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Preface

The purpose of this book is to describe and explain some of the similarities
and differences between hearing and seeing. It is written as an intermediate-
level text. It is not mathematical, although it depends on mathematical and
analytical thinking. I have tried to walk a line between an overly simplified
and an over-the-top presentation of the material.

I think of this text as a “bridge” book in two ways.
The first bridge is between hearing and seeing. It used to be that individ-

uals who studied hearing and seeing thought of themselves as studying per-
ception. Perceiving, with only rare exceptions, involves making inferences
and decisions based on information coming from several modalities simul-
taneously. The choice of using auditory, visual, or tactile input (or combi-
nations) would be based on the particular problem studied. Audition and
vision would be model systems, to be employed according to the research
question. Currently, the technical expertise required to do research with ei-
ther sense, and the enormous amount of information about both, have led to
a distinct intellectual fissure, with separate journals and professional meet-
ings. The research literature often makes passing references to similar out-
comes in other senses, but there is little follow-up.

On top of these experimental issues, I think there is a general belief that
hearing and seeing are fundamentally different. I have enumerated many of
these differences in table 1.1. Nonetheless, I have always thought that be-
neath these differences are fundamental similarities in the ways that all
modalities make sense of the external world. All events and objects (and
perceivers) exist in a common space and time, and all events and objects
have a sensory structure that can be picked up by the perceiver. Taken to-
gether, I believe that this implies that the internal structures for hearing and
seeing are at least qualitatively the same.



There is no single way of connecting the different aspects of hearing to
corresponding aspects of seeing. For example, here I connect color to tim-
bre, but another compelling connection would be visual texture to timbre,
or color to pitch. Hopefully, the material here will lead readers to consider
other possibilities.

Without exception, all chapters contain information about both hearing
and seeing. The two chapters that are more exclusively concerned with one
sense, chapter 7 about color and chapter 8 about timbre, should be consid-
ered as a matched pair. I wrote the chapter about color thinking about tim-
bre and vice versa.

The second bridge is between the introductory materials found in under-
graduate sensation and perception, sensory physiology, or basic neuro-
science courses and advanced courses covering audition or vision as well
as the published literature. I have assumed that readers are not complete
novices and that they have had an introductory course, so that many prelim-
inary concepts are not explained fully. I have tried to simplify the figures to
emphasize the important points.

There are many excellent introductory textbooks and many excellent
advanced texts, and this is designed to slot between the two. Among the
advanced texts that I have found particularly useful are Dayan and Abbott
(2001), De Valois and De Valois (1988), Gegenfurtner and Sharpe (1999),
C. D. Geisler (1998), Kaiser and Boynton (1996), Hartmann (1998),
Palmer (1999), Rieke, Warland, de Ruyter van Steveninck, and Bialek
(1997), Shevell (2003), and Wandell (1995). These are all more mathemati-
cal, and focus on either hearing or vision. My hope is that this book will
make the transition to these texts and the professional literature easier.

One of the pleasures of writing a book is the ability to take time to
reread books that now are considered passé. I have thoroughly enjoyed
Floyd Allport’s (1955) treatment of perceptual theories, Georg von Bekesy’s
(1967) book on sensory inhibition, Julian Hochberg’s (1964) slim paper-
back on perception, and Wolfgang Kohler’s (1969) summary of Gestalt
psychology. I have also rediscovered the work of Rock (1997), which is
discussed at length in chapter 9. I suggest that everyone should read these
classics; they are exceptional.

On the whole, each chapter is relatively self-contained. Chapters 1, 2,
and 3 cover the basic material and probably should be read first. The re-
maining chapters can be covered in any order, depending on the interests of
the reader.

Many people have contributed to the writing of this book, often unbe-
knownst to themselves. I would like to thank Dr. Roy D. Patterson for
allowing me to spend a sabbatical in his laboratory. Roy’s ideas have been
the germ for many of the themes in this book: his ideas have become so
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intertwined with my own that I am afraid that I have not given him appro-
priate credit. I am deeply grateful to Dr. Howard Pollio, my colleague in
the Psychology Department at the University of Tennessee for 30 years.
Howard always has challenged my “mechanistic” explanations and he has
forced me to accept the essential intentionality and creativity of perceiving.
I am afraid that I will not have satisfied him or myself with what I have
been able to write here about either issue. I am also deeply grateful to
Dr. Molly L. Erickson and Dr. Sam Burchfield in the Audiology and Speech
Pathology Department at the University of Tennessee. Molly has taught me
much about acoustic analysis and voice timbre, and has good-naturedly
squelched all of my outrageous analogies between hearing and seeing. Sam
has been a constant support throughout.

This book has been a tremendous stretch for me and I would like to
thank Drs. David Brainard, Rhodri Cusack, David Field, Jeremy Marozeau,
and Mark Schmuckler for supplying data, and particularly Drs. Albert
Bregman, Peter Cariani, C. D. Geisler, and Paris Smaragdis for patiently
answering questions and improving the text. Hopefully they have pushed
the book back from the precipice of the Peter Principle. Finally, I would
like to thank the staff at the Jackson Laboratory. Doug McBeth and Ann
Jordan have processed my reference needs with unfailing good humor and
Jennifer Torrance and Sarah Williamson have patiently taught me the finer
points of figure preparation in a fraction of the time it would have taken me
to figure it out myself.
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1

Basic Concepts

In the beginning God created the heavens and the earth
Now the earth had been wild and waste
Darkness over the face of Ocean . . .
God said: Let there be light! And there was light . . .
God separated the light from the darkness
Let there be lights in the dome of the heavens to separate the day from the

night
And let them be for lights in the dome of the heavens, to provide light upon

the earth
God made the two great lights,
The greater light for ruling the day and the smaller light for ruling the night,

and the stars.

The beginning of Genesis is perfectly delimited; nothing missing, nothing
extra. What consistently intrigues me is the second line, “Now the earth
had been wild and waste, darkness over the face of Ocean” (Fox, 1983,
p. 4). In the text that follows, God brings order out of chaos. God did not
create order from nothingness. It is along the continuum between chaos and
randomness to order and structure that our perceptual world forms. Our
phenomenal world is not based on the overall level of randomness or order.
Rather, our phenomenal world is created by the difference or ratio between
randomness and order. Following the initial creation, God made things dif-
ferent: To separate the night from the day God made the greater light and
the smaller light. The night is not dark; it is a lesser light. Here again, the
phenomenal world is not based on the overall magnitude of light (or
sound), but on the difference or ratio between the lightest and darkest or be-
tween the loudest and softest. In general terms, this contrast allows us to
make sense of a physical world that varies by orders of magnitudes greater
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than any single cell of our sensory systems can encode. This contrast al-
lows us to partition the perceptual world into the objects and events that we
react to. Moreover, this contrast allows us place objects and events into
equivalence categories that are necessary to make sense of the world.

From this perspective and that of Genesis, the opposite of looking at, lis-
tening to, or grasping is not blackness, silence, or lack of pressure, but un-
structured energy, energy that does not afford the perceiving of things or
events in the world. The energy in the physical world and the energy coded
by the receptors at the periphery are neutral. Perceiving is not merely at-
tending to parts of the incoming energy, but is the abstraction of the struc-
tured energy out of the ongoing flux. It is the interpretation of the physical
properties of objects and events. Hoffman (1998) described vision as an in-
telligent process of active construction; the world is not recovered or recon-
structed. The act of looking or listening constructs objects. This is as true
for seeing a tree in a snowstorm as it is for hearing a word in a thunder-
storm. Perceiving is creative and not passive.

The purpose of this book is to match up auditory and visual perception.
Throughout, I take the position that perception is active and that we attend
to the structured parts of the world. Therefore, I do not think of perception
as a noun, but as a gerund, perceiving. Looking, listening, searching, over-
hearing, grasping, touching, manipulating, and so on are the processes of
perceiving. These processes are multifaceted. There is no doubt that biolog-
ical processes exist that transform and code the firings from the peripheral
receptors. But, there is no general agreement about how those firings con-
struct the world. On the one hand, the sensory data, if taken over time and
space, may have sufficient information to create unambiguous percepts
(Gibson, 1966). On the other hand, sensory data may be inherently ambigu-
ous, so that there are necessary inferential and heuristic processes to make
sense of every firing pattern. The best strategy would be to make use of
cues that are most likely to be correct and have the least variability (Jacobs,
2002). Following Helmholtz (1867), we would perceive what in the past
would have most likely generated the sensory data (Purves, Lotto, &
Nundy, 2002). It is not necessary or even appropriate to claim a predomi-
nant role for any level of processing. Rather, we make use of all levels to
create the appearance of things.

All Sensations Belong to Things and Are Understood 
With Respect to Those Things

As a first guess, visual stimulation is assumed to come from one or more re-
flecting surfaces of rigid objects moving in three dimensions, and auditory
stimulation is assumed to come from one or more continuously vibrating
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sources moving in three dimensions. It may be that the visual world con-
sists of light waves passing through transparent surfaces, or that the audi-
tory world consists of pressure waves reflecting off passive objects, but that
is not the usual way sensations arise and not the usual way we understand
and integrate those sensations. We make use of these usual properties to in-
tegrate independent local excitations at the receptors (e.g., the motion of
lighted dots, the variation in sound pressure, the brightness patterning of
textures) into one or more coherent surfaces and objects. Visual informa-
tion is “shaped” by the object: the parallel beams of light from a distant
source (e.g., the sun) are reflected and shaped into a pattern that signifies
the surface and shape of the object. In similar fashion, auditory information
is shaped by the object: Air particles are mechanically “pushed around”
and shaped into a pattern that signifies the physical properties (e.g., shape,
size, material) of the vibrating surface.

Thus, I believe that the usual distinction that vision gives us objects and
audition gives us events is a trap. It misleads us into thinking about vision
as a spatial sense and about audition as a temporal sense. According to the
Oxford English Dictionary, the original definition of object is “something
thrown in the way,” or “to stand in the way so as to obstruct or obscure.”
Objects are typically opaque, so they block the recognition of other objects
that are behind them. In contrast, the definition of events is “to emerge out
of a temporal flow.” But all perceiving concerns the appearance of things,
and things exist in space and time simultaneously. To Griffiths and Warren
(2004), object analysis is the analysis of information that corresponds to
things and their separation from the rest of the sensory world. To put it
differently, all sensory input is interpreted in terms of familiar causative
agents or events and not in terms of the manner and nature of sensory stim-
ulation (R. M. Warren, 1999). Raymond (2000, p. 48) makes a similar
claim: “the idea is that the brain deals in the currency of object representa-
tions, not disembodied stimulus features.”

One example of our inclination to perceive sensations as bound to objects
occurs with random dot kinematograms, as shown in figure 1.1. Dots are
programmed to move as if each were attached to the surface of a transparent
cylinder. Even though the cylinder is rotating at a constant speed (A), the
observer does not see the dots moving at a constant speed. Instead the ob-
server sees the dots slow down as they reach the edge of the cylinder, stop,
and then speed up in the reverse direction as they near the center line of the
cylinder (the dots also change size as they move from the front to the back
of the cylinder) (B). If the dots did not change velocity or size and simply
reversed direction, the perception would be that of a flat surface. Observers
effortlessly see the dots moving coherently, and attached to the front or back
surface of a rigid cylinder consistent with their direction of movement. What
is important is that the observers infer the presence of a cylinder even if
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individual dots disappear and new ones come into existence. Thus, the per-
ceptual stability and existence of the cylinder surface is created and main-
tained by the pattern of movement of the dots, yet the temporal properties of
individual dots has little effect on perception of surface; the cylinder has a
perceptual existence that is independent of any single dot.

Another example of our inherent tendency to perceive elements as part
of a three-dimensional object is the classic demonstration of the perception
of human figures due to movements created by small lights placed on the
joints (e.g., wrists, knees, angles, shoulders). Johansson (1973) dressed the
actors in black so that only the lights were visible. When the lights are sta-
tionary, they appear to be randomly placed and no form is seen, but as soon
as the lights begin to move it is easy to tell whether the actor is running or
walking, and even the gender of the actor (Cutting, 1978). It is interesting
to note that it is much harder to see the human action if the film is presented
upside down (Dittrich, 1993). For both the rotating cylinder and the run-
ning person, the three-dimensionality of the immediate percept is based on
the pattern of movement of the dots. If the movement stops (or does not re-
semble plausible biological actions), the percept collapses into a flat ran-
dom collection of moving dots.

It is worthwhile to point out that the perception of a rotating cylinder or
walking dots is based on at least two other implicit assumptions about the
world: (1) there is only one light source and (2) it is a single rigid object
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Figure 1.1. Dots are pro-
grammed to move as if each
was attached to the surface of a
transparent cylinder. The cylin-
der is rotating at a constant
speed, so that each dot moves
at a constant speed, the distal
stimulus depicted in (A). How-
ever, the the observer sees the
dots change speed and direc-
tion as indicated by the arrows
attached to each dot. The
observer also sees the dots
change size as indicated by the
size of the dots in the proximal
stimulus diagrammed in (B).



even though its appearance changes. The same sort of implicit assumptions
occur for the auditory world: (1) there is a single sound source and (2) it is
the same source even though its acoustical properties change. The most
useful heuristic is to accept the default assumption of one source because in
the natural course of time, its properties change due to a slightly different
location, orientation, movement, or excitation. Pizlo (2001) argued that all
perceiving should be considered as the inverse problem of going from
the proximal stimulation at the receptor to the distal object in the world
and that all perceiving depends on the operation of a priori probabilities
and constraints such as smoothness and good continuation. In Pizlo’s view,
without constraints, perceptual interpretations (what the proximal stimula-
tion tells us about the world) are not well-posed problems: There may not
be a solution, or there may be several solutions. Regardless of whether you
believe that the proximal stimulation is interpreted according to evolution-
ary tuning of the senses to the environment or according to empirical prob-
abilities discovered with experience, or both, the interpretation is that of
objects.

The Perceptual World Emerges From Processes 
at Many Levels

Although our auditory and visual phenomenal world is one of unified ob-
jects and happenings, the convergent and divergent auditory and visual
pathways (as well as feedback loops from higher brain centers) suggest that
the processing of sensory information occurs both simultaneously, in paral-
lel at different neural locations, and successively, serially, as firing patterns
converge from these locations. Furthermore, for both hearing and seeing,
the initial processing of the physical energy occurs at a local level, not
globally. For hearing, the acoustic wave is broken down into frequency
components and the receptive cells in the inner ear fire maximally to inten-
sity variation at specific frequencies. For seeing, cells fire to the intensity
variation in small regions of the retina and moreover fire maximally to in-
tensity variation that occurs along specific directions (i.e., black-white vari-
ation horizontally as opposed to vertically). What this means is that many
mechanisms, modules, processing units, or channels (many different words
are used to describe these neural “calculators”) make use of the same sen-
sory firing pattern to calculate different properties of the object and event.

Although it appears that some properties (e.g., color) are constructed in
specific cortical regions, it would be a mistake, however, to think of these
mechanisms as being encapsulated and strictly independent. Nakayama
(1985) argues that there are several subsystems underlying the perception of

Basic Concepts 7



motion and that one or many could be utilized depending on the perceptual
demands. Thus, the puzzle is how the various mechanisms are integrated;
the problem of analysis is “solved” in terms of the neural circuitry. Each
such property enters into the perceiving of many qualities. For example, a
motion detection system would enter into the perception of the third di-
mension, the sense of one’s own movement, the detection of impending
collisions, and so on. For a second example, the relative intensities of the
different frequencies give us pitch, instrumental and voice quality, the sense
of an approaching object due to the Doppler effect, speech vowels, and so
on. Moreover, there are interactions between vision and audition (see Shi-
mojo & Shams, 2001, for a short review; see also material in chapter 9).

Still another issue is the creative intentionality in perceiving. The orga-
nization of light and sound into meaning can usually be done in several
ways. The sections below describe some of the heuristics people use to
make sense of stimuli. Yet, we all know of instances in which we seem to
will ourselves to see or hear something differently. For example, we can
make the Necker cube reverse in depth or even force it down into two di-
mensions; we can listen to an orchestra as a whole or pick out particular in-
struments; and we can listen to singing phonetically or melodically.

Perceiving Occurs at Several Spatial and 
Temporal Scales Simultaneously

The first theme stated above explicitly links the perception of bits and
pieces of objects to the overall properties of the objects themselves. All of
the scales or grains are interdependent due to the fact that they are inherent
in the same object or in the same scene. Wandell (1995) argued that we per-
ceive motion with respect to broader “ideas” concerning “dense” surfaces
and objects. Julesz (1971, p. 121) made the same argument that the visual
system tries to find a global solution in the form of a dense surface instead
of localizing points in depth and will disregard, within limits, differences in
the disparity values from the two eyes that signify different depths. Breg-
man (1993) made an analogous assertion for hearing: The auditory system
tries to find a global solution in terms of a single source. Namely, we will
try to hear a single sound or sequence of sounds as coming from one ob-
ject. We will break the sound wave into different sound sources only if the
expected harmonic and temporal relationships among frequency compo-
nents that would be created by a single source (e.g., all components should
start and stop at the same time) are continuously violated. In the same way
that the entire visual scene creates the percept, the rhythmic relationships
among frequency components found in longer sequences of sounds will
also determine our decision of whether there are one or more sound
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sources. A single sound source is the default solution, and the auditory sys-
tem accumulates evidence before shifting to a multiple-source global solu-
tion. Thus, both what we see and what we hear are created at several levels
of perceiving. All perception occurs within such a broad context.

Simple examples that illustrate the levels of perceiving are found in pho-
tomosaic pictures. Large-scale objects are created by means of arrays of
smaller photographs that have the appropriate overall color and brightness
to represent features of the larger object. I have a 45 × 60 cm poster of the
Statue of Liberty on my wall constructed from more than 1,000 little photo-
graphs. It is possible to focus on the overall shape of the head or on the indi-
vidual photographs at nearly all reasonable distances from the poster. I am
always overwhelmed by the creative possibilities available in perceiving.

The Aperture Problem

Although I have argued above that perceiving depends on multiple stimulus
properties that can span spatial and temporal scales, typically we cannot
make use of all the available properties at once due to sensory limitations,
memory limitations, or even environmental obstacles. For example, cells
that code orientation, motion, and shape in the vision system have small
receptive fields so that each cell responds as if looking at a very small part
of the visual field, and cells that code frequency in the auditory system
respond to only a limited set of frequencies so that each cell responds as if
hearing only a small part of the signal. It is the convergence of cells at the
higher visual and auditory centers that yields cells that respond to larger
parts of the field, but the success of that convergence must be due to com-
bining corresponding parts of the field. Moreover, auditory and visual sen-
sations occur across time, and the visual glimpse or auditory snippet at a
particular instant must be interpreted by what has preceded it and what will
follow it.

The aperture problem is exemplified when looking at the motion of a uni-
form line through a rectangular opening, as shown in figure 1.2. The prob-
lem is that one cannot determine the direction or speed of motion of the line.
It could be moving along its own length at any speed, but the restriction of
information through the opening makes movement in that direction ambigu-
ous. There are no unique points on the line that allow unambiguous match-
ing from instant to instant. Without some kind of mark on the line, it is
impossible to determine if any in-line movement occurred. Regardless of the
actual movement of the line, observers simply report the line as moving
perpendicular to its orientation without mention of any other motion. That
percept minimizes the speed and distance the line seems to move.

What we want to do is represent all possible movements of the line. We
start with a straight diagonal line shown in figure 1.2(A). We can represent
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any motion by the sum of two vectors at 90° in (B1 and B2): One vector is
perpendicular to the line (seen) and the other is along the line (unseen). The
length of each vector represents the speed along that direction, but of
course, we cannot know the in-line speed. Two possible in-line movements
are shown in B1 and B2 (darker lines) and the resulting sum of each of the
two movements with the (known) perpendicular movement by the lighter
line (a vector). All of the vectors combining the seen perpendicular move-
ments with the possible, but unknown in-line motions, end on a single
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Figure 1.2. The movement of a uniform line (in A) seen through an aperture is am-
biguous because it is impossible to see any in-line movement. Two possible in-line
movements are shown in (B1) and (B2) and the vector sum of the perpendicular and
in-line movement is depicted by the lighter vector. The sum of every possible in-
line movements combined with the known perpendicular motion creates a set of
vectors that will fall along the constraint line. Four such vectors are shown in (C) as
well as the “pure” perpendicular movement. If two lines move simultaneously, the
lines are often perceived to move together toward the intersection of the two con-
straint lines (abbreviated IOC point) (D). The light arrows represent the movement
of each line.



straight line parallel to the actual line termed the constraint line, the dotted
line shown in figure 1.2(C).1

Suppose that more than one line is moving within the opening. A
downward-sloping line (line a in D) moving to the right would appear to
move diagonally up to the right, creating the constraint line A. An upward-
sloping line (line b in D) moving to the right would appear to move diago-
nally down to the right, creating the constraint line B. Observers report that
the perceived motion of the two lines together is toward the intersection of
the two constraint lines (the IOC point), directly to the right.

I want to argue that the aperture problem is ubiquitous in all perceiving.
Our ability to extract the relevant information is always being obstructed in
one form or another. In audition, the aperture is not spatial but temporal. In
the sense of seeing a visual scene through a slit that allows viewing the
scene only as a series of overlapping spatial segments, so too we hear an
auditory stimulus only through a temporal slit that allows a series of over-
lapping temporal segments. In both hearing and seeing, we perceive things
by putting together the ongoing overlapping signal. If the aperture is un-
duly restrictive and reduces the contrast between order and disorder, the
perception changes. For example, viewing a uniformly colored surface
through an aperture changes the appearance of the color. The aperture re-
duces the contextual information from the entire scene to brightness and
hue information from small spatial areas. The color takes on a filmy ap-
pearance and does not appear to be attached to a surface.

The Correspondence Problem

The aperture problem is the cause and complement of the correspondence
problem. The visual and auditory sensory worlds are in constant flux (as
well as the flux due to eye movements) so that the sensations at any mo-
ment cannot unambiguously signify objects or events, and yet we perceive
a stable phenomenal world by matching successive visual glimpses and
successive auditory segments into stable objects. I have come to believe
that the correspondence problem lies at the heart of perception.

The correspondence problem originally referred to the problem of fus-
ing the slightly different visual images in each eye by matching their fea-
tures. But in the same fashion as argued for the aperture problem, the
correspondence problem can be found in nearly all instances of perceiving.
Take, for example, exploring a single object using both hands. Here it is

Basic Concepts 11

1. If one point on the line is marked, or if one end point is shown, the actual movement
can be perceived unambiguously. What happens is the movement of that point is assumed to
be true of all the unmarked points on the same line (a rigidity assumption). Palmer (1999)
termed this the unique-point heuristic.



obvious that the surfaces uncovered by each hand must be placed in registra-
tion in order to create a solid object. I can identify five types of problems.

Correspondence Between Binaural and 
Binocular Inputs

Due to the positioning of the two eyes, the retinal images are slightly dis-
placed spatially with respect to each other, and similarly due to the posi-
tioning of the two ears, auditory images are slightly displaced temporally
with respect to each other. Thus the problem is to match the visual features
in each eye and to match the auditory features in each ear.

The traditional solution for vision was to assume that the image in each
eye was analyzed first, so that the correspondence problem was reduced to
matching the shapes found in each eye. However, Julesz (1971) demon-
strated that binocular correspondence could occur for a wide variety of
random-dot stereograms that precluded classic shape matching. The corre-
spondence was achieved by identifying that part of the random array that
was common to both eyes. Thus, shape matching is not necessary, although
it may occur normally. In the natural world, the correspondence problem
can be simplified by making use of the normal properties of real surfaces.
Namely, continuous surfaces change slowly and gradually, while disconti-
nuities between surfaces create sharp contrasts.

The traditional solution for hearing is to assume that there are cells sensi-
tive to various time delays created by the outputs from the two ears. Imagine
that the neural signal from the near ear is transmitted along parallel neurons
so that the signal in each neuron is delayed by an increasing amount of time.
Then, each delayed signal is matched against the far ear signal. The match
(i.e., the coincidence of the firings) will be maximized at one delay and that
delay will signify a direction in space based on head size. Simultaneously,
the two firings will become fused into a unified percept.

Correspondence Between Patterns Repeated in 
Space or Time

Imagine a sequence in which a set of identical but randomly placed dots
changes position. We can think of this as a sequence of images, such as the
frames of a motion picture. If the motion is rigid, the relative positions of
the dots do not change and the correspondence problem becomes matching
the dots in one image with those in a later image that represents the same
pattern that could have been rotated or translated. If the motion is nonrigid,
then the correspondence problem becomes finding the match that repre-
sents the most likely transformation. Similarly, imagine a segment of a ran-
dom sound that is repeated without interruption so that the listener hears a
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continuous sound. The correspondence problem is to isolate the repeating
segments so that the amplitudes at corresponding time points in each seg-
ment are perfectly correlated.

As found for the binaural and binocular correspondences discussed
above, the proposed explanations make use of heuristics that reflect the
highly probable characteristics of the environment to reduce and simplify
the matching problem. For example, one such visual heuristic is that most
objects are rigid so that correspondences requiring deformations are given
low probabilities, and one such auditory heuristic is that most sounds come
from a single sound source that changes frequency and amplitude slowly so
that correspondences requiring large changes are given low probabilities.
One unresolved issue is what units are being matched. The match could be
based on simple elements such as lines, blobs, and individual sounds, or
based on geometric figures and rhythmic or melodic phrases.

Correspondences Within One Interrupted Visual
Image or Auditory Segment

In our cluttered environment, one visual object is often partially occluded by
other objects, yielding a set of disconnected parts, and a single sound is of-
ten masked by partially overlapping competing sounds, yielding a sequence
of interrupted parts. Here the correspondence problem is whether the parts
are separate objects themselves or come from one auditory or visual object.

Correspondences Between Auditory and 
Visual Information

We see and hear a ball bounce, a person speaking, or a violinist playing. In
all such cases, the energy in each modality must be kept in correspondence
in space and time. If the information is deliberately misaligned in space
(ventriloquism) or time (flashing lights that are not synchronous with sound
rhythms), sometimes the information in one modality dominates (we “lis-
ten” to the visual dummy and see the lights as synchronous with the audi-
tory rhythm) and sometimes there is a compromise. On the whole, observers
are biased toward the more reliable information, irrespective of modality.

Correspondences Between Objects and Events at
Different Orientations, Intensities, Pitches, Rhythms,
and So On

It is extremely rare that any object or event reoccurs in exactly the same
way. The perceptual problem is to decide whether the new stimulus is the
reoccurrence of the previous one or a new stimulus. Sometimes, an observer
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must judge whether two shapes can be matched by simple rigid rotations or
reflections. But often the new stimulus is a more complex transformation of
the original one, such as matching baby to adult pictures or matching an
instrument or singer at one pitch to an instrument or singer at a different
pitch. In both of these cases, the perception of whether the two pictures or
two sounds came from the same source must depend on the creation of
a trajectory that allows the observer to predict how people age or how a
novel note would sound. I would argue that the correspondence problem is
harder for listening because sounds at different pitches and loudness often
change in nonmonotonic ways due to simultaneous variation in the excita-
tion and resonant filters. The transformation simultaneously defines inclu-
sion and exclusion: the set of pictures and sounds that come from one
object and those that come from other objects.

Inherent Limitations on Certainty

Heisenberg’s uncertainty principle states that there is an inevitable trade-off
between precision in the knowledge of a particle’s position and precision
in the knowledge of the momentum of the same particle. Niels Bohr
broadened this concept by arguing that two perspectives may be necessary
to understand a phenomenon, and yet the measurement of those two per-
spectives may require fundamentally incompatible experimental proce-
dures (Greenspan, 2001). These ideas can be understood to set limits on the
resolution of sensory systems. For vision, there is a reciprocal limitation
for space and time (and, as illustrated in chapter 2, a reciprocal limitation
between spatial frequency and spatial orientation). Resolution is equivalent
to the reliability or uncertainty of the measurement; increasing the resolu-
tion reduces the “blur” of the property. The resolution can be defined as the
square root of the variance of repeated measurements.2

For audition, there is a reciprocal limitation between resolution in fre-
quency and in time. To simultaneously measure the duration and frequency
of a short segment, the resolution of duration restricts the resolution of the
spectral components and vice versa. Suppose we define the resolution of
frequency and time so that (∆F)(∆T) = 1.3 Thus, a temporal resolution of
1/100 s restricts our frequency resolution to 100 Hz so that it would be im-
possible to distinguish between two sounds that differ by less than 100 Hz.
Gabor (1946) has discussed how to achieve an optimal balance between
frequency and space or time uncertainty in the sense of minimizing the
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auditory and visual information.
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overall uncertainty. Gabor argued that Gaussian (sinusoidal) distributions
of frequency and time are optimal because the product of their uncertain-
ties is a minimum: (∆F)(∆T) ≥ .07. Actually, human performance can be a
bit better than this physical limit (Hartmann, 1998).

One way to conceptualize inherent uncertainty is to imagine a simple x-y
coordinate system in which the x axis represents frequency and the y axis rep-
resents duration. If there was no uncertainty, then any tone could be repre-
sented by a single point in the x-y space. But because there is uncertainty, the
best we can do is create a minimum rectangular area in the space so that the
width along the x axis represents the frequency resolution with the height
along the y axis representing the duration resolution. If we want to measure
both frequency and duration with equal resolution, then the area becomes a
square. The receptor will not be able to resolve combinations of tones within
that square. If we want to measure frequency with greater resolution, then the
square becomes a vertical rectangle so that the x width gets smaller, but the y
height (i.e., resolution) must increase to maintain the same area. Similarly, if
we want to increase the resolution for duration by making the y height
smaller, we must necessarily decrease the resolution for frequency by making
the x width longer to maintain the same rectangular area (Daugman, 1985).

Figure 1.3A illustrates the joint uncertainty arising from spatial fre-
quency and spatial orientation as discussed in chapter 2. Figure 1.3B illus-
trates that to increase frequency resolution by elongating the frequency
axis to encompass more cycles, it is necessary to reduce the length of
the orientation axis, thereby decreasing orientation resolution. Figure 1.3C
illustrates that to increase spatial orientation resolution by elongating the
orientation axis, it is necessary to reduce the length of the frequency axis.

The solution to the resolution problem is to construct a perceptual system
with multiple levels so that there is a distribution of resolution trade-offs at
each level and so that there is also a trade-off of resolutions between lower
and higher levels. This solution returns us to the second theme: Perceiving is
the interplay of several levels at once. For the visual system, we can imagine
an initial level composed of receptors with small receptive fields, some opti-
mized for frequency resolution and some optimized for orientation resolu-
tion. Each receptor is sensitive to changes in a tiny part of the visual scene.
The problem is to convert this local information into coherent global per-
cepts. We can further imagine that this first level feeds into a second level
that integrates sets of spatially adjacent receptors so that the receptive field
is larger but the resolution is less. The second level feeds into a third level
that integrates sets of adjacent second-level receptors and so on. By combin-
ing all lower and higher levels in parallel, the perceptual system gets the best
of two worlds: spatial detail from the initial level embedded in the global
shapes from the higher levels. For the auditory system, the initial level would
respond to individual frequencies; the next level would integrate the firings
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of adjacent frequencies. Still higher levels would integrate lower levels to
create tone quality (i.e., timbre and pitch), and temporal organizations such
as rhythm that extend over longer time spans.

Aperture, Correspondence, and Inherent Uncertainty

The aperture, correspondence, and inherent uncertainty issues are all interre-
lated. The inherent trade-offs in resolution force us to create “tight” apertures
in space and time to capture the rapidly changing light and sound energy
that signify the boundaries of objects and events. The necessity for apertures
to maintain the fine-grain information in turn creates the correspondence

16 Perceptual Coherence

(A)

Figure 1.3. The joint uncertainty arises from spatial frequency and spatial orien-
tation resolution, as discussed in chapter 2. Panel (B) illustrates that increasing
frequency resolution by elongating the frequency axis necessarily reduces the ori-
entation resolution. Conversely, panel (C) illustrates that increasing spatial orienta-
tion resolution by elongating the orientation axis necessarily reduces the spatial
frequency resolution.



problem. The “snapshots” in space and time must be fused to create a use-
ful perceptual world.

What will emerge in the following chapters is that the correspondence
problem is solved in two ways. The first may be termed effortless and pas-
sive. Here the correspondences are found without conscious effort, before
higher-order processes involved with shape analysis or figure-ground seg-
mentation occur. The second may be termed effortful and attentive. In this
second case, the correspondences are found by actively searching the stim-
uli to seek out the matches. As a first approximation, the first type of corre-
spondence occurs in the short range, across small displacements in space or
time, while the second type occurs in the long range, across large displace-
ments. Perhaps the best strategy is to choose the process that minimizes the
correspondence uncertainty.

Perceiving the World Occurs in Real Time

Given the immediacy and transparency of perceiving, it is easy to forget
that perceiving is based on the patterning of neural spikes (Rieke et al.,
1997). The spike train is not a static image; it is a running commentary or
simultaneous translation of the objects and contrasts in the world. Here is
yet another trade-off hinging on temporal integration: between combining
the spike trains in time to average out inherent errors or maintaining corre-
spondence with the ongoing changes. As I will argue throughout the book,
the solution entails a continuum of neural mechanisms that cover the range
from short temporal periods necessary for responding to rapid changes to
long temporal periods necessary for averaging responses.

Rieke et al. (1997) persuasively argued that the neural spike code must be
understood in the context of the natural timing of external events and in the
context of what alternative events could occur. In many natural environ-
ments, stimulus variation may occur within intervals of 100 ms (e.g., speech
sounds) so that given typical neuron firing rates from 10/s to 50/s, the stimu-
lus change may be signaled by as few as one to five spikes. Thus, there may
be sparse coding in the temporal domain in which there is but one spike for
each change in the environment. (I return to the issue of sparse coding in
chapters 2 and 3.) The interpretation of such a neural code cannot be made
without some a priori knowledge of the possible stimulus changes, and our
interpretation of the information and redundancy of the signals cannot be
done without defining such alternatives. The auditory and visual worlds are
not random, and there should be strong internal correlations in the neural
spike train that match the internal structure of objects and events.

Rieke et al. (1997) went on to point out that the classic dichotomy
between neural coding based on spike rate and that based on the timing
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between spikes (e.g., phase-locking to specific parts of the signal) should
be understood in terms of the rate of change of the stimulus. If the stimulus
is not varying (e.g., a static visual image), rate coding provides the usable
information, and the timing information is nonexistent. If the stimulus is
constantly changing, then the timing between spikes provides the useful in-
formation and the average firing rate may be unimportant. But if the stimu-
lus is changing very rapidly, then the neural system may not be able to fire
rapidly enough to synchronize to each change, and then only rate coding
would be possible. In sum, the interpretation and usability of the neural
code can be investigated only in terms of the intentionality of the perceiver,
be it a fly, bat, or human, in a probabilistic environment.

Perceptions Evolve Over Time

Previously I argued that perception is the construction of the distal world
from the proximal stimulation. What we often find is that perception of an
event evolves over time. Initially, the percept is based purely on the proxi-
mal stimulus, but over time that percept is superceded by one that takes into
account the overall context, previous stimuli, prior knowledge, and so on
that result in a more accurate rendition of the distal world.

One example of this occurs if two lines with slightly different orientations
are viewed through an aperture. Suppose the two lines are moving perpendic-
ularly at very different velocities that are represented by the lengths of the
two vectors. There are two possible perceptions here. The first, shown in
figure 1.4A, which I term the proximal motion, is simply the vector sum of
the two line vectors and therefore is an upward motion that is between the
two individual motions, a sum. The second, shown in figure 1.4B, which
I term the distal motion, is in the direction of the intersection of the two lines
of constraint. That motion is up to the right, outside the individual motions.
Observers report that the initial perception is that of the vector sum (less than
90 ms of presentation), but that percept soon gives way to motion toward the
intersection of constraints (Yo & Wilson, 1992). The vector sum motion will
still bias the perceived motion, pulling it toward the sum direction and away
from the constraints’ motion. I discuss other examples of this in chapter 9.

Pack and Born (2001) have shown that the response of individual cells
of alert monkeys in the middle temporal visual area (MT or V5) of the vi-
sual pathway, which has been shown to integrate directional motion from
lower levels, mirrors this perceptual transition. Early in the visual path-
ways, direction-sensitive neurons have only small receptive fields, so that
they can respond to but a small region of a moving object. Thus they are
likely to “send up” the visual pathways incorrect or conflicting information
about motion. The stimuli used by Pack and Born were short parallel line
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segments at different orientations. The lines moved either strictly perpendi-
cular or 45° off from perpendicular. They found that the initial direction-
specific responses (70 ms after movement onset) were affected by the
original orientation of the bar, with the majority of responses perpendicular
to orientation. But over time, the effect of the orientation decreased and the
MT cells began to encode only the actual stimulus direction. Thus, by inte-
grating responses that individually are spatially limited, the MT region can
derive a relatively accurate picture of motion.

Perceptual Variables Are Those of Contrast and Change

The fundamental problem in beginning to understand perceiving is to iso-
late the important physical variables that create our perceptual world and to
discover how to measure those variables to create simple relationships. We
need to know which properties affect our construction of objects and events
in the world, and which properties provide background and context. We
could precede either empirically by manipulating the levels of the pro-
perties to determine their effects on perception, or we could proceed ration-
ally by considering how such properties could affect perception in natural
conditions.
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Figure 1.4. If two lines (or two
gratings) move at different speeds, the
initial percept is that both lines move

together in a direction between the
perpendicular movements of the two

lines, as pictured in (A). Within a short
time, the percept switches and now the

two lines appear to move toward the
intersection of constraints. As shown in

(B), paradoxically that motion can be
outside the angle formed by the two

individual movements.



From the latter perspective, we are asking a joint question about the
ecology of the environment, the organism’s goals in that environment, and
the properties of the sensory systems. Consider overall intensity and the re-
sulting perception of brightness and loudness. For both hearing and seeing,
the range of intensities from the lowest (e.g., dim evening, whispers) to
highest (e.g., sunny noon, rock music concerts) values can exceed the ratio
of 1,000,000:1. However, individual neurons can only signal changes of in-
tensity across the much smaller range of 100:1 or 1,000:1 because the firing
rate saturates and cannot increase beyond that range. Yet we need to opti-
mize our sensitivities at all light levels.

Clearly we need sensory energy in order to perceive at all, and overall
intensity can provide information about such things as the size and distance
of objects. But opaque solid or vibrating objects are characterized by their
contrast to the overall level of energy. What is important for seeing is the
ability to take the neutral mosaic of different light intensities reaching the
retina and assign the bits to opaque objects interspersed and overlapped in
space and time. What is important for hearing is taking the neutral pattern
of air pressure variation and assigning parts to one or more vibrating ob-
jects interleaved in time and space. What characterizes all such objects is
that the variation in intensity (i.e., their contrast) at the boundaries occurs
more rapidly across time and space than variation in the background envi-
ronment. Thus, we should expect the auditory and visual neural systems to
maintain the correct response to contrast variation and to sacrifice an accu-
rate response to overall illumination and loudness. In fact, the majority of
cortical visual cells do not respond to blank scenes of any illumination.
Moreover, the firing rates of many neurons in the auditory and visual path-
ways have a sort of gain control. As the background intensity increases, the
average firing rate remains constant (instead of increasing) so that the neu-
ron still can increase its firing rate to increases in intensity above the back-
ground. Without such a gain control, the firing rate would saturate at even
modest background intensity levels.

There are many ways to demonstrate that contrast determines our per-
ceptual world. Imagine a scene in which a black piece of paper is situated
in a region of bright sunlight while a white piece of paper is situated in a re-
gion of dim light created by shadows. The black piece of paper would re-
flect more light energy overall. However, the black paper is seen as black
while the white paper is seen as white. Thus, the amount of light energy per
se does not determine brightness. The brightness is based on the ratio of
the reflectance from the paper to the reflectance from the background. The
visual system partials out the overall level of illumination (possibly to
avoid saturation). The ratios are calculated in terms of the light in the local
areas surrounding each piece of paper, and not in terms of the overall light
across the entire scene. For hearing, we can construct a tone that oscillates
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in amplitude across time (analogous to a visual stimulus that oscillates in
brightness across space). The threshold for detecting the amplitude changes
is nearly identical across a 100-fold change in overall intensity. In similar
fashion, we can construct a complex tone by summing together a set of
frequency components such that each component has a different amplitude.
The threshold for detecting a change in amplitude of just one of the com-
ponents also is relatively constant across a wide range of overall ampli-
tudes (D. M. Green, 1988). Thus, the important auditory properties are
those that signify changes in the relative vibration patterning that character-
izes objects.

If we proceed empirically, then we would look for dependent variables
that change smoothly, optimally in linear fashion, to changes in indepen-
dent variables. Given the ecological properties described above, we should
not expect a linear function. In fact, simple relationships are not found; the
functional relationships change smoothly but not in linear fashion. At lower
intensities, it appears that all the energy is integrated to detect the object at
the cost of perceiving fine details. But at higher intensities, inhibitory pro-
cesses emerge that limit the neural response in order to achieve a sharper
auditory or visual image. Thus, auditory and visual adaptation at higher in-
tensities maximizes object detection based on contrast. This makes inten-
sity a nonlinear property that is not scalable. The functional relationships
that exist for small changes in intensity at lower magnitudes are not the
same ones that exist for the identical changes at higher magnitudes.

Perception Is the Balance of Structure and Noise

Above I have argued that the perceptual variables are those of change. But
obviously that is just one part of the answer. The change must be pre-
dictable and that predictability must be able to be derived by the observer.
Barlow (1990) put it differently: Perception converts possibly hidden statis-
tical regularities into explicit recognizable forms to prepare for the figure-
ground segregation necessary for learning. Perception is the construction of
a representation that enables us to make reliable inferences about associa-
tions among sensations in the world around us.

At one end, there is noise in which there is no predictability among
elements. For auditory noise, the pressure amplitudes are not predictable
from one instant to another. For visual noise, the brightness of elements
(e.g., points of different grayness levels) is not predictable from one spatial
location to another. At the other end are periodic auditory and visual events
in which there is perfect predictability between elements separated by a
specific time interval or spatial distance. We might say that the combination
of the predictable and nonpredictable parts is the “stuff,” and that the
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abstraction of the predictable parts yields the “things” of perceiving. (The
stuff is really defined in terms of the things that result from the stuff.)

When there is a mixture of unpredictable and predictable elements,
there is a normally irresistible perceptual segregation that isolates the pre-
dictable parts. If we mix a predictable tonal component together with a
nonpredictable noise component, the perception is that of listening through
the noise to hear the tone. Similarly, if we look at an object through a snow-
storm, the perception is that of looking at an object whose parts are being
covered and uncovered. I find it impossible to put the noise back into the
tone to hear an integrated sound or to put the snowflakes back onto the ob-
ject. I believe that the auditory and visual segregation is obligatory and rep-
resents the first step in achieving the objects of perceiving. Bregman (1990)
has termed this process primitive segregation.

As argued above for single properties, it is the contrast or ratio between
the amount of structure and amount of noise that is the important percep-
tual variable. For auditory stimuli that can be conceptualized as lying on
the continuum between tone and noise, listeners reliably can judge the per-
ceptual tone:noise ratio even when the overall levels of the stimuli are var-
ied randomly (Patterson, Handel, Yost, & Datta, 1996). Perceiving is
contextual and relativistic.

Rules of Perceiving Should Be True for All Senses

All of the above implies that listening, seeing, grasping, smelling, and tast-
ing are fundamentally the same. Although the sensory inputs and sensory
receptors are quite different in structure and operation, and the actual con-
trasts may be different, all function by partitioning and contrasting struc-
ture and noise. All senses have been optimized through evolution to
provide animals with information about survival: predators, conspecifics,
and food and water. But all senses must simultaneously be general-purpose
systems that can respond to an ever-changing environment.

Often it is difficult to find the best way to illustrate correspondences
between the senses. It is possible to attempt to match the basic dimensions
of auditory and visual experience and then compare their psychophysical
properties. I have implicitly compared loudness to brightness above, and
pointed out that the range of perceptible physical energy is relatively equiv-
alent. At this level, the comparisons would tend to focus on the parity of
discrimination (e.g., ranges of discriminability, difference thresholds and
Weber ratios, time and space integration windows). It is also possible to
match the gestalt (for lack of a better word) properties of auditory experi-
ence (such as timbre, pitch, noise, roughness, texture, vibrato, location, mo-
tion, consonance, repetition, melody, and rhythm) to the gestalt properties of
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visual experience (such as shape, motion, color, brightness, texture, sym-
metry, transparency, opacity, and location in three-dimensional space). For
example, is the perception of temporal auditory noise equivalent to the per-
ception of spatial visual noise? Finally, it is possible to compare the segre-
gation of auditory scenes into sound-producing objects to the partitioning
of a visual scene into light-reflecting objects. Figure-ground visual organi-
zation assigns a contour line to one and only one object. Does figure-
ground auditory organization similarly assign a frequency component to
one and only one object? Is there a generalized time-space representation
into which all sensory experience is intertwined?

At first, the differences between hearing and seeing seem huge. Is it pos-
sible to use the same conceptualizations for listening and looking, given the
vast differences in their normal functioning? Light energy is electromag-
netic. Light waves travel nearly instantaneously, so that interocular tempo-
ral differences cannot exist. The wavelengths are miniscule (400–700 nm),
which allows excellent spatial resolution, while the frequency is very high,
which disallows phase-locking of the neurons to individual cycles. Sound
energy is mechanical pressure. Pressure waves travel slowly, so that inter-
aural temporal differences can be used for localization. The wavelengths
can be body size, which minimizes the ability to determine object size and
shape, while the frequency is relatively low, so that neurons can phase-lock
to individual cycles. The physiological differences reflect these differences.
The visual system has 120 million spatial sensors per eye (every rod and
cone in each eye can be thought to represent one spatial point), while the
auditory system has but 2,000 inner hair cells per ear that cannot represent
spatial direction. However, the 2,000 auditory inner hair cells have different
frequency sensitivities, whereas the visual system has but three different
cone sensitivities and just one rod sensitivity. These differences are summa-
rized in table 1.1.

On this basis, Kubovy and Van Valkenburg (2001) claimed that audition
and vision serve very different spatial functions: “listening to” serves to
orient “looking at.” Caelli (1981) suggested that it is impossible to mean-
ingfully compare the different kinds of perception, and Julesz and Hirsh
(1972) argued that analogies between vision and audition might, at best,
not be very deep because visual perception has to do with spatial objects
while auditory perception has to do with temporal events.

Nonetheless, I would argue that perceiving in all sensory domains is
finding structure in the energy flux and that deriving equivalences among
the domains can deepen our understanding of how we create the external
world. For example, one kind of equivalence is that the cortical representa-
tion of all senses tends to be arranged into discrete processing areas. Nearly
always, adjacent cells represent slightly different values of the same feature
(e.g., acoustic frequencies or spatial orientations). In each of these cortical
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zones, an environmental stimulus or movement becomes represented by an
isomorphic pattern of firing in the cortex (DeCharms & Zador, 2000).
There is no necessity for this type of organization and yet all systems have
evolved to this arrangement.

To represent the auditory and visual worlds, I make use of the concept of
autocorrelation in space for vision (co-occurrences of brightness or color
patterns separated by a fixed distance) and autocorrelation in time for audi-
tion (co-occurrences of intensity patterns separated by a fixed interval). By
thinking in terms of autocorrelation to find order, I shift the explanation for
perception to the global space-time properties of the ongoing stimulus ar-
ray (Uttal, 1975). It is in same tradition as the efforts of J. J. Gibson to
describe what there is to perceive in the world.

To represent the correspondences between the physical world, neurolog-
ical codes, and perceptual experience, I will again use the correlation. Here,
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Table 1.1 Comparison of Hearing and Seeing

Property Hearing Seeing

Type of Energy Mechanical Pressure Waves Electromagnetic Waves

Speed of transmission a. Relatively slow— a. Nearly instantaneous—
(340 m/s) (3 × 108 m/s)

b. Allows for interaural b. No interocular temporal 
temporal differences to judge differences
direction

Wavelength a. Relatively long—(.02–10 m) a. Very short—(400–700 nm)
b. Poor spatial discrimination b. Excellent spatial resolution 

(light shadows)

Frequency a. Relatively slow— a. Very high—
(30–20000 Hz) (4.3–7.5 × 1014 Hz)

b. Allows phase-locking to b. Phase-locking impossible
individual cycles c. Poorer temporal resolution

c. Excellent temporal resolution

Physiological sensors a. Mechanical process a. Chemical process
b. Rapid regeneration b. Slow regeneration
c. Rapid adaptation c. Slow adaptation

Number of receptors Relatively small number— Large number—
(2,000 hair cells/ear) (120,000,000/eye)

Cerebral cortical area 8% 20–30%

Sensitivity Distributed across frequency Three types of cones plus one 
range type of rod

Object properties Tend to be intermittent Tend to be stable

Additivity Sound pressure waves are Light waves reflect off opaque
transparent and add together objects and usually block 

each other



we would expect the correlation to be between stimulus contrasts and neu-
rological contrasts (differences in rate or timing of the spikes). Both exper-
imental data and mathematical simulations (Panzei & Schultz, 2001)
indicate that the nature of the correlation depends on the timing of the stim-
ulus contrasts, the presumed time in which the nervous system integrates
the firings, and the variability in the noise of the neurons (this is the same
argument made by Rieke et al., 1997, described previously). The correla-
tion should not make use of a simple physical description of the stimulus.
The nervous system does not create a perfect recording or photograph of
the stimulus, and may exaggerate or disregard certain physical correlations
and properties. Moreover, the perceptual representation is malleable as the
person shifts attention. Julian Hochberg (1982, p. 214) argued, “the attrib-
utes that we perceive do not in general exist in some internal model of the
object waiting to be retrieved. They are the results of our intention to per-
ceive, and they appear in the context of the perceptual task that calls upon
them.” Thus, there may be no single kind of correlation that always is used,
but we might expect that the auditory and visual systems will use the same
neural contrasts when faced with equivalent stimulus contrasts (DeCharms
& Zador, 2000).

Summary

The many interrelated concepts discussed in this chapter shape the intent
of this book. Namely, I search for correspondences in the construction of
the external world achieved by abstracting the structure of auditory and
visual sensations across space and time. This is not to argue that there is
consensus as to how sensory systems create a percept. There is not such a
consensus and I would suspect that this lack is due to the diverse ways in
which a percept could be constructed. Formulating the correspondences is
slippery, and the bases for the correspondence can change from instance to
instance. Nonetheless, the consistent goal is to compare the textures of the
auditory and visual phenomenal worlds.
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2

Transformation of Sensory
Information Into Perceptual
Information

If we take the reasonable position that perceptual systems
evolved to perceive the spatial and temporal properties of ob-

jects in the world, then the place to begin is with an analysis of the char-
acteristics of that physical world.1 For some species, the perceptual world
may consist of specific objects necessary for survival, and therefore
we might look for physiological mechanisms that uniquely detect those
objects (e.g., specific cells in the frog’s tectum, colloquially termed bug
detectors by Lettvin, Maturana, McCulloch, and Pitts (1959) that fire to
small dark convex objects moving relative to the background). For other
species including humans, the perceptual world is ever expanding in
terms of novelty and complexity and therefore we might look for physio-
logical mechanisms that detect statistical regularities and relationships,
rather than specific things. This suggestion is analogous to Shepard’s
(1981) theory of psychophysical complementarity that physiological
mechanisms and perceptual heuristics evolved in response to physical
regularities. It may be possible to predict the characteristics of peripheral
and central processes by figuring out how such regularities could be
coded optimally.

We should ask a variety of questions:

1. Are there physical regularities in the scenes we normally encounter
(excluding man-made objects that produce sounds at particular fre-
quencies or that are made up of vertical and horizontal straight lines
meeting at right angles)?
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1. It is possible to take a different theoretical stance and argue that the function of sensory
systems is to enable appropriate behavior with or without a conscious percept.



2. Are the sensitivities and functioning of the physiological mecha-
nisms and perceptual systems optimally constructed to encode physi-
cal regularities in the world? Do these systems make use of the prior
probabilities of objects and events?

3. Do the perceptual organizations mirror the physical properties of the
world in terms of the physical actions necessary to survive (breaking
through the camouflage of predators and prey)?

There are many reasons for an optimal code:

1. An optimal code will compensate for the rather limited range of fir-
ing rates for individual cells in the retina and inner ear in the face of
much wider variation of physical properties in the world.

2. In the vertebrate visual system, the number of optic nerve fibers creates
a bottleneck for the transmission of retinal signals to the brain. The hu-
man eye contains about 5 times more cones, and 100 times more rods,
than optic nerve fibers (Thibos, 2000). For each eye, there are approxi-
mately 100 million receptor cells in the retina but only 1 million fibers
in the optic nerves so that the retinal signal must be compressed to
achieve the necessary transmission rate (the number of cells does in-
crease again to more than 500 million cells in the cortex). The purely
spatial retinal information of the rods and cones is transformed into a
localized receptor-based analysis based on frequency and orientation
that can sacrifice the part of the retinal information that is redundant
and that does not help capture the object causing the sensations.

3. An optimal code at the receptor level will minimize the propagation
and amplification of intrinsic error as the signal progresses through
the nervous system.

4. An optimal code will match the output of the perceptual mechanism
to the distribution of the independent energy in the external world.
An important fact about natural time-varying auditory and visual
scenes is that they do not change randomly across time or space.
Due to the physical properties of objects, the brightness and color of
any single visual object and the frequency and loudness of any single
sound object change very gradually across space and time. Non-
predictable, sharp, and abrupt changes signify different visual and
different sound-producing objects (Dong & Atick, 1995). Therefore,
removing the predictable parts or making them explicit (Barlow,
2001) can lead to a concise and nonpredictable description.

We need to be cautious about embracing any optimality argument
because it is impossible to state definitively just what should be optimized.
As stated in chapter 1, perceptual systems need to be optimized in two
conflicting ways: (1) for those relatively static properties involved in specific
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tasks and contexts (e.g., identification of mating calls and displays); and
(2) for those emergent properties that identify auditory and visual objects
in changing situations. A fixed set of feature detectors would be best for the
former but unable to encode novel properties, while a dynamic nervous
system that can pick up correlated neural responses would be best for the
latter but unable to rapidly encode fixed properties. As described in this
chapter, the auditory and visual systems are organized into tracts that are
selective to particular stimulus dimensions, but there is an immense amount
of interconnection among the tracts. What you hear or see has been modi-
fied by those interactions among the neural tracts.

In what follows, I consider two interrelated issues. The first issue is the
neurological transformations that convert the sensory excitations that result
only in increases in firing rate at the receptors into excitatory or inhibitory
codes that represent objects in the world. Every neuron in the auditory and
visual pathways is maximally sensitive (selective) to combinations of stim-
ulus dimensions. For example, an auditory neuron might respond to partic-
ular combinations of frequency and amplitude, while a visual neuron might
respond to particular combinations of frequency and spatial position. In
general, farther up the pathways, the neurons become more diverse and se-
lective and respond only to particular combinations of stimulus dimen-
sions. It does not seem to be that perception occurs only at the end of the
auditory or visual pathways; rather, the brain selects and alters the neural
firings throughout the pathways.

The second issue is the match between the above transformations and the
structured energy in the auditory and visual worlds. This entire book is pred-
icated on the assumption that there is a close match between the two. It is
more logical to proceed from stimulus energy to neurological transforma-
tion to reflect the role of evolution. However, I have found it easier to work
in the reverse direction, first understanding the neural transformations and
then matching those transformations to the properties of stimulus energy.

Neurological Transformations: The Concept of 
Receptive Fields

The receptive field of a neuron is the physical energy that affects the activ-
ity of that neuron. The receptive fields of nearly all cells past the receptor
level contain both excitatory and inhibitory regions. The receptive field
concept was first used in vision by Hartline (1940) to describe the ganglion
retinal cells in the frog’s retina, but it is so general that it has been used for
all modalities and at all levels of the nervous system. Once the receptive
field is known, it becomes a description of the transformation of some
property of the sensory energy into a sequence of neural firings. Colloquially,
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we think of that property as being a feature of the visual and auditory stimu-
lus and imagine that the identification of an object is based on the collection
of such features. But we should not be trapped by that metaphor; the neu-
rons really are filters, not feature detectors.

In vision, the receptive field is defined as the retinal area in which an in-
crease or decrease in illumination changes the firing rate of the ganglion
neuron (or cortical neuron) above or below the average rate of firing found
in the absence of stimulation (Kuffler, 1953). The receptive field of the gan-
glion or cortical cell will be determined by the sensory receptors to which it
is connected. To determine the retinal location and the spatial and temporal
properties of the receptive field, flashing small lights, moving bars, or more
complex configurations are presented at different retinal locations to iden-
tify the retinal positions and the light/dark patterns that maximally excite
and inhibit the cell. In audition, the receptive field is defined as the frequen-
cies, intensities, and durations of the acoustical wave that increase or de-
crease the firing rate of the neuron (identical to that for vision) and it is
identified in the same way as in vision. Receptive fields imply specialization
in firing. For vision, the receptive field of a neuron is localized at a particular
retinal location and differentiated in terms of the spatial and temporal pat-
tern of the light energy that fires that cell. For audition, the receptive field is
localized at a position on the basilar membrane and is differentiated in terms
of the temporal pattern of the acoustic energy that fires the cell.

Intuitively, the way to identify the receptive field is to present a wide ar-
ray of visual and auditory stimuli and pick out those stimuli that increase
the firing rate of the cell and those stimuli that decrease the firing rate. If
you are smart (and lucky), then it will be possible to construct such a set.
However, given the innumerable configurations in space, white-and-black
contrast, frequency, intensity, and frequency and intensity oscillations that
might uniquely trigger an auditory or visual cell, a more formalized proce-
dure often is necessary.

The procedure that has evolved has been termed reverse or inverse cor-
relation. In essence, the experimenter presents a sequence of randomly
varying stimuli and then averages the stimulus energy that precedes a neu-
ral spike. Imagine a very short duration, very small pinpoint of light that is
either brighter or darker than the surround. Furthermore, imagine that any
response immediately following the presentation of the pinpoint simply in-
creases the firing rate by one spike. Next, the experimenter presents the
lighter and darker light many times at each spatial position and counts the
number of spikes for each light (clearly the responses will not be identical
at a single point to either light due to chance factors in the nervous system
or in the light emitted). After measuring the probability of firing to each
light at every position, the experimenter can identify excitatory regions
where an increase in intensity generates a spike, inhibitory regions where a
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decrease in intensity generates a spike, and neutral regions where neither
an increase nor decrease in intensity change generates a spike. In effect, he
or she is correlating the input (light intensity) to the output (spike probabil-
ity). The responses of the neuron define its own receptive field.

Now consider a more complex case in which the relevant stimuli are un-
known. We might try using natural stimuli. However, it can be difficult to de-
scribe the characteristics of a neuron using natural stimuli because natural
stimuli have internal correlations of energy, so that it may be impossible to
link the spikes to a specific feature of the stimulus. For this reason, white
noise has often been used as the stimulus to identify the receptive field. White
noise can be simply understood as a pattern or sequence of light or sound
stimuli such that the amplitudes vary randomly so that no correlation or pre-
diction is possible between any two amplitudes separated in space or time.

We present the random white noise continuously. The intensity of the
stimulus prior to each spike is measured and cumulated in say 100 sequential
1 ms time bins. Then, the intensities in each bin are averaged separately. The
stimulus feature (intensity pattern) that triggers the spike will occur consis-
tently in the time bins prior to the spike and therefore create high average am-
plitudes (or high probabilities), while the nonrelevant features will vary
randomly (being essentially error) and average toward zero. This outcome is
termed the spike-triggered average stimulus (Dayan & Abbott, 2001). The
spike-triggered average stimulus is mathematically equivalent to calculating
the correlation between the stimulus amplitude at each prior time point and
the probability of a spike. It also has been termed the fast Weiner kernel,
or the reverse correlation function. It is the receptive field of the cell.

In table 2.1, I generated a series of 60 random numbers (0–9 with an
average of 4.5) and indicated the 18 spikes by the symbol *. I then aver-
aged the intensities in the five time periods preceding the spike and plotted
the averages in figure 2.1.

We could classify the receptive field of this hypothetical cell as an “on”
cell that fires when the intensity at −20 ms and 0 ms is high. (I constructed
the sequence so that spikes occurred if the sum of two successive intensi-
ties was 12 or greater.)

A more complex case occurs when the stimuli consist of multiple fre-
quencies and the problem is to induce the receptive field, which may con-
sist of several excitatory and inhibitory regions. I constructed a simplified
example in table 2.2 in which four frequencies were presented (16 possibil-
ities). As above, there were 60 presentations, spikes are indicated by *, and
the probability that each frequency occurred in the four time bins preced-
ing the spike is shown in table 2.3. The probabilities for F1 and F4 are close
to the expected value; the probabilities for F3 are above the expected value
(excitation) particularly for −20 ms; and the probabilities for F2 are below
the expected value (inhibition), particularly for −20 ms.
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Table 2.1 Derivation of the Receptive Field

(A) Stimulus Sequence and Resulting Spikes

Stimulus 4 6 7 0 3 2 1 2 4 0 5 1 5 9 5 4 1 6 6 8 4 5 9 6 3 3 8 3 7 7 9

Spike * * * * * * * * * *

Stimulus 0 5 1 5 4 0 4 3 3 4 4 4 8 9 2 0 6 9 3 1 9 7 0 5 5 9 0 2 3 5 9

Spike * * * * * * *

(B) Derivation of Reception Field (Assume Stimuli Are Presented at 20 ms Intervals)

Time Before Spike

Spikes 80 60 40 20 Spike

1 4 6 7
2 0 5 1 5 9
3 5 1 5 9 5
4 5 4 1 6 6
5 4 1 6 6 8
6 1 6 6 8 4
7 6 8 4 5 9
8 8 4 5 9 6
9 3 8 3 7 7

10 8 3 7 7 9
11 3 4 4 4 8
12 4 4 4 8 9
13 9 2 0 6 9
14 2 0 6 9 3
15 9 3 1 9 7
17 7 0 5 5 9
18 0 2 3 5 9

Mean 4.6 3.4 3.8 6.7 7.2
SD 3.0 2.5 2.1 1.7 1.9



We can represent this cell from two perspectives. The response is de-
picted in figure 2.2A, measured from the tone onset at time 0. It portrays
the receptive field as a filter. This simplified representation illustrates that
20 ms after the presentation of F3 the firing rate decreases (shown in black),
that 20 ms after the presentation of F2 the firing rate increases (shown in
white), and that the presentation of other frequencies does not change the
baseline rate. If both F2 and F3 were presented, the resulting firing rate
would be the difference between the two effects. The response is depicted
in figure 2.2B, measured backward from the spike at time 0, as for reverse
correlation. The frequency response of the cell can be found by drawing a
vertical line through the region of maximum excitation (shown to the
right). The temporal response can be determined by drawing a horizontal
line through the region of maximum excitation, shown below the receptive
field. This cell will fire with the highest probability 20–40 ms following the
F2 stimulus. It “detects” F2.

It is useful to conceptualize the receptive field as a linear filter. As the
auditory or visual stimulus energy evolves over time, the receptive field
allows certain energy configurations through. An auditory receptive field
could fire only when a specific range of frequencies occurs (a band-pass fil-
ter), or it could respond only to an upward (or downward) frequency glide
within a set time period. We can test how well we have characterized the
receptive field by simulating the receptive field mathematically, presenting
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Figure 2.1. Average and standard deviation of the stimulus intensity before a spike
(derived from table 2.1).
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Table 2.2 Spikes Resulting From the Presentation of Tones Composed of
One to Four Frequency Components

Time

Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F1 X X X X X X
F2 X X X X X X X
F3 X X X X X X X X X X
F4 X X X X X X
Spike * * * *

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

F1 X X X X X X X X X
F2 X X X X X X X
F3 X X X X X X X
F4 X X X X X X X
Spike * * * *

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

F1 X X X X X X
F2 X X X X X X
F3 X X X X X X X X X
F4 X X X X X X X X
Spike * * * * * *

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

F1 X X X X X X X X X
F2 X X X X X X
F3 X X X X X X X
F4 X X X X X X X
Spike * * * * *

a realistic stimulus input, and then calculating the output of the simulated
receptive field. We then correlate the simulated response to that of the ac-
tual neural receptive field using the identical input.

Suppose we manipulate the receptive field, moving the inhibitory re-
gion relative to the excitatory region, as shown in figure 2.3 by 20 ms. As-
sume that only the F2 and F3 frequencies are presented, each at 100 units.
In the gray region, the probability of response is .25 (resting rate); in the
black inhibitory region the probability is 0.1; and in the white excitatory
region the probability is .9. Now imagine that we are measuring the output
of the cell starting at the onset of the tones. The response rates are shown
in table 2.4.

At the tones onset, the cell fires at its base rate to any frequency.
Then from 10 ms to 20 ms, F2 hits the excitation region before F3 hits the
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Figure 2.2. The receptive field for a cell. The gray area represents the baseline fir-
ing rate; the white area represents the excitation region; and the black area is the in-
hibition region. In (A), the response is portrayed in terms of the stimulus onset at
time 0; in (B), the receptive field is portrayed in terms of the spike. Here, the excita-
tion and inhibition areas can be thought of as features that trigger (or inhibit) a spike.

Table 2.3 Probability of Firing Based on Table 2.2

Time Before Spike (ms)

Frequency 80 60 40 20 0 (Spike)

F1 .61 .56 .50 .50 .50
F2 .50 .28 .33 0 .44
F3 .56 .44 .61 1.00 .67
F4 .44 .44 .50 .44 .61



inhibition area and the rate increases. As the tones reach the F3 inhibitory
region, the firing rate decreases, particularly beyond 40 ms. Finally the firing
rate returns to the resting level.

A more complicated case is shown in figure 2.4 for a cell that is most
likely to fire for frequencies around 2000 Hz, but the principle is exactly
the same.

This procedure does not completely solve the problem of generating
the receptive field for three reasons. First, the choice of the stimuli still
limits what you can find out. For example, experiments that use white
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Figure 2.3. The receptive field for the cell in figure 2.2 in which the inhibitory re-
gion is offset by 20 ms. The maximum increase in firing rate occurs 20 ms after the
tone onset, while the maximum decrease in firing rate occurs 40 ms after tone onset.



noise should theoretically be able to induce the features that make up the
receptive field of any cell. But such random noise stimuli have not worked
out well for neurons in the auditory cortex that are not sensitive to or even
inhibited by broadband white noise. Thus, the initial choice of stimuli will
affect the ability to identify the receptive field. Second, because the re-
verse correlation procedure averages the stimuli that create a spike, it
would be difficult to distinguish between a neuron that fires only when
two different frequencies are simultaneously present and a neuron that
fires simply to either of the two frequencies (unless combination stimuli
are presented). Third, the majority of real stimuli have internal correla-
tions, so that it is necessary to partial out those correlations to derive the
receptive field.

Receptive Fields in Vision

At the Retinal Ganglion Cells and Optic Nerve

The visual system transforms the retinal mosaic into a set of pathways that
encode different properties of the visual stimulus. Much of this transforma-
tion occurs in the eye itself. The excitation from each retinal point diverges
and connects to a set of ganglion cells such that each cell is selective for
one property. (I am using the term property simply to mean a particular
spatial configuration of brightness.) Every retinal point becomes repre-
sented by a set of equivalent ganglion cells. Thus, combining the analogous
ganglion cells across the retinal points creates a retinal map of that prop-
erty, and the convergence of all the ganglion cells in the optic nerve creates
a parallel set of retinal property maps. The single-excitation map is trans-
formed into multiple-property maps.

Briefly, the eye can be conceptualized as being composed of three lay-
ers. Light entering the retina first passes through the ganglion cells, then
through the inner and outer plexiform layers that contain the amacrine
cells, the bipolar cells, and the horizontal cells, and finally reaches the rod
and cone receptors. The light energy always causes an increase in firing
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Table 2.4 Firing Rate From Time of Onset of Tones

Time From Onset of Tones (ms)

Frequency Onset +10 +20 +30 +40 +50 +60 +70

F3 .25 × 100 .25 × 100 .25 × 100 .25 × 100 .10 × 100 .10 × 100 .10 × 100 .25 × 100
F2 .25 × 100 .25 × 100 .90 × 100 .90 × 100 .90 × 100 .25 × 100 .25 × 100 .25 × 100

Sum 50 50 115 115 100 35 35 50
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Figure 2.4. The illustration of a receptive field as a linear filter. The actual response
is shown in (A). A spectrogram representation of a conspecific song is shown in (B).
A window containing the spectral-temporal receptive field pictured in (C) is drawn
across the song (0 represents the spike). The overlapping parts of the song and the
spectral-temporal receptive field are multiplied point by point and summed together
to get the predicted response rate. The predicted response, represented in (D), can be
compared to the actual response in (A). From “Feature Analysis of Natural Sounds
in the Songbird Auditory Forebrain,” by K. Sen, F. E. Theunissen, and A. J. Doupe,
2001, Journal of Neurophysiology, 86, pp. 1445–1458. Copyright 2001 by the Amer-
ican Physiological Society. Reprinted with permission.



rate of the rods and cones. The signal passes back through the horizontal
and bipolar cells, where synaptic connections alter the firing patterns. The
final cellular stage consists of the retinal ganglion cells. Basically, the gan-
glion cells digitize the chemical signals in the retina, and our perceptual
world is limited by the outputs of the ganglion cells.

Kuffler (1953) was the first person to characterize the receptive fields
for ganglion cells near the optic nerve using small points of light flashed
at different retinal positions. The majority of retinal ganglion cells have a
bull’s-eye-like receptive field. Either the receptive field contains an on-
center in which a point of light above the background increases the rate of
firing and an off-surround in which a point of light below the background
increases the rate of firing (often simply termed an on-off cell), or the
reverse, with an off-center and an on-surround (an off-on cell). We
can imagine that the center region of the receptive field is based on direct
connections from the receptors and the surround region is based on indi-
rect connections through intermediate cells in the plexiform layer of the
retina.

Rodieck (1965) postulated that the on- and off-regions could be
explained by the difference in spatial integration for the on and off mecha-
nisms. The probability of a spike for each mechanism was assumed to
resemble a Gaussian or normal curve with respect to the position within the
receptive field. The spatial extent (i.e., variance) of the center response was
assumed to be smaller than the extent of the surround response by a factor of
three due to the different integrations of the bipolar and horizontal cells. The
area for center response was slightly greater than the area for the surround
response to represent the dominance of the center region, and the output of
the ganglion cell was simply the difference between the two sensitivity
functions.

A two- and three-dimensional representation of an on-off receptive field
based on the Difference of Gaussian model (termed DOG) is shown in
figure 2.5. The three-dimensional representation is simply the rotated two-
dimensional representation. This representation is for increments of light.
If we measure the response to decrements of light, the changes in firing
rates reverse. A decrease of light intensity in the center generates a reduc-
tion in the firing rate, while a reduction in the surrounding circular area
produces an increase in the firing rate. Thus, the responses to increments
and decrements of light are mirror images.

In general, there is always a matching on-center and off-center ganglion
cell to represent each retinal point. The bipolar and horizontal cells work in
tandem to create the center-surround field. The bipolar cells receive inputs
from a small number of cones and create the center on- or off-response
(whether the response is on or off depends on the type of chemical receptor
on the cell surface). The horizontal cells receive input from many more
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cones and add the surround on- or off-response by directly stimulating the
bipolar cells or by feedback to the cones themselves.

Because the spatial resolution of the narrower center region exceeds that
of the broader surround (i.e., the variance is lower), the difference between
the center and surround regions creates a band-pass filter that maximizes
the firing rate to a narrow range of grating frequencies. The width of the
center and surround regions will depend on the number of receptors that
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Figure 2.5. Two- and three-dimensional Difference of Gaussians. The standard
deviation of the center is 0.5 and the standard deviation of the surround is 1.5.



are integrated by the bipolar and horizontal cells (the orientation of the bars
does not matter because the receptive fields are circular).2 The optimal grat-
ing frequencies will be those in which the widths of the black-and-white bars
equal the widths of the center and surround. As shown figure 2.6, the maxi-
mum increase in firing shown in (B1) will occur when the width of a white
bar (representing an increase in intensity) completely falls within the center
on-region and the flanking black bars (representing a decrease in intensity)
fall in the surround off-regions. By the same reasoning, the maximum
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Figure 2.6. Representation of a simple on-off cell. The maximum excitation would
occur if the white bar of the grating falls completely on the on-center and the black
bars fall completely on the off-surrounds, as shown in (B). Simple on-off cells are
phase sensitive, as illustrated in (B). The excitation would be maximum in (B1), close
to baseline in (B2), maximally inhibited in (B3), and equal to baseline in (B4). If
the frequency of the grating decreases as in (A) or triples as in (C), the firing would be
close to baseline because the white and black bars fall in the on- and off-regions.

2. Typically, spatial gratings are described in terms of frequency: the number of black-
and-white cycles per degree of visual angle. This provides a convenient metric that is indepen-
dent of the distance from the viewer. For a constant frequency, the black-and-white bars must
increase in width as the grating moves away from the viewer.



decrease in firing will occur for the identical widths of the white-and-black
bars if the phase of the grating is changed 180° by moving it laterally so
that a black bar falls on the entire on-region and the flanking white bars fall
on the entire off-regions (B3). There will be little change in firing rate if the
grating is moved 90° or 270°, shown in (B2) and (B4), because the white-
and-black bars fall equally into the on- and off-regions. At the lower spatial
frequencies (wider white and black bars) shown in (A), the on-center and
off-surround subtract from each other because all of the black-and-white
grating bars fall in both regions. At higher frequencies shown in (C), the
on-center and off-surround again subtract from each other because both
white and black grating bars fall within the excitation areas. The on- and
off-regions cannot resolve the spatial variation.

The ganglion cells appear to form two classes, midget and parasol cells,
which encode bands of spatial frequencies at localized regions of the retina.
The midget cells make up the majority of retinal ganglion cells; at every lo-
cation the receptive field of the midget cells is smaller (approximately 3×)
than those of the parasol cells. In the fovea, midget cells are connected to a
single cone while the parasol cells always receive inputs from many retinal
cells. Based on the narrower receptive field, the midget pathway encodes a
higher band of frequencies than the parasol pathway. Another difference
between the midget and parasol pathways is that the midget pathways en-
code color while the parasol pathways encode brightness. For most midget
cells, the center is dominated by one range of wavelengths while another
dominates the surround. For the parasol cells, the same frequency range
dominates both the center and surround regions. The parasol cells tend to
respond to any change in illumination and often respond only if the stimu-
lus is moving in one direction.

Why should there be parallel on-center and off-center channels? I think
the answer goes back to the fact that the perceptual world depends on fine-
grain contrasts between objects and backgrounds. For both on-off and off-
on cells, the surround excitation is subtracted from the excitation of the
central image point. This inhibition will be highest (and the response rate
lowest) for regions of equal intensity, and inhibition will be lowest at points
where intensity changes. As argued above, auditory and visual objects
change slowly, so that points close in time and space tend to have similar
intensities. The on-off ganglion cells therefore decorrelate the image, iso-
lating changes in brightness and removing the redundancies due to adjacent
regions of equal brightness. A second effect of the subtraction is that the
firing rates are reduced, so that neural firing rates do not reach their maxi-
mum and asymptote (discussed further in chapter 6).

Hosoya, Baccus, and Meister (2005) made the stronger claim that the
spatial-temporal receptive fields of the retinal ganglion cells change in just a
few seconds in a new environment to optimize the detection of subsequent
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environmental changes. The ganglion cells adapt to the statistics of the new
environment and become more responsive to the statistics of a different en-
vironment. For example, after presentations of a uniform light intensity
pattern, the cell becomes more responsive to a checkerboard pattern and
conversely, after presentations of a checkerboard pattern, the cell is more
responsive to a uniform intensity pattern.

A basic issue in understanding ganglion cells is the degree to which
these cells display the property of superposition (linearity) of firing rate. A
neuron is said to be linear if the change in firing rate in response to several
stimuli presented together simply is the sum of the changes in firing rate
generated by each stimulus presented individually. Thus, if one point of
brighter light falls in the on-region, increasing the rate of firing, and a sec-
ond point of brighter light falls in the off-region, decreasing the rate of fir-
ing, the predicted change in firing rate for both lights is the difference in the
individual changes. Most important, if neurons are linear, then it is possible
to predict the response to any arbitrary stimulus by simply summing the re-
sponse to every point in the stimulus.

Our interpretation of whether linearity holds depends crucially on how
we measure any change in light intensity. If we simply define the change
in intensity directly, then linearity fails. However, if we define the change
in intensity as a ratio based on the background illumination, then linearity
often occurs. To give a simple example: suppose the background level is
50 and we create one stimulus at 150 (contrast = [150 − 50]/50 = 2) and a
second stimulus at 200 (contrast = 3). If contrast linearity holds, then the
neural response to the sum of those two lights should equal that to a stim-
ulus of 300 (and not 350). But if the background level is 100 instead of
50, then the neural response to the sum of those two lights should equal
that to a stimulus of 250. Linearity does hold at constant levels of back-
ground illumination, although it does not hold across levels. The physical
variables for perceiving are contrasts, referenced to steady-state back-
grounds.

The receptive field varies with stimulus size, intensity, color, and any
other property that affects the firing of the receptors. This lack of invariance
argues that the whole idea of a receptive field should be reconceptualized
(Shapley, 2000). However, what is critically important for what follows is
that multiple cells represent each retinal location. The receptive field of
each of these cells is most sensitive to a different, but narrow range of spa-
tial frequencies and orientations. Taken together, the receptive fields form
an overlapping distribution of frequency and orientation sensitivity. From
each location in the retinal array, there will be parallel sets of outputs with
different resolutions that abstract certain characteristics of the brightness
contrast. It is the contrast in energy and not the amount of energy that de-
termines our perceptual world.
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At the Primary Visual Cortex

The next point in the visual pathways at which the receptive fields have
changed qualitatively is the primary visual cortex (area V1; the lateral
geniculate physically is the next step in the pathway, but the receptive fields
are similar to those at the retinal ganglion cells). Almost all the visual input
to higher visual cortical areas passes through V1. The number of neurons in
the primary visual cortex is 200 to 500 times greater than the number in the
lateral geniculate, demonstrating the remarkable explosion in the number
of visual cells. The receptive fields of cells in V1 typically respond to a
narrower range of stimuli than those in the retina and lateral geniculate
and often are simultaneously selective with respect to spatial position,
orientation, spatial and temporal frequency, contrast, direction of move-
ment, and color. There is a retinotopic map with the cells locked to eye
movements. Much of this pioneering work was performed by Hubel and
Weisel (1962, 1968), which resulted in their receiving the Nobel Prize
in 1981.

Most cells in the primary visual cortex respond strongly to flashing and
moving bars and gratings, but not to static patterns. Hubel and Weisel, us-
ing flashing dots, identified two types of cells. For simple cells, one spatial
region responds either to the onset or offset of light. For complex cells, all
spatial regions respond both to the onset or offset of light; complex cells
signal change. In the past 10 years it has become clear that a complete
description of both simple and complex cortical cells must involve the
analysis of the receptive field over time. The simple and complex cells can
be split into two major classes. For separable cells, the spatial organization
of the receptive field can be analyzed into independent x and y orientations.
The receptive field may be static, but if it does transform, the on- and off-
regions do not shift spatially over time (although the on- and off-regions
may reverse). Approximately 50–70% of cells in the primary visual cortex
are separable; the response is unaffected by the velocity and direction of
movement of the stimulus. For nonseparable cells, the spatial organization
of the receptive field cannot be analyzed into independent x and y orienta-
tions because the receptive field transforms over time; the response is af-
fected by the velocity and direction of movement of the stimulus (e.g., a
bar of light or black-and-white grating). To represent both separable and
nonseparable cells, the x axis will depict the receptive field along the di-
mension perpendicular to the preferred orientation (i.e., the horizontal di-
mension for cells with a vertical orientation). If the receptive field does not
transform over time, the y axis will depict the receptive field parallel to the
preferred orientation. If the receptive field does transform over time, the y
axis will depict the time from a spike. (The receptive field parallel to the
preferred orientation is not displayed.)
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Static Spatial-Temporal Receptive Fields: Simple Cells The receptive
fields of simple cells are elongated and orientation specific and respond at
their highest rates for white-and-black patterns at one frequency and at one
orientation. These cells are phase-specific, much like the ganglion cells de-
scribed previously.

The receptive fields of simple cortical cells were determined by Jones
and Palmer (1987b) using reverse correlation. Bright and dark spots were
presented randomly, and the spatial field was calculated by subtracting the
regions where the darker stimuli (i.e., off-responses) evoked spikes from
the regions where brighter stimuli (i.e., on-responses) evoked spikes. The
regions of the receptive field that respond to dark and bright are shown in
figure 2.7A as increases in firing rates, and then the dark regions are sub-
tracted in figure 2.7B. An example of the response to bright and dark stim-
uli at different times before a spike is shown in figure 2.7C.
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Figure 2.7. Derivation of
simple cortical cells. The first
step is to isolate the retinal
areas that affect the firing rate.
Both excitation and inhibition
areas are plotted as positives
in (A). The inhibitory areas
are subtracted in (B). An
example of the response to
bright and dark stimuli at
three times before the spike is
depicted in (C). The strongest
response occurs 50 ms before
the spike. From “The two di-
mensional spatial structure of
simple receptive fields in cat
striate cortex,” by J. P. Jones
and L. A. Palmer, 1987b,
Journal of Neurophysiology,
58, 1187–1911. Copyright
1987 by the American Physio-
logical Society. Reprinted
with permission.



Figure 2.7. Continued



Four typical simple cortical cells are shown in figure 2.8 (Jones & Palmer,
1987b). The three-dimensional spatial representations as well as the contour
plots are shown. Cells A, B, and C are termed odd-symmetric (as is figure
2.7) and cell D is termed even-symmetric due to organization of the excita-
tory and inhibitory fields.

If the receptive fields are separable, then the on-off regions do not shift in
space. This is most easily seen using the contour plots. For separable fields,
lines drawn along the receptive field zero crossings would be perpendicular
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Figure 2.8. Illustration of four representative cortical cells. Cells A and B are sep-
arable, and cells C and D are nonseparable. From “The two dimensional spatial
structure of simple receptive fields in cat striate cortex,” by J. P. Jones and L. A.
Palmer, 1987b, Journal of Neurophysiology, 58, 1187–1911. Copyright 1987 by the
American Physiological Society. Reprinted with permission.



to lines connecting the receptive field maximums. The receptive field gener-
ated in figure 2.7 is separable, as are cells A and B in figure 2.8. In contrast,
cells C and D, in particular, are not separable because their on-off regions
shift across the receptive field.

We easily can see how different black-and-white gratings affect the fir-
ing rate. Suppose the on-off regions are assumed to be oriented vertically,
as shown in figure 2.9. The on-region is shown in white and the off-region
is shown in black. The firing rate will be highest when the lighter and
darker bars of the grating line up with the on and off receptive fields as in
B1. The firing rate will not change from baseline if the grating is shifted
one-half bar right or left (B2), or if the grating is rotated so that both the
light and dark stripes overlap the on-off regions (B3 and B4), or if the fre-
quency of the bars (i.e., width) increases as in (A) or decreases as in (C), so
that again the light/dark stripes of the grating overlap the on-off regions.
These cells will respond identically if the grating moves in either direction.
This is the same analysis used for the circular on-off ganglion cells in the
retina. What is different is that the firing rate of cells in V1 is determined by
the orientation of the grating as well as by the frequency of the grating,
while the firing rate of the retinal cells is determined by frequency only. (A
second difference is that cortical cells have very low spontaneous rates so
that we can detect inhibition only indirectly.)

Hubel and Weisel (1962) presented the working hypothesis that simple
cells with a specific orientation in V1 could be created by summing the out-
puts of on-off and off-on cells in the lateral geniculate that lie along that
same angular direction (i.e., linear-orientation receptive fields). This has
been termed a feed-forward model by Ferster and Miller (2000). As shown
in figure 2.10, it is possible to construct several different horizontal line or
edge detectors with different spatial orientation and frequency resolutions
by summing varying numbers of on-off cells and off-on cells (see Derring-
ton & Webb, 2004). The same cells also can be combined vertically to pro-
duce simple cortical cells with a different orientation. What this means is
that every on-off and off-on cell contributes its output to several cortical
cells. Ferster and Miller (2000) argued that Hubel and Weisel’s model is to
a large degree correct; the outputs from the lateral geniculate do determine
the orientation specificity. Sharon and Grinvold (2002) suggested that in
addition to the input from the lateral geniculate, recurrent inhibition in V1
acts to accentuate the response to the preferred orientation by suppressing
responses to orthogonal orientations.

The feed-forward model cannot account for all of the properties of the
simple cortical cells. One issue, to which I return in chapter 6, is that the ori-
entation response is relatively independent of the contrast of the black-and-
white grating. We need contrast invariance to identify boundaries between
objects at different light levels. But at high contrasts, the on-response would
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dominate the off-response because the off-on cells cannot reduce their firing
rate below the average rate as much as on-off cells can increase their rate
above the average. Thus, there will be high levels of excitation to all grating
orientations. Therefore, the linearity of the simple cortical cells (as shown
by the response to single and multiple points of light) cannot be understood
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Figure 2.9. The effect of spatial frequency and orientation on the firing rate of
simple cortical cells. The maximum firing rate occurs when the black-and-white
bars of the grating exactly match the oriented cell as in (B1). The firing rate will re-
turn to baseline if the grating moves laterally (i.e., changes phase) as in (B2) or
changes orientation as in (B3) and (B4). In the same way, the firing rate will not
change if the spatial frequency of the grating does not match the frequency of the
cell as in (A) and (C).



simply in terms of the summation of the excitation and inhibition from
many lateral geniculate cells.

The receptive fields of these cells are highly structured. They represent a
restricted retinal area, and they respond to a range of spatial frequencies
and orientations. We can imagine the receptive field to be a filter, or effec-
tively a multiplier. We take the illumination falling on the receptive field
and multiply it by the receptive field pattern to measure the effect of the il-
lumination on the spike rate of the cortical cell.

There are always processing limitations so that the transmitted informa-
tion must be constrained to some maximum value; improving the frequency
resolution must necessitate the reduction in orientation resolution as de-
scribed in chapter 1. A two-dimensional envelope with a Gaussian fall-off (in
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Figure 2.10. Feed-forward models can help explain the origin of oriented cortical
cells. To increase the spatial orientation resolution, the length of the on- and off-
regions would be lengthened by combining a greater number of circular on-off cells
along the horizontal axis (B). To increase the frequency resolution, the number of
on- and off-regions would be incremented by combining cells along the vertical
axis (C). To vary the optimal spatial frequency, the number of circular cells that com-
pose each on- and off-region would be varied along the vertical axis (D). Adapted
from Foundations of Vision by B. Wandell, 1995, Sunderland, MA: Sinauer.



both frequency and position) multiplied by a sine or cosine wave filter would
minimize the overall uncertainty (Daugman, 1985; Gabor, 1946).

We can start with representative one-dimensional functions, depicted
in figure 2.11. Changing either the standard deviation or the phase of the
Gaussian envelope changes the pattern of the function. It is possible to pro-
duce even-symmetric or odd-symmetric receptive fields (figure 2.11A and
2.11B respectively).

For the two-dimensional receptive fields of simple cortical cells, the
choice of the Gaussian envelope will change the trade-off between the uncer-
tainty with respect to the spatial frequency of the stimulus pattern and the
uncertainty with respect to spatial orientation, illustrated in figure 2.12. In
(A), the number of oscillations along the x-axis determines the frequency
resolution and the length of the oscillations along the y-axis determines the
orientation resolution. If the Gaussian surface falls away more slowly along
the x axis due to a larger standard deviation (in B), then the frequency resolu-
tion would decrease slightly while the resolution of the spatial position along
the y spatial dimension would decrease more dramatically because the
length of the oscillations is much shorter (in D). The opposite changes in
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Figure 2.11. The phase of the Gaussian envelope can yield even and odd symmet-
ric Gabor functions from the same cosine carrier function.



resolution would occur if the Gaussian surface falls away more slowly along
the y-axis (C). The orientation resolution would decrease slightly (still a long
length) while the frequency resolution would decrease dramatically because
there is just one large oscillation (E). This change in resolution is illustrated
in figure 2.12 using Gaussian envelopes with standard deviations of 1 and 3.

Jones and Palmer (1987a), following the analyses of two-dimensional
Gabor functions by Daugman (1985), were able to fit 97% of the variance
in the experimental receptive fields with Gabor functions. Three examples
are shown in figure 2.13. Gabor functions were unable to fit only 3 of the
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Figure 2.12. Two-dimensional Gaussian envelopes with different standard devia-
tions change the resolution along the x and y spatial dimensions. In (B), the stan-
dard deviation along the x-axis equals 3 and the standard deviation along the y-axis
equals 1. In (C), the values of the standard deviations are reversed.



Figure 2.13. The fit of Gabor functions to simple cortical cells. From “An evalua-
tion of the 2D Gabor filter model of simple receptive fields in cat striate cortex,” by
J. P. Jones and L. A. Palmer, 1987a, Journal of Neurophysiology, 58, 1233–1258.
Copyright 1987 by the American Physiological Society. Reprinted with permission.



36 receptive fields. The ability to model the receptive fields using Gabor
functions does not necessarily mean that the nervous system optimizes the
uncertainty. Other functions will fit the receptive field data as well. By us-
ing the Gabor functions, the authors made a theoretical, not an empirical,
decision. Research attempting to use Gabor functions to represent the more
complex receptive fields of cells further up the visual tract has been rela-
tively unsuccessful.

I have argued that the role of the visual system is to decompose the visual
image into localized regions and to analyze those regions at different resolu-
tion levels. We can measure the resolution of a cell in terms of its bandwidth.
The bandwidth is defined in terms of the frequency or orientation that brings
about the peak response rate. It is the range between the two frequencies or
orientations flanking the best frequency or orientation that still yields a 50%
response rate. (The bandwidth for frequency is defined in terms of octaves,
the log2 of the ratio of the high to low frequency. For example, if the best fre-
quency was 3 cycles per degree, the bandwidth would be 1 if the high and
low frequencies were 4 and 2 cycles per degree, and the bandwidth would be
2.3 if the frequencies were 5 and 1 cycle per degree respectively.) Cortical
cells with the same bandwidth have the same resolution regardless of the fre-
quency at which the maximum response occurs. The average frequency
bandwidth is about 1.2 octaves; the majority of cells have bandwidths be-
tween 0.8 and 1.2 octaves, and a range between 0.7 and 3.0 octaves. These
values reflect rather sharp frequency tuning. Bandwidths of about 1 octave
may be optimal due to the intensity variation in natural visual scenes, as dis-
cussed in chapter 3. The average orientation bandwidth is about 45°.

Why should there be such diversity in the shapes of the receptive fields?
Elder and Sachs (2004) suggested that one function of such diversity is to
improve the detection of luminous edges in natural environments. Given
the inherent variability of visual scenes in terms of competing edges, it is
an advantage to have a variety of shapes to best encode the scene. Elder and
Sachs illustrated how different odd-symmetric filters could be used to de-
tect a variety of edges in figure 2.14.

Static Spatial-Temporal Receptive Fields: Complex Cells One way to
model complex cells is to imagine paired simple cells, either with the same
phase or shifted by 180°, as shown in figure 2.15. Even if the grating shifts
laterally, then a complex cell will continue to fire due to the other simple cell.

Time-Varying Spatial Receptive Fields: Separable The receptive fields
of many cells change over time. Conceptually, we could present a ran-
domly varying white noise image and then average the images at different
time points before the occurrence of a spike (e.g., 80, 60, 40, 20 ms) to de-
rive the receptive fields at each time point. The receptive fields are then
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spliced together to generate an x-t plot. Two simple examples show the x-y
receptive field at five different time points and then spliced together to create
x-t receptive fields, as shown in figure 2.16. In the first example, the receptive
field does not shift spatially, although it reverses phase. Nonetheless, it is a
separable receptive field because the x-t field can be recreated using a verti-
cal t axis and a horizontal x axis that reverses polarity between −40 ms and
−60 ms. In the second example, the receptive field shifts spatially so that the
x axis and t axis are not perpendicular; it is a nonseparable receptive field.

For separable receptive fields, the x (frequency), y (orientation), and z
(time) axes are independent. It is possible to construct the x-y receptive
field by multiplying the x field by the y field, and similarly it is possible
to construct a space-time field by “multiplying the x-y spatial field by the
t-temporal field” (DeAngelis, Ohzawa, & Freeman, 1995, p. 452).

The firing pattern of a V1 cell in an awake monkey to spatial gratings
with different orientations and frequencies (Mazer, Vinje, McDermott,
Schiller, & Gallant, 2002) is a clear example of a separable receptive field,
shown in figure 2.17. The two-dimensional plots for pairs of variables aver-
aged across the third variable are sketched. Both frequency and orientation
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Figure 2.14. The detection of edges requires detectors at differing frequencies and
orientations. Adapted from “Psychophysical Receptive Fields of Edge Detection
Mechanisms,” by J. H. Elder and A. J. Sachs, 2004, Vision Research, 44, 795–813.
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Figure 2.15. Complex cells can be hypothesized as being created by a feed-
forward mechanism that combines simple cells with differing phase relationships.
(A) Complex cell from the sum of two simple cells; (B) complex cell from the sum
of two odd-symmetric simple cells with a 180° phase shift.
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Figure 2.16. The derivation of separable and nonseparable spatial-temporal recep-
tive fields. Combining the spatial receptive fields on the left side of (A) and (B) at
time points before a spike derives space-time receptive fields on the right side. The
retinal spatial position does not shift for separable cells, although the on- and off-
regions may reverse, as shown in (A). In contrast, the retinal spatial position shifts
for nonseparable space-time cells, as shown in (B).
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Figure 2.17. A separable frequency-orientation cell found in V1 in an awake mon-
key. In this example, the frequency × orientation response can be predicted by mul-
tiplying the frequency × time plane by the orientation × time plane. The maximum
firing rate is depicted in black. Adapted from “Spatial Frequency Tuning and Orien-
tation Tuning Dynamics in Area V1,” by J. A. Mazer, W. E. Vinje, J. McDermott,
P. H. Schiller, and J. L. Gallant, 2002, Proceedings of the National Academy of
Science, 99, 1645–1650.



are time separable because neither variable shifts over time. Because both
frequency and orientation are time separable, it is possible to predict the
frequency × orientation plot from the multiplication of the overall fre-
quency and orientation responses.

Another example of a separable receptive field is shown in figure 2.18A.
Both pairs of receptive fields reverse in polarity over time. But the regions
of zero crossing between the on and off fields at different time points be-
fore a spike lie along a vertical line that is perpendicular to the horizontal
line between the regions of maximum response. The receptive field is “at-
tached” to one retinal point.

Time-Varying Spatial Receptive Fields: Nonseparable For nonsepara-
ble cells, the receptive field shifts across the retina over time. For x-t plots,
the receptive fields appear to slope to the left or right as you go down the
temporal y axis (toward the spike at 0). Notice in figure 2.18B that for non-
separable fields the on- and off-regions shift but do not reverse over time.

Most simple nonseparable cortical cells are quite selective for the direc-
tion and velocity of the light onset and offset. These cells will fire most
strongly if a white-and-black grating moves laterally in the same direction
as the slope of the space-time field, but not if the grating is stationary or
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Figure 2.18. Separable and nonsep-
arable space-time receptive fields.

For the temporal y dimension, the 0
value is the stimulus onset. Adapted

from “Receptive-Field Dynamics
in the Central Visual Pathways,” by

G. C. DeAngelis, I. Ohzawa, and
R. D. Freeman, 1995, Trends in

Neuroscience, 18, 451–458.



moves in the opposite direction. In the simplified figure 2.19, the nonsepara-
ble spatial-temporal receptive field slopes to the left prior to the spike. If
the grating is moving to the left, then the grating and the spatial-temporal re-
ceptive field stay in registration and the response is high. If the grating does
not move or moves to the right, then the white and dark regions of the grat-
ing pass over the on-off regions of the cell, and the response is much less.

The shift in the position of the receptive field and the movement of the
grating stimulus are often portrayed overlaid in an x-t plot, as shown in the
bottom row of figure 2.19. In this representation, the leftward movement of
the grating lines up with the space-time shift of the receptive field, while
the rightward movement crosses the receptive field at an angle in the right-
most column. This differential response to direction of movement found for
nonseparable cells does not occur for separable cells. Separable cells re-
spond equally to movement in both directions.

Classical and Nonclassical Receptive Fields: Effect of Surrounds One
additional complexity is that the neural response due to excitation within
the receptive field can be affected by excitation of the areas surrounding the
receptive field (Fitzpatrick, 2000). (Excitation of the surround area by itself
does not result in a neural response.) Inhibition occurs most frequently,
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Figure 2.19. Nonseparable cells respond to only one movement direction. In (A),
the movement direction matches the spatial shift of the receptive field so that the re-
sponse is strong throughout. If the grating is stationary as in (B) or the movement
direction is opposite to the spatial shift (C), the response is weak.



albeit in idiosyncratic ways, and reduces the firing between 0% and 100%.
The inhibitory areas are localized and tend to be asymmetric, located to one
side of the retinal cells generating the receptive field. Facilitation occurs
only if gratings are presented at the preferred orientation at the receptive
fields’ “end zones.” In effect, the simple cell sums the excitation along the
increased length: the summation area can be two to four times longer than
the classical field. The facilitation is highest at low contrast levels and dis-
appears (or even produces inhibition) at high contrast levels. This facilita-
tion can be understood as a mechanism to improve the detection of extended
contours, corners, or local curvature when the detection is difficult due to a
weak signal (low contrast).

The original mapping of area V1 suggested that there is a very specific
column organization. There is a set of cells representing one retinal loca-
tion and then a set of cells representing an adjacent retinal location. Within
each set, the spatial frequencies are postulated to be in a polar arrange-
ment, the preferred orientation of the cells smoothly rotates around 180°,
and there is a regular progression of orientations for each eye separately.
Subsequent work has shown that there are local discontinuities in the V1
orientation map; Das and Gilbert (1997, 1999) showed that there are re-
gions where the orientation of the receptive fields changes relatively
slowly and smoothly, but interspersed between these regions of local
change are fractures or discontinuities where the orientations of the recep-
tive fields change rapidly. Even at the discontinuity boundaries, there is a
precise architecture in terms of orientation and direction preferences
(Ohki, Chung, Ch’ng, Kara, & Reid, 2005). (Surprisingly, although the vi-
sual cortexes of rats contain direction-sensitive cells, those cells are scat-
tered randomly. The regular progressions in the cat’s cortex may yield
greater resolution by combining the responses of cells with similar direc-
tional sensitivities).

Das and Gilbert (1990, p. 660) suggested that receptive fields at oppo-
site sides of the discontinuity act to “compute features that are maximally
dissimilar (e.g., two perpendicular bars) while cells with receptive fields
within a smooth region compute features that are maximally similar.”

What this all means is that by the first cortical region the retinal input
has been dramatically changed from a photograph at the retinal cells to a
representation of intensity contrast. Moreover, this representation occurs at
multiple levels of spatial frequency and orientation that would allow for the
segregation and identification of objects in natural scenes that occur regard-
less of the scale of the object. De Valois and De Valois (1988) argued per-
suasively that this representation is not to one of bars or edges. Rather, the
representation is to one of frequency and orientation and this transforma-
tion is local. The periodicities in visual images are found at small regions
and scales, not across large areas.
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Multiresolution Theories

The organization of V1 is in terms of simple and complex cells with spe-
cific orientations and spatial resolutions due to the number and width of the
on-off regions. Each cell is in effect a linear filter that generates an output
based on the match between the stimulus and the receptive field. This phys-
iological organization has led to describing and conceptualizing this orga-
nization as reflecting a multiresolution solution to the uncertainty problems
described previously. Specifically, simple cells with one narrow on-off re-
gion can yield precise position information, while simple cells with multi-
ple on-off regions yield precise frequency information, as illustrated in
chapter 1. Computational theories have utilized models of simple cells as
the input filters (four to eight orientations × four to eight spatial scales) to
represent each point in the image (e.g., Bergen & Landy, 1991).

However, the inhibitory effects described above, both among cells with
receptive fields at similar and dissimilar orientations, create a much more
complex picture. The responses of individual cells must be understood in
terms of large-scale firing distributions in the visual cortex. Multiresolution
theories combining linear filters (albeit with nonlinear components) may
provide the framework for both auditory and visual theories, but it may be
the local inhibitory effects that generate the stuff of perception.

Receptive Fields in the Auditory System

If we use the visual system as a guide, the representation of auditory objects
(e.g., speakers, instruments, dripping faucets, wind, guns) would progress
from the physical sound pressure wave to sets of cortical cells that respond
to unique combinations of frequency and intensity across time. The initial
step would be to decompose the complex acoustic wave into the component
frequencies. These components would then be coded in terms of their tem-
poral onsets and offsets, as well as their frequency and intensity variations
across time. These are the features that distinguish environmental, animal,
musical, and speech sounds. Furthermore, the uncertainty constraints found
in accurately computing visual-spatial orientation and frequency simultane-
ously also would arise in the auditory system but now would be transformed
into the difficulty of computing frequency and time simultaneously. Here
too we might expect the solution to be in terms of multiple auditory images
with differing spatial and temporal resolutions (i.e., a multiresolution repre-
sentation). In some ways, the task of listening is harder: Visual objects usu-
ally are opaque, so that the illumination of each spatial point comes from
one object. But the acoustic signal is transparent, so that the air pressure
intensity at each temporal point may come from more than one sound-
producing object. One of the premises of this book is that perceptual systems
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“want to” attribute energy to objects so that one goal of the auditory system
is to decompose the acoustic wave into a set of frequency components, and
then meld together sets of the component frequencies to create objects. Each
set of frequencies creates the pitch and sound quality (i.e., timbre) of the
sound. This process is discussed in chapter 9.

The auditory system encodes information in two parallel ways. Due to
the physical construction of the inner ear, different cells in the auditory
nerve and auditory cortex will fire at higher rates to specific ranges of fre-
quencies. As discussed in chapter 1, Rieke et al. (1997) argued that the type
of neural coding would depend on the temporal properties of the stimulus.
The frequencies of the pressure waves used for hearing are relatively low,
so that the auditory neurons can phase-lock and generate a spike at the
identical point on successive cycles of the pressure waves. If phase-locking
does occur, then the properties of the sound could be signified by the tim-
ing between spikes within one or a group of neurons or by the timing be-
tween spikes from different neurons. Such a temporal pattern code would
be crucial to encode periodicities such as the rhythm of short clicks. These
regularities can be derived using the autocorrelations within a spike train or
the cross-correlations between spike trains.3 Alternatively, we could follow
the implicit model used for the visual system in which each cell in V1 is
conceptualized as a specific filter (i.e., frequency × orientation × location)
and the average rate of firing is the relevant dependent variable. The prop-
erties of sounds would be based on the firing rates of cells tuned to overlap-
ping frequency ranges. This model has been termed a rate-place code
because it is the firing rate of a particular cell (i.e., its place) that is critical.

At the Inner Ear and Auditory Nerve

The neurons coming out of the cochlea in the inner ear divide the acoustic
signal into overlapping frequency bands. A set of tuning curves spanning a
wide range of frequencies is shown in figure 2.20. Once the neuron fires,
there is no designation of which particular frequency or intensity combina-
tion triggered the cell. (The lack of history is typical for all sensory systems.)
Retinal ganglion cells also divide the visual image into frequency bands (by
means of the width of the on-off regions) at different retinal locations.
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3. The autocorrelation and cross-correlation can be understood in terms of frequency dis-
tributions of the timing between successive spikes. For the autocorrelation, we would tabulate
the distribution of time intervals between successive spikes for individual neurons (a first-order
autocorrelation). If a strong autocorrelation exists, the majority of intervals should be nearly
identical, and the frequency distribution would be peaky. For the cross-correlation, we would
consider one spike train as the reference and tabulate distribution of the time intervals between
each spike in the reference spike train and the nearest spike in the comparison train. If the refer-
ence train is related to the comparison, then the majority of intervals should be found at one
positive interval. If the two trains are unrelated, then the distribution should be random.



Each tuning curve could be roughly described as being V-shaped. The
lower tip defines the characteristic frequency at which the cell is most sen-
sitive and the V bounds different combinations of frequency and amplitude
that trigger the cell. It is possible to fire the cell at a relatively wide range of
frequencies by increasing the intensity of the tone. In contrast to the sym-
metrical retinal ganglion cells, the tails are not symmetric, and that is the
result of the propagation of the pressure wave along the basilar membrane.
The propagation wave travels from the high-frequency region of the basilar
membrane at the oval window to the low-frequency region at the base.
Each point on the basilar membrane captures a high-frequency component,
and only the lower-frequency components travel onward. Thus, the intense
high-frequency components do not affect the physical displacement of the
lower-frequency end of the basilar membrane. In contrast, the intense lower
frequencies will affect the motion of the entire membrane.

The width of the tuning function roughly equals the selectivity of the
neuron. While it might appear that the neurons ought to be highly selective
to provide the most accurate frequency information, frequency resolution
necessarily creates timing uncertainty. In the cat, frequency selectivity in-
creases with characteristic frequency; the tuning curves become narrower
(less damped). At frequencies around 1 kHz, the damping is high and the
selectivity is low, so that the response to a click may last only for one cycle
(low frequency resolution/high time resolution). At frequencies around
10 kHz, the damping is lower and the selectivity is high, so the response to a
click may last for 10 cycles or more (high frequency resolution/low temporal
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Figure 2.20. Frequency-intensity response areas of single auditory fibers. The re-
sponse area represents all combinations of frequency and intensity that yield firing
rates significantly above the resting rate Response areas for two cells are shown.
The characteristic frequency (Fcf) is the frequency at the lowest threshold. Cells
with high characteristic frequencies can have low frequency “shelves” as shown
for (B).



resolution). This is another example of the frequency × time trade-off,
which may be compared to the frequency × orientation trade-off in vision.

The physical construction of the basilar membrane creates a frequency an-
alyzer, so that the composite sound wave is broken into its components—
high frequencies stimulate hair cells at the narrow stiff membrane right next
to the oval window apex and low frequencies stimulate hair cells at the
broader, looser base. It is a tonotopic representation—there is a smooth mo-
notonic change in frequency selectivity along the membrane (analogous to a
retinotopic representation of spatial positions in the retina). For the cat, there
is a simple logarithmic relationship between frequency and location: each oc-
tave (a 2:1 ratio of frequencies) takes about the same 3.5 mm distance on the
membrane. This physical construction creates a fractal scale (1/f ) that, as we
find in chapter 3, is matched by the physical sound and light power in natural
environments. Equal lengths on the basilar membrane match the octave
bands that have equal power in the environment. The logarithmic relationship
is not perfect: the low frequency end is compressed. LePage (2003) suggests
that this warping optimizes higher-frequency resolution and that the longer
basilar membranes found in larger mammals act to improve low-frequency
resolution that is degraded due to compression.

Phase-locking occurs when the neuron fires at a specific point in the
stimulus cycle. To measure the degree of phase-locking, the probability of
firing is calculated at specific times within the cycle. A classic example of
phase-locking is shown in figure 2.21. Three points are important. First, the
phase-locking begins at relatively low intensities at which the rate of re-
sponding has not increased. By 10-18 dB, there are clearly more responses
around 0.6 ms, although the overall response rate has not increased. Sec-
ond, phase-locking results in the suppression of firing at other points in the
cycle. Third, degree of phase-locking does not decrease at the highest in-
tensities. Any single neuron does not fire on every cycle. In fact, measure-
ments indicate that the probability of firing on any given cycle is
independent of the previous firing pattern. But if the cell does fire, it will
tend to be at the same point in the stimulus cycle.

Phase-locking is limited to lower frequencies, roughly up to 4000 Hz at
the auditory nerve. The degree of phase-locking diminishes up the auditory
pathway so that effectively there is no phase-locking (less than 100 Hz) at
the auditory cortex. Why, then, should there be phase-locking at all? One
possibility is that it represents a strategy to reduce the redundancy of the
neural signal. If the auditory system is attempting to provide both temporal
(onset, offset, intensity envelope) and frequency information about the sig-
nal, then phase-locking is very efficient. The repetitive stimulus cycle is
converted into firing at specific time intervals for each neuron, and that
stability will create a set of cross-correlations among neurons with the
same or different characteristic frequencies. Even if the precise timing is
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Figure 2.21. Phase-locking in the auditory nerve to a 1000 Hz tone. As phase-
locking comes to dominate at the higher-intensity levels (30 to 90 dB), there is little
change in the response rate or degree of synchrony. Adapted from “Phase-Locked
Response to Low-Frequency Tones in Single Auditory Nerve Fibers of the Squirrel
Monkey,” by J. E. Rose, J. F. Brugge, D. J. Anderson, and J. E. Hind, 1967, Journal
of Neurophysiology, 30, 769–793.



lost going up the pathway, the representation of the stimulus has been re-
duced to the correlated firing of specific neurons, and has been transformed
into an efficient sparse code (described in chapter 3).4

Sounds are constantly evolving in frequency and intensity, and speech is
characterized by low-frequency modulations in amplitude. The firing rates of
the auditory neurons tend to accurately track those changes, even to the point
that they overshoot. In the typical stimulus presentation, a sine wave (or
white noise) is modulated in amplitude or frequency by a different sine wave.
In figure 2.22, a tone burst at the cell’s best frequency is amplitude modulated
by a 120 Hz sinusoidal wave (each cycle is shown by an arrow). All the fibers
tracked the occurrence of the modulation at low tone-burst intensities quite
well, but did not track as well at higher tone-burst intensities. At the auditory
nerve, fibers can track modulation frequencies up to 500–1000 Hz by syn-
chronizing to the amplitude variation, a form of phase-locking. But, further
along the auditory pathways, the rate decreases to 50–400 Hz.

All theories about the encoding of auditory information (particularly
those for pitch) start by conceptualizing the inner hair cells of the cochlea
as a set of overlapping band-pass filters such that the output of each hair
cell filter reflects the energy within that frequency range. There is a one-to-
many connection between the hair cells that encode frequency and the cells
in the auditory nerve. As many as 10 auditory nerve cells are connected to a
single hair cell, but each auditory neuron is connected to only one hair cell.
The characteristic frequency of each cell in the auditory nerve therefore is
determined by the location of that hair cell along the basilar membrane.
The spikes along any nerve can be interpreted in two ways: (a) in terms of
the rate of firing based on the location of the hair cell, that is, a rate-place
code; and (b) in terms of the degree of phase-locked timing between spikes.

Firing Rate × Place Models For rate models, the output of each hair cell
filter (as measured by the rate of firing in an auditory nerve cell) is averaged
over time. The patterning of the firing rates across filters with different char-
acteristic frequencies is assumed to determine the perceived sound. Rate
models do not make use of phase-locked responding in any filter channel—
all that is used is the average firing rate. Although such a rate model should
work theoretically, there are two difficulties. The first difficulty is that at
higher intensities, more and more neurons begin to fire, so that in the
extreme, all of the hair cells respond equally and the original firing pattern is
lost (see figure 2.20). The second difficulty is that the firing rates of auditory
neurons saturate at relatively low intensities, so that it is difficult to under-
stand how the auditory system could code intensity differences between
intense sounds based only on average rates.
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Temporal × Place Models For temporal models, the actual firing
patterns of each filter are used to isolate consistent interspike intervals or
periodicities that can encode frequency. As the firing pattern of each filter
becomes phase-locked to one frequency, all of the intervals between
successive spikes will become identical to the period of that frequency (or
multiples of the period if the cell does not fire on every cycle). Licklider
(1951) proposed that the auditory system performed an autocorrelation
between the spike train and progressively delayed versions to isolate those
regularities. The peak values of the autocorrelation would occur at the
period and multiples of that period.

For pure temporal models, the regularities are combined in some way,
but without making use of the frequency tuning of the neurons. Thus, pure
temporal models are the antithesis of rate models—temporal models retain
the interspike intervals due to phase-locking, but lose the frequency infor-
mation due to the place of the neuron filters, while rate models retain that
frequency information but lose the interspike intervals.
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Figure 2.22. Neural synchronization of the medium spontaneous-rate-firing fibers
to amplitude-modulated tones. An arrow indicates each cycle of the 120 Hz
amplitude-modulating tone. There is an obvious suppression of firing rate at the
lower intensities in synchrony with the modulating tone. There is practically no
suppression at the higher intensity level. There is less inhibition for the low and
high spontaneous-rate fibers, even at the lower intensity. Adapted from “Subcortical
Neural Coding Mechanisms for Auditory Temporal Processing,” by R. D. Frisina,
2001, Hearing Research, 158, 1–27.



We can start by constructing the frequency distribution of the interspike
intervals for each cell. The repeating stimulus wave is illustrated in fig-
ure 2.23A. The resulting spikes and many of the interspike intervals for
one cell are shown in figure 2.23B. These intervals are plotted as a function
of the stimulus onset in figure 2.23C: The x axis represents time, and the y
axis represents the interspike intervals in milliseconds.

The phase-locking of the spikes of auditory cells with different charac-
teristic frequencies to a sound is shown in the two columns below the sin-
gle cell representation. Each row represents one cell, and the spikes to
repetitions of the stimulus waveform are shown as black “blips.” The de-
gree of phase-locking is expressed by the tightness and regularity of the
blips. The number of spikes at each time point is combined across all the
cells to generate the population histogram. The overall phase-locking is
clear: The peaks in the number of spikes occur once per waveform repeti-
tion (roughly every 6.5 ms, 150 Hz).

Corresponding to the phase-locking in the firing of each cell are the all-
order interval distributions shown in the right panel at the bottom of figure
2.23. Here, the blips represent the number of occurrences of every inter-
spike interval separately for each characteristic frequency. Summing the
number of intervals across the cells generates the population-interval his-
togram. The peaks of this histogram represent the fundamental frequency
of the sound (1/F0) plus the weaker harmonics.

Place × Timing Place × timing models represent the strength of the
phase-locked response of each hair cell filter by the autocorrelation among
the spikes. The y axis becomes the characteristic frequency of the hair cell
filter; the x axis becomes the intervals between spikes; and the z axis be-
comes the strength of the autocorrelation (phase-locked responses) among
spikes at each time interval. The autocorrelation at each characteristic fre-
quency is calculated separately, in contrast to pure rate models in which the
intervals are summed together. Figure 2.24A illustrates a schematic calcula-
tion of the autocorrelation at each frequency to a complex sound. The ampli-
tudes of the autocorrelations are summed across fibers to derive the
summary histogram. The stimulus shown in figure 2.24B consists of the first
10 harmonics of a 100 Hz complex tone. The phase-locked response for
cells with a characteristic frequency of 200 Hz should occur at periods of
the 200 Hz 2nd harmonic (5, 10, 15 ms . . . ) while the phase-locked re-
sponse for cells with a characteristic frequency of 1000 Hz should occur at
the period of the 1000 Hz 10th harmonic (1, 2, 3 ms . . . ). Because the
phase-locking is not perfect, the response and autocorrelation look like a se-
ries of normal curves centered at the periods of the component frequencies.
The autocorrelations at the characteristic frequencies of the receptors are
summed to create a summary correlogram that isolates the 10 ms period of
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the 100 Hz fundamental. Correlogram representations, and timing models in
general, have been rather successful in matching results from human pitch
judgment experiments.

Given the frequency limitations to phase-locking, it is best to hypothe-
size that both rate and timing are used by the auditory system: Timing cod-
ing occurs up to the frequency determined by the phase-locking limit, and
rate coding occurs at frequencies beyond that. As you go up the auditory
system, the phase-locking limit decreases so that by the primary auditory
cortex, that limit may be only 40 to 50 Hz (T. Lu, Liang, & Wang, 2001). T.
Lu and Wang (2004) argued that rate and timing coding may encode differ-
ent properties of the auditory input or encode the same property by means
of different populations of neurons. In that work, roughly 40% of the corti-
cal neurons synchronized to the onsets of rapidly occurring clicks (down to
a 30 ms interval between clicks), while the remaining 60% of the cells did
not have any timing information. T. Lu and Wang (2004) argued that the
latter cells are a transformed representation of the stimulus that could en-
code other properties.

At the Auditory Brainstem and Midbrain

One strong similarity between the spatial receptive fields in vision and the
frequency receptive fields in audition is that both occur at different resolu-
tions. Spatial receptive fields and critical bands vary in bandwidth and are
densely distributed along the frequency dimension. There is local coding in
both. A second similarity is the spatial overlap of receptive fields in vision
and the frequency overlap of critical bands in audition.

This firing pattern is carried by the auditory nerve to the cochlear nu-
cleus. Here, parallel processing channels are created that abstract certain
acoustic features. One such enhanced feature is the degree of amplitude
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Figure 2.23. Derivation of a population peristimulus histogram and population
all-order interval histogram. The population peristimulus histogram sums the num-
ber of spikes across fibers with different characteristic frequencies at time points af-
ter stimulus onset. The derivation of an all-order peristimulus histogram for a single
fiber is shown schematically in (A), (B), and (C). The stimulus waveform is shown
in (A), the spikes are shown in (B), and all of the intervals between spikes are
shown in (C). An example of a population all-order interval histogram is shown be-
low. The histogram covers a 50 ms interval beginning 240 ms after stimulus onset.
At the top of the left column is the stimulus waveform, below that the spikes for
fibers with different characteristic frequencies, and at the bottom the total number
of spikes at each time point. At the top of the right column is the autocorrelation for
the stimulus waveform, below that is the intervals between spikes for fibers with
different characteristic frequencies, and at the bottom is the frequencies of the inter-
vals between spikes. Figure courtesy of Dr. Peter Cariani.
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modulation that characterizes speech, animal communication, and music.
Neurons in the cochlear nucleus can amplify the depth of the amplitude
modulation over a wide range of sound levels. Moreover, the effect of
background noise is small, and there are neurons in which the response to
the amplitude modulation actually is enhanced in background noise. The
rate of amplitude modulation is coded by the synchronous responses (i.e.,
the phase-locked responses) to the modulation.

The inferior colliculus integrates almost all the ascending acoustic infor-
mation and determines the form in which information is conveyed to the
auditory cortex. The receptive fields of many neurons match those from
lower nuclei in the auditory pathways and also match the results from psy-
chophysical experiments using the same paradigms. The frequency band-
widths are similar and the receptive fields are relatively constant across
changes in intensity.

This differs from the receptive fields found at the auditory brainstem.
There, the bandwidth greatly increases at higher intensities. This suggests
that the ability to resolve frequencies should decrease at higher intensities
because the bandwidths of the tuning curves measure the ability to resolve
differences between frequencies, but that is not the case. We can measure
the behavioral ability to resolve and integrate frequencies by determining
the frequency range of a noise that masks the detection of a tone at the
middle frequency of the noise. This range has been termed the critical band.
Noise energy outside this frequency range does not affect the detectability
of the tone. This experimental procedure yields bandwidths that are roughly
one third of an octave wide and are basically constant across a wide range of
intensities. Frequencies that fall within one critical band are not resolved
(into distinguishable frequencies) and are summed. It is critically important
to understand that there are many critical bands, and there is a great deal of
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Figure 2.24. Panel (A) is a schematic drawing of place × timing models. The
cochlea performs an initial frequency analysis and then the outputs at the different
frequencies are analyzed separately, the place component. The timings between the
spikes of each such output are autocorrelated (equivalent to measuring the fre-
quency distribution of the intervals), and the excitation is assumed to be propor-
tional to the size of the autocorrelation at each delay interval. The summary
autocorrelation histogram is calculated by adding the autocorrelations across recep-
tors, as illustrated at the right. Figure courtesy of Dr. Peter Cariani. Panel (B) is an
example of a summary correlogram based on the first ten harmonics of a 100 Hz
sound. The evenly spaced peaks at each frequency are due to the autocorrelations
at multiples of the period. The summary correlogram isolates the 10 ms period of
the 100 Hz fundamental. From “Virtual Pitch and Phase Sensitivity of a Computer
Model of the Auditory Periphery. I. Pitch Identification,” by R. Meddis and
M. J. Hewitt, 1991, Journal of the Acoustical Society of America, 89, 2866-2882.
Copyright 1991 by the American Institute of Physics. Reprinted with permission.



overlap in the frequency range of different bands: One band may extend
from 1000 to 1050 Hz, while a second band may extend from 1005 to
1055 Hz, and so on. Only at the inferior colliculus in the auditory midbrain,
where the bandwidth does not change with intensity, do the correspon-
dences between the physiological and perceptual bandwidths emerge.

Any single cochlear frequency band is represented physically as a two-
dimensional plane or lamina. The typical connection between cells is
within a single-frequency lamina. There is a topographical gradient of the
bandwidths at each isofrequency lamina: Neurons with broader band-
widths, many beyond the measured critical band, are located more periph-
erally, while neurons with narrower bandwidths are located more centrally.

Many cells in the inferior colliculus (as well as in lower nuclei) are ex-
cited by the stimulation of one ear and inhibited by the stimulation of the
other ear. Pollak, Burger, and Klug (2003) suggested that due to excitatory
and inhibitory inputs from lower centers, trailing sounds can be inhibited
by the leading sound, yielding the precedence effect, or the law of the first
wavefront. Here, the locations of the successive echoes in a reverberant
room are suppressed and do not contribute to the perceived location of the
sound. All of the echoes, however, do combine to create the volume and
timbre of the sound.

At the Primary Auditory Cortex

The auditory pathway has a tortuous path passing through several brain nu-
clei before reaching the auditory cortex. We might expect dramatic changes
in the receptive fields, given the many opportunities for neural conver-
gence. Yet if we assume that there will be homologies between the organi-
zation of the visual and auditory systems, we would expect that organization
according to frequency would be the dominant factor (termed tonotopic) and
that there would be a primary auditory cortex (that may be subdivided) and
subsequent subregions. In these other regions of the auditory cortex, the
cells will have different properties, may not be tonotopic, and may mainly
have nonseparable frequency-time receptive fields (i.e., responsive to fre-
quency glides). However, in all regions, tonotopic frequency organization
would still be the overarching physiological concept. In what follows, I
first consider the overall properties of the organization of the auditory cor-
tex. Then I consider the characteristics of spectral-temporal receptive fields
and question whether these are auditory feature detectors that are tuned to
the unique requirements of a species.

Organization of the Primary Auditory Cortex The tonotopic organi-
zation coming out of the cochlea is maintained along the entire auditory
pathway and results in a two-dimensional representation in the cortex. In
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the primary auditory cortex (A1), cells with the identical characteristic fre-
quency are arrayed in roughly parallel lines, with the highest frequency
closest to the suprasylvian fissure. A tonotopic dimension has been found
in every mammalian species studied, and regions representing biologically
significant frequencies often are enlarged, analogous to the magnification
for foveal vision in V1. Cells with the same characteristic frequency form a
two-dimensional sheet.

One way of describing the organization of each characteristic frequency
sheet is in terms of the bandwidth of the receptive field. Each sheet runs ver-
tically (dorsal-ventral), and the distribution of bandwidths can be divided
into roughly three regions. On the whole, the neurons in the central region
are characterized by narrow bandwidths that are constant across variations
in intensity. The neurons in the ventral region are characterized by wider
bandwidths, and the effect of intensity on the bandwidth is weak. The dorsal
region is more complex, and the bandwidths tend to oscillate in width to-
ward the end of the dorsal region. Many neurons in the dorsal region have
multiple excitatory regions and may have one or more inhibitory regions.
There is a striking alternation in the bandwidths of clusters of cells from the
central to the extreme dorsal region that is found even for responses to sin-
gle frequencies (Schreiner, Read, & Sutter, 2000). In addition to encoding
characteristics of the frequency spectrum, other cells in A1 encode binaural
properties such as interaural time and intensity differences. The binaural
properties vary periodically along the isofrequency axis, but the relationship
to the bandwidth is unclear (Read, Winer, & Schreiner, 2002).

Shamma and Klein (2000) and colleagues have suggested another orga-
nizing principle for an isofrequency sheet based on the symmetry and scale
(bandwidth) of the receptive fields. At the center of the sheet, the two inhi-
bition regions are symmetrical around the center excitation region. Moving
out from the center along the symmetry axis, the three regions combine
into two, one excitatory and one inhibitory. At one end, the inhibitory re-
gion occurs at the lower frequencies, while at the other end the inhibitory
region occurs at the higher frequencies, as shown in figure 2.25. (Recall
that there are asymmetric receptive fields in V1 consisting of single excita-
tory and inhibitory regions.) The local symmetry axis is perpendicular to
the scale axis that encodes the bandwidths of the receptive fields.

The symmetry and scale axes are presumed to underlie the perception of
the direction and rate of frequency glides. To understand the response for
frequency glides, we need to include the physiological finding that the in-
hibitory response takes longer to develop than the excitatory response (this
is the same assumption about the time course of inhibition found in the dif-
ference of the Difference of Gaussians model for visual on-off cells). Thus,
if an upward frequency glide first passes through a lower-frequency in-
hibitory region, the delayed inhibitory response will occur at the same time
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as the subsequent response from the higher-frequency excitation region,
and the overall firing rate will not change to any degree. However, if an up-
ward glide first passes through a lower-frequency excitation region, then
the excitatory response will beat the inhibitory response from the higher-
frequency inhibitory region and there will be a large change in the firing
rate. On this basis, these “symmetry” cells can distinguish the direction of
the frequency glide. The majority of cells respond to downward sweeps,
and generally glides toward the characteristic frequency generate stronger
responses than glides away from that frequency (Weisz, Wienbach,
Hoffmeister, & Elbert, 2004). Along the scale axis, neurons with narrow
bandwidths will respond to rapid glides, and cells with wide bandwidths
will respond to slower glides.

M. L. Sutter, Schreiner, McLean, O’Connor, and Loftus (1999) directly
investigated the types and distributions of cells with complex receptive
fields in the cat. For each cell, they first characterized the excitatory recep-
tive field—the combinations of frequency and intensity that excited the
cell. Following this, they presented a low-intensity tone at the characteristic
frequency on every trial, along with a second tone at differing frequencies
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and intensities. The combinations of frequency and intensity of the second
tone that inhibited the firing of the target cell by 50% defined the inhibitory
areas for that cell.

M. L. Sutter et al. (1999) created a typology of the different inhibitory
receptive field structures based on the number and position of inhibitory re-
gions. Simplified versions of the three most common patterns are shown in
figure 2.26. The distribution differs between the ventral and dorsal regions.
In the ventral region, over 50% of the cells have one inhibitory region
above and one inhibitory region below its excitation region; the inhibitory
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Figure 2.26. Simplified examples of the three most common inhibitory band
structures. The most common type has one excitatory band and two surrounding in-
hibitory bands. Two examples that vary bandwidth are illustrated in (A) and (B).
Neurons with one excitatory and two bounding inhibitory regions account for 35%
of the total. The two remaining structures have one excitatory band and three in-
hibitory bands, two inhibitory bands on one side of the excitatory band and one
on the other (C and D). Adapted from “Organization of Inhibitory Frequency
Receptive Fields in Cat Primary Auditory Cortex,” by M. L. Sutter, C. E. Schreiner,
M. McLean, K. N. O’Connor, and W. C. Loftus, 1999, Journal of Neurophysiology,
82, 2358–2371.



bands are symmetrical. In contrast, in the dorsal region, the majority of cells
have three or more inhibitory bands asymmetrically surrounding the excita-
tion region. These appear to be the asymmetric cells found by Shamma and
Klein (2000).

These results support the contention that cells in the dorsal region with
multiple inhibitory regions are more suited to analyzing sounds such as
speech and music with multiple spectral components that undergo slow and
fast frequency changes. The multiple inhibitory regions alter the firing rate
of these cells when other frequencies are present (e.g., different vowels)
and can respond differentially to frequency glides. The cells in the ventral
region respond poorly to broadband sounds; they are more suited to signal
the presence of individual frequencies. They hear the world through a nar-
rower aperture. Again, our representation of auditory objects depends on
the patterning of firings in both the ventral and dorsal regions; it is not
either-or. A sound with a single frequency would excite cells in both re-
gions; the introduction of other sounds would change the firing of the cell
in the dorsal region due to the inhibitory bands but would not affect the fir-
ing of the cell in the ventral region. If the ventral firing did not continue, we
could not determine if the original frequency had terminated or not.

Read, Winer, and Schreiner (2001) have traced the interconnections
between cells in the primary auditory cortex. Although it would be logical
for the narrow and broadband neurons with the same best excitatory char-
acteristic frequency to be interconnected, that is not the case. Instead, the
connections are between neurons with the same characteristic frequency
that share a common bandwidth: narrow-bandwidth cells connect to other
narrow-bandwidth cells and broad-bandwidth cells connect to broad-
bandwidth cells. Thus, there is a functional and physiological separation
between the two classes of cells. It may be that the narrow and broadband
cells have different spectral-temporal properties due to the excitation and
inhibition regions that maintain this segregation.

It is interesting that there are not many interconnections among cells in dif-
ferent isofrequency sheets. This is in contrast to the visual cortex, where there
are many interconnections between cells representing adjacent retinal points.
One possible explanation for this difference is that many important sound ob-
jects are made up of roughly harmonic frequency components (multiples of
the fundamental) as opposed to background noise, which is likely to be com-
posed of a continuous range of frequencies. Visual objects are connected in
space so that adjacent retinal points are very likely to represent the same ob-
ject. Thus, it makes sense to connect adjacent cells in the visual cortex be-
cause one object usually causes the firing of those cells, but it does not make
sense to connect adjacent cells in the isofrequency sheets because one sound
object is unlikely to cause the firing of those cells. In fact, such a pattern of in-
terconnections enhances sound segmentation, as discussed in chapter 9.
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We can conceptualize these spectral organizational schemes in terms of
static and frequency glide sounds. For static sounds, cells with wide excita-
tion regions would be best driven by sounds with high-amplitude, broad
frequency bands (e.g., instruments with many close partials), while the fre-
quency components of those same sounds would fall in both the excitation
and inhibition regions of cells with narrow response regions and not affect
their firing rate. In contrast, cells with narrow response regions would be
driven best by sounds with high-amplitude discrete harmonics. For sounds
with frequency glides, cells with broad response regions will respond to
wider frequency swings, while cells with narrow response regions will re-
spond to narrower frequency swings. What this all means is that cells with
different bandwidths create a means to encode the acoustic signal at differ-
ent levels of resolution or, to put it in another way, to encode it in terms of
both coarse, slowly changing physical variables and fine, rapidly changing
physical variables. The spectral organization results in topographically dis-
tinct areas that are maximally responsive to different types of information
in the acoustic wave (see T. Lu & Wang, 2004). This concept of multireso-
lution in frequency and time is exactly analogous to the multiresolution in
frequency and orientation found in the primary visual cortex. Nelken
(2002), in an insightful review, cautioned that these results can vary widely
as a function of species and stimulus amplitude, as well as the method of
anesthesia.

Receptive Fields: Spectral-Temporal Properties The stimuli used to
determine receptive fields experimentally are of two sorts. The first uses
basic stimuli, amplitude- or frequency-modulated sine waves, to derive re-
ceptive fields that should be found in a variety of species. The disadvantage
of these stimuli is that cells may be responsive to correlated acoustic com-
ponents that would not be isolated with independent auditory inputs. The
second uses natural calls (e.g., mating or warning signals) of the species
being studied to uncover receptive fields that may illustrate nonlinear
higher-level receptive fields. The disadvantage here is that because most
species-specific calls have correlated stimulus components, it is necessary
to remove those correlations before determining the receptive field.

Independent Frequency Component Stimuli L. Li, Lu, and Wang (2002)
investigated the response to frequency and amplitude-modulated sinusoidal
waves in awake marmoset monkeys. Nearly all neurons responded to am-
plitude modulation and about 70% responded to frequency modulation.
The response was stronger to these modulated sounds than to pure tones.
The discharge rates of five representative neurons are shown in figure 2.27.
Each neuron shows a distinct peak at the same frequency for the amplitude
and frequency modulation. L. Li et al. (2002) suggested that the similarity
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Figure 2.27. The response of
five different neurons in awake
monkeys to amplitude and 
frequency modulation. Most
neurons had similar response
patterns to amplitude and 
frequency modulation. From
“Neural Representations of 
Sinusoidal Amplitude and 
Frequency Modulations in the
Primary Auditory Cortex of
Awake Primates,” by L. Li, 
T. Lu, and X. Wang, 2002,
Journal of Neurophysiology,
87, 2237–2261. Copyright 2002
by the American Physiological
Society. Reprinted with 
permission.



in the discharge pattern between amplitude and frequency modulation re-
sults from a common temporal modulation mechanism that extracts all
types of change from a complex acoustic environment.

Wang, Lu, Snider, and Liang (2005) found many cells in awake monkeys
that show high-rate sustained firing to steady-state tones at their characteris-
tic or best frequencies and high-rate sustained firing to amplitude-modulated
tones at the best modulation frequency. The same cells show only onset re-
sponses if the tone and amplitude modulation frequencies differ from their
optimal values. This means that when a sound is first heard, there is an on-
set response across a large population of cells with a wide range of best fre-
quencies. Then, as the signal continues, only those cells whose preferred
frequencies match the sound keep on firing, although at a slower rate than
the onset rate. The onset response has a short latency and therefore can pro-
vide precise information about onsets and transitions in the environment,
while the sustained responses can provide precise information about the
frequency composition of the sound.

DeCharms, Blake, and Merzenich (1998) used the reverse correlation
technique to derive spectral-temporal receptive fields in awake owl mon-
keys. The stimuli were auditory chords typically composed of one note
from each of seven octaves. The notes were chosen randomly so that any
single chord could be composed of a variable number of notes in one or
more octave ranges. Each chord was only 20 ms in duration, and about
30,000 chords were used to characterize each spectral-temporal receptive
field. Simplified but typical spectral-temporal receptive fields are shown in
figure 2.28.

Only a small number of cells had spectral-temporal receptive fields with
a single region of excitation and no inhibition. The spectral-temporal recep-
tive fields shown in figure 2.28 illustrate diverse response patterns. The
neuron in (A) has a narrow frequency region of excitation flanked by in-
hibitory frequencies, presumably tuned to pick up a continuous frequency
edge at a precise tonal frequency. The neuron in (B) fires to an alternating
off-on pattern at a specific frequency, presumably tuned to pick up succes-
sive stimulus pulses. The neuron in (C) has a downward excitation fre-
quency glide, while the neuron in (D) has a complex set of multiple
excitatory and inhibitory subregions. In fact, the vast majority of cells did
have multiple subregions. Overall, the bandwidth of the response areas was
1.8 octaves (about 1.5 times that for visual fields) and the duration of the
response ranged from 20 to 100 ms.

What this means is that the auditory cortical cells respond to local fea-
tures of the stimulus, in much the same way argued for the visual cortical
cells. As DeCharms et al. (1998, p. 1443) stated, “In decomposing visual
forms or auditory scenes, the cortex uses detectors with similar characteris-
tics for finding the position of stimulus edges along the sensory receptor
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surface, finding stimulus edges (onsets) in time, finding stimulus movements,
and finding feature conjunctions.”

Shamma (2001) and Shamma and Klein (2000) measured the receptive
fields in A1 using sounds made up of many harmonics across a five-octave fre-
quency range. The amplitudes of the harmonics are modulated across the log-
arithmic frequency axis by a sine wave that drifts either up or down in
frequency. The sine wave creates an amplitude envelope across the frequency
range that gradually shifts in frequency, as shown in figure 2.29. By varying
the frequency, rate of drift, and amplitude (depth of modulation) of the sine
wave, it is possible to measure the spectral-temporal response field from the
resulting firing pattern. Examples of rippled spectra are shown in figure 2.29.5

Researchers (Depireaux, Simon, Klein, & Shamma, 2001; Kowalski,
Depireaux, & Shamma, 1996) investigated whether the spectral and tempo-
ral components of the neural response were separable and independent. In

Figure 2.28. The spectral-temporal receptive fields of four representative
auditory cells. Nearly all neurons had multiple excitation and inhibitory regions
and seem tuned to auditory characteristics that define objects. Adapted from “Opti-
mizing Sound Features for Cortical Neurons,” by R. C. DeCharms, D. T. Blake, and
M. M. Merzenich, 1998, Science, 280, 1439–1444.

5. The ripple stimuli are modeled after drifting sinusoidal gratings, discussed in chapter 5,
used to investigate second-order motion.



practice, this means measuring the response to several modulation frequen-
cies at one drift rate, measuring the response to several velocities (both up-
ward and downward in this research) at one modulation frequency, and then
being able to predict the response for all combinations of frequency and ve-
locity. Depireaux et al. (2001) found that there was a distribution of separa-
bility. Some cells were completely separable and the response to both
upward and downward ripples was independent of the velocity of the ripples;
other cells were separable to either upward or downward ripples so that they
would respond differentially to upward and downward frequency glides.

Using more natural stimuli, Sen, Theunissen, and Doupe (2001) also de-
rived a separability index (essentially a measure of the error between the ac-
tual and predicted) and found that there is a wide distribution in the degree
of separability. The frequency × time receptive fields for two auditory cells
in the zebra finch is shown in figure 2.30. For the cell shown in (A), the fre-
quency selectivity is relatively constant across time so that the response of
this cell is separable. The predicted response, assuming independence
between time and frequency, is nearly indistinguishable from the actual
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Figure 2.29. Dynamic ripple stimuli consist of many simultaneously presented
tones that are equally spaced along the logarithmic frequency scale (i.e., equal fre-
quency ratios). A sinusoidal envelope that sweeps up or down the frequency axis
across time modulates the amplitude of the tones. Two time points are shown as
the envelope drifts to the right. The sinusoidal envelope can vary in frequency and
rate of drift. The envelope across time can be depicted as a frequency × time graph:
The frequency becomes represented by the width of the intensity bars and the rate
by the slope. Adapted from “On the Role of Space and Time in Auditory Pro-
cessing,” by S. Shamma, 2001, Trends in Cognitive Science, 5, 340–348.



receptive field, and the difference is not shown. For the cell shown in (B),
the frequency selectivity shifts across time, so that the response is nonsepa-
rable. The predicted response based on separability shown in the second
column makes the frequency selectivity constant across time (the strictly
constant [vertical] frequency response), so that there is a large difference
between the separable (linear) prediction and the actual response.

Species-Specific Stimuli Wang, Merzenich, Beitel, and Schreiner (1995)
used species-specific calls of marmoset monkeys to determine if there were
neurons in A1 with spectral-temporal receptive fields tuned to those calls.
The twitter calls were short broadband sounds (6000-12000 Hz) that re-
peated every 100 ms. There were no unique call detectors. On the whole, the
receptive fields of neurons reflected the basic spectral-temporal properties
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Figure 2.30. The spectral-temporal receptive fields, the separable components,
and the difference between the spectral-temporal receptive field and separable part
are shown for two auditory cells in the finch. In (A), the frequency response does
not shift over time, so that there is no difference between the actual receptive field
and the estimate based on separability. In (B), the frequency response does shift;
the separable components do not capture that shift, so that there is a residual
component. The separable plus the residual would reproduce the frequency-time
response. The stimulus onset occurs at time 0. Adapted from “Feature Analysis of
Natural Sounds in the Songbird Auditory Forebrain,” by K. Sen, F. E. Theunissen,
and A. J. Doupe, 2001, Journal of Neurophysiology, 86, 1445–1458.



of the acoustic wave but were phase-locked to the onset and offset envelope
of each twitter at the cell’s characteristic frequency, but not phase-locked to
the temporal fine structure within each twitter (also found by L. Li et al.,
2002, described previously). However, there were subpopulations of neu-
rons that tended to respond more strongly to exact replicas of the calls than
to synthetic variations with the identical spectral characteristics but slower
or faster temporal rhythms. The phase-locking in the neural code to a sim-
plification of the stimulus led to a higher degree of synchronization across
populations of neurons scattered across the cortex surface. Thus, Wang et
al. (1995) concluded that the neural representation is spatially distributed
across the cortex in terms of characteristic frequency but at the same time
temporally synchronized so that there is a coherent representation of the
spectral-temporal characteristics of each call. Any single neuron is proba-
bly associated with several subpopulations, meaning that every neuron un-
doubtedly is involved in the representation of more than one call. This is a
characteristic of sparse coding, discussed in chapter 3.

Barbour and Wang (2003) pointed out that acoustic calls have wide ir-
regular spectrums. They found two kinds of cells in the auditory cortex of
awake marmoset monkeys. The first responded preferentially to these sorts
of sounds with high contrast between the frequency regions. The second re-
sponded preferentially to sounds with low-contrast spectra. The high con-
trast cells seem to correspond to the cells described by Sutter, Schreiner,
McLean, O’Connor, & Loftus (1999) with many excitatory and inhibitory
regions, while the low contrast cells would correspond to cells with only a
small number of excitatory and inhibitory areas.

Wang et al. (1995) speculated that the subpopulations of neurons distrib-
uted across the cortical field most sensitive to a particular call come about
by means of plasticity of the neural connections that can be modified by
learning and experience. To demonstrate that the responses to natural twit-
ter calls was not simply due to the acoustic properties, Wang and Kadia
(2001) created natural and reversed twitter calls and presented both to mar-
mosets and cats. Only the neurons in A1 of the marmosets discriminated
between the natural and reversed calls; there was no difference in the re-
sponse of neurons in A1 of the cat. In fact, the responsiveness of the mar-
mosets to the reversed calls equaled that of both the natural and reversed
calls for the cat. Wang and Kadia speculated that it was early experiences
that led to the differential response for the marmosets.

Fritz, Shamma, Elhilali, and Klein (2003) found that attending to spe-
cific target tones generated rapid changes to the spectral-temporal receptive
fields of roughly 70% of the A1 neurons in the ferret. If the target tone
was centered on an excitatory region, the excitatory response in that region
was enhanced (effectively increasing the contrast), and if the target tone
was centered on an inhibitory region, the inhibitory response in that region
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was decreased, effectively decreasing the contrast (see figure 2.31). The
changes were exceedingly rapid, occurring within minutes. A minority of
cells (33%) immediately returned to their initial receptive fields, while the
remaining cells maintained their changes for hours. The changes only oc-
curred if the ferrets performed a task dependent on the target tone; passive
listening did not change the spectral-temporal receptive fields. The authors
suggested that cortical cells are never fixed and constantly evolve due to
top-down and bottom-up influences controlled by the context.

Work by Theunissen, Sen, and Doupe (2000) illustrates the complexities
in trying to uncover higher-order aspects of the spectral-temporal receptive
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Figure 2.31. The effect of attending to target tones can be rapid. The response of a
cell before training is shown in (A). The target tone was 6000 Hz, and the initial ef-
fect was to increase the excitation around 6000 Hz, shown in (B). After a short pe-
riod of time, the spectral-temporal receptive field evolved so that although the
initial increase in excitation disappeared, the inhibitory area slightly higher than the
target tone decreased. A similar effect is illustrated in (D), (E), and (F). The re-
sponse before training is shown in (D). After training with a 3000 Hz tone, the in-
hibitory region around 2000 Hz shifted to a lower frequency (E). After a second
training session with a 500 Hz tone (F), an excitation region emerges at a frequency
slightly higher than 500 Hz. Adapted from “Rapid Task-Related Plasticity of Spec-
trotemporal Receptive Fields in Primary Auditory Cortex,” by J. Fritz, S. Shamma,
M. Elhilali, and D. Klein, 2003, Nature Neuroscience, 6(11), 1216–1223.



fields. The authors pointed out that for natural stimuli such as the zebra
finch songs used here, there are strong spectral and temporal correlations.
For example, the overall amplitude envelopes of a set of frequency bands
(neglecting the fine variations within the envelope) are correlated over time
so that the onsets and offsets of one band can predict the corresponding
timing of another band. This suggests that the optimal stimulus representa-
tion should remove such correlations in order to reduce the redundancies.

However, Theunissen et al. (2000) found that the correlations between
frequency bands did affect the spectral-temporal receptive fields because
simulated versions of songs that balanced the average frequency distribu-
tion and rhythmic distribution did not yield firing patterns identical to those
of the actual sounds that contained the correlations. Two typical neurons
of this sort are shown in figure 2.32. Neuron (A) appears to be tuned to a
downward-moving frequency edge, while neuron (B) appears to be tuned
to a nonoverlapping combination of frequencies between 1500 and 2500 Hz,
followed by frequencies between 4000 and 6500 Hz.
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Figure 2.32. The response of two auditory neurons to real conspecific songs
shows a distinct receptive field structure (C and D). The response, however, is very
weak to a sequence of tones that has the same frequency distribution as the real
conspecific songs, but a different sequence and rhythm (A and B). From “Spectral-
Temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural
Sounds,” by F. E. Theunissen, K. Sen, and A. J. Doupe, 2000, Journal of Neuro-
science, 20, 2315–2331.Copyright 2000 by the Society for Neuroscience. Reprinted
with permission.



Theunissen et al. (2000) also pointed out that the spectral-temporal re-
ceptive fields calculated for a single cell may dramatically shift if the stim-
ulus is varied, indicating that the measured receptive field is sensitive to
the entire song context. Nonetheless, in spite of the apparent shift in the
spectral-temporal receptive fields, it is still possible to use the spectral-
temporal receptive fields found for one stimulus to predict the response to a
second stimulus if the two stimuli are of the same sort. Thus, the response
to one natural calling song can be predicted from a different calling song
but not from a random sequence of tones, and vice versa.

Machens, Wehr, and Zador (2004) added another cautionary conclusion
about the generality of spectral-temporal receptive fields. At the beginning
of this chapter, I pointed out that spectral-temporal receptive fields could be
thought of as linear filters. We can pull the spectral-temporal receptive fields
through sound and predict the spike pattern by essentially multiplying the
sound spectrogram by the spectral-temporal receptive fields. Machens et al.
(2004) found that although they could derive the spectral-temporal receptive
fields of a cell to a specific natural stimulus, those derived spectral-temporal
receptive fields could not predict the response pattern to a different stimulus.
Only 11% of the response power could be predicted by the linear compo-
nent, leading the authors to conclude that the response properties of auditory
cortical cells were due to nonlinear interactions between sound frequencies
and time-varying properties of the auditory system.

Summary of Receptive Fields in the Primary Auditory 
and Visual Cortex

The neural encoding by the primary auditory and visual cortex is roughly
the same: Sensory information is transformed into general perceptual infor-
mation. The pressure wave at the ear is locally analyzed in the cochlea into
frequency components that vary over time and possibly space (although au-
ditory localization depends on the comparison between the neural signal
from the two ears). The lightness array at the eye is locally analyzed at the
retina into circular on-off regions and is further analyzed in the visual cor-
tex into local frequencies and orientations. Thus, at both the auditory and
visual cortex, any stimulus is represented by the excitation at spatially dis-
tributed locations and the equally important inhibition at other locations.
At every cortical location, there is representation at different resolutions.
For both senses, there is a distribution of separable and nonseparable fre-
quency × space × time neurons. It does not appear that the auditory or visual
transformations create spectral-temporal and spatial-orientation temporal re-
ceptive fields that are tuned to specific features in an animal’s environment
(this is discussed further in chapter 3). Both the auditory and visual systems
act to code general properties in sound and light, although there is strong
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evidence that early experience can lead to tuning of properties that have bi-
ological significance. Our phenomenal perception is achieved by synthesis,
by combining the coincident or temporally correlated neural firings.

Higher Auditory and Visual Regions

The organization of the brain appears to be based on the complementary prin-
ciples of functional integration and functional specialization. The overriding
principle is segregation: Cells with common functions are grouped together.
Such a spatial constraint means that there is a convergence of fibers going into
the specialized regions and a divergence of fibers coming out of the region.
The convergent fibers are patchy forward-driving connections (i.e., bottom-
up) between cortical regions that create the greater selectivity at higher levels,
and the divergent fibers are the more numerous backward connections (top-
down) that modulate and shape the specialization of the cortical regions. Fris-
ton (2002) made a compelling argument that the backward connections
metaphorically tell the cells in A1 and V1 what to expect in the near future and
change the receptive fields of those cells to be more tuned to these expected
sound and light configurations. Therefore, the specialization implied by one
specific receptive field is not an intrinsic property of a region in the cortex, but
depends on the overall activity of the forward and backward connections.

Why should the auditory and visual regions be organized into special-
ized regions? Van Essen, Anderson, and Felleman (1992) suggested several
reasons:

1. Auditory and visual objects are immensely complicated, and it would
be extremely difficult to design circuitry to compute all of the fea-
tures at once. It makes sense to break the problem into small manage-
able parts.

2. By breaking up the processing into smaller units, it becomes possible
to employ specific neural circuits for each part. Inhibition is used to
sharpen various auditory and visual attributes. But it is critical that
the inhibitory circuits for one attribute do not affect the circuits for a
different attribute, and that is most easily accomplished by comput-
ing each attribute in a separate region.

3. Within a specialized region, the identical circuitry (e.g., frequency/ori-
entation filters in V1) may be replicated many times so that computa-
tions can be done quickly in parallel fashion.

4. Specialization allows for top-down attending to particular attributes.
5. Specialization allows for unique integration pathways. Perceiving the

world depends on the ability of a specialized region to influence
computation within another region and the subsequent integration of
the outcomes of all regions.
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Although the hierarchies proposed for the auditory and visual systems
seem to imply serial processing—a step-by-step progression from lower to
higher areas—this is not the case as argued by Friston (2002) above and by
Paradiso (2002). Perception relies on a division of labor and dynamic inter-
actions among areas. Due to the latencies in firings, neurons in lower and
higher regions will be active at the same time. As Paradiso noted, there are
many instances in which firing patterns in V1 are more closely correlated to
the percept than firing patterns in higher regions. Kanwisher and Wojiciulik
(2000) reviewed evidence which indicates that feedback can affect pro-
cessing as early as V1 (and we would expect the same for the primary audi-
tory cortex). Moreover, Kanwisher and Wojiciulik pointed out that attention
can lead to selection based on object features or on spatial location.

Visual Pathways

There have been several attempts to represent the hierarchical organization
of the pathways in the visual system. The possible hierarchies based on the
known feed-forward and feedback connections among the 30 or so known
visual areas are incredibly complex, and, as Hilgetag, O’Neill, and Young
(2000) pointed out, there is no single optimal hierarchy, merely a very large
set of possible hierarchies (in the millions, according to the authors) that
have the same number of inconsistencies. A simplified version that isolates
the hierarchical levels found in all solutions is shown in figure 2.33.

There are several essential features. First, the visual areas V1 and V2 lie at
the base of the hierarchies, and all of the neural pathways pass first through
these two areas. In V2, cells can respond to contours created by changes in
luminance (black-and-white differences) as found in V1, but cells also can
respond to contours based on nonluminance cues such as textures, patterns,
and binocular depth. In addition, many cells are selective for curved contours
(selectivity for curvature is enhanced in higher visual centers, as described
below). Furthermore, the cells in V2 tend to be insensitive to the phase, los-
ing the particular location of the stimulus, due to nonlinearity in response.
The cells respond to stimulus movement, not to eye movement.

Second, the pathways tend to break into two parts after V1 and V2, and
this split can be traced back to the differences between the midget and para-
sol cells in the retina.

What Pathways The “what” pathways respond to higher spatial frequen-
cies, have a slower latency, and sacrifice temporal resolution for high spa-
tial resolution. The midget cells that seem best suited to encode spatial
detail project to the parvocellular layers of the lateral geniculate, pass
through V1 and V2, and then on to V4 and along the ventral pathway to the
inferotemporal cortex.
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The transformations found in response patterns in going from V1 to V2
are enhanced from V2 to V4. The receptive fields get larger, so that the same
feature can excite the cell over a larger retinal area (not that the features get
larger themselves). The receptive fields of many cells are tuned for curved
contours with specific radii of curvature (e.g., concentric and spiral gratings).
Gallant, Braun, and Van Essen (1993) found V4 cells that responded only to
sinusoidal gratings in Cartesian, polar, or hyperbolic coordinate systems and
only to a narrow range of those gratings. Zetzsche, Krieger, and Wegmann
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Figure 2.33. The organization of the visual system. The parasol cells in the retinal
and lateral geniculate underlie the location-movement (M) cortical regions while
the midget cells underlie the what-shape regions (P). All of the proposed hierarchies
begin with separate levels for V1 and V2. Following V2, there is a hypothesized
split in which the medial temporal area is specialized for location and movement,
and V4 and the inferior temporal region are specialized for shape. As can be seen in
the figure, there are many interconnections, so that the proposed split must be quan-
titative rather than being a complete dichotomous split. Any percept must be the re-
sult of the integration of many visual areas. Abbreviations: M, magnocellular layer;
P, parvocellular layer; MT, middle temporal; VIP, ventral intraparietal; MST, medial
superior temporal; FST, fundus superior temporal; PP, posterior parietal; STP, supe-
rior temporal parietal; PIT, posterior inferotemporal; AIT anterior inferotemporal.
Adapted from “Seeing the Big Picture: Integrating of Image Cues in the Primate
Visual System,” by L. J. Croner and T. D. Albright, 1999, Neuron, 24, 777–789.



(1999) argued that, in fact, visual encoding based on polar organization
would yield the optimal representation of the statistical redundancies of natu-
ral scenes, and Gallant et al. (1993) suggested that such non-Cartesian cells
could respond to regions of symmetry or regions of high information. Gallant
(2000) summed this up by stating that these cells are sensitive to shape, size,
and configuration, but not to spatial position.

Cells in the inferotemporal cortex have large receptive fields, and indi-
vidual cells respond to complex configurations of simple shapes. The con-
figurations are not random but are selective to ethological patterns such as
faces and hands (patterns made of distinct parts). These cells are respond-
ing to the coincidence of features that appear and disappear together (eye
shapes, noses, and mouth shapes). Cells may respond regardless of cue
defining the boundaries of the shape (Sary, Vogels, Kovacs, & Orban, 1995)
and often will not respond to one part of a configuration, demonstrating the
nonlinearity of the cell (Kobatake & Tanaka, 1994). Overall, inferotempo-
ral cortex cells are excited by specific configurations of shape attributes but
are insensitive to the cues for shape and the absolute position of the shape
because the receptive fields are so large.

Sigala and Logothetics (2002) demonstrated that training can affect the
selectivity of neurons in the anterior inferotemporal cortex. They trained
two monkeys to distinguish schematic faces that differed in eye height, eye
separation, nose length, and mouth height. The 10 faces were placed into
two categories based on unique combinations of eye height and eye separa-
tion, so that the monkeys could not perform the task based on only one cue.
Roughly 50% of 100 neurons increased their firing rate to one of the four
facial features, and of these cells, 72% were selective to the two diagnostic
eye variables and not to the nondiagnostic nose and mouth variables. These
results therefore show that neurons can come to respond to features of com-
plex stimuli that denote different categories. This outcome suggests a way
that monkeys (and humans) can learn to interpret visual objects.

Where (Movement) Pathways The “where” pathways respond to low
spatial frequencies, have shorter latencies, and sacrifice spatial resolution
(i.e., bigger integration areas) for higher temporal resolution. The parasol
cells that seem best suited to encode temporal detail project to the magno-
cellular layers of the lateral geniculate, and also pass through V1 and V2,
and then along the dorsal pathway to the medial temporal, the medial supe-
rior temporal cortex, and the parietal region. Many cells are tuned to com-
plex movements such as expansion and contraction and are influenced by
stimuli in the nonclassical receptive fields. The response of cells in the me-
dial superior temporal cortex is suppressed when the motion of the back-
ground is identical to that in the middle of the field. Effectively, then, these
cells respond to relative motion.

90 Perceptual Coherence



Auditory Pathways

The auditory system is faced with exactly the same problem as that of the
visual system: Identifying the object based on the proximal spectral com-
ponents and localizing that object based on the time of arrival or intensity
differences between the two ears.

In the core auditory region, there are two or three fields including A1
that are organized according to frequency. The A1 core area projects to a
narrow surrounding belt area composed of at least seven fields, and in turn
the belt area projects to the parabelt area, as shown in figure 2.34. Finally,
the parabelt area projects to the temporal, frontal, and parietal cortex for
additional processing.

Rauschecker and Tian (2000) and others have proposed that the auditory
pathways, like those of the visual pathways, are organized into a what
stream devoted to object identification and a where stream devoted to ob-
ject localization. The caudal-lateral belt region receives information about
object location (the where stream) that is relayed via the dorsal pathway
to the posterior parietal cortex and the dorsolateral prefrontal cortex. The
anterior-lateral regions of the belt and parabelt receive information for ob-
ject perception (the what stream) that is projected via the ventral pathway
to the temporal cortex.
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Figure 2.34. The hypothesized organization of the auditory system that parallels
the what and where split found in the visual system. The dorsal medial geniculate
nucleus (thalamus) feeds A1 and the caudal-medial cortical areas while the ventral
medial geniculate (thalamus) feeds A1 and the rostral cortical areas. Again, survival
requires an integrated percept combining auditory what and where information with
visual what and where information. Adapted from “Mechanisms and Streams for
Processing of ‘What’ and ‘Where’ in Auditory Cortex,” by J. P. Rauschecker and
B. Tian, 2000, Proceedings of the National Academy of Science, 97, 11800–11806.



What and Where Pathways

I would suggest that if the what-where division is fundamental, then it can
be understood in terms of the uncertainty principle discussed in chapter 1.
If there is an inherent inverse relationship between spatial and temporal
resolution, then the only way to achieve maximum resolution along both
dimensions is to use different measuring instruments for each (or possibly
to make two measurements using one instrument). Given that it is implausi-
ble to try to alternate between optimizing the spatial and temporal resolu-
tion using one pathway, the auditory and visual systems evolved two
pathways.

It should be noted that the hypothesized what and where pathways for
the auditory and visual systems differ physiologically. For the auditory sys-
tem, the two systems arise from fundamentally different kinds of excita-
tion: the what system arises from the spectral components typically
encoded identically in both ears, while the where system arises from the
differences in timing and intensity between the two ears. In contrast, for vi-
sion the what (high-frequency) and where (low-frequency) systems arise
from a split in the same frequency components in the entire scene (typi-
cally encoded nearly identically in both eyes). Therefore, frequency and
time may not be separable due to the convergence of two neural streams
(Mazer et al., 2002).

However, I find myself somewhat skeptical about conceptualizing the
auditory and visual systems in terms of two relatively independent and
parallel pathways. Anatomically, there is a great deal of interconnection
between the two pathways, so there must be considerable cross-talk be-
tween the pathways. Moreover, single-cell and multicell recording exper-
iments often do not find differences in the coding properties of cells in
the two regions (summarized by Griffiths, Warren, Scott, Nelken, &
King, 2004). For example, Zatorre, Bouffard, Ahad, and Belin (2002), us-
ing positron emission tomography imaging, found that auditory spatial
processing was not localized in the temporal cortex but that certain poste-
rior regions (the where stream) did integrate the location of events with
the spectral or temporal features used to identify objects. The where
stream becomes engaged only if there are distinguishing acoustic pro-
perties.

Perceptually, it is impossible to determine the “where and motion” with-
out determining the “what and form.” To resolve visual motion requires the
detection of changes in the surface properties of objects (e.g., texture,
brightness) across time; motion is not perceived directly (discussed in chap-
ter 5). But these same properties are used to determine form. Consider the
problem of perceiving a deflating balloon flying through the air. There needs
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to be a constant updating of both motion and shape based on the value of the
other property, and that would be impossible without extensive feedback
among the pathways. To resolve auditory localization and motion requires
the detection of the timing and intensity differences among the frequency
components in each ear. But in most natural situations, there are multiple
sound sources with overlapping frequency components that are heard in
both ears (discussed in chapter 9). What this means is that the frequency
components in each must be allocated to sources before the locations of
those sources can be determined, and the imaging results of Zatorre et al.
(2002) support that the spectral-temporal acoustic properties are prior to lo-
cation. Yet the timing and intensity differences between the ears for each
component affect the allocation of the components to objects. On top of
these problems, we experience stationary or moving objects at locations; we
do not experience movements of stimulus features. I expect that future re-
search will give a clearer description of the joint operation of the anatomical
pathways.

What Could a Neural Code Be?

Eggermont (2001) singled out five principles that are the hallmarks of the
change in the neural code from receptor to cortex. Eggermont’s review is
exclusively about the auditory system, but the hallmarks he identified are
equally compelling for the visual system.

Transformations Create Intensity Independence

At the level of the auditory nerve, fibers respond to a range of frequencies
that broadens as the intensity is increased. For this reason, at normal con-
versational levels, all of the fibers would be continuously active so that no
single fiber could unambiguously signal either frequency or intensity. Yet
pitch, the critical bandwidth, frequency discrimination, sound localization,
and speech perception do not change as a function of intensity. The trans-
formation of the visual code also creates intensity independence and con-
trast independence. Proposed mechanisms for auditory and visual gain
controls are discussed in chapter 6.

Transformations Sharpen Tuning

Many transformations maximize the responsiveness to discontinuities in the
proximal stimulus (e.g., auditory and visual edges), and those discontinuities
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are critical for detecting ecologically important stimuli (e.g., mating and
warning auditory calls, and visual identification of predators, prey, and con-
specifics).

Tuning Is Due to Populations of Cells

Eggermont (2001) argued that the sharpening of individual cells due to var-
ious forms of inhibition can never be sufficient, so that groups of neurons
are necessary to achieve the accuracy required to code environmental infor-
mation. He estimated that 40 neurons would be sufficient to achieve neural
accuracy for sound localization, and that 95 sites could discriminate among
nine actual and simulated cat meows (Gehr, Komiya, & Eggermont, 2000).
The number of neuron sites increases dramatically when there are more
events to be discriminated. For example, for 90 different cat meows,
roughly 10,000 neural sites would be necessary (Gehr et al., 2000). Popula-
tion coding is discussed further in chapter 3.

Transformations Accentuate Dynamic Changes

Usually we can take an auditory or visual scene and describe it in terms of
the changes in its objects. Sounds and lights may go on or off, oscillate in
loudness or brightness, or change in terms of their temporal and frequency
components. Eggermont likened the frequency components to the texture
of the scenes and the oscillations to the contours of the scenes. The texture
of the scene is coded in terms of the spatial distribution of the firings along
isofrequency auditory cortex slices or iso-orientation and isofrequency vi-
sual cortex columns. The contour or rhythm of the scene is coded in terms
of the changes in rates of firings of the texture regions. This creates a dis-
tinction between continuity (texture) and change (contour) coded in differ-
ent ways in the cortex. There would be relatively independent neural
representations for continuity and change, albeit using the identical neural
elements. This, in principle, is equivalent to the what and where pathways
described above.

Elhilali, Fritz, Klein, Simon, and Shamma (2004) found that cells in the
A1 region of ferrets were able to simultaneously encode the contour and
fine structure of modulated sounds. In previous work, cells in A1 were un-
able to phase-lock to continuous sounds with frequencies beyond 20 Hz,
and yet they were able to accurately synchronize to stimulus onsets and tran-
sients. Elhilali et al. were able to make sense of this paradoxical finding using
a type of dynamic ripple stimuli (see figure 2.31). They discovered that the
slow amplitude modulation envelope acted as a gate that allowed cells to
phase-lock to the fine structure (up to 200 Hz) of the sounds. Without such a
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modulation, the cells did not respond to the repetitive frequencies found
in environmental sounds or speech. Thus, the auditory system is preserving
two time frames: The slowly changing envelopes that reflect changes in
the resonant properties of objects and the frequencies that excite those
resonances.

At one level, this dichotomy works as an organizing metaphor. But there
are many ambiguous cases where temporal or frequency changes could sig-
nal the contour of one object or could signal the transition between two dif-
ferent objects. The contour of one object could be the texture of another
object and vice versa.

Transformations Create Synchronized Topographic Maps

Everything I have said to this point argues that our world emerges from the
patterning of firings in the auditory and visual cortex. There are no “grand-
mother” cells that uniquely fire to a picture of your grandmother. The syn-
chronization of the firings is assumed to solve the correspondence problem
described in chapter 1: which firings go with each object. Rarely do differ-
ent objects appear and disappear at the same time. As long as the nervous
system preserves the timings of the onsets and offsets of objects relatively
well, the synchronization of the firings will create the correct objects at the
correct locations.

Receptive Fields Are Labile and Not Invariant

I would add that due to the diverse kinds of feedback, receptive fields will
change their response profiles and could even create receptive fields that re-
spond to specific combinations of auditory or visual contours.

Summary

I believe that auditory and visual encoding are perceptually identical. The
goal of both modalities is to capture the physical properties and movements
of objects in the world given inherent physical uncertainties. Even at the
level of single cells in the primary auditory and visual cortex, there are
striking similarities in receptive fields. Moreover, both cortical regions are
organized into somewhat specialized modules that are highly interactive.
There is little evidence for encapsulated processing within either sense
and, as described in chapter 9, little evidence for encapsulated processing
between senses. The organization is remarkably plastic, and changes in
responsiveness occur over both short and long time scales. Fast adaptation
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to specific stimulus properties acts simultaneously with slower plastic reor-
ganizations to constantly tune the neural response to the objects in the
world.

The issue to be discussed in chapter 3 is whether auditory and visual
coding is adapted to the statistics of the environment. As mentioned previ-
ously, it is always risky to presume that the evolutionary goal was to maxi-
mize information transfer.

96 Perceptual Coherence



3

Characteristics of Auditory 
and Visual Scenes

Up to this point, we have been implicitly taking the viewpoint
of the external experimenter: We create a known stimulus of

varying complexity and then try to discover the resulting neural response.
However, here we take the viewpoint of the organism: Given the neural
response, what can the animal deduce about the object that produced that
neural pattern? The excitation of the retinal photoreceptors or the inner ear
hair cells does not yield objects. The ability to pull out objects must de-
pend on the discovery of the spike patterns across receptors that specify
objects. Barlow (1981) speculated that the role of the sensory systems
was to remove the redundant and therefore uninformative spike patterns,
leaving a set of independent neural units that signify the properties of
those objects (e.g., contour lines of faces, voice quality of singers). More
recently, Barlow (2001) has argued that the reduction in redundancy is not
as important as the detection of the redundancies (the nonrandom proba-
bilities) that signify structure and statistical regularity in the environment.
The neural representations become hypotheses about the current environ-
ment. The discussion in chapter 2 suggests that at the level of the primary
auditory and visual cortexes, any object would be represented by the
patterning and synchrony of firing across many neural units. Levy, Has-
son, and Malach (2004) argued that at least 30 million cells in the visual
system are used to represent one image. The auditory and visual problem
is to segment the environment into likely objects, and it may be the inher-
ent redundancies that are necessary to do that.
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Information, Redundancy, and Prior Probabilities

Information Theory and Redundancy

We can use the framework of information theory (Shannon & Weaver, 1949)
to quantify how much the neural response tells us about the stimulus. Our
interest lies in the mutual information between stimuli and neural responses.
Given the neural response, how much is the uncertainty reduced about which
stimulus actually occurred (which is the same reduction in uncertainty about
the resulting neural response given the stimulus, hence mutual)? I frame all
of these questions in terms of conditional probabilities: Given the neural re-
sponse, what are the probabilities of the possible stimuli as compared to the
probabilities of the same stimuli before observing the response?

In defining information, Shannon (1948) was guided by several com-
monsense guidelines.1 The first was that the uncertainty due to several in-
dependent variables would be equal to the sum of the uncertainty due to each
variable individually. Independence means that knowing the values of one
variable does not allow you to predict the value of any other variable. The
probability of any joint outcome of two or more independent variables be-
comes equal to the multiplication of the probabilities of each of the variables:

Pr(w, x, y, z, . . . ) = Pr(w)Pr(x)Pr(y)Pr(z) . . . (3.1)

To make the information from each variable add, we need to add the proba-
bilities, which can be accomplished by converting the probabilities into the
logarithms of the probabilities.

The second consideration was that the information of a single stimulus
should be proportional to its “surprise,” that is, its probability of occur-
rence. Thus, events that occur with probability close to 1 should have no in-
formation content, while events that occur with a low probability should
have high information content.

Shannon (1948) demonstrated that defining the information in terms of
the negative logarithm is the only function that satisfies both considerations.2

Information = −log2 Pr(x). (3.2)

If there are several possible outcomes, then the information from each
outcome should be equal to its surprise value multiplied by the probability
of that event. This leads to the averaged information for a stimulus distribu-
tion or a response distribution:
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Information = − Σ. Pr(xi) log2 Pr(xi). (3.3)

Therefore, events with low probabilities contribute little to the overall
information in spite of their high surprise value. The maximum information
and uncertainty occur when each stimulus has equal probability, and in that
case the information reduces to log2N, where N refers to the number of
stimuli. As the probability distribution becomes more unequal, the overall
information progressively decreases. If one stimulus occurs all of the time,
the information goes to 0. The measure of information is bits if using
log2—it is only a number, like a percentage, without a physical dimension.

If we want to define the information for combinations of two variables
(xi, yj), then the information summed over all xs and ys becomes

Information = − ΣΣPr(xi, yj) log2 Pr(xi, yj). (3.4)

If the two variables are independent, then

Information = − ΣΣPr(xi) Pr(yj) log2 Pr(xi) Pr(yj) (3.5)

Information = − Σ. Pr(xi) log2 Pr(xi) −ΣPr(yj) log2 Pr(yj) (3.6)

Information = I(x) + I(y). (3.7)

But natural stimuli are never made up of independent (or random) vari-
ables, and natural messages are never composed of independent random se-
quences of elements. For example, the letter q is nearly always followed by
the letter u. After identifying a q, knowing that u occurrs next rarely gives us
any information (or conversely, that letter position does not create any un-
certainty). We measure the actual information in terms of conditional proba-
bilities; that is, given the letter q, what is the probability of u in the following
letter slot? The difference between the information based on independent
variables and that actually measured is the constraint or structure in the
stimulus or the mutual information between stimulus and response.

There are several important points about this measure of information:

1. The information measure can be generalized to variables that have con-
tinuous distributions that often involve integrating over the range of the
values. Moreover, the information measure can be further generalized
to random functions such as sound pressure waveforms over time.

2. The information does not depend on the central tendency (i.e., mean)
of the (stimulus or response) distribution. The information does depend
on the number of possible states. If all states are equally probable, in-
creasing the number of states twofold increases the information by 1 bit.

3. As Rieke et al. (1997) pointed out, the number of states for continuous
variables is infinite. To make the measure valid for continuous variables,
we need to create discrete bins in which we cumulate the values of the
variable at discrete time points. Thus, our measurements will always
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have a finite precision due to the size of each bin. A concrete example
occurs when measuring the information in a spike train. Here we create
bins that are so narrow that only a single spike could occur in a bin, so
that the information is calculated from a string of zeros and ones.

4. The information of a single spike train is undefined. The uncertainty
that the organism faces in determining the external world from one
spike train comes from the ensemble of possible spike trains, not
the arrangement of zeros and ones in that single train. In fact, we
assume that the organism knows the entire set of possibilities. Infor-
mation is not an absolute quantity, but describes how much we can
learn from a stimulus relative to what we know about the stimulus
ensemble. Garner (1962) argued that the difficulty of all cognitive
processes (e.g., learning) should be understood in terms of the num-
ber of possible alternatives.

5. From the information measure, we can attempt to find a distribution
that yields the maximum uncertainty given a set of constraints such
as the mean firing rate or the maximum variability of the response
(Rieke et al., 1997). The solutions usually are not the same.

We can now consider mutual information, or the information that a neu-
ral signal can convey about the external stimulus. The above discussion
tells us that mutual information can be defined only for a known set of
stimuli (e.g., a set of 10 different brightness values). In the simplest of
terms, a neural signal (a set of 10 different firing rates) can convey informa-
tion about the stimulus only if it changes in a reliable way in response to
changes in the stimulus. The variability in the response to different stimuli
must be greater than the variability in the response to repeated presenta-
tions of the same stimulus. (This is equivalent to the ratio of between vari-
ance to within variance used for all statistical tests.) One end point occurs if
each stimulus gives rise to one unique response, and the mutual informa-
tion is at a maximum and is equal to the information in the stimulus distri-
bution. The other end point occurs if each stimulus gives rise to the same
distribution of responses, and the mutual information equals 0.

We use the conditional probability Pr(r � s) to represent the probability
that response r (e.g., firing rate) was given if stimulus s (e.g., brightness
level) was presented and Pr(s � r) to represent the probability that stimulus s
was presented given the response r. To calculate the mutual information,
we have to sum the information due to each possible stimulus exactly as we
did for the information of single events. The conditional information for
each stimulus is ΣPr(r � s) log2 Pr(r � s). In effect, we are measuring the
uncertainty of the responses for that stimulus. To create the measure of
information across all possible stimuli, we weight the conditional informa-
tion for each stimulus by the probability of that stimulus:
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ΣPr(s)[ΣPr(r � s) log2 Pr(r � s)]. (3.8)

This measure is effectively the noise or uncertainty found for the repeated
presentation of a single stimulus averaged across stimuli.

To calculate the mutual information I(R:S), we start with the information
in the spike train response. It is the upper limit of the mutual information
that occurs if each response is made to only one stimulus. The actual mu-
tual information is lower because of the conditional information of each
stimulus (equation 3.4), that is, the variability in the response for each stim-
ulus. We must subtract the variability of the response for each stimulus
from the overall response variability to give the amount of information in
the response distribution that is contingent on the stimulus. This gives us:

I(R:S) = ΣPr(r) log2 Pr(r) − ΣPr(s)[ΣPr(r � s) log2 Pr(r � s)]. (3.9)

The mutual information is symmetric: The information about the set of
stimuli from the set of responses is exactly the same amount of information
about the set of responses from the set of stimuli. Thus, we can write the
equation for the mutual information from the perspective of the stimulus:

I(R:S) = ΣPr(s) log2 Pr(s) − ΣPr(r)[ΣPr(s � r) log2 Pr(s � r)]. (3.10)

This symmetry is analogous to that found for the correlation coefficient
squared: The variance in x predicts the variance in y to the same extent that
the variance in y predicts the variance in x.

We can define mutual information in still another way:

I(R:S) = I(R) + I(S) − I(R,S). (3.11)

From this perspective, we can think of the responses and stimuli as the
rows and columns of a matrix. Then the mutual information is the sum of
the information of the marginal probabilities of the rows and columns (i.e.,
the marginal probabilities in each row are obtained by summing the proba-
bilities across the columns for that row, and the marginal sums for
columns are gotten in analogous fashion) minus the information of the
probabilities of the individual cells in the matrix.3 If the row and columns
are independent, then the probability of each cell will be equal to the row
probability multiplied by the column probability: The mutual information
is 0. If the rows and columns are completely dependent, then there will
be only one entry per row or column: The information across the cells
equals the information in the rows, or equivalently the columns, and the
mutual information is equal to the identical row or column information.
(In this form, the mutual information is identical to chi-square contin-
gency measures.)
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Buracas and Albright (1999) created a measure of the efficiency in the
response by dividing the mutual information by the total information in the
response:

E = mutual information/total information. (3.12)

The authors estimated that roughly 50% of the total information from the
spike trains of the retinal ganglion cells reflects variation in luminance and
50% of the total information from the spike trains in the medial temporal
visual region reflects the direction of motion of random arrays (discussed
later). Borst and Theunissen (1999) also estimated that the efficiency is
about 50%, and that each additional spike reduces the uncertainty by 50%.

One continuing question surrounding information theory has been
whether the auditory and visual systems are matched to the statistical proper-
ties of the sensory energy so that the encoding can be done in ways that min-
imize redundancies (there is no need to waste sensory elements on a u after
encoding a q). The goal would be to avoid encoding information that is found
in other parts of the signal and thereby create an efficient low-redundancy
sensory code. Yet, efficiency may not be as critical as factors such as reliabil-
ity, the absolute need to avoid catastrophic mistakes (not hearing or seeing
the movements of predators), or the ability to encode completely novel and
unexpected objects. Moreover, some of the sensory information may not
have any perceptual consequence or may even disallow the creation of object
categories. In sum, information theory really constitutes a theory about per-
ceptual processing and provides a way of organizing experimental outcomes,
but we should be somewhat wary of assuming that sensory systems have de-
veloped to maximize the rate of mutual information transmission.

Bayesian Theory: Converting Information and 
Prior Probabilities Into Decisions

Perceiving is an ongoing process made in a probabilistic world and should not
be conceptualized as a series of independent one-shot decisions. The per-
ceiver must build up the conditional probabilities Pr(s � r) and Pr(r � s), linking
the neural response (i.e., the perceptual image) to the stimuli in the physical
world. Without the context and physical regularities in some way limiting the
open-ended set of alternatives, the perceiver would be overwhelmed by the
possibilities. Expectations are built up over time as the perceiver (1) learns
about the set of possible neural signals and images associated with any audi-
tory or visual object, (2) learns about the frequency of occurrence of the ob-
jects, and (3) learns about the gains and losses associated with correct and
incorrect perceptual actions. Helmholtz (1867) characterized perception as
unconscious inference, estimating from past experience which physical stim-
ulus would most probably have generated the proximal excitation. Originally
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the inferences are consciously calculated, but with experience they become
telescoped, normally irresistible, and without conscious content (some as-
pects of perceptual learning are discussed in chapter 6).

From a Bayesian viewpoint, we need to think about perception as being
an ongoing series of expectation calculations (probabilities × gain/loss).
The probabilities in turn can be broken into four parts: (1) the properties of
the auditory and visual world; (2) the possible information from the neural
signal about those properties; (3) the actual information used to make the
perceptual decision; and (4) the assumptions made by the perceiver about
the structure and encoding of physical world (Kersten & Yuille, 2003;
Knill, Kersten, & Yuille, 1996).

The neural code will never unambiguously signal one object because
several objects can produce the same neural signal and because there is al-
ways inherent variation in the neural signal itself. The perceiver must make
use of the parts of the signal that represent the regularities in the physical
world and combine those parts with his or her knowledge about the proba-
bilities of objects occurring to create a set of posterior probabilities about
which object occurred. These posterior probabilities are finally combined
with gain and loss estimates to arrive at the selected action—for instance,
should I make a left-hand turn in front of traffic given the estimated speed
of approaching traffic and the possible time saving or accident damage. An
example is shown in figure 3.1.

We can treat all of this more formally. The problem faced by the perceiver
is this: Given the neural signal or image, what is the best guess about the au-
ditory or visual object? With no signal, the best guess is the prior probability
distribution of objects in the past. Given a new signal, we might want to
change our guess based on that signal and the prior probability distribution.
This new distribution is termed the posterior probabilities of the object:

Pr(objectA � signal)

Pr(objectB � signal) (3.13)

Pr(objectC � signal).

To get to these probabilities, we make use of our assumptions about the
formation and structure of auditory and visual objects and the way that those
objects create perceptual signals. Every object can create different signals
depending on context. For hearing, the signal would change as a function of
pitch, location, loudness, and so on. For vision, the signal would change as a
function of viewpoint, location, illumination, and so on. Our assumptions
about the structure of objects connect the different signals to one object.4
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Paradoxically, to get to the posterior probabilities above, we start by as-
suming a source object, and then estimate the probability of the source pro-
ducing that signal. (This is analogous to classical inferential statistics: We
assume that the null hypothesis is correct and then calculate the probability
of obtaining the sample mean based on the null hypothesis). For example,
to decide whether a sound came from a trumpet or clarinet, we start by as-
suming it was a clarinet (or trumpet) and estimate the probability that each
instrument could have produced that sound. These are termed likelihood
probabilities:

Pr(sound � clarinet)
(3.14)

Pr(sound � trumpet).

The likelihood function reflects the degree of regularity in the environ-
ment. If there were a high degree of regularity, no information loss, no
noise, then the likelihood would be 1 for one object and 0 for the other pos-
sible objects. Lack of regularity and noise flattens the likelihood functions,
decreasing those near 1 and increasing those near 0. To put it another way,
these are reliability estimates.

We also need to use our prior assumptions about the probability of ob-
jects (termed a priori probabilities) in a context. We would be likely to
judge that the sound came from a trumpet if we are listening to a brass in-
strument group. In general, though, the prior probabilities are another set
of assumptions about the properties of objects. For example, suppose we
hear a rapid set of clicks that randomly seem next to the left ear, right ear,
or straight ahead. One possible object would be a single rapidly flying
cricket, but we would probably assign that a low probability because in our
world model, crickets do not fly that quickly. We would assign a higher
probability to three crickets at different positions, chirping at random. In
probabilities:

Pr(objectA)

Pr(objectB) (3.15)

Pr(objectC).
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Figure 3.1. The Bayesian approach to the indeterminacy between the proximal
image and the distal object. Any image (dashed diamond) could have been caused
by many objects, as illustrated in (A). The likelihood ratios and prior probabilities
are used to derive the best guess as to the distal object shown in (B). From
“Bayesian Models of Object Perception,” by D. Kersten and A. Yuille, 2003, Cur-
rent Opinion in Neurobiology, 13, 150–158. Copyright 2003 by Elsevier Science
Ltd. Reprinted with permission.



Now it is possible to make use of Bayes’s formula to calculate the poste-
rior probabilities:

Pr(objectA � signal) = [Pr(signal � objectA) × Pr(objectA)]/Pr(signal)

Pr(objectB � signal) = [Pr(signal � objectB) × Pr(objectB)]/Pr(signal) (3.16)

Pr(objectC � signal) = [Pr(signal � objectC) × Pr(objectC)]/Pr(signal).

Our interest is in the perceptual decision, and since the signal probabil-
ity is constant for each object, we can simplify the formulas by omitting
that probability. Now the formula becomes:

Pr(objectA � signal) = Pr(signal � objectA) × Pr(objectA)

Pr(objectB � signal) = Pr(signal � objectB) × Pr(objectB) (3.17)

Pr(objectC � signal) = Pr(signal � objectC) × Pr(objectC).

A gain–loss function can be associated with each posterior probability,
namely, the costs of selecting each possible object. There are several possi-
ble decision rules based on the expectation (posterior probability × gain or
loss) such as maximizing the minimum gain (maximin criterion).

To summarize, perceptual decisions are contingent on the estimated condi-
tional probabilities (the likelihood functions) and the estimated prior structure
(a priori probabilities) of the environment. These conditional probabilities
will be accurate to the extent that we have constructed an accurate physical
and perceptual model of those instruments. The prior structure reflects the
perceiver’s expectations about the regularities in the environment. It normal-
izes the conditional probabilities (e.g., Pr(signal � objectA) by the probability
of occurrence of object A in that environment. Although Bayesian methods
are often maligned because they are “subjective,” the probabilities are objec-
tive in the sense that they do represent environmental probabilities. It may be
that the perceiver has evolved highly biased estimates of those probabilities
leading to wild distortions, but theoretically the probabilities can be objective.

Connecting Bayesian Probabilities 
to Information Redundancy

Both information and Bayesian theory can be thought of as modeling com-
munication between stimulus and object. This parallel is reinforced because
the terms in each theory appear equivalent. For information theory we had:

Pr(s)[ΣPr(r � s) log2 Pr(r � s)] from (3.8).

For Bayesian theory we had:

Pr(objectA � signal) = Pr(objectA) × Pr(signal � objectA) from (3.13).
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In the second part of equation 3.8, we multiply the contingent informa-
tion of response (r) given stimulus (s) by the probability of stimulus (s).
This is essentially the same term as that found in equation 3.13: We multi-
ply the conditional probability of the response given the stimulus (s) by the
probability of stimulus (s). Both multiplications create posterior probabili-
ties: likelihood functions × prior probabilities.

In spite of this similarity, information theory and Bayesian theory
get used for different purposes. Information theory measures a capacity
(sometimes termed bandwidth) while Bayesian theory ranks decision alter-
natives. But Bayesian methods provide a mechanism to evolve the proba-
bilities that are necessary to calculate information. Information theory is
basically silent about how the perceiver derives those probabilities.

Statistical Regularities in the Environment

If the evolutionary goal of perceptual systems was to maximize the rate of
information transfer, then information theory provides a metric to measure
and compare the maximum possible to that actually achieved (i.e., the mu-
tual information). More important, information theory provides a way of
understanding some physiological mechanisms that appear to maximize in-
formation transmission. This provides a means to determine how well per-
ceptual systems are matched to the statistical structure of the environment.

The maximum information occurs when each element has an equal
probability and there is complete independence in the temporal sequence or
spatial position of the elements. It is obvious that neither of these condi-
tions is true for auditory and visual scenes, so that the actual information in
a message will be less than the maximum possible. But Atick (1992) sug-
gested that the transformations in the nervous system can be understood
as attempts to increase the actual transmitted information and thereby min-
imize the difference between the maximum information and the mutual
information.

The first transformation would act to make the response probabilities to
sensory magnitudes (e.g., auditory frequency, visual brightness) more
equal. The distribution of the firing rates would be matched to the probabil-
ity of different intensity levels.

The second transformation would reduce the correlation among the sen-
sory elements. For natural visual scenes, elements close in space within
one object are likely to be equally bright so that there is no need to transmit
the stimulus energy at all points. Elements close in space, but in different
objects, are likely to be equally different in brightness, so again there is no
need to transmit all of the differences. As described below, by transforming
the energy into different spatial resolutions, it is possible to reduce those
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correlations. For natural auditory scenes, the vibrations from any object are
likely to start and end at the same time, to change slowly in loudness and
pitch, and for animal and human sounds to be composed of harmonic fre-
quencies (multiples of the fundamental frequency). By analogy to vision,
transforming the sound energy into different temporal and frequency reso-
lutions will reduce that redundancy.

In what follows, I will juxtapose theoretical models based on informa-
tion theory with actual experimental data. The goal is to discover the de-
gree to which theory and data match each other and to determine whether
such a match is similar for audition and vision.

Autocorrelation and Fourier Analysis

On the whole, identical bits of energy that occur closely in frequency (or
multiples of frequencies), intensity, space, and time that undergo the same
physical changes probably come from the same process. (Echoes are an ex-
ample of highly correlated data that come from different processes.) There
are several ways of representing these statistical contingencies. The simplest
would be in terms of the autocorrelations in energy between adjacent spatial
points in visual scenes and adjacent temporal points in auditory scenes.
Figure 3.2A illustrates that the correlation is very high between the relative
intensity of pixels one position apart and that the correlation gradually de-
clines between pixels two and four positions apart. Figure 3.2B illustrates
that the correlation in brightness between 2 pixels separated by 40 pixels in
a natural scene still equals about 0.35. By the same token, the autocorrela-
tion in the ratio between note frequencies found in a simple melody would
gradually decrease as the notes become further apart in time.5

There is another kind of internal autocorrelation due to common
changes among parts of an object or common changes in sounds. The
Gestalt psychologists illustrated that points of light that undergo the same
direction of movement are perceived as forming one coherent object; this
organizational principle was termed common fate and the illustration of a
random dot kinematogram in chapter 1 demonstrates the power of such
organization (in chapter 5, I discuss experiments showing that even a small
fraction of light points moving in the same direction yield coherent mo-
tion). In the auditory environment, virtually every sound is composed of sev-
eral frequency components. Nelken, Rotman, and Yosef (1999) argued that
the frequency components of background noise (as in a flock of crows) un-
dergo correlated increases and decreases in amplitude. It is those correlated
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fluctuations that help segment the noise from the signal (this has been
termed comodulation release and is covered in chapter 6).

An alternate representation of the regularity makes use of the Fourier
analysis of a visual or auditory scene. The Fourier analysis (for both audi-
tory and visual scenes) represents the variation in brightness across space
or the variation in pressure across time by the sum of a series of sine and
cosine waves of different frequencies and phases. The Fourier decomposi-
tion is frequency only; the sine or cosine waves do not vary across time or
space. Each scene can be characterized (and recreated) by the sum of those
waves. A sine or cosine wave with 0 Hz frequency would not change across
space or time and thereby indicate overall brightness or loudness. A wave
with 1 unit of frequency would go through one cycle in a specified distance
or time unit. Similar arguments hold for waves of higher frequency. Low-
frequency waves represent slow changes in intensity, such as a shadow
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Figure 3.2. The redundancy in visual scenes is quite high. The correlation be-
tween the brightness of pixels [I(x,y)] slowly decreases as the distance between the
pixels increases. The scatterplots of the brightness values of pixels 1, 2, and 4 apart
are shown in (A). The size of the correlation in brightness as a function of distance
is expressed in (B). From “Natural Image Statistics and Neural Representation,” by
E. P. Simoncelli and B. A. Olshausen, 2001, Annual Review of Neuroscience, 24,
1193–1216. Copyright 2001 by Annual Reviews. Reprinted with permission.



along a whitewashed wall or speech rhythms. Higher-frequency waves rep-
resent more rapid changes (e.g., tree trunks in a sunny forest, picket fences,
or a rapid musical trill), and even higher frequencies are seen and heard as
uniform and continuous (e.g., musical tones) due to limitations in neural
resolution. The Fourier representation is most appropriate for repeating
scenes that do not vary across space or time. Each component sine or co-
sine wave is invariant.

If the amplitudes of the Fourier waves are plotted against their frequen-
cies, there are several prototypical outcomes:

1. The amplitudes of each component sine wave are equal, and the
phases are random.6 The amplitude of one point in the scene does not
predict the brightness of another point.

2. There is a nonmonotonic relationship between frequency and ampli-
tude. For example, the sound of a musical instrument or the sound
of a vowel can be portrayed by the amplitude of two or more fre-
quency components. In most cases, the frequencies of the compo-
nents are multiples of the lowest fundamental frequency, and to
some degree the differences between instrumental sounds or spoken
vowels are due to the pattern of the amplitudes of those harmonic
frequencies. For example, the amplitudes of the odd harmonics of a
clarinet note are high, but the amplitudes of the even harmonics are
low due to the resonances of an open tube. If the instrument note or
vowel is recorded at one speed (or sampling rate) and replayed at an-
other, the note or vowel will sound different.

3. There are monotonic relationships between amplitude and frequency
such that amplitude is proportional to ∼1/f c where the exponent c can
range from 0 to 3 or 4. These functions are termed power laws and
have the important property of being self-similar. They are termed
fractal processes: The same power law relationship holds on all
scales. The relationship between amplitude and frequency would be
identical whether a camera is zoomed in on a small location or
zoomed out to encompass the entire field. When viewing a mountain
range, the pattern of altitude variation within one peak is similar to
the pattern of variation across peaks. As one zooms in, the same level
of complexity emerges; the global and local contours are similar in
the geometric sense. When listening to sounds that obey a power law
function, the pitch of the sound would not change if the speed of
playback was increased or decreased. There are no inherent time or
frequency scales—whatever happens in one time or frequency range
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tudes, but the phases are also equal.



happens on all time and frequency scales. The relationship between
amplitude and frequency is invariant.7

For a random walk process, the amplitudes of the Fourier waves de-
crease at the rate of 1/f 2 so that for each doubling of frequency (an octave),
the amplitude of the wave decreases fourfold. The brightness or pressure of
any next point is equal to the value of the first point plus a random incre-
ment. Thus, there will be just slow changes in the amplitudes and there
will be high correlations between the values of adjacent points. As the dis-
tance between the two points increases, the correlation gradually decreases
due to summing more and more random increments. The autocorrelation
between points separated by a constant distance will always be the same.
The difference between successive values is a series of random values and
therefore creates white noise (1/f 0).

The most interesting outcomes occur when the amplitudes decrease at
the rate of 1/f. Every time frequency is doubled the amplitude is decreased
by one half, so that the energy in each octave remains identical. Many
physical processes follow this 1/f relationship, including nerve membrane
potentials, traffic flow, sunspot activity, and flood levels of the Nile River.
Schroder (1991) pointed out that 1/f functions can be conceptualized as the
combination of several processes with different distances and timings and
that the end result is that there is a varying correlation among the fluctuat-
ing levels across the frequency range. Consider a simple simulation sug-
gested by Voss (Gardner, 1978) based on the sum of three dice. We start by
throwing all three and recording the sum. Then only one die is selected,
rethrown, and the new sum recorded. On the next trial two dice are selected,
both are rethrown, and the new sum recorded. On the third trial, only one
die is selected, rethrown, and the sum recorded. On the fourth trial, all three
dice are selected and thrown and the sum recorded. All the following trials
follow the identical sequence. In this simulation, the correlation between
adjacent points is not constant. The correlation between points in which
one die changed will be 2/3 because two of the three dice remain the same;
the correlation between adjacent points in which two dice changed will be
1/3; and the correlation between adjacent points in which all three dice
changed will be zero. Thus, there will be regions in time or space of corre-
lated sums. The number of independent processes (i.e., the number of dice)
will determine the size of the correlated regions. All 1/f processes can be
represented by the linear sum of short-range processes that have different
time scales (Wagenmakers, Farrell, & Ratcliff, 2004). For example, heart
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rate fluctuations are regulated in the short run by the autonomic nervous
system and regulated in the long run by circadian rhythms due to hormonal
variation.

In figure 3.3, a series of amplitude by time sequences with different
fractal organizations are illustrated. All the sequences start with the same
“seed,” so the gradual smoothing is due to the change in the exponent
of the power law. The white noise (1/f 0), in which all frequencies have
equal amplitude, is characterized by random fluctuations, while the brown
noise (1/f 2) is characterized by low-frequency slowly undulating “hills and
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Figure 3.3. Representative examples of power laws. Sequences of amplitudes 
(y-axis) generated by different fractal exponents are shown in the six panels (there
are 1,024 values on the x-axis for each panel). The contour clearly smooths out as
the exponent increases. Data courtesy of Dr. Mark Schmuckler.



valleys” that support the high-frequency jagged variations. The 1/f noise
combines the random 1/f 0 noise with the highly constrained 1/f 2 noise.
There are amplitude variations at all frequencies, with the majority of the
energy at the lower frequencies.

Power Laws in Natural Scenes

The 1/f power law function is important because it fits many natural audi-
tory and visual scenes. One question is whether sensory systems have
evolved to optimally code this energy distribution.

Auditory Scenes

The 1/f dependence is usually not obtained for spectra of natural sounds.
For example, Nabelek, Tucker, and Letwoski (1991) calculated the sound
pressure averaged over 15–30 s for six types of sounds. None followed the
1/f relationship. There was a broad frequency region of roughly equal pres-
sure, and then a gradual decrease at higher frequencies. However, noise
such as that found in classrooms (Hodgson, Rempel, & Kennedy, 1999)
does appear to decline above 1000 Hz according to a 1/f function.

The 1/f relationship is found for the spectrum of the distribution of inten-
sity (power) and frequency fluctuations across time in environments and in
music. The six panels in figure 3.3 should be interpreted in this way: If the
fluctuations follow a 1/f 2.0 relationship, then the power or frequency at time
t + 1 equals the value at time t plus a random increment generating the slow
oscillation found in the next to bottom panel.8 To determine the type of rela-
tionship, the sound amplitude at each time point is squared to produce a
measure of power, and then the Fourier spectrum is calculated on the fluctu-
ations in power. Alternately, the frequency (the number of zero crossings per
time unit) is measured at successive time points, and the Fourier spectrum is
calculated on the fluctuations in frequency across time. DeCoensel, Bottel-
dooren, and De Muer (2003) found the 1/f relationship for fluctuations in
loudness and pitch for rural and urban soundscapes. The 1/f relationship was
strongest in time intervals up to 5 s where the fluctuations are due to the
source itself. Beyond 5 s, the fluctuations were greater than predicted by
the 1/f function and seemed to be due to isolated events. Remember that the
construction of a 1/f sequence by throwing three dice led to the conclusion
that 1/f power laws were based on correlations on different scales. Nearly all
examples of 1/f scales can be understood in terms of short-term processes
within one event and long-term processes between different events.
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tial visual contrasts used to derive the 1/f 2 power scales.



Voss and Clarke (1978) calculated the spectral density of audio power
and frequency fluctuations for a variety of musical selections and for differ-
ent types of radio stations averaged over 12 hours. The regions where the
1/f relationship held true could be understood in terms of the type of music
played. For example, the 1/f relationship of the audio power fluctuations for
classical music stations extended for greater lengths of time than that for a
rock station, where the length approximates a single tune. An identical re-
sult was found for the frequency fluctuations. Namely, the 1/f relationship
for classical music stations playing long pieces was greater than that for
jazz and rock stations playing shorter selections. Hsu and Hsu (1990) fur-
ther demonstrated that the distribution of the frequency intervals in classi-
cal music follows a 1/f c relationship. The logarithm of the frequency of the
size of the interval between successive notes is inversely related to the log-
arithm of the interval size, creating a 1/f c relationship. Schroder (1991, p.
109) included van der Pol’s quote about Bach, “it is great because it is in-
evitable (not white noise) and yet surprising (not brown noise).” Perhaps
modern music veers too much toward the randomness of white noise.

As a tour de force, Voss and Clarke (1978) constructed music according
to the 1/f rule. Thus, small variations in frequency and duration were more
frequent than large variations, and yet larger variations occurred periodi-
cally to reset or restate the theme. They found that listeners preferred
those melodic sequences constructed according to the 1/f relationship; se-
quences in which successive notes were randomly selected (1/f 0) were
judged to be too chaotic, and sequences constructed according to the 1/f 2

relationship were too boring and predictable. Musical sequences following
different fractal organizations constructed by Voss and Clarke are shown
in figure 3.4.

Visual Scenes

The analysis of visual scenes also has demonstrated the 1/f relationship be-
tween the amplitude of the brightness contrast and frequency. This relation-
ship often is presented in terms of the power of the brightness contrast and
frequency, and because power is the square of amplitude, the relationship
between power and frequency is 1/f 2, as found above for sounds (Burton &
Moorhead, 1987). What I am trying to do is represent the brightness along
one axis (say along the x axis) by a series of sinusoidal waves so that the
first one would undergo one cycle per image, the second one would undergo
two cycles per image, and so on. Conceptually, one simply takes pictures of
natural scenes and measures the brightness contrast at each point: The bright-
ness contrast is defined as the ratio between the brightness at that spatial
location and the average brightness across the entire scene. Then the Fourier
analysis is used to calculate the amplitude of the frequency components
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necessary to reproduce the fluctuations in brightness along one orientation.
Field (1987) presented several pictures of widely different characteristics,
calculated the amplitude of the frequency components along several axes,
and then averaged the amplitudes. The brightness contrast of all six pic-
tures followed the 1/f relationship.
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Figure 3.4. Musical sequences constructed according to power laws. For 1/f 0 se-
quences, each note is chosen randomly. For 1/f 2 sequences, each successive note is de-
termined by a random increment to the previous note. For 1/f sequences, the intervals
between notes are determined according to the 1/f power law (i.e., small increments are
more likely than large ones). From “1/f Noise in Music: Music From 1/f Noise,” by R.
F. Voss and J. Clarke, 1978, Journal of the Acoustical Society of America, 63, 258–263.
Copyright 1987 by the American Institute of Physics. Reprinted with permission.



Field argued that a 1/f amplitude relationship would occur if the relative
contrasts were independent of viewing distance. Imagine taking a simple
picture of a black-and-white grating and moving it twice the distance away.
Now the black-and-white bars are half as wide, so that the frequency of the
grating is twice the original frequency. If the amplitude falls off at 1/f, each
octave will still have equal energy, so that the relative power in each dou-
bled frequency will not change. Moreover, each octave will have the same
variance (i.e., the same amount of information), so that if each neural unit
has the same bandwidth, each will transmit an equal amount of informa-
tion. Ruderman (1997) pointed out that the 1/f relationship for natural
scenes is remarkably constant even for striking changes in the brightness of
individual pixels. A strong test of the 1/f relationship can be done by first
averaging small blocks of pixels, say all 2 × 2 blocks, and then demonstrat-
ing that the 1/f relationship still holds for the averaged signal. (Since mix-
ing pixels reduces the total contrast, the contrast would need to be
renormalized.) As an extreme case of blocking, Ruderman converted all
pixels below the average brightness to black and all pixels above average
brightness to white. All such conversions did not affect the 1/f scaling,
demonstrating that whatever statistical structure exists at one spatial (i.e.,
angular) grain exists at all levels of the grain.

Up to this point, the 1/f amplitude-scaling factor was calculated by mea-
suring the correlations among the pixels in one static image, although it is
clear that images change gradually in time just as they change in space.
Dong and Atick (1995) argued that in general it is impossible to separate
the spatial and temporal variation. However, in cases in which the spatial
and temporal regularities can be separated, the temporal power scaling fac-
tor is 1/w2 (in Hz) and the amplitude scaling factor is 1/f (also see Hateren,
1993). Thus the spatial and temporal scaling factors are roughly the same.
To explain this outcome, Dong and Atick suggested that there is a distribu-
tion of static images at different distances and also that there is a distri-
bution of relative motions at different velocities (essentially the same type
of distribution found for relative contrast levels).

Implications of 1/f c Power Laws

Why is this important? Remember the basic argument in chapter 1 that con-
trast provides the critical information for audition and vision. If the ampli-
tude falls off at 1/f, then there will be roughly equal contrast auditory and
visual energy in all octave bandwidths. If the visual system or the auditory
system is organized into sensors with octave bandwidths, which seemed to
be true for the visual and auditory space-time receptive fields described in
chapter 2, then each sensor will encode and transmit an equal amount of in-
formation about the contrast in terms of the variance in its firing rate. As is
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argued below, an equal distribution of energy is an optimal code, and a
bandwidth of one octave allows a relatively small number of sensors to en-
code the contrast information. The on-off and off-on surround cells found
in the initial stages of the visual system will produce firing outputs that are
invariant to the scale of the receptive field.

We can speculate that the 1/f relationship that holds for typical visual
environments (e.g., fields, forests) influenced the evolution of visual sensi-
tivity functions. But it is much harder to figure out what auditory environ-
ments could have driven the evolution of the auditory system. We can
imagine the sounds of predators, prey, storms, fire, wind, and so on that
would have been important for survival, but those sounds are highly vari-
able and intermittent, and most animal species function quite well in envi-
ronments ranging from seaside to windy plains to noisy cities that would
have different patterns of energy. Moreover, I have not argued that the
acoustic energy at different frequencies follows a power law. The acoustic
energy for any single sound occurs at discrete frequencies and as the loud-
ness increases, the amplitudes of the higher frequencies increase more rap-
idly those of than the lower frequencies. Any 1/f power laws for sounds are
probably restricted to a very artificial world. The 1/f scale emerged only for
the fluctuations (i.e., correlations) of the power over long time periods that
may not be important for survival.

We might ask why the 1/f relationship occurs in music. Voss and Clarke
(1978) argued that 1/f sequences represent an intermediate level of pre-
dictability. Serial and atonal music that approaches white noise (1/f 0) in its
lack of predictability has never been popular. In 1/f music, the majority of
pitch changes are small (one note) and there are few large pitch changes that
can lead listeners to segregate the notes into two different sound sources,
breaking the coherence of the sequence, as discussed in chapter 9 (Bregman,
1990). Thus, this rationale does not make use of the statistics of natural
sounds but depends on intuitions about the cognitive interpretation of music.

To understand why the 1/f power law is found for nearly all visual scenes,
we need to go behind the commonsense view that the visual world is made
up of edges and delimited rigid objects. Two explanations have been of-
fered. Olshausen and Field (2000) argued that the brightness distribution of
most natural scenes spans a range of 600–1,000 to 1 due to variations in the
reflectance of the different materials and lighting in the scene. If we con-
sider the frequency distribution of pixel brightness, typically there is a nar-
row peak at the lower intensities along with a flatter, wider distribution at
higher intensities. The reflectance within any object will tend to be some-
what constant, but different parts of the object may be illuminated more
strongly than others due to the angle of the sun, shading by other objects,
and so on. The regions of low reflectance generate the narrow peak at low
brightness regardless of illumination, and the regions of high reflectance,
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coupled with changes in illumination, generate the more spread-out distribu-
tion of higher brightness values. The variation of high illumination due to
lighting would create the high-frequency but low-amplitude components,
while the lack of variation in the low-illumination regions would create the
higher-amplitude low-frequency components. Attias and Schreiner (1998)
found a similar result for music, speech, and environmental sounds. There
are more extremely soft sounds than extremely loud sounds in all three
types of sounds, so that the large dynamic range of naturally occurring
sounds is due more to the abundance of soft sounds than the infrequent loud
sounds.

Ruderman (1997) proposed a different but not necessarily competing
explanation. Ruderman started by assuming that the reflection within ob-
jects is basically constant but that the reflection from different objects
varies randomly. Thus the correlation in brightness between points within
an object must be high, but the correlation between points in different ob-
jects must be zero. Furthermore, Ruderman argued that visual images are
made up of independent occluding objects and that the sizes of the objects
in the visual images follow a power law (a function in the form of 1/f c). If
this is the case, then the correlation in brightness between pixels will fol-
low a power law function given the constant reflection within objects and
power law function of object size. Balboa, Tyler, and Grzywacz (2001) ar-
gued that the power law spectra will emerge for nearly all scenes simply
due to the fact that objects have different sizes: The sizes of the objects do
not have to follow a power law. The authors claimed that small objects cre-
ate exponents close to −3 and big objects create exponents close to 0, so
that in a natural scene the exponent will be close to −1 due simply to the av-
eraging of the exponents. Balboa et al. made an interesting point about un-
derwater vision. Underwater blur tends to predominantly reduce the energy
at higher frequencies and thereby make the exponent more negative. Thus,
if the visual system evolved to match the energy distribution in the environ-
ment, then we might expect slightly different sensitivities in underwater
animals.

The variation in illumination across the image can have two opposite ef-
fects. First, if the illumination within one object varies, that variation can
increase the difference between the brightness of two pixels within that ob-
ject, which would make the distinction between objects weaker. Second, if
the illumination between objects changes, that variation can increase the
difference in brightness of the pixels in the different objects, which would
make the distinction between objects greater. Depending on the image,
variation in illumination can lead to stronger or weaker object formation.
Overall, variation in illumination tends to reduce the correlation among
pixels, making the exponent closer to 0 (i.e., white noise) for nearly all con-
figurations of objects.
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Phase Relationships and Power Laws

Natural visual scenes contain edges and lines that are object boundaries or
arise from occluding objects, while natural auditory scenes contain inter-
mittent impulse sounds along with several simultaneous ongoing complex
harmonic and inharmonic sounds. These edges, lines, and impulses cannot
be represented by simple correlations because they arise due to the phase
relationships among the Fourier components. For example, if we have a
continuous set of frequency components, those components will create a
click sound or a visual edge if they are in phase (start at the same point in
the wave) but will create a noisy static-like sound or a homogeneous tex-
ture if they are out of phase.

The phase relationships are critical for vision. Thomson (1999) found
that natural visual scenes do have higher-order statistical structure due to
localized nonperiodic features such as bars, lines, or contours at different
positions in the scene. If the phase relationships are maintained but the am-
plitudes of the components are randomized, the image is still recognizable.
But if we remove the phase information, the image comes to resemble
noise. It is likely that the formation of such edges is due to the higher-
frequency spatial components because it seems improbable that the low-
frequency components could simultaneously be in phase with multiple
edges in a scene.

Now consider a “square” wave sound constructed by summing in phase
one sine wave representing the fundamental frequency, with additional sine
waves representing the odd harmonics. The amplitudes of the odd harmon-
ics are inversely proportional to their number (e.g., fundamental/1 + 3rd
harmonic/3 + 5th harmonic/5 + 7th harmonic/7 and so on). Each additional
harmonic further squares off the wave. If the harmonics composing the
square wave are not in phase, the resulting pressure wave no longer looks
like a square wave. The pressure wave still obviously repeats and the period
of the wave is still the same, being based on the fundamental frequency. In
most instances, listeners report that the in-phase and out-of-phase square
waves have the same pitch. However, the timbre or sound quality does
seem to change between the two, because the intensity of one or two of the
harmonics may have been increased due to the linear summation of the out-
of-phase harmonics.

The ear has been described as being phase-deaf because the pitch does
not change. The simplest explanation is that the ear performs a frequency
analysis and encodes each frequency separately. The phase relationships
among the frequencies are lost, and pitch and timbre become based on the
amplitudes of the harmonics. But the discrimination of pitch for nonchang-
ing sounds is only one aspect of hearing, and is, in my opinion, not a very
important one. Phase differences do affect the formation of auditory objects.
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For example, Kubovy and Jordan (1979) built up a set of sounds, each
composed of 12 harmonically related sine waves (e.g., 600, 800, 1000, . . .
2800 Hz). They created 12 different tones, in which 11 of the 12 sine waves
were in phase and 1 was out of phase. Kubovy and Jordan (1979) then pre-
sented sequences of the tones (at a presentation rate of about 3 tones per
second) so that the out-of-phase wave either increased or decreased in fre-
quency and listeners had to judge which direction occurred (a simple exam-
ple of upward movement using four components would be: −+++, +−++,
++−+, +++−). Listeners were able to judge the direction for sets of higher-
frequency harmonics (e.g., 2200−2800 Hz) but were unable to judge
direction for sets of lower-frequency harmonics (600–1200 Hz). It is not
clear why this difference occurred. If the 12 stimuli were presented one at a
time, no matter which sine wave was out of phase, the pitch did not change.
Listeners matched the pitch of the complex tone to the same pure tone. The
effects of phase were found only in sequences in which the phase shift
moved across the frequency components of the complex sounds.

Moreover, changing phase relationships among components of complex
sounds led listeners to segment the sounds into sets of frequency components
with constant phase relationships. Suppose we had two overlapping complex
sounds with similar but not identical fundamental frequencies. Why should
the two sounds separate? One possible answer is that the phase relationships
within each sound would be invariant, but the phase relationships between the
two sounds would shift over time because the fundamental frequencies were
not identical, and that shift could be encoded by the phase-locked response to
each sound. Similar to the work of Kubovy and Jordan (1979), it would be the
changing phase relationships that are the perceptual information.9

I would argue that the effect of phase is identical for hearing and seeing.
For static objects, the phase relationships do not affect periodicity but do
affect quality, while for changing objects the phase relationships create sta-
bility and movement. (In chapter 5, I consider motion created by phase
changes.) The ear is not phase-deaf and the eye is not phase-blind.

Physiological Transformations That Maximize 
Information Transmission

Given the statistical structure of the environment, what should be the optimal
transformation of the proximal stimulus at the retina or at the cochlea into a
neural signal? The answer depends on what we imagine the goals of sensory
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systems to be. One possibility would be to use a code that maximizes infor-
mation transmission but decreases redundancy. A second possibility would
be to use a code that increases redundancy to maximize reliability but re-
duces the rate of information transmission, for example by encoding each
stimulus twice. There needs to be a balance between these goals.

If the goal is to maximize information transmission, one mechanism is
to equalize the use of response categories or firing rates: Each firing rate
should be equally probable. A second mechanism would be to create a fac-
torial code: The probability of any joint outcome is simply the probabilities
of the individual parts multiplied together; that is, the parts are made inde-
pendent. Taken together, we shape the input-output function, the inputs be-
ing the set of possible stimulus values, the outputs being the set of possible
neural responses, and the function being the coupling of one or more inputs
to a single output. The goal is to make the probability of each outcome
equal and independent.

At the Receptor Level

Here the goal would be to use each output level equally often. Such a re-
sponse distribution, being uniform, would convey the maximum amount of
information. In nearly all instances, the number of possible inputs will be
greater than the number of response rates, due to limitations in neural firing
rates. This can be done by shaping the input-output function so that there
are large differences in response rates (i.e., spikes per second) among in-
puts that occur with high probability and small differences in response rates
among inputs that occur with low probability. Consider a simple example
in which there are 10 possible states but only five different response rates.
If each of the 10 inputs were equally likely, one output code would pair ad-
jacent inputs to one response rate: (1,2), (3,4), (5,6), (7,8), (9,10).10 But if
inputs 4, 5, and 6 each occurred 20% of the time and the remaining inputs
were equally probable, an output code that nearly equalized outputs would
be: (1,2,3), (4), (5), (6), (7,8,9,10).

These types of response functions were first found in the large monopo-
lar cells of blowfly compound eyes (Laughlin, 1981), but similar functions
have been found for vertebrate eyes. The monopolar cells respond to con-
trast levels but, like all other neurons, face a coding problem because their
dynamic range of firing rates is much less than the range of physical varia-
tion. Laughlin first measured the probability of different contrast levels in
the natural woodland environment. This distribution is shown at the bottom
of figure 3.5, and the cumulative probability is shown in the upper right
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panel. The optimal coding strategy to make the probability of each re-
sponse rate more equal is simply to split the cumulative curve into equal
sections, one for each possible output level. Each output level will signal a
different range of contrasts. For regions of high probability contrasts (i.e.,
where the cumulative probability curve is steepest), each response output
level will represent just a small range of contrasts. For regions of low prob-
ability contrasts (i.e., where the cumulative curve is flat), each response
output level will represent a wide range of contrasts. As can be seen in fig-
ure 3.5, the actual response of monopolar cells to sudden increments of
light around the steady background level closely matches the theoretical re-
sponse rates based on equalizing the probability of the output response
rates (Laughlin, 1981).

Even if each and every cell optimally encodes the stimulus variation, we
still have three problems: (1) each cell will respond to a range of stimuli
due to its bandwidth; (2) each cell will respond differently to the same
stimulus due to the cell’s inherent variability; and (3) the reliability of the
response code must be ensured in the face of cell death and damage. These
problems can be minimized if information is encoded by clusters of cells
and not by single cells. This has been termed population coding. Pouget,
Dayan, and Zemel (2000) illustrated population coding by means of cells

122 Perceptual Coherence

Figure 3.5. Transformation of an input distribution so that the outputs of the
sensory cells have a flat probability distribution. This transformation maximizes the
possible mutual information. From “Vision and the Coding of Natural Images,” by
B. A. Olshausen and D. J. Field, 2000, American Scientist, 88, 238–245. Copyright
2000 by American Scientist). Reprinted with permission.



that are tuned to slightly different directions of movement, and the same
sort of analysis could extend to any sensory property (e.g., auditory local-
ization or frequency identification). The overall firing rate of each cell is as-
sumed to arise from the sum of the deterministic component due to the
direction of movement and the noisy random component that is assumed to
vary independently from instance to instance. A Gaussian distribution mod-
els the deterministic component of the cell’s response, so that each cell will
respond maximally to one direction and fire at lower rates in response to
other directions. Across the population of cells, all directions would be rep-
resented roughly equally. Harper and McAlpine (2004) pointed out that for
auditory localization, the optimal population distribution depends on head
size and sound frequency; it may not be uniform.

If there were no noise in the firing rate, then the output of every cell
would provide an error-free estimate of the movement direction (actually
two directions, because the firing rate is assumed to be a symmetric Gauss-
ian curve; see figure 3.6). But given the inherent noise and variability in the
firing rate of a single cell, it is impossible to separate the true direction part
from the noise part. Any movement direction will yield a distribution of re-
sponses, one from each receptor. However, using the firing pattern across
the population of cells can minimize the error. There are several alternative
ways to estimate the direction:

1. Choose the receptor with the highest firing rate. In Bayesian theory,
this is equivalent to finding the maximum likelihood function, Pr(re-
sponse � stimulus direction). However, picking the direction based on
the receptor with the highest firing rate would be prone to error, given
the variability of the responses.

2. Choose the direction with the highest posterior probability, Pr(stimu-
lus direction � response). In Bayesian theory, this is equivalent to
multiplying the likelihood function by the prior probability of that
direction. The posterior probabilities would be calculated for each
receptor separately. If all directions are equally probable, then the
maximum likelihood and posterior probabilities are equal. This solu-
tion would still be prone to error.

3. Derive a function based on the firing rates of all the individual cells,
and then shift the function laterally to find the best fit. Two solutions
are shown in figure 3.6C and 3.6D. The first is to fit a cosine function
(population vector coding) at the peak of the response distribution,
(C); the second is to find the template derived from the noiseless tun-
ing functions shown in (A) that best fit the response distribution, for
example, at the peak of the response distribution as in (D). The peak
position corresponds to the maximum likehood estimate (Pouget
et al., 2000).

Characteristics of Auditory and Visual Scenes 123



There is an interesting parallel between the coding in the individual
monopole cells and the coding in populations. In both cases, information
mainly is carried by the steep part of the response curve where there is a large
change in the firing rate for small changes in the stimulus value (i.e., the
highest derivative). At the peaks of the response curves where the receptors
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Figure 3.6. Population coding: The responses from a set of sensory cells with
slightly different sensitivities are combined to yield a response distribution. Panel
(A) illustrates direction-tuning curves for a set of 15 bell-shaped symmetric neu-
rons. The outputs of 64 such cells to an object moving at −40° are shown in (B).
This output is composed of two parts: the deterministic component shown in (A)
and an independent error for each neuron. This distribution in turn is used in some
way to calculate the most probable input. In Panel (C), the best fitting cosine func-
tion is fitted to the output distribution. The peak of the cosine is the estimate of the
motion direction. In Panel (D), the predicted response distribution based on the in-
dividual error-free tuning curves in (A) is calculated for the set of possible direc-
tions. The predicted distribution that best fits the obtained neural response pattern is
assumed to be the estimate of the movement direction. This is the maximum likeli-
hood estimate, Pr(response � stimulus direction). From “Information Processing
With Population Codes,” by A. Pouget, P. Dayan, and R. Zemel, 2000, Nature Re-
views: Neuroscience, 1, 125–132. Copyright 2000 by the Nature Publishing Group.
Reprinted with permission.



are most active, relatively large changes in the stimulus (e.g., brightness or
direction) create only small variations in the firing rates.

At the Ganglion Cells in the Retina

The goal at the ganglion cells would be to make the outputs of the cells as
independent as possible. Adjacent retinal cells will have highly correlated
temporal and spatial firing patterns because the brightness of neighboring
points in the visual scene is likely to be similar, as in figure 3.2. The same is
true for sound: The loudness, the set of frequency components, and ampli-
tude or frequency oscillations are likely to be similar across successive
time points (Nelken et al., 1999). To the degree that the outputs are corre-
lated, there is redundancy and a reduction in information transmission.

Optimizing the response patterns of individual cells may not yield max-
imum information transmission across a population of cells. To do that,
each neuron should have a response distribution (in terms of probability of
response) that is independent of all other neurons. If this can be achieved,
then each neuron would convey information about independent compo-
nents of the objects in the world, and such a factorial code would yield the
maximum amount of information. In the retina, pairs of nearby ganglion
cells do indeed convey independent information (Nirenberg, Carcieri, Ja-
cobs, & Latham, 2001). Nirenberg et al. (2001) estimated that 90% of the
information could be derived by assuming that the ganglion cells fire inde-
pendently. Given the bottleneck at the optic nerve, such independence
would minimize any information loss. Combining the concept of response
equalization with the concept of response independence gives us a set of
tools to analyze actual response distributions.

Returning to the notion that adjacent auditory and visual elements are
not independent, we need to minimize that lack of independence in order to
create a code that transmits the maximum information (given the constraint
that there is a fixed signal variance). If we use the outcome for the optimal
code for single receptors as a model, we might expect that here the optimal
code also will have equal power at all frequencies. In essence, the way to
do this is to make the power at each spatial or auditory frequency equal and
independent, exactly like white noise. In general, the power spectrum of the
signal should be linked to the power spectrum of the internal noise so that
the total power at each frequency—signal plus noise—is equal. Rieke et al.
(1997) depicted this process as the “water filling analogy” such that the to-
tal power is a flat line as illustrated in figure 3.7.

In natural scenes, the high spatial frequency components are relatively rare
due to the 1/f power function. As described above, the optimal way to create
the maximum information transmission is to reverse the correlation inherent
in the 1/f images by making the power equal at all frequencies: attenuating
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the low spatial frequencies and boosting the high spatial frequencies in
proportion to the original amplitudes (Atick, 1992). The term whitening
refers to the equal distribution of energy across frequency bands; whitening
removes the autocorrelations of brightness within objects but retains the
boundaries. This procedure undoes the lack of independence in the firing
patterns among sets of two neurons. All spatial frequencies therefore will
have the same power or variance (creating white noise). Each frequency
acts independently, which maximizes information transmission.

The concentric excitation and inhibition areas of the on-off and off-on
ganglion cells serve to decorrelate the spatial frequencies and to optimize
information transmission. These cells act as whitening filters by attenuating
the strong low spatial frequency component where the signal-to-noise ratio
is high (see figure 2.3). But as the frequency increases the signal-to-noise
ratio is reduced, and eventually the signal gets lost in the noise. Given the
limited dynamic range in firing rates of individual neurons, it makes no
sense to attempt to encode those frequencies. Thus the optimal strategy
would be to combine a high-pass filter to reduce redundancy at the lower
frequencies (i.e., whitening) with a low-pass filter to separate signal from
noise by attenuating the noisy high-frequency components. Together, the
two filters create a band-pass filter that has a spatial organization similar to
that of the on-off and off-on cells found in the retina and lateral geniculate
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Figure 3.7. To maximize information transmission, the power at each frequency
should be equal (similar to the concept in figure 3.5). The dark line at the base
shows the noise in the sensory system. Therefore, to equalize the power at all fre-
quencies, the useful sensory power should have the frequency distribution shown by
the cross-hatching. Then the sum of the input and noise will be constant across fre-
quency. Adapted from Spikes: Exploring the Neural Code, by F. Rieke, D. Warland,
R. de Ruyter van Steveninck, and W. Bialek, 1997, Cambridge, MA: MIT Press.
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(see figure 2.2 based on the Difference of Gaussians model). Dan, Atick,
and Reid (1996) recorded the responses of individual neurons in the lateral
geniculate nucleus of the cat to natural time-varying movies and to white-
noise stimuli. They found that the neuron firing rates became uncorrelated
to the natural movies but were correlated to the white noise stimuli. The fil-
tering properties of those neurons seem to have evolved in response to the
statistical regularities in the change of brightness over time for natural
scenes (i.e., 1/f c functions), so that to a degree they are unsuitable for ran-
dom variations in brightness. Such neurons do not fire to spatially uniform
arrays since those stimuli carry no information.

At the Cortical Level

The goal at the cortex would be to represent the spatial position and orien-
tation, frequency, and temporal occurrence of parts of the auditory and vi-
sual objects. These properties cannot be optimized simultaneously due to
Heisenberg’s reciprocal uncertainty principle.

As described previously, Gabor (1946) showed that the best function
to represent time and frequency uncertainty was a sinusoidal wave with a
Gaussian (normal bell shape) drop-off. Examples were shown in figures 2.11
and 2.12. Although Gabor initially discussed the time × frequency trade-off,
his approach is equally suited to minimize the spatial orientation × spatial
frequency trade-off necessary for visual images. The concept of a Gabor func-
tion can be generalized to two spatial dimensions by creating a Gaussian fall-
off along the second dimension and can be generalized to time by creating a
Gaussian fall-off that extends in time.

We can imagine that each visual cortical receptor operates as a filter that
transforms the brightness pattern at a particular retinal location into a firing
pattern. The receptive field resembles a Gabor function that selectively
codes for a specific spatial frequency at a particular orientation. Each reti-
nal location would be represented by several cortical receptors, each one
being maximally sensitive to a different mix of frequency, orientation, and
phase resolution. In fact, we might expect that the uncertainty trade-off
would vary with frequency: At the lower frequencies the frequency resolu-
tion would increase at the expense of the spatial orientation resolution and
at higher frequencies the reverse would occur. The area of each filter (see
figure 1.3) would be equal to match the statistical properties of the visual
environment, that is, the equal power in each octave due to the 1/f 2 func-
tion of the image. In fact, the receptive fields of neurons in the cortex
closely do resemble Gabor functions of space and frequency, as illustrated
in figure 2.7 by Jones and Palmer (1987a). This outcome suggests that the
visual system attempts to optimally represent the reciprocal properties of
orientation and frequency in coding the image.
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We can also imagine that each auditory cortical receptor operates as a
filter that transforms the frequency × intensity × time input into a firing pat-
tern. Here the receptive fields would resemble Gabor functions that selec-
tively code for frequency, intensity, and timing. Each frequency would be
represented by several receptors with different bandwidths that trade fre-
quency selectivity for temporal selectivity, as illustrated in chapter 2. More-
over, the different patterns of excitation and inhibitory bands found by
M. L. Sutter et al. (1999) shown in figure 2.26 would suggest that these
bands are decorrelating the sound image. I am somewhat hesitant to make
this argument because sounds are rarely composed of adjacent frequency
components. Nonetheless, I feel confident that the auditory and visual sys-
tems have evolved similar solutions to the trade-offs in resolution and re-
dundancy/reliability, as described later in this chapter.

Neurons with similar receptive fields are located near each other and
yet, as described above, Nirenberg et al. (2001) found that the responses in
terms of rate in the retinal ganglion cells were largely independent. Reich,
Mechler, and Victor (2001) investigated the independence of neurons in the
primary visual cortex in terms of the timings between spikes. The question
is whether it is better to sum the spikes across the neurons to average out
the effect of noise, or whether it is better to keep the firings from each
neuron separate to maximize the information transmission. Clearly, if the
pattern of spike timings for each cell is regular and correlated in some way
to the stimulus, summing the response to create a rate code will reduce the
internal regularity found in the individual spike trains. This, in turn, would
reduce information transmission. Reich et al. (2001) found that the timing
within each spike train did convey independent information, so that com-
bining spike trains led to a loss of information. The neural problem then
becomes keeping the differences in the spike trains accessible to later
stages of visual processing.

Does Cortical Organization Maximize 
Information Transmission?

The final question is the connection between the coding strategy and the
statistical properties of the image, namely the 1/f power function. Why
have the cortical receptors come to have Gabor-like functions? More gener-
ally, why are cortical receptors broadly tuned, so that the firing of a large
number of cells is required to represent any external stimulus? What is the
advantage of a population coding mechanism involving many receptors rel-
ative to one in which individual cortical receptors are tuned to rather pre-
cise stimuli (e.g., the infamous cell that pictures your grandmother)? The
objects in the environment in the former case would be represented by a
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global firing pattern across a large percentage of the cell population
(termed dense representations), while in the latter case the objects would
be represented by the firing pattern of single cells (termed local representa-
tions). Both dense and local representations have fatal flaws. Dense repre-
sentations, while able to represent a nearly unlimited number of objects,
are highly redundant, using many cells to represent every single object. Be-
cause of the large number of cells firing at any instant, learning is very
slow, it is difficult to calculate the probability of an object, and there is a
limit on the ability to associate different objects to each other. Local repre-
sentations, in contrast, will represent only as many object as there are cells,
will lose a representation if a single cell dies, and will be unable to recog-
nize and categorize similar but not identical objects.

Because dense and local representations appear unlikely, theoretical
analyses and experimental outcomes have led to the acceptance of a com-
promise solution termed sparse coding as the most likely way objects are
represented (Field, 1994). Sparse distributed coding does not reduce redun-
dancy by using a smaller number of cells. In fact, the number of cells may
increase. But the number of cells responding to any given input is mini-
mized. For any given input, only a small number of cells will fire, and each
input will be represented by a small, but unique, set of cells. Across the en-
tire population of likely events, every cell will have the same but low prob-
ability of firing, but the probabilities will be concentrated at specific inputs.
Suppose there are eight cortical cells. If there are 56 possible inputs, we
could construct a sparse code by using combinations of three of the eight
cells to represent each input. Each cell therefore would fire to 21 of the 56
inputs. The simple redundancy among adjacent spatial and temporal inputs
is transformed into a complex output code so that each output represents a
noncontingent set of inputs. An illustration of sparse distributed coding is
shown in figure 3.8.
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Figure 3.8. Sparse coding: Each output neuron will fire for only a small number of
inputs. Sparse outputs composed of three neurons represent different inputs formed
by eight neurons.



The consequence of such sparse distributed coding is to change the ac-
tivity of individual cells from a theoretical normal distribution. Within any
time interval, a cell will fire at very high rates only for a small number of
inputs; the cell will not fire at all or will fire at a low rate for the vast major-
ity of inputs. Field and coworkers described this change in terms of kurto-
sis, the peakedness (fourth moment) around the mean value. A comparison
between a uniform distribution, a normal distribution, and an exponential
distribution with a high value of kurtosis is shown in figure 3.9. As the
kurtosis increases, the uncertainty decreases and the redundancy increases
because the no-response output becomes more and more probable (the
maximum information transmission occurs when all outputs are equally
likely, the uniform distribution).

Sparse coding representations have several appealing features:

1. Sparse representations can be made relatively resistant to neurologi-
cal damage simply by duplicating the set of units responding to each
input (Foldiak & Young, 1995).

2. Sparse representations seem to match the appearance of natural im-
ages in terms of a set of independent features such as edges that con-
tain correlations among sets of points (Barlow, 2001). By explicitly
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Figure 3.9. Kurtosis increases for sparse coding. Essentially, each output neuron is
either on or off; the cells rarely fire at an intermediate rate. Compared to a Gaussian
function (kurtosis = 0), the exponential function (kurtosis = 3) has a higher proba-
bility of not firing at all, a lower probability of firing at low rates, and a higher prob-
ability of firing at high rates.
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representing these naturally occurring features, the visual and audi-
tory systems become tuned to object discrimination (at the cost of be-
coming relatively poor at discriminating random noise patterns).
Sparse representations can capture phase relationships that determine
edges and impulse sounds and thus are able to represent the essential
parts of images.

3. Any object would be represented by the unique firing pattern of a
small number of available cells. Each cell has a relatively low pro-
bability of firing overall, so that any interference between different
stimulus features is unlikely. But the small number of firing cells
should make it easy to detect the correspondence of a spatial prop-
erty such as an edge across two images separated in space or time.
By the same token, it should be easier to detect the correspondence
between a present stimulus and a memory, because the number of
neurons firing is small (Perez-Orive et al., 2002).

In a more general framework, Laughlin (2001) argued that the energy
requirements for neural functioning have acted as a constraint that has influ-
enced the coding and processing of sensory information. Although the brain
consists of just 2% of body mass, the mammalian brain uses about 20% of
total body energy, and 50–80% of that energy is used for neural signaling.
The remaining energy is used to maintain the brain—it is a fixed cost. The
huge energy load due to the creation of neural signals appears to have led to
cortical localization that places highly interactive subunits physically close
to each other in order to create the most economical wiring.

Laughlin (2001) hypothesized that the degree of sparse coding is a re-
flection of the limited amount of energy available to the organism, and that
the degree of sparseness reflects the severity of that limitation. The way to
minimize energy usage would be to reduce the number of neurons, even
though each neuron must therefore fire more frequently. It would be more
efficient to construct a coding system composed of 8 neurons such that
4 neurons fire per event (encoding 70 events uniquely) than one composed
of 70 neurons such that 1 neuron fires per event (encoding 70 events
uniquely). Overall, the neural system will minimize the energy require-
ments to “get the job done just right enough.”

Sparse Coding

Visual Naturalistic Modeling

The basic strategy of the simulations described below is to start with a set
of black-and-white pictures of natural scenes presented one after another to
a set of theoretical receptors. Each receptor is made up of a 12 × 12 array of

Characteristics of Auditory and Visual Scenes 131



light-sensitive units. The receptors learn not by being right or wrong, but
by maximizing mutual information under the sparseness constraint. What
we are mathematically trying to find is a set of independent basis functions
that when added together reproduce the image of the natural scene.11

We impose the sparse-coding restriction that the output of each basis
function is zero for most inputs but strongly excitatory or inhibitory for a
small number of inputs. In terms of the mathematical analysis (principal
components), the basis functions are the causes of the visual scenes so that
if added together they will reproduce the natural scenes. If the causal basis
functions resemble the space-time receptive fields of retinal or cortical re-
ceptor cells that decode the brightness patterning of visual scenes, then it is
possible to argue, somewhat indirectly, that the physiological receptive
fields have evolved to maximize mutual information by matching the
causes.

Field (1987), following such a strategy, found that the basis functions
indeed resembled Gabor functions similar to the receptive fields of cortical
neurons (see figures 2.7 and 2.14 for cortical receptive fields). Compared to
normal (Gaussian) probability distributions, the Gabor-like functions had
sharper probability peaks at zero response and higher probabilities of ex-
treme response rates. Field (1987) further demonstrated that by maximiz-
ing the sparseness of the distribution, he was able to match the bandwidth
(approximately 0.8–1.5 octaves) and vertical-horizontal aspect ratio (2 to1)
of cortical cells. This outcome supported the notion of a sparse code: Indi-
vidual neurons would be active only when a particular brightness pattern
(i.e., a causal basis) occurred at a specific location and orientation. Any sin-
gle scene would stimulate only a small set of these receptors, but each pos-
sible scene would activate a different set of receptors.

Olshausen and Field (1996, 1998) “trained” a set of basis functions us-
ing image patches randomly selected from natural scenes to minimize the
difference between the image patch and the reconstruction using the addi-
tion of basis functions. Minimizing the number of basis functions by
adding a cost for each additional basis function imposed sparseness. The
resulting set of basis functions was overcomplete, so that there were more
basis functions than the dimensionality of the input.12 The theoretical advan-
tage of an overcomplete basis set is that the visual (and auditory) worlds
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11. The set of sine and cosine functions for the Fourier analysis is one basis set. A set of
Gaussian functions, as illustrated in figure 3.6, is another basis set. We can produce any arbi-
trary curve by multiplying the height of each Gaussian by a constant and then summing the re-
sulting Gaussian functions together point by point.

12. For example, an overcomplete set might have 200 basis functions to describe a 12
pixel × 12 pixel image that contains only 144 independent points. Because the set is overcom-
plete, there are an infinite number of solutions to describing the 144 image points. The sparse-
ness criterion is necessary to force a single solution.



contain objects at many different scales, frequencies, and locations, so that
it is highly unlikely that there is a minimum set of basis functions that
could encode such variability. Simoncelli, Freeman, Adelson, and Heeger
(1992) demonstrated that such an overcomplete set makes each basis func-
tion represent a specific interpretation—the amount of structure at a partic-
ular location, orientation, and scale. Moreover, it creates smooth changes in
the activities of the individual basis functions as a result of small changes
in the input, an obviously desirable outcome. The outcome of this simula-
tion is a set of basis functions that closely resemble the receptive field prop-
erties of cells in V1, although these basis functions were derived only from
the properties of the images (see figure 3.10).

Bell and Sejnowski (1997) derived a solution similar to that of Ol-
shausen and Field (1996) using the information theory concept of maxi-
mizing information by making the individual receptive field filters and
basis functions as independent as possible (independent component analy-
sis). Conceptually, each filter represents the receptive field of one cortical
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Figure 3.10. Basis functions trained from natural images. Each basis function re-
sembles a simple spatial frequency × spatial orientation cortical cell. The derived
functions can be roughly categorized into three categories: (A) odd symmetric with
one on- and one off-region; (B) even symmetric with an on-off-on configuration;
and (C) even symmetric with an off-on-off configuration. Each type of function oc-
curs at different frequencies, orientations, and positions within the 12 × 12 image
patch. Adapted from Olshausen, 2002.



cell as portrayed in figure 3.10 and the corresponding basis function repre-
sents the input that maximally stimulates that filter. Passing an image
through any filter yields the strength of the corresponding basis function.

Given that primary cells have spatial-temporal receptive fields (see fig-
ures 2.18 and 2.19), Hateren and Ruderman (1998) utilized sequences of
natural images to more closely simulate normal vision. They performed in-
dependent component analyses on sequences of 12 images (roughly 0.5 s
total) taken from television shows. The basis functions resembled bars or
edges that moved as a unit perpendicular to their orientation. The majority
respond to edges moving in one direction only, exactly what would occur
with nonseparable spatial-temporal receptive fields (also found by Ol-
shausen, 2002). Generally speaking, there is a negative correlation between
spatial and temporal tuning; filters centered at higher spatial frequencies
are more likely to be tuned to lower temporal frequencies and vice versa.

Hateren and Ruderman (1998) suggested that the space-time properties
of the filters explain the sparse response distribution. The visual world con-
sists of rigid homogeneous objects moving at different speeds that occlude
one another. A localized space-time filter would typically measure small
brightness differences within a single homogeneous object and therefore
would have a high probability of not responding at all (i.e., peaky at zero).
Such a space-time filter would respond strongly to the brightness contrasts
found at edges that move into or out of the receptive field, and those re-
sponses make up the long, low probability but high firing rate tails of the
response distribution.

Up to this point, the analyses have not made use of any properties of the
nervous system. All of the outcomes have been based on an analysis of sets
of images (although physiological considerations act to impose con-
straints). A second strategy begins with a hypothetical but naive nervous
system. It is hypothetical because, based on current knowledge, you build
in a plausible set of interconnections and cortical units, a model of how the
interconnections combine, a model of how the outputs of the cortical cells
are integrated, a model of learning, a measure of error to drive the learning
procedure, and so on. It is naive because at the beginning of the simulation
all of the interconnections and units have equal strength (although the pro-
cedural “software” is in place). Then you present a series of images and
measure the difference between the original image and the reproduction of
the image by the hypothetical model.13 On the basis of the learning and er-
ror models, the strengths of the connections and units are changed across
the set of images to yield the closest matches. The resulting structure of the
interconnections and units is then thought to be a model for how the actual
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13. The term reproduction is used in a least-squares error sense. The visual system obvi-
ously does not create a replica of the image.



nervous system is organized. These outputs, when combined, would opti-
mally reproduce the original image.

Hyvärinen and Hoyer (2001) followed this strategy to derive the recep-
tive spatial fields and spatial arrangement of the complex cells found in the
primary visual cortex V1. Simple cells will increase their firing rate above
baseline if a white band falls on the excitation region and a black band falls
on the inhibition region but reduce their firing rate below baseline for the re-
verse arrangement. Complex cells, in contrast, will increase their firing rate
for either arrangement; they are phase insensitive. Intuitively, the simple
cells feed forward to the complex cells such that either an increase or de-
crease in firing rate of simple cells increases the firing rate of the complex
cell. Hyvärinen and Hoyer (2001) modeled this process by assuming that (1)
the outputs of the simple cells (the difference between the firing rate and the
baseline-firing rate) are squared so that all changes in the light pattern due to
movements of edges increase the firing rate, and (2) the outputs from nearby
simple cells (a 5 × 5 grid of cells) converge on every complex cell. They
then use independent component analysis to maximize the sparseness or in-
dependence of the complex cell responses. To maximize the sparseness of
the complex cells means that the simple cells that converge on a complex
cell should have as similar a filter response as possible. The authors argued
that if the responses of the convergent simple cells were independent, then
the response of the complex cell would be more normal and less peaky (an
outcome predicted from the central limit theorem).

The results can be considered in terms of the simple cells and in terms
of how the activations of the simple cells create the complex cells. Each
retinal region is represented by a set of adjacent overlapping simple cells.
The receptive fields of the simple cells in figure 3.11 differ in retinal loca-
tion and orientation of the brightness contrast, and respond to a narrow
range of spatial frequencies. The topographic map of each set of simple
cells shows that the cells are smoothly arranged spatially in terms of orien-
tation and position. The majority of the receptive fields are simply scaled
versions of another field. Thus the receptive fields possess differing spatial
and temporal scales that create the multiresolution characteristics of per-
ceptual systems described in chapter 1. The simple cells that are pooled to
create complex cells have similar receptive fields.

The results of Hyvärinen and Hoyer (2001) provide a model to explain
the retinal topographic organization of the visual cortex. Starting with a
simple feed-forward model in which simple cells converge on complex
cells and invoking a criterion of maximal independence creates the spatial
arrangement of receptive fields found in all species.

Körding, Käyser, Einhouser, and König (2004) followed a different route
to derive the properties of complex cells. They argued that nearly all visual
objects and higher-level variables change slowly or not at all over time, even
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though lower-level variables may change more rapidly. They use the example
of a tiger’s stripes, which may oscillate back and forth due to small muscle
movements even though the tiger does not change position. On this basis,
Körding et al. used a learning procedure to derive the simulated responses of
cells that were maximally coherent over two successive views of a scene (but
being maximally different from each other). The resulting simulated cells re-
sembled complex cells. Each simulated complex cell was the sum of the
squared firing rates of pairs of simple cells that had the same Gabor-like ori-
entation and frequency response but were shifted 90° laterally with respect to
each other. Such cells are translation and contrast-reversing invariant. The au-
thors concluded that complex cells in the primary visual cortex can be under-
stood as being an optimal way to encode the stability of natural objects.

To summarize, the independent components analysis of natural images
yield filters that closely resemble the space × orientation receptive fields
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Figure 3.11. Derivation of the receptive fields of complex cells. The derived re-
ceptive fields of the simple cells (linear filters) resemble those in figure 3.10 and
also illustrate the smooth transition in spatial position necessary to construct com-
plex cells. The sparseness constraint derives from the convergence of the 5 × 5 set
of simple derived cells onto each complex cell. The simple derived cells that con-
verge are similar in frequency, orientation, and position, but have random phases.
Adapted from “A Two-Layer Sparse Coding Model Learns Simple and Complex
Cell Receptive Fields and Topography From Natural Images,” by A. Hyvärinen and
P. O. Hoyer, 2001, Vision Research, 41, 2413–2423.
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found in V1. Even though the filters could have resembled the circular on-
off receptive fields found in the retina and lateral geniculate, they did not.
Olshausen and O’Connor (2002) suggested that the independent compo-
nents analysis will derive filters at the point where the number of sensory
neurons greatly increases. In the visual system, that occurs after the con-
striction due to the optic nerve, discussed in chapter 2.

Auditory Naturalistic Modeling

Cusack and Carlyon (2004) constructed a set of 10 s sequences composed
of four different kinds of sounds: (a) a pure tone; (b) a three-component
harmonic sound; (c) an eight-component harmonic sound; and (d) a noise.
The sounds were randomly distributed across the 10 s duration. Each sound
usually overlapped with at least one other sound. Cusack and Carlyon used
the independent components analysis procedure to derive basis functions
that would encode the auditory input. The authors restricted the number of
functions to six to simplify the results. An example of a test sequence and
the derived basis functions are shown in figure 3.12.

The six basis functions (receptive fields) shown in (d) are tuned to the
particular sounds presented. The second basis function responds when the
eight-component harmonic tone occurs; the fourth function responds when
the pure tone occurs; and the fifth and sixth functions respond when the
noise occurs. The firing of each basis function is context independent: each
fires only if its stimulus is presented. The basis functions effectively segre-
gated the sequences into the different sounds.

The derived basis functions can recover only the characteristics of the
presented sounds (the visual simulations used more than 100,000 images). If
the presented sounds were composed only of noises, then the basis functions
also would be noise segments. Here, because the inputs were limited, the in-
dependent component functions were in fact the input sounds themselves.

Lewicki (2002) and Smaragdis (2001) derived independent component
bases for short segments (8–9 ms) of (a) environmental sounds (e.g., rustling
brush, crunching twigs, rain, fire) that typically have short duration, com-
posed of a broadband of nonharmonic frequencies; (b) animal vocalizations
that are typically of longer duration, composed of narrow harmonic fre-
quencies; and (c) speech sounds, composed of longer-duration harmonic
vowels and shorter-duration nonharmonic consonants. Differences between
voiced [ba] and [da] and voiceless [pa] and [ta] stop consonants depend
on voice-onset differences as small as 10 ms. Each component base was
limited to 128 sample points.

The trade-off between frequency and time localization resulting from
the Heisenberg uncertainty principle implies that the independent compo-
nents ought to differ among the three stimulus classes. For the environmental
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Figure 3.12. Independent components analysis (ICA) of the sequence of four sounds. The amplitude and
frequency components of one 10 s sequence are shown in (a) and (b). Six basis functions (i.e., neurons) were
derived. The firing of each neuron is shown in (c) and the frequency by time receptive fields are shown in (d).
The recovered components tend to match the input sounds. Figure courtesy of Dr. Rhodi Cusack.



sounds, the independent components ought to be accurately localized in
time, at the expense of frequency resolution. In contrast, for the animal
vocalizations the independent components ought to accurately resolve the
harmonic frequencies at the expense of temporal resolution (the animal
calls hardly changed in the 8 ms). For speech, both frequency and temporal
resolution are important, so that the independent components ought to be a
composite of components that resolve frequency best and those that resolve
time best.

As can be seen in figure 3.13A, the independent components that
maximize the efficient coding do differ among the three types of stimuli. For
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Figure 3.13. Independent component analysis of (A) environmental sounds,
(B) animal vocalizations, and (C) speech sounds. The independent components for
environmental and speech sounds are localized in frequency and time and illustrate
the frequency × time trade-off. At the lower frequencies, the frequency resolution is
maximized, and at the higher frequencies, the time resolution is maximized. The
independent components for the animal vocalizations are mainly the Fourier
components. The responses of auditory fibers are shown in (D). These responses,
with the exception of being asymmetrical, are close to the independent components.
Adapted from “Efficient Coding of Natural Sounds,” by M. S. Lewicki, 2002,
Nature Neuroscience, 5, 356–363.



the environmental sounds shown in (A), the components have a dominant
resonance frequency, and the higher-frequency bases are localized in
time. For the animal vocalizations, the independent components resemble
Fourier components that extend across the entire window to maximize the
frequency resolution. For speech sounds, the lower-frequency components
tend to extend across the entire duration of the segment, while the higher-
frequency bases are localized to maximize the temporal resolution.

It is possible to organize these results in terms of the trade-off between
frequency resolution and temporal resolution first discussed in chapter 1.
At one extreme, the frequency × time space can be organized to maximize
temporal resolution (figure 3.14A). At the other extreme, using the same
number of rectangular blocks, it is possible to maximize frequency resolu-
tion (figure 3.14C), and this matches the independent components found
for the animal vocalizations. In between are wavelet representations (figure
3.14B), in which the kind of resolution trade-off varies across frequency.
Typically, frequency resolution is maximized at the lower frequencies
and temporal resolution is maximized at the higher frequencies, and that
matches the independent components found for speech. Alternately, the
frequency resolution could be maintained until a higher frequency, and that
seems to match the independent components found for speech.

Lewicki (2002) argued that the independent components found for
speech most closely resemble the responses of cochlear hair cells measured
at the auditory nerve to similar stimuli. These responses are shown in figure
3.13D. We can speculate that the choice of speech sounds was based on the
previous evolution of coding mechanisms for environmental and animal
sounds that were important for survival.

Let me try to sum all of this up. What the visual system appears to do is
recode the dense distribution of firings of the retinal cells into a sparse
distribution of firings of the oriented cells in the V1 cortex. To do this, the
visual system has evolved coding mechanisms that create representations
of the edges and boundaries that signify objects in the environment. There
is a series of steps from the retina to the cortex that makes use of the statis-
tical regularities both within and between objects at differing frequency
and orientation resolutions to create cells tuned to object properties. The
explosion in the number of visual cells past the optic nerve bottleneck
allows the cortical representation to be overcomplete, to be perceptually
continuous. The work of Cusack and Carlyon (2004), Smaragdis (2001),
and Lewicki (2002) shows that it is possible to hypothesize that the same
type of efficient recoding occurs at the cochlea. The derived independent
component filters show the same relationship between characteristic fre-
quency and bandwidth found at the auditory nerve. The derived bases
for both auditory and visual inputs reflect the multiresolution solution to
the aperture and correspondence problems. The bases are localized in
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Figure 3.14. The independent components can be understood in terms of the frequency × time resolution
trade-off. The frequency × time space can be “tiled” in different ways. The animal vocalizations are tiled to
maximize frequency resolution, while the speech and environmental sounds are tiled to maximize frequency
resolution at the lower frequencies and to maximize temporal resolution at the higher frequencies Adapted
from “Efficient Coding of Natural Sounds,” by M. S. Lewicki, 2002, Nature Neuroscience, 5, 356–363. and “A
New Window on Sound,” by B. A. Olshausen and K. N. O’Connor, 2002, Nature Neuroscience, 5, 292–294.



frequency and spatial orientation or by frequency and time. For both there
are trade-offs between the frequency resolution and the time or orientation
resolution.

Experimental Physiological and Perceptual Outcomes 
Using Natural Stimuli

Even though the environment may be made up of many processes that can
be modeled in terms of 1/f c power laws and models of cortical cells display
a sparse firing distribution, that does not mean that (1) the neural cells actu-
ally are organized to yield sparse coding, and (2) people are sensitive to
the self-similarity of the processes. Moreover, although it may be true that
people can distinguish between auditory and visual fractal representations
based on different values of the frequency exponent, that still does not nec-
essarily imply that people perceive the fractal structure itself.

Experimental Physiological Outcomes

Vinje and Gallant (2000, 2002) created a sequence of visual images that sim-
ulated what a monkey would see if it scanned a static natural scene and
recorded from neurons located in area V1 of two awake macaque monkeys.
Vinje and Gallant were particularly interested in how the firing of a classical
receptive area is influenced by stimulation of the surrounding area (the non-
classical receptive field described in chapter 2). The theoretical and computa-
tion approaches described above hypothesize that area V1 uses a sparse code
to efficiently represent natural scenes (remember, natural scenes have a great
deal of built-in redundancy, so that sparse codes would be effective). Vinje
and Gallant hypothesized that stimulation of the nonclassical response field
increased the degree of sparseness. The results demonstrated that indeed a
sparse code best represented the firing patterns found in the roughly 60 neu-
rons. Moreover, as the nonclassical receptive field increased in size, the
sparseness of the firing increased due to the nonlinear receptive field interac-
tions (compare figure 3.15C to figure 3.15B). Individual neurons became
more selective in responding to complex stimuli, so that the kurtosis of the
firing distribution increased. Stimulation of the nonclassical receptive fields
reduces the response to noise more than it reduces the firing to stimulus prop-
erties, and that increases the efficiency of the coding. Vinje and Gallant found
that the degree of sparseness was the same for sequences of black-and-white
gratings and natural movies, suggesting that it is the correlated energy at dif-
ferent orientations in both types of images that created the sparse coding.

Perez-Orive et al. (2002) presented a particularly compelling example of
sparse coding in the olfactory system of locusts. Roughly 90,000 receptor
neurons converge on about 1,000 excitatory projection neurons in the ol-
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Figure 3.15. Sparse coding in V1. The white line in (A) represents the simulated
visual scan path. The small white circle portrays the classical receptive field (CRF)
size, while the larger white circle is four times the CRF diameter. The response of
one V1 neuron to a presentation of the movie confined to the CRF is pictured in (B).
The responses were summed in 13.8 ms bins. The selectivity index of these data is
only 13%, which implies a dense distribution of responses across the stimulus set.
(The selectivity will equal 0 if the cell responds to every stimulus and will equal 1 if
it responds to only one stimulus.) The response distribution to 20 presentations of
the movie using a stimulus size four times the CRF diameter is shown in (C). Stim-
ulation of the nonclassical receptive field increases the selectivity to 51%. Increases
in the firing rate are indicated in black. The underbar highlights increases in rates
(black) and decreases in rates (white). Increases occur at onset transients. From
“Natural Stimulation of the Nonclassical Receptive Field Increases Information
Transmission Efficiency in V1,” by W. E. Vinje and J. L. Gallant, 2002, Journal of
Neuroscience, 22, 2904–2915. Copyright 2002 by the Society for Neuroscience.
Reprinted with permission.



factory bulb. The bulb projects to the mushroom body, which is a memory
area containing about 50,000 neurons. Each projection neuron connects to
about 600 Kenyon cells in the mushroom body, so that each mushroom
body Kenyon cell receives between 10 and 20 convergent inputs.

Each cell in the olfactory bulb responds to a large fraction of the possible
odors with a sustained response. Thus, the sparseness is very low (like that of
auditory hair cells and retinal cells). For some odors, the firing of the projec-
tion neurons becomes synchronized, producing an oscillating evoked neural
response. In contrast, in the mushroom body the same odors activate only a
small proportion of the cells, and the activity of each cell may consist of only
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Figure 3.16. Sparse coding in the mushroom body of the locust. The presentation
of the odor is portrayed by the grayish rectangle. The response of one projection neu-
ron and one Kenyon cell to 16 different odors is depicted in (A) and (B). Each row
represents one trial (the smaller gray rectangles for KC1 in (B) are due to a smaller
number of presentation trials). The projection neuron is active prior to the presenta-
tion of the odor (PN1 in A). The response to all of the 16 odors is characterized by
sustained responses. Although the timing and synchrony to the different odors vary
slightly, it appears nearly impossible to distinguish among the odors. In contrast, the
responses of the Kenyon cells occur to only 4 of the odors, and consist of only a
small number of spikes (KC1 in B). A more detailed picture of the response to one
odor is shown in (C) and (D). Each odor presentation is drawn as a single row. The
response of PN1 is quite variable, but the initial response of the Kenyon cell is pre-
cisely aligned to the onset of the odor and there is only one or two spikes per presen-
tation. From “Oscillations and Sparsening of the Odor Representations in the
Mushroom Body,” by J. Perez-Orive, O. Mazor, G. C. Turner, S. Cassenaer, R. Wil-
son, and G. Laurent, 2002, Science, 297, 359–365. Copyright 2002 by the American
Association for the Advancement of Science. Reprinted with permission.



one or two action potential responses (see the responses to different odors for
a projection neuron and for a Kenyon cell in figure 3.16). The authors propose
that the cells in the mushroom body act as coincidence detectors of phase-
locked convergent firings from the projection neurons in the olfactory bulb. It
is the correlations among spike trains that are of primary importance, not the
rate. (The neural information about which odor occurred is conveyed by only
one or two spikes, in line with the position of Rieke et al. [1997].)

Laurent (2002) pointed out that most odors consist of possibly hundreds
of volatile components and that odor perception tends to bind those compo-
nents together. An odor is therefore a pattern that exists at several levels of
resolution, for example, aromatic-minty-spearmint. The odor space is enor-
mous and there will be huge empty regions. Laurent (2002) suggested that
the coincidence detection proposed by Perez-Orive et al. (2002) is some-
what transient; two cells may synchronize at one time and yet not synchro-
nize at another time. Over time, the firing rates of projection neurons rise
and fall so that different groups of cells are active at different times and that
patterning differs for particular odors. The mushroom body cells therefore
will fire only when the oscillations in firing rates create highly synchro-
nized firings among the 10 to 20 inputs. On top of this constraint to high
firing levels due to the variability in firing rates of the projection neurons,
there is a consistent inhibitory response that follows each mushroom body
cell response. Both factors create the sparse code. Because each odor has a
distinct sparse code, it should be relatively easy to identify each odor and
separate them if they occur together.

The consistent inhibitory response described by Laurent (2002) has been
found in the rat’s auditory cortex and also contributes to the formation of a
sparse code (Wehr & Zador, 2003). The excitatory and inhibitory receptive
fields are tuned to the same frequency × intensity values, termed cotuned,
with the inhibitory response delayed relative to the excitatory response by
1–5 ms (this is analogous to complex visual cells with the same fre-
quency × orientation receptive fields). The inhibitory component does not
appear to sharpen the frequency tuning. But the inhibitory component
blocks the firing from the excitatory component after the delay interval
(1–5 ms). Thus, the inhibitory response creates a transient, sparse firing pat-
tern within the delay, in which only one or two spikes signal the tone onset.

When neurons are firing at the high rates characteristic of sparse coding,
the timing of spikes is particularly regular, and the trial-to-trial variance in
the number of spikes to a given stimulus is minimum (Reinagel, 2001). After
a spike, a neuron enters into an absolute refractory period before another
spike can occur. Following the absolute period, there is a relative refractory
period in which a larger stimulus input is required to fire the cell. The proba-
bility of the next spike is determined by two somewhat opposing factors—the
time elapsed since the last spike and the strength of the input. With a stronger
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input, the majority of spikes will occur directly after the fixed absolute
refractory period and therefore the number of spikes on successive presenta-
tion is likely to be similar. Reinagel (2001) summarized experimental work
by Lewen, Bialek, and de Ruyter van Steveninck (2001) illustrating that
neural responses alternate between periods of very high responding rates
and periods of very low responding rates. At higher illuminations where
presumably more cells would be firing, the alternations are sharpest, as pic-
tured in figure 3.17.

Quiroga, Reddy, Kreiman, Koch, and Fried (2005) found an invariant,
sparse, and explicit code for pictures of individuals, landmarks, and objects
when recording from individual neurons in the medial temporal lobe of hu-
man epileptic patients. The medial temporal lobe is assumed to underlie late-
stage visual processing and long-term memory. In these individuals, specific
cells only would respond to varying images (i.e., different views and sizes) of

146 Perceptual Coherence

Figure 3.17. Firing rates become more regular as the response rate increases due to
greater light energy. The responses are evoked from yawing motions in captive in-
sects. (A) depicts the flight path, and (B) through (D) portray the change in the firing
pattern as the light energy decreases. Within the three panels, each row represents
one repetition of the flight pattern. From “Neural Coding of Natural Motion Stim-
uli,” by G. Lewen, W. Bialek, and R. de Ruyter van Steveninck, 2001, Network, 12,
317–329. Copyright 2001 by the Institute of Physics. Reprinted with permission.



specific persons or objects (e.g., Sydney, Australia, opera house). However,
these cells also respond to the names of those persons and objects, so that
they may be related more to the long-term abstract memory representation
than to the visual input. Nonetheless, the visual representation near the end of
visual processing is remarkably sparse and invariant and approaches the one-
to-one coding assumed to occur for grandmother cells.

Perception of Fractal Processes

Gilden, Schmuckler, and Clayton (1993) contrasted a fractal model of rough-
ness to an intuitive signal + noise model of roughness. Visual roughness was
portrayed by a line graph (similar to the 1/fc functions shown in figure 3.3)
with different degrees of jaggedness (reversals in contour) and auditory
roughness by a sequence of pitches, loudnesses, or durations with different
numbers of random reversals in contour (Schmuckler & Gilden, 1993).

The theoretical issue is whether a fractal description or a signal + noise
description is a better model of how people perceive these sorts of patterns.
First, for an auditory or visual fractal model, the roughness is found at all
levels of the scale, so that we could say that the roughness pervades and is
inherent in the stimulus. Gilden et al. (1993, p. 462) put it clearly: “Natural
contours are to be conceived as nothing but roughness.” No piece of the
contour can be analyzed separately; the contour cannot be decomposed into
separate parts.

Second, in contrast, a signal + noise model is assumed to consist of two
parts. The first part is intrinsic, an invariant component that does not change
across occasions; it is equivalent to a true score in linear models. In terms of
roughness, it is a smooth undulating low-frequency component, the visual or
auditory contour. The second part can be said to be extrinsic, a temporal or
spatial variability that is added to the intrinsic part. The high-frequency ex-
trinsic noise acts to mask the intrinsic part. To return to roughness, the noise
component is an add-on; it creates the roughness or jaggedness of the sur-
face. From this perspective, the act of perceiving is to penetrate through the
noise to perceive the invariant. In natural visual settings, Gilden et al. (1993)
described it as perceiving through the camouflage. The signal + noise model
is not a physical model for any process nor for the way in which the stimuli
were actually constructed (the fractal model is the correct one). Instead, the
signal + noise model is a principle of perceptual organization and, to the ex-
tent that perceivers use such a principle, they misunderstand the principle
underlying the fractal physical process.

There were two experimental questions. The first was simply whether
people could discriminate between stimuli with different values of the fractal
constant c. The second (if indeed people could make that discrimination) was
the internal perceptual model that people used to make the discrimination.
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First, Schmuckler and Gilden (1993) investigated the ability of listeners
to discriminate between different fractal noises using variations in pitch,
loudness, and duration. Stimuli were constructed for 1/f 0, 1/f 1, and 1/f 2.
The results demonstrated that listeners could discriminate among the three
fractal processes using variations in pitch and loudness but not duration.
Moreover, the overall range of variation (one octave versus three octaves)
and the number of steps (13 versus 37) within the range did not affect
the discrimination. To generalize these results to a wider range of fractal
values, Schmuckler and Gilden (1993) constructed sequences with values
of the exponent ranging from 0 to +3.9. Here the maximum sensitivity was
in the range between 2 and 3, curiously, outside the value where most audi-
tory sequences and visual scenes occur.

Second, given that people could discriminate among different fractal ex-
ponents, Gilden et al. (1993) attempted to model the perceptual process un-
derlying that discrimination. They found that a signal + noise model best
predicted the discriminations, even though the stimuli were not constructed
according to a two-part structure. When people look at contours, they per-
ceive an overall trend and superimposed noise. Moreover, people perceive
the trend and noise as being independent, as two separate types of informa-
tion. Now if the individuals must discriminate between two fractal repre-
sentations, they can make use of the difference in the ranges of either the
trend or the noise. The fractal structure that connects all levels of the rough-
ness contour is not used to make the discrimination. People perceive as if
there is a smooth contour that carries the noise even though the smooth
contour and noise are one and the same.

Perhaps the reason that the perceptual model does not match the physi-
cal model is the close ecological connection between perception and ac-
tion. There is no need to be able to specify the hierarchical structure of
surfaces, but there is a great need to be able to traverse a rocky surface, and
perhaps our sense of balance is best achieved by making “noisy” adjust-
ments to smooth slopes.

All of the above strongly suggests that the coding in the auditory and vi-
sual systems is sparse and is based on a minimum population code. We
should be hesitant, however, to argue that perceptual systems evolved in ac-
cordance with that principle. What is controversial is whether perception is
most accurate for natural scenes which preserve the power law and in
which the phase relationships that create edges and lines are maintained.
Gilden et al. (1993) did not find this to be true, but the stimuli used were
quite simple and not representative of natural environments.

To investigate whether detection is most accurate for power law scenes,
Parraga, Troscianko, and Tolhurst (1999) followed a different procedure.
They created a set of pictures that morphed between a car and a cow or be-
tween a man’s face and a woman’s face. They measured the Fourier spatial
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amplitudes of each picture and found that all followed the 1/f c function. The
authors then changed the 1/f c function by either increasing the constant c to
further reduce the higher-frequency components, creating blur, or decreased
the constant c to whiten the image (i.e., to equalize the energy at higher fre-
quencies). Both variations reduce the viewers’ ability to distinguish be-
tween two morphs. On this basis, Parraga et al. argued that the visual
system is optimized for the statistics of natural scenes.

Billock, Cunningham, Havig, and Tsou (2001) investigated the percep-
tion and discrimination of textures that varied in both the temporal and spa-
tial power exponent. They constructed textures that could be represented as:

Amplitude (Fs, Ft) = K/Fs
βFt

α. (3.14)

When both the temporal and spatial exponents were small (.2–.4), the
textures seemed like fine dynamic noise. If the temporal exponent in-
creased with a small fixed spatial exponent, the textures appeared to resem-
ble waves in a viscous fluid. If the spatial exponent increased with a small
fixed temporal exponent, the textures seemed to be composed of diffuse
blobs that jittered rapidly. When both exponents increased together, the tex-
ture resembled coherent large masses that undulated very slowly. Interest-
ingly, the authors commented that when the spatial and temporal exponents
were within values found naturally, subjects tended to give real-world de-
scriptions. Overall, the ability to discriminate between different temporal
exponents decreased as the spatial exponent increased. That is, the move-
ment of the large global blobs tended to mask small differences in the
movements.

Summary

The basic question of this chapter is whether there are general design prin-
ciples that underlie all the sensory systems and that yield efficient informa-
tion transmission. There are several reasons for suspecting that such
principles do not exist. First, there are the diverse properties of sensory
stimulation, ranging from electromagnetic light energy to mechanical
sound vibrations to odor molecules. The research discussed in this chapter
makes use of sets of “naturalistic” stimuli, but the properties of those stim-
uli are not made explicit. Second, there are different kinds of redundancies,
ranging from visual-spatial proximity to auditory harmonic relationships.
Third, there are different scene properties, ranging from spatially or tem-
porally bounded objects to unchanging or low-frequency smoothly chang-
ing surfaces or sounds. We might speculate that phase relationships are
critical when the visual and auditory scenes contain spatially or temporally
bounded objects or things, while they are unimportant for unchanging or
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low-frequency smoothly changing surfaces or sounds (A. Li & Zaidi,
2001). Moreover, occluding opaque visual objects hide each other, as op-
posed to multiple sound objects, which sum their frequency components
when they occur simultaneously (multiple odors also sum). Fourth, there
are context effects that can alter the perceptual qualities in all the sensory
systems. Fifth, there are conflicting design objectives, ranging from maxi-
mizing information transmission to maximizing reliability.

Yet I come away with the sense that there is a coherent set of design
principles that can unify perceptual processing and experience. First, there
is the tuning of sensory receptors to sensory energy. Second, there is the hi-
erarchical transformation of local processing to global percepts. Third,
there are lateral circuits that remove redundancies. Fourth, there are feed-
forward and feedback circuits that tune sensory systems to the environmen-
tal context. Fifth, there are convergent and divergent circuits that seem to
generate sparse coding that balances the need for maximizing transmission,
reliability, and stability. These principles seem to complement the coding
principles put forth by Eggermont (2001), discussed at the end of chapter 2.
In a summary review, Simoncelli (2003) argued that the theory of efficient
coding has served as a heuristic to motivate the investigation of the influ-
ence of the statistics of the natural environment on the statistics of the neu-
ral response. However, the principle of efficient coding cannot, by itself,
explain the organization of sensory systems.
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4

The Transition Between Noise
(Disorder) and Structure (Order)

Let us start with the problem of defining texture. The word tex-
ture has the same Latin root as the word textile, and originally

both words referred to the character of a fabric due to the quality and weav-
ing of the threads. Texture was later generalized to refer to the surface char-
acteristics of an object resulting from the quality and arrangement of the
particles or constituent parts (Bergen & Landy, 1991). The surface charac-
teristics have often been termed the visible grain, determined by variations
in dimensions such as brightness, color, and shape. In common use, these
parts or grain must be small compared to the object as a whole. Otherwise,
the particles would determine the object’s shape and not its texture. Two
textures are different if they do not share the same grain (i.e., surface varia-
tion) or if they do not have the same statistical distribution (i.e., pattern of
the grain). The difficulty is that all surfaces, however different from one an-
other, can be said to have a texture, so that any inclusive definition becomes
implausible. Moreover, the texture of any real object can be understood in
terms of the object or surface that generated that texture (tree bark), or as
an abstract visual design with a uniform or variable pattern. The lack of a
comprehensive definition applicable to all qualities of texture is widely ac-
knowledged (Gorea, 1995).

This chapter is broken into two broad areas. The first concerns the seg-
mentation of visual scenes that are composed of arrays of discrete ele-
ments. The initial research made use of achromatic dots of differing
brightness, while subsequent work made use of different micropatterns. For
both types of stimuli, the goal was to develop statistical and physiological
models that would predict the perceived segmentation. The second concerns
the perception of surface characteristics. The term surface characteristic is
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used in its broadest sense to include visual contour and flow lines, auditory
timbre, and visual symmetry.

Visual Texture Segmentation

Texture segmentation refers to the process by which a visual scene is bro-
ken into discrete enclosed areas or an auditory sound is broken into discrete
sources. Each area or source is perceived against a background. This seg-
mentation is based on differences in the grains, or in the distribution of the
grains across space. It is assumed that such segmentation represents an
early or even the initial stage in perceptual processing. Adelson put it ele-
gantly: “vision is still stuff, rather than things” (quoted in Bergen, 1991, p.
121). Texture segmentation is presumed to take place at levels of represen-
tation preceding the construction of even simple objects (I reconsider this
assumption in chapter 9).1

It is possible to identify two approaches. The first approach has been
to attempt to identify textural features that lead to segmentation. The goal
of initial experiments using random dot arrays by Julesz (1962) and subse-
quent experiments by Beck (1966) and Julesz using discrete elements (e.g.,
T, L, +) was to define the statistical properties that lead to the segmentation
of the array. These experiments were attempting to create not a catalog of
textures but a catalog of segmentation elements. These segmentation ele-
ments may not have any simple relationship to the textural features that un-
derlie our perception of real objects.

The second approach has been to develop models of segmentation based
on the conceptualization of visual cortical cells as localized spatial filters
at differing frequencies and orientations (colloquially called back-pocket
models). These filters process the visual input in parallel; the output of
each filter is transformed in some nonlinear way (e.g., squaring), and then
differences in the outputs are used to detect different regions (i.e., disconti-
nuities in the arrays). There are many variants of these models: two or more
levels of filters with differing spatial extents, mutual inhibition among adja-
cent filters, nonlinear transformations among levels, and local and global
integration.

The two approaches are complementary. The feature extraction approach
does not utilize the known properties of the auditory and visual systems to
construct stimuli, but the features found inductively in traditional perceptual
experiments would presumably be implemented in some fashion at one or
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more cortical levels. For example, the spatial-temporal receptive fields of in-
dividual neurons or combinations of neurons might resemble those features.
In contrast, the filter approach does not consider the statistical nor configural
properties of objects in the environment, but the stimulus arrays that are
clearly segmented by the proposed neural models would presumably be com-
posed of the extracted features discovered in the segmentation experiments.

Features: From Visual Random Dot Spatial Arrays to
Segmentation Elements (Textons)

To the Gestalt psychologists, the basic perceptual problem was that of seg-
mentation, the process by which the entire visual field was broken into sub-
units (or alternately perceived as a whole). The Gestalt psychologists were
not against analysis as commonly portrayed; in fact, they believed that the
visual system segmented the field. What they rejected was the level of
analysis based on elementary sensations. Experiments on segmentation still
revolve around isolating the appropriate level of analysis. As described be-
low, the search for that correct level led to a shift from studying the statisti-
cal properties of arrays of dots varying in brightness to studying the
statistical properties of simple geometric forms.

Spatial Arrays of Dots

In one of the first experiments, B. F. J. Green, Wolf, and White (1957) con-
structed random dot matrices to investigate the discrimination of differ-
ences in dot density. They utilized a matrix with 128 × 128 dot positions
and filled each position with either a white dot or a black dot based on a
fixed probability. In a typical trial, two probabilities were selected (say .55
and .50). Then, either the 128 columns were partitioned into 8 blocks of 16
columns apiece and alternate blocks were filled in with dots at .55 and .50
probabilities, or the 128 rows were broken into 8 blocks of 16 rows and
filled in with the same probabilities. The subjects simply judged whether
the distribution of white and black elements varied in the columns or rows.

B. F. J. Green et al. (1957) found that the minimum difference in proba-
bility needed to achieve 75% correct judgments was about 8% for a dura-
tion of one-quarter s or less the difference, but only 5% for a duration of 1 s
or more. Surprisingly, there was little difference in discrimination between
the 1 s and the 4 s duration. One of the more interesting findings concerned
the effect of the number of blocks on discrimination. There were five con-
ditions with 2, 4, 8, 16, and 32 blocks with 64, 32, 16, 8, or 4 rows or
columns respectively. For both experienced and inexperienced subjects, the
best discrimination occurred for 8 blocks with 16 rows or columns apiece;
performance decreased for 4 and 16 blocks, and decreased further for 2 and
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32 blocks. Phenomenally, discrimination occurs by attending to the con-
tours at the changes in probability. With 2 or 4 blocks, there are too few
contour changes, while with 16 or 32 blocks there are not enough rows or
columns to establish the contours. B. F. J. Green et al. pointed out that these
results preclude an explanation purely based on brightness (luminance), be-
cause the identical brightness differences occur for each condition. Rather,
the participants were responding to the emergence of consistent statistical
differences between the blocks.2

Within a few years, Julesz (1962) began an extensive set of investiga-
tions aimed at discovering texture properties leading to segmentation. The
majority of this work used an interesting amalgam of qualitative perceptual
outcomes along with local and global quantitative statistical specifications
of the stimulus properties. To measure perceptual segmentation, Julesz typ-
ically used a simple dichotomous go/no-go measure. Imagine that a simple
geometric form like an X is repeated many times to form a rectangular ar-
ray. This rectangular array is embedded at a random position within a big-
ger rectangular region created by repeating a different texture element like
a +, and the observer’s task is to judge whether the two regions defined by
the texture elements spontaneously and effortlessly segregate (see example
in figure 4.5). To Julesz, texture segmentation is necessarily characterized
by the rapid “pop-out” (within 100 ms) of the region defined by the embed-
ded texture element and therefore can be assumed to be preattentive, prior
to focal attention and object or shape identification. If the identification of
the region of the embedded texture element takes active search and scrutiny
of all the texture elements, Julesz concluded that the two texture elements
are not discriminable as operationally defined by segmentation. It is very
important to note that the two elements taken in isolation are easy to dis-
criminate. It is the regions defined by the elements that are not discrim-
inable; that is, the figural contrast between elements does not create
segmentation. I make use of this distinction between effortless direct per-
ceiving and attentive cognitive perception throughout this chapter and the
next one. It will prove relevant to a wide variety of perceptual outcomes,
although it may not simply map onto physiological mechanisms.

To specify the properties of the stimulus array, Julesz and coworkers
first made use of k-order statistics. Each k-order represents a different prop-
erty of the array and can be understood in either conditional probability or
geometric terms. These statistics are not restricted to any particular type of
texture element.
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2. MacKay (1965) pointed out an interesting illusion for random-dot patterns. After fixat-
ing on a single point for 10 to 20 s, the array comes to appear more regular and uniform. It is
as if higher-level networks determining long-range form perception adapt and thereby lose the
complex patterning.



K = 1: The first-order statistic is the probability that any dot in the array
will have a certain brightness or luminance. In B. F. J. Green et al. (1957),
there were only two levels of brightness (i.e., white or black) so that
Pr(white) = 1 − Pr(black). Julesz (1962) used two to four levels of brightness
(black, dark gray, light gray, white). Different probability distributions
vary the overall brightness and contrast of the array, and this variable has
been termed spatial density or tonal quality. Three random textures based
on different probability distributions of 10 different gray levels are shown
in figure 4.1. Different probability distributions create textures that yield
easy segregation.

K = 2: The second-order statistic is the conditional probability between
pairs of dots. Simply put, given the brightness of one dot, is the probability
of the brightness of a second dot different than its probability of occurrence
according to the K = 1 statistic? In figure 4.2, three examples of K = 2
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Figure 4.1. Texture differences due to K = 1 statistics of the reflectance of the
individual squares in each 12 × 12 matrix. The y axis gives the percentages of each
of the 10 different reflectance values. Differences in the K = 1 statistic generate
rapid segmentation between the three matrices arrayed vertically, although the
boundary is soft.



sequences are shown. In (A), the conditional probabilities equal the pro-
bability of occurrence (e.g., Pr[w � b] = Pr[w]), so that there is no pre-
dictability beyond the probability of occurrence, that is, K = 1. The texture
would be random throughout, and by analogy to sound we would term
it white noise (1/f 0). In (B) and (C), the conditional probabilities pro-
gressively differ from K = 1, and these particular second-order statistics
will tend to generate short horizontal line segments of equal brightness
due to the higher probability of dots of equal brightness following each
other.

It is natural to think of the conditional probabilities referring to adjacent
dots in the array, and in that case the second-order statistics create differ-
ences in what may be termed the granularity of the texture. To the degree
that the second-order statistics predict the brightness levels among the dots
beyond that of the first-order statistics, they will lead to distinct regions
within the overall texture. The patterns in figure 4.2 clearly segment into
regions.

However, it is not necessary to think of the second-order statistics as
referring only to adjacent elements. Instead, the conditional probabilities
could refer to dots separated by any number of intervening dots and in any
number of possible directions. Julesz and coworkers (1984) captured these
possibilities by methods of integral geometry. Imagine a line of specific
length, a dipole. Two textures will have identical second-order statistics if
random “throwing” of such lines on the two textures results in equal proba-
bilities of falling on two dots with the identical brightness. (For K = 1, the
analogous procedure is random throwing of one dot on two textures. Those
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Figure 4.2. Differences in sequences due to the K = 2 statistic. In all sequences,
the K = 1 statistic is identical. (A) K = 2: Pr(w � w) = Pr(b � b) = 0.5; K = 1:
Pr(w) = Pr(b) = 0.5. (B) K = 2: Pr(w � w) = Pr(b � b) = 0.6; K = 1: Pr(w) = Pr(b) = 0.5.
(C) K = 2: Pr(w � w) = Pr(b � b) = 0.75; K = 1: Pr(w) = Pr(b) = 0.5.



textures will have the same first-order statistics if the probabilities of
falling on a particular texture element are identical.)

Second-order statistics are identical to autocorrelation statistics, and
thus to the frequency spectrum. This identity allows us to compare results
from visual texture patterns to auditory noise patterns. For example, in a
following section on repeated noise segments, we will show that the audi-
tory system can pick up the predictability between individual amplitudes in
ongoing noise generated by repeating noise segments up to 1 s in duration.
For both the auditory and visual systems, there is a temporal separation or
spatial separation limit to the ability to make use of the second-order pre-
dictability. Below these limits, perception is effortless and spontaneous;
above these limits, perception requires scrutiny and calculation.

K = 3 and higher: The higher-order statistics involve the predictability of
one dot based on the combination of the values of two or more other dots.
In conditional probability terms, for K = 3 using adjacent dots at positions
i − 1, i, and i + 1: Pr(Xi+1�Xi, Xi−1). We can argue that third-order pre-
dictability occurs to the extent that this probability differs from Pr(Xi+1 � Xi).
For example, Pr(w�w) = 0.60 and Pr(w�w,w) = 0.75. As for K = 2, the third-
order statistics can refer to the geometry of dots at different orientations
and distances. Here, the appropriate geometric figure is a triangle with spe-
cific lengths of sides. By analogy, two textures have identical third-order
statistics if the vertices of such randomly thrown triangles have the identi-
cal probability of all three vertices falling on dots with identical brightness
levels. Higher-order statistics incrementally increase the number of dots
used for prediction. For K = 4, three dots are used to predict a fourth, and
the geometric figure is a rectangle; for K = 5, four dots are used, and the
geometric figure is a pentagon, and so on.

Julesz began with random dot patterns to eliminate all familiar cues and
constructed textures in terms of the hierarchy of k-order statistics. If the
K = 1 statistics are equal, will two textures with different K = 2 statistics
effortlessly break apart; if the K = 1 and K = 2 statistics are equal, will
textures with different K = 3 statistics effortlessly break apart, and so on.
The experiments were constructed so that only the highest-level kstatistic
differed to ensure that it was the higher-order statistic that created the
segmentation.

From the start, it was clear that differences in the first-order statistic
(i.e., the dot density) lead to segmentation, as illustrated in figure 4.1, and
thus confirmed the results of B. F. J. Green et al. (1957). The perceived
edge between the two textures is “soft” and “winding” because the bright-
ness difference between the textures at the edge would be subject to chance
variation in the lightness levels. It also was obvious that differences in
the second-order statistic, the granularity, would lead to segmentation (see
figure 4.2). But at that point, examples of segmentation between two
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textures that had identical first- and second-order statistics, but different
higher-order statistics, could not be found.

These outcomes led to Julesz’s conjecture that the visual system could
not make use of third-order contingencies and that any two textures that
had identical lower-order statistics could not create effortless segmentation.
What this means is that the visual system does not detect differences in
the phase spectra of the two textures. This conjecture did not seem likely
to be correct because visual edges are due to the in-phase relationship of
the spatial frequency components, as shown in chapter 3. Moreover, even at
this point, there were many counterexamples to this conjecture that were
explained away in terms of unique clusters of points that might form ex-
tended lines or equal brightness triangles or geometric shapes. For exam-
ple, changes in the texture that lead to different clusters of bright dots will
lead to segmentation, regardless of the order statistics. Metaphorically, the
visual system acts like a slicer; it creates clusters from dots of similar
brightness, but it does not create clusters based on predictable sequences of
brightness that interleave values. Thus, if we describe brightness levels go-
ing from 1 to 5, the visual system will split apart a linear sequence like
13233123124554544555 but not the sequence 64144614615232253253 as
illustrated in figure 4.3, even though both have identical statistical proper-
ties in terms of k-order statistics.3

Segregation Micropatterns

These outcomes forced the realization that effortless texture discrimination
is not based on the statistical analyses of brightness distributions of individ-
ual points, but involves a kind of preprocessing that extracts and connects
neighboring points with similar brightness values. It is the spatial arrange-
ment of the correlations, and not merely their statistical strength, that is
crucial for the detection of texture differences (Victor & Conte, 2004). As a
result, Julesz and colleagues moved from random dot textures and began to
create micropatterns that consisted of 4 to 12 black dots or short lines that
could be specified in terms of their second- and higher-order statistics. The
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3. Yellot (1993) and Victor (1994) provided contrasting interpretations of the k statistics.
Yellot argued that the statistics refer to specific textures, so that any two textures that have
identical k = 3 statistics are by definition equal. In contrast, Victor (1994) argued that the sta-
tistics refer to an ensemble of textures (as in information theory) so that two specific textures,
while coming from ensembles with identical statistics, might in fact be easily discriminable.
From this latter perspective, it does make sense to investigate whether observers can detect
higher-order textural differences. However, in most tasks the observer must distinguish be-
tween two textures, each defined by ensemble statistics. Thus, the perceptual difficulty is deter-
mining the ensemble statistics from a single sample. Tyler (2004) suggested that observers
intuitively employ a roving sampling window to measure the properties at different regions and
then employ a decision rule to judge whether the two regions come from the same ensemble.



experiments were analogous to those using the random dot textures. A
small area created by repeating one micropattern replaced the equivalent
area in a larger area based on a different micropattern. The subjects still
judged if the small area effortlessly popped out of the larger area. Exam-
ples are drawn in figure 4.4.

As found for the random dot textures, the k-order statistics were unable to
predict which pairs of textures would break up into regions and which ones
would not. Even though all of the micropatterns could be easily discrimi-
nated apart if presented two at a time in isolation, the majority of pairs could
be separated in arrays only by carefully attending to each micropattern in
turn. To put it differently, discriminability did not predict segmentation.
The conclusion was that it was the local gestalt configuration of the mi-
cropatterns that generated the effortless segmentation.

If a generalizable statistical representation does not work, then the only
remaining strategy is to catalog those configurations that produce segmen-
tation, and later attempt to relate them to known physiological mecha-
nisms. Julesz termed each of these configurations textons (these have been
termed textels or texels by other authors) and defined them in terms of con-
spicuous local features. The most important static texton is elongated
“blobs” (rectangles, ellipses, lines), with features defined by color, angular
orientation, length, and width. Less clearly defined textons are based on the
number of line ends or terminators, and on concepts like corner, closure,
and three-dimensional orientation (see figure 4.4). For dynamic visual
stimuli, texton features include flicker and motion. Julesz (1995, p. 134)
admitted, “what these textons are is hard to define” and went further to
argue that it is only the density of the texton features that matters for seg-
mentation. It is the difference in the first-order statistic that draws attention,
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Figure 4.3. The visual system will segment predictable sequences that “slice”
brightness levels but cannot segment the identical predictable sequences that inter-
leave brightness levels. (A) Segmentation based on brightness (slicer); (B) segmen-
tation that cannot be based on brightness.



but it is focal attention that generates the actual spatial position (unknow-
able from preattentive processes only) and it is also focal attention that pro-
vides the glue to connect adjacent or distant configurations.

To summarize at this point, differences in the densities of local texton
features draw attention to those areas. But, to make use of Adelson’s
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Figure 4.4. (A) Five examples of
micropatterns that support segrega-
tion and two micropatterns that do
not. (B) An example of a stimulus in
which a small rectangular array of
one type of micropattern (a corner
texton) is embedded within a larger
array of another type of micropattern
(a linear texton). The textons are ran-
domly rotated within each array.
Adapted from “Toward an Axiomatic
Theory of Preattentive Vision,” by
B. Julesz, 1984, in G. Edelman,
W. E. Gall, and W. M. Cowan (Eds.),
Dynamic Aspects of Neocortical
Function (pp. 585-612). New York:
Neurosciences Institute.



distinction once again, it is still stuff. Large changes in the positions of
adjacent features are not noticed. To convert stuff to things requires focal
attention. The focal attention binds dots and lines into the micropatterns and
the micropatterns into figural regions. Local features segment textures, not
global-order statistics

In moving away from a statistical to a geometrical explanation, this
work converged on parallel research done by Beck (1982) that started from
a classical Gestalt perspective. Beck began with the working hypothesis
that the similarity between distinct geometric shapes determins the group-
ing into discrete regions. Thus, Beck’s arrays were composed of shapes like
lines, angles, Ts, and crosses because it was assumed that the differences in
the local geometrical properties of the shapes determine segmentation
(these shapes are analogous to the later textons of Julesz). In one clear ex-
ample, Beck made use of upright Ts, 45° Ts, and upright Ls (figure 4.5).
Based on the concept of effortless grouping, the 45° Ts strongly split off
from the other figures even though the two Ts were judged most similar in
shape; orientation was more important than similarity. What is common to
the work of both Julesz and Beck is the conclusion that texture segmenta-
tion is based on simple physically defined properties that do not necessarily
reflect the similarity between the elements.

Nothdurft (1997) showed that segmentation is not based simply on local
first-order densities. Instead, perceptual segmentation occurs when there is a
sufficiently large difference between regions in terms of luminance, texton,
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Figure 4.5. Texture segmentation of simple geometric shapes is determined by
orientation, and not by the perceived similarity of the shapes. The Ts are judged to
be more similar to each other than to the L-like corner. The 45° Ts segregate al-
though Ts and Ls are judged most dissimilar. Adapted from “Textural Segmenta-
tion,” by J. Beck, 1982, in J. Beck (Ed.), Organization and Representation in
Perception (pp. 285-317). Hillsdale, NJ: Erlbaum.



size, orientation, or any other feature that could yield segmentation. It is the
degree of contrast that is critical. As shown in figure 4.6, segmentation into
perceptually coherent regions will occur where the orientation, brightness,
and vertical size gradients undergo rapid change. The ratio of the change be-
tween elements at the perceptual boundaries must be significantly greater
than the change between elements within each coherent texture region. Thus,
the differences required for segmentation are relative to the variations within
each texture region. Moreover, there are configural effects based on the orien-
tation of the elements at the texture boundary (Ben Shahar & Zucker, 2004).

Nothdurft (1997) also demonstrated that the features can reinforce or in-
terfere with segmentation based on the spatial arrangements. For example,
orientation segmentation is made much harder if luminance contrast would
lead to segmentation of partially overlapping areas (see figure 4.7). In simi-
lar results, Snowden (1998) found that irrelevant variations such as those
due to color can interfere with segmentation tasks based on area defined by
the elements. The reaction times increased by 33% due to irrelevant varia-
tions. In contrast, irrelevant dimensions do not increase reaction time (less
than 10%) when searching for a single element (e.g., a vertical line in an
array of 45° lines) so that it appears that the irrelevant dimensions bring
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Figure 4.6. Segregation occurs when there is a discontinuity in a feature gradient.
Discontinuities produce segregation for a variety of features.



about poorer performance by creating alternative grouping arrangements
that would not affect searching for a single item.

Filter Models: Back-Pocket Models

The above research making use of line segments at differing orientations
seems to call for an explanatory model in terms of the simple and complex
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Figure 4.7. Incompatible combinations of orientation and brightness make segre-
gation ambiguous. In (A), segregation due to orientation is effortless. In (B), segre-
gation by orientation is pitted against segregation by brightness and is difficult to
perceive. However, in (C) the random variation in brightness does not interfere with
segmentation by orientation to the same degree because the random variation does
not create an alternative grouping. Adapted from “Different Approaches to the
Coding of Visual Segmentation,” by H.-C. Nothdurft, 1997, in M. Jenkin and L.
Harris (Eds.), Computational and Psychophysical Mechanisms of Visual Coding
(pp. 20–43). Cambridge, UK: Cambridge University Press.



cells found in the visual cortex (V1). These kinds of models, the so-called
back-pocket models of texture segregation, share a common form.4 All start
by assuming that the visual array is filtered by a parallel set of oriented
linear cortical cells. To represent each retinal location, the models use
anywhere from 16 individual cortical cells that vary in orientation and
spatial frequency (4 orientations × 4 spatial frequencies) to 180 cortical
cells (18 orientations × 10 frequencies). The output of each orientation ×
frequency filter is squared to produce an energy measure and then, in the
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Figure 4.8. Back-pocket models of segregation can isolate differences in orientation
(A) and shape (B). Each dot in every response matrix represents the response of one
frequency × orientation receptor at that location. In (A), receptors oriented at 450 and
1350 segment the short lines. In (B), the middle frequency x orientation receptors
segment the “+’s” from the “L’s” and “T’s”, but do not segment the “L’s” from the
“T’s.” Adapted from “Computational Modeling of Visual Texture Segregation,” by
J. R. Bergen and M. S. Landy, 1991, in M. S. Landy and J. A. Movshon (Eds.), Com-
putational Models of Visual Processing (pp. 253-271). Cambridge, MA: MIT Press.

4. These are termed back pocket because researchers pull the basic form out of their back
pockets to make sense of new examples of texture segregation.



simplest versions, the outputs from cells with the same spatial frequency
and orientation are summed together in local areas. The visual field is bro-
ken into nonoverlapping enclosed regions at places where large differences
in the outputs exist; the outputs within regions are relatively equal. Two ex-
amples of this process using a simple model with 4 orientations × 4 spatial
frequency filters per location are shown in figure 4.8. In the first example,
the outputs of the filters oriented at 45° and 135° appear to represent the
perceived segregation, particularly at higher spatial frequencies. In the sec-
ond example, the outputs of the filters at the middle spatial frequencies at
all orientations appear to represent the perceived segregation. The texture
model does not differentiate between the characters L and T in figure 4.8B.

These models that make use of one filter stage are limited to texture
patterns in which the different orientations occur in nonoverlapping spatial
areas. They cannot predict segregation if the basis for segregation is the
contrast or the patterning of the orientations within spatial areas (A. Sutter
& Hwang, 1999). For example, consider the texture pattern in figure 4.9.
In this pattern, each 2 × 2 unit contains two vertical orientations and two
horizontal orientations, although in two different arrangements. Because the
elements are the same, the outputs of vertically and horizontally oriented
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Figure 4.8. Continued



filters within any 2 × 2 region would be identical, and yet there is a clear
segregation between the regions with the different arrangements of the
elements.5

To account for this sort of segregation, the simple version of the back-
pocket model incorporates two additional stages. The first of these addi-
tional stages (the second in the model) transforms the outputs so that
decreases in firing rates below the baseline level are made equal to the
baseline (rectifying), or the decrease is squared so that decreases and in-
creases in firing rate are made equal. The effect is to make the output from
regions with high contrast variability greater than from regions with low
contrast variability, even if the average brightness is the same (e.g., black-
and-white gratings generate greater outputs than a dark gray/light gray
grating). The second additional stage is made up of another set of oriented
filters with a lower frequency than the first stage. In essence, the first-stage
filters pick up the rapid variation within a region, and the third-stage filters
pick up the slower brightness variation (i.e., the carrier frequency). These
linear-nonlinear-linear (LNL) models are able to predict how hard it is for
observers to segment various types of textures.

Summary

What makes this work problematic is the nagging question of whether any
of it really taps into texture perception. Textures of real surfaces do not
consist of arrays of discrete patterns that appear to be embossed on a flat
background. Instead, such textures are composed of elements that appear
to represent interleaved edges and continuous surfaces that tend to change
shape smoothly. As described in chapter 3, the edges arise due to in-phase
spatial frequencies, and smooth surfaces arise due to changes in the pat-
terning and density of the elements. What makes the work on micropattern
segregation important is the impetus it gave to attempts to create realistic
neural models to simulate why certain pairs of features led to segmentation
while other pairs did not. Yet even here I am skeptical that there is a definable
set of primitives that create segmentation. Nothdurft (1997) and Ben Shahar
and Zucker (2004) have demonstrated that segmentation is a function of the
overall context, so that segmentation is based on contrast, the argument
made in chapter 1.
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5. These sorts of textures have been termed non-Fourier or second-order patterns because
perceptual discrimination cannot be due to brightness differences encoded by the simple corti-
cal cells. The outputs of the simple cortical cells are hypothesized to be transformed by a non-
linear function, and that output is further filtered by oriented cells with a lower spatial
frequency. If the nonlinear transformation squares the outputs, the result resembles a complex
cortical cell in which brightness levels above and below the background produce the same fir-
ing rate increase. Second-order patterns are discussed further in chapter 5.



Surface Textures

Visual Glass Patterns

Glass (1969) introduced a class of texture patterns in which a random dot
pattern is duplicated; the duplication is transformed by rotation, magnifica-
tion, or translation and then superimposed onto the original random pat-
tern. If this process is done over and over again, the superposition of the
original and all the duplicates generates a global “streaky” percept in which
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Figure 4.9. An array that cannot be segregated based simply on brightness differ-
ences (termed non-Fourier textures). Segregation requires a nonlinear transformation
of firing rates that effectively encodes contrast and not brightness along with a second
linear filter tuned to a lower spatial frequency. Adapted from “A Comparison of the
Dynamics of Simple (Fourier) and Complex (Non-Fourier) Mechanisms in Texture
Segregation,” by A. Sutter and D. Hwang, 1999, Vision Research, 39, 1943–1962.



flow lines appear to connect the corresponding points in the original and
transformed duplicates. If the duplicates are rotated a small amount, then a
concentric pattern emerges. If the duplicates are expanded, then a starlike
radial pattern emerges, and if the duplicates are moved horizontally or ver-
tically, then horizontal or vertical lines emerge. You perceive the global
structure created by the flow lines, not the original or duplicated random ar-
rays. Several examples are shown in figure 4.10.

The perception of the patterning is global, based on finding the corre-
spondences between “matched” dots. Dots become matched when there are
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Figure 4.10. The construction of a rota-
tion Glass pattern is shown in (A). The ini-
tial pattern is black; the first rotation is
dark gray; the second rotation is light gray;
and the third rotation is white. Even with
different brightness levels, the rotation flow
lines are easy to see. If all the dots are
made black, the rotation is more obvious.
Another type of Glass pattern based a
linear x-y shift is shown in (B).



consistent orientations within subregions of the field. Matched dots rarely
are the closest ones. Looking at any small area through an aperture destroys
the pattern, because the global correspondences are lost. All that remains
are inconsistent accidental pairings. The individual features and the global
pattern are independent, because the pattern emerges even if short line seg-
ments at different orientations replace the dots. Glass patterns resemble
continuous, global natural textures. Both the perception of Glass patterns
and segmented texture regions from different micropatterns occur very rap-
idly (about 100 ms) without eye movements, and thus classify as effortless
and preattentive.6

R. K. Maloney, Mitchison, and Barlow (1987) measured the strength of
the perceived global pattern by adding unpaired random dots to the dot con-
figuration until that pattern disappeared and the dot texture began to look
random. They found that Glass patterns were remarkably stable. Consider a
dot and its match, generated by a small rotation. Concentric patterns were
visible even if there were 6 to 10 random dots lying closer to an original dot
than its real match. Several examples are shown in figure 4.11. Thus, the vi-
sual system does not depend on a nearest neighbor analysis; instead, it pools
local orientations over an extended region. Variable-orientation pairings that
emerge by chance in small regions must be disregarded. The important unre-
solved problem is the scale of that integration.

Theoretically, each type of Glass pattern should be equally discrim-
inable because the autocorrelation between matched points will be identical
no matter how the patterns are duplicated and superimposed: the local statis-
tics are identical. However, this is not the case because rotation (concentric)
and magnification (radial) transformations are easier to perceive than transla-
tion (parallel) transformations, and vertical translations are easier than hori-
zontal translations (Jenkins, 1985; see figure 4.10). In addition, although the
autocorrelation is still the same, the Glass pattern does not emerge if the
pattern and its duplicate are opposite contrasts to the background (e.g., gray
background, black [original] and white [duplicate] dots; Glass & Switkes,
1976), if the elements of a pattern and its duplicate differ strongly in energy
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6. Glass patterns are similar to auditory iterated rippled noise stimuli (Yost, Patterson, &
Sheft, 1996). To construct these stimuli, a segment of random noise is delayed by d ms and
added back to the same noise. If this process is repeated n times, the autocorrelation of the am-
plitudes at the delay d equals n/n + 1. The resulting sound has two components: a tonal compo-
nent with a buzzy timbre sounding like an airplane propeller with a pitch at 1/d ms and a noise
component sounding like a hiss. The strength of the tone component is proportional to the auto-
correlation, and after 16 iterations the sound is nearly completely tonal. The parsing of the sound
into tone and noise is effortless and irresistible, and another example of preattentive figure-
ground organization. Thus, for both Glass patterns and iterated rippled noise, the original stimu-
lus is duplicated at a fixed distance or time interval and then added to the original. The strength
of the tonal percept increases with the number of iterations and the strength of the global visual
pattern would also increase with the number of spatial shift and superimposed iterations.



(J. A. Wilson, Switkes, & De Valois, 2004), or if the duplicate is shifted
beyond a maximum value specific to each type of transformation. Thus, the
visual system does not merely calculate the autocorrelation across the entire
field, because none of these three limitations would affect the value of the au-
tocorrelation. This is another argument for a localized integration area and
demonstrates that all types of pattern pickup are constrained by space, time,
and energy limitations as described in this chapter and in chapter 1.

Prazdny (1986) has generated interesting cases in which two Glass pat-
terns are superimposed and presented at the same time. For example, one
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Figure 4.11. Camouflaging circular Glass patterns based on 75 pairs of points by
adding 300 randomly placed elements (A). A similar example of camouflaging a ra-
dial Glass pattern is sketched in (B). The ability to detect the circular and radial pat-
terns demonstrates that observers must integrate orientation over a wide region and
not rely on a nearest neighbor heuristic. Adapted from “Limit to the Detection of
Glass Patterns in the Presence of Noise,” by R. K. Maloney, G. J. Mitchison, and H.
B. Barlow, 1987, Journal of the Optical Society of America, A, 4, 2336–2341.



pattern could be generated by rotation, creating concentric flow lines,
and the second by expansion, generating radial flow lines. If the dots in
both patterns have identical energy (i.e., roughly size × contrast), then it is
impossible to see both patterns. If the energy of one pattern is reduced, then
the more energetic pattern is perceived easily while the weaker pattern can
be perceived by focused attention.7

The most interesting outcomes occur when comparing single Glass pat-
terns composed of dots with different energy levels to superimposed Glass
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Figure 4.11. Continued

7. A similar breakdown of the perceived structure occurs if two iterated rippled noise
stimuli with different delays are added together. For example, if one stimulus is constructed
with a delay of 10 ms (a pitch of 100 Hz) and a second is constructed with a delay of 8 ms (a
pitch of 125 Hz), the tonal percept is destroyed. The tonal percept is maintained only when the
delays are multiples (2/4/8 ms) so that the pitches would be harmonically related (Handel &
Patterson, 2000).



patterns in which each pattern is composed of dots with different energy
levels as above. Consider the former case: we start with a random dot array,
create a duplicate in which each dot is reduced in size and contrast, rotate
the duplicate, and then superimpose the two. Even though the dots are
different, the concentric lines appear, so that the patterning is achieved by
integrating across energy levels. Now consider the latter case: One Glass
pattern is defined by the stronger dots and a different one is defined by the
weaker dots. In this case, the pattern segregates; there is no integration
across energy levels (see figure 4.12). This first outcome does not support
the notion of a lightness “slicer” suggested by Julesz (1962) above to ac-
count for texture segmentation. Instead, the effects of the energy differ-
ences depend on the overall patterning among the dots.

The perception of the Glass patterns is a second-order effect (K = 2); the
observer must detect conditional probabilities that may involve different
separations and orientations. For example, with a rotation, the separation
between matched dots, signifying the consistent change in orientation
around the circumference, varies as a function of the distance from the cen-
ter. Pairs of points with the same separation and distribution of orientations
that are randomly placed around a circle do not lead to the perception of
concentric circles.

Researchers (H.R. Wilson & Wilkerson, 1998; H.R. Wilson, Wilkerson,
& Assad, 1997; Seu & Ferrera, 2001) have compared the discriminability
of concentric, radial, hyperbolic, parallel, and spiral Glass patterns. Their
results indicate, as found previously, that concentric and radial patterns are
easier to find in embedded random noise than parallel or spiral patterns in
the equivalent amount of noise. Concentric and radial patterns contain
paired dots at all orientations, and the authors argue that the greater sensi-
tivity to concentric and radial patterns is due to the global pooling of the in-
formation at all orientations necessary to perceive those transformations. In
contrast, parallel patterns contain matched dot pairs at only one orientation,
so that there is only local pooling. (However, Dakin & Bex, 2002, demon-
strated that with experience, viewers are able to learn to integrate parallel
translation patterns over a wider spatial area.)

Their proposed model is envisioned to consist of three stages, each stage
being localized in a higher-level visual cortical area. The first step occurs in
V1, the initial processing region. Here each region of the stimulus configu-
ration is analyzed by a set of discrete orientation filters that measure con-
trast at different visual angles. The second step occurs in V2. Here the
outputs from V1 are rectified to produce a positive neural response, and that
is followed by a second stage of orientation filtering to create a more local-
ized orientation response (LNL model). Finally, the third step occurs in V4,
where the orientation information at all angles from a localized retinal area
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found in V2 is summed. In this model, the inputs from different orienta-
tions are weighted differentially. The weighting function in figure 4.13 is
optimized to detect + shapes. Other weighting functions could be opti-
mized to detect other shapes, such as crosses. As described in chapter 2,
neural units in V4 respond to concentric and radial patterns, and Wilson
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Figure 4.12. Glass patterns can be perceived if the elements are different bright-
ness levels (figure 4.10) or dot sizes so that there is integration across energy levels.
All of the Glass patterns here were constructed with one transformation of the orig-
inal random pattern. If the original and transformed pattern have the same bright-
ness, it is very difficult to perceive the two different Glass patterns (A). If the two
patterns have different brightness levels, it is relatively easy to perceive the two pat-
terns separately (B). However, if both patterns have two corresponding levels (i.e.,
original in black, transformation in gray), again it is almost impossible to perceive
the two patterns (C). Adapted from “Some New Phenomena in the Perception of
Glass Patterns,” by Prazdny, 1986, Biological Cybernetics, 53, 153–158.



and coworkers hypothesized that it is this three-stage process that sums ori-
entation information to create those cells, as illustrated in figure 4.13.8

Visual Contours

The perception of Glass patterns illustrates the sophisticated ability of the
visual system to find statistical regularities that exist within a noisy image.
The extraction of the structure, although seemingly instantaneous, must in-
volve complex feed-forward and feedback processes among many neural
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8. There is an obvious similarity between the back-pocket models for texture segmenta-
tion and the H. R. Wilson and Wilkerson (1998) model to account for the perception of the
Glass flow lines. Moreover, both are similar to the models shown in chapter 5 to account for
the perception of second-order motion.

Figure 4.13. A neural model for the detection of Glass patterns. The sensory exci-
tation at each retinal region is filtered by a set of differently oriented filters. The
four pathways shown differ by 45°. The output of each pathway is rectified, and
then the nonlinear rectified output is further filtered at the same orientation but a
lower frequency. The excitation from all the pathways is weighted, shown by the
contrast of the even symmetric filters, and summed. Different weighting functions
could be optimized to detect circular, radial, and linear patterns. From “Detection of
Global Structure in Glass Patterns: Implications for Form Vision,” by H. R. Wilson
and F. Wilkerson, 1998, Vision Research, 38, 2933–2947. Copyright 1998 by Else-
vier Science Ltd. Reprinted with permission.



regions. The process must have many false starts and dead ends where
the initial segmentations of the elements to form edges do not yield the
contours of coherent objects. There are many interpretations of any image,
so that the open question is why some interpretations of the image are pre-
ferred over others.

As described earlier, the Gestalt psychologist’s answer was in terms of
electrical force fields in the cortex that acted to integrate the elements. The
forces minimized energy so that the resulting percept maximized regularity,
but that does not necessarily imply maximizing simplicity.9 One of the min-
imizing energy rules was termed good continuation, the perceptual ten-
dency to continue a smooth line at an intersection with another line (Pizlo,
Salach-Golyska, & Rosenfeld, 1997). An alternative answer to the preva-
lence of good-continuation perceptual judgments is in terms of the regular-
ities found in natural scenes. Do smooth lines that continue at intersections
actually bound single objects? Do perceptual contour judgments match
those regularities? If so, then good continuation, and the Gestalt laws in
general, can be understood and predicted from the properties of auditory
and visual objects.

W. S. Geisler, Perry, Super, and Gallogly (2001) measured the co-
occurrence of edges in natural scenes. They first identified each edge in a
photograph and then calculated the separation distance and the difference
in orientation between every pair of edges. The most probable co-occurrence
occurred between two nearby edges that were approximately parallel. The
two edges often formed a continuous edge (for a curving edge, the most
probable edge continued the curve). W. S. Geisler et al. (2001) argued
that this outcome makes good sense because physical processes such
as erosion, shading, and perspective would create continuous or parallel
edges. The next step was to categorize the edge elements as belonging to
one object or to different objects. If the concept of good continuation has
any value in segmenting a natural scene, then any two nearby and parallel
edge elements should more likely be part of one object than parts of two
different objects. If this is true, and it was, then the best perceptual bet
would be to assume that a smoothly changing edge bounds a single physi-
cal object. What this analysis does is provide a likelihood ratio explanation
to good continuation: Good continuation works because that is the way
objects are.

Several experiments have investigated the detection of contours in noisy
scenes (W. S. Geisler et al., 2001; Hess & Field, 1999; Pizlo, 2001). In
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9. Originally, the dynamics of the field forces were used to explain why things looked the
way they did, essentially without reference to the external world. Then, in what I think is a
brilliant book, Kohler (1969) argued that there is no difference between the dynamics of corti-
cal field forces and the dynamics of physical processes in the world. This in a sense closed the
circle and created an isomorphism between the perceptual world and the physical world.



nearly all of the individual experiments, the viewer must judge which of
two images contains a contour. As might be expected, detection improves
when the number and density of the contour elements increases, and detec-
tion becomes poorer as the change in angle among the elements increases.
If the path angle is greater than about 30°, detection approaches chance
levels. For those contours, observers cannot find a smooth continuation
connecting the two legs of the path.

The conceptual models for contour detection begin by assigning local
associative strengths among adjacent elements based on distance and orien-
tation. These local strengths become the seeds for “growing” the contour,
combining pairs of elements into one elongated contour. For example,
W. S. Geisler et al. (2001) assumed transitivity: If A is grouped with B, and
if B is grouped with C, then A and C are assumed to be on the same con-
tour. Altmann, Bulthoff, and Kourtzi (2003), using human brain imaging
techniques, found that both early retinotopic cortical areas (V1, V2) and the
later occipitotemporal area are involved in the detection of contours created
by discrete elements. The temporal pattern of activation suggested that
feedback from higher cortical areas might modulate the processing in the
early areas.

Has the visual system evolved to make use of good continuation as an
organizing principle because it maximizes the probability of detecting
physical objects?10 This is exactly the same logic used in chapter 3 to argue
that the visual system evolved to maximize mutual information. In that
case, I was reluctant to conclude that the auditory and visual pathways
evolved to maximize information transmission by matching power law fre-
quency distributions, and I am similarly reluctant here.

Auditory Texture: From Auditory Noise to Pitch

Auditory noise refers to a nonrepetitive signal in which the amplitude
varies randomly. In terms of the frequency spectrum, the amplitudes and
the phases of the frequency components are randomly distributed. The
power across the frequency components may be flat, creating white noise,
or may vary, creating pink or brown noise (see chapter 3). Auditory noise
and visual random dot arrays are equivalent: the K = 1 statistic (in terms of
amplitude or luminance) may vary from example to example, but the K = 2
statistic always equals the K = 1 statistic. In other words, there is no pre-
dictability between time points or between spatial points. Each auditory
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10. Good continuation of pitch, intensity, spatial location, and so on are also important or-
ganizing principles for hearing. The same ecological argument can be made. This is discussed
further in chapter 9.



and visual noise example does have a specific quality, and Pollack (1975)
demonstrated that listeners can learn to identify individual auditory random
noise segments.11 All of the segments had identical long-term frequency
spectra, so that the listeners must have been picking up unique short-term
sound qualities in each segment.

In the work described below, I generate a short segment of noise that
does not create the perception of any pitch, and then investigate the out-
comes when that single noise segment is repeated or when different noise
segments are interleaved and repeated. The analogous visual presentation
would be to create a random dot array with a specified K = 1 statistic, and
then place repetitions next to each across a page (or to create two arrays
with the same K = 1 statistic and alternate them across a page). The percep-
tual problem, then, is to discover the repeating units by abstracting the du-
ration or the spacing of the repetitions.12

If we generate a sound by concatenating or butting together short seg-
ments of noise, there are many interesting possibilities. At one extreme, we
could repeat the exactly same segment from two to many times. (Using let-
ters to represent different segments, this would create AA to AAAAA. . . . )
At the other extreme, we could make each segment different, to create
ABCDEF. . . . Between these extremes, we could present one segment twice,
present a different segment twice, and then either revert back to the original
segments (e.g., AABBAABB . . . ) or continue to present novel segments
(e.g., AABBCCDDEE . . . ). The naive view would be that the particular
noise segments, the duration of the segments, and the sequence order did not
matter. Each segment contains only a random order of amplitudes, and
butting such segments together should generate only a longer but still noisy
sound. However, this view misses the essential point. Repeating the identical
noise segment does create an internal structure: The amplitude variation in
each noise segment is identical and, as the outcomes presented below illus-
trate, the hearing system is exquisitely tuned to pick up that predictability.
The degree of predictability does of course depend on the particular noise
segments and the way that those segments are combined. The ability of lis-
teners to pick up that predictability must depend in part on the characteristics
of the auditory system, in part on general cognitive limitations such as the
duration of memory, and in part on the skills and training of the listener.

Consider one extreme, the repetition of the same noise segment:
AAAAAA. We can depict each noise segment by a series of 10 random
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11. The ability to distinguish among random noises is discussed again in chapter 6.
12. I do not know of any auditory research that has attempted to discover auditory textons.

If I attempted to use the strategy employed in creating the back-pocket model, I would make
use of the findings about auditory spectral-temporal receptive fields described in chapter 2.
For example, A1 cells that respond to frequency glides or amplitude and frequency modula-
tions would make up the first-stage linear filters.



numbers, say 7652013586, with each digit representing the amplitude for
1 ms. Thus, in this instance each segment is 10 ms, or equivalently 100
segments per second. When these 10 are repeated six times, it generates the
sequence:

765201358676520135867652013586765201358676520135867652013586.

Knowing how we constructed the order, it is easy to pick out the repeti-
tions and perceive the sequence as six repetitions of 10 numbers. The auto-
correlation function is zero for all time delays (i.e., time lags) except for the
delay equal to the 10 ms length of the segment. The autocorrelation is per-
fect if correlating time n to time n + 10: 1 with 11, 5 with 15, and so on. (It
is also true that the autocorrelation is perfect between n and n + 20, but that
longer span is usually not reported perceptually.)

Now consider the other extreme, a sequence of different noises:
ABCDEF. Here, the autocorrelation will be zero for all time lags. (It is true
that there probably will be positive autocorrelations at some delays in short
sequences, but these are simply due to the characteristics of the particular
noise segments, and the autocorrelation will go to zero as the sequence is
lengthened with new random noise segments.)

The interesting cases, as usual, lie between the two extremes. To move
one step up from a random sequence, we could repeat each noise twice to
create AABBCC. Again using 10 random numbers to depict each segment,
we would get something like:

765201358676520135863754204805375420480508422689530842268953.

Now the autocorrelation function flip-flops. At the 10 unit delay, there is
perfect predictability as you step through the sequence from element 1 to
10: 1 is the same as 11, 2 is the same as 12, and so on, until you hit element
11. Elements 11 through 20 are uncorrelated to elements 21 through 30 be-
cause they are different noises. The autocorrelation snaps back to 1 starting
with element 21 and going through 30, and then reverts back to zero from
31 to 40. Thus the overall autocorrelation is going to be +0.50, the average
of 1.00 and 0.00.

A more complex case occurs if we alternate doubled noise segments of
different durations. Suppose we alternate two identical 10 ms segments (la-
beled by letters) with two identical 8 ms segments (labeled by numbers)
and continue this process using different samples of noise. Such a sequence
would be labeled AA11BB22CC33. . . . In this case, the predictability os-
cillates between a 10 ms and an 8 ms delay, interspersed with regions of no
predictability that continue throughout the sequence.

The perceptual question is whether listeners can pick up the internal struc-
ture and resulting predictability and, if they can, what are the limits? In all
of the examples given above, the essential problem is that of correspondence.
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Conceptually it is as if the listener must try different delays or offsets of the
sequence relative to itself to maximize the predictability of corresponding
elements.

As mentioned above, the K = 2 statistic is equivalent to the autocorrela-
tion statistic. Using autocorrelation to explain the pickup of temporal (or
spatial) information is useful for all types of sound waves that repeat over
time or spatial arrays that repeat over space. For both listening and looking,
there is a spatial or temporal separation that maximizes the conditional
probability and the autocorrelation. As described in this chapter, the pickup
of these probabilities is bounded in time or space; any predictability that
exists beyond a temporal duration or spatial separation is not perceived ef-
fortlessly.

Before starting, it is useful to review some traditional views about tonal
and nontonal pitch perception. Normally, tonal pitch occurs between the
frequencies of 20 and 20000 Hz. Within this region, the sound is continu-
ous and has an obvious low-to-high attribute. However, there is a distinct
difference in the quality of the sound (i.e., timbre) between tones in the
20–6000 Hz range and tones in the 6000-20000 Hz range. The tones in the
lower frequency range have a much fuller, richer musical sound. (However,
at the lower end of this range, 20–60 Hz, complex sounds from instruments
like the piano often have a weak pitch.) Tones in the higher range have a
much thinner sound. This difference in quality may be due to a shift in the
neural coding of frequency. In the lower range, individual neurons phase-
lock to distinct points in the sound wave. In the higher range, the ability to
phase-lock disappears, and frequency would be encoded only by position
on the basilar membrane.

At frequencies less than 20 Hz, the perception becomes one of a series
of discrete clicklike sounds, even though the sinusoidal wave is still contin-
uous. The clicks appear to go together to form a coherent rhythm down to
rates of 0.5 Hz, or one click every two seconds. At slower rates, each click
seems separate from the rest, and the perception of a rhythm disappears. At
frequencies greater than 20000 Hz, the mechanical properties of the ear
limit the ability to track or follow the rapid vibrations, and those frequen-
cies are not heard.

What this means is that we will need to consider at least three frequency
regions. The first two are within the tonal region, and the empirical ques-
tion is whether there is a difference in the perception of repeated noise in
the range where phase-locking is possible and in the range where phase-
locking is impossible. The third is in the frequency range below tonal per-
ception where discrete sounds are heard. R. M. Warren (1999) termed this
frequency region infrapitch.

Because we do not have any direct understanding of how the auditory
system picks up the repeating structure, it makes more sense to describe
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some outcomes and see how these might delimit possible neural mecha-
nisms based on the timings between spikes. I will start with the continuous
repetition of a single noise segment and then consider the perceptual out-
comes for complex sequences constructed by combining different noise
segments.

Sequences Created by Repeating the 
Identical Noise Segment

To repeat: we generate one random noise segment and then recycle that seg-
ment so that there is no separation between the end of one and the beginning
of the next repetition. Even though each of the segments sounds like a ran-
dom noise, shhh, the surprising outcome about such sequences is that for a
wide range of segment durations, we hear a buzzy tone with a distinct pitch.
The pitch is determined by the duration of one noise segment (e.g., if the
duration is 2 ms, the pitch comes from the 500 Hz fundamental frequency).
The tonal quality of the buzzy tone is determined by the amplitude of each
harmonic that occurs at a multiple of the fundamental frequency (e.g., the
amplitude at 1000, 1500, 2000 Hz, etc.). Remarkably, the tonal percept is
relatively immediate, and there is little or no time lag to the tonal perception.

Consider first the tonal perception range. If the segment duration is less
than 0.0125 ms, so that the fundamental frequency is greater than 8000 Hz,
the repeating noise sounds much like a pure sinusoidal wave, because the
first harmonic (16000 Hz) is nearly at the frequency limit of the auditory
system. This means that any sample of noise will sound identical when re-
peated at that rate. If the segment duration is between 0.0125 and 10 ms
(i.e., durations that yield frequencies from 100 to 8000 Hz), the repeated
noise segments produce richer tones due to the perceivable harmonics. Due
to the harmonics, different repeated noise segments can create quite diverse
sounds. For durations greater than 10 ms (less than 100 Hz), the sounds un-
dergo several transitions. From 10 to 15 msec (100-70 Hz), the repeated
noise generates a noisy pitch that sounds continuous or smooth. At longer
durations up to 50 ms (70–20 Hz), the noisy pitch appears pulsed or
accented; it is not continuous. For durations between 50 and 250 ms
(20–4 Hz), the repeated noise is heard as motorboating (Guttman & Julesz,
1963). There is a regular beat at the repetition rate, much like a low-
frequency staccato whoomp-whoomp. It is a noisy repetition, not a con-
tinuous noise. At even longer durations of 250–1000 ms (4–1 Hz), it is
possible to hear the sequence as a noisy global percept described as a
whooshing sound, or it is possible to detect repetitive features such as
clanks and thumps that seem to occur in discrete parts of the segment. This
latter possibility is in contrast to the motorboating range, in which compo-
nent features are not heard.
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Up to these durations, perceiving is direct and effortless, much like the
visual texture segregation described previously. The percepts are global
even for motorboating and whooshing sounds, based on the entire wave-
form of the noise segment. As stated above, different noises yield distinct
timbres and features, and this demonstrates that while the autocorrelation
can give a measure of the possible predictability, by itself it does not pro-
vide a complete description of the perception because the autocorrelation
would be identical in all cases, and yet very different phenomena occur.

For tonal durations greater than 1000 ms (1 Hz), the nature of perceiv-
ing changes. Perceiving becomes constructive. Initially, all one hears is
continuous noise, and the listener must search for distinct repeating sound
bits that reoccur regularly to create a simple rhythm (Limbert, 1984). These
rhythmic features may be labeled (e.g., bonk, old dishwasher) or may not.
Such features can disappear and then reappear or new features can begin to
be heard, but the essence of the percept is that of continuous noise with su-
perimposed rhythmic features. There is a fair degree of variability across
subjects in the choice of feature and resulting recycling point, although
subjects tend to make the same choice on repetitions of the same repeated
noise (Kaernbach, 1992). As could be expected, longer durations lead to a
wider choice of features. Although we might describe the identification of a
repeating feature as cognitive, listeners did not verbally label the features;
they insisted that they did better by remembering the rhythm of the noise
and the overall sound quality of the features. For very long repeating noise
segments at durations of 10, 15, and 20 s, R.M. Warren, Bashford, Cooley,
and Brubaker (2001) argued that the listeners are not really picking up the
periodicity of the repetition but are really engaged in a vigilance-type task
in which they are trying to detect each reoccurrence of the selected feature.

I come away with the impression that perceiving is sensibly continuous
and yet it yields qualitatively different phenomena. The critical factor is the
duration of each noise segment. At durations that normally lead to tonal per-
ception (50 ms or shorter), the repeating noise segments take on a tonal qual-
ity with a pitch equal to the inverse of the duration. At any duration, the
repetition of a different noise segment will create the same pitch, but a differ-
ent timbre. At longer durations up to 1 s, the perception gradually transforms
into an atonal rhythmic pulsing that may contain discrete sound features. Be-
yond the 1 s duration, the noisy aspect predominates, and the listener must
actively hunt for repeating sound features that mark the repetition.

I do not think that this transition from the effortless perception of repeti-
tion to the active detection of repetition merely represents a memory limita-
tion, because we find the analogous transition in a variety of situations. One
way to think about this transition is that it represents a limitation on coher-
ence or connectedness. In part, I am basing this on rhythmic perception:
Discrete tones separated by 1.5 s or less are heard as a unified rhythm,
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while discrete tones separated by a greater interval are usually heard as dis-
connected tones. Another way to think about this transition is that it repre-
sents a limitation on the detection of correspondences. Up to durations of
1 s, the auditory system seems to automatically find the best time separa-
tion to match elements so as to maximize the predictability of the sequence.
Beyond that duration, the automatic matching fails, and the listener must
create the matches from derived features. The identical correspondence
problem occurred for the visual Glass patterns described above, and we
will see in chapter 5 that the same correspondence problem occurs for vi-
sual spatial movement. Within a distance range, the visual system automat-
ically matches parts of objects, but beyond that distance the perceiver must
derive the matches.

Sequences Created From All Different Noise Segments

A sequence created from different noise segments (e.g., ABCDEF, where
each letter represents a different segment) does not produce a pitch, regard-
less of the length of the segments. However, two such sequences based on
different segments of noise can sound different due to the individual seg-
ments and the serendipitous correlations that are created between the end
of one segment and the beginning of another. Needless to say, perceptually
there are no segments. In my informal listening, the only time I can hear a
difference between sequences such as ABCDEF and FDBECA is when a
feature pops up in one order and not the other.

If the two sequences are made up of the same segments but played in
different orders (ABCABC versus ACBACB), as R.M. Warren and Bash-
ford (1981) reported, it is easy to discriminate between the two. In this
work, each segment was 50 ms so that the repeating units in each sequence
(e.g., ABC or ACB) would be 150 ms (6.67 Hz). The ability to discriminate
between such sequences may require some explanation. The differences in
the sound quality among noise segments are due to the random variation in
the sound pressure amplitudes across their duration. This variation yields
different magnitudes and phases of the harmonics (from the Fourier analy-
ses) that compose the segment, and this variation creates the different
sound quality. But given that the sound is continuous and changing, where
does a listener break up the ongoing pressure variation into segments? In
these sequences, there is a repeating unit of 150 ms, either ABC or ACB.
For such sequences, I hear the same motorboating reported by Guttman and
Julesz (1963). There is a noisy sound with a beat corresponding to the re-
peating unit, which suggests listeners are breaking up the sequence into
temporal units of 150 ms (notice that there are three ways of constructing
the 150 ms units) and deriving a running average harmonic structure within
those units. If the two sequences sound differently, then these differences
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would be due to serendipitous correlations that are created between the end
of one unit (composed of three segments) and the beginning of another. In
general, for different orderings of a fixed set of segments, such correlations
would change erratically, and we would expect that discrimination would
be quite variable across the different orderings and across different sets of
noise segments.

Sequences Created by Repeating and Alternating Different
Noise Segments

Sequences made up of the identical noise segment (e.g., AAAAAA) maxi-
mize the internal predictability, so that they yield the strongest perception
of a complex tone. Sequences made up of different segments (e.g., random
noises ABCDEF . . . ) minimize the internal predictability so that they yield
only the perception of continuously varying noise. Between these end
points are more complex sequences constructed by joining together differ-
ent noise segments, each of which is repeated a set number of times. I will
describe some preliminary work using naive listeners that illustrates the
perceptual change from noise to tone as a result of varying the number of
repetitions of the noise segments.

The first case to consider is constructed by repeating one noise segment
a number of times, then repeating a different noise segment with the identi-
cal duration the same number of times, and continuing this process, choos-
ing a different noise segment each time. At one extreme, we get 2
repetitions per segment, AABBCCDDEE . . . , and at the other end we get
10 or more repetitions:

AAAAAAAAAABBBBBBBBBBCCCCCCCCC . . .

which approaches the repetition of one identical segment.
R. M. Warren, Bashford, and Wrightson (1980) and Wiegrebe, Patterson,

Demany, and Carlyon (1998) have investigated the two-repetition case:
AABBCC. Their results were very consistent in finding a noisy tonal per-
ception that does not change its sound very much across different samples
of noise. With two repetitions, the autocorrelation oscillates between 1
within the repetition of one noise and 0.0 between noise segments, so that
overall the autocorrelation equals 0.50. At this level of internal structure,
the timbre differences that arise from different segments are not perceived.

In preliminary work, I explored the perceptual effects created by in-
creasing the number of repetitions. For two repetitions, the tonal strength
was weak but roughly equal for segment durations from 0.125 ms
(8000 Hz) to 32 ms (31 Hz). There were no timbre differences between
the different noise segments at any duration. As the number of repetitions
increased, the tonal percept strengthened, the noisy percept weakened, and
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differences between durations (i.e., frequencies) emerged. By four repeti-
tions per segment (AAAABBBBCCCCDDDD . . . ), the autocorrelation
equaled 0.80 due to the correlation of 1.0 within the four repetitions and 0.0
between the different noise segments. There still was a noisy component,
and the overall sequence sounded gritty and rough. At this point, the differ-
ent timbre associated with each noise segment became apparent, and the
sequence seemed to vary in quality at the same pitch as the segments
changed. However, the gain in tonal strength and the increase in the per-
ceived variation in timbre for four repetitions were much less for segment
durations below 0.5 ms (frequencies above 2000 Hz). By eight repetitions
per segment (the autocorrelation equaled 8/9), the noisy component disap-
peared, except for the 0.125 ms durations (8000 Hz). For this segment du-
ration, at which the second harmonic at 16000 Hz was presumed not to
affect perception, the tonal strength did not grow at all up to 12 repetitions
and the segments did not appear to change quality. The pitch strength for
sequences of identical noises also reached its maximum at eight repetitions,
so that there was no difference between changing the noise segment every
eight repetitions and continuously repeating the same noise segment.

It is interesting to contrast these results with those from sequences of
alternating noise segments (e.g., AAAABBBBAAAABBBB . . . ). If we
start with the simplest case, ABABAB . . . , listeners perceived the se-
quence as being made up of the repeating unit AB, not of alternating A
and B segments. Thus the pitch was one half the pitch that would have re-
sulted from A or B. The entire sequence was heard as completely tonal,
and the tonal quality did not change. As the number of repetitions in-
creased (e.g., from AABBAABB to AAAABBBBAAAABBBB), the per-
cept changed as the perceived repeating unit shifted back to the
individual segments. The buzzy noise changed quality due to the different
noises and seemed to warble back and forth. This shift had two effects, as
illustrated in figure 4.14.

First, initially the AABBAABB construction was more tonal than the
AABBCCDD construction. The tonal component decreased in strength as
the number of repetitions increased due to a shift from perceiving the re-
peating unit as [AB] or [AABB] to perceiving the individual segments [A]
in [AAAA] and [B] in [BBBB] as repeating. In contrast, for the AABBC-
CDD construction, the tonal component consistently increased as the num-
ber of repetitions increased, so that by 8 to 12 repetitions there was no
difference in the tonal strength between the two kinds of sequences.

Second, I asked listeners to judge the warble in the sound, and that is
shown in figure 4.14B. For the longer-duration segments (e.g., 8 ms seg-
ments), there was a strong sense of timbre alternation at even 2 or 4 repeti-
tions, and any difference between ABAB and ABCD sequences in the
strength of alternation disappeared after about 8 to 12 repetitions. For the
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shorter-duration segments, the reverse was true. Listeners were more likely
to maintain the combined AB segment as the repeating unit, so that the tim-
bre did not vary (e.g., the sequence AAAABBBBAAAABBBB was per-
ceived as the repetition of [AAAABBBB]). For example, for 2 ms segments
(500 Hz), the strong perception of alternating timbres for ABAB sequences
occurred only for 12 or more repetitions (e.g., in shorthand notation 12A,
12B, 12A, 12B) but the perception of timbre changes for ABCD sequences
occurred for 4 or more repetitions (e.g., 4A, 4B, 4C, 4D). There was a per-
ceptual tendency to hang onto the perception of one repeating segment until
it produced such long-duration segments that the perception of a strong
pitch became problematic. At that point, the perception of warble began, and
its strength grew as the number of repetitions increased further. A more ex-
treme example occurred for the .5 ms segments (2000 Hz). If the segments
alternated, it took more than 48 repetitions (48A, 48B, 48A, 48B) before the
perception of warble occurred. Thus, it appears that the fundamental factor
in determining the tonal perception for ABAB sequences is the number
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Figure 4.14. The tonal strength (A) and degree of warble (B) for repeating ran-
dom noise segments.



of repetitions × the duration of each segment: roughly, if the number of
repetitions × the duration of each segment is greater than 24, then the per-
ception of timbre warble occurs.

In chapter 5, I discuss visual random dot kinematograms (RDK) that
closely correspond to the repeated noise sequences described here. RDKs
are typically constructed by first generating a random two-dimensional ar-
ray of dots (either white dots on a black surround or vice versa). This array
becomes the first frame presented to the subject. In the second frame, a
subset of the dots is moved laterally the identical short distance (the empty
space left behind is filled in with another random array of dots). If the tim-
ing between the two frames is correct, observers report seeing the subset of
dots move coherently. As soon as the second frame remains constant, the
subset of dots fades back into the entire array and essentially becomes
invisible.

Let’s make the correspondences clear. For both repeated noise and
RDKs, we start with a randomly generated stimulus: a random sequence of
amplitudes for the repeated noise stimulus and a random array of dots for
the RDK stimulus. Then we repeat the entire noise segment in time or re-
peat a subset of dots in time and space. In both cases, the perceptual system
isolates the repeating unit and creates an object, a tonal percept, or an orga-
nized subgroup of moving dots. What differs between the two is that the
entire noise segment is repeated, while only subsets of the dots are moved.

We can make the two stimuli even closer by adding a random noise to
the repeated noise stimulus. Now any segment consists of the repeating
segment plus a random segment of noise, so that across the entire se-
quence each segment is different (e.g., the first segment would be A + N1,
the second segment would be A + N2, and so on, where N1, N2 . . . repre-
sent the added random noise; of course this is logically equivalent to
simply adding continuous noise). The added random noise should mask
the tonal percept by weakening the perception of the autocorrelation be-
tween segments. Thus, the listener must pick up the identical segments
embedded in the segments + noise sequence in the same way the observer
must pick up the identical subset in the subset + random dot array. It
should come as no surprise that listeners have no trouble in hearing the
tonal percept embedded in the noise. In fact, it is almost impossible to
simply hear the sound as continuous noise (remember that it is very diffi-
cult to mask Glass patterns).

Sequences Made Up of Repeating Segments 
With Different Durations

We can create more complex sequences if we alternate the duration of the
repeated segments. If we represent the segments based on one duration by
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letters and the segments of the second duration by numbers, a typical se-
quence with four repetitions per segment would be:

AAAA1111BBBB2222CCCC3333.

As found above, there is a gradual perceptual change as the number of
repetitions increases. For two repetitions (e.g., AA11BB22CC33), there is
a slight sense of a complex tone created by the two durations. For four rep-
etitions, the two pitches become more apparent, although both seem to oc-
cur at the same time. You can shift attention to either pitch, but there is no
perception of alternation. However, by eight repetitions, the two pitches ap-
pear to alternate, and it is quite easy to anticipate the changes. It is interest-
ing to note that the perceptual changes occur at about the same number of
repetitions found for sequences in which all segments had the identical du-
ration. It may be that the tonal strength is weaker for the minimum case of
two repetitions, but beyond this there is little evidence that the perception is
any more difficult.

A similar effect was found by Whitfield (1979) using discrete pulses to
create the perception of pitch. Whitfield created two pulses with interele-
ment intervals of 4.7 ms (termed A) and 5.3 ms (termed B). If the former is
repeated continuously the resulting frequency is 214 Hz, and if the latter is
repeated consistently the frequency is 187 Hz. Whitfield created alternating
sequences ranging from ABABAB . . . to 10A, 10B, 10A, 10B. . . . The
perceptions were identical to those found for the random noise segments.
For ABABAB or AABBAABB . . . , listeners perceived a steady tone at the
average frequency of 200 Hz. For 4 to 6 repetitions of A and B, listeners
perceived a steady tone with a flutter, and only at 10 repetitions and beyond
did listeners hear two alternating tones.

Sequences Made Up of Repeating Identical Segments
Alternating With Random Segments

We can further weaken the internal structure by alternating repeating
identical segments with random segments. (Here I restrict the discussion
to segments of identical length. For example, one such sequence could be
AAAABCDEFFFFGHIJ. . . . ) For these sequences, the autocorrelation is
equal to (N − 1)/2N, where N is the number of repetitions. The autocorrela-
tion can only approach 0.5 as the number of repetitions increases, so that
we would expect a weaker tonal strength.

In fact, the tonal strength is weaker for these sequences. With 4 repeti-
tions as shown above, there is only a weak perception of pitch and noise
that seems to extend throughout the sequence. By 8 repetitions, the per-
ception is of an alternation between the tonal repeated identical segments
and the random noise segments. But the tonal part is still noisy and rough.
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It is clearly not as tonal as the above sequences that contain strings of iden-
tical noise segments. By 12 repetitions, the tonal part no longer sounds
noisy, and the tonal strength matches a sequence of identical noise seg-
ments. This is about a 50% increase in the number of repetitions necessary
to generate a nonnoisy tonal repetition.

Repetition and Symmetry

In terms of picking up the correlated structure found in pattern repetition
(translation in space or time) and pattern reflection, hearing and seeing are
complementary. As described above, the emergence of pitch from pattern
repetition is nearly always effortless and rapid. But it is extremely difficult
to perceive temporal symmetry. We could take a segment of random noise
(A), reverse it (Ar), and then construct the sequence A Ar A Ar A Ar . . . or
the sequence AAAA Ar Ar Ar Ar. The symmetry of A and Ar would not
be perceived. Instead, the A Ar A Ar A Ar sequence would have a pitch
determined by the sum of A and Ar (i.e., twice the duration of A) and a tim-
bre based on [AAr ]. Composers have written music in which a melody is
played forward and backward, but listeners do not perceive that reversal
(although the symmetry is seen easily in the written score).

In contrast, the perception of spatial repetition is extremely difficult for
random dot patterns. As can be seen in figure 4.15, it is very hard to per-
ceive that the four quadrants are identical. It is possible to discover the
identity by focusing on serendipitous micropatterns and testing whether
those micropatterns are found in all quadrants. This clearly resembles lis-
teners trying to find distinctive sounds and then listening for them to repeat
when the period is very long.

But the visual perception of bilateral symmetry is rapid and effortless
for random dot patterns. As is clear from figure 4.15, symmetry about the
vertical axis is easier to detect than symmetry about the horizontal axis, and
it is much easier to detect symmetry in central viewing (foveal) than in pe-
ripheral viewing. The extent to which the symmetry is perceivable from the
centerline will depend on the particular stimulus. Corrupting the symmetry
only along the vertical axis can disrupt the perception of symmetry even
though the rest of the pattern is symmetrical and, conversely, inserting a
symmetrical vertical axis can lead to the illusion that the entire pattern is
symmetrical.

However, the detection of bilateral symmetry can be difficult for arrays
using elements of different colors, sizes, orientations, or spatial frequen-
cies. Huang and Pashler (2002) suggested that observers judge whether
each value of one dimension is symmetric one by one. For color, observers
would first judge whether the red squares are symmetric, then judge
whether the blue squares are symmetric, and so on. Thus, the time required
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for symmetry detection will depend on the number of different values that
must be individually tested.

Consider a way to determine the axis of symmetry. To simplify, assume
that the axis of symmetry is vertical. Suppose there are six columns com-
posed of dots of differing brightness (ABCCBA) so that the symmetry axis
lies between columns 3 and 4. Then, for every pair of columns, correlate
the brightness levels across rows. For random dot patterns, each column
will be perfectly correlated to only one other column: 3-4, 2-5, and 1-6. All
the other correlations should be low or zero because the arrays are gener-
ated randomly. Notice how this process resembles discovering repetition
symmetry. Again, suppose there are six columns (ABCABC) so that the
repetition axis lies between columns 3 and 4. Then, for every pair of
columns, correlate the brightness levels across rows. In this case, the corre-
lated columns would be 1-4, 2-5, and 3-6.

The important point here is that statistical structure in the stimulus does
not necessarily mean that it can be picked up by the perceptual system. The
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Figure 4.15. The perception of visual repetition is very difficult. It is possible to
see the fourfold repetition in (A) by identifying unique configurations in each quad-
rant. Vertical (B), horizontal (C), and vertical and horizontal (D) symmetry are per-
ceived effortlessly.



auditory system is tuned to repetition symmetry (ABCABC), while the vi-
sual system is tuned to reflection symmetry (ABCCBA). We need to be
hesitant in assuming that because information exists in the stimulus array it
is usable perceptual information. Moreover, real objects do not have perfect
spatial or temporal symmetries (such as faces or rhythms), so that there
must some way to combine the distributions of correlations into a criterion
value in order to judge whether symmetry exists.

Can an Autocorrelation Model Explain Texture Perception?

When I think about how people solve repeated noise sequences to derive
repeating segments, I imagine that people somehow create two parallel
strings and slide them relative to each other. At one offset, the numbers co-
incide, and that temporal interval yields the repeating unit and ultimately
the pitch of the sequence. When I try to imagine how people solve Glass
patterns, I come up with a similar strategy: People select different subsets
of the dots and somehow try to find equivalent spatial patterns in the re-
maining dots. How such a matching procedure could be implemented in the
auditory or visual system is not well understood, so my explanation can
only be an informed hypothesis.

It is interesting to note that similar computational problems arise in sev-
eral places. First, for audition, there is the problem of spatial localization.
For a source located on one side of the head, the sound will reach the near
ear before it reaches the far ear, and the temporal difference (termed the in-
teraural delay) will vary systematically with the spatial location. The time
difference reaches its maximum when the source is directly opposite one
ear and gradually decreases to zero as the source moves directly in front of
or behind the head. The physiological problem, then, is to calculate the
time delay between the sound reaching the near ear and the far ear. It is
easy to recast this problem in terms of autocorrelation: Namely, the prob-
lem becomes finding the time delay that produces the maximum correlation
between the two excitations. Conceptually, the first output from one ear is
delayed progressively in time, and the interaural delay is taken to be that
shift which maximizes the correlation between the near and far ear excita-
tions. More than 50 years ago, Jeffress (1948) suggested that there was a
set of delay lines coming from each ear. Every delay line from one ear was
crossed with every delay line from the second ear (e.g., t and t + .002 ms),
and the excitations from the two signals fed into one coincidence detector
that was assumed to calculate the correlation between the two signals.
Every coincidence detector thus calculated one interaural delay. Although
this type of model is conceptually simple and there are cells that respond
maximally to specific interaural delays, the continuing problem is that there
is little evidence that delay lines actually exist in either the auditory or
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visual system. The lack of such delay lines has led Shamma (2001) to sug-
gest that there is direct spatial comparison of the movement of the sound
wave along the basilar membranes of the near and far ears because, that can
directly represent the interaural delay.

Second, for vision, there is the problem of tracking the movement of ob-
jects in space. Starting with Reichardt (1961), models for the perception of
movement are based on delay lines feeding into coincident detectors. Imag-
ine an edge that moves spatially. The outputs from every receptor would be
a set of delay lines (including one with zero delay), and those would be
paired one-to-one with delay lines from other receptors at different spatial
positions. Each such pair of delay lines would converge on one coincidence
detector. The speed and direction of movement would be calculated by
the cross-correlations of the spike patterns between pairs of delay lines by
the coincidence detectors (this is covered more completely in chapter 5).

I have conceptualized the conversion of auditory or visual excitation
into separate, but overlapping sensory channels. Each channel is most sen-
sitive to a particular auditory or spatial frequency, and the excitation of
each channel is a function of the stimulus energy at that frequency. As de-
scribed in chapter 2, the excitation can be conceptualized in terms of the
firing rate of each channel or in terms of the timing between the spikes of
the neurons. There need not be only one mechanism.13

To the extent that the neurons are phase-locked to the excitation, then
each repetition should generate the identical distribution of intervals be-
tween the spikes. There are several possible mechanisms that we could pos-
tulate that maintain the neural spike sequence so that matches can be found
among the repeating units. Cariani (1999) hypothesized that there are sets
of recurrent delay lines that detect the repetition. Any signal creates a set of
memory traces that encode the spike timings. Each trace is delayed by a
different time interval. The new incoming signal is compared to every de-
layed version of the current memory trace and for each delay, a coincidence
detector passes on those spikes that occur in the same time bins from the
circulating trace and the present signal. There would be many coincident
spikes for the delay lines that match the repetition rate of the signal, but
only a small number of coincident spikes for the delay lines that do not.
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13. Given that organisms need different kinds of information about the external world, we
would expect that there would be several ways in which neural excitation could and would
code that information. Victor (2000) presented an information theory method for estimating
whether using the coincidence in the timing of the spikes improves the information transmis-
sion above that obtained by simply counting the number of spikes. He estimated that the gain
is roughly 20-30%. Using a similar method, Victor (2000) argued that when several neurons
signal the identical stimulus property (i.e., neurons that have the same best frequency), trans-
mission is better if the spike trains of each such neuron are kept separate, rather than summing
all together. The gain here is smaller, about 10%. This is the same conclusion as Reich et al.
(2001).



This process creates a new set of delayed traces that in turn are compared
to the next signal. Over time, the relative signal strength of the delay line
at the period of the signal would increase due to a high number of coinci-
dence spikes, and the strength of the other delay lines would decrease.

These sorts of models seem to capture our implicit understanding of
how we make sense of repeating patterns. To provide an equivalent sort of
visual stimulus, we could construct a random dot kinematogram similar to
the ones shown in figure 1.1. The observer would see a streaming pattern of
dots and would have to judge each time the pattern recycled. A similar two-
dimensional recurrent delay line model would work.

Moreover, it seems that models based on the timings among the spikes
can also account for the change in perceived periodicity and pitch for alter-
nating random noise segments. As described above, a sequence such as
ABABAB is perceived as repeating AB units. But, as the number of repeats
is increased from

AABBAABB to AAAAAAAABBBBBBBBAAAAAAAABBBBBBBB

the perception shifts to repeating A and B units. The perceived pitch dou-
bles and the timbre of the noise shifts back and forth from As to Bs. The se-
quence is not perceived as repeating AAAAAAAABBBBBBBB units,
even though this 16-segment unit is a perfect repeat. We can speculate that
there are limits to the ability to find periodicities at long intervals, so that
perceptual strength would decrease for the repeating units based on 16
noise segments. If the noise segment were 2 ms (a frequency of 500 Hz),
the duration of 8 As followed by 8 Bs would be 32 ms (31 Hz), close to the
lower limit for tonal perception.

All of these models depend on the existence of neurons capable of de-
tecting the coincidence of incoming excitations. In the auditory pathway,
octopus cells fit the requirements for a coincidence detector (Oertel, Bal,
Gardner, Smith, & Joris, 2000). The octopus cells are found in the mam-
malian cochlear nucleus and cross the bundle of auditory fibers. Several
features of the octopus cells make them superbly suited to detecting spike
coincidences. First, each octopus cell spans about one third of the fre-
quency array of the auditory fibers and therefore can integrate the firings
across a wide range of frequencies. In mice, a single octopus cell could be
expected to receive inputs from auditory nerve cells that span two to three
octaves. Anywhere from 60 to 240 fibers would converge on a single cell,
and roughly one tenth to one third of the fibers seem to be necessary to trig-
ger the octopus cell. Second, the summation of synaptic potentials from
many fibers within 1 ms is required to cause a firing. Third, octopus cells
can fire rapidly with exceptionally well-timed spikes to periodic broadband
sounds like clicks. Fourth, octopus cells can phase-lock at very high rates,
between 800 and 1,000 spikes per second and respond to tones above
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2000 Hz with a single action potential at the onset of the tone. Moreover,
the octopus cells show the strongest synchronization of all cells in the
cochlear nucleus to amplitude-modulated (AM) stimuli. All of these factors
point to octopus cells as the cell type that could detect synchrony in the fir-
ing of auditory nerve fibers between a delayed representation and a present
stimulation. The properties of these auditory octopus cells are nearly iden-
tical to those of the odor-detecting coincidence cells described in chapter 3
(Laurent, 2002; Perez-Orive et al., 2002).

Summary

If there is one thread running through this chapter (and the entire book),
it is the concept that perceiving is essentially identifying correspondences
across time and space that segment the auditory and visual field, but that
there are striking limitations in our ability to find those correspondences.
There are limitations due to the grain of the correspondences, the resolution
of the nervous system, the organization of the pathways, and cognitive lim-
itations in the ability to match the physical properties or even levels of a
single property. These correspondences may be abstract or may even trans-
form across the auditory or visual scene. The perception of circular Glass
patterns depends on correspondences that change as a function of distance
from the center and as a function of orientation.

In chapter 5, I consider still another correspondence problem: creating
matches between objects that change position or orientation across time.
Such matches can be based on changes in brightness, or contrast, or ab-
stract properties like rotation direction or vibration frequency. The percep-
tual properties that underlie correspondence are extremely diverse; again
there is a tension between general-purpose and specific tuned processes.
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5

Perception of Motion

It is early August in Tennessee, and I am enjoying the flashing of
fireflies each evening. There are only a small number of fireflies,

and the flashes are unsynchronized. It is relatively easy to match the suc-
cessive flashes to each firefly. However, if there were many flies and their
flashes were synchronized so that there were alternate periods of dark and
light (as happens with several species), it would be very difficult to match
the sequence of flashes firefly by firefly. In the previous chapter, I consid-
ered the correspondence problem for static textures. In this chapter, I con-
sider the correspondence problem for moving stimuli, primarily in the
visual domain, and tracking the erratic movements of fireflies is one of the
most difficult problems.

It could be argued that detecting motion is the most important thing ani-
mals do. Animals must detect motion when they are stationary and when
they are moving. Motion degrades camouflage and crystallizes objects. It
protects us from predators and provides prey. At one level, motion percep-
tion simply is another kind of texture segmentation. There is a change in the
visual field such that one region pops out and is perceived as beginning and
ending at different locations in the field. In fact, Julesz (1995) and others list
movement as one of the factors leading to texture segmentation. However, in
this section, I treat movement in terms of the correspondence problem to
emphasize the similarity to the perception of repetition and symmetry.

Two findings from the research on texture perception stand out for me.
The first is that both preattentive effortless perceiving and attentive “scruti-
nizing” perceiving are found for visual textures and repeating noise seg-
ments. It is not clear whether these two impressions imply that there are two
distinct and nonoverlapping processes or if it means that several processes
necessarily are active simultaneously, another example of multiresolution.
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The same problem of the multiplicity of processes is also central here. To
foreshadow the discussion, there appear to be multiple stimulus dimensions
and multiple perceptual processes that affect the perception of motion (e.g.,
texture, shading, distance, timing). Moreover, it seems that the perceptual
processes are so intertwined that the dominant one is a function of the over-
all context.

The second finding is the “hardening” of the percept. For repeating
noise stimuli, as the number of repetitions increases, the competing noise
disappears, the perceived tone:noise ratio “explodes,” and the overall sound
becomes treated as a unit. For visual textures, the Glass patterns illustrate
that above a certain level of internal coherence, segregation becomes unam-
biguous. We can imagine a similar hardening for motion. Suppose we start
with an array of dots moving in random directions and distances. Progres-
sively, we constrain the movement of a subset of those dots so that they
move in the same direction. At a certain level of constraint in terms of the
variation of motion, that subset reaches a degree of internal coherence such
that the subset is seen moving together as a unified surface (and may even
induce a reverse-direction movement in the other dots).

This chapter discusses the classic research on apparent motion with one
or a small number of discrete visual elements that move together, then
moves to more complex configurations involving the movement of many
elements, and finally considers recent research that employs stimuli that
create second-order movement.

Visual Apparent Movement

It is difficult to come up with an adequate perceptual definition of motion be-
cause the simple physical definition of change in distance across time does
not adequately portray how we perceive motion. Distance, time, and velocity
are all perceptually related, so it is not clear which ones are independent and
could be used to derive the others. We could argue that motion is perceived
directly, or we could argue that motion is perceived in terms of the objective
definition of a distance change across time. Real motion occurs when objects
change position continuously across intermediate points over time. Apparent
motion occurs when objects change position in discrete jumps over time;
the object disappears from one position and reappears at another. Given the
appropriate combinations of step size and time intervals between steps, the
discontinuous motion is seen as continuous (e.g., neon signs and motion
pictures). It may appear that studying apparent motion is a dead end because
physical motion is normally continuous. Yet, being able to extrapolate the
trajectory of animals that are alternately hidden by trees and exposed in a
forest environment must have been a very important survival tool.
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Up to the late 1800s, motion was thought to be perceived by tracking
one’s own eye movements. But even at that time, it was known that motion
was perceived when the eye did not move. Exner (1875) provided convinc-
ing evidence that motion was a distinct perceptual quality, and not a deri-
vative of static views spread across space and time. Exner produced two
slightly displaced sparks, separated by a short time interval. The critical
outcome occurred when the sparks were so close spatially that both sparks
were always seen together (they could not be separated by any type of eye
movement). Even in this case, there was a clear perception of a single spark
moving back and forth between locations at intermediate time intervals. To
demonstrate that these apparent movements were not due to small, nonper-
ceptible eye movements, Wertheimer (1912) constructed an apparatus that
created two out-of-phase motions, for example a red light moving left-
right-left and simultaneously a green light moving right-left-right. Ob-
servers saw both motions, and Wertheimer argued that the eye could not
move in both directions at once.

One-Dot Apparent Movement

The Gestalt psychologists used apparent motion to denounce what they
claimed was the orthodox sensation + experience theory of perceiving. Ac-
tually, the Gestalt psychologists had constructed a straw man, as no theorist
adhered to the viewpoint that perception emerged only from the com-
pounding of sensations. The positive outcome was that extensive research
was undertaken to map out the optimal space-time relationships character-
izing apparent motion.

In the simplest case of apparent motion, a single target at position x1 is
flashed at time t1, and a second target is flashed at position x2 at time t2. The
basic case occurs when the targets are identical in the two frames and are
either brighter or darker than the background. Given the appropriate inter-
val (t2 − t1), the target seems to move from x1 to x2, regardless of whether
the target is brighter or darker than the background. The outcomes are more
complex if the two targets differ, and those will be discussed later.

Now consider the cases in which the targets are continuously alternated.
Korte (1915) summarized experiments that incorporated three factors:
(1) the discriminability of two lights; (2) the distance between the lights;
and (3) the time interval between the onset of each light. Korte originally
used the time interval between the offset of the first light and the onset of
the second, but the results are simpler to interpret if the timing between the
onsets is used. (This differs from hearing, in which the offset-to-onset in-
terval determines some types of organization, as discussed in chapter 9;
Bregman, Ahad, Crum, & O’Reilly, 2000.) The important law here is that
the onset-to-onset interval is directly proportional to the spatial distance. In

196 Perceptual Coherence



order to create the appearance of smooth motion, as the separation between
the targets is increased, then the onset interval must also be increased, and
conversely, as the interval is increased, then the distance must be increased.
For each individual, there usually is a wide tolerance for perceiving smooth
motion. The onset differences for smooth motion can range up to a factor of
five, so that the perceived velocity of the movement can vary greatly.
Korte’s “laws” should be considered only as gross generalities (Kolers,
1972).

Apparent motion occurs even between physically different stimuli.
Cavanagh, Arguin, and Grunau (1989) reported that subjects saw motion
between two stimuli defined by any combination of attributes such as
brightness, color, texture, relative motion, or depth. For example, a green
light will gradually change into a yellow light and vice versa along the
movement path. But if a green light alternates with a red light (i.e., an op-
ponent pair of colors) there is a binary switch at an intermediate point, and
similarly, a white spot on a gray background flows into a black spot on the
same gray background (i.e., a contrast reversal) by changing from white to
black at an intermediate point.

Apparent motion also occurs between two stimuli with different physi-
cal shapes. Moreover, the optimal onset-to-onset interval for movement
depends on the separation only and does not vary among diverse pairs of
different shapes. Some examples, taken from Kolers (1972), that provide il-
lustrations of the “plasticity” of contour are shown in figure 5.1. These ex-
amples illustrate the “sensibleness” of the perceived motion, even though
the smooth motions that occur may disregard nearest-neighbor movement
or occur between quite different shapes. The trajectory of the movement
can be influenced by the stimuli as well as surrounding context. Shepard
and Zare (1983) first created a sequence consisting of alternating single
black dots and found the optimal onset difference for the straight-line
movement between the dots. Then they inserted a flashed curved gray arc
connecting the first and second dots so that the sequence was dot-arc-dot.
Instead of the direct straight-line motion between the two black dots, the
perceived movement followed the path of the arc, and the optimal onset
difference increased due to the extra length of the arc.

Apparent Motion and the Correspondence Problem

As soon as we construct patterns made up of multiple dots, the problem of
the best correspondence between the dots in the two images emerges. The
local information in each view does not specify the correspondence. If we
assume a one-to-one match of the dots in the two views, the number of
possible matches is equal to the factorial of the number of dots (if the one-
to-one restriction is dropped, then the number of matches equals 2n). For
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patterns of 2 dots there are only 2 possible matches, and for patterns of
4 dots there are 24 possible matches, while for 10 dots the number of possi-
ble matches explodes to over 3 million. Even for relatively simple dot pat-
terns, the number of possible matches makes an exhaustive search for the
best correspondences among the dots in the two images beyond compre-
hension. The visual system must relentlessly prune out unlikely matches
until only a few likely candidates remain. I consider some of these heuris-
tics later.

Let us start with the simple configuration based on four dots positioned
at the fixed corners of an imaginary square.1 The two dots along one diagonal
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Figure 5.1. Illustrations of frequently and rarely perceived apparent movements.
The alternating images are shown in the two rows, and the double-headed arrows
indicate the back-and-forth movements. Movements that cross each other are rarely
perceived, even if the alternative movement requires objects to change shape.
Adapted from Aspects of Motion Perception, by P. A. Kolers, 1972, Oxford, UK:
Pergamon Press.

1. Instances of apparent motion in which the successive locations of each point are deter-
mined probabilistically are discussed later.



are alternated with the two dots along the other diagonal, termed the motion
quartet by Giese (1999). There are two simple apparent motions in which
both dots simultaneously undergo either horizontal or vertical motion, as
illustrated in figure 5.2. Two other possible types of apparent motion that are
rarely perceived also are shown in figure 5.2: (1) motions in a clockwise or
a counterclockwise direction, and (2) motions in which each dot appears to
split and to move in two directions.

Even this simple configuration demonstrates some of the fundamental
aspects of apparent movement:

1. The perceived motion tends to switch between horizontal and vertical
motion (and may switch to perceiving the two pairs of dots simply alternat-
ing without movement at all). Given that the stimulus presentation is inher-
ently ambiguous and underdetermined, continuous viewing nearly always
leads to the emergence of alternative percepts. Attneave (1971) termed
these configurations multistable. We can operationally define the strength
of each organization by measuring the percentage of time it occurs within
an interval or by the probability that it is the initial perception.

It is unlikely that these perceptual shifts are due simply to the satiation
and consequent reduction of firing rates of stimulated cells. Moving one’s
eyes, shifting attention to a different part of the visual object, or imagin-
ing a different percept often instigates switches. Leopold and Logothetics
(1999) provocatively suggested that the switches are an active attempt
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Figure 5.2. The movement
“quartet.” Frame 1 and Frame 2

are alternated. Horizontal and
vertical movements predomi-

nate, even though the two
movements for each are out of
phase (the left-to-right move-

ment of one pair of dots occurs
simultaneously with the right-
to-left movement of the other
pair). Adapted from Dynamic

Neural Field Theory for
Motion Perception, by

M. A. Giese, 1999. Boston:
Kluwer Academic.



to try out different perceptual solutions to avoid local minima that repre-
sent nonoptimal percepts. These attempts would be directed by nonsen-
sory parts of the cortex (Areas V4 and higher levels of the cortex; see
chapter 2).

2. The perceived motion often is determined by spatial proximity. We
can alter the imaginary square by varying the height and width to create
narrow horizontal rectangles or tall vertical rectangles. The perceived
motion occurs between the closest pairs of dots. In this simple case, corre-
spondence is based on proximity. Of course, in more complex configura-
tions, the nearest-neighbor correspondence may create a false solution (as
illustrated for the Glass patterns in chapter 4), but proximity might be con-
sidered to be the first and most frequent heuristic employed. The heuristic
for the nearest-neighbor match is roughly equivalent to a preference for the
slowest movement, and therefore this preference can be understood as rep-
resenting gradual and continuous movements that occur most frequently in
the environment.

3. The perceived motion is the one that makes each of the individual mo-
tions as similar as possible. This heuristic has the effect of minimizing
changes to the configuration of the points. If the points are understood as
lying on the contours of an implicit object, this heuristic can be understood
as being a preference for assuming rigid objects, and such a preference
would match the ubiquity of rigid objects in the natural environment.

4. The perceived motion rarely involves one dot splitting into two parts
(e.g., the split motion in figure 5.2 never occurs). Again, this heuristic
makes good naturalistic sense because nearly all objects maintain their in-
tegrity over time, and only in rare cases do objects split into parts or fuse
together. Dawson (1991) detailed the interrelations among heuristics 2, 3,
and 4.

5. The perceived motion rarely involves crossing paths that could result
in collisions. Kolers (1972) constructed a slightly different array, also
shown in figure 5.1, which placed a noncollision path in conflict with mo-
tion between different shapes. Viewers invariably saw the noncollision
path.

6. Pantle and Picciano (1976) made use of a simple three-dot linear ar-
ray that was originally used by the Gestalt psychologist Ternus. In the tra-
ditional sequence, three dots in a horizontal row are flashed together,
followed by three identical dots offset to the right. The perceived motion
turned out to be a function of the timing between the two flashes. If the on-
set of the second stimulus immediately followed the offset of the first, then
only the outer dot was perceived to move. The middle two dots remained
stationary. However, if the onset of the second stimulus was delayed, then
the entire row of three dots was perceived to have shifted to the right. Both
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outcomes are shown in figure 5.3. The perception of group movement also
occurred if the two stimuli were presented to different eyes. The three-dot
shift, which is perceived at all but the shortest time intervals, makes each of
the dots move in exactly the same way.

7. The perceived motion can be influenced by prior movements within
the display. Antis and Ramachandran (1987) primed either horizontal or
vertical perceived motion by initially displaying one of the two move-
ments. The perceived motion follows the direction of the priming move-
ment; it is as if the dots do not want to change direction. It is interesting to
note that it is only the direction of the priming motion that influences the
apparent motion; speed or distance do not. The visual system expects ob-
jects to move in rather consistent paths and not to change direction quickly
or erratically.

8. The perceived motion can be influenced by the perceptions from prior
trials, a phenomenon termed hysteresis. Imagine starting with a narrow
horizontal rectangle so that the perceived motion is vertical (along the short
dimension). If that rectangle is gradually changed over time so that it be-
comes tall and vertical, observers will continue to perceive vertical motion
far beyond the height-to-length ratio that would normally bring about a
shift to horizontal motion. Conversely, starting with a tall vertical rectangle
yielding horizontal motion will bring about horizontal movement even for
narrow horizontal rectangles. Hysteresis can be understood as a type of
priming, in which the visual (and auditory) system expects to see one kind
of motion and will cling to that percept even if an alternative perception
would usually be preferred if that stimulus configuration were presented in
isolation.
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Figure 5.3. The two perceived
movements in the Ternus display.

The double-ended arrows repre-
sent the back-and-forth motion as

the frames are alternated.



9. Motions in distant parts of the array can determine the perceived
motion within a small region. Ramachandran and Antis (1983) presented
multiple rectangles in one visual array and alternated the diagonal pairs of
dots of each rectangles (like Frame 1 and Frame 2 at the top of figure 5.2)
at the same time. They found that the normal oscillations between horizon-
tal and vertical apparent motion occurred at the same time, so that at any
instant the same kind of motion occurred in all rectangles. If the orientation
of the rectangles differed in two parts of the field, then all rectangles still
oscillated together, even though that might require a different perceptual
shift in each of the two fields. These outcomes illustrate global processes
for resolving motion ambiguity, because there are no reasons that all the
rectangles ought to shift at the same time, particularly if they are at differ-
ent orientations. The authors point out that stick-figure Necker cubes that
undergo spontaneous reversals do not synchronize their shifts. The above
synchronization may be restricted to configurations that are not perceived
as three-dimensional figures.

To summarize, two principles stand out: (1) match two points in nearby
spatial positions, and (2) match pairs of points that could have undergone
the same smooth motion. Surprisingly, shape, color, or brightness similar-
ity do not influence apparent motion to any degree. Watamaniuk, McKee,
and Grzywacz (1995) argued that over time, less ambiguous motion corre-
spondence gradually spreads across connected units, replacing more am-
biguous possibilities.

Configural Effects

All these studies suggest that there are linkages between the motions of the
individual elements, but they do not make those connections critical to
solving the correspondence problem. The group motion can be understood
as the correspondence that makes each dot movement identical, without
arguing that the motion depends on the figural properties. The next three
approaches do postulate that the integration of the perceived motions of
individual elements within a global figure is based on an overall scene
description.

Yuille and Grzywacz (1998) hypothesized that observers segment the
moving points by how well they match real motions in the physical world
including translation, rotation, rigid motion in three dimensions, pure ex-
pansion, and differential motions at boundaries (see Zanker, 1993, 1995).
In effect, observers calculate likelihood ratios: which physical motion most
probably generated the perceived movements. The initial step would be the
derivation of the velocity and direction of the image points. The local
movement measurements feed modules that group similar movements
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together. Then physical motion modules calculate which physical motion
would best account for those movements. The grouping module and physi-
cal motion model module interact to yield the most likely perceptual repre-
sentation of the movements.

Consider rotation. Points at different distances from the center of a sur-
face move at different rates and trajectories. The grouping module would
tend to place all dots at the same distance together based on the common
movement (velocity and trajectory direction), and the physical motion
module would interpret those movements as implying a rigid rotation. This
leads to the perceptual illusion of coherent motion (motion capture), even
though the motion of each dot is different. Wagemans, Van Gool, Swinnen,
and Van Horebeek (1993) similarly argued that the perception of lower-
order regularities between pairs of individual elements is supported by
higher-order structures defined between pairs of pair-wise groupings of ele-
ments and so on upward, involving larger numbers of elements but fewer
structures.

Tse, Cavanagh, and Kakayama (1998) made explicit the two steps im-
plicitly involved in the typical apparent motion stimuli that alternate be-
tween images. The first step is to identify the “something” in each image,
termed the parsing step, and the second step is to match the “somethings”
in the two images, termed the correspondence step. In the traditional exper-
iment, because the two stimuli are nonoverlapping (one stimulus appears
and then disappears at one location, to reappear at a distant location), the
parsing step is automatic and unambiguous, and the strongest correspon-
dence cue simply is spatial proximity, as detailed above. However, if a
different shape in the second image that shares part of the same contour
replaces the shape in the first image, the perceptual problem is to determine
what are the figures in each image. The shared contour creates the ambigu-
ity in the parsing step, because there is not sufficient information in the
views to yield the two independent but overlapping or abutting objects.
The inability to solve the parsing step should stop the processing, because
the correspondence step needs units to proceed. The authors argue that the
visual system has evolved rules for resolving these ambiguities in the pars-
ing step, and that these rules follow the ecological constraints found for
real objects. These rules must make use of both views (i.e., the space-time
representation) in order to determine the way in which one shape could
transform into a second.

Tse et al. (1998) present several configurations to demonstrate the action
of higher-level process in solving the apparent motion, as illustrated in
figure 5.4. In the first type of configuration (figures 5.4A, 5.4B, and 5.4C),
the first frame contains two simple square objects and the second frame
contains an elongated rectangle, along with one of the original squares.
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Figure 5.4. Configural motions
demonstrating the interplay of the
parsing and correspondence stages
in apparent movement. In each
display, the two rows portray the
alternating images. The arrow in
the top row illustrates the per-
ceived motion that connects those
two images (A). For example, in
(A) a black rectangle grows out
of the black square on the left, in
(B) a gray rectangle grows out of
the black square on the left, and in
(C) a gray rectangle grows out of
the gray square on the right.
Adapted from “The Role of Pars-
ing in High-Level Motion Pro-
cessing,” by Tse, P, Cavanagh, P.,
and Nakayama, K.,1998, in T.
Watanabe (Ed.), Computational
Neurobiological, and Psychophys-
ical Perspectives (pp. 249–266).
Cambridge, MA: MIT Press.



(The two frames are alternated in exactly the same way as in the classic ap-
parent motion presentations.) Even though the two stimuli are presented
discretely, the perception is that the elongated rectangle appears to grow
out of the contiguous square (figure 5.4A) even if the extension is the
brightness of the opposite square (figure 5.4B). If the elongated rectangle
touches both squares, then the rectangle appears to grow out of both if
the squares are identical or grows out of the one with the same brightness if
the squares differ (figure 5.4C).

In the second type of configuration, two different rectangles are shown
in frame 1, and then a connected combination of the two shapes is shown
in frame 2. The perceived motion goes along the smoothest contours and
tends to parse the figures along concave contours (figure 5.4D). In the
third type of configuration, the first frame contains a small square and
an elongated vertical rectangle. In one variant, the second frame contains
an elongated horizontal rectangle that appears to go behind the original
vertical rectangle (figure 5.4E). The perception here is a smooth exten-
sion of the original square into a horizontal rectangle that proceeds
behind the vertical rectangle. If the two frames alternate, the horizontal
rectangle appears to extend and contract. In the other variant, the second
view contains two horizontal rectangles that do not touch the vertical
rectangle (figure 5.4F). The perception here is quite different: the original
square seems to extend to the right but is not part of the right rectangle,
and the right rectangle flashes on and off. The parsing module guesses
that the right square represents a brand-new object because it does
not butt up against the vertical rectangle. It is not part of the apparent
motion of the original left square (a similar auditory outcome is presented
below).

Using the same type of stimuli, Holcombe (2003) demonstrated that the
sudden onset of a visual stimulus could be interpreted as a morphing mo-
tion, as found by Tse et al. (1998) above, but it also could be interpreted
as the disappearance of a shape in the foreground. Several examples are
shown in figure 5.5. If we simply compare figures 5.5A, 5.5B, and 5.5C, in
5.5A only 27% of observers see the small gray square morph into the gray
rectangle, but in 5.5C nearly all observers perceive a morphing motion.
Figure 5.5A is consistent with the black rectangle disappearing, exposing
the hidden part of the gray rectangle, but that cannot occur in figure 5.5C.
Figure 5.5B is an intermediate case because the gray segment overlapping
the black rectangle provides an ambiguous cue to occlusion. Similarly, in
5.5D and 5.5E, the small textured rectangle could occlude a central seg-
ment of the black-and-white gradient in 5.5D, but the texture background
in 5.5E makes occlusion unlikely.

Tse et al. (1998) and Holcombe (2003) argued, successfully in my opin-
ion, that these results blur any distinction between the parsing and matching
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stages and that the perceived motion reflects the most likely interpretation.
The perceived motion “makes sense” of the parsed shapes in the two views.
Dawson (1991) presented a similar view that the basic function of visual
systems is to identify objects in the world, and that motion perception tracks
those identified objects.

Parallel Outcomes in Hearing

Auditory Induction and Visual Apparent Motion

One compelling parallel outcome has been termed auditory induction
(R. M. Warren, 1999). If we present a tone, a silent interval, and then the
identical tone again, the perception is of two tones separated by a silent
interval, that is, the correct percept. However, if we present the tone, a loud
noise signal that contains the frequency of the tone, and then the same tone
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Figure 5.5. The perception of occlusion as opposed to morphing in shape depends
on the likelihood that occlusion of the horizontal rectangle could occur. Frames 1
and 2 are alternated. Adapted from “Occlusion Cues Resolve Sudden Onsets Into
Morphing or Line Motion, Disocclusion and Sudden Materialization,” by A. Hol-
combe, 2003, Journal of Vision, 3, 562–572.



again, two perceptions can result as a function of the timing of the first
tone, noise, and second tone.

First, if the first tone ends at the onset of the noise and the second tone
begins immediately after the noise ends, there is an illusion that the tone
has continued within the noise. It is as if the auditory system decided
that the noise simply drowned out the tone based on the fact that the tone
occurred until the noise began and reappeared immediately after the noise
ended, and that the noise contained the frequency of the tone. The tone cap-
tures its frequency within the noise, and as a result the noise sounds subtly
different. This perception seems perfectly analogous to the visual example
shown in figure 5.4E (except for the occlusion due to the vertical rectan-
gle). Visual objects are hidden; sounds are drowned out. Auditory induction
is not limited to constant tones: Listeners hear frequency glides and con-
nected speech in noise.

Second, if the first tone ends slightly before the onset of the noise so that
there is a silent interval between them, and the second tone starts slightly
after the noise ends again, producing another short silent interval, there is
no illusion: Listeners hear a tone-noise-tone sequence. It is as if the audi-
tory system decided on the basis of the intervening silences that there were
really three discrete and unconnected sounds. This second outcome seems
perfectly analogous to the visual example in figure 5.4F, in which apparent
motion does not occur.

Bregman (1990) has suggested that these auditory outcomes can be un-
derstood in terms of an old + new heuristic. If a sound undergoes a rapid
change and then reverts back to the original sound, the auditory system in-
terprets that change as being due to the onset and offset of a new additional
sound rather than being a rapid change away from and then back to the
original. This perception occurs only if the components of the original
sound still are found in the changed sound. This auditory heuristic rests on
the physical fact that environmental sounds normally do not change rapidly
and is no different in kind from the visual heuristic that rests on the physi-
cal fact that objects normally do not change direction dramatically (Antis
& Ramachandran, 1987). Here, the old + new heuristic becomes the most
plausible description of the events because the old stimulus abuts on both
sides (in space or in time) of the occluding stimulus.

Interleaved Auditory Melodies and Visual Transparency

One type of stimulus used to study transparency makes use of two superim-
posed black-and-white gratings oriented at different angles that construct a
visual plaid. Each grating can be characterized by its frequency (i.e., the
number of alternating black-and-white line cycles per visual degree), the
contrast between the white and black bands, and its orientation with respect
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to vertical. As described in the chapter 1, if the grating moves within an
aperture, the motion path is ambiguous because it is impossible to judge
movement along the axis of the grating. Normally, observers judge that the
grating is moving strictly perpendicular to the grating.

If each grating (at different orientations) moves perpendicularly, there
are two perceptual outcomes. In the first, both gratings are seen to move
coherently in the same direction toward the intersection of constraints
(see figure 1.2); the two gratings appear to be at the same depth. In the
second, the two gratings are seen as two separate transparent surfaces
moving relative to each other; one surface is perceived as being in front
of the other.

The experimental question is, under what conditions are the individual
motions incorporated into a single coherent surface or segmented into two
(or more) coherent surfaces in depth that appear to be sliding across each
other (Stoner & Albright, 1994)? In general, transparent perceptions occur
when the two gratings have different spatial frequencies, different veloci-
ties, different brightness contrasts, and when the difference in orientation is
greater than 100°, as shown in figure 5.6. (Differences in the colors of the
gratings and differences in perceived depth also increase the probability of
transparent motion.) These outcomes are explained in terms of a proposed
two-stage mechanism. There is an initial stage that abstracts the local ve-
locity information from each grating separately (Yuille & Grzywacz, 1998)
and a second stage that integrates the local outputs using some form of
population coding. If combining the local information yields one central
peak, coherence occurs. In contrast, if combining the local information
yields a bimodal peak, then transparency occurs.

To summarize the important point, if the two gratings are similar, move
at the same velocity, and differ in orientation by 90° or less, the perception
is of one coherent sheet. Otherwise, differences in the gratings or orienta-
tions lead to the perception of one transparent surface on top of another.

A second, more common, type of transparency occurs when the fore-
ground surface does not give off any light itself but simply attenuates the
background surface by its transmission fraction: The overall illumination
decreases, but the contrast between the parts of the background does not
change. Transparency occurs when the ratio of C to A equals the ratio of D
to B, and occlusion occurs when A = B = C (Beck, 1982; Metelli, 1974; see
figure 5.7). For transparency, the perceived order in depth of the three
surfaces is ambiguous, but for occlusion the perceived order in depth is
obvious. Stone, Watson, and Milligan (1990) varied the brightness of
region A and demonstrated that brightness configurations that normally
lead to the perception of transparency for static displays also enhance the
perception of two or more sliding surfaces for moving plaid displays. These
outcomes suggest that coherence-transparency-occlusion judgments can be
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Figure 5.6. If two
black-and-white grat-

ings move indepen-
dently, it is possible to
perceive the two grat-
ings forming a single

surface and moving in
the direction of the in-

tersection of constraints
or to see each grating as
being a separate surface

and sliding past each
other. The sliding per-
ception is likely if the

two gratings are differ-
ent in brightness or
color (A), move at

different speeds (B),
have different spatial

frequencies (C), or have
an angular difference

greater than 100° (D).



influenced by knowledge of the rules determining images formed in natu-
ral settings. This is essentially the same argument made by Yuille and
Grzywacz (1998), as well as Tse et al. (1998). Strictly computational mod-
els do not capture the implicit knowledge about how natural events are
organized.

The auditory parallel to moving plaids, or generally to coherent-
incoherent visual stimuli, are interleaved melodies in which one takes two
well-known tunes (e.g., “Mary Had a Little Lamb” and “London Bridge”)
and alternates the notes, keeping an equal time interval between the onsets
of each pair of adjacent notes (coming from different melodies). The
experimental question is what conditions lead to the perception of one
coherent but meaningless melody and which ones lead to the perception
of the two separate melodies, exactly the identical question asked about
plaids.

If the sound quality of the notes is identical and the notes come from the
same scale region so that it is impossible to isolate the notes of each
melody by pitch, it is extremely difficult to pick out each melody. The sim-
ilarity in pitch creates one coherent tonal sequence that does not resemble
either melody. If the notes of one melody are progressively raised in pitch
until there is no overlap in the notes of each melody, the two melodies sep-
arate to form separate coherent melodies, and it becomes easy to identify
either one (Dowling, 1973; Hartmann & Johnson, 1991). Furthermore, Bey
and McAdams (2003) showed that differences in the timbre between the
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Figure 5.7. The brightness ra-
tios between different surfaces
determine whether the surfaces
are perceived as transparent
(i.e., equal ratios) or whether
one surface is perceived as oc-
cluding and covering another.



notes of the interleaved melodies can also lead to the perception of the
interleaved melody (in that work, one melody was interleaved with a ran-
dom string of notes).

Thus, when the two gratings and two melodies have the same frequency
content, the perception is coherent. Making the frequencies different brings
about the split into two surfaces or two melodies. The visual models
mentioned above have an explicit second stage that either “decides” to inte-
grate the motions to produce coherence or decides to keep the motions sep-
arate to produce sliding transparency. Presumably, auditory models should
have a similar second stage to decide if the pitch sequence should remain
integrated or split when there is partial overlap of frequencies, but such a
model has not been formulated. Probably such a second stage for both
hearing and seeing would be Bayesian, reflecting knowledge and experi-
ence about natural events.

van Noorden’s Frequency-Time Relationship for Auditory
Streaming and Korte’s Space-Time Relationship for 
Visual Apparent Motion

Korte’s “law” summarizes the necessary relationship between the distance
between two lights and the onset interval required to perceive smooth ap-
parent motion. To review, as the distance between the lights increases, the
onset interval must be simultaneously increased to maintain the perception
of apparent motion. In pioneering work, van Noorden (1975) alternated
two tones (as in apparent motion) and varied the frequency ratio and the
onset interval between the two tones. Two perceptions could result. In the
first, the two tones appeared to alternate coherently, sounding like a musi-
cal trill. In the second, the two tones split apart and appeared to form sepa-
rate pitch streams. It was possible to attend to one stream or the other, but it
proved impossible to attend to both at the same time. One consequence was
that it was very difficult to keep the two tones in registration; the notes in
the streams seemed to occur simultaneously.

Van Noorden found that the transition between the perception of one
coherent alternating sequence of two tones and the perception of two sepa-
rate sequences, one of higher-pitched tones and one of lower-pitched tones,
was an inverse function of the frequency ratio between the tones and the
onset-to-onset timing of the tones, essentially the number of tones per
second. If the tones are presented at a moderately fast rate so that the onset
interval is 200 ms (5 tones per second), the sequence breaks into two
streams if the frequency ratio of the tones is 2 or greater, an octave apart.
But as the onset interval decreases to 100 ms (10 tones per second), the
necessary frequency ratio is only 1.25, 4 musical steps apart. Even though
the default percept is that of a coherent two-tone pattern, Bregman (1990)
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pointed out that the split is obligatory; the notes form two streams even if
the listener is trying to hear the two tones together.

In making judgments about apparent motion and auditory segregation,
the auditory and visual perceptual systems metaphorically are asking
whether the two stimuli could have come from the same object. For both
systems, the expectation is that objects change slowly. Thus, if the interval
between the two stimuli is relatively short, and yet the physical separation
or frequency difference is large, the perceptual systems judge that the two
stimuli come from different objects. Two lights are seen flashing alternately
without connecting movement, and two tones are heard as coming from
different sources.

Auditory and Visual Hysteresis

Hysteresis refers to the tendency to stick with the initial percept even as the
stimulus changes greatly. The same effect found for apparent visual move-
ment occurs for the alternating tone sequences used by van Noorden
(1975). In some of the continuous tonal sequences, the frequencies of the
two tones gradually became more different. Listeners heard a coherent se-
quence at frequency ratios that would normally result in two streams; con-
versely, if the frequencies of tones were gradually made more similar,
listeners heard two streams at frequency ratios that would normally lead to
a coherent sequence.

Theories of Motion Perception

Apparent Motion of Rigid Arrays

Over the last 25 years, the consensus has been that there is no single motion
detection system. Originally, the notion was that there were two systems.
The first captured small quick movements of complicated patterns in one
eye based on global matches, while the second captured longer slower
movements of simple figures based on feature matches that could be inte-
grated across the two eyes.2 Although such a dichotomy has proven inade-
quate, the basic concept of two or more systems still seems sound. In what
follows, I begin by discussing the types of experimental results that lead to
the short/long motion distinction, and then discuss how this notion has
evolved in the past 10 years.
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Braddick (1974) originally proposed the small-distance versus long-
distance distinction. Braddick and others used white-and-black random dot
patterns similar to those used originally by Julesz to study texture differ-
ences. Typically, the random dot patterns were built from square matrices
in which 50% of the cells were filled with black dots (e.g., 288 dots in a
24 × 24 matrix). Two such patterns are alternated at the same spatial posi-
tion: One dot pattern contains the original array of dots, and the second dot
pattern is modified in some way.

1. The dots in the cells of one small region of the array are reversed by
chance. Thus, each black cell would have a 0.50 probability of shift-
ing to white, and each white cell would have a .50 probability of
shifting to black. If two such patterns are presented sequentially, the
small region seems to flicker or glitter, but there is no perception of
movement.

2. The dots in the cells of one small region are shifted by a certain
amount (a 4 × 3 rectangle is shifted five columns to the right). The
black-and-white pattern in the rectangle remains fixed and overwrites
the original pattern in the target columns. This leaves the cells in the
original rectangle empty, and they are filled randomly. Here, if the
two patterns are presented sequentially, the small rectangle seems to
move to the right. The visual system must be performing a global
comparison between the two arrays, because the rectangle cannot be
seen in either static view.

3. The dots in the cells of one small region are shifted by a certain
amount (as in number 2) and then the black and white cells are re-
versed. If the two patterns are presented sequentially, the perceived
movement is from the second pattern to the first; the perception is the
reverse of the actual temporal sequence.

All three of these possibilities are shown in figure 5.8.
To see that a small region has been shifted laterally (or vertically) as in

numbers 2 or 3, the correspondences in the dot patterning within the region
must be recognized in the two different arrays. The perceptual problem
is that after the shift of the small region, there may be several similar regions
in the array that can act as incorrect matches. We can conceptualize this pro-
cess as having two steps. The first step isolates the local correspondences
between the dots in the two arrays: Each cell in the first array has a list of all
the possible brightness matches in the second array. Somehow, the indeter-
minacy of these matches must be resolved in order to see motion. The sec-
ond step searches for sets of connected cells with identical correspondences
(e.g., correspondences equal to two steps to the right) and groups those cells
to create the perception of coherent movement. This grouping process will
inevitably misallocate cells, and there are many examples in which a true
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coherent movement captures incoherent movements. Julesz and Hesse
(1970) termed this a global process that resolves the ambiguities of the local
process of cell correspondence and argued that the capture process demon-
strates a cooperative system for movement in which the elements are bound
by nonlinear excitatory and inhibitory forces.

Braddick (1974) argued for a separate short-term global motion detec-
tion system based on several experimental outcomes. First, there is a limit
to the allowable displacement. This displacement, which has been termed
dmax, is a function of several variables: retinal position, size, and density of
the dots. Lappin and Bell (1976) found that subjects performed better with
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Figure 5.8. Rigid movement: The black-and-white squares within two small 4
row × 3 column rectangles change between frame 1 and frame 2. In frame 1, the
rectangle in the cell in the upper left corner is located at row 2, column 5 (enclosed
by a thick outline). In frame 2, the rectangle shifts five columns to the right so that
the upper left cell is located at row 2, column 10 (the initial position is enclosed by
a thin outline and the new position by a thick outline). In (A), the black-and-white
squares in the two rectangles randomly change between frame 1 and frame 2: No
movement is seen. In (B), the left rectangle in frame 1 is shifted five columns to
the right in frame 2, and the black-and-white squares in the original position are
changed randomly: Left-to-right movement is seen. In (C), the left rectangle in
Frame 1 is shifted five columns to the right, and the brightness of every square is re-
versed: The rectangle appears to move to the left, reversing the temporal sequence.



larger arrays and Baddeley and Tirpathy (1998) suggested the perception of
movement was based on the fraction of dots that moved, so that the detec-
tion of motion appears to be a global operation on the whole pattern, and
not a local operation founded on the perceived motion of just several dots.
If the displacement is beyond dmax, the target region does not appear to
move. Instead, the dots within the region appear to oscillate independently
in different directions, being the chance pairing of noncorresponding dots.
Second, there is a limit to the onset-to-onset interval. In Braddick’s experi-
ment, if that interval was greater than 50 ms, the perception of motion was
diminished. Moreover, there was no relationship between displacement and
time as found for the apparent movement of single figures. Third, apparent
movement does not occur if the first array is presented to one eye and the
second array is presented to the other eye. In contrast, apparent movement
of single figures will occur for the same alternating eye sequence.

I will return to the difficulties of the short-long distance distinction.
However, I do believe that there is a real distinction between short-distance
perception based on spatial correlation and long-distance perception based
on the identification and correspondence of features, and that the short-long
distinction is very similar to the pitch-feature distinction discussed for the
perception of repeated noises in chapter 4. A segment of auditory noise is
just like a random dot pattern.

Apparent Motion of Nonrigid Arrays

Another type of visual stimulus used to study motion detection is similar to
the seemingly unconnected movements of the fireflies. A random array of
dots is shown in the initial frame. In the next (and successive) frames, each
dot moves to a new position. The direction and distance of movement could
be randomly determined for each dot, or the direction and distance of
movement could be constrained for a subset of the dots. For example, 10%
of the dots would move vertically in each frame. The observer’s task is to
identify the direction of the coherent subset of dots.

This paradigm is similar to but more complicated than the random dot
arrays described in the previous section. In those experiments, all of the
dots that shifted from frame to frame formed a connected vertical or hori-
zontal rectangle so that each dot moved identically. Here, the dots con-
strained to move in one direction are usually scattered throughout the entire
field, and each can move a different distance. Moreover, different dots will
move in the target direction on successive frames. Any single dot has a lim-
ited lifetime, so that it can move in one direction only for very few steps.
This restriction disallows observers from tracking the movement of a single
dot. The movements shown in figure 5.9 illustrate these constraints. In the
two frames shown, 4 of the 10 dots move to the right. But only dots F and
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H move rightward in both frames, and the number of rightward movements
of those dots would be restricted by the limited lifetime constraint. Thus,
the observer must integrate the variable local movements of dots across the
entire field, and the cooperative effects described for the identical move-
ments of the dots within rectangles are not likely to occur.

In the majority of previous experiments, all the dots were identical and
the independent variable was the percentage of dots that moved coherently
in one direction. If all the dots moved in random directions and distances,
the observer would see a swarm of dots moving incoherently on the screen.
This is the same perception found by Braddick (1974) when the displace-
ment of the displaced rectangular region was greater than dmax. However, if
the percentage of coherent dots is as low as 5%, observers will perceive the
coherent direction. Moreover, the observers report that the movement of
the coherent dots creates the perception of a unified surface. It is remark-
able that the visual system can perceive coherent motion from such a pro-
portionally small signal. Braddick (1995) pointed out that this paradigm
can be conceptualized as a masking experiment in which the coherent
movement signal dots are being masked by the incoherent masking dots.
This makes the signal-to-noise ratio, as conceptualized for auditory experi-
ments using a decibel measure, 20 log (0.05/0.95) = −25.6 dB, equal to the
best performance in detecting a pure tone in noise.

Using alert monkeys trained to judge the direction of the coherent dots,
researchers (Britten, Shadlen, Newsome, Celebrini, & Movshon, 1996;
Britten, Shadlen, Newsome, & Movshon, 1992) compared the accuracy of
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Figure 5.9. Nonrigid movement: Each dot moves independently. Some dots con-
tinue in the same direction (although the velocity may change), while others change
direction and velocity. The movements of the dots from frame 1 to frame 2 are
shown as dotted arrows ending at the starting position in frame 2.



the judgments to the actual response of individual units in the monkeys’
MT cortical region. First, they measured the directional selectivity of a cell.
Then they presented random arrays for 2 s with differing percentages of
coherent dots moving either in the preferred direction of that cell or in the
opposite direction. The number of spikes to dot motion from the cell was
recorded in the preferred and nonpreferred directions of the cell. We can
think of this as a signal-to-noise problem, with the signal being the number
of spikes to movement in the preferred direction and noise being the num-
ber of spikes to movement in the nonpreferred direction. If a monkey
adopts the strategy of responding in the preferred direction if the total num-
ber of spikes exceeds a certain number (the traditional criterion assumed in
signal detection theory), then performance will improve to the point that
the distribution of spikes generated by movements in the preferred and
nonpreferred directions do not overlap.

The distribution of the number of spikes overlaps when the percentage
of dots undergoing correlated movement is less than 1%, but there is a clear
split when as few as 3% of the dots move coherently in the preferred direc-
tion, and the percentage of correct responses approaches 100% if 12.8%
of the dots move coherently, as depicted in figure 5.10. The major effect
is that the number of responses to motion in the preferred direction in-
creases dramatically, but there is also a small decrease in the number of
responses to motion in the nonpreferred direction. If we compare the actual
pointing performance of the monkey to that of a single neuron based on the
strategy of responding if the number of spikes exceeds a criterion number,
sometimes the monkey is better, but sometimes the neuron is better. Why is
the monkey not better than a single neuron? The monkey should be able to
integrate responses from many neurons with different directional sensitivi-
ties to improve discrimination. One answer lies in the fact that the responses
of all the neurons that respond to the movement are somewhat correlated
(estimated to be about +0.12), so that simply combining the outputs does
not provide independent estimates. In fact, including the responses of neu-
rons tuned to a different direction is likely to reduce accuracy.

A second point concerns the neural code. As presented in chapter 1, the
relevant neural code must depend on the time course of the event. When
presented with a 2 s stimulus (each frame lasted for 45 ms), the timing of
the individual steps is somewhat irrelevant, and the number of spikes may
be a sufficient statistic to yield optimal discrimination. However, if the
stimulus is presented for 1/20 of the time, 100 ms, the behavioral discrimi-
nation is reduced by about one third, while the neural discrimination based
on the number of spikes declines dramatically. In these cases, it is likely
that information about the correlated movements of clusters of dots could
be contained in the neural signal by means of the timing between individual
spikes. Even for random motion sequences, Bair and Koch (1996) have
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shown that that there can be a remarkable similarity in the timing between
spikes for each repetition of the sequence.

Croner and Albright (1997) investigated whether color or brightness cues
increased the detectability of the coherent moving dots. The results for the
control conditions in which all of the dots were the same color were similar
to those of previous experiments: The percentage of coherent dots necessary
for motion detection was about 5%. If all of the coherent signal dots were
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Figure 5.10. The discriminability of nonrigid motion in the preferred (solid curve)
and nonpreferred direction (dashed curve) of a neuron in the MT (V5) of an awake
monkey. The probability distributions diverge sharply as the percentage of dots
moving in the same direction increases. Adapted from “The Analysis of Visual Mo-
tion: A Comparison of Neural and Psychophysical Performance,” by K. H. Britten,
M. N. Shadlen, W. T. Newsome, and J. A. Movshon, 1992, Journal of Neuro-
science, 12, 4745–4765.



one color and all of the incoherent masking dots were a different color, this
percentage was reduced to approximately 1%. The problem here, as pointed
out by H.-C. O. Li and Kingdom (2001), is that all of the coherent dots were
one color and all of the incoherent masking dots were another color (say 1%
red, 99% green). Even when the dots were not moving, it was possible to
attend to the coherent ones. H.-C. O. Li and Kingdom constructed 50% red-
50% green dot configurations in which a small percentage (e.g., 3%) of
the red or green dots moved coherently. In these cases, the coherent and
masking dots were of the same sort: for example, 3% of the red dots moved
coherently, while 47% of the red dots and 50% of the green dots moved in-
coherently. In these configurations, color or brightness cues did not improve
the detection of the coherently moving dots. Unless it is possible to attend to
one feature beforehand, the authors argued that the motion detection system
will integrate movement across color and luminance differences without
first segregating the dots by feature. In fact, motion-detecting neurons in the
middle temporal visual area respond to directional motion defined by any
feature, a property termed form-cue invariance. The motion signals from all
features are combined and summed by a motion detector. In a real environ-
ment with unknown multicolored objects, the best strategy would be to inte-
grate coherent motion from all possible features.

In the extreme case, Watamaniuk et al. (1995) investigated the ability to
detect a single dot moving in a relatively coherent trajectory embedded
among dots in random motion. In each successive frame, the target dot
moved in one direction while all the other dots moved in different random
directions, including the direction of the target dot. Thus it would be im-
possible to detect the target dot within a small number of frames because
other dots could have randomly mimicked that identical motion. Watama-
niuk et al. argued that motion detection is based on an interconnected
network of adjacent similarly oriented lower-level detectors. The idea is
that the firing of one such detector leads to an excitation signal to other
adjacent detectors that makes them easier to fire. The facilitation inherent
in the network acts to smooth out random motion and maintain the original
track of the dot (the detection of motion in gentle arcs equals that for
straight lines). This is the same effect hypothesized to account for contour
formation in chapter 4. Here again is the notion of cooperative systems that
act to integrate noisy data and that reflect the natural physics of the world,
where objects tend to go straight or bend in gentle arcs.

Overall, the important observation is that the perception of coherent sur-
faces occurs even if only a small fraction (or one) of the dots are moving
coherently in the same direction. Moreover, the motion can be based on any
differentiating feature. One question is the degree to which attention and
task requirements can affect motion detection. One possible answer is that
the initial stages of sensory processing are changed so that the actual data
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sent to the motion detection mechanism produced are different. A second
possible answer would be that the initial stages are obligatory, being based
on neural connections, so that the same data are always created. Attention
shifts could occur in the motion detection mechanism, possibly created by
higher-level cortical feedback, and determine the phenomenal nature of the
surfaces and objects specified by the motion. There is recent evidence that,
in fact, cognitive mechanisms may interact with motion detection mecha-
nisms. The basic finding is that the strength of the neural response in the
parts of the dorsal cortex thought to be involved in motion detection de-
pends on the focus of attention of the observer. For example, Beauchamp,
Cox, and DeYoe (1997) constructed a complex stimulus in which different
regions simultaneously changed brightness, color, or the direction of coher-
ent dot movement. The neural response was greatest when the observers
made judgments about the movement direction and were attenuated when
the observers made judgments about the nonmovement properties.

Motion Aftereffects

Aftereffects demonstrate that movement can be perceived without any
physical movement at all. If you stare at a waterfall for about 30 s and then
shift your gaze to a stationary region, you will find that the region appears
to move in the reverse direction at roughly the same speed as the waterfall.
(Aristotle was the first person to report motion aftereffects, but he reported
incorrectly that the stationary region seemed to move in the same direction
as the waterfall.)

We expect that any neural encoding unit would lose its sensitivity after
long periods of stimulation and firing. This loss in sensitivity will alter the
overall response to subsequent stimuli compared to the response without
the adapting stimulus, and the resulting change is a way to probe the opera-
tion of that perceptual system. At the simplest level, the existence of an
aftereffect is taken as evidence for neural encoding units selective for a
particular property.

If aftereffects were simply due to the loss of sensitivity of neurons
within the visual (or auditory) systems, then I do not believe they would be
of much interest to anyone but sensory physiologists. However, aftereffects
can be affected by the segregation of the elements into surfaces, as well as
by attention. Aftereffects are not obligatory; the manner and strength of the
aftereffect is a reflection of both the lower- and higher-level organizations
of the pathways. Moreover, recent analyses suggest that aftereffects are not
simply physiological flaws but that they can be thought of as adaptations
that tune perceptual systems to different stimulus probabilities to maximize
information transmission.
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To review, neurons sensitive to motion direction are found in the primary
visual area V1 stemming from the magnocellular pathways that are insensi-
tive to color and stationary contours, but that make strong transient firing re-
sponses to moving contours. The V1 neurons project to the middle temporal
visual area and then onto the medial superior temporal area. For the higher
regions, the general rule is that the size of the receptive field increases and
the selectivity for complex motion patterns increases. The basic conception
is that the direction-sensitive neurons in V1 with small receptive fields ex-
tract the local motion signals autonomously, and those local motion signals
are integrated in the temporal areas to form objects and surfaces.

On this basis, models for motion aftereffects are composed of two parts.
The first is adaptation in the first-stage local motion detectors. Barlow and
Hill (1963) measured the firing rate to rotating random dot patterns in the
rabbit retina. They found that the rate decreased over a period of about 20 s.
After the pattern was removed, the firing rate dropped below its baseline
and gradually recovered over a period of about 30 s.

The second part is competitive comparison between the local motion de-
tectors in a second stage of analysis. Motion aftereffects occur when the
unadapted detectors override the adapted detectors. Often the comparison
is between opposing motion detectors so that the aftereffect is reversed mo-
tion, but that is not always the case. The motion aftereffects seem due to the
drop in responsiveness of the adapted neurons. There is little change in the
unadapted neurons.

Motion Integration

Vidnyanszky, Blaser, and Papathomas (2002) summarized interesting re-
search illustrating how the segmentation of random dot movements into one
surface or two transparent surfaces affects the motion aftereffect. If there
is a pattern of moving dots, the local direction of movements determines
whether we perceive one coherent surface or two transparent surfaces mov-
ing relative to one another (similar to the two possible perceptions resulting
from the movement of two gratings shown in figure 5.6). The motion after-
effects are particularly interesting in the latter case because there are two
adapting directions at each point in space, and so we might expect that the
motion aftereffect would also be in two directions. But that is not the out-
come due to the integration of motion from all directions.

Consider the prototypical case: coherent motion of all of the dots to
the right, creating the perception of a single surface moving to the right
(figure 5.11A). That motion would adapt and reduce the firing rates of the
rightward-direction neurons. When followed by a static dot pattern, the
normal balance in the firing rates between the leftward and rightward neu-
rons that yield no motion would have been disrupted. The leftward neurons
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would be firing at a higher rate and all the static dots would appear to move
to the left.

Now consider the prototypical case for motion in two directions: 50% of
the dots scattered throughout the array move up to the right, and the re-
maining 50% move down to the right (figure 5.11B). When followed by a
static dot pattern, there is only a single motion directly to the left (as for
figure 5.11A) and not two motion aftereffects. Vidnyanszky et al. (2002)
argued that, as stated in the paragraph above, there are two motion direc-
tions at each spatial point. But those motions are integrated to yield a direct
rightward movement so that the motion aftereffect is to the left.
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Figure 5.11. The motion aftereffects arise from the integrated motion in the adapt-
ing stimulus. For that reason, the two motions in (B) combine to generate only a
single motion aftereffect direction that is opposite to the pooled movement in the
stimulus. There are two motion aftereffect directions if the stimulus motions are
perceived to be on different surfaces. Different velocities between the gray and
black dots, as in (C), can yield those two motion aftereffects in different directions
and velocities. Adapted from “Motion Integration During Motion Aftereffects,” by
Z. Vidnyanszky, E. Blaser, and T. V. Papathomas, 2002, Trends in Cognitive Sci-
ence, 6, 157–161.



Transparency aftereffects do occur if the adapting stimulus affects two
independent sets of direction-sensitive neurons. For example, transparency
aftereffects occur if the two motions appear to be two surfaces at different
distances, or if one motion is at a very slow speed and the second at a very
fast speed, as illustrated in figure 5.11C (Van de Smagt, Verstraten, & van
de Grind, 1999). The important point is that the balance between opposite-
motion-direction neurons is not sufficient to explain motion aftereffects.

Optimal Coding

It is easy to think of aftereffects as design flaws in perceptual systems, but
Wainwright (1999) and Clifford, Wenderoth, and Spehar (2000) suggested
that aftereffects can be seen as a model for the tuning of perceptual systems
to the probabilities of occurrences of events in the world. To maximize
information transmission for any dimension (e.g., motion, direction, ori-
entation, color), perceptual systems should match their sensitivity to the
probability of occurrence of the values along each dimension so that each
output occurs equally often (see figure 3.5).

In the case of motion aftereffects here, there is a strong signal with little
noise. The optimal information strategy is to reduce sensitivity to the adapt-
ing stimulus so that more of the dynamic range of the neuron’s firing rate
can be used for other events. A person comes to these experiments with a
long history of viewing motions in different directions. We can assume that
over time, all directions occurred equally often, so that the optimal prior
sensitivity would be flat across directions. The experimental adapting con-
ditions slightly increase the probabilities of motion in one or two direc-
tions. In order to continue to maximize information transmission, this
should lead to a decrease in the sensitivity to motion in those directions and
create a motion aftereffect if the subject is presented with a stationary pat-
tern. The predicted change in sensitivity has been found by Hosoya et al.
(2005) in retinal cells as described in chapter 2.

First Order (Fourier) and Second-Order (Non-Fourier) 
Motion Patterns

Visual Second-Order Patterns

The distinction between short- and long-distance motion perception has
become blurred. In general, the fact that motion is perceived for discrete
presentations implies that the visual system integrates over spatial dis-
tances and temporal intervals so that the empirical outcomes that led to the
conclusion that there are two different limits would suggest that there are
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two kinds of space-time processes. But Cavanagh and Mather (1989)
argued that there are not two different limits; instead, short- and long-
distance motion perception exist on a continuum and the previous distinc-
tion based on dmax rests on the confounding of stimulus properties with
distance. There would be only one system whose output reflects the spatial
and temporal properties of the stimulus.

Cavanagh and Mather (1989) suggested another type of dichotomy in
motion processing that occurs between first- and second-order patterns
(sometimes termed Fourier and non-Fourier patterns). First-order statistics
refer to spatial and temporal variations in intensity or wavelength. Put sim-
ply, two areas have different first-order statistics if they differ in average
brightness or color. Black-and-white gratings can be described in terms of
the intensity variation across space and so are first-order stimuli. Second-
order statistics, as used here, are derived from the first-order characteristics
and refer to differences in the variation of brightness (i.e., contrast) or color
across space. It is the contrast that is the important perceptual quantity, as
described in chapter 1, here, and in chapter 6.

A single point in space cannot be defined in terms of its contrast. Local
contrast must be defined in terms of the set of points within that region, and
the variability in local contrast across the entire field generates one possible
second-order description of the field. Suppose we construct a rectangle
composed of randomly arranged black squares (−1 reflectance) and white
squares (+1 reflectance) adjacent to a similar rectangle composed of dark
gray (−0.50 reflectance) and light gray (+0.50 reflectance) squares. The av-
erage brightness is identical, but the contrast within the rectangles varies, a
second-order statistic. From the results in chapter 4 (figure 4.1), the two
rectangles will effortlessly segment apart even though the average bright-
ness is identical. This implies that there must be visual processes that can
discriminate contrast differences.

From the results in the first part of this chapter, we know that motion per-
ception occurs for first-order differences. The empirical question then be-
comes whether there is motion perception for pure second-order differences
(i.e., no first-order differences). Chubb and Sperling (1988) created one type
of image sequence making use of drifting sinusoid waves in which there was
no net directional energy that could stimulate first-order detectors. They
termed such sequences drift balanced because the first-order luminance
changes were equal in each direction.3 Technically, for drift-balanced

224 Perceptual Coherence

3. Even though a stimulus might be drift balanced, it is possible that a localized Fourier
motion detector might be strongly excited (e.g., if not centered on a receptive field). To avoid
this possibility, Chubb and Sperling (1988) defined microbalanced stimuli such that a mi-
crobalanced stimulus is drift balanced when viewed through any separable space-time filter
(window). In essence, if the stimulus is space-time separable as defined in chapter 2, then it is
microbalanced.



stimuli, the expected power of a sinusoid drifting in one direction is equal to
the expected power of a sinusoid of the identical frequency drifting in the
opposite direction (Chubb & Sperling, 1988). If movement is based on the
power of the Fourier components, then movement in either direction should
be equally probable because there is equal power in each direction. But the
perceived motion direction is not ambiguous, as described below.

One type of drift-balanced stimulus is based on contrast-modulated
noise. We start with a two-dimensional array composed of random black or
white squares and modulate the contrast among the squares within each
column. In the simple example shown in figure 5.12, a square wave modu-
lates the random array by changing the black-and-white squares into dark
gray/light gray squares. Five rightward steps are shown in figure 5.12. For
the actual stimuli used in experiments, a sinusoidal wave modulates (i.e.,
multiplies the brightness) the elements in the arrays so that the contrast
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Figure 5.12. Simplified second-order motion. As the square wave travels to the
right, it progressively changes the contrast of columns in the two-dimensional array.
At the high point of the square wave, the black-and-white contrast is maximum; at
the low point, the contrast is greatly reduced. The perception is that of contrast
bands moving from left to right.



varies from white and black when the amplitude of the sinusoid is +1, to
dark gray/light gray (sinusoid amplitude equals 1/2), to equal grays (sinu-
soid amplitude equals 0), to light gray/dark gray (sinusoid amplitude equals
−1/2), to black and white when the sinusoid amplitude is −1.

If the square wave or sinusoidal wave moves horizontally left to right
while the array remains constant, there is clear perception of motion in one
direction across the array.

Why is this pure second-order motion? In every column of the array, the
average luminance is equal, roughly halfway between white and black. The
moving square or sinusoidal wave does not change that average; it only
changes the contrast. There is no change in the first-order average bright-
ness of the columns to detect. Moreover, the modulating waves are drift
balanced; the first-order energy in each direction is equal. Furthermore, the
original array was generated randomly; the correlation between any pair of
columns is zero; and after multiplying each column by a constant based on
the height of the sinusoid, the correlations are still zero. We perceive the
motion of the sinusoid “carried” by the change in contrast, a pure second-
order effect.

A second type of second-order motion is more complex. Imagine that
each dot in the array reverses polarity from white to black and back again at
a rate equal to the amplitude of a horizontal sinusoidal wave. The sinusoid
will create a grating defined by the rate of reversals–rapid reversals at the
sinusoid peaks (90° and 270°) and slow reversals at the sinusoid zero points
(0° and 180°). For example, one dot might reverse 5 times per second and
the adjacent dot at 4.9 times per second. The dots will be reversing out of
phase with each other. If the sinusoid is stationary, the perception is that of
a periodic vertical grating defined by the rate of reversal of the flickering
dots. As in the first example, if the sinusoid is shifted horizontally, there is a
distinct impression of horizontal motion as the dots change their rates of
flashing. Although each dot remains stationary, the average luminance is
always zero, and the contrast within each column does not change. We per-
ceive the motion of the sinusoid.

A third type of second-order pattern consists once again of a two-
dimensional array composed of randomly placed white and black squares.
If each column of squares is progressively contrast-reversed (each square
in the column is switched from white to black and vice versa), there is a
strong perception of movement. Six successive reversals are shown in
figure 5.13. Again, each dot remains stationary, the average luminance is
always zero, and the contrast within each column does not change.

Before continuing, it is worthwhile asking whether the study of second-
order patterns has any validity for understanding a visual system that
evolved in response to natural events. Several times previously I have argued
that perceptual outcomes mirror the physical changes underlying important
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objects and events necessary for survival. Those physical changes then
become the initial stimuli to probe perceptual processing under the
assumption that the perceptual systems have evolved to pick up that type
of information. It is true that contrast-modulated drift patterns do not
occur naturally. Almost always, the first- and second-order textures would
move together: the random dot array and the sinusoidal modulator shift
simultaneously. However, H. R. Wilson (1994) has shown that second-
order processing is necessary to perceive “illusionary” contours that may
separate two textures. For this reason, what is learned about second-order
perceiving of moving patterns probably is quite relevant to the issue of
texture segmentation.

The importance of the first- and second-order pattern issue lies in for-
mulating how many physiological mechanisms, and what kind, are neces-
sary to account for the varieties of motion perception. For first-order moving
patterns such as gratings, dots, and so on, the perception of motion is gener-
ally understood to be in terms of spatial-temporal correlation detectors.
These detectors are picking up a change in luminance, a first-order property,
across a specific distance in a specific time interval. But, purely second-
order patterns do not have luminance changes that could be registered by
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Figure 5.13. Contrast-reversing arrays. At successive time points, the black-and-
white squares in next column reverse brightness levels. The previous column does not
reverse back to its original pattern. A column-width band appears to move to the right.



such receptors. Given that people perceive movement in pure second-order
patterns, two issues emerge:

1. Are there distinct channels and mechanisms for second-order percep-
tion or does the same physiological system perceive both types of
motion?

2. If there are distinct mechanisms, is it possible to develop neural mod-
els based on reasonable assumptions that can account for the percep-
tion of second order motion?

In answering these questions, I make use of a model by Z.-L. Lu and
Sperling (2001). Their model effectively represents a redirection and re-
definition of the original dichotomy proposed by Braddick (1974) between
short-range, fast, energy-based, monocular-only detection and long-range,
slow, feature-based, monocular or interocular (i.e., alternating between the
two eyes) presentation. Braddick’s short-range process splits to become Lu
and Sperling’s first and second processes for first-order and second-order
patterns respectively. Both are fast, sensitive, and primarily monocular, al-
though not limited to short distances. Braddick’s long-range process be-
comes Lu and Sperling’s third process: slow, insensitive, monocular or
interocular, and able to compute motion from a wide variety of features and
stimuli. This third process can be influenced by attention, but the first and
second processes cannot.

Underpinning all of this research is an elaborated neural circuit model
based on the original model of Reichardt (1961) that essentially computes a
spatial autocorrelation. The elaborated model consists of two simple ori-
ented cortical neurons whose receptive fields are separated by some retinal
distance. Each neuron is assumed to change its output based on the fre-
quency/orientation and intensity of the light reaching its retinal position. In
the elaboration shown in figure 5.14, the receptive fields at the two loca-
tions are connected symmetrically (i.e., mirror images) so that the output
can signal movement in either direction. The output of each of the visual
fields is delayed (∆t), and then multiplied by the direct output of the other
field at time t. The multiplication is always between t + delay and t. This
multiplication creates a temporal autocorrelation based on the firing pat-
tern at t + delay and t. There are multiple delay lines, as described in chap-
ter 4, to detect different speeds. Two delay lines (∆t1 and ∆t2) are shown in
figure 5.14 between cells A and B. Finally, the two results are subtracted
from each other to indicate leftward (a positive sum) or rightward (a nega-
tive sum) movement, as illustrated in figure 5.14. Such a circuit will fire
maximally if a bright dot or oriented bar moves from the retinal position of
the first neuron to the retinal position of the second neuron (or vice versa)
in the delay interval. I assume that there are a multitude of such energy
detectors, each tuned to a particular spatiotemporal frequency and spatial
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distance. Z.-L. Lu and Sperling (2001) termed this unit a motion energy de-
tector. The integration of the outputs of all these units is assumed to some-
how lead to the perceived motion.

To determine if the detection of first- and second-order motion is based
on energy detection by means of a motion correlator, as illustrated in fig-
ure 5.14, or by the detection of image features, Z.-L. Lu and Sperling
(2001) made use of two important properties of the proposed motion en-
ergy detectors. The first property is termed pseudolinearity: If a stimulus
is composed of several component sine waves of different temporal fre-
quencies, then the output of a motion energy detector is the sum of the re-
sponses to individual inputs. The second property is that static displays
result in zero output.

The key trick in Lu and Sperling’s technique is to add a static sinusoidal
wave termed the pedestal to motion stimuli assumed to be detected by first-
or second-order energy detectors. The addition of the pedestal changes the
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Figure 5.14. A motion energy detector. The excitation from two receptors A and B
are correlated to determine the direction and speed of movement. The outputs from
each receptor are time delayed for progressively longer times along different delay
lines and correlated to the direct output of the other receptor to determine the move-
ment speed. In (A), the outputs from A and B are delayed for ∆t1 and compared to
the direct outputs from B and A respectively. In (B), the outputs are delayed by ∆t2.
The value of ∆t that maximizes the correlation is an indicant of the speed of the
movement. Adapted from “Three-Systems Theory of Human Visual Motion Percep-
tion: Review and Update,” by Z.-L. Lu and G. Sperling, 2001, Journal of the Opti-
cal Society of America, A, 18, 2331–2370.



motion of a moving luminance or contrast grating. The dark and light
bands of the grating oscillate back and forth, and this effect is purely due to
the addition of the pedestal energy (figure 5.15).

First, if the detection systems for first-order or second-order patterns are
based on energy detection, then the addition of the pedestal should have no
effect on the perception of motion, because a static wave does not change
the output. A moving luminance grating will appear to move to the right
even if the pedestal is added. (This outcome does not tell us if there are one
or two systems; it simply tells us if the systems can detect energy.)

Second, if the detection systems for first-order or second-order patterns
are based on the detection of features such as light or dark peaks, zero
crossings, or valleys, then the addition of the pedestal should result in the
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Figure 5.15. The addition of a constant sinusoidal wave (i.e., the pedestal) pro-
vides a way to determine if motion perception is due to motion energy detection.
From “Three-Systems Theory of Human Visual Motion Perception: Review and
Update,” by Z.-L. Lu and G. Sperling, 2001, Journal of the Optical Society of
America, A, 18, 2331–2370. Copyright 2001 by the Optical Society of America.
Reprinted with permission.



perception of oscillation only, and observers should be unable to detect the
direction of motion.

For all types of first-order stimuli that involve changes in luminance,
there were no effects resulting from the addition of the pedestal. On this
basis, Lu and Sperling argue that a motion energy detector is responsible
for the perception of first-order motion. For simple grating stimuli, ob-
servers are able to detect motion up to temporal frequencies of 12 Hz (i.e.,
12 periods of a sinusoidal, or square wave, grating pass a single point per
second).

However, for second-order patterns, the motion energy detectors as
shown in figure 5.14 would not be able to signal movement. The leftward
and rightward outputs would always be equal because there is no net light-
ness change (only the contrast changes). Yet observers do see second-order
motion. The temporal limits are exactly the same as for first-order patterns,
roughly 12 Hz, and there is no effect resulting from adding a pedestal. This
led Lu and Sperling to make the supposition that second-order patterns
could be detected by a modified version of the motion energy detector. In
the modified version, preceding the motion energy detector there would be
a spatial filter, a temporal band-pass filter limiting the response to lower
frequencies followed by a full-wave rectifier. The full-wave rectifier makes
all of the outputs positive, so that they sum to equal two times the individ-
ual output. A grating from white (+1) to black (−1) sums to 2, but a grating
from light gray (+1/2) to dark gray (−1/2) sums to 1. This makes different
contrasts, with the identical average luminance that previously summed to
the same zero value now summing to a different value.4 This is a LNL
model of the sort hypothesized to account for the perception of second-
order texture patterns in chapter 4 (figure 5.16).

The identical temporal limits for first- and second-order patterns led Lu
and Sperling to make a second supposition, namely that there are separate
detectors for first-order and second-order patterns that travel along parallel
circuits, but which ultimately converge. To test this, Lu and Sperling cre-
ated combination patterns to test whether first- and second-order motions
in opposite directions would cancel each other and if first- and second-
order motions in the same direction but different phases would cancel each
other. The results indicated that phase did not affect the detection of mo-
tion, but the patterns moving in opposite directions did cancel each other.
This led the authors to hypothesize that first- and second-order motion is
first calculated in independent parallel processes (lack of phase effect) but
then combined and summed (opposite directions cancel).
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4. If we assume that neural signals are made positive, we are effectively calculating the
range of the values. Alternately, if we assume that the neural signals are made positive by
squaring the values, we are effectively calculating the variance.



To further assess the similarity between first- and second-order sys-
tems, Lu and Sperling presented the frame sequences either entirely to one
eye, or alternately to the left and right eyes. For both the first- and second-
order patterns, observers were unable to detect energy motion if the frames
were presented alternately to each eye. However, there was some evidence
that motion could be detected for interocular presentation by a feature detec-
tion system that is inherently slower and less efficient.

To sum up at this point, Lu and Sperling contended that first- and
second-order patterns are encoded by parallel energy detection processes.
The difference is that the perception of motion of second-order patterns re-
quires that there is some transformation of the neural code so that decreases
in firing rates (i.e., negative outputs) are recoded into increases in firing
rates. The authors hypothesized a rectifier to make negatives into positives,
but squaring the outputs to remove negatives would also.

Lu and Sperling also constructed a stimulus pattern that could not be de-
tected using either a first- or second-order detection system. In this pattern,
random dots move up and down within columns. The percentage of dots
moving upward and downward within a column varies horizontally accord-
ing to a sinusoidal function. At the peaks of the sinusoidal all the dots move
in one direction, while at the zero points an equal number of dots move up-
ward and downward (see figure 5.17). To perceive motion as the horizontal
sinusoidal is shifted laterally, the observer must detect that the differential
vertical up-down movements drift horizontally. First- and second-order en-
ergy detectors would not pick this motion because there is no consistent
change in luminance or contrast. Lu and Sperling term these motion-
modulation stimuli.
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Figure 5.16. Texture grabber to detect second-order movement. The texture is de-
tected by a linear spatial filter (e.g., a center-surround or a frequency × orientation
Gabor filter) within a temporal frequency band. The variation in contrast of the tex-
ture measured by the filter is either full-wave rectified or squared to convert in-
creases and decreases in contrast into excitations. Adapted from “Three-Systems
Theory of Human Visual Motion Perception: Review and Update,” by Z.-L. Lu and
G. Sperling, 2001, Journal of the Optical Society of America, A, 18, 2331–2370.



The results for motion-modulated stimuli are nearly the direct opposite
of those for luminance (first-order) and contrast-modulated (second-order)
stimuli. First, the sensitivity for these stimuli is much less. Observers can
detect motion of the drifting sinusoid only up to 3-6 Hz, instead of the
12 Hz found for the other types of patterns. In other words, if the sinusoidal
wave drifts above 6 Hz, the observer merely sees random motions. Second,
observers could not perceive motion when the pedestal was added. As de-
scribed above, the masking effect of the pedestal implies that an energy de-
tection system was not used and that the motion was detected by means of
features in the displays. Third, monocular and interocular presentation was
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Figure 5.17. Motion-modulated stimuli. Dots scattered throughout the array un-
dergo up-and-down motion determined by the amplitude of the sinusoidal wave. As
the sinusoidal wave moves toward the right, the dots change their up-and-down
motion. Motion-modulated stimuli cannot be detected by the combination of a
texture grabber and a motion energy detector. Adapted from “Three-Systems
Theory of Human Visual Motion Perception: Review and Update,” by Z.-L. Lu and
G. Sperling, 2001, Journal of the Optical Society of America, A, 18, 2331–2370.



essentially the same. The feature-tracking system can make use of single-
eye and alternate-eye sequences equally well. Locations of the features in
space are marked, while the background is unmarked. Moreover, it seems
that the binocular feature tracking system is indifferent to the type of varia-
tion (this resembles the finding of Kolers, 1972, about shape indifference
for apparent movement and that of Stoner and Albright, 1994, about feature
indifference for transparency perception).

Taken all together, these outcomes lead to a representation of the motion
detection system, as shown in figure 5.18. On the left are the pathways for
first- and second-order patterns based on energy detection. For each path-
way, there are independent connections from the left and right eyes, and the
first- and second-order information is combined only after each has been
computed separately. On the right are the pathways for feature detection.
There are no energy detectors, and the extraction of features can occur
within one eye or between eyes. At a subsequent stage of processing, the
features abstracted by the motion energy system and those found by the
feature extraction processes are combined. At this point, the observer can
weight the importance of each feature to achieve the final perception.

The synthesis of the motion-detecting systems with the feature-detecting
systems binds the local motion to a moving object. The first- and second-
order systems create “objectless” movement, and the feature salience sys-
tem based on selective attention in Z.-L. Lu and Sperling’s (2001) model is
where the different kinds of information are integrated. The same kind of
hypothesized integration occurs in several processes. In Julesz’s final
model, textons merely attract attention to discontinuities, and attention
shifted to that location is necessary to identify the differences. In Stoner
and Albright’s (1994) experiments on transparency, neurons in the visual
system respond to any kind of motion, so that it is necessary to hypothesize
a mechanism to integrate the motion of surface with the properties of the
surfaces themselves.

Up to this point, I have considered lateral movement and how the per-
ception of coherent movement is synonymous with the perception of a fig-
ure, either a surface or an object. Even for the perception of objectless
second-order motion, there are proposed mechanisms that bind that motion
to features of objects. In an interesting demonstration, S.-H. Lee and Blake
(1999) showed that the correlated timing of local motions can give rise to
the perception of figural areas, that is, objects. This is an important demon-
stration because none of the motion energy detector models can explain
the outcome, and because it reinforces the view that the fine structure of the
firing pattern of individual cells underlies motion and object perception.

Lee and Blake made use of two similar stimulus configurations. In the
first, the array was composed of roughly 700 little Gabor patches. Each
patch looked like a striped circle, and the stripes were pointing in random
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orientations. Each patch could move only in an orthogonal (i.e., perpen-
dicular) direction to its stripes (see figure 5.19A). Every patch moved 100
times per second, and Lee and Blake varied the probability that a patch re-
versed direction or continued in the same direction. If the probability was
0.5, each patch had an equal chance of reversing or continuing its direction
(an average of 50 reversals per second) so that the motion was highly irreg-
ular, while if the probability was 0.2, each patch tended to continue in the
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Figure 5.18. The model proposed by Z.-L. Lu and Sperling (2001) that contains
three parallel channels to detect movement. From “Three-Systems Theory of Hu-
man Visual Motion Perception: Review and Update,” by Z.-L. Lu and G. Sperling,
2001, Journal of the Optical Society of America, A, 18, 2331–2370. Copyright 2001
by the Optical Society of America. Reprinted with permission.
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Figure 5.19. Detection of synchronous reversals and rotations. The Gabor patches
and windmills are sketched in (A) and (B) respectively. The double-ended arrows il-
lustrate the reversing motions. Perfectly correlated reversals are illustrated in the
first part of (C). The vertical lines depict each reversal, and the length of the
horizontal lines depicts the time spent in one direction. Uncorrelated reversals
are illustrated in the second part of (C). Each reversal is depicted by a dot in (D).
The reversals are shown for 10 elements; the correlation among the elements ranges
from high to low. Adapted from “Visual Form Created Solely From Temporal
Structure,” by S.-H. Lee and R. Blake, 1999, Science, 284, 1165–1168.



same direction with few reversals. In the figure region of the array, the
patches tended to change their direction of movement at the same time, as
illustrated in (C); Lee and Blake varied the predictability of the direction
reversals among the patches so that at one end nearly all the patches
changed direction at the same time (high correlation in D), while at the
other end a simple majority of patches changed direction at the same time.
In the nonfigure region, each patch changed direction independently of all
others, according to the overall reversal probability. Remember that the ori-
entation of the stripes is random and the process starts randomly (see figure
5.19). Thus, the figure cannot be identified by motion in any single direc-
tion. Even for two patches with the same orientation of stripes within the
figure region, those two patches might be moving in opposite directions.
The only thing that characterizes the figure region is that there is a syn-
chronous change in direction for each patch, not a common direction.
Performance was much better than chance even if the degree of internal
predictability within the figure region was relatively low.

The second array demonstrated that rotational synchrony also provided
a means to identify a figure region. Instead of laterally moving Gabor
patches, Lee and Blake constructed little “windmills” that rotated either
clockwise or counterclockwise (figure 5.19B). As above, the reversals in
direction for the windmills within the figure region were correlated, while
the reversals in direction for the windmills in the nonfigure region occurred
independently. In the exact same way as above, direction of rotation pro-
vided no cue to identify the figure region; only the correlated change in di-
rection could define the figure. Here too, observers were able to identify the
figure region.

Lee and Blake argued that to perceive the figure based on correlated
synchronous reversals, the visual system must: (a) register with high accu-
racy the times at which the changes in velocity occur for a set of spatially
distributed points; (b) correlate the times of these changes over neighboring
regions throughout the array; and (c) identify boundaries marked by sharp
transitions in correlations among local elements. The authors rightfully
claimed that current visual models do not incorporate these steps and tend
to minimize the importance of the temporal structure. (This work also is
relevant to work on grouping and segregation, discussed in chapter 9.)

Watson and Humphreys (1999) illustrated an interesting difference be-
tween linear and rotational motion. In their work, letters (H, T, X, and O)
were either stationary, rotated around their center points, or translated verti-
cally. The observer’s task was to search for a specific letter. If the target
letter was rotated, it was easy to detect that letter if the other letters were
stationary, or translated vertically up or down. However, if the target letter
was rotated, say clockwise, and the nontarget letters were rotated counter-
clockwise, it was much harder to detect the target letter. This outcome is
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quite different from that for linear motion. If the target letter moved upward
and the nontarget letters moved downward, it was easy to detect the target.
Watson and Humphreys concluded that segmenting the array on the basis of
rotation is very difficult, in contrast to segmenting the array on the basis of
linear motion. Previous research of Julesz and Hesse (1970) supports these
results. Julesz and Hesse constructed an array (roughly 80 × 60) of 4,800
“needles” that rotated around their center points. If the target and nontarget
needles rotated at the same speed in different directions, observers could
not perceive the target region. However, if the needles rotated at different
speeds, regardless of direction, the array segmented into different regions.

The authors suggested an explanation based on the organization of local
elements into one or more surfaces. If elements with different motions
form separate surfaces, then detection is made easier because the observer
can attend to one surface. If the local motions do not create different sur-
faces, the observer must scan every element, so that detection becomes
much harder. From this perspective, they hypothesized that the rotation of
individual letters (or any small shape) does not give rise to the perception
of a surface, and that accounts for the poor performance.

I think what connects the research of S.-H. Lee and Blake (1999) to that
of Watson and Humphreys (1999) and Julesz and Hesse (1970) is that rota-
tion direction does not lead to segregation. In Lee and Blake, segmentation
was due to synchrony; in Watson and Humpheys, segmentation was due to
different kinds of movement; in Julesz and Hesse, segmentation was due
to rotation speed. If differences in rotational motion do not give rise to a set
of surfaces such that each surface corresponds to one motion (a failure of
the Gestalt principle of common fate), it demonstrates that visual attention
is not simply afloat in space but is necessarily attached to continuous
surfaces. This is the same argument made by Wandell (1995) in chapter 1
that we perceive motion with respect to dense surface representations.

Auditory Second-Order Patterns

Huddleston and DeYoe (2003) have developed an analogy to second-order
vision patterns by equating movement through pitch with movement
through space. Suppose we start with a set of 10 to 12 tones that range from
300 to 10000 Hz. If we present each tone separately, one after the other,
then we would have the equivalent of a first-order visual stimulus, and we
would expect that it would be trivial for listeners to determine if the tones
were increasing or decreasing in pitch. Now suppose we conceptually start
at Time 0 presenting all of the tones at once, but some of the tones are on
and some are off. As illustrated in figure 5.20, tones 1, 2, 3, 5, 8, and 10 are
on and 4, 6, 7, and 9 are off. Now at each successive time point, we switch
the next highest tone on-to-off or off-to-on. As shown in figure 5.20, at
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Time 1, Tone 1 is turned off, at Time 2, Tone 2 is turned off, at Time 3,
Tone 3 is turned off, at Time 4, Tone 4 is turned on, and so forth. Across all
of the steps, there will be no net change of energy, analogous to second-
order visual patterns.5 Listeners were able to detect whether the change in
tonal components created an ascending or descending change. However,
they were unable to do so at faster presentation rates at which first-order
patterns were easily identified. This type of stimulus is almost identical to
that used by Kubovy and Jordan (1979), described in chapter 4, in which
the phases of the component tones were changed one after the other.

Summary

I believe that Cavanagh and Mather (1989) provided a very useful sum-
mary. They argued that all motion processing starts with local spatial-
temporal comparators based on the Reichardt model or variants described
in this chapter. The comparators operate throughout the visual field in par-
allel, at several spatial and temporal scales, and at many directions and can
be modified by context. Although I have presented the three-process model
(Z.-L. Lu & Sperling, 2001), it is still unclear whether there are three dis-
tinct parallel mechanisms based on the spatial-temporal comparators or
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Figure 5.20. Second-order audi-
tory sequences. At successive time

points, one frequency component
either is turned from on to off or

from off to on. For example, at
time point 5 the fifth frequency

component that had been
presented during the first four
periods is turned off, and that
component remains silent for

the rest of the sequence.

5. This auditory stimulus is exactly analogous to Demonstration 3, “Traveling contrast re-
versal of a random bar pattern,” in Chubb and Sperling (1988). Chubb and Sperling pointed
out that the standard nonlinear filter such as full- or half-wave rectification does not explain
the perception of motion. They argued that a time-dependent linear transformation such as dif-
ferentiation is necessary.



whether one or two branching mechanisms can account for the outcomes
(for example, Bertone and Faubert, 2003, argued that complex second-
order processing such as radial and rotational motion is processed by the
same hard-wired mechanisms used to process complex first-order motion).

I have been struck by how perceptual problems seem to flow together.
The changes in stimulus configurations and resulting perceptions are
gradual and continuous. Neither falls into discontinuous categories. Noise
transforms into structure, texture segregation blurs into motion detection,
and both are determined by contrast. What seems to be underlying all
of this is the correspondence problem. The stimulation at the eye or ear is
underdetermined: It can represent many different environmental objects.
General-purpose receptors, specialized receptive fields, and physiological
“calculators,” along with the expectations and intentions of the perceiver,
determine what is perceived. Even if each determinant is dichotomous, the
resultant perceptions will not fall into exclusive categories. What we hear
and see will be continuous, encompassing the range of possibilities.
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6

Gain Control and External
and Internal Noise

Up to this point, I have discussed how noise can become struc-
tured to yield the perception of something. This chapter con-

cerns the more common notion that noise is energy that disrupts
perception. The first issue is how to measure internal physiological noise,
and how to compare internal noise to the normal levels of external back-
ground noise. The second issue is how perceptual systems adapt to the im-
mense variation in environmental energy (on the order of 108 units)
compared to the much smaller variation in receptor firing rate (on the order
of 102). It is this mismatch that has led to the development of various mech-
anisms, termed gain controls, to shift the response rate of neurons to repre-
sent the variation in intensity (the contrast) around the mean intensity. The
third issue is how to measure the efficiency of observers in perceiving audi-
tory and visual stimuli embedded in internal and external noise.

Internal Noise

Dark Noise

The classic experiment of Hecht, Schlaer, and Pirenne (1942) attempted
to measure the absolute visual threshold. Prior to that, there was general
agreement that the threshold for seeing a dim light against a dark back-
ground was remarkably low; estimates ranged from 10 to 50 quanta at the
retina. Hecht et al. set out to measure the minimum amount of light, so they
performed a series of preliminary experiments to determine the important
experimental parameters (e.g., duration of dark adaptation, retinal location,
size, duration, and wavelength of the light source) that would lead to an
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estimate of the minimum number of quanta necessary to see. Cornsweet
(1970) beautifully summarized this work. Hecht et al. estimated that under
the optimum conditions, humans could see as few as 5–9 absorbed quanta.
Due to reflection off the cornea and absorption in the eye itself, roughly
100 quanta are necessary to yield the 5–9 quanta at the retina that excite reti-
nal cells. (These values are for light presented off-center in the eye where
the rod density is highest. The minimum number of quanta is roughly
five times greater for light presented to the cone fovea.) These quanta were
spread over a spatial summation region in the retina composed of about 300
rods, so that it seemed that one quantum is sufficient to trigger a receptor.
This assumption was confirmed by electrophysiological recordings show-
ing that neural responses could be recorded due to the absorption of a
single quanta of light (Baylor, Lamb, & Yau, 1979).

Absolute thresholds always are defined statistically—60% detection here.
Hecht et al. (1942) attempted to identify any source that could lead to varia-
tion in the subject’s response. Was it due to variation in the light or in the sub-
ject? From a decision theory perspective, we can assume that subjects report
seeing the dim light when the number of spikes in the trial interval exceeds
some fixed number. But, on any trial, the number of quanta actually emitted
by the light source can vary; the emitted quanta may not reach the retina; and
any quanta reaching the retina may not stimulate a cell. Whatever the criteria,
there are going to be instances when the number of spikes does not reach cri-
terion when the stimulus was presented, and conversely there are going to be
instances when the variability of the firing patterns within the visual system
generates the required number of spikes even when the dim light is not pre-
sented. Hecht et al. concluded that any variation in the detection of the light
flash was due to the inherent variability of the light source itself and resulting
variability in quanta absorbed by the retinal receptors, rather than some inter-
nal biological or cognitive randomness. The finding that spontaneous firings
of the retinal cells that could result in a false detection of light are amazingly
infrequent supports this conclusion. It has been estimated that the firing of
rods in the primate eye yielding a false alarm due to the spontaneous transfor-
mations of rhodopsin is less than one every 100–160 s (Aho, Donner, Hyden,
Larsen, & Reuter, 1988; Lamb, 1987).

Nonetheless, a completely dark-adapted human observer will see flick-
ering specks and flashes that occur randomly in a dark field. Barlow (1956)
termed the lightness level resulting from the spontaneous firing dark noise
and conceptualized that it operated in the same way as any physical light.
Thus, the effective background for perceiving is the actual background
light (however dim) plus the dark noise, and together they set limits for the
detection of dim light flashes. In a decision theory coneption, observers
must set their criteria in terms of the variability of the signal and noise (i.e.,
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a signal-to-noise ratio), and Barlow argued that the conclusions of Hecht
et al. (1942) should be modified to include the biological variability of dark
noise as well as other sources of noise such as intrinsic stimulus variability
(see above), receptor sampling errors, randomness of neural responses, loss
of information during transmission through cortical centers, and lack of
precision in cognitive processes. Following Barlow’s approach, research
has been aimed at describing and quantifying the various noise sources and
ultimately deriving a figure of merit, perceptual efficiency, to describe the
overall performance.

It is worthwhile to characterize two kinds of noise. The term additive
noise signifies a constant level of noise that is independent of the level of the
signal. The resulting signal is the sum of the actual signal + the noise. Addi-
tive noise can be overcome by increasing the level of the signal to the point
at which the signal-to-noise ratio, (S + N)/N, sustains a desired performance.
This is possible because N is assumed to be independent of the signal level.
The term multiplicative noise signifies a noise whose power is proportional
to the signal power (N = kS). For multiplicative noise, increasing (or de-
creasing) the signal power simultaneously increases (or decreases) the noise
power so that the signal-to-noise ratio, (S + N)/N = (S + kS)/kS = (1 + k)/k,
does not change. We can infer the type of noise by changes in performance.
If performance increases directly with increases in brightness or contrast,
we assume that the noise is additive. The fact that we cannot detect images
with weak contrasts suggests that the internal noise is additive. In contrast,
if performance is independent of contrast, then we assume that the noise is
multiplicative. For example, if a square wave grating is masked by visual
noise, once a critical level of the contrast is reached, further increases do not
improve performance. We attribute this lack of improvement to the fact that
the noise increases proportionally with the contrast. (This distinction be-
tween additive and multiplicative noise was discussed in chapter 3 with re-
spect to optimizing information transmission.) Both internal and external
noise can be additive or multiplicative.

Detecting Changes in Illumination

Based on Barlow’s (1956) thinking, we can imagine dark noise as being in-
dependent of input noise that is added to the signal, that is, independent
of the intensity of the signal. The amplitude of dark noise has been termed
equivalent input noise. Suppose we measure the threshold for a simple
visual (or auditory) stimulus with no background noise, say the threshold
for a small bright disk. We then increase the background illumination and
continue to measure the threshold for the small disk as a function of the
background illumination. The threshold will remain relatively constant
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up to some background level because here the internal noise, being greater
than the weak external noise due to the dim background, determines the
threshold. It is dark light that creates the noise that limits sensitivity in this
range (Hecht et al., 1942). Beyond that point, the threshold will begin to
increase as a function of the background level. Here, the external noise is
greater than the internal noise, so that the external noise will determine the
threshold. The noise level at the “knee” in the threshold curve is an esti-
mate of the point at which the internal and external background noise are
equal, and that level becomes the estimate of the equivalent input noise (see
figure 6.1). Above that level, the total noise is now the sum of the external
noise (N) and the equivalent input noise (Neq).

If we continue to increase the illumination of the background, the
threshold now increases as the square root of the background illumination.
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Figure 6.1. The threshold for a small disk as a function of the intensity of a steady
background. The theoretical slopes for the DeVries-Rose region (K = 1/2) and the
Weber region (K = 1) are shown as short straight lines. The equivalent input noise is
found at the elbow between the flat initial region and the DeVries-Rose region.
Adapted from “Visual Adaptation and Retinal Gain Controls,” by R. Shapley and
C. Enroth, 1984, Progress in Retinal Research, 3, 263–346.



In this range, sensitivity would be limited by the quantal fluctuations in the
target and background illumination that are relatively large relative to the
average illumination.1 The observer has to detect when the increment in fir-
ing rate due to the target disk is significantly greater than the variability in
firing rate due to inherent fluctuations in the brightness of the background.
Suppose the observer tries to keep the signal-to-noise ratio constant (i.e.,
responds that the target is present if the firing rate is a multiple of the vari-
ability, analogous to a z-score, or responds at a constant likelihood ratio).
Then the increment in signal strength for detection will have to grow in
proportion to the standard deviation of the background noise, which is a
function of the square root of the illumination. This loss in sensitivity is
strictly due to the variation in the stimulus.

At still higher illumination levels, the threshold becomes proportional to
the background; it is a constant times the background illumination. Thus,
contrast (the ratio of the illumination of the stimulus compared to the back-
ground) sensitivity is constant and Weber’s law holds true. This is the goal
of perceptual adaptation: perceptual invariance of reflectance across differ-
ent illuminations. Finally, at the highest illuminations, the threshold in-
creases more rapidly than Weber’s law predicts. At this illumination, the
firing rate of the rods saturate, and the threshold increases as the square of
the background illumination.

We can do a similar experiment to determine the value of the squared
contrast of the grating that yields a given level of performance for different
values of external contrast noise (analogous to the brightness of the target
for different backgrounds). To do this, we construct a random noise with a
given contrast and then vary the contrast of the grating added to the noise
until observers achieve the desired performance level. The results of such
an experiment closely resemble the outcome for detecting an increment in
brightness (as in Figure 6.1):

1. The threshold is constant for low noise levels. At these levels, the ex-
ternal noise is small relative to the observer’s internal noise (termed
contrast equivalent noise) so that increases in the contrast of the ex-
ternal noise do not affect the threshold.

2. There is a linear increase in c2 (the contrast power) at higher noise
levels. At these values, the contrast of the external noise is greater
than the contrast equivalent noise, so that increases in the contrast of
the external noise directly affect the threshold. The noise level at the
transition point between the constant and linear segments is the con-
trast invariant noise (Neq).
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1. At this illumination level, quanta are emitted according to a Poisson process in which
the mean equals the variance. This has been termed the de Vries-Rose region.



For the detection of spatial gratings in dynamic noise, the observer’s
equivalent input noise at most spatiotemporal frequencies mainly reflects
the inability to capture or make use of all the quanta coming from the
image, photon noise. Across a fourfold range of luminances (10,000), just a
small fraction of the corneal quanta (1–10%) are actually encoded and used
perceptually. Only at very low spatiotemporal frequencies, when the image
is essentially constant, does the neural noise become predominant. This
suggests that our simple model should incorporate a filter that reflects the
frequency selectivity of the pathway.

We can put all of this together in a basic model of the human observer
detecting a grating embedded in noise, shown in figure 6.2. Z-L. Lu and
Dosher (1999) termed these sorts of models noisy linear amplifiers (perfect
linear amplification with additive noise). If we track the figure from input
to output, an external noise and the signal (in terms of the contrast of the
image squared, c2) controlled by the experimenter are summed together.
We use c2 (contrast power or variance) because the variance of the sum of
independent components is simply the sum of the individual components,
and that makes the theoretical development easier. (We could use the vari-
ance to model the contrast necessary for the perception of second-order
movement in chapter 5.) The signal + external noise first passes through a
template (e.g., a spatial frequency filter) that restricts the processing to just
part of the energy reaching the observer. The filtered signal + external noise
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Figure 6.2. A model of noisy linear amplifiers (perfect linear amplification with
additive noise). The input signal is squared, multiplied by the input multiplicative
noise fraction (NM) and then added back to the signal path. In similar fashion, the
additive noise (NA) is added to the signal path. From “Characterizing Human Per-
ceptual Inefficiencies With Equivalent Internal Noise,” by Z.-L. Lu and B. A.
Dosher, 1999, Journal of the Optical Society of America, A, 16, 764–778. Copyright
1999 by the Optical Society of America. Reprinted with permission.



is further transformed in two ways. First, an expansive nonlinear power
function accentuates the higher intensities. Second, the input is squared,
multiplied by the internal multiplicative noise fraction, and added to the
transformed signal. Finally, additive equivalent input noise independent of
the signal also is added so that the effective stimulus becomes

transformed input signal + external noise + independent multiplicative
equivalent input noise + independent additive equivalent input noise

and that stimulus is used to make a decision about the presence or absence
of the signal. The basic model assumes that the calculation-decision pro-
cess is independent of the stimulus.

Researchers (Gold, Bennett, & Sekular, 1999; R. W. Li, Levi, & Klein,
2004; Z.-L. Lu & Dosher, 2004) used such a model to investigate whether
practice reduced the equivalent input noise or increased the efficiency of
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Figure 6.3. The basic threshold versus external noise function (threshold versus
intensity, TVI) consists of two segments (A). The flat segment is due to the equiva-
lent internal noise, and the sloping segment is due to the effect of the external con-
trast noise. Representations of the effects of reduced internal (B), external (C), and
multiplicative noise (D) are depicted by the darkening line segments and by the di-
rection of the arrow. Adapted from “Perceptual Learning Retunes the Perceptual
Template in Foveal Orientation Identification,” by Z.-L. Lu and B. A. Dosher, 2004,
Journal of Vision, 4, 44–56.



the decision process as pictured in figure 6.3. The magnitude and type of
effect of the practice depended on the specific neural pathways and task. In
general, both factors were important. Practice allowed the observers to re-
duce the internal additive noise to some degree and to retune the perceptual
template to more completely exclude the external noise.

Adaptation and Gain Control in General

As described previously, the auditory and visual systems face an immensely
wide range of natural intensities, on the order of 108 to 1010, from moonlight
to sunlight and from the softest sound to the loudest (see table 6.1).
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Table 6.1 The Dynamic Range of the Auditory and Visual Systems.

Sound
Intensity Pressure Luminance 
(log Level Audition of White Vision Retinal 
units) (dB SPL) (watts/m2) Paper in (log cd/m2) Functioning

8 200
7 190 Normal Retinal

Atmospheric Damage 
Pressure possible

6 180
5 170 Sunlight Photopic
4 160
3 150 Best

Acuity
2 140 Indoor Color 

lighting Vision
1 130 Threshold Rod 

of pain Saturation 
begins

0 120 Rock Band
−1 110 Moonlight Mesotopic
−2 100 Subway

passing
−3 90 Starlight Cone 
−4 80 Loud Radio Threshold
−5 70 Average Poor Scotopic No 

Conversation Acuity color 
vision

−6 60
−7 50 Average Threshold

Residence
−8 40
−9 30
−10 20 Quiet whisper
−11 10
−12 0 Threshold



The firing rates of individual neurons rates go from their minimum to
maximum firing rates within a narrow band of intensities around 102 and
therefore cannot track that variation. The auditory and visual systems have
evolved similar strategies to cope with this problem in two ways.

1. Both the auditory and visual systems are composed of two classes of
receptors. The auditory system contains low-threshold neurons that
reach their maximum firing rate at relatively low intensities and less
numerous high-threshold neurons that respond to the highest inten-
sities. In the same manner, the visual system contains rods that re-
spond to the lowest three to four logarithmic units, and less numerous
higher-sensitivity cones that respond to the higher intensities.

2. Both the auditory and visual systems have built-in mechanical and
neural gain control mechanisms. The gain controls adjust the sensi-
tivity of cells so that they do not saturate except at the highest intensi-
ties. As the background level changes over a range of 106 to 107 (six
or seven logarithm units), the steady-state response rate changes very
little, and the number of spikes necessary to signal a change in inten-
sity is relatively constant. The gain control increases the amplifica-
tion of the incoming energy when the level is low, so that the signal
will be more intense than the internal noise, and decreases the ampli-
fication when the level is high, so that the signal intensity does not
exceed the sensory firing capacity, to preclude “saturation clipping.”

3. Both (1) and (2) deal with the adaptation to mean intensity. But the
visual system also has evolved a type of gain control based on the
contrast of the illumination, independent of the mean illumination.

The fundamental problem for both looking and listening is to partial out
overall changes in intensity (i.e., brightness and loudness) from changes that
signify the properties of objects: surface reflectance and contrast and the au-
ditory frequency spectrum. What is invariant in vision across different bright-
ness levels is the percentage of reflected light and the ratio of the reflectance
between different surfaces (i.e., contrast). What is invariant in audition across
different loudness levels is the ratio of the intensities of the different fre-
quency partials (i.e., the contrast among the partials, although this does
change, as is discussed in chapter 8). This implies that it is the average illu-
mination and average sound pressure that should be controlled in order for
the two perceptual systems to isolate contrast in its most general sense.

Adaptation and Gain Control in the Visual System

In the visual system, there are two kinds of gain control. At the periphery,
there is gain control for the overall intensity of the light. At the cortical
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level, there is gain control for contrast. As discussed in chapter 2, cortical
cells do not fire well to constant levels of light and respond maximally to
ratios of intensities. To some degree, these two processes are in opposition.
As the prevailing illumination increases during sunrise, the visual system
becomes less sensitive to light, and the moon and stars disappear. But at the
same time, the black print on a white page becomes more discriminable:
The increased sensitivity to contrast goes along with the decreased overall
sensitivity to light (Hood & Finkelstein, 1986). Moreover, adaptations to
the changes in light intensity modify the ways that the visual system reacts
to the spatial and temporal variations in the incoming light, although the
mechanisms are still unclear.

At the Retina

Obviously, the retina cannot see, but without understanding retinal func-
tioning, no complete model of visual processing is possible. To say that an
outcome is determined by retinal processing or lower-level processing is to
argue that perceptual outcomes can be mainly understood without addi-
tional assumptions about cortical processes and judgments.

The basic perceptual experiment is to detect an increase or decrease in lu-
minance of a small stimulus centered on a background. The luminance of the
background varies across a wide range, and one might expect that due to rate
saturation of individual neurons there would be a value of the background lu-
minance at which any change in the central stimulus could not be detected.
Yet that is not what happens, as shown in figure 6.1. Thus, the problem is to
understand how the retinal mechanisms get around the limitations that would
be imposed by rate saturation. At higher illuminations, detection follows
Weber’s ratio: Changes in illumination are exactly compensated by changes
in sensitivity. Discrimination becomes based only on contrast (the difference
in illumination divided by the illumination) and not illumination per se.

At this point, it is worthwhile to formally define contrast. For the tradi-
tional stimulus configuration, the background stimulus is a uniform disk or
bar, and the test stimulus (i.e., the object) is a brighter luminance presented
once each trial somewhere within the background. The contrast ratio is the
difference between the luminance of the object (Lo) and the luminance of
the background (Lb) divided by the luminance of the background. Because
the important issue is the minimum brightness contrast, experimentally Lo

is the level that is detected on a specified percentage of the trials. This be-
comes the familiar Weber’s ratio:

C = (Lo − Lb)/Lb. (6.1)

To the extent that Weber’s ratio is constant at different background
levels, it reflects the invariance of contrast across changes in illumination.
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Suppose we have a background that has reflectance Rb illuminated by light
Ib, so that the luminance is Rb × Ib. We then select objects of different re-
flectances (Ro) and place each of them on top of the background so that the
same light Ib illuminates them. For any object, the contrast ratio becomes:

C = (Ro × Ib − Rb × Ib)/Rb × Ib. (6.2)

The illumination Ib can be cancelled out of the numerator and denomi-
nator, leaving only reflectances:

C = (Ro − Rb)/Rb. (6.3)

The contrast is independent of illumination.
For a periodic spatial pattern such as a spatial grating, the brightness os-

cillates across the visual field. The observer’s task is to detect the orienta-
tion of the oscillation (e.g., horizontal or vertical), and the experimental
variable is the difference between the highest and lowest luminance (i.e.,
the depth of the oscillation). Here the contrast ratio is defined by the differ-
ence in luminance divided by the sum of the highest and lowest luminance
or, equivalently, by the difference in reflectance divided by the average re-
flectance:

C = (Lmax − Lmin)/(Lmax + Lmin) (6.4)

C = (Lmax − Lmin)/2Lavg (6.5)

or by replacing L with R × I:

C = (Rmax − Rmin)/2 × Ravg. (6.6)

At the retinal level, discussions of gain control revolve around two types
of stimuli. The first stems from a tradition of presenting a steady nonperiodic
stimulus against a background of varying intensity and plotting the threshold
versus intensity (TVI) plots of the stimulus as a function of the background
intensity, as in figure 6.1. The second stems from a more recent tradition of
presenting periodic stimuli in which the brightness of a small disk oscillates
between white and black as a sinusoidal wave at different frequencies.

Nonperiodic Stimuli

To test nonperiodic stimuli, a small test flash is pulsed against a continuous
uniform background, and the independent variable is the luminance of the
background. The test flash and the background either begin at the same
time or the test flash is delayed for varying amounts of time.

For experiments in which the flash and background start simultaneously,
the firing rates of the cat’s retinal ganglion cells clearly reflect the effect of
the gain control, as illustrated in figure 6.4. At each background luminance,
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the cell’s firing rate ranges from 0 to more than 300 spikes per second. The
firing rate does not saturate, and the firing rate has the maximum sensitivity
(i.e., steepest slope) in the middle of the luminance of each background,
even across a luminance range of 105. A gain control mechanism moves the
stimulus-response curve to the right for each increase in the luminance of
the background.

For experiments in which the brief test flash is started at different times
relative to the onset of the background light, Crawford (1947) measured the
threshold for the test light, the amount of light relative to the background
light required to detect the test light (it will be plotted as the logarithm of
the incremental light). Overall, the results showed that the threshold for the
test light was highest when the onsets were identical and that the threshold
decreased if the test light was delayed by 200–1,000 ms relative to the on-
set of the background light. If the test light was delayed by more than 1 s,
the threshold decreased even further (Adelson, 1982). Figure 6.5 displays
the incremental thresholds as a function of the delay of the test light. The
decrease in threshold as a function of the onset delay has been termed the
background-onset effect.

The important point is that the incremental threshold for the test light
presented at the onset of the background is greater than when the test light
is delayed, particularly at the higher background levels. For both cone
(fovea) and rod vision, there is a rapid decrease in the incremental thresh-
old during the first 200 ms, followed by a slower decrease over several sec-
onds. Adelson (1982) suggested that two adaptation processes are working
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Figure 6.4. Stimulus-response curves from an on-center cell that illustrates gain
control for illumination. The change in firing rate (from 0 to more than 300 spikes
per second) remains identical across a 105 illumination range of the background.
Adapted from “The Control of Visual Sensitivity: Receptoral and Postreceptoral
Processes,” by J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and
J. Schnapf, 1990, in L. Spillman and J. S. Werner (Eds.), Visual Perception: The
Neurophysiological Foundations (pp. 53–101). New York: Academic.



here. When the background light is first turned on, the firing rate of the rods
saturates, so that the incremental test light is difficult to perceive. During
the first 200 ms there is a rapid adaptation process that acts like a gain con-
trol. It divides the background light by a constant to reduce the firing rates
and thereby eliminates the saturation. Then a slow adaptation process ex-
tending even over 30 s acts like a subtractive process.

A general model of gain control to explain light adaptation (Graham &
Hood, 1992; Hood & Finkelstein, 1986) incorporates three processes:

1. A static nonlinearity between intensity and neural response rate. The
nonlinearity is assumed to be constant, that is, to start at the light on-
set and remain at the same level for the duration of the light. The
static nonlinearity is a fundamental part of the transformation of the
incident illumination into firing rates.

2. A multiplicative or divisive process that increases with time.
3. A subtractive process that increases with time. The multiplicative

and subtractive processes act together to reduce the firing rate due to
the background to a level that allows the firing rates of the ganglion
cells to track changes in luminance.
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Delay of Test Flash After Onset of Adapting Field (s)

Figure 6.5. The threshold to detect an intensity increment decreases as the test
flash is delayed. There is an additional decrease of about .2 log units, not shown in
the figure, for delays up to one minute. Adapted from “Sensitivity to Light,” by
D. Hood and M. A. Finkelstein, 1986, in K. R. Boff, L. Kaufman, and J. P. Thomas
(Eds.), Handbook of Perception and Human Performance: Vol. 1. Sensory Pro-
cesses and Perception (pp. 5-1 to 5-64). New York: John Wiley.
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Figure 6.6. Model of multiplicative and additive gain control for light adaptation.
From “Modeling the Dynamics of Light Adaptation: The Merging of Two Tradi-
tions,” by N. Graham and D. C. Hood, 1992, Vision Research, 12(7), 1373–1393.
Copyright 1992 by Elsevier Science Ltd. Reprinted with permission.

The five panels in figure 6.6 illustrate the hypothesized excitation of ret-
inal cells.

Figure 6.6A depicts the hypothesized nonlinear static function (i.e.,
starting at light onset) relating the dark-adapted neural response to the
background light intensity. At low intensities, the response grows at the



same rate as the intensity (a slope of 1 in log/log coordinates). Then as the
intensity increases, the response growth slows, and at even higher intensi-
ties the response becomes constant because the neurons have saturated at
their highest possible firing rate. This type of stimulus-response function
can be modeled by a simple exponential function or by an equation intro-
duced by Naka and Rushton (1966):

R = [I/(I + Is)]Rmax. (6.7)

R is the response change from the totally dark-adapted level, Is is termed
the semisaturation constant at which the response reaches its half-
maximum level, and Rmax is the maximum firing rate of the cell. Above the
semisaturation level, although the light can increase by several orders of
magnitude, the neural response can increase only by a factor of two. The
contrast gain (Weber’s ratio for the threshold for seeing a test flash) will de-
crease as a function of the level of the background light.

Assume that the test flash is perceivable when the response to the test
flash plus background light exceeds the response to the background light
alone by a criterion number of spikes. In the figures, an increase in R of
one unit from −3.0 to −2.0 log units (∆Io) leads to the detection of the test
light (δ).

In Figure 6.6B, assume that the background light intensity has been in-
creased to 2.5 units so that the background itself creates a high firing rate.
To detect the increase in the intensity of the test light, we still need to in-
crease R by 1 log unit. (Note that in figure 6.6A the x axis represents the
background illuminance, but in figures 6.6B–E, the x axis represents the in-
cremental illuminance due to the test flash.) The solid line in figure 6.6B
shows the hypothetical incremental change in firing rate due to test flash at
different intensities against the 2.5 unit background:

Incremental response = R(flash intensity + 2.5 unit background) 
− R(2.5 unit background). (6.8)

To create a 1-unit change in the response rate requires a very large incre-
ment in the test flash intensity, about 4.5 log units (−2 to +2.5) as opposed
to the 1 log unit against a black background (a 3.5 log unit increase beyond
that necessary for detection against a black background). In general, there
is little effect on the detection threshold due to low background levels. But
even moderately intense background fields can come close to maxing out
the response range and dramatically reduce the ability to signify increments
by increasing the response rate to saturation levels. Without some reduction
in sensitivity, the visual system would be blind to any increments.

If we present the brighter background before the test flash, the multi-
plicative and subtractive processes kick in and enormously reduce the nega-
tive effect of the background, as shown in figures 6.6C–E. The effect of the
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multiplicative process is shown in figure 6.6C. The basic notion underlying
this process is that both the background and test flash illuminations are ef-
fectively reduced by multiplying both illuminations by a fraction m(a) be-
tween 0 and 1, assumed to be determined by the overall illumination. The
background becomes m(a) × Ib, the test flash becomes m(a) × If , and the
(background + flash) becomes m(a)(If + Ib). This type of mechanism has
been called von Kries adaptation, cellular adaptation, pigment depletion, or
the dark glasses hypothesis, and is discussed further in chapter 7. Since the
multiplicative adaptation acts on both the background and test flash, it is as
if there was a neutral density filter in front of the stimulus, much like dark
glasses (or like closing down the pupil). The decrease in the background il-
lumination acts to reduce the threshold because the background intensity is
reduced, but at the same time the decrease in the test flash acts to increase
the threshold because the test flash intensity also is reduced. The multiplica-
tive adaptation recovers some of the response range, as shown by the left-
ward shift of the response curve; for a fraction of 0.1 the shift is roughly 1
log unit. Moreover, the dynamic range of the response is increased: there is
roughly a 1 log unit increase in the range of firing rates.

The operation of the subtractive mechanism is illustrated in figure 6.6D.
The subtractive process is assumed to decrease the intensity of long-duration
lights by removing some of the signal. The subtractive process does not af-
fect lights presented for brief periods, so it will not affect the test flash. The
effective intensity of the background is Ib − s(Ib), where s is the subtractive
constant that is a function of the background intensity; the intensity of the
test flash remains If. The function in figure 6.6D illustrates the outcomes if
the subtractive process removes 95% of the background light. There is a
great deal of recovery of the response function, and the difference between
the subtractive function and the original dark background function is rela-
tively constant across all the background illuminations.

If the multiplicative and subtractive processes are combined (as in figure
6.6E), the effective background becomes m(a)[Ib − s(Ib)] and the effective
test flash becomes m(a)If. The combination of the two mechanisms removes
the effect of the background illumination at higher intensities where the
response reaches the asymptote at the no-background firing rate, but does
not completely compensate at the lowest intensities.

Kortum and Geisler (1995) suggested that the multiplicative constant
is inversely proportional to the background illumination, particularly at the
higher intensities. Thus the multiplicative processes create the constant
Weber ratio. In contrast, the subtractive constant is fixed (at higher illumi-
nations) so that the subtractive mechanism only reduces the Weber ratio.

These mechanisms are illustrated in a different way for a flashed stimu-
lus presented against a fixed background in figure 6.7. The two dashed lines
represent the response rate if there is no gain control. The bottom line
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depicts the response rate to the flashed light if there was no background,
and the top line depicts the response rate to the flashed light in front of a
steady 700 td (troland) background light. The two solid-line curves repre-
sent the response rate if there was multiplication or subtraction gain for a
light flashed against the 700 td background. The single dotted line depicts
the response rate if there was both multiplication and subtraction gain. If
there was no adaptation at all, the dynamic range in firing rates to the
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Figure 6.7. The effect of the multiplicative and additive gain controls on the detec-
tion of a flashing stimulus. The basic equation is based on a generalized Naka-
Rushton equation (6.7):

R(I) = Rmax [ma(I − s)]n/[ma(I − s)]n + Is
n

In this figure, the subtraction constant is assumed to affect both the flash and the
background. In contrast, the subtractive gain control in figure 6.6 is assumed to af-
fect only the background because of the presumed delay after onset for the subtrac-
tive gain to function. In the figure, the maximum response rate Rmax = 300, the
background = 700, the multiplication gain constant ma = 0.143, the subtraction con-
stant s = 560, and the semisaturation constant Is = 100. The exponent n = 1.
Adapted from “Adaptation Mechanisms in Spatial Vision. II. Flash Thresholds and
Background Adaptation,” by P. T. Kortum and W. S. Geisler, 1995, Vision Research,
35, 1595–1609.



flashed light would be minimal. However, the multiplicative + subtractive
adaptation processes reduce the response rate to the background light to
such a degree that the dynamic range increases by as much as fivefold com-
pared to the range if there were no adaptation processes.

To summarize, background illumination uses up most of the ability of
neurons to signal increments in intensity. Over time periods of roughly
200–300 ms, multiplicative and subtractive mechanisms reduce the firing
rate to the background so that a larger part of the response range can be
used to signal changes in intensity. The multiplicative mechanism affects
both the background and target, while the subtractive mechanism affects
only the background, at least within a limited time span.

A real example of the effects of multiplicative and subtractive mech-
anisms can be found in recordings of ganglion cells in the mudpuppy
(Makous, 1997, taken from Werblin, 1974). In this example, the surround
appeared to have a subtractive effect on the response to a flickering stimu-
lus confined to the center mechanism of the ganglion cell. Experimentally,
the flicker was continuous, and the surround was alternately on and off.
Figure 6.8A shows that the alternation of the surround over time reduces
the overall rate of response but, most important, the oscillation in output
voltage generated by the flicker does not change. The membrane potential
is plotted in figure 6.8B in terms of the intensity of the surround. Again, the
important point is that the response function to the flicker with the surround
on has the same slope and is merely shifted to the right. I would argue that
this effect is mainly due to subtractive adaptation because the response to
the flicker does not change at the different background intensities.
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Figure 6.8. The surround acts as a subtractive gain control in bipolar cells. The
gain control maintains the response to the flicker modulation in spite of the increase
in background intensity. From “Control of Retinal Sensitivity. II. Lateral Interac-
tions at the Outer Plexiform Layer,” by F. S. Werblin, 1974, Journal of General
Physiology, 63, 62–87. Copyright 1974 by the Journal of General Physiology.
Reprinted with permission.



Makous (1997) pointed out how difficult it is to go from physiological or
perceptual data to psychophysical models. The sequencing of the nonlinear
transformation, multiplicative mechanisms, and subtractive mechanisms can
be modeled in different ways and still yield the same simulated results.
Makous concluded that the major gain control for the cones over the normal
range of illumination comes from the subtractive mechanism that precedes
the nonlinear response compression. At greater illuminations, multiplicative
mechanisms may dominate, and at the highest illuminations the bleaching
of the cone pigments is the main factor reducing the firing rates. The bleach-
ing of the cones reduces the probability of absorption so that the effective il-
lumination remains constant at the higher-intensity backgrounds.

Periodic Stimuli

Experiments that have investigated adaptation to periodic stimuli have used
two kinds of stimuli: (1) a disk in which the luminance undergoes sinu-
soidal modulation across time, and the observer reports whether the light
appears to flicker or remain constantly visible; and (2) a stationary spatial
grating, and the observer reports whether the white-and-black spatial pat-
tern is perceivable or looks a uniform gray. We set a given spatial frequency
or a temporal frequency and overall illuminance and then vary the depth of
the modulation until the variation is perceptible. The dependent measure is
the difference between the peak and average illuminance (or for sinusoidal
stimuli, one half the difference between the maximum and minimum inten-
sity) of the periodic stimulus that is detectable. The results, shown in figure
6.9, illustrate that at low levels of illuminance the temporal threshold (the
ability to see the flicker) is poorest at the lower frequencies, but as the illu-
minance increases, there is no difference in thresholds among the temporal
frequencies. This termed the high-temporal-frequency linearity or envelope
by Graham and Hood (1992).

The results in figure 6.9 also illustrate the transitions between the differ-
ent sensitivity regimes. At the higher temporal frequencies, there is a linear
region where the sensitivity for temporal modulation does not depend on
overall steady illuminance. At lower temporal frequencies, there is a re-
gion where the threshold increases as the square root of the illuminance
(K = 1/2), where the quantal variation in the illuminance is thought to de-
termine sensitivity (the DeVries-Rose regime). At still higher illuminances,
the threshold increases according to Weber’s ratio (K = 1.0). It is within the
Weber region that the ratio of reflectances, the requirement for object con-
stancy, is independent of illumination.

As the illumination increases, the visual system comes to resemble a
band-pass filter: The maximum sensitivity occurs at the middle spatial
frequencies and the attenuation of the higher temporal frequencies is
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reduced. The visual system is metaphorically faster, responding to rapid
spatial and temporal transients.

Loftus and Harley (2005) argued that the commonsense observation that
it is easier to recognize a face when it is close than when it is far away is
due to the attenuation of the higher spatial frequencies. As the face (or any
other visual image) recedes, the spatial frequencies used to characterize
that image increase inversely proportionally to distance. Thus, the lower,
coarser frequencies that are necessary to identify objects become higher
frequencies that are subject to visual attenuation. It is the resulting blurring
that makes identification difficult and suggests that eyewitness testimony at
long distances is problematic.

Contrast Gain Control

As argued previously, it is intensity contrasts rather than average intensities
that are the important perceptual variables. For example, it is variation in
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Figure 6.9. The visibility of the flickering of sinusoidal stimuli as a function of lu-
minance and frequency. The observer’s task was to judge whether the stimulus
flickered or appeared to be a constant gray. From “Modeling the Dynamics of Light
Adaptation: The Merging of Two Traditions,” by N. Graham and D. C. Hood, 1992,
Vision Research, 12(7), 1373–1393. Copyright 1992 by Elsevier Science Ltd. Re-
produced with permission.



contrast that defines the boundaries between objects. Retinal gain control
is adaptation due to the average intensity of the background illumination.
In analogous fashion, contrast gain control is adaptation due to the
average contrast of the background illumination, that is, the variance of the
background. For both types of gain control, the visual system adjusts its
sensitivity so that the background illumination and contrast become meta-
phorically the null values. Changes in the firing rate occur only to varia-
tion above or below the null values. Without intensity and contrast gain
control, the average illumination and contrast of the background would use
up much of the dynamic range. Both types of gain control recover that
range.

There are several issues. First, the response to one value of contrast
should be invariant in the face of differences in light intensity. If the ratio of
reflectances between two surfaces is 9:1, then illuminances of 900:100,
90:10, or 9:1 should create the same neural response. Only the contrast
should determine the response, not the illumination.

Second, the ratio of responses to other properties of two objects should
be invariant of the contrast. For example, the neural response to different
orientations should be equivalent in spite of differences in the contrast.
Here is the problem. For simple cortical cells, at low contrast levels the re-
sponse is determined both by the stimulus contrast and by how closely the
stimulus matches the selectivity of the cell due to spatial location, orienta-
tion, and frequency (i.e., the spatial-temporal receptive fields; see figures
2.6 and 2.9). But as the contrast increases for any constant illumination, the
firing rate of all neurons increases until the cells are firing at their satura-
tion rate. An 80:20 reflectance grating would tend to saturate the firing rate,
while a 55:45 grating would not. If this were allowed to happen, it would
be impossible to discriminate among stimuli at higher contrasts. The con-
trast gain control must reduce the saturation firing rate due to high levels of
contrast so that selectivity is independent of contrast. It has been suggested
that it is the nonclassical receptive fields that produce the contrast gain con-
trol. As shown in chapter 3 (figure 3.15), stimulation of the nonclassical re-
ceptive fields increases the sparseness of the response of cortical cells to
natural stimuli, and the same process is hypothesized to account for the
contrast gain control.

Third, based on the concepts underlying efficient information transmis-
sion (see chapter 3, figure 3.5), the firing rate for different contrasts should
reflect the range of contrasts found within the environment.

Gain Control Due to Background Contrast

W. S. Geisler and Albrecht (1992) made use of a stationary counterphase
grating to demonstrate that the background contrast acts as a multiplicative
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gain control, that is, the response rate shifts to the right, as illustrated in fig-
ure 6.6. Cortical cells give only a steady maintained response to constant il-
lumination, so that it is necessary to modulate the stimulus in time to
measure the cell’s contrast response (in normal activity, the eye constantly
would pass over different objects that would inherently change the firing
rate). A spatial counterphase white-and-black grating varies the contrast at
one temporal frequency. The variation in contrast is shown for four cycles
of white-and-black bands at 1 Hz in figure 6.10A. Starting at 0.0 s, all the
bands are gray, a point of zero contrast. At 0.25 s, the bands alternate white
to black, the point of maximum contrast. At 0.50 s, another point of zero
contrast occurs. At 0.75 s, the contrast again reaches its maximum albeit re-
versed, and at 1.0 s all the bands return to being equally bright. Thus, the
contrast between adjacent regions continuously changes and reverses.

The counterphase grating that served as the background contrast was
centered on the receptive field of a simple cortical cell. To recall, these
cells are characterized by an opposing center-surround organization.
Because the grating reversed polarity at the temporal frequency rate, the
output of the cell was effectively zero for all counterphase contrasts.
The authors then superimposed a drifting grating (exactly like the ones
used to modulate the contrast for second-order motion discussed in
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Figure 6.10. A demonstration of
contrast gain in the visual system. A
stationary counterphase grating is
illustrated in (A). The contrast ratio
between the grating bars varies from
0, to +1, to 0, to −1, back to 0. A
common representation is shown in
(B): the double arrows portraying the
reversing brightness regions. A drift-
ing sinusoidal grating was superim-
posed on a stationary counterphase
grating at the same spatial and tempo-
ral frequency (in C). As the contrast
of the counterphase grating increased,
the response to the drifting grating
shifted to the right, but still main-
tained a relatively high firing rate (D).
The contrast response shift occurred
within 200 ms. Adapted from “Corti-
cal Neurons: Isolation of Contrast
Gain Control,” by W. S. Geisler and
D. G. Albrecht, 1992, Vision
Research, 32, 1409–1410.



Gain Control and External and Internal Noise 263

C

pe
r 

S
ec

on
d

A

Figure 6.10. Continued

chapter 5) that did stimulate the cell and measured the response to the
drifting grating. As the contrast of the counterphase grating was in-
creased, the response to the drifting test grating was shifted to the right,
suggesting a multiplicative contrast-gain mechanism. These results are
shown in figure 6.10.

Independence of Contrast and Illumination

Walraven, Enroth-Cugell, Hood, MacLeod, and Schnapf (1990) sum-
marized data from cells in the cat’s optic nerve, demonstrating that the
response to counterphase gratings at different levels of contrast is indepen-
dent of the mean illumination. Counterphase gratings are ideal stimuli for
these experiments because it is possible to independently vary the average
luminance as well as the contrast between the light and dark bands (essen-
tially, the mean and variance). The response rate at each level of contrast
(ranging from 1 to 100%) was nearly identical over a 100-fold range in
retinal illumination. Thus, the contrast gain control achieves the goal of
tuning only to contrast, not to illumination.

As discussed toward the beginning of this chapter, the results of experi-
ments delaying the onset of a uniform test disk relative to the onset of the



background illumination suggested that there is a slow and a fast illumination
adaptation process. S. Brown and Masland (2001) have proposed that there is
also a fast (100 ms) contrast gain adaptation for small retinal areas and a slow
(tens of seconds) contrast gain adaptation for large retinal areas. For both
types, an increase in the contrast decreased the sensitivity of retinal ganglion
cells (i.e., lower firing rates), and a decrease in contrast increased sensitivity.
The fast adaptation seems suited to detecting the contrast changes due to
head or object movements. The slower adaptation seems suited to adapting to
large but slowly evolving environmental changes such as moving into a fog.
Burton (2002) has found the same duality for adaptation in houseflies.

Independence of Contrast and Receptive 
Field Selectivity

We have argued that the visual (and auditory) system represents the values
of perceptual dimensions (e.g., orientation, speed of motion, temporal
modulation of lights or sounds) by the relative response among individual
cells or distinct groups of cells with different receptive field selectivities.
The confounding problem, as mentioned above, is that as the contrast ratio
increases for visual and auditory stimuli, the response rate of neural cells
with different receptive fields can increase to such a degree that the firing
rate of every cell saturates. It then becomes impossible to discriminate
among the values of any other perceptual dimension. What is necessary is a
mechanism that allows the response to, for example, orientation to be inde-
pendent of contrast.

The proposed models that preserve selectivity in the face of contrast
saturation make use of divisive (or equivalently multiplicative) feedback
to reduce the overall firing rate and to maintain the response selectivity. A
typical model, proposed by H. R. Wilson and Humanski (1993), is shown
in figure 6.11.

In these models, the outputs of all cells are determined by the fit of the
stimulus to the cell’s orientation-spatial frequency receptive field. At this
point, the models diverge to some degree according to how the outputs
are treated. However, for all models the outputs of cells in the local area are
summed together. This sum is then fed back before the filtering due to the
receptive field and divides the input to the cell. The feedback mechanism is
not instantaneous and takes anywhere from 100 to 200 ms to reduce the ini-
tial firing rate to the normalized rate. Usually, the feedback sum is assumed
to decay exponentially over time so that outputs in the past are discounted
(see Olzak & Thomas, 2003, for evidence that such a model can account
for the masking effects of gratings at different orientations).

Consider a concrete example. Suppose there are two cells with different
receptive fields such that the stimulus generates firing rates with a ratio of
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3:1. As the contrast increases, the firing rates would go from 3:1 to 6:2, to
9:3 so that the ratio does not change, but eventually at higher contrast levels
the firing rates of each cell would increase to the saturation level. The firing
rate ratio of 3:1 would at best be reduced and possibly even be equalized so
that the discrimination would be lost. However, if the divisive feedback is
based on the average firing rates, then the outputs become 3/2:1/2, 6/4:2/4,
9/6:3/6, and so on. The individual firing rates are reduced to a low level so
that the 3:1 ratio is maintained across all intensity levels.

There have been several demonstrations that feedback gain control can
preserve receptive field selectivity. H. R. Wilson and Humanski (1993) simu-
lated the effects of such a dividing feedback gain control on the response to
a 0° degree grating at 40% contrast. In the absence of any gain control, a fully
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Figure 6.11. A simplified model of a contrast gain control using the weighted sum
of outputs as the divisive feedback. The output of each oriented receptive field cell
is first transformed by a Naka-Rushton-type nonlinearity. The transformed output is
then weighted and combined in the gain control unit (∑) with the weighted outputs
of surrounding cells. A set of three outputs for each cell is shown in the figure. The
output of the control unit generates a recurrent inhibitory signal that divides the
input to each cell. In the actual simulation done by H. R. Wilson et al. (1997),
there were 12 oriented receptor cells (15° spacing) at each retinal location. Adapted
from “Spatial Frequency Control and Contrast Gain Control,” by H. R. Wilson and
R. Humanski, 1993, Vision Research, 33, 1133–1149.



saturated response occurs from −30° to +30° and there was even a strong
response to orthogonal gratings. However, with the proposed gain control
included, the response was centered on 0° and the maximum firing rate was
well within the saturation limits. Carandini, Heeger, and Movshon (1997)
have shown that such feedback maintains the relative firing rates between
stimuli differing in orientation, and spatial frequency as the contrast increases.

Gain Control in the Auditory System

In the auditory world, stimuli tend to be short in duration and intermittent,
and the frequency components of nearly all sounds have relatively low fre-
quencies generated by the physical vibration of object surfaces. The con-
struction of the cochlea yields a one-dimensional array of hair cells with
differing characteristic frequencies lying along the basilar membrane. It is
the motion of the basilar membrane traveling along its length that stimu-
lates hair cells with different characteristic frequencies.

I described two kinds of visual gain control. The first was illumination
gain control based on the adaptation of individual cells. For the cone system,
adaptation is a function of photochemical depletion. The second was contrast
gain control that leads to the conservation of spatial-temporal selectivity at
higher contrast levels. Contrast gain control is presumed to operate by divi-
sive feedback from neighboring cells in the two-dimensional spatial array.

What should we expect for auditory gain control with the knowledge
that the auditory perceptual system is faced with the same problems?
Clearly there needs to be some type of gain control for the intensity of the
sound pressure. Given the physiology of the auditory system, this gain con-
trol could be accomplished partly through the mechanical action of the
basilar membrane, partly through some sort of depletion mechanism simi-
lar to that for cones, and partly through the distribution of hair cells with
different thresholds. I would argue that it is equally necessary to have some
sort of contrast gain control to preserve frequency selectivity. By analogy
to the visual system, this could be accomplished by divisive feedback from
cells with similar characteristic frequency tunings.

At the Basilar Membrane

The deflections at the basilar membrane are very compressive and essentially
instantaneous. For the chinchilla, the response of the basilar membrane near
the stapes is shown for high frequencies in figure 6.12. For frequencies above
9000 Hz, while the intensity of tones increases by 80 dB (10,000 times), the
response of the basilar membrane increases only about tenfold (figure
6.12A). If there was no compression and the response of the basilar mem-
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brane was linear, the higher sound pressure levels would create displace-
ments that would destroy the membrane itself. The compression is less for
lower frequencies that would excite the membrane at the apical end (figure
6.12B). But the apical sections respond only to low-frequency components of
stimuli, and these components all cause temporal synchronization of the neu-
ral discharges. Hence, stimulus-waveform information is faithfully preserved
even if the auditory nerve fibers’ average discharge rates become saturated
(see figure 2.21). The mechanisms by which this occurs are not entirely clear,
but clearly involve the outer (apparently nonencoding) hair cells in some
manner.

At higher intensities, the basilar membrane excitation is broader and
presumably stimulates a greater number of hair cells. It is difficult to under-
stand how the spread of excitation on the basilar membrane and the result-
ing excitation of different numbers of hair cells caused by a pure tone
presented at different intensities still results in sensations of a pure tone at
each of those intensities. Possibly a form of population coding involving
divisive feedback (figure 6.11) is used.

At the Hair Cells

Each hair cell seems to have a built-in gain control. For a typical high-
spontaneous-firing-rate hair cell with a characteristic frequency of 6900 Hz
tone, in spite of the 60 dB difference (1,000-fold) in intensity, the onset
firing rate increases only by a factor of 3, and the steady-state firing rate in-
creases only by a factor of 2.

The level of neurotransmitter in the hair cells’ immediately available
reservoirs can explain why the steady-state rate is relatively constant across
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Figure 6.12. Displacement of the cochlea partition for different frequencies. For
higher frequencies processed near the stapes (A), there is a great deal of compres-
sion. For lower frequencies processed toward the apical end (B), there is less com-
pression. At the apical end, the growth in displacement is linearly related to sound
pressure level. Adapted from From Sound to Synapse: Physiology of the Mam-
malian Ear, by C. D. Geisler, 1998, New York: Oxford University Press.



the large change in intensity. In a simplified version of the model, the prob-
ability of a nerve fiber discharge as a function of time is:

Pr(t) = q(t) * v(t) (6.9)

where q(t) stands for the reservoir level at time t and v(t) stands for the hair
cells’ membrane potential related to the stimulus waveform.

When the reservoir is full the maximum firing rate occurs, but when the
reservoir is only partially full the same stimulus causes a lower firing rate,
since the reservoir level is assumed to multiply the receptor’s generator
potential to arrive at the firing rate probabilities. It has been illustrated
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Figure 6.13. The output of the reservoir when stimulated by a constant medium-
intensity tone. The reservoir contents [q(t)] in (C) gradually diminish over the dura-
tion of the tone and then recover after the tone offset. The command signal (i.e., the
membrane potential) in (B) is constant over the duration of the tone. The firing rate
in (A) shows an initial-onset burst and then gradually declines, matching the de-
cline in the reservoir contents. At the offset of the tone, the firing rate falls below
baseline and then recovers. From From Sound to Synapse: Physiology of the Mam-
malian Ear, by C. D. Geisler, 1998, New York: Oxford University Press. Copyright
1998 by C. D. Geisler. Reprinted with permission.



(C. D. Geisler, 1998; C. D. Geisler & Greenberg, 1986) how the model
works, as shown in figure 6.13. The fluid can be replenished only so
quickly, which limits the maximum firing rate of the cell. On this basis,
both the auditory hair cell and visual cone gain control are due to chemical
depletion.

Gain Control Due to Background Noise

If a tone is presented against a broad frequency-constant background noise,
the effect of the noise is to shift the response curve to the tone. The noise
increases the baseline response and reduces the firing rate at saturation. But
more important, the noise increases the intensity at which the firing rate
saturates. This shift can be easily seen in figure 6.14 for cells with different
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Figure 6.14. The effect of continuous broadband background noise on the response
of four auditory cells. The tone is pulsed against the background, as shown by the
small insets. The baseline is no background (Q), and the strength of the background
increases by 20 dB for all the neurons. From “Effects of Continuous Noise Back-
grounds on Rate Response of Auditory Nerve Fibers in Cat,” by J. A. Costalupes,
E. D. Young, and D. J. Gibson, 1984, Journal of Neurophysiology, 51, 1326–1344.
Copyright 1984 by the American Physiological Society. Reprinted with permission.



characteristic frequencies. The shift in intensity can be as much as 1 to 1,
such that each 1 dB increase in the background noise causes a 1 dB in-
crease in the saturating intensity. The firing rates of the four cells clearly
shift to the right, indicating multiplicative and subtractive gain control as
the background noise increases.

The proposed mechanism for the effect of the noise is feedback from
the descending corticofugal pathways.2 In particular, the olivocochlear bun-
dle in the auditory brainstem (superior olivary complex) projects back to
the hair cells in the cochlea. The functions of the olivocochlear bundle are
not fully understood, but it is suppressive in nature, providing divisive feed-
back. If a tone is masked by noise in the same ear, presenting noise to the
other ear increases the response to the tone by activating the crossed olivo-
cochlear bundle (Dolan & Nuttall, 1989). It would be a slow feedback on the
order of 100 ms, but that could be quite functional in a noisy environment,
where the noise would be expected to keep the same spectral characteristics
(and thus the same basilar membrane excitation) over long periods of time
(compared to the feedback delay).

Acoustic Reflex in the Middle Ear

At high intensities, the muscles holding the bones in the middle ear contract,
stiffening the connection among the bones. The stiffening attenuates sound
frequencies below about 1000 Hz by a factor of 1/10 to 1/100. The reflex is
rather slow and, surprisingly, adapts to long-duration sounds. In all probabil-
ity, the acoustic reflex is of minor importance in terms of gain control. How-
ever, the high-intensity low-frequency components tend to severely mask the
higher-frequency components that are critical for speech perception.3 Thus,
the acoustic reflex could serve to enhance the perception and identification
of sound objects that depend on the higher-frequency spectrum (see Gygi,
Kidd, & Watson, 2004, in chapter 8). From this perspective, it resembles the
pupillary contraction for high illuminances. While reducing the size of the
pupil does limit the amount of light energy reaching the retina, the impor-
tance of that contraction for light and dark adaptation is minimal. The more
important effect is to increase the depth of the field that is in focus.

High- and Low-Spontaneous-Rate Cells

The compression at the basilar membrane and the depletion at the hair cells
are mechanisms to circumvent response saturation. Another mechanism
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2. An extensive review of corticofugal modulation in the auditory system is found in Suga
and Ma (2003).

3. The acoustic reflex is also triggered by mastication so that its function may be to reduce
internal sounds that could mask external signals.



depends on having two (or possibly three) different types of auditory nerve
fibers to cover the entire intensity range (Frisina, 2001). By splitting the in-
tensity range, there will always be a set of nerve fibers that is not saturated
(and not below threshold). The high-spontaneous-rate fibers (more than
about 15 spikes per second) would cover the lowest intensity range from
0 to 20 or 30 dB Sound Pressure Level (SPL) (at the characteristic fre-
quency of the fiber). These fibers (roughly 85% of the neurons) have a low
threshold but limited range. The low-spontaneous-rate fibers (0.5–15 spikes
per second) would cover from 20 to 80 dB, and the very-low-spontaneous-
rate fibers (less than 0.5 spikes per second) would cover the highest intensi-
ties. The latter fibers have a high threshold but wide dynamic range.
Sumner, Lopez-Poveda, O’Mard, and Meddis (2002) suggested that the
difference among the types of hair cells is attributable to the rate of release
of neurotransmitter described above.

Let me try to summarize at this point. Keep in mind that the auditory
world is one of discontinuities, so that adaptive processes that extend over
several seconds or minutes (as in vision) are likely to be unhelpful. Looked
at this way, the auditory system would have a hierarchical gain-control
system. The mechanical compressive action of the basilar membrane acts
instantaneously, followed by very rapid (∼5 ms) chemical depletion in the
hair cells. Then there is the slower feedback system based on the olivo-
cochlear bundle, which seems to have been adapted to serve as a mecha-
nism to prevent overload due to background noise. Although experiments
show that the lack of the olivocochlear bundle does not seem to have very
strong effects on signal detection (and hence on survival in the wild), its
very existence suggests that it must be having some effect. Finally, there is
the acoustic reflex operating over a longer time span, which acts to main-
tain the selectivity to higher frequencies that would have been masked by
high-intensity low frequencies. All of these processes are assumed to act on
the three types of spontaneous-rate neurons.

Summary of Adaptation and Gain Control

Fairhall, Lewen, Bialek, and de Ruyter van Steveninck (2001) pointed out
that any adaptation or gain control system must be multilayered. Features
of the acoustic and visual arrays evolve along different time scales from
milliseconds to seconds, so that information about these changes also
must be collected along equivalent time scales and transmitted along
parallel channels. Moreover, as a sensory cell changes its response rate
due to adaptation, there is a potential problem of ambiguity because the
auditory and visual centers would not know what the current response
rate signified. There is a need for information about the actual context in
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order to interpret the spike train. For a fly, Fairhall et al. found that fol-
lowing a shift in stimulus contrast, the initial change normalized the tim-
ing of individual spikes in terms of the stimulus variance within 1 s. Now
the same firing rate encodes a different variability in the input. Spike tim-
ings over longer intervals appear to code the properties of the stimulus
ensembles, and changes over still longer intervals code changes in the en-
sembles. We should expect such a multilevel system to exist for hearing
and seeing.

Efficiency and Noise in Auditory and Visual Processing

Up to this point, I have discussed the concept of internal noise and how
it limits discrimination and identification. Typically, these experiments
have presented a simple uniform disk against a uniform background. But
that is obviously not the normal environment in which we need to iden-
tify auditory and visual objects. The fundamental problem is that all per-
ceiving takes place in the midst of statistical variation (e.g., detection of a
breast tumor from X-ray images, detecting the sound of a predator among
rustling leaves). Given the limited resolution of the auditory and visual
systems, the information available to human observers is not complete
and is often based on restricted sampling and confined to low-frequency
components. In an environment in which the noise can take on a wide
range of values, any input could have come from a set of possible objects
(or no object at all). Thus, any decision can be made only statistically,
and, as discussed in chapter 2, Bayes’ theorem provides a disciplined
procedure to evaluate the probabilities of different objects. Consider the
simple case in which the observer has to decide whether a signal was
presented in background noise (S + N) or the background noise (N) was
presented alone. Bayes’ theorem argues that the decision should be made
of the basis of the ratio of the posterior probabilities: likelihoods (the ra-
tio of the conditional probabilities of the S + N given the input to the
conditional probability of N given the input) × the ratio of the a priori
probabilities of S + N to N:

Pr(S + N�input)/Pr(N �input) × Pr(S + N )/Pr(N ). (6.10)

In what follows, I discuss the theory behind the experiments in terms of
measuring the efficiency of humans as observers and compare detection
and identification in a variety of fixed and random backgrounds.

To create a measure of the performance possible for an ideal detector,
the likelihoods are calculated by cross-correlating the input with a tem-
plate of the signal. To be concrete, suppose the detection problem is to de-
termine if a light gray square was presented at a known location in a random
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noise visual field.4 The S + N input would be the image of the square embed-
ded in the random noise; the N input would be the random noise only. The
template would be the representation of the gray square at the known loca-
tion. For a yes-no detection task, if the cross-correlation, pixel by pixel, be-
tween the input and the template is greater than some criterion value a, the
ideal detector would judge that the light gray square was present. For a
two-alternative forced choice (2AFC) in which the S + N is presented in
one interval and the N is presented in the other interval, the ideal detector
would choose the interval with the higher cross-correlation between the in-
put and template. Given the variability of the noise, performance will not
be perfect: There will be trials in which the noise image will yield the
higher cross-correlation.

These outcomes give us the maximum performance for the given signal
and noise. Such an ideal detector has none of the obvious human limita-
tions: internal noise, physiological degradations of the input, imperfect
knowledge of the template, imperfect memory, and attention lapses. The
performance of the ideal detector provides a normative baseline, and much
of the research described below attempts to pinpoint discrepancies between
performance of the ideal detector and that of human detectors.

Input Transformations

Internal Noise

Nearly all performance models assume that there is internal noise that
adds variability to the input. As described below, the relative power of the
internal and external noise can be assessed by the consistency of the ob-
server’s responses to identical inputs across trials. The template and cross-
correlation calculation are assumed to be invariant, so that different
responses to the identical physical input are assumed to be due to internal
noise. The internal noise is the limiting factor for trial-by-trial prediction.

Matched-Filter Models

Matched-filter models transform the input stimulus based on the known
physiological transformation of the peripheral auditory and visual systems.
For all models, the template is transformed in the identical fashion as the
input.

There are two general classes of models. In the simpler of the two, the
filter is based purely on the psychophysics of the ear or eye. For the ear, the
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such as a kayak (S) crossing the path of your boat on a foggy (N) Maine morning.



intensity of the component frequencies is normalized in terms of their
thresholds, and combined in terms of the width of their critical bands. For
the eye, termed a nonwhitening model, two properties are usually included
in the filter. The first is a band-pass contrast sensitivity filter that peaks
at about 2 cycles/deg and essentially drops to zero at about 10 cycles/deg
(see figure 6.9). The second is an eccentricity filter that mimics the de-
crease in retinal sensitivity away from the fovea. For the nonwhitening
model, the filtering is assumed to be fixed and does not depend on the sta-
tistics of the background.

In the more complex of the two models, termed a prewhitening model
for visual scenes, the statistics of the noise background partially determine
the filter. We know from the analysis of auditory and visual natural scenes
that the variability in power falls off at higher frequencies according to the
1/f 2 relationship. We also know that maximum information transmission
occurs when the power at every frequency is equal, the “bathtub” distribu-
tion (figure 3.7). Therefore, one plausible prewhitening filter would divide
the power at each frequency by 1/f2, to make the power at all higher fre-
quencies equal. Such a prewhitening filter would eliminate any intrinsic
correlation in the noise and would equalize the autocorrelation at all tem-
poral and spatial separations.5 The correlation in amplitude between adja-
cent time points (ti and ti+1) and adjacent pixels (xi and xi+1) would equal
the correlation between points separated by any interval or distance. Re-
gardless of the filter chosen, the optimal signal detection method would be
based on the cross-correlation of the transformed (i.e., prewhitened) stimu-
lus with a prewhitened representation of the template.

Template Representations: Classification Images

The model of the ideal detector assumes a perfectly accurate template for
the expected signal. This obviously is unrealistic. We can estimate the
observer’s template by a method that is analogous to that used to identify
the space-time receptive field of a cell. What we are doing intuitively is to
measure the influence of each frequency or pixel of the external noise on
the observer’s responses.6 If the signal could be A or B, the template will
be proportional to the average of the external noise of all trials on which the
observer responds A, and the negative template will be proportional to the
average of the external noise of all trials in which the observer responds

274 Perceptual Coherence

5. The autocorrelation occurs because of the limited sampling power of the nervous sys-
tem. The higher-frequency components that create rapid shifts in amplitude are reduced in
power so what remains are only the slow changes in amplitude. These slow changes generate
the autocorrelation.

6. Although I have written these sections with parallel auditory and visual explanations,
the majority of the research has used visual presentation.



B. Murray, Bennett, and Sekular (2002) showed that for the 2AFC proce-
dure the best estimate of the observer’s template is gotten by:

(NAA + NBA) − (NAB + NBB) (6.11)

or by rearranging the terms:

(NAA − NAB) − (NBB − NBA) (6.12)

where NAA is the average external noise for signal A and response A and
NAB is the average external noise for signal A and response B.

The classification image comes from the difference between the external
noise fields for correct and incorrect responses for each signal (equation
6.12).

Imagine that A is a brighter object ↔ and B is the same shape but ro-
tated 90° (↔). The observer will mistake ↔ for b when the random noise
field makes the horizontal line forming ↔ look dark and vertical line form-
ing b look bright. The observer will mistake b for ↔ when the reverse oc-
curs. The pixels along the horizontal and vertical lines will have the
maximum effect on the observer’s response. The template for b should be
a positive contrast 0° line and a negative contrast 90° line. The template for
↔ should be the reverse. The difference between the two templates is the
best classification image.

The observer’s actual template calculated from the above equations will,
in all probability, differ from the ideal, and the cross-correlation between
the ideal and the derived template is a measure of the accuracy of the per-
ceptual template, termed selection efficiency. The selection efficiency sets
an upper bound to performance, much as reliability does for validity.

Visual Processing

The maximum possible performance, given an ideal detector, makes it pos-
sible to measure the efficiency of the human observer in different contexts.
There are two issues here. First, we need to determine the maximum per-
formance based on different matching filters. Second, we need to determine
whether the performance of the human observer allows us to determine
which filtering model is more likely to be correct.

From a signal detection theory perspective, usual performance measure
(d′) is equal to:

d′ = (Xs+n − Xn)/[1/2(σ2
s+n + σ2

n]1/2. (6.13)

For both nonprewhitening and prewhitening matched filter models, the
cross-correlation between the transformed stimulus and transformed tem-
plate is the statistic that optimizes performance. Therefore, d′ becomes
the difference between the filtered average cross-correlation when S + N is
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presented and the filtered average cross-correlation when N only is pre-
sented, and the variances of the S + N and N become the filtered autocorre-
lations of the S + N and N trials.

For the simple two-alternative forced-choice task, d′ can be calculated
for the ideal detector empirically by generating a series of trials using ex-
amples of S + N and N stimuli. The cross-correlations are calculated for
each interval, and the ideal detector would then automatically select the in-
terval with the highest cross-correlation. Given the variability in the noise,
the ideal detector will make errors. The percentage correct then can be con-
verted into d′ for the two alternative case by the simple formula:

d′ideal detector = 21/2 × Z score of percentage correct 
for ideal detector. (6.14)

We convert the percentage correct to d′ because the percentage correct will
be a function of the number of alternatives, but d′ will not.

To calculate the performance for each possible matching filter, we would
filter the S + N and N stimuli as well as the template using each of the filters,
and calculate the resulting d′s for an ideal detector. To calculate human per-
formance, we would run the observer through the same trials and calculate
the resulting d′. Comparing the performance of human observers to that of
the ideal detector for each filter should suggest which filter the observers use.

Finally, we can create an efficiency measure for the human observer
either by comparing the energy required by the ideal detector and human
observer to obtain the same d′ values, or by comparing the d′ values for the
human and ideal detector at one signal and noise level. The assumption is
that the human always calculates the cross-correlation correctly and then
always chooses the interval with the higher cross-correlation. Thus, the rea-
son that human performance is poorer than that achievable by the ideal de-
tector is that the input has been degraded in some way or that the template
of the expected stimulus is not optimum. If we could specify the actual in-
put and template exactly, then we should be able to predict human perfor-
mance trial by trial.

It must be kept in mind that the predicted performance for the ideal
detector for both visual and auditory detection is only as good as the as-
sumptions that generate it. There are many possible assumptions about the
nature of a detection task. Furthermore, as discussed in chapter 1, we should
be careful about proposing what the perceptual systems evolved to do.

Researchers (Ahumada & Beard, 1997; Beard & Ahumada, 1999; Eck-
stein, Ahumada, & Watson, 1997) performed a series of experiments to
measure the sources of internal noise by using four different backgrounds.
All the experiments used a forced-choice procedure: the S + N was in one
of two or four locations.
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The authors proposed that the four backgrounds create a hierarchy in
which it is possible to hypothesize that decrements in performance (i.e., re-
ductions in human efficiency) are due to additional sources of noise. For
the ideal detector, d′ will be equal to:

d′ideal detector = (Eo/No)1/2 (6.16)

where Eo equals the signal contrast energy and No equals the pixel noise vari-
ance (I use Se

2 to represent the external noise variance in human experiments).

Uniform Background

The uniform background was a constant gray luminance. The luminance
was changed across trials so that the average value equaled that for the
other conditions. Compared to an ideal detector, we can postulate at least
two factors that might impair human performance. The first factor is addi-
tive internal observer noise due to fluctuations in neural firing (termed S2

i).
The internal noise corresponds to equivalent input noise, discussed at the
beginning of this chapter. The second factor is an internal template that is
not perfectly matched to the signal. The correlation between the internal
template and the signal (essentially pixel by pixel) represents the sampling
efficiency (SE). Given these two factors that can degrade performance, we
can represent the expected d′ as:

d′ = (Eo × SE)1/2/(S2
i + S2

e)1/2. (6.17)

The signal contrast energy is degraded by the sampling efficiency and
the noise variance becomes the sum of the observer’s internal noise and the
external noise. The noise variances are independent and therefore add.

Fixed Structured Background

The background was identical at each location across all trials. In some
experiments the background was taken from medical images and in others
it was a random dot matrix. Surprisingly, the performance for the ideal de-
tector in a fixed background should be no different from that for a uniform
background. Remember that the best strategy is to correlate the stimulus at
each location to the template and then choose the location with the highest
cross-correlation. Since the background is identical at all locations, perfor-
mance using the cross-correlation strategy should be identical for any type
of fixed background.

In spite of the prediction from the ideal detector model, a high-contrast
fixed background such as a sine wave grating does degrade human per-
formance. The authors hypothesized that the fixed, structured background
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introduces another source of variability due to the contrast gain control,
S2

cgc. The contrast gain control is presumed to divide the responses to the
signal at each spatial frequency by the average contrast and thereby intro-
duce added variability. The S2

cgc is conceptually the amount of external
noise that must be added to a uniform background to make that perfor-
mance equal to that for a fixed structured background.

We can represent the predicted d′ as:

d′ = (Eo × SE)1/2/(S2
i + S2

e + S2
cgc)1/2. (6.18)

Fixed-Trial Structured Background

The structured background was identical at each location for every trial,
but the background changed on each trial. For the ideal detector, changing
the background on every trial should not affect performance for the same
reason described above. The background at each location is still identical.
But changing the background on every trial does reduce the efficiency of
human observers. We can speculate that when the background is fixed
across trials and observers are given feedback, observers can build up an
accurate template. Such recalibration of the template would not be possible
if the background is shifted on every trial.

We would predict that d′ should decrease due to the variance introduced
by the changed background (S2

bg):

d′ = (Eo × SE)1/2/(S2
i + S2

e + S2
cgc + S2

bg)1/2. (6.19)

Random-Trial Structured Background

The background differed at each location for every trial. For the ideal de-
tector, the random variation of the background will clearly reduce perfor-
mance. As described previously, the optimum strategy is to construct a
filter that removes the noise correlation and then cross-correlate the filtered
stimulus with the filtered template. If the background differs at each loca-
tion, the ideal detector must create a different prewhitening filter for each
location and then choose the location in which the cross-correlation is
highest.

The random background clearly degrades human performance, and we
can represent the predicted reduction in d′ by adding another variance due
to the random background variation (S2

rbv):

d′ = (Eo × SE)1/2/(S2
i + S2

e + S2
cgc + S2

bg + S2
rbv)1/2. (6.20)

By combining the results of three studies (Ahumada & Beard, 1997;
Beard & Ahumada, 1999; Eckstein et al., 1997), a rather consistant picture
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emerges. The detection performance in terms of d′ for three background
conditions as a function of the signal contrast energy is schematically pre-
sented in figure 6.15. There are two graphs. In the first the added noise en-
ergy is relatively small, and in the second the added noise energy is several
times greater.
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Figure 6.15. The average performance for detecting a signal in three different med-
ical backgrounds (X-ray coronary angiograms). The signal was presented in one of
four locations (4AFC). Five levels of signal contrast were used to determine the ef-
fect on detection of signal strength. The results are shown for the minimum and max-
imum amount of presented background noise energy. The ideal detector values are
calculated from d′ideal = (Eo/No)1/2 (equation 6.16 in text). Adapted from “Visual
Signal Detection in Structured Backgrounds. II. Effects of Contrast Gain Control,
Background Variations, and White Noise,” by M. P. Eckstein, A. J. Ahumada, and
A. B. Watson, 1997, Journal of the Optical Society of America, A, 14(9), 2406–2419.



At all conditions, detection was best with a uniform gray background.
Detection was intermediate with the fixed-trial backgrounds, and poorest
with the random-trial structured backgrounds.

1. As would be expected, detection improved as the stimulus contrast
increased and degraded as the background contrast increased.

2. The effect of the external noise was to reduce the differences be-
tween the background conditions. The task was made more difficult,
and observers could not make use of the repeated-trial structured
background to detect the signal. At the maximum noise energy back-
ground, there was no difference between the fixed trial and random
trial background.

Across the three experiments, rough estimates for the overall effi-
ciency for the uniform background, the fixed-trial structured background,
and the random-trial structured background conditions were 20–30%,
10%, and 0.05–1% respectively. Eckstein et al. (1997) estimated that
the sampling efficiency (i.e., the correlation between signal and the
observer’s template) in the uniform background was about 0.30, which
dropped to 0.16 in the structured backgrounds. They further estimated
that the equivalent internal noise and the equivalent contrast gain noise
were about equal and roughly one half of the equivalent background vari-
ation noise. These values for the sampling efficiencies are much greater
than those found by Simpson, Falkenberg, and Manhilov (2003) for drift-
ing gratings. In that work, the sampling efficiency was about 1%. Simp-
son et al. (2003) suggested that observers were using representations
based on slowly moving gratings regardless of the actual speed of the
grating.

In similar work, Burgess (1999) investigated the ability of observers
to detect signals in non-Gaussian background noise that is more rep-
resentative of backgrounds in natural scenes. One type of noise main-
tained the positive correlations found in natural objects (adjacent
pixels are likely to have the same value, creating low-frequency spatial
frequencies), but the other type of noise created negative low-frequency
correlations, so that adjacent pixels were likely to generate regions of
reversed brightness (creating high spatial frequencies). Burgess found
that observers were able to compensate for the positive low-frequency
noise correlations but were unable to compensate for the negative low-
frequency correlations when the signal was a set of small discrete blobs.
This finding supports the contention that the visual system prewhitens
the image to remove local positive correlations found in scenes but is
unable to compensate for background correlations that do not occur
naturally.
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Efficiency and Noise in Auditory Processing

Ideal Detector Models

The optimal decision rules are identical for hearing and seeing. Both senses
must segment and identify objects against a varying noisy background.7

Imagine that the background noise is passed through a low-pass filter
such as an amplifier or headphone. The amplitude of this filtered output
changes slowly because the rapid changes due to the high frequencies have
been removed. The amplitudes of two noise values close together in time
will be similar, so that we can approximate the noise to a high degree from a
finite set of individual points. Sampling theorems prove that it is possible to
exactly reconstruct a waveform that is limited to frequencies less than W by
the amplitude of a set of discrete, equally spaced intervals at times 1/2W,
2/2W, 3/2W, and so on. For a signal limited to 500 Hz, the points would be
separated by 1 ms and the representation would be based on 1,000 points/s.

First, if the signal is known exactly (SKE), the ideal detector will know
the true value of the amplitude at each of the 2WT sample points. If the
signal + noise and the noise are normally distributed, and the variance of
the noise and signal + noise distributions are equal, then the performance
of the ideal detector can be expressed in terms of d′:

d′ = (2Es/N0)1/2. (6.21)

where Es is the signal energy and N0 is the noise power density. The noise
power density is actually energy: the power in a one-cycle band per
second × seconds. N0 is a very useful measurement because it determines
the ability of listeners to hear a signal embedded in noise.

Second, if the signal is one from a set of m orthogonal signals, typically
two assumptions are made: (1) the signals are uncorrelated with each other,
and (2) all possible signals have the same energy. D. M. Green and Swets
(1966) demonstrated that as the uncertainty increases due to more possible
waveforms, the energy of any waveform must be increased to achieve the
same performance. Specifically, the energy must be increased approxi-
mately as the logarithm of the number of alternatives. For this reason, after
the uncertainty has increased beyond a small value, large changes in the un-
certainty can be balanced by relatively small changes in the signal intensity.

Efficiency of Human Detectors

The measure of efficiency is the ratio of the actual performance to the ideal
performance, d′ideal = (2Es/N0)1/2. Keeping in mind that the measure of
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efficiency depends critically on the assumptions about the ideal detector,
the ratio of actual performance to ideal performance usually ranges from
0.25 to 0.50 based on the published papers collected in Swets (1964). But
there are exceptions where the efficiency drops to 1% or less. Several stud-
ies have pointed out that the particular characteristics of the noise masker
can drastically affect performance. For example, Isabelle and Colburn
(1991) used ten different narrow-band noise maskers in a simple pure-tone
(500 Hz sinusoidal wave) detection task. Across the three subjects, for
one noise sample the percentages of hits [Pr(saying Signal�Signal)] and
false alarms [Pr(saying Signal�Noise)] were (22%, 22%), (20%, 25%), and
(65%, 22%), yielding d′ values of 0.0, −0,16, and 1.0 respectively. How-
ever, for a different noise sample the percentages were (92%, 90%), (92%,
85%), and (95%, 52%), yielding d′ values of 0.12, 0.60, and 1.35. For still
another noise sample, the hits and false alarms were (95%, 10%), (95%,
28%), and (98%, 40%), yielding d′ values of 2.92, 2.22, and 2.30. These
outcomes clearly demonstrate that each noise produces a different percep-
tion: The first noise makes it seem that the signal was never presented; the
second noise makes it seem that the signal was always presented; and the
third noise makes it easy to detect when the signal was presented. There
also seems to be a subject × noise interaction. The first subject does rela-
tively poorly with the first two noises, but was the best with the third noise.
Siegel and Colburn (1989) presented similar results.

Internal and External Noise

The fact that equivalent noise samples yield remarkably diverse perfor-
mances implies that there striking differences in the external noise and the
fact that equivalent listeners give different responses to the same stimulus
implies that there also are striking differences in the amount of internal
noise. The problem is to develop strategies that will allow us to measure the
two kinds of noise.

D. M. Green (1964) advocated a quasi-molecular approach in which
each noise sample is presented several times to measure the internal noise.
For example, Spiegel and Green (1981) used a clever technique for estimat-
ing internal and external noise. In a two-alternative forced-choice proce-
dure, they presented two different noise samples (no signal at all) and asked
listeners to pick the signal interval. The same pair of noises was repeated
many times and the percentage of times the listener picked the same noise
sample was calculated. If the listener’s choice was random, 50/50, then
we can argue that it was all internal noise because there was no discrimina-
tion between the two samples. Conversely, if the listener’s response was
highly consistent, say 85/15, then we can argue that the internal noise was
low and performance was determined by the external noise (i.e., the variation
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between samples). Spiegel and Green found that the percentages ranged
between 65% and 75% depending on the particular pair of noise samples,
and that value indicated that the internal and external noise were approxi-
mately equal. In a visual detection task, Murray et al. (2002) found that the
percentages ranged between 68% and 76%, so they also estimated that the
internal and external noise power was roughly equal. Isabelle and Colburn
(1991) and Siegel and Colburn (1989), using a different analysis, found in-
ternal/external noise ratios that ranged from 0.5 to 2.5, with an average
about 1. However, we cannot partition the internal noise into those compo-
nents due to the stochastic nature of neural transmission, fluctuations in the
subject’s criterion, or the subject’s attentiveness. Similarly, we cannot parti-
tion the external noise into its components.

Fixed (Frozen) and Random Noise

Pfafflin and colleagues (Pfafflin, 1968; Pfafflin & Mathews, 1966) investi-
gated whether detection and identification were better with a fixed unvary-
ing noise masker than with a noise masker that changed on every trial in
two studies, using a two-alternative forced-choice procedure. (This is anal-
ogous to the fixed structured background [frozen noise] and fixed-trial
structured noise conditions used by Eckstein et al., 1997). In the first study,
a sinusoidal tone was masked by 1 of 12 different noises in one interval,
and only a noise was presented in the second interval. On some trials, the
same noise was presented in both intervals (e.g., S + N1 versus N1), while in
other trials the noise in the two intervals differed (e.g., S + N1 versus N2).
The detection of the tone signal was slightly better when the noise in both
intervals was identical, but the difference was not large (compare this out-
come to figure 6.15). (In another study, listeners could correctly determine
if the noise in the two intervals was the same or different in about 80% of
the trials.)

The second study consisted of three stages. In the first, the two intervals
in every forced-choice trial used the same noise, but the 12 noises were ran-
domly presented across trials. The authors then selected the noises that pro-
duced the poorest performance and presented blocks of trials with exactly
the same noise on every trial (e.g., S + N9 versus N9 for every trial). Detec-
tion of the tone signal was much better in the blocked second stage for both
two-alternative forced-choice tasks and simple yes-no tasks (was the tone
signal presented or not). Clearly, listeners are gaining information about
the noises that could be used to improve performance.

In an experiment to measure the difference threshold for intensity, Buus
(1990) compared tones, frozen noise, and random noise. On every trial,
the sound in one of the intervals was incremented by ∆I, and listeners had
to identify that interval. The sounds were a 3000 Hz tone, a frozen noise
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sample that was presented for the entire block of trials, or a random noise
sample that changed on every trial. The difference threshold was smaller
for the frozen noise than for the random noise only when the noise had a
narrow bandwidth, and here the difference thresholds resembled those for
the tones.

In sum, the performance gain from frozen noise is small. This conclu-
sion differs from the visual results, where fixed structured noise produced
significantly better detection.

Profile Analyses and Comodulation Masking 
Release in Audition

We know that the basilar membrane performs a pseudo-Fourier analysis of
the incoming sound wave: Each auditory nerve transmits a range of fre-
quencies, and the auditory cortex is organized along isofrequency con-
tours. These physiological facts, along with the observation that for many
tasks performance appears to be based on the energy in a narrow band of
frequencies, led to the conceptualization that perception was a function of
critical bands. Energy within any band was integrated, and only the en-
ergy within a band determined masking effectiveness. Energy in critical
bands that were far removed from the frequency of the signal was sup-
posed to have little effect on performance. Below I consider two kinds of
experiments that demonstrate that performance can be determined by the
pattern of energy at widely different frequencies and not solely by the en-
ergy in nearby critical bands. Each type of experiment is related to later
chapters: profile analysis is related to the perception of timbre (chapter 8)
and comodulation release is related to the formation of auditory objects
(chapter 9).

Profile Analysis

In the typical profile analysis task, the standard stimulus is composed of 10
to 20 sinusoidal components widely separated in frequency. Each compo-
nent is exactly equal in amplitude. The profile stimulus is exactly the same
as the standard except that the amplitude of only one of the components is
increased. In a two-alternative forced-choice task, the listener must identify
the profile stimulus as opposed to the standard. Two factors seem to make
this a very difficult task. First, the incremental frequency component is
buried among the other components, and in some cases listeners will not
know which of the components will be increased in amplitude. Second, the
overall intensity of the standard and profile stimuli can differ within a trial.
Thus, the profile stimulus is not necessarily the louder of the two, so that
listeners must make their judgments in terms of the quality of the sounds.
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As shown in figure 6.16, the incremented component actually may be less
intense than that component in the standard if all the components are re-
duced in intensity.

To do this task, the listener must be able to compare the relative intensi-
ties at different frequencies. What is surprising is that some listeners find the
task easy, and the difference threshold is no worse and is usually better than
the difference threshold for a single isolated tone (D. M. Green, 1988).
Listeners are extraordinarily sensitive to the shape (amplitude envelope) of
the spectrum. What I find impressive is that listeners do so well given that
the stimuli are quite unrepresentative of natural sounds, in which overall
changes in intensity tend to increase the relative amplitudes of the higher
frequencies. For naturally produced sounds, the amplitudes of the fre-
quency components do not vary independently. D. M. Green (1993) sum-
marized some of the important findings based on the experiment by D. M.
Green, Kidd, and Pickardi (1983) shown in figure 6.17. There were four
conditions:

1. A single 1000 Hz tone was presented in each interval, and listeners
judged which of the intervals contained the more intense tone. The
intensities were the same in both intervals (except for the increment,
of course), but the intensity varied from trial to trial.
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Figure 6.16. Three possible comparisons between the standard and profile stimu-
lus are sketched. In the first, all of the components of the profile are changed in in-
tensity by the same amount so that the profile is constant and flat. In the second, one
frequency component is incremented but the remaining components do not change.
The intensity is changed between trials, but the intensity always is identical for the
components of the standard and profile stimuli, except for the target frequency. In
the third, the intensity variation occurs within a single trial: The intensity of all
component frequencies within the profile stimulus is increased or decreased, and
then the target frequency is incremented.



2. The same 1000 Hz tone was combined with 20 other tones to create a
21-tone standard complex. To create the profile stimulus, all 21 tones
were incremented. Listeners judged which interval contained the
louder complex tone. As in (1), the base intensities for the standard
and profile stimulus were identical, but the base intensity varied from
trial to trial.

3. Only the 1000 Hz tone embedded in the 21-tone profile stimulus, as
in (2), was incremented in amplitude. As in (1) and (2), the base in-
tensities of the standard and profile were the same on each trial, so
that the profile stimulus would be slightly louder. The base intensities
varied from trial to trial.

4. Only the 1000 Hz tone embedded in the 21-tone complex was incre-
mented, as in (3). Here, however, the overall intensity varied within a
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Figure 6.17. Results from profile analysis experiments demonstrating the differ-
ence between traditional intensity threshold measurement and intensity threshold
measurement as a sound quality judgment within tonal complexes. The filled circles
represent the results for a 1000 Hz tone with intensity variation between trials. The
open circles represent the results for a 21-tone complex with intensity variation
between trials. The filled squares represent the results for the increment of a single
tone with intensity variation between trials. The larger open triangles represent
the results for the increment of a single tone with intensity variation within trials
(see figure 6.16). Adapted from “Auditory Intensity Discrimination,” by D. M.
Green, 1993, in W. A. Yost, A. N. Popper, and R. R. Fay (Eds.), Human Psy-
chophysics (Vol. 3, pp.13–55). New York: Springer-Verlag.



trial, so that either the standard or profile could be the louder sound.
Listeners would need to judge differences in the spectral shape (i.e., a
comparison of the relative amplitudes of the components), disregard-
ing loudness, to perform the discrimination.

D. M. Green (1993) argued that there are two important findings. First,
the difference thresholds for (3) and (4) did not differ and were less than
those for (1) and (2). In spite of the fact that only 1 of 21 tone components
changed, subjects were able to discriminate intensity changes within the
complex better than when only the single component changed in isolation.
An increment of only 1 dB (12%) was perceivable. D. M. Green (1988)
argued that listeners create a verbal description of the spectral profile
(e.g., rough, smooth, sharp). It is this derivative judgment that is used to
compare the standard and profile, not the remembered loudness of individ-
ual components.

Second, the difference threshold for conditions (1) and (2) in which lis-
teners are making direct judgments of loudness increased as the two inter-
vals between the two sounds got longer, while the difference threshold for
conditions (3) and (4) did not. This finding supports the contention that
listeners are making qualitative judgments about spectral shape, reducing
those judgments to simple verbal terms, and remembering those terms. The
verbal terms would be immune to memory loss. It is not clear to me how
the verbal description provides a means to compare the intervals. I would
suspect that the verbal description provides a tag to re-create an auditory
image of the sound in the first interval and that complex sounds provide
several kinds of perceptual properties that can be employed retrospectively
by listeners to detect the profile.

It is interesting to note that as the number of components increases, the
difference threshold tends to decrease. As long as 100 Hz or so separates
the components, it does not much matter whether they are “compactly or
widely positioned around the incremented frequency. Listeners are making
their judgments based on the overall profile and not on the local region of
the incremented frequency.

Let me summarize at this point. The results here demonstrate that listen-
ers are more able to detect increments in the amplitude of one component
when it is embedded in a tonal complex than to detect the identical incre-
ment if that component is presented alone. Our proposed explanation is
Gestalt-like: The spectral shape of the tonal components creates a timbre
quality, and listeners compare the timbre of the standard to the profile to
make their judgments. If this is true, then we should be able to make dis-
crimination more difficult if we can strip away the surrounding components
to force listeners to make their judgments only on the loudness of the one
target frequency.
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One way to strip away the surrounding components and make them
form a separate auditory source is to manipulate the temporal properties of
the components. The most powerful acoustic cue for the fusion of compo-
nent sounds is onset asynchrony (see chapter 9). In nearly all instances, if
frequency components start at the same instant, they are perceived as com-
ing from the same object. On this basis, we would expect that if the target
component started before or after the remaining components, it would
be treated as a separate entity, and performance would then mimic that of a
single component presented alone. D. M. Green and Dai (1992) found that
leads and lags as small as 10 ms disrupted detection (this is slightly shorter
than the 20–30 ms delay that causes components to split apart in other
tasks discussed in chapter 9). Hill and Bailey (2002) attempted to create a
separate stream by presenting the target component to one ear and the
flanking components to the other ear (termed dichotic presentation). If the
target and flanking components were synchronous, dichotic presentation
was only slightly worse. If the components were presented asynchronously,
detection was much worse, but there was no added decrease due to dichotic
presentation. Onset asynchrony between two sounds is a much stronger
basis for the formation of two sounds than is different spatial locations
(also discussed in chapter 9).

A second way to strip away the surrounding components is by means of
coherent amplitude modulation. There are several possibilities: (a) the tar-
get component is modulated, but the nontarget components are not (or the
reverse); or (b) all the components are modulated, but the target component
is modulated out of phase to the other components. For all of these condi-
tions, the detection of the increment in intensity is impaired.

Comodulation Masking Release

The fundamental lesson from profile analysis research is that the acoustic
signal is typically treated as representing a single source and that listeners at-
tend to the entire spectrum. Isolating individual components leads to degra-
dation in the ability to detect the amplitude change of those components.

We can also demonstrate that the acoustic signal with a coherent tempo-
ral pattern is treated as a single source from the reverse direction. Suppose
we have a target masked by noise. How can we make that target more dis-
criminable? If adding more tonal components to form a coherent spectral
shape makes one tonal target more discriminable, then, paradoxically,
adding noise that combines with the masking noise to form a coherent
noise source also should make the target more detectable. The trick is to
amplitude modulate both the original masking noise and the added noise,
identically in frequency, phase, and depth, to make the coherent noise into
a source. The coherent noise source now seems separate from the target.
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Hall, Grose, and Fernandes (1984) were the first to demonstrate that am-
plitude modulation of a noise masker could lead to unmasking. Listeners
were trying to detect a 1000 Hz tone in a noise masker. The first part of the
experiment replicated previous work. As the bandwidth of the noise in-
creased, the detectability of the tone decreased and then remained constant
after the bandwidth exceeded 130 Hz. This result confirmed the view that
only noise within a critical band surrounding the tone affected perfor-
mance. Then Hall et al. slowly amplitude modulated the noise masker. The
unexpected result was that the tonal signal was easier to detect in the mod-
ulated noise (the tone could be 1/10 the amplitude as before [20 dB softer]
and still be detected) and that as the noise bandwidth increased, the signal
became even easier to detect.

Hall et al. (1984) provided another demonstration of masking release.
The initial condition was similar to that above: a 1000 Hz tone target and a
masking noise 100 Hz wide centered on 1000 Hz. In the second part, a sec-
ond nonoverlapping noise band 100 Hz wide at a different center frequency
also was presented (e.g., 750–850 Hz). If the two noise bands were ampli-
tude modulated coherently, the detectability of the tone increased up to
10 dB. The second noise band could be separated by as much as an octave
(500 or 2000 Hz) and still improve detection. In general, the most impor-
tant factor determining the amount of masking release was the number of
comodulated masker bands: The amount of release increased with the num-
ber of masker bands as long as the bands occurred in regions that excited
different critical bands. The release was maximized if the modulation rate
was low and the depth of modulation was high.

The temporal modulation properties of the masker bands are critical
(Hall & Grose, 1990). Suppose we start with the typical demonstration of
comodulation release, comparing the detectability of a tone masked by
narrow-band noise (figure 6.18A) to the same tone masked by a set of
noise bands that undergo coherent amplitude modulation (figure 6.18B).
The tone in the latter case may still be detected if it is 20 dB less than when
presented in one noise band. Now, we add two more masker bands that fall
between the tonal target and the two nearest noise bands, but these new
bands are modulated at a different rate than the other masker bands (figure
6.18C). The interpolated bands dramatically degrade the detectability and
the threshold falls nearly back to the case in which there are no comodu-
lated masker bands. The coherent amplitude modulation creates the percep-
tual cue that all the noise comes from one source and that leads to the noise
being segregated from the tone (which is not being modulated). The two
new interpolated noise bands presumably do not segregate with the other
noise bands and, being just two bands, probably do not form a second noise
object. The interpolated bands are adjacent to the noise band “on top of ”
the tone, so that they weaken the tendency for the noise band directly
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masking the tone to segregate with the comodulated bands. Perceptually,
there are two sounds: the tone masked by three noise bands and the six re-
maining coherently modulated bands. If we add additional noise bands that
match the modulation of the deviant bands (figure 6.18D), that creates a
stronger tendency for the deviant bands to form their own noise source and
a stronger tendency for the noise band at the tone frequency to rejoin the
coherently modulated bands. Perceptually, there now are three sounds: the
coherently modulated deviant noise bands, all the original coherently mod-
ulated noise bands, and the tone target. The detectability of the tone in-
creases due to the greater degree of comodulation masking release.

Another temporal factor that determines the degree of masking release
is the onset of the noise bands. Paralleling the outcomes for profile analy-
sis, if the onsets of the surrounding noise bands are not synchronous with
the onset of tonal noise band (greater than 50 ms), the degree of masking
release is reduced (Grose & Hall, 1993).
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Figure 6.18. The magnitude of comodulation release depends on the degree to
which the noise forms a separate perceptual entity. The simple detection experiment
is illustrated in (A). A tone (narrow line) is embedded in the middle of a noise band
(narrow rectangle). The basic comodulation release experiment is illustrated in (B).
All of the noise bands are modulated coherently (wiggly lines under noise bands)
and the tone is much easier to detect (by 20 dB). The interference of deviant bands is
illustrated in (C). The two deviant noise bands (modulated at different rate) disrupt
the segregation of the noise bands, and the tone remains embedded in the deviant
plus the original noise bands. The formation of the deviant noise bands into a percep-
tual entity is illustrated in (D). Adding more deviant bands at that modulation fre-
quency and depth makes it easier to detect the tone. Three sounds emerge. Adapted
from “Comodulation Masking Release and Auditory Grouping,” by J. W. Hall and
J. H. Grose, 1990, Journal of the Acoustical Society of America, 88, 119–125.



In sum, the masking release is greatest when the bands are perceived to
form one (or more) noise sources based on the onset synchrony of noise
bands with the same amplitude modulation envelopes. This really does
not tell us why it is easier to detect the tonal target. It might simply be that
the tone is more easily heard in the amplitude dips of the noise bands. If the
two noise bands are comodulated, the sum has distinct intervals in which
the masking noise is very weak. But if the noise bands are uncorrelated, the
sum does not have such distinct intervals of low intensity. However, a dip
explanation does not explain why onset asynchrony affects the size of the
release.

Summary

At least two major issues have been covered here. First, how does noise,
both internal and external, affect detection and identification performance?
Second, how does the nervous system compensate for the limited firing
range of individual receptors in the face of the enormous range of environ-
mental input?

The material presented here reinforces the contentions presented in
chapter 1 that perceiving is inherently contextual and depends on processes
at both multiple spatial and temporal time scales. The effect of noise and
the processes underlying gain control depend on the specifics of the actual
stimulus presented and its internal correlational structure and temporal
variation, as well as the context of the experiment and the statistics of the
natural world. It is tempting to conceptualize the resulting efficiency in
terms of maximizing information transmission.
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7

The Perception of Quality: 
Visual Color

Color and Timbre

The correspondences between looking and listening are often slippery,
with several possible matches at each stage in the process of perceiving.
Here is another of those choice points. The reflected light is a joint func-
tion of the illumination and the surface reflectance of an object, and the
emitted sound is a joint function of the source energy (corresponding to
the illumination) and the overlapping resonances (corresponding to the
surface reflectance) of an object. All the nervous system has is the rate of
firing of the different receptor cells, but the firing of any single one is com-
pletely ambiguous.

The firing rates of the retinal cells and the cochlear cells are probabilis-
tic. A medium-wavelength cone (colloquially called a green cone) can be
excited (although at a lower probability) by light energy at nearly every
visible wavelength, and a hair cell with a characteristic frequency of
1000 Hz can be excited (although at a lower probability) by a range of fre-
quencies around 1000 Hz. The ratios of firings among the three cone sys-
tems and the ratios among the different hair cells can lead to an accurate
interpretation of the energy reaching the receptor, but the ambiguity be-
tween the frequency distribution of the energy source and that of the re-
flectance and resonances remains. Nonetheless, the nervous system must
interpret the firing pattern and make a best guess about the properties of
the object.

There are several possibilities when comparing seeing and hearing. The
first matches color to pitch. We specify a color by its frequency and we
similarly specify pitch by its frequency. Moreover, color and pitch are the
classic examples of secondary perceptual attributes: The perceiver creates
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color and pitch; they are not inherent in the frequency of the energy.
Galileo, Locke, and others first advanced this distinction between a pri-
mary and secondary attribute. Newton’s famous expression was, “For the
rays, to speak properly, are not coloured. In them there is nothing else
than a certain power, and disposition to stir up a sensation of this or that
colour” and we can generalize that “vibrations to speak properly are pitch-
less.” If we follow this possibility, we could describe the particular charac-
teristics of the color space and the pitch space and describe any
correspondences between the two spaces. The emphasis would be on the
perceptual properties of the qualities themselves without reference to the
sources carrying the color or pitches. It would be the perception of the
proximal excitation only.

I prefer the second, which matches color contrast to timbre contrast for
two reasons. The first is that one overarching theme of this book is that
the perceptual variables are those of contrast, not those of individual mag-
nitudes. As described above, any single auditory or visual perception is
ambiguous. We can create many visual stimuli that lead to the same fir-
ing pattern using different combinations of illumination and surface re-
flectance, and similarly we theoretically could create many auditory stimuli
that create the same firing pattern by different combinations of source
frequency and filter resonance. However, if we can assume that the illumi-
nation is roughly constant and that the source frequencies are similarly
constant, then the contrasts among different regions of the visual scene
or among different sounds can lead to an estimate of the properties of the
object.

Another reason for my preference for the second match is my belief that
color and timbre are source attributes and therefore are properties of ob-
jects. The goal is to describe the perceptual and cognitive processes that al-
low us to recover the “true” color (i.e., the fixed surface reflectance of an
object) and timbre (i.e., the fixed resonances of an object) in spite of varia-
tions in the source (or any other environmental factor). The first step would
be to describe the source-filter models underlying the creation of colored
objects and sound objects and describe any correspondences between the
two models. The second step would be to point out the equivalences in the
perceptual process yielding color and timbre.

A basic question is, why should perceptual systems perceive one prop-
erty independently of others? Why should there be presumably indepen-
dent neural pathways for location, shape, color, pitch, and brightness? Why
does the auditory system construct timbre instead of merely constructing
the pitch? Moreover, why does it seem perfectly natural to describe visual
objects in terms of their color and sound sources (and not merely individual
sounds) in terms of their timbres so that comparative statements like “he
sounds just like Johnny Cash” are so easily understood? The same question
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can be posed in terms of any other property. Conceptually, it is possible to
have sensory systems in which the perceptual representation is a gestalt,
not analyzable into separable properties. My answer would be that such
properties provide independent ways to break auditory and visual scenes
into objects. For visual scenes, the constancy of one such property allows
viewers to segment the visual scene into objects; for example, viewers can
link together the surfaces of a single object based on color constancy in
spite of changes in shape due to motion. I would argue that the usefulness
of timbre is identical: It allows the perceiver to segment the auditory world
into objects in spite of the variation in individual sounds due to pitch or
loudness. Color and timbre help create the coherence of objects in a chang-
ing world.

Both color and timbre are defined by exclusion. Kaiser and Boynton
(1996, p. 315) defined chromatic color: “chromatic color is that aspect of
visual perception by which observers distinguish differences between
equally bright, structure-free fields of view of identical size and shape.”
The American National Standards Institute (1973, p. 56) definition of tim-
bre is, “the quality of sound by which a listener can tell that two sounds of
the same loudness and pitch are dissimilar.” The equivalence of the two
definitions is obvious: Each tells us that color or timbre is defined by dis-
crimination, but neither tells us what color or timbre is. There is a differ-
ence; color is defined as an act of perception while timbre is defined in
terms of a sound quality. This has led timbre to be conceptualized as one
acoustically measurable property such that each note of an instrument or
singing voice, as well as each spoken sound of one voice, would be charac-
terized by a single value of that property. This viewpoint has been rein-
forced by the inability to create models of instruments that sound correct
across pitch.

Yet I think that this definition of timbre is misguided. The usefulness of
timbre is identical to the usefulness of color: It specifies the inherent reso-
nant properties and thereby allows the perceiver to segment the world into
objects. What is important about timbre is that it is in some way unchanged
across changes in loudness and pitch, so that the listener can track the tra-
jectory of that object. Similarly, what is important about color is that in
some way it is unchanged across changes in illumination. Thus, I believe
that both color and timbre are the result of perceptual acts.

On this basis, the appropriate conceptualization for color is that of the
ratios of absorption (or firing rates) of the rods and three types of cones to
adjacent surfaces. (There is no doubt that the firing rates of each type of
cone are transformed into firing rates of opponent color neurons, so that
the resulting firing pattern is based on ratios. But in what follows I stay at
the level of the cones, which makes the presentation easier.) Each colored
surface would be characterized by a set of ratios of absorption. Under any
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fixed illumination, differences in those ratios would create the perception
of edges that delimit objects. Under varying illumination, it is the con-
stancy of the ratios that creates the perception of a single color. By analogy,
the appropriate conceptualization for sounds would be the set of ratios of
the firing rates across the hair cells due to the different frequency compo-
nents. At one fixed source frequency, differences in those ratios character-
ize the timbre of instruments and voices. At varying source frequencies, it
is the constancy of the ratios that creates the perception of a one-sound
object.

Although I have organized this book in terms of the equivalence of
color (this chapter) and timbre (chapter 8), the equivalence fails in several
ways. First, visual source energy usually is constant across the scene.
There may be shadows, localized frequency filtering due to dust, or reflec-
tions from one object onto another, but the most likely bet is that the
source is constant. Moreover, although the shape of the frequency distri-
bution of energy does change across increases or decreases in intensity,
the distributions can be transformed into each other. This relative con-
stancy is not true for sound objects. The source energy does not change
in any simple way at different frequencies as the intensity is increased or
decreased. Consider a violin: The source of sound is the vibration of the
string. Bowing produces a different set of source vibrations than plucking,
and the position, duration, and intensity of bowing and plucking also af-
fect the pattern of source vibrations. Moreover, the resonances may be
changed by changing the length of the tube for wind instruments or
lengthening the vocal tract while singing. Perhaps this is where the anal-
ogy fails: We can look for color in reflectance and disregard illumination,
but we must listen for timbre in both the source and resonances. The con-
struction of object properties is harder for listening.

A second place where the analogy between seeing and hearing fails
is the existence of visual metamers and the lack of equivalent auditory
metamers. The visual system is composed of four types of receptors—rods
and three types of cones—and the principle of invariance appears to be al-
most certainly true. Thus, no matter what hue excites a cone, that cone sig-
nals its own particular hue. At normal illumination levels, any hue can be
matched by a combination of three other hues (i.e., metamers). Cornsweet
(1970) gave an elegant presentation illustrating how the number of inde-
pendent receptor types equals the number of hues necessary to create
metamer matches. Color appearance models (see review in Fairchild, 1998)
attempt to predict hue matches under different illumination sources by in-
dependently scaling the excitations in the three cone systems. In contrast,
the auditory system is composed of roughly 2,000 inner hair receptor cells.
The principle of invariance also is certainly true for the hair cells. As found
for cones, each hair cell will respond to a range of frequencies so that a
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single tone will create multiple firings (i.e., there is no such thing physio-
logically as a pure tone or pure color). Following Cornsweet’s presentation,
the number of tones required to create an auditory metamer would be equal
to the number of hair cells excited by the single tone. Although it is still
theoretically possible to create exact matches, practically it is impossible.

Why do we have only three cones that yield metamers and yet have
2,000 hair cells that do not? Why not have only three hair cells or many
more different kinds of cones? I think the reason has to do with the differ-
ences between visual and auditory information. As is described in more de-
tail below, the visual sources and filters are characterized as being smooth
and continuous across wavelengths. Thus we can integrate the energy
across a wide band of frequencies and still have an adequate representation
of the stimulus. In contrast, the auditory sources and filters are character-
ized as having energy and resonances at discrete wavelengths. Thus, we
cannot integrate energy across a wide band of frequencies because we need
finer resolution to distinguish among sounds.

I believe that it is our naive realism view of the world as well as lan-
guage that misleads us here. We think that there are invariant colors and
sounds, and language reifies that conceptualization. We think that other
people agree with our use of color categories, and that reinforces our faith
that color is an inherent property of objects. It is only color illusions that
convince us that the perception of color depends on our inferences about il-
lumination and about surrounding colors. Perceived color is thus a second-
order calculation based on the relative ratios of absorption in different parts
of the field. Moreover, our interpretation of an object’s color is determined
by our simultaneous interpretation of geometric shape, depth, and orienta-
tion, and our interpretation of an object’s sound is determined by our simul-
taneous interpretation of distance, the acoustics of the surround, and the
acoustics of any background sound. Color and timbre perception must be
conceptualized as being part of the general problem of figure-ground seg-
mentation that constructs objects.

Jameson and Hurvich (1989) made an additional point. Our auditory
and visual systems have evolved to give perceptual information about the
invariants of objects but also about the particular characteristics of each
instance. We do perceive variations in timbre due to sore throats, physical
exhaustion, aging, or emotion, and we do perceive variations in color due
to shadows, fading, dust particles, or time of day. Jameson and Hurvich
further pointed out that the color of some objects (e.g., haystacks and
concrete) arises only after we have identified the object. On top of this, we
can vary the mode of perceiving. We can be analytical and discriminate
up to physiological limitations or we can be global or categorical and
merely assign objects to discrete categories when fine-grain differences
are unimportant.
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Visual Worlds

Modeling the Light Reaching the Eye

Light reaches the eye directly from the source, such as the sun or a lamp, and
indirectly from the reflectance of the direct light by materials. The reflected
light is the basis for perceiving objects. We can identify two basic classes of
reflection, that arising from the air-surface interface and that arising from the
body interface. In addition to direct reflections created by the source and ob-
ject, there are reflections caused by one-step, two-step, or greater mutual re-
flections created by other objects. It is implicitly assumed that the body
reflection is independent of the type of illumination. In commonsense fash-
ion, when we talk about color constancy we are thinking about body reflec-
tion caused by pigments embedded in the surfaces of objects.

Air-Surface Reflection (Specular Reflection)

Air-surface reflection is created by the surface properties of the material
and is the only type of reflection from metals. For a very smooth material,
the reflection is specular or mirrorlike in that the surface produces a clear
virtual image of the environment. As the surface becomes rougher, the im-
age from the reflection changes from shiny to glossy to satinlike and be-
comes blurred and diffuse for very rough materials.

The critical assumption is that at least some of the specular reflected
light has the same distribution of energy at each wavelength as the inci-
dent light; that is, the specular reflection is constant for all wavelengths
and therefore will take on the color of the illumination. The specular re-
flection will be concentrated in one direction, depending on both the rela-
tive position of illuminating light and the viewing angle. The specular
reflection by itself cannot be a reliable source of information about object
color. However, the assumption that the reflection is a constant fraction
at all wavelengths provides a way to isolate the body reflection signifying
object color from the combined specular and body reflection that reaches
the eye.1

Air-Body Reflection

Not all light is reflected at the surface. Some of it penetrates the surface and
is then scattered due to reflections and refractions by embedded colorant

The Perception of Quality: Visual Color 297

1. Some butterflies camouflage themselves by means of a surface metallic sheen that
reflects all of the incident light (Parker, 1999).



particles. Some of the reflected light is reabsorbed by the surface while the
remaining light reemerges from the surface. The spectral absorption prop-
erties of the embedded particles determine the fraction of the incident illu-
mination that emerges at each wavelength. Because the embedded particles
are assumed to be randomly distributed, the reflected light also is assumed
to be similar in all directions. Body reflectance predominates in materials
such as clay, plaster, and concrete, but in general reflected light is a combi-
nation of specular and body reflection. Both specular and body reflections
are illustrated in figure 7.1A.
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Figure 7.1. (A) The directional specular reflectance occurs at the air-surface inter-
face. The body reflectance is the result of the light penetrating the surface, being
reflected by the colored particles (possibly being reflected several times), and ulti-
mately being reflected back into the air. The body reflectance is diffuse, and is
assumed to be equal in all directions. (B) The light reaching the eye due to body
reflectance is the sum of the direct reflectances and the indirect bounce reflectances.
E(λ) is the spectral power distribution of the incident illuminant, R(λ) is the spectral
distribution of the reflectances, so that CS(λ) is the spectral power distribution of
the illumination reaching the eye. (The specular reflectances are not drawn for clar-
ity.) Abbr.: CS, Color Signal.



Indirect Illumination Causing Specular or 
Body Reflection

Indirect illumination comes from reflection off another object. Surpris-
ingly, although the second (and higher) reflections are rarely noticed, indi-
rect illumination can account for up to 15% of the illumination on an object.
Every possible kind of indirect illumination can occur: specular or spectral
reflection off one object can in turn produce specular or spectral reflection
off the second object. Although we could consider every “bounce,” a one-
bounce model seems adequate in most situations. A model of direct, body
reflectance and one-bounce body reflection is shown in figure 7.1B.

Lambert Reflection Model

The assumption that spectral reflection is the same in all directions because
the pigment particles are uniformly distributed is termed the Lambert
reflection model. (The Lambert model will fail if the surface is pitted so
that the light reaching the observer will change as a function of viewing
direction; Nayar & Oren, 1995.) What this assumption allows us to do is
to decompose the surface reflection into (1) a specular spatial component
dependent on the shape of the object, the source angle, and the viewing
direction; and (2) an independent spectral reflection component dependent
only on the properties of the particles and not on the shape of the object,
its orientation to the light source, or the viewing angle. Empirical measure-
ments indicate that a spatial-spectral decomposition is representative of a
wide range of materials: The spectral power of the different frequencies
reflected by an object at different viewing angles is linearly related, so that
only brightness changes at the different viewing directions (H.-C. Lee,
Breneman, & Schulte, 1990).

The Lambert model of reflection allows us to simplify composite illumi-
nation due to direct and indirect illumination by considering the composite
as coming from but one source. The single source is simply the weighted
average of the indirect and direct illumination.

Simplified World Models: Flat-World 
and Shape-World Models

All world models make simplifying assumptions; otherwise the source-
filter indeterminacy would make predictions impossible. Two assumptions
are found for all models: (1) the illumination is due to a single point of light
that is angled toward and distant from the surface, and (2) each surface
point projects to one retinal location.
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Shape World

To achieve a realistic world model, we need to include three-dimensional
objects that create shadows, indirect reflections, and specular reflections.
The relationships between the surfaces and reflectances are complex, and
there are two simplifications that are commonly employed (L. T. Maloney,
1999).

1. Geometry-reflectance separability. A change in viewing conditions is
assumed merely to scale by a constant the surface reflectance function.

2. Diffuse-specular superposition. Some surfaces do not satisfy the
geometric-reflectance separability assumption when considered in
terms of the sum of the specular and spectral reflectance. However,
the separability assumption may be satisfied if the specular and
spectral (diffuse) reflectances are considered separately. If this is true,
there will be different geometric functions for the two types of re-
flectances, and the light reaching the observer is some mix of the two.

Flat World

To simplify the computational problems in recovering the color of objects,
some models further assume what L. T. Maloney (1999) termed the flat-
world environment. The flat-world model reduces a three-dimensional
world to a flat two-dimensional plane. The observer is viewing a world
painted onto a flat sheet with all areas equidistant from the observer. The
scene is illuminated by one source; all the light reaching the viewer comes
from the direct body reflection of the pigments. There are no specular re-
flections and no indirect reflections from other objects. Moreover, due to
the flat-field assumption, there are no shadows created by obscuring ob-
jects. Stimuli that create these assumptions are colloquially termed Mon-
drian stimuli: They are coplanar patchwork patterns of different hues
resembling paintings by the Dutch artist Piet Mondrian (figure 7.2). Troost
(1998) was skeptical that such Mondrian patterns reach the level of com-
plexity that leads observers to directly perceive surface color. He suggested
that the hues are perceived as free-floating colors not belonging to any sur-
face. The observer reasons about what the colors ought to be, rather than
perceiving the surface colors directly.

It should be kept in mind that the above models are essentially point-
wise. They are designed only to depict physical energy processes that can
be explained by characteristics of material at one point. But the visual
world also has surface effects that can only be defined on a finite patch of
surface, for example wood grain or texture. In addition to surface effects,
there are environmental effects that cannot be explained by any description
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of an object but also require the consideration of surrounding elements. For
example, the perception of wetness comes from the darkening of one area
coupled with another area that reflects more light. It seems to me that the
concept of multiresolution can be extended to color; the interpretation
of color occurs at several spatial resolutions at once. Moreover, we need to
conceptualize color constancy as based on heuristics that make use of sev-
eral cues at once. In some circumstances, the local scene will determine the
color, while in other circumstances the global scene will determine the
color. Again, it is our language that deceives us into thinking that there is an
invariant color out there.

Computational Models for Color Constancy

Computational models have two basic parts. The first is the image equa-
tion, which calculates the color signal reaching the retina from the physical
properties of the scene, an energy description. The second converts the
color signal into the firing rates of the three cone systems based on the
spectral absorption curve of each cone type, a physiological description
(Hurlbert, 1998).2
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2. The number of ways to describe the light stimulus and the resulting physiological and
perceptual effects is bewildering. Here I make one distinction, between a description of the
light in terms of physical properties (energy–irradiance and radiance in watts) that are indepen-
dent of the human vision system (termed radiometry) and a description in terms of its visual
effectiveness (colorimetry and photometry). Photometry reduces that light stimulus to one
number that estimates its visual effectiveness (essentially brightness–luminance). Colorimetry
reduces the light stimulus to three numbers that estimate its effects on the three cone receptors.

Figure 7.2. The shape world is
three-dimensional, containing

shadows and specular
reflectances (A). The flat world

reduces the shape world to a two-
dimensional array (B). The flat

world retains diffuse body
reflectance and occlusion, but not

shadows or specular reflections.



Color Image Equation

In general:

Color signal (CS) [λ(wavelength) × (position on surface)]
= direct irradiance + reflected body irradiance

+ reflected specular irradiance + indirect body irradiance
+ indirect specular irradiance.

In a generalized three-dimensional world, the color signal reaching the
eye depends on the angles between the light source, the surface, and the
viewer’s eye. I am not including those terms because all color constancy
models assume a two-dimensional world with Lambertian reflectance in
which those terms disappear.

1. Direct irradiance can be represented as E(λ,x) so that it depends on
the wavelength λ and the surface position x.

2. Reflected body irradiance is direct irradiance filtered by body re-
flectance Rb (Rb is a function of wavelength and surface position).

Reflected body irradiance CS(λ,x) = [E(λ,x)][Rb(λ,x)]. (7.1)

3. Reflected specular irradiance is direct irradiance filtered by specular
reflectance Rs (Rs is a function of wavelength and surface position,
like Rb). The body and specular irradiances have parallel equations:

Reflected specular irradiance CS(λ,x) = [E(λ,x)][Rs(λ,x)]. (7.2)

4. The indirect body + indirect specular irradiance coming from point x
is based on the sum of the irradiance from all other points y that reflect
onto x; the reflectances from all points y are treated as a second direct
irradiance. This second direct irradiance is multiplied by the reflected
and specular coefficients at x to yield the indirect irradiance (to the
eye). The intensity and spatial frequencies of the one-bounce irradi-
ance from y to x is going to depend on the physical geometry between
x and each y, [α(x,y)] as well as the total irradiance reflectance at each
y, E(λ,y)[Rb(λ,y) + Rs(λ,y)]. The sum of the irradiance reflectances
from all y to x (i.e., the indirect part of the color signal) is therefore:

Indirect body + indirect specular irradiance
= Σ[α(x,y)E(λ,y)][Rb(λ,y) + Rs(λ,y)]. (7.3)

Combining the four sources described above, we obtain a complete
description of the image. But, as stated above, all models of color con-
stancy make further simplifications based on Lambertian reflections in a
flat world. Namely, surfaces are flat, there are no specular reflections, and
there are no mutual indirect reflections. Moreover, only one light source is
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assumed, so that the surface irradiation E can be separated into spectral and
spatial components: Every wavelength will change in the same way at dif-
ferent spatial points. (We could simplify further and assume that the irradi-
ance is constant across space, so that the irradiance becomes simply [E(λ)].)

CS(λ,x) = [E(λ,x)][Rb(λ,x)]. (7.4)

Now the color constancy problem becomes decomposing the contribu-
tion of the E (irradiance) and ρb (body reflectance) components at every
point in space.

Cone Absorption

For the simplified image equation, the light hitting the receptors equals
the product of the irradiance and body reflection taken at individual wave-
lengths. But the three cones in the human eye do not sample the irradiance
at each wavelength separately. Instead, by the principle of invariance, the
firing rate of any cone is based on the light intensity absorbed across
the perceivable wavelengths; the output of any cone is going to be the sum
of the firings that would be produced by absorbed light energy at each
wavelength. For any cone, the spectral absorption curve gives the probabil-
ity that it will absorb irradiance at any wavelength. Thus, to convert the ir-
radiance into firing rates, we integrate and combine the excitation over the
cone’s spectral sensitivity:

Excitation cone M = Σ[Sm(λ)][CS(λ,x)]

= Σ[Sm(λ)][E(λ,x)][Rb(λ,x)]. (7.5)

The function Sm(λ) represents the spectral sensitivity of cone M (middle
wavelengths) and there would be two other equations for the long-
wavelength (SL) and short-wavelength (SS) cones.

To return to understanding color constancy, the starting point would be
the set of equations for cone excitations. We can define color constancy
simply as the apparent invariance in color appearance of objects upon
changes in irradiance. Color constancy is nowhere close to perfect; in fact,
it could be legitimately argued that it does not occur in humans. If con-
stancy did occur, then we would not have to include illumination in predict-
ing color matches. The reflectances combined with the spectral sensitivities
of the cones would suffice. But two objects may look matched in color us-
ing one light source but look mismatched using another. Colors are not in-
dependent of irradiance. These kinds of matches and mismatches are even
worse for surfaces with irregular reflectances.

The computational problem is that information is coded in only three
cone systems. Therefore, there are theoretically many solutions to any set
of cone excitations (i.e., metamers). What proverbially saves the day is that
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the possible set of illuminant functions is relatively smooth and regular
and, similarly, the possible sets of surface reflectance functions are rela-
tively smooth and regular. If observers can make use of those, a priori
physical regularities, estimates of the surface color are likely to be close to
right.

Linear Models

Constancy models make the assumption that both the spectral body re-
flectance and spectral irradiance functions can be represented by the linear
sum of a small number of basis functions, because both functions usually
are smooth and regular. We start with a set of distributions from naturally
occurring objects and illuminants. The mathematical goal is to derive a set
of decorrelated functions such that multiplying each function by a constant
and then adding them together can replicate any one of the distributions.
Obviously, different constants would be utilized to replicate a specific dis-
tribution. This process is nearly identical to the derivation of basis func-
tions for cortical cells found in chapter 3. There the basis functions were
modeled by Gabor functions. Here, the basis functions are continuous and
change smoothly and regularly across wavelengths. The implicit idea both
here and in chapter 3 is that these distributions should somehow be related
to visual features and channels.

Although the number of basis functions necessary to adequately charac-
terize body reflection and the illuminants probably depends on the specific
set of objects and sources, research has suggested that three functions,
E1(λ), E2(λ), and E3(λ), may be sufficient to approximate all daylight dis-
tributions (Judd, MacAdam, & Wyszecki, 1964; Wyszecki & Stiles, 1982)
and other broadband illuminations (L. T. Maloney, 1986). Moreover, sev-
eral different analyses have shown that three functions, R1(λ), R2(λ), and
R3(λ), may be sufficient to characterize some surface reflection functions,
but typically seven or more functions are necessary (Parkkinen, Hal-
likainen, & Jaaskelainen, 1989; Vrhel, Gershon, & Iwan, 1994). Thus, the
equations for illumination and body reflectance would be of the same form
(here we are assuming three basis functions, although in most real cases
there will be different numbers of equations for the illumination and body
reflectances):

Illumination E(λ) = ε1E1(λ) + ε2E2(λ) + ε3E3(λ) (7.6a)

Reflectance Rb(λ) = αR1(λ) + βR2(λ) + γR3(λ). (7.6b)

Examples of basis functions for daylight irradiance are shown in
figure 7.3. What this means is that we can approximate the light reflecting
off objects and reaching the observer’s eye in terms of linear functions.
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Each basis function is independent of spatial location; the values for each
function depend only on wavelength. To adjust for changes in illumination
or reflectance at different spatial points in the scene, the weights for the in-
dividual basis functions are changed. Thus, at one illumination ε1 = ε2 = ε3,
but at another one ε1 = .75, ε2 = .25, and ε3 = 0. Identical types of variation
will occur for reflectance. To solve the color constancy problem, we would
derive the coefficients for the reflectance function, α, β, and γ.

To make this more concrete, suppose that there are three basis functions
for both illumination and body reflectance to match the trichromatic color
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Figure 7.3. The average daylight irradiance is drawn in (A). A wide variety of
daylight spectral distributions can be re-created by the sum of three independent
vectors, shown in (B). By combining the three vectors in different proportions, it is
possible to simulate the irradiance spectral distribution for different kinds of day-
light (shown in (C)). Adapted from “Spectral Distribution of Typical Daylight as
a Function of Correlated Color Temperature,” by D. B. Judd, D. L. MacAdam, and
G. Wyszecki, 1964, Journal of the Optical Society of America, 54, 1031–1040.



visual system. Moreover, suppose that the illumination and surface are com-
pletely uniform so that light excitation and body reflectance are constant at
every point.

We can simplify equation 7.5 because of our uniform assumptions, so
that

Excitation cone M = Σ[Sm(λ)][CS(λ,x)] = Σ[Sm(λ)][E(λ,x)][Rb(λ,x)]

becomes

Excitation cone M = Σ[Sm(λ)][CS(λ)] = Σ[Sm(λ)][E(λ)][Rb(λ)]. (7.7)
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Figure 7.3. Continued



Now we can substitute equation 7.6a for [E(λ)] and equation 7.6b for
[Rb(λ)] to create the rather complex equation:

Excitation cone M = Σ[Sm(λ)][ε1E1(λ) + ε2E2(λ)
+ ε3E3(λ)][αR1(λ) + βR2(λ) + γR3(λ)]. (7.8)

The basis functions for illumination multiplied by the basis functions for
reflectance create the excitation for each cone system at each wavelength.
The excitation is multiplied by the absorption curve to yield the firing rate.
There would be analogous equations for the two other cones.

To estimate the surface color, we need to derive the surface descriptors
α, β, and γ. But to estimate the color, the observer simultaneously must
figure out the illumination. The difficulty is that there are more unknowns
than data points. There are three unknowns for the illumination (one value
for each of the three basis functions), and there are three unknowns for
the body reflectance (one value for each basis function). However, there are
only three known values, one for the excitation of each cone system. The
indeterminacy problem gets worse if more basis functions are needed to
model reflectance or if the surface is not uniform. Now, the indeterminacy
occurs at each point. All color models basically begin with three equations
like equation 7.8, one for each cone system. Each model described below
makes slightly different simplifying assumptions to achieve a solution.

Before considering specific color models, it is worthwhile to consider
the advantage of thinking about color constancy in terms of the linear sums
of excitation and reflectance basis functions. Linear models represent a pri-
ori hypotheses about the likely set of inputs and, to the extent that the vi-
sual system has evolved to pick up those likely inputs, the perceptual
inference problem becomes more tractable. Given that the illumination can
be described with three basis functions, then we can calculate the relative
amounts of each illumination basis function from the excitation of the
three cones. Similarly, given that the reflectances of most objects can be
adequately described with three basis functions, we can calculate the rela-
tive amounts of each reflectance basis function from the excitation of the
three cones. We are replacing the direct calculation of the continuous illu-
mination and reflectance functions with the calculation of the relative
amounts of the respective basis functions.

Moreover, to the extent that the basis functions appear to be analogous to
physiological or perceptual functions, we can argue indirectly that the basis
functions underlie color constancy. For example, three basis functions have
been found to represent surface reflectance for a set of Munsell colors (Co-
hen, 1964). The first function is relatively flat across the wavelengths. The
second function contrasts green with red, while the third function contrasts
yellow mainly with blue and less strongly with red. Each basis function has
one more reversal, mimicking basis functions described previously. Thus,
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the three basis functions bear a resemblance to the single additive and two
types of opponent cells found in the lateral geniculate. It is possible to make
a too-strong analogy here. The resemblances are not perfect, and several at-
tempts to model surface reflectances have required five to eight basis func-
tions to adequately represent the spectral reflectance. A better way of
thinking about the correspondences is in terms of decorrelating responses.
In chapter 3, I argued that on-off cells and the Gabor-like receptor fields
found in V1 could be thought of as a physiological mechanism to remove re-
dundancies in the visual image. The same argument works here: The oppo-
nent cells remove the correlation in firing rates among the three cones, so
that there should be no surprise that the basis functions calculated to mini-
mize the intercorrelations look like the opponent cells.

The linear bases for artificial illuminations are more complicated. Fluo-
rescent lights, in particular, introduce high-amplitude spikes so that the ba-
sis functions cannot be smooth as found for daylight conditions, but must
contain peaks at different wavelengths to reconstruct the spectral distribu-
tion as pictured in figure 7.4A. Romero, Garcia-Beltran, and Hernandez-
Andres (1997) found that four to seven multiple-peaked bases were
necessary to represent a wider range of artificial and natural illuminants.
The first three bases are shown in figure 7.4B.The increased number of re-
quired bases makes the indeterminacy worse.

It is also the case that visual scenes obey the 1/f α amplitude frequency
distribution discussed previously. Parraga, Brelstaff, Troscianko, and
Moorhead (1998) measured the amplitude of the luminance at different
spatial frequencies for natural scenes. They defined two measures: (a) Lu-
minance was defined as the sum of excitations from the long- and middle-
wavelength cones L + M; and (b) chrominance was defined as the difference
between the long- and middle-wavelength cones divided by the sum to
remove shadows:

Chrominance = (L − M)/(L + M). (7.9)

Both luminance and chrominance followed the 1/f function, and the slope
was close to 1. Over the set of natural scenes, there was more luminance en-
ergy at lower spatial frequencies and higher chrominance energy at higher
spatial frequencies. Surprisingly, this is just the opposite of human sensitivity
curves: Humans are more sensitive to chrominance at low frequencies and lu-
minance at higher spatial frequencies. The authors offer several explanations
why the visual system is not more sensitive to higher-frequency chromi-
nance: (a) chrominance is more important at low frequencies to segment
objects (e.g., berries against leaves), and fine-grain variation in chrominance
is unimportant; and (b) there is a great deal of chromatic optic blurring at
higher frequencies that makes higher-frequency information useless.
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Figure 7.4. The spectral power distributions of fluorescent lights is peaky. There
are several frequencies at which there are large increments in the relative power, il-
lustrated in (A). If the basis functions are derived from a set of irradiance distribu-
tions that include smooth natural daylights (as in figure 7.3) and peaky artificial
lights, the resulting bases also contain peaks, and more than three bases are neces-
sary to closely simulate the irradiance distributions illustrated in (B). Adapted from
“Linear Bases for Representation of Natural and Artificial Illuminants,” by J.
Romero, A. Garcia-Beltran, and J. Hernandez-Andres, 1997, Journal of the Optical
Society of America, A, 14, 1007–1014.



Simplifying Assumptions and Constraints

Even if we restrict the illumination and reflectance to a small number of
basis functions, further simplifications or constraints are necessary to solve
for the surface color. The constraints are used to calculate the illumination,
which in turn allows for the calculation of the reflectance. Some of the con-
straints represent possible perceptual mechanisms, while others seem moti-
vated more by computational possibilities.

Shape-World Algorithms

1. The first type of algorithm assumes that the observer can identify the
illumination directly (e.g., by looking at it). Alternately, the observer could
identify a perfectly reflecting surface or a white surface and make use of
those surfaces to identify the illumination. (Obviously, this assumption
could be used for flat-world models as well.)

2. The second type of algorithm makes use of the separability of the
specular and diffuse body reflection. The reflected light from any surface is
always a combination of two kinds of reflectance, although we do not know
the proportions of the two types. The specular reflection is assumed to
equal the spectral power distribution of the illuminant and to vary as a
function of viewing angle. The diffuse reflection is assumed to be a linear
function of the spectral reflectance of the object and to be independent of
viewing angle. If there are two objects, each with a combination of surface
and specular reflection, and if there are multiple views to get different
amounts of each type of reflection, then it is possible to abstract the surface
reflectance.

3. The third type of algorithm makes use of the mutual reflectances
among surfaces to derive the illumination. The illumination hitting one
surface is reflected according to the spectral reflectance (R) of the first
surface [E(λ)R1(λ)] and that reflection becomes the illumination hitting a
second surface, where it is reflected according to the spectral reflectance
of the second surface [E(λ)R1(λ)R2(λ)], as diagrammed in figure 7.1. Funt,
Drew, and Ho (1991) demonstrated that it is possible to derive an iterative
solution.

Flat-World Algorithms

Reference Surfaces The first class of solutions assumes that there are
reference surfaces that allow the observer to calculate the illumination. In
all such solutions, the illumination is assumed to be constant across the
scene.
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First, as long as the number of cones, reflectance functions, and illumi-
nation functions are equal, then only one reference point is necessary. The
reference point pins down the lighting matrix so that the unknown weight-
ing of the illumination basis functions in equation 7.6a can be determined.
Once that is done, the number of unknown weightings of the surface
reflectance basis functions will be equal to the number of known cone exci-
tations (as required by the assumptions), and the surface color can be
recovered.

Second, a further assumption about a fixed reference point is termed the
gray-world algorithm: the mean intrinsic color of a scene is a specific gray.
If the single reference point is replaced by the weighted average of the
excitation across the entire scene, then the averaged light becomes the
spectral distribution of the illuminant. Buchsbaum (1980, p. 24) stated, “It
seems that arbitrary natural everyday scenes composed of dozens of color
subfields, usually none highly saturated, will have a certain almost fixed
spatial reflectance average. It is reasonable that this average will be
some medium gray.” D’Zmura and Lennie (1986, p. 1667) made the identi-
cal claim: “thus space averaged light from most natural scenes will bear
chromaticity that closely approximates that of the illuminant.”

While the weighted average does not need to be gray, it does need to be
known, so that the algorithm explicitly makes a strong claim about the
physical environment. Clearly we can question whether models that require
reference surfaces are useful models for human vision. To the extent that
any variation in the mean intrinsic color is small relative to changes in illu-
mination, then the gray-world assumption has heuristic value.

Multiple Views The above solutions assume that there is a single view
under a single unknown illumination. D’Zmura and Iverson (1993a, 1993b)
pointed out that in more natural situations, observers have access to multiple
views of the object surfaces and that often the illumination may change
between successive views or that one view may include a change of illumi-
nation. As long as the observer can maintain correspondence of the surfaces
across the views, it is possible to derive the surface reflectances. There are
sets of constraints among the number of basis functions, receptors, and
views that are necessary. For example, for illuminants that can be repre-
sented by three basis functions, a visual system with three cones, given three
views, can solve for reflectance functions with up to eight basis functions.

For scenes that include a change in illumination, absorption in the three
cone systems based on one illumination will be highly correlated to the ab-
sorption based on the second illumination. As argued above, the two sets of
absorption rates would allow the observer to recover the illuminants and
surface reflectances.
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Color Appearance Models and Color Constancy

I now shift orientation and consider models and experiments in which
observers attempt to match the surface colors viewed under different
illuminations, termed asymmetric color matching. For any stimulus, we can
calculate the expected number of absorptions for each of the three cones
by multiplying the illumination by the surface reflectance by the respec-
tive spectral absorption curve [i.e., E(λ)R(λ)Ss(λ), E(λ)R(λ)Sm(λ), and
E(λ)R(λ)Sl(λ)].

First, color constancy will be perfect if the surface reflectance of the
match color is identical to the standard color. Therefore, the number of
cone absorptions will differ between the standard and test because the illu-
mination is different.

Second, color constancy will be zero if the reflectance of the test color
multiplied by the test illumination by the absorption curve yields the same
number of cone absorptions as the standard stimulus. In this case, ob-
servers are unable to abstract the reflectance from the light energy reaching
the eye.

Consider a simple example of achromatic asymmetric matching. The
standard gray might have a reflectance of .40 and be illuminated by 10,000
units. The test gray would have variable reflectance and be illuminated by
40,000 units. The subject would be asked to adjust the test gray so that it
matched the standard gray. If the subject displayed perfect constancy, then
the reflectance of the test gray would be set at .40, even though the excita-
tion from the test gray is four times greater than that from the standard
gray. If the subject displayed zero constancy, then the reflectance would be
set at .10, so that the amount of excitation from the two grays would be
equal (right now I am not considering any effects due to the receptor ab-
sorption curves). Reflectance values between .10 and .40 represent interme-
diate degrees of constancy.

Now consider a more representative chromatic case, but still use simpli-
fied discrete frequency illumination and reflectance functions. The standard
illumination projects 10,000 units at 550 nm and 10,000 units at 600 nm.
The standard color reflects .40 of illumination at 550 nm and .20 of the illu-
mination at 600 nm, thereby reflecting 4,000 units at 550 nm and 2,000
units at 600 nm. The test illumination projects 15,000 units at 550 nm, and
5,000 units at 600 nm. The observer’s task is to select a test color that
matches the standard color. Following the identical logic as above, if the
subject displayed perfect constancy, the reflectance of the test color would
match that of the standard color (e.g., .40 and .20), so that the excitation
reaching the eye would be different (4,000 vs. 6,000 units at 550 nm and
2,000 vs. 1,000 units at 600 nm). If the subject displayed zero constancy,
the excitations due to the standard and test color would be made equal, so
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that the reflectance of the test color would be .267 at 550 nm to generate
4,000 units and .40 at 600 nm to generate 2,000 units.

Thus, color constancy is not matching the number of cone absorptions.
Color appearance and constancy is the outcome of a higher-level estimate
of the surface reflectance from the properties of the entire scene.

How Good Is Color Constancy?

It is clear that there are many potential visual cues that could be used to re-
cover the surface reflectance. We would expect observers to make use of
any single cue or any combination of cues that work best in a given situa-
tion. There is not going to be a smoking gun. Moreover, the experimental
outcome that one cue does not affect constancy in one context does not
mean that it will not affect constancy in another context. The models de-
scribed above give some of the possible cues that could be used: (1) local
context, (2) global context, (3) specular reflectance, (4) mutual reflections
among three-dimensional shapes, (5) shadows, and (6) multiple views due
to changes in illumination or scene motion.

Several complex issues are embedded in the achievement of even rough
constancy. The first complexity is that the above cues are so interrelated
that it may be impossible to disentangle them. For example, how are
the shadows, possibly due to three-dimensional shapes, distinguished
from illumination changes without first determining that there are three-
dimensional shapes, since the perception of those shapes is due to the
perception of the shadows? Or how could we make use of mutual re-
flectances to deduce the individual surface reflectances without knowing
something about the individual reflectances that enable us to detect the
mutual reflectances?

A second complexity is what I call belongingness (further discussed in
chapter 9). Which colors in the scene are perceived as being attached to ob-
jects and which colors are seen as floating in space? Fairchild (1998) has
arranged five possibilities to summarize these differences:

1. Glow color: The color belongs to an object.
2. Illumination color: Color is due to the illuminant and not the object.
3. Surface color: Color is due to light reflected off the object surface.
4. Volume color: Color belongs to a volume or bulk of a more or less

uniform or transparent object such as sea or fog.
5. Film color: Color is perceived within an aperture with no connection

to an object; perceived at the depth of the aperture.

Another aspect of belongingness concerns which parts are perceived as
related to other parts, and which parts are seen as being unrelated. Fairchild
(1998) defined unrelated colors as those perceived to belong to an object
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seen in isolation from other colors while related colors are those perceived
to belong to an object seen in relation to other colors. Some color phenom-
ena occur only for related colors—the perception of brown occurs only
when orange is placed against a white background. Related colors have
perceptual properties such as lightness and saturation that do not exist for
unrelated colors.

Observers do make asymmetric color matches based on both the nearby
and distant color context. L. T. Maloney (1999) suggested that the problem
be broken into two parts. First, identify the possible alternative adaptation
effects due to different ways of integrating and perceiving the overall
context. For example, are they limited to nearby regions or do they encom-
pass the entire scene? Second, discover the factors that determine the
choice of the adaptation scheme. Each adaptation scheme is fixed physio-
logically, but the choice of scheme is a function of the observer’s inten-
tional state, biases, and so on.

Visual Frameworks for Estimating Color Constancy

Gilchrist et al. (1999) presented a perceptual model for the judgment of
achromatic lightness (black to white) that explicitly considers the trade-off
between local and global constancy. The excitation reaching the eye is the
product of the illumination striking the object, reflectance of the shade of
gray used, and the percentage of the reflected light that is absorbed or de-
flected by the atmosphere (e.g., haze). In fact, the ratio between the highest
and lowest illumination (1 billion to one) can be much greater than the ratio
between the highest and lowest reflectance (30:1). Any excitation can be
perceived as any shade of gray, depending on its context within the visual
image.

To me, the important concept is thinking that the visual scene is com-
posed of frameworks, groups of surfaces that belong to each other and that
are perceived as being illuminated by a common source. Observers can
make use of alternative sets of frameworks that may split the scene into dis-
joint areas, into a hierarchy, or into intersecting areas. In all cases, however,
the largest framework encompasses the entire visual field and is termed the
global framework. Any partition of the global field is termed a local frame-
work, so that any part of the scene will be a member of one or more local
frameworks and the global framework. The formation of the local frame-
works is not based simply on location but on the classical Gestalt principles
of grouping and figure-ground articulation. Thus, regions that appear to be
coplanar, that appear to move in the same direction, or that change light-
ness together, and so on, can form a local framework.

The judgment of lightness then becomes a weighted average of the
perceived lightness from each of the local frameworks and the global

314 Perceptual Coherence



framework. Gilchrist et al. (1999) focused on instances of one local and
one global framework. In the cases considered, constancy will be poor to
the extent that the observer attends to the global framework, while con-
stancy will be better to the extent that the observer attends to the local
framework. Consider a concrete example that is similar to those used for
assessing color constancy. A set of five achromatic squares from white to
black is suspended from the ceiling. The squares are illuminated with a
bright light that is roughly 30 times brighter than the light illuminating the
back wall. If the observers focus exclusively on the local framework
created by the five adjacent coplanar squares, then constancy should be
nearly perfect. However, if they focus on the global framework created by
the dimmer back wall, then all of the squares ought to be perceived as
nearly white, since each square is lighter than the background. The results
indicated a compromise: 30% local and 70% global (see figure 7.5). The
balance between local and global weighting could be changed by varying
the stimulus characteristics: Increasing the number of squares and scram-
bling them into a Mondrian pattern increases the importance of the local
framework.

Wishart, Frisby, and Buckley (1997) and Adelson (1993) showed how
manipulating the perceived coplanar regions can affect the allocation be-
tween local and global frameworks, as illustrated in figure 7.6. The squares
A and B are the same reflectance, but A is the darkest square in its row
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Figure 7.5. If a surface
composed of relatively bright

rectangles is floated in front of
a darker, larger background,

observers can attend and make
judgments with respect either to
the local brighter surface frame-

work or to the global darker
background framework. The rec-

tangles could be presented in a
simple rectangular array (A) or

in a more complex Mondrian
organization (B). Adapted from

“An Anchoring Theory of Light-
ness Perception,” by A. Gilchrist

et al., 1999, Psychological
Review, 106, 795–834.



while B is the lightest square in its row. When the checkerboard pattern is
perceived as flat, the global framework is strengthened, and constancy in-
creases; B is judged as slightly brighter than A. This difference could be
due to the local contrast among the squares. If the checkerboard pattern is
vertically ridged so that A and B appear to be coplanar, the local vertical
column framework predominates; A and B appear equally bright. In con-
trast, if the checkerboard pattern is horizontally ridged, the local horizontal
row framework predominates; B is judged much brighter than A. Wishart et
al. demonstrated that as the horizontal framework is strengthened by accen-
tuating the perceived depth, the change in brightness mainly occurs for B.
The authors suggested that B is perceived as shaded, and that inference is
strengthened as the depth increases.

Anderson and Winawer (2005) argued that lightness perception is criti-
cally determined by the segmentation of the image into depth layers, not
simply into two-dimensional frameworks. The critical variable was the
contrast between the object boundary and the varying “filmy” surround.
With a darker surround, the target objects appeared white, as if visible
through a dark, partially transparent cloud. With a lighter surround, the
identical target objects appeared black, visible through light clouds. View-
ers interpreted the differences in the surrounds as being differences in the
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Figure 7.6. Lightness judgments are affected by local frameworks. In all three
configurations, the reflectance of (A) and (B) are identical. If the configuration
looks flat, (B) looks slightly brighter than (A). If the configuration is redrawn so
that it looks like there is a vertical fold, (A) and (B) now seem to be coplanar and
appear to have equal brightness. In contrast, if the configuration is redrawn so that it
looks like there is a horizontal fold, the brightness difference between (A) and (B)
appears to be greater. In this case, (A) and (B) are judged in terms of the brightness
values within its own row, and that magnifies the contrast due to the surrounding
squares. Adapted from “The Role of 3-D Surface Slope on a Lightness/Brightness
Effect,” by K. A. Wishart, J. P. Frisby, and D. Buckley, 1997, Vision Research, 37,
467–473.



amount of light transmitted through the transparent layer in front of the ob-
jects, and that changed their perception of the lightness of the targets.

What this all means is that lightness and color constancy is always a
compromise among competing alternative percepts. To the degree that an
experiment can closely simulate all of the information in naturally occur-
ring scenes, the results will be close to those found naturally. Of course that
does not mean the color constancy will be perfect, but at least we will have
information about the upper limits.

Von Kreis Adaptation

Von Kreis (1970) offered the first method to compensate for changes in il-
lumination. Von Kreis’s coefficient law seems most relevant for simple
center-surround configurations in which we use the surround to compen-
sate for the center. The basic notion is that the effective amount of absorp-
tion in a specific spatial region for each cone system must be scaled by the
overall absorptions of that cone system only. The compensation for the sur-
round illumination is done independently for each cone system: The ab-
sorptions in one cone system do not affect the scaling in the other cone
systems. The coefficients act as a type of gain control.

There is one simple equation for each cone system:

Lm = Lregion/Lsurround (7.10)

where Lm is the postadaptation brightness (essentially absorption) for the
M cones based on the independent adaptation in each cone system to the
surround illumination. There are similar equations for the L cones and S
cones.

For complex scenes, the natural generalization is to scale the absorp-
tion for each cone system by some type of averaging of the absorption in
that system across the scene. The averaging could be a simple average,
or the geometric mean taken across the scene. Alternately, the scale
factor could be the inverse of response for the whitest part of the
scene = 1/Lwhite = 1/Lmax.

The assumption is that there is a white patch for each cone system that
reflects all the illumination for that system, but there does not have to be a
pure white patch. In effect, if there is a perfectly reflecting surface, the
visual system will make use of that surface to recover the illumination and
thereby scale the cone excitations independently.

To test the degree to which the von Kreis algorithm represents color
matching, we calculate the scaled L, M, and S cone absorptions for the per-
ceptual matches under two different illuminations assuming a white patch.
Remember that color constancy means that the number of absorptions will
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not be the same under the two illuminations. The question is whether the
von Kreis correction makes the adjusted absorptions equal.

1. Calculate the scaled absorptions for the standard color a under illu-
mination 1:

La1 = La/Lmax1 (7.11a)

Ma1 = Ma/Mmax1 (7.11b)

Sa1 = Sa/Smax1. (7.11c)

L, M, and S absorptions are calculated from the known spectral re-
flectance of the standard color multiplied by the absorption curves of
each cone, and Lmax1, Mmax1, and Smax1 come from the maximum re-
sponse (the white region) in the scene multiplied by the absorption
curves.

2. Calculate the scaled absorptions for the match color b chosen under
the second illumination by the same procedure:

Lb2 = Lb/Lmax2 (7.12a)

Mb2 = Mb/Mmax2 (7.12b)

Sb2 = Sb/Smax2. (7.12c)

3. The error of estimate is the difference between the two predicted ab-
sorption measures:

La1 − Lb2 = La/Lmax1 − Lb/Lmax2 (7.13a)

Ma1 − Mb2 = Mb/Mmax2 − Ma/Mmax1 (7.13b)

Sa1 − Sb2 = Sa/Smax1 − Sb/Smax2. (7.13c)

If there is no error, then the absorptions in different illuminations are
linearly related and the y intercept should be zero. Wandell (1995) con-
cluded that von Kreis is a good start toward explaining constancy.

Land (1986) argued that the color of an object is determined by the light-
ness (i.e., the perceptual reflectance of a surface) values in the three receptor
channels.3 Land demonstrated that changing the relative brightness of three
narrow-band lights did not change the colors of the flat patchwork Mondrian
colors in spite of changing the relative amounts of excitation in the three re-
ceptor systems (termed retinex to emphasize the retina-to-cortex connection).
In Land’s model, for any channel the lightness of a surface is relative to the
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3. Brightness refers to perceiving a surface viewed in isolation, for example through an
aperture, so that the surface appears to float in space. Lightness refers to perceiving a surface
relative to other surfaces, so that it appears to be a reflective solid surface.



light reflected by all surfaces in the scene. The color at every point is therefore
based on the relative excitations in the three cone systems scaled by the space-
averaged responses to each system. (In contrast, the orthodox view is that the
color is determined by the ratio of the cone excitations at one point in space.)
The lightness correction in Land’s model and von Kries’s model are the same
except for slight differences in the way the scaling factor is calculated.

It is clear that the color of surfaces does depend on the surrounding
colors, so that some sort of normalization or scaling must occur. The ques-
tions that remain unanswered are how the normalization takes place and in
what spectral channels, and to what degree a simple scaling of the channels
accounts for color constancy.

Asymmetric Chromatic Matching

Due to the difficulty of providing observers with an adequate set of matching
colors, and the relative ease of creating systems that allow observers to
change the illumination, a different procedure to measure color constancy
has emerged. In one experimental procedure, the standard color and a differ-
ent test color are placed at different positions along the back wall of the
experimental chamber. Brainard, Brunt, and Speigle (1997) found that the
degree of color constancy was relatively independent of the test color chosen.
Both the standard and test colors are illuminated by a fixed ambient illumina-
tion common to the entire chamber, and in addition the test color is also illu-
minated by independent illuminants that produce a blue-to-yellow gradient
on the back wall. At this point, the standard and test colors will look different.
The observer is given control of a hidden projector that projects only onto
the test color with independent control of the intensity of red, green, and blue
beams (see figure 7.7). The observer’s task is to vary the intensity of these
beams so that the standard and test colors appear to be the same. To the ob-
server, it looks like the color of the test patch is changing, although in reality
it is the change in illumination that produces the change in appearance.

To achieve color constancy, the observer has to figure out how the stan-
dard color would appear under the test color illumination (it will look dif-
ferent due to the extra illumination) and adjust the projector so that the test
color matches that estimated appearance. One strategy is as follows:

1. Estimate the illumination on the standard color. This could be done
from the gray background color of the chamber: The gray will reflect
all frequencies of the illuminant equally.

2. Estimate the reflectance of the standard color based on the illumina-
tion that has just been estimated from the gray background.

3. Estimate the illumination on the test patch created by the extra gradi-
ent illumination from the reflection off the back wall.
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4. Imagine how the standard color would look under the test illumination.
5. Adjust the projector to make the test patch match what the standard

color would have looked like under the original illumination.

Based on this logic, color constancy is calculated from: (A) the reflected
light from the standard color under the ambient illumination; (B) the re-
flected light from the test color patch that is perceived to match the stan-
dard color using the ambient + test + adjusted projector illumination; and
(C) the reflection of the standard color patch at the test patch location under
the ambient + test illumination. If there is perfect color constancy, then the
reflected light from the standard color at the location of the test color patch
(C) should equal the observer’s adjusted test color match (B). The degree
of constancy can then be measured as:

1 − [(standard color/test illumination C) − (test color/adjusted illumination B)/
(standard color/test illumination C) − (standard color/ambient illumination A)].

Constancy is equal to 1 when the adjusted (using the projector) test
color patch would create the same retinal excitation as the standard color
under the test illumination and is equal to 0 when the adjusted test color
patch produces the same retinal excitation as the standard color under the
ambient illumination.4 Using this procedure, the average constancy is
about .60.
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4. Brainard et al. (1997) converted the reflected light at the three conditions into coordi-
nates in a color space and measured the absolute differences in that space.

Figure 7.7. In the asymmetric
color-matching task, the standard
and test colors were mounted on
the back wall. The gradient projec-
tor (G) created a blue-to-yellow
gradient on the back wall using
two bulbs. The observer’s task was
to make the standard and test color
look the same by manipulating the
blue, green, and red beams of the
adjustable projector. Adapted from
“Color Constancy in the Nearly
Natural Image. I. Asymmetric
Matches,” by D. H. Brainard, W. A.
Brunt, and J. M. Speigle, 1997,
Journal of the Optical Society of
America, A, 14, 2091–2110. See
color insert.



In another type of asymmetric matching procedure, the test patch is
achromatic, somewhere between white and black seen under normal day-
light. Since achromatic colors (i.e., the grays) reflect all spectral wave-
lengths equally (termed spectrally nonselective), their reflected light will
match the spectral properties of the illuminant. If the illuminant has more
energy in the reds, then the achromatic patch will look reddish. The match-
ing task requires the observer to use the adjustable projection colorimeter
to add spectral energy to make the test patch look gray (again). The
observer must adjust the colorimeter so that the reflected light from the
achromatic patch, now based on the sum of the ambient and adjustable col-
orimeter spectral energies, would equal the reflectance of gray under nor-
mal daylight illumination (Brainard, 1998). To do so, the observer must use
the reflected light from the standard patch and background to estimate the
ambient illumination in order to adjust the colorimeter.

A good starting point is experiments by Kraft and Brainard (1999) that
made use of a highly realistic visual scene and that attempted to tease apart
the contributions of various cues that have been hypothesized to account
for color constancy. Observers looked into a test chamber that contained a
flat panel composed of 24 different colored squares, a tube wrapped in tin-
foil that could produce specular reflection and thereby illuminate other
parts of the scene by means of interreflections, and three-dimensional cube
and pyramid shapes constructed from gray cardboard that could provide
shadow cues (see figure 7.8). One wall of the chamber was covered with
the same cardboard as used to construct the cube and pyramid. The dark
gray test patch hung on the back wall. In all of the experiments, the ob-
server’s task was to make the test patch look gray by manipulating the red,
green, and blue beams of a hidden projector.

The purpose of the experiment was to determine the relative importance
of the various cues postulated to account for constancy. Prior to the actual
experiment, Kraft and Brainard (1999) determined the maximum degree of
constancy achievable in the “rich” test chamber and the minimum degree of
constancy achievable when all cues were removed. The authors first maxi-
mized the cues for constancy. The experimental chamber was lined with the
same gray background for the neutral illuminant and for the orange-red test
illuminant. These combinations made the test patch look dark gray for the
neutral illumination, but orange-red for the second illumination. In this
case, observers easily adjusted the test patch to look gray under the orange-
red illuminant. The constancy index was 0.83, a remarkably high value.
Kraft and Brainard then minimized the cues by removing all the objects
(only the test patch remained) and comparing one condition in which the
background was gray with a neutral illumination to a second condition
in which the background was blue with an orange-red illumination (i.e.,
the patch still looked orange-red). Here the local illumination from the
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background was identical (both looked black because the blue background
reflected very little of the orange-red illumination) and there were no other
objects in the scene that could provide spectral cues. In this minimum con-
figuration, constancy was close to 0, averaging 0.11. The authors specu-
lated that the residual constancy was due to mutual reflections among the
parts of the chamber.

The first part of the actual experiment investigated the role of local con-
trast in color constancy. The logic is based on von Kreis’s adaptation: For
each cone system separately, the excitation from the test patch is divided by
the excitation of that system from the local surround. If the illumination
over the patch and surround changes (e.g., more green energy), then more
energy will be reflected in the green region by both the test and surround,
but the ratio of reflected light between the test patch and surround will stay
the same. Moreover, the ratios between the three pairs of cones between the
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Figure 7.8. The experimental room used by Kraft and Brainard (1999). There was
a hidden adjustable projector (like that in figure 7.7) that the participant used to
make the test patch in the (B) conditions look achromatic. The three views shown in
(A) used the neutral illuminant. In the three views in (B), the local surround used an
orange-red illuminant; the spatial mean used a pale red illuminant; and the maxi-
mum flux used a yellow illuminant. From “Mechanisms of Color Constancy Under
Nearly Natural Viewing,” by J. M. Kraft and D. H. Brainard, 1999, Proceedings of
the National Academy of Science, 96, 307–312. Copyright 1999 by the National
Academy of Science. Reprinted with permission. See color insert.



test and surround will also remain the same. Thus, the constancy of relative
ratios should lead to color constancy.

Kraft and Brainard (1999) equalized the local surround by using differ-
ent combinations of illumination and surface reflectance. The logic of the
experiments is that if we illuminate a gray paper with two different illumi-
nants but somehow balance the excitation due to illumination × reflectance,
observers will not be able to achieve color constancy because they cannot
untangle the illumination from the surface reflectance. In the first combina-
tion, the background wall was gray cardboard, and the illumination in the
entire chamber was a neutral light producing a uniform reflectance spec-
trum (figure 7.8, local surround A). In the second combination, the back-
ground wall was blue and the illumination in the entire chamber was
orange-red, which also produced a neutral uniform reflectance spectrum
from the back wall (local surround B). Thus, the reflection from the back
wall surrounding the test patch was identical in the two conditions, al-
though the light reflected from the test patch and all of the other surfaces in
the chamber differed. (Note that the difference between the local surround
condition and the minimizing control condition described in the above
paragraph is the inclusion of the colored surfaces and objects in the local
surround condition. In both conditions, the local surround is matched.) If
the local surround is the only cue for constancy, then equalizing the local
surround should eliminate any constancy. But if the local surround is but
one of several cues and if observers can use the more orange appearance of
other objects in the chamber to infer the illuminant, then constancy should
simply decrease. In fact, constancy did decrease to roughly 0.50, although
this is still relatively good.

The second part of the experiment investigated the role of the global sur-
round. The notion parallels that for the local surround, but here the three
cone responses to the test patch are compared to the three cone responses
averaged across the entire scene. On this basis, Kraft and Brainard (1999)
compared neutral illumination of the chamber (spatial mean A) to pale red
illumination that equated the average cone responses across the entire
scene (spatial mean B). In this condition, if subjects are judging the test
patch in terms of the entire scene, then constancy should be zero, but if they
are making use of other cues, then constancy should simply decrease. The
constancy did decrease to 0.40, demonstrating that a difference in the
global surround is not the sole mechanism for constancy.

The third part of the experiment investigated the role of absorption from
the most intense region of the scene, the white areas described previously.
In one condition, the yellow frame was illuminated by a neutral light
(maximum flux A), while in the second condition a magenta frame was
illuminated by a yellow light (maximum flux B). For both conditions, the
background was the identical dark gray cardboard, and all the other surfaces
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and objects were removed. The light reflected from the frames created the
maximum number of absorptions in each cone system. Even though the re-
gion of greatest intensity was the same under both illuminations, observers
were able to make use of reflections off the walls, and color constancy was
roughly 0.30.

What this experiment demonstrates is that there is no single cue for
color constancy. Cues will be evaluated in specific situations, and judg-
ments will be made on the basis of cue reliability and validity as well as
a priori expectations. Delahunt and Brainard (2004) provided a caution to
this conclusion. Observers did not have more accurate color constancy if
the illumination changes matched those that occur naturally (more bluish
or more yellow) than they did when illumination changes did not match
(more greenish or more reddish).

A second experiment (Yang & Maloney, 2001) came to the same con-
clusion that there are multiple cues that can be used to achieve constancy.
Yang and Maloney investigated whether observers exploit specular and
background cues to make inferences about illumination. As described
above, constancy models propose that observers first estimate the illumina-
tion and then derive the surface reflectance. The illumination can be esti-
mated from the surface or specular reflections. The specular reflections can
come from single highlights or can be part of a surface’s overall reflection.
If reflections from one or more highlights can be found in the visual scene,
then those reflections are assumed to act like a mirror, so that the illumina-
tion can be estimated directly. However, as Yang and Maloney pointed out,
usually it is not easy to pick out neutral highlights: They are not always the
brightest points because they may be due to a distant source or they may
not be spectrally neutral, being due to metallic reflections from materials
such as gold or copper.

In instances where there are not perceivable highlights, the spectral
reflectance from a surface reaching the viewer can be modeled as the sum
of a perfectly matte surface (Lambertian) and a neutral mirror. The surface
and specular reflections are intermixed, and the relative amounts of the two
types of reflection vary with viewing position and light source position.
Thus, it may be possible to infer the purely specular reflection at one view-
ing location.

In general terms, the authors used a cue conflict paradigm. They mea-
sured the achromatic match under two cue conditions, C1 and C2, and a
mixed condition that altered one cue value from C1 to C2. The importance
of the altered cue was measured by the extent that the achromatic setting
moved toward C2 (obviously, the converse conditions must also be utilized
to measure any asymmetries). To be specific, in the uniform conditions C1

and C2, both surface and specular reflections were based on one illuminant,
either normal daylight (D65) or incandescent lighting (A). In the conflict
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conditions, the surface reflectance was based on one of the illuminants, and
the specular reflectance was based on the other illuminant.

The stimuli resembled billiard balls resting on a flat surface. All the bil-
liard balls were blue-green and the surface was a darker gray. The stimuli
were presented stereoscopically so that the billiard balls appeared in depth
(see figure 7.9). The test patch was located tangentially to the tops of the
billiard balls. This is an important point, and I will return to it later.

In the first set of experiments, the illumination of the balls was varied.
For stimuli with 10 or more balls, there was marked asymmetry in the
effects of the illuminants. Starting with the incandescent illuminant A, but
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Figure 7.9. The effect of specular and surface reflections on color constancy was in-
vestigated using a cue conflict paradigm. Two illuminants were used: standard day-
light (D65) and incandescent A. In two conditions (A and D), the specular and surface
reflections were based on the same illuminant, but in two conditions (B and C), the
surface and specular reflections were based on different illuminants. Participants
were asked to adjust the small green squares shown in the figure to appear achro-
matic. From “Illuminant Cues in Surface Color Perception: Tests of Three Candidate
Cues,” by J. N. Yang and L. T. Maloney, 2001, Vision Research, 41, 2581–2600.
Copyright 2001 by Elsevier Science Ltd. Reprinted with permission. See color insert.



moving the specular reflectance toward daylight (D65), there was a large
shift in the achromatic judgments. The converse is not true: If the specular
reflectance moved toward illuminant A, there was only a small shift. It is
surprising to note that if each ball was represented by a different matte re-
flectance, there was no effect of the change in illumination. The effect was
restricted to instances in which there were at least six identical balls. In the
second set of experiments, the illumination of the background was varied.
Here, there were no effects of the perturbation of the illumination.

These results reinforce the notion that color perception is the result of
many simultaneously presented cues and that the visual system is somehow
evaluating the validity of each cue to arrive at a single percept. Here, (a)
daylight is given more weight than incandescent light; and (b) there must
be several identical specular highlights before they affect color judgments;
but (c) multiple specular highlights from different matte surfaces are dis-
counted because they probably signal a nonuniform illuminant. The change
in the illumination of the background did not affect color judgments if the
test patch appeared to float on top of the background. If, however, the test
patch was localized on the background (in preliminary experimentation),
then all of the results reversed: (a) there was little effect of the specular
cues, and (b) the strongest effect was due to the background changes.

Fleming, Dror, and Adelson (2003) proposed that observers have a tacit
knowledge of the illumination properties found in the real world and tend
to discount illuminations that violate those prior expectations (as suggested
by Yang and Maloney, 2001, previously). The underlying notion is that all
types of illumination share the same statistical properties and that allows
the visual system to derive the surface roughness and reflectance of objects
even in the absence of context. Actually, Fleming et al. made even a
stronger assertion. Namely, the partitioning of the illumination and the re-
flectance is readily accomplished because observers expect the illumination
to have certain properties. Given those properties, the surface reflectance
can be easily calculated. For real illuminations, there is an extremely wide
dynamic range (2,000:1, discussed in chapter 3), and the vast majority of
pixels on the surface of the object are much darker than the few brightest
pixels. The brightest pixels tend to be clumped together, creating local ex-
tended highlights from the specular reflectance. This clumping yields a 1/f
function for brightness that accounts for the majority of light that is re-
flected from the surface. The clumped illumination creates the perception
of a directional source that in turn creates highlights with extended edges
organized into regular shapes. Simply having bright pixels is not sufficient
for the perception of surface features. As shown in figure 7.10, the real-life
illuminations create extended glossy regions that allow the perception of the
specular reflectance and surface roughness. Even though the simulated illu-
minations may have the same distribution of pixel values, the perception of
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the surface is much poorer. The sphere loses its gloss using the pink noise
illumination, and looks like a semitransparent globe with an internal light
using the white noise illumination. It is the higher-order correlations that
are important.

A clever experiment by Bloj, Kersten, and Hurlbert (1999) demon-
strated yet another factor that determines our perception of color, namely
the effects of mutual reflections among object surfaces. The authors made
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Figure 7.10. The perception of surface gloss and roughness depends on the prop-
erties of the illumination. In all examples, the surface reflectance of the spheres is the
same. The perception of surface characteristics is best with real-life illuminations (A)
and gets much poorer as the simulated illumination deviates from what is normally ex-
pected (B). From “Real-World Illumination and the Perception of Surface Reflectance
Properties,” by R. W. Fleming, R. O. Dror, and E. W. Adelson, 2003, Journal of Vision,
3, 347–368. Copyright 2003 by AVRO. Reprinted with permission. See color insert.



use of a folded card. One side of the fold was painted magenta, and the sec-
ond side of the fold was painted white. The light source was pointed toward
the red half of the card. Physically the card was folded inwardly so that the
magenta side reflected light onto the white side (and vice versa) and the
light reflected from the white side took on a pinkish color gradient caused
by the mutual reflection, as depicted in figure 7.11. The light reflected from
the white side therefore can be conceptualized as the sum of two parts:
(1) the purely neutral reflection of the light from the white paint, plus
(2) the neutral reflection of the magenta-tinged light due to the one-bounce
mutual reflection. By the same token, the light reaching the observer from
the magenta side of the card is the sum of the direct reflection from the
magenta paint plus the one-bounce neutral reflection from the white side
being re-reflected by the magenta paint, resulting in a somewhat desatu-
rated magenta. Two of the many paths to the observer’s eye are shown in
figure 7.11: the direct reflection from the magenta side and the one bounce
from magenta to white.

Observers reported that the white side of the card appeared to be only
slightly pink (they selected the match from a set of colors ranging from
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Figure 7.11. The stimulus was a card folded in half, one side painted magenta and
the other painted white (A). If an incandescent light aimed at the magenta side illu-
minated the card, the light reflected from the magenta side onto the white side cre-
ated a magenta gradient from desaturated magenta to white (B). Observers judged
the inside corner of the white side as pale pink. If the appearance of the card was re-
versed so that it appeared to be convex, observers then judged the white side as be-
ing deep magenta instead of pale pink (C). As illustrated in (C), if the card really
was convex, there could not be a one-bounce reflection from the magenta side.
Adapted from “Perception of Three-Dimensional Shape Influences Colour Percep-
tion Through Mutual Illumination,” by M. G. Bloj, D. Kersten, and A. C. Hurlbert,
1999, Nature, 402, 877–879. See color insert.



magenta to white). Then Bloj et al. (1999) made use of a pseudoscope to
invert the folded card: It now appeared to be folded away from the ob-
server, that is, the corner was closest to the observer and the magenta and
white sides reversed. The physical reflections were still identical, but now the
magenta component of the white surface could not have been caused by mu-
tual reflection because the corner seemed to face the observer. The magenta
appearance could have been caused only by the inherent surface reflection of
the white surface. The mutual reflections were still present but could not be
perceptually interpreted as such. Observers now judged the white surface as
being a far more saturated magenta. Our inferences about the three-
dimensional characteristics of scenes affect our perception of color.

Doerschner, Boyaci, and Maloney (2004) have generalized these results
by demonstrating that observers can compensate for different angles be-
tween interreflecting surfaces. The authors systematically varied the angle
between a light gray test patch surface and an orange cube. As the angle be-
tween the test patch and the orange cube increased, the amount of second-
ary illumination reaching the test patch decreased. Observers tended to
underestimate the added orange illumination when the secondary illumina-
tion was most intense at the smaller angles. Beyond 120°, observers were
unable to detect changes in the secondary illumination at all. Doerschner
et al. (2004) concluded that color is not a local phenomenon but is contin-
gent on the global geometry and lighting.

Summary

At the beginning of the section “How Good Is Color Constancy?” I listed
six possible cues to estimating illumination. Each of the cues can be and is
used depending on the visual scene. It is tempting to ascribe some cues to
local retinal processes and others to more central cognitive processes. Lo-
cal contrast is thought to be based on von Kreis scaling, and in fact such
scaling works very well for simple scenes with a center-surround spatial
configuration. But even such a seemingly automatic physiological process
can be discounted. Even though the physical illumination was identical,
Yang and Maloney (2001) found that the background illumination affected
color appearance only when the test patch was perceived to be in the same
plane as the background, not when the test patch was perceived to be in
a different plane. These results further support the conceptualization of
Gilchrist et al. (1999) and Anderson and Winawar (2005) that the visual
system segments the scene into different frameworks and that different
weighting systems for the possible color cues may be employed in each
frame or depth plane.

There is clearly a chicken-and-egg problem here. Many of the cues to
color depend on the segmentation of the scene into occluding surfaces, and
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yet the construction of those surfaces depends on the ability to distinguish
changes in illumination from changes in surface reflectance. I take all this
to mean that the goal of the visual perceptual system (and the auditory per-
ceptual system also) is to create a coherent representation of the physical
world. Thus, expectations about surfaces and illuminations that could arise
from inherent physiological processes or from a priori probabilities built up
from experience are necessary to eliminate ambiguity. It seems to me that a
reasonable way of conceptualizing all of this is that the visual system com-
bines the cues in terms of the reliability of the cue in that context. (This is
the same conclusion found for cues from different modalities discussed in
chapter 9.) For example, the results of Yang and Maloney (2001) suggest
that observers do not consider the specular cues to be reliable until more
than six objects show the identical specular reflectance.

Opponent Processing

Very early in the visual pathway, the three cone signals are recoded into
two parallel spectrally opponent channels that relay chromatic information
to the visual cortex. In the first channel, the excitations from the long-
wavelength (red) and medium-wavelength (green) cones are placed in op-
position so that a balanced mixture of red and green sums to zero, yielding
a percept of yellow. In the second channel, the excitations from the L and
M cones are added, and are placed in opposition to the excitations from the
short-wavelength (blue) cones. There is a third channel that combines the
outputs of all three cones to yield an achromatic excitation. The two chro-
matic pathways seem to reflect the evolution of the cone systems. The S
cones evolved first, followed by the joint evolution of the M and L cones.
The evolution of the M and L cones in primates is hypothesized to aid
in the detection of colored fruit in a green forest background (Dominy &
Lucas, 2001).

All opponent cells have a center-surround spatial configuration. What
is surprising is that the center is linked to only one cone by means of the
midget ganglion cells (say, one S cone), but the surround is a blend of both
M and L cones. Moreover, the relative frequency of the M and L cones in
the surround is variable. Again surprisingly, there seems to be a wide distri-
bution in the relative number of M and L cones across individuals. The
range may be as great as 4:1, and this can account for the variability of the
distribution of the M and L cones to the surround. The opponent processing
is restricted to the fovea, where there is a one-to-one connection between
a cone and midget ganglion cell, and disappears in the periphery, where
many cones converge on each midget ganglion cell (see reviews by Lennie,
2003; Packer & Williams, 2003).
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Why is there opponent processing? One possibility is that the M and L
cones and the opponent pathways evolved to match the spectral distribution
of natural scenes. If this is the case, then the spectral responses of the oppo-
nent pathways should be correlated to the basis functions for natural
scenes. Ruderman, Cronin, and Chiao (1998) and Wachler, Lee, and Se-
jnowski (2001), although using different statistical methodologies, argued
that the independent basis functions do have the same structure as the op-
ponent channels. Ruderman et al. first converted the spectral distribution at
each central region of the scene into the output of the L, M, and S cone sys-
tems by multiplying the distribution by the cone sensitivity functions. The
outputs of all cone systems were highly correlated due to overall changes in
light intensity, and the correlation between the L and M cones was highest.
Using a principal components analysis to decorrelate the image, Ruderman
et al. found three principal axes: (a) an achromatic luminance dimension;
(b) a yellow-blue opponent direction; and (c) a red-green opponent direc-
tion. These three directions were uncorrelated to spatial position so that
cone responses can be thought of as arising from three superimposed pro-
cesses. Wachler et al. made use of independent component analyses to cal-
culate basis functions that are independent but not necessarily orthogonal
(as in the principal components analyses used by Ruderman et al.). Some
of the basis functions were achromatic, while the chromatic basis functions
tended to display color opponency but not be orthogonal.

On the whole, there is a reasonable match between the opponent color
channels and the spectral properties of natural scenes. The opponent chan-
nels decorrelate the M and L cone absorptions, and there is a set of linear
functions that resemble opponent color functions that effectively decorre-
late the spectral distribution of natural scenes. Thus, these chromatic basis
functions seem to serve the same purpose as the basis functions described
in chapters 2 and 3 that match the receptive fields of V1 cortical neurons.
The chromatic basis functions decorrelate the outputs of the two cones in
the same way that the basis functions in V1 decorrelate the outputs of spa-
tially adjacent receptors. Both types of basis functions can yield sparse
coding that maximizes mutual information.

It seems to me that the issue of whether the opponent color channels are
somehow optimized for information transmission is still unresolved. The
match between the color channels and the linear functions will of course
depend on the set of scenes analyzed.

Summary

Although the emphasis of this chapter has been on how a source filter can
be used to understand the spectral distribution of the light reaching the eye,
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the perceptual outcomes demonstrate that the spectral distribution can ex-
plain only a part of color constancy and color appearance. Our experience
of color is affected by activity at several neural levels and ultimately proba-
bly depends on the activity of several cortical areas (Gegenfurtner, 2003).
Cortical cells may respond only to specific colors, and there are large dif-
ferences in the frequency bandwidth. There is little functional segregation:
Cortical color cells that are highly selective for specific colors can be selec-
tive or nonselective to other properties such as orientation.

One principle that underlies the research findings here and in all previ-
ous (and future) chapters is that our understanding of the scene controls our
perceptions. Visual and auditory scenes are segmented into frameworks and
objects, and that segmentation gives rise to our guesses about and estimates
of texture, motion, brightness, and color. The segmentation may be due to
innate physiological processes, Bayesian-like experience, or the observer’s
purposes.
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8

The Perception of Quality:
Auditory Timbre

Ianalyzed color perception using the source-filter model, and I
will use the same model to analyze the production and percep-

tion of sound quality.1 However, the source-filter model for sound and that
for color are marked by several important differences. In describing the
source-filter model for color, I made use of several simplifying properties.
First, the spectral distribution (wavelength variation) of nearly all sources
and reflectances are rather smooth and continuous. Second, the variation in
the spectral distributions, especially for natural sources (i.e., daybreak to
nightfall), is continuous, so that the distributions can be represented by a
set of linear functions. Third, there are but three broad color channels, so
that only three numbers represent the entire neural excitation. Fourth, I as-
sumed strict independence between the spectral distributions of the light
source and surface reflectance and nearly all of the computational and per-
ceptual models underlying color constancy assume that the first step is esti-
mating the illumination, and then using that estimate to derive the surface
reflection (i.e., the color). Fifth, computational models have assumed that
the colored scene is constant over time.

My analysis of the perception of timbre cannot make use of any of these
simplifications. First and second, the sources and filters of nearly all sound-
producing objects are marked by discrete source frequencies and discrete
filter-resonant frequencies. Moreover, the changes in both the source and
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1. I use the term timbre interchangeably with the phrase sound quality. The use of the
term timbre to distinguish between sounds has a history of at least 300 years. In the last 100
years it has referred almost exclusively to an attribute of the sound of musical instruments.
Here I use it to describe all types of sounds.



filter frequencies are not smooth across frequencies, due to the physical
properties of the objects. A set of linear functions does not seem possible.
Third, there are many auditory frequency channels, defined by the respon-
siveness of individual hair cells and their summation into critical bands. To
a large degree, the intensity pattern of the resulting frequency channels de-
termines sound quality. For example, “bright” sounds have relatively more
energy at higher frequencies. Fourth, there are instances in which the
source and filter frequency distributions are not independent. For example,
in singing there is simultaneous variation in the vocal fold vibrations and
mouth position to produce a particular vowel at a pitch, and for reed instru-
ments the filter resonances support specific source frequencies by means of
air pressure feedback. There are cases in which the filter is fixed, (e.g., the
wooden body of a violin), but even here the wood and air resonances of the
body can affect the vibrations of the source string. Fifth, sounds have on-
sets and offsets, and the attack and decay temporal profiles provide critical
information about the sound source.

At a more metaphorical level, I think that the conceptualization of sound
quality differs from that for visual quality. Sound quality has no fixed refer-
ents, and the descriptors for sound quality are often ambiguous. Descrip-
tions are based on multiple acoustic properties, some based on the overall
spectrum and some based on the temporal pattern of the sound. In contrast,
the descriptors for color seem universal using the primary colors blue,
green, red, and yellow (Buchsbaum & Bloch, 2002). There are several
color description systems but all make use of just a small number of color
specifications. For example, the Munsell system uses hue, lightness, and
saturation.

There is another fundamental difference between color and timbre.
Color, on the whole, does not uniquely signify objects. Even though color
allows us to segment the visual scene into surfaces and edges, many differ-
ent objects occur within the same narrow color range, and most objects
can be different colors. I would argue that pitch is analogous to color in
this respect. Many sound sources occur within the same narrow pitch
range, and most sources can occur at different pitches. Of course, the spe-
cific color or pitch undoubtedly aids recognition and identification. Yet
voices, instruments, and many environmental sources are multipitched, so
that some consistent property of the sound (what I will call timbre) be-
comes the only way to identify those objects across pitch. Although timbre
is technically defined as a sound quality at one frequency and intensity
(American National Standards Institute, 1973), I think it is more natural to
conceptualize timbre as belonging to and inherent in an object, in spite of
changes in the sound due to frequency and intensity variation. When we
hear a sound, our natural tendency is to identify the sound-producing ob-
ject, not to describe qualities of that sound. What this means is that timbre
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exists at several levels: (a) describing the differences between sounds that
are composed of a broad band of frequencies and do not have a clear pitch,
such as sawing or scraping; (b) describing the differences between sounds
at one frequency and intensity, that is, the ANSI (1973) definition; (c) de-
scribing and identifying sources across different frequencies and intensi-
ties, such as a clarinet as opposed to a saxophone; (d) describing and
identifying source categories across different sources, frequency, and in-
tensity, for instance, sopranos as opposed to mezzo-sopranos, woodwind
instruments as opposed to brass instruments. For (c) and (d), timbre must
be reconceptualized as a sound transformation that allows us to predict
an object’s sound at different frequencies and thereby allows us to track
objects in the environment. We might characterize (a) and (b) as a proxi-
mal description of sound quality, and (c) and (d) as a distal description of
objects.

I am not ready to abandon timbre as an empty concept even though the
term is used in so many ways, like the term appearance, that it means
whatever we wish. Moreover, because sound production results in so many
acoustical properties, there may not be any fixed set of acoustic cues that
allow us to identify the same object in real environments with overlapping,
competing sounds of other objects. Perhaps the only possibility is to list the
possible acoustic variables and transformations, and then identify the sub-
set used at different times (this is the same conclusion we reached for the
cues to color).

In spite of this perceptual and conceptual inexactness, we still have the
basic perceptual issues. We presume that the goals of the auditory and vi-
sual systems are identical: Namely, to construct a coherent representation
of objects in the external world. These objects will have inherent proper-
ties, and perceptual systems should be tuned to pick up those properties.
At this point, we cannot distinguish between innate and learned mecha-
nisms, or the degree to which recognition is a purely inferential process,
but that does not matter.

Sound Production: The Source-Filter Model

Let us start by comparing the source-filter model for seeing to that for
hearing. For seeing (color), the source was the energy of the illuminant at
different frequencies; the filter was the reflectance of the surface at those
frequencies; and we multiplied the illumination by the reflectance to pre-
dict the light reaching the eye. The assumption was that the light at all fre-
quencies reached the eye at the same time. For hearing (timbre), the model
is more complex. First, we need energy to excite the source. What makes
this complicated is that different ways of exciting the source (e.g., hitting,
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plucking, or bowing a string) can change the vibration pattern of the
source. Second, there may be large timing differences between the am-
plitudes of the vibrations at different frequencies throughout the sound.
We still multiply the source by the filter, but due to the temporal evolution
of the amplitudes of the component vibration, that multiplication must be
done separately at every time point across the duration of the sound (i.e.,
frequency and time are nonseparable). It is this change in the vibration pat-
tern that can be critical for object identification.

Vibratory Modes

If we excite a material by striking it, vibrating it, blowing across it, bending
or twisting it, and then stop the excitation, the material may begin to vibrate
at one or more of its natural resonant frequencies. There are two physical
properties that yield continuing vibrations:

1. The material must possess a stiffness or springlike property that pro-
vides a restoring force when the material is displaced from equilibrium. At
least for small displacements, nearly all materials obey Hooke’s law that
the restoring force is proportional to displacement x, F = −Kx. Hooke’s law
is correct only at small displacements. At longer displacements, springlike
materials tend to become harder so that the restoring force increases. This
nonlinearity in the restoring force at those longer displacements can change
the natural frequencies of the vibration modes.

2. The material must possess sufficient inertia so that the return motion
overshoots the equilibrium point. The overshoot displacement in turn creates
a restoring force in the direction of the original displacement that recharges
the motion. The overshoots create a continuing vibration that eventually dies
out due to friction (although the vibration frequency remains the same
throughout the decay, an important property).

For materials that satisfy properties (1) and (2), the amplitude of the
movement across time for every single vibratory pattern will resemble the
motion of a sinusoidal wave and is termed simple harmonic motion. In
nearly all vibratory systems, any source excitation will create several vibra-
tory modes, each at a different frequency. Each such vibratory mode will
have a distinct motion and can be characterized by its resonant frequency
and by its damping or quality factor. The resonant frequency of each mode
is simply the frequency at which the amplitude of vibration is highest. The
material itself will determine the possible frequencies of vibration. For
strings under tension, the resonant frequency of the first vibration mode
(termed the fundamental frequency) is equal to:

F = 1/(2π)[K(tension)/M(mass of the string)]1/2. (8.1)
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In all cases, the vibration frequency of the mode will equal the excita-
tion frequency. If the excitation frequency equals the resonant frequency
(say 100 Hz), the amplitude of vibration mode will be greatest. If we excite
the string at slightly different frequencies, the decrease in amplitude is de-
termined by (1) the difference between the natural resonant frequency of
the string and the driving frequency, and (2) the damping of the vibration
mode. The damping, or inversely the quality factor (Q), of each vibration
mode is a measure of its sharpness of tuning and resulting temporal re-
sponse. For a heavily damped vibration mode (i.e., low Q), the amplitude
of vibration is relatively constant across the frequency of the excitation,
and the amplitude of the vibratory mode will rapidly track increases or de-
creases in the excitation amplitude. For a lightly damped mode, (i.e., high
Q), the amplitude of vibration mode is high if the excitation vibration is at
the resonant frequency, but low at surrounding frequencies. Here the ampli-
tude of the vibration mode lags behind increases or decreases in the ampli-
tude of the excitation vibration.2

In simple terms, energy is first applied to the source (plucking a guitar
string, blowing into a trumpet mouthpiece). The energy generates a set of
component vibration modes of the source, and each such mode can be char-
acterized by its resonant frequency and damping. Because each mode may
have a different amount of dampening, some modes will rapidly reach their
maximum amplitude, while other modes will reach their maximum at a
later time. An additional factor is that the source vibration may have an ini-
tial period of noise due to the time and energy it takes to get the vibration
started. For example, a stable clarinet or trumpet mouthpiece source vibra-
tion requires feedback due to the pressure pulses returning from the end of
the instrument. Until this happens, there may be only a turbulent airflow.

So what we have is a set of source vibrations that have different onset
timings and amplitudes. These source vibrations then excite the filter,
which may contain a multitude of vibration modes, each also with different
damping. Each time-varying vibration mode of the source can excite one
or more damped modes of the filter, so that the acoustic output is the prod-
uct of two or more time-varying vibrations. Each excitation can hit differ-
ent sets of source and filter vibration modes, so that we should not expect
a single acoustical property that can characterize an instrument, voice, or
sound-producing object across its typical pitch and amplitude range. The
changing source-filter coupling precludes a single acoustical correlate
that can predict the ease of identifying sounds or that can describe sound
timbre. The perceptual problem therefore is constructing transformations
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of sound quality between different pitches and loudness that can be used to
identify objects.

String and Percussion Instruments: Vibrations in Strings 
and Plates

Vibrations of Strings

Suppose we pluck a string at the midway point. When we release the string
there will be two traveling waves, one moving toward each end of the string.
At the ends, each wave will be reflected back toward the middle of the string.
If the reflections continue, the wave pattern along the string can become sta-
tionary. If we view the motion from the side, the individual points of the
string oscillate up and down, but the wave profile does not move laterally.
The original traveling waves have summed to produce a standing wave. The
overall motion of the string is complex (although each point simply moves up
and down in sinusoidal motion), because the motion is actually the sum of
several simple harmonic motions. The simplest harmonic motion is the up-
and-down movement of the string as a whole. The second harmonic motion
occurs when the string effectively splits into two parts, and each half under-
goes an up-and-down motion out of phase with each other. The frequency of
each of these vibrations is twice the frequency of the motion of the string as a
whole. The motion of all of the higher harmonics can be understood in ex-
actly the same fashion. The string breaks up into more and more subunits; the
vibratory frequency of each subunit is the number of subunits times the fre-
quency of the fundamental vibration (F0, 2F0, 3F0, 4F0, 5F0 . . . ).3

The fundamental frequency of the string is determined by its physical
construction and the amount of tension (equation 8.1). It is not determined
by how the string is excited. However, the position and the manner of ex-
citation do determine the relative amplitudes of the vibration modes. The
maximum amplitude of a resonance mode occurs when the point of excita-
tion occurs at an antinode (a point of maximum displacement), and the
minimum amplitude occurs when the point of excitation occurs at a node
(a stationary point). Thus, if the string is excited at the center point, the
first up-and-down resonance will be maximized because that is the point
of maximum movement, but the second resonance will be minimized be-
cause that is the point of zero movement separating the vibration of the
two halves of the string. In general, the overall amplitude of the vibration
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mode is proportional to the relative amplitude of the mode at the point of
excitation.

Strings can be bowed, plucked, or struck. The manner of excitation af-
fects the amplitudes of the resonance modes. For bowing and striking with
a heavy mass, the amplitudes of the harmonics fall off at the rate of 1/n (n
is the harmonic number). For plucking, the amplitudes of the harmonics
fall off more rapidly, at the rate of 1/n2. Each particular manner of excita-
tion has unique effects. Plucking a string makes the frequency of the higher
harmonics slightly sharp relative to the lower harmonics. In contrast, bow-
ing maintains the integer ratios among the harmonics, but the slip-stick
process of the string against the bow creates a great deal of frequency jitter
that varies coherently among the harmonics. Moreover, the bow may
scrape the string during the initiation of the stable slip-stick process, creat-
ing noise. Performers can create frequency variation, termed vibrato, dur-
ing the steady-state part of a tone by rolling a finger to change the effective
length of the string. In a stringed instrument, the frequency variation due to
vibrato can alter the output from the sound body resonances so that there is
both frequency and amplitude variation. The damping and the rate of decay
of strings are determined by the physical construction of the string and its
connection to the supports. The decay of the vibration is due to the fric-
tional effect of the motion through the air (viscous drag) and due to the in-
ternal friction within the string itself.

Before considering the vibration modes of more complex plates and sur-
faces, which follow the same basic principles found for strings, it is worth-
while to emphasize that the resonant frequencies and temporal amplitude
patterns of the vibratory modes are going to be the perceptual information
that we can use to discover the physical properties and identify objects. In
some instances, it may be the onset timing of the modes that is most predic-
tive, while in other instances it may be the steady-state amplitudes. More-
over, the best cue may change for the same object at different pitches,
contexts, and so on.

Two-Dimensional Plates

When a string is excited, the vibratory pattern is the sum of the vibration
modes. In a similar fashion, when excited, the vibratory pattern of a con-
tinuous plate (the soundboard of a piano, the wooden top and bottom
plates of a violin, the stretched skin of a drumhead) is the sum of its char-
acteristic modes. The important difference, however, is that for a complex
surface like the top plate of a violin, there are no simple integer relation-
ships among the resonant frequencies. Moreover, there are so many
modes with nearly overlapping frequencies, particularly at higher frequen-
cies, that there are resonant frequency regions rather than discrete resonant
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frequencies found for strings. Nevertheless, each of the vibration modes
of a plate has great similarity to those found for vibrating strings. The
two-dimensionality of plates merely allows new spatial patterns of vibra-
tions to occur.

For a uniform string, the motion for the lowest resonant frequency is
an up-down motion of the string as a whole. Similarly, the motion for the
first mode of a uniform plate is an up-down motion of the plate as a whole
(figure 8.1A). For a string, the motion for the second vibration mode
consists of the out-of-phase motion of the two halves, and the maximum
amplitude occurs at the midpoint of each half; there is a null point at the
center of the string. This, again, is the same motion found for the second
mode of a plate: The plate vibrates in two out-of-phase sections at the same
frequency; there is a single null line (figure 8.1B). Because the plate has
two dimensions, there is one vibratory mode that divides the plate into two
vibratory regions along the length and one that divides the plate along the
width. It is quite possible to have the length and width vibratory mode
simultaneously. The third string mode consists of three out-of-phase vibra-
tions; the third plate modes consist of three out-of-phase motions in regions
of the plate. The nodal lines (zero amplitude) can run along either the width
or length (figure 8.1C). Standing waves for each vibratory mode along one
dimension of the plate are independent of the standing waves along the
other dimension. Given the two dimensions of the plate, there also are vi-
bration modes that are twisting motions along the diagonals (figure 8.1D).
If the membrane is not uniform (e.g., wooden plates of a violin then some
of the vibration modes can extend for long distance. An example of such a
third vibration mode is shown in figure 8.1E.

As found for vibrating strings, the position and manner of excitation de-
termine the relative amplitudes of the vibration modes. Any vibratory mode
can be stilled by either (1) exciting the plate, say by hitting it with a narrow
hammer, at a null region; or (2) mechanically restricting the displacement
at a region of maximum amplitude (antinode).

Source (String Vibration)-Filter (Sound Body) Model

Strings are not good sound radiators; the periodic physical motion creates a
compression wave in front of the string and a rarefaction wave in back, and
they effectively cancel each other. The string must transfer its vibration
energy to the sound body and the shape of the violin body has evolved to
increase that transfer to maximize the sound output power. As described
above, each of the string vibrations can excite one or more of the sound
body vibration modes. Depending on the match between the vibration
frequencies of the string and sound body, some of the string vibrations are
effectively amplified and others are effectively nulled, and the spectral
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output will vary from note to note. A good sound body is shaped so that its
strongest vibration modes fall at the frequencies of musical notes.

Wind Instruments: Air Vibration Within Hollow Tubes

We can imagine the vibration of a string as the up-down movement of indi-
vidual masses along that string and the vibration of a plate as the up-down
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Figure 8.1. The vibration modes found on a two-dimensional plate. Different
driving frequencies give rise to different patterns of nodal lines. See text for a full
description.



motion of individual regions of the plate, and we can imagine the vibration
modes of a hollow tube as the motion of slugs of air within that tube
(Benade, 1960). The vibration modes of strings and plates are standing
waves that result from the summation of traveling waves reflected from the
ends of the strings and plates. The same is true for the vibratory modes of a
hollow tube. The excitation at one end of the tube produces regions of
higher pressure (compressions) and regions of lower pressure (rarefactions)
that travel down the tube and are reflected back up the tube at the other end.
At a closed end, compression and rarefaction are reflected back as com-
pression and rarefaction respectively (it is an antinode); at an open end,
compression is reflected back as rarefaction and vice versa (it is a node). It
takes four trips up and down the pipe to complete one cycle, so that the
wavelength of the first vibratory mode (i.e., the fundamental) is four times
the pipe length. The traveling waves sum to produce a standing wave
within the tube.

For a tube open at one end, the stronger vibration modes can occur only
at the odd vibration modes (i.e., 3F0, 5F0, 7F0, 9F0) because there must be
zero net pressure at the open end and maximum pressure variation at the
closed end. However, if the open end of the tube is flared out to create a
cone, then all vibratory modes are possible.

Source Excitation

For brass instruments, the player’s tensed lips inject puffs of air when
the oscillating air pressure at the mouthpiece is at a maximum. For wood-
wind instruments, the reed acts to inject air puffs when the oscillating air
pressure at the mouthpiece is at a maximum (the lips and mouthpiece are
antinodes—regions of maximum pressure variation). The feedback from
the reflected pressure wave is critically important to stabilize the lip vibra-
tions for the brass instruments and to open and close the reed mouthpiece
for the woodwinds. However, it may take several round trips before the re-
flections build up to the point that the lip reed vibrations become stable.
During that initiation time there are often variations in pitch and inhar-
monic blips of energy.

Changing lip tension and the amplitude of the blowing pressure varies
the frequency spectrum of the airflow entering the instrument. When the in-
strumentalist is blowing softly, the lips and reed will oscillate gently. The
air is never completely shut off, and the input is almost purely sinusoidal.
As the pressure is increased, the lips and reed will undergo large move-
ments. The air may not be completely shut off though, and the amplitudes
of the higher harmonics increase. Finally, at the highest blowing pressures,
the lips and reed snap shut and stop the airflow for up to 50% of the cycle.

342 Perceptual Coherence



The overall result is that the relative amplitude of the higher harmonics
increases as the wind instruments are played louder. If the amplitude of the
fundamental is increased 3-fold, then the amplitudes of the second and
third harmonics may increase 8-fold and 27-fold.

Filter (Sound Body)

For the brass instruments, the mouthpiece and bell make the hollow tube a
more usable instrument. The mouthpiece more closely couples the player’s
lip vibrations to the reflected pressure waves. The purpose of the flaring
bell is to allow the sound energy at higher frequencies to radiate more com-
pletely out of the hollow tube (a megaphone acts like a bell). Without the
bell, most of the energy is reflected back up the tube due to the difference
in air pressure in the tubing and in the atmosphere; with a bell, nearly all of
the energy above 1500 Hz is propagated to the listener. The bell reflects the
low-frequency energy back up the tubing so that the damping increases.
The increased damping makes the onset of the lower-frequency vibration
modes more rapid (less than 20 ms), slower for the middle vibration modes
(40–60 ms), and still slower for the higher-frequency vibration modes. One
final effect of the bell is to change the spatial radiation of the sound. The
lower frequencies tend to cling to the bell and are propagated in all direc-
tions, while the higher frequencies are beamed directly ahead.

For the woodwind instruments, the pattern of open holes changes the ef-
fective length of the hollow tube and also changes the radiation pattern of
the sound. The lower-frequency waves are reflected back up the tube at the
highest one or two open holes so that the lower-frequency energy can only
escape from those open holes. In contrast, the higher-frequency waves pen-
etrate down the entire instrument and radiate from all the open holes. What
this means is that within the instrument tubing, the lower-frequency waves
have far more energy. But this does not mean that the radiated sound is
dominated by the low-frequency energy because the energy at higher fre-
quencies is more efficiently radiated into the air. There is a “treble” boost.
At lower frequency, the odd harmonics are stronger, but at higher frequen-
cies the odd and even harmonics become equal in strength. The woodwinds
have a pattern of attack times similar to that of the brasses: The lower-
vibration modes reach maximum in 15–30 ms and the higher modes reach
maximum 10–20 ms later.

Woodwinds have register holes that, when opened, reduce the amplitude
at the lowest vibration mode. This makes it easier for the player to excite
the higher-frequency vibration modes. The spectrum of the radiated sound
differs between registers; at the higher registers, the pattern of the harmon-
ics is variable.
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Percussion Instruments and Impact Sounds

The wide range of complex and nonperiodic sounds for the percussion in-
struments follows the same vibration principles described above. All such
instruments have many periodic vibration modes, and all complex vibra-
tions can be understood as the summation of the vibration of the individual
modes. The amplitude of each mode resulting from striking the instrument
depends on the point of excitation (like that for a vibrating string), the area
of the impact, and the strength of the excitation. For steel drums, multiple
notes are created on the concave surface by pounding the location of each
note to a different shape and thickness and then heat treating the entire sur-
face. The excitation of a single note at one location excites many other
notes and that gives the drums their unique sound.

On the whole, the attack times for percussion instruments are short;
there is little or no steady state; and the decay times for each mode will
be exponential although different. What this means is that the percentage
of reduction of energy for each mode within each time period will be
constant. If the energy decays to 50% within the first 50 ms, then it will
decay another 50% from 50 to 100 ms (to 1/4), another 50% from 100 to
150 ms (to 1/8), and so on. Again, on the whole the higher-frequency vibra-
tion modes decay more rapidly because they involve more frequent and
severe bending that creates greater internal friction.

Speaking and Singing: Air Vibrations Within Nonuniform
Hollow Tubes

The voice is our most expressive instrument; it creates human interaction.
But fundamentally, the voice is no different from any other instrument. The
air expelled through the vocal folds creates the source vibration. The source
vibration is coupled to the vocal tract, composed of the mouth, lips, tongue,
and nose. The vocal tract acts as the sound body filter that selectively am-
plifies the spectrum of the source vibration. The resulting sound is then
radiated from the mouth and nose.

Source Excitation

The vibration of the vocal cords creates the frequency spectrum of the
source excitation. The speaker controls the vibration frequency of the vocal
cords by varying the tension of the cords. The speaker can also control the
spectrum of the source by varying the lung pressure. At low pressures,
the flow pattern is weak, continuous, and sinusoidal; at higher pressures,
the cords can remain closed for up to 70% of the period. The source be-
comes a series of air puffs. The similarities to other instruments should be
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obvious. The tension on the vocal cords controls the vibration frequency
(stringed instruments). The oscillation of the vocal cords resembles the os-
cillations of a reed mouthpiece (clarinet) or the tensioned lips (trumpet). At
greater source intensities, there is a relative increase in the strength of the
higher harmonics due to the harmonic content of the air puffs. This is the
same change found for the brass and woodwind instruments, and also for
higher bowing pressures due to the narrower kink in the string brought
about by stronger stick friction.

Vocal Tract Filter

We approximated the filter of the woodwind and brass instruments by a
single hollow tube. If we do that with the vocal tract (and assume a con-
stant diameter), it resembles a realistic configuration only for a neutral
vowel sound. A better model of the vocal tract filter approximates the vocal
tract as two (or more) uniform, cascaded tubes of different cross sections.
The lengths and diameters of the tubes are variable and under the control of
the speaker. A two-tube model and a more complex four-tube model are
shown in figure 8.2.

The positions of the tongue, teeth, and jaw create the resonant cavities
that generate the resonances of the vocal tract. The positions for the three
vowels shown in figure 8.3 span the vowel space and are termed the cardi-
nal vowels: /i/, tongue as far forward and as high as possible; /u/, tongue as
far back and as high as possible; and /a/, tongue as far back and as low as
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Figure 8.2. Two-tube and four-
tube models for speech production.

In order to produce different vowels,
the sizes of the sections are varied to

change the resonant frequencies.



possible. Traditionally, the cardinal vowels have been thought to underlie
speaker normalization. Listeners use those vowels to correct for speaker
differences due to the size of the vocal tract, speaking rate, accent and
dialect, and so on. But in all likelihood, vowels are not recognized by the
frequencies of their resonances but by the ongoing speech signal that is
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interleaving and overlapping the acoustic signals for consonants and vow-
els in running speech. In fact, it may be best to think of the speech signal as
being composed of two interleaved components, one for consonants and
one for vowels. The flexibility of the vocal tract as opposed to the rigid
construction of tubelike instruments allows singers to move their vocal
tract resonances around to match the pitch of the sung vowels (Joliveau,
Smith, & Wolfe, 2004). The first and second resonances for all the vowels
are plotted against one another in figure 8.4.

The model for vowels assumes that the excitation occurred at the closed
end of the two-tube model. If the excitation is applied forward of the point of
constriction (as for the fricative consonant /s/), there are frequencies of maxi-
mum sound transmission (poles) but also frequencies of zero sound transmis-
sion (zeros). Often, the poles and zero are close in frequency and effectively
balance each other; at other times the pole and zero frequencies differ, lead-
ing to increased sound radiation at the poles and decreased sound radiation at
the zeros. For the fricative /s/, there is a zero at 3400 Hz and a pole at
6500 Hz in the spectra of /s/ in sect and salve. If the turbulent source is ap-
plied at the juncture of the two tubes as in /f/, the poles are the same but the
zeros occur at multiples of the length of the larger-diameter tube. This makes
the poles and zeros line up, and the resulting spectra are nearly uniform.

There is a large degree of coupling among the connecting tubes, so that
it is a mistake to associate a specific vowel to a particular resonance of a
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Figure 8.4. The range of frequencies for the first and second formants. The key-
words contain each vowel. The frequencies of the two formants for adult males fall
at the lower frequencies, the frequencies for females in the middle frequencies, and
those for children at the higher frequencies. Adapted from “Control Methods Used
in a Study of Vowels,” by G. E. Peterson and H. E. Barney, 1952, Journal of the
Acoustical Society of America, 24, 175–184.



particular vocal cavity. The pattern of the vibration modes is a characteris-
tic of the system as a whole. Any given vowel could be produced by differ-
ent arrangements of the cavity lengths.

Perceptual Cues

When I consider the various types of vibrating objects that create multi-
ple, yet correlated, acoustic cues, the similarities between visual color
perception leading to object recognition and auditory timbre perception
leading to object recognition seem even more strained. The source vibra-
tory modes (i.e., excitation) are not continuous across frequency and
change as a function of the many factors detailed above. In many cases,
the sound body vibration modes (i.e., the filter) are discrete and nonuni-
form across frequency. Those modes may be fixed by physical construc-
tion, such as that of a violin sound body, but in other cases the modes can
be varied as when speaking or singing. Perhaps we could argue that in
contrast to visually abstracting out the illumination source to identify the
independent color reflectance filter, the simultaneous perception of the
excitation source and sound body filter is necessary to identify auditory
objects.

Still another difference is the phenomenology of the visual and auditory
worlds. Our experience is that visual objects are stable, metaphorically ei-
ther present or not present. Although there may be small differences in the
time to detect surface reflectance across the spectrum when illumination
begins, no perceptual model makes use of that information. Our experience
of auditory objects is that they are events: They emerge against a back-
ground of unstructured acoustical energy, continue for various durations,
and then fade into silence.4 Much of our knowledge about an auditory
object comes from changes in the sound over time. It is those changes in
the amplitude of the vibratory modes due to the damping and coupling
among the modes that give us information about the (resonant) properties
of the object producing the sound.

Below I describe some of the time-varying and steady-state character-
istics of the radiated sound that could be used to infer the properties of
the object. Remember that these characteristics are interrelated, not a set of
independent cues. Research to the present suggests that the changes in
amplitude of the individual vibration modes over the duration of the sound
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4. Speech is characterized by the smoothly changing F0 and formant frequencies that
occur in consonant-vowel or vowel-consonant transitions and a looser rhythmic structure.
Classical western instrumental music is characterized by discrete pitch changes that occur
abruptly between notes and a rather strict metric rhythm.



(termed the amplitude envelopes) are the critical acoustic information.
(Sometimes the term amplitude envelope refers to amplitude of the entire
sound and not the amplitudes of individual frequencies.)

However, before summarizing the evolving spectral envelope, it is worth
considering the usefulness of pitch, loudness, and noisiness as perceptual
cues. All give information about the size and physical construction of the
object. Yet although pitch, loudness, and noisiness may be useful for the
categorization of sounds, they seem restricted in their ability to allow
the identification of specific objects. For example, the fundamental fre-
quency of the vocal fold vibration is the most important cue for identifying
male, female, and child speakers, and the pitch range and variation in loud-
ness can provide additional information about the age and size of the
source. But neither pitch nor loudness uniquely specifies an individual.
Helmholtz (1877) describes the seamless transition between noise and
tones (and that was part of the argument in chapter 1). Sound sources can
be understood to fall somewhere on that continuum. At one extreme, the
sound is all noise, for example snare drums, fan noise, gurgling of fluids,
and computer noise; at the other extreme, the sound is the superposition
only of sinusoidal waves. Most sources fall between the ends: Flutes are
characterized by a steady noise due to blowing across the mouthpiece
opening; voices may be characterized by breathiness due to incomplete clo-
sure of the vocal folds; and other sources may be characterized by an initial
noisy sound that evolves into a stronger pitch sound such as the initial
metallic sounds for struck triangles and the initial scratchy bowing sounds
before the bow catches the string and generates a musical note. But, again,
noisiness seems restricted to identifying types of sounds.

Although the amplitude envelope changes smoothly, we can opera-
tionally define three parts: (1) the onset, (2) the steady state, and (3) the de-
cay. For each part, the goal is to derive acoustic properties that correlate
with the perceived qualities of the sounds.

The Onset of the Sound

The rise or attack time from the initiation of excitation until the sound
reaches its maximum amplitude is determined by the manner of excitation
and the damping of the vibration modes. If the damping is similar for all
the modes, then the attack time for all the frequency components is similar
and the amplitudes increase synchronously. If the damping differs, then
the attack times of the components will differ, and the amplitudes of the
components can follow significantly different trajectories. In spite of the
possible differences in onset among the frequency components, the onset
duration usually is measured by the time it takes for the entire sound to
increase from its initiation to its maximum amplitude.
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The Steady State at Maximum Amplitude

In reality, the sound at maximum intensity is not steady at all. There are dy-
namic changes in the frequency and amplitude of the vibration modes due
to unstable physical processes as well as the performer’s intentions. We can
derive measures that reflect both the average and dynamic properties in the
steady-state segment.

1. The most commonly used average property of the steady state is the
spectral centroid, a measure of the energy distribution among the frequency
components. A simple way of computing the spectral centroid is the
weighted average of the amplitudes of the components:

Spectral centroid frequency = ∑ aifi/ ∑ ai (8.2)

where ai and fi are the amplitudes and frequencies of each harmonic or par-
tial of the sound.

While the spectral centroid captures the balance point of the amplitudes,
it is incomplete because many different spectral distributions will yield the
same frequency. For example, a sound with equal amplitudes at 400, 500,
and 600 Hz will have the same centroid as a sound with equal amplitudes
at 100, 500, and 900 Hz. Moreover, a sound with equal amplitude at every
frequency component can have the same centroid as another sound with
drastically unequal amplitudes at the component frequencies. For these rea-
sons, several other measures have been used.

2. The irregularity in amplitude among the spectral components is
another way to characterize the steady state. For example, the relative
strength of odd and even harmonics defines different types of horns, and
an extreme jaggedness of amplitudes indicates a complex resonance struc-
ture such as that found for stringed instruments. In addition, variation in
the frequency ratios among the components can distinguish between
continuously driven instruments (bowed strings, wind instruments, and
voices) and impulsive instruments (piano, plucked strings). J. C. Brown
(1996) found that for continuously driven instruments, the components
were phase-locked and the frequencies occurred at nearly integer ratios.
For impulsive instruments, the components were not related by integer ra-
tios. After the impulse, each vibration mode decayed independently, and
differences in damping caused the frequencies to deviate out of an integer
relationship.

3. The spectral spread of the amplitudes of the harmonics is yet another
measure. Suppose we have two sounds with components at 100, 500, and
900 Hz. For the first sound the amplitudes are 1, 4, and 1, while for the sec-
ond sound the amplitudes are 4, 1, and 4. The energy is spread more widely
for the second sound, and the two sounds, in spite of identical centroids
(500 Hz) and spectral irregularity, will sound different.

350 Perceptual Coherence



4. The variation in the frequency of the spectral centroid is one measure
of the dynamic properties of the steady state. The frequency of the spectral
centroid can be determined at different time points and the variance of
those values calculated. The variation in the frequency of the spectral cen-
troid probably is due to correlated frequency variation among the harmon-
ics. The source frequency variation will also change the amplitude of the
harmonics as the source frequencies move in and out of the sound body res-
onances.

5. The frequency of the spectral components may change independently
so that the frequency of the spectral centroid is not affected. Nevertheless,
the variation of the components gives sounds a warm quality that is missing
in synthesized instruments. To quantify this variation, we can measure the
frequency variation of each component and average those variances in
some way.

Decay From the End of the Steady State to Inaudibility

There are significant acoustic differences in decay time among materials. A
struck metal bar will decay far more slowly than a struck clay bar. More-
over, spectral components may decay at different rates. For percussion and
stringed instruments (including the piano), the higher-frequency compo-
nents decay more rapidly due to increased friction, so that the sound quality
becomes purer as it decays and softens.

Although the vast majority of research has made use of single sounds,
that is clearly unrepresentative of natural occurrences. The onset, steady
state, and decay are useful for describing single sounds, but we live in
an evolving auditory world with overlapping sounds. Given that several
sources may sound alike at times, it may be that the consistency or change
in sound quality at different pitches and amplitudes is necessary to identify
the source. This is the same indeterminacy discussed for color, and compu-
tational models needing multiple views to derive surface color are analo-
gous to arguing that several sounds are needed to derive the source.

Furthermore, sources have different rhythms and timings. Some sources
produce continuous sounds (sawing); others oscillate in intensity (motorcy-
cle engines); and others are simply a sequence of short discrete sounds
(faucet dripping, footsteps). The change in the rhythm of the sounds indi-
cates whether we have repaired the drip or made it worse. The extent of the
overlap of the offset of one sound and the onset of the next sound is still
another cue to source identity. The degree of overlap is going to be a func-
tion of the damping of the decay and the following onset (and a function of
the reverberation of the environment).

What can we take away from this? First, there are a large number of pos-
sible acoustic cues that are not independent due to the interlocking of the
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source and filter in sound production. These cues are not invariant and will
change across method of excitation, pitch, duration, intensity, and tempo.
In addition, performers may vary the sound quality by excitation technique,
intonation, or expressive emphasis. Second, there are no pure cues—all
cues exist within a context defined by all the other cues. In exactly the same
way, there are no pure colors; every color exists within a context.

What are the perceptual consequences to the listener of the multiple
interactive cues? First, no single cue uniquely determines object identifica-
tion. Any single cue will afford some level of performance, and multiple
cues will produce better performance than any specific cue. Cues are re-
dundant and substitutable due to production interactions. This redundancy
makes performance robust. Listeners rarely make horrible errors, and per-
formance will degrade gracefully in noisy conditions. Second, the effec-
tiveness and importance of any cue will depend on the context, and the
level of performance will depend on the context and the task. Listeners
should learn to make use of whatever cues lead to best performance for
a specific set of objects in a specific context. Comparisons between humans
and machines are ambiguous; in some cases humans outperform machines,
and in others the reverse occurs (J. C. Brown, 1999; J. C. Brown, Houix, &
McAdams, 2001). There is no evidence that listeners can identify and then
make use of the most invariant or most stable cues. Again, this conclusion
is identical to that for color vision (Kraft & Brainard, 1999).

All of the above is going to make it difficult to summarize research find-
ings; any one finding will be the result of one context out of many possible
ones. It is important to keep in mind the differences between visual color
experiments and auditory timbre experiments. In the color experiments, the
subject’s task was to adjust the hue of the test color to equal that of the
standard. Unfortunately, such a matching task is impossible in timbre ex-
periments because the many hair cell receptors would require the subject to
manipulate a huge number of frequencies. Thus, what we find are experi-
ments that employ multidimensional scaling techniques to isolate the
acoustic properties that determine the perceived differences between two
sounds or experiments that investigate the ability to identify which instru-
ment, speaker, singer, or natural object produced a given sound.

Timbre as a Sound Quality

Multidimensional Scaling

I start with scaling experiments that attempt to uncover the perceptual di-
mensions and their acoustic correlates that underlie differences in sound
timbre. With rare exceptions, the typical similarity judgment experiment
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induces listeners to treat the stimuli as acoustic sounds, not as objects. The
dimensional space rarely shows object categories.

McAdams, Winsberg, Donnadieu, DeSoete, and Krimphoff (1995) used
an extended version of multidimensional scaling that yielded a common Eu-
clidean dimensional space for all simulated instrumental sounds, a value for
the specificity for each sound, and a grouping of subjects into classes with
similar response profiles. The grouping of the subjects into a small number
of classes is a compromise between treating all subjects as being equivalent
and treating each subject as having a unique profile. By comparing the
groups, it is possible to determine if there is a relationship between the sub-
ject’s musical background (or any biographical category) and the utilization
of the different acoustical properties in judging timbre similarity.

The 18 stimuli were synthesized electronically. Twelve stimuli imitated
traditional instruments and six were designed to imitate hybrid instruments,
such as a trumpar, designed to capture the perceptual characteristics of a
trumpet and a guitar. The duration of the majority of stimuli was about
500 ms, although several were 1,000 ms. The instructions were made delib-
erately vague and listeners simply were told to judge the similarity between
each pair of sounds.

The best solution required three common dimensions and a specificity
for each instrument. A representation of the instruments in the three-
dimensional space is shown in figure 8.5.

The position of the instruments along the first dimension was correlated
with the attack or rise time of the sounds. Struck or impulsive instruments
with short rise times fell at one end of the continuum, while wind instru-
ments with longer rise times fell at the other end. We do not actually
compare the attack time of two instruments in making such similarity judg-
ments. What we compare is the perceptual consequences of the differences
in the acoustic wave due to the differences in attack times. Instruments with
short rise times may have an initial impact sound composed of many fre-
quencies that reach their maximums within a short time span. (A short-
impulse excitation such as plucking a string has energy at all frequencies
and will set in motion all the vibration modes of the filter at the same time.)
There may be an emergent pitch as the higher-frequency resonance modes
decay more rapidly. In contrast, instruments with longer rise times may
have an attack in which the component frequencies reach their maximums
along different time courses, creating an evolving quality.

The position of the instruments along the second dimension was corre-
lated with the spectral centroid of the sounds, essentially a measure of the
amount of energy in the higher frequencies (perceptual brightness). Finally,
the position of the sounds along the third dimension was correlated with the
spectral flux of the harmonics. Spectral flux is a measure of the similarity
(i.e., correlation) of the amplitude spectra of the harmonics at adjacent time
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points. The amplitude spectrum at one time point is a list of the amplitudes of
perhaps 10 to 12 harmonics. The amplitude spectra are determined for time
windows t0, t1, t2, and so on. The correlation between the amplitudes of those
10 to 12 harmonics is calculated at t0 and t1, at t1 and t2, and so on. The spec-
tral flux is the average of those correlations and will be high when the relative
amplitudes of the harmonics are constant across time. The third dimension
separates the woodwind instruments (constant amplitude of each harmonic)
from the brass instruments (variable amplitude of each harmonic). The fit of
the acoustic representation for the spectral flux was weakest (the trumpet is

354 Perceptual Coherence

S
pe

ct
ra

l F
lu

x

Figure 8.5. The multidimensional space for the set of simulated real and hybrid
instruments used by McAdams et al. (1995). The first dimension was attack time;
differences in attack time formed two categories, represented by squares (fast) and
circles (slow) and the two categories would be at opposite ends of the first dimen-
sion. The second dimension (x axis) was the frequency of the spectral centroid, and
the third dimension (y axis) was a measure of the spectral flux. The six hybrid in-
struments in the figure are: trumpar, trumpet-guitar; oboleste, oboe-celeste; striano,
bowed string-piano; vibrone, vibraphone-trombone; obochord, oboe-harpsichord;
guitarnet, guitar-clarinet. Adapted from “Perceptual Scaling of Synthesized Musi-
cal Timbres: Common Dimensions, Specificities, and Latent Subject Classes,” by
S. McAdams, S. Winsberg, S. Donnadieu, G. DeSoete, & J. Krimphoff, 1995, Psy-
chological Research, 58, 177–192.



obviously misplaced). The majority of subjects (60%) weighted each of the
three common dimensions equally. The remaining listeners either weighted
attack time most heavily or weighted spectral centroid and spectral flux
equally. Musical background did not differentiate the listeners.

The degree of specificity was not predictable from instrument class, and
the hybrid instruments did not differ from the simulated instruments. The
authors suggested that two types of sound qualities determine specificity:
(1) qualities that vary in degree, such as raspiness, inharmonicity, or hol-
lowness; and (2) qualities that are discrete, such as presence of a thud or
damped offset.

Subsequently, Marozeau, de Cheveigne, McAdams, and Winsberg
(2003) investigated whether the dimensional representation of sound qual-
ity was equivalent at different notes. There were two major conditions. In
the first, listeners judged the difference between two instruments playing
the same note. Three different notes within one octave were used in sepa-
rate experiments. In the second, listeners judged the difference between
two instruments playing different notes, the maximum note difference be-
ing slightly less than an octave. The similarity judgments were quite con-
sistent across conditions. First, the three perceptual dimensions derived in
all conditions were identical. The first was a measure of attack time
(termed impulsiveness here); the second was a measure of the spectral cen-
troid; and the third dimension was spectral spread. Thus, the first two di-
mensions are identical to those found by McAdams et al. (1995). The third
dimension found by McAdams et al. correlated with spectral flux in con-
trast to spectral spread, but we would expect some differences as a function
of the particular instruments used. Second, if both instruments played the
same note, the spatial arrangement of the instruments at the three different
notes tended to be similar. When the notes played by the two instruments
differed by 11 semitones, there were significant shifts for roughly half of
the instruments, as shown in figure 8.6.

The results of McAdams et al. (1995) and Marozeau et al. (2003) demon-
strate that the dissimilarity in the perceived sound quality between two in-
strumental notes can be represented by the temporal and spectral acoustic
properties of the sounds. The research outcomes reviewed below suggest
that differences in attack time and the frequency of the spectral centroid
consistently covary with perceptual judgments, but that differences in other
acoustic measures such as spectral flux or spectral spread affect judgments
only in specific contexts determined by the individual sounds themselves.

Spectral Differences

Every scaling experiment has found that the predominant factor in judged
similarity is differences in the amplitudes of the component frequencies,
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typically measured by the frequency of the spectral centroid. (It should be
kept in mind that the centroid is a weighted average, and many different
combinations could have the identical centroid frequency.) For both real
and simulated instrumental sounds (Lakatos, 2000; Wedin & Goude, 1972),
complex tones (Plomp, 1975), and simulated sonar signals (Howard, 1977),
the difference in the frequency of the spectral centroid was the most impor-
tant factor in judged dissimilarity.
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Figure 8.6. The multidimensional representation for the instruments used by
Marozeau et al. (2003). The two notes from each instrument were separated by 11
semitones. The first dimension, not shown, was attack time, which separated the
guitar, harp, and plucked violin (short attack time) from the rest of the instruments.
The second and third dimensions were spectral centroid and spectral spread. Data
courtesy of Dr. Jeremy Marozeau.



For speaking and singing, the spectral centroid predicts the similarity
between the same vowel spoken or sung by different individuals and also
predicts the similarity between different vowels spoken or sung by the
same individual (Bloothooft & Plomp, 1988). Erickson (2003) asked expe-
rienced choral directors and musically untrained listeners to judge the sim-
ilarity among sung vowels at different pitches. The judges were supposed
to disregard the pitch differences and base their judgments solely on the
differences in voice quality. Nonetheless, judges were unable to disregard
pitch, and pitch differences were the first dimension. The second dimension
was based on the spectral centroid. The centroid predicted the perceived
dissimilarity between singers in different voice classes even at the ends of
the singing range where there was only a small number of harmonics.

In prior work, Grey and Gordon (1978) exchanged the relative maxi-
mum amplitudes of the harmonics between instruments (i.e., the spectral
shapes) but did not change the attack and decay timings. Such an exchange
is shown in figure 8.7. Similarity judgments were obtained and compared
to those for the original unaltered notes. The pairs of notes that exchanged
spectral shape did swap positions on the spectral envelope dimension. The
notes did not swap position on the temporal dimensions because, in fact,
the temporal characteristics were unchanged. The correlation between the
acoustic exchange and perceptual swap supports the contention that spec-
tral shape is a predominant factor in similarity judgments.

J. C. Brown (1999) investigated a different question: Can differences in
the spectrum predict how accurately listeners distinguish between oboes
and saxophones? To do so, Brown collected short segments of oboe and
saxophone sounds from different sources, and listeners categorized each
segment. This is in contrast to previous work that used but one fixed note
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Figure 8.7. Exchange of spectral envelopes between the trumpet (far left) and
trombone (third from left) to form the modified trumpet (second from left) and
trombone (far right). Note that only the common harmonics trade peak amplitude
values; hence, the original frequency bandwidths (number of harmonics) are re-
tained. Adapted from Listening: An Introduction to the Perception of Auditory
Events, by S. Handel, 1989, Cambridge, MA: MIT Press.



for each instrument. The results indicated that listeners were quite accurate,
roughly 85% to 90% correct.

Using the same sounds, human performance was compared to a classi-
fication model that used only spectral information. The classification model
compared each test sound to a set of prototypical spectra for both the oboe
and saxophone. To derive prototypical instruments, Brown (1999) used
oboe and saxophone passages (about 1 min in length) to derive an overall
spectral envelope averaged across notes. The overall envelope portrays the
sets of overlapping sound body resonances that amplify the excitation in
different frequency ranges. These overlapping resonances are termed for-
mants, and a formant in the 800–1000 Hz range would amplify the fourth
harmonic of 200–250 Hz excitations, the third harmonic of 300–333 Hz
excitations, and the second harmonic of 400–500 Hz excitations and
800–1000 Hz fundamental excitations. Thus, across a set of notes, there
would be consistent energy in the 800–1000 Hz range and that formant
would be part of the signature of a particular instrument.

To measure the performance of the computer model, the short segments
presented to the listeners were partitioned into 23 ms windows, and the
spectral envelopes of the windows were compared to the prototypical en-
velopes. The computer model then calculated the likelihood that the seg-
ment was played by the oboe or by the saxophone. Overall, the computer
was better than human listeners at identifying the oboe but equal at identi-
fying the saxophone. The success of the computer model demonstrates that
the spectra information was sufficient to distinguish between the two in-
struments, but of course it does not unambiguously demonstrate that hu-
man listeners are making use of the same information.

In subsequent work, J. C. Brown et al. (2001) used four wind instru-
ments, oboe, saxophone, clarinet, and flute. The results were similar to the
previous work: human and computer identification were roughly identical.
For the computer model, the most effective spectral information was the
shape of the spectrum due to overlapping resonances or the jaggedness of the
spectrum measured by the variation in the amplitudes of the harmonics. A de-
tailed spectral envelope description yielded better performance than just the
frequency of the spectral centroid, which is based on only one number.

Two studies illustrate that the spectral envelope can be used to discrim-
inate among natural events. Freed (1990) investigated whether listeners
could judge the hardness of mallets when they struck aluminum cooking
pots. The mallets were made of metal, wood, rubber, cloth-covered wood,
felt, and felt-covered rubber. The judges based their ratings on the spectra.
Mallets were judged as hard if the sound energy initially was concentrated
at higher frequencies and then shifted to lower frequencies over time (about
300 ms). As can be imagined easily, the harder mallets created a louder
sound, which also affected the hardness judgments. X. Li, Logan, and
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Pastore (1991) investigated whether listeners could judge gender by the
sounds of walking. Males and females used shoes with leather soles and
solid synthetic heels and walked naturally across a hardwood stage. Listen-
ers judged the walkers to be male if there was more low-frequency and less
high-frequency energy, based on the belief that males were taller and heav-
ier and had bigger shoes. This is a somewhat incorrect belief, as the size of
the person will not directly affect the vibration of the hardwood floor. Shoe
size, however, will affect the floor resonances, as bigger shoes will tend to
still higher-frequency vibration modes.

Onset (Attack Time) Differences

Lakatos (2000) used three sets of instruments: a pitched set contained
wind, string, and pianolike instruments; a percussion set containing drums,
cymbals, marimbas, and vibraphones; and a combination set that included
a subset of the pitched and percussion instruments. For each set, one di-
mension was highly correlated with the rise times of the instruments. For
the pitched instruments, the struck piano, harp, and harpsichord with short
rise times differed from the other instruments, while for the percussion in-
struments the bowed cymbal and bowed vibraphone with long rise times
differed from the other instruments. If those instruments are excluded,
being of a somewhat different type, rise time no longer affects the sim-
ilarity judgments. As argued above, the method of excitation and resulting
rise time are unimportant in themselves; they are indicants that the
rapid excitation created a perceptible impulse transient made up of non-
harmonic frequencies. (A very rapid-impact excitation contains energy at
all frequencies.)

Spectral Envelope Variation

The initial work demonstrating the importance of the temporal properties
of the spectral envelope was that of Grey (1977). He created rather short-
duration simulated instrumental sounds (roughly 300 ms) that consisted
mainly of the attack and decay portions. Two of the three dimensions
appeared to be based on the temporal evolution of the sounds. The first tem-
poral dimension was characterized by the synchrony of the higher-frequency
harmonics—the harmonics of woodwinds started and decayed at the same
time, while the upper harmonics of strings had different patterns of attack
and decay. The second temporal dimension was characterized by the
quality of the initial attack—reed woodwinds had low-amplitude high-
frequency inharmonic energy (due to stabilizing the reed vibration), while
brass instruments had dominant lower harmonics. These sounds were really
like chirps, so that we might expect that the temporal characteristics would
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be dominant. Grey stated that longer notes yielded different multidimen-
sional spatial configurations in which those temporal dimensions did not
emerge.

Another measure of spectral flux essentially refers to the change in the
shape of the spectral envelope over time. This change could be due to vari-
ations in the source excitation, different damping of the filter’s resonance
modes (see Freed, 1990, described above), or a performer’s use of vibrato,
which creates both frequency and amplitude modulations. Such variation is
easily perceived, and McAdams, Beauchamp, Meneguzzi (1999) demon-
strated that listeners consistently discriminated between simulated instru-
mental sounds that contained normal spectral flux and those in which the
flux was eliminated by making the ratios among pairs of harmonics con-
stant across the sound duration. Moreover, Horner, Beauchamp, and So
(2004) found that for instruments with high levels of spectral flux, it was
difficult to detect added random alterations in the amplitude of the harmon-
ics (an expected outcome from a signal detection perspective).

However, spectral flux does not emerge consistently in the multidimen-
sional solutions. For example, a measure of spectral variation was found to
weakly correlate to the third dimension by McAdams et al. (1995), but
such a measure was not found by Lakatos (2000) using sets of stimuli that
might be expected to show that variation. Erickson (2003), using classi-
cally trained mezzo-soprano and soprano singers, found that rate of vibrato
was weakly correlated to a third dimension for experienced choral direc-
tors, but not for inexperienced judges. The reason for this inconsistency
may be the scaling method itself. The scaling procedure tries to find the
minimum number of dimensions to account for the judged similarity, and
the predominant importance of the onset timing and the spectral centroid
may hide the effect of spectral flux.

In an identification task, Kendall (1986) completely eliminated the pos-
sibility of any spectral flux. Kendall isolated one cycle and then repeated
that cycle continuously for the entire duration of the steady-state compo-
nent. He found that identification of instruments was poorer for the single-
cycle simulations than for the natural instrument. It appears that spectral
flux is important for recognizing an instrument (or discriminating among
simulated sounds) but not as relevant for judging similarity between
sounds.

Individual Differences

In nearly all work to date, the differences between untrained and trained
listeners (e.g., musicians, classical singers, choral directors) have been
small and variable. For example, Lakatos (2000), using the same statistical
procedure as McAdams et al. (1995), did not find any effects of musical
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experience. Erickson (2003) found that when untrained listeners and choral
directors judged the similarity between sung vowels of classical singers,
the first two dimensions were identical: pitch and frequency of the spectral
centroid. The choral directors did, however, also use the vibrato frequency
to judge similarity.

I would argue that the lack of effect due to experience is due to the task
itself. Regardless of experience, all subjects were judging the difference in
terms of acoustic differences and not in terms of the source or musical im-
plications. Only two sounds were presented at one time, and the pairs were
presented in a random order. Listeners were instructed to judge the differ-
ence between the sounds and not commit the stimulus error of judging the
difference between the sources. This outcome can be contrasted to the typi-
cal results comparing untrained and trained listeners in tasks involving mu-
sical tonality. In such tasks, untrained listeners make their judgments in
terms of the difference in pitch, while trained listeners make their judg-
ments in terms of the musical intervals. Thus, untrained listeners are treat-
ing pitch and timbre differences acoustically, while explicit training allows
trained listeners to treat intervals as entities (Krumhansl, 2000).

The effect of musical training on identification and discrimination tasks
has also been small (e.g., Brown et al., 2001). Erickson, Perry, and Handel
(2001) found that experienced singers were only slightly more accurate in
detecting which of three vowels sung at different pitches was produced by
the “oddball” singer. Moreover, this difference disappeared when the range
in pitches exceeded one octave. In similar fashion, Lutfi, Oh, Storm, and
Alexander (2005) found no differences among practiced listeners, musi-
cians, and nonmusicians in distinguishing between actual and synthesized
impact sounds.

Timbre as a Source Variable

We would expect that there would be a close coupling between the physical
properties of objects and the acoustical properties of the resulting sounds
and that that coupling should enable the listener to identify the source. This
emphasis on identifying the source of a sound may result in different ways
of listening than when a subject is listening for the quality or the meaning
of the sound. Of course, the source itself can have inherent meaning: some-
thing to run toward or run away from, for example.

Moreover, we would expect the context, the prior probabilities of differ-
ent sounds, higher-level cognitive factors such as memory and attention,
and individual differences among the listeners to be important factors in
determining the ability to identify the source. Although there seem to be
consistent acoustic properties that correlate with similarity judgments, this
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does not seem to be the case for source identification. Listeners will judge
widely different sounds as coming from the same event (e.g., walking) or
coming from the same source (e.g., singing or piano notes). It may be that
there is an acoustical invariant that occurs only for every sound from one
source, but I doubt that. I prefer to think that listeners develop transforma-
tions or trajectories that link the sounds at different frequencies, intensities,
and sound qualities that are produced by one source or type of action.

If this conceptualization is correct, then any invariants will not be found
at a single pitch and loudness. Moreover, it is unclear whether the sound
qualities found at one note using multidimensional scaling are useful for
source identification. Some temporal properties such as onset time would
be useful because they would characterize different classes of instruments
across the playing range. Other spectral properties such as the frequency
centroid or spectral spread would not be useful because they can change
dramatically across the playing range. Right now, the answer is unknown.

Single Events

Many studies have investigated the identification of objects, including
instruments, speakers, and environmental events. Performance varies dra-
matically depending on the objects, the stimulus presentation conditions,
listeners’ prior knowledge about the possible objects, and so on. On the
whole, identification is reasonably good, although it is quite difficult to as-
sess the relative effects of any the above factors. Listeners will make use of
whatever acoustic properties make the sounds most discriminable in the ex-
perimental context.

Gaver (1993) suggested a way of organizing environmental events in
terms of physical actions. The three major categories are: (1) vibrating ob-
jects due to impacts, scraping, or other physical actions; (2) aerodynamic
sounds due to explosions or continuous excitation; and (3) liquid sounds
due to dripping or splashing. Although this hierarchy does not necessarily
separate events in terms of their acoustic properties, we would expect a
strong relation between the physical events and their acoustic properties.
There is not a perfect correspondence between this classification and the
acoustic properties, particularly with respect to rhythmic patterning, but
this hierarchy does have heuristic value.

The research on timbre as a sound quality suggested that the acoustic
properties could be organized into one class dealing with the temporal
properties, particularly onset time, and a second class dealing with the
spectral properties. Such a split will prove useful in this section, as long as
we expand our conception of the temporal properties to include rhythmic
patterning within individual sounds as well as between sounds and as long
as we expand our conception of the spectral properties to include noise.
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Rhythmic patterning usually gives information about the actions that gen-
erated the sound, and the spectral properties usually give information about
the object material.

Rhythmic Patterning

Vanderveer (1979) recorded events like hammering, finger snapping, crum-
pling paper, whistling, and walking up and down stairs and asked listeners
to group similar sounds. She concluded that the most salient acoustic deter-
minants of similarity were: (a) the temporal patterning of the sounds, in-
cluding repetitive sounds such as hammering, continuous rough sounds of
saws, the crackling of shuffling cards, and repeated ringing sounds that de-
crease in amplitude such as a spoon bouncing off a teacup; and (b) spectral
properties due to the resonance, size, and physical characteristics of partic-
ular objects, surfaces, and substances, such as metal, paper, and things with
a rough texture. Temporal patterning can distinguish different actions on
the same material, such as crumpling versus ripping paper, while the spec-
tral properties can distinguish the same action on different materials, such
as banging a block of metal or of wood.5

W. H. J. Warren and Verbrugge (1984) demonstrated that time-varying
spectral patterning provides the information needed to distinguish between
bouncing objects and breaking objects. Actually, each piece of a broken
bottle bounces, so the difference is between one bouncing object and the
many bouncing pieces of the broken object. The acoustic information for
bouncing is that the spectral content is identical for each impact, although
the sound will decrease in intensity and the interval between impacts will
shorten. The acoustic information for breaking is a set of overlapping
bouncing sequences in which each sequence represents one broken piece,
and each one has a different damped pattern. The sounds coming from each
piece will alternate in seemingly random fashion. W. H. J. Warren and Ver-
brugge found that bouncing was perceived when the successive sounds had
the same spectral content and that breaking was perceived when the succes-
sive sounds had distinct spectral properties signifying the multiple pieces
of a broken object.

Spectral Properties

One approach to determine which spectral properties underlie the identifi-
cation of environmental sounds is to filter the sounds into frequency bands

The Perception of Quality: Auditory Timbre 363

5. Listeners can be misled, particularly by the tempo of the sounds. Listeners expect
women to walk faster than men (X. Li et al., 1991) and men to clap more slowly than women
(Repp, 1987). Neither belief is correct.



and measure identification performance using only those frequencies.
Gygi et al. (2004) chose 70 different sounds and used six different band-
pass filters (150–300, 300–600, 600–1200, 1200–2400, 2400–4800,
and 4800–9600 Hz). On the whole, identification was better using the
1200–2400 Hz and 2400–4800 Hz filters. But there were many sounds that
did not follow this pattern, and for each sound, the energy in each band did
not predict which bands led to the best identification.

Gygi et al. (2004) then investigated whether the amplitude variation
within a frequency band influenced the ability to identify the sounds. To do
this, first the amplitude envelope for the band was calculated. This envelope
then multiplied a segment of noise to create a sound that had the identi-
cal amplitude envelope but a flat uniform frequency spectrum. There were
two conditions. In the first, the amplitude envelope was determined for
the sound as a whole, and that envelope multiplied a wide-band noise
segment. In the second, the amplitude envelope was calculated for the
frequencies within each of the six band-pass filters. Those amplitudes then
multiplied segments of equivalent band-pass noise, and finally all of the six
amplitude-modulated noise segments were summed together. In this condi-
tion, there will be some frequency information due to the segments of
band-pass noise. The identification performance was surprisingly good.
Experienced listeners were able to identify 46% of the sounds using the
single overall envelope. Across two days of testing, inexperienced listeners
improved from 13% to 23% for the single envelope and from 36% to 66%
for the sum of six envelopes. The sounds that improved most across days
were inharmonic sounds with strong temporal patterning (e.g., helicopter,
gallop) and the sounds that were identified better with the six filter en-
velopes were those with strong harmonic components (e.g., bird, dog).
Thus, the temporal variation of the amplitude, even without frequency in-
formation, was sufficient to identify sound sources and events. Listeners’
experience was critical, presumably because they learn to abstract the cru-
cial temporal variation.

It is clear from these results that we cannot simply talk about envi-
ronmental objects and events. They must be broken into subclasses along
acoustic dimensions (e.g., harmonic versus inharmonic; strength of tempo-
ral structure), or on the basis of the nature of sound production as outlined
by Gaver (1993) above, because listeners presumably have some a priori
ideas of the possible causes of a sound. Alternately, the objects and events
can be classified on the basis of “semantic” or expressive features.

Obviously, we would expect the acoustic properties and event-related
properties to covary. The research by Vanderveer (1979), X. Li et al. (1991)
and W. H. J. Warren and Verbrugge (1984) described above supports this
assertion. Several more recent studies further confirm that spectral proper-
ties can be used to identify actions and the material properties of objects.
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1. Lakatos, McAdams, and Causse (1997) attempted to determine the
acoustic properties that enabled listeners to distinguish the width:height ra-
tios of metal and wooden bars of constant length. Hitting the center of the
metal bars with a steel hammer and the center of the wooden bars with a
hard resin hammer generated the sounds. The listener’s task was to identify
the presentation order of two bars from a visual schematic of the exact
width and height of the two bars.

The percentage correct was used as a measure of similarity, and the re-
sulting multidimensional space contained two dimensions for the metal
bars but only one for the wooden bars. The first dimension, for both the
metal and wooden bars, correlated with the width:height ratios, and the
second dimension, for the metal bars, correlated with the spectral centroid
of the struck bar. Lakatos et al. (1997) then attempted to find the acoustic
cues that correlated with the width:height ratios. As described at the begin-
ning of the chapter, extended surfaces such as bars and plates can vibrate
independently in several ways: by bending along the width and height axes
as well as twisting along the length axis. The bending frequency in one
plane is determined by the width; the bending frequency in the other plane
is determined by the height; and the frequency of the twisting vibration is
determined by the width:height ratio. The lowest frequency of the twisting
vibration and the difference in the lowest frequencies of two bending vibra-
tions were highly correlated to the width:height ratios for the metal bars.
The correlations were lower for the wooden bars because the twisting vi-
brations were weak or missing due to the irregularity and higher damping
of the wood. In sum, there are spectral properties that can be used to iden-
tify whether the sound came from a block with a low width:height ratio, or
with a high ratio.

2. Subsequently, Kunkler-Peck and Turvey (2000) investigated
whether inexperienced listeners could independently identify the length
and width of thin struck steel, wood, and Plexiglas plates. The plates
were squares (48 cm per side), slightly taller rectangles (height 60 cm,
width 36 cm), or very tall rectangles (height 90 cm, width 25.4 cm). After
the plate was struck, the listeners judged one of the two dimensions. For
both the steel and wood plates, the judgments were linearly related to the
actual size, although they were not very accurate. For example, the listen-
ers judged the length of the very tall rectangle to be less than 50 cm even
though it was about 90 cm. For the Plexiglas plates, the length and width
judgments did not vary much, possibly due to the greater damping of the
Plexiglas.

Kunkler-Peck and Turvey (2000) calculated the frequency of the vibra-
tion modes of the plates and found that the frequency of the first three even
modes correlated most closely with the judgments of perceived length. The
correlations were nearly identical for the three modes, suggesting that there
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was redundant information and that the listeners could attend to only one
and still do as well.

One interesting phenomenon that occurs with struck objects is that the
resulting sound becomes split into two parts, one representing the striking
object and the second representing the struck object. In Freed (1990),
the hardness of the struck pots did not affect the listener’s judgments of
the hardness of the mallets. Thus it appears that the listeners did split the
impact sound. This type of split in vision has been termed phenomenal
scission or double representation. The paradigmatic case is transparency
where a surface is perceived as the superposition of two surfaces, the
upper one being transparent. The perception of transparency discussed in
chapter 5 was based on the relations among the reflectances of the in-
volved surfaces and possibly some figural characteristics such as orienta-
tion. In the auditory domain, the aim is to discover the heuristics listeners
use to split the impact sound into the part that builds the acoustic proper-
ties of the striking body and the remaining part that builds the acoustic
properties of the struck one.6 I can suggest several possibilities to split the
acoustic wave: (a) slight differences in the onset and rise times of the fre-
quency components associated with the striking and struck object; (b) dif-
ferences in the decay of the frequency components of the two objects due
to unequal damping; or (c) large differences in the frequencies of the vi-
brations of the two objects. As detailed in chapter 9, differences in onset
time usually are the dominating acoustic cue for object segregation, and
that is probably true here also.

3. We have all experienced the change in sound produced when we pour
a liquid into a bottle. There is a continuous whooshing gurgling sound, and,
as the bottle becomes full, the pitch center of the sound increases. The pitch
is due to air vibrations within the empty part of the bottle, a tube closed at
one end by the water and open at the other. The frequency of the lowest vi-
bration (the fundamental) is roughly

F = speed of air/(4 × length of tube). (8.3)

Cabe and Pittinger (2000) found that listeners could easily judge by
sound alone if a bottle (in this case a trash barrel) was filling (increasing
frequency), emptying (decreasing frequency), or remaining at the same
level. Moreover, when participants could control the water flow, they were
able by means of the sound to stop the flow at a comfortable drinking level
or at the brim, although the latter judgment was more accurate. The fact
that brim filling was more accurate suggests that the rapid change in the
fundamental frequency near the brim was the most useful acoustic cue.
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Let me summarize at this point. The evidence is overwhelming that lis-
teners can use auditory properties to identify a wide variety of events and
objects. There seems to be enough information in the waveform to allow
judgments about a wide variety of physical attributes of the source of an
auditory event. It is tempting to attribute the acoustic dimensions to differ-
ent classes of receptor cells. The attack time dimension could be traced to
cells that have different frequency sweep rates and different sweep direc-
tions (see figure 2.25). The spectral frequency dimension could be traced to
auditory cortical cells discussed in chapter 2, which have multiple inter-
leaved excitation and inhibition regions (e.g., M. L. Sutter et al., 1999). The
spectral frequency variation dimension could be traced to cells that are sen-
sitive to amplitude and frequency modulation (L. Li et al., 2002) or differ-
ences in spectral distributions (Barbour & Wang, 2003). The combination
of such cells can account for the importance of the distribution of spectral
components during the attack and steady parts of the sound. However, I do
not believe correlating perceptual features to cells whose receptive fields
seem to match those features is a useful approach to understanding timbre
(or any other perceptual outcome). The receptive fields of cells are ex-
tremely labile and change dramatically in different contexts, as discussed
in chapter 2. Carried to an extreme, every feature would demand a unique
receptive field. I believe that the perceptual features arise from the interac-
tion of cells with all types of receptive fields.

The evidence also is overwhelming that the experience and capability of
the listener will determine the level of performance. The acoustic and cog-
nitive factors are not wholly separable. These sounds have meaning; they
seem to have some sort of psychological structure, if not exactly a grammar
and syntax, which can affect identification. Below I consider some of the
cognitive factors in more detail.

Cognitive Factors

Although it would make identification much easier if each event or source
had a unique sound, that is not the case. Ballas (1993) investigated one
half of this ambiguity, namely that several sources can produce the same
sound, which he termed causal uncertainty. Ballas uses the example of a
click-click sound that could have been generated by a ballpoint pen, a light
switch, a camera, or certain types of staplers. If a sound can come from
many possible sources, then it seems obvious that it should be harder to
identify the actual source. To measure the causal uncertainty, Ballas and
colleagues used information theory to measure the uncertainty of the dis-
tribution of responses to one stimulus (as described in chapter 3). The
first step was to develop a set of categories such that each category repre-
sented similar events. One category could be impact sounds, another water
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sounds, a third rubbing sounds, and so on (as in Gaver, 1993, above). Then
the responses of all the listeners to one sound were put in the appropriate
categories. If all listeners describe the sound as the same type of event,
then all responses will fall in one category, and the uncertainty will be zero.
If all of the descriptions are of different types of events and occur equally
in all the different categories, the uncertainty will be the maximum value
possible. Simply put, causal uncertainty is an indicant of how many differ-
ent events could have produced the sound. The measure of causal uncer-
tainty was highly correlated to the mean time it took to identify the sound,
and several acoustic features (e.g., presence of harmonics) also were corre-
lated to identification time. Thus, both the causal uncertainty and presence
of specific acoustic features influence identification.

Ballas (1993) used several methods to assess the effect of familiarity.
First, based on a written description (not the sound itself ), listeners rated
their familiarity with the object. Second, to measure the a priori probability
that the sound occurred in the natural environment, participants were asked
to report the first sound they heard when a timer randomly activated. On the
whole, there is a weak relationship between ecological frequency (method
2) and causal uncertainty. If a sound occurs frequently, we might expect lis-
teners to have more chances to discover the relevant acoustic cues. One
possible reason for the weak relationship is that most of the sounds that oc-
curred frequently were background sounds (air in heating ducts) that listen-
ers normally do not pay attention to.

Ballas (1993) concluded that identification is best conceptualized as
arising from information in different domains, rather than arising from a
single measure of some sort. The maximum prediction of the identification
time included four types of data: (1) temporal acoustic properties (similar
spectral bursts in noncontinuous sounds); (2) spectral acoustic properties
(average frequency of spectrum); (3) amplitude envelope (ratio of burst du-
ration to total duration); and (4) ecological (frequency of occurrence). This
is the same “no smoking gun” conclusion coming from experiments on
color constancy.

Source Constancy: Multiple Sounds From One Source

There is hardly any cross-referencing between the research on timbre as a
sound quality and the research on source identification, even though both
kinds of studies arrive at nearly the same temporal and spectral properties.
The research on timbre quality has emphasized human sounds (e.g., musi-
cal instruments, speaking and singing voices) that can be produced at
widely different fundamental frequencies and amplitudes. The research on
source identification has concentrated on the identification of a single
sound (even if the sound was a set of discrete impacts, e.g., walking) that is
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relatively consistent. That was why I characterized causal uncertainty as
dealing with one half of the ambiguity problem.

The other half of the ambiguity problem is the identification of an event
or source that can create many different sounds. This is another constancy
problem akin to visual shape or size constancy. Let me try to match audi-
tory source constancy to the discussion of color constancy. Brainard et al.
(1997) hypothesized that viewers essentially estimated what the standard
color would look like under the test illumination and then tried to create a
match. I imagine that listeners would listen to a sound at one frequency or
intensity and then try to estimate what that source would sound like at a
different frequency or intensity. To provide a visual analogy, although fa-
cial pictures of babies and adults are obviously different (possibly corre-
sponding to timbres at different F0s), Pittinger, Shaw, and Mark (1979)
have shown that people can match baby pictures to adult pictures based on
an understanding of normal growth curves. The auditory equivalent would
be some form of acoustic transformation understood by the listener to pro-
vide a way to predict the sound quality of one note from that of another
played by the same instrument or voice.7 Thus, listeners may judge two in-
strumental notes as sounding very different and yet maintain that the same
instrument produced them. What makes this auditory task much more com-
plex than a comparable task for faces, in which one spatial transformation
is postulated, is that each instrument and voice changes acoustically and
perceptually in different ways. As the source frequency changes, it excites
different source filter resonances. There is no reference sound. It is there-
fore unlikely that there is an acoustic feature, however complex, that char-
acterizes all the notes of any instrument. At best, there may be invariant
features within restricted pitch ranges due to a fixed set of resonances, but
those features will transform over larger ranges as new resonances begin to
radiate sound. It is these transformations that simultaneously create inclu-
sion and exclusion from source categories.

To some extent, the experiments on water filling and identifying the sizes
of struck objects do attack this issue, but the variation in sounds are rela-
tively small. Erickson et al. (2001) recorded two mezzo-sopranos and two
sopranos singing the vowel /a/ on pitches ranging from A3 to A5, a two-
octave range. Three-note sequences were constructed from these notes such
that one singer sang two notes and one of the three other singers sang the
third note (termed the oddball note). Therefore, the oddball note could have
been sung by a different singer from the same voice class or from one of the
two singers in the other voice class. Both experienced choral directors and
inexperienced listeners attempted to identify the oddball note. The ability to
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identify the oddball note dramatically varied as a function of the pitch range.
If the two notes sung by one singer were adjacent in pitch (G4 and B4), then
both the experienced and inexperienced participants were able to identify
the oddball stimulus. If the notes were separated by more than an octave (C4

and F5), performance was only slightly better than chance. Finally, if the
notes were separated by two octaves (A3 and A5), performance was actually
worse than chance. Both the experienced and inexperienced listeners invari-
ably chose the stimulus that was most different in pitch. What this tells us is
that there is no invariant timbre associated with a singing voice because tim-
bre changes with pitch; generally, the larger the separation in pitch, the
larger the difference in timbre and the resulting lack of ability to detect
source identity. This makes intuitive sense because the same set of harmon-
ics are used to create the sense of pitch and timbre.

Assume that vocal (and instrumental) source timbre is based on our abil-
ity to derive a transformation that allows us to predict the sound at different
pitches. Then our ability to derive such transformations should improve if
we are exposed to a larger, “richer” set of notes. If the change in timbre
varies from note to note and includes register breaks, then we might need
all of the possible notes to create the transformation. Paradoxically then, if
we construct sequences in which one singer sang five notes and a different
singer sang one note, listeners should be better able to identify the oddball
note, even though the task is more complex and chance performance would
be worse (16% to 33%). In fact, Erickson and Perry (2003) found that per-
formance for six-note sequences with one oddball note was almost always
absolutely better than for three-note sequences with one oddball note in
spite of the added complexity. Performance was nearly perfect if the odd-
ball singer came from the other voice category.8

Handel and Erickson (2001, 2004) have done analogous experiments
with instruments. In the first (Handel & Erickson, 2001), two different
pitch notes were presented. Sometimes they were played by the same wind
instrument and sometimes they were played by different instruments. The
listener’s task was simply to judge whether the same or different instru-
ments played them. As long as the pitch difference was an octave or less,
listeners were accurate. If the pitch difference was greater than an octave,
listeners invariably judged that the instruments were different. In the sec-
ond, Handel and Erickson (2004) used a three-note sequence with one
oddball note (exactly the same task as above). If the two instruments were
both woodwinds (clarinet and English horn), then listeners always judged
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the oddball note to be the one most different in pitch, exactly the same re-
sult found for the singers. In contrast, if the two instruments were clarinet
or English horn and trumpet (i.e., different instrument classes), then listen-
ers were able to identify the oddball note.

From these results, it seems that source constancy is built up by devel-
oping a sense of how the sounds from one source will change across pitch.
For difficult discriminations such as between singing voices or woodwind
instruments, listeners need a fine-grain auditory image of the timbre at each
pitch to detect the oddball note, and that requires many notes to be able to
derive the necessary detailed trajectory of each source. We can imagine that
given only two notes, the listener will accept a wide range of sounds as
possibly coming from the same source. As the number of given notes in-
creases, the added information about the timbre transformations allows the
listener to restrict the range of possible sounds. For easier discriminations,
such as between a woodwind and brass instrument that sound widely dif-
ferent, listeners do not need a detailed trajectory, so that a broadly tuned
one based on just a few notes will suffice.

Poulim-Charronnat, Bigand, Madurell, Vieillard, and McAdams (2004)
have investigated a different issue. Suppose we present a musical passage
using one sound source (e.g., a piano) and then present the same or a differ-
ent passage using a second source (e.g., a clarinet). Will listeners be able to
generalize across the two timbres and discriminate between the two pas-
sages? On the surface, it seems that it should be an easy kind of constancy,
particularly for Western classical music, which mainly revolves around har-
monic structure. Yet Poulim-Charronnat et al. found that the discrimination
task was surprisingly difficult if one source was a solo piano and the second
source was an orchestra. Even skilled musicians were unable to do better
than roughly 65–70% correct when the timbre changed for passages from a
Liszt symphony. The same listeners were able to achieve an accuracy of
90% if the timbre did not change. The poor performance when the timbre
changed could be due to the large difference in the sources and resulting
timbre. It is easy to predict that performance will vary as a function of the
difference in the source timbres, and in fact this provides a converging op-
eration on the results from the multidimensional scaling experiments.

Summary

Of all the chapters, this is the one I feel most uncomfortable about. There
does not seem to be a consistent thread running through all of these results
except for the fact that listeners can and do identify objects and properties
of objects by their sound quality alone. The acoustic measures that corre-
late with the perceptual judgments tend to change from experiment to
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experiment, often are not clearly connected to the sound production pro-
cess, and much of the time do not seem intuitive to me. Maybe that should
be expected because of the complexity of the stimuli due to the large num-
ber of vibration modes of the source and filter and the number of unique re-
ceptor cells, and because listeners will make use of any acoustic property
that works in a context.

A recent approach to source identification, termed physically inspired
modeling, may provide a systematic way to investigate the perception of
simple rigid objects. Physically inspired modeling makes use of the vibra-
tion wave equations for the motions of simple bars to synthesize the sounds
of those objects. The advantage of this approach is that it allows the experi-
menter to vary the parameters of the vibration modes (e.g., the decay rates)
and thereby isolate the properties that listeners actually use to identify the
objects. For example, Lutfi (2001) synthesized the sound of freely vibrating
hollow and solid bars and required listeners to distinguish between the two
types. The first vibration mode of hollow bars decays more quickly, is
louder, and has a lower frequency than the first mode of solid bars. Some
listeners used decay and frequency while others used only frequency to
make their judgments. By comparing the wave equations to discrimination,
Lutfi was able to show that the limits of human sensitivity (i.e., internal
noise) can account for the errors made as the intrinsic acoustic relation-
ships are perturbed.

Moreover, I have equated color constancy with the ability to predict
sound quality at one pitch and loudness from the sound quality of the same
object at a different pitch and loudness. At least at a superficial level, that
seems to be a correct analogy. To achieve color constancy, the observer
must remove the effects of the change in illumination to capture the un-
changing surface reflectance. To achieve sound source constancy, the lis-
tener must remove the effects of changes in pitch and loudness to capture
the source resonances. But the source filter resonances change at different
excitation frequencies so that the listener can be, in effect, faced with a
different sound object when the excitation frequencies are widely different.
Without sounds at intermediate frequencies to characterize the connect-
ing transformation, it would be impossible to judge whether two sounds
come from the same object. Perhaps the analogy holds within overlapping
frequency ranges of about one octave where the source filters are fairly
constant.
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9

Auditory and Visual
Segmentation

Iheard Dr. Fritz Heider, the famous Gestalt psychologist, say,
“The job of psychologists is to pierce the veil of the obvious.”

The organization and segmentation of the auditory and visual worlds into
objects and sources is so obvious, so commonplace, and so effortless that
the problem of how this organization was accomplished went unnoticed
until the Gestalt psychologists made it central to visual perceptual theory.
But it still took another 80 years before the pioneering work of Bregman
(1990) made auditory figure-ground organization central to auditory per-
ceptual theory.

The essential problem for the visual system is to segment the retinal
mosaic composed of independent receptors into enclosed objects with
continuous surfaces. The outputs of the receptors can be grouped in an in-
finite number of ways. We cannot simply argue that we organize it the way
it is, because we do not know how it is. We are restricted to the informa-
tion on the retina, the proximal information. From that, we construct our
best guess about the environment, the distal world. The proximal informa-
tion must provide at least a provisional representation of the distal envi-
ronment; otherwise useful perception would not occur at all. But there are
ambiguities that must be resolved. The continuous surfaces often are par-
tially covered by other surfaces, so that the reflected light reaching the
observer consists of fragments of varying shapes and sizes that must be as-
signed to objects. Moreover, we cannot perceive the entire perceptual field
at once. The objects have to be constructed by shifting attention to differ-
ent regions and then knitting the fragments together. This is simply the
aperture and correspondence problem posed once again. The aperture is
determined by span of attention, while the correspondence problem is to
determine which fragments go with which other fragments.
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Similarly, the essential problem for the auditory system is to segment
the acoustic wave into auditory sources. The auditory world consists of co-
herent objects whose sounds usually change slowly and continuously over
time. But the sounds from individual objects may be masked or mixed up
with sounds from other objects, so that the pressure wave reaching the lis-
tener is the blend of all the ongoing sounds. The proximal information,
though, is the independent outputs of the hair cells tuned to different fre-
quencies. These outputs can be grouped in innumerable ways to create dif-
ferent distal sources, exactly like the outputs of the retinal cells, which can
be grouped to create different objects. Moreover, there are the same kinds
of attention limits. It is difficult to attend to all the frequency components at
any instant, and there are limits to our ability to integrate sound fragments
over time. Here the aperture is determined by our perceptual ability to hear
only the present sound, and by memory limitations. The correspondence
problem is to determine which frequency components go with which other
components.

In many ways, this chapter connects and sometimes contrasts many of
the concepts in previous chapters.

1. Sensations belong to things. There is a remarkably strong tendency to
hear the world in terms of sources that change only slowly and to hear and
see the world in terms of rigid objects.

2. Structure and noise are end points. We have argued that perception is
the abstraction of structure from ongoing change and that abstraction must
occur in real time, often based on sparse representations.

3. Perceptual processes exist at many levels simultaneously. Grouping
begins with the sensory elements, which are combined into intermediate
features or elements, and finally combined into objects. None of the levels
are fixed or invariant, and all depend on the overall context. The problem is
to find the appropriate “grain” that maximizes structure.

4. Perceptual processes are tuned to the physical processes that create
the sensory structure. There are two possibilities. The first argues that the
segmentation and grouping of sensory fragments is the outcome of evo-
lutionary processes that have created automatic processes that function
without attention. These processes take advantage of the physical invariants
that create auditory and visual sensation. This is the view advanced by
Shepard (1981), which he termed psychophysical complementarity. The
second possibility argues that grouping is the end result of perceptual ex-
pectations (i.e., likelihoods) generated through experiences that are being
constantly upgraded by new information. The preferred interpretation is the
one that has the highest probability of being correct (e.g., W. S. Geisler
et al., 2001, in chapter 4). This is Helmholtz’s concept of unconscious in-
ference: at first, perception is figuring out which real-world object most
likely produced the proximal sensations, but those perceptual processes
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become “telescoped” with experience so that the problem-solving compo-
nent becomes automatic and lost to consciousness. Both kinds of percep-
tual processes act to limit the large number of ways of configuring the
sensory field to a small set of possibilities that can be tested by the perceiver.
We can combine the two approaches by arguing that distal stimuli that are
biologically important or result from frequent physical processes will have
high likelihoods of occurring. These processes may not all point to the same
organization, creating a need for rules that declare the “winner.”

Another way of framing this issue is in terms of what van der Helm
(2000) termed viewpoint-independent and viewpoint-dependent processes.
This difference is best illustrated by an example. Suppose the proximal
stimulus is simply a small black circle. Many objects could produce such a
circle: a three-dimensional sphere, a flat circle, a three-dimensional cylin-
der, an ellipse slanted in depth, and so on (see figure 3.1). The sphere will
produce a proximal circle from all viewpoints; that distal stimulus is view-
point independent. In contrast, the circle, cylinder, and ellipse will produce
a proximal circle only from one accidental viewpoint; those distal stimuli
are viewpoint dependent. Rock (1983) proposed that perceivers make their
judgments assuming that the proximal stimulus did not arise from a unique
(i.e., unlikely) position of the distal stimuli. That is, perceivers avoid inter-
pretations that are based on accidental viewpoints or coincidental arrange-
ments. From this perspective, viewers would guess that a sphere produced
the circle.1 For a second example, consider a straight-line proximal stim-
ulus. A straight edge will produce a straight proximal stimulus from all
viewpoints, but a curved edge will produce it only from one accidental
viewpoint. Therefore, the best guess would be that a distal straight line pro-
duced the proximal straight line.

Let me suggest a hearing example based on coincidental timing. In
chapter 5, I discussed auditory induction effects. If a sound is temporarily
masked by a louder sound that contains the same frequency components,
the softer sound is heard to continue during the duration of the louder mask-
ing sound. It would be a low-probability coincidence if the softer sound
ended at the instant that the louder sound began and then restarted at the
same instant that the louder sound ended. It is much more likely that the
softer sound was continuous so that there would be no silences between
the softer and louder masker, regardless of the timing of the masker.

5. Perceptual processes are equivalent for all senses. A unifying theme
is that both the auditory and visual systems analyze the sensory input into
frequency channels. The outputs of these channels may be combined in di-
verse ways and thereby create many alternative descriptions of the structure.
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For a first approximation, we can say that it is the cross-frequency correla-
tions for both hearing and seeing that generate the perception of structure,
and it is probably at this level that the correspondences between the two are
clearest. We can also understand the grouping in terms of redundancy re-
duction (Barlow, 1981). Channels that are correlated can be combined,
leaving independent channels that maximize mutual information.

Contributions of the Gestalt Psychologists

As described in earlier chapters, the Gestalt psychologists embraced the
notion of psychophysical isomorphism. What we see is due to the operation
of field forces on the visual cortex, which organizes the sensory fragments
into continuous objects (see figure 9.1). The sensory fragments create at-
tractive and repulsive forces, and the field forces link fragments together
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Figure 9.1. Every cortical point, if excited, generates an electrical field that dimin-
ishes with distance (A). The particular stimulus configuration determines the polar-
ity. The proximal stimulus creates the excitation pattern and resulting field forces.
The field forces can combine to generate a larger unified field that determines the
organization (B). In this case, the stronger fields between nearer cortical units lead
to the perceptual grouping by rows (solid-line ellipses) instead of the alternate
grouping by columns (dotted-line ellipses).



phenomenally. The isomorphism is between the cortical structure resulting
from the interacting field forces and our percept.

One problem with this explanation is that the field forces are not strictly
deterministic, so that many alternative organizations are possible. What
was hypothesized was that the fields acted to minimize the cortical current
thereby generating the simplest, most coherent organization. This is the
concept of prägnanz. The metaphor was a soap bubble that equalized
surface tension while enclosing the maximum volume with the minimum
surface area. Unfortunately, prägnanz is a very slippery concept because it
is not clear whether it refers to specific figures in the field, to the entire field
itself, to some mathematical code definition of simplicity, or merely to a
statistical likelihood (van der Helm, 2000). Even though counterexamples
can be found for any precise definition, we can use it as a useful guiding
principle.

The Gestalt psychologists used the concept of prägnanz to uncover
the laws of organization, or more appropriately the principles of organi-
zation. If you believe in psychophysical isomorphism, these principles
are reflections of the actions of the field forces themselves. Perceptual
and physiological prägnanz are one and the same (isomorphic, in Gestalt
terminology).

The principles of organization were induced using simple visual pictures
that isolated one principle while “zeroing out” other principles. The visual
principles include the classic ones found in all textbooks (see figure 9.2):

1. Similarity: Elements that are similar in physical attributes (e.g.,
shape, size, loudness, timbre, brightness, etc.) tend to be grouped
together.

2. Proximity: Elements that are close together in space or time, or are
located within a common spatial region, tend to be grouped together.
Furthermore, elements that are “slurred together” in sound or joined
together on one perceived surface tend to be grouped together, termed
element connectedness (Palmer, 1994).

3. Continuity: Elements that appear to follow each other in the same di-
rection tend to be grouped together.

4. Common fate: Elements that move together tend to be grouped to-
gether (“birds of a feather flock together”). Although common fate is
usually illustrated in terms of motion, it can be applied to a wide va-
riety of coherent changes. For example, Sekuler and Bennett (2001)
started with a checkerboard pattern of random luminances. They then
modulated the intensity of one vertical or horizontal linear segment
out of phase with the modulation of the rest of the checkerboard
(figure 9.3). The modulation rates ranged from about 2 to 9 Hz so
that the modulation was clearly visible. The squares in the linear
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target segments increased in luminance at the same time as the re-
maining part of the checkerboard decreased, and vice versa. The out-
of-phase modulations segmented the elements in the linear segment
from the rest of the checkerboard and permitted the observers to
determine if the linear target region was horizontal or vertical. In
similar fashion, Alais, Blake, and Lee (1998) found that correlated
contrast changes, even in opposite directions, bind Gabor-like black-
and-white patterns together. Another example of common fate is co-
herent amplitude or frequency modulation. If parts of an auditory or
visual scene undergo correlated changes (e.g., musical vibrato), it is
likely that those parts will be combined into one object.

5. Temporal synchrony: Elements that undergo simultaneous and co-
herent changes in time are grouped together (e.g., S.-H. Lee & Blake,
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Figure 9.2. Examples of the classic Gestalt grouping principles. A sequence of
equally spaced dots will be subjectively grouped into groups of two or three, depend-
ing on the spacing between the dots (A). Dots can be grouped into pairs on the basis
of physical proximity (B), similarity in brightness, size, or another feature (C), com-
mon fate in movement (D), or good continuation along smooth trajectories (E). Dots
will tend to be grouped if they are connected in some way, even though they differ in
size and brightness (F). All of these Gestalt principles also apply to sounds. For ex-
ample, a sequence of isochronous sounds will be grouped into twos or threes (sub-
jective rhythms). The term subjective was chosen because there was no physical
property to account for the grouping. It was an unfortunate choice because all of
these groupings are subjective: Elements merely follow each other in space and time.



1999, discussed in chapter 5). The most obvious principle is that of
synchronous onset and offset. Parts of a visual scene that appear and
disappear at the same time are likely to come from one object, and
parts of the acoustic wave that start and stop at the same instant are
likely to have been created by one source. In fact, as described later
in this chapter, onset synchrony is the most important cue for audi-
tory grouping (surprisingly, offset synchrony is not that important). I
used explanations based on temporal synchrony in chapter 6 to ex-
plain some of the results coming from experiments on profile analy-
sis and comodulation masking release. (Temporal synchrony may be
considered an instance of common fate, but due to its importance it is
worth treating separately.)

6. Symmetry and closure: Elements that form symmetrical and en-
closed objects tend to be grouped together.
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Figure 9.3. One example of common fate is coherent temporal modulation. The
six target cells in a vertical array are modulated in phase, but 180° out of phase with
all of the background cells. The original black-and-white checkerboard (A) is
shown transformed in (B). The vertical target increases in brightness, while the
remaining squares in the checkerboard decrease in brightness. In the experimen-
tal checkerboards, the amplitude of modulation was a constant proportion of the
squares’ average luminance, as illustrated. This made the luminance ratios of the
squares within the target and within the background constant across time. Adapted
from “Generalized Common Fate: Grouping by Common Luminance Changes,” by
A. B. Sekuler and J. P. Bennett, 2001, Psychological Science, 12, 437–444.



There is no doubt that the Gestalt psychologists posed the problem of
grouping an ambiguous image into objects. Similarly, there is no doubt that
the pictorial demonstrations “work.” But a fundamental issue is how to take
the simple pictures and make use of them to understand the normal com-
plexity of everyday scenes.

There are several problems.
1. The elements are not clearly defined. They are obviously the dots and

lines in the Gestalt demonstrations, but discrete elements may not exist at
all for time-varying sounds or for spatially varying but continuous visual
surfaces. (It has been pointed out many times that the silences we hear in
speech often do not correspond to the times that there is no physical en-
ergy.) The Gestalt mantra is that the whole is different from the sum of the
parts, or, to put it another way, the whole determines the meaning of the
parts. But the whole has to emerge from the interaction of the parts; it can-
not exist otherwise. Auditory and visual organization is a two-way relation-
ship: parts create wholes, while the whole defines the parts.

2. Because the elements are not clearly defined, it is always uncertain
how to apply the principles of organization. Which parts of the scene should
be compared for similarity, and which parts undergo common direction?
Furthermore, the spatial and temporal region within which the principles
apply is indeterminate. Suppose a row of equally spaced circles spanning
about .5 m was drawn on a wall. Viewed up close, the circles would proba-
bly group into twos or threes. But viewed from afar, all the circles would
probably group together.

3. The principles of organization seem most appropriate for one-shot au-
ditory and visual stimuli: a single short auditory stimulus or a single static
drawing. But everyday perceiving is about sounds and views that are con-
stantly evolving. We can imagine that time is broken into nonoverlapping
intervals, grouping occurs within each interval, and that cohesion between
intervals is accomplished by using the same principles used to group the el-
ements within intervals. Alternately, we can rephrase the static principles of
grouping into dynamic ones that reflect change over time. For example,
common fate might group elements that undergo correlated changes across
time. This would group together the back-and-forth motion of two balls
connected by a spring even though the balls move out of phase.

4. In the same way that it is uncertain how to apply the principles of
organization, it is uncertain when to apply those principles. Assume, for
simplicity, that the auditory and visual worlds are relatively static. The
physical processes underlying the source-filter production model structure
the acoustic and visual energy. Furthermore, assume that the auditory and
visual systems first partition the sensory energy into a set of elements that
become the basis for the grouping processes. There has to be something to
group. This partitioning is simply the result of straightforward physiological
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processes (e.g., basilar membrane vibration, retinal on-off cells). At this
point, we only have the stuff, the elements of perception, and not the units,
the things. The organizing principles cash in on the resulting regularities.
The Gestalt psychologists tacitly assumed that grouping occurs as an oblig-
atory first step in perceiving the scene and then these groups are used to
determine depth, shape, color, and brightness. More recent research has
suggested that this is an overly simplified view and that the grouping of
elements often occurs after other processes are completed. The organizing
principles are based on perceived properties—lightness, depth, synchrony,
loudness, and so on—not on the measured physical energy. What this
means is that grouping takes place only after auditory and visual processes
have normalized the scene, compensating for extraneous noise, variations
in intensity and luminance, and shadows due to other surfaces, among other
factors. The gain controls discussed in chapter 6 that normalize lightness
and contrast variation buttress this possibility.

Principles of Auditory Grouping

The acoustic properties of sound sources provide logical starting points to
evolve heuristics (i.e., rules that usually work) for segregating the acoustic
wave. Nearly all sound-producing objects that we hear are relatively
small and close. Many environmental sounds (e.g., wind, crackling of foot-
steps in leaves, impacts, dragging sounds, cars, air conditioning, keyboard
strokes) arise from a broad set of frequency components. Some very impor-
tant sounds for human listeners, such as speech, and the sounds of most
Western musical instruments vibrate at discrete frequencies that are multi-
ples of a low-frequency fundamental. The frequencies often oscillate around
a base frequency (frequency modulation), and many sounds undergo varia-
tion in overall loudness (amplitude modulation). Now the perceptual prob-
lem becomes one of assigning sets of frequencies that vary over time to
different sources.

The heuristics would therefore be based on the temporal and frequency
relationships among those components that are correlated over time and lo-
cation. In most natural situations, different acoustic properties will support
the same organization, so that we cannot measure the relative contributions
of each cue. To do so, we need to make the cues conflict. For example, we
could present frequencies of 100, 300, and 500 Hz to one ear and frequency
components of 200, 400, and 600 Hz to the other ear. If harmonic relation-
ships dominate, then listeners will hear one complex tone with a fundamen-
tal frequency of 100 Hz; all the frequency components will fuse. If lateral
position dominates, then listeners will hear a 100 Hz complex tone in one
ear and a 200 Hz complex tone in the other ear.
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Acoustic Cues for Grouping

Harmonicity

One characteristic of voiced speech and most musical instruments is that
the partials occur at integer multiples of the fundamental (the lowest repeti-
tion rate) frequency (when the partials occur at multiples, they are termed
harmonics). The regularity of the frequencies yields a coherent percept of a
single tone; the higher harmonics are not heard separately. Two complex
harmonic tones with different fundamental frequencies tend to split into
two sounds even if the difference in the fundamental frequency is small.

To “hear out” one of the harmonics, it is necessary to either mistune, in-
crease the intensity of that harmonic, or direct attention to that harmonic by
playing that harmonic alone before presentation of the entire sound (Dar-
win & Carlyon, 1995). It is relatively easy to hear a single mistuned har-
monic (the second harmonic in the sound 100, 203, 300, 400, and 500 Hz),
particularly for lower frequencies. A mistuning of only 2% is sufficient for
the harmonic to emerge. The mistuned harmonic is heard as a separate en-
tity, but it also is still heard as part of the complex and therefore slightly
changes the pitch of the complex. If the mistuning is increased beyond 8%,
that harmonic is heard as completely separate, so that it no longer affects
the pitch of the complex.

Auditory physiological mechanisms that detect harmonic relationships
have been hypothesized many times. The harmonic sieves suggested by
Goldstein (1973) and Terhardt (1974) are based on the assumption that
there are stored spectral templates that provide representations of harmonic
series coming from all possible harmonics. Shamma and Klein (2000)
have proposed a model based on coincidence detectors (i.e., neural spike
synchrony) among auditory neurons phase-locked to harmonically related
characteristic frequencies (described in chapter 2). Because this model de-
pends on phase-locking, it can account for the poorer ability to detect the
mistuned harmonic at higher harmonics at frequencies where phase-
locking weakens.

Onset and Offset Asynchrony

Probably the most important cue for sound source segregation is onset tim-
ing. Using dense harmonic complexes like those used in profile analysis
(chapter 6), if all but one component are synchronous, listeners can detect
differences in onset times of the remaining component as little as 0.6–2 ms.
Surprisingly, there is little difference whether the single component was
started before or was delayed relative to the complex (Zera & Green,
1993). However, if all of the components of the complex do not start at the
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same time, the difficulty of detecting an additional change was much
harder, particularly if the changed component was delayed (20–60 ms). It is
much more difficult to detect offset asynchrony; components that continue
beyond the complex can be detected with offsets between 2 and 10 ms,
while components that end before the complex require offsets greater than
20 ms. In these experiments, listeners did not report whether they heard
one sound or two, but simply judged which of two sounds contained the
asynchronous component. It is quite possible that these judgments were
based on qualitative timbre differences.

Typically, the necessary onset asynchrony to create the perception of
two natural sounds is on the order of 30 ms, which is much longer than the
times used above. Rasch (1978) found that the typical asynchrony among
instruments in ensembles was also in the 30 ms range, being between 20
and 50 ms. The sounds for nearly all instruments are more complex than
those used in the experiments above: The onsets of the harmonics are not
synchronous and the amplitude envelope of each harmonic differs. Thus,
the 30 ms value must represent a compromise between sensory limita-
tions, the inherent variation among harmonics of a single source, and the
low probability that two different sources will start within 30 ms of each
other.

If the onset of one harmonic precedes that of other harmonics, the initial
harmonic is heard to continue separately in the complex, and the complex
tone is heard without the asynchronous harmonic. The auditory system
metaphorically assumes that the early-starting harmonic is continuous and
the other harmonics represent a new sound. This is an example of what
Bregman (1993) termed the old + new heuristic. Suppose sound A “turns
into” sound B. The components of A found in B are assumed to be continu-
ations of A. The remaining parts of B are then treated as a new sound,
so that B is treated as the sum (or mixture) of an old sound A and a new
one (B − A).

Another example of the operation of the old + new heuristic occurs if a
soft tone alternates with a louder sound. In this case, listeners report hear-
ing one continuous soft tone with a second intermittent soft tone, not a soft
tone alternating with a loud tone. The old + new heuristic was discussed in
chapter 5 with respect to auditory induction and at the beginning of this
chapter with respect to coincidental proximal stimuli. There, I pointed out
the resemblance between hearing a nonexistent tone continuing in noise
and seeing a surface continuing behind an occluding surface.

Frequency Modulation

As the fundamental frequency of a complex harmonic tone changes, all
of its harmonics change frequency coherently in direction and time (the
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percentage change of each harmonic and the ratios among the harmonics
remain the same). Since we would not expect two different sources to
undergo the identical frequency modulation at the same time, coherent
frequency modulation could be an important cue to source segregation. The
experimental evidence suggests that coherent frequency modulation found
in voice and instrumental vibrato aids in the formation of a single sound
(Chowning, 1980; McAdams, 1984) and that vibrato applied to a vowel
masked by noise makes that vowel more discriminable (Summerfield &
Culling, 1992).

Suppose we present two complex sounds with slightly different funda-
mental frequencies (e.g., interleaved harmonics such as 100, 110, 200, 220,
300, 330 . . . Hz). With no modulation, there is no sense of distinct pitches
due to the interleaving of the harmonics. Different modulation rates make
the two sounds easier to segregate, but there is little evidence that differ-
ence in the rate or degree of frequency modulation aids in the segregation
of different sources. Most probably, the differences in frequency modula-
tion reinforce the perception of separate pitches by increasing the percep-
tion of harmonicity among the frequency components of each source. If
frequency modulation affects segregation indirectly by increasing the sense
of pitch and timbre for harmonic sounds and not by the perception of the
modulation itself, then we might expect that frequency modulation of in-
harmonic sounds would not lead to segregation. That, in fact, is the case:
Listeners cannot even determine if two nonharmonic tones (1100 and
1925 Hz) are being modulated in phase or out of phase (Carlyon, 2000).

In sum, these results suggest that frequency modulation per se is not an
independent cue for segregation. Suppose we have a sound composed of
harmonic components. If the components are frequency modulated coher-
ently, then the components always remain harmonically related. But if the
components are modulated out of phase, they will become nonharmonic at
points and, as described above, the auditory system is very sensitive to such
mistuned sounds. Thus, frequency modulation may affect the grouping of
components indirectly by affecting the harmonic relationships rather than
by the direct effect of the modulation.

Amplitude Modulation

Any physical process that affects the amplitude of one harmonic or partial
is likely to simultaneously affect the amplitude of all components. Using
identical logic as for frequency modulation, we would not expect two sound
sources to undergo identical loudness variation. The outcomes here parallel
those for frequency modulation. Two tones can be made to cohere into one
complex tone by applying the same amplitude modulation (8–10 Hz) to
both (von Bekesy, 1963). Moreover, the results from comodulation masking
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release (discussed in chapter 6) demonstrate that two noise bands that are
modulated coherently tend to form a single unit and therefore create less
masking than if the bands were modulated incoherently.

Spatial Location

Intuitively, we would expect that spatial position would be an important
cue for grouping. After all, nearly all sound sources we deal with are rela-
tively small and localized in space. In reality though, location is only a
weak factor in determining grouping. We can suggest two possible reasons.
First, the perceived direction of sound waves can be misleading or even im-
possible to determine: Sound waves can bounce off walls or obstacles or
come through openings such as windows (I find it impossible to localize
an outside sound while inside a house). In enclosed environments, most of
the power comes from reflected sound that lacks directionality. Second,
spatial position must be derived from the comparison of the sound across
the two ears. But at each ear the first step is the analysis of the sound wave
into frequency components. This implies that to create sources based on
spatial position, the auditory system must calculate the position of each
component separately, and that might be difficult and time consuming for
pressure waves with many components.

If we actually do the experiment proposed at the beginning of this sec-
tion in which we present different the harmonics of one frequency to sepa-
rate ears, harmonicity dominates and a single tone is heard. It does not
matter how the harmonics are split; the percept is one tone. Moreover, al-
though it is possible to segregate a single harmonic from other harmonics
by mistuning, onset asynchrony, or modulation, it is impossible to separate
a single harmonic by changing the interaural timing delay.

Although location has only minimal effect for single sounds, spatial
location does affect segregation for sequences of sounds after the pressure
wave has been segregated by means of other cues. Suppose there are two
sentences spoken with different fundamental frequencies and also pre-
sented with different interaural timings representing different locations.
Now there are two correlated cues for grouping: pitch and location. Now, if
we swap the fundamental frequency of a single word, that word remains
grouped according to location. It does not shift to the other location due
to the change in pitch. This is in contrast to the presentation of single
sounds where harmonic relationships dominate location. Darwin (1997)
suggested that these results can be understood if we imagine that there are
two grouping stages. In the first, the frequency components are grouped on
the basis of onsets and harmonic relationships. In the second, over time
groups of frequencies with coherent relationships are placed in different
subjective locations based on interaural differences.
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Frequency

The above cues seem more relevant to the grouping of simultaneous fre-
quency components in a single sound than to grouping successive sounds
as found in music. The question here is whether the series of sounds comes
from one source or whether the series results from the interleaving of
sounds from different sources. The basic methodology is to continuously
recycle a small number of sounds and measure whether the listener hears
all the sounds as coming from one source or whether the sounds appear
to break into separate ongoing sound sequences, often termed streams,
such that each stream seems to come from a different source. As Bregman
(1990) has argued, the default percept is that of one stream, and switching
the percept to that of different streams is cumulative and gradual over
repetitions.

In a classic set of experiments, van Noorden (1975) presented sequences
at different presentation rates that simply alternated two pure tones at
different frequencies (also discussed in chapter 5). Listeners reported sim-
ply whether they heard the two tones alternate like a trill or whether the
notes formed a low-note sequence and a separate high-note sequence. These
sequences place temporal proximity (adjacent notes) in conflict with fre-
quency similarity (alternate notes of the same frequency).

The results demonstrated an inverse relationship between rate and
frequency ratio. Increasing either the presentation rate or the frequency
separation (or both) increases the probability of hearing the two tones as
separate streams. Conversely, decreasing the rate or frequency separation
increases the probability of hearing the tones as forming a single coherent
stream. At intermediate values of rate or frequency separation, the tendency
to hear the tones as forming one or two streams can be affected by the
listener’s attention. Bregman et al. (2000) have shown that it is not the rate
per se that affects grouping; it is the gap between the offset of one note and
the onset of the next one in the same frequency region, the temporal separa-
tion. The tendency to form a coherent stream can be enhanced by connect-
ing the low- and high-frequency tone by a frequency glide between the two
tones.

Bregman (1990) made an extremely important distinction about the
asymmetry in auditory grouping from the results of van Noorden’s exper-
iment. It always is possible to attend to either tone at all presentation
rates as long as the frequency separation between the low and high tones
allows them to be discriminated apart. In contrast, it is impossible to
maintain the perception of a single alternating sequence once the combi-
nation of frequency separation and presentation rate reach a certain point.
There is an obligatory split into low and high tone streams. On this basis
and others, Bregman argued that we have primitive segregation processes
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that operate preattentively on all sounds to create tentative guesses about
the environmental sources. These guesses are then evaluated against what
we learned about the probability of those sources occurring and what
we learned about how well those cues predict the external sources. In
essence, we are calculating the posterior probabilities. Sometimes our ex-
pectations about the probabilities of sources and messages are so strong
that we misperceive the signal, hearing our own names or a close friend
speaking.

If we construct more complex sequences composed of alternating high-
and low-frequency notes and present them at a rapid presentation rate,
stream segregation will occur. One stream will be composed of the low-
frequency tones and the second of the high-frequency tones. If this occurs,
it is possible to attend to either the low or high tones, but listeners are
unable to attend to both streams at once. Often, attention seems to shift
spontaneously between the two streams. Because of this, listeners are un-
able to report the order of the tones in the overall sequence, although they
can correctly report the order in each stream. For example, suppose we
create the repeating sequence A3B2C1A3B2C1 . . . in which A, B, and C
are low-frequency tones forming one stream, and 1, 2, and 3 are high-
frequency tones forming the second stream. Listeners can report the order
within each stream (e.g., A-B-C-A-B-C as opposed to A-C-B-A-C-B and
3-2-1-3-2-1 as opposed to 1-2-3-1-2-3; the dashes represent the silent
intervals between elements within each stream created by the formation
of the other stream). But listeners cannot correctly interleave the two
streams. They cannot report whether the sequence was A3B2C1, A2B1C3,
or A1B3C2. This inability to keep the two streams in correct registration
occurs whether the streaming was due to frequency, intensity, timbre, or
location (Bregman, 1990).

The preattentive formation of one or two streams caused by frequency
separation and presentation rate has allowed composers to create the illusion
of two simultaneous melodies being played on an instrument that can play
only one note at a time, like the flute. Two melodies written in different
octaves are intermixed so that the low- and high-pitched tones alternate.
Due to the rapid frequency shifts, the low- and high-pitched melodies are
heard separately, in parallel. This has been term pseudopolyphony, virtual
polyphony, or compound melodic line. In contrast, composers may want to
create the illusion of one virtual instrument, fusing the voices in a chorus or
the violins in an orchestra, which will not be precisely in tune. In this case,
all of the individual voices should start together and undergo parallel fre-
quency changes that keep the harmonic relationships among the sources
constant.

As described briefly above, harmonicity, onset-offset synchrony, fre-
quency modulation, amplitude modulation, and spatial location are very
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likely to be redundant in natural situations. It is hard to imagine an instance
in which the harmonic and nonharmonic components of one sound source
are undergoing different frequency or amplitude modulations. Likewise,
even though there are asynchronous onsets due to the physical processes
involved in creating vibrations (e.g., the higher harmonics of a bowed vio-
lin start before the lower harmonics), these differences are likely to be
small relative to the onset differences between different sources. If we con-
sider Barlow’s (2001) contention that sensory systems should focus on the
redundancy that specifies objects, the underlying neural representation
might be based on a small set of neural mechanisms that pick up and capi-
talize on the correlated acoustic features in the signal.

Ranking the Importance of the Cues

In order to rank the possible grouping cues, it is necessary to uncorrelate
the normally redundant ones. Several experiments have placed the cues to
segregation in conflict: Using one cue, such as frequency, leads to one orga-
nization, while using a second cue, such as synchrony, leads to another
organization. It is important to keep these results in perspective. The out-
comes may be specific to a task or to a set of background conditions that
are not yet understood. Auditory and visual grouping always occurs in a
context.

Turgeon (2000) made use of a masking paradigm in which one rhythmic
target was masked by a second rhythmic masker. The rhythmic targets were
constructed by varying the timing between the repeated onsets of short
48 ms tones or noise bursts. The masking rhythms were an irregular set of
sounds, identical to those of the target rhythms, interspersed among the
target rhythm sounds. Together the target and masking rhythms produced
an irregular rhythm that precluded identifying the target rhythm. This
methodology is very similar to that used to produce interleaved melodies,
discussed in chapter 5, and interspersing random noise bands to study
comodulation masking release, discussed in chapter 6.

The original rhythm would become perceivable again if the inter-
spersed masking sounds could be induced to form a separate stream. To
induce this stream, flanking sounds in different frequency regions were
presented concurrently with the interspersed masking sounds. If the mask-
ing and flanking sounds fused into a complex sound with a different timbre,
it would make the target easier to hear and the strength of the streaming
could be measured by the ability to detect the target rhythm. In several ex-
periments, Turgeon (2000) varied the temporal, spectral, or spatial rela-
tionships among the masking and flanking sounds and determined which
acoustic properties governed streaming by measuring the ease of detecting
the target rhythm. For example, the masking sounds and flanker sounds
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might be presented synchronously, but the masking sounds would be pre-
sented to the left ear while the flanking sounds would be presented to the
right ear. If temporal synchrony dominates streaming, then the masking
and flanking sounds should fuse into a stream, and listeners should be able
to detect the original rhythm. If spatial direction dominates, then the
masking and flanking sounds will not fuse, and the listener should not be
able to detect the rhythm (figure 9.4). All the experiments followed this
logic.

In this paradigm, temporal synchrony dominates. If the masking and
flanking sounds are synchronous, then noise burst sounds will fuse even if
they are widely separated in frequency, have uncorrelated amplitude modu-
lation, and are presented to different ears. The identical result holds for
tones: synchrony will dominate inharmonic relationships and presentation
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(A)     Target Rhythm Target + Masking
Rhythm

Target + Masking and
Flanking Rhythms

Masking and Flanking Stream
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No Streaming
Target Not Detected

(C) Asynchronous Masking
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Figure 9.4. The procedure used by Turgeon (2000) to investigate the strength of
cues for object segregation. The masking rhythm, at the same frequency as the tar-
get rhythm, is combined with the target rhythm. The flanking rhythm, at a different
frequency, is added to potentially induce the masking rhythm to stream, thereby
making the target rhythm easy to detect (analogous to comodulation masking re-
lease) (A). For example, if the noise bursts or tones of the masking and flanking
rhythms are synchronous, streaming occurs and the target is detected (B). If the
noise bursts or tones are not synchronous, streaming does not occur. The target and
masking rhythms remain grouped, forming an irregular rhythm in which the target
is difficult to detect (C). Adapted from Cross-Spectral Auditory Grouping Using the
Paradigm of Rhythmic Masking Release, by M. Turgeon, 2000, unpublished doc-
toral dissertation, McGill University, Montreal.



to different ears. As the asynchrony increases to 20–40 ms, the other cues
become more important and can create fusion of the masking and flanking
sounds by acting together even if the onsets are asynchronous. Basically,
these cues act in an additive manner, so that it is more likely that the mask-
ing and flanking sounds will fuse if they have identical amplitude modula-
tion and similar frequencies, and are presented to the same ear. If the
masking and flanking sounds share only one or two of these characteristics,
they are less likely to fuse.

These results occurred for sequences of about 30 identical 48 ms dura-
tion sounds. The probability that two different sources will start synchro-
nously 30 times in a row or lag behind another one by a fixed duration 30
times in a row must be incredibly small. But onset synchrony may be less
important for single sounds or sequences of longer-duration sounds. The
validity of a cue from a Bayesian perspective, and whether listeners actu-
ally make use of that cue, will depend on the overall context.

Summary

1. In natural scenes, it is rare that all the cues to grouping suggest the
identical segmentation. Listeners must sift through alternative organiza-
tions to select one. Auditory grouping is optimized problem solving.

2. The cues that listeners use to choose their best organization are
a grab bag. Some are invariant for all types of sounds, while others are
tuned to one type of sound (e.g., speech) and may be localized in specific
regions of the auditory cortex, and still others are further detailed to
segment specific sounds like bird songs, particular voices, or heart mur-
murs. Listeners can attend to different aspects of the auditory signal. More-
over, some may be preattentive and obligatory, while others may be based
on learned properties, and still others may be based on a combination of
the two.

3. Grouping is not all or none. The cues may be contradictory or indeter-
minate, so that a clear segregation does not happen.The grouping will be
ambiguous and weak, so that alternations occur. In Turgeon (2000), listen-
ers perceived only weak fusion between the masking and flanking sounds
when the onset asynchrony was in the middle range—10–20 ms.

4. Grouping may evolve over time. I argue that visual grouping is origi-
nally based on the physical properties of the elements but that over time
the grouping shifts to the perceived properties that are context dependent.
Although this has not been proposed explicitly for hearing, I expect that
similar transformations occur. (Although you cannot continue to inspect a
sound the way you can a visual scene, the ongoing context allows for rein-
terpretations.) This is similar to the transition from grouping by frequency
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to grouping by perceived position described above for speech sentences
(Darwin, 1997).

Principles of Visual Grouping

Uniform Connectedness

Palmer (1994) proposed that the basic units in the visual field are enclosed
regions defined by edges or contours with similar properties such as color,
texture, or lightness. Each such region is presumed to arise from detecting
places of discontinuity at abrupt-contrast edges by oriented cells in V1.
This type of organization is termed uniform connectedness because each
region has a relatively uniform surface. Palmer made two supporting
arguments. First, there needs to be something to group, the stuff for
perceiving. Second, the surfaces of objects in the real world are likely to be
relatively uniform, rigid, self-contained, and undergo the same transfor-
mations across time. Therefore, organization by uniform connectedness
matches the properties of real objects and maximizes the probability that
subsequent groupings using these elements will be correct.

Uniform connectedness completely organizes the entire scene, every-
thing in sight. In figure 9.5, it is easy to see that each lighter and darker re-
gion is organized by uniform connectedness but also easy to miss the point
that the gray region also is organized into an element by the same process.
Now the entire scene is organized into elements. But there is no way to
determine which elements go with each other. Nearly all of the elements
touch each other, and any set of them could be grouped together by proxim-
ity or what Palmer (1994) termed element connectedness. What is needed
now is a process that creates the figure elements and separates them from
the ground elements so that the grouping principles can create higher-order
figural units.

Figure-Ground Articulation

Rubin (1921) first described the phenomenological differences between the
“thing-like” figure regions and the “shapeless” ground. Probably the most
important point is that the edges and contours that separate the figure from
the ground are perceived to belong to the figure. At a boundary between
two regions of uniform connectedness, the boundary appears to enclose the
figure region, and the ground region appears to extend behind the figure.
Physically, the edge would belong to the object in front. As we interpret the
ambiguous scene in figure 9.6 in different ways, the boundary will always
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stay with the figure; the boundary shifts from being part of the white rec-
tangle in front of the black rectangle to being a hole in the black rectangle
in front of a white continuous background. The boundary shifts as a unit; it
does not break apart.2

The principles for determining which regions become the figure include
the following:

1. Surroundedness: Any region completely surrounded by another usu-
ally is perceived as the figure in front of the surrounding ground.
(Unless, as illustrated in figure 9.6, it is perceived as a hole in an
object, the choice between figure and hole being determined by
other cues.)

2. Size: The smaller region usually is perceived as the figure. It is more
likely that a smaller object will occlude part of a larger one than the
reverse.

3. Contrast: Within a surrounded region, the area with the highest
contrast to the background usually is perceived to be the figure.

392 Perceptual Coherence

Figure 9.5. The principle of
uniform connectedness first
breaks the visual scene into
enclosed regions. The prob-
lem now is grouping the
discrete regions into objects
(e.g., whether the two small
triangles are part of a larger
triangle and whether the two
rectangular segments are
connected) and creating the
figure-ground relationships.
We perceive the two large
light gray areas as forming a
continuous ground, but again,
that is an inference.

2. The same perceptual phenomenon is found for auditory induction. The tone (i.e., the
figure) appears to continue through the noise masker, and the frequency components common
to the tone and masker belong to the tone.



4. Convexity: Convex figures usually are usually perceived as the figure.
5. Symmetry: Symmetrical regions usually are perceived as the figure.
6. Parallelness: Regions with parallel sides usually are perceived as the

figure.

Convexity seems to be the strongest shape principle and will dominate
the others if two or more organizations are in conflict. Symmetry may be
detectable only after the figural elements are determined by other princi-
ples. But the principles for figure-ground organization suffer the same
weaknesses as those for grouping. Both sets of principles work for explain-
ing simple illustrations in which the other principles are absent or balanced.
But it is extremely difficult to determine how and where to apply these
principles for complex scenes and to predict figure-ground organization
when each principle would lead to a different solution. What is important is
the realization that without some designation of which regions compose the
figures, perceptual grouping cannot proceed.

At this point, I have broken up the visual scene into uniform regions and
have specified which of those regions are the figure elements that undergo
further organization into superordinate regions. What I have not done is
consider the ways that the uniform regions could be split into smaller sub-
regions or complex objects into parts. By the same token, I have not con-
sidered how the fragments occluded by other regions can be combined to
represent objects.

Parsing a Uniform Region Into Parts

Feldman and Singh (2005), starting from the mathematical definition of
information (discussed in chapter 3), proved that the information value of a
contour is directly proportional to the magnitude of the curvature. Moreover,
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Figure 9.6. The contour stays
with the figure. It is the white

edges of the smaller rectangle or
the edges of the gap in the larger

black square.



negative-curvature points carry greater information than equivalent positive-
curvature points. Negative curvature is associated with boundaries between
objects, while positive curvature is associated with one object only.

When two objects meet or overlap, the overall contour (i.e., the outline
of the combined shape) contains concave regions; there are surface discon-
tinuities. Singh and Hoffman (2001) proposed that the natural dividing
points occur at the maximum curvature of the concave edge, what they call
points of negative minima. Examples are shown in figure 9.7.

This rule can help explain one curious aspect of figure-ground organiza-
tion. If we take a simple black region with a complex boundary between
the two regions and pull the regions apart, the identical boundary looks
quite different when attached to the two parts (figure 9.8). In fact, it is often
difficult to see that the two parts can be fitted back together. If we apply the
negative minima rule, the boundary will split into different parts in the two
objects, and that makes it difficult to imagine them as identical. Moreover,
the negative minimum rule can help explain why it is easier to detect visual
symmetry than visual repetition. Symmetrical objects have the identical
placement of minimum points, so that the parts determined by the minima
on the left-side and right-side contour lines will be identical. In contrast,
objects formed by repeating a shape will not have identical minimum points
on the two sides, so that it will be difficult to detect the repetition.

Although the minima rule defines the possible part boundaries, the rule
by itself does not predict which parts will, in fact, be formed. To do that,
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Figure 9.7. Singh and Hoffman (2001) pro-
posed that the natural splitting or dividing
points of complex objects occur at points of
maximum concavity. In each of the three 
examples, arrows point to the points of 
maximum negativity. Adapted from “Part-
Based Representations of Visual Shape and
Implications for Visual Cognition,” by M.
Singh and D. D. Hoffman, 2001, in T. F. 
Shipley and P. J. Kellman (Eds.), From Frag-
ments to Objects: Segmentation and Grouping
in Vision (pp. 401–459). Amsterdam: Elsevier-
Science B.V.



Singh and Hoffman (2001) proposed other principles that predict (again, all
other things being equal) what parts will emerge. Imagine cut lines connect-
ing two points on the contour that split the object into two parts. The authors
suggested that the goal is to create the lowest number of parts such that each
part does not have a negative minimum. If one part does have a negative
minimum following a cut, that part should be further divided. The best cut
lines to meet this goal (a) have at least one end point at a negative minimum;
and (b) cross an axis of local symmetry. Local symmetry is a weak form of
symmetry that allows the axis of symmetry to be curved and to occur only in
a small region of the figure. Examples are shown in figure 9.9.

Singh and Hoffman (2001) offered the possibility that the choice of
which side of a contour is figure and which side is ground is partly based
on how the two sides can be broken into parts. Roughly, the idea is that the
side in which the parts are more salient due to sharper negative minima
becomes the figure and captures the boundary. Thus the figure-ground deci-
sion is competitive and occurs after comparing both alternatives.3
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Figure 9.8. If we split a simple object into two irregular parts, the matching sides do
not seem to fit back together. Singh and Hoffman (2001) argued that this difficulty oc-
curs because the points of maximum concavity (shown by *) do not coincide (A). A
similar argument is used to explain why repetition symmetry (B) is harder to perceive
than reflection symmetry (C). Adapted from “Part-Based Representations of Visual
Shape and Implications for Visual Cognition,” by M. Singh and D. D. Hoffman, 2001,
in T. F. Shipley and P. J. Kellman (Eds.), From Fragments to Objects: Segmentation
and Grouping in Vision (pp. 401–459). Amsterdam: ElsevierScience B.V.

3. We can translate the negative minima rule into sound in terms of loudness. In reverber-
ant environments, a sound rarely decays before another sound starts. According to the negative
minima principle, the ongoing sound would be split at points where the increases in loudness
would be most rapid.



Combining Parts Across Occlusions

The rules underlying the cutting apart of parts of a region do not tell us
whether these parts are objects by themselves or if the parts are a por-
tion of a larger object that has been occluded by a smaller nearer object.
When an object is occluded, the effect is to create a gap in its edges so
that the problem facing the perceiver is whether to close the gap behind
the occluding object to create one object from two or more parts or to
perceive each part as a separate object. Consider the two cases shown in
figure 9.10. In (A), a rectangular shape creates the gap with a different
luminance than the ellipse-like surrounding regions. If the two regions of
the ellipse are completed, observers do not actually see the closure be-
cause there is no energy that could represent that closure. This type of clo-
sure is termed amodal interpolation. In (B), the ellipse and the rectangle
have the same luminance, so that the missing region of the ellipse has the
same luminance as the occluding region. If the rectangle is seen in front,
this is another example of amodal completion of the ellipse. If the ellipse
is seen in front, then the rectangle shape acts to camouflage the contour
of the ellipse. To perceive the edges of the ellipse, the observer creates an
illusionary contrast contour. This type of closure is termed modal interpo-
lation. (The reverse is true for the rectangle shape: If the ellipse is seen in
front, then the completion of the rectangle is amodal; if the rectangle is
seen in front, then the closure of the rectangle is modal.) Although amodal
and modal interpolation have been traditionally thought to be identical,
Singh (2004) has shown that amodal interpolation yields sharper corners
than modal interpolation.
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Figure 9.9. Objects are split at points
of maximum concavity (shown by *).
If a split results in no points of maxi-
mum concavity, no further split will
occur (A). If a potential split still re-
sults in parts with points of maximum
concavity (B), those parts are further
split until there are no such points (C).
Adapted from “Part-Based Representa-
tions of Visual Shape and Implications
for Visual Cognition,” by M. Singh and
D. D. Hoffman, 2001, in T. F. Shipley
and P. J. Kellman (Eds.), From Frag-
ments to Objects: Segmentation and
Grouping in Vision (pp. 401–459).
Amsterdam: ElsevierScience B.V.



In real environments, edges can represent different properties. An edge
can mark the boundaries of an object or the intersection of two surfaces.
But an edge can also represent a change in illumination by a shadow line,
or a change in the surface reflectance or texture. Of greatest importance
here are edges that signify occlusion, where a surface ends or continues
behind another surface. Kellman, Guttman, and Wickens (2001) suggested
that while shadow edges are based on discontinuities of one or possibly two
properties, occlusion edges are marked by several simultaneous discontinu-
ities such as color, lightness, texture, and motion. Another way to identify
occluding edges is in terms of the shape of the edge junctions. Occlusions
are invariably signaled by T junctions (see figure 9.11). The defining char-
acteristic of a T junction is that one contour stops at an edge of a smooth
second continuing contour. The continuing contour is seen in front, covering
the stopped contour, and owns the entire contour. Although it is termed a T
junction, the occlusion is seen regardless of the orientation of the two parts.

In sound, edges can be translated as rapid spectral or amplitude changes
that can also represent different properties. An edge can mark the bound-
aries of an object, a louder sound heard against a quieter background, the
intersection of two sounds, or the replacement or masking of one by an-
other. But a rapid spectral or amplitude sound edge also can represent a
change in illumination such as removing a shadow when the listener (or the
sound source) moves out from behind an absorbing or reflecting object
such as a wall.

Kellman and Shipley (1991) argued that an edge is perceived to con-
tinue behind an occluding surface and join a second edge if the two can be
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Figure 9.10. Amodal completion occurs if
there is no visual energy that could close a

gap. This is illustrated in (A): the black region
required to close the ellipse is hidden by the
rectangle. (Of course, the two regions on ei-
ther side of the rectangle could be perceived

as separate figures; a completed ellipse is but
one possible percept.) Modal completion

occurs if the visual energy to close the gap is
available to the observer (B). Adapted from
“Modal and Amodal Completion Generate

Different Shapes,” by M. Singh, 2004, 
Psychological Science, 15, 454–459.



connected by a smooth curved line that contains only one bend less than
90°. The smooth curve would start at the end point of one line (matching the
slope of the line at that point) and without bending more than 90° join the
second line at its slope. Intuitively, this is the general Gestalt principle of
good continuation: The inferred connecting line changes direction slowly.
Kellman and Shipley (1991) termed this constraint relatability. They further
argued that relatability determines if the edges get connected regardless
of whether the split regions are similar in luminance, color, or texture. The
results of Ciocca and Bregman (1987) suggest a similar rule in audition.

Interesting cases occur when complex figures are homogeneous, as
shown in figure 9.12. Even though these figures have uniform surfaces and
do not have T junctions that signal occlusion, they are usually seen as a sin-
gle object with multiple parts or as a pair of overlapping objects (termed
self-splitting objects). Each of the figures possesses negative minima (con-
cavities) to mark points where the figure could be split into parts. The per-
ceptual decision between parts or overlapping objects would then be based
on relatability.

For the first two figures (A1 and A2), the possible interpolated contours
that match up the disconnected edges satisfy the smooth monotonic relata-
bility constraint, so that they would likely be seen as two overlapping
objects. For the third (A3), the relatability constraint is violated, and it is
unlikely that the darker left and right regions would be connected. For
the self-splitting objects, the first figure (B1) is ambiguous; the ellipses
oscillate so that each one is sometimes seen in front of the other. The
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Figure 9.11. T junctions signify
occlusion. The two surfaces at 
T junctions can meet at any angle (A).
Other types of junctions signify different
surface relationships (B).



second and third figures are not ambiguous. The thick bar (B2) or blob (B3)
is seen in front of the thin bar or tail. There is a strong tendency to make
the interpolated edge as short as possible, so that the fatter region is seen in
front of the thinner region (Petter, 1956). If, in fact, the perceptual decision
about which is in front and which is behind is made on the basis of the
length of the interpolated edges, then interpolation must precede the depth
ordering. For the fourth figure (B4), the relatability constraint is violated,
and it is perceived as a single object with several parts.

The concepts of edge interpolation can be extended to surfaces that ex-
tend behind an occluding surface. As shown in figure 9.13, the gray circles
in the occluding rectangle are seen as part of the complex surface (behind
the rectangle) if they fall within the interpolated complex surface. But the
identical rightmost gray spot is seen as being on the rectangle because it
falls outside the interpolated surface of the occluded shape. Similarly, the
black spots are seen as being on the rectangle because they do match the
brightness of the occluded surface, while the white spots are seen as holes
to the white background.
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Figure 9.12. The relatability constraint can be used to predict when two surfaces
are perceived as continuous and when they are perceived as separate objects. The
constraint is satisfied in A1 and A2 because the connecting lines bend less than 90°
and the two gray partial ellipses are perceived as forming one continuous object.
The constraint is violated in A3, and the two gray regions are perceived as parts of
different objects. For self-splitting objects, the “fatter” object is usually seen in
front (B2 and B3). If the two possible objects are equal (B1), the perception is un-
stable and oscillates. If the parts violate the relatability constraint, each region is
perceived separately (B4).



When Does Grouping Occur?

Vision

Suppose a trapezoid outline is flashed on a screen and the task is to judge
the shape. Was it: (1) a trapezoid perpendicular to the line of sight; or (2) a
different shape, say a square, presented at an angle so that the nearer side
projects a larger image? The proximal sensation at the eye is ambiguous.
To make a decision about the distal shape requires a prior decision about its
orientation. Rock (1997) has termed this sort of sequential process indirect
perception. We can test the degree to which the perceived shape was deter-
mined by the perceived orientation experimentally by varying the quality of
the depth information. Suppose a square is presented at 45°. Minimizing
the depth information should shift the judgments toward the trapezoid,
while maximizing the information should shift the judgments toward the
square.

Rock and colleagues used a similar approach to argue that grouping
is not determined directly by the proximal sensations, but is determined
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Figure 9.13. The perception of “holed” surfaces occluding other surfaces can be
understood in terms of the inferred contour of the occluded surface. The gray cir-
cles (except for the gray circle in the middle, far right) come from the occluded
shape. The black circles are on the rectangular surface, and the white circles are
open holes to the white background. The gray circle in the middle, far right, also ap-
pears to be on the rectangle because it is beyond the inferred contour of the oc-
cluded shape. Adapted from “Geometric and Neural Models of Object Perception,”
by P. J. Kellman, S. E. Guttman, and T. D. Wickens, 2001, in T. F. Shipley and P. J.
Kellman (Eds.), From Fragments to Objects: Segmentation and Grouping in Vision
(Vol. 130, pp. 183–245). Amsterdam: Elsevier Science B.V.



indirectly from perceived proximity and similarity, a distal judgment based
on a distal inference. In the first of these experiments, Rock and Brosgole
(1964) started with an array of luminous beads connected by invisible
strings. The beads were placed in a right-angle vertical-horizontal array per-
pendicular to the observer so that the distance between lights in a column
was clearly less than the distance between lights in a row (figure 9.14A). As
expected, the organization was by columns. Then the authors changed the
orientation of the array so that the objective distance between the lights in a
row became less than the objective distance between lights in a column
(see figure 9.14B). Rock and Brosgole created this transformation by rotat-
ing the array (which also affected the distance between columns and the
size of the proximal images of the beads). But the same transformation
could have been done by changing the distance between the beads in the
frontal plane without rotation (which would not affect the size of the
images). Both possibilities are shown in figure 9.14A. If the observers
viewed the display binocularly with good depth information, the observers
compensated for the proximal convergence of the lights in a row due to the
perceived increased depth caused by the rotation: The observers organized
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Figure 9.14. The initial array of beads is shown in (A). The beads are placed so
that organization into columns is predominant. The proximal image (B) could have
resulted from a rotation of the array at one end or by squashing the other end (de-
picted by arrows in A). If observers perceived the array in depth, column organiza-
tion was maintained for greater rotational angles; if observers did not perceive the
array as being rotated but as a flat trapezoid in the frontal plane, row organization be-
came predominant when the proximal distances favored row organization. Adapted
from “Grouping Based on Phenomenal Proximity,” by I. Rock and L. Brosgole,
1964, Journal of Experimental Psychology, 67, 531–538.



by columns even when the distances between the beads favored row organi-
zation (i.e., at the observer’s eye, the distance between the beads in a row
was less than the distance between beads in a column). In contrast, if the
observers viewed the display with one eye and poor depth information so
that they were more likely to perceive the array as being squashed, the
grouping shifted to organization by rows at the angle at which the proximal
distances favored the row organization. In both cases then, the perceived
proximity inferred from the perceived orientation of the surface (in depth,
or not in depth) was the basis for grouping.

In a similar experiment, Rock, Nijhawan, Palmer, and Tudor (1992)
demonstrated that it was perceived lightness, not the proximal luminance,
that determined grouping. In the control condition, there were five columns,
each with four squares of equal reflectance (see figure 9.15A). In the base-
line condition, the three left columns had a greater reflectance (68.4%) than
the two on the right (17.6%), and observers obviously grouped the three left
columns together. In the experimental condition (B), the authors placed a
translucent plastic strip over the central column so that the reflectance of the
center column equaled the two on the right (to 17.6%). Following the same
logic as before, if the observers grouped on the basis of the physical energy
reaching their eyes, they would group the central column with the two on
the right. However, they continued to group the middle column with the two
on the left. The observers first compensated for the effect of the filter, and
then grouped on the basis of perceived lightness. They were able to com-
pensate for the darkening effect of the filter because the filter extended the
entire length of the column and simultaneously darkened the background
and boundary. The grouping was indirect, following the adjustment for the
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Figure 9.15. Perceived lightness, not proximal lightness, determines organization.
Observers were able to compensate for the translucent shadow shown in (B), and
judged the middle column to group with the two left-most columns. Adapted from
“Grouping Based on Phenomenal Similarity of Achromatic Color,” by I. Rock,
R. Nijhawan, S. E. Palmer, and L. Tudor, 1992, Perception, 21, 779–789.



filter inferred from the background change (this is similar to the strategy
proposed in chapter 7 for asymmetric color matching).

Schulz and Sanocki (2003) have demonstrated that proximal (retinal)
and constancy grouping coexist but have different time courses. In fact,
Rock (1997) proposed that initially there is lower-level literal perception
corresponding to the retinal stimulation. If that is inadequate for some rea-
son, the literal perception is replaced by what he termed a higher-order
world or constancy mode. Usually, the transition from the literal to the
world mode is irresistible, although the literal mode may bias the world-
mode judgment and although it is still possible to make literal-mode judg-
ments. To make this concrete, although observers grouped by reflectance in
the experiment described above (Rock et al., 1992), it is very likely that
they would be able to group the columns by luminance if asked.

In the later experiment (Schulz & Sanocki, 2003), the exposure time of
a grid similar to that used by Rock et al. (1992) was varied from 200 to
2,000 ms. At the shortest exposure time, nearly all choices were based on
luminance matching (88%). In contrast, at the longest exposure time nearly
all matches were based on reflectance (83%). Schulz and Sanocki proposed
that retinal matching is performed in the earliest cortical regions (V1 or
V2) and that reflectance matching is carried out in V4.

These sorts of results parallel those discussed in chapter 1 with respect
to the perceived motion of spatial gratings through an aperture. Recall that
the initial percept is roughly toward the average of the motion of the two
gratings (i.e., the additive vector direction), what we would call the proxi-
mal percept. This percept is replaced by a perception that is based on the
intersection of the lines of constraint, what we would call constancy or
world mode. The vector average still biased the intersection of constraint
judgments toward the additive vector direction.

Audition

The issue of when grouping occurs has not been explicitly discussed with
respect to stream segregation. As described above, the default percept is
one of coherence and that it takes several repetitions before streams arise if
several sounds are recycled continuously (Bregman, 1990). Thus, there is a
shift from proximal to distal perceiving.

It is also likely that the overall context determines segregation. We can
imagine the following experiment. We start with a stationary tone with a
spoken-vowel spectrum of harmonic components and add energy at one
frequency. (A natural vowel would not work because it changes its pitch
and spectral content over time.) If the resulting sound were presented for
a short duration, we would then expect the listener to report a funny-
sounding sound. This outcome would be analogous to retinal or proximal
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visual processing. On one hand, if the sound was presented for a longer
duration or embedded in normal speaking, we might expect that stream
segregation based on the listener’s knowledge of spoken language to occur,
so that the listener would hear two sounds: the original steady vowel tone
plus the added harmonic. On the other hand, if the sound was embedded in
other nonspeech sounds, we might not expect the sound to break into two
parts. Each of these outcomes would be analogous to reflectance or world-
mode processing. It is much like interpreting “I3” as a B in text and as 13 in
a string of numbers.

How Auditory and Visual Proximal Stimulation Combine 
to Form One Distal Object

Most real-life scenes we encounter have both auditory and visual inputs.
The problem, therefore, is to decide whether the inputs come from the
same object or from different objects. We know from the above material
that the de facto assumptions are that sounds come from one object, and
that the light comes from one continuous smooth surface (Wandell, 1995).
By analogy, we would expect the de facto assumption here to be that each
distinct auditory sound comes from one distinct visual object, the unity
assumption. If the working assumption is that the inputs come from one
object, then it is useful to combine the information in some way from both
senses because neither the auditory nor visual system is powerful enough to
produce the correct distal object under all conditions (Ernst & Bulthoff,
2004). When the auditory and visual proximal sensations are complemen-
tary and reinforce the one-object assumption, there may be enhancement of
the response so that weak stimuli from each modality generate a strong re-
sponse when combined. When there is conflict between the auditory and vi-
sual proximal sensations (e.g., spatial position for ventriloquism), to maintain
the unity assumption observers can disregard one source as error, or they can
integrate the information to create a compromise percept that may split the
differences equally or be biased toward the proximal stimulation from one
of the modalities (Partan & Marler, 1999; Welch, 1999).4 Alternately, if the
proximal information is too discrepant, observers can decide that the auditory
and visual inputs come from different objects. In what follows below, I first
describe the optimal way to combine discrepant auditory and visual infor-
mation. Then, under the general rubric of the unity assumption, I describe
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placement and instrumental notes, correlated movements of lips and the sound of one’s name).



experiments using discrepant temporal or spatial inputs that reveal how ob-
servers integrate information to arrive at their judgments.

Optimally Combining Auditory and Visual Information

The best way to combine information from the two senses depends on the
listener’s goal. If the goal is to maximize the reliability of the judgments,
then from a Bayesian viewpoint, we should weight the information from
each modality on the basis of its reliability (or equivalently, its variability).
This strategy produces the estimate with the lowest variance (the maximum
likelihood estimate). If the cues are equally reliable, then the best solu-
tion is simply to average the two, but if one of the cues is more reliable,
then that cue should be weighted more heavily. We can write this out in
equation form:

Judgment = weightauditory × inputauditory

+ weightvisual × inputvisual. (9.1)

The weights are proportional to 1/variance of the cue, so that the audi-
tory weight is

wauditory = (1/σ2
a)/[(1/σ2

a) + (1/σ2
v)] (9.2)

where σ2
a is the variance of the auditory cue and σ2

v is the variance of the vi-
sual cue. The visual weight would have the same form, substituting the vari-
ance of the visual cue for the variance of the auditory cue in the numerator.

In general, the weight for any cue will be equal to the inverse of its vari-
ance divided by the sum of the inverses of all other cues:

Wi = 1/σ2
i/Σ1/σ2

i. (9.3)

If we define the reliability of a cue as the inverse of its variance 1/σ2
i,

then the reliability of the integrated information is simply the sum of the in-
dividual reliabilities:

Reliability = Σ(1/σ2
i ). (9.4)

For auditory plus visual presentation, the reliability will be:

1/σA
2 + 1/σV

2 = σA
2σV

2/(σA
2 + σV

2). (9.5)

The joint reliability will always be greater than the reliability of either
input, and the gain will be greatest when the reliabilities are equal.

The majority of the research described below does not attempt to
directly measure the reliabilities or determine how closely the results fit
the Bayesian model. Instead, the research attempts to discover which is
the dominant modality when the temporal and spatial information is dis-
crepant, and to determine when the percept shifts from a single object to
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separate auditory and visual objects. Other research explicitly varies the re-
liabilities by adding noise to one or both of the modalities. In those experi-
ments, the experimental question is to what degree observers change their
weighting to reflect those reliabilities.

Unity Assumption

The majority of studies use one auditory and visual input, so the unity as-
sumption is that the discrepant auditory and visual sensations come from
the same object. If there are multiple objects, then the unity assumption
might be rephrased as a source-object assumption, namely that each dis-
tinct sound in the overall mixture comes from a distinct object in, or a dis-
tinct part of, the visual scene.

It is easy to miss the difficulty of determining if the proximal stimuli
come from the same object. Consider spatial position: The natural way to
encode the position of an object is in terms of a frame of reference (a set of
axes) that matches the structure of the sense organ. For hearing, the natural
frame of reference for spatial direction must be the head-centered position
due to the comparisons of the signal at the two ears. In contrast, for seeing,
the natural frame of reference must be retinal-centered due to the topo-
graphical organization of the retina and visual cortex. If the eyes are not
looking straight ahead, there needs to be a superordinate reference frame to
coordinate the two (Pouget, Deneve, & Duhamel, 2002).

The de facto assumption is the unity assumption (Welch, 1999), and the
two most important properties that determine its strength are the degree of
perceived temporal synchrony between the auditory and visual inputs and
the degree to which the inputs appear to come from the identical spatial
location. Imagine that either the temporal or spatial properties are made
progressively discrepant. Initially, the input from one modality would be
dominant, and the perception of the input from the other modality would
shift toward the dominant modality. Eventually, the discrepancy would be
so great that the unity assumption would fail and the inputs would be per-
ceived independently. If both the temporal and spatial inputs were made
discrepant, the strength of the unity assumption would depend jointly on
the degree of perceived temporal synchrony and spatial location equiva-
lence. There is a trade-off here. Perceived temporal synchrony can balance
widely different perceived spatial locations and vice versa. Nonetheless,
there should be values of temporal asynchronies or spatial separations be-
yond which the unity assumption becomes improbable. Although I discuss
the temporal and spatial factors separately below, in any real-life situation
both will determine the percept.

Another factor that affects the unity assumption is the “compellingness”
of the stimulation and the familiarity with the distal objects themselves.
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Jackson (1953) found that the sound of a steam kettle coupled with the
sight of a spatially offset but silent puff of steam produced a greater bias
than the sound of a bell coupled with the sight of a spatially offset but inert
bell. However, the results using familiar stimuli may result from observers
responding on the basis of what they know about the objects, rather than
what they perceive.

Perceived Onset Synchrony

The critical property for the perception of one or more auditory streams
was onset synchrony. Onset asynchronies as short as 30 ms were suffi-
cient to lead to the perception of two complex sounds. On that basis, we
might expect that perceived onset synchrony of the auditory and visual
input would be a critical property for perceiving one object. Lewkowicz
(2000) summarized developmental results that propose that all types of
multimodal temporal perception (e.g., temporal rate and rhythm) emerge in
hierarchical fashion from the fundamental property of temporal synchrony.

The perception of synchrony between auditory and visual inputs poses a
more complicated problem than that between two auditory or two visual
events because the speed of light is so much faster than the speed of sound.
Even at 10 m, a light stimulus will reach the observer 30 ms before a sound
stimulus. Any difference in arrival time is compensated to some degree
by the faster mechanical processing of the sound at the cochlea. In cats, it
takes about 13 ms for an auditory stimulus to activate neurons in the supe-
rior colliculus that receive inputs from different modalities, as opposed to
about 65–100 ms for a visual stimulus to activate the same neurons due
to the slower chemical processing of light energy at the retina (Stein &
Meredith, 1993). In humans, the P1 evoked response potential occurs about
75 ms after onset for auditory stimuli and about 100 ms after onset for
visual stimuli (Andreassi & Greco, 1975). Balancing the speed and pro-
cessing differences, it is estimated that the onset of the neural signals will
be synchronous only when the object is roughly 10 m away (Poppel, 1988).

Although there is some controversy about whether the perception of
synchrony is based on the excitation of individual multimodal cells or the
simultaneous excitation of unimodal cells, the underlying conception is
that of a temporal integration window. If the activity patterns resulting from
the two inputs overlap within such a window, synchrony will be perceived.
It is important to keep two things in mind. First, it is the activity pattern due
to the inputs that is critical, not the physical onsets or the latencies to acti-
vate the neurons. The window can be quite long. Second, do not think that
there are discrete nonoverlapping windows. There must be “rolling” over-
lapping windows (e.g., 0–200, 5–205, 10–210 ms, etc.). If the output from
the integration windows depends on the amount of simultaneous activation,
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then any pair of inputs will generate different output excitations, depending
on the amount of temporal overlap of the pair.5

Why then do we perceive simultaneity at most distances? One possibil-
ity is that there is a long temporal integration window. Based on single-cell
recordings, if the auditory and visual neural signals occur within 100 ms of
each other, that input will be sufficient to fire neural cells that integrate fir-
ings in different modalities (Meredith, Clemo, & Stein, 1987). This implies
that the source of the auditory and visual stimulus energy could be +/−
30 m or more from each other, based on the overlap of activation patterns
(Meredith et al., 1987). Sugita and Suzuki (2003) have suggested an alter-
native to a wide integration duration, namely that the integration region
shifts as a function of the perceived distance of the source. In their task, ob-
servers judged whether an LED light source positioned from 1 to 50 m in
front of them was presented before or after a burst of white noise presented
by headphones. They found that when the LEDs were 1 m away, the noise
needed to be delayed by 5 ms to be perceived as synchronous, but if the
LEDs were 40 m away, the noise had to be delayed by 106 ms to be per-
ceived as synchronous. The participants thus expected the sound to occur
later relative to the light as the distance increased. There are huge but stable
individual differences in this sort of task. With 17 participants, the range of
synchrony judgments was 170 ms (Stone et al., 2001).

Perceived Rhythmic Synchrony (Temporal
Ventriloquism)

In the research described below, the auditory input is a series of discrete
short tones while the visual input may be a continuous light or a series of
discrete short light flashes. Here, the onset of a visual target is perceived to
occur at the onset of a sound even if the timings are quite different. This il-
lusionary percept has been termed temporal ventriloquism to create a paral-
lel to the classical term spatial ventriloquism, in which a sound is perceived
to come from the spatial location of the visual object.6

One type of temporal ventriloquism occurs when the amplitude modula-
tion of a tone induces an illusionary modulation of a light. For example, if a
single visual flash is presented simultaneously with two or more short audi-
tory beeps, the light flash appears to oscillate on and off two times (Shams,
Kamitani, & Shimojo, 2000). The oscillation occurs even if the beep onset
is delayed by 70 ms, but disappears if the onset delay is 100 ms or more.
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auditory frequency. The perceptual information is found in the distribution of the responses,
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6. For temporal ventriloquism, the observer’s task is to judge the occurrence or rhythm of
an event. For spatial ventriloquism, the observer’s task is to judge the location of an event.



These timings are consistent with the temporal integration window de-
scribed above.

Recanzone (2003) has further demonstrated the auditory capture of tem-
poral patterns. In the baseline conditions, a standard series of four lights or
four tones was presented at the rate of four elements per second. Then a
comparison series was presented at rates between 3.5 and 4.5 elements per
second, and the participants indicated whether the rate of the second se-
quence was faster or slower than the standard. Participants could judge dif-
ferences in auditory rate far better than differences in visual rate (i.e., the
difference threshold for auditory rate was smaller).

The interesting conditions involved the simultaneous presentation of the
auditory and visual sequences. In the standard sequences, the auditory and
visual stimuli were always presented synchronously at four elements per
second. In the comparison sequences, the auditory and visual stimuli were
presented at different rates (see figure 9.16). Here, the participants were
told to ignore either the auditory or visual sequence and make their judg-
ments of rate only on the basis of the other. On those trials in which listen-
ers were told to attend to the auditory sequence and ignore the visual
sequence, listeners were able to ignore the visual sequence and based their
judgments solely on the rate of the auditory sequence. In contrast, on those
trials in which listeners were told to attend to the visual sequence and ig-
nore the auditory sequence, they were unable to do so. The rate of the sup-
posedly ignored auditory sequence determined their judgments of visual
rate. In other words, the timing of the visual lights was perceived to be
equal to that of the supposedly ignored auditory stimuli. The arrows in fig-
ure 9.16 depict these two outcomes. There were, however, rate limits; if the
auditory stimuli were presented at twice the rate of the visual stimuli (8/s
versus 4/s) there was no visual capture: Observers were able to accurately
judge the visual rate.

These results confirm previous work demonstrating auditory “driving”
of the perceived visual flashing rate. For example, Shipley (1964) required
participants to adjust the rate of the auditory stimulus so that it appeared
just different than the rate of the visual stimulus. If the rate of the flashing
light was set at 10 Hz, the mismatch was not detected until the auditory rate
decreased to 7 Hz or increased to 22 Hz. Based on these results and those
of Recanzone (2003) described above, it appears that the auditory stimulus
can drive the visual rate from one-half to two times the actual flashing rate
of the visual input.

All of these experiments used nonmeaningful stimuli, so that it is
impossible to determine whether the participants perceived the tones
and lights as coming from a single object or not, or whether the strength
of the illusion depended on the compellingness of the connection between
the auditory and visual inputs. My guess is that auditory driving occurs
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independently of the compellingness of the perceived unity because the
sizes of the effects do not change if the tones and lights are separated by
more than 90°. Auditory driving appears to be preattentive and obligatory.
In contrast, as described below, the magnitude of spatial ventriloquism with
real-life objects does depend on the magnitude of the discrepant spatial lo-
cation and previously formed cognitive expectations.

Perceived Spatial Location (Spatial Ventriloquism)

The second factor that determines the strength of the unity assumption is
the difference in the perceived spatial location of the auditory and visual in-
puts. To maintain the unity assumption as the perceived auditory and visual
locations become more discrepant, observers must shift their perception

410 Perceptual Coherence

Figure 9.16. Recanzone (2003) used two simultaneous presentation conditions. In
both conditions, participants were able to ignore the visual sequences and judge dif-
ferences in the presentation rate between the standard and comparison auditory se-
quences. But participants could not ignore the presentation rate of the auditory
sequence when required to judge the visual presentation rate. Participants ended up
judging the presentation rate of the standard visual rate (4/s) against the rate of the
comparison auditory sequence. Adapted from “Auditory Influences on Visual Tem-
poral Rate Perception,” by G. H. Recanzone, 2003, Journal of Neurophysiology, 89,
1079–1093.



of the location of one or both of the sources to make them coincident.
Nearly always, visual-spatial location information dominates auditory spa-
tial location information when the two conflict.7 As for temporal ventrilo-
quism, I will consider only the immediate effects of the spatial conflict, and
will not consider long-term adaptation that may be due to cognitive inter-
pretations.

Slutsky and Recanzone (2001) investigated the temporal and spatial de-
pendency of spatial bias using a bare-bones stimulus consisting of a single
LED and one loudspeaker (200 ms noise burst or 1000 Hz tone). In the first
experiment, the LED and speaker were directly in front of the participant.
The experimental variable was the amount of onset asynchrony between
the LED and speaker necessary to produce the perception that the two did
not start or end at the same time. The participants perceived illusionary
synchrony between the light and tone as long as the light did not lead the
tone by more than 150 ms or as long as the tone did not lead the light by
more than 100 ms. Thus, participants were more likely to judge that the
two were simultaneous if the light preceded the tone. Onset disparities be-
yond these limits, particularly if the tone preceded the LED, eliminated the
illusion of synchrony.

In the second experiment, the LED remained in front of the participant
but the tone was offset in 4° increments to the left or right and was pre-
sented 0, 50, 100, 150, or 250 ms after the onset of the LED. The partici-
pant’s task was to judge whether the tone and LED were presented at the
same location, disregarding temporal differences. Two regions were found,
illustrated in figure 9.17.

1. For the spatial offsets of 0° and +4/−4°, the tone and LED were in-
variably judged to be at the same position up to about a 50 ms offset
asynchrony. At longer onset disparities, there was a slight shift to per-
ceiving the tone and LED at different positions.

2. For the spatial offsets of +8/−8° and +12/−12°, the tone and LED
were nearly always judged as being at different positions, and there
was no effect of the onset disparity.

These results demonstrate that spatial ventriloquism will occur for a
tone and light as long as the temporal and spatial disparities stay within
certain bounds. Because this stimulus configuration was designed to mini-
mize the perception of unity, I would guess that the limiting disparities
found here, roughly 50–100 ms and 6°, are minimums. As the connection
between the auditory and visual stimulation becomes more compelling
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(e.g., a speaking face), spatial ventriloquism will occur at far greater tem-
poral disparities and spatial discrepancies.8

Ventriloquism can serve the useful purpose of separating two intermixed
auditory messages. Driver (1996) created a particularly clever demonstra-
tion of this. Participants had to shadow (verbally repeat the words of ) one
message composed of random words that was presented interleaved with
another random word message spoken by the same voice coming from
one loudspeaker. Only the visual lip movements on one television corre-
sponding to the target speech sounds specified the relevant message. In the
control condition, the loudspeaker and video monitor displaying the lip
movements were presented at the same spatial position. In the experimental
condition, the video monitor was spatially offset so that the lip movements
came from a different location (sketched in figure 9.18). The surprising
outcome was that performance was better in the experimental condition in
which the spoken words and lip movements were spatially offset.
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8. These outcomes resemble those for the formation of auditory streams. Even though on-
set asynchrony was the most important cue for auditory segregation, other factors would de-
termine segregation if the onset asynchrony was ambiguous (10–20 ms), not long enough to
dominate. Here, spatial disparity was the most important cue for visual capture, and temporal
disparity was only important if the spatial disparity was ambiguous.
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Figure 9.17. Perceived location and onset asynchrony jointly determine spatial
ventriloquism. Using a single LED and one loudspeaker (short noise burst or
1000 Hz tone), the light and sound were perceived to come from the same position
as long as the actual spatial discrepancy was less than 4° regardless of the temporal
asynchrony. In similar fashion, the light and sound were perceived to come from
different positions as long as the actual spatial discrepancy was greater than 8°
regardless of the temporal asynchrony. Adapted from “Temporal and Spatial
Dependency of the Ventriloquism Effect,” by D. A. Slutsky and G. H. Recanzone,
2001, NeuroReport, 12, 7–10.



Driver argued that the better shadowing of the target words was due
to spatial ventriloquism. When the visual display was displaced, the tar-
get sounds were pulled away from the distracter sounds by the matching
lip movements. This illusory spatial separation between the target and
distracter sounds helped the selective listening, in exactly same fashion as
when the two auditory messages truly would come from different direc-
tions (or different frequencies). The ventriloquism could only happen after
the joint auditory-visual perceptual system had already worked out to some
extent which sounds matched the synchronous lip movements (and so
should migrate toward them), and which sounds did not match (and so
should be left behind). After this matching problem has been solved,
presumably without direct attention, the perceptual system can facilitate
attention to different points in the joint auditory-visual space. These results
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Figure 9.18. In the control condition (A), the talker, shown on the television in
front of the participant, makes lip movements corresponding to one of the inter-
leaved messages (in rectangle) composed of random words. The two random inter-
leaved messages are presented through one loudspeaker (rounded rectangle) and all
words seem to come from that television. The offset television is blank and there is
no sound from that direction. In the experimental condition (B), the talker is shown
on the offset television, but the loudspeaker in front of the participant presents all
the spoken words. But, as shown in (C), the participant perceives the words corre-
sponding to the lip movements as coming from the offset television (spatial ventrilo-
quism), while the nonmouthed words still appear to come from the television in front
(C). Adapted from “Enhancement of Selective Listening by Illusionary Mislocation
of Speech Sounds Due to Lip-Reading,” by J. Driver, 1996, Nature, 381, 66–68.



imply that spatial ventriloquism, binding of the target words to the lip move-
ments, can take place before auditory spatial selection is fully completed.

Compellingness of the Auditory and Visual Stimuli

Throughout, I have argued that perceptual processes are tuned to physical
processes and outcomes, whether by means of field forces, cortical receptive
field organizations, or Bayesian learning. Thus, we should expect that the
degree of temporal and spatial ventriloquism will depend on the observer’s a
priori belief in the connection between the auditory and visual stimuli.

Dixon and Spitz (1980) investigated the ability to detect auditory and vi-
sual temporal asynchrony for meaningful events: films (with a sound track)
of a speaking face and a hammer hitting a peg. Participants hit a key that
progressively increased the temporal disparity between the visual images
and the sound track until they perceived asynchrony. Participants were far
more tolerant of the temporal disparities if the sound preceded the visual
image. People clearly expect to see the action producing the sound to occur
before hearing the sound and are more able to detect timing offsets when
this occurs. The same asymmetry between visual leading and auditory
leading found above (50 ms) was more than doubled here (about 120 ms).
Participants were more tolerant of disparities for the speaking faces,
particularly if the sound preceded the image. This probably is due to the
fact that movements of the facial muscles normally precede the actual pro-
duction of sound. (The same natural disparity occurs for musical instru-
ments; it takes 50–100 ms after blowing or bowing for the sound to reach
its maximum amplitude.) Thus, there is a natural disparity that varies across
speech sounds so that it would be harder to perceive the added disparity
against the naturally occurring variation.

Researchers (Jack & Thurlow, 1973; Thurlow & Jack, 1973) used “talk-
ing” puppets. If the puppets were shown with appropriate mouth move-
ments, particularly of the lower jaw, the visual bias was very strong even if
the eyes and nose of the puppet were removed. But without mouth move-
ments, the visual bias was reduced by 50%. The perception of ventrilo-
quism occurred even if the timing of the mouth movements and speech
sounds were clearly out of sync. The bias was greatly reduced only if the
sound was delayed by 200 ms or more. Subsequently, D. H. Warren, Welch,
and McCarthy (1981) varied the meaningfulness of the visual input. If the
visual stimulus was a moving mouth synchronous with the voice, there was
a strong visual bias. However, if the visual stimulus was a steady light, the
visual bias was weak.

Another way to measure the degree of spatial bias for realistic stimuli
makes use of a pointing response. Suppose that a silent television displaying
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a speaking face is located in front of the participant, and the voice is pre-
sented through a loudspeaker 15° left of the midline of the participant. In
the control condition, either the television or the speaker is used, and the
participants are asked to point to each one. This ensures that the two can be
localized correctly. Then the television and speaker are used together, and
the participants are asked to point to the perceived location of the voice and
to the perceived location of the face. The bias measure is the shift in posi-
tion divided by the distance between the visual and auditory stimulus. If
the voice is localized 5° to the left, the visual bias is 33%; if the face is lo-
calized 3° to the left, the auditory bias is 20%. If the sum of the two bias
measures equals 100%, the visual and auditory stimuli are perceived to be
located at the same point. If the sum is less than 100%, the two stimuli
are perceived to move toward each other but are still perceived in different
locations.

Using a measure of bias, Jackson (1953) varied the spatial separation
of a picture of a steaming kettle and the sound of the steam escaping. At
horizontal separations of 30°, 60°, and 90°, the visual bias was 97%,
62%, and 37% respectively. Bermant and Welch (1976) varied the spatial
separation of simultaneous lights and tones. At horizontal separations
of 10°, 20°, and 30°, the visual bias was 57%, 17%, and 12%. Jack and
Thurlow (1973) used a speaking puppet with varying horizontal and ver-
tical separations. The visual bias was greater for vertical discrepancies
(up to 50°) than for horizontal displacements (up to 30°), which is under-
standable given that it is harder to locate sounds vertically than horizon-
tally. (If the sound is at the midline, there is no time delay or intensity
difference cues, so that the vertical position must be determined from
timbre differences due to the shape of the outer ear.) In sum, visual bias is
greater when it is likely that the auditory and visual stimuli come from
the same object.

Summary of Temporal and Spatial Ventriloquism

These results illustrate that the perception of a unified object from inputs
from several modalities depends on temporal, spatial, and cognitive expec-
tations. There are trading relationships in which one correlated physical
property (say, onset synchrony) can compensate for a discrepant physical
property (say, spatial location) or in which a cognitive expectation can bal-
ance a physical discrepancy. Such trading relationships imply that the prop-
erties and expectations are functionally equivalent, even though they are of
different sorts. It may be that temporal ventriloquism is more obligatory,
but since the published research uses such a diverse set of conditions, it is
difficult to draw firm conclusions.
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Reliability of the Auditory and Visual Cues

The results from the ventriloquism experiments demonstrate that the audi-
tory and visual information is jointly used to make perceptual inferences.
There was an auditory bias for temporal discrepancies and a visual bias for
spatial discrepancies. This has led to the view that the biases are due to an
inherent appropriateness of hearing for timing and seeing for space. An al-
ternate view is that these results reflect that the resolution for timing varia-
tions is better for hearing and the resolution for spatial variations is better
for seeing. The following results suggest that the resolution view rather
than the appropriateness view is correct by demonstrating that the degree of
bias is correlated to resolution.

In a spatial discrepancy paradigm, Battaglia, Jacobs, and Aslin (2003)
varied the reliability of the visual information by adding random-noise
pixels that reduced the discriminability of the location of an auditory-visual
“bump.” They found that participants tended to use the auditory location
more (reducing the visual bias), but there still was a visual bias. This is one
of many more examples of perceptual conservatism, in which perceivers do
not make optimal use of information. The conservatism may be the out-
come of not “updating” the weights appropriately and trying to avoid mak-
ing egregious errors such as locating the source outside of the visual and
auditory location cues.

In contrast, Alais and Burr (2004) found that observers integrated audi-
tory and visual information in nearly optimal fashion. They varied the dis-
criminability of the location of a visual blob by manipulating the blurriness
(i.e., the variability) of the image. If the blurriness of the visual image was
low (so that the blob was easily localized), the reliability of the visual in-
formation was 5–10 times better than the reliability of the auditory local-
ization information, and in this case the observers showed a high degree of
visual bias. However, if the blurriness of the visual image was high (so that
the blob was poorly localized), the reliability of the visual information was
poorer than that of the auditory information, and in this case the observers
showed an auditory location bias. If the reliabilities were roughly equal,
there was no bias.

Heron, Whitaker, and McGraw (2004) systematically varied the resolu-
tion of auditory and visual information in a bouncing stimulus. The audi-
tory signal was a white noise burst that signaled the bounce, and the visual
signal was a reversal in the direction of movement of a blob on a computer
screen. Making the noise signal occur when the blob was at a different
location than the reversal point created the discrepant information. Chang-
ing the duration from a short click to a longer swooshing sound decreased
the auditory resolution, and increasing the diameter of the blob decreased
the visual resolution. If the resolution of either the auditory or visual signal
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was high, then the resolution of the other signal did not affect the judg-
ments. But if the resolution of either signal was intermediate, the resolu-
tion of the other signal affected the bias. Increasing the auditory resolution
led to a stronger auditory bias and vice versa. There was a reciprocal shift
based on the reliability of each signal.

It is unknown how observers estimate the variability of the sensory
information. Do observers have to learn in conscious fashion, or would the
spread of excitation across a population of cells derive the variability auto-
matically? As argued in chapter 6, adaptation to changes in sensory arrays
are multifaceted. Fairhall et al. (2001) found that adaptation to changes
in the input variability occurred within 1 s for the fly and that speed sug-
gests that updating occurs automatically. Nonetheless, observers still can
attend to one modality voluntarily and thereby override any biasing toward
the modality with the greater precision.

McGurk Effect

Speaking brings forth both visual and acoustic information concerning the
articulatory production of speech sounds. We have argued that people will
normally assume that the auditory and visual information represent the
same activity or event (e.g., the sight of a swinging hammer and the sound
of its impact). Moreover, we have argued when there is conflict, the most
sensitive modality will dominate the percept.

When we come to speech, the role of vision is less clear. The visual
information comes from three sources: (1) lip modulation; (2) maximum
lip velocity; and (3) maximum lip amplitude (Summerfield, 1991). Lip read-
ing is very difficult. Summerfield (1991) estimated that there are about 12
distinct visual configurations, so that about 63% of speech sounds are in-
visible to sight. Nonetheless, visual articulation information can be very
helpful in difficult, noisy conditions. Improvements as much as 50% have
been reported (Sumby & Pollack, 1954). Furthermore, Munhall, Jones,
Callans, Kuratate, and Vatikiotis-Bateson (2004) found that rhythmic head
movements were correlated with the pitch (fundamental frequency) and
amplitude of the speaker’s voice and that visual information could improve
performance by 100% over that possible using auditory information only.
The large improvement with visual input argues that speech perception is
inherently multimodal and that the perceptual goal is identifying the articu-
latory gestures that underlie both the auditory and visual outputs (Rosen-
blum, 2004).

A striking illusion that has been used to study temporal and spatial ven-
triloquism has been termed the McGurk effect (MacDonald & McGurk,
1978; McGurk & MacDonald, 1976). Participants are shown a person say-
ing simple consonant-vowel syllables coupled with an acoustic recording
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of the same type of syllable. In some cases, the acoustic and visual infor-
mation conflicted, yet few adults perceived the conflict. The participants
perceived one of the two syllables that were actually presented, or they per-
ceived a syllable that was not presented at all, or they perceived a compos-
ite sound based on the two syllables. For example, if an acoustic [ba] was
synchronized with a visual [ga], the majority of listeners reported [da].
However, if the presentation was reversed—an acoustic [ga] and visual
[ba]—the listeners reported [ga] or [b’ga]. These two outcomes can be un-
derstood in terms of the visual information. The articulation of [ba] re-
quires closing the lips entirely, but the visual display of [ga] does not show
a complete lip closure. For this reason, in the first outcome participants do
not characterize the syllable as [ba]; instead, they report a different stop
consonant [da] that does not require complete lip closure. Complete lip clo-
sure is possible for stop consonants like [ga] articulated at the back of the
mouth. For this reason, in the second outcome the visual lip closure shown
for [ba] could have occurred for [ga], so that participants reported [ga] or
the combination [b’ga].9 The outcomes are relatively consistent across a
wide range of temporal asynchronies. Within an asynchrony range of about
+/−300 ms, performance is equivalent (Massaro, Cohen, & Smeele, 1996).
This is a much wider range than found for other types of stimuli.

The discovery of the McGurk effect has led to a series of experiments
investigating the limits of the illusion. On one hand, K. P. Green, Kuhl,
Meltzoff, and Stevens (1991) investigated whether the McGurk effect
would occur if the visual image came from a female talker while the audi-
tory signal came from a male talker, and vice versa. Surprisingly, the re-
sults were the same regardless of whether the visual and auditory stimuli
came from two individuals of the same gender (male 1/male 2 or female
1/female 2) or from two individuals of different genders (e.g., male 1/fe-
male 2). The authors interpreted this to mean that the speech signal is
normalized to remove information about the voice characteristics of indi-
viduals before the auditory and visual information are combined. On the
other hand, Walker, Bruce, and O’Malley (1995) found that familiarity with
the speakers did affect the magnitude of the effect. For unfamiliar faces,
there was no difference in the magnitude of the McGurk effect for con-
gruent (same face and speaker male 1/male 1), incongruent same gender
(different face and speaker but same gender, male 1/male 2) and different
gender (necessarily incongruent, male 1/female 2). Thus, these outcomes
replicate those above. But for familiar faces (known lecturers at the univer-
sity), there were fewer McGurk responses for the incongruent presentations.
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Listeners were more likely to report the correct auditory syllable for the
familiar faces than for the unfamiliar faces. (Walker et al. concluded that
people are able to use specific knowledge about familiar faces to correct for
the auditory-visual mismatch. People were not able to correct for the mis-
match on the basis of familiar voices. It might be the case, however, that
truly distinguishable voice timbres might also be able to minimize the
McGurk errors.

There are differences in the strength of the McGurk effect across lan-
guages and cultures. In general, the McGurk effect is stronger for foreign
than for native speech stimuli (Sekiyama & Tohkura, 1993). This outcome
makes sense in terms of the results of Walker et al. (1995) just described;
specific knowledge about facial visual motion tends to reduce the mag-
nitude of the illusion. Thus, lack of knowledge about facial movements
commonly occurring in a foreign language should accentuate the illusion.
Furthermore, Sekiyama (1997) has investigated whether the cultural ten-
dency of Chinese and Japanese listeners to avoid looking at the face of a
person they are talking with would reduce the illusion. This in fact was the
case, for both Japanese and American language stimuli. The native Chi-
nese speakers were less likely than both Japanese and American speakers
to integrate the visual information and therefore more likely to perceive
the auditory syllable correctly. Sekiyama (1997) also pointed out that Chi-
nese is a tonal language, so that visual information is less valuable, which
may reinforce the weaker use of visual information for speech perception.

Summary

I would argue that the similarity in the organizational principles for hearing
and seeing, as well as the functional equivalence of the auditory and visual
inputs for identifying objects and events in the world, supports the argu-
ments made in chapter 1 that the principles of perceiving are identical for
all modalities. I would further argue that the correspondence between the
organizational principles is not merely coincidental, but a fundamental con-
sequence of environmental properties. Objects are composed of correlated
properties that occur in space and time, and are separated by edges. For this
reason, perceiving is inherently multimodal, but not inherently equivalent.10
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10. There are many anecdotes that reflect the premise that perception is multimodal. A
colleague reported that a salesman admitted that when he was trying to sell a high-definition
television, he switched to a high-quality audio system. The improved audio seemed to make
the picture better. Conversely, there is a widely circulated, but uncorroborated, story that when
participants were asked to judge television picture quality, their judgments were actually
based on the sound quality of the sets and not the screen resolution.



It is difficult to create sensory substitutions that work. Gibson (1966, p. 54)
quoted Hornbostel: “it matters little through which sense I realize that in
the dark I have blundered into a pigsty.” Yet I wonder if that is true. The re-
search here suggests that each sense contributes a different perspective on
the external world.
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10

Summing Up

Perceiving is the construction of meaningful objects in the
world. All such objects exist in a common spatiotemporal

framework. All perceptual acts must also occur in the same framework, and
that implies that there will be fundamental equivalences in hearing and
seeing. There are no significant differences in hearing spoken language,
musical passages, footsteps, labored breathing, or emotional sighs, in see-
ing woodgrain, the steepness of a rock face, birds struggling to maintain a
V-shaped migration flight, or facial expressions.

Griffiths and Warren (2004) proposed four principles of object analysis
that I would argue apply equally to hearing and seeing. The first, mentioned
in chapter 1, is that object analysis deals with information that corresponds
to objects in the sensory world. Spectral-space-time receptive fields that are
limited by inverse resolution constraints filter the auditory and visual sen-
sory energy. Metaphorically, receptive fields respond to edges that simulta-
neously bound objects and separate them from the rest of the sensory world.
Moreover, the receptive fields for both senses can be understood in terms of
maximizing mutual information. The receptive fields decorrelate the sen-
sory energy to create a sparse representation of independent components.

The second principle, also mentioned in chapter 1, is that object analysis
deals with information that corresponds to the segregation of objects and
the construction of figure-ground relationships. As described in chapters 4,
5, and 9, what I might call a set of generalized Gestalt organizational prin-
ciples can be applied to both auditory and visual organization. The same
principles work in both domains because objects exist in a common space-
time framework.

The third principle is that object analysis deals with information that al-
lows for the identification of the same object in different sensory experiences
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within the same modality. This is the correspondence problem: the ability
to track individual fireflies, detect first- and second-degree motion, per-
ceive the same color in different illuminations, recognize the same face at
different ages, and predict what an instrument or singer will sound like at a
different pitch. The sensory world is composed of objects with correlated
redundant features, and those objects change in predictable ways. The co-
herence of the perceptual world depends on our ability to detect that redun-
dancy and predictability. If the sensory world were not predictable, then the
statistics in the sensory world would be meaningless, and perceiving as we
know it would not even exist.

These first three principles deal with object perception within a single
sense, and the argument here is that there is little difference between audi-
tory and visual object perception. The fourth principle proposed by Grif-
fiths and Warren (2004) is that object analysis deals with cross-modal
information, information that fuses auditory and visual information about
the same object. The outcomes described in chapter 9 make it clear that
perceivers normally assume that auditory and visual stimulation comes
from a single source (i.e., the unity assumption) and that people often make
illusionary judgments based on that assumption. The McGurk effect is one
such illusion. Auditory and visual information is not processed indepen-
dently, and in some cases I believe that joint processing is obligatory (e.g.,
temporal ventriloquism).

I think that the very existence of illusions makes a stronger point. Nearly
all of our perceptual experiences involve more than one sense, and the “rea-
sonableness” of the illusions requires the substitutability of the auditory for
the visual information and vice versa. In order to be substitutable, both
types of information must exist within a common frame of reference, and
the perceiver must infer that all of the sensory stimulation arises from the
same object. The concept of substitutability has been investigated most ex-
tensively in speech perception, where any articulatory gesture simultane-
ously produces visual facial movements and auditory speech sounds. As
discussed previously, visual movement information can dramatically im-
prove speech intelligibility from one speaker, particularly when the speech
signal is buried in noise (Sumby & Pollack, 1954). Lachs and Pisoni (2004)
demonstrated that observers could match visual facial movements to
speech sounds of speakers. The observers could not make the match if the
faces were static or if the speech sounds were reversed in time. Thus, it is
the correlation across time between the auditory and visual information
that allows observers to determine if the speech sounds came from the
same speaker whose face is moving.

Nelken (2004) made a different argument for the primacy of object per-
ception in the auditory system. Nelken summarized neural results which
demonstrate that auditory neurons in A1 match their responses to the time
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course of the stimulation. It is only when simple single stimuli are pre-
sented that the spectral-temporal receptive fields are separable. The recep-
tive fields can change dramatically at different time scales, when the
stimuli are embedded in different backgrounds, and so on. The auditory
cortex has a large adaptive and plastic capacity, and Nelken speculated that
the role of the auditory cortex is to integrate acoustic features into auditory
streams or objects. This integration can extend over different time spans
and is sensitive to the statistics of the environment.

Albright and Stoner (2002) made a similar argument for contextual ef-
fects in vision. They point out that the “meaning” of any local region can be
understood only in terms of the information in other regions. Of special im-
portance is information revealing surface occlusion or lighting conditions
that underlie depth ordering, figure-ground segregation, and color percep-
tion. As described at many points here, the response of individual cells is
not invariant but depends on the response of neurons whose receptive
fields encode distant retinal points (e.g., Vinje & Gallant, 2002). Although
not discussed explicitly, there must be contextual temporal effects also.
The interpretation of movement within a short time frame would often be
ambiguous without the context provided by prior, contemporaneous, and
subsequent information, as in the moving light displays pioneered by
Johansson (1973).

If we continue to think about the auditory and visual systems in terms of
the question “How does it work?” then we will trapped into conceptualiz-
ing hearing and seeing as very different processes, as expressed in table 1.1.
But if we transform the question into “What are the auditory and visual
systems designed to do?” the essential equivalence becomes apparent. Both
are designed to identify objects, mostly the same object, within a common
space-time framework. From this perspective, the neurological and percep-
tual commonalities and interactions are to be expected.
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