a sequence based on the current element. To per-
form this prediction task, the network includes a pool of so-called context units,
which, on each time step, contains a copy of the pattern of activation that ex-
isted over the network’s hidden units during the previous time step. Over train-
ing, these patterns of activation come to represent associations between one
element and the next. When fed back over the context units, these representa-
tions then enable the network to base its prediction responses not only on the
constraints that exist between the current input and the next element, but also
on a representation of the temporal context that the network has developed
itself over training. In this manner, the SRN becomes progressively capable of
making prediction responses that take into account the information contained
in an increasingly large and self-developed “temporal window” extending over
several elements of the sequence (see Figure 5).
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To simulate sequence learning performance, Cleeremans and McClelland
(1991) assumed that the prediction task performed by the network repre-
sents preparation to the apparition of the next stimulus in human participants,
and that reaction time is inversely related to the activation of the output unit
corresponding to the element being responded to. These simple assumptions
have proven adequate to account for the results of a wide variety of sequence
learning experiments (see e.g., Cleeremans 1993; Cleeremans & Jiménez 1998).

As a model of sequence learning, however, the SRN suffers from two im-
portant limitations. First, the model as it stands is unable to account for the
time course of processing during a single trial. In contrast to other models
(see e.g., Dominey, this volume), the model, as most other networks based
on backpropagation, indeed assumes that activation is propagated through the
network in a single step upon presentation of each input. This of course ren-
ders the SRN prima facie incapable of accounting for the RSI effects we have
described in this chapter.

Second, the SRN also assumes that all responses involve prediction. This
is, however, not only inconsistent with the task demands that characterize the
SRT task (in which subjects are required to respond to the current element of a
sequence), but also makes the model incapable of accounting for the difference
between identification (as in the SRT task) and prediction (as in the genera-
tion task). The model instead assumes that both identification and prediction
involve exactly the same processes.

A better way to conceptualize the relationships between the SRT task and
the generation task is to consider interactions between perception, memory,
and action in both tasks. The SRT task essentially involves an encoding opera-
tion that takes a visual stimulus as input (perception) and produces a motor re-
sponse as ouput (action). Going from perception to action can be influenced by
memory, as countless sequence learning experiments demonstrate. The gener-
ation task, in contrast, involves a prediction operation that is potentially based
on both memory and perception, but in which memory plays a predominant,
if not exclusive role whenever the material contains higher-order structure, as
is the case for SOC sequences.

In the following, we introduce a novel model of sequence learning that is
aimed at addressing both of these shortcomings. To enable the model to cap-
ture the time course of processing during a single trial, we adapted the cascade
algorithm initially introduced by McClelland (1979). To enable the model to
capture the difference between SRT performance and generation performance,
we modified its architecture in such a way that identification and prediction
now involve separate components of the model.
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. Capturing the time course of processing: The cascade algorithm

McClelland (1979) proposed a relatively simple algorithm (the cascade model),
which assumes that instead of being transmitted all at once, activation in a net-
work can be propagated by small increments, each representing a set propor-
tion of the total activation to be transmitted. Cohen, Dunbar, and McClelland
(1990) further described how the cascade algorithm can be adapted in the con-
text of backpropagation networks in order to include adaptive components and
make it possible to capture the effects of experience.

In the cascade model, each trial is decomposed in a series of processing
cycles during each of which only a fraction of the activation sent by each unit
is propagated, depending on a constant rate of transmission (τ). As a conse-
quence the activation level of each unit changes proportionally to the rate of
transmission (Cohen, Dunbar, & McClelland 1990).

As Equation 1 shows, in the cascade model, the activation of each unit is a
running average of its net input over time. The net input to each unit is com-
puted on each cycle, and depends on the information transmitted on the cur-
rent cycle (t) and on the average value of the net input on the preceding cycle:

aj(t) = Netj(t) = τnetj(t) + (1 – τ)Netj(t – 1) (1)

where Netj(t) corresponds to the running average of the net input to the jth
unit, and netj(t) is the net input to the jth unit at time t. In backpropagation
networks, the activation function needs to be non-linear. Typically, the logistic
function is used, and the cascade equation is thus modified as in equation 2 to
reflect this (see Cohen et al. 1990):

aj(t) = 1/
[
1 + e–Netj(t)

]
(2)

where Netj(t) is computed according to equation 1.

. Differentiating between identification and prediction

To make it possible for the model to account for the difference between identi-
fication and prediction tasks, we used the architecture shown in Figure 5. The
model incorporates three components: A “memory” component consisting of
an SRN network, a “perception” component consisting of an auto-associator
network, and an “action” component consisting of a small pool of response
units. As a simplifying assumption, memory and perception are taken to be
completely independent, and the corresponding SRN and auto-associator net-
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works are thus trained separately. Both networks produce outputs that corre-
spond to element t of a sequence.

In the perception component, the auto-associator network is presented,
on each trial, with an input corresponding to element t of the sequence, and
is trained to produce this same element on its pool of output units. This pro-
cess can be thought of as corresponding to the simple encoding operation that
occurs in the context of a simple reaction time task. It also captures the task
demands imposed upon subjects in the context of sequence learning tasks,
for these demands make no mention of the fact that the material contains se-
quential structure. We know, however, that in such tasks, responses are also
influenced by the temporal context. This influence is captured by the memory
component of the model.

In this memory component, the SRN network is trained to produce ele-
ment t of the sequence on its pool of output units, just as for the perception
component. However, the SRN has to do so based only on a representation
of the temporal context in which successive sequence elements occur. In our
model, this representation of the temporal context consists of element t – 1 of
the sequence, together with the SRN’s set of context units.

In our model, to capture the notion that both memory and perception in-
fluence action, the outputs of both the SRN and the auto-associator jointly in-
fluence the activation of a set of response units, as described in the next section

. Response selection process

The action component of the model consists of four “leaky integrator” units
(Usher and McClelland 2001), each corresponding to one of the four possi-
ble responses. Each of these units only receives input from the corresponding
output units of both the SRN and the auto-associator units. For instance, the
activation of the first response unit is only influenced by the first output unit of
the SRN and by the first output unit of the auto-associator. Thus, each response
unit can be seen as an accumulator that accumulates evidence in favor of the
particular response it stands for (Cohen et al. 1990). The relative contribution
of the SRN and of the auto-associator to the activation of a response unit is set
by a balance parameter ρ. In our model, this parameter is constant. The con-
nections between output and response units are thus not subject to learning,
and no error term is computed at this level.
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The net input received by each response units is computed on each pro-
cessing cycle according to the following equation:

netj = ρ aj(srn) + (1 – ρ)aj(aa) (3)

where netj corresponds to the net input of unit j, aj(srn) and aj(aa) are the activa-
tion of the corresponding output unit of the SRN and of the auto-associator re-
spectively. To introduce competition between units, the net input to each unit
is then divided by the sum of the net inputs to all four response units (Luce
1963). Equation 4 shows how activation is updated at each cycle, as follows:

aj(t) = aj(t – 1) + [1 – aj(t – 1)]netj(t) (4)

where aj(t) represents the activation of unit j at cycle t. Units thus asymptot-
ically reach their minimum (0.0) or maximum (1.0) activation values. Each
activation value is then normalized by applying Luce’s choice rule once again.

This updating procedure is applied up until the activation level of the re-
sponse unit corresponding to the current stimulus reaches a given threshold. To
simulate reaction time performance, we considered that the number of cycles
required to reach the threshold corresponds to reaction time. This procedure
is undoubtedly a simplification, given that it does not make it possible to cap-
ture error performance. Another, important simplification is that we assume
fixed connections between output and response units. One can indeed imagine
that these connections weights, i.e. the respective influence of temporal context
and identification processes are subject to learning, as suggested in Usher and
McClelland (2001). Our goal, however, was not to account for every aspect of
participants’ performance in the experiment described in the first part of this
chapter, but simply to simulate the effects of the RSI on (1) reaction times in
the SRT task and on (2) generation performance.

. Reaction time task

To simulate performance during the SRT task, processing occurs in the follow-
ing way: Elements t – 1 and t of a sequence are presented simultaneously to the
SRN and to the auto-associator network respectively. Activation is propagated
concurrently in both the SRN and in the auto-associator networks according to
the cascade equations. At some point during the trial, the activation of the out-
put units of both the SRN and of the auto-associator networks start to change,
thus reflecting the constraints contained in the input. These changes in turn
start influencing the activation levels of the response units. Processing stops
when the activation level of the response unit corresponding to the current in-
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put reaches a threshold. At that point, back-propagation occurs, independently
in both the SRN and in the auto-associator networks. The copy operation then
takes place in the SRN network, activations are reset to their resting values, and
a new input is presented to the model.

Importantly, we can now simulate the effects of different values of the RSI
on performance, in the following manner. When the RSI is equal to 0 ms, pro-
cessing in both the SRN and in the auto-associator start at the same time: Mem-
ory and perception influence action at the same time. When the RSI is greater
than 0 ms, processing can start in the SRN before the element t of the sequence
is presented: Memory can start influencing responses before perception.

. Generation task performance

To simulate generation performance, we considered the outputs of the SRN
network only. We simply interpreted the output of the SRN as a series of pos-
sible responses when generating a sequence of stimuli rather than preparation
to the next stimulus in the SRT task (see also Christiansen & Chater 1999). As
performance does not depend on reaction time in this task, processing was not
cascaded during generation. As for the participants, the generation task begins
by the presentation of a randomly chosen stimulus. One of the responses is
then selected based on activation levels and presented as the next stimulus to
the SRN: the activation of the corresponding input unit is set to one while the
activation of the three other input units are set to zero. The same procedure is
repeated for every trial in the inclusion and exclusion task.

The response selection procedure varies between inclusion and exclusion
instructions. In inclusion, the next input corresponds to the most activated
output units at the previous trial, by contrast, in exclusion, this particular re-
sponse is excluded and the next stimulus is randomly chosen between the three
other possible responses.

In the following, we describe a simulation performed to contrast reaction
time and generation performance with different values of RSI in the SRT task.

. Method and parameters

Twelve different networks in each of three conditions (no RSI, small RSI, high
RSI) were each initialized with random weights. To capture the fact that par-
ticipants enter the experiment knowing how to perform a simple reaction time
task, each network was pre-trained on the identification task by exposing it,
prior to training on the task itself, to 10,000 elements of a random sequence.
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Each sequence element was randomly selected among the four possible stim-
uli, with the constraint that simple repetitions were forbidden. All networks
were then trained on the same stimulus material as human participants were
exposed to, and for the same number of trials.

Each trial was divided in 300 processing cycles. The transmission rate (τ)
was fixed at 0.05. Response threshold was set at 0.45. The SRN and the auto-
associator contributed equally to the activation of response units (ρ = 0.5). Af-
ter any response unit had reached the response threshold, spread of activation
was interrupted in the network and error information was back-propagated.
After weights had been modified, the activation of response units was then re-
set to 0.0. The previous stimulus (t – 1) was then presented to the SRN. The
current stimulus (t) was presented to the auto-associator either immediately
(no RSI condition) or 50 or 290 cycles later (small RSI and high RSI condition
respectively). The values of the other parameters were as follows: slow learning
rate = 0.1, momentum = 0.9, fast learning rate = 0.45, fast weight decay = 0.5
(see Cleeremans & McClelland 1991). In order to introduce variability – in-
herent in human performance – into the model, normally distributed random
noise (σ = 0.2) was added to the net input of each receiving unit (except for
the response units). Generation performance was assessed as described above,
based on the trained networks resulting from exposure to the SRT task.

. Results

Figure 6 (left panel) shows simulated reaction times for the three conditions.
The figure makes it clear that changes in the RSI influences the model’s re-
sponse times in the same way as for human participants. Response times are
smaller when the RSI increases. Response times increase when the sequence is
switched to a different one during the 13th block of trials. The increase in re-
sponse time appears to be less important for the model than for participants in
the high RSI condition.

To further explore network’s performance, we plotted the mean square er-
ror (i.e., the difference between the target and the actual output) committed
by the SRN for the 15 training blocks in all three conditions. As figure 6 (right
panel) illustrates, the mean square error tends to decrease from the sixth prac-
tice block in the small RSI and high RSI conditions, but remains relatively sta-
ble in the no RSI condition. The error rate increases dramatically in all three
conditions during the transfer block, but the increase is roughly twice as im-
portant in the small RSI and in the high RSI conditions than in the no RSI
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Figure 6. Mean simulated reaction times (i.e., the number of processing cycles needed
to reach the response-threshold) in the three conditions.

condition. The error also decreases more with practice in the high RSI than in
the small RSI condition.

As a whole, these observations suggest that the SRN develops better repre-
sentations of the sequence when presentation of the next stimulus to the auto-
associator network is delayed. Indeed, in the small RSI and high RSI conditions,
more activation can reach the SRN’s output units than in the no RSI condition.
As a result, the activation of the SRN’s output units is allowed to be closer to the
activation it would have reached in the absence of the response selection pro-
cedure. Sequence learning is thus improved with an RSI, for two different rea-
sons. First, the SRN can influence the activation of response units even before
the current stimulus is presented, thus resulting in faster response times as long
as the correct prediction has been made by the SRN. Second, and more impor-
tantly, the SRN is given more of a chance to develop strong, high-quality rep-
resentations of the sequence with an RSI because error back-propagation takes
places on better (i.e., more asymptotic) representations. Further, the more the
SRN develops stronger representations of the sequence, the more its influence
on the response selection process tends to become more important.

These differences in training regimen also influence generation perfor-
mance. Figure 7 shows mean simulated generation scores for the three con-
ditions. The figure shows that the model can offer a good qualitative account
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Figure 7. Mean simulated inclusion and exclusion scores in the three conditions.

of participants’ behavior in the generation task. Indeed, inclusion scores tend
to be higher than exclusion scores and, more importantly, changes in the RSI
tend to exert opposite effects on inclusion and exclusion scores: increasing the
RSI results in higher inclusion scores and in lower exclusion scores.

These results suggest that the stronger representations developed by the
network in the RSI conditions during training on the SRT task improve both
inclusion and exclusion performance, given that the SRN produced respectively
more and fewer training triplets in these condition than in the no RSI condi-
tion. The simulation is far from perfect, however. Exclusion scores are lower in
the high RSI than in the small RSI condition, while this was not the case for
human participants. Overall however, the model seems to behave in the same
way as human participants, even though it appears to be more sensitive to RSI
manipulations. Over all three conditions, the model accounts for about 75 %
of the variance in the SRT task and for about 90 % in the generation task, using
a linear fit.

While these results are encouraging, we have to stress that our simulation
work contains several simplifications. First, the model does not account for
errors in the SRT task. This is not so much of a concern in sequence learn-
ing experiments where the number of incorrect responses is very low, but it is
clearly inadequate as a general model of reaction time (see Ratcliff, Van Zandt
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& McKoon 1999). Second, we used fixed one-to-one connections between the
output units of both the SRN and the auto-associator, and the response units.
This procedure ensures that the SRN always influences the decision process.
We observed, in pilot simulations, that when using trainable connections be-
tween output and response units, the temporal context fails to influence the
responses of the network. This makes sense, for in a way perception always
transmits better information than memory does. Solving this problem prob-
ably requires entirely different learning procedures, such as for instance tem-
poral differences learning (Sutton 1988). A third simplification concerns the
procedure we used to account for generation performance. Only the SRN is
used to simulate this task, given that performance depends exclusively on the
temporal context. One may object that we used different strategies to simulate
SRT and generation tasks. The particular procedure we used, however, is not
made mandatory by the model’s architecture, and we are exploring alterna-
tives in which the perception component of the model is also involved during
generation.

Overall, even though the model suffers from the limitations listed above,
our simulation results are suggestive that subsequent versions of the model that
address these limitations might constitute a significant advance in understand-
ing the mechanisms of sequence learning. As it stands, the model is able to
account for the difference between direct and indirect measures of sequence
learning, and to capture some aspects of the time course of information pro-
cessing. This makes it possible for the model to account for the temporal effects
we have observed, and possibly for other effects that remain to be simulated,
such as the effects of the temporal organization of the sequence (Stadler 1995)
or, in double task settings, for the effects of the timing between the main and
the secondary task (Hsiao & Reber 2001).

. Concluding remarks

The results of the experiment we described in this chapter undoubtedly show
that manipulating the RSI influences the extent to which sequence learning is
explicit. Beyond the fascinating fact that such a small change in the pacing of
the stimulus material can result in large changes in the acquired knowledge, our
results also suggest that the differences between implicit and explicit learning
might in fact be best viewed as resulting from continuous, gradual changes in
a single dimension involving “quality of representation”. According to this per-
spective, representations that are more stable, stronger, and more distinctive
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are more available to conscious control. Developing such high-quality repre-
sentations requires time, however, over the course of a single trial, or over de-
velopment and learning (see also Cleeremans & Jiménez 2002 for a principled
presentation of these ideas).

Our simulation data are congruent with these ideas, for the model we in-
troduced in this chapter does not include separate “implicit or “explicit” com-
ponents. Rather, the extent to which the knowledge acquired by the model
over training on the SRT task becomes available to control (as expressed in the
generation task) depends on the dynamics of the interactions between mem-
ory, perception, and action made possible by different values of the RSI. As
such, our model contrasts with other simulation works where implicit and ex-
plicit processes are associated with different processing modules (e.g., Wallach
& Lebiere, this volume; Sun, Merrill, & Peterson 2001).

Independently of modeling studies, many theories of human learning and
memory claim that distinct neural and cognitive systems subtend conscious
and unconscious processing (e.g., Willingham 1998). In sequence learning,
most of these proposals stems from neuropsychological studies of amnesic (Re-
ber & Squire 1998) or Parkinson patients (Jackson, Jackson, Harrison, Hen-
derson, & Kennard 1995). The results of many brain imaging studies have
also led authors to conclude that conscious and unconscious cognition in-
volve different brain areas (Grafton, Hazeltine, & Ivry 1995; Rauch et al. 1995).
Most of these studies indeed report that explicit and implicit sequence learning
processes involve very different and almost non-overlapping brain networks.

We would like to stress however that neuropsychological and neural imag-
ing approaches do not obviate the need for sensitive behavioral methods, be-
cause one has still to carefully assess the conscious versus unconscious charac-
ter of the knowledge expressed in any task. In the PET scan experiment con-
ducted by Rauch et al., for instance, implicit sequence learning processes were
exclusively associated with a phase of the SRT task performed under incidental
instructions while the brain regions in charge of explicit processes were iden-
tified by the hemodynamic response during a second phase of learning, after
participants had been told that a sequence was present. As the authors them-
selves acknowledge however, this procedure does not ensure that explicit and
implicit components of learning were effectively dissociated during the two
training phases. It is therefore possible that explicit processes have contami-
nated the first phase of training, and that implicit learning continued during
the second phase of the SRT task.

We believe that the adapting the process dissociation procedure to se-
quence learning constitutes a possible solution to this “contamination prob-
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lem” in brain imaging studies. While our model suggests that implicit and ex-
plicit learning processes may depend on the same neural substrate, it remains
possible that some brain regions are specifically involved in conscious process-
ing (Clegg et al. 1998). Based on these ideas, we recently performed a PET study
using the process dissociation design described in this chapter. The results indi-
cated that anterior cingulate and medial frontal cortex are specifically involved
in supporting conscious control and recall of newly acquired sequence knowl-
edge in a generation task (Destrebecqz et al. 2000). Further studies will attempt
to identify the brain regions supporting implicit knowledge. An open issue is
whether these regions will involve neural networks distinct from those involved
in conscious processing.
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. Introduction

The last thirty years saw a number of different experimental paradigms inves-
tigating the concept of implicit learning in domains as diverse as learning of
artificial grammars (Reber 1967), sequence learning (Willingham, Nissen, &
Bullemer 1989), anagram learning (Gardiner, Alison, & Sutton 1989), acqui-
sition of invariant features (McGeorge & Burton 1990), probability learning
(Reber & Millward 1968), perceptual learning (Kolers & Roediger 1984), or
learning to control complex systems (Berry & Broadbent 1984). While literally
dozens of different definitions of implicit learning and its relation to explicit
learning have been proposed in the literature (Frensch 1998), they all focus
on the conjecture that people seem to learn more about the structural prop-
erties of a stimulus environment than they are able to convey, resulting in em-
pirically demonstrated dissociations between observable task performance and
verbalizable knowledge.

Definitions of implicit learning often go beyond a mere descriptive formu-
lation of the phenomenon, and reflect particular theoretical preconceptions of
the respective researchers. In this sense, many authors equate implicit learning
with unconscious learning and thus refer to consciousness as a central construct
in their conceptualizations of implicit learning. While recent interest in implicit
learning can be traced back to Reber’s classic study on artificial grammar learn-
ing (Reber 1967), the topic of learning without conscious awareness attracted
the attention of researchers very early in the history of Psychology (Hull 1920;
Jenkins 1933; Thorndike & Rock 1934). As Brandstädter (1991) notes, disput-
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ing the role of consciousness has been a central topic in psychology for over a
century (James, 1892; Wundt, 1896) and demonstrations of learning without
phenomenal awareness have unceasingly fascinated researchers ever since. It is
therefore not surprising to find striking similarities in Thorndike and Rock’s
(1934:1) discussion of learning “without awareness of what is being learned
or intent to learn it” or Jenkins’ (1933:471) “learning that occurs in the ab-
sence of specific intent to learn it” and the definition of implicit learning as
“. . .designating cases where some knowledge is (1) acquired without intention
to learn . . . (2) capable of influencing behavior unconsciously” (Cleeremans &
Jiménez 1998).

While some authors interpret the available data as striking evidence for
“the sophistication, ubiquity, and most of all, entirely nonconscious nature of
implicit learning processes” (Lewicki, Czyzewska, & Hill 1997), others dispute
that implicit learning is an unconscious process. Seemingly convincing demon-
strations of dissociations and assessments of implicit learning, they argue, are
fundamentally flawed in that they are subject to methodological problems con-
cerning the sensitivity of applied assessment instruments or misconceptions
about the assumed necessity of task knowledge (Shanks & St. John 1994; St.
John & Shanks 1997). Consequently, some researchers prefer not to make use of
the term consciousness in their definitions of implicit learning (Neal & Hesketh
1997). Instead, they propose to separate the question of implicit learning from
issues of conscious access to acquired knowledge (Mathews & Roussel 1997).
Following this position, research should focus on questions of different proper-
ties of implicit and explicit learning processes and the encoding, representation
and retrieval of their products (see Berry 1997).

On a coarse level, at least three theoretical approaches that aim at ex-
plaining implicit learning by differentiating mental processes and their result-
ing structures can be distinguished. Researchers like Reber (1989, see Berry &
Broadbent 1988; Manza & Reber 1997) define implicit learning as a “situation-
neutral induction process” (Reber 1993:12) that results in the acquisition of
“abstract knowledge” about the structure of an environment. In line with this
rule-induction hypothesis, Lewicki et al. (1989) propose that implicit learning
leads to abstract representations that retain a domain’s underlying structural
characteristics while abstracting from specific surface information. According
to the rule-induction hypothesis, the assumed abstractive nature of implicit
learning is hypothesized to be grounded in the (unconscious) acquisition of
rules that capture covariation patterns of physical stimuli, rather than record-
ing details of a single episode. By contrast, researchers following a position that
can be described as the episodic chunks hypothesis explain implicit learning as
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the encoding and retrieval of representations of literal instances of stimuli and
their successive order (St. John & Shanks 1997) without assuming an underly-
ing inductive abstraction process. In a variant on this position, the distributed
fragments hypothesis, Dulany (1996:523) equates implicit learning with the ac-
quisition of “. . .evocative mental episodes. It consists of the establishment and
use of evocative relations among non-propositional but fully conscious con-
tents”, arguing for the distributed character of the representational basis of
implicit learning.

The positions briefly sketched above all refer to high-level mental processes
and structures to explain the phenomenon of implicit learning. However, the
respective positions are not empirically distinguishable without additional as-
sumptions about properties of the human cognitive system. A central lesson
that was learned from the imagery debate (Anderson 1978) is that phenomena
that are supposedly explained by the assumption of certain representational
formats can also be accounted for by different representational formats when
making specific assumptions about their processing. To tackle this problem,
we define implicit and explicit learning in this paper in terms of the architec-
tural mechanisms and structures of a unified theory of cognition. The com-
putational approach advocated ensures the use of precisely defined theoretical
concepts, and provides a comprehensive framework for exploring the interplay
of representational assumptions and proposed cognitive processes to account
for phenomena found in research on implicit learning.

While various approaches to formulate computational models for several
research fields of implicit learning have been proposed (Cleeremans 1993; Di-
enes & Fahey 1995; Sun 1999; Mathews & Roussel 1997), a major shortcoming
of these models is their failure to account for explicit learning and for the dif-
ference between implicit and explicit learning (Stadler & Roediger 1998). In
this paper, we attribute implicit and explicit learning to distinct architectural
mechanisms of an integrative theory of cognition. We explore the scope of the
proposed approach across two subfields of research on implicit learning. In two
models of complex process control the role of implicit and explicit learning
processes in accounting for results gathered with two well-known tasks is dis-
cussed. Then we present the application of a general sequence learning model
(Lebiere & Wallach 2000) to data reported in a recent study by Destrebecqz and
Cleeremans (2001).

In the following section we discuss the relevance of unified theories of cog-
nition as theoretical frameworks for the explanation of implicit and explicit
learning. We then give a brief overview of the Act-R architecture (Ander-
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son & Lebiere 1998) that provides the theoretical foundation for the approach
discussed in this chapter and will introduce its central concepts.

. On the role of unified theories of cognition

Computational modeling based on a unified theory of cognition provides a
promising starting point towards a theory of implicit and explicit learning for
the following reasons:

– A unified theory of cognition provides a comprehensive theoretical frame-
work for the interpretation and explanation of empirical findings. Unified
theories are complete theories in the sense that they encompass assump-
tions about the encoding, representation and processing of stimuli. Such
a framework also promises to explain empirical results observed in differ-
ent research fields of implicit learning by tracing them back to a common
underlying set of architectural mechanisms and structures.

– Computational models provide precise quantitative predictions of empir-
ical phenomena on the basis of a formally specified set of underlying con-
structs and mechanisms. While the precision of computational models in
their predictions and definitions of proposed theoretical concepts is con-
sidered to be a general advantage of formal theorizing, it is of particular
importance in a field that can adequately be characterized by the pro-
liferation of different meanings of its central concepts (see also Frensch
1998). By accurately clarifying explanatory theoretical concepts, an inte-
grative computational theory not only allows the derivation of detailed
quantitative predictions for conducting new experiments, but also signifi-
cantly facilitates communication among scientists in the field. In this sense,
computational theories can be used as «hypothesis generators» to precisely
formulate empirical predictions on the grounds of well-specified sets of
theoretical constructs.

– As Perruchet and Gallego (1997:135) note, the literature is “full of exam-
ples in which initial claims for unconscious learning have subsequently
been discounted, because it later became apparent that performance was
grounded on knowledge that was not considered in the original studies”
(for a classical example see Dulany 1961 in his reconsideration of data on
verbal operant conditioning). Consequently, Perruchet and Gallego (1997)
propose to carefully analyze the type of structural information embedded
in the task under study, as well as the representation prerequisites for suc-
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cessfully mastering it. By analytically encoding knowledge in the represen-
tational structures of an integrative computational model, this approach
can be used to explore the impact of available knowledge on task perfor-
mance. In the Transportation model, discussed later in this chapter, we
demonstrate that a model is fully capable of accounting for empirically ob-
served performance without including knowledge that was regarded as a
necessary precondition for successful task performance.

Before presenting examples of learning models formulated in the Act-R frame-
work, the next section first introduces the central concepts of the Act-R cog-
nitive architecture (Anderson & Lebiere 1998).

. Act-R: An integrative cognitive architecture

Act-R is a hybrid production system that distinguishes between a permanent
procedural memory and a permanent declarative memory. Procedural knowl-
edge is encoded in modular condition-action rules (productions) that repre-
sent potential actions to be taken when certain conditions are met. Declara-
tive structures called chunks are used to store factual knowledge in declarative
memory. Chunks encode knowledge as structured, schema-like configurations
of labeled slots that can be organized hierarchically. A representation of goals is
utilized to control information processing whereby exactly one chunk is desig-
nated to be the active goal of the system. Knowledge represented symbolically
by chunks and productions is associated with subsymbolic (i.e. real-valued) nu-
merical quantities that control which productions are used and which chunks
are retrieved from memory. These quantities reflect past statistics of use of the
respective symbolic knowledge structures and are learned by Bayesian learning
mechanisms derived from a rational analysis of cognition (Anderson 1990).
Subsymbolic learning allows Act-R to adapt to the statistical structure of an
environment.

Subsymbolic activation processes make a chunk active to the degree that
past experience and the present context (as given by the current goal) indicate
that it is useful at this particular moment. Retrieving a chunk results in its im-
mediate reinforcement through Act-R’s base-level activation learning mecha-
nism to reflect its frequency of use. Formally, activation reflects the log poste-
rior odds that a chunk is relevant in a particular situation. The activation Ai of
a chunk i is computed as the sum of its base-level activation Bi plus its context
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activation:

Ai = Bi +
∑

j

WjSji Activation equation

In determining the context activation, Wj designates the attentional weight or
source activation given the context element j. An element j is in context if it is
part of the current goal chunk (i.e. the value of one of the goal slots). Sji stands
for the strength of association from element j to a chunk i. Act-R assumes
that there is a limited capacity of source activation and that each goal element
has an equal amount. Source activation capacity is typically assumed to be 1,
i.e. if there are n source elements in the current goal each receives a source
activation of 1/n (Anderson, Reder, & Lebiere 1996). The associative strength Sji

between an activation source j and a chunk i is a measure of how often chunk
i was needed (i.e. retrieved in a production) when source j was in the context.
Associative strengths provide an estimate of the log likelihood ratio measure of
how much the presence of a cue j in a goal slot increases the probability that a
particular chunk i is needed for retrieval to instantiate a production.

The base level activation of a chunk is learned by an architectural mecha-
nism to reflect the past history of use of a chunk i:

Bi = ln
n∑

j=1

t–d
j ≈ ln

nL–d

1 – d
Base-level learning equation

In the above formula tj stands for the time elapsed since the jth reference to
chunk i while d is the memory decay rate and L denotes the life time of a chunk
(i.e. the time since its creation). As Anderson and Schooler (1991) have shown,
this equation produces the Power Law of Forgetting (Rubin & Wenzel 1996) as
well as the Power Law of Learning (Newell & Rosenbloom 1981). Strengths of
associations are learned through a similar mechanism that records the statis-
tics of co-occurrence between sources and chunks retrieved (for details, see
Anderson & Lebiere 1998).

When retrieving a chunk to instantiate a production, Act-R selects the
chunk with the highest activation Ai. However, stochasticity is introduced in
the system by adding gaussian noise of mean 0 and standard deviation σ to
the activation Ai of each chunk. In order to be retrieved, the activation of a
chunk needs to reach a fixed retrieval threshold τ that limits the accessibility
of declarative elements. If the gaussian noise is approximated with a sigmoid
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distribution, the probability P of chunk i to be retrieved by a production is:

P =
1

1 + e–
Ai–τ

s

Retrieval probability equation

where s = √3σ/π. The activation of a chunk i is directly related to the latency of
its retrieval by a production p. Formally, retrieval time Tip is an exponentially
decreasing function of the chunk’s activation Ai:

Tip = Fe–Ai Retrieval Time Equation

where F is a time scaling factor. In addition to the latencies for chunk retrieval
as given by the Retrieval Time Equation, the total time of selecting and applying
a production is determined by executing the actions of a production’s action
part, with a value of 50 ms typically assumed for elementary internal actions.
External actions, such as pressing a key, usually have a longer latency deter-
mined by the Act-R/Pm perceptual-motor module (Byrne & Anderson 1998).

While the declarative chunks are called symbolic, their slot values often be-
long to continuous domains, such as numbers or quantities, or more generally
display a similarity structure. Instead of only retrieving chunks that perfectly
match the production conditions, Act-R’s partial-matching mechanism can
retrieve any chunk to the degree that it matches the condition. Specifically, the
chunk with the highest match score is retrieved, where the match score Mip is a
function of the activation of chunk i in production p and its degree of mismatch
to the desired values:

Mip = Ai – MP
∑

v,d

(
1 – Sim(v, d)

)
Partial matching equation

In the above formula MP is a mismatch penalty constant, while Sim(v, d) is the
similarity between the desired value v held in the goal and the actual value d
held in the retrieved chunk, allowing the representation of continuous quanti-
ties. Thus even if no chunk in memory perfectly matches the current context,
a likely occurrence with an infinite amount of continuous values, the chunk
holding the closest value can be retrieved if its match score after subtracting
the mismatch between values from its activation is still higher than the retrieval
threshold (and the match scores of competing chunks).

A shortcoming of partial matching is that while it generalizes the match-
ing process to handle continuous quantities, it can only return a value already
present in some chunk. Lebiere (1999) proposed a generalization of the re-
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trieval mechanism called blending which allows the retrieval and averaging of
values from multiple chunks rather than a single one, providing for sequences
of continuous values. This is a powerful kind of interpolation that has proved
useful for a range of paradigms of implicit learning (Wallach & Lebiere 1999;
Gonzalez, Lebiere, & Lerch 1999). Specifically, the value V retrieved is:

V = Min
∑

i

Pi (1 – Sim(V , Vi))
2 Blending equation

where Pi is the probability of retrieving chunk i and Vi is the value held by that
chunk.

After having presented the central concepts of the Act-R architecture in
this section, we will now turn to discuss its application to modeling implicit
learning in the domains of implicit process control (Section 4) and sequence
learning (Section 5).

. Implicit learning in process control

Before concluding that subjects are unaware of the information that they have
learned and that is influencing their behavior, it must be possible to establish
that the information the experimenter is looking for in the awareness test is in-
deed the information responsible for performance changes (Shanks & St. John
1994:373).

The concept of implicit learning in process control was first explored by
Berry and Broadbent (1984) who reported negative correlations between task
performance and the ability to answer specific questions about a system’s be-
havior (see also Broadbent 1977). In this section we discuss an explanation for
the reported dissociation between knowledge and performance based on the
acquisition and retrieval of instances. As Neal and Hesketh (1997) have argued,
it seems clear after 20 years of controversy that implicit learning tasks can be
performed by either relying on prior instances or by structural knowledge of
the task – “however, researchers still disagree over the representation of these
types of knowledge and whether either or both can exert an implicit influence
on task performance” (Neal & Hesketh:35). To explore the role of instances
in more detail, we present an Act-R model of instance-based learning and
compare it to a well-known model proposed by Dienes and Fahey (1995, 1998).
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. SugarFactory

In an influential study, Berry and Broadbent (1984) used the SugarFactory
task, a dynamic system that has subsequently been applied in a number of
studies to investigate complex problem-solving processes (Berry 1991; McGe-
orge & Burton 1989; Squire & Frambach 1990). SugarFactory is a computer-
simulated task in which participants are told to imagine that they are fac-
tory managers and can control the production of sugar sp by determining
the number of workers w employed on each of a number of trials. Unbe-
known to the participants, the behavior of SugarFactory is governed by the
following equation:

spt = 2 • wt – spt–1 (1)

Basically, sugar production is proportional to the number of workers em-
ployed, which is intuitive enough, but inversely related to the sugar produc-
tion at the previous step, a difficult and counterintuitive relation to infer. The
value entered for the workers hired (wt) can be varied in 12 discrete steps
1 ≤ wt ≤ 12, while the sugar production spt changes discretely between
1 ≤ spt ≤ 12. To allow for a more realistic interpretation of w as the num-
ber of workers and sp as tons of sugar, these values are multiplied in the actual
computer simulation by 100 and 1000, respectively. If the result according to
the equation is less than 1000, sp is simply set to 1000. Similarly, a result greater
than 12000 always leads to an output of 12000 tons of sugar. Finally, a random
component of ±1000 is added in 2/3 of all trials to the result derived from
equation (1).

.. Sugarfactory automaton
Buchner, Funke and Berry (1995) proposed to think of this control task
in terms of a finite state automaton. A finite state automaton (Partee, ter
Meulen & Wall 1990:458) can generally be described as a quintuplet < K,
Σ, σ, q0, F > with:

– K is a finite set of states
– Σ is a finite set, referred to as the alphabet
– q0 ∈ K, the initial state
– K ⊇ F, the set of final states

σ is a finite function from KxΣ into K, the transition function. The follow-
ing alternative formulation of equation (1) exemplifies an application of the
definition above to describe a finite state “SugarFactory automaton”. This
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Table 1. Transition matrix of the SugarFactory automaton

Input (wt)
# Output 100 200 300 400 500 600 700 800 900 1000 1100 1200

(spt)

1 1000 1 3 5 7 9 11 12 12 12 12 12 12
2 2000 1 2 4 6 8 10 12 12 12 12 12 12
3 3000 1 1 3 5 7 9 11 12 12 12 12 12
4 4000 1 1 2 4 6 8 10 12 12 12 12 12
5 5000 1 1 1 3 5 7 9 11 12 12 12 12
6 6000 1 1 1 2 4 6 8 10 12 12 12 12
7 7000 1 1 1 1 3 5 7 9 11 12 12 12
8 8000 1 1 1 1 2 4 6 8 10 12 12 12

9 9000 1 1 1 1 1 3 5 7 9 11 12 12

10 10000 1 1 1 1 1 2 4 6 8 10 12 12
11 11000 1 1 1 1 1 1 3 5 7 9 11 12
12 12000 1 1 1 1 1 1 2 4 6 8 10 12

formulation will allow for a straightforward presentation of an Act-R model
that sheds light on the reported knowledge-performance dissociation. Table 1
shows the transition matrix of the SugarFactory automaton.

At any point in time the SugarFactory automaton is in one of a finite set
of states K. In Table 1 the first column shows this set K of states that the au-
tomaton could be in, numbered from #1 to #12. Each of these states is at the
same time considered to be an end state, i.e. a transition from state x to state y
finishes the automaton’s computation for that trial. The second column indi-
cates the output signals that the automaton emits when being in the respective
state. Computation of the SugarFactory automaton starts in the initial state
q0∈K, where the automaton is in state #6 and emits an output of 6 tons of
sugar. The input values for the number of workers form the alphabet Σ of the
automaton, the transition function σ is given in extensional form as a transi-
tion matrix K × Σ into K. The transition matrix in Table 1 displays the (12 x
12) cells that result from the combination of all possible states (with their as-
sociated output signals spt ,) and input values (wt , input signals). To illustrate
the processing of this automaton consider a situation in which the system is in
state #5, emitting an output signal spt of 5000. If the input signal wt in this state
is set to 8 (i.e. 800 workers are employed), the automaton changes to state #11
and outputs a sugar production spt of 11000 tons. The target state in the exper-
iment, reaching an output of 9000 tons, is marked as state #9. To account for
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the random component mentioned, a value of ±1000 is added to the output
signal in 2/3 of all cases.

By referring to the formulation of SugarFactory as an automaton, Buch-
ner et al. (1995:169) interpret the reported dissociation between knowledge
and performance when controlling the SugarFactory as a sampling problem:

Good controllers will, by definition, reach the target states more frequently
than “bad controllers”. As a consequence, the “good controllers” will neces-
sarily experience fewer transitions that are different from those leading to the
target state. . . . In contrast, “bad controllers” will not frequently reach the tar-
get states. As a consequence, these subjects may experience a larger number
of different state transitions. In other words, it is plausible that the “bad con-
trollers” explore a larger selection of the system’s transition matrix. Thus the
two types of subjects may have different learning experiences.

This argument provides a very simple and straightforward interpretation of the
knowledge-performance dissociation: If “bad controllers” experience a broader
range of different system states, they should be better in answering questions
about the behavior of the system after introducing input signals in given states.
“Good controllers”, on the other hand, being often in the target state (#9),
should experience fewer different system transitions and can thus be assumed
to be worse in answering questions about samples of system transitions.

.. An instance-based learning approach: Dienes and Fahey (1995)
For an account that refers to the processing of such a “look-up table” (Broad-
bent, Fitzgerald, & Broadbent 1986) of state-effect contingencies, it is neces-
sary to specify mechanisms for the acquisition and retrieval of knowledge that
encodes the effects of actions given certain states of the system. According to
the arguments by Buchner et al. (1995), a computational model that learns by
acquiring and deploying instances of system transitions should be successful
in modeling the performance empirically observed. Based on Logan’s instance
theory (1988, 1990), Dienes and Fahey (1995) developed a computational
model (called the D&F model in the remainder of this section) to account for
the data they gathered in an experiment using the SugarFactory task.

According to Logan’s instance theory, encoding and retrieval are intimately
linked through attention: encoding a stimulus is an unavoidable consequence
of attention, and retrieving what is known about a stimulus is also an obliga-
tory consequence of attention. Logan’s theory postulates that each encounter
of a stimulus is encoded, stored and retrieved using a separate memory trace.
These separate memory traces accumulate with experience and lead to a “grad-
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ual transition from algorithmic processing to memory-based processing” (Lo-
gan 1988:493). Any model that relies on the retrieval of instances either needs
an established base of instances that can be retrieved, or algorithmic, rule-like
knowledge to build up representations of instances.

In an experiment with the SugarFactory task, Dienes and Fahey (1995:
862) observed that 86% of the first ten input values that participants entered
into SugarFactory can be explained by the following rules:

Rule 1:
For the very first trial, enter a work force of 700, 800 or

900.

Rule 2:
If the sugar production is below (above) target, then in-

crease (decrease) the amount of workers with 0, 100, or

200.

Rule 3:
If the sugar production is on target, then respond with a

workforce that is different from the previous one by an

amount of -100, 0, or +100 with equal probability.

Consequently, the authors assumed this algorithmic knowledge to be available
prior to the representation of instances that could be retrieved to solve a prob-
lem. In their model, Dienes and Fahey encoded this rule-like knowledge by a
constant number of prior instances that could be retrieved in any situation.
The number of prior instances encoded is a free parameter in the D&F model
that was fixed to give a good fit to the data reported below.

Logan’s instance theory predicts that every encounter of a stimulus is
stored. The D&F model, however, deviates from this assumption in that it only
stores instances for those situations in which an action successfully leads to the
target production of 9000 tons. All other situations are postulated to be ignored
by the model – an assumption which not only lacks plausibility, but also vio-
lates Logan’s instance theory that supposedly forms the theoretical foundation
of the D&F model. Complicating the modeling basis further, the D&F model
uses a definition of what a successful action is that was not available to partic-
ipants. Since, due to the random component in the SugarFactory equation,
the outcome calculated by the SugarFactory formula may vary by ±1000
tons, the D&F model only stores instances about actions that were successful
according to this criterion.

In the D&F model each stored instance “relevant” to a current situation
races against others and against prior instances representing the algorithmic
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knowledge given by rules 1–3. The fastest instance determines the action of the
model. An instance encoding a situation is regarded as “relevant” by the D&F
model if it either matches the current situation exactly or if it does not differ
from it by more than 1000 tons of sugar in either the current output or the
desired output, analogous to the “loose” range discussed above.

.. Instance-based learning in Act-R
We developed an instance-based Act-R model for the SugarFactory task. In
contrast to the D&F model, we encoded the algorithmic knowledge (rules 1-3;
see the previous section) needed for “bootstrapping” an initial base of instances
by simple Act-R production rules. While the D&F model selectively encoded
only “successful” situations, the Act-R model learned a chunk for every situa-
tion that the model encountered, irrespective of its result. This is not only per-
fectly in line with Logan’s view on the encoding of instances, but also does not
require the assumption that subjects selectively discard episodes that are not
successful according to a scoring scheme that they were not aware of. Both of
these differences are direct implications of the Act-R theory: The procedural-
declarative distinction specifies the form of algorithmic knowledge as produc-
tion rules while the theory of chunk creation as a function of goal completion
specifies that all problem-solving episodes lead to new declarative chunks. The
following chunk is an example of an instance stored by the Act-R model:

Transition123

ISA transition

STATE 3000

WORKER 800

PRODUCTION 12000

Chunks of type transition encode the state of the system (STATE), a record of
the subjects’ own action (WORKER) as well as the system’s response (PRODUC-
TION). The above chunk (the name TRANSITION123 is arbitrary) represents a
situation in which an input of 800 workers, given a current production of 3000
tons, led to subsequent sugar production of 12000 tons.

Retrieval in the Act-R model is governed by similarity-based matches be-
tween the present situation and encoded episodes experienced in the past. On
each trial, a memory search is initiated based on the current state and the tar-
get state ‘9000 tons’ as cues to retrieve an appropriate intervention. As outlined
in the previous section, chunk retrieval in Act-R is governed by the activation
level of memory elements. Generally, productions aim at retrieving instances
that exactly match the situation pattern formulated in its condition part. If
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Figure 1. Partial matching of chunks

such chunks do not exist in memory, or if the activation level of an exactly
matching chunk is too low, the model might retrieve a highly active memory
element that only partially matches the condition pattern of the retrieving pro-
duction. Chunks that do not exactly match the current situation will, however,
be penalized by having their activation lowered for each mismatching slot by an
amount proportional to the degree of mismatch using the following equation:

Activation Penalty = MP
∑

s=slots in matched chunk

(1 – sim(required s, actual s))

For each chunk pattern of the production that is matched to a slot of a candi-
date chunk for retrieval, the similarity between their respective contents is cal-
culated. If this similarity is perfect (i.e. sim=1), no penalty is subtracted. When
the similarity is lower than 1, a corresponding proportion of MP is subtracted
from the activation to yield the chunk’s match score.1 Thus any chunk can po-
tentially be retrieved by partial matching, not only those that differ by a given
amount, as in the D&F model. However, all things being equal, the greater the
amount of mismatch, the lower the probability of retrieval.

Figure 1 shows an example of this process of partial matching. In Figure
1 the chunk GOALCHUNK represents a situation in which the current sugar out-
put (“2000”) is encoded in the slot STATE, while the target state (“9000”) is
encoded in slot PRODUCTION. Chunk EPISODE007 is retrieved by production
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RETRIEVE-EPISODE using partial matching of the values “1000” vs. “2000” in
the state slot and the values “8000” vs. “9000” in the PRODUCTION slot. In the
action part of production RETRIEVE-EPISODE the number of the WORKER slot
of EPISODE007 (“5”) is then used to modify the current GOALCHUNK by the
retrieved value for its WORKER slot.

While the Act-R model and the D&F model share strong similarities, the
D&F model makes assumptions regarding the storage and the retrieval of in-
stances that can hardly be justified on either a theoretical or empirical basis.
Dienes and Fahey (1995:865) point out that these critical assumptions are
essential to the performance of their model:

The importance to the modeling of assuming that only correct situations were
stored was tested by determining the performance of the model when it stored
all instances. (. . .) This model could not perform the task as well as partic-
ipants: the irrelevant workforce situations provided too much noise by pro-
scribing responses that were in fact inappropriate (. . .) If instances entered the
race only if they exactly matched the current situation, then for the same level
of learning as participants, concordances were significantly greater than those
of participants.

The Act-R model, on the other hand, does not postulate these assumptions , it
can be regarded as simpler than the D&F model, demonstrating how instance-
based learning can be captured by the basic mechanisms of a unified theory of
cognition.

As Figure 2 and Figure 3 demonstrate, both models are equally successful
in their empirical predictions. Figure 2 plots the trials on target when partici-
pants controlled SugarFactory over two phases, consisting of 40 trials each.
While the Act-R model slightly overpredicts the performance reported by Di-
enes and Fahey (1995) in the first phase, the D&F model slightly underpredicts
the performance of the participants in the second phase.

After the participants controlled the SugarFactory in the experiment of
Dienes and Fahey (1995), they were required to answer a questionnaire task.
Again they had to determine the work force in 80 situations, but this time they
did not receive feedback, but just moved on to a new, unrelated situation. The
80 situations presented were the last 40 situations from the first part of the
experiment mixed with 40 new situations, i.e. situations which participants
did not encounter while controlling the system. Figure 3 shows the percentage
of times (concordance) participants chose the same work force in this second
task (questionnaire) as they did in the first task (control). The baseline level
represents the chance that both choices are equal due to random choice. This
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chance is higher than 1/12, because some choices are made more often during
the experiment than others. The column labeled “correct“shows how often the
same work force was chosen if this lead to a correct output, the “wrong” col-
umn shows the same for the incorrect outputs. Choices are close to base level
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for “wrong” answers, while they are significantly higher for “correct” answers,
indicating a better memorization of “correct” answers. While this is a trivial
consequence from not storing “wrong” instances in the D&F model, no special
mechanisms to arrive at this result are required in the Act-R model. Again,
both models seem to do similarly well in modeling the data, on a qualitative
and quantitative level.

In this section we have demonstrated that an instance-based learning ap-
proach is sufficient to successfully account for the data pattern reported with
the SugarFactory task. We also provided an explanation for observed disso-
ciations between knowledge and performance and have shown that a simple
model developed in the Act-R cognitive architecture is not only capable of
modeling the data with the same precision as the model of Dienes and Fahey
(1995), but that it does so without ad hoc assumptions about the storage and
retrieval of instances.

The performance of the Act-R model for the SugarFactory task is based
on the encoding and retrieval of declarative chunks. Although no abstraction
mechanisms as proposed by Reber (1989) is involved, similarity-based chunk
retrieval provides some form of implicit generalization of stored instances,
inasmuch as a given instance can be applied to new but similar situations.
Knowledge about the link between a specific state of the SugarFactory (i.e.
the current production level), a given response, and its resulting sugar produc-
tion output is assumed to be explicitly available as a chunk. In line with Shanks
and St. John’s (1994) argument of implicit retrieval, the process of retrieving
instances based on subsymbolic activation levels is, however, assumed to be be-
yond conscious control. Instance retrieval is thus dependent on the ability of
a certain cue to activate the respective memory chunk. In an experiment with
the SugarFactory task, Dienes and Fahey (1998) found that in a recognition
task participants are unable to recognize as “old” situations in a recognition
task that they have previously experienced in the control phase. According to
the argument above, the recognition task presents cues that fail to reinstate the
encoding context and thus to activate the respective knowledge (see also Dienes
& Fahey, 1998:609).

In this section it was shown that activation-based instance retrieval in Act-
R is capable of generalizing to situations not previously experienced, provid-
ing a variant of an abstraction process without the acquisition of rules. In the
next section this approach is generalized in a model of Broadbent’s Trans-
portation task.
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. Implicit learning in process control: Transportation

Broadbent’s Transportation task (Broadbent & Aston 1978; Broadbent 1977)
has been used in a large number of studies to investigate implicit learning pro-
cesses in the control of dynamic systems. In the Transportation task partic-
ipants can vary two input variables: [t] (the time interval between buses en-
tering the city) and [f ] (the fee charged for the use of the city’s parking lots).
Altering these quantities affects two output variables: [L] (load on the buses)
and [S] (number of empty spaces remaining in the parking lots). Unbeknownst
to the subjects the behavior of Transportation is governed by the following
equations:

1. L = 220t + 80f
2. S = 4.5f – 2t

In a typical experiment using the Transportation task, subjects are asked to
manipulate the input variables [t, f ] to produce given value pairs [L, S] of the
output variables. Previous research by Broadbent and his colleagues found no
correlation between ability to control the system (as judged by the number
of attempts to reach specific target values) and scores on a post-task question-
naire. While most subjects in Broadbent’s experiments discovered the direct (or
salient) influence of t on L and f on S, they were not able to verbalize knowl-
edge of the non-salient (i.e. weaker) influence of f on L and t on S. Berry and
Broadbent (1987:9), however, assume:

If, however, the equations are such that there is a unique pair of input values
for each output pair subjects must take the crossed relationships, as well as the
direct ones, into account when controlling the system. This is a feature of the
task that ensures that successful performance cannot be based on the salient
relationships alone.

As Berry (1993:20) reports, questionnaire scores on the crossed relationship
questions actually deteriorated over time, “even though performance required
subjects to take these relationships into account.” Since subjects seem to lack
verbalizable knowledge of the non-salient relationships, Broadbent and Berry
refer to an implicit learning mechanism to explain the performance of the par-
ticipants. In short, the authors assume that direct (or salient) relationships are
learned by explicit learning, while the indirect (or non-salient) relationships
are implicitly learned (Dienes & Berry 1997:10; Berry 1993:26).

To analyze the validity of the assumption that “successful performance can-
not be based on the salient relationships alone” we generalized the instance-
based learning approach outlined in the previous section. The proposed Act-R
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Figure 4. Illustration of the blending mechanism

model challenges the view of Berry and others (see Broadbent & Berry 1987)
by substantiating that instance-based learning that only represents pairs of en-
countered input-output values without explicitly encoding structural knowl-
edge about causal relationships between variables is clearly sufficient to suc-
cessfully control the Transportation task. The model makes use of the Act-R
blending mechanism (Lebiere 1999) that does not retrieve a single chunk from
declarative memory, but rather the value(s) that best satisfy the constraints ex-
pressed by an entire set of chunks, with each chunk weighted by its probability
of retrieval. This allows relations that are available in declarative memory to
have a bearing upon the similarity-based retrieval process without needing to
be explicitly formulated. Figure 4 illustrates the blending mechanism showing
a situation where memory is probed for an input value to achieve a passenger
load of 8420.

The Transportation model encodes and retrieves separate pairs of in-
put/output values of the saliently connected system variables. This represen-
tation assumes that subjects are aware of the salient relationship between t→L
and f →S, respectively. The separate representation can be justified by the re-
sults of a questionaire that was given to participants of the explicit condition
of an experiment reported below prior to having access to the Transporta-
tion task. The data of the experiment revealed that 37 out of 40 participants
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Table 2. The two central productions of the Transportation model

(p fee-retrieval (p interval-retrieval
=goal> =goal>

isa spaces-fee isa load-interval
spaces =spaces load =load

=encoded-fact> =encoded-fact>
isa spaces-fee isa load-interval
spaces =spaces load =load
fee =fee interval =interval

==> ==>
=goal> =goal>

fee =fee load =interval
) )

assumed a positive relationship between f and S and 33 out of 40 participants
assumed a positive relationship between t and L before they were exposed to the
Transportation task. In a post-task questionaire virtually all subjects were
able to verbalize knowledge of the respective salient relationships (40 out of
40 participants assumed a positive relationship between f →S, 39/40 partici-
pants assumed a positive relation of t→L). Table 2 shows the central produc-
tions of the Act-R model for the Transportation task. The productions fee-
retrieval and interval-retrieval probe declarative memory for encoded
values for the spaces or load targets, and retrieve a weighted average for the re-
spective input values. Note the direct similarity between these productions and
the retrieve-episode production for the SugarFactory task.

To empirically evaluate the performance of the model, we compared it to
data that we gathered in a study using the Transportation task. 40 subjects
(20 male, 20 female, mean age: 22,3 years, SD=2.9) from the Saarland Uni-
versity participated in the study for course credit. To manipulate the learning
orientation of the participants, we introduced two experimental conditions in
an initial training phase: an implicit condition and an explicit condition. In the
implicit condition participants (N=20) were given 2 problems (i.e. required
target combinations of output values for L and S) as training trials with the
instruction to reach the desired target values for L and S. To establish an inci-
dental learning situation, no instruction was given to actively explore the un-
derlying system structure, i.e. the relations between its variables. In the explicit
group, participants were instructed to freely explore the internal structure of
the system in the training phase. They could make interventions and observe
the resulting outcomes to test hypotheses about the internal workings of the
Transportation task for a maximum of 30 trials. In contrast to an incidental
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learning situation, explicit learning is generally characterized as the use of de-
liberate strategies such as generating or testing hypothesis. Consequently, the
experimental conditions were intended to induce two learning modes.

After the learning phase, both groups then worked in a subsequent control
phase on 6 problems (combinations of values for L and S) that were also used
in Broadbent’s initial study (Broadbent & Aston 1978; Broadbent 1977). Con-
trol performance in this phase was measured by the number of trials necessary
to achieve the respective target-value pairs. Since no statistical difference on ac-
quired knowledge (as determined by post-task questionnaires) or achieved task
performance between the experimental conditions was found, the following
empirical evaluation of the Act-R Transportation model does not differen-
tiate between the respective experimental groups. At the end of this section we
will briefly discuss a possible interpretation for the lack of difference between
the two conditions.

As mentioned in the previous section, every instance-based learning ac-
count needs as a preliminary basis for processing either initial memory repre-
sentations of instances that can be retrieved or algorithmic knowledge to gener-
ate instances of encoded episodes. Since the individual problem-solving traces
of all participants in the experiment sketched above were recorded, we created
individualized Act-R models that encode the input-output pairs that each as-
signed subject produced in the training phase of the experiment. The basic
model, essentially comprising the two productions shown in Table 2, was thus
individually assigned to every single participant in the experiment, encoding
the respective participant’s problem-solving episodes from the training phase
in declarative chunks. In this sense, the individualized model and the respec-
tive modeled participant share the same history of problem-solving episodes
from the training phase. As illustrated in Table 2, the resulting chunks encode
the input-output values of the directly related variables only.

To predict the performance in the control phase of the experiment, the
model was run on the original six target values for the output values of L and
S. One architectural parameter (activation noise) was globally set to 0.25 to fit
the data observed in the experiment.2 The model was evaluated by compar-
ing its performance to the participant’s average number of trials to target as
well as to error data. As shown in Figures 5 and 6, the model’s performance
is, despite its lack of knowledge of the crossed relationship between f →L and
t→S, nevertheless quite close to the performance of the participants. Figure
5 demonstrates that model data and experiment data on the number of tri-
als to reach the respective target values correspond well on a qualitative and
quantitative level.



 Dieter Wallach and Christian Lebiere

P1 P2 P3 P4 P5 P6
0

2

4

6

8

10

12

14
tr

ia
ls

 to
 t

ar
ge

t

Problem #

Experiment Model

Figure 5. Average number of trials to target

P1 P2 P3 P4 P5 P6
0

0,1

0,2

0,3

0,4

0,5

0,6

er
ro

rs
 (

ci
ty

 b
lo

ck
)

Problem #

Experiment Model

Figure 6. Average number of errors



Implicit and explicit learning in ACT-R 

As Figure 6 exemplifies, the average number of errors, defined as an in-
crease of the distance to the required target values from trial n to trial n + 1
according to a City-Block-Metric, is also within the empirically observed range.

We can conclude from the comparison of empirical data and model data
that the Act-R model is not only successful in capturing the observed data
pattern, but that it does so without encoding the non-salient relationships
that were claimed to be essential for successful performance. Thus, the model
demonstrates that learning the non-salient, or indirect, relationships is not
necessary for explaining the performance in the experiment. Instead, a sim-
ple Act-R model that relies on the similarity-based retrieval of chunks rep-
resenting input-output pairs of the saliently connected variables is sufficient
to account for the observed performance. As with the SugarFactory model,
chunks encoding the effects of certain input values on output variables form
the model’s explicit knowledge, while implicit processing comes into play in
the retrieval of knowledge units based on subsymbolic activation quantities.

As noted above, the two experimental conditions to induce implicit or ex-
plicit learning in the Transportation study did not lead to different scores in
control performance or acquired knowledge. This result might, however, not
be surprising since it seems to be questionable whether experimental manipu-
lations of the participant’s learning orientations in task control are practically
effective. Even in the implicit condition participants seem to be actively search-
ing for the rules underlying the task. Since participants assume that knowledge
about the system structure may be helpful in achieving given target values, it
can hardly be excluded that participants actively try to learn about the task
structure. In fact, the semantic cover story of Transportation already sug-
gests a positive relationship between the fee and the number of free spaces in
the car park (i.e. the more expensive the fee, the more parking spots available),
as well as between the interval and the bus load (i.e. the longer people have to
wait, the more passengers will be waiting to fill the bus). Knowledge about these
salient relationships was, however, shown to be sufficient for successful perfor-
mance. It can thus be questioned whether control tasks provide appropriate
instruments for establishing an incidental learning situation. A paradigm that
overcomes the problems mentioned is the investigation of sequence learning in
the serial reaction time task, which is explored in the next section.
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. Implicit learning in the serial reaction time task

Sequence learning was recently described as the best paradigm for studying im-
plicit learning (Destrebecqz & Cleeremans 2001). In a typical sequence learning
experiment subjects are exposed to visuospatial sequences in a compatible re-
sponse mapping serial reaction time task. Establishing an incidental learning
situation, participants are introduced to the task as a reaction time experiment
where they are required to react to a small number of events as quickly and ac-
curately as possible with a discriminative response. Usually these events consist
of asterisks that are presented in one of several horizontally aligned positions
on a computer screen. Responses usually require participants to press keys that
spatially match these positions. Unbeknownst to the subjects, the presented se-
quence of visuospatial signals follows a well-defined systematicity that features
regular transitions between successive stimuli.

In their seminal experiment Nissen and Bullemer (1987) used a recurring
loop of a “D-B-C-A-C-B-D-C-B-A” sequence for ten successive repetitions for
each of a number of blocks, where each letter designates a specific horizon-
tal position on the screen. The succession of signals appearing at the spatial
positions results in a continuous stream of events to which subjects have to
respond, whereby a 200-500ms response-to-stimulus interval (Rsi) is typically
used. Sequence learning is said to have occurred when (a) subjects exposed to
systematic event sequences show faster response latencies and produce fewer
errors than those responding to random event signals, or (b) response times
of subjects increase significantly when systematic sequences are temporarily
switched to random signals. The faster response times are interpreted as re-
sulting from acquired knowledge about the pattern of stimuli that allows the
subjects to prepare their responses. Learning of the systematicity of event se-
quences is hence accessed indirectly by contrasting the response latencies to
structured sequences with the reaction times to randomly presented events.
A number of studies found that participants – despite showing a significant
speed-up in the sequence blocks in comparison to random blocks – often
failed to express verbalizable knowledge about the sequence pattern (Willing-
ham, Nissen, & Bullemer 1989; Curran & Keele 1993; Cohen, Ivry, & Keele
1990). As in other paradigms of implicit learning, the dissociation between
performance in the serial reaction time task and in subsequent direct mem-
ory tests is interpreted as evidence for the implicit nature of the underlying
learning process.
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. An Act-R theory of sequence learning

We have recently proposed (Lebiere & Wallach 2000) an integrative theory of
sequence learning based on the Act-R cognitive architecture that was success-
fully applied to data from a number of classic studies in the field (Willingham,
Nissen, & Bullemer 1989; Perruchet & Amorim 1992; Curran & Keele 1993).
The experimental conditions in these studies vary widely with regard to the
type of sequence used, the length of the sequence, the distribution of systematic
vs. random sequence blocks, the number and length of blocks, the response-
to-stimulus interval used and whether the serial reaction task was presented
as a single task or in combination with a secondary task (“tone counting”).
Model validation was not restricted to comparing model-generated and em-
pirical data on a single dimension, but included a comparison of latencies,
learning trajectories, errors, stimulus anticipations and individual differences
as well as the structure of acquired chunks.

A basic assumption of the theory is that the mappings between stimu-
lus locations and response keys in an experiment are encoded as declarative
chunks. Each chunk associates the respective stimulus location on the screen to
a desired response key. These declarative representations essentially represent
a straightforward explicit encoding of the experimental instructions inform-
ing the subjects of the stimulus-response mappings in the experiment. When a
stimulus is observed, the chunk representing the mapping between that stimu-
lus location and the associated response key will be retrieved. Each retrieval re-
sults in the immediate reinforcement of that chunk through Act-R’s base-level
learning mechanism that strengthens a chunk to reflect its frequency of use
(see Section 3 of this chapter). Subsymbolic activation processes make a chunk
active to the degree that past experience and the present context (as given by
the current goal to react to the next stimulus) indicates that it is useful at this
particular moment. In the Act-R sequence learning model, these reinforce-
ments will lead to higher activation levels for the chunks that map stimulus
positions to the keys to be pressed, which then results in faster response laten-
cies. This speedup will occur independently of whether the stimulus sequence
is systematic or random because it only depends upon the frequency of each
retrieval.

The fundamental assumption of the Act-R model is the persistence of
(working) memory. Act-R states that the components of the current goal are
sources of activation. If the new goal is to respond to a particular stimulus with
a certain response, we assume that a small number of previous stimuli remain
in the encoding of the new goal.3 This assumption has two important implica-
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tions. First, since every goal contains both the current stimulus and previous
one(s), when that goal is popped and becomes a chunk in declarative mem-
ory, it contains a record of a small fragment of the sequence. The set of these
chunks constitutes the model’s explicit knowledge of the sequence. The sec-
ond implication is that when the chunk encoding the mapping between the
current stimulus and the proper response key is retrieved, both the current
stimulus and the previous one(s) are components of the goal and thus sources
of activation. This co-occurrence between previous stimuli (as a source of acti-
vation) and current stimulus (as a component of the mapping chunk being re-
trieved) is automatically learned by Act-R in the association strengths between
source stimuli and mapping chunks and thus facilitates further processing. The
subsymbolic strengths of associations between consecutive sequence fragments
constitute the model’s implicit knowledge of the sequence.

In the next section we describe an application of the Act-R sequence model
to an experiment by Destrebecqz and Cleeremans (2001).

. Evidence for implicit sequence learning: Destrebecqz
and Cleeremans (2001)

Destrebecqz and Cleeremans (2001) recently published an ingenious exper-
iment to explore the contribution of implicit learning in the serial reaction
time task. Using an adaptation of the Process Dissociation Procedure (Jacoby
1991), Destrebecqz and Cleeremans have provided convincing evidence for un-
conscious knowledge acquisition by disentangling explicit and implicit learn-
ing processes. In their study, subjects who were denied preparation for the
next stimulus of a sequence by using a response-to-stimulus interval (Rsi) of
0 showed significant knowledge of the sequence as expressed in task perfor-
mance. Interestingly, participants in the No Rsi condition could not refrain
from expressing the acquired knowledge even when specifically instructed to
do so in an exclusion task. By contrast, subjects who were exposed to a Rsi of
250ms were successful in performing the exclusion task.

In their experiment, Destrebecqz and Cleeremans (2001) used two so-
called second-order conditional (Soc) sequences (Reed & Johnson 1994) in
which knowledge of two successive elements is necessary to predict the loca-
tion of the next stimulus. The two Soc sequences were balanced for stimulus
frequency and position. The two sequences comprised the following succes-
sion of signal locations: 342312143241 (Soc1) and 341243142132 (Soc2). Dur-
ing the serial reaction time task participants had to react to Soc sequences of
length 12 for a total of 15 blocks with each block consisting of 96 trials. As
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Figure 7. Mean reaction times for the training blocks (empirical data)

noted above, a 0ms stimulus-to-response interval was introduced in the No
Rsi condition, while a 250ms stimulus-to-response interval was used in the Rsi
group. In each condition, half of the participants were trained on Soc1 during
the first 12 blocks, then switched to Soc2 in block 13 and finally switched back
to Soc1 for blocks 14 and 15. This design was reversed for the second half of the
subjects. As can be seen in Figure 7, participants show significantly increased
reaction times in block 13, as well as clear effect of the different Rsi conditions
(p<.0001). Participants in the Rsi condition are generally faster than those in
the No Rsi condition. As Destrebecqz and Cleeremans (2001) note, this may
either result from improved learning or from an improvement in expressing
available knowledge. Learning was, however, not completely suppressed in the
No Rsi condition as indicated by a clear increase in latency in block 13 when
participants switched to a new Soc, and in a corresponding decrease of their
reaction times when switching back to the original Soc. The authors therefore
concluded that the training sequence was learned in both Rsi conditions.

In Figure 8 the performance of the Act-R model in the Destrebecqz and
Cleeremans (2001) experiment is plotted.
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Figure 8. Mean reaction times for the training blocks (model data)

All basic characteristics of the data are reproduced. The model is faster in
the RSI condition because it sometimes retrieves sequence chunks before the
stimulus appears. The anticipation allows it to bypass the mapping of stimulus
location to response key after the stimulus appears since the response key is
already selected. When switching sequences, this advantage disappears and the
performance of the RSi model is degraded to the no-anticipation case. Perfor-
mance in the No Rsi model also improves, not by retrieving sequence chunks
but by retrieving mapping chunks faster through the learning of strengths of
associations between stimuli and mapping chunks to reflect the structure of
the sequence. The degradation of performance when switching sequences is
smaller than in the RSI condition.

To measure the ability to project the acquired sequence knowledge in di-
rect memory tests, Destrebecqz and Cleeremans (2001) applied a free gener-
ation task that participants performed under inclusion and exclusion instruc-
tions. After completion of the training task, participants were informed that
the succession of signals followed a systematic repeating pattern. In the inclu-
sion instruction, participants were then required to freely generate a total of
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Figure 9. Mean proportion of generated second order transitions that were part of the
training sequence (inclusion and exclusion condition) from Destrebecqz and Cleere-
mans (2001)

96 trials that “resembled the training sequence as much as possible”. Partici-
pants were told to “rely on their intuitions when feeling unable to recollect the
location of the next stimulus” (Destrebecqz & Cleeremans 2001). In the exclu-
sion instruction they were then asked to generate another sequence of 96 trials.
However, this time they were told to avoid reproducing the structural pattern
previously experienced in the Srt task. Depending on the experimental condi-
tion, the stimulus moved when participants pressed a key and appeared with a
delay of 0 msec or 250 msec at the corresponding location on the screen.

Figure 9 shows the average inclusion and exclusion scores for the two ex-
perimental conditions. The results of the inclusion condition confirm those of
the training task: participants from both experimental groups were obviously
able to use the acquired knowledge to indicate the sequence structure to which
they had to react during the training task. In both conditions, the mean propor-
tions are significantly (p<.005) above the chance level of .33 (see Destrebecqz
and Cleeremans (2001). The difference in performance between the No Rsi
and the Rsi condition is, however, only marginally significant (p=0.07). In the
exclusion instruction, a highly interesting picture emerges: While participants
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Figure 10. Mean proportion of generated second order transitions that were part of
the training sequence (inclusion and exclusion condition) as modeled in Act-R

from the Rsi condition performed at slightly worse than chance level, partic-
ipants from the No Rsi were not able to refrain from generating fragments
of the training sequence (p<.01). It thus appears that participants that were
trained in the No Rsi condition appear to have little control over the knowl-
edge acquired, which Destrebecqz and Cleeremans (2001) interpret as evidence
for unconscious learning.

In sum, the experimental data provided by Destrebecqz and Cleeremans
(2001) can be interpreted as indicating that sequence learning in the No Rsi
condition can at least in part proceed without conscious control and is thus
assumed to be implicit. The increased response-to-stimulus interval in the Rsi,
on the other hand, seemed to have exclusively improved explicit learning. Fig-
ure 10 presents the results of the Act-R model on the generation of the Socs
under inclusion and exclusion instructions for the two Rsi conditions.

As with the prediction of the latency data, the Act-R model clearly cap-
tures the qualitative data pattern observed in the generation task. In the in-
clusion condition, the Rsi model can generate a significant proportion of the
sequence by retrieving sequence fragments. In the exclusion condition, it in-
verts that explicit knowledge by choosing another stimulus than the one spec-
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ified by the sequence chunk retrieved. The No Rsi model generates a smaller
proportion of sequence fragments than the Rsi model because the responses
result from the implicit knowledge learned in the strengths of associations,
which is less uniquely determinant than direct sequence fragments. However,
that knowledge is not subject to reversal in the exclusion condition.

Let us describe in more detail the model’s procedural knowledge that uses
the declarative encodings, both implicit and explicit, to perform the task. The
basic goal, as expressed in the instructions to the sequence learning experi-
ments, is to map the location of a screen stimulus to a key and press that key as
a response. Production Input checks that no stimulus has been encoded yet and
checks if one is present and if so encodes it and places its location in the cur-
rent goal. Production Map-Location then retrieves the chunk from declarative
memory that maps this location to the proper response key, and places the key
in the goal. Production Type-Key types the respective key. Before a stimulus has
appeared, production Guess attempts to retrieve a chunk that holds a piece of
the sequence starting with the current context, and if successful uses that chunk
to anticipate which stimulus will appear and which key to press. Once the stim-
ulus appears, if the anticipation was correct then the retrieved key can be typed
directly without the need for mapping location to key. When a response has
been given, if no stimulus has yet appeared (positive Rsi) the production New-
Goal creates and focuses on a new goal with the context shifted forward by one
stimulus, which will lead to the encoding of the current stimuli subsequence in
the current goal. If the stimulus has already appeared however (No Rsi), then
the production Clear-Goal simply shifts the current context by one stimulus
within the current goal without creating a new chunk.

A similar set of productions is used in the generation task. Production Gen-
erate, similar to Guess, attempts to retrieve a sequence fragment given the cur-
rent context. This fragment represents explicit knowledge of this part of the
sequence. If successful and in the exclusion condition, production Invert ran-
domly picks a stimulus that is neither the one predicted by the sequence frag-
ment nor the same as the previous one.4 Otherwise, production Guess-Location
simply retrieves the most active mapping chunk, which will partly reflect the
strengths of associations to the current context. Note that unlike the sequence
chunk retrieved by Generate, the response generated by this mapping is not
subject to inversion but instead represents the implicit knowledge of the se-
quence that is not subject to cognitive control. Production Generate-Response
then types the response and updates the goal.

In this section we have shown that the Act-R sequence learning model,
which has been successfully applied to a number of different experiments with
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the serial reaction time task, is also capable of accounting for the empirical
data reported by Destrebecqz and Cleeremans (2001). The methodological ap-
proach followed in the latter study allowed them to disentangle implicit and
explicit learning and resulted in a differentiated picture of the relationship be-
tween explicit and implicit learning, offering a challenging and precise bench-
mark to explore the scope of the model. While a central criticism of previ-
ous models of implicit learning has been that they fail to account for explicit
learning and how it is different from implicit learning (Stadler & Roediger
1998), Act-R seems to provide a promising approach to precisely investigate
the interplay of both forms of learning.

. Conclusion

In this chapter we have explored the scope of a view on implicit and explicit
learning based on the Act-R cognitive architecture. We have shown that the
proposed approach can successfully account for the observed experimental
performance in two different domains of research on implicit learning. On a
general level, we have attributed explicit learning to Act-R’s declarative chunk
learning mechanism, while implicit learning is modeled using subsymbolic ac-
tivation learning mechanisms. In this sense, the proposed approach can be re-
garded as a computational instantiation of a view expressed by Cleeremans and
Jiménez (1998:328) in which the authors relate sequence learning to “two dif-
ferent kinds of learning: One process involves memorizing a series of successive
events, and another involves developing sensitivity to the statistical structure
of the material”. The models proposed in this chapter have shown how the
Act-R architecture can be applied in this spirit to investigate how both forms
of learning can influence behavior. In our view, computational models based
on a hybrid cognitive architecture provide promising steps towards a precise,
integrative theory of implicit and explicit learning.

Notes

* The authors want to thank Dr. Kevin Gluck for his valuable comments on an earlier
version of this manuscript.

. Following Lebiere (1999), the following ratio function is used to calculate the similarity
of two values a and b, representing the sugar production or number of workers in respective
instance chunks: sim(a, b) = min(a,b)

max(a,b,1) . This similarity function scales well to widely different
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number values such as those encountered here. Note that the similarity ranges from 0 (no
similarity) to 1 (equality).

. In keeping with the search for constraints across models developed in a common archi-
tecture, this value has been used in many other ACT-R models (e.g. Lebiere 1998; Lebiere &
West 1999).

. The number is here fixed at 2, which provides the required power to learn the sequence.
Lebiere and Wallach (2000) showed that there is a tradeoff between length of fragments
(and hence learning power) and speed of learning. They also discuss a model variant that
gradually learns chunks of increasing length.

. Participants were told not to repeat responses in the generation task.
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. Scope of the chapter

In his celebrated nineteenth century text Principles of Psychology, William
James (1890/1983) wrote that

“Everyone knows what attention is. It is the taking possession by the mind in
clear and vivid form, of one out of what seem several simultaneously possi-
ble objects or trains of thought. Focalization, concentration of consciousness
are of its essence. It implies withdrawal from some things in order to deal
effectively with others . . .”

In many respects, this frequently quoted passage is admirably clear and ap-
propriate well over a century after it was written. However, one might also
be tempted to elaborate on James’ introductory phrase, and remark that al-
though everyone thinks that they know what attention is, the complex and
multi-faceted nature of this concept can easily lead the unwary to confusion
and pitfall. In discussing the relation between attention and implicit learning,
the topic of this volume, it is especially important to distinguish between two
distinct but related meanings of the term attention. A central issue in many
chapters of this volume is the relation between implicit learning and atten-
tion in the sense of mental resources or effort (e.g. see the chapters by Jiménez
and by Shanks). That is, they are concerned with the question of whether pro-
cesses of implicit learning require mental effort or resources, or whether they
are entirely capacity free and can proceed without interfering with other men-
tal processes. This chapter has a very different focus, since it is concerned with
the relation between implicit learning and attention in the sense of selective
processing or orienting. James was clearly aware that the term attention has at
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least two distinct meanings. On the one hand, it is often used to refer to the
idea of mental resources and their limitations. Phrases such as ‘limited atten-
tion’ or ‘attentional capacity’ imply the notion of attention as a resource; indeed
several influential theories of attention have attempted to provide quantitative
descriptions of the way in which attention as resource can be divided between
concurrent mental activities (e.g. see Wickens, Gordon, & Liu 1998). This no-
tion of attention as a limited resource may be seen as a cause of selectivity.
That is, because resources are limited, processing must be allocated selectively
to a sub-set of the available input information. However, when one speaks, for
example, of selectively attending to a certain object, it is clear that the term
attention is being used here to refer to the selectivity itself. Hence, the term at-
tention can be used to refer both to the cause of processing selectivity (i.e. lim-
ited resources) and to the selective processes themselves. The present chapter
is concerned with attention in this latter sense of selectively orienting towards
some sensory objects rather than others. It is concerned with the dynamics of
visual orienting and with effects of learning, both implicit and explicit, on the
processes involved in shifting attention from one visual object to another.

Consciousness is intimately related both to attention and to implicit learn-
ing, the topics of this volume. As William James’ definition makes clear, a pri-
mary consequence of selectively attending is that the object of selective atten-
tion gains clearer representation in consciousness. However, there is a further
issue of consciousness which is of particular interest here – that is the relation-
ship of consciousness to attentional learning. The latter refers to learning that
occurs when repeated experience with a task affects the deployment of selective
attention. As will be seen, this learning results in an improvement in the speed
and efficiency of orienting towards objects of interest. Although substantial re-
search efforts have been directed at studying performance improvements that
occur as a result of practice (e.g. Shiffrin & Schneider 1977; Phillips & Triggs
2001) and at investigating processes of visual selective attention, current theo-
retical accounts of visual selective attention (e.g. see Wright 1998) have little to
say concerning possible influences of learning on orienting. This is perhaps cu-
rious since William James was clearly aware that learning and experience played
an important role in the control of selective attention. In addition, a substan-
tial amount of animal research has been concerned with effects of learning,
especially habituation, on the orienting response (e.g. Barry & Sokolov 1993).
Nevertheless, current theoretical treatments of visual attention are relatively
silent with regard to the role of learning and experience in the control of visual
orienting. This chapter provides an overview of recent work carried out in our
laboratory which has attempted to remedy this theoretical lacuna. The recent
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and interesting work of Chun & Jiang (1998, 1999; Jiang & Chun, this volume)
has also been concerned with this important issue.

. Vision and selectivity

As many authors have remarked, humans are highly visual animals. According
to some estimates approximately 60% of brain tissue is concerned with visual
processing. The intimate relation between perception and attention is plainly
evident in the design of the visual system. Even at the level of gross anatomy it
is clearly apparent that an essential design feature of the visual system is that
it is selective (i.e. attentional) in nature. If the eyes remain stationary we are
able to respond to simple visual objects (e.g. luminance increments) within a
field that subtends about 200◦ horizontally and 135◦ vertically. However, as is
well known, visual acuity declines with visual eccentricity. Although one may
be aware of a waggling finger in the far periphery, in order to discriminate the
fine detail of the finger it must be brought into central vision. It is generally ac-
cepted that high acuity colour vision is subserved by the cone receptors of the
retina. Anatomical studies of retinal topography have shown that the density
of cone receptors undergoes spectacular decline as one moves outwards from
the centre of the fovea. Curcio et al. (1990) reported a peak density of 199,000
cones/mm2 at the foveal centre of the average retina. However, at an eccen-
tricity of just half a degree from the foveal centre, this density had declined by
50%. At an eccentricity of 3–4◦ cone density was about 20,000/mm2 – i.e. about
10% of the density at the foveal centre. Similarly, psychophysical studies have
shown that visual acuity also declines sharply as a function of eccentricity. For
example, visual acuity has declined by more than 50% at 5◦ relative to acuity
at the foveal centre (Chapanis 1949; Schiffman 1990). Even within central vi-
sion there is an eccentricity dependent decline in acuity, so that acuity at 2◦ is
clearly worse than acuity at the centre of the fovea. In the psychophysical func-
tion relating acuity to eccentricity there is no clear boundary between foveal,
parafoveal, and peripheral vision, since the decline with eccentricity is smooth
rather than discontinuous. However, the fovea is usually defined in terms of
the area subserved by the central cone rich region. The diameter of this area is
1–2◦ (Osterberg 1935; Schiffman 1990). The macula is somewhat larger, being
about 10◦ in diameter.

It seems curious that this very basic form of selectivity has not always fea-
tured prominently in theories of visual attention. Indeed until quite recently
much debate centred on the cognitive issue of whether processing selectiv-



 Tony Lambert

ity occurred at an early or late stage of information processing (e.g. see All-
port 1989; Lambert 1985). In more recent times it has become apparent that
purely cognitive theories of attention, in terms of information processing oper-
ations, are sorely incomplete, and that an adequate account of attention must
be constrained and informed by knowledge of the neural hardware that un-
derpins selectivity. From this cognitive neuroscience perspective it is obvious
that processing selectivity occurs at the earliest possible stage of processing – in
the retina.

. Measuring the ‘phenomenal fovea’

Although most of us are aware of a difference in visual acuity between central
and peripheral vision, the tiny area served by the fovea and macula may be seen
as surprising. The small size of these areas of central high acuity vision is cer-
tainly a surprise to beginning students and to other individuals untainted by
education about visual perception or sensory physiology. If I close my eyes for
a few seconds and then open them, my immediate subjective impression is that
I see an entire scene laid out with clarity. I am not aware of a large expanse of
poorly resolved, grainy and relatively colourless vision, which covers most of
the visual field, apart from a relatively tiny central area, in which objects are
seen with full clarity and colour. This suggests a poor correspondence between
the careful and objective measurements made by psychophysicists concerning
the relation between visual performance and eccentricity and our phenome-
nal experience of seeing. That is, the strong degree of selectivity in visual pro-
cessing, apparent from both anatomical and psychophysical observation, does
not appear to be clearly represented in visual awareness. In order to gain some
quantitative leverage on this issue, Caroline Heffer and I designed a brief ques-
tionnaire which aimed to probe the phenomenology of the distinction between
central and peripheral vision, as represented in the visual experience of naïve
observers. These observers were equipped with only rudimentary knowledge
of the visual system, but had a lifetime of visual experience to draw upon.

The first item of our questionnaire had the following wording.

“Most people are aware that an object in central vision is seen with better
clarity and detail than a similar object in peripheral vision. This area of de-
tailed central vision is known as the fovea. The aim of this exercise is to
measure subjective estimates of the size of this central area of clear vision in
different people.
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Imagine you are looking at a (very!) large poster which fills your entire field
of view. About how much of the poster do you think would fall within the
fovea – the area of detailed central vision?

_____ % of the poster would be within the area of detailed central vision”

The correct answer to this question is extremely small – the fovea would occupy
less than 0.1% of the total area of the poster. Even the central 10◦ of vision (the
macula) would cover less than 1% of the poster.1 The mean estimate provided
by our participants (N=12) was 34% (S.D.=23) – a dramatic over-estimation,
to put it mildly. Part of this inaccuracy might possibly arise from a difficulty in
estimating the proportionality of two areas, both of which are roughly circular,
such as the fovea and the entire visual field. For example, mathematically naïve
respondents may fail to realise that the area of a circle increases in proportion
to the square of its radius. However, even if one interprets the figure of 34% as
referring to relative diameters/radii, rather than relative areas, this would still
represent a dramatic overestimation of the extent of the fovea (by a factor of
about thirty).

The second item of the questionnaire posed essentially the same question
in a slightly more concrete form.

“Imagine you are looking at a picture situated about 50cms from your eyes. If
you kept your eyes perfectly still, details at the edge of the picture would seem
somewhat indistinct, while details at the centre would be seen with perfect
clarity. I would like you to try and estimate the size of this area of perfectly
clear central vision by imagining this situation.

When viewing a picture about 50cms away the size of the area within which
I would be able to see details with perfect clarity is about

____ cms wide by about ____ cms high.”

On average, participants judged the dimensions of the fovea as 27.8cms wide
(S.D.=22.4cms) by 24.1cms high (S.D. = 17.4cms). Once again, this is an over-
estimation. At a viewing distance of 50cms the fovea would occupy an area
about 1.7 cms in diameter. The central 10◦ of vision would cover an area about
8.7cms in diameter.

The third item of the questionnaire introduced an element of actual, rather
than imagined visual performance. Participants viewed each of two pictorial
scenes, and were provided with moveable cardboard masks. They were then
requested to:

“Please look at the spot in the centre of this picture and try to keep your eyes
perfectly still. Now move the cardboard masks inwards from the edge of the
picture in order to progressively cover any parts of the picture that appear less
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than perfectly clear due to their distance from the centre. Do this until details
at the edge of the visible area appear to be just as clear as details in the centre.
Do not worry if after doing this, the masks cover most of the picture. Carry
on reducing the size of the picture until you have the impression that all of
the remaining picture appears in the area of perfectly clear central vision –
the fovea.”

Participants performed this task while viewing two different pictures. One was
an illustration from a child’s picture book, and contained a large amount of fine
detail; the second was a photograph of dramatic mountain scenery.2 For the
former picture, the average width of the aperture that remained after moving
the masks inwards was 8.3◦; in the latter case, average aperture width was 11.40.
Thus, for this item participants’ estimates of foveal extent were still significantly
larger than the 1–2◦ diameter given in most textbook treatments of visual func-
tion. Nevertheless, in this case where participants viewed a real visual stimulus
estimates of foveal extent were clearly smaller, and closer to correct value, than
responses to items (1) and (2) in which participants imagined viewing situa-
tions. It might also be noted that although participants adjusted the width of
the viewing apertures to be larger than the fovea, there was a broad correspon-
dence between the width of the remaining apertures and the dimensions of the
macula (8–10◦).

What are we to make of these findings? The question ‘How large is the cen-
tral area where you see things with perfect clarity’, can be seen as an issue of
criterion placement. Because both acuity and cone density increase continu-
ously with decreasing eccentricity, even within the fovea, the size of the area
where acuity reaches an absolute peak is miniscule indeed – subtending less
than 0.5◦ of visual angle. All of our respondents felt that an area substantially
larger than this satisfied the criterion ‘enjoys perfect clarity’. However, it is of
interest that participants placed their boundary criterion at an eccentricity that
was substantially broader than the 1–2◦ diameter identified as the cone rich,
high acuity fovea by vision scientists. Although it is clear that the hardware of
the visual system is only capable of delivering clear and detailed representation
over a very small visual area, individuals generally feel as if the area of clear
vision is far larger than this. There appears to be a very poor correspondence
between the extreme selectivity evident from psychophysical and anatomical
observation and the texture of everyday visual experience.

This issue of selectivity in the architecture of the visual system prompts a
number of interesting questions. To begin with one might ask why the visual
system has evolved with this design, in which the fovea is very tiny in compari-
son with the overall extent of the visual field. One possible answer to this ques-
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tion has come from artificial intelligence work in the area of machine vision.
For example, it has been suggested that the raison d’etre for this design feature
is essentially attentional since it arises from limitations of processing capacity
with respect to building perceptual representations of the visual world. When
artificial intelligence workers began to grapple with the problem of building
machines that could see, it was realised that the business of constructing fully
elaborated perceptual representations of multiple visual objects was dauntingly
complex. So complex indeed, that to maintain complete on-line representa-
tions of all the objects within the field of view of a human eye would probably
require an unfeasibly large amount of computing power – i.e. a brain the size of
a planet. The design solution settled upon in the course of evolution and which
may be necessary for seeing machines as well, has been to build a visual system
that is highly selective. In such systems fully elaborated perceptual descriptions
are constructed and made available to other on-line processes, only for objects
that are in the focus of attention (e.g. see Cave 2001). It is often the case, but
not always true, that the object of attention and foveal vision will coincide.
As is well known, it is also possible to attend covertly to objects appearing at
non-foveal locations.

Following on from the logically prior issue of the raison d’etre of strong
selectivity in vision, a second question is to ask why individuals have a ten-
dency to wildly over-estimate the extent of the area which enjoys optimal clar-
ity. I would like to suggest that there are probably two reasons for this. The
first arises from the highly dynamic nature of normal visual behaviour – the
selectivity implicit in the distinction between foveal and extra-foveal vision is
accompanied by an ability to perform rapid movements of attention. This en-
ables currently non-attended objects to be rapidly brought into the focus of
attention. When viewing a natural scene several kinds of attention movement
may occur. Overt attention shifts are likely to occur, in which there is an observ-
able change in the orientation of the eyes and/or head. For example, saccadic
eye movements may be observed, which alternate with periods of fixation, in
which the eyes remain stationary. In addition there may be rapid movements of
covert attention between objects in foveal and extra-foveal vision. It is known
that allocation of covert attention can enhance the quality of perceptual repre-
sentation for objects in both foveal and extrafoveal vision (see Wright 1998).
This ability to shift the spotlight of focal attention rapidly from one object
to another may be at least partly responsible for the subjective impression that
the area of clear visual representation is considerably larger than the objectively
measured extent of the fovea.
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A further reason for this over-estimation may arise from processes of per-
ceptual completion and filling in. The relative importance of top-down and
bottom-up processes has of course been a long running subject of theoret-
ical controversy and debate in the psychology of perception. Given that the
bottom-up signal for perception is considerably less rich and detailed for extra-
foveal compared to foveal stimuli, poverty of the stimulus arguments in favour
of the importance of top-down influences (priming, expectations, background
knowledge) appear more plausible for this class of stimuli. Indeed, the power-
ful effect of such influences can easily be experienced by the simple expedient
of closing one eye. With monocular viewing we all have an area of approxi-
mately 5◦ by 7◦ which receives no visual signal whatever. This is of course the
blind-spot which arises from the absence of visual receptors within the optic
disc, where the optic nerve exits the eye. Interestingly, the dimensions of the
blind spot are considerably larger than those of the fovea. However, under nor-
mal viewing conditions it is quite impossible to ‘see’ this blank area, because
the perceptual system automatically constructs a complete visual representa-
tion which fills in the area occupied by the optic disc (see also Ramachandran
& Gregory 1991).

It is clear then, that in studying the visual system, attentional and percep-
tual processes are inextricably linked. In an important sense, seeing is an at-
tentional process. It is apparent from the gross hardware of the eye that there
is strong selectivity in the processing of foveal and non-foveal objects. Such a
system requires a means of shifting attention rapidly and effectively, so that ob-
jects of interest that initially receive sub-optimal processing from a parafoveal
or peripheral location can be brought rapidly and effectively into the focus of
attention, which will generally also involve the execution of an eye movement
in order to foveate the object.

Some readers might object that although retinal processing is indeed highly
selective, this is not attention. Attention, it might be argued refers to more cen-
trally located ‘processing bottlenecks’ or filters (c.f. Broadbent 1958). However,
if one views attention (in at least one sense) as referring to processing selectivity
that is related to resource limitation, then this writer at least can see no prin-
cipled reason for not regarding retinal selectivity as an essentially attentional
phenomenon.
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. Visual orienting

In recent work on attention (e.g. see Wright 1998) processes of visual orienting
have been viewed in terms of two orthogonal dichotomies. On the one hand
visual orienting may be either overt or covert. As indicated earlier, overt vi-
sual orienting occurs when there is an observable movement of the eyes, head
or perhaps of the whole body which results in a reorientation of the eyes to-
wards an object of interest. Covert orienting occurs, in contrast, when there
is a change in the focus of attention from one object to another, without any
observable change in eye or head direction. Most readers will be familiar with
the phenomenon of ‘looking out of the corner of your eye’, in which an indi-
vidual appears to be oriented in a particular direction, but is covertly attend-
ing to something else. The phenomenon of covert attention was well known to
Helmholtz in the nineteenth century and has been studied extensively in recent
decades (e.g. see Posner 1980; Posner & Raichle 1994). In addition to being ei-
ther overt or covert, visual orienting may also be either under voluntary control
or elicited reflexively. On the one hand, attention can be drawn in a rapid in-
voluntary way towards a salient change in stimulation occurring away from the
current focus of attention. For example, as I write this chapter my attention is
occasionally captured involuntarily as a bird flies by the window, which is in
my peripheral vision to the right of the computer screen. Alternatively, one can
form a voluntary intention to shift attention away from the current focus in
order to inspect another part of the visual world. This two-process view of vi-
sual orienting is supported by a substantial body of research. Many laboratory
investigations of visual orienting have employed tasks in which participants
are presented with two different forms of spatial cue (e.g. see Cheal, Lyon, &
Gottlob 1994). Voluntary orienting has been studied by presenting participants
with a symbolic indicator such as an arrow, in central vision. For example, in
an influential study reported by Posner, Nissen and Ogden (1978) the location
of a target object was related to the orientation of the central arrow. On 80% of
trials with an arrow, the target appeared at the ‘valid’ location – i.e. the location
indicated by the arrow. On 20% of trials the target appeared at the ‘invalid’ lo-
cation – i.e. the location opposite to that indicated by the arrow. There was a
clear performance advantage, in terms of response latency, for valid relative to
invalid trials. In explaining this result Posner et al. proposed that in response to
the arrow cue, the focus of visual attention was shifted under voluntary control
to the valid location. Subsequent research has explored the nature of atten-
tional orienting produced by central precues in some detail (see Cheal, Lyon,
& Gottlob 1994).
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Reflexive orienting, in contrast, has been studied using peripherally pre-
sented spatial cues. (e.g. see Muller & Rabbitt 1989; Cheal & Lyon 1991). In this
case, the location of the target is related to the location of the cue, rather than
to its visual form. Once again, performance can be compared across valid tri-
als, where the target appears at the location marked by the peripheral cue, and
invalid trials, where the target appears at a different location. Jonides (1981)
compared the attentional effects of central and peripheral spatial cues. In the
former case, a central arrow indicated the likely location of the target. In the
latter case, the arrow was presented at a peripheral location, directly adjacent
to the likely location of the target. Jonides’ study and subsequent research has
shown that orienting in response to central and peripheral precues differs in
several respects. In particular, orienting in response to peripheral cues appears
to have a more rapid time course, is harder to suppress (Cheal & Lyon 1991;
Muller & Rabbitt 1989), and is unaffected by performing a secondary task. This
evidence has supported the view that orienting in response to peripheral cues
involves a rapid, reflexive process, while orienting in response to central cues
involves a slower, consciously controlled process.

. William James on attention

Nearly one hundred years prior to the popularity of cueing techniques as a way
of studying visual attention, William James also distinguished between reflexive
and voluntary orienting. For James, attention could be either “Passive, reflex,
non-voluntary, effortless” or “Active and voluntary” (James 1890/1983:394).
However, James also drew two further distinctions. Firstly attention could be
either “sensorial” (i.e. attention to incoming sensory information) or “intellec-
tual” (i.e. attention to inner thoughts, images, memories etc). In addition, at-
tention could be either “Immediate; or . . . Derived: immediate when the topic
or stimulus is interesting in itself, without relation to anything else; derived
when it owes its interest to association with some other immediately inter-
esting thing” (James 1890/1983:393). Hence, for William James learning and
experience played an important role in the control of attentional behaviour.
Since modern studies of attention have had little to say concerning the role of
learning in relation to visual orienting a programme of investigation has been
undertaken here at Auckland, examining the Jamesian notion of derived atten-
tion. These experiments have incorporated the notion of derived attention into
the framework of the spatial cueing technique, which was described above and
which has been widely employed in studies of visual spatial attention.
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. Derived attention and implicit learning

The basic design framework adopted in all of the experiments to be described
here is as follows. Participants performed a simple detection task which in-
volved responding to the onset of a target stimulus, which could appear at
either of two locations, on the left and right of the display. Prior to onset of
the target, participants were presented with a ‘cue’ stimulus. In common with
many other investigations of spatial cueing, there was a predictive relationship
between the nature of the cue stimulus and the location of the target. However,
unlike most other studies of spatial cueing, in a number of our experiments
participants were not informed of this predictive relationship. For example, in
Experiment 1 of Lambert et al. (1999) the pre-trial cue comprised the letters,
W and S, presented 8.5◦ to left and right of a central fixation cross. On some
trials the letters appeared with W on the left and S on the right, while on other
randomly chosen trials the letters appeared with the reverse arrangement. Un-
known to the participants, the display was programmed so that the target ob-
ject usually (p=.8) appeared on the same side as one of the letters – this was W
for half the participants and S for the other half. The experiment had several
aims. We were interested in the ability of participants to learn about the predic-
tive relationship between cues and targets and to show evidence of this learning
in orienting behaviour. The stimulus onset asynchrony (SOA) between onset of
the cue letters and onset of the targets was varied in order to assess the speed
with which attention was oriented in response to the predictive information
carried by the letters. As indicated above, previous work had shown that speed
of orienting was an important parameter in studies of the distinction between
voluntary and reflexive/automatic orienting. In studies of reflexive orienting
using peripheral spatial cues, clear differences between valid and invalid trials
have been observed even with very brief (100ms or less) SOAs between cue and
target onset. In contrast, in studies of voluntary orienting with central, sym-
bolic cues, orienting effects tend to increase more slowly with SOA, attaining a
maximum at SOAs of 300-400ms.

In addition, a crucial issue for this experiment was to investigate whether
attentional learning could occur at an implicit level. Individuals were exposed
to arbitrary relationships between apparently incidental events (the periph-
eral letters) and target events, and orienting behaviour was observed to see
whether participants oriented towards the likely location as predicted by the
letters. At the end of the experiment a questionnaire was administered which
tested whether participants had gained any awareness of the cue-target rela-
tionship in the course of the experiment. The results showed not only that
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participants had absorbed the cue-target relation, but also that they oriented
in response to the letters with great rapidity. A clear difference between valid
and invalid trials was observed when the target was presented just 100ms after
onset of the peripheral letters. In addition, it appeared that this rapid orienting
occurred independently of any awareness of the cue-target relation. Fourteen
out of sixteen participants reported that they were unaware of any relationship
between the peripherally presented letters and the location of the target. When
asked to choose between two statements, one of which described the correct
cue-target relationship, while the other described the reverse of the correct re-
lation, about 50% (7/16) chose the incorrect statement. The performance of
these participants was closely similar to that of the whole group.

It was concluded that these results provide clear support for the Jamesian
notion of ‘derived attention’. That is, after a relatively brief practice period par-
ticipants became attuned to the predictive relationships present in the task, and
oriented rapidly in response to the letters. Furthermore, our data showed that
this learning can proceed at an entirely implicit level. Having established that
attentional behaviour is sensitive to predictive relations between target location
and letter stimuli, we were interested in exploring this sensitivity in relation to
other features of the incidental ‘cue’ stimulus. An obvious further candidate is
stimulus colour. Lambert and Roser (2001) examined this question using a de-
sign that was analogous to the letter cueing experiments just described. In this
study the two target locations on the left and right of the display were each sur-
rounded by a square grey frame. The cue stimuli comprised the transient onset
of a thin green square and a thin blue-green square which appeared against
the grey background of the surrounding frames. The relative location of these
colour cues (i.e. greenleft + blue-greenright vs. blue-greenleft + greenright) varied
randomly from trial to trial. Participants performed two ‘training blocks’ of
trials in which the target always appeared on the same side as one of the pe-
ripheral cues – for half the participants this was the green cue, for the other
half this was the blue-green cue. In the final block of trials there was no re-
lation between target location and the peripheral colour cues. The notion of
derived attention was tested by comparing detection performance for trials
where the target appeared next to the colour that had been associated with
target location during the training blocks, with performance on trials where
the target appeared on the opposite side. In this study the proportion of par-
ticipants who gained explicit awareness of the relation between cue colour and
target location was greater (7/30) than had been the case with letter cues. In-
deed, in pilot work we had discovered that when the two peripheral cue colours
were clearly distinct (e.g. red vs. green), a very high proportion of participants
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gained explicit awareness of the relation between target location and the cues.
Clearly, this would rule out an interpretation of performance purely in terms
of implicit learning. In order to render the cue-target relation less salient, and
hence less accessible to explicit awareness, we chose cue colours that were sub-
jectively similar – green and blue-green. Under these conditions 23% of par-
ticipants gained awareness of the cue-target relation, and these participants
showed faster response times for valid than for invalid trials. However, 40%
of participants failed to gain any awareness of the cue-target, and these par-
ticipants also showed significantly faster response times for valid compared
to invalid trials. For both groups a validity effect was apparent at both short
(100ms) and long (600ms) SOAs. Questionnaire responses from the remaining
participants (37%) provided equivocal evidence concerning awareness of the
cue-target relation. Interestingly, orienting effects were absent for this Semi-
Aware group. This was interpreted in terms of the formation and testing of
incorrect hypotheses concerning the cue-target relation, leading to inappro-
priate orienting towards the invalid location on at least some trials by these
participants.

The experiments just described establish that learning takes place when in-
dividuals are exposed to associations between target events and apparently inci-
dental ‘cue’ events. At a theoretical level, it is clear that in order to explain these
effects one need only postulate a relatively simple form of associative learn-
ing. The learning that is involved may be seen as simple in two respects – it
involves sensitivity to simple binary associations between cue attributes and
target attributes; and secondly the attributes manipulated in the experiments
can be seen as relatively ‘simple’. Encoding of the visual form features required
to distinguish ‘W’ from ‘S’, encoding of stimulus colour and encoding of target
location are all thought to occur at a relatively early stage of visual process-
ing. Despite this simplicity, these findings are of theoretical interest for several
reasons. Firstly, as already discussed, the fact that attentional responses, both
covert and overt are open to learning effects is of interest, and is consistent
with the Jamesian notion of derived attention. That is, after a brief period of
task performance, the cue events come to attract attention by virtue of their
association with target location. Secondly, the results show that this form of
attentional learning can proceed at an implicit level.

Having established these points, a logical next step would be to explore the
limits of derived peripheral cueing by increasing task complexity. One way of
doing this is to increase the complexity of the cue attributes that are associated
with target location. For example, would implicitly learned derived cueing ef-
fects be observed if participants were exposed to an association between target
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location and semantic attributes of cue stimuli? Curiously, we performed a se-
ries of experiments testing this hypothesis before undertaking the letter and
colour cueing described above. As Antipodeans it might be said that we are
used to doing everything upside-down, including experimental research. The
real reason was that the rationale for our semantic cueing experiments was de-
rived from thinking about some earlier findings (Lambert, Beard, & Thompson
1988) demonstrating semantic processing of unattended sources of informa-
tion. In light of these results, Lambert and Sumich (1996) aimed to explore
a possible functional role for semantic processing of incidental information,
by testing for a link between such processing and attention movements. This
was done by using three and four letter words as the ‘cue’ stimuli. As in the
other experiments, participants made a simple detection response to targets
that could appear on the left or right of a display screen. Six hundred mil-
liseconds prior to target onset, a single word was presented for 67ms either 5◦

to the left or 5◦ to the right of a central fixation cross. Participants were in-
structed to ignore this word, and to concentrate on the target detection task.
Sixty different cue words were employed in the experiments, of which half re-
ferred to living things (e.g. DOG) while the remainder referred to non-living
objects (e.g. HAT). For half the participants, the display was programmed so
that the target usually appeared on the same side as the cue word if this referred
to something living, and on the opposite side if it referred to something non-
living. The reverse contingency was present for the remaining participants. The
hypothesis that visual orienting behaviour would be sensitive to an association
between target location and a semantic attribute of the cue word was tested
by comparing performance on trials where the target appeared at the likely lo-
cation, as indicated by ‘cue’ word category, with performance on trials where
the target appeared at the unlikely location. Lambert and Sumich (1996) re-
ported three experiments which all shared this basic design. In all three ex-
periments participants responded more rapidly to targets that appeared at the
likely location, as indicated by the semantic category of the ostensibly unat-
tended ‘cue’ words. These findings suggested that the human attentional sys-
tem is indeed exquisitely sensitive to contingent relations between the spatial
location of target events and other attributes of the visual environment. It is
worth noting that the design of these experiments provided an extreme test
of the hypothesis that visual attention would be sensitive to associations in-
volving semantic information. As indicated earlier, at the beginning of the ex-
periment participants were instructed to ignore the laterally presented words,
which were drawn from a large (120 item) stimulus set. The words themselves
varied with respect to a wide variety of stimulus dimensions – number of let-
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ters, word frequency, number of syllables, imageability, meaningfulness are just
a few of these dimensions. The target location – semantic category relation was
of course entirely arbitrary, and participants had no way of knowing that the
living – nonliving dimension was at all relevant to the task. Questionnaire re-
sponses certainly indicated that only a tiny minority (three out of 120 partic-
ipants) showed any evidence of explicit awareness regarding the link between
target location and word category. Despite the obscurity of this relationship,
analyses of response times indicated a significant advantage for trials where
the target appeared at the likely location. Hence, the cue-target relation had
indeed been learned, resulting in a small but measurable effect on attentional
behaviour. This effect appeared entirely independent of conscious awareness
concerning the cue-target relation. Given the subtlety of this relationship, it was
concluded that this performance represented a remarkable feat of sensitivity by
the human perceptual-attentional system.

. Voluntary derived attention

In our initial investigations of derived attention, participants were never in-
formed of the cue-target relation, and our post-experiment questionnaires
were designed with care, in order to check for the presence of even fragmen-
tary knowledge of the relevant relationship. This was perceived as important,
since we surmised that if participants were aware of the cue-target relation then
any attentional effects could be explained in terms of the familiar construct of
voluntary orienting. In this case the findings would of course be lacking in
theoretical interest. However, an interesting feature of the results reported by
Lambert et al. (1999) was the speed with which differences between valid and
invalid trials emerged following onset of the cue. An advantage for valid over
invalid trials was observed when the SOA was very brief – just 100ms. As noted
earlier, the time-course of voluntary orienting effects is typically slower than
for automatic-reflexive orienting – taking some 300-400ms to fully develop, in
comparison with a time-course of 50-100ms for reflexive orienting. This led to
the following thought experiment. If the design of the experiment were altered
so that participants were rendered aware of the cue-target relation, and if a sim-
ilar pattern of rapid orienting were then to be observed, it is uncertain whether
an explanation in terms of voluntary orienting as traditionally conceived (e.g.
see Posner & Raichle 1994) would be appropriate. This led to a deeper consid-
eration of the distinction between voluntary and reflexive orienting and a new
set of experiments that may be viewed both as a critical exploration between
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the distinction between voluntary and reflexive orienting and as investigations
of the Jamesian notion of voluntary derived attention.

Lambert and Duddy (2002) noted that the notions of voluntary and re-
flexive orienting have generally been associated with the effects of central and
peripheral cues respectively. That is, the rapid and relatively automatic effects
of peripheral cues have been attributed to a hypothetical process termed re-
flexive orienting, while the slower and ostensibly controlled effects of central,
symbolic cues have been attributed to a process referred to as voluntary orient-
ing. However, this analysis is problematic, since overall comparisons of effects
of central and peripheral cues have tended to confound three distinct factors.
Lambert and Duddy (2002) pointed out that the design of the central cueing
task and the peripheral cueing task differ in at least three respects. Firstly, the
two designs differ eponymously and by definition with respect to the visual ec-
centricity of the cue – central and peripheral. A second difference is the need
to discriminate between different cue stimuli. In the case of central cues, par-
ticipants must discriminate between different cues, such as left and right facing
arrows. In the case of peripheral cueing, discrimination between different cue
stimuli is not required since orienting occurs in response to the mere onset of
a cue at a particular spatial location. In addition Lambert and Duddy (2002)
identified spatial correspondence as a third factor which covaries with cue eccen-
tricity and cue discrimination in commonly employed versions of the central
and peripheral cueing task. In the peripheral cueing task spatial correspon-
dence is an important factor in the following sense. On valid trials the location
of the cue stimulus and the location of the target stimulus correspond (e.g.
both left, both right), whereas on invalid trials cue and target locations do not
correspond. This factor of spatial correspondence is absent in the central cue-
ing task, since there is no relationship between the location of the cue stimulus,
which is always central, and the location of the target stimulus.

This analysis of course raises the question as to which of the three factors is
responsible for the differences in performance observed in earlier studies of ori-
enting in response to central and peripheral cues. Lambert and Duddy (2002)
reported a series of five experiments designed to answer this question. In all
five experiments participants were presented with bilateral letter cues prior to
making a simple detection response to target stimuli that could appear on ei-
ther the left or right of a display screen. In Experiments 1, 3A, 4 and 5 the letter
cues were presented either at a peripheral location, or centrally (immediately
to the left and right of a central marker). The cues were always either X on the
left and T on the right, or vice versa. Participants were informed that the dis-
play was programmed so that target stimuli usually appeared on the same side
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as one of the letters – for half the participants this was ‘X’, for the other half
it was ‘T’ – and were instructed to try to use this information in order to pay
attention to the likely location, on the basis of the letter cues. Thus, for these
participants, a valid trial occurred when the target appeared on the same side
as ‘X’ and opposite to ‘T’; an invalid trial occurred when the target appeared
on the same side as ‘T’ and opposite to ‘X’. In terms of our three factor anal-
ysis of orienting in response to spatial precues, three design features of these
experiments are worthy of note: (1) The cue eccentricity factor was manipu-
lated – on some trials the letter cues were central, while on others they were
peripheral; (2) The cue discrimination factor was held constant – on all trials
participants needed to discriminate which letter was ‘X’ and which ‘T’ in order
to orient appropriately; (3) The spatial correspondence factor was present and
also held constant – valid and invalid trials were defined in terms of a spatial
correspondence between the side of presentation of a cue letter (X or T) and
likely target location. A consideration of these design features led in turn to
three distinct predictions concerning expected patterns of results. All five ex-
periments incorporated a range of SOAs between cue onset and target onset, so
that speed of orienting in response to the letter cues could be assessed. If the dif-
ferences in speed of orienting observed in earlier studies of spatial cueing were
driven by the cue eccentricity factor, then one should observe rapid orienting
in the peripheral cue condition and relatively slow orienting in the central cue
condition. That is, clear differences between valid and invalid trials should be
apparent even with very brief SOAs in the peripheral condition, while in the
central cue condition valid-invalid differences may only become apparent with
somewhat longer SOAs. If on the other hand, differences in speed of orienting
observed in earlier work have been driven by the need to discriminate between
different cue stimuli, then one would expect to observe relatively slow orient-
ing in all conditions – since participants always needed to discriminate which
cue letter was X and which T in order to orient appropriately. And finally, if
previously observed differences in speed of orienting have been driven by the
spatial correspondence factor, then rapid orienting should be observed in all
conditions. A straw poll of colleagues and other experts in the field of visual
attention suggested that smart money was on the second prediction – which
entailed the plausible supposition that slow orienting would be observed be-
cause in this situation accurate orienting is contingent upon a time consuming
letter discrimination process. The results were clear-cut, and showed that in
this instance the smart money was mistaken. Rapid orienting was observed
in all conditions. Indeed, in Experiment 3A a clear advantage for valid over
invalid trials was observed even with extremely brief SOAs between cue onset
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and target onset (0ms, 33ms, 66ms). Furthermore, the time-course of orienting
effects was closely similar for central and peripheral letter cues. These results
suggested that the need to discriminate between different cue stimuli is not the
crucial feature responsible for the relatively slow orienting observed in earlier
studies of orienting in response to central, symbolic cues. It also suggested that
cue eccentricity was not responsible for the varying time-course of orienting
observed in many earlier studies (Cheal & Lyon 1991; Muller & Rabbitt 1989;
but see also Warner, Juola, & Koshino 1990 for findings consistent with the
Lambert & Duddy 2002 data). Accordingly the results were interpreted as sup-
port for the hypothesis that cue-target spatial correspondence is a crucial factor
mediating speed of orienting in response to precues. However, in a sense this
hypothesis was supported merely by default – since the evidence was incon-
sistent with the other two hypotheses. The aim of Experiments 2 and 3B was
to test the spatial correspondence hypothesis in a more direct and active way.
This was done by examining the time-course of orienting in a design that was
identical to that employed in Experiments 1, 3A 4 and 5 in all respects, save for
the presence of cue-target spatial correspondence. Participants were presented
with bilateral letter cues, as before. However, in these experiments the letter
cues were always X on the left accompanied by X on the right, or Tleft accom-
panied by Tright. Half the participants were instructed that T cues indicated that
the next target would probably appear on the right, while X cues indicated that
the next target would probably appear on the left. The other participants were
informed that T cues predicted a left target, while X cues predicted a right tar-
get. The perfectly symmetrical nature of the cue displays (i.e. X + X ; T + T)
ensured that there was no spatial correspondence between the cue and target
stimuli. Accordingly, this was termed the spatial translation condition, since en-
coding the cue information required translating a symmetrical stimulus into a
representation embodying the spatial information necessary to support orient-
ing towards one side of the display. In agreement with the spatial correspon-
dence hypothesis, orienting effects were observed to be significantly weaker,
and to have a slower time course in the spatial translation conditions of Exper-
iments 2 and 3B, in comparison with the spatial correspondence conditions of
Experiments 1 and 3A.

Overall, these results suggest two main conclusions. Firstly, they show that
spatial correspondence is a crucial factor mediating speed and efficiency of ori-
enting in response to spatial precues. When this factor was present, clear differ-
ences between valid and invalid trials were observed, even at the briefest SOAs
between cue and target onset. When this factor was absent, orienting effects
were significantly weaker, and were present only at somewhat longer SOAs. In
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addition, the results suggest that the process of derived attention, by which
cue stimuli come to attract attention by virtue of their association with target
events, can operate at both an implicit level, and via explicit-voluntary control.
Indeed, at a gross level the overall magnitude of the orienting effects observed
under explicit instructional conditions (Lambert & Duddy 2002) appeared to
be stronger (30-40ms) than the effects observed by Lambert et al. (1999) under
implicit conditions (10-20ms).

. Concluding discussion

This chapter began by reminding readers of the extreme selectivity embodied
in the architecture of the visual system. However, it appears that the strong de-
gree of selectivity, apparent from anatomical observation and measured psy-
chophysical performance is not reflected in the texture of visual awareness.
Findings were reported from a questionnaire that attempted to probe the phe-
nomenology of the distinction between central and peripheral vision. Results
showed that for most individuals the subjective extent of the “area of per-
fectly clear central vision” was considerably larger than the measured extent
of the fovea. The subjective extent of this ‘phenomenal fovea’ appeared to be
rather larger when participants imagined a typical viewing situation, in com-
parison with a situation where participants viewed a real stimulus. It was sug-
gested that at least part of this disparity between the relatively tiny psychophys-
ical/anatomical fovea and what I have termed the phenomenal fovea may arise
from the fact that vision is not only extremely selective, but also highly dy-
namic. Under normal viewing conditions visual attention can dance lightly and
rapidly from feature to feature – and this may contribute to the impression of
an expanse of detailed vision that is much larger than the 1–2◦ foveal diameter
that emerges from psychophysical measurement under closely controlled con-
ditions. The strong selectivity apparent at the earliest stage of visual processing,
in the retina, may be viewed as an essentially attentional phenomenon, since it
is thought to arise as a result of resource limitations in the computation of high
level perceptual descriptions of visible objects. Hence in this very basic sense,
seeing (i.e. visual awareness) can be viewed as an attentional process.

It is apparent from this analysis that in order to operate effectively, a
strongly selective visual system requires mechanisms that enable attention to be
shifted rapidly and accurately between task relevant regions of a visual scene.
The studies reviewed in this chapter show that learning and experience play a
pivotal role in enabling rapid shifts of attention towards the likely locations of
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target objects. The notion of derived attention, originally proposed by William
James, was used to describe the propensity of cue stimuli to capture attention,
by virtue of learned associations between cue attributes and target location.
Experimental evidence was reviewed showing that these associations may be
learned either at an implicit level, via mere exposure to the cue-target contin-
gencies, or via an explicit instructional set. In the former case, it appears that
even highly abstract attributes, such as the semantic category of a cue word
can influence attention deployment, following exposure to a specific cue-target
contingency. An interesting feature of the derived attentional cueing effects re-
ported by Lambert and Duddy (2002) was the rapidity with which attention
appeared to be shifted. Even with extremely brief SOAs between cue onset and
target onset (0ms – 66ms), response times were quicker for targets at the likely
compared to unlikely location.

As William James realised, attention and conscious awareness are inti-
mately related concepts. A primary consequence of selective attention is that
certain objects gain clearer representation in conscious awareness. Hence, the
attentional learning process proposed above may be seen as regulating and op-
timising the sequence of objects and events that enter conscious awareness dur-
ing performance of a complex task. It is perhaps not surprising then that this
learning process can proceed at an implicit (non-conscious) level. If the func-
tion of the process is to improve the efficency with which successive perceptual
objects enter consciousness and are acted upon, it would appear theoretically
incoherent if the process itself were to require representation in consciousness.
Nevertheless it is clear that derived attention effects can be observed, and may
even be enhanced with an explicit instructional set: i.e. telling participants that
targets are likely to occur near a particular form of cue. This is not necessarily
inconsistent with the previous point. It is clear that conscious decisions may
often result in a cascade of lower level processes that are not themselves rep-
resented in consciousness. For example, after making a conscious decision to
re-read the previous paragraph, I am aware of successive words and phrases as
I read, but not of the lower level processes that control the sequence of sac-
cades that occur as my eyes move across the page. When our participants were
informed explicitly that targets are likely to occur near a particular cue letter,
attentional performance readily reflected this knowledge, but in debriefing ses-
sions participants often claimed to be unaware of using knowledge of the cues
to direct attention – especially on trials where the SOA between the letter cues
was very brief.

The processes underpinning derived spatial cueing effects may have broad
relevance to perception and action in everyday life. They may play an impor-
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tant role in the performance improvements that accompany repeated practice
on almost any perceptuomotor task, from operating a word processor to play-
ing tennis, to monitoring an air traffic control display. With repeated perfor-
mance individuals will be exposed to a variety of associations between different
elements of a task. As a result of exposure to these associations a form of atten-
tional learning may occur, which enables participants to orient rapidly and ef-
ficiently to regions of the task scene that are most likely to contain task relevant
objects. William James termed this form of learning ‘derived attention’.

Notes

* The author would like to acknowledge the support of Auckland University Research Com-
mittee. I would also like to thank Caroline Heffer for assistance with preparing, administer-
ing and then analysing the visual awareness questionnaire described in this chapter.

. These figures hold true under either of two assumptions: (a) that the ‘very large poster’ is
a flat square, subtending 135◦ horizontally x 135◦ vertically at the eye, or (b) that the poster
is a spherical cap with a diameter of 135◦.

. The first picture was from the popular ‘Where’s Wally’ by Martin Handford (this may
be known as ‘Where’s Waldo’ to North American readers) – in which the child searches for
Wally in an extremely crowded scene containing many Wally look-alike figures (Handford
1987). The second picture was a photograph of the Southern Alps of New Zealand, and was
taken from Forman (1999).
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Contextual cueing

Reciprocal influences between
attention and implicit learning

Yuhong Jiang and Marvin M. Chun
Massachusetts Institute of Technology / Vanderbilt University

Consciousness and its counterpart – unconsciousness – are arguably the most
fascinating aspects of the human mind. They are also elusive research topics,
as determining whether something is or is not within the realm of conscious-
ness typically relies on the subject’s verbal report. This makes it difficult to tell
whether infants and non-human animals have consciousness, and whether hu-
man adults’ report of consciousness is reliable. Although consciousness is an
intriguing property, research in the past twenty years has accumulated more
and more evidence that a large part of human cognition is implicit, occurring
outside of awareness (Reber 1989; Stadler & Frensch 1998).

Implicit, unconscious cognition can be dissociated from explicit, conscious
cognition at both neural and functional levels. Although it is unlikely that all
forms of implicit cognition (e.g., motor sequence learning and artificial gram-
mar learning) rely on the same neural substrates, implicit and explicit processes
typically differ in their neural basis. For example, damage to the medial tem-
poral system (including the hippocampus) produces amnesia, an inability to
form new long-term conscious memory (Milner, Squire, & Kandel 1998), but
the same patient retains his capacity of motor skill learning, a form of im-
plicit learning and memory. As a complementary example, damage to the basal
ganglia as in Parkinson’s disease impairs the patient’s ability to acquire motor
skills (e.g., Doyon et al. 1997), yet the same patient typically has largely pre-
served explicit learning and memory. It is debatable whether implicit learning
is a phylogenetically primitive system that relies less on age, IQ, and individual
difference (Reber, Walkenfeld, & Hernstadt 1991; but see Fletcher, Maybery, &
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Bennett 2000). Nonetheless the existence of a system (or a myriad of systems)
of implicit cognition is well established by now.

The concept of attention enters the picture of implicit learning for two
closely related reasons. Theoretically, “attention” and “consciousness” are re-
lated concepts. They may be superficially interchangeable: not paying attention
results in the lack of awareness of ongoing events (Mack & Rock 1998); and at-
tending to something almost immediately brings it to awareness and leads to
successful memory recall in the future (Rock & Gutman 1981). Empirically,
there are data supporting the notion that whereas explicit learning relies on
a controlled, attentive process, implicit learning can largely operate automati-
cally, without any reliance on attentional resources (e.g., Frensch, Lin, & Buch-
ner 1998; Jiménez & Méndez 1999; Stadler 1995). The argument that attention
and consciousness are interchangeable, therefore, is not without ground. To
accept this argument has far reaching consequences. For instance, one could
use an attentional modulation effect as an indicator of awareness. Attentional
modulation of neurons at numerous neural stages of visual processing (e.g.,
V1, V2, V4, MT, IT; see Luck et al. 1997; Moran & Desimone 1985) may be
explained as neural correlates of the animal’s awareness. In addition, if implicit
learning requires no attention, our educational system could in principle be
revised to promote implicit learning without overloading the learner’s limited
attentional capacity.

However, our premise is that to the contrary, attention and consciousness
are not one and the same. Implicit learning, devoid of any conscious attempt
to learn and ability to recall, may nevertheless penetrate attentional mecha-
nisms by shaping how attention is deployed (see also Lambert, this book; Lam-
bert, Naikaar, McLachlan, & Aitken 1999). In addition, implicit learning, re-
quiring no awareness, may nevertheless depend on selective attention. We will
rely on a new implicit learning paradigm, spatial contextual cueing (Chun &
Jiang 1998), to make this point. Following the introduction of contextual cue-
ing, we will describe how implicit learning guides attention to behaviorally im-
portant aspects of visual input. Then we will focus on how selective attention
determines what information can be implicitly learned.

. Contextual cueing

The term contextual cueing defines two important aspects of this paradigm.
“Contextual” refers to the impact of other information, typically co-occurring
items, on the processing of the target. In our studies of implicit learning,
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such context acquires predictive power from the statistics of our displays ex-
perienced over time. “Cueing” refers to the top-down guidance of attention.
Contextual cueing, therefore, refers to the top-down influence of attention by
predictive contextual information that was implicitly learned.

In our own research, we have studied the cueing of attention to a target’s
spatial location, shape (identity), motion trajectory, or the temporal moment
at which it occurs. Across different experiments, we have defined context by
the spatial configuration of the target and accompanying distractors, the shape
(identity) of the distractors, the distractor motion trajectory, or the temporal
sequence (duration, tempo, or order) of the distractors. In all these studies,
target processing was facilitated when the target was consistently paired with
a certain context of distractors that was repeatedly presented to the observer
(Chun & Jiang 1998, 1999; Olson & Chun 2001).

For example, in the spatial contextual cueing paradigm (Chun & Jiang
1998), we co-varied the spatial location of the target and the spatial layout or
configuration of the target and distractors. To reduce the likelihood of explicit
learning and memory, we disguised the learning component by emphasizing
the visual search task only. Our subjects were instructed to search for a target –
a T rotated either to the right or to the left – among distractors – rotated Ls. The
items were presented at randomly selected positions on the computer screen.
Typically, 12 items were on the display. Because the distractors and the target
are similar in shape, search relies on focused attention that scans through the
items slowly. Any predictive cue to the target location, therefore, can poten-
tially enhance search speed. Our subjects were merely instructed to perform
the search task as quickly and as accurately as possible, without any hint that
some of the spatial configurations would repeat.

Target locations were consistent within repeated spatial configurations.
Thus, spatial context provided a predictive cue to the target location. Below,
we will detail the specific procedure because it is similar across many of our
contextual cueing experiments. In a typical study, we divided the entire test
session into 30 blocks, and each block contained 12 Old and 12 New displays
intermixed with each other. The set of Old displays was 12 different spatial
configurations of distractors that were generated at the beginning of the ses-
sion and repeated across blocks throughout the session. Each configuration
was associated with a different target location, which was fixed, so that the
spatial context (configuration) would be predictive of the target as subjects ex-
perienced the repeated displays. The New displays were randomly generated
for each block to serve as a baseline. However, the same set of target locations
was used for the New displays throughout the entire experiment to equate the
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Figure 1. A schematic illustration of the contextual cueing paradigm. In the old condi-
tion, a configuration was repeated across blocks. The target identity and its associated
motor response were chosen at random, but the target location and its associated con-
figuration were repeated. In the new condition, the target location was repeated across
blocks, but was presented among a variable configuration for each repetition. The dot-
ted outline of display layout shows the imaginary configuration for the target. It was
not actually presented on the display.

target location probabilities between Old and New conditions. To sum, Old
displays presented spatial contexts that were predictive of target location, while
the New displays were not predictive. Figure 1 shows a schematic illustration
of the design.

To search through the Old displays faster than the New displays, observers
must first be able to discriminate the old configurations (typically 12 of them)
from a total of nearly 400 different new configurations. This is not an easy
task, given that virtually an infinite number of different configurations can be
generated, and that any given configuration is not highly discriminable from
any others. In addition, observers need to access the associated target location
within a particular configuration. Finally, the extraction of the configuration
and its associated target location has to be fast enough to be useful for visual
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Figure 2. Search response time is faster for targets appear in Old vs. New displays.
Contextual cueing is measured by the difference between the Old and New conditions.

search. That is, this process needs to occur within a second or so, given that
search is completed in about 1 second even for novel displays.

Given the complexity of the nature of learning, it is indeed remarkable
that observers searched through the Old displays faster than the New displays
(Figure 2). The significant enhancement typically occurred after merely five
or six repetitions, revealing an exceptional learning ability to quickly make
use of invariant information learned shortly earlier. We believe that observers
learned each instance of the repeated configurations and discriminated them
from novel layouts (Logan 1988; Palmeri 1997). Once a display was presented,
observers quickly extracted the configuration and used the association between
a configuration and the target location to guide attention to the target loca-
tion. Contextual cueing, therefore, reveals how learning can contribute to the
top-down guidance of visual attention.

The guidance of top-down attention by contextual cueing has important
theoretical implications for studies of attention. Although prior research has
shown that many factors affect how we allocate top-down attention (Wolfe
1994), such research has typically relied on explicit instruction to focus on
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task-relevant aspects of search arrays (e.g., “search through the red items”).
Prior work has ignored the role of subjects’ past experience. For example, ob-
servers may be pre-cued to attend to one part of the visual field more than
other parts (Posner, Snyder, & Davidson 1980), or to attend to one object more
than another (Pylyshyn & Storm 1988). No doubt, human observers can fol-
low such instructions well, but in our daily visual environment, such top-down
instruction is not always available. In contrast, experience is always available.
As we navigate through an environment over time, what was important in the
past tends to remain important in the present. Learning the invariant features
and properties of our visual environment can increase the efficiency of visual
processing (Gibson 1966). Contextual cueing reveals the power of past learning
to guide top-down attention. Learning is quick; a few repetitions of the display
is sufficient to produce a significant speed difference. It is powerful, as com-
plex and highly similar visual displays can be distinguished from one another.
It is efficient and robust, as it can speed up search by 100 ms or so and is con-
sistently shown across subjects. Moreover, contextual cueing is implicit. In the
following section, we review the implicit nature of contextual cueing and its
other properties.

. Implicit learning guides top-down attention

. What is learned in contextual cueing?

Before we assess the implicit nature of contextual cueing, we need to charac-
terize what information is learned during contextual cueing. Only then can we
probe whether subjects had awareness of such information. Research on other
paradigms of implicit learning has taught us that it is not easy to pinpoint ex-
actly what aspect of the task is learned. In the serial reaction time (SRT) task,
for instance, observers respond more quickly to a repeated series than to a ran-
dom series of target positions (Nissen & Bullemer 1987). Such advantage in
RT, however, may come from several sources: learning of the visual repetition
at the perceptual level, learning of the pattern of repeated movement at the mo-
tor level, or learning of some abstract representation of the repetition (Keele,
Jennings, Jones, Caulton, & Cohen 1995; Mayr 1996; Willingham 1999). Even
in a task that is devoid of a motor component such as the artificial grammar
(AG) task, a question remains as to what portion of the grammar is learned. Is
it the entire abstract grammar, or is it just particular sets of fragments that are
learned? Similar questions can be asked about contextual cueing. In the cas-



Contextual cueing 

cade from perception to motor response, at which stage does learning occur? If
it is at the perceptual stage, do observers learn the entire configuration or just
portions of it?

In the spatial contextual cueing paradigm described above, we can quickly
rule out learning at the motor response stage (left or right key press), and we
can rule out learning of the target identity (left or right T). This is because the
identity of the target and its associated key press was randomized from block to
block, for both New and Old conditions. Eye movement learning may be part
of what is learned, but eliminating eye movement by using brief displays does
not eliminate contextual cueing, suggesting a purely perceptual component of
learning (Chun & Jiang 1998). Confining learning to the perceptual end, we
can also rule out probability learning of target locations. This is because target
locations for both Old and New conditions were repeated the same number of
times over the entire experiment.

Why do observers search through the Old displays faster than the New dis-
plays, if they did not learn the target identity and its associated motor response,
or the target location probability? One hypothesis is that maybe the Old dis-
plays become perceptually familiar; and observers simply search through a fa-
miliar display faster than through an unfamiliar one. To test this hypothesis,
we modified the Old displays such that the target was allowed to move within
the configuration across blocks (i.e., the target and a randomly selected dis-
tractor swapped positions from repetition to repetition). In this design, the
layout through which search was performed was repeated and was thus famil-
iar to subjects, but the context no longer predicted target location. If familiar-
ity with a search configuration underlies the original contextual cueing effect,
we should expect the same amount of facilitation whether or not the target
location was consistently paired with the configuration. However, our results
showed that contextual cueing was abolished when the configuration no longer
predicted the target location (Chun & Jiang 1998). Thus, familiarity with a
configuration is insufficient for search speed to improve. This result converges
nicely with Wolfe and colleagues’ finding that search through repeated layouts
was not faster than through new layouts (Wolfe, Klempen, & Dahlen 2000).
In a sense, the visual system is amnesic to the repetition of the layout. Repeti-
tion of the configuration per se is not useful for visual search. Only when a re-
peated layout is consistently paired with a target location can it be informative
of search.

Thus, learning in the spatial contextual cueing paradigm involves not only
the discrimination among highly similar configurations, but also the consistent
pairing between the target location and a configuration.
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. What is learned: The entire configuration or portions of it?

During spatial contextual learning, did subjects learn the entire global con-
figuration, or just portions of it? Several experiments have been conducted
to characterize what aspects of “spatial configuration” are learned in spatial
contextual cueing.

In one experiment, we perturbed the configurations. In our earlier stud-
ies, the distractors were repeated in their exact same locations across Old dis-
play repetitions. However in a separate study, distractors were allowed to jitter
within about 0.5 degrees visual angle, so that each exact location of the item
changed and the entire configuration changed somewhat (Chun & Jiang 1998).
The resulting distorted configurations were different from repetition to repeti-
tion, yet they still resembled the prototype from which the distorted versions
were generated (Palmeri 1997). Results showed that observers still searched
faster in this perturbed Old condition than the New condition. This finding
shows that invariant contextual information can be extracted and learned from
noisy input.

In a second study, Olson and Chun (2002) studied whether different as-
pects of spatial context may be weighted differently. They divided the display
into two halves: left and right in one experiment, and up and down in an-
other. Distractors positioned at the same half as the target were on average
closer to the target, and thus formed the short-range context. Distractors at
the opposite half formed the long-range context. The separation of the short-
and long-range contexts permits independent manipulation of these contexts.
Observers were tested in four conditions: both short- and long-range contexts
were repeated; only short-range context was repeated; only long-range con-
text was repeated; and neither short- nor long-context was repeated. Results
showed similar contextual cueing in both-old and short-range old conditions,
but no learning in both-new and long-range old conditions. The lack of con-
textual cueing in the long-range old condition is surprising, showing that the
implicit learning mechanism may fail to encode invariant information under
some circumstances, even when the repeated information in the long-range
context was just as predictive of target location as the short-range context was.

To find out whether the lack of benefit in the long-range condition was
due to a failure in learning invariant information positioned far away, or due
to disruption from random information close by, Olson and Chun (2002) ma-
nipulated the objects that were spatially positioned between the target and the
long-range context. Items were inserted between the target and the long-range
context in one but not another condition. Olson and Chun then repeated the
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long-range but not the short-range context. Contextual cueing was found only
when no items were positioned in the space between the target and the long-
range context. This suggests that the lack of learning found before in the long-
range context condition was not because the absolute distance between the tar-
get and the long-range context was too far. Instead, random items close to the
target interfered with learning of the long-range context. It is unclear, however,
whether the short-range items disrupted the learning of long-range items, or
whether they simply prevented the learned long-range context from influenc-
ing search speed. To find out whether short-range items prevented learning or
expression of the long-range context, one needs to remove the short-range con-
text during testing (for an analogous distinction in the SRT task, see Frensch,
Wenke, & Runger 1999).

Finally, one can explore whether spatial learning extends to 3-D displays.
The real spatial environment that we live in is three-dimensional, but the spa-
tial context tested so far has been two-dimensional. Recently Kawahara asked
whether the visual system was sensitive to the depth relations in 3-D spatial
context (Kawahara, personal communication). To find out, Kawahara segre-
gated the items into two planes using binocular disparity. Some items were
closer to the observer and some were farther in depth. The spatial configu-
ration was defined by the layout of the items; and the depth information was
preserved in a particular configuration during training. After observers had ac-
quired contextual cueing, Kawahara reversed the depth plane of the two sets of
items on a given visual display. Note that the retinal input across the two eyes
remains constant with this manipulation; only the perceived depth relations
change. Performance in the Old condition dropped significantly after the depth
reversal, suggesting that the visual system is sensitive to the depth information
in the configuration.

. What is learned in other forms of contextual cueing?

In daily life, visual learning is not confined to spatial properties. Identity of
items is an important feature of the visual environment as well; knowing that a
refrigerator fits in a kitchen scene rather than a bedroom scene makes it poten-
tially easier to identify within an appropriate context (Biederman, Mezzanotte,
& Rabinowitz 1982). Movement patterns provide another important cue to
guide vision and action; excellence in team sports relies on a player’s ability to
recognize and predict the movement trajectories of teammates. Just like the as-
sociation between target location and spatial configuration, contextual cueing
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can be quickly acquired when the context is defined by semantics or motion
trajectories.

In semantic contextual cueing, we generated novel shapes (Chun & Jiang
1999); some were symmetric along the vertical axis, others were symmetric
along another, non-vertical axis. Observers were required to search for a verti-
cally symmetric object among objects that were symmetric around tilted axes.
Unlike the spatial contextual cueing paradigm, we randomly positioned the tar-
get and distractors on each trial so that spatial information was completely use-
less for search. We created Old displays by consistently pairing the target shape
(a particular instance of vertically symmetric objects) with distractor shapes
(a set of tilted objects). The New condition was created by pairing the target
shape with a randomly selected set of distractor objects. In both the New and
Old conditions, target shapes were repeated the same number of times across
the session; and the distractor sets were also similarly repeated. However, target
and distractor set pairings were consistent only in the Old condition. Signifi-
cant benefits were obtained for search through Old displays, which is a notable
result given that target locations were randomized across Old display repeti-
tions. In this form of contextual cueing, learning of the target shape, distractor
shapes, and their consistent pairing allows the shape context to prime the target
shape and make it more detectable.

Even more impressive is the learning of random motion trajectories (Chun
& Jiang 1999). We generated items that all started as “+”s. The items started to
move in random trajectories, and gradually revealed their identity as either Ls
(distractors) or T (target). In the Old condition, the target trajectory was con-
sistently paired with the same set of distractor trajectories across repetitions.
In the New condition, the target trajectory was variably paired with several sets
of distractors across blocks. We matched the initial displays between New and
Old to make sure that learning was not due to repetition of the initial layout in
the Old condition. Results showed that observers were faster to spot the target
when its trajectory was paired consistently with a particular set of distractor
trajectories.

Contextual cueing is not limited to repetition of spatial, identity, or motion
trajectory information, it can also be applied to purely temporal information.
When a target is presented among a sequence of distractors, it can be detected
more rapidly if it is presented at a temporal moment that is predictable from its
preceding context, defined by the varying durations of a stream of distractors
(rhythm) or by a fixed sequence of object identities (Olson & Chun 2001).

These different forms of contextual cueing indicate that the visual system
is equipped with a powerful learning system that can quickly extract important
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invariant information from the visual environment, be it spatial configuration,
shape identity, motion trajectory, or temporal sequence. Learning of such in-
variance then provides top-down guidance to visual attention mechanisms, so
that behaviorally relevant information can be quickly processed.

. Contextual cueing is implicit

Contextual cueing would not be as interesting if the repetitions were obvious.
If observers were aware of the consistent pairing and could immediately no-
tice the repetition, it would be trivial for them to allocate attention to the tar-
get location. We have revealed, instead, that observers in the contextual cueing
task were unaware of the critical association. In addition, even when instructed
of the nature of repetition, observers simply failed to use such information
explicitly.

To assess whether contextual cueing can occur outside of awareness, we
tested conscious memory for repeated contexts (Chun & Jiang 1998). Follow-
ing the spatial contextual cueing task, we asked our observers whether they
had noticed any repetitions in the spatial configuration. Typically fewer than
20% of the participants reported noticing the repetitions. We then presented a
recognition test, in which Old configurations were intermixed with New con-
figurations. Observers were unable to discriminate whether a display was Old
or New at above chance levels, regardless of whether they reported noticing
repeated displays or not. Such chance level performance in recognition con-
trasts sharply with the significant RT benefit in visual search. This suggests
that learning and memory of contextual information are implicit. Similarly, we
found chance-level recognition performance for other forms of contextual cue-
ing, such as shape learning, motion trajectory learning, and temporal sequence
learning (Chun & Jiang 1999; Olson & Chun 2001).

A recognition test, however, is not the most sensitive test of explicit knowl-
edge. In fact, Shanks and St. John (1994) have criticized the assessment of ex-
plicit learning using recognition tests. According to their information crite-
rion, a test of explicit learning needs to probe the same information useful for
the implicit task. For example, in our spatial contextual cueing task, implicit
learning revealed in visual search relies on target location information within
a particular configuration. An explicit test should also probe the same infor-
mation. A recognition test does not fully satisfy the information criterion be-
cause it assesses observers’ familiarity with a configuration, not the association
between a configuration and target location. It is possible that observers may
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have explicit knowledge of the target location among a particular configuration
without being able to explicitly identify that configuration as Old.

To assess the implicit nature of contextual cueing more stringently, we de-
signed a guessing test that explicitly probed the information that was used to
facilitate visual search (Chun & Jiang, accepted). Our search task was the same
as before, except that we added cross marks to separate the display into four
quadrants. In the explicit test, we presented observers with Old and New con-
figurations but substituted the target with a distractor. We then asked observers
to guess the quadrant that was most likely to have contained the target given
a particular configuration. This test procedure was thus more similar to the
visual search task than the Old-New recognition test used before. Unlike the
Old-New recognition test, this guessing task removed the requirement to make
verbal report of which display was old and which was new. Instead, observers
were probed to explicitly determine the target location within a particular con-
figuration, the same information that was presumably useful for the visual
search task as well. Even in this procedure, however, our observers were unable
to guess the target’s location at above chance levels, indicating that they truly
lacked explicit knowledge of what was learned. This guessing test strengthened
our claim that learning during the visual search procedure could occur without
explicit knowledge.

To further test the implicit nature of contextual cueing, we explicitly in-
structed another group of observers that displays would be repeated through-
out the experiment and that attending to the repetitions would facilitate search.
We encouraged them to notice, memorize, and use such repetitions during the
search task. Even with such explicit instruction, subjects did not show a larger
contextual cueing benefit than subjects who did not receive instruction. This
suggests that explicit learning does not (always) contribute to contextual cue-
ing. In addition, guessing task performance did not improve for the instructed
group as well. Although a small portion (25%) of observers reported that they
recognized repetitions during visual search, neither these aware nor other un-
aware observers guessed the target locations for Old displays at above chance
levels. Incidentally, those who reported recognizing repetitions during search
showed, on average, no contextual cueing during visual search, suggesting that
their effort in encoding the displays may have hindered how they approached
the search task. Like other prototypical paradigms of implicit learning (e.g.,
artificial grammar learning), contextual cueing is somewhat impenetrable by
explicit instructions (Reber 1989).

The guidance of attention by implicit learning suggests that attention and
consciousness are not one and the same. Attention can be shaped by some pro-



Contextual cueing 

cesses occurring unconsciously, outside of awareness. Attending to something
is not merely “willfully” devoting conscious effort to some noticeable aspect
of the display. Even when observers are unaware of the critical association be-
tween implicitly learned contexts and target locations, attention is guided to
targets by the same information.

. Neural basis of contextual cueing

Implicit and explicit systems can be dissociated not only at the behavioral level
but also at the neurophysiological level. Although the exact neural substrate for
implicit learning may vary depending on the particular learning task, implicit
learning typically relies on non-hippocampal brain structures. For example,
SRT learning is intact in amnesia (Nissen & Bullemer 1987), and neuroimag-
ing studies have shown that visual-motor regions are involved (Grafton, Hazel-
tine, & Ivry 1998; Rauch et al. 1997). Implicit learning is not affected by dam-
age to the hippocampus, which is critical for explicit, declarative learning and
memory (Squire 1992).

The spatial contextual cueing paradigm provides an interesting exception
to this rule. Because the task is implicit, conventional wisdom suggests that
contextual cueing should also be preserved in amnesia. However, amnesic pa-
tients with hippocampal and neighboring medial temporal lobe damage do
not exhibit contextual cueing effects (Chun & Phelps 1999). Although this ap-
pears to be a puzzling result, it is consistent with animal research that proposes
the hippocampus is important for relational, contextual learning (Cohen &
Eichenbaum 1993; O’Keefe & Nadel 1978), independent of whether the infor-
mation is consciously accessible or not. Damage to the hippocampus produced
impaired spatial learning and memory in rats. Because our task requires re-
lational, contextual learning, it depends on the integrity of the hippocampus
and neighboring structures. This finding does not imply that the hippocam-
pus is not important for explicit learning; it clearly is. However, our result does
suggest that the implicit/explicit learning distinction may not always map onto
dissociable memory systems in the brain. Future studies need to examine what
makes the spatial contextual cueing task hippocampal-dependent: is it because
amnesic patients failed to extract the repeated spatial layouts, or because they
failed to acquire the association between layout and target location.



 Yuhong Jiang and Marvin M. Chun

. Contextual cueing depends on selective attention

Focused attention is clearly needed for explicit learning and memory. What
about implicit learning? Some have argued that it, too, depends on attention
(Nissen & Bullemer 1987); but many others believe that implicit learning can
proceed (somewhat) automatically, independent of attention (Frensch et al.
1998; Jiménez & Méndez 1999, 2001; Stadler 1995).

The Serial Reaction Time task (SRT) has been commonly used to study
this question (Nissen & Bullemer 1987). Observers were presented with four
spatial positions, a target (e.g., the symbol “*”) was presented at one of the
four positions on a trial, and observers pressed one of four keys whose position
corresponded to the target position. Observers performed hundreds of trials,
and unknown to them, a sequence (of 10 trial positions) was repeatedly pre-
sented. As the training progressed, observers got faster in the task. When the
repeated sequence was replaced by a random sequence at the end of the ses-
sion, RT slowed down. Restoring the original repeated sequences immediately
brought RT to a faster level. It has been demonstrated that the SRT task could
be learned implicitly. Explicit learning may occur particularly when simple, re-
peated sequences were used; although it is easily prevented if the sequence is
probabilistic rather than deterministic (Jiménez, Méndez, & Cleeremans 1996)

To determine whether implicit learning is affected by attention, Nissen and
Bullemer (1987) tested subjects under either single or dual task conditions.
In the dual-task condition, subjects were presented with the SRT task along
with tones of high or low frequencies. They needed to perform the SRT task,
and to keep a mental count of the number of high frequency tones. Nissen
and Bullemer found that learning in the SRT task was impaired in the dual-
task condition, suggesting that the withdrawal of attentional resources by the
secondary tone-counting task was detrimental to implicit learning.

This conclusion has been subsequently challenged on several grounds.
First, the tone-counting task produced an effect on the expression of what was
learned, but not on the learning per se (Frensch et al. 1998). If during the test
phase only SRT was performed, then a significant learning effect kicked in im-
mediately, as if subjects had learned the sequence during the dual-task session
but failed to express their learning. Second, the impairment shown in the dual-
task relied on the structure of the SRT series. The tone-counting task had no
effect if the sequence was unique (i.e., each location is uniquely associated with
the next possible location). The counting task impaired learning only for am-
biguous or hybrid sequences (Cohen, Ivry, & Keele 1990). Third, the detrimen-
tal effect of the tone-counting task was not because it grabbed attention away
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from the SRT task, but because the tones themselves created a sequence that
interfered with the acquisition of the primary visuo-motor sequence (Stadler
1995). SRT learning was impaired in a single task when random blank intervals
were inserted in the spatial-motor sequence; and it was preserved in a dual-task
when the secondary task was letter memory. Although the dissociation between
unique and ambiguous sequences in the Cohen et al.’s study has not always
been replicated, Stadler’s (1995) data provide the strongest evidence that SRT
may not depend on attentional resources, at least when the secondary task was
tone-counting or letter memory load.

Thus, it may seem that implicit learning, as reflected by the SRT task, can
proceed automatically without relying on attention. However, research on at-
tention has taught us that the concept of attention is over-inclusive. Instead
of asking whether implicit learning relies on attention, one needs to scrutinize
specifically what attention is. Let’s for a moment consider attention as mental
effort or resources (Kahneman 1973). Attention studies have shown that in-
stead of one pool of resources upon which all mental processes rely, attention
is better considered as multiple pools of resources (Navon & Gopher 1979).
Auditory and visual tasks, for instance, possibly rely on separate attentional
resources (Duncan, Martens, & Ward 1997; Potter, Chun, Banks, & Mucken-
houpt 1998; Treisman & Davies 1973). Even though the tone-counting task was
extremely effortful, it may not have used any resources needed by the visual-
motor SRT task. It is debatable whether the letter load task used by Stadler
(1995) relied on the same resources as the SRT task as well. One may object
that our argument is untestable, as it is impossible to determine how many dif-
ferent types of separate resources exist. This is precisely the problem with the
multiple resources concept (Navon & Gopher 1979). Consequently, it is not
easy to answer affirmatively whether implicit learning depends on attentional
resources. Instead, it is more feasible to characterize what resources are or are
not needed by implicit learning. The answer to this question is likely to de-
pend on the nature of the particular implicit learning task. A visual-motor task
(SRT) may give a different answer than a spatial layout task.

In addition to “efforts” and “resources”, attention can also be consid-
ered as a selective process. Portions of the input are selectively attended while
others are ignored. Viewed as a selective process, is attention necessary for
implicit learning?

Using the SRT paradigm and probabilistic sequences, Jiménez and Mén-
dez (1999) examined how selectivity affects implicit learning. Subjects in their
study always had to respond and attend to the location at which the target
appeared. In addition, the shape of the target could be one of four, and it
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predicted the next location. The association between shape and target loca-
tion was learned only when observers attended to the shape of items. In con-
trast, learning of the location series was not affected by a secondary tone-
counting task, suggesting a possible dissociation between selection and re-
sources (Kahneman 1973).

We have recently addressed the effect of selective attention using the spatial
contextual cueing paradigm (Jiang & Chun 2001). To achieve selective attend-
ing, we presented observers with items in two sets of colors: red and green,
and instructed observers to attend to one color set (e.g., all the red items).
This manipulation allowed us to orthogonally manipulate the repetition of the
attended set and the ignored set of items, which were interleaved with each
other on the screen. Unlike Jiménez and Méndez’s study which varied whether
one dimension (shape) of an object was attended or not, our study allowed
attention to selectively pick out a group of objects from other objects.

When the attended configuration of items was repeated but the ignored
set was random, observers showed a significant contextual cueing effect. This
suggested that the attended set could have an effect, even when this set only
constituted half of the entire display. In contrast, when the ignored set was re-
peated but the attended set was random, no contextual cueing was observed
(see Figure 3). Interestingly, the impact of the ignored set was modulated by
the difficulty of the task. When the target was highly similar to the distractors
in shape, repeating the ignored set had no effect on RT. But when the target was
dissimilar to the distractors and the task was easy, repeating the ignored set pro-
duced a small but significant contextual cueing. We believe that this pattern of
results can be explained by the perceptual load theory (Lavie 1995; Lavie & Tsal
1994). When selecting the target from the distractors was easy, some attentional
resources were available to process the ignored set, resulting in imperfect selec-
tivity. As the task difficulty increased, observers attended harder to the relevant
set and the ignored set was more efficiently filtered. In this framework, atten-
tional load (resources) and selectivity are closely related. The load affects the
efficiency of selectivity, which in turn affects the amount of implicit learning of
“unattended” events.

One may wonder, if the ignored set failed to support contextual cueing,
why was there contextual cueing in the standard paradigm? After all, wasn’t the
configuration created by distractors, and weren’t all distractors rejected in the
experiment? The answer lies in that the distractors in the standard paradigm
were similar to the target and were thus rejected by an attentive process (Dun-
can & Humphreys 1989; Treisman & Sato 1990). In contrast, the ignored set
tested in Jiang and Chun (2001) differed from the target by a salient single fea-
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Figure 3. The effect of the attended set factor (A) and the effect of the ignored set factor
(B). Adopted from Jiang and Chun 2001.

ture – color, and was thus rejected by a pre-attentive process. Only in the latter
case was the ignored set efficiently ignored. In contrast, the distractors tested
in the standard paradigm were initially attended and then rejected, sufficient
to produce contextual cueing.

We conclude, therefore, that spatial contextual cueing depends on selective
attention. This is our second piece of evidence against the idea that attention
and consciousness are one and the same. Implicit learning acquired outside
awareness may nevertheless rely on selective attention. This also serves to un-
derscore the notion (Wright & Whittlesea 1998) that implicit learning is not a
passive system that is entirely stimulus driven.

Do all forms of implicit learning depend on selective attention? So far
there is not enough data to answer this question affirmatively. We know from
Jiménez and Méndez’s (1999) study that in SRT, learning of the shape sequence
relies on selective attention. So SRT and contextual cueing paradigms converge
on this point. It is possible, however, that different implicit learning tasks may
rely on selective attention to different degrees. The effect of attention may also
differ depending on the role of selection: whether it is to select some objects
from others, one dimension of the same object from other dimensions, or one
spatial location from several locations. What is clear is that at least some im-
plicit learning tasks critically rely on selective attention; whether all forms of
implicit learning behave in the same way requires further investigation.

To conclude, studies on contextual cueing revealed that top-down atten-
tion can be efficiently deployed to relevant information extracted from past
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experience. Such deployment of attention occurs largely in an implicit manner.
In addition, what can be learned through past experience depends on what in-
formation is selectively attended. Implicit learning shapes visual attention, and
visual selective attention modulates what can be implicitly learned.
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Attention and implicit memory

Neil W. Mulligan* and Alan S. Brown
Southern Methodist University

Memory . . . is the knowledge of a former state of mind after it has already once
dropped from consciousness; or rather it is the knowledge of an event, or fact, of
which meantime we have not been thinking, with the additional consciousness
that we have thought or experienced it before. [italics in original]

(James 1890:648)

Whatever future conclusions we may reach as to this, we cannot deny that
an object once attended to will remain in the memory, whilst one inattentively
allowed to pass will leave no traces behind. [italics in original]

(James 1890:427)

This chapter investigates the role of attention during encoding in implicit
memory. The above quotes provide a useful starting point because they present
a view of memory and attention that is traditional in two ways. First, James fo-
cuses on memory as the faculty of conscious recollection; the recognition of
a current mental state as the product of past experience. Second is the asser-
tion that attention plays a critical role during memory encoding, that attend-
ing to an object enhances later memory for its occurrence. The present paper
examines these traditional views in light of recent research on attention and
implicit memory.

The first of the James’ quotes reflects the common usage of the term “mem-
ory” to imply conscious recollection. However, researchers have long supposed
that memory for prior events can affect behavior when people are not trying
to remember, and indeed, when people are not aware that memory for prior
events is operative (Ebbinghaus, 1885; James, 1890, in his chapter on Habit,
was not insensitive to this point). In modern psychology, a confluence of results
from cognitive psychology, neuropsychology, and neuroscience has focused in-
terest onto these same issues, centering around the distinction between explicit
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and implicit memory (e.g., Roediger & McDermott 1993; Schacter 1987, Tul-
ving & Craik 2000; Squire 1992). “Explicit memory refers to intentional or
conscious recollection of prior experiences, .. .. implicit memory, by contrast,
refers to changes in performance or behavior that are produced by prior ex-
perience on tests that do no require any intentional or conscious recollection”
(Schacter 1992:244).

Explicit memory is typically measured with traditional memory tests, such
as recognition and recall, in which participants are directed to think back
about some prior (usually experimenter-provided) event and report informa-
tion about it. On implicit memory tests, participants are simply asked to per-
form a task (e.g., completing word fragments; generating category examples),
without reference to any prior experience. Memory for prior events is inferred
from the increased ability to complete, generate, identify, or otherwise process
the present stimuli. The enhanced processing is called priming.

The principles that govern implicit and explicit memory appear to dif-
fer in important ways (for reviews see Roediger & McDermott 1993; Schacter
1987; Toth 2000). Particularly striking are population dissociations between
implicit and explicit memory. For example, compared to healthy control sub-
jects, amnesics are profoundly impaired on explicit memory tests but often
not on implicit tests (Shimamura 1993). Several other populations (such as
people with depression, or schizophrenia, and older adults) show a similar
pattern: deficient explicit memory coupled with normal, or near-normal, lev-
els of priming on implicit memory tests (e.g., Denny & Hunt 1992; Elliott &
Greene 1992; Light 1991; Mitchell, Brown, & Murphy 1990; Schwartz, Rosse,
& Deutsch 1993). Pharmacological treatments have produced similar dissoci-
ations. For example, several studies have reported that administering benzodi-
azepine (a class of drugs including alprazolam, triazolam, diazepam, and mi-
dazolam) prior to a study session produces poor explicit memory but equiva-
lent performance on implicit tests compared to a placebo-control group. Thus,
pharmacological amnesia produces the same type of dissociation as produced
by organic amnesia: it affects conscious recollection but appears to have no af-
fect on unconscious influences of memory (see Curran 2000, for a review). In
addition to population and pharmacological dissociations, a number of exper-
imental manipulations, such as levels-of-processing, the read/generate manip-
ulation, and study modality, have also produced dissociations between prim-
ing and performance on explicit tests (Roediger & McDermott 1993). Such
dissociations, coupled with recent neuroimaging evidence (e.g., Gabrieli 1998;
Schacter & Badgaiyan 2001), argue for the existence of separable components
of memory underlying implicit and explicit memory phenomena.
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The second James’ quote embodies the traditional view that attention dur-
ing encoding plays a critical role in later memory performance. Consistent with
this view, there is overwhelming evidence that dividing attention during encod-
ing reduces performance on many explicit measures of memory, including free
and cued recall and recognition (e.g., Baddeley, Lewis, Eldridge, & Thomp-
son 1984; Broadbent 1958; Cherry 1953; Craik, Govoni, Naveh-Benjamin, &
Anderson 1996; Fisk & Schneider 1984; Moray 1959; Murdock 1965; Norman
1969). These findings encouraged early information-processing psychologists
to concur with James, and posit that attention is required for the formation
of durable memory traces (e.g., Broadbent 1958; Cherry 1953; Moray 1959;
Norman 1969). For instance, Norman (1969) in his book Memory & Attention,
states that attention is required for the analysis and organization of incoming
stimulus information. It is only with such attention-demanding encoding pro-
cesses that new information could be integrated into existing knowledge struc-
tures in ways that support later retrieval (Norman 1969, especially pp. 177–
181). A similar, central role for attention in encoding has also been espoused
in more recent work (e.g., Bentin 1994; Craik 1989; Craik et al. 1996; Cowan
1995; Fisk & Schneider 1984).

Given the centrality of attention in theories of memory encoding, and the
rather uniform effects of divided attention on explicit memory, it is important
to evaluate the role of attention in implicit memory, especially because differ-
ent researchers have come to very different conclusions about the reliance of
implicit memory on attention. Some researchers have concluded that attention
during encoding is crucial for implicit as well as explicit memory (e.g., Pash-
ler 1998; Wood, Stadler, & Cowan 1997). Others have concluded that implicit
memory, in contrast to explicit memory, has little reliance on attention and
largely reflects automatic encoding processes (e.g., Bentin et al. 1995; Besson,
Fischler, Boaz, & Raney 1992; Graf & Mandler 1984; Isingrini et al. 1995; Ja-
coby, Toth, & Yonelinas 1993; Jacoby et al. 1989; Jelicic, Bonke, Wolters, & Phaf
1992; Parkin et al. 1990; Parkin & Russo 1990; Shallice et al. 1994; Szyman-
ski & MacLeod 1996). Still others have suggested that attention is important
for some forms of implicit memory but not others (e.g., Gabrieli et al. 1999;
Mulligan & Hartman 1996; Wolters & Prinsen 1997).
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. Initial studies: Attentional state dissociates implicit
and explicit memory

Some of the initial studies of attention and implicit memory revealed dis-
sociations between implicit and explicit tests. Consider the results of Parkin
and Russo (1990). During the encoding phase of this experiment, participants
named fragmented pictures of everyday objects. Each study trial began with
the most fragmented version of the picture and progressed through increas-
ingly less fragmented versions of the picture, until the participant succeeded
in identifying the object. The level of fragmentation was recorded and the par-
ticipant proceeded to the next trial. In the full attention condition, this was
the sole task. In the divided attention condition, this study task was performed
simultaneously with a tone-monitoring task, in which a series of tones were
presented over an audio tape at random intervals every 2 to 5 seconds. Partici-
pants categorized the tones as high, medium, or low, as they tried to identify the
fragmented pictures. Twenty-four hours later, participants were either given an
explicit test, in which they recalled the names of the pictures, or an implicit
test, in which they identified fragmented pictures using the same procedure
as in the study session. The picture-fragment test included pictures from the
study episode as well as counterbalanced new pictures. Priming was indicated
by identification of studied (or old) pictures at lower levels of clarification than
the new pictures. For the recall test, the full attention group recalled an av-
erage of 8.5 of the 15 studied pictures whereas the divided attention group
recalled only 5.9. As expected, dividing attention had a substantial effect on
explicit memory, reducing recall by 30%. However, the amount of priming on
the picture-fragment task was essentially the same for the full and divided at-
tention conditions (with averages of 2.19 and 2.06, respectively on Parkin &
Russo’s picture fragmentation scale).

The results of Parkin and Russo (1990) indicate that dividing attention
during encoding, which virtually always reduces explicit memory, may have
little impact on implicit memory, at least for some divided-attention tasks and
for some implicit memory tests (see Jacoby et al. 1989; Mulligan & Hartman
1996; Parkin, Reid, & Russo 1990; Russo & Parkin 1993; Schmitter-Edgecombe
1996a, 1996b for similar results). Likewise, when attention is diverted from an
information source by a very distracting task, explicit memory may be elim-
inated entirely (Cherry 1953; Moray 1959) while implicit memory tests still
demonstrate evidence of retention (e.g., Eich 1984; Jelicic, Bonke, Wolters,
& Phaf 1992; Mandler, Nakamura, & Van Zandt 1987; Merikle & Reingold
1991; Seamon, Marsh, & Brody 1984). For instance, Eich (1984) used a di-
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chotic listening task in which the unattended channel included a series of ho-
mophones together with words that biased their less frequent meaning (e.g.,
taxi-FARE). Subjects showed no memory for the unattended homophones on
an explicit test of recognition. However, when the subjects were simply asked
to spell the target homophones, with no overt reference to the listening task,
there was a greater likelihood of choosing the biased rather than the unbiased
spelling. Thus, an implicit test of memory indicated that information about
the unattended information was retained (cf. Wood et al. 1997).

These types of dissociations gave impetus to the claim that implicit mem-
ory relies largely on automatic encoding processes, which we refer to as the
attentional view of implicit memory. However, subsequent research demon-
strates that this view is no longer tenable.

. The distinction between perceptual and conceptual implicit memory

A thorough consideration of recent research on attention and implicit memory
begins with the distinction between perceptual and conceptual implicit tests as
described in the transfer-appropriate processing (TAP) account. This is a use-
ful starting point because the TAP view is a prominent account of implicit
memory, rendering the most successful account of functional dissociations
(Roediger 1990; Roediger & McDermott 1993; Roediger, Buckner, & McDer-
mott 1999). In addition, much of the recent research on attention and implicit
memory has been framed around the perceptual-conceptual distinction (e.g.,
Gabrieli et al. 1999; Light, Prull, & Kennison 2000; Mulligan 1997, 1998; Mul-
ligan & Hartman 1996; Mulligan & Stone 1999; Schmitter-Edgecombe 1996a,
1996b, 1999). Within the TAP framework, performance on a memory test is
enhanced to the extent that encoding processes are re-engaged at the time of
retrieval (Kolers & Roediger 1984; Morris, Bransford, & Franks 1977). More
specifically, the TAP framework proposes that memory tests should be char-
acterized primarily by the types of memory processes that they engage, rather
than by test instructions (i.e., implicit vs. explicit). Towards this end, the TAP
framework differentiates between two broad classes of memory process, per-
ceptual processes, defined as the analysis of perceptual or surface-level fea-
tures, and conceptual processes, defined as the analysis of meaning or semantic
information.

The most widely used implicit memory tests involve the identification or
completion of degraded or ambiguous perceptual cues, such as word fragments
or stems, briefly presented words, or fragmented pictures. The TAP framework
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posits that these tests are primarily dependent on perceptual retrieval pro-
cesses. As a consequence, these tests are sensitive to variation in perceptual pro-
cesses at encoding but relatively insensitive to variation in conceptual encoding.
In contrast, commonly-used explicit tests (such as free recall and recognition)
are assumed to primarily utilize conceptual processes during retrieval (Craik,
Moscovitch, & McDowd 1994; Roediger, Weldon, Stadler, & Reigler 1992). The
TAP framework accounts for dissociations between implicit and explicit tests
in terms of the differences between underlying processes rather than in terms of
task instructions. Specifically, because the most common implicit and explicit
memory tests rely differentially on perceptual and conceptual processes, per-
formance on these two types of tests benefit from different types of encoding
procedures and are thus dissociable.

It is important to note, however, that not all implicit tests are perceptual
and not all explicit tests are conceptual. With the appropriate combinations of
memory cues and task instructions, conceptual implicit tests and perceptual
explicit tests may be constructed. The TAP framework proposes that concep-
tual and perceptual retrieval tasks are dissociable regardless of their implicit–
explicit status. This parsimonious approach has had a good deal of success in
accounting for and predicting dissociations among memory tests (see Roediger
& McDermott 1993, for a review).

With regard to the effects of attention, the TAP framework produces two
implications. If, as is traditionally assumed, dividing attention at study reduces
the amount of conceptual or semantic processing (e.g., Broadbent 1971; Craik
1983; Craik & Byrd 1982; Craik et al. 1996; Norman 1969) but has little or no
effect on perceptual identification processes, then the TAP framework predicts
that: 1) divided attention should have little or no effect on perceptual tests; and
2) divided attention should reduce priming on conceptual tests. Consequently,
the TAP view predicts that divided attention will produce a functional dissoci-
ation not only between perceptual implicit tests and conceptual explicit tests,
but also between perceptual and conceptual implicit tests.

Most of the initial studies on attention and implicit memory focused on
perceptual implicit memory and produced results consistent with the TAP
view (some exceptions will be discussed later). For example, Parkin and Russo
(1990) found that dividing attention disrupted free recall but not perceptual
priming in picture-fragment completion. Parkin et al. (1990) used a similar
tone-monitoring to divide attention at encoding and found that it reduced
recognition memory but not perceptual priming in the word-fragment com-
pletion test (see also Russo & Parkin 1993). Smith and Oscar-Berman (1990)
reported that dividing attention during encoding left priming in lexical deci-
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sion unaffected when the studied materials were words (though interestingly,
not when the studied items were non-words). Bentin et al. (1995) reported
similar results; dividing attention during encoding with dichotic listening im-
paired recognition memory but not perceptual priming in lexical decision (this
experiment only used words as studied materials). In addition, Jacoby et al.
(1989) found that dividing attention during encoding reduced recognition but
had no significant effect on priming in the fame judgement task (although it is
unclear that this task would be categorized as perceptual according to the TAP
framework; see Mulligan & Hartman 1996, for discussion).

There were two aspects of this research that prompted the study by Mulli-
gan and Hartman (1996). First, the earlier research had focused on perceptual
implicit memory, and Mulligan and Hartman wanted to determine if the dis-
sociation between explicit and implicit memory would generalize to concep-
tual tasks. The TAP view suggests it would not, whereas the attentional view
suggests that it would. Second, the prior studies in which divided attention
dissociated (perceptual) implicit and explicit memory had used memory tests
that differed in several ways besides task instructions (the defining, or opera-
tional, characteristic of implicit and explicit memory tests) (Schacter, Bowers,
& Booker 1989). A typical example is Parkin and Russo (1990) who contrasted
free recall and picture fragment completion, tasks that differ in terms of overt
retrieval cues and response requirements, as well as task instructions. Thus, it
was unclear if these dissociations were actually due to type of test (i.e., implicit
vs. explicit) or to one of the other differences between the implicit and explicit
tests used. In order to determine if the differentiating effects of attention are
due to the implicit/explicit distinction, one needs to compare performance on
memory tests that are equivalent in all regards except test instructions.

Mulligan and Hartman (1996) conducted a pair of experiments to exam-
ine these issues. In each experiment, participants studied words under a full or
divided-attention condition. In the full attention condition, participants’ sole
task was to read aloud a series of words presented on a computer screen. In
the divided attention condition, participants read aloud the words and simul-
taneously monitored a series of aurally-presented digits, signaling whenever
they heard three odd numbers in a row. After a brief distractor task, partic-
ipants were given one of a number of memory tests. In one experiment, the
test was either word-fragment completion, a perceptual implicit test, or its ex-
plicit counterpart, word-fragment cued recall. The latter task used the same
word-fragment cues but participants were instructed to use the fragments to
try to remember completions from the study list. The other experiment ex-
amined conceptual implicit memory, using the category-exemplar production
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task, a commonly-used conceptual implicit test in which participants are pre-
sented with the names of categories and asked to rapidly produce examples.
Although the participants are not informed, some of the categories correspond
to examples presented in the study list and some do not. Conceptual prim-
ing is computed as the difference between the proportion of the studied ex-
emplars produced and an appropriate baseline measure. A separate group of
participants was given a category-cued recall test, the explicit counterpart of
category-exemplar production, in which participants are presented with the
same category names and asked to use them to recall studied examples.1

As noted above, the TAP view predicts that dividing attention should im-
pact the conceptual implicit test, as well as its explicit counterpart. In addition,
the TAP view predicts that there should be no effect on the perceptual test, to
the extent that the full and divided attention conditions produced complete
perceptual analysis of the stimulus. With regard to the word-fragment cued
recall test, the TAP view suggests that this task should be affected by divided
attention because conceptual memory processes appear to play a larger role in
explicit tests (Craik et al. 1994; Graf & Mandler 1984; Roediger et al. 1992).
Thus, changing the instructions of a perceptual implicit test to render a com-
parable explicit test should also have the effect of making the test sensitive to
the effects of divided attention.

The results of this study confirmed these expectations and are presented
in Figure 1. First, as expected, explicit memory was reduced by divided atten-
tion in both the word-fragment and category cued recall tests. Second, per-
ceptual priming in the word-fragment completion task was unaffected by this
divided-attention manipulation. Coupled with the results of word-fragment
cued recall, this result indicates that dividing attention can dissociate percep-
tual priming from explicit memory when matched implicit and explicit tests,
ruling out alternative explanations based on differences in retrieval cues or re-
sponse requirements. Third, dividing attention had a substantial effect on the
category-exemplar production test, not only reducing conceptual priming, but
rendering it non-significantly different from zero. Figure 1 represents a dissoci-
ation not only between perceptual implicit memory and explicit memory but
also between perceptual and conceptual implicit memory. Thus, conceptual
implicit memory appears to be quite reliant on attention during encoding.
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Figure 1.

. Attention and conceptual implicit memory

The results of Mulligan and Hartman (1996) indicated that dividing atten-
tion can have substantial impact on conceptual priming as measured by the
category-exemplar production test. This result has been replicated a number
of times. Schmitter-Edgecombe (1996b) used a tone-monitoring task (simi-
lar to that used by Parkin & Russo 1990) to divide attention and found that
it reduced both category-cued recall and category-exemplar priming, a pat-



 Neil W. Mulligan and Alan S. Brown

tern of results replicated under somewhat different conditions in Schmitter-
Edgecombe (1999). Gabrieli et al. (1999) used the same digit monitoring task
as Mulligan and Hartman (1996) and likewise found significant reductions
in conceptual priming in category-exemplar production. Finally, Light et al.
(2000) report a consistent result using a somewhat different divided-attention
task. In this study, younger and older adults encoded words in either a full or
divided-attention condition. In the full attention condition, each word was pre-
sented on a computer screen and judged as pleasant or unpleasant (by pressing
an appropriately labeled key). In the divided-attention condition, each word
was presented with a single-digit number on either side (e.g., 5 BRONZE 7).
Participants were to judge the word as in the full attention condition and
also to add the two numbers together and report whether the sum was an
even or odd number. This divided-attention task produced sharp reductions
in category-cued recall and in category-production priming for both the older
and younger adults.

Category-exemplar production task appears to be sensitive to divided at-
tention. Mulligan (1998) reported that this effect generalized to two other con-
ceptual priming tasks, general knowledge questions and word association. The
former test consists of a set of questions presented as a general knowledge, or
trivia test. The answers to some of the questions are presented in the study por-
tion of the experiment. An increased tendency to answer these questions cor-
rectly (relative to control questions) represents priming in this task. In the word
association test, participants are presented with cue words (e.g., DOCTOR)
and asked to produce the first word that comes to mind. Associates of some of
the cue words (e.g., NURSE) were presented at study. Priming is evident to the
extent that studied associates are more likely to be produced than associates not
presented at study. Within the TAP framework, these tests are considered con-
ceptual because they are affected by conceptual encoding manipulations, such
as the generation manipulation (Blaxton 1989, 1992) and levels-of-processing
(Hamann 1990), and are unaffected by perceptual encoding manipulations,
such as varying study modality (Challis et al. 1993; Vaidya et al. 1997) (see
Roediger & McDermott 1993, for a review). The TAP framework implies that
these implicit tests should be affected by divided attention during encoding.
Mulligan (1998) manipulated attention at encoding with the digit-monitoring
task and found greater priming in the full than divided attention condition for
both the general knowledge and the word-association tests.
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. Some limitations on the effects of divided attention
on conceptual priming

The results reviewed above imply that conceptual priming is generally affected
by attentional manipulations. However, other studies have produced conflict-
ing results, raising several issues about the relationship between attention and
conceptual priming, and attention and implicit memory more generally. First,
divided attention tasks may differ in the extent to which they distract partici-
pants from the primary (encoding) task, a difference we refer to as the strength
of the divided-attention manipulation. Such differences may account for diver-
gent results (Mulligan 1997; Wolters & Prinsen 1997). For example, although
Mulligan and Hartman (1996) and others found that divided attention reduced
priming in the category-exemplar production task, a study published at about
the same time (Isingrini et al. 1995) produced opposing results. In Isingrini et
al.’s, participants studied category examples under conditions of full or divided
attention and subsequently were tested with category-exemplar production or
its explicit counterpart, category-cued recall. The divided attention manipula-
tion reduced recall but not, in contrast to Mulligan and Hartman (1996), con-
ceptual priming. This led Isingrini et al. to conclude that conceptual implicit
memory reflects automatic encoding processes.

The type of distractor task differed between these two studies, leading Mul-
ligan (1997) to hypothesize that the strength of the attention manipulation
might account for the divergent results. Isingrini et al. (1995) used a letter de-
tection task to divide attention, in which participants monitored a tape record-
ing of a series of consonants and signaled if they detected a “B” or a “G”. Mul-
ligan and Hartman (1996) divided attention with the digit-monitoring task. It
can be argued that Isingrini et al.’s was the less demanding of the two because
participants only had to evaluate one stimulus at a time; they did not have
to maintain any preceding consonants in memory. In contrast, participants in
the Mulligan and Hartman study had to evaluate each stimulus, plus main-
tain information about immediately preceding stimuli. In addition, Mulligan
and Hartman kept their participants focused on the detection task by prompt-
ing subjects if they missed a target sequence, while Isingrini et al. did not,
which may also have increased the effectiveness of the Mulligan and Hartman’s
divided-attention task.2

To examine this issue, Mulligan (1997) varied attention at encoding by ma-
nipulating short-term memory loads. Prior to the presentation of each study
word, the subject was presented with an attentional load of 0 (a full atten-
tion condition), 1, 3 or 5 digits and letters. The digits and letters were to
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Figure 2.

be maintained in memory until a RECALL signal was presented a few sec-
onds later. This technique allows a controlled division of attention over several
levels within a single experiment (e.g., Baddeley & Hitch 1974; Engle, Con-
way, Tuholski, & Shisler 1995). Subsequently, memory for the study words
was assessed with either the category-exemplar production test or category-
cued recall.
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The results of Mulligan (1997) are presented in Figure 2. Consider first the
recall results. Recall in the 0-load condition was significantly greater than in any
other condition, performance in the 5-load condition was significantly lower
than in any other condition, and performance in the 1- and 3-load conditions
did not significantly differ. For category-exemplar production, priming in the
5-load condition was significantly lower than in any of the other conditions and
no other pair of conditions differed significantly. In addition, t-tests revealed
significant priming in the 0-, 1- and 3-load conditions but not in the 5-load
condition.

These results may resolve the conflicting results of Isingrini et al. (1995)
and Mulligan and Hartman (1996). Considering the 0-load condition as a full
attention condition and the 3-load condition as a moderate divided-attention
condition, the results replicate Isingrini et al. Over this range, dividing atten-
tion produced a small and non-significant decrease in category-exemplar pro-
duction and a larger, significant decrease in category-cued recall. If we contrast
the 0-load (full attention) condition with the 5-load condition (considering
it to be a strong divided-attention condition), the results replicate Mulligan
and Hartman: Dividing attention produced large, significant decreases in per-
formance on both memory tests. Furthermore, as in Mulligan and Hartman,
strong division of attention not only decreased priming, it eliminated it. This
appears to resolve the discrepancy between Mulligan and Hartman’s results and
those of Isingrini, et al. Conceptual priming in the category-exemplar pro-
duction task is affected by divided attention, but the division of attention in
Isingrini et al. was too mild to reveal this.

Mulligan and Stone (1999), using the attention load paradigm of Mulligan
(1997), documented a different limitation of the effect of divided attention on
category-exemplar production. First, it should be noted that in experiments
using the category-exemplar production task, several examples from each cat-
egory are typically presented in the study list. In Mulligan (1997), the study
lists were randomly organized such that no two examples from a category ap-
peared in sequence, and all of the examples from a category were in the same
attention condition (i.e., 0-, 1-, 3-, or 5-load condition). As noted above, Mul-
ligan found that higher attentional loads reduce conceptual priming. Mulligan
and Stone obtained this same result when attentional load was manipulated
within categories, such that examples from the same category were presented
with different sized attentional loads, as well as between categories. Mulligan
and Stone also presented study lists blocked by category, such that all the ex-
amples from the same category appeared in sequence, rendering the categor-
ical structure of the list quite salient. When the study list was presented in a
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blocked fashion, and attention was manipulated between categories, then con-
ceptual priming was reduced. However, if the study list was blocked (rendering
category-level information readily accessible during encoding) and attention
was varied within categories, then priming in this task was unaffected, even
in the 6-load condition, a more intensive attentional load than those used by
Mulligan (1997). Under these same conditions, category-cued recall is substan-
tially affected. Thus, Mulligan and Stone demonstrate that as attentional de-
mands increase, conceptual priming in the category-exemplar production task
is reduced when the categorical structure of the list is not obvious, but not if
the categorical information is quite salient (i.e., if category level information is
available in working memory at the time of encoding).

The strength of the attentional manipulation or the structure of the en-
coding list may ameliorate the normally deleterious effects of divided attention
on category-exemplar production. In fact, the strength of the attentional ma-
nipulation may impact the amount of priming for other conceptual implicit
tests (i.e., word association, general knowledge questions) that have otherwise
exhibited robust effects of divided attention. Another limiting condition of the
effects of divided attention on conceptual priming was raised by Gabrieli et al.
(1999), who argued that divided-attention effects may not generalize to all con-
ceptual priming tasks. During the study portion of Gabrieli et al.’s experiments,
participants were presented with a number of category examples in either a full
or divided attention condition. In the full attention condition, each word was
judged as manmade or natural. In the divided-attention condition, the par-
ticipant made the manmade-natural decisions while simultaneously carrying
out the digit-monitoring task. Subsequently, participants were given either the
category-exemplar production task, or a category-verification task. In the latter
task, participants were presented with a category-verification question (e.g., Is
this a type of furniture?) followed by a test item (e.g., DESK) which may or may
not be a member of the category. Some of the test items were from the study list
and others were not (the counterbalanced, new items). Participants answered
each question as quickly as possible and priming was measured as decreased
reaction time to old compared to new items. Gabrieli et al. argue that this task
is conceptual because the relevant information to-be-retrieved is conceptual
rather than perceptual in nature.

Gabrieli et al. (1999) found that dividing attention reduced priming in the
category-exemplar production task (replicating Mulligan & Hartman 1996, as
noted above), but not in the category-verification task. Light et al. (2000) repli-
cated this result with older and younger adults using their sum task (i.e., odd-
even judgement of the sum of two digits, described above) to divide atten-
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tion. While this task significantly reduced cued recall, recognition memory,
and category-production priming, it did not significantly reduce priming in
the category-verification task for either younger or older adults (Light et al.
2000). These results are problematic for the TAP view because the divided-
attention tasks appear to be robust manipulations of attention and yet they do
not affect an implicit task that relies on the retrieval of conceptual information.

In contrast to Gabrieli et al. (1999) and Light et al. (2000), a study by Bentin
et al. (1998) produced the opposite conclusion. The differences in procedures
between Bentin et al. on the one hand, and Gabrieli et al. and Light et al. on the
other, may shed light on the type of processing required by this task. In each
study trial of Bentin et al.’s Experiment 3, two words were presented, one above
and one below a fixation point. One of the words was printed in red and the
other in blue. Participants were told to attend to one of the words and ignore
the other based on color. Participants decided whether the attended word re-
ferred to a living or a non-living object, and were later tested using the same
speeded living – non-living judgements. The test items consisted of words at-
tended at study, those unattended, and new items. Reaction times were signif-
icantly faster to the attended than either unattended or new words, and the
latter two did not differ. Thus, diverting attention from a word not only re-
duced but eliminated priming in the category verification test. Given the simi-
larity between Bentin et al.’s implicit test and that used by Gabrieli et al. (1999),
Bentin et al.’s result imply that there are attentional requirements for the cat-
egory verification task. The differences in the selective attention manipulation
of Bentin et al. and the divided attention manipulations of Gabrieli et al. (1999)
and Light et al. (2000) foreshadow issues that arise as we consider the role of
attention in perceptual implicit memory.

. Attention and perceptual implicit memory

Except for the conflicting results from category verification, conceptual prim-
ing appears dependent on attention during encoding in the category-exemplar
production, general knowledge questions, and word association tasks. Stud-
ies using perceptual implicit tests have produced even more mixed results. As
noted earlier, several studies found that perceptual priming was unaffected by
manipulations of attention (e.g., Clarys et al. 2000; Gabrieli et al. 1999; Mulli-
gan 1998; Mulligan & Hartman 1996; Kellogg et al. 1996; Parkin & Russo 1990;
Parkin et al. 1990; Russo & Parkin 1993; Schmitter-Edgecombe 1996a, 1996b;
Szymanski & MacLeod 1996). In contrast, a number of studies have found that
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directing attention away from the identity of the target stimuli can reduce later
perceptual priming (e.g., Bentin et al. 1998; Crabb & Dark 1999; Hawley &
Johnston 1991; Kinoshita 1995; Light & Prull 1995; MacDonald & MacLeod
1998; Stone, Ladd, & Gabrieli 2000; Stone, Ladd, Vaidya, & Gabrieli 1998).3

. Hypotheses on the relationship between attention
and perceptual priming

Experiments on attention and perceptual priming have used a variety of at-
tentional manipulations, materials and memory tests, giving rise to a number
of factors that may account for the divergent results. In our recent research
(Mulligan 2001; Mulligan & Hornstein 2000), we have focused on three factors
that seemed especially promising: (a) stimulus identification during study; (b)
intra-modal versus cross-modal manipulations of attention; and (c) the type
of response to distracting stimuli.

.. Stimulus identification
First, attentional effects in perceptual priming may be mediated by stimulus
identification. Studies reporting divided-attention effects typically use atten-
tional manipulations that render overt (or covert) identification of the study
items unlikely or nearly impossible (e.g., Bentin et al. 1998; Crabb & Dark 1999;
Eich 1984; Hawley & Johnston 1991; Kinoshita 1995; MacDonald & MacLeod
1998). These studies typically use selective attention tasks, in which partici-
pants’ attention is directed away from the identity of the study stimuli. In con-
trast, those studies finding no effect of attention used divided-attention ma-
nipulations that rendered overt (or covert) identification likely, and in most of
these studies, overt identification of the study items was required (e.g., Clarys et
al. 2000; Gabrieli et al. 1999; Mulligan 1998; Mulligan & Hartman 1996; Parkin
et al. 1990; Russo & Parkin 1993; Smith & Oscar-Berman 1990; Schmitter-
Edgecombe 1996a, 1996b). Thus, the stimulus-identification hypothesis, sug-
gests that dividing attention impairs perceptual priming only if the attentional
manipulation disrupts identification of the study items.

The stimulus-identification account is consistent with the results of studies
utilizing very brief presentations at encoding (e.g., Gellatly, Parker, Blurton, &
Woods 1994; Hawley & Johnston 1991). Priming increases directly with iden-
tification rates at encoding, indicating that disrupting identification has dele-
terious effects on perceptual priming. Likewise, directing attention away from
the lexical properties of the study item reduces perceptual priming (Hayman
& Jacoby 1989). In addition, this account is consistent with theoretical views
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of perceptual priming. The TAP account predicts that truncation of perceptual
or lexical analysis would curtail later perceptual priming (Roediger & McDer-
mott 1993). A variant of the TAP view suggests that perceptual priming for
verbal materials requires lexical access (i.e., perception of the word as a lexical
entity) (e.g., Bentin et al. 1998; Hayman & Jacoby 1989; Weldon 1991; Wel-
don & Jackson-Barrett 1993). If an attentional manipulation precludes lexical
access on at least some study trials, then a concomitant reduction in priming
is expected.

.. Intra- vs. cross-modal manipulation of attention
The second factor involves the distinction between intra-modal and cross-
modal manipulations of attention. Most studies reporting null effects used
cross-modal division of attention (Mulligan & Hartman 1996; Parkin et al.
1990; Parkin & Russo 1990; Russo & Parkin 1993; Schmitter-Edgecombe 1996a,
1996b). For example, Mulligan and Hartman (1996) divided attention across
visual study words and an auditory (digit-monitoring) distractor task. Like-
wise, Parkin and Russo (1990) paired visual presentation of target pictures
with an auditory tone-monitoring task. This contrasts with studies reporting
effects of attention on perceptual priming, which manipulated attention intra-
modally (Bentin et al. 1998; Crabb & Dark 1999; Eich 1984; Hawley & John-
ston, 1991; Kinoshita 1995; Light & Prull 1995; Mulligan & Hornstein 2000;
Stone et al. 1998; Stone et al. 2000). For example, Eich (1984) used a dichotic
listening paradigm in which both the to-be-remembered words and the dis-
tractor task (prose in the shadowed channel) were presented aurally. In Ki-
noshita (1995), target words flanked by digits were briefly visually presented
(100 ms). In the attended condition, participants named the word and ignored
the digits. In the unattended condition, participants judged whether the dig-
its were both odd or even, and ignored the word. In this study, attention was
manipulated within the visual modality. Both Eich and Kinoshita found less
perceptual priming in the unattended than attended condition.

The difference between intra- and cross-modal division of attention may
be important, especially in light of research on the componential nature of
attention. Componential models of attention were motivated by evidence
against unitary views of attention (e.g., single resource models) and differ-
entiate among multiple aspects or components of attention (for reviews see
Heuer 1996; Koelega 1996). While the proposed components differ somewhat
across theories, one of the basic distinctions is between central (or modality-
independent) and peripheral (or modality-specific) aspects of attention. The
most intensively studied modality-specific aspect of attention is visual-spatial
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(hereafter referred to as visual attention; e.g., Allport 1989; Treisman 1988;
Duncan 1999). For example, Johnston, McCann, and Remington (1995) pro-
posed a distinction between two limited-capacity mechanisms of attention: one
responsible for selective aspects of attention (input attention) and the other
(central attention) involved in higher-level mental functions (decision making,
response selection, etc.). Distinctions along these lines are found in other com-
ponential analyses (e.g., Duncan 1999; Duncan, Martens, & Ward 1997; Pos-
ner & Boies 1971; Posner & Petersen 1990; Wickens 1984). Central attention
has also been associated with Baddeley’s (1986) model of working memory,
especially its central executive component (e.g., Rosen & Engle 1997).

The componential view raises the possibility that the encoding processes
tapped by perceptual priming tasks depend on input, or modality-specific, as-
pects of attention but not on central aspects of attention. In contrast, the en-
coding processes subserving conceptual priming (such as elaboration) rely on
both central and input attention. Results from studies using concurrent mem-
ory load are consistent with this proposal. In this paradigm, a short-term mem-
ory load is presented prior to the presentation of a target stimulus and recalled
after the offset of the target stimulus. This manipulation is designed to oc-
cupy working memory (i.e., central attention) to various degrees (e.g., Badde-
ley & Hitch 1974), and presumably does not impact input attention because the
target stimulus is presented in isolation, without competing within-modality
distractors. Consistent with the componential view, concurrent memory load
reduces later priming in the conceptual, category-exemplar production task
(Mulligan 1997) but not in the perceptual tests of word-fragment completion
(Clarys et al. 2000; Mulligan 1998) or picture naming (Gabrieli et al. 1999). In
addition, performance on a variety of explicit tests is reduced by concurrent
memory load (e.g., Baddeley & Hitch 1974; Clarys et al. 2000; Mulligan 1997,
1998). In sum, the componential analysis of attention suggests that perceptual
priming may be dependent on modality-specific aspects of attention. Because
the relevant input modality is visual in the present set of studies, we refer to
this as the visual-attention hypothesis.

.. Distractor selection
A third set of issues centers on the role of responding to the distractors during
encoding and on target-distractor synchrony. As noted above, studies report-
ing attention effects in perceptual priming typically used selective attention
tasks (e.g., Bentin et al. 1998; Crabb & Dark 1999; Eich 1984; Hawley & John-
ston 1991; Kinoshita 1995; Light & Prull 1995; Stone et al. 1998; Stone et al.
2000). In the reduced attention condition of these studies, attention was di-
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rected away from the identity of the study stimuli by requiring participants to
respond to a distractor rather than to the study item. In the studies reporting
null effects of attention, dual tasks were typically used to divide attention, in
which participants responded to both the distractor and study stimuli (e.g.,
Clarys et al. 2000; Gabrieli et al. 1999; Mulligan 1998; Mulligan & Hartman
1996; Parkin et al. 1990; Russo & Parkin 1993; Schmitter-Edgecombe 1996a,
1996b). It should be noted that in most studies these three factors (stimulus
identification, intra- vs. cross-modal manipulations, and selective vs. dual-task
manipulations) are intertwined. Specifically, selective attention manipulations
typically present targets and distractors in the same modality, and the reduced
attention conditions of these studies typically render stimulus identification
less likely. In contrast, the dual-task manipulations typically presented the dis-
tractor task in a different modality than the target items and render identi-
fication of the stimulus likely (or required it) in the reduced (i.e., divided)
attention condition.

Considering some of the differences between dual-task and selective atten-
tion tasks prompted Mulligan and Hornstein (2000) to propose a distractor-
selection hypothesis, which suggests that selecting a distractor for response
(or a stimulus dimension other than identity in the case of a single stimu-
lus) disrupts encoding of the target stimulus (or its identity).4 This hypoth-
esis was motivated by the central-bottleneck model of Pashler (1994, 1998),
a model based on evidence from the psychological-refractory-period (PRP)
methodology. This theory proposes that memory encoding requires a central
(amodal) bottleneck process, a bottleneck that also subserves response selec-
tion and memory retrieval (see Pashler 1994; 1998, for reviews). Consistent ev-
idence comes from Jolicoeur and colleagues’ recent research on the attentional
blink and on visual encoding tasks (e.g., Arnell & Jolicoeur 1999; Dell’Acqua &
Jolicoeur 2000; Jolicoeur 1999). This view argues that selecting a response to a
distractor is a source of disrupted memory encoding, and divided-attention ef-
fects should be most evident when the response to the distractor is contempo-
raneous with target encoding. Alternatively, if responses to the distractors are
infrequent or do not occur during target encoding, little effect of the divided
attention manipulation may be observed.

In contrast to the visual attention hypothesis, the distractor selection view-
point proposes that there is no fundamental difference between intra- and
cross-modal manipulations of attention. Rather, the differential effects are
attributed to differences in response requirements and target-distractor syn-
chrony that are typically confounded with cross-modal versus intra-modal
manipulations (see Mulligan & Hornstein 2000, for discussion). Commonly-
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used cross-modal distractor tasks, such as digit monitoring, require infrequent
responses and distractors are not presented in synch with target items. This
combination would minimize the extent to which the cross-modal manipula-
tions occupy the central processing bottleneck and disrupt target encoding. In
commonly-used intra-modal manipulations, response to distractors is much
more frequent and distractors are typically presented at the same time as tar-
gets. Under the central-bottleneck view, these tasks are more likely to occupy
the central bottleneck during target encoding. Thus, this account implies that
there is no difference between intra- and cross-modal manipulations of at-
tention when they are equated on frequency of response selection and target-
distractor synchrony, making the modality of the secondary task irrelevant to
divided-attention effects in perceptual priming.

. Recent experiments on attention and perceptual implicit memory

In recent research, we investigated the role of attention in perceptual priming
in light of the issues discussed above. Earlier studies have produced conflict-
ing results, but these studies employed disparate materials, implicit tests, and
procedures. It is important to investigate these issues with a common set of
procedures and a constant implicit testing procedure. The present experiments
used perceptual identification as the measure of perceptual priming for three
reasons. First, it exemplifies the class of perceptual implicit tests (see Roediger
& McDermott 1993, for a review). Second, it has produced conflicting results,
in some cases being affected by divided attention and in others not. Third, this
task has higher reliability than other implicit tests (Buchner & Wippich 2000),
indicating that it is more likely to be sensitive to encoding manipulations.

.. Intra-modal division of attention with Stroop-like materials
(Mulligan & Hornstein 2000)

The first series of experiments (Mulligan & Hornstein 2000) focused on the
stimulus identification and distractor-selection accounts. In these experiments,
a Stroop-like manipulation was used to manipulate attention to the identity of
study words. Specifically, in Mulligan and Hornstein’s (2000) Experiment 1,
study words were presented in colored print under one of four encoding con-
ditions. In the read (or full attention) condition, participants attended to the
word’s identity (reading each word aloud). In the color condition, participants
attended to print color rather than identity (naming the color print for each
word). In the both condition, participants’ attention was divided between the
word identity and color: participants read the word and pressed a key to in-
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dicate color. Thus, in the both condition, overt identification is coupled with
intra-modal division of attention. Based on prior research (e.g., Stone et al.
1998), the read condition should lead to greater priming than the color con-
dition because the selective attention manipulation in the color condition typ-
ically reduces perceptual priming. The critical comparison involved the both
condition. If the only requirement for intact perceptual priming is complete
stimulus identification, then priming should be equal in the read and both
conditions. Alternatively, if perceptual priming is disrupted by responding to a
distractor dimension of the stimulus, then priming should be lower in the both
than the read condition.

Figure 3 presents the results of this experiment. The read condition pro-
duced significantly more priming that the color or both conditions, and the lat-
ter conditions did not differ from one another. The difference between the read
and color conditions replicates prior findings that manipulations of selective at-
tention reduce perceptual priming. The critical contrast reveals less priming in
the both than read condition, showing that priming is reduced in the both con-
dition even though the identity of each study word was fully processed (i.e.,
the words were successfully read aloud). This argues against the stimulus iden-
tification account, although it is consistent with either the visual-attention or
distractor-selection hypotheses.
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Two additional experiments replicated this central finding in somewhat
different ways. First, there was one ambiguous aspect of the above results. In
the both condition, participants typically read the word aloud before identify-
ing the color with a keypress. Since it is possible that effects of distractor se-
lection are eliminated if identity is the last, rather than first, stimulus attribute
processed, Mulligan and Hornstein (2000, Experiment 3) attempted to deter-
mine if the reduced perceptual priming in the both condition was caused by the
sequencing of responses. This experiment consisted of three encoding condi-
tions: the read condition plus two variants of the both condition. In one of the
both conditions, participants were required to read the word first before iden-
tifying its color; in the other both condition, participants identified the color
before reading the word. The results indicated that the order of responding was
not important: the two divided attention conditions produced significantly less
priming than the read condition and they did not differ from each other.

A second follow-up experiment revealed that the same results obtained
when attention was divided across objects rather than across dimensions of
a single object. As an attentional manipulation, the Stroop-like task discussed
above is unusual because it manipulates attention across dimensions of a sin-
gle perceptual object. Studies of attention and memory typically divide atten-
tion across distinct perceptual objects (e.g., shadowing, digit monitoring, tone
monitoring, etc.). In line with the more traditional attentional manipulation,
Mulligan and Hornstein (2000, Experiment 4) presented study words flanked
by two colored blocks. At study, participants either read the word, identified
the color of the blocks, or did both. The read condition yielded greater prim-
ing than the other two conditions, which did not differ from one another.
In summary, dividing attention with this Stroop-like manipulation reduced
later perceptual priming even when the word was overtly identified, a result
that held whether word identity was processed first or last, and whether atten-
tion was divided across different perceptual objects or across dimensions of a
single object.

.. Intra-modal vs. cross-modal division of attention
The foregoing results indicate that effects of attention on perceptual priming
are not simply tied to word identification. In these experiments, the distractor
(or distractor dimension) and the targets were presented simultaneously and
in the same modality. In addition, the distractors required overt responses on
each trial. Consequently, both the visual-attention and distractor-selection hy-
potheses remained tenable and subsequent experiments were designed to con-
trast these hypotheses (Mulligan 2001). In these experiments, matched intra-
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modal and cross-modal manipulations of attention were implemented and
perceptual implicit memory was again assessed with perceptual identification.
In the divided attention conditions, overt identification of the study words was
required to isolate potential effects of the attentional manipulations from the
effects of disrupted stimulus identification.

First, a preliminary experiment was conducted, using the digit-monitoring
task to divide attention. This is a standard attention manipulation: cross-modal
(auditory distractor; visual target), with targets and distractors presented asyn-
chronously and the overt response to distractors being relatively infrequent
(e.g., Craik 1982; Gabrieli et al. 1999; Jacoby 1991; Jacoby et al. 1989; Fer-
nandes & Moscovitch 2000; Mulligan & Hartman 1996; Schmitter-Edgecombe
1999). As noted above, other cross-modal divided-attention tasks leave percep-
tual priming unaffected, and such was expected here. Half the participants en-
coded words under full attention conditions, and half under divided-attention
conditions (simultaneously carrying out the digit monitoring task). The mean
perceptual priming did not differ between the full (.17) and divided (.16) atten-
tion groups. Separate groups of participants given a recognition test confirmed
that the present divided attention task reduced explicit memory. This demon-
strates that with the present materials, procedures and implicit test, the typical
dissociation is obtained: cross-modal division of attention dramatically affects
an explicit memory but not a perceptual implicit test.5

In the next experiment, different versions of the digit-monitoring task were
developed so that the digits were presented either aurally (the typical, cross-
modal division) or visually (atypical, intra-modal division). In addition, the
presentation of the distractor digits was synchronized with the onset of the
study word. In the visual version, each digit was presented in four locations sur-
rounding the study word: above, below, to the left, and to the right. In the au-
ditory version, each digit was presented over the computer’s speakers. In both
cases, the study word was synchronized with the distracting digit (see Mulli-
gan 2001, for details). According to the distractor selection hypothesis, target-
distractor synchrony should produce divided-attention effects regardless of the
intra- or cross-modal format. According to the visual attention hypothesis, any
divided-attention effect should only occur in the intra-modal condition.

Both divided attention conditions produced significant decrements in per-
ceptual priming (auditory =.06; visual = .07) relative to full attention (.17),
and the two divided attention conditions did not differ from each other. These
results imply two things. First, the standard digit-monitoring task can disrupt
perceptual priming when targets and distractors are presented synchronously.
Second, cross-modal division of attention can disrupt perceptual priming, even



 Neil W. Mulligan and Alan S. Brown

when all study words are overtly identified. Given that this disruption is equiv-
alent in the auditory and visual divided-attention tasks, the visual attention
hypothesis is not supported. Rather the results support the distractor-selection
hypothesis, and its corollary that the type of memory encoding that supports
perceptual priming relies on a central (amodal) bottleneck process.

If responses to the distractor task are infrequent or do not occur during tar-
get encoding, then, according to the distractor-selection hypothesis, divided at-
tention is less likely to compete for the central-process bottleneck during mem-
ory encoding and is thus less likely to produce an effect. The prior experiment
examined this issue by modifying the traditional digit-monitoring task to pro-
duce target-distractor synchrony. However, the traditional digit-monitoring
task requires relatively infrequent response selection. An overt response need
only be made after a string of three odd digits is detected, which may only occur
every third or fourth trial (see Mulligan 2001, for details).

The next experiment assessed the effects of intra- and cross-modal divi-
sion of attention, and target-distractor synchrony, when distractors require a
response on each trial. In the divided-attention conditions of this experiment,
a digit was presented on each trial and an odd-even decision was required for
each digit. In this experiment, each study word was presented for 1000 ms and
the distracting digit was either presented synchronously (as in the prior ex-
periment) or consistently offset in time by 500 ms. The goal of this manipu-
lation was to determine if synchrony is critical under conditions of frequent
response selection. Thus, the four divided attention conditions constituted a
2 x 2 design, with modality of the distractor task (visual vs. auditory) and
target-distractor synchrony (synchronous vs. offset) as between-subjects ma-
nipulations. A fifth group encoded the words under full attention conditions.
A perceptual identification test revealed that priming was significantly higher
in the full attention condition (.16) than in any of the divided-attention condi-
tions, and that these latter conditions did not differ (mean priming between .05
and .07). Thus, all forms of divided-attention reduced priming. This is again
inconsistent with the visual-attention hypothesis, because auditory division of
attention produced as large an effect on perceptual priming as visual division of
attention. The results also imply that when the distractor task requires frequent
response selection, the deleterious effects of divided attention do not depend
on exact synchrony between presentation of targets and distractors.

A final experiment demonstrates that the prior results generalize to visual
and auditory distractor tasks employing different classes of distracting stim-
uli. Divided attention effects sometimes depend on the relationship between
the specific type of distractor and target items (e.g., Fernandes & Moscovitch
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2000), and to draw stronger inferences about cross-modal attentional effects,
it is critical to demonstrate that the cross-modal effects are due to central pro-
cesses (e.g., response selection) (e.g., Arnell & Jolicoeur 1999; Pashler 1994,
1998) and not to peripheral interference or access to common representational
systems (Fernandes & Moscovitch 2000).

To evaluate the possibility that the disrupted memory encoding revealed
in the prior experiments is produced by the particular combination of targets
(words) and distractors (digits), new visual and auditory distractor tasks of
comparable difficulty were used (see Mulligan 2001, for a complete descrip-
tion of these tasks and evidence on their comparability). In the auditory ver-
sion, each study word was accompanied by two successive tones that either
went up, went down, or stayed the same frequency. In the visual version, each
word was accompanied by flanking triangles (e.g., ì train ó). An initial pair
of the flankers appeared (for 200 ms), was removed (for 100 ms), and then a
second pair appeared (for 200 ms) either one line above, one line below, or
on the same line as the initial pair of flankers. During this entire time, the
word remained on the screen in the same position. On each trial in the di-
vided attention conditions, participants named the word aloud and indicated
(by pressing an appropriately-labeled key) whether the tones/flankers went up,
went down, or stayed the same. Consistent with the earlier experiments, prim-
ing in the full-attention condition (.18) was significantly greater than in either
of the divided-attention conditions which did not differ from each other (.05
in both conditions).6

There are several aspects of the present results to consider. First, dividing
attention either within or across modalities reduced perceptual priming. Audi-
tory and visual distractor tasks of equal difficulty produced comparable effects
on perceptual identification, a result consistent with the prior experiments in
which distractors presented in sync with targets reduced later priming. Sec-
ond, the present results indicate that cross-modal divided attention effects gen-
eralize across different distractor stimuli. Since it is unlikely that tones pro-
duce peripheral interference with visually-presented words or compete for the
same representational system (e.g., Arnell & Jolicoeur 1999), these results ar-
gue against domain-specific explanations of the cross-modal divided-attention
effect found here and in the earlier experiments.
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. Discussion of experiments on attention and perceptual
implicit memory

The foregoing experiments provide important constraints on hypotheses con-
cerning the effects of attentional manipulations on perceptual priming. Many
of the prior selective attention manipulations have rendered study word identi-
fication unlikely (e.g., Bentin et al. 1998; Crabb & Dark 1999; Eich 1984; Haw-
ley & Johnston 1991; Kinoshita 1995; MacDonald & MacLeod 1998), thus rais-
ing the possibility that attentional manipulations disrupted perceptual prim-
ing to the extent that they disrupted study word identification at encoding.
This possibility fits comfortably with the TAP account of perceptual priming
(Roediger 1990; Roediger & McDermott 1993) as well as the view that priming
requires lexical access of the study words (Bentin et al. 1998; Hayman & Jacoby
1989; Weldon 1991; Weldon & Jackson-Barrett 1993). Both views suggest that
truncated perceptual analyses of the study words decrease later priming and
that complete lexical analysis of the words is sufficient for intact priming. How-
ever, the present set of results are inconsistent with these views. Specifically, in
the Stroop manipulation, the both condition required study word identification
and yet reduced priming relative to the read condition. Likewise, the divided
attention conditions of the last set of experiments all required that study words
be read aloud, guaranteeing lexical access, and in all cases but one (the standard
digit-monitoring task, with target-distractor asynchrony) these conditions re-
duced priming relative to the full attention condition. Thus, disrupted stim-
ulus identification cannot account for the present effects of divided attention
(cf. Mulligan & Hornstein 2000).

Related to the stimulus-identification hypothesis, Stone et al. (1998) ar-
gued that some amount of automatic identity processing occurs even in the
color condition of the Stroop task (see also MacLeod 1991). Because color nam-
ing produces less priming than reading, Stone et al. suggest that perceptual
priming requires an awareness of the study stimulus during encoding, over and
above any automatic identity processing that occurs in the color condition. If
this is the case, then requiring participants to overtly identify study words (and
hence become more fully aware of them) should eliminate the effects of di-
vided attention in the Stroop manipulation. This awareness-at-encoding view
predicts that the both condition should lead to greater priming than the color
condition. In addition (and like the stimulus-identification view), this view
suggests that the both and read conditions will lead to comparable levels of per-
ceptual priming to the extent that participants are equally aware of the identity
of the stimulus in these two conditions. These results were not obtained, and
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thus it appears that mere awareness of the word at study is not sufficient to
produce full levels of priming.

The present results are also inconsistent with the visual attention hypothe-
sis. This hypothesis suggests that perceptual priming relies on modality-specific
components of attention and not on general or amodal attentional resources.
This hypothesis is consistent with much of the earlier research using intra-
modal selective attention manipulations and with the Stroop manipulation
which divides attention within the visual modality. In these cases, presenting
target words and distractors within the visual modality resulted in reductions
in perceptual priming. However, this hypothesis also predicts that cross-modal
division of attention should have minimal effect on perceptual priming, or at
least less of an effect than comparable intra-modal manipulations. This expec-
tation is contradicted by the second set of experiments. Specifically, compara-
ble intra-modal and cross-modal division of attention produced comparable
reductions in perceptual priming relative to full attention conditions. These
results, which generalized over different distractor tasks and different classes of
distractors, are inconsistent with the visual attention hypothesis and suggest a
central rather than modality-specific locus for these effects.

The results are consistent with the distractor-selection hypothesis, a hy-
pothesis motivated by the central-bottleneck model of Pashler (1994, 1998; see
also, Arnell & Jolicoeur 1999; Dell’Acqua & Jolicoeur 2000; Jolicoeur 1999).
This view argues that response selection to a distractor disrupts memory en-
coding. When distractors require frequent responses and when distractors and
targets are presented simultaneously, then the process of selecting a response
to the distractor is most likely to disrupt memory encoding of the target. Al-
ternatively, if responses to the distractors are infrequent and do not occur dur-
ing target encoding, little effect of the divided attention manipulation may be
observed. This perspective proposes that there is no fundamental difference
between intra- and cross-modal manipulations of attention. Rather, any dif-
ferences in their effects are attributed to differences in response requirements
that are typically confounded with cross-modal versus intra-modal manipula-
tions. Commonly-used cross-modal distractor tasks often require less frequent
responses and distractors are not presented in synch with target items, thus
minimizing disruption of target encoding. In commonly-used intra-modal
manipulations, response to distractors is much more frequent and distractors
are typically presented at the same time as targets. According to the central-
bottleneck view, these tasks are more likely to occupy the central bottleneck
during target encoding.
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The present series of studies clearly demonstrates that when comparable
auditory and visual distractor tasks were implemented, they produced the same
reduction in perceptual priming relative to full attention conditions. This repli-
cated across different types of distractor tasks, indicating that the results are not
domain-specific and strengthening the case that a central (amodal) bottleneck
is the basis of the divided-attention effect.

. Summary and general implications

The research reviewed in this chapter has several important implications for
theoretical views about the relationship between attention and implicit mem-
ory. First, attentional manipulations can affect both conceptual and perceptual
implicit memory, contrary to the notion that implicit memory reflects auto-
matic encoding processes (e.g., Bentin et al. 1995; Graf & Mandler 1984; Isin-
grini et al. 1995; Jacoby et al. 1993; Jacoby et al. 1989; Jelicic et al. 1992; Parkin
et al. 1990; Parkin & Russo 1990; Shallice et al. 1994; Szymanski & MacLeod
1996; Toth 2000). With regard to conceptual priming, it is now clear that suf-
ficiently difficult distractor tasks reduce conceptual priming, although there is
still some question about whether this result generalizes to all conceptual tasks,
such as category verification (Gabrieli et al. 1999). In addition, the present re-
search joins a number of other studies in demonstrating that perceptual im-
plicit tests are affected by attentional manipulations (e.g., Bentin et al. 1998;
Crabb & Dark 1999; Stone et al. 2000) and that cross-modal division of at-
tention can reduce perceptual priming even when the study words are overtly
identified.

The TAP view, which framed many of the present inquires, suggests that
conceptual priming should be highly reliant on attention because concep-
tual and elaborative processes require attention. On the other hand, to the
extent that the attentional manipulation allows perceptual processing of the
study items, perceptual priming should be relatively unaffected. The latter
view gave rise to the stimulus identification hypothesis, which was shown to
be inadequate. With regard to perceptual priming, attention manipulations
(both intra- and cross-modal) that do not prevent stimulus identification may
still reduce perceptual priming. With respect to conceptual priming, much of
the research comports with the TAP expectation, with the exception of the
category-verification test.

As an alternative to the TAP view, Gabrieli et al. (1999) argued for a distinc-
tion between production and identification priming tasks, a distinction based
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on neurological and functional dissociations (see also, Vaidya et al. 1997).
In production tasks (e.g., word-stem completion, word association, category-
exemplar production), test cues do not define a unique target but merely de-
limit a class of possible targets, thus inducing retrieval competition among
multiple possible responses. In identification tasks (e.g., word or picture nam-
ing, lexical decision, category verification, perceptual identification), partici-
pants merely identify a test stimulus and are assessed on speed or accuracy. In
these tasks, the retrieval cue uniquely determines retrieval of a single appro-
priate response. Because there is a single correct answer for each retrieval cue,
these tests are characterized as non-competitive.

Gabrieli et al. (1999; Vaidya et al. 1997) argued that production but not
identification retrieval tasks are sensitive to division of attention during en-
coding. Vaidya et al. (1997) suggested that simply accessing the target item
during encoding would result in full priming in identification tasks (similar
to the lexical-access view). On the other hand, production priming tasks bene-
fit from elaboration beyond stimulus identification at encoding. According to
this view, division of attention disrupts elaboration, which reduces subsequent
production but not identification priming.

This view accounts for the effects of divided attention on conceptual prim-
ing tasks (reviewed earlier). Category-exemplar production, word association
and general-knowledge questions are production tasks, whereas category veri-
fication is an identification task. Fittingly, divided attention affects conceptual
priming in the former tests but not the latter. However, the present experiments
on attention and perceptual priming are not consistent with this retrieval dis-
tinction. Because perceptual identification is an identification task, with a sin-
gle correct response for each test cue, this task should be insensitive to divided
attention manipulations, especially cross-modal division of attention (Gabrieli
et al. 1999). However, the Stroop manipulations and auditory and visual dis-
tractor tasks reduced priming in this task, even though the representations of
the study words were fully accessed during encoding (as evidenced by success-
ful identification) in all cases. This raises the possibility that other identification
priming tests that heretofore have been unaffected by cross-modal division of
attention, such as the category verification task (Gabrieli et al. 1999), would be
affected by manipulations that require response selection to a distractor at the
same time as study word encoding.

The distractor-selection hypothesis, based on the notion of a central pro-
cessing bottleneck (Pashler 1994, 1998), might form the basis of an account of
the present research. This view proposes that all forms of memory encoding
are subject to the central-processing bottleneck. In contrast to the TAP view
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and the production-identification distinction, there should be no implicit test
immune to divided-attention effects, provided that the divided-attention task
requires frequent response selection close in time to memory encoding. How-
ever, this account requires further specification to be useful and a potential
direction, which borrows some elements from the production-identification
distinction, is proposed below.

As detailed thus far, the distractor selection hypothesis accounts for the
effects of different attentional manipulations on a perceptual priming task.
However, further detail is necessary to account for the observation that a sin-
gle attentional manipulation may produce different effects on different types
of memory tests. For instance, why does the standard (i.e., cross-modal, asyn-
chronous) digit-monitoring task reduce performance on explicit and concep-
tual implicit tests but not on perceptual implicit tests such as word-fragment
completion or perceptual identification (Mulligan 1998)? Perhaps, memory
tests that rely more heavily on strategic encoding processes (e.g., elaborative
and organization) are more sensitive to manipulations of attention because
such strategic encoding processes require frequent memory retrieval and re-
encoding, often in a structured sequence. In terms of the central-bottleneck hy-
pothesis, these strategies rely so heavily on the bottleneck that even intermittent
competition from infrequent response requirements of the digit-monitoring
task, may be sufficient to disrupt these encoding strategies. While speculative,
this account is consistent with the finding that memory tests that rely heavily
on elaborative encoding processes make greater use of central resources dur-
ing encoding (e.g., Craik et al. 1996). This would fit with the present results
because the tests that are least sensitive to divided-attention effects (category-
verification, lexical decision, perceptual identification) are also least sensitive to
variations in elaboration, such as the levels-of-processing manipulation (e.g.,
Roediger & McDermott 1993; Vaidya et al. 1997).

Notes
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. The retrieval requirements of the category-exemplar production and category-cued recall
tests are typically not equivalent. In the former test, participants are instructed to produce
a number of responses to each category (eight, in Mulligan & Hartman 1996), whereas in
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the latter test the number of responses is under the control of the participant and is usually
relatively small (perhaps as few as one of two examples per category). To determine whether
the difference in response requirements is important, Mulligan and Hartman (1996) also
used a modified-category-cued recall test which required an equivalent number of responses
as the conceptual implicit test. In particular, participants were asked to use each category cue
to remember as many studied words as possible. Then, when they could no longer remember
words from the study list, they were to freely generate examples from the category until they
reached a total of eight examples either recalled or generated. The results from the modified
recall task were identical to the typical recall task, and only the latter are discussed here.

. If Isingrini et al.’s (1995) was a weaker manipulation of attention and if attention is neces-
sary for later conceptual priming, we might expect a small (though possibly non-significant)
effect of this manipulation. In fact, the divided attention condition produced somewhat less
priming than the full attention condition. Considering all four of the age groups in Isingrini
et al. each age group exhibited a small (but non-significant) effect of divided attention. By
a sign test, the Null Hypothesis of no effect of attention yields p = .0625 (one-tailed), sug-
gesting that differences in the strength of the attention manipulation may account for the
conflicting results.

. There is also conflicting evidence regarding the word-stem completion test, with some
studies finding divided-attention effects (Clarys et al. 2000; Gabrieli et al. 1999) and others
not (Wippich, Melzer, & Mecklenbrauker 1998). However, the nature of this implicit test is
in dispute; some researchers argue that this test is primarily perceptual and others, primarily
conceptual (cf. Gabrieli et al. 1994; Keane, Gabrieli, Fennema, Growdon, & Corkin 1991;
Roediger et al. 1992).

. A second possible role for selection focuses on potential positive effects of target selection
rather than on negative effects of distractor selection. Specifically, selecting the target stimu-
lus (or, more precisely, the identity of the target stimulus) for response may be required for
full priming (Wippich 1995). This hypothesis implies that passive perception of the stimu-
lus is not sufficient for maximal priming. In its most straightforward form, this hypothesis
amounts to the stimulus identification hypothesis in that successful selection and response
typically implies stimulus identification. The only question is whether the response must be
overt (e.g., naming). The stimulus identification hypothesis, relying on the notion of lexical
access, states that identification may be covert. Prior research argues against a role for overt
naming (versus silent reading) in later perceptual priming (Downes et al. 1996; MacDon-
ald & MacLeod 1998). Consequently, the most tenable target-selection hypothesis appears
equivalent to the stimulus identification hypothesis.

. It is preferable to use implicit and explicit tests matched on retrieval cues and response
requirements when the researching the relative effects of divided attention on implicit and
explicit memory (Mulligan 1998). This is feasible for implicit tests such as word-fragment
completion or category-exemplar production. Explicit cued-recall tests can be created by
pairing the retrieval cues and response requirements (i.e., production of target items)
with explicit test instructions. This renders a design capable of satisfying the retrieval-
intentionality criterion (see Figure 1 for an example; Mulligan & Hartman 1996; Schacter,
Booker, & Bowers 1989). However, the perceptual identification task does not naturally lend
itself to an explicit counterpart. Recognition memory is the most reasonable comparison be-
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cause it uses the same retrieval cues (i.e., whole words) even though it does not require the
same type of response. Recognition memory is also a good choice because it is less sensitive
to divided attention than many other explicit tests, such as free or cued recall (e.g., Craik
et al. 1996). Consequently, recognition produces a conservative measure of the impact of
divided attention on explicit memory, and dissociations between recognition and implicit
tests are less likely to be produced by quantitative differences in sensitivity.

. This experiment also included full-attention control conditions, in which the distractors
were presented but did not require response. In these conditions, participants were told to
read the words aloud and ignore the accompanying tones or flankers. These full attention
conditions also led to significantly greater priming than the divided attention conditions,
implying that the mere presence of the distractors does not produce the divided-attention
effect in perceptual priming.
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Verbal report of incidentally experienced
environmental regularity
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. Introduction

Two students, Rico and Dieter, participate in the same, rather boring, exper-
iment. They are seated in front of a computer screen on which four screen
locations are marked. The four locations are mapped individually to four re-
sponse keys on the computer keyboard. On any trial, a symbol appears at one
of the marked locations and the two students’ task is simply to depress, as fast
as they can, the response key that corresponds to the location at which the
symbol appears.

Virtually any reader who is the least bit familiar with the concept of “im-
plicit learning” has recognized by now that Rico and Dieter perform the so-
called Serial Reaction Time Task (SRTT), a task originally introduced by Nis-
sen and Bullemer (1987). In this task, unbeknownst to the two students, the
sequence of spatial positions at which the symbols appear is pre-determined
and fixed (e.g., Stadler & Frensch 1998).

Two important results are typically observed with the SRTT. First, partic-
ipants, such as Rico and Dieter, learn, in some way, something about the de-
terministic character of the sequence of spatial locations. This can be demon-
strated easily by introducing a random sequence of spatial positions at some
point during task practice. The amount by which the response times of par-
ticipants to this random sequence increases, relative to the response times to
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the deterministic sequence, can then be taken as a measure of how much of the
deterministic sequence has been learned.

Second and more important in the context of the present chapter, between
10% and 70% of all participants in this task, with the exact percentage vary-
ing with experimental condition, are able to verbally describe the deterministic
regularity built into the task when asked to do so in a post-experimental inter-
view. Thus, when asked, Rico might be able to perfectly describe the sequence
of spatial positions that makes up the deterministic regularity in the SRTT.
Dieter, in contrast, might not be able to describe anything; in fact, he might
maintain that no such regularity even existed.

The difference between Rico and Dieter in terms of their ability to verbally
report the characteristics of the environmental regularity they were exposed to
is the starting point for the theoretical ideas and empirical research discussed in
this chapter. The main goal of the chapter is to present and discuss a recent the-
oretical framework that we advance, the Unexpected-Event Hypothesis, in or-
der to explain how the ability to verbally report a regularity that is encountered
in the context of an incidental learning situation develops.

More specifically, our first main objective is to describe (at least some of)
the mechanisms that link the experience of an environmental regularity in
an individual to the individual’s ability to verbally report the regularity. The
reader should notice that we use the SRTT situation described above merely
as an example; the Unexpected-Event Hypothesis is not limited to the experi-
mental tasks that are typically encountered in the implicit learning literature.
More generally, the situation we are striving to explain is characterized by two
features: (1) an individual experiences an environmental regularity in the ab-
sence of any explicit instruction to discover the regularity; and (2) the indi-
vidual correctly and verbally reports the characteristics of the regularity when
asked to do so.

Our second main objective is to explain individual differences in, and sit-
uational influences on, the ability to verbally report the characteristics of an
implicitly experienced environmental regularity. In this regard, we are trying
to provide first and tentative answers to questions such as (1) why is it that
some participants, as for instance Rico, in any of the many experiments that
have been performed using the SRTT, are able to correctly verbalize the deter-
ministic sequence they experienced whereas others, such as Dieter, are not able
to do so?; and (2) why is it that in some experimental conditions the number of
participants who are able to correctly report the deterministic sequence is very
high whereas in others it is quite low?



The route from implicit learning to verbal report 

Figure 1. Set-up of the anagram experiment.

To provide an example of what kind of experimental situation and what
kind of empirical findings is part of our second main focus, consider the set-up
of a recent experiment (Haider & Frensch, in preparation). In this experiment,
participants were asked to solve anagrams, such as the one depicted in Figure
1. We were primarily interested in the extent to which participants were able to
verbally report, by the end of the experiment, a regularity that was built into the
task. The regularity was that for all anagrams participants were asked to solve,
the first letter of the correct solution word always appeared at Screen Position
4. Thus, the word “House” as the correct solution word to the anagram given
in Figure 1, for instance, begins with an “H” and the “H” is located at the 4th
spatial screen position from the left.

What we manipulated in this experiment was whether participants solved
the anagrams by using a keyboard or by moving a mouse. In the keyboard con-
dition, participants typed in the five spatial positions in the sequence of the
solution word; in the mouse condition, they dragged the letters over the screen
into the five boxes shown below the question mark in Figure 1. The main ques-
tion of interest was whether the response manipulation (i.e., solving anagrams
by using a keyboard versus by using a mouse) would affect the likelihood of
participants’ being able to correctly report the rule built into the task, that is,
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the rule that the first letter of the solution word always appeared at the 4th
spatial screen position from the left.

The results of this little experiment were stunning: More than 60% of the
participants in the keyboard condition were able to verbally describe the reg-
ularity built into the task when asked to do so at the end of the experimental
session. By comparison, only slightly more than 10% of the participants in
the mouse condition were able to do so. Later in the chapter we return to this
particular experiment and offer an explanation for the surprising result.

The chapter is divided into four main parts. First, we briefly describe some
existing theoretical accounts of how an individual might develop the ability to
verbally report a task regularity that was encountered in the context of an in-
cidental learning situation. Second, we present our own, still rather tentative,
theoretical framework, the Unexpected-Event Hypothesis. Third, we describe
some results of our recent empirical work that are consistent with the main as-
sumptions of the hypothesis. Fourth, the chapter closes with a brief discussion
of some of the broader implications of our empirical findings and theoretical
framework.

. Theoretical perspectives on the link between an incidental
experience of an environmental regularity and the ability
to verbally report the regularity

. General views from outside the implicit learning domain

The classic explanation for why and when individuals are able to verbally report
an experienced environmental regularity goes back to at least Wilhelm Wundt
(e.g., Wundt, 1896). According to the classic explanation, verbal report of an
experienced regularity is possible when the content of the memory trace repre-
senting the experienced regularity enters phenomenal awareness. The question
of how and when the content of a memory trace enters phenomenal awareness
has been traced from at least three different perspectives, neuropsychological,
cognitive, and philosophical.

Farah (1994), for example, has argued that existing neuropsychological ex-
planations of how phenomenal awareness comes about can be grouped into
three distinct theoretical categories. First, in “Quality-of -Representation“ ex-
planations (e.g., O’Brien & Opie 1999), it is assumed that phenomenal aware-
ness is a causal consequence of particular properties of neural representations,
such as their strength or stability over time. In “Privileged-Role“ explanations,
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by comparison, it is assumed that awareness depends on the activity of specific
brain systems whose function it is to produce subjective phenomenal aware-
ness. Third, in “Integration“ explanations, awareness is the result of specific
processes, namely processes of integration through which the activity of dif-
ferent brain regions can be synchronized or made coherent so as to form the
contents of subjective awareness.1 (Some recent neuropsychological accounts
of phenomenal consciousness, e.g., Dehaene & Naccache 2001, attempt to
integrate features from the different categories suggested by Farah.)

Perhaps surprisingly, Farah’s (1994) three categories of neuropsycholog-
ical explanations reflect cognitive views on awareness as well. For instance,
the “Quality-of-Representation” account is arguably the most prevalent cogni-
tive explanation of how phenomenal awareness is generated. Norman (1968),
for example, argues that the strength of a memory representation determines
whether or not the content of the representation enters awareness. Long-term
memory representations that are highly activated, that is, that are very strong,
are transferred into Working Memory. The content of Working Memory always
enters awareness; thus, the strength of a memory representation, in essence,
determines whether or not individuals are aware of its contents.

A similar view has been expressed by, among many others, Cowan (1995).
According to Cowan’s model, Short-Term Memory consists of activated long-
term memory representations. The content of Short-Term Memory does not
necessarily enter awareness, however. Rather, awareness is the consequence of
memory representations being in the focus of attention. Deployment of at-
tention, then, is a necessary prerequisite for a memory representation to enter
awareness.

. Specific views from inside the implicit learning domain

In the recent past, several theoretical ideas have been proposed in the implicit
learning literature that focus, often more indirectly than directly, on the link
between an individual’s experience of an environmental regularity and the abil-
ity to verbally describe the regularity. At least three different views have been
offered, two of which are reminiscent of two of the three neuropsychological
accounts of awareness that have been discussed by Farah (1994). The first view
encountered in the implicit learning literature holds that the acquisition of re-
portable knowledge is based on a learning mechanism that is devoted solely
to the generation of reportable knowledge (this is essentially the “Privileged-
Role” account described by Farah 1994). According to this view, participants
in a typical implicit learning experiment such as the SRTT acquire two inde-
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pendent forms of knowledge about the sequential structure of stimuli: implicit
and explicit, that is, reportable knowledge.

According to the second view, implicit knowledge can be transformed into
reportable knowledge. Put differently, it is assumed that individuals generate
only one form of knowledge during implicit learning episodes that can ei-
ther remain implicit or become available to verbal report (this is essentially
Farah’s “Quality-of-Representation” account) . The challenge thus becomes to
describe the mechanisms by which verbal reports are generated from implicit
knowledge.

A third alternative is to deny the existence of implicit, yet causally effica-
cious representations altogether. Consequently, any performance gains in an
implicit learning task such as the SRTT are attributed to an increase of explicit,
reportable knowledge about the task structure. Such an “explicit knowledge”
view of implicit learning phenomena offers a natural account for participants’
verbal reports and avoids the problem of specifying the relation between sep-
arate implicit and explicit knowledge bases. In the following, we describe the
proposals in some more depth.

.. Reportable knowledge and implicit knowledge are two kinds
of knowledge that are generated by separate learning systems

Dienes and Berry (1997), for instance, as proponents of the first view, ar-
gue that implicit and explicit (i.e., reportable) knowledge bases can be distin-
guished because they differ in terms of three characteristics, the amount of
transfer to structurally similar tasks, the robustness of learning, and impor-
tantly, qualitatively different modes of learning. Reportable knowledge is as-
sumed to be generated through deliberate hypothesis testing, whereas implicit
learning is associated with a focus on particular items.

Willingham and Goedert-Eschmann (1999) focus on the interaction be-
tween explicit and implicit sequence learning in the context of the SRTT in-
troduced earlier. Willingham (1998) proposes two modes of processing and
learning that rely on different representational formats and brain structures.
In the conscious mode, an attention-demanding strategic process contributes
to improved performance in the SRTT through target selection and sequenc-
ing. It operates on the basis of explicit, conscious knowledge about the SRTT.
Again, high-level problem-solving processes are believed to be responsible for
the generation of such knowledge.

In the unconscious mode, sequence learning occurs through the tuning of
a sequencing mechanism whenever the same sequence of targets is repeated.
Implicit sequence learning can occur in parallel with explicit learning, at least
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so long as overt responses to the stimuli are carried out because proprioceptive
feedback is essential for sequence learning in the motor-skill domain. The in-
teraction between the learning systems is assumed to be unidirectional: Explicit
sequence knowledge can be used to guide movements, and implicit learning
proceeds on the basis of these movements.

In a similar fashion, Cleeremans (1993) suggests that explicit knowledge
about the regularity in the SRTT can serve as input for the implicit learning
mechanism. He further hypothesizes that the extent to which research partic-
ipants develop reportable knowledge in the SRTT is influenced by individual
differences in the allocation of attention and short-term memory capacity.

Thus, a theoretical position frequently encountered in the implicit learning
literature is that the generation of reportable sequence knowledge is dependent
on the availability of attentional resources. To a large degree, these conclusions
are based on comparisons between groups of participants that are instructed to
search for a regularity built into a task and incidental learning groups that do
not receive a hint as to the existence of a regularity (e.g., Curran & Keele 1993;
Willingham & Goedert-Eschmann 1999). Of course, this comparison tells us
little about the difference between participants within the incidental learning
group that can report the regularity by the end of training and those who can-
not. Although conscious problem-solving type processes often are viewed as
the source for reportable sequence knowledge, the theories described above
provide no account of the processes themselves. Why, for instance, would a per-
son engage in deliberate hypothesis testing without being explicitly instructed
to do so?

Dienes and Perner (1999) provide a tentative answer to this question in
the context of artificial grammar learning (e.g., Reber 1967). Endorsing the
representational theory of mind, the authors explicate the distinction between
explicit and implicit knowledge in terms of the functional use and semantic
properties of mental representations. Knowledge is defined as a propositional
attitude that has three constituents: First, a proposition that gets represented
and serves as the content of the knowledge, second, an attitude toward that
content, and third, the self as the holder of the attitude. The attitude of “know-
ing” (rather than, e.g., an attitude of “desiring” or “imagining”) is determined
by the way a person uses the representation of a proposition. The representa-
tion has to function as a reflection of the state of the world and not, e.g., as a
reflection of a nonexistent goal state. Put differently, for a representation like
“this is a fence” to constitute knowledge, it has to be put in a “knowledge box”
and not, e.g., in a “goal box” which would be appropriate if the person merely
intended to put up a fence in the backyard. The central idea now is that knowl-



 Peter A. Frensch et al.

edge can vary in the degree of explicitness depending on which constituents of
the propositional attitude actually get represented (made explicit) and which
merely are implied by either the functional use of the representations or their
conceptual structure.

How do these distinctions relate to an individual’s ability to verbalize the
content of a memory representation? Dienes and Perner claim that two nec-
essary conditions must be met in order to achieve phenomenal awareness and
thereby verbal expressability of some state of affairs. First, the propositional
content needs to be represented explicitly, especially its factivity. Second, this
mental state needs to be represented in a higher mental state or at least have
the potential for such recursive representation. Put differently, in order to be
able to report a fact, one needs to represent that one knows the fact. Thus, a
second-order thought represents the holder and the attitude of the first-order
state explicitly. This is the case of a fully explicit representation that includes
all constituents of the propositional attitude. For instance, the representation
“I know (that it is a fact) that the fence in my backyard is green” would enable
a person to give a verbal report of the color of the fence in the backyard.

Although Dienes and Perner (1999) provide an insightful analysis of arti-
ficial grammar learning, their theory has not been applied to other implicit se-
quence learning paradigms yet. However, by analogy, the former analysis allows
us to draw inferences about the acquisition of reportable sequence knowledge
in the SRTT and other tasks. A participant engaging in the SRTT, for instance,
might implicitly learn the rule that “the asterisk appears at the second screen
position after it was shown at the first position” without representing an atti-
tude of knowing toward it or representing the factivity of the rule. Therefore,
the knowledge does not qualify for verbal report. Nonetheless, a person may
perceive the successive appearance of the asterisk at Positions 1 and 2 as famil-
iar or the succession of corresponding key presses as a fluent movement. Dienes
and Perner’s key suggestion is that this altered experience may cause a person
to infer explicit knowledge about this regularity. That is, a person analyzes her
own responses and experiences and draws inferences about the knowledge she
must possess (see Siegler & Stern 1998, for a similar idea). Thus, reportable
knowledge is generated by explicit learning mechanisms that analyze organ-
ismic changes brought about by implicit learning episodes. Interestingly, Di-
enes and Perner assume that this reportable sequence knowledge coexists in
the knowledge box with the implicit representation of the regularity. A recent
framework of implicit learning by Cleeremans and Jiménez (2002) attempts to
overcome this representational dichotomy.
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.. Implicit knowledge can be transformed into reportable knowledge
In their connectionist framework, Cleeremans and Jiménez identify represen-
tations with transient patterns of activation in distributed memory systems.
Representations are assumed to be graded in that they can be characterized
along dimensions such as activation strength, stability in time, and distinctive-
ness. Information that is encoded in the connection weights between units of a
module or between different modules lacks representational quality. It can only
be expressed and made available to the system through the activation of cor-
responding processing units. Therefore, weight-based knowledge is considered
one possible form of implicit knowledge.

A related assumption is that learning can have indirect effects that do not
need to be accompanied by phenomenal awareness. Knowledge representation
in connectionist networks is superpositional in nature, i.e., an individual net-
work is capable of generating a variety of stable activation patterns over its
units. Therefore, if learning alters a particular representation through changes
in connection weights, all those representations that rely on a shared set of pro-
cessing units are affected as well. The effects on these related representations are
indirect because the alteration of connection weights does not involve a direct
updating of the corresponding representations.

A further possibility for knowledge to be implicit depends on the quality of
a representation. Only high-quality representations that are sufficiently strong,
stable, or distinct qualify for conscious awareness and, hence, can be accessed
verbally. Importantly, although weak, low-quality representations are likely to
remain implicit, they nevertheless are believed to exert a causal influence on
processing, e.g., through associative priming mechanisms.

High-quality, adapted representations require time to develop, both at the
level of individual practice trials and over the course of skill acquisition. During
an implicit learning episode, the cognitive system constantly attempts to cap-
ture the correlational structure of the task, a process that is viewed essentially as
a continuous adjustment of weights between units in a connectionist network.
In this way, representations are shaped that influence behavior, but, early in
training, are likely to lack the necessary strength, stability, or distinctness to
enter conscious awareness or to be reported verbally. However, continual ex-
posure to the task will increase the quality of the representations and at the
same time their availability to verbal report.

In contrast to the theoretical position, frequently encountered in the liter-
ature, that access to phenomenal awareness and verbal expressability is deter-
mined by the properties of a representation alone (e.g., Norman 1968; O’Brien
& Opie 1999, who equate conscious awareness with stable patterns of acti-
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vation across the brain’s neural networks), Cleeremans and Jiménez consider
quality of representation a necessary, but not sufficient condition. They sur-
mise that processes of attention and processes of integration are required for a
representation to be expressed verbally. In this respect, the authors find them-
selves in agreement with recent developments in cognitive neuroscience (c.f.,
the “Integration” accounts described earlier).

Dehaene and Naccache (2001), for instance, suggest that for a representa-
tion to become conscious, it needs to be made available to a variety of processes
that are realized in multiple specialized brain regions. Such global accessibility
is achieved through a distributed system of neurons with long distance connec-
tivity, the “global neuronal workspace.” Top-down attentional amplification
is seen as the primary mechanism of recruitment into the global workspace
(see Dennett 2001, for a brief description of earlier formulations of the same
concept in psychology and philosophy).

Similarly, Kanwisher (2001) assumes that perceptual awareness entails not
only a sufficiently strong neural representation, but also access to that repre-
sentation by most other parts of the brain including the speech system. In-
terestingly, Kanwisher suggests that perceptual learning does not only affect
the quality of a representation, but also access to that representation. Finally,
she proposes the “token individuation hypothesis:” A perceptual attribute (a
“type”) must be associated with the representation of a specific event or ob-
ject (a “token”) in order to enter phenomenal awareness. Kanwisher also notes
the strong conceptual link between the binding of types to tokens and visual
attention. Token individuation closely matches Dienes and Perner’s (1999) re-
quirements for phenomenal awareness, namely explicit representation of the
factivity of the propositional content which entails explicit representation of a
property, an individual, and the predication of the property to that individual.
However, as noted above, additional representation of self and attitude may
be necessary for phenomenal awareness in Dienes and Perner’s framework.
Thus, it remains a debatable question to what degree knowledge needs to be
accompanied by relevant metaknowledge in order to qualify for phenomenal
awareness and verbal report.

.. Verbal reports are derived from implicit knowledge
We now turn to a different view of implicit learning that questions the widely
accepted distinction between implicit and explicit, that is, reportable knowl-
edge. Just like Cleeremans and Jiménez (2002), Perruchet and collaborators
(Perruchet, Vinter, & Gallego 1997; Perruchet & Vinter, in press) assume that
learning shapes both individuals’ experience of the world and their internal
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representations. However, the authors propose that the modification of con-
scious representations through learning is all that it takes to account for the vast
array of implicit learning phenomena. Implicit representations that influence
individuals’ behavior without changing subjective experience simply do not
exist in this framework. Therefore, “implicit learning may be thought of as al-
lowing participants to pass from conscious perceptions and representations to
other, generally better structured, conscious perceptions and representations,
through the action of intrinsically unconscious mechanisms” (Perruchet et al.
1997:44). More specifically, Perruchet and Vinter (in press) propose that au-
tomatic associative processes operate on the current content of the focus of
attention and thus form new units or chunks that capture the structure of the
task. However, these chunks can only persist and evolve into the new processing
primitives of the system if they are repeated within an appropriate time frame.
Thus, learning is viewed as an inevitable consequence of the self-organizing
nature of attentional processing.

How do participants arrive at a verbal description of an experienced en-
vironmental regularity, such as the sequential regularity governing the SRTT?
Perruchet and Vinter (in press) point out that the content of the attentional
focus that is subject to processes of self-organization is not identical with the
explicit, reportable knowledge about the regularity we are concerned with in
this chapter. Several solutions are conceivable: Perhaps a simple “read-out” or
description of the representation that has been built through automatic asso-
ciative processes is sufficient to give a verbal account of at least some fragments
of the sequence in the SRTT. This account becomes even more tenable when
the learning mechanisms are powerful enough to directly represent structural
qualities of the task such as abstract relations (Perruchet & Vinter, in press).
Alternatively, additional inferential processes could be necessary that are trig-
gered by participants’ altered conscious experience. Thus, Dienes and Perner’s
(1999) suggestions about the development of explicit knowledge in implicit
learning tasks may be viewed as a reasonable extension of the framework pro-
posed by Perruchet and collaborators.

To summarize our discussion of views on the development of reportable
knowledge that have been offered in the implicit learning literature: At present
there exist at least three qualitatively different accounts in the implicit learning
literature of how verbally expressible knowledge is generated. According to the
first account, reportable knowledge and implicit knowledge are two kinds of
knowledge that are generated by separate learning systems. According to the
second proposal, verbal reports can be derived from implicit knowledge. In the
third and final proposal, not discussed in depth above, it is assumed that all
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relevant knowledge acquired in implicit learning tasks is, in principle, available
to verbal report.

. The unexpected-event hypothesis

Our own present thinking owes much to the ideas proposed by Dienes and
Perner (1999) and by Cleeremans and Jiménez (2002). However, although Di-
enes and Perner (1999) and Cleeremans and Jiménez (2002) have begun to
tackle the mechanisms that are involved in the acquisition of reportable knowl-
edge, much remains unclear about the exact nature of these processes: For ex-
ample, how and when are the processes triggered in incidental learning sit-
uations? How do participants who are able to report a sequential regularity
differ from participants who are not able to do so with respect to these mecha-
nisms? Which situational characteristics have an effect on the mechanisms and
which do not? In addition, there exists virtually no empirical evidence at all
that would support the ideas proposed by Dienes and Perner (1999) and by
Cleeremans and Jiménez (2002).

With our theoretical framework, we are trying to address at least some of
the unsolved questions posed above. The basic framework is formulated as a
stage model and is summarized in Figure 2. We believe that phenomenal aware-
ness of an environmental regularity leads to participants’ ability to verbally de-
scribe the regularity, and is, itself, the result of explicit, intentional hypothesis
testing. Explicit hypothesis testing, in turn, is triggered by the observation of an
unexpected event, and focuses on a search for an explanation to the unexpected
event (e.g., Frijda 1994; Mandler 1984, 1992; Scherer 2001). In summary, in-
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Figure 2. The Unexpected-Event Hypothesis.
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dividuals are able to verbally describe an experienced environmental regularity
because they actively and intentionally search for an explanation to an observed
unexpected event.

Perhaps the key assumption in the framework concerns an individual’s ob-
servation of an unexpected event. An event is unexpected when it is not con-
sistent with what the individual has experienced in this particular situation in
the past and therefore does not expect. A sudden sound occurring during the
course of an experiment, for example, a freezing of the computer screen, a feel-
ing of familiarity, a rapid motor response that occurs before the next stimulus
is even shown – all of these are unexpected events that, when observed, trigger
an intentional search for an explanation of why they occurred.

Unexpected events can be of two different kinds. First, they may be events
that have no relation at all to the environmental regularity encountered resp.
the regularity built into an experimental task. For example, the sudden and
temporary freezing of a screen during the course of an experiment may be
caused by an internal PC problem that has nothing at all to do with the task
regularity constructed by the experimenter. Second, however, the unexpected
event may be a direct consequence of the task regularity. This would be the case,
for instance, when a participant in the SRTT notices that her finger movements
have become much smoother over the course of the experiment.

The presence or absence of a relation between the observed unexpected
event and the incidentally experienced regularity has, of course, direct impli-
cations for the likelihood with which an individual will become aware of the
regularity. The observed unexpected event triggers an intentional search for its
cause, typically taking the form of hypothesis testing, and eventually may, or
may not, lead to discovery and verbal report of the regularity built into the task.
The search will likely lead to discovery and verbal report of the regularity when
the observed unexpected event has a close a priori relation to the regularity; it
will likely not lead to discovery when this is not the case. In short, we assume
that the ability to verbally report an experienced environmental regularity is
the result of a successful explicit intentional search for an explanation to an
observed unexpected event (see Whittlesea & Williams 2000, 2001a, 2001b, for
a similar idea in a different context).

. Empirical support for the unexpected-event hypothesis

Below we describe two types of empirical support for our theoretical frame-
work, descriptive and experimental support. The descriptive support consists
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of analyses in which we, first, identify the time point during task practice at
which individual participants become able to verbally report a regularity built
into a task. In a second analysis step, we then obtain data, by working back-
wards from the identified time points, that addresses our claim that reportable
knowledge is the result of an explicit search for the cause of an observed unex-
pected event. By comparison, the focus of our second type of support, experi-
mental support, is on experimentally manipulating variables that presumably
affect one or more of the theoretical stages we propose.

. Descriptive support

Much of our descriptive empirical support comes from analyses of individual
learning data with the so-called Alphabet Verification Task, AVT (e.g., Haider
& Frensch 1996). In the AVT, participants are shown, on a computer screen,
alphabetic strings of varying lengths that consist of a letter-digit-letter triplet
at the end of the sequence and additional letters up front (e.g., “A B C D E (4)
J”). Participants’ task is simply to decide whether or not the strings that are
shown follow the alphabet. To do so, they process the strings from left to right,
interpreting the number in brackets as number of letters that are to be left out.
Thus, the string “E (4) J,” for example, is processed as E, leave out the next four
letters F G H I, and then continue with J K L M N. The correct answer to this
string would be that it follows the alphabet. The string “E (4) K,” by contrast,
would not follow the alphabet because when one leaves out four letters after E,
one needs to continue with J, not with K.

The regularity in this task that participants eventually may or may not
come to verbally report consists of the fact that errors in incorrect strings of
this task occur only at a particular designated serial position, namely at the let-
ter immediately to the right of the bracket. Thus, in order to decide whether or
not an entire sequence follows the alphabet, participants need to process only
the letter-digit-letter triplet; for the task at hand, processing of the remaining
letters is irrelevant. Participants are not informed of this regularity.

.. Identifying the time point at which verbal report becomes possible
How can we hope to identify the time point during task practice at which in-
dividuals become able to verbally report the regularity built into the AVT? Our
argument is as follows: we assume that as soon as participants can verbalize the
regularity, they will use this information in order to speed up their task pro-
cessing. That is, we assume that participants will not process the task-irrelevant
information any longer (see Haider & Frensch 1999a, 1999b, for empirical sup-
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port of this assumption). This, in turn, should lead to a sudden reduction of
participants’ overall response times for trials, that is, to a discontinuity in trial
response times. The main empirical questions thus become: can we empiri-
cally identify RT-discontinuities in participants’ individual practice trials and
if so, are the observed RT-discontinuities indicative of participants’ ability to
verbally report the regularity built into the task?
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Figure 3. RT means for six individual participants (AVT).
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Figure 3 shows the results of six single-case studies in which participants
were asked to perform the AVT for a total of 30 trial blocks. In addition to
plotting the individual RT curves, the Figure also shows the best-fitting power
functions for the individual RT data.

Even a cursory examination of the individual RT curves shown in Fig-
ure 3 reveals that some participants show a very clear and pronounced RT-
discontinuity, that is, a discrepancy between RT data and fitted power func-
tions, whereas others do not. Using an F-test with α of 5%, we can statisti-
cally determine that four of the six participants (i.e., Vp 1, Vp 4, Vp 5, Vp 6)
show a significant deviation from a power function fit, whereas the other two
participants (i.e., Vp 2, Vp 3) do not.

The more interesting and important question, of course, is whether or not
the observed RT-discontinuities really are a consequence, as we assume, of the
ability to verbally report the regularity that was built into the task. This was
indeed the case. All four of the four participants showing an RT discontinuity
were also able to verbally describe the regularity when asked to do so at the end
of the experiment; in contrast, the remaining two participants were not able
to do so.

The obtained empirical relation between RT-discontinuity and verbal re-
port of the task regularity was replicated with a much larger sample of partic-
ipants, re-analyzing data we had collected earlier (Haider & Frensch 1999a).
The results with the larger sample of 45 participants were such that of the 18
participants who showed an RT-discontinuity, 17 were able to report the reg-
ularity built into the task; 1 individual was not. By contrast, only 7 of the 27
participants showing no RT-discontinuity were able to verbally describe the
regularity by the end of the experiment whereas the remaining 20 participants
were not able to do so.2

In summary, the results described thus far are consistent with the claim that
the RT-discontinuities, identified for each individual, occur indeed temporally
close to the point in time at which participants acquire the ability to verbally
report the built-in task regularity. However, two concerns come immediately to
mind that question the validity of this conclusion. First, one might argue that
perhaps verbal report of the regularity in this task does not precede the ob-
served RT-discontinuities but rather might follow it. Second, one might argue
that our findings might be unique to the task examined, the AVT.

The first argument is not only inconsistent with participants’ self-reports
when queried extensively at the end of the experiment, it is also made less
convincing, although not entirely refuted, by the results of an additional ex-
periment (Haider & Frensch, in preparation) in which we continuously and
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individually monitored, while participants were performing the AVT, whether
or not an RT-discontinuity had occurred. As soon as an RT-discontinuity had
been identified, we discontinued the experiment and asked participants to ver-
bally describe any regularity they might have encountered. In this experiment,
of the 14 participants who showed an RT-discontinuity, 12 were aware of the
regularity built into the task; 2 participants were not. By contrast, only 4 of the
15 participants showing no RT-discontinuity were able to verbally describe the
regularity by the end of the experiment whereas the remaining 11 participants
were not able to do so. The available data, thus, suggests rather strongly that
participants become able to verbally report the regularity built into the AVT
shortly before the RT-discontinuity occurs.

The second potential counterargument, namely that the finding of an em-
pirical relation between the occurrence of a RT-discontinuity and the ability to
verbally report the task regularity is unique to the AVT is refuted by an addi-
tional experiment using a different task, the so-called Number Reduction Task,
NRT (Haider & Frensch, in preparation; Thurstone & Thurstone 1941; Woltz,
Gardner & Bell 2000; Woltz, Bell, Kyllonen, & Gardner 1996). In the NRT, par-
ticipants are shown a string of six digits on a computer screen that they are
asked to process pairwise from left to right (e.g., “9 9 9 1 4 1”). Strings contain
only the digits “1,” “4,” and “9.” Participants are asked to follow two rules when
they process the digit string. Rule 1 states that the result of two identical digits
is the digit itself. Rule 2 states that the result of two non-identical digits is the
remaining third digit. Participants’ task will become clear when we describe the
mental steps that are necessary to complete an example string, “9 9 9 1 4 1.”

The example string is to be processed from left to right. First, the two left-
most digits are processed, that is, the digits “9” and “9.” Application of Rule 1
stating that the result of two identical digits is the digit itself, generates “9” as
the result of the first comparison. All remaining comparisons are now made
between the preceding result and the next digit. Thus, next, the result of the
first comparison, “9,” is compared with the next string digit, that is, the third
digit in the sequence. The result of this comparison is, again according to Rule
1, the digit “9.” Next, the last result, thus, the digit “9,” is compared to the next
digit in the string, a “1.” Comparing the digits “9” and “1” results, according to
Rule 2, in a “4.” And on it goes. On any given trial, participants generate and
enter a total of five responses.

The regularity in this task that participants eventually may or may not
come to verbally report consists of the fact that, on any trial, Responses 4 and
5 are a mirror image of Responses 2 and 3. That is, Response 4 is equal to
Response 3 and Response 5 is equal to Response 2. The regularity is not com-
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municated to participants nor are they asked to search for any regularity that
may be hidden in the task; the learning situation is thus incidental. Participants
who discover the task regularity are able to speed up their responses substan-
tially, either by entering Responses 3, 4, and 5 in very quick succession or by
skipping Responses 3, 4, and 5 altogether (the latter was possible).

In a sample of 50 participants with the NRT, of the 13 participants who
showed an RT-discontinuity, 11 were aware of the regularity built into the task;
only 2 participants were not. By contrast, only 9 of the 37 participants showing
no RT-discontinuity were able to verbally describe the regularity by the end of
the experiment whereas the remaining 28 participants were not able to do so.
These results, then, together with the findings for the AVT, strongly support the
assumption that verbal report of task regularity arises during task processing
and precedes an observed RT-discontinuity.

.. Explicit hypothesis testing leads to verbal reportability
The results shown thus far do not speak to the issue of which mechanism might
generate verbal report. As outlined above, at least two broad possibilities can be
distinguished. First, explicit verbal report may be the result of implicit knowl-
edge turned explicit. For example, as argued by Norman (1968) and Cowan
(1995), among many others, the quality of a mental representation, that is, its
strength, stability, or other quality directly determines when a representation
reaches awareness. Second, as is argued by, among others, ourselves as well as
Dienes and Perner (1999), explicit verbal report may be the result of explicit
hypothesis testing.

How can these possibilities be empirically distinguished? As a first stab, we
argue that a search for an explanation to an unexpected event, that is, inten-
tional hypothesis testing, should lead to increased individual trial-RT variances
immediately prior to the point in time at which a task regularity becomes re-
portable. That is, the trial block or blocks preceding individually identified RT-
discontinuities should show larger RT variances than is normally to be expected
for any given individual. For illustration purposes, Figure 4 shows some sample
practice curves that we obtained with the Number Reduction Task NRT.

Subject 4 in Figure 4, for instance, shows a very marked RT-discontinuity
between Trial Blocks 13 and 14. In the trial block preceding the RT reduction,
the individual shows her largest RT variance for any trial block. Similarly, Sub-
ject 5 shows an easily detectable RT-discontinuity between Trial Blocks 23 and
24. In the trial block preceding the RT reduction, that is in Trial Block 23, the
individual shows her largest variance for any trial block.
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Figure 4. RT means and variances for three individual participants (NRT).
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Figure 5. RT variances for participants able to verbally report an experienced task reg-
ularity and participants not able to verbally report the regularity prior to individually
identified RT-discontinuities (NRT).

On the other hand, Subject 10 does not show an RT-discontinuity over the
course of 27 trial blocks and also does not show a pronounced or out-of-the-
ordinary variance in any of her trial blocks. Also, Subject 10 did not report any
knowledge about the underlying task regularity, whereas Subjects 4 and 5 did.

Is, what we see for these three cases, also true in a larger sample? Figure 5
depicts the mean variance of participants showing an RT-discontinuity in the
two trial blocks immediately preceding the block with the RT-discontinuity for
the NRT experiment described earlier. For comparison purposes, the data of
participants showing an RT-discontinuity is compared with data from partic-
ipants showing no RT-discontinuity. For the latter group of participants, the
trial block with the largest RT decline over the course of task practice was
used as the equivalent to the RT-discontinuity. It is quite evident that the
group showing an RT-discontinuity also shows a very pronounced increase
in variance in the trial block immediately preceding the block in which the
RT-discontinuity occurs.

In addition, of the 19 participants who were able to report the regularity
in this task, almost 75% showed their largest variance in the trial block imme-
diately preceding the block where the RT-discontinuity occurs. On the whole,
thus, the systematic relation that we obtain between an increase in RT variance
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and a RT-discontinuity is at least strongly supportive of our claim that verbal
report is the consequence of an intentional search process.

.. The experience of an unexpected event triggers hypothesis testing
If indeed the increase in RT variance reflects intentional explicit hypothesis
testing on the part of participants, then what exactly is it that triggers this hy-
pothesis testing? According to the Unexpected-Event Hypothesis, hypothesis
testing is triggered by the occurrence of an unexpected event and reflects a
search for an explanation to the event.

We argue that an unexpected event can be one of many different things,
some of which are more likely to lead to discovery of the regularity built into
the task than others. Unexpected events can be external sounds, noises, visual
irregularities on a computer screen, and so on. However, although random
sounds and visual irregularities on the screen may be unexpected, they may not
necessarily trigger a search for their cause. In addition, random sounds, even if
they do trigger a search for their cause, will most likely not lead to detection of
the regularity built into a task because the task regularity is not a likely cause
of the unexpected event. Thus, in order for an unexpected event to lead to the
verbal report of a task regularity, the event needs to have some plausible causal
relation to the regularity.

We therefore believe that unexpected events that most likely lead to de-
tection and verbal report of a task regularity are events that, themselves, are
expressions of the regularity, such as behavioral consequences of the regular-
ity. In other words, we argue that behavioral learning of the task regularity,
as it manifests itself in, for instance motor learning, is most likely to lead to
discovery and verbal report of the regularity.

An example should help to clarify this point: Assume your motor system
has learned that the Responses 4 and 5 in the Number Reduction Task are the
mirror image of the Responses 2 and 3. It may then happen that your motor
system, i.e., your fingers, produce Response 4 too early, that is, Response 4 is
emitted before the digit in the sequence that is needed to compute Response 4
is even perceived. If that happens, a research participant experiences an unex-
pected event, that is, an event that is not consistent with the way the task was
performed in the past and with the way the task was to be performed. The un-
expected event, then, triggers a search for its cause – how is it be possible that
a finger produces a response already before the relevant stimulus is perceived?
One plausible cause for this event and one possible result of the explicit search
is the regularity built into the task.
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Figure 6. Means of the fastest observed RTs for participants later able to verbally report
the regularity and participants not able to report the regularity prior to individually
identified RT-discontinuities (NRT).

If this admittedly complicated explanation of ours is correct, then we
should (a) be able to find “early” responses in individual participants’ data just
prior to their explicit hypothesis testing phases, and (b) more generally, we
should find that the participants who demonstrate hypothesis testing should
be those participants whose motor system has learned the regularity to a larger
extent than participants who do not test hypotheses.

Figure 6 depicts the means of the fastest observed RTs for participants later
able to verbally report the regularity and participants not able to report the reg-
ularity in the NRT experiment from above. The means of the fastest response
times are depicted for the trial block in which, presumably, hypothesis testing
occurs as well as the preceding trial block. The data are consistent with our as-
sumption: Participants later able to report the regularity have faster minimum
RTs than participants later showing no report. This is true, however, only for
responses that are predictable on the basis of the regularity built into the task,
that is Responses 4 and 5, and not for the remaining responses.

. Experimental support

Next, we briefly describe some experimental evidence, collected with the NRT,
that also supports the Unexpected-Event Hypothesis. With the experiments we
have addressed two key assumptions of the framework, (a) the assumption that
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an unexpected event is the trigger for the entire process eventually leading to
verbal report of the task regularity, and (b) the assumption that a search for a
cause to an observed unexpected event leads to verbal report of the regularity.

.. Unexpected events trigger intentional hypothesis testing
The first assumption we examined with a variety of experimental manipula-
tions. In the interest of space, we focus on only one of these manipulations, an
experiment in which we tried to make it more or less easy for participants to
notice that an unexpected event had occurred.

In the experiment, we used the NRT in a modified version in which the six
digits of a series were not displayed simultaneously, but rather were displayed
successively (Haider & Frensch, in preparation). That is, a participant was first
presented with the two left-most digits of a series. As soon as the first response
had been entered, the next digit was presented, and so on. The regularity built
into the task was the same as before. That is, Responses 4 and 5 were a mirror
image of Responses 2 and 3.

There were three experimental conditions realized in this experiment that
differed solely in the timing of the Response-Stimulus Interval (RSI). In the
first experimental condition, RSI was fixed and set equal to 500 ms for all digits
shown on a particular trial. Thus, Digits 1 and 2 were shown first. Then, 500
ms after the first response had been entered, Digit 3 was presented and so on.

In the second and third experimental conditions, the RSI varied for the
presentation of the digits. In Experimental Condition 2, the RSI for the pre-
sentation of Digits 3 and 4 was set to 500 ms; the RSI for Digits 5 and 6 was set
to 0 ms. In the third experimental condition, the set-up was exactly the reverse.

What were our predictions concerning the number of participants in each
of the three experimental conditions that would be able to report the regularity
built into the task when questioned at the end of the experiment? Earlier we
mentioned that one possible “unexpected event” for an individual during the
course of task practice might be an early response, that is, a response that the
motor system releases before the individual has perceived the next response-
relevant stimulus. The three experimental conditions were designed to make
detection of an early motor response more or less likely.

Notice that an early motor response can occur only for Responses 4 and
5 because they are the only ones that are pre-determined. Giving participants
an RSI of 500 ms for Responses 4 and 5 makes it quite likely that an early
motor response that occurs before the next stimulus is even presented might be
noticed by participants and viewed as an unexpected event. Giving participants
an RSI of 0 ms makes it much more difficult to detect an early response because
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with an RSI of 0 ms, any response participants emit must necessarily occur after
presentation of the next stimulus.

Based on this reasoning, we assumed that the unexpected event of an early
motor response might be more likely noticed by participants in Experimental
Conditions 1 and 3 than by participants in Condition 2. Because noticing an
unexpected event triggers a search for its cause, participants in Conditions 1
and 3 should consequently be more likely to search for and become aware of
the regularity built into the task than participants in Condition 2.

The main results of this experiment are qualitatively consistent with our
expectations. The number of participants showing awareness of the task regu-
larity was 19 (of 26) and 10 (of 20) in the Experimental Conditions 1 and 3,
respectively, and 11 (of 26) in Condition 2.

A somewhat different way of manipulating the ease with which an unex-
pected event is noticed by participants is to use keyboard or mouse as external
response devices. Without going into detail, it might suffice to say that there
are good reasons for assuming that the unexpected event of an early response
is much more likely to be noticed by participants using a keyboard as external
device than by participants using a mouse. Consequently, participants using
a keyboard should be more likely to become aware of the task regularity than
participants using a mouse.

This is, the reader may remember, the exact result of the anagram experi-
ment described in the Introduction to this chapter and it is a result that we have
in the meantime replicated with the NRT (Haider & Frensch, in preparation).

.. Verbal report is the result of a search for a cause to an observed
unexpected event

The second line of experimental research we have conducted recently is con-
cerned with manipulating the difficulty of finding an explanation for the ob-
served occurrence of an unexpected event. To do so, we have used the version
of the NRT in which the Digits are presented successively; RSI was set equal
to 500 ms for the presentation of all digits. To make finding an explanation
easier or more difficult, we manipulated whether or not all of the information
necessary to discover the rule that Responses 4 and 5 were the mirror image of
Responses 2 and 3 was simultaneously present on the screen. In one condition,
the digits and responses that appeared successively on each trial remained on
the screen until the last response was entered. Thus, the information necessary
to detect the regularity was all present on the screen.

In another condition, only the digit necessary to compute the next response
was visible on the screen along with the last response – preceding digits and
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responses were erased. In the latter condition, thus, the information capturing
the regularity built into the task was not all simultaneously present on screen.

Our reasoning was, of course, that participants in the condition in which
all processed stimuli and responses remained visible on screen would have an
easier time finding an explanation for the experienced “unexpected event” than
would participants who saw only the information currently needed to compute
the next response.

The results indicated that this reasoning was indeed correct. Fifteen of the
26 participants in the “all information available” condition became aware of the
task regularity. By contrast, only 6 of 24 participants in the “partial information
available” condition were able to verbalize the task regularity when asked to do
so at the end of the experiment. It is important to add that this was true despite
the fact that motor learning did not differ for the two experimental conditions.

. Summary and conclusions

Starting point for the present chapter was the observation that in any experi-
ment on implicit learning, and, indeed, in any experiment on human learning
in general, some participants are able to verbally report the regularity built into
the learning task whereas others are not. The main goals of the chapter were to
(a) discuss the main important theoretical ideas that have been proposed in
the literature to explain an individual’s ability to verbally report a regularity
that was experienced in the context of an incidental-learning situation, and
(b) convince the reader of this chapter of the validity of our own theoretical
framework. According to our own thinking, the ability to verbally report an ex-
perienced environmental regularity is a consequence of an explicit intentional
search for an explanation to an unexpected event.

What are some of the implications of the empirical work and theoretical
framework proposed in this chapter? First, pure “Quality-of-Representation”
accounts of awareness (e.g., Norman 1968; O’Brien & Opie 1999) are unlikely
to be successful candidates for explaining the data we have collected. For in-
stance, we described an increase in RT variance immediately prior to an ob-
served RT-discontinuity and, ultimately, prior to verbal report of the regularity.
Such an increase in RT variance is difficult to reconcile with accounts that rely
solely on changes in the quality of representation. This is not to say that these
accounts may not explain the generation of awareness under different circum-
stances. It is to say, however, that for the specific situation that we are interested
in, these accounts are at present not convincing theoretical contenders.
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Second, in our framework it is assumed that an implicit learning system
and an explicit reasoning system co-exist. The two systems do not operate in
complete independence. Rather, the one system, namely the implicit learning
system, results in behavioral change that, when noticed, may trigger the other
system, the explicit reasoning system (e.g., Dienes & Perner 1999). We hasten
to add, though, that the data presented in this chapter does little to elucidate
the nature of the implicit learning processes that precede explicit hypothesis
testing. Our main goal has been a different one: to identify the mechanisms
that are responsible for the generation of verbal reports in incidental learning
situations.

Third, according to our framework and based on the former reasoning,
variables affecting the implicit learning system should also affect participants’
ability to verbally describe the regularity the implicit learning system has
learned. Conversely, there should exist some variables that affect participants’
ability to verbally describe a regularity without affecting the implicit learning
system. There is plenty of empirical evidence in the area of implicit learning
supporting the first assumption and there is some, though far less, evidence
supporting the second assumption.

More specifically, Table 1 contains brief summaries of published articles
in the implicit learning domain (here specifically and exclusively articles using
the SRTT) in which the effects of experimentally manipulated variables on the
likelihood of participants’ ability to verbally report an experienced task regu-
larity have been reported. According to Table 1, the likelihood of being able to
verbally express an experienced task regularity is affected by, for instance, the
presence versus absence of a secondary task, the length of the used determin-
istic sequence in the SRTT, the complexity of the deterministic sequence, the
duration of task practice, and the age of participants.

By far most of the experimental variables that have been shown to affect
the likelihood of verbal report also appear to affect degree of implicit sequence
learning. For example, Willingham, Nissen, and Bullemer (1989, Experiment
2) demonstrated that the amount of task practice affects both degree of implicit
learning as well as verbal report. Participants in the six experimental groups
in the study differed in that they practiced between one and six blocks of the
SRTT. Verbal report of the experienced regularity increased systematically with
the number of blocks practiced as did the amount of implicit learning.

Similarly, the presence of a secondary task reduces (relative to the absence
of a secondary task) both the number of participants able to verbally report
the experienced regularity and the degree of implicit knowledge acquired (e.g.,
Cohen, Ivry, & Keele 1990; Frensch, Buchner, & Lin 1994; Frensch, Wenke, &
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Table 1. Recently published articles using the SRTT.

Effect on Effect on
Reference Variable Manipulated Verbal Implicit

Report Learning

Cherry & Stadler (1995) Age Yes No
Educational attainment, occu-
pational status, verbal ability

Yes Yes

Cohen, et al. (1990) Dual/single task Yes Yes

Curran (1997) Age No No
First-order predictive No No for young
sequence/second-order predic-
tive sequence

Yes for elderly

predictive sequence
Instruction Yes Yes

Curran & Keele (1993) Intentional/incidental Yes Yes (single-task)
learning and dual/single task No (dual-task)
Dual task/single task Yes Yes

Eimer, et al. (1996) Frequency of deviant stimuli Yes Yes

Harrington & Haaland (1992) Age Yes Yes

Heuer, et al. (1998) Mental fatigue Yes No
Loss of sleep No Yes

Hoffmann & Koch (1997) S-R compatibility No No
Connectibility

Honda et al. (1998) Instruction Unclear No

Howard & Howard (1997) Age No Yes

McDowall & Allison (1995) Anxiety Yes No

Nissen & Bullemer (1987) Dual/single task Yes Yes
Amnesia Yes No

Reber & Squire (1994) Amnesia Yes No

Seger (1997) Amount of practice Yes Unclear
Dual/single task Yes Unclear

Willingham, et al. (1993) Sequence/random Yes Yes

Willingham, et al. (1989) Amount of practice Yes Yes

Ziessler, 1998 Reaction-stimulus-regularity No Yes
Frequency of the association No No
between stimuli
and responses
Frequency of the association
between responses and effect No Yes



 Peter A. Frensch et al.

Rünger 1999). In the Cohen et al. (1990) study, for instance, only four of twelve
participants were able to report part of the deterministic sequence when the
experience of the sequence was accompanied by the requirement to simulta-
neously perform a secondary task whereas ten out of twelve participants were
able to do so when there was no second task.

On the other hand, there also exists some experimental evidence support-
ing our contention that the ability to verbalize an experienced task regularity
can be affected by experimental variables when the same variables do not af-
fect the degree of implicit knowledge that is acquired. For example, Cherry and
Stadler (1995) report that an increase in age affects the number of participants
able to report an experienced task regularity negatively. However, age does not
affect the amount of knowledge that is acquired implicitly. Interestingly, Har-
rington and Haaland (1992) found no difference between young and elderly
participants when they simply asked participants whether or not they had no-
ticed anything unusual about the experienced sequences. However, when asked
to describe the experienced sequences, younger participants were able to do so
far more accurately than were older participants.

Also, participants who are mentally fatigued seem to be able to verbally
report more of an experienced task regularity than participants who are not
fatigued, although degree of mental fatigue does not appear to affect implicit
learning (Heuer, Spijkers, Kiesswetter, & Schmidtke 1998); interestingly and
very surprisingly, loss of sleep appears to have exactly the opposite effect. That
is, loss of sleep seems to affect implicit learning but not verbal report.

Thus, to summarize, there exists some empirical evidence that is consis-
tent with, though certainly not conclusive of, our claim that an implicit learn-
ing system and an explicit reasoning system may co-exist, and that, more im-
portantly, the two systems do not operate in complete independence. Rather,
the one system, the implicit learning system, results in behavioral change that,
when noticed, may trigger the other system, the explicit reasoning system.

Finally, we argued above that the mechanisms we have described in this
chapter apply to learning situations in which (1) an individual experiences an
environmental regularity in the absence of any explicit instruction to discover
the regularity; and (2) the individual correctly and verbally reports the char-
acteristics of the regularity when asked to do so The mother of all remaining
questions is, thus, to what extent the mechanisms described here might be gen-
eralizable, that is, might also be operable in learning situations that differ from
the situation considered in this chapter and in which awareness of what has
been learned arises – we admit that, at present, we have simply no idea.
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Notes

* We thank Norman Radtke for his assistance with data collection and his comments on
earlier versions of this chapter.

. A somewhat similar, though not identical, categorization of psychological theories of
awareness has recently been offered by Atkinson, Thomas, and Cleeremans (2000). The
authors distinguish between four distinct theoretical types of explanations, specialized ve-
hicle theories (e.g., Norman 1968), specialized process theories (e.g., Schacter 1989), non-
specialized vehicle theories (e.g., O’Brien & Opie 1999), and non-specialized process theo-
ries (e.g., Crick & Koch 1995; Grossberg 1999; Tononi & Edelman 1998).

. The ability to verbally report the experienced task regularity was assessed in a somewhat
more complicated manner in this experiment; for details, see Haider and Frensch (1999a).
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