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Preface

Neuroanatomical work of Golgi and Ramon y Cajal set the stage for the notion
that nervous system operations arose from the interplay amongst its parts.
While Golgi considered the brain as a continuous system (reticular), Cajal
proposed what became known as the neuron doctrine, in which the eleman-
tary unit of brain function, the neuron, was an separable entity, but whose
operations were dependent on its input from other neurons. These critical
ideas grew in the company of emerging theories of brain function that em-
phasized the need for interaction between parts. In the early 1940s Warren
McCulloch and Walter Pitts gave birth to modern neural network theories
by proposing brain function to arise from the network action of binary neu-
rons. Their network dynamics, though simple, resulted in remarkably general
computational feats. Reinforcing the concept of network action, in his 1949
book Organization of behavior Donald Hebb proposed the modification of neu-
ral connections to be a function of their systematic usage and through such
laid the basis for one of the most commonly used learning rules in neural
nets. However, it is probably fair to say that the McCulloch-Pitts network
model finds its place more appropriately in the lineage of artificial neural net-
works than in the understanding of the dynamics of biological systems. In
subsequent developments, McCulloch-Pitts systems formed the basis for the
two-layer “perceptrons” of Rosenblatt (1958), the symmetric Hopfield (1982)
networks and Grossberg’s Adaptive Resonance Theory (ART) (1976), which
extended the computational properties to permit object categorization, com-
petitie learning and content-addressable memory (i.e. the system correctly
yields an entire memory from any subpart of sufficient size). Parallel devel-
opments in the 1940s find their roots in the fields of electronic engineering
and control system theory and culminate in the field of Cybernetics pioneered
by Norbert Wiener. Cybernetics emphasizes regulatory feedback in living and
non-living systems and as such connected functional and neural architectures
in the field of neuroscience. Here architectures are composed of functionally
defined interconnected components giving rise to teleological mechanisms and
emphasizing the purpose of a process or behavior. The notions developed in
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Cybernetics are closely interwoven with the thinking of other disciplines re-
lated to brain function, including radical constructivism in philosophy and
autopoiesis (literally “self-creation”) in neurobiology advanced by Heinz von
Foerster, Humberto Maturana and Francisco Varela among others. In the late
1960s, Cybernetics as a term was increasingly replaced by Self-organization
and in the 1970s and 80s by Complex System Theory. One of the reasons is cer-
tainly the adoption of these notions by physicists and its consequent develop-
ments in pattern formation, nonlinear dynamics and non-equilibrium systems.
Hermann Haken pioneered many of these concepts and summarized these in
his seminal paper on Synergetics in Reviews of Modern Physics in 1975.

Empirical evaluation of brain networks took somewhat longer to develop.
Though the idea of large-scale network operations was at the base of early
ideas of nervous system operations (e.g., Bethe’s chain theory, Lashley’s ideas
of mass action, Hebb’s cell assemblies), the technology was insufficient to
really capture network dynamics in any quantifiable means. As physiological
data were moved from paper storage to digital format, analytic methods sensi-
tive to the dependencies of firing arose. Seminal works of Gerstein in 1970 and
later with Aertsen in the late 1980’s provide the mathematical and theoretical
foundation for the ideas of functional and effective connectivity – ideas that
now are “household” terms in neuroscience. In the same period, the pioneer-
ing work of Gevins and colleagues, published in Science, showed the interplay
of cortical sources measured with EEG in humans could be directly related to
different stages in cognitive operations. While these works inspired continued
development of network analytic methods in electrophysiology, the measure
of brain network interactions has been most prolific in functional neuroimag-
ing. Starting first with SPECT and PET, and then functional MRI, there
was a new opportunity for comprehensive measures from most of the brain
in persons performing a wide range of mental functions. Such data quantified
distributed action to be brought to bear on network theories of brain opera-
tion. Authors in the current volume were among the first to explore network
operations revealed in functional neuroimaging (Friston, Horwitz, McIntosh).
The current state of the field has entire research programs geared specifically
to methods of measuring brain network dynamics, with parallel advances in
the quantification of the anatomical connectivity.

Contemporary brain theories are deeply rooted in the ideas of dynamic
systems, self-organization and large scale connectivity. It is posited that brain
function arises from the interaction of connected brain areas, in which func-
tional differentiation is performed by the more peripheral areas, whereas the
ensuing cognitive integration rests heavily on the large scale network action.
The presence of local and global elements involved in brain dynamics poses
novel constraints, unknown to the dynamics and pattern formation mecha-
nisms encountered in physical and chemical systems. To uncover the mecha-
nisms of brain function in networks with various local and global architectures
is one of the major challenges we are facing these days.
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Our Handbook arose from the fourth in a series of annual meetings fo-
cused on brain connectivity (http://www.hirnforschung.net/bcw/). These in-
tense workshops brought together anatomists, physiologists, cognitive and,
computational neuroscientists to discuss the current issues on how to inte-
grate brain connectivity across structural and functional domains. Motivated
by the discussions at this and the prior meetings, here we wish to provide an
account of the current knowledge on the imaging, analysis and theory of the
anatomical and functional connectivity of the brain.

The Handbook on Brain Connectivity would not have been possible with-
out the outstanding contributions of the Handbook authors. All contributors
are leading experts in various fields concerning structural and functional brain
connectivity. In the first part of the Handbook, the chapters focus upon an
introduction and discussion of the principles underlying connected systems
in the brain. The second part introduces the currently available non-invasive
technologies for measuring structural and functional connectivity in the brain.
Part three provides an overview of the analysis techniques currently available
and highlights new developments. Part four introduces the application and
transfer of the concepts of brain connectivity to behavior, cognition and the
clinical domain. We also wish to thank Arpan Banerjee, Ajay Pillai, Mu-
rad Qubbaj, Young-Ah Rho, Roxana Stefanescu and Maria Tassopoulos for
their tireless editorial help. We are most grateful to Technical Editor Thomas
Ditzinger at Springer Pulisher, who has been always available for guidance
and advice during the creation of the Handbook.

Viktor K Jirsa
Anthony R McIntosh
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Neuronal Dynamics and Brain Connectivity
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The fluid nature of perceptual experience and the transient repetition of pat-
terns in neurophysiological data attest to the dynamical character of neural
activity. An approach to neuroscience that starts from this premise holds the
potential to unite neuronal connectivity and brain activity by treating space
and time in the same framework. That is the philosophy of this chapter. Our
goals are threefold: Firstly, we discuss the formalism that is at the heart of
all dynamical sciences, namely the evolution equation. Such an expression ties
the temporal unfolding of a system to its physical properties and is typically
a differential equation. The form of this equation depends on whether time
and space are treated as continuous or discrete entities. Secondly, we aim to
motivate, illustrate and provide definitions for the language of dynamical sys-
tems theory - that is, the theoretical framework that integrates analysis and
geometry, hence permitting the qualitative understanding and quantitative
analysis of evolution equations. To this end we provide a mini-encyclopedia
of the basic terms of phase space analysis and a description of the basic
bifurcations of dynamics systems. Our third aim is to provide a survey of single
neuron and network models from a historical and pedagogical perspective.
Here we first trace microscopic models from their birth in the 1950’s showing
how the neuronal firing properties can be understood as a bifurcation in the
underlying phase space. Then we review the spatiotemporal network dynam-
ics, which emerges as a function of the networks anatomical connectivity.

Introduction: Dynamics and the Brain

The firing of a neuron subsequent to an increase in synaptic input is a crucial
neuronal event that is best understood from a dynamic system perspective.
Whilst statistical techniques are crucial to the detection of synchrony and
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change in neuroscience data, the study of dynamics uniquely permits an un-
derstanding of their causes. “Evolution” equations – which embody a system’s
dynamics - form the basis of all major theories in the physical sciences, from
Newton’s F = ma to Schrödinger’s wave equation and Maxwell’s electromag-
netic theory. There is no reason to believe that mathematical formalisms of
neuronal dynamics won’t eventually underpin and unify neuroscience. Indeed,
over recent decades, dynamical formulations of brain activity have become
sufficiently advanced to give rough outline to a “unified theory of brain dy-
namics”. Such a theory will also inform studies of brain connectivity.

What is the origin of the brain’s dynamic character? During the 20th

century, extraordinary progress was made in elucidating basic neurophysio-
logical processes and their role in neural phenomena such as neuronal firing
and action potential propagation. Incorporating these processes into a set
of evolution equations yielded quantitatively accurate spikes and thresholds,
leading to the Nobel prize for Hodgkin and Huxley. These equations are based
upon the physical properties of cell membranes and the ion currents passing
through transmembrane proteins. Extending this theory from a patch of cell
membrane to whole neurons and thence to populations of neurons in order
to predict macroscopic signals such as the electroencephalogram (EEG) is a
dominant focus in this field today. Linking neuronal dynamics to theories of
cognition also remains a major goal.

Dynamics has a spatial as well as a temporal character and this makes it
relevant to the subject of this handbook, brain connectivity. It can be argued
that all forms of information processing in neuronal systems can be understood
as particular types of spatiotemporal dynamics and their bifurcations. With
this in mind, our primary objective is to provide a “ground-up” overview of
the dynamical approach to neuroscience. We also aim to overview some of the
recent developments in this field, such as those that establish a link between
statistics and dynamics and proposals that provide putative network-based
cognitive mechanisms with a biophysical underpinning. Attempts to employ
dynamics to unify neurophysiological phenomena are also covered. Section 4,
dealing with macroscopic spatiotemporal dynamics, implicitly incorporates
connectivity by way of its joint treatment of space and time.

Section 1 provides an overview of the central concept of dynamics - the
“evolution equation” - and reviews the variety of forms that it can assume.
In Sect. 2, we overview the mathematical concepts required to understand
the behavior of such equations, with an emphasis on a geometric approach.
In doing so, we also show how many of the stochastic approaches more fa-
miliar to neuroscientists are specific forms of dynamical systems when they
satisfy certain stability conditions. In Sect. 3, we provide a taxonomy of key
neuronal models – that is, particular forms of neuronal evolution equations,
with an emphasis on small scale systems. Section 4 then focuses on large scale
neuronal dynamics. We argue that there is a one-to-one relationship between
modes of information processing in neuronal systems and their spatiotemporal
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dynamics. Likewise, changes between such forms correspond directly with
changes in the dynamics, mediated by a bifurcation or similar mechanism.
The chapter concludes in Sect. 5 with some of the exciting recent develop-
ments in the field of neuronal dynamics and their putative links to other “hot
topics” in neuroscience.

1 Evolution Equations: How to Make
a Dynamical System

Evolution equations lie at the heart of dynamics. They state how a set of dy-
namical variables change in accordance with the underlying properties of the
system they characterize. The most famous example of an evolution equation
is Newton’s “second law of mechanics” which describes the acceleration of an
object as F = ma. More technically this is written as,

dv (t)
dt

=
F
m
,

dx(t)
dt

= v (t) (1)

where v(t) is the velocity of an object at position x(t). The left hand sides
(LHSs) of these equations express the temporal derivative – the rate of change
of a variable. The right hand sides (RHSs) link these changes to the properties
of the system. The goal of calculus is to understand the resulting evolution of
these variables as a function of time. In (1), it is possible to find an explicit
solution for the evolution of x in terms of time,

x(t) = x(0) + v (0) t+
Ft2

2m
, (2)

where x(0) and v(0) are the ‘initial conditions’ of x and v. Equation (2)
allows us to know the exact future position of an object given its current state
and any applied constant force. We can see that as time increases the RHS of
(2) will be dominated by the quadratic term, t2 so that an object subject to a
constant force will be increasingly rapidly displaced. In more complex systems,
as encountered in neuroscience, such explicit closed form solutions generally
cannot be found. Moreover, their approximations are typically so cumbersome
that understanding the nature of the dynamics from such algebraic equations
is not straightforward. However, one may gain a deep understanding of the
nature of a system’s dynamics without relying only on algebraic solutions.
This can be achieved through the geometric approach to dynamical systems,
outlined in Sect. 2, which unifies algebraic analysis and topology.

The essential requirements for an evolution equation are a set of evolving
variables which we denote Z(x, t) and a set of system parameters denoted
a. The former represent the current states of properties such as transmem-
brane potentials, neuronal firing rates, extracellular field potentials, as they
vary in time t and position x. The parameters a are those properties which
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can be considered as static or change very slowly in comparison to the dy-
namical variables Z. Nernst potentials, conduction velocities and ion channel
time constants are typical neural parameters. All of these variables are then
combined with a “differential operator” – which introduces the crucial factor
of change – and an algebraic expression – which determines how this change
relates to the properties of the system – to form an evolution equation.

We now progress through the various forms that such equations can as-
sume, from the simplest to the more complex. Exemplar neuronal models of
each system are given in Sect. 3. Further suggested reading is provided where
appropriate.

1.1 Difference Maps: Discrete Time and Discrete Space

The simplest form of determining the future state of a dynamical system from
its present state is through a difference map,

Z (t+ 1) = Fa [Z (t)] , (3)

where t runs discretely as 0,1,2,. . . Note that the subscript a denotes the
parameterization of F. The so-called “logistic” equation,

Fa [Z (t)] = aZ(1− Z), (4)

is a very well-known one-dimensional (scalar) example of a difference equa-
tion. The evolution of this relatively simple (quadratic) nonlinear equation is
illustrated in Fig. 1.

The logistic map, and other simple algebraic forms, has been used exten-
sively to elucidate basic, generic properties of nonlinear dynamics (Collet &
Eckmann 1980, Cvitanovic 1984). They can exhibit a rich complexity even
when the algebraic equations are simple as in (4). Examples of their use in-
clude elucidating the fundamental principles of chaotic dynamics (Gucken-
heimer 1987) and the transition from regular to chaotic motions (Feigenbaum

Fig. 1. (a) Logistic equation (4) with a = 1.64. (b) Resulting chaotic time series.
Maps of this type have been used to study the basic properties of nonlinear systems.
They have a less extensive role in modeling neural systems
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1987). These concepts are discussed and illustrated in Sect. 2, below. An ex-
cellent introduction to this fascinating field is given by Baker & Gollub (1990).

The spatiotemporal properties of nonlinear dynamics can also be studied
within this framework, through the use of coupled difference maps,

Z (xi, t+ 1) = Fa

⎛
⎝Z (xi, t) ,

∑
j �=i

Hc [Z (xj , t)]

⎞
⎠ (5)

where xi denotes the spatial position of the i-th subsystem. The “coupling
function” Hc introduces the activity from all other nodes into the dynamics
of this node. The subscript c denotes the strength of the coupling influence
and is traditionally normalized so that 0 ≤ c ≤ 1. Hence, if F embodies local
neural dynamics, H incorporates the spatial characteristics of synaptic con-
nectivity. Just as autonomous difference maps can be used to elucidate basic
dynamical principles, coupled difference maps permit an understanding of the
fundamentals of dynamic synchronization (Maistrenko et al. 1998). Often the
influence of the local versus global dynamics can be linearly partitioned as,

Z (xi, t+ 1) = Fa [Z (xi, t)] +
∑
j �=i

Hc [Z (xj , t)]. (6)

A fascinating, early example of a coupled difference-map neural model is
that of McCulloch & Pitts (1943) which we discuss in Sect. 3. However, be-
cause of the discrete nature of time in difference maps, and the fact that their
study has been characterized by using very basic algebraic expressions, they
rarely figure in biophysical models of neural systems. On the other hand, they
have been used extensively to study the basic properties of high dimensional
nonlinear dynamics (Kaneko 1997), including the onset of synchronization
amongst two or more subsystems (Ashwin et al 1997). Put another way, they
are mathematically pleasing because they permit an analytic understanding of
the universal principles of dynamics and synchronization, but limited in their
value to neuroscientists because their simplicity prohibits one from identify-
ing the relative contribution of particular physiological processes to specific
dynamical behaviors.

1.2 Ordinary Differential Equations: Continuous Time
and Discrete Space

One obvious step towards physiological realism is to make time continuous!
This can be achieved by exploring neural systems, whose evolution is governed
by an ordinary differential equation (ODE),

dZ (t)
dt

= Fa [Z (t)] . (7)

where as above Z(t) is a set of dynamical variables. This is the form of
equation for most traditional neuronal models such as the Hodgkin Huxley
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model in which case Z1 = V is the transmembrane potential and F takes the
form,

Fa [V (t)] =
∑
ion

fion [V (t)] + I. (8)

The summation on the RHS is taken over all ion channels. For each ion
species

dfion (t)
dt

= gion [V (t)] (9)

represents the dynamics of the local voltage-dependent channel currents
for each ion species. I represents synaptic currents which flow through
ligand-gated channels or via an experimentally introduced electrode. As with
difference equations, spatiotemporal dynamics are achieved by employing a
coupling function Hc to introduce interdependence between systems,

dZ (xi, t)
dt

= Fa

⎛
⎝Z (xi, t) ,

∑
j �=i

Hc [Z (xj , t)]

⎞
⎠ . (10)

Hence, if (8) models the dynamics of a single neural system, (10) adds the
interaction between two or more systems, creating a dynamic neural network.
The ensemble is spatially discrete with a finite numberN of subsystems so that
the subscript indices i, j = 1, 2, . . ., N . As with coupled difference equations,
it is often possible to bipartition the influence of the local and distant terms
in (10) as

dZ (xi, t)
dt

= Fa (Z (xi, t)) +
∑
j �=i

Hc [Z (xj , t)]. (11)

Such is the case when local recurrent axons and long-range afferents each
project onto separate classes of neurons. In this case the long-range afferents
are modeled as acting, through ligand-gated ion channels, via the synaptic
currents. Hence,

dZ (xi, t)
dt

=
∑
ion

fion [Z (xi, t)] + I (xi, t) , (12)

where the induced synaptic currents,

I (xi, t) =
∑

j

Hc [Z (xj , t− τj)] + Iexternal, (13)

introduce the afferent inputs from other systems Z(xj , t) that arrive after
a time delay τj - permitting finite speed axonal conduction. Because space is
discrete, the time delays are also discretely distributed. Differential equations
with time delays are treated thoroughly in the Chapter by Campbell. We only
introduce them here because they are important in the conceptual transition
from discrete to continuous space to which we now turn. A review of neuronal
synchrony as modeled by coupled ODE’s is provided by Breakspear (2004).
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1.3 Integrodifferential Equations: Continuous Time
and Continuous Space

In the case where we wish to model the inputs to region xi arising from a
continuously distributed neuronal ensemble, we integrate the afferent induced
currents (13) continuously over space,

I (xi, t) =
∫

Ω

t∫

−∞
h (x− x′) H [Z (x− x′, t− t′)] dt′dx′, (14)

where the spatial integration dx’ is taken over the spatial domain Ω of
the neural system. Note that this also requires that we integrate over the
(now) continuously distributed time delays, t′. We have also partitioned the
coupling function into two parts, H and h. H determines which variables from
any given system enter into the inter-system coupling, and how they do so.
Typically H itself has two components, an “activation” function that converts
local membrane potentials of the distant systems into firing rates ρ - which
then propagate outwards - and synaptic kernels η which model how these
propagating action potentials influence post-synaptic potentials as they arrive,

H [Z (x, t)] = η (t) ρ (Z (x, t)) (15)

Specific forms of η and ρ are provided in Sect. 4. The coupling function h
captures the spatial dependency of the strength of the afferent inputs. This
function is also known as the ‘synaptic footprint’ (Coombes 2003) because it
reflects the nature and density of synaptic connections as they change with
the distance from their origin. Substituting the synaptic inputs (14) into the
differential (12) and collapsing all local contributions into

N [Z (x, t)] =
∑
ion

fion [Z (x, t)] (16)

we obtain

dZ (x, t)
dt

= N(Z (x, t)) +
∫

Ω

t∫

−∞
h (x− x′) H (Z (x− x′, t− t′)) dt′dx′, (17)

an integrodifferential equation. It may be considered a general form of a
neural mass model because the exact nature of the synaptic “footprint”, the
activation function and the synaptic kernels remain unspecified. For example
within this framework, it would be possible to use the precise form of the lat-
eral inhibition that has been shown to allow sensory networks to be inherently
tuned to particular spatial frequencies (Ratliff et al. 1969).
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1.4 Partial Differential Equations: Continuous Time
and Continuous Space but Constrained Connectivity

In some contexts, it may be preferable to express (17) with spatial and tempo-
ral derivatives only - rather than a combination of temporal derivatives with
spatial and temporal integrations. Such differential representation is useful if
the connectivity function h is sufficiently simple, smooth and translationally
invariant, because then only a few spatial derivatives are needed to capture
the connectivity. For example, given appropriate forms of h and H (see sect. 4)
(17) can be rewritten as a partial differential equation of the form,

∂2Z (x, t)
∂2t

+ a
∂Z (x, t)

∂t
+ b

∂2Z (x, t)
∂2x

+ cZ (x, t) = (d+
∂

∂t
)ρ (Z (x, t)) (18)

The coefficients a, b, c and d depend on system parameters such as con-
duction velocities and the synaptic footprint parameter σ. Such an equation,
expressing the evolution of neuronal systems, continuously in space and time,
but with specific types of connectivity was first derived for macroscopic neu-
ronal dynamics by Jirsa and Haken (1996, 1997) and Robinson et al. (1997).
Pioneering work that led to this formulation started as early as the 1970s
(Wilson 1973, Wilson & Cowan 1973, Nunez 1974, van Rotterdam et al. 1982).
Comparing (11) and (18) we see that in the former, spatial coupling is in-
troduced explicitly through the second term on the right hand side. In the
latter, space enters the temporal dynamics through the (second order) spatial
derivative on the left hand side. However, under certain conditions these two
approaches can be equivalent.

1.5 Stochastic Differential Equations

All of the equations above capture the dynamical evolution of each of the
values Z of the system of interest. In the case of a microscopic system, these
variables may include transmembrane potential and ion channel conductance
of a small patch of cell membrane. Evolution equations, such as (11) and (18)
may also describe neural systems in the mesoscopic (<mm) and even macro-
scopic (∼cm) scales. In such cases, the variables of interest represent mean
values averaged over the appropriate scales. Such equations are hence known
as mean field approximations. Before proceeding further, it is worth describ-
ing evolution equations which capture the dynamics for the entire probability
distributions p(x, t) rather than just the mean. Such models allow for stochas-
tic inputs to a system which nonetheless obeys deterministic rules. They take
the form,

∂p (x, t)
∂t

=
∂ ((f + s) p (x, t))

∂x
+
w2

2
∂2p

∂x2
(19)

where s represents the (stochastic) inputs to the system and f is the form
of the deterministic dynamics. As described in Harrison et al. (2005), the first
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term of the RHS describes the evolution of the probability distribution under
the influence of the inputs s and the nature of the physiological system f . The
second term describes the tendency of the distribution to disperse under the
influence of the stochastic elements at rate w.

Whereas (11) and (18) are mean field equations, (19) is an example of a
broader class of “neural field” equations, capturing the evolution of the entire
probability distribution. There are a number of intriguing reasons to generalize
neural evolution equations from mean field formulations to capture the evolu-
tion of the entire distributions. For example, consider two neural populations
with the same mean membrane potentials, but where the second population
has a larger variance. If the mean potential is below the threshold for firing,
this difference in variance will imply that a greater proportion of neurons in
the second population will be supra-threshold and hence firing (Fig. 2). These
neurons, through local feedback, will in turn have a greater effect on the lo-
cal mean membrane potential, driving it upwards or downwards – depending
on whether the local feedback is excitatory or inhibitory. Put alternatively,
modeling the entire distribution rather than just the mean permits the higher
order moments of the neural states to interact (Harrison et al. 2005).

Solutions to (19) are possible only in very restricted cases. The develop-
ment of numerical techniques – required to gain important insights into the
dynamics – is a very active area of research. One important method in this
vein relies upon a “modal decomposition”, whereby the entire distribution
is truncated to a few low order modes. The very restricted case, reducing
such an equation to the first moment – the mean – returns us to the mean
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Fig. 2. Two different distributions of neural membrane potentials, with the same
mean states, will in general have different mean firing rates (arbitrary units)
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field formulations discussed above. In situations where higher order moments
of the distribution (variance, kurtosis etc) are retained, the possibility exists
for deep, but tractable representations of complex neuronal dynamics. Hence
interactions between stochastic and deterministic processes, as embodied in
(19) can be formally studied.

2 The Geometry of Dynamics: A Mini-Encyclopedia
of Terms

In this section, we step back from a consideration of the forms that evolution
equations can take and overview the crucial geometrical means of understand-
ing them.

2.1 Basic Dynamical Concepts

As mentioned in the Introduction, nonlinear differential equations can be noto-
riously intractable with regards to exact analytic solutions. However, a thor-
ough understanding of their dynamics is very often possible by combining
analysis and geometry. In this Section, we provide the central defining terms
through the exploration of some simple dynamical systems. In interests of
brevity we have sought to explain the intuitive meaning of the terms, keeping
technical definitions to a minimum. Most of these terms are given more for-
mal definitions in standard dynamical systems textbooks (e.g. Strogatz 1994).
Illustrated examples of all terms follow in subsequent sections.

For any study of geometry, we require a space in which to embed our
objects of study. For evolution equations, a manifold fulfills this purpose.
Put simply, a manifold is a space which can be locally stretched or deformed
into a Euclidean space whilst having a variety of global shapes. Hence the local
structure sustains the intuitive meaning of terms such as a neighbourhood
(a ball of small radius) which are crucial for issues requiring a “distance”, well
defined for Euclidean space. The global structure of a manifold, on the other
hand, can be quite complicated, and may be ‘bounded’ (like the unit interval)
or ‘unbounded’ (like the Euclidean plane), ‘simply connected’ (like a sphere)
or not simply connected (like a torus). A differentiable manifold has the
additional properties required to support differentiation. The planar surface,
a torus and a sphere are differentiable manifolds. Although the properties of
these spaces may seem trivial, a formal definition of a differentiable manifold
must be able to support quite general dynamical systems. For example, the
manifold of a partial differential equation has infinite dimension!

A phase space is a differentiable manifold whose axes are spanned by
the dynamical variables Z = {Z1, Z2, Z3, . . . } of an evolution equation. The
topology (“shape”) of the phase space is chosen to match the properties of
these variables. For example, the plane (R×R) is a suitable phase space for a
system with two membrane potentials. For a system where the two variables
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are phases varying between 0 and 2π, the torus (S × S) is preferable because
of the periodic nature of the boundaries.

We can think of a point in phase space as the instantaneous state Z(t) of
our system. If we substitute this state into our evolution equation, we would
get the instantaneous rate of change of the system dZ(t)/dt when in that state.
This defines a tangent vector in the phase space, telling us how the system
will evolve into its next state Z(t’). This critical step – of linking dynamics to
geometry – is captured by the vector field , a directed flow through a phase
space which embodies the evolution equation. More technically, a vector field
assigns a vector to every point in phase space which is precisely the solution
of the evolution equation at that point. Hence these vectors capture both
the rate and direction of change of the system. For example, the vector field
corresponding to the trivial one-dimensional equation dx/dt = −x is just the
set of all vectors of length x pointing towards the origin. The vector field at
x = 1 is a vector of length 1 directed towards the origin.

-1 10
x

In this way the algebra of the evolution equations and the analysis methods
of geometry are linked (Vector fields are often represented as arrows overlaid
on the phase space but more technically they are defined on a related space
called the tangent bundle). An orbit or trajectory is a connected path
through phase space which is always tangent to the vector field. Hence an
orbit traces the time-dependent solution to a dynamical system through a
succession of instantaneous states. It captures the manner in which a system
will change according to the evolution equation. The starting point of such an
orbit is called its initial condition . Examples are given in Fig. 3.

dz1
dt

= z2 ,
dz2
dt

= μ
(
1− z2

1

)
z2 − z1 . (20)

A time series of this system for μ = 2, showing the periodic nature of the
oscillations, is given in Fig. 4(a). A single orbit, commencing with an initial
condition in close proximity to the origin is shown in the planar phase space
spanned by z1 and z2 in Fig. 4(b). It can be seen that this orbit diverges rapidly
away from the origin and towards a closed loop in phase space, corresponding
to the appearance of periodic oscillations in the time series. The appearance
of periodic oscillations in the system motivates us to consider an alternative
phase space representation, achieved by a change of coordinates to amplitude
A and phase θ,

A =
√
z2
1 + z2

2 , φ = arctan
(
z2/z1

)
. (21)
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Fig. 3. Example of a time series (left hand panel) of three variables Z =
{Z1, Z2, Z3, . . . } of a dynamical system briefly evolving along an orbit in phase
space (right hand panel). The diamond represents the initial condition and the
arrows represent tangent vectors in phase space

Such a cylindrical manifold, whose periodic boundary conditions embody
the nature of the oscillatory dynamics, is shown in Fig. 4c. The convergence
of the orbits shown in panels (b) and (c) onto the closed loop, on which they
then remain, motivates the concept of an invariant set of the dynamics.
Intuitively, this is simply a set of points (e.g. single point, closed loop, etc.) in
which orbits remain once they enter. More formally if F represents the flow of
a dynamical system then an invariant set A satisfies F(A) ⊆ A. The Van der
Pol system in Fig. 4 has two invariant sets, one at the origin and the closed
loop as shown. A variety of other orbits, from distinct initial conditions, are
shown in panel (d). In each case, the orbits approach the limit cycle.

This simple observation motivates the crucial concept of an attractor , a
bounded (i.e. finite) invariant set which is approached by the orbits from a
“large set” of initial conditions. Traditionally, a large set implied an “open
neighborhood” of the attractor. More recently the concept of an attractor has
been generalized to mean any set with a non-zero probability measure (Milnor
1985) meaning that there is a (possibly very small but still non-zero) chance
that an orbit from a randomly chosen initial condition will flow onto the
attractor. On the other hand, there may be initial conditions arbitrarily close
to the attractor that nonetheless flow elsewhere. This distinction is important
in the setting of synchronization (Ashwin & Terry 2000) and we explore it
further below.

We have hence seen fixed point and limit cycle attractors. A chaotic
attractor has already been illustrated for the logistic equation in Fig. 1. In
comparison to a limit cycle which endlessly repeats its prior states, a chaotic
attractor never repeats a state although is nonetheless bounded and invariant.
More formally, a chaotic attractor exhibits sensitive dependence to initial
conditions – that is any two orbits, no matter how close initially - diverge at
an exponential rate. This rate of divergence is captured by the largest char-
acteristic exponent , which is positive for a chaotic attractor. In contrast,
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Fig. 4. Van der Pol oscillator for μ = 2. (a) Time series. (b) Phase space portrait
representation of a single orbit and its approach toward a limit cycle attractor.
Arrows show representative vector field. (c) Representation of the same orbit on a
cylindrical manifold spanned by the polar coordinates A(t) and θ(t). (d) A set of
distinct initial conditions flowing toward the limit cycle attractor (black)

two such points will stay forever close if on or near a limit cycle attractor (the
largest characteristic exponent is zero). Two such points in the vicinity of a
fixed point attractor will invariably get closer (the largest characteristic expo-
nent is negative). A chaotic attractor is also topologically mixing – i.e. any
given open set covering any region of the attractor will eventually overlap with
any other region. The unceasing divergence of nearby orbits and the eventual
mixing of regions combine to enable a chaotic attractor to be both unstable
and bounded. We revisit chaos in the setting of specific neuronal models in
Sect. 3.

An attractor’s basin of attraction is the set of all initial conditions
which have the attractor as their future state. In the present case, the basin of
attraction for the loop is the entire plane, except for the origin. The inset of an
attractor is that part of the basin of attraction with the strongest (principle)
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direction of attraction. A repellor is an invariant set that is the past state of
a large set of points, its basin of repulsion . The outset of a repellor is the
subspace of this basin which diverges most quickly. In the present case, the
origin is a repellor and its basin of repulsion is all the points within the loop.

If time was reversed in (20), the origin would become an attractor and
points within the loop would be its basin of attractions. Points outside the
limit cycle would diverge towards infinity. Hence the loop would be an example
of a basin boundary or seperatrix . Basin boundaries can be repellers (as in
the case here) or saddles which have an inset and an outset. A trivial example
of a saddle is the origin in the system,

dz1
dt

= a1z1 + b1
dz2
dt

= a2z2 + b2 (22)

where, for a1 = 1, a2 = −1 and b1 = b2 = 0 the z1-axis is the inset and
the z2-axis is the outset (Fig. 5).

Occasionally, the outset from a repellor becomes the inset of an attractor.
Such an entity, linking two fixed points, is called a heterocline . For a saddle,
it is possible that the outset becomes the inset (due to curvature away from
the saddle point). If so, it is called a homocline .

Two final concepts are required before we move onto more complex mat-
ters. An attractor possesses structural stability if it is insensitive to a small
change in the nature of the vector field, corresponding to a small change in
the evolution equation. “Insensitivity” here denotes that there exists a smooth
mapping between the perturbed attractor and the original attractor. When
such a mapping exists we say the two (original and perturbed) attractors are
topologically conjugate . The saddle point in Fig. 5 is structurally stable
following changes in either the parameters a (under a stretching and/or con-
traction) and/or the parameters b (under a translation). Similarly the Van der
Pol attractor in Fig. 4 is structurally stable since small changes to any of the
parameters results in another (topologically conjugate) limit cycle attractor.

The nullclines of a dynamical system are the curves in phase space, for
which one derivative in the evolution equation is equal to zero, and hence cor-
respond to the regimes in phase space with zero flow in a particular direction.

z1

z2

Fig. 5. Saddle point and orbits of (22)
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z2

Fig. 6. Nullclines of the Van der Pol system. Arrows show direction of the vector
field across the nullclines. The fixed point lies at the intersection of the two mullclines
(in blue and black). The trajectory is shown in red

The two nullclines to the Van der Pol equation (20) are depicted in Fig. 6.
The blue line shows the nullcline for zero flow in the z1 direction and the
black shows the curve for z2. The limit cycle trajectory satisfies these condi-
tions as it crosses the respective curves – that is, the dz1/dt = 0 when the
attractor (red curve) crosses the blue nullcline. By definition, any crossing of
two nullclines corresponds to the existence and location of a fixed point since
dz1/dt =dz2/dt = 0.

The nullclines form the “skeleton” of the phase space and, as we explore
below, their intersections are vital to the existence and nature of most attrac-
tors, not just fixed points.

2.2 Bifurcations and Complex Dynamics

The preceding discussion captures the nature of phase space dynamics and
its relationship to the evolution equations for a given set of parameter values
(i.e. when the vector field is kept constant). An intriguing and important field
of study concerns what happens to the attractors and basin boundaries follow-
ing a change to the system’s parameters and hence to the vector field. From
above it follows that if all the attractors are structurally stable, then the effect
of such a change can be considered trivial since the dynamics will remain quali-
tatively similar (and typically also quantitatively similar). However, in the case
when this is not so, sudden and dramatic changes in the dynamics, denoted
bifurcations, occur. Examples abound in neuroscience, such as the genera-
tion of an action potential, the onset of bursting (Izhikevich 2005) and even
the onset (Robinson et al. 2002, Lopes da Silva et al. 2003, Breakspear et al.
2006) and temporal progression (Rodriguez et al. 2006) of an epileptic seizure.

An important means of understanding the nature of a system’s bifurca-
tions is through the study of its bifurcation diagram . This is produced by
smoothly varying one parameter over some range of interest whilst keeping
all other parameters fixed. Hence the vector field is smoothly changed in one
dimension of parameter space. At each parameter value, the system is inte-
grated and, after passage of an initial transient – allowing for the system to
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evolve towards its attractor(s) – the asymptotic time series is captured. From
this time series, the values of all local minima and maxima are stored. For a
fixed point there will exist only one such value. For a simple (period-1) limit
cycle there will exist two such points and for a period-2 oscillator, four such
points – two maxima and two minima. For a chaotic oscillator, such points
will be distributed densely (“almost everywhere”) over one of more segments.
The bifurcation diagram is the plot of these local maxima and minima against
the respective parameter value. Figure 7 shows the bifurcation diagram of the
logistic (4).

It is crucial to note that in most nonlinear systems, two or more attractors
may co-exist for some parameter values, facilitating bistability or even mul-
tistability . Each attractor will have basins, each separated by basin bound-
aries. In such cases, it is important that all such attractors are located when
plotting a bifurcation diagram.

Bifurcations can be divided into local and global, as outlined below. Be-
fore doing so, it is important to introduce a second notion of stability. Struc-
tural stability concerns the robustness of invariant sets – attractors, repellors,
saddles - to changes in the underlying vector field. In contrast asymptotic
stability deals with the situation where the instantaneous state of the sys-
tem is perturbed through addition of a small transient noise term (but the
vector field is kept constant). An attractor is called asymptotically stable
whenever the system returns towards the attractor following any such (small)

Fig. 7. Bifurcation diagram of the logistic equation (4). Top panel shows the local
minima and maxima of the asymptotic time series against the parameter a. Lower
three panels show representative time series (including the initial transient) with (1)
fixed point, (2) limit cycle and (3) chaotic attractors. Note the “periodic windows”
within the chaotic regime of the bifurcation diagram
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noisy perturbation. A local bifurcation occurs whenever an attractor loses
asymptotic stability whereas a global bifurcation corresponds to the loss of
structural stability. These are also called subtle and catastrophic bifurcations
(Abraham & Shaw 1988) because in the latter case the impact on the dynamics
is typically more immediately discernable. We now explore such bifurcations
in further detail.

Local Bifurcations

Local bifurcations concern the asymptotic stability of fixed point and other
attractors. Consider the system governed by,

dZ
dt

= AZ + B, (23)

where A is a matrix and B a vector. This is the matrix form of (22).
Solutions in the case where B is zero are of the form

Z (t) = Z (0) etA. (24)

Hence the origin is a fixed point and the eigenvalues Λ of A determine the
nature of the neighboring flow. Solutions in the case B �= 0 are essentially the
same after a suitable translation of the axes. The eigenvalues Λ = {λ1, λ2}
determine five possible types of fixed point systems (Fig. 8).

Figure 8(a) shows a typical flow when both eigenvalues are real and either
both positive or both negative. Orbits diverge from (λ1 > 0, λ2 > 0) or
converge to (λ1 < 0, λ2 < 0) the origin. In the former case, the fixed point is
called a source and in the latter, a sink or node . We have already met the
case (Fig. 8b) where the eigenvalues are real and opposite in sign (λ1 > 0, λ2 <
0) for the saddle point discussed above with regards to basin boundaries.
When the eigenvalues are complex, they occur as complex conjugate pairs. The
imaginary component endows the time series with an oscillatory component
evident as spiraling orbits (Fig. 8c). When the real part of each eigenvalue is
negative, these oscillations are damped and the fixed point is a spiral inset .
Otherwise it is a spiral outset .

(a) (b) (c)

Fig. 8. Orbits for fixed points of the linear system (26). (a) Source or sink,
(b) saddle, and (c) Spiral inset or outset
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Whilst (26) is a simple linear system, the Hartman-Grobman theorem
states that, for a very general class5 of nonlinear systems Fa, the flow within
the neighborhood of a fixed point can be approximated by a suitable linear
system with the form of (23). Hence these fixed points – and their stability –
play an important role in many dynamical systems.

Note that the eigenvalues of A determine the divergence or convergence
of nearby orbits. These are hence the “characteristic exponents” referred to
in Sect. 2.1. In the setting of fixed points these are simply referred to as the
eigenvalues of A. They are often called Floquet exponents in the vicinity
of a limit cycle and Lyapunov exponents for a chaotic attractor. Following
Eckmann and Ruelle (1984), we will simply refer to them as characteristic
exponents, whatever the nature of the invariant set to which they refer.

Local bifurcations hence deal with the zero crossings of the characteristic
exponents of attractors. The underlying set (typically) remains invariant, but
loses its asymptotic stability. Just as a zero crossing can transform a fixed
point from an attracting node into a saddle, the same also applies for both
limit cycles and chaotic attractors. We now briefly discuss some of the canon-
ical local bifurcations. In sect. 3 we will see how they relate to fundamental
neuronal events such as firing and bursting.

Canonical Local Bifurcations

Pitchfork bifurcations occur when a single fixed point changes its (asymp-
totic) stability whilst also splitting off extra fixed points. In a supercritical
pitchfork bifurcation a single stable fixed point attractor loses its stability
as a parameter crosses its threshold and two new stable fixed points appear
(Fig. 9a). The evolution equation,

dz

dt
= z

(
a− z2

)
, (25)

z

a

z

a

(b)(a)

Fig. 9. Pitchfork bifurcation diagram (a) Supercriticial, and (b) subcritical. Solid
line denotes fixed point attractor. Dashed lines denote fixed point repellors

5 As long as the derivative of Fa at the fixed point is not zero – i.e. the fixed point
is hyperbolic.



Neuronal Dynamics and Brain Connectivity 21

yields this type of bifurcation at a = 0. Note that for a < 0, we have
dz/dt < 0 when z > 0 and dz/dt > 0 when z < 0. Hence all initial conditions
lead to the fixed point z = 0. Similar calculations show that when A crosses
zero (a > 0) the origin becomes a source and fixed point attractors exist
as ±√a.

On the other hand the equation,

dz

dt
= z

(
a+ z2

)
, (26)

yields a subcritical pitchfork bifurcation . In this case, the fixed point at-
tractors at z = 0 also loses its stability as A crosses zero from below. However,
two fixed point repellors exist at ±√−a when a < 0 (Fig. 9b). Looking at
the situation alternatively, one could say that the fixed point attractor at
z = 0 loses its stability when two fixed point repellors collide with it at a = 0.
However, in both cases, the fixed point remains an invariant of the system
(i.e. dz/dt = 0) for all a.

In a transcritical bifurcation , there are two equilibrium points which
collide and exchange their stability at the bifurcation point. For example, the
evolution equation,

dz

dt
= z (a− z) , (27)

has two equilibrium points, the origin x = 0 and x = a. When a < 0, the
origin is an attractor but becomes a repellor as a crosses zero (Fig 10).

A Hopf bifurcation (Fig. 11) is much like a pitchfork bifurcation with
the exception that it involves a limit cycle attractor. Hopf bifurcations play
an important role in neuronal models as they describe the onset of both sub-
threshold membrane oscillations and cell firing. Consider the equation,

dz

dt
= z

(
a+ b |z|2

)
, (28)

where a is the bifurcation parameter and both z and b are complex numbers.
When the real part of b is negative then the system exhibits a supercritical
Hopf bifurcation (Fig. 11a,c–f). For a < 0 there exists a single stable fixed
point attractor (a spiral inset). When a > 0 this fixed point is an unstable
spiral outset and there also exists a stable limit cycle.

Fig. 10. Transcritical bifurcation. Solid line denotes fixed point attractor. Dashed
lines denote fixed point repellors. Arrows show representative vector field
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Fig. 11. Hopf bifurcation (a) Supercriticial, and (b) subcritical. Black line denotes
fixed point attractor (solid) and repellor (dashed). Blue lines denote the maxima and
minima of the limit cycle attractor (panel a; solid) and repellor (panel b; dashed).
Time series (c) and phase space portrait (d) of the fixed point attractor (e) in the
supercritical system (i.e. when a< 0 and real(b)< 0). Time series and phase space
portrait (f) of the limit cycle attractor (black) in the supercritical system (i.e. when
a>0 and real(b)<0). Red orbits show transients

Conversely, when the real part of b is positive then the system exhibits
a subcritical Hopf bifurcation (Fig. 11b). For a < 0 there exists a single
stable fixed point attractor (a spiral inset) and an unstable periodic orbit.
Hence the phase space is partitioned: those initial conditions within the peri-
odic orbit spiral in towards the fixed point; those initial conditions outside of
the limit cycle diverge towards infinity. When a > 0, there exists an unstable
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fixed point (a spiral outset). Hence all initial conditions (except z = 0) diverge
towards infinity.

A subcritical Hopf bifurcation often occurs in the context of bistability,
when there co-exists a large-amplitude limit cycle attractor. Above the bi-
furcation point a > 0, orbits diverge outwards from the fixed point repellor
to this attractor. Below the bifurcation point a < 0, the limit cycle repellor
(dashed blue curve in Fig. 11b) separates the basin boundaries of the fixed
point attractor at the origin and the large-amplitude limit cycle attractor.

In summary, Hopf bifurcations are of very high importance for an under-
standing of neural activity as they explain the onset and nature of oscillatory
behaviour. Supercritical Hopf bifurcations lead to the appearance of small am-
plitude periodic oscillations. Subcritical Hopf bifurcations result immediately
in a large amplitude limit cycle.

Period-doubling bifurcations typically occur as a sequence of events
subsequent to a Hopf bifurcation, following a further increase in the bifur-
cation parameter. The main panel in Fig. 7 shows period-doubling bifurca-
tions in the logistic map between parameter values a ∼3.0 and the onset of
chaos at a ∼3.5. The first period-doubling bifurcation (i.e. from a simple pe-
riodic oscillation to a period-2 oscillation) corresponds to the “excitation” of
the limit cycle attractor into an invariant torus around which the attractor
winds. Subsequent period-doubling bifurcations increase the number of times
the attractor twists around the short axis of the torus every time it makes
one complete revolution around the long axis.

A fold or saddle-node is an interesting and illustrative bifurcation. It
occurs when a stable and unstable fixed point collide (see Fig. 12). Consider
the equation,

dz

dt
= a+ z2. (29)

For a < 0 there are two fixed points, an attractor at −√−a and a repellor
at +

√−a. As a approaches zero from below, these two fixed points hence
approach each other and collide at a = 0. At this point, the fixed point, at
z = 0, is attracting for z < 0 and repelling for z > 0. Hence it is neither an
attractor nor a repellor, but rather a special (“non-hyperbolic”) fixed point
called a “saddle-node”. The saddle node is classified as a local bifurcation
because the two fixed points lose their asymptotic stability when they collide
at a = 0. However, at a > 0 there is no fixed point – i.e. there is also a loss of
structural stability. Hence it also meets the criteria for a global bifurcation.

A recently described phenomena is the blowout bifurcation
(Ott & Sommerer 1994). Suppose we have two (n-dimensional) neural systems
z1(t) and z2(t) evolving according to (11), each with chaotic dynamics. In the
instance where there is no coupling (c = 0), the system as a whole explores
the full phase space Rn×Rn

. . When the system is strongly coupled (c > ck for
some threshold coupling strength ck), then the two systems will synchronize
(Fujisaka & Yamada 1983, Pecora & Carroll 1990). In this case, the dynamics
are confined to the ‘hyper-diagonal’ – that is, the space z1(t) = z2(t) of half
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the dimension of the full phase space. If the coupling strength c falls below ck
the dynamics of the two-cell system “blowout” from the low dimensional state
of synchronization, into the full state space, as shown in Fig. 13. Alternatively,
it can be said that when c > ck the state of synchronization has asymptotic
stability. When c crosses ck from above, the system loses stability in the di-
rection transverse to the hyper-diagonal (Ashwin et al. 1996). Looking at the
blowout bifurcation as c crosses ck from below (i.e. as the coupling strength is
increased) we see that – through the process of synchronization - the dynam-
ics of the system collapse onto a (relatively) low dimensional manifold. That
is, synchronization constrains the number of degrees of freedom of a spatially
distributed dynamical system.

Global Bifurcations

Whereas local bifurcations deal with the loss of asymptotic stability of fixed
points - and are hence concerned with the dynamics in local neighborhoods of
attractors - global bifurcations can only be understood by studying the prop-
erties of the vector field outside of such neighborhoods. They occur when an
attractor loses structural stability. Their nature depends upon the “skeleton”
of the phase space – the nullclines, homoclines and heteroclines.

As stated above, a saddle-node bifurcation does have the properties of
both a local and a global bifurcation in that there is no fixed point for a > 0.
Looking at Fig. 12, we see that there are two fixed points when a < 0, an
attractor at −√−a and a repellor at +

√−a. The latter forms the boundary
of the basin for the former. Hence the bifurcation occurs when the attractor
collides with its basin boundary. This collision illustrates the principles of more
complex global bifurcations. An example, when a chaotic attractor collides
with its fractal basin boundary was termed a crisis bifurcation when it
was first described (Celso et al. 1982). More specifically, a boundary crisis
occurs when the collision is between an attractor and a boundary, whereas an
interior crisis results from the collision between an attractor and a saddle.
The former results in the sudden loss of an attractor and its basin, whereas
the latter typically leads to the sudden increase in the extent of the attractor.

z

a

Fig. 12. Saddle-node bifurcation. Solid line denotes fixed point attractor. Dashed
line denote fixed point repellors. Arrows show representative vector field
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Fig. 13. Blowout bifurcation in system of two coupled logistic maps. (a) When c <
ck the system explores R2. (b) When c > ck the system contracts onto the diagonal
after a brief transient. Arrow points to initial condition. A “blowout bifurcation
corresponds to a transition from (b) to (a). Adapted from Breakspear (2004)

Other global bifurcations involve intersections of homoclinic or heteroclinic
orbits either with themselves, or with fixed point attractors. A fascinating
example involves the birth of a limit cycle out of a saddle-node bifurcation on
a homocline! This obscure-sounding event actually lies at the heart of neuronal
firing and we discuss it in more depth in the next section.

3 A Taxonomy of Neuronal Models

Neurons are traditionally seen as the building blocks of the brain. It hence
makes sense to gain some insight into their dynamics – and functional inter-
actions – at the microscopic scale at which they reside before moving into the
larger scales, which we do in Sect. 4.

The “foundation stone” of microscopic models are the conductance-based
Hodgkin-Huxley model and its derivatives. A full description of these is pro-
vided by a number of authors (e.g. Izhikevich 2005, Gerstner & Kistler 2002,
Guevara 2003). Our objective here will be to quickly move from the full model
to a two dimensional approximation and then explicate the onset of neuronal
firing as a dynamical bifurcation.

3.1 The McCulloch-Pitts System

Before we do this, for the sake of theoretical and historical completeness, we
briefly discuss the McCulloch-Pitts model (1943),

z(xi, t+ 1) = S

⎛
⎝∑

j

hijz(xj , t)− εi

⎞
⎠ , (30)

where hij is the connectivity matrix, ε the “threshold” of neuron i and
S is the step function. Neural inputs to a given unit are summed and then
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converted into a binary output if they exceed the threshold εi. The resulting
output is iteratively fed back into the network. Hence the McCulloch-Pitts
model is discrete in both space and time, and as such is an example of a cou-
pled difference map (5). Considered together with the use of the step function
as representing neural “activation”, this model is perhaps as abstract as pos-
sible. Nonetheless, McCulloch and Pitts proved that the system was capable
of remarkably general computational feats. However, it is probably fair to say
that this model finds its place more appropriately in the lineage of artificial
neural networks than in the understanding of the dynamics of biological sys-
tems. Hence, McCulloch-Pitts systems form the basis for the two-layer “per-
ceptrons” of Rosenblatt (1958) and the symmetric Hopfield (1982) networks.
These extend the complexity and computational properties of McCulloch-
Pitts systems to permit object categorization, content-addressable memory
(i.e. the system correctly yields an entire memory from any subpart of suffi-
cient size) and learning. For example, Sejnowski and Rosenberg (1987) showed
that such systems, if constructed with three interconnected layers, are able to
learn language pronunciation.

An overview of related advances is provided by Ermentrout (1998). For a
fascinating history of this model and the life of Walter Pitts, see Smalheiser
(2000).

3.2 Biophysical Models of the Neuron:
The Hodgkin-Huxley Model

Whereas the McCulloch-Pitts system was constructed to embody only the
very general network properties of neural systems and to directly address com-
putational issues, the Hodgkin Huxley model aims to incorporate the principal
neurobiological properties of a neuron in order to understand phenomena such
as the action potential. Computational properties of these neurons are then
investigated.

The paper of Hodgkin and Huxley (1952) is remarkable in that it casts
detailed empirical investigations of the physiological properties of the squid
axon into a dynamical systems framework. The Hodgkin-Huxley model is a set
of conductance-based coupled ordinary differential equations6 of the form of
equation (8), incorporating sodium (Na), potassium (K) and chloride ion flows
through their respective channels. Chloride channel conductances are static
(not voltage dependent) and hence referred to as leaky (L). Hence we have,

C
dV (t)
dt

= gNafNa (V (t))× (V (t)− VNa) + gKfK (V (t))× (V (t)− VK)

+ gL × (V (t)− VL) + I, (31)

where c = 1 μF/cm2 is the membrane capacitance, I is an applied
transmembrane current and Vion are the respective Nernst potentials. The
6 Here we depart slightly from the traditional nomenclature in order to simplify

the mathematical description of the model.
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coefficients gion are the maximum ion flows in the case where all the chan-
nels of that ion species are open. The Na and K ion flows reflect the state of
“activation” channels, which open as membrane voltage increases and “inac-
tivation” channels, which close. These are given by,

fNa(V ) = m(V )Mh(V )H

fK(V ) = n(V )N (32)

where m and n are activation channels for Na and K, and h is the single
inactivation channel for Na. The exponents are determined by the number of
such classes of channel M = 3, H = 1 and N = 4. Hence (31) reflects the
combined flow of all ion species as they are “pushed through” open channels
according to the gradient between the membrane and Nernst potentials.

The kinetics of activation and inactivation channels are determined by
differential equations of the form,

dm(V )
dt

=
(m∞ (V )−m (V ))

τm (V )
(33)

where m∞(V ) is the fraction of channels open if the voltage is kept
constant and τm(V ) is a rate constant. These are determined empirically.
These equations embody the exponential relaxation of channels towards their
(voltage-dependent) steady states m∞(V ) consequent to a transient change in
membrane potential. The kinetics of h and n are of the same form, although
their rate constants τ are obviously distinct. The form of m∞(V ) – the steady
state configurations of ion channel populations as a function of membrane
potentials – is sigmoid shaped of the form,

m∞(V ) =
mmax

1 + e(Vm−V )/σ
. (34)

where Vm is the threshold potential for the ion channel and σ introduces
the variance of this threshold. Figure 14 summarizes membrane dynamics in
the Hodgkin-Huxley model.

The Hodgkin-Huxley model is a conductance approach to the dynamics
of neural activity, reflecting ion flows through voltage- and time-dependent
transmembrane channels. It represents a beautiful juncture of empirical and
mathematical analysis. It not only offers an explanation of neural firing, but
it quantitatively captures the complex shape of a neural depolarization.

3.3 Dimension Reductions of the Hodgkin-Huxley Model

The Hodgkin-Huxley model is able to explain the chief properties and many
of the nuances of neuronal depolarization, including the threshold effect and
the post-depolarization refractory period with quantitative accuracy. How-
ever, much of the qualitative (and some of the quantitative) behaviour can be
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Fig. 14. Transmembrane currents in the Hodgkin-Huxley model. (a) Three ex-
amples of the sigmoid relationship between transmembrane potential V and steady
state conductances m.. Solid and dotdashed lines denote “activation” channels (such
as m and n) whereas the dashed line denotes an inactivation channel (such as h)
(b) Exponential “relaxation” of transmembrane conductance according to (33), fol-
lowing a discrete change in the transmembrane potential (lower line). Conductance
m ‘relaxes’ from m.(V1) to m.(V2)

captured by greatly reduced approximations. Amongst other things, first pass
approximations ignore the voltage-dependent nature of τm and make further
simplifications, but are still able to capture many of the important dynam-
ics, such as neural depolarization. We now describe these, following the basic
approach of Izhikevich (2005).

Morris-Lecar and Related ‘Planar’ Simplifications

An essential ingredient of a neural firing is a fast depolarizing current such
as Na+ – which is turned on subsequent to a synaptic current - and a slow
repolarizing current such as K+ - which restores the resting membrane poten-
tial. These in turn are facilitated by the existence of slow and fast ion channels
of the respective species, τm(V ) << τn(V ). The depolarizing current repre-
sents positive feedback (i.e. is self promoting) and, if a threshold is reached
before a sufficient number of slower K+ channels are open, the cell depolarizes.
By contrast, the Na+ inactivation channel plays less of a “brute force” role
and can be ignored. The requirement of a “fast” depolarizing current and a
slow repolarizing current can be met in a two dimensional (“planar”) system,

dV

dt
= gNam∞ (V )× (V − VNa) + gKn (V )× (V − VK) + gL × (V − VL) + I,

(35)



Neuronal Dynamics and Brain Connectivity 29

where the dynamics of the slow repolarizing K+ is given by

dn

dt
=

(n∞ − n)
τn

(36)

and the steady state currents given by,

n∞(V ) =
nmax

1 + e(Vn−V )/σ
, and m∞(V ) =

mmax

1 + e(Vm−V )/σ
,

In other words, fast sodium channels instantaneously assume their steady
state values following a change in membrane potential, hence adapting in a
step-wise manner to a step-like change in membrane potential. Hence there
is no differential equation for the Na+ activation channels, m. This is exactly
the form of the Morris-Lecar model, with the exception of a substitution of
Na+ currents with Ca++.

The system (35)–(36) is known as planar, as its phase space is the two-
dimensional plane spanned by V (the abscissa) and n (the ordinate). To un-
derstand the dynamics we calculate the nullclines for the dynamical variables
V and n. The V -nullcline, obtained by substituting dV /dt = 0 into (35) is,

n =
I − gNam∞ (V )× (V − VNa)− gL × (V − VL)

gK × (V − VK)
. (37)

Similarly, the n-nullcline, obtained by setting dn/dt = 0 is,

n =
nmax

1 + e(Vn−V )/σ
, (38)

These nullclines for the parameter values given in Table 1 and synap-
tic current I = 0 are plotted in Fig. 15. We see that there are three null-
clines crossings corresponding to three fixed points, {− 66, 0}, {− 56, 0} and
{ − 25, 0.5}. Stability analysis shows that these fixed points are a stable focus,
saddle point and spiral outset respectively (Izhikevich 2005). Hence the first
fixed point first represents the only stable (steady state) solution.

Figure 15(b) shows two heteroclines – that is, outsets of the saddle point
that become insets of the stable node. A long heterocline (magenta) tra-
verses the nullclines before reaching the node whereas the shorter one (yel-
low) is able to track in parallel to the n-nullcline directly between the fixed
points.

Table 1. Parameter values for the planar system (37)–(38) and figures 15–19

Capacitance, C = 1;
Synaptic current (default), I = 0;
Leaky channels: VL = −80; gL = 8;
Sodium channels: VNa = 60; gNa = 20;Vm = −20;σm = 15;mmax = 1;

τm = 1;
Potassium channels:

“high threshold” VK = −90; gK = 10; Vn = −25; σn = 5; nmax = 1; τn = 1;
“low threshold” VK = −78; gK = 10; Vn = −45; σn = 5; nmax = 1; τn = 1;
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In Fig. 16 is shown representative orbits of this system. Three “subthresh-
old” (green) and three “suprathreshold” (red) orbits are shown. In the latter
case, the neuron depolarizes before returning to its resting state. It should
be noted that this threshold depends not only on the initial membrane po-
tential V but also the initial K+ membrane conductance. The separatrix be-
tween sub- and supra-threshold is constituted by the inset of the saddle point
(not shown).

Whether the initial condition is sub- or supra-threshold, this system only
has a single steady state solution in the current parameter regime. Hence, after
at most one depolarization, it enters a quiescent state. Thereafter a discrete
synaptic input, such as due to an excitatory post-synaptic potential (EPSP),
will trigger a further discharge only if it is of sufficient strength to ‘knock’ the
system over the inset of the saddle point. This will hence determine whether
the resulting neural response is of the green or red waveform as in Fig. 16.
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Fig. 16. (a) Representative sub- (green) and supra-threshold orbits (red) and (b)
their temporal evolution



Neuronal Dynamics and Brain Connectivity 31

Bifurcations and Neuronal Firing in Planar Models

Saddle-node bifurcation

A further examination of the equation for the V -nullcline (37) shows that
the synaptic current is a purely additive term. It hence acts to translate this
nullcline in the vertical direction, with no influence on its shape and no in-
fluence on the n-nullcline. In Fig. 17, a close-up of the nullclines is shown for
values of I = 0, 2, 4.51 and 6. As I is increased from 0 to 2 (dot-dashed),
we see an upward shift of the V -nullcline so that the saddle and node fixed
points are closer together in phase space. At I = 4.5 (dashed), the nullclines
are tangent and the fixed points have hence collided. At I = 6 (dotted) there
are no nullcline intersections: hence their collision has led to their mutual
annihilation!

This is exactly the “saddle-node” bifurcation defined at Fig. 12. In the
present setting, the synaptic input I functions as the bifurcation parameter.
However, in addition to the structure of Fig. 12, an additional “global” feature
of the phase space in the current system requires consideration. When the fixed
points collide, the short heterocline is abolished, but the long heterocline7

remains (Fig. 17b). Indeed even when I > 4.51 this orbit is still an invariant
of the dynamics. However, with no fixed point along its domain, it is now a
continuously looping limit cycle.

Figure 18 shows the limit cycle attractor (red) and its temporal dynam-
ics for I = 4.75 (top row) and I = 6 (bottom row). Note that although the
phase space portraits look similar, the frequency of the dynamics increases
substantially with the increase in synaptic current.

This can be understood as a consequence of the bifurcation. Just after the
bifurcation, although the nullclines do not intersect, the limit cycle must pass
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Fig. 17. Saddle-node bifurcation in the planar system. (a) Nullclines near fixed
points for I = 0, 2, 4.51, 6. Red circle denotes “saddle-node” fixed point (b) Homo-
clinic orbit for the system when I = 4.51

7 In fact, as there exists only a single fixed point, this orbit is more accurately now
a “homocline”.
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Fig. 18. Limit cycle dynamics for I = 4.75 (top row) and I = 6 (bottom row)

through a very narrow gap between them. The vector field in this gap bears
the “memory” of the fixed points – namely it is very slow. Hence the orbits
in this vicinity are near-stationary, as can be seen in the time domain. As I
increases this influence diminishes and the frequency hence increases. Note
that in both cases, however, there is virtually no change in the morphology
of the depolarization, which is not related to this phenomenon.

Hopf bifurcation

Through a slight change in the parameters relating to the potassium channels,
however, the transition from steady state (fixed point) to periodic (limit cycle)
dynamics can occur through a different type of bifurcation. In the above
scenario the potassium channels had values consistent with a “high thresh-
old”, namely the mean threshold potential of the K+ potassium channels
Vn = −25mV. Lowering Vn to −45mV and changing the Nernst potential
to VK = −78mV yields the phase space portraits and time series plotted in
Fig. 19.

Firstly, there is only one interception of the nullclines for these parameter
values, and hence only one fixed point. For I < 19 this is a spiral inset,
hence yielding damped oscillations (panels a,b). For I >19 the fixed point has
undergone a (supercritical) Hopf bifurcation, hence yielding a small amplitude
limit cycle, coinciding with sustained but subthreshold voltage oscillations.
For I∼26, the amplitude of these oscillations grows smoothly but rapidly so
that with I = 27 the system exhibits sustained suprathreshold oscillations.
However, note that the damped, subthreshold and suprathreshold oscillations
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Fig. 19. Phase portrait and time series of the planar model in the “low K+

threshold” case for I = 18.5 (top row), I = 21 (middle row) and I = 27 (bottom row)

all have approximately the same frequency. This contrasts with the saddle-
node scenario.

We conclude with the two different bifurcation sets, Fig. 20, corresponding
to distinct routes to sustained oscillations in this neuronal model. Panel (a)
shows the saddle-node bifurcation, yielding the sudden onset of suprathreshold
oscillations at I∼4.5 mA. Panel (b) depicts the Hopf bifurcation with the
gradual onset of subthreshold oscillations at I∼19 mA, growing rapidly to
suprathreshold with I∼26 mA.

In the presence of discrete synaptic inputs, the saddle-node system will
generate an all-or-nothing depolarization – or chain of depolarizations – if



34 Michael Breakspear and Viktor K Jirsa

0 1 2 3 4 5 6 7 8
-80

-60

-40

-20

0

20

V
tx e

)
V

m(

I (mA)

V
txe

I (mA)

(b) (a)

0 5 10 15 20 25 30 35 40
-80

-60

-40

-20

0

Fig. 20. Saddle-node (a) and (b) Hopf bifurcation diagrams for the planar neural
system with high and low K+ channel thresholds, respectively

the input is sufficiently large. The frequency of any such chain of discharges
increases with the magnitude of the synaptic input. On the other hand, the
Hopf route will generate either damped, sub-threshold oscillations or a chain
of depolarizations, although the frequency of these will be more-or-less con-
stant. In the presence of discrete synaptic inputs, the saddle-node system will
generate an all-or-nothing depolarization – or chain of depolarizations – if the
input is sufficiently large. The frequency of any such chain of discharges in-
creases with the magnitude of the synaptic input. On the other hand, the Hopf
route will generate either damped, sub-threshold oscillations or a chain of de-
polarizations, although the frequency of these will be more-or-less constant.
As discussed in Izhikevich (2005) these two distinct neuronal responses to ap-
plied (or synaptic) currents were first observed empirically by Hodgkin in the
1940’s. Specifically, he classified neurons that showed a frequency-dependence
on the size of the synaptic current (i.e. Hopf-like responses) as Type I neurons.
In particular, for small currents, these neurons begin to fire at very slow fre-
quencies. In contrast, those neurons that start firing at relatively rapid rates
following a supra-threshold input – and which show very little further increases
in frequency – were classified as Type II neurons. The squid axon described
by the original Hodgkin-Huxley model (1952) is a representative example of
a neuron with type II behavior.

The FitzHugh-Nagumo Model

As we have seen above, the shape and intersections of the nullclines plays the
determining role in the behavior and bifurcations of the dynamics. In fact,
all that is required to reproduce the qualitative nature of the dynamics is
the cubic-like shape of the V -nullcline and the presence of an n-nullcline with
the appropriate intersections. Mathematically, these requirements can be met
with the much simpler algebraic equations (FitzHugh 1961, Nagumo et al.
1962),

dx

dt
= x (a− x) (x− 1)− y + I,

dy

dt
= bx− cy, (39)



Neuronal Dynamics and Brain Connectivity 35

which have the simple nullclines,

y = x (a− x) (x− 1) + I, y = b/cx, (40)

In Fig. 21 is illustrated a phase portrait and time series for this system fol-
lowing a super-critical Hopf bifurcation of the single fixed point. This system -
and variations of it - are known as the FitzHugh-Nagumo model.

This system hence allows a closed-form analysis, with relatively simple
algebraic forms, of the same qualitative phenomena as the planar model of
Hodgkin-Huxley dynamics.

The Hindmarsh-Rose Model

The Hindmarsh-Rose model is the last in the “microscopic” domain for consid-
eration. It continues the logic of the FitzHugh Nagumo model – namely that it
captures the qualitative essence of neuronal firing through a simple algebraic
form of the evolution equations (and hence of the nullclines). However, rather
than further reducing the Hodgkin-Huxley model, the Hindmarsh-Rose (1984)
model introduces an extra property. The system is given by,

dx

dt
= y − ax3 + by2 − z + I, (41)

dy

dt
= c− dx2 − y, (42)

dz

dt
= r [s (x− x0)− z] , (43)

When r = 0, the third variable plays no role and the system reduces to a
variation of a FitzHugh Nagumo model – that is, a two dimensional spiking
neuron with a simple algebraic form: An example is given in Fig. 22.

However, setting r > 0 but small has the effect of introducing the third
variable into the dynamics. Notice that z only enters into the first two
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Fig. 21. Phase portrait and time series for the Fitz-Hugh-Nagumo model following
a Hopf bifurcation. Parameters, b= 0.01; c = 0.02; a = −0.1; I= 0.1 as per Izhikevich
(2005). Note the qualitative similarity to Fig. 19(e), (f)
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Fig. 22. Phase portrait and time series for the Hindmarsh-Rose model. Parameters,
I = 3.2; a = 1.0; b = 3.0; c = 1.0; d = 5.0; s = 4.0; x0 = −1.60; r = 0

equations as an additive term – the same as I although negative in size.
Also, setting r small has the effect of ensuring that z evolves on an intrinsi-
cally slower time scale than x and y. Together, these constructions have the
effect of ensuring that z acts like a slowly varying synaptic current, albeit one
which, due to the x term in (45), is also state dependent. Hence as z becomes
more negative, it acts like the bifurcation parameter in the FitzHugh Nagumo
model and precipitates – via a subcritical Hopf bifurcation - a run of depo-
larizations. However, due to the x term in (43), these depolarisations have
the (relatively slow) effect of increasing z. Eventually the depolarizations are
terminated as the reduced effective contribution of z to total synaptic cur-
rent restabilizes the fixed point via a saddle node bifurcation. Hence the sys-
tem, as shown in Fig. 23, exhibits a burst of spikes interspersed by quiescent
phases. Indeed with r = 0.006, the system exhibits this pattern in a chaotic
fashion.

Note that, as discussed, the fast spikes are far more evident in the dynamics
of x whereas the dynamics of z are more sensitive to the bursts.
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Fig. 23. Phase portrait (a) and time series (b,c) for the Hindmarsh-Rose model.
Parameters, I = 3.2; a = 1.0; b = 3.0; c = 1.0; d = 5.0; s = 4.0; x0 = −1.60; r=0.006
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Such burst-spiking is of particular interest to classes of thalamic neurons
and many cortical neurons during slow-wave sleep, whereby this activity is
observed synchronously across the scalp (McCormick & Bal 1997). Interac-
tions between such systems can be introduced by coupling of one of the fast
variables, such as

dx1,2

dt
= y1,2 − ax3

1,2 + by2
1,2 − z1,2 + I + C (x2,1 − x1,2) , (44)

where C is the coupling parameter. Two such simulations are shown in
Fig. 24, where blue and green time series denote each system. In the top row,
with c = 0.35, the bursts are coincident but the spikes are often discordant.
However with c = 0.5, the spikes are also synchronized. This interesting phe-
nomenon, studied in detail by Dhamala et al. (2004) of burst and then spike
synchrony, has been observed experimentally.

3.4 Coupled Chaos in a Mesoscopic Model

The Hindmarsh-Rose model introduces an extra term, incorporating a slow
calcium current, into a planar model of an excitable neuron. An alternative
extension of planar models is to introduce a single variable representing a
feedback from an inhibitory neuron Z. The inhibitory and excitatory neurons
interact via synaptic currents induced through their mutual connectivity. Such
a model takes the form (e.g. Larter et al. 1999),

dV

dt
= gNam∞ (V )× (V − VNa) + gKn (V )× (V − VK) + gL × (V − VL)

+ αneI + αieF (Z) ,
dn

dt
=

(n∞ − n)
τn

,
dZ

dt
= αeiG (V ) + αniI. (45)

Local connectivity is parameterized by the coupling parameters α between
inhibitory Z, and excitatory V cells and via input from the external noise
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Fig. 24. Coupled Hindmarsh-Rose systems with c = 0.35 (top row) and c = 0.5
(bottom row)
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Fig. 25. Generalized chaotic synchronization in a mesoscopic neuronal model. (a)
Chaotic attractor. The orbits are organized around a manifold that is homoclinic to
the unstable spiral (b) Time series of excitatory membrane potentials in two coupled
systems showing apparent synchronization. (c) Their co-evolution shows a smooth
manifold slightly off the state of identical synchrony V1 = V2

term I. The functions F and G model the feedback between the inhibitory
and excitatory cells. Within physiologically realistic parameter values, such
a system can exhibits chaotic dynamics, as shown in Fig 25 (a), organized
around a homoclinic orbit.

Synaptic coupling between the excitatory neurons in two such populations
of cells allows construction of a mesoscopic neuronal model – a system on
the intermediate scales between single neurons and the large scale systems
considered in the following section. An example of synchronization between
two such subsystems is illustrated in Fig. 25 (b-c), where a single parameter
in each system has been set with a small mismatch (all other parameters are
equal). Whilst the time series appear identical (panel b), a plot of the values
of V1 versus V2 (panel c) reveals that their co-evolution, whilst close to the
diagonal is nonetheless confined to a nearby smooth manifold. This form of
non-identical synchronization is known as generalized chaotic synchronization
(Afraimovich et al. 1986, Rulkov et al. 1995). Further details and examples
of more complex behaviors – such as intermittency, scale-free dynamics and
travelling waves - can be found in Breakspear et al. (2003, 2005).

This concludes our survey of basic, small-scale neural systems. We hope to
have illustrated the power of combining analysis and geometry in elucidating
some of the fundamental properties of neurons. We now turn to macroscopic
models.
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4 From Small to Large Scale Models

Large scale neural network models are thought to be involved in the implemen-
tation of cognitive function of the brain (Mesulam 1990; Bressler 1995, 2002,
2003; Bullmore et al. 1996; Mountcastle 1998; McIntosh 2000; Bressler & Kelso
2001; Jirsa 2004; Bressler & Tognoli 2006; Bressler & McIntosh 2007). To
understand the neural basis of cognition, theoretical and analytical means
must be developed which are specifically targeted to the properties of large
scale network dynamics. Such theoretical understanding will also guide the
interpretation of the enormous data sets obtained from non-invasive brain
imaging. The functional expression of a cognitive operation seems to require
the co-activation of certain subnetworks. Such co-activation does not necessar-
ily require a simultaneous activation of all network components, but may be
represented in a characteristic spatio-temporal network dynamics with both
simultaneous and sequential activations. The properties of the network dy-
namics will crucially depend on the interconnectivity of the network compo-
nents and their dynamics (Sporns 2002; Sporns & Tononi 2002, 2007; Jirsa
2004; Beggs et al. 2007). The goal of any large-scale description of neural
dynamics is to reconstruct all relevant spatiotemporal dynamics of the neu-
ral system while preserving the mechanisms which give rise to the observed
dynamics. Large scale models have the implicit assumption to be based upon
neurocomputational units, which are more macroscopic than single neurons.
This approach is to be juxtaposed with the high-dimensional computation of
the full network composed of microscopic complex neurons with dendritic and
axonal ion channel dynamics, as well as pre- and postsynaptic processes. Large
scale models also bear the promise that they provide insight into the under-
lying dynamics-generating mechanisms of the network due to their reduced
complexity. Finally, large scale models are easier and less time-consuming to
be solved computationally. The following sections discuss the various schools
of thought in large scale network modeling and characterize these from the
perspective of anatomical and functional connectivity, the latter identified
with the dynamics of the network.

4.1 Non-reducible Dynamics of Neuronal Ensembles

A large scale model is composed of microscopic units or atoms which do
not represent individual neurons, but rather complexes, also referred to as
neural masses (Beurle 1956), capturing the non-reducible dynamics of a
set of neurons. Such complexes may either be localized in physical space
and defined in a volume element at a location x, or distributed over phys-
ical space and are defined functionally (e.g. in K-sets as discussed below
(Freeman 1975, 1992)). Though the former is more common, in practice the
two variants often coincide due to stronger local connectivity and the re-
sulting co-activations (“what wires together, fires together”). Unlike many
subcortical structures, in which neurons are packed into nuclei, the cortical
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sheet appears at first sight as a dense homogeneous medium with no obvi-
ous demarcation of its components. Corticocortical columns typically con-
sist of 5,000 to 10,000 neurons, macrocolumns contain 105 to 106 neurons
(Nunez 1995). Yet, there are a number of anatomical tracing studies which
indicate mutual anatomical and functional parcellation (Szentagothai 1975;
Mountcastle 1978). For instance, macrocolumns form functional units in sen-
sory areas with homogeneous tuning properties inside the unit, but sharp
differences amongst neighboring units (Mountcastle 1978). For our purposes,
the neural mass is a highly connected set of neurons, sharing common
input and output pathways and specialized low-level function. The activ-
ity of a neural mass (also known as neural mass action) in a large
scale model is described by an m-dimensional vector variable Ψ(x, t) =
(Ψ1(x, t),Ψ2(x, t), · · · ,Ψm(x, t)) at a discrete location x in physical space
and a point t in time. The variable Ψ(x,t) is also referred to as a neu-
ral population, neural assembly or neural ensemble activity . If the
distance between neighboring neural masses is infinitesimally small, then
the physical space x is continuous and Ψ(x,t) is referred to as a neural
field . Since the neural mass action is physically generated by the N neurons
within the neural mass, there will be a mapping Φ : Z(x, t) → Ψ(x, t),
which unambiguously relates the high-dimensional neuron activity Z(x, t) =
(Z1(x, t), Z2(x, t), · · · , ZN (x, t)) to the neural mass action Ψ(x,t). Zi(t) is the
n-dimensional state vector of the i-th neuron with i= 1, . . .,N. For concrete-
ness, a neural mass may contain N=10,000 neurons with n=2 in case of a
FitzHugh-Nagumo neuron model. The situation is shown in the cartoon on
the bottom of Fig. 26. Here a cortical sheet is shown which is decomposed
into color-coded patches representing neural masses. Within a neural mass the
local connectivity of a single neuron is illustrated through the density of its
connections (red squares) which decreases with increasing distance. The par-
tial overlap of the neural masses indicates that synaptic connections of a neu-
ron may belong to different neural masses. The critical step in the development
of a large scale model occurs through the mapping Φ : Z(x, t)→ Ψ(x, t) when
the activity Z(x, t) = (Z1(x, t), Z2(x, t), · · · , ZN (x, t)) of a given neural mass is
replaced by its neural mass action Ψ(x, t) = (Ψ1(x, t),Ψ2(x, t), · · · ,Ψm(x, t))
where m << N . The nature of this relation between neuron activity Z(x, t)
and neural mass action Ψ(x,t) will be generally non-trivial and involves a
mean-field reduction which will be discussed in the next section. On the top
of Fig. 26 the neural network dynamics is now captured by locally coupled
neural mass actions Ψ(x,t) assigned to each neural mass at location x = Xi.
Each neural mass is locally (as indicated at location X5) and globally (as
indicated at location X1) connected.

Rather than solving the complete network for the state vectors Z(x, t) of
all neurons, now the large scale network can be solved using the neural mass
action Ψ(x,t) as indicated in the following: A large scale model representation
is successful if the large scale model simulation provides the same neural mass
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Fig. 26. Coupled neural masses at locations Xi (upper figure) are coupled via local
and global pathways. The large scale network dynamics arises from the interactions
of the neural mass actions ψ(Xi, t) at locations Xi. The computation of the com-
plete network dynamics based upon the neural state vector Z(t) (lower figure) and
neural connectivity (red squares) should ideally yield the same network dynamics
as computed from ψ(x,t)

action Ψ(x,t+T) at a future time point t+T as the simulation based upon the
complete network dynamics using the microscopic neuronal activity Z(x,t).

Φ : Z(x, t)→ Ψ(x, t)
large scale network dynamics−−−−−−−−−−−−−−−−−−−→ Ψ(x, t+ T )← Z(x, t+ T )

complete network dynamics 

In the latter approach, once Z(x,t+T) is computed, it has to be mapped
upon to the neural mass action, Φ : Z(x, t + T ) → Ψ(x, t + T ) to allow
for a comparison between the two approaches. The inverse mapping Φ−1 :
Ψ(x, t+ T )→ Z(x, t+ T ) generally does not exist.

4.2 Mean Field Reduction of Neuronal Activity

The mean field approximation is well-known from statistical physics (see for
instance Gardiner 2004). Though its basic assumptions are mostly not rigor-
ously justified, it often provides an astonishingly good qualitative insight into
the description of many models. Hence the use of mean field approaches has
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a long history in the field of neural networks. The mean field u(t) is generally
defined as the statistical expectation value E of a particular state variable.
Two mean field approaches exist based on two opposing views of neuronal
coding, but of course with many interim shades. The first view holds that
the firing rate of a neural mass is relevant for neural information processing.
The dissenting view posits that the information is encoded in the interactions
among spikes and hence spike correlations must not be ignored (for detailed
discussions of neuronal encoding see Koch 1999). In large scale models, neu-
ral mass action is mostly expressed by mean fields of firing rate, though also
considerable evidence exists that single cells may fire spikes at predictable
intervals as long as 200msec with a precision of 1msec (Abeles et al. 1993).
The latter is the key observation leading to the theory of synfire chains for
cortical processing (Abeles 1991). As of today, it is not clear to what degree
the neural system uses firing rate or spike coding mechanisms. Experimental
evidence exists for both and accumulates with every day (Koch 1999). In the
following we elaborate on the import of both neural coding mechanisms to
the field of large scale modeling.

Generally speaking, if the coupling is high enough and the parameter dis-
persion is sufficiently small, the neurons in the neural mass evolve in time close
to each other within phase space (and hence to the mean field), or in other
words are synchronized. Note however, that there are exceptions in the net-
work dynamics literature known as oscillator death (see also Campbell 2007),
in which the neural mass action becomes zero due to too strong coupling.
A synchronized neural dynamics will play a lesser role for extended periods
of time during which a large scale synchronization is more likely to indicate
pathological network activity such as epilepsy (see Milton et al 2007, Ferree
and Nunez 2007). However, the understanding of the conditions leading to the
emergence of synchronization will likely be important to understanding the
neurocognitive processes such as feature binding (Gray and Singer 1989; Crick
and Koch 1990) and multisensory integration (Von Stein et al 1999; Treisman
1996). In fact, the onset of coherent oscillatory activity has been interpreted
to be fundamental for the formation of higher-order percepts (Freeman and
Skarda 1985; Bressler 1990). In the opposite case for small coupling and greater
noise strength, the elements of the population move incoherently and eventu-
ally their positions average out. Here the asymptotic dynamics of the mean
field is mostly characterized by the fluctuations and the mean firing rate. Be-
tween these two limit cases, complex behavior arises and can be addressed
starting from either end of the limit.

Fluctuation dominated network dynamics and firing rate models

For small enough and sparse couplings, as well as sufficient noise within the
neural mass, the neuronal action potential generations and the connectiv-
ity within the neural mass can be assumed to be independent. Under these
conditions, all spike correlations will be destroyed and a firing rate model
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becomes a valid representation of neural mass action (Abbott & van Vreeswijk
1993; see Cessac & Samuelides 2006 for a review). In the limit of large neuron
numbers within the mass, N→∞, and low firing rates, the total spike train,
obtained by summing over the spike trains from all neurons within the mass,
will be a Poisson point process with a common instantaneous firing rate ρ(x,t).
Equivalently, the synaptic input Is to a single neuron can be approximated
by an average firing rate ρ(x,t) plus a fluctuating Gaussian contribution. As
a consequence the joint probability distribution factorizes and a complete de-
scription of the neural mass action is obtained in terms of the first and second
order statistical moments. Two further more subtle distinctions can be made.
Either the firing rate ρ(x,t) plus Gaussian noise is used as synaptic input and
the neural mass action is described by the average value of neural activity
(the mean field) u(t) = E [Zi(t)] and the variance v(t) = E

[
Zi(t)2

] − u2(t).
Such finally results in Fokker-Planck approaches which describe the time evo-
lution of the probability P(Z(x,t),t) to find a neuron at x and t in the state Z
(Amit & Brunel 1997; Brunel 2000; Brunel & Hakim 1999; Cai et al. 2006).
Alternatively, the neural mass action can be expressed directly by the mean
firing rate u(t) = E [ρ(t)] and its variance v(t) = E

[
ρ(t)2

]− u2(t) (Abbott &
van Vreeswijk 1993; Nykamp & Tranchina 2000, 2001; Eggert & van Hemmen
2001). Note that we dropped the explicit dependence on x to simplify our no-
tation. The mean field variables u and v define the 2-dimensional population
vector Ψ(x, t) = (u(t), v(t)) at the location x. As long as the independence con-
dition within the neural mass holds, the reduced dynamic description through
Ψ(x,t)=(u(t),v(t)) is exact. The mean firing rate shows a sigmoid behavior
as a function of the synaptic input, which can be intuitively understood as
follows: a neural mass shall consist of independent neurons of which each
displays a sharp onset of firing at a threshold value Θ (see Fig. 27).

The thresholds are independent and hence have a Gaussian distribution.
The mean firing rate of the neural mass then becomes the well-known sigmoid
function and has been carefully parameterized from experimental data of the
olfactory bulb (Freeman 1975). Is the independence condition violated though

Fig. 27. Left: Gaussian distribution of activation thresholds within a neural mass.
Middle: Sharp activation function (firing rate) of a single neuron acting as a threshold
element. Right: Mean firing rate obtained from averaging all firing rates within a
neural mass
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and correlations are introduced, for instance through correlations within
the connectivity weights via learning, the mean field approximation breaks
down. Related in spirit to Fokker-Planck approaches, Ventriglia proposed a
phenomenological kinetic theory for the study of the statistical properties of
neural mass action (Ventriglia 1974, 1978). The kinetic equations capture the
time course of the distribution function of the total excitation of a neural
mass. The neurons in the mass are characterized by a level of inner excitation
which changes when impulses are emitted. The impulses move freely within
the neural mass and may be absorbed by other neurons changing their in-
ner excitation level (see also by Gröbler et al. 1998; Barna et al. 1988 for
extensions of the kinetic approach).

Synchronized network dynamics in population models

For strong coupling strengths and low level of noise within the neural mass,
a different but complementary approach holds using the perfectly correlated
state Z(t), that is Z1(t) = Z2(t) = · · · = Z(t). Or in other words, a spe-
cial case of spike timing is considered: all neurons are synchronized and
show the same dynamics Z(t). DeMonte, d’Ovidio & Mosekilde (2003) pro-
posed a method by which the mean field dynamics of a neural mass can
be described by a low-dimensional population vector under conditions of
global coupling and coherent neural mass action. Global coupling means
that each neuron in the neural mass feels the same mean field activity.
Their method applies to neural masses of any size and any type of intrin-
sic dynamics, as well as parameter dispersion. For example, if the underlying
neuron model for Zi(t) is a FitzHugh-Nagumo Model, then the population
vector Ψ(x, t) = (Ψ1(x, t),Ψ2(x, t),Ψ3(x, t),Ψ4(x, t)) is 4-dimensional where
Ψ1(x, t),Ψ2(x, t) describes the activity of an average FitzHugh-Nagumo neu-
ron and Ψ3(x, t),Ψ4(x, t) measures the dispersion of both parameter and phase
space. If the neurons desynchronize too much, then the approach of DeMonte
et al. (2003) will fail by definition. If, after loss of synchrony, multiple clusters
of coherent activity emerge in phase space instead, then it is possible to de-
scribe the neural mass action through multiple mean fields. Each of these mean
fields captures a single cluster dynamics (Assisi, Jira & Kelso 2005). In cases
of parameter dispersion, such emergence of cluster dynamics is common and
well-suited for the approach by Assisi et al. (2005). If the constraint of global
connectivity within the neural mass is dropped, richer dynamic phenomena
become possible such as the appearance of spiral waves (Chu et al. 1994; see
Milton 1996) and will be discussed in the next sections. Freeman (1975,1987)
proposed another classification of neural mass action which allows spike cor-
relations to be considered. He originally classified the activity of the neural
masses into classes named K0, KI and KII sets (K for Katchalsky) accord-
ing to their functional architecture. K-sets are composed of elements which
affect the nature of dynamics including physical components such as the in-
terconnected neurons, the neurochemical environment, etc., but also purely
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functional components such as the connection topology, the input structure,
etc. K0 sets represent the simplest functional architecture which can be viewed
as the ensemble average of the activity of independent but similar neurons. In
their simplest forms, KI sets are equivalent to two coupled K0 sets, KII sets
are composed of K0 and KI sets. However, they are more generally defined and
are in principle not always reducible to lower order K sets. In this notation,
a K0 set corresponds to the 1-dimensional and hence scalar activity of a neu-
ral mass, Ψ(x,t), whereas KI and KII sets correspond to higher-dimensional
vectors Ψ(x,t).

4.3 Composition of Neural Masses to Large Scale Models

Neural mass models sacrifice realism for a more parsimonious description of
the key mechanisms of large scale dynamics. The benefit lies in the possibility
of emulating non-invasively obtained brain imaging data such as EEG and
MEG. Neural mass models (Beurle 1956; Lopes da Silva et al. 1974; Freeman
1975; Nunez 1974, 1995; van Rotterdam et al. 1982; Jirsa & Haken 1996,
1997; Jirsa et al. 1998, 2002; Robinson et al. 1997, 2002, 2001; Tagamets &
Horwitz 1998; Steyn-Ross et al. 1999; Valdes et al. 1999; David & Frison 2003;
Breakspear et al. 2006) are based upon this approach. Much of the complexity
of the signals arises from the coordination of the interconnected neural masses
rather than the intrinsic dynamics of the microscopic unit, the neural mass,
of the large scale network. A neural mass at location x is locally connected
to its neighboring neural masses and globally connected to far distant neural
masses at locations x’. In the following, physical space is always assumed to
be one-dimensional, x ∈ �, but the mathematical treatment formally extends
trivially to two and three dimensions. Note that though the formal extension
to higher dimensions is not difficult, new dynamic network phenomena such
as spirals may emerge due to the higher dimension (see Nunez (1995) for
a discussion of spherical geometries). If the network dynamics described by
(17) were linear, then the mapping Φ : Z(x, t) → Ψ(x, t) would result in the
following large scale dynamics for the neural mass action Ψ(x,t) with Q = N
and S = H

dΨ (x, t)
dt

= Q(Ψ (x, t)) +
∫

Ω

t∫

−∞
h (x− x′)S (Ψ (x− x′, t− t′)) dt′dx′. (46)

However, in general the intrinsic dynamicsN and the activation function H
are nonlinear and residual terms arise which are here notationally absorbed in
Q and S. The intrinsic, sometimes also called endogenous, dynamics N of the
neural mass action is defined by the temporal evolution of Ψ(x,t) in absence of
all incoming signals including the connections to other neural masses. In the
following we will discuss representative models from this line of approach and
characterize the various entry points towards large scale network modeling.
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We place particular emphasis on the functional effects that the variation of
structural properties, such as local and global connectivity and time delays,
implies.

Amari’s Neural Field Model 1977

A classic paper on networks with no delay and symmetric and translationally
invariant connection topologies is Amari’s study of neural fields (Amari 1977).
Amari discussed spatially and temporally continuous fields Ψ(x,t) with local
fixed point dynamics as intrinsic dynamics. Then the field equations may be
written as

τ
dΨ (x, t)

dt
= −Ψ (x, t) +

∫

Ω

h (x− x′)S (Ψ (x′, t)) dx′ + c+ s(x, t) . (47)

where S is strongly nonlinear, typically the Heaviside function, and h(x−
x′) is excitatory for proximate connections and inhibitory for greater distances
(see Fig. 28 and 29). s(x, t) denotes external input and c a constant resting
potential and background activity.

In this type of scalar neural fields, oscillations are not possible, but lo-
cally excited regimes may exist and self-sustain with no input s(x, t) = 0,
which is believed to be a candidate for the neuronal basis of working memory
(Amit 1989). If input is provided, then the locally excited regions travel in the
direction of increasing field value Ψ(x,t) until they get pinned at the stimulus
location.

If several stimuli are provided, then the details of stimulus location and
the presence of already excited local regions will determine the typically

Fig. 28. Distribution function is plotted which captures local excitatory and lateral
inhibitory connectivity
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Fig. 29. The characteristic connectivity of an Amari field reflects local excitation
and lateral inhibition

multi-stable final network dynamics. Characteristic examples are shown in
Fig. 30(a), b and c.

In all cases, the final stationary network state will be a fixed point at-
tractor. It was these properties, which attracted the attention of neural
modelers who applied these fields to a variety of phenomena ranging from
working memory (Amit 1989) to motor movement preparation (Erlhagen
& Schöner 2002). If two or more layers are coupled (Amari 1977), then a
more complex dynamics arises allowing for oscillatory and traveling wave
phenomena.

The Neural Field Models of Wilson & Cowan (1972, 1973)
and Nunez (1974)

Hugh Wilson & Jack Cowan (1972, 1973) and Paul Nunez (1974) indepen-
dently considered twocomplementary approaches, of which each is based upon

Fig. 30(a). The space-time diagram of an Amari field is shown. Initially the neural
field is not excited, then a stimulus is introduced around 1000ms at location x = 35
(space is in arbitrary units). At stimulus offset around 1300ms, the neural field
sustains its local excitation. At a later time point, another stimulus is introduced
at x = 10 for 300ms. Here the neural field also persists after stimulus offset. Such
persistent activity serves a s a simple model for working memory
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Fig. 30(b). The same situation is shown as in Figure 30a, only the second stimulus
is provided closer in space, x = 25, to the first stimulus and annihilates the excitation
at x = 35. The second local excitation persists unaltered

Fig. 30(c). The same situation is shown as in figure 30b, only the second stimulus
is now provided even closer in space, x = 30, to the first stimulus than before. This
time it does not annihilate the excitation at x = 35, on the contrary, both excitations
move towards each other and merge into one excitation. In the figure, it appears
that the excitation at x = 35 moves more than the other, which is true

two sets of locally coupled neural masses of inhibitory and excitatory neurons.
Wilson & Cowan considered the firing rate as the neural mass action; Nunez
considered synaptic action which is the proportion of active synapses at time
t and linearly related to dendritic currents. The firing rate of neural masses
has been referred to as pulses and the synaptic action as waves (Freeman
1975). Jirsa & Haken (1996, 1997) showed that both models are equivalent
and can be transformed into each other using so-called pulse-wave and wave-
pulse conversions, which are independently experimentally accessible (Free-
man 1975). Both models consider time delays via propagation. Delays are
absent in Amari’s model and hence constrains the latter’s applicability in a
biologically realistic scenario to small patches of cortical tissue. Time delays
are of increasing importance, the larger the scale of the network is.
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Fig. 31. The characteristic connectivity of Nunez’s population approach reflects
local and global excitation, as well as local inhibition

In Nunez’s early work (1974), his focus was on identifying the dispersion
relations of the linearized neural field dynamics given specific distributions of
intracortical and corticocortical fiber systems. The intracortical fiber system
is constrained to the gray matter and its axons make connections within a few
millimeters; the corticocortical fiber system constitutes the white matter and
connects areas across the entire cortex with axonal lengths of several centime-
ters in the human (Abeles 1991; Braitenberg & Schüz 1991), in some cases
reaching lengths of up to 15 to 20 centimeters (Nunez 1995). The excitatory
synaptic action Ψ1(x,t) and inhibitory synaptic action Ψ2(x,t) compose the
neural mass action and define one excitatory and one inhibitory layer (see
Fig. 31). The dynamics of the two-dimensional neural field is governed by the
following equation

dΨ (x, t)
dt

= −Ψ (x, t)+s(x, t)+
∫

Ω

∞∫

0

h (x− x′, v)S
(

Ψ
(
x, t− |x− x

′|
v

))
dvdx′,

(48)

where Ψ(x, t) = (Ψ1(x, t), Ψ2(x, t)), s(x,t) is the input to the two layers,
h(x−x’,v) defines a matrix describing the distribution of axonal fibers, S is the
sigmoid firing rate and Ω defines the spatial extent of the neural sheet. Due to

the finite transmission speed v, there is a time delay |x−x′|
v via propagation.

The connectivity function h(x−x’,v) is a 2 by 2 matrix, since Ψ(x,t) is a
2-dimensional vector field, and considers both intracortical and corticocorti-
cal fibers collapsed into one distribution function. The synaptic influence is
assumed to diminish in proportion to its density, in particular Nunez extrap-
olated h from mouse data (Nunez 1995) to assume an exponential form,

h(x) = exp (−|x|/σ)/2σ, (49)

as illustrated in Fig. 32, with the rate of drop-off captured by the parameter σ.
The inhibitory connectivity is of short range and the excitatory connectiv-

ity is of long-range since the latter is dominated by the corticocortical fiber
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Fig. 32. Exponential coupling function

system. It is notable that Nunez’s approach represents the first attempt to
use structural information to constrain the neural field dynamics for the large
scales observed in encephalographic measurements. His consideration of the
corticocortical fiber system within the integral kernel of (49) has influenced
much of the later research in the field of EEG and MEG (Jirsa & Haken
1996,1997; Wright and Liley 1996; Jirsa et al. 1998, 2002; Robinson et al.
1997, 2001; Steyn-Ross et al. 1999 ; Breakspear et al. 2006) and lead to the
development of neural field dynamics for large scale systems.

Wilson & Cowan (1972) initially considered the interaction of two popu-
lations of excitatory and inhibitory nature characterized by their firing rates
Ψ1(t) and Ψ2(t). An der Heiden (1980) showed nicely the connection between
the local Wilson-Cowan population model (1972) and the McCulloch-Pitts
model (1943). Later Wilson and Cowan (1973) extended their model to two
layers of coupled neural fields Ψ1(x,t) and Ψ2(x,t) (see Fig. 33) obeying the
following equation

dΨ (x, t)
dt

= −Ψ (x, t) + S

⎛
⎝
∫

Ω

h (x− x′) Ψ
(
x, t− |x− x

′|
v

)
dx′ + s(x, t)

⎞
⎠ ,

(50)
where we use the same notation as in the Nunez model. Various dynamic

phenomena were found as a function of the connectivity h including steady
network states, standing and traveling waves. An emphasis was placed on the
spatial localization of activations, which functionally necessitated the con-
straint that inhibitory connections are of longer range than excitatory inter-
actions. Such is in analogy to Amari’s model and is anatomically reflected in
the longer axons of inhibitory interneurons. This constraint, however, requires
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Fig. 33. The characteristic connectivity of Wilson & Cowan’s coupled population
approach reflects local excitation and inhibition with various degrees of laterality

the axons not to leave the gray matter and clearly limits the application of
these neural fields to local area networks.

The Neural Field Model of Jirsa & Haken (1996)
and Wave Equations

Based on first principles using pulse-wave and wave-pulse conversions, Jirsa &
Haken (1996, 1997) developed a neural field approach (see for early accounts
of neural field theories Griffith 1963, 1965) targeted specifically towards large
scale phenomena as observed in EEG, MEG. Initially based on two locally
coupled neural masses of excitatory and inhibitory neurons, the action of the
inhibitory neural mass is absorbed into an effective excitatory neural mass
action Ψ(x,t). This reduction is possible under the assumption that the in-
trisic dynamics of the neural mass is negligible and relaxes instantly to its
steady state, i.e. the neural mass action displays a fixed point dynamics. Then
the network dynamics will exclusively be determined by the connectivity and
its time delays and captured by an equation equivalent to (48), but with a
scalar connectivity function h(x−x’) (see Fig. 34). As in the Nunez model, the
connectivity includes local intracortical connections and global corticocortical
projections. As a first approximation, h(x−x’) is assumed to be translationally
invariant and follows an exponential decay as plotted in Fig. 32. Under these

Fig. 34. The characteristic connectivity of the Jirsa-Haken wave equation empha-
sizes excitatory long range connectivity after elimination of the local inhibitory
effects. The latter are captured in an effective neural mass action Ψ(x,t)
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conditions, Jirsa & Haken showed that the integro-differential (48) is equiva-
lent to the following partial differential equation in one physical dimension:

∂2Ψ (x, t)
∂2t

+2ω0
∂Ψ (x, t)

∂t
−v2 ∂

2Ψ (x, t)
∂2x

+ω2
0ψ (x, t) = ω0(ω0 +

∂

∂t
)S (Ψ (x, t))

(51)
where ω0 = v/σ, v is the transmission speed along myelinated axons and

σ the mean fiber length. Early accounts of wave phenomena in EEG and their
discussion in the context of wave equations can be found in (Nunez 1995).

The Jirsa-Haken wave equation (51) approximates various connectivity
functions of large scale networks in the limit for long waves, or, in other
words, large scale activity patterns. If the slope of the sigmoid function S
increases beyond a threshold, then the rest state becomes unstable and un-
damped wave propagation occurs. Below the threshold damped wave prop-
agation exists. Steven Coombes and colleagues (2003) discuss the effects of
connectivity strengths which do not decrease with increasing distance, but
rather remain constant within a finite regime. In this case, it is not sufficient
to describe the spatiotemporal dynamics by a local partial differential equation
as in (51), but non-local delayed terms arise (see Coombes 2005 for a review).
Wright and colleagues introduced much physiological detail and were able to
address issues of rhythm generation (Wright & Liley 1996), as well as clinical
aspects such as hysteresis phenomena in anesthesia (Steyn-Ross et al. 1999).
Robinson and colleagues introduced expressions for the corticothalamic loop
into the Jirsa-Haken equation (see next section) and included dendritic dy-
namics while implementing detailed physiologically realistic parameter ranges
(Robinson 1997, 2001). Frank and colleagues developed a Fokker-Planck ap-
proach to the Jirsa-Haken equation which captures the time evolution of the
stochastic properties of the neural fields (Frank et al. 1999, 2000). Applica-
tions to encephalograpic data can be found in (Jirsa and Haken 1997; Jirsa
et al. 1998, 2002; Fuchs et al. 2000; Liley et al. 2002; Jirsa 2004b; Robinson
et al. 2004, 2005; Breakspear et al. 2006).

The Inclusion of the Thalamocortical Loop
into Neural Fields (Robinson 2001)

In 1997 Robinson et al. presented an equivalent derivation of the Jirsa-Haken
equation considering effects of dendritic dynamics and added the important
extension of the thalamocortical loop in 2001 (see Fig. 35). The inclusion of
the thalamocortical interactions proved to be crucial to reproduce the essential
spectral properties observed in scalp topographies. Robinson and colleagues
preserve the neural field as a vector field Ψ(x, t) = (Ψ1(x, t), Ψ2(x, t)) of
excitatory and inhibitory neural masses and write the following equations

∂2Ψ (x, t)
∂2t

+ 2ω0
∂Ψ (x, t)

∂t
− v2 ∂

2Ψ (x, t)
∂2x

+ ω0
2ψ (x, t)

= ω0
2ρ (Ψ (x, t) ,Ψth (t− τ/2)) (52)
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Fig. 35. Robinson et al. (2001) capture corticothalamic effects contributing to neu-
ral field dynamics. The effect of excitatory and inhibitory influences is collapsed into
the upper row

for the dynamics of the neural field. The critical step is that the sigmoid
function ρ (Ψ (x, t)) does not only depend on the neural fields Ψ1(x,t), Ψ2(x,t),
but also receives time–delayed thalamic input Ψth(t− τ/2).

The thalamic action Ψth(t) is governed by the following differential equation

∂2Ψth (t)
∂2t

+ (a+ b)
∂Ψth (t)
∂t

+ abΨth(t) = input(Ψ(x, t− τ/2)) (53)

where the cortical input to the thalamus also undergoes a delay τ/2 via
propagation resulting in a effective delay τ of the total corticothalamic loop.
Computer simulations of equations (52) and (53) provide representative EEG
power spectra as shown in Fig. 36.

Fig. 36. Power spectra from the Robinson model of corticothalamic activity in eyes
closed (solid) and eyes open (dashed) resting states. The increase of low frequen-
cies in the eyes open condition reflects increased corticocortical gain, whereas the
increased alpha (10 Hz) peak in the eyes closed condition reflects increased corti-
cothalamic gain
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Extensions and Limitations of Large Scale Models

Large scale systems are characterized by an anatomical connectivity with
massively parallel and serial, hierarchical structures, as well as time delays
due to signal transmission. Such architecture produces an interareal connec-
tion topology, which is patchy as observed by Braitenberg & Schüz (2001)
and results in a heterogeneous connectivity. Yet it has been approximated
in various attempts by a homogeneous connectivity with a larger extension
(see Fig. 37). The approach uses a larger mean path length and hence effec-
tively mixes functionally the intracortical and corticocortical fiber systems.
Research of this kind has successfully reproduced various large scale charac-
teristics of activity including the dispersive properties of the cortex (Nunez
1995) or global EEG power spectra (Robinson 2001); it also shows promise in
situations of highly symmetric functional connectivity (Jirsa et al. 1997, 1998;
Fuchs et al. 2000). However, to this date, it has not been shown rigorously
under what conditions the homogeneous approximation holds.

Mallot and colleagues (1989, 1996) discussed in a series of papers a con-
ceptual framework in which, rather than just mean fields, local networks
communicate across distances. These local networks have an intrinsic fixed
point dynamics, but exchange information via time-delayed pathways. Mallot
and colleagues applied this approach to examples of the thalamocortical loop
(Mallot et al. 1996) and for the geniculate-striate pathway of the visual system
(Mallot et al. 1989). Similarly, discretely coupled local networks incorporate
time delays in the connecting pathways and absorb all local dynamics within
a set of coupled neural masses (Freeman 1975, 1992; David & Frison 2003).
Jirsa & Kelso (2000) studied the neural field dynamics of the Jirsa-Haken
equation in which a heterogeneous pathway is included (Fig. 38). Such a two-
point pathway connects the neural masses at locations X2 and X8 which
are embedded into a continuous sheet with local connections only. This

Fig. 37. Left: Neural connectivity has local intracortical symmetric components
(homogeneous) and patchy corticocortical components (heterogeneous). Right: Ap-
proximation of the real local and global connectivity by a symmetric connectivity
function with an average path length
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Fig. 38. Realistic connectivities are characterized by translationally invariant local
connections and translationally variant global connections. The basic model for the
study of the interplay of local and global interactions is the embedded two-point
connection in a locally connected neural network as shown in the figure

connectivity identifies the basic toy model for the study of local and global
interactions. The change in the connection topology destabilizes the initial sta-
tionary dynamics and the system undergoes a transition to a new stationary
state via a Hopf bifurcation. Detailed bifurcation diagrams are given in (Jirsa
& Kelso 2000) in which the spatiotemporal reorganization is characterized as
a function of the length of the two point connection.

Minor changes in the location of the terminals or the system parameters,
such as the homogeneous or heterogeneous transmission speeds, may result in
qualitatively different global neural field dynamics. As an example, in Fig. 39
a stimulus is introduced in the neighborhood of a terminal of a two-point

Fig. 39. A neural field following Jirsa and Haken (1996) with an embedded two-
point connection at x=10 and x=40 is established. In the neighborhood of x=10,
a brief stimulus excites the neural sheet locally and the neural field reorganizes
globally in a large scale transient wave which damps out after a sufficiently long
time (not shown here)
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connection (based at x=10 and x=40), then the excitation of the neural field
travels through the continuous sheet, but also transmits a signal via the het-
erogeneous pathway. A transient wave dynamics is observed on the global
system scale and damps out after a sufficiently long enough time. With no
heterogeneous connection, only a local excitation at x=10 would have been
observed. Similarly, with no heterogeneous connection and with two stimuli
at terminal sites x=10 and x=40, only two local excitations would have been
observed, but no large scale organization as observed in Fig. 39.

5 Conclusion

The neurosciences have historically leaned strongly towards empiricism – a
tradition which continues today. However, mathematical formalisms of dy-
namical phenomena have provided extraordinary explanatory and unifying
insights in the physical sciences. The emerging advances in computational
neurosciences, particularly with respect to brain connectivity, suggest that
they will also come to play an important role in the brain sciences. The cross-
fertilization of dynamical systems theory (see also the Chapters by Campbell,
Horowitz & Husain and Stephan & Friston), graph theory (Sporns & Tononi),
basic physics (Ferree & Nunez), and methodological advances in neuroimag-
ing (Darvas & Leahy, Fuchs) will hopefully underpin advances which do not
merely reduce problems in neuroscience to problems already solved in other
fields, but instead allow those properties of the brain that are unique to in-
form novel and specific discoveries. We see this blending of universality and
specificity as absolutely crucial. Too much of the former will yield simplifica-
tions that lose what is required of a system in order to look (and function)
like a brain. Conversely, too much specific detail yields volumes of descriptive
data that adds little to our understanding of the underlying principles of brain
function.

In this chapter, we have overviewed developments in the field of dynamical
neural modeling across several scales of magnitude – from the microscopic con-
ductance models of bifurcating neurons, (briefly) through systems of coupled
chaotic oscillators at the mesoscopic scale to models of large scale neural net-
works whose behavior generates the electroencephalographic and neuroimag-
ing data that is acquired non-invasively from human subjects. Evidence of
computationally significant processes has been documented in data sets from
across this spectrum of scales – i.e. from the single cell to the whole brain.
An open and important question then is the relationship between activity at
different temporal and spatial scales (Churchland and Sejnowski 1992). A pos-
sible answer could be that the macroscopic dynamics is an epiphenomenon –
that is, a summed output of dynamics that can only truly be modeled at the
neuronal level. However, this approach cannot be reconciled with the successes
of large-scale models, which engage the brain at macroscopic scales only, to
provide descriptive explanations of neuroscience data. That is, as discussed in
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Sect. 4 of the present chapter, a mean field reduction of the present state of
the system is able to predict its future states. This suggests that synchroniz-
ing processes are able to enslave many of the (small scale) degrees of freedom
into dynamical structures at larger scales whose behavior is then – to some
degree – determined by the state of the system at that scale. Whilst the large
scale processes that are sustained by such processes inevitably influence the
dynamics of the small scale units, it also remains possible that small scale
events – such as critical sensory inputs – are able to rapidly influence the
behavior of the system as a whole.

Whilst such considerations preclude a purely reductionist approach, an
adequate explanatory framework remains elusive. The situation may be anal-
ogous to a heated magnet that it is close to the Curie temperature (above
which it loses the ability to be magnetized): The magnetic fields are purely an
outcome of the dipoles of spinning electrons. Yet the spinning electrons are also
strongly influenced by the larger-scale magnetic fields. Below the Curie tem-
perature, the fields are sufficiently strong to overcome stochastic fluctuations
of individual spin directions. Above the Curie temperature the emergent fields
are insufficient in strength to enslave the electron dipoles and the metal can-
not hold a macroscopic field. However, at the Curie temperature, there is just
a sufficient degree of coherence at any given scale to overcome the stochas-
tic fluctuations at the next smaller scale. However, fluctuations at a small
scale are able to transiently cascade to larger scales, a phenomena known as
criticality and exhibit scale free fluctuations. Or perhaps even more attrac-
tive are the spin glass systems where – in addition to these processes – there
exist disordered structures embedded in the system which preclude a per-
fectly ordered system even at low temperatures. Many of such spatiotemporal
pattern formation phenomena and their underlying mechanisms have been
understood in the framework of Synergetics, a field pioneered by Hermann
Haken (1983, 1999).

Whilst such arguments have an attractive appeal, we should bear in mind
our own warning that the brain is not just another complex physical sys-
tem – such as a heated metal – even one with embedded impurities! There
exist additional complexities that are surely important to brain function. One
such critical difference is that there do exist structures across spatial and
temporal scales prior to the emergence of dynamically driven scale-free (and
scale-specific) fluctuations. Is it possible that the interaction between scale-
specific processes across a hierarchy of scales is somehow optimal? Fusi et al.
(2005) have shown how a hierarchy of synaptic processes – each with char-
acteristic time scales – can interact in order to optimize memory retention
(upgrading new memories) and storage (maintaining selected memory for long
periods of time). Breakspear & Stam (2005) modeled the interaction between
scale-free dynamics and multiscale spatial architectures by defining dynamical
systems on different wavelet subspaces, and with cross-scale coupling between
subspaces. This would potentially allow for a recursive relationship between
small and large-scale dynamics.
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Such observations hopefully reflect the challenge of fusing the universal
with the specific as an emerging frontier in neuroscience research.
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1 Introduction

In this chapter I will give an overview of the role of time delays in under-
standing neural systems. The main focus will be on models of neural systems
in terms of delay differential equations. Later in this section, I will discuss
how such models arise. The goal of the chapter is two-fold: (1) to give the
reader an introduction and guide to some methods available for understand-
ing the dynamics of delay differential equations and (2) to review some of the
literature documenting how including time delays in neural models can have
a profound effect on the behaviour of those models.

1.1 Modelling Delay in Neural Systems

To begin, I will formulate a general model for a network of neurons and
then determine how delays may occur in this model. Consider a network of n
neurons modelled by the equations

ẋi(t) = Fi(xi(t)) +
n∑

j=1

fij(xi(t),xj(t)), i = 1, . . . , n . (1)

The variable xi represents all the variables describing the physical state of
the cell body of the ith neuron in the network. For example, in the standard
Hodgkin-Huxley model, it would represent the membrane voltage and gating
variables: xi = (Vi,mi, ni, hi). The function Fi represents the intrinsic dynam-
ics of the ith neuron and the function fij , often called the coupling function,
represents the input to the ith neuron from the jth neuron. In neural models,
the coupling is usually through the voltage, Vi, only, so fij = [fij , 0, 0, . . . , 0]T .
I will primarily consider this case in the rest of the chapter.
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If the jth neuron is connected to the ith via a chemical synapse, then the
coupling function is given by

fij(xi(t),xj(t)) = cij h
pre
ij (xj(t))h

post
ij (xi(t)) . (2)

This is called synaptic coupling. Here hpre
ij is a sigmoidal function, usually

chosen to have maximum value 1, so that cij represents the maximum coupling
strength (synaptic conductance). hpost

ij is typically a linear function (e.g. for
Hodgkin Huxley models, hpost

ij (xi(t)) = Vi(t)−Kij , where Kij is a constant).
Some models set hpost

ij = 1, eliminating the dependence on the post-synaptic
neuron, in which case this coupling is called sigmoidal.

If the neurons are connected via a gap junction, then the coupling
function is

fij(xi(t),xj(t)) = Cij(xi(t)− xj(t)) , (3)
where Cij is the matrix of coupling coefficients. This is called gap junc-
tional, electrical or diffusive coupling. For most neural models only the
(1, 1) element of Cij is non zero.

There are several sources of delay in a neural system. Consider first the
delay due to propagation of action potentials along the axon. In the model
above, when an action potential is generated in the cell body of neuron j, it
is immediately felt by all other neurons to which it is connected. However,
in reality, the action potential must travel along the axon of neuron j to the
synapse or gap junction. Conduction velocities can range from the order of
1 m/sec along unmyelinated axons to more than 100 m/sec along myelinated
axons (Desmedt and Cheron, 1980; Shepherd, 1994). This can lead to sig-
nificant time delays in certain brain structures. There are several ways to
incorporate this into the model, such as including spatial dependence of the
variables or multiple compartments representing different parts of the neuron
(Koch, 1990). However, if we are primarily interested in the effect of the action
potential when it reaches the end of the axon (will it cause an action potential
in another neuron?), then a simpler approach is to include a time delay in the
coupling term. In this case the general coupling term becomes

fij(xi(t),xj(t− τij)) (4)

where τij > 0 represents the time taken for the action potential to propagate
along the axon connecting neuron j (the pre-synaptic neuron) to neuron i
(the post-synaptic neuron).

The above assumes that the axon of neuron j connects on or close to
the cell body of neuron i. Some cells may have synapses or gap junctions
on dendrites far from the cell body. In this case, there can also be a delay
associated with propagation of the action potential along the dendrite. This
will introduce an additional time delay, viz.,

fij(xi(t− τd
ij),xj(t− τd

ij − τij)) (5)

where τij and τd
ij represent the time delays due to the propagation of the

action potential along the axon and dendrite, respectively.
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Another delay can occur in the transmission of the signal across the
synapse. That is, once the action potential from neuron j reaches the synapse,
there is some time before an action potential is initiated in neuron i. A com-
mon way to model this is to augment the model equations above by equations
modelling the chemical kinetics of the synapse (Keener and Sneyd, 1998; Koch,
1999). Alternatively, this can be incorporated into (4) or (5) just by increasing
the delay τij . I will focus on the latter approach, but in Sect. 3 will review
some literature that indicates the qualitative effect on the dynamics can be
quite similar using both approaches. Clearly, the latter approach will yield a
simpler model if one also wants to include the effect of axonal delay.

Equations (4) and (5) assume that the time delays are fixed. In reality,
the delay will likely vary slightly each time an action potential is propagated
from neuron j to neuron i. This may be incorporated into the model putting
time dependence into the delay: τij(t). Many of the methods outlined in Sect. 2
may be extended to this case, by assuming the delay satisfies some constraints
0 ≤ τij(t) ≤ τ̄ij . Alternatively, one might consider adding some noise to the
delay, which would lead to a stochastic delay differential equation model.
Unfortunately, there is very little theory available for such equations.

An alternative approach is to incorporate a distribution of delays, repre-
senting the situation where the delay occurs in some range of values with some
associated probability distribution. In this case, coupling term (4) becomes

∫ ∞

0

fij(xi(t),xj(t− σ))gij(σ) dσ , (6)

and similarly for (5). The function gij is called the kernel of the distribution
and represents the probability density function of the time delay. Since gij is a
pdf it is normalized so that

∫∞
0
gij(σ) dσ = 1. Although distributions of delays

are not commonly used in neural network models, they have been extensively
used in models from population biology (Cushing, 1977; MacDonald, 1978).
In this literature, the most commonly used distributions are the uniform
distribution:

gij(σ) =

⎧⎨
⎩

0 0 ≤ σ < τmin
ij

1
δ τ

min
ij ≤ σ ≤ τmin

ij + δ
0 τmin

ij < σ
, (7)

and the gamma distribution:

gij(σ) =

{
0 0 ≤ σ < τmin

ij
am

Γ (m) (σ − τmin
ij )m−1e−a(σ−τmin

ij ) τmin
ij ≤ σ , (8)

where a,m ≥ 0 are parameters. Γ is the gamma function defined by Γ (0) = 1
and Γ (m+ 1) = mΓ (m). Both these distributions can be shown to approach
a Dirac distribution in the appropriate limits (δ → 0 for the uniform distri-
bution and m → ∞ for the gamma distribution), which leads to a discrete
delay in the coupling term. It is usual in the population biology literature
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(Cushing, 1977; MacDonald, 1978) to take τmin
ij = 0. In this case model with

a gamma distribution can be shown to be equivalent to a system of m or-
dinary differential equations, which is amenable to the analysis techniques
described elsewhere in this volume (Breakspear and Jirsa, 2006). However, as
pointed out by Bernard et al. (2001), it makes more biological sense to take
τmin > 0, since the probability of having zero delay is effectively zero in most
applications. In this case, the model with a gamma distribution is equivalent
to a system of m − 1 ordinary differential equations and one discrete delay
differential equation.

In the next section I will review some tools for analyzing delay differential
equations. To make the theory concrete, we will apply it to a particular ex-
ample. Consider the following representation of the Fitzhugh-Nagumo model
for a neuron (Fitzhugh, 1960; Nagumo et al., 1962)

v̇(t) = −v3 + (a+ 1)v2 − av − w + I ,
ẇ(t) = bv − γw .

(9)

Assume that the parameters are such that there is just one equilibrium point
(v̄, w̄) of this equation, where v̄, w̄ satisfy

v̄3 − (a+ 1)v̄2 + (a+
b

γ
)v̄ + I = 0 , (10)

w̄ =
b

γ
v̄ . (11)

I shall consider the situation when two of these neurons are joined with delayed
sigmoidal coupling in the following way

v̇1(t) = −v3
1 + (a+ 1)v2

1 − av1 − w1 + I + c tanh(v2(t− τ)− v̄)
ẇ1(t) = bv1 − γw1

v̇2(t) = −v3
2 + (a+ 1)v2

2 − av2 − w2 + I + c tanh(v1(t− τ)− v̄)
ẇ2(t) = bv2 − γw2

(12)

This setup is due to Burić et al. (2005). I will sometimes write (12) in the
condensed form

ẋ = f(x(t),x(t− τ)) , (13)
where x = (v1, w1, v2, w2).

I will focus on equations with a single discrete delay. The approach is
similar for multiple delays, the analysis just becomes more complicated. We
will discuss some of the differences that arise for distributed delays in the final
section.

There is a very large literature on the effect of time delays on artificial
neural networks (ANNs). An example of such a network is the additive (also
called Hopfield) neural network with delays. This is usually written in the
form

ẋi(t) = −kixi(t) +
n∑

j=1

fij(xj(t− τij) .
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I will not attempt to review all the material related to such equations, but
will try to highlight those results I feel may have implications for biological
neural networks. In particular, networks of the following form

ẋi(t) = −kixi(t) + fii(x(t− τ1)) +
n∑

j �=i

fij(xj(t− τ2) , (14)

have some parallels with biological neural networks, since the uncoupled units
may behave as type II oscillators (Campbell et al., 2005).

2 Tools for Analysis

The main tools for studying the behaviour of delay differential equations are
extensions of those for ordinary differential equations which are discussed
elsewhere in this volume (Breakspear and Jirsa, 2006). Some familiarity with
these tools will be helpful in reading this section.

To improve the flow of the text, I will not give references for all the stan-
dard results for delay differential equations that I use. For more information
on these, I refer the reader to the fairly accessible books of Kolmanovskii and
Nosov (1986) and Stépán (1989) which cover the results of this section or the
books of Hale and Verduyn Lunel (1993) and Diekmann et al. (1995) which
give complete, although not so accessible, accounts of the theory of delay
differential equations.

To begin our discussion, consider the types of solutions which occur most
often in neural systems. These are equilibrium solutions (x(t) = x̄, for some
constant x̄) and periodic solutions (x(t) = x(t + T ) for some T > 0). The
fundamental questions we would like to answer in order to understand the
behaviour of a model with time delays are the following

1. What equilibrium solutions occur in the system?
2. What periodic solutions occur in the system?
3. Are these stable or unstable? That is, do we expect to observe them in

experiments and numerical simulations?
4. How do the answers to these questions change as parameters are varied?

Question 1 is easily answered: the equilibrium solutions of a system with
time delays are the same as those of the corresponding system with zero delay.
Thus for (13) these correspond to constant vectors x̄ such that f(x̄, x̄) = 0.

Example. For system (12) the equilibrium points are given by
(v1, w1, v2, w2) = (v̄1, w̄1, v̄2, w̄2) where v̄j , w̄j are constants, found by solv-
ing the equations

0 = −v̄3
1 + (a+ 1)v̄2

1 − av̄1 − w̄1 + I + c tanh(v̄2 − v̄)
0 = bv̄1 − γw̄1

0 = −v̄3
2 + (a+ 1)v̄2

2 − av̄2 − w̄2 + I + c tanh(v̄1 − v̄))
0 = bv̄2 − γw̄2

(15)
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It is easy to check that one solution of these equations is (v̄1, w̄1, v̄2, w̄2) =
(v̄, w̄, v̄, w̄), where v̄, w̄ are given by (10)–(11). I will focus on this solution in
later discussions of this example.

Question 2 is difficult to answer analytically with any completeness. A
partial answer can be obtained by determining the bifurcations that occur in
the system which lead to the creation of periodic solutions. More detail can
be found in subsection 2.2. This question can also be addressed through the
use of numerical tools, which are discussed in subsection 2.5.

For equilibrium solutions, question 3 can be addressed via linear stability
analysis (see subsection 2.1) and via Lyapunov theory (see subsection 2.3). For
periodic solutions this question generally must be answered using numerical
tools, as discussed in subsection 2.5.

Answering question 4 is the main goal of bifurcation theory. Analytical
methods for studying bifurcations will be discussed in subsection 2.2 and
numerical methods in subsection 2.5.

2.1 Linear Stability

One way to study the stability of an equilibrium solution is through lineariza-
tion. This is constructed in a similar way as for ordinary differential equations.
The linearization of (13) about x̄ is given by

ẋ(t) = Ax(t) +Bx(t− τ) (16)

where A is a the Jacobian matrix of f(y, z) with respect to y, i.e. the matrix
with entries aij = ∂fi

∂yj
, and B is the Jacobian matrix of f(y, z) with respect

to z. If the system has multiple delays, then there will be a term in the
linearization corresponding to each delay.

It can be shown that, under the right conditions, (16) describes the be-
haviour of solutions close to x̄. This will in turn determine the stability of x̄.
To study this behaviour, we assume that there are solutions of (16) of the form
x(t) = eλtk where λ is a complex number and k is an n-vector of complex
numbers, to be determined. Substituting this into (16) we obtain

[−λI +A+Be−λτ
]
k = 0 . (17)

For solutions with k �= 0 to exist, we require

det[−λI +A+Be−λτ ] = 0 . (18)

If (13) is an n-dimensional system, then (18) can be written in the form

Δ(λ) = λn + λn−1(δn−1,0 + δn−1,1e
−λτ ) + · · ·+ λ

n−1∑
j=0

δ1,je
−jλτ

+
n∑

j=0

δ0,je
−jλτ = 0 , (19)
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where the δi,j depend on the elements of the matrices A and B.
Equation (19) is called the characteristic equation of the linearization

of (13) about x̄. Any complex number λ which satisfies (19) will give rise to
a solution of (16) (k is found by solving (17) with the particular value of λ
substituted in). In practice, we are mostly concerned with the λ values for the
reasons outlined below.

Example. For our coupled Fitzhugh-Nagumo model (12) the linearization
about the equilibrium point (v̄, w̄, v̄, w̄) is given by (16) where

A =

⎡
⎢⎢⎣
α −1 0 0
b −γ 0 0
0 0 α −1
0 0 b −γ

⎤
⎥⎥⎦ with α = −3v̄2 + 2(a+ 1)v̄ − a, and B =

⎡
⎢⎢⎣

0 0 c 0
0 0 0 0
c 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Note that α depends on all the intrinsic neuron parameters (a, b, γ, I), since
v̄ is a solution of (10). Putting A,B into (18) shows that the characteristic
equation for this example is

Δ+(λ)Δ−(λ) = 0 (20)

where
Δ±(λ) = (λ+ γ)(λ− α± ce−λτ ) + b .

Fact: If all the roots of the characteristic equation of the linearization of
(13) about x̄ have negative real part, then x̄ is asymptotically stable, i.e., all
solutions which start sufficiently near to x̄ will tend toward it as t increases.

Fact: If at least one root of the characteristic equation of the linearization
of (13) about x̄ has positive real part, then x̄ is unstable, i.e., some solutions
which start near to x̄ will tend away from it as t increases.

So we see that to determine the stability of an equilibrium point we need
to determine the roots, λ of the characteristic (19). These are often called
the eigenvalues of the equilibrium point. For ordinary differential equations,
the characteristic equation is a polynomial in λ and hence there are a finite
number of solutions all of which may be calculated or numerically approx-
imated. For delay differential equations, however, the presence of the e−λτ

terms means that there are an infinite number of solutions of the characteris-
tic equation. This means we must rely on other methods to determine whether
an equilibrium point is stable. Several methods are outlined in the book of
Kolmanovskii and Nosov (1986), here we will focus on a particular one which
relies on the following result.

Fact: The zeros of Δ(λ) depend continuously on τ and the δi,j , and hence
on the elements of A and B. Thus as any of these parameters is varied, the
number of zeros of Δ(λ) with positive real part can only change if a root
passes through the imaginary axis.

The most common way of using this fact in coupled neural systems, is
outlined in the following procedure.
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1. Set the delay, τ , equal to zero. This will change the delay differential
equation into an ordinary differential equation with the same equilibrium
points as the delay differential equation.

2. Determine the stability of an equilibrium point for the ODE system, i.e.
determine the number of eigenvalues with positive real parts.

3. Determine the critical values of the delay, τ c
1 < τ c

2 < · · · for which the
characteristic (19) has eigenvalues with zero real parts. These are the
values of the delay where the stability of the equilibrium point may change.

4. Calculate the rate of change of the real part of an eigenvalue with respect
to τ when τ is equal to one of the critical values found in the previous
step, i.e., calculate

dRe(λ)
dτ

∣∣∣∣
τ=τc

k

= − Re

(
∂Δ

∂τ
/
∂Δ

∂λ

)∣∣∣∣
τ=τc

k

.

If dRe(λ)
dτ > 0, then the number of roots with positive real parts is increas-

ing, if it is negative, then the number of roots is decreasing.
5. Due to the fact above, the number of roots of the characteristic equation

with positive real part will be constant for 0 ≤ τ < τ1 and equal to the
number found in step 2. For each subsequent interval, τk < τ < τk+1,
the number can be determined from the number in the previous interval
τk−1 < τ < τk, the number of roots with zero real part at τk and the rate
of change calculated in step 4.

Example. Consider our coupled Fitzhugh-Nagumo model (12). We will
follow the procedure outlined above.

1. When τ = 0 the factors of the characteristic (20) become

Δ± = λ2 + λ(γ − α± c) + γ(−α± c) + b .

2. By analyzing the roots of this equation, it can be shown that if γ2 < b

the trivial solution is stable for |c| < γ − α def
= cH , and for c outside this

region the equilibrium point has two complex conjugate eigenvalues with
positive real part, i.e. it is unstable. (In fact the two points c = ±cH are
Hopf bifurcation points for the system with zero delay.)

3. To find the parameter values where the characteristic (20) has eigenvalues
with zero real part, we substitute λ = iω into (20) and separate into real
and imaginary parts. This yields

−α+
bγ

γ2 + ω2
± c cosωτ = 0

ω

(
1− b

γ2 + ω2

)
∓ c sinωτ = 0 .
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Note that we choose the + in the first equation and − in the second for
the parameter values for Δ+ to have a pair of complex conjugate roots
and the opposite for Δ−. Some rearrangement of these equations gives

(bγ − α(γ2 + ω2))2 + ω2(γ2 + ω2 − b)2 − c2(γ2 + ω2)2 = 0 (21)

and

tanωτ =
ω(γ2 + ω2 − b)
bγ − α(γ2 + ω2)

. (22)

Thus, for given values of the parameters a, b, γ, I (which determine α)
and c one can find ω from the first equation and the corresponding τ
values from the second equation. Alternatively, we can think of these two
equations as defining the coupling parameters τ and c in terms of the
intrinsic neuron parameters and ω. Then these equations define curves in
the c, τ parameter plane. These curves are shown in Fig. 1 for a specific
set of intrinsic parameter values. There are multiple curves because tan is
a periodic function, i.e., for fixed α, b, γ, ω there are multiple values of τ
that satisfy (22).

4. Taking the appropriate derivatives, we find

dλ

dτ
=

±λce−λτ

1∓ τce−λτ − b
(λ+γ)2

.

5. Putting together the results of all steps, allows us to fill in the number
of eigenvalues with positive real part in each of the subregions of the c, τ
plane as shown in Fig. 1.

An alternative way to use the procedure outlined above is to set the cou-
pling coefficient (c in (12)) to zero in step 1 and follow the same procedure,
varying the coupling coefficient instead of the delay. In systems with multiple
delays, the procedure can be followed by setting one of the delays to zero, see
e.g. (Campbell et al., 2006, 2005), for examples of this.

To close, we note the work of Olgac and Sipahi (2002, 2005) who have found
a way to automate this procedure using a transformation of the characteristic
equation.

2.2 Bifurcations

As noted in the previous subsection, points in parameter space where the
characteristic equation has an eigenvalue with zero real part are points where
the stability of an equilibrium point may change. These are places where a
bifurcation may occur. As discussed elsewhere in this volume (Breakspear and
Jirsa, 2006), bifurcations may lead to the creation of other equilibrium points
or of a periodic orbit. We refer the reader that chapter for more background
on bifurcations.
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Fig. 1. Illustration of the stability and bifurcation results for the example of (12).
The equilibrium solution is stable in the region contiguous with the τ axis. The
number of eigenvalues with positive real part is shown in each subregion of the
plane. Thick/thin curves correspond to Hopf bifurcations giving rise to synchronous/
anti-phase oscillation

Recall that the equilibrium points of (13) with τ > 0 are the same as
those with τ = 0. Thus for the neural model (13) with τ > 0, the bifurcations
involving only equilibrium points (saddle-node, pitchfork, transcritical) will
be the same as those for (13) with τ = 0.

The two main bifurcations leading to the creation of periodic orbits in neu-
ral systems are the Hopf bifurcation and the infinite period bifurcation. These
bifurcations are associated with Type II and Type I oscillators, respectively
(Breakspear and Jirsa, 2006).

Consider first the Hopf bifurcation. This involves the creation of a periodic
orbit as an equilibrium point changes stability. There are simple criteria to
check to determine if a Hopf bifurcation occurs in a delay differential equation
at a particular parameter value, say τ = τc.

Hopf Bifurcation Test

Assume that system (13) has an equilibrium point x̄. If the following are
satisfied, then system (13) undergoes a Hopf bifurcation at x̄ as τ passes
through τc.
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1. The characteristic (19) of the linearization of (13) about x̄ has a pair of
pure imaginary eigenvalues, ±iω when τ = τc, that is,

Δ(±iω)|τ=τc
= 0 .

2. As τ passes through τc the rate of change of the real part of this eigen-
value(s) is nonzero, that is, dRe(λ)

dτ

∣∣∣
τ=τc

�= 0.

3. The characteristic (19) of the linearization of (13) about x̄ has no other
eigenvalues with zero real part.

Other than in some exceptional cases, this is enough to guarantee that a
periodic orbit is created as τ passes through τc.

Whether the periodic orbit is stable or unstable depends on the nonlinear
terms in the equation. There are two main approaches for determining this
analytically, both of which require intensive computations and are best done
either numerically or with a symbolic algebra package such as Maple. The
centre manifold construction reduces the system of delay differential equations
to a system of two ordinary differential equations from which the stability of
the periodic orbit (for τ close to τc) may be deduced. See (Bélair et al.,
1996; Wischert et al., 1994; Wu et al., 1999) for examples of how this is
done. Perturbation methods, such as averaging and the method of multiple
scales, find an approximate expression for the periodic solution and for the
corresponding Floquet exponents. See (Campbell et al., 2006; Gopalsamy and
Leung, 1996; Wirkus and Rand, 2002) for examples of how this is done.

Example. Applying this test to our coupled Fitzhugh-Nagumo model
shows that the system has a Hopf bifurcation along each of the curves where
the characteristic equation has a pair of pure imaginary eigenvalues, i.e., along
the curves defined by (21)–(22) and shown in Fig. 1. By analyzing the solu-
tions of the linearization (16) that correspond to the roots, one can show that
some of the Hopf bifurcations give rise to synchronous or in-phase oscillations
(i.e. v1(t) = v2(t) and w1(t) = w2(t) for all t) and some to anti-phase solu-
tions (i.e. the spikes in v1 and v2 are half a period apart and similarly for
w1 and w2).

One important thing to note about Hopf bifurcation in systems of delay
differential equations is that there are always multiple branches of Hopf bifur-
cation. This can be seen in our example. The τ value where a Hopf bifurcation
occurs corresponds to a τ value satisfying (22). Clearly if a given value of τ
satisfies this equation, then so does τ + kπ, k = ±1,±2, . . ..

Now consider the the infinite period bifurcation. This bifurcation occurs
when a saddle-node bifurcation occurs on an invariant circle. As indicated
above, the conditions for the saddle-node bifurcation to occur in a delay dif-
ferential equation are the same as for the corresponding system with zero
delay. Whether or not this bifurcation occurs on a limit cycle is not easily de-
termined analytically (even without delays), thus these bifurcations are often
investigated using numerical tools (see Sect. 2.5).



76 Sue Ann Campbell

2.3 Lyapunov Theory

The basic idea of Lyapunov theory is to use an auxiliary function to determine
the dynamics of a nonlinear system. A very simple example is the total energy
in a mechanical system with damping, such as the pendulum model:

θ̈ + γθ̇ +
g

l
sin θ = 0 .

The total energy of this system is

E(θ, θ̇) =
1
2
θ̇2 + gl(1− cos θ) .

A simple calculation, keeping in mind that θ and θ̇ depend on t, shows that
dE
dt < 0. This means that as t increases, E must tend to a minimum value.
This in turn determines what the solutions of the nonlinear model can do. In
particular, one can show that this implies that all solutions must tend to one
of the equilibrium points (θ, θ̇) = (2kπ, 0), k ∈ ZZ as t→∞, i.e. the pendulum
swings with smaller and smaller amplitude until it is hanging straight down.
Lyapunov theory generalizes this idea to an arbitrary auxiliary function, V (x),
which has similar properties to the energy function in the above example, viz.,

1. V (x) > 0, x �= 0;V (0) = 0 (V positive definite)
2. dV

dt < 0, x �= 0 (dV
dt negative definite).

These properties can be used to show that the equilibrium point x = 0 is
asymptotically stable. By modifying the properties above, one can also use
Lyapunov functions to show that an equilibrium point is unstable, that all
solutions are bounded or that all solutions synchronize as t→∞.

There are two ways of extending the Lyapunov theory for ordinary dif-
ferential equations to delay differential equations such as (13). Lyapunov
functionals are auxiliary functions which depend on the value of the state
over an interval in time, i.e., V (xt), where xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0.

The conditions for showing an equilibrium point is stable are basically the
same as those outlined for the ODE case, above. The main difference comes in
showing those conditions are satisfied, which can be more complicated. The
Razumikhin approach uses an auxiliary function V (x(t)), but the second
condition is relaxed to dV

dt < 0 whenever V (x(t)) > V (x(t+ θ)), −τ ≤ θ ≤ 0.
Essentially, this requires that V not increase for time intervals longer than
the delay.

2.4 Phase Models

Many of the analytical tools I have discussed so far are used for studying the
stability of equilibrium points and the creation of oscillatory solutions as pa-
rameters are varied. These tools are most helpful for predicting the behaviour
of systems where the individual neurons do not exhibit oscillatory behaviour
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when they are uncoupled. For systems which are inherently oscillatory, i.e.
systems where the individual neurons exhibit oscillatory behaviour when they
are uncoupled, one of the primary tools available is the phase model. The
basic idea of this approach is that for a group of oscillating neurons which
are weakly coupled, the key variables of importance in understanding how
the neurons affect each other are the phases of the oscillators associated with
the neurons. Thus a system of k model neurons, each represented by an n-
dimensional system of differential equations, can be reduced to a system of
k differential equations for the phases of the k oscillators. Typically these
equations are in the form

θ̇i(t) = Ωt+ εHi(Θi(t)− θi(t)ê)

where Θi(t) = (θ1(t), . . . , θi−1(t), θi+1(t), . . . , θk(t)), ê = (1, 1, . . . , 1), Ω is the
network frequency, and ε is the strength of the coupling. Since the coupling
is weak, ε is small, i.e., 0 < ε << 1.

The procedure to calculate the phase model for a particular differential
equation is described in Hoppensteadt and Izhikevich (1997). In most cases
it is not possible to carry out this procedure analytically, however, a numeri-
cal implementation is available in the package XPPAUT (Ermentrout, 2005)
and described in the book of Ermentrout (2002). The numerical implementa-
tion yields a numerical approximation of the functions Hi. A Fourier series
representation of these functions can also be calculated.

There are two main results concerning phase models for equations such
as (13) which have an explicit time delay in the coupling. The analysis of
Ermentrout (1994) and Kopell and Ermentrout (2002) indicates that explicit
time delays will produce phase shifts in the corresponding phase models pro-
vided that the delay is not a multiple of the oscillation period. Specifically,
the models have the form

θ̇i(t) = Ωt+ εHi(Θi(t)− θi(t)ê− ψ) ,

where ψ = τΩ mod 2π.
Izhikevich (1998) has refined this analysis. He has shown that Ermentrout’s

analysis only holds for delays as large as the order of the oscillation period,
i.e., τ ∼ 1/Ω. For larger delays, i.e., τ ∼ 1/(Ωε), an explicit delay will occur
in the phase model. In this case the phase model will consist of a set of k
delay differential equations of the form

θ̇i(t) = Ωt+ εHi(Θi(t− τ)− θi(t)ê)

For equations with a distributed delay in the coupling, Ermentrout (1994)
and Kopell and Ermentrout (2002) have shown that the phase model will be
of the form

θ̇i(t) = Ωt+ ε

∫ ∞

0

[Hi(Θi(t− s)− θi(t)ê) g(s)] ds .
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2.5 Numerical Tools

There are two basic numerical tools which can aid in the study of delay differ-
ential equations such as (13): numerical simulation and numerical bifurcation
analysis.

In numerical simulation one attempts to determine an approximate solu-
tion of a differential equation given a particular initial state. Note that to
solve such a problem for a delay differential equation such as (13), one needs
to specify the value of the variable x not just at the start time t = 0, but for
the whole interval [−τ, 0]. Thus an initial condition for (13) is

x(t) = φ(t), −τ ≤ t ≤ 0 .

Typically φ is taken to be a constant, i.e.,

x(t) = x0, −τ ≤ t ≤ 0 ,

which is reasonable for most experimental systems. It should be noted that
only solutions which are asymptotically stable can be accurately approximated
using numerical integration.

There are two main programs available for the numerical integration of
delay differential equations. The widely-used (and free) package XPPAUT
(Ermentrout, 2005) can perform numerical integration using a variety of
fixed step numerical methods, including Runge-Kutta. It has a good graph-
ical user interface for visualizing the results. Perhaps the most useful as-
pect of this program is the ease with which parameters and initial con-
ditions can be changed. The recent book of Ermentrout (2002) gives a
overview of the package including many examples. Information on how to
download the package as well as documentation and tutorials are available
at www.math.pitt.edu/~bard/xpp/xpp.html. Within MATLAB there is the
function DDE23 (Shampine and Thompson, 2001) which is a variable step size
numerical integration routine for delay differential equations. A tutorial is on
this routine available at www.mathworks.com/dde_tutorial. Results maybe
visualized using the extensive graphing tools of MATLAB.

Numerical bifurcation analysis consists of two parts, the approximation of
a solution and the calculation of the stability of this solution. The approx-
imation of a solution in a numerical bifurcation package is not done using
numerical integration, but rather using numerical continuation. Numerical
continuation uses a given solution for a particular parameter value to find a
solution for a different (but close) parameter value. This is only easily im-
plemented for equilibrium and periodic solutions. Both stable and unstable
solutions can be found. Once an equilibrium solution is found to a desired
accuracy, approximations for a finite set of the eigenvalues with the largest
real part can be determined, which will determine the stability of the equilib-
rium point. The stability of periodic orbits can be numerically determined in
a similar way. Numerical bifurcation packages generally track the stability of
equilibrium points and periodic orbits, indicating where bifurcations occur.
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There is one package available that does numerical bifurcation analysis
for delay differential equations, DDE-BIFTOOL (Engelborghs et al., 2001).
This package runs on MATLAB. An overview of the numerical methods used
in this package and some examples applications can be found in the paper
of Engelborghs et al. (2002). The user manual and information on how to
download the package are available at
www.cs.kuleuven.ac.be/cwis/research/twr/research/software/delay/

3 Effects of delay

In this section I will outline some of the effects of delay that have been docu-
mented in the literature.

3.1 Creation of Oscillations

Time delays are commonly associated with type II oscillations, i.e. oscillations
created by a Hopf bifurcation (Breakspear and Jirsa, 2006), for the following
reason. There are many examples of systems that have a stable equilibrium
point if the time delay is zero (or sufficiently small), but have oscillatory
behaviour if the delay is large enough. In these systems, the oscillation is
created via a Hopf bifurcation at a critical value of the delay. This is sometimes
referred to as a delay-induced oscillation. One of the simplest examples of
this is the following model for recurrent inhibition due to Plant (1981):

v̇(t) = v(t)− 1
3
v3(t)− w(t) + c(v(t− τ)− v0)

ẇ(t) = ρ(v(t) + a− bw(t)) .

This is a Fitzhugh-Nagumo model neuron with a delayed term which repre-
sents recurrent feedback. Plant considered parameters such that the system
with no feedback has a stable equilibrium point and showed that this stability
is maintained for the system with feedback and sufficiently small delay. He
then showed that when c < 0 (i.e. the recurrent feedback is inhibitory), there
is a Hopf bifurcation at a critical value of the delay, leading to oscillations.

3.2 Oscillator Death

One of the most publicized (Strogatz, 1998) effects of time delays is the fact
that the presence of time delays in the coupling between oscillators can de-
stroy the oscillations. This phenomenon, usually called oscillator death or
amplitude death was first noted by Ramana Reddy et al. (1998), in their
analysis of a simple model of type II oscillators with gap junctional coupling.
Subsequently Ramana Reddy et al. (2000) observed this phenomenon exper-
imentally in a system of two intrinsically oscillating circuits with the same
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type of coupling. There are many papers related to delay induced oscillator
death in the coupled oscillator literature, which I will not attempt to review
here. Instead I will focus the discussion on results relevant to neural models.

The work of Ramana Reddy et al. (1998, 1999) shows that when two or
more intrinsically oscillating elements are connected with gap junctional cou-
pling of sufficient strength with a sufficiently large delay then the oscillations
may be destroyed. Their work focused on systems where the elements were
identical except for the frequency of the intrinsic oscillations and the coupling
was all-to-all and symmetric (all the coupling coefficients were the same).
Their model oscillator was just the normal form for the Hopf bifurcation.
This behaviour has also been seen for a delayed, linearly coupled (i.e. (3) with
no xi(t) term) pair of van der Pol oscillators (Wirkus and Rand, 2002), and for
a pair of Fitzhugh-Nagumo oscillators with delayed gap junctional coupling
(Campbell and Smith, 2007). To my knowledge this has yet to be observed for
other biophysical models of neural oscillators, however, it may be expected to
occur for most type II oscillators. Atay (2003b) obtained results for a network
of weakly nonlinear oscillators with a symmetric connection matrix and gap
junctional coupling. He showed that if the intrinsic frequency of the oscillators
is sufficiently similar then oscillator death can occur.

Several studies have shown that the type of oscillator death described
above does not occur for type II oscillators with sigmoidal coupling (Burić
and Todorović, 2003; Campbell et al., 2004; Shayer and Campbell, 2000).
However, a different type of oscillator death can occur (Burić and Todorović,
2003; Burić et al., 2005; Campbell et al., 2004; Shayer and Campbell, 2000): for
elements which are intrinsically excitable (i.e. not oscillating when decoupled),
oscillations induced by instantaneous coupling may be lost if a time delay is
introduced.

The work of Burić et al. (2005) has shown that for the type I oscillator
of Terman and Wang (1995), there is no oscillator death of this latter type
with either gap junctional or sigmoidal coupling. Their work also suggests
that delay induced oscillator death of the first type is not possible.

The study of type II oscillator death in coupled neural systems combines
various techniques of Sect. 2. Oscillator death can occur when increasing the
time delay causes the stabilization of an equilibrium point. Values of the de-
lay where this occurs will correspond to places where the characteristic (19)
has an eigenvalue with zero real part and dRe(λ)

dτ < 0. To have oscillator
death, however, one must also show that the periodic orbit is eliminated. This
means that at the value of τ where the equilibrium point stabilizes, there is
a “reverse” Hopf bifurcation destroying the stable limit cycle. This may be
checked via numerical simulations or numerical continuations (see subsection
2.5), or by showing, as outlined in subsection 2.2, that the Hopf bifurcation
is subcritical. Burić et al. (2005) and Burić and Todorović (2003, 2005) have
shown that for excitable Fitzhugh-Nagumo neurons, the restabilization of the
equilibrium point is not always accompanied by oscillator death. In the case
that the Hopf bifurcation is subcritical, the stable oscillator may persist with
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the stable equilibrium point giving a region of bistability. In their model, for
larger values of τ the periodic orbit is eliminated in a saddle-node bifurcation
of limit cycles, leading to oscillator death.

The results of Burić et al. on type I oscillator death are primarily based on
numerical simulations. To my knowledge there has been virtually no mathe-
matical study of this situation. Recall that type I oscillators are those where
the oscillation is created by an infinite period bifurcation (Breakspear and
Jirsa, 2006). If such a bifurcation takes place in the coupled system with no
time delay, introducing a time delay will not change the presence of the saddle-
node bifurcation, however, it may affect whether this bifurcation occurs on
an invariant circle. Continuity arguments would suggest that for sufficiently
small delay, the saddle-node bifurcation will still occur on the invariant circle,
leading to the creation of a periodic orbit at exactly the same bifurcation
point as for the undelayed system. What happens for large delay remains to
be investigated.

3.3 Attractor Switching and Multistability

A significant observation about ANNs of the form (14), is that many intersec-
tions between different Hopf bifurcation curves and between Hopf bifurcation
curves and pitchfork bifurcation curves can occur (Bélair et al., 1996; Shayer
and Campbell, 2000; Yuan and Campbell, 2004). Figure 1 shows that this oc-
curs in our coupled Fitzhugh-Nagumo model as well. These intersection points
are called codimension two bifurcation points. Such points can lead to
more complicated dynamics including: the existence of solutions with mul-
tiple frequencies (quasiperiodicity), the coexistence of more than one stable
solution (multistability) or the switching of the system from one type of so-
lution to another as a parameter is varied (Guckenheimer and Holmes, 1983,
Chap. 7), (Kuznetsov, 1995, Chap. 8). In ordinary differential equations, such
points are quite rare. In delay differential equations, however, such points are
more common as the time delay forces there to be multiple branches of Hopf
bifurcation.

In the ANN models, the following behaviour associated with the codimen-
sion two points has been observed (Bélair et al., 1996; Campbell et al., 2005;
Shayer and Campbell, 2000; Yuan and Campbell, 2004): (i) multistability be-
tween a periodic solution and one or more equilibrium points; (ii) bistability
between two periodic solutions (both synchronous or one synchronous and
one asynchronous); and (iii) switching from one stable solutions to another as
the delay is changed for a fixed coupling strength or as the coupling strength
is changed for a fixed delay. The switching in (iii) may take place through a
region of bistability or a region where the trivial solution is stable. Note that
situation (i) leads to a different type of oscillator death than that discussed in
the previous subsection: a slight perturbation can cause the system to switch
from the stable oscillatory solution to the stable equilibrium solution, with no
change in the parameter values.
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Most of this behaviour has been confirmed in systems with biophysically
relevant models for the neurons. In their studies of rings of Fitzhugh-Nagumo
oscillators with time delayed gap-junctional or sigmoidal coupling, Burić and
Todorović (2003) and Burić et al. (2005) have documented almost all the
behaviour observed in the ANN models including switching between different
oscillation patterns and bistability between different oscillation patterns. For a
system of two van der Pol oscillators with linear delayed coupling (i.e. (3) with
no xi(t) term), Sen and Rand (2003) have numerically observed and Wirkus
and Rand (2002) have analytically proven the following sequence as the time
delay is increased: in-phase oscillations → bistability between in-phase and
anti-phase oscillations → anti-phase oscillations. They also observed the re-
verse sequence for different values of the coupling strength. Delay-induced
bistability between in-phase oscillations and suppression oscillations (i.e. one
cell oscillates and the other is quiescent) has been observed in models of hip-
pocampal interneurons (Skinner et al., 2005a,b). Here the delay was synaptic
and modelled via an extra equation representing the chemical kinetics of the
synapse. Bistability between different types of travelling pulses has been ob-
served in certain integrate-and-fire networks with delayed excitatory synaptic
connections (Golomb and Ermentrout, 1999, 2000). In particular, they ob-
serve a switch from continuous travelling pulses to lurching travelling pulses
as the time delay is increased with a transition region where there is bista-
bility between the two types. This behaviour seems to be associated with a
subcritical Hopf bifurcation.

Foss et al. (1996) and Milton and Foss (1997) have studied multistability
in models for a delayed recurrent neural loop. Their model consists of a single
excitatory neuron with delayed inhibitory feedback. They showed that up to
three stable oscillatory patterns can coexist and that switching between the
attractors can be induced by small perturbations in the neuron voltage (Foss
et al., 1996) or by noise (Foss et al., 1997). These results have been repli-
cated in experimental studies of a hybrid neural computer device consisting
of an Aplysia motorneuron dynamically clamped to a computer which pro-
vides the delayed feedback (Foss and Milton, 2000, 2002). A possible cause of
the multistability in these delayed feedback systems maybe period doubling
bifurcations (Ikeda and Matsumoto, 1987). Bistability between different os-
cillation patterns was also observed in preparations of small Aplysia neural
circuits (Kleinfeld et al., 1990).

Bifurcation induced transitions between different attractors have been ob-
served in several experiments. In an experimental electrical circuit system,
Ramana Reddy et al. (2000) have observed the sequence: in-phase oscillations
→ no oscillations → anti-phase oscillations as the time delay in the (gap-
junctional) coupling is increased. Transitions from in-phase to anti-phase os-
cillations have been observed in human bimanual coordination experiments
(Kelso et al., 1981; Kelso, 1984; Carson et al., 1994); see also the review arti-
cle of Jantzen and Kelso (2006). One model which explains these experiments
incorporates time delays in the coupling (Haken et al., 1985).
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3.4 Synchronization

There are several approaches to studying synchronization. I will not review
the details here, but give some indication which of these have been extended
to delay differential equations and what the results are.

There is a very large literature on synchronization in artificial neural net-
works, some of which addresses systems with time delays (Campbell et al.,
2006; Wu et al., 1999; Yuan and Campbell, 2004; Zhou et al., 2004a,b). Most
of these papers use Lyapunov functionals to show that the all solutions syn-
chronize as t→∞, for appropriate parameter values. Although the equations
of the individual elements are not relevant for modelling biophysical neurons,
the techniques of analysis may be carried over to neural systems. A common
conclusion in many of these papers is that if the strength of the coupling is
small enough, one can achieve synchronization for all τ ≥ 0. However, syn-
chronization may mean that all elements asymptotically approach the same
equilibrium point.

As I have mentioned elsewhere in this chapter, a basic principle of delay
differential equations such as (13) is that the behaviour of the system for
small delay is often qualitatively similar to that for zero delay. Thus if the
neurons are synchronized for a given value of the coupling with zero delay
they should remain synchronized for small enough delays in the coupling.
Unfortunately, quantifying “small enough” may be difficult and will generally
depend on the particular neural model involved. Recall the example illustrated
in Fig. 1. We showed that for c > 0 large enough (sufficiently large excitatory
coupling) the undelayed system exhibits synchronized oscillations. We expect
these oscillations to persist for τ > 0 at least until one reaches the first thick
Hopf bifurcation curve where synchronous oscillations are destroyed. (If the
Hopf bifurcation is subcritical, the oscillations may persist above the curve).
Thus, for this particular example, the Hopf bifurcation curve gives a lower
bound on “how small” the delay must be to preserve the synchronization found
for zero delay. Note that this does not preclude synchronization occurring
for larger values of the delay, which is the case in this example. A similar
situation is seen for coupled van der Pol oscillators in (Wirkus and Rand,
2002). Another example is the work of Fox et al. (2001) who studied relaxation
oscillators with excitatory time delayed coupling. They showed that synchrony
achieved for zero delay is preserved for delays up to about 10% of the period
of the oscillation, for a variety of different models. The one exception is when
the right hand side of the equation is not a differentiable function, in which
case synchronization is lost for τ > 0. Crook et al. (1997) observed a similar
phenomenon for a continuum model of the cortex, with excitatory coupling
and distance dependent delays. Namely, they found for small enough delay
the synchronous oscillation is stable, but for larger delays this oscillation loses
stability to a travelling wave.
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More complicated situations occur when both excitatory and inhibitory
connections exist. Ermentrout and Kopell (1998); Kopell et al. (2000); Kar-
bowski and Kopell (2000) have studied a model for hippocampal networks of
excitatory and inhibitory neurons where two types of synchronous oscillation
are possible. They show that persistence of the synchronous oscillations with
delays depends subtly on the currents present in the cells and the connections
present between cells.

So far I have discussed synchronization in spite of delays. I now move on
to the more interesting case of synchronization because of delays. This situa-
tion can occur when there are inhibitory synaptic connections in the network.
This has been extensively documented and studied when the delay is modelled
by slow kinetics of the synaptic gating variable (van Vreeswijk et al., 1994;
Wang and Buzsáki, 1998; Wang and Rinzel, 1992, 1993; White et al., 1998).
Further, Maex and De Schutter (2003) suggest that the type of delay is not
important, just the fact that it leads to a separation in time between when the
pre-synaptic neuron generates an action potential and the post-synaptic neu-
ron receives it. They confirm this for a network of multi-compartment model
neurons with fast synaptic kinetics and a discrete conduction delay. This idea
is further supported by the observation of synchronization via discrete de-
layed inhibition in a number of artificial neural network models (Campbell
et al., 2004, 2005; Shayer and Campbell, 2000). Finally we illustrate this with
our coupled Fitzhugh-Nagumo model. Consider the part of Fig. 1 with c < 0
(inhibitory coupling). For sufficiently large coupling strength and zero delay
the system tends to an asynchronous phase-locked state. This state persists
for τ > 0 sufficiently small, however, for τ large enough a stable synchronous
state may be created in the Hopf bifurcation corresponding to the thin curve.

Only a few studies have looked at synchronization with time delayed gap-
junctional coupling. One example is the work of Dhamala et al. (2004) which
shows that for two gap junctional coupled Hindmarsh-Rose neurons synchro-
nization is achieved for smaller coupling strengths if there is a nonzero time
delay in the coupling. Another is the work of Burić et al. (2005).

4 Distributed Delays

There are very few results concerning neural systems with distributed delays,
thus I will review some general results, mostly from the population biology
literature, which should carry over to neural systems. What has emerged from
this literature is a general principle that a system with a distribution of delays
is inherently more stable than the same system with a discrete delay. Some
specific results to support this are described below.

Bernard et al. (2001) analyzed the linear stability of a scalar system
with one and two delays in terms of generic properties of the distribution
g, such as the mean, variance and skewness. For the uniform and continuous
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distributions, they have shown that stability regions are larger than those
with a discrete delay.

Jirsa and Ding (2004) have analyzed an n × n linear system with linear
decay and arbitrary connections with a common delay. They have shown,
under some mild assumptions, that the stability region of the trivial solution
for any distribution of delays is larger than and contains the stability region
for a discrete delay.

Campbell and Ncube (2006) have shown that it is more difficult to get delay
induced oscillations with distributions of delays of the form (6) with τm = 0.
For large variance (m = 1) delay induced instability is impossible and for
smaller variance (m > 1) the mean delay needed for instability is much larger
than the discrete delay value. They have also shown that sufficiently small
variance in the distribution is needed to get the bifurcation interactions which
may lead to multistability, oscillator death and attractor switching discussed
above.

Atay (2003a, 2006) has studied the same model as Ramana Reddy et al.
(1998) only with distributed delays of the form (6) with g given by (7). He
shows it is easier to destroy oscillations with a distribution of delays than with
a discrete delay, in the sense that there is a larger region of oscillator death
in the parameter space consisting of the mean delay and the strength of the
coupling. As the variance of the distribution increases the size of this region
increases.

Thiel et al. (2003) studied a scalar equation representing a mean field
approximation for a population pyramidal cells with recurrent feedback, first
formulated by Mackey and an der Heiden (1984). They show that having
a uniform distribution of delays simplifies the dynamics of the system. The
size of the stability region of the equilibrium point is larger and larger mean
delays are needed to induce oscillations. Complex phenomena such as chaos
are less likely to occur, or totally precluded if the variance of the distribution
is sufficiently large. The model with a distribution of delays better explains
the appearance of periodic bursts of activity when penicillin is added to a
hippocampal slice preparation (which reduces the coupling strength).

5 Summary and Future Directions

In this chapter I showed how time delays due to conduction along the axon
or dendrite or due to transmission across the synapse could be modelled with
delay differential equations. I outlined some of the tools available for analyzing
such equations and reviewed some of the literature about such models. Some
key observations are:

– Time delays can lead to the creation of type II oscillations, especially in
systems with delayed inhibitory coupling.

– Time delays can destroy type II oscillations in a network of intrinsically
oscillatory neurons with gap junctional coupling.
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– If a system has a stable synchronous oscillation when there is no delay in
the coupling, the solution remains stable for small enough delay, but may
lose stability for larger delay.

– A system with inhibitory coupling which does not have a stable syn-
chronous oscillation for zero delay, may have one if the delay is large
enough.

– Time delays may lead to bistability between different type II oscillatory
solutions (e.g. synchronous and anti-phase) or switching between different
type II oscillatory solutions.

There are a number of problems which still require further study. These
include: determining the effect of delay on the generation and destruction of
type I oscillations (infinite period bifurcations), applying and/or extending
the methods used to study synchronization in artificial neural networks to
biophysical neural networks, and studying the effect of distributions of delays
on biophysical neural networks.
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Recent experimental work has begun to characterize activity in local cortical
networks containing thousands of neurons. There has also been an explosion
of work on connectivity in networks of all types. It would seem natural then to
explore the influence of connectivity on dynamics at the local network level.
In this chapter, we will give an overview of this emerging area. After a brief
introduction, we will first review early neural network models and show how
they suggested attractor dynamics of spatial activity patterns, based on re-
current connectivity. Second, we will review physiological reports of repeating
spatial activity patterns that have been influenced by this initial concept of
attractors. Third, we will introduce tools from dynamical systems theory that
will allow us to precisely quantify neural network dynamics. Fourth, we will
apply these tools to simple network models where connectivity can be tuned.
We will conclude with a summary and a discussion of future prospects.

1 Introduction

The advent of fMRI and other imaging technology has spawned a deluge of re-
search examining how the brain functions at the macroscopic level. This work,
which treats each voxel as the basic unit of analysis, has yielded tremendous
insights as to how networks of cortical regions cooperate to produce motor
activity (Jantzen KJ et al., 2005; Rowe J et al., 2002), memory (Fletcher P
et al., 1999), cognition (Mechelli A et al., 2004; Stephan KE et al., 2003) and
emotion (Canli T et al., 2002). But within each voxel there lie perhaps tens of
thousands of neurons that are connected into local networks, performing ele-
mentary computations that are fundamental to the brain’s higher functions.
Relatively little experimental work has been done at this mesoscopic level,
despite the existence of a large literature on neural network theory and mod-
els. This chapter will focus on the relationship between network connectivity
and dynamics at this level, with the hope that the principles uncovered here
will be generally applicable to networks at larger scales as well. In addition,



92 John M Beggs et al.

this chapter will emphasize local networks of cortical neurons, since this is
the area within the mesoscopic level where the most experimental work has
been done.

2 Attractors in Early Models of Local Neural Networks

The simplest neural network models only have projections from one layer
of neurons to the next, having what is called “feed-forward” architecture.
While these models can do many impressive things, they can not exhibit
dynamics in the true sense because their outputs are never fed back as inputs
to the network. Their activity changes from layer to layer, but their final
output is given only at one point in time. By contrast, in recurrent networks
projections from some or all of the neurons are connected back to the inputs of
the network through recurrent collaterals. Recurrent networks can therefore
generate activity in a given layer that changes over time with each loop of
processing, thus demonstrating dynamics. Since real brains are filled with
recurrent and not purely feed-forward connections, it seems that recurrent
networks are also much more realistic models of connectivity in living neural
networks. For these reasons, we will only consider recurrent networks in what
follows.

Much of the early work in recurrent network models was concerned with
memory storage and retrieval. These simplified models demonstrated how
groups of neurons could collectively store a spatial activity pattern embedded
in connection strengths. An example of such a model is shown in Fig.1. The
five pyramidal, excitatory neurons have all-to-all recurrent connections. When
three of the neurons are activated at the same time, synaptic connections be-
tween the active collaterals and active neurons are strengthened. This rule
for changing synaptic strengths is called the “Hebb rule” after Donald Hebb
who most famously proposed it (Hebb DO, 1949), and is often summarized
by the phrase “cells that fire together, wire together.” Once these synaptic
connections are strengthened by a Hebbian rule, the network has a distributed
memory trace of the original configuration of the three active cells. The idea
of synaptic strengths encoding memory is not new and can be traced back to
Cajal (Ramón Y Cajal S, 1909), but the dynamics of this simple model was
not appreciated until decades later. When a fragment of the original, stored
configuration of cells is presented to the network, the network will have a
tendency to use the fragment to reconstruct the original stored configuration.
Active cells will recruit other cells from the stored pattern through recurrent
collaterals and recently strengthened synaptic connections. The configuration
of the network at each time step will thus become progressively more similar to
the originally stored configuration. One way of describing this is to say that the
network is attracted to the stored configuration. If the network configurations
could be symbolized by binary strings and arrows could represent transitions



Connectivity and Dynamics in Local Cortical Networks 93

over time, we would have [00100]→ [10100]→ [10110]. But note that several
other initial configurations could also lead to this final stored configuration.
For example: [10000] → [10010] → [10110], and [00010] → [00110] → [10110]
are also pathways. All of those configurations that eventually lead to the stored
configuration are said to be in the basin of attraction of the stored configura-
tion. The stored configuration [10110] is called an attractor in this network. In
larger models, it is possible to have many independent configurations stored
as attractors within the same network.

The model in Fig.1 is representative of a whole class of influential
models that employed recurrent connectivity and Hebbian learning to store
spatial patterns. A precursor of this class was proposed by Steinbuch

Fig. 1. An attractor in a simplified recurrent network model. Network has five
pyramidal cells. Straight lines represent axon collaterals, here wired to have all-to-
all connectivity. A, Tabula rasa: a stimulus pattern activates three neurons, shown
in black. B, Learning: Hebbian plasticity strengthens connections between active
neurons and active axon collaterals, shown as triangular synaptic connections. C,
Cue: some time later, a fragment of the original stimulus activates the middle neuron.
D: Beginning recall: the active neuron now drives the newly strengthened synapses,
shown in black. E, Further recall: activity in these new synapses activates another
neuron from the stimulus pattern. F, Total recall: collective activity now drives the
third neuron from the original pattern. Over time, the state of the network became
more similar to the activity pattern seen in A. Note that any partial cue of the
original pattern could lead to re-activation of the original pattern. After learning,
the network configuration is said to be attracted to the state shown in A
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(Steinbuch K, 1961; Steinbuch K and H Frank, 1961) in his matrix memory
model, which used co-activation to imprint connections and to associatively
store information. Anderson’s autoassociator model (Anderson JA et al.,
1977), the Hopfield model (Hopfield JJ, 1982, 1984; Hopfield JJ and DW
Tank, 1986) and models analyzed by Cohen and Grossberg (Cohen MA and S
Grossberg, 1983) all used Hebbian learning and had all-to-all connectivity. An
emergent property of these models, stemming in part from their connectivity,
was that information could be stored in attractors, and that network activ-
ity would tend to settle into these attractors (Amit DJ, 1989). The models
of Hopfield and Grossberg are also noteworthy for other reasons (connecting
statistical physics to neural network theory; using time as an important vari-
able in network dynamics) that are beyond the scope of this chapter. For our
purposes, it is important to note that these models used recurrent connections
and proposed that spatial information could be stored in attractors. Versions
of this class of model were later elaborated by neuroscientists to explain how
the hippocampus might store and retrieve memories (Rolls ET, 1990; Skaggs
WE and BL McNaughton, 1992).

It is also worth noting that much work has been done on how even single
neurons with recurrent connections can store temporal information in spike
sequences (e.g., Foss, Longtin, Mensour and Milton, 1996; Foss and Milton,
2000). These sequences can be considered attractors, although they may not
necessarily store spatial patterns of activity across many neurons, as we have
been discussing. For further coverage of this interesting topic, the reader is
referred to Sue Ann Campbell’s chapter in this handbook.

The simple class of models which store spatial patterns of activity was
appealing to computational neuroscientists for several reasons. First, it seemed
biologically plausible. As stated before, recurrent collaterals are abundant in
the brain, and there is ample evidence that synapses can be strengthened
according to a Hebbian rule (Kelso SR et al., 1986; Kirkwood A and MF Bear,
1994). Second, the dynamics of the model seem to mimic the way memories
are subjectively recalled. Presenting a cue or fragment of information is often
enough to elicit more detailed information that was originally associated with
it. Just as viewing a fragment of a picture can often evoke a complete image
from memory, so also a few active neurons can cause the model to complete the
pattern that was originally stored (Hopfield JJ, 1982). Third, these models
allowed several patterns to be stored within the same network, a property
that clearly would be useful in real brains. Because of their plausibility and
impressive emergent properties, these simple network models caused many
researchers to expect that local circuits in mammalian cortex would store
memories in the form of attractors.
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3 Repeating Activity Patterns and the Influence
of Attractor Models

Is there any evidence for attractors, as described by the above model, in
physiological recordings? In order to evaluate this form of the attractor hy-
pothesis correctly, several experimental requirements need to be met. First,
since activity is hypothesized to be distributed among many neurons, multiple
recording sites are needed. Second, network activity must visit some configu-
rations more often than would be expected by chance. If all network activity
configurations were visited equally often, there would be no attractors. But
if some configurations are visited repeatedly and more often than would be
expected by chance, then there is at least a possibility that attractors exist
in the network. Third, when the network is in a configuration that is close to
one of its stored configurations, network activity should become progressively
more similar to the stored configuration over time. This indicates that the
network is being drawn into the attractor. Fourth, these repeatable config-
urations need to be stable over time if they are to serve as a substrate for
information storage.

Among the first recordings that fulfilled some of these requirements were
those from Abeles and colleagues, who observed temporally precise spike
sequences in primate cortex (Abeles M et al., 1993; Ben-Shaul Y et al.,
2004). They reported that spike triplets, which they later called “synfire
chains,” reproducibly appeared while monkeys were engaging in particular
stages of cognitive tasks. In addition, these sequences occurred more often
than would be expected by chance, under the assumption that spike trains
can be modeled as a random Poisson process. Although some researchers
later questioned whether the synfire chains reported by Abeles and colleagues
were truly statistically significant (Baker SN and RN Lemon , 2000; Oram
MW et al., 1999), other groups gradually began to report repeating activity
patterns as well. Recordings from rat hippocampus showed that distributed
patterns of neurons became active as rats made their way through a maze
(Wilson MA and BL McNaughton, 1993). Whenever a rat revisited a portion
of the maze in the same way, a similar pattern of activity would appear
(Brown EN et al., 1998; Skaggs WE et al., 1996). These similarities were
statistically significant, and suggested that the activity configuration some-
how represented spatial or cue information. Interestingly, these patterns were
later found to significantly reappear during subsequent, but not previous,
sleep sessions (Lee AK and MA Wilson, 2002; Louie K and MA Wilson, 2001;
Nadasdy Z et al., 1999). This suggested that the activity patterns encoded
the previous day’s maze running session and were being consolidated during
sleep (Wilson MA, 2002), a hypothesis that is still somewhat disputed. Less
controversially, these data indicated that the reproducible activity patterns
had long-term stability and could serve as a substrate for information stor-
age (Lee AK and MA Wilson, 2004). Reproducible activity patterns were also
found in the cortex-like structure HVC (high vocal center) of song birds during
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song learning and production (Hahnloser RH et al., 2002). The temporal pre-
cision of these activity patterns like this was astoundingly high, being 1 mil-
lisecond or less (Chi Z and D Margoliash, 2001). Activity patterns observed in
song birds also had long-term stability and replayed during sleep (Dave AS and
D Margoliash, 2000; Deregnaucourt S et al., 2005), indicating that they too
could serve to store information. Reproducible activity patterns have now been
found in a variety of in vivo systems ranging from visual cortex (Kenet T et al.,
2003), and the olfactory bulb (Spors H and A Grinvald, 2002) to the brain
stem (Lindsey BG et al., 1997). Collectively, these data demonstrate that dis-
tributed, reproducible activity patterns with long-term stability exist in the
intact brain.

But did these patterns arise because many different brain areas were acting
together? It remained to be seen whether isolated portions of brain could sus-
tain reproducible activity patterns. Yuste and colleagues used calcium dyes
and a scanning two-photon microscope to image activity from hundreds of
sites in acute slices of mouse visual cortex (Cossart R et al., 2003; Mao BQ
et al., 2001). They reported that neurons became active in particular pat-
terns that reoccurred more often than would be expected by chance. Because
the microscope had to scan over so many neurons, it took about one second
before the scanning laser could return to a given neuron to image it again.
Thus, they were able to image activity over the cortical slice network at a
temporal resolution of about 1 second. This exciting work demonstrated that
neocortical tissue in isolation spontaneously produced repeatable activity pat-
terns, and raised the possibility that local circuit connectivity, to the extent
that it was preserved in the slice, was sufficient to support these patterns.
Further evidence that local networks were enough to generate attractor-like
patterns came from work with neural cultures grown on 60-channel multielec-
trode arrays. Using cultured slices prepared from rat cortex, Beggs and Plenz
(Beggs JM and D Plenz, 2004) showed that reproducible activity patterns had
a temporal precision of 4 milliseconds and were stable for as long as 10 hours
(Fig. 2). While these cultures were prepared from slices that preserved some
of the intrinsic cortical circuitry, they were grown for three weeks in isolation
from sensory inputs. Thus, the activity patterns that arose were very likely
to have been the result of self-organizing mechanisms (e.g., Hebbian rules,
homeostatic regulation of firing rate) present at the neuronal and synaptic
levels. As even further evidence that repeating activity patterns can result
from self-organization, Ben-Jacob and colleagues (Segev R et al., 2004) have
demonstrated that networks of dissociated cultures produce repeating activity
patterns. These cultures are prepared from suspensions of individual neurons
that are then poured over an electrode array and grown in an incubator for
several weeks. As a result, these preparations do not preserve intrinsic corti-
cal circuitry at all, even though they may match the proportions of excitatory
and inhibitory cells found in cortex. Collectively, this work indicates that long-
lasting, temporally precise, reproducible activity patterns can readily form in
isolated cortical tissue. The fact that even dissociated cultures can generate
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Fig. 2. Reproducible activity patterns from an isolated cortical network. A, On the
left is an organotypic culture from rat somatosensory cortex (containing ∼50,000
neurons) pictured on a 60-channel multielectrode array at 2 days in vitro. Electrodes
are seen as small black dots at the end of straight lines. Electrode tips are 30 μm
in diameter and the inter-electrode distance is 200 μm. B, On the right is the local
field potential signal recorded from one electrode, low-pass filtered at 50 Hz. The
dashed line is a threshold set at −3 standard deviations. The sizes of the dots
represent the magnitudes of the suprathreshold field potentials. B, The raster plot
of activity from all electrodes is shown for one minute. Columns of dots indicate
nearly synchronous bursts activity on many electrodes. Activity bursts are separated
by quiescent intervals of several seconds. C, The period of suprathreshold activity
near 50 seconds is binned at 4 ms, showing that activity is not actually synchronous
at higher temporal resolution. Activity here spans three bins and is preceded and
terminated by bins with no activity. D, The activity shown in B is presented as a
spatio-temporal pattern on the multielectrode array grid. In this case, a pattern of
three frames is shown. E, Six cases of spatio-temporal activity patterns are shown
that were significantly repeating in a one hour period. Here active electrodes are
shown as darkened squares on the electrode grid, where darker squares indicate
larger amplitude signals and lighter squares indicate smaller amplitudes. Next to
each pair of patterns is the time, in minutes, between observations of the patterns.
Since the cultures were grown in isolation from sensory inputs, these results indicate
that reproducible activity patterns can be generated by cortical circuits through self-
organizing mechanisms. Figures adapted from Beggs and Plenz, 2003, 2004
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these patterns suggests that Hebbian rules and recurrent connectivity may be
sufficient conditions for stable activity patterns.

So far, these findings seem consistent with the simple attractor neural net-
work model described previously. But does activity in these networks show
evidence of becoming progressively more like a stored pattern? Is the network
configuration being drawn in to an attractor? Interestingly, very few labora-
tories sought to examine the dynamics of activity patterns in these systems.
Because of this, the attractor hypothesis in its fullest form was not truly
evaluated by the work described above.

Recently, Wills and colleagues (Wills TJ et al., 2005) have made progress
on this issue with an ingenious set of experiments performed in awake, behav-
ing rats. They implanted multiple electrodes in the hippocampus and then
placed rats in an arena with a base that could be progressively morphed from
a circle to a square. Consistent with previous studies, they found that a partic-
ular activity pattern of firing in hippocampal neurons occurred when the rat
was in the circular arena, and that this pattern was different from the pattern
that occurred when the rat was placed in the square arena. After testing that
these representations were stable, they then changed the shape of the arena
to be like that of a square with rounded edges, intermediate between a circle
and a square. When the rat was placed in this new hybrid arena, the activity
pattern that initially appeared on the electrodes was not like that seen from
the circular or the square arena. Over two minutes, though, the activity pat-
tern progressively became more like either that seen from the circular arena
or that seen from the square arena. This is exactly what would be expected
if the network state were being drawn into an attractor. They also showed
that slight morphs away from the circular shape usually resulted in network
activity becoming like the pattern seen from the purely circular arena; similar
effects were shown for slight morphs away from the square shape. These data
were consistent with the basin of attraction seen in the simple network model
presented earlier.

Although the results of this impressive experiment qualitatively agreed
with all of the major features of the attractor network model, several areas
still remained to be explored. It was not clear if the dynamics seen in this
system was caused by the circuitry within the hippocampus or by the coop-
erative action of other brain areas that projected to the hippocampus. With
convergence to an attractor state taking about two minutes, it seemed likely
that other brain areas were involved. It would also be desirable to go beyond
a qualitative description and to quantify the dynamics more precisely.

4 Tools for Quantifying Local Network Dynamics

How can the dynamics of neural networks be quantified? Fortunately methods
from dynamical systems theory have been developed and these have success-
fully been applied to electronic circuits (Huberman BA et al., 1980), driven
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pendulums (Baker GL and JP Gollub , 1996), chemical reactions (Kilgore MH
et al., 1981) and a host of other phenomena (Crutchfield JP et al., 1986;
Nicolis G and I Prigogine, 1989). With some changes, these methods can also
be used to describe both simulated and living neural networks. In this sec-
tion, we will briefly describe some of these tools and note how they could
be used to sharpen the description of network dynamics that was qualita-
tively outlined in the previous section. For a more detailed treatment of this
topic, the reader is referred to the chapter by Jirsa and Breakspear in this
handbook.

We will assume that we wish to describe the dynamics of a network com-
posed of m neurons. Let xi represent a variable of interest, for example, the
voltage, of neuron i. The configuration of activity in the network at time t
can then specify a location Xt in m-dimensional state space:

Xt = (xt
1, x

t
2, x

t
3, . . . x

t
m) .

In these coordinates, we can plot network activity at times t + 1, t + 2,
t+3. . . t+n and we can construct a trajectory (also called an orbit) by linking
these locations in state space (also called phase space) as shown in Fig. 3.

Describing the dynamics of the network amounts to describing how tra-
jectories evolve over time. Recall that in the attractor network model, the
network state will evolve toward a stored configuration. Trajectories starting
within the same basin of attraction will therefore tend to flow toward each
other over time, minimizing the distance between them. So to explore the at-
tractor network hypothesis, we will need to quantify distances in state space.

Fig. 3. A trajectory in state space. Three axes, x1, x2, and x3 are shown, which
could represent the states of three neurons. By plotting the values of the network
state variables (x1, x2, x3) at times t, t+ 1, and t+ 2, a succession of positions can
be linked to form a trajectory through state space. The trajectory is shown here as
a bent arrow



100 John M Beggs et al.

Distances between points Xt and Y t can be measured by some metric, like
the Euclidean distance:

dXtY t =
√

(yt
1 − xt
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2 + (yt

2 − xt
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2 + . . . (yt
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m)2.

Other metrics are also suitable. For example, the Hamming distance, which
is just the number of digits that are different between two binary numbers
(e.g., [1 0 1] and [0 0 1] have a Hamming distance of 1), could be used for
a network with only binary neurons. The rate of growth in distance between
two initially close trajectories can be quantified by the Lyapunov exponent λ
(Wolf A et al., 1985), which is related to the distance between trajectories at
two points in time. This is illustrated in Fig. 4, where trajectories begin
from two points that are close together in state space. The distance between
these two starting points is measured as dstart. The network is allowed to
evolve over time from each point, causing two trajectories to be traced out in
state space. After a time T , the distance between two points on the trajectories
is measured as dfinish. The Lyapunov exponent in bits/sec is then given by:

λ =
1
T

log2

(
dfinish

dstart

)
.

In practice it is good to keep T small so that λ will closely approximate
the instantaneous divergence between the trajectories. By manipulating this
equation, we can more clearly see how λ describes the exponential rate at
which two trajectories separate in state space after T time steps:

dstart · 2λT ∼= dfinish.

Fig. 4. The Lyapunov exponent quantifies dynamics. A, Converging trajectories.
Two trajectories in state space, shown as curved lines with arrowheads, are sepa-
rated by a distance dstart at time t. At time t + T , they are separated by a dis-
tance of dfinish. The ratio (dfinish/dstart) can be used to determine whether or
not the trajectories are flowing together over time. In this case, they become closer
over time, indicating attractive dynamics. B, Parallel trajectories. Here, the ratio
(dfinish/dstart) is one, indicating neutral dynamics. C, Diverging trajectories. Here
the ratio (dfinish/dstart) is greater than one, indicating chaotic dynamics
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The Lyapunov approach to quantifying discrete network dynamics has been
developed by Derrida and colleagues (Derrida B and Y Pomeau, 1986;
Derrida B and G Weisbuch, 1986), as well as by others (Bertschinger N and T
Natschlager, 2004). This method is especially useful when working with sim-
ulated networks, where it is easy to start a network from a particular point
in state space by just specifying the values of all the state variables. The
simulation can then be run for T time steps to produce a trajectory. It is also
easy to produce a trajectory from a nearby point in state space and to mea-
sure the resulting distances between trajectories. For living neural networks,
however, this approach is more difficult to implement, as it is presently impos-
sible to specify all the state variables at a given time. Electrical stimulation
can overcome this to some extent by causing a subset of neurons to all be
active at the same time; trajectories after stimulation can then be measured.
But background activity can not be completely controlled, and this has been
found to play a large role in determining network responses to stimulation
(Arieli A et al., 1996).

There are three general types of dynamics that can be identified with this
method. Attractive dynamics is characterized by λ < 0, causing nearby tra-
jectories to become closer over time (Fig. 4A). Systems dominated by attrac-
tive dynamics are very stable, and have one or more basins of attraction. In
the attractor model that we previously described, these basins would lead to
attractor states that could represent configurations stored in long-term mem-
ory. However, these networks are so stable that it is difficult to control their
trajectories and steer them away from attractors. Perturbations to the net-
work are mostly ineffective at changing the state that it settles into. Neutral
dynamics is characterized by λ ≈ 0, causing nearby trajectories to preserve
distance over time (Fig. 4B). Here, perturbations to the network produce
commensurate changes in output. Systems with predominantly neutral dy-
namics are therefore marginally stable, meaning that trajectories will largely
persist in their given course under mild perturbations. With the appropriate
inputs, it is possible to control trajectories in networks with neutral dynam-
ics. Chaotic dynamics is characterized by λ > 0 causing nearby trajectories to
become more separated over time (Fig. 4C). Small perturbations are amplified,
making these networks intrinsically unstable and difficult, but not impossible,
to control (Ding M et al., 1996; Ditto WL and K Showalter, 1997).

The Lyapunov exponent can be used to describe trajectories in all regions
of state space that are visited by the network. However, just because one
region of state space shows attractive dynamics does not necessarily mean
that all other regions will also. Figure 5 shows that state space can contain a
variety of features: fixed points, saddle points, and limit cycles. The trajecto-
ries passing through fixed points are all either leading into the point or leading
away from it. If they are leading into the point, then there is a stable fixed
point; if they are leading away from it, then there is an unstable fixed point.
The attractor network model discussed previously uses stable fixed points to
encode long-term memories. Unstable fixed points are repulsive to trajectories
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Fig. 5. Example features of state space. A, A stable fixed point has only trajectories
leading into it. B, A saddle point has trajectories leading into it along one axis, but
leading out of it along another axis. C, D, Limit cycles are trajectories that are
closed on themselves

and are rarely visited by the system. Saddle points are both attractive and
repulsive, depending on the direction from which they are approached. They
have trajectories that lead into them from one direction, and trajectories that
lead away from them in another direction. Trajectories will often move toward
a saddle point, only to be repulsed from it when they get too close. They then
may be drawn toward another saddle point and repulsed again, displaying
itinerant behavior as they visit different saddle points (Rabinovich M et al.,
2001). Limit cycles occur when the network continually oscillates in state
space, as represented by trajectories that form closed loops with themselves.

To fully characterize the dynamics, one would have to map the entire
state space of the system. This is in practice impossible, so most experiments
report only the dynamics seen in a small subset of the state space. Fortunately,
characterizing the dynamics in some reduced dimensional space is often good
enough to get an approximate picture of the dynamical system as a whole.
The process of knowing how to reduce dimensionality and which variables
may be omitted is beyond the scope of this chapter. The reader is referred
to (Abarbanel HD and MI Rabinovich, 2001; Abarbanel MDI, 1996; Kantz H
and T Schreiber, 2004; Strogatz SH, 1994) for more detailed discussions on
this topic.

5 How Connectivity Influences Local Network Dynamics

With the methods described above, we can now examine how network connec-
tivity influences dynamics. Since it is difficult to manipulate connectivity in
living neural networks, we will only discuss here results from computational
models. In what follows, we will introduce a simple model with tunable connec-
tivity. We will show that this model qualitatively captures the main features
of network activity observed in some experiments. We will then manipulate
the connectivity of the model to explore its effects on dynamics.
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Consider a network model with N neurons or processing units, each al-
lowed to be in only one of two states, either active (1) or inactive (0). To allow
for complete generality, let us connect each unit to every other unit (Fig. 6A).
We can later control the strengths of these connections, setting some of them
to zero, so as to sculpt the connectivity of the network. Units can become
active in one of two ways, either through spontaneous or driven activity. Each
unit will have some small probability, pspont, of being spontaneously active at
a given time step. A unit may also become active if it is driven by another
active unit that makes a connection with it. If a unit is not spontaneously
active or driven at a given time step, it will be inactive.

Fig. 6. Network model with tunable connectivity. A, Network initially has all-to-
all connectivity, but selected connection strengths can be set to zero. A network
with N = 8 units is shown. B, Each unit i has a set of transmission probabilities:
{pij , pik, . . . piN} that determines connection strengths. C, The sum of the trans-
mission probabilities emanating from a given unit i will determine the branching
parameter σ for that unit. D, The distribution of transmission probabilities can be
made sharp or flat by adjusting the exponent B. The normalization constant, A,
makes the probabilities sum to σ. As discussed in the text, tuning the branching
parameter σ or the distribution exponent B can influence network dynamics
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Activity can propagate from unit i to unit j through a connection that has
a transmission probability pij that is constrained to be between zero and one
(Fig. 6B). Transmission is simple and works like this: If a unit i is active, then
unit j will become active in the next time step if a randomly drawn number is
less than the transmission probability pij . In other words, unit i will transmit
to unit j with probability pij . Unlike traditional integrate-and-fire neuron
models, these units do not sum all of the incoming activity and then fire if
this sum is over a threshold. They simply fire if one of the units connected
to them is active and if transmission between them is successful. Given this
arrangement, activity in the model typically originates spontaneously at one
or a few units and then propagates through connections to other units in the
network. While this model may seem too simplistic, it actually does a good
job of reproducing phenomena observed in the data, as will be explained more
below. If a parsimonious model can successfully capture the main features of
the data, then this suggests that network dynamics may be governed by a few
simple principles (Haldeman C and JM Beggs, 2005).

The connectivity may be tuned in one of two ways. First, the sum of the
transmission probabilities emanating from each unit may be scaled from 0
(where each pij = 0) to N (where each pij = 1). Let us define the branching
parameter, σ, as this sum:

σ ≡
N∑

j=1

pij .

The branching parameter will serve to scale all connection strengths (Fig. 6C).
Second, the distribution of transmission probabilities from each unit may be
controlled from sharp (where only one connection has a transmission probabil-
ity of 1 and all the other connections are 0) to homogeneous (where all connec-
tion strengths have equal transmission probabilities equal to 1/N)(Fig. 6D).
There are many different types of distributions that could be used here, but
for simplicity we will only consider distributions that are defined by an expo-
nential function:

pij ≡ Ae−B∗j ,

where A is a scaling constant that keeps the sum of the transmission probabil-
ities equal to σ, and B is the exponent that determines how sharp (B large)
or flat (B small) the distribution will be.

How well can a simple model like this capture features from actual data? In
experiments with organotypic cortical cultures, Beggs and Plenz (Beggs JM
and D Plenz, 2003) found that suprathreshold local field potential activity
(Fig. 2A) at one electrode was, on average, followed by activity in one other
electrode in the next time step. When the model is tuned to have a branching
parameter σ = 1.0, it reproduces this result faithfully. This should not be too
surprising, though, since it is well known that for a branching process, σ gives
the expected number of descendants from a single ancestor (Harris TE, 1989).
What is somewhat less expected is that the distribution of “avalanche” sizes
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produced by the model also closely matches the distribution from the data.
Here, the avalanche size is just the total number of electrodes activated in one
spatio-temporal pattern of activity. Representative patterns of activity are
shown in Fig. 2D and 7B, and consist of consecutively active frames that are
bracketed in time by inactive frames. When the probability of an avalanche
is plotted against its size, the result is a power law, as shown in Fig. 7A.
Power law distributions are often found in complex systems and can be used
to describe domain sizes in magnets during a phase transition (Stanley HE,

Fig. 7. The model captures important features of the data. A, When the probability
of occurrence is plotted against avalanche size, a nearly straight line is formed in
a log-log graph. This line indicates that the relationship between probability and
size can be described by a power law: P (S) = S−α, where P is the probability of
observing an avalanche of size S, and S is the total number of electrodes activated
in the avalanche. For a critical branching process, the exponent of the power law, α,
is predicted to be −3/2 (dashed line). Filled circles are from 5 hours of spontaneous
activity in an acute slice, while open circles show results from the model when
the branching parameter σ = 1. Note that the power law begins to cut off near
S = 35, since the number of electrodes in the array is 60. B, Reproducible patterns
of activity generated by the model. Each large white square represents the pattern
of active electrodes on the array at a given 4ms time step. Active electrodes are
shown as small black squares. Patterns shown are all five time steps long. Note that
patterns within groups 1 through 3 are not exactly the same, even though all groups
were statistically significant. C, Reproducible patterns generated by acute cortical
slices. Note general similarity to patterns produced by the model. Data from acute
cortical slices are generally similar to data produced by organotypic cortical cultures
(compare to patterns shown in Fig. 2D), suggesting common principles of operation.
Because the model reproduces general features of the data, it may serve as a useful
tool for exploring links between connectivity and dynamics
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1987; Yeomans JM, 1992), forest fire sizes (Malamud BD et al., 1998), earth-
quake magnitudes (Gutenberg B and CF Richter, 1941) and sizes of simulated
sand pile avalanches (Paczuski M et al., 1996). Since the sizes of activity pat-
terns from cortical cultures also fit a power law, we called them “neuronal
avalanches.” Power law distributions also suggest, but do not prove, that a
system is operating near a critical point (Bak P, 1996; Jensen HJ, 1998). The
power law is a consequence of the branching parameter being close to unity.
When σ = 1, activity propagates in a nearly sustained manner but eventu-
ally dies out because transmission is stochastic. Another aspect of the data
that can be reproduced by this simple model is the reproducible activity pat-
terns themselves. As shown in Fig. 7B, the patterns produced by the model
are qualitatively similar to those produced by cortical slices (see Fig. 2D for
similar patterns produced by cultures). These patterns are caused by inequal-
ities in the connection strengths of the model. Although each transmission is
probabilistic, there will be some preferred patterns of activity in the network
because some connections are stronger than others. Because this parsimonious
model qualitatively reproduces two main features from living network data, it
seems plausible that we could use the model to predict how connectivity will
influence dynamics in real neural networks.

How is dynamics in the model affected by changes in the branching pa-
rameter σ? To explore this, we can tune all units in the network to have a
given σ. We then let the network evolve over time from many pairs of closely
spaced starting configurations. By measuring the distances between trajecto-
ries from thousands of pairs of configurations, we can estimate the Lyapunov
exponent λ for the network. For σ < 1, transmission probabilities are weak
and avalanches tend to die out because the average number of descendants
from a given ancestor is less than one. This causes trajectories to become
more similar over time, since fewer and fewer units are active and distances
decrease. In this case, the dynamics is predominantly attractive and λ < 0.
For σ ≈ 1, connections between units are stronger and activity is nearly sus-
tained since the average number of descendants from a given ancestor is one.
Here, distances between nearby trajectories are preserved and λ ≈ 0, indicat-
ing neutral dynamics. For σ > 1, the number of active units in the network
increases with every time step, causing slight distances in state space to be
amplified. As a result, trajectories tend to diverge in state space. The Lya-
punov exponent is λ > 0, indicating chaotic dynamics with its typical sensitive
dependence on initial conditions. These results clearly suggest that the sum
of connection strengths, or weights, can determine the dynamical regime of a
network (Fig. 8A).

But what happens if we begin to change the distribution of weights
coming from each unit? In simulated neural networks, this question was pur-
sued by Bertshinger and Natschlager (Bertschinger N and T Natschlager,
2004), who found that dynamics could be tuned by changing the variance
of a Gaussian weight distribution. They showed that small variances led to
attractive dynamics while large variances led to chaotic dynamics. Inspired
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Fig. 8. How connectivity influences network dynamics. A, The Lyapunov exponent
λ is plotted for each of T time steps for different values of the branching parameter
σ. The branching parameter governs the sum of transmission probabilities from each
unit of the network. When σ is close to the critical value of 1, dynamics is neutral,
and λ hovers around 0. As σ is increased, dynamics becomes chaotic (λ > 0); as σ
is decreased, dynamics becomes attractive (λ < 0). B, The distribution of transmis-
sion probabilities emanating from each unit also influences dynamics. Three different
types of units are shown, representing the three different types of exponential distri-
butions that were examined. Thick arrows represent high transmission probabilities.
The top unit shows transmission probabilities when the exponent B is low and the
distribution is homogeneous. In this case, each unit acts to disperse trajectories,
causing chaotic dynamics. The middle unit corresponds to intermediate values of
B, where one to two transmission probabilities are strong. Here, each unit acts to
focus trajectories, but with some dispersion, causing neutral dynamics. The lower
unit illustrates the highly skewed distribution caused by large values of B. Here
one connection dominates and all the rest are essentially zero. Units with high B
distributions act to focus trajectories, leading to attractive dynamics. Figure 8 A
is modified from Haldeman and Beggs, 2005, copyright American Physical Society,
and is reproduced with permission

by their approach, we here use an exponential distribution whose sharpness
can be tuned through an exponent B, and we explore how B affects λ. In
these simulations, we use a network with 64 units that has 8 connections
per unit. Qualitatively similar results obtain for networks with 64 connec-
tions per unit, suggesting that these findings are quite general. For small B
(0 ≤ B < 1.0), distributions are nearly flat and each connection has roughly
the same probability of transmission. In this case, activity coming in to a unit
will be spread widely and randomly to other connected units. This tends to
disperse trajectories and leads to chaotic dynamics where λ > 0. For interme-
diate values of B(1.2 ≤ B < 1.8), one or two connections have transmission
probabilities that are much larger than all the rest. Here activity coming in to
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a unit will tend to be transmitted to only one or two other units. This leads
to propagation in which there is a balance of spreading and focus. While there
is some variability in the paths that trajectories take, there is one path that
is traveled most of the time. On average, dynamics tend to be neutral and
λ ≈ 0. For large values of B(1.8 < B), one of the transmission probabilities
is very near 1, while all of the others are near zero. So while a unit may
receive convergent activation from two other units in the previous time step,
it will almost always activate only one unit in the next time step. Under these
conditions, units serve to bring different trajectories together, thus reducing
distances over time and causing attractive dynamics with λ < 0. Together,
these simulations show that the distribution of connection strengths can also
set the dynamics of a network (Fig. 8B).

How do changes in the number of connections affect dynamics? Although
not directly in the field of neural networks, Stuart Kauffman has pursued this
question in network models of gene regulatory networks. Since his studies are
very likely to be relevant to our topic, we briefly mention them here. Kauff-
man and colleagues (Kauffman S, 1969; Kauffman S et al., 2003; Kauffman
SA and S Johnsen, 1991) examine networks where each binary unit can be
either on (1) or off (0), and where each unit performs some Boolean func-
tion (e.g., AND, OR) on its inputs. Units are connected randomly, and the
number of connections into each unit is determined by an order parameter
K. Kauffman shows in these random Boolean networks that when K > 3,
trajectories are very sensitive to small perturbations and dynamics is chaotic.
When K = 2, however, trajectories are stable with respect to perturbations
and the networks appear to operate at a critical point (Bornholdt S and T
Rohlf, 2000). For K < 2, nearly all trajectories quickly fall into attractors.
Kauffman and others (Gutowitz H and C Langton, 1995) have suggested that
K governs a phase transition in these networks as it controls their dynamics.
In some ways, high K networks may be similar to the neural network model
described above when the distribution exponent B is small and all transmis-
sion probabilities are nearly equal. For intermediate values of B, one or two
transmission probabilities are strong, and this may correspond to the critical
case where K = 2 in Kauffman’s networks. These possible connections are
intriguing and deserve further exploration.

6 Discussion and Prospects

But why should dynamics matter? The dynamical regime of a network can
strongly influence the types of computations it is able to perform (Vogels
TP et al., 2005). Many models and experiments suggest that local networks
support attractive dynamics (Amit Y and M Mascaro, 2001; Brunel N, 2000;
Hopfield JJ, 1982; Jin DZ, 2002; Seung HS, 1998; Wills TJ et al., 2005). As
mentioned earlier, strongly attractive dynamics is naturally good for setting
up attractor states in which long-term memories can be stably stored. Such
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dynamics is also desirable for pattern completion, since a fragment of a stored
pattern can be used as a cue to get the network into a state where it is near a
basin of attraction and likely to evolve into the stored memory configuration.
Moreover, attractive dynamics supports computations that favor categoriza-
tion since they cause different stimuli to be grouped into the same response.
For example, if a Wolfhound, a Chihuahua and a Beagle were all represented
by positions in state space, attractive dynamics could cause trajectories from
these points to all flow together, making it easy to set up the category of
“dog.” But the stability conferred by attractive dynamics also makes it dif-
ficult to steer trajectories away from strong attractors. Networks dominated
by attractive dynamics would seem to lack flexibility.

In contrast, chaotic dynamics supports computations that favor discrimi-
nation since subtle differences in stimuli can produce widely different responses.
Here too, there are a number of models and experiments that suggest
that chaotic dynamics are prevalent in the brain (Aitken PG et al., 1995;
Babloyantz A and A Destexhe, 1986; Breakspear M et al., 2003; Freeman WJ,
1994; Schiff SJ et al., 1994; van Vreeswijk C and H Sompolinsky, 1996). This
dynamics could be useful in sensory systems where there is a great need to no-
tice details of the incoming information stream. For example, whether a rabbit
stays and eats or rapidly flees may be determined by only a few blades of grass
in the visual field that seem to be moving in an unusual way. There have also
been proposals that chaotic processing units could be used to perform logical
or arithmetic computations since such units are naturally nonlinear (Sinha S
and WL Ditto, 1999). However, networks with trajectories that rapidly diverge
are unstable unless they are controlled.

With neutral dynamics, differences in inputs produce commensurate differ-
ences in responses. Not surprisingly, there are models and experiments that
suggest this type of dynamics is used too (Beggs JM and D Plenz, 2003;
Bertschinger N and T Natschlager, 2004; Haldeman C and JM Beggs, 2005;
Latham PE and S Nirenberg, 2004; Maass W et al., 2002). This dynam-
ics supports computations that favor efficient information transmission since
a one-to-one mapping between stimuli and responses is maintained. They
may also be optimal for information storage (Beggs JM and D Plenz, 2004;
Haldeman C and JM Beggs, 2005). Several researchers have pointed out that
neutral dynamics, “at the edge of chaos,” may also be best for performing
the widest variety of computations because it combines some of the variety
of chaos with some of the stability of attractive systems (Bertschinger N and
T Natschlager, 2004; Beggs 2007). It is argued that useful computations
require both nonlinear transformations and stable representations of informa-
tion. Perhaps neocortex, which is essential for higher-level computations, has
largely neutral dynamics (Maass W et al., 2002; Natschlager T and W Maass,
2005).

To advance research in this area it will be necessary to form a tighter link
between models and experiments. Many of the ideas about how connectivity
influences dynamics described above have not yet been tested in living neural
networks. Since nature often defies our expectations, it is essential that we
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develop better ways of interrogating networks of neurons. With advances in
technology in the next ten years (Frechette ES et al., 2005), it may be possible
to stimulate and record from thousands of neurons for periods of weeks at a
time. The huge data sets that are likely to be produced will hopefully allow
us to map the state space of living neural networks more closely.

It will also be important to investigate how different network topolo-
gies (e.g., random, small-world, scale-free) explicitly influence dynamics.
The simulations described above treated all nodes in the network equiva-
lently, but this is certainly a simplification. What happens when some nodes
have different branching parameters and transmission probabilities than oth-
ers? What if some nodes have more connections than others? These issues
are only now beginning to be explored (Fox JJ and CC Hill, 2001), as the
network topology of the brain at the local network level (Netoff TI et al.,
2004; Song S et al., 2005) and at the large scale level (Achard S et al., 2006;
Eguiluz VM et al., 2005; Sporns O et al., 2005; Sporns O and JD Zwi, 2004;
Stam CJ et al., 2006) is still not well known. The connectivity patterns, and
therefore the dynamics, at these different levels may not necessarily be the
same (Breakspear M and CJ Stam, 2005; Jirsa VK, 2004).

Another area that deserves much attention is the relationship between
dynamics and connectivity: How does brain activity, both acutely and chron-
ically, alter the connectivity of neural networks? While activity-dependent
synaptic plasticity has been extensively studied, most of this work has cen-
tered on how stimulation at one or a few synapses influences synaptic efficacy.
There is a need to expand the focus to explore how activity at the local net-
work level may influence synaptic plasticity. In vivo, transmission at a single
synapse is embedded in the context of rich background activity that is very in-
fluential (Leger JF et al., 2005). From this perspective, functional connectivity
is very dynamic and may be different from the underlying structural connec-
tivity (Sporns O et al., 2000). Since it has been shown that large-scale network
connectivity can change from wakefulness to sleep (Massimini M et al., 2005),
it seems likely that it would also change during transitions to other brain
states as well, like seizures. Similar changes at the local network level should
also be investigated. While it may be difficult to disentangle the contributions
of connectivity and dynamics in these situations, their complexity suggests
that these situations will be interesting and fruitful areas for further research.

In the previous sections we have shown how early models of memory stor-
age in local recurrent networks led many to search for attractors in neurophys-
iological data. While numerous examples of reproducible activity patterns in
living neural networks have been found, very few experimental studies have
addressed the dynamics of these networks quantitatively. By measuring the
Lyapunov exponent in simple network models, it has become clear that net-
work connectivity can profoundly influence dynamics. Experimental work in
the future will hopefully begin to quantitatively address the dynamics of local
cortical networks, perhaps even revealing how trajectories in cortical columns
perform computations that form the building blocks of cognition.
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1 Introduction

Neural connections of the mammalian cerebral cortex exhibit specific patterns
ranging in scale from interconnections linking whole brain regions to intra-
areal patterns of connections between cell populations or individual cortical
neurons (Cajal, 1909; Brodmann, 1909; Zeki, 1993; Salin and Bullier, 1995;
Swanson, 2003). Detailed anatomical and physiological studies have revealed
many of the basic components and interconnections of cortical microcircuitry
(Douglas and Martin, 1991), and of their arrangement into columns and mini-
columns (Mountcastle, 1978; 1997). Columns and other localized populations
of neurons maintain connections within and between brain regions, consti-
tuting large-scale patterns of anatomical connectivity. While the large-scale
networks of human cortex remain largely unmapped (Sporns et al., 2005),
comprehensive descriptions of anatomical patterns of cortical connectivity
have been collated for several other mammalian species (e.g. Felleman and
Van Essen, 1991; Scannell et al., 1999). Closer analysis has revealed that these
patterns are neither completely regular nor completely random, but combine
structural aspects of both of these extremes (reviewed in Sporns et al., 2004).
This basic insight has sparked significant interest in characterizing the struc-
ture of brain networks, using methods that are also applied in parallel efforts to
map and describe other biological networks, e.g. those of cellular metabolism,
gene regulation, or ecology. This chapter is intended as an overview of recent
quantitative approaches to brain networks (see also Sporns, 2005), with an
emphasis on theoretical and computational studies that inform us about the
structural features that determine functional brain dynamics.

In neuroscience, the term connectivity has multiple meanings and conno-
tations that are sometimes difficult to define or disentangle (Horwitz, 2003;
Lee et al., 2003). A fundamental distinction is that between structural, func-
tional and effective connectivity, and we will adhere to this distinction for the
remainder of the chapter. Anatomical connectivity is the set of physical or
structural (synaptic) connections linking neurons within the network, as well
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as their associated structural biophysical attributes encapsulated in parame-
ters such as strength or effectiveness. Anatomical connections range in scale
from local circuits to large-scale networks of inter-regional pathways. Their
physical pattern may be thought of as relatively static at shorter time scales
(seconds to minutes), but may be plastic or dynamic at longer time scales
(hours to days), for example during learning or development. Functional con-
nectivity (Friston, 1993; 1994) captures patterns of deviations from statistical
independence between distributed and often spatially remote neuronal units,
measuring their correlation/covariance, spectral coherence or phase-locking.
Functional connectivity is highly time-dependent (on a scale of hundreds of
milliseconds) and does not make any explicit reference to causal effects or
an underlying structural model. Effective connectivity describes the network
of causal effects of one neural system over another (Friston, 1994; Büchel
and Friston, 2000), and can be inferred experimentally through perturbations
or time series analysis. Unlike functional connectivity, effective connectivity
is not “model-free”, but usually requires the specification of a causal model
including structural parameters.

The relationship between anatomical, functional and effective connectivity
in the cortex currently represents one of the most significant challenges to
computational cognitive neuroscience. An emerging view suggests that struc-
tural connection patterns are major determinants of the functional dynamics
of cortical circuits and systems, as captured by functional or effective connec-
tivity. According to this view, structural connections are essential for shap-
ing patterns of activation and co-activation associated with specific cognitive
states. Two potential linking principles are those of segregation and integration
(Tononi et al., 1994; 1998; Friston, 2002; 2005). Segregation and integration
are found throughout a broad range of cortical systems and may represent a
set of complementary organizational principles. We will start this review by
considering segregation and integration as basic principles, before turning to
methods and approaches aimed at quantifying structural connection patterns,
global measures of brain dynamics, and their interrelations.

2 Segregation and Integration

Anatomical and functional segregation refers to the existence of specialized
neurons and brain areas, organized into distinct neuronal populations grouped
together to form segregated cortical areas (Shipp and Zeki, 1985; Zeki, 1993).
The concept of anatomical segregation is rooted in the notion that specific
brain processes or functions can be localized to specific anatomical regions
of the human brain, an idea that is central to the history of neurology
and cognitive neuroscience (Phillips et al., 1984). Maps of cortical regions,
such as those assembled by Ungerleider and Mishkin (1982), Van Essen and
Maunsell (1983), Zeki and Shipp (1988), and Felleman and Van Essen (1991)
have provided increasingly refined network diagrams of multiple anatomically
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and functionally distinct areas of the primate visual cortex. These specialized
and segregated brain regions contain neurons that selectively responded to
specific input features (such as orientation, spatial frequency, or wavelength),
or conjunctions of features (such as faces). Segregated areas maintain distinct
patterns of connections with other areas, which are instrumental in defining
these specialized local response properties (Passingham et al., 2002). Segre-
gation can be found even within single cortical regions, where functionally
distinct populations of neurons often remain spatially segregated. At least
some intraregional (Gilbert and Wiesel, 1989; Tanigawa et al. 2005) and in-
terregional (Angelucci et al., 2002) connections linking such populations are
found to be patchy or clustered, preserving segregation.

Anatomical segregation entails that important correlates of specific func-
tional brain states are found in localized changes of neuronal activity within
specialized populations. However, segregated and specialized brain regions and
neuronal populations must interact to generate functional dynamics. Coher-
ent perceptual and cognitive states require the coordinated activation, i.e. the
functional integration, of very large numbers of neurons within the distributed
system of the cerebral cortex (Bressler, 1995; Friston, 2002). Electrophysio-
logical studies have shown that perceptual or cognitive states are associated
with specific and highly dynamic (short-lasting) patterns of temporal correla-
tions (functional connectivity) between different regions of the thalamocortical
system. Bressler has carried out numerous studies examining task-dependent
large-scale networks of phase synchronization in primate and human cortex
(Liang et al., 2000; Bressler and Kelso, 2001; Brovelli et al., 2004). Patterns
of inter-regional cross-correlations have been found to accompany the perfor-
mance of specific cognitive tasks in cats (e.g. Roelfsema et al., 1997), primates
(Bressler, 1995) and humans (e.g. Srinivasan et al., 1999; Von Stein et al., 1999;
Varela et al., 2001; Munk et al., 2002). McIntosh has documented changes in
brain functional connectivity related to awareness (McIntosh et al., 1999), and
most recently through recording differential interactivity of the human me-
dial temporal lobe with other regions of the neocortex (McIntosh et al., 2003).
Human neuroimaging experiments have revealed that virtually all perceptual
or cognitive tasks, e.g. object recognition, memory encoding and retrieval,
reading, working memory, attentional processing, motor planning and aware-
ness are the result of activity within large-scale and distributed brain networks
(McIntosh et al., 1999; 2000).

Common to most theoretical frameworks dealing with network aspects of
cognition is the idea that integration across widely distributed brain regions
requires neuronal interactions along inter-regional pathways. In the cortex,
such interactions are mediated by the extensive and massive network of
cortico-cortical connections. When these structural substrates of integration
are disabled or disrupted, resulting in the disconnection of neuronal popula-
tions, specific functional deficits are often observed. While many observations
suggest that disruptions of structural connections can result in deleterious
effects on functional brain dynamics, we still lack a principled understanding
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of how structural connections determine dynamics. In the brain, as in most
other biological systems, structure and function are strongly interdependent –
however, a comprehensive theoretical framework describing their interrelation-
ship in the networks of the cerebral cortex remains elusive. In the remainder
of this chapter, we focus on a set of measures that quantify structural con-
nections and functional dynamics and we review several computational and
empirical approaches that, utilizing such measures, aim at uncovering struc-
tural determinants of functional brain dynamics.

3 Measures of Structural Brain Connectivity

Neuronal networks consist of neurons connected by synapses. A major formal
mathematical approach to the description of such networks is graph the-
ory, especially the theory of directed graphs (Harary, 1969; Chartrand and
Lesniak, 1996; Bang-Jensen and Gutin, 2001). Graphs have two major ingre-
dients, nodes (cells, brain regions) and connections (synapses, pathways). In
graph theory terminology, nodes are often referred to as vertices and connec-
tions as edges. Figure 1 provides an illustration of several elementary graph-
theoretical concepts used in this chapter. In their simplest form, graphs can
be described by a connection matrix or adjacency matrix with binary ele-
ments aij that represent the presence or absence of a directed edge between
vertices j (source) and i (target). If such an edge exists, vertex j can directly
communicate signals (spikes) to vertex i. It is important to note that in brain
networks such direct connections are not the only way in which neuronal ele-
ments can influence each other. Indirect interactions can proceed along paths
or cycles (Fig. 1A), defined as ordered sequences of distinct vertices and edges.
More sophisticated and realistic formulations of networks as graphs include
the weights or strengths of edges (Barrat et al., 2004a; 2000b). These quan-
titative approaches to weighted graphs have not yet been widely applied to
neurobiological data sets.

The analysis of edges and paths within networks allow the quantification
of a broad range of network characteristics, summarized in a series of re-
cent reviews of complex networks (Strogatz, 2001; Albert and Barabási, 2002;
Newman, 2003) and of brain networks (Hilgetag et al., 2002; Sporns, 2002;
Sporns et al., 2004; Sporns, 2005). A wide spectrum of graph theory measures
derive from the concepts of reachability and distance in graphs. The adjacency
matrix of a network allows the derivation of the reachability matrix and the
distance matrix, both fundamental for structural graph analyses. The reach-
ability matrix indicates, for each ordered pair of vertices j and i, whether
a path (of any length) exists from j to i. If all entries of the reachability
matrix are ones, the network consists of only one component and is strongly
connected. If the reachability matrix can be partitioned into non-overlapping
subsets of vertices with no paths between them then the graph contains mul-
tiple (disconnected) components. Distance in a graph refers to the lengths
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Fig. 1. Illustration of degrees, paths, cycles, clustering coefficient and hierarchical
measures. All panels show an example of a digraph composed of N = 10 vertices and
K = 23 directed edges. (A) Vertex 1 has indegree = 1, and outdegree = 4. Origi-
nating from vertex 1, bold edges indicate a path from vertex 1 to vertex 6, passing
through vertex 2, with a length of 2, denoted as path {1,2,6}. The distance d61 is
2. Other valid paths from 1 to 6 include {1,5,6}, {1,3,2,6} and {1,4,9,8,3,2,5,6}. All
paths consist of a set of unique vertices and edges, each visited only once. Another
set of bold edges marks a cycle from vertex 1 to 3, 4 and back to 1, with a length
of 3, denoted {1,3,4,1}. Other cycles are {1,4,1}and {1,3,2,5,4,1}. (B) Clustering
coefficient of vertex 1. This vertex’s neighbors are 2, 3, 4 and 5, and they maintain
6 connections among them out of 12 possible (42–4). This results in a clustering co-
efficient of 6/12=0.5. (C) Hierarchical clustering coefficient and divergence ratio for
vertex 1 and d = 1, d = 2. Vertices 2, 3, 4 and 5 are at distance d = 1, and vertices 6,
7, 8, 9 and 10 are at distance d = 2 from vertex 1 (stippled circles). To compute the
hierarchical measures, only outgoing connections linking successive hierarchical lev-
els and intra-level connections are considered (bold arrows). Hierarchical clustering
coefficients are 6/12 and 4/20 for levels d = 1 and d = 2, respectively. The divergence
ratio D1 is 5/7, given 7 outgoing connections between ring 1 and 2, and 5 vertices on
ring 2. Modified after Sporns and Zwi (2004), and Da F. Costa and Sporns (2005)

of paths between vertices. The entries of the distance matrix give the length
of the shortest (directed) path between the two vertices j and i. The global
maximum of the distance matrix is also called the graph diameter.

Numerous measures of network connectivity can be derived from the
adjacency matrix, the reachability matrix and the distance matrix of a graph.
For example, the adjacency matrix allows the examination of the degree dis-
tribution of a given network. The degree of a vertex is the number of incident
edges, sorted into indegree and outdegree, for incoming and outgoing edges,
respectively (Fig. 1A). The degree distribution of a network provides impor-
tant insights into whether the network contains vertices with approximately
equal degrees (i.e. conforming to a Gaussian distribution) or whether the net-
work’s vertices show an exponential degree distribution. Such an exponential
distribution is found when most of a network’s vertices maintain few connec-
tions, while some of them are very heavily connected to large portions of the
network (so-called hubs). Networks with Gaussian and exponential degree
distributions are called “one-scale” and “scale-free”, respectively (Amaral
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et al., 2000), and may support very different dynamical behavior. Scale-free
networks are found in many technological as well as biological systems, includ-
ing metabolic and genetic regulatory networks. However, large-scale cortical
networks (Sporns and Zwi, 2004) as well as networks of the brainstem reticular
formation (Humphries et al., 2005) show little evidence of a scale-free archi-
tecture, perhaps due to the fact that major structural hubs cannot be easily
accommodated given volume and metabolic limits. The functional interpre-
tation of degree distributions for individual vertices is fairly straightforward.
A high indegree indicates that the vertex is influenced by a large number of
other vertices (a dynamical “sink”), while a high outdegree indicates a large
number of potential functional targets (a dynamical “source”). The relation
between the indegree and the outdegree of a vertex has been defined as the
transmission index (Kötter and Stephan, 2003), expressed as the ratio between
efferent edges (outdegree) and all known edges (indegree plus outdegree) of
the vertex. In conjunction with other such vertex-specific indices, the trans-
mission index allows a comparative analysis of the degree to which individual
brain regions participate in network interactions. The examination of large-
scale connectivity matrices indicates that each region’s pattern of interactions
is unique. This important fact was noted by Passingham et al. (2002) who
suggested that this specific pattern may be crucial for determining the func-
tional specificity of the region. The uniqueness of cortical regional connections
led these authors to coin the term “connectional fingerprint” for the pattern
of incident edges (connections) on brain regions.

While indegree and outdegree capture information about the local connec-
tivity neighborhood of a given vertex, there are a number of measures that
capture something about the global organization of a network. For example,
small-world networks (Watts and Strogatz, 1998; Watts, 1999; 2003) combine
features of regular and random graphs and appear to be ubiquitous within
the natural, social and technological world (e.g. Strogatz, 2001, Albert and
Barabási, 2002). The two main features of small-world networks are a high
degree of local clustering and short average path lengths. Interestingly, these
two features map onto two previously discussed candidate principles for cor-
tical network organization, segregation and integration (Sporns et al., 2004).
A high degree of local clustering in small-world networks is consistent with a
high level of local segregation. The capacity to communicate between all their
constituent vertices along short paths, measured as the characteristic path
length, is consistent with global integration. The average (or median) of all
the entries of the distance matrix constitutes the characteristic path length of
a graph, λ(G). The clustering coefficient of a vertex γ(v) (Fig. 1B) indicates
how many connections are maintained between this vertex’s neighbors, de-
fined as all those vertices that are connected to it, either through an incoming
or an outgoing connection. The average of the clustering coefficients for each
individual vertex is the clustering coefficient of the graph γ(G).

These methods and measures for characterizing anatomical connection
patterns have been applied to large-scale connectivity matrices of the cerebral
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cortex, which have been assembled from hundreds of neuroanatomical stud-
ies conducted in a variety of species, including cat (Scannell et al., 1999)
and nonhuman primates (Felleman and Van Essen, 1991; Young, 1993). Re-
sults indicate that the cerebral cortex is comprised of clusters of densely and
reciprocally coupled cortical areas that are globally interconnected (Sporns
et al., 2000a; 2000b). Regarding this clustered architecture, there is strong
agreement between different clustering methods (Hilgetag et al., 2000; Sporns
et al., 2000a). Importantly, large-scale cortical networks share some attributes
of small-world networks, including high values for clustering coefficients and
short characteristic path lengths (Hilgetag et al., 2000; Sporns et al., 2000a). A
recent detailed analysis revealed that these properties are shared by large-scale
connection matrices from several species and cortical systems, and are also
found in connection matrices generated by making empirically based prob-
abilistic assumptions about local connection densities and arborizations of
cortico-cortical connections (Sporns and Zwi, 2004). Interestingly, self-similar
or fractal connection matrices also exhibit small-world connectivity patterns,
in addition to a number of other characteristics in line with known features
of cortical connectivity, giving rise to the hypothesis that self-similar connec-
tivity may also be found in cortex (Sporns, 2006).

Degree and clustering coefficient evaluate characteristics of connectivity
within the immediate topological neighborhood a vertex. A natural extension
of such measures involves their application to hierarchical levels around a given
vertex (Fig. 1C), defined as the set of vertices that can be reached by minimum
paths of increasing lengths d (Da F. Costa, 2004). This generalization allows
the calculation of hierarchical measures that capture a much broader context
around each vertex, thus more accurately defining how the vertex is embedded
in and contributes to the overall network. For example, the divergence ratio Dd

of a central vertex is defined as the ratio between the number of hierarchical
neighbors at a given distance d+1 and the hierarchical degree (the number of
connections linking vertices at distances d and d+1). Similarly, the clustering
coefficient can be generalized to apply to a given hierarchical level, with the
definition given in the previous paragraph representing the limit case of d = 1.
Application of such hierarchical measures to large-scale cortical networks has
revealed statistically significant differences between groups of brain regions,
such as the dorsal and ventral visual pathway in the macaque (Da F. Costa
and Sporns, 2005).

While the existence of paths in brain networks allows for potential inter-
actions across longer distances, a realistic assumption is that much of the pro-
cessing characteristics and functional contributions of a vertex is determined
by its interactions within a local neighborhood (defined in terms of topological,
not necessarily metric, distance). To aid in the analysis of such local neigh-
borhoods, large networks or graphs can be decomposed into smaller “building
blocks” or “networks-within-networks”. Such subgraphs or motifs (Milo et al.,
2002; 2004) form a basic structural alphabet – for example, given three ver-
tices, there are only 13 distinct ways to interconnect them (Fig. 2). Motifs
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Fig. 2. Definition and detection of structural motifs. (A) Complete set of 13 motifs
for 3 vertices. Number refers to the motif class (motif ID). (B) Example digraph with
9 numbered vertices and 18 edges. Graph (top) and adjacency matrix (bottom) are
shown. Entries on the main diagonal of the adjacency matrix are shown in gray, edges
are shown in black. (C) Motif detection within graph shown in panel B. Instances of
motif classes 13, 6, 3 and 9 are highlighted. (D) Complete motif frequency spectrum
for the graph shown in panel B

occur in characteristic numbers and distributions that can be highly charac-
teristic of and informative about the large-scale structural and functional char-
acteristics of the global network. Milo et al., reported that some specific motifs
are statistically increased in biological networks, as compared to equivalent
random networks. Large-scale cortical networks also contain specific motifs
in greater than expected abundance, shared across at least two mammalian
species (Sporns and Kötter, 2004; Fig. 3). This analysis also revealed that,
globally, large-scale brain networks contain relatively few structural motifs



Structural Determinants of Functional Brain Dynamics 125

Fig. 3. Structural motifs in macaque visual cortex. (A) Adjacency matrix of
macaque visual cortex. (B) Structural motif frequency spectrum for macaque vi-
sual cortex (left), as well as equivalent random matrices (middle) and equivalent
lattice matrices (right). (C) Motif 9 is the only structural motifs that is significantly
increased over both random and lattice networks. (D) Motif fingerprints of areas V4
and PIVv demonstrate that individual brain regions make different contributions to
the overall motif frequency spectrum shown in panel B. V4 is one of only a few areas
that show very high proportions of motif 9. Modified after Sporns and Zwi (2004),
and Sporns and Kötter (2004)
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compared to randomized controls, while at the same time maximizing the
number of potential functional patterns. More recently, motif analysis has
also been applied to single neuron networks between layer 5 cortical pyra-
midal neurons (Song et al., 2005), confirming the non-randomness of neural
connections at this organizational level. A significant further extension of the
concept of motifs was introduced by Onnela et al. (2005), who derived mea-
sures of motif intensity and coherence which allow motif counts to be applied
to weighted networks.

An important issue concerns the connection between motifs and the kind of
dynamics they support. Zhigulin (2004) developed an approach to extracting
and quantifying dynamical motifs, defined as small subnetworks with nontriv-
ial dynamics. Zhigulin observed that the appearance of specific types of dy-
namics in large networks was linked to the appearance of periodic and chaotic
dynamical motifs. Prill et al. (2005) have drawn relationships between motif
patterns and a specific dynamical property, stability or robustness to small
perturbations. These authors argue that at least some of the non-randomness
of biological networks can be explained by adaptive advantages conferred by
robust dynamical stability.

A large literature centers on how complex natural or technological net-
works are affected by damage to their connection pattern. The world wide
web, an example of a scale-free network (Barabási and Albert, 1999), has
been shown to be surprisingly robust with respect to random deletion of
nodes, but rather vulnerable to targeted attack on heavily connected hubs
(Albert et al., 2000; Doyle et al., 2005), which often results in disintegration
of the network. In the brain, the mapping of functional deficits to underly-
ing structural perturbations is experimentally challenging, but essential for a
more complete understanding of brain damage and recovery. It is currently
unknown which structural measures best capture the potential effects of ver-
tex or edge lesions, although candidate measures of edge vulnerability (Kaiser
and Hilgetag Kaiser, 2004) have been defined and have led to the identifica-
tion of edges whose loss most affects global structural measures. Such edges
often correspond to “bridges”, i.e. edges linking segregated clusters of brain
regions. The issue of defining measures of robustness or vulnerability in brain
networks is conceptually linked to the problem of objectively defining the
functional contributions of individual network elements (Keinan et al., 2004).

Finally, we should note that measures of structural, functional and ef-
fective connectivity increasingly intersect, as in the analysis of functional or
effective connectivity patterns as graphs (Dodel et al., 2002; Salvador et al.,
2005a; Eichler, 2005). Applications of connectivity analyses to EEG, MEG
and fMRI data sets have been reviewed in several other chapters in this vol-
ume (Feree and Nunez, 2007; Darvas and Leahy, 2007; Bressler and McIntosh,
2007). Essentially, patterns of cross-correlation or coherence can be concep-
tualized as undirected graphs with edges that represent the existence and,
in some cases, the strength of the statistical relationship between the linked
vertices. Studies of patterns of functional connectivity (based on coherence or
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correlation) among cortical regions have demonstrated that functional brain
networks exhibit small-world (Stam, 2004; Salvador et al., 2005b; Achard
et al., 2006; Salvador et al., 2007) and scale-free properties (Eguiluz et al.,
2005), possibly reflecting the underlying structural organization of anatom-
ical connections. For example, it is an open question if nodes in structural
and functional neuronal connectivity matrices maintain similar patterns of
connectivity and exhibit similar local properties such as clustering.

4 Measures of Brain Dynamics: Functional Connectivity

As many of the structural studies reviewed in the previous section illustrate,
brain networks (like other biological networks) are neither completely ran-
dom nor completely regular. Instead their local and global structure exhibits
significant departures from randomness. A key question concerns how these
nonrandom features of brain structural connectivity relate to brain function
or dynamics. A consideration of brain evolution may guide our answer. In
the course of evolution, brain connectivity is one of the prime substrates, the
gradual modification of which in an adaptive context contributes to enhanced
fitness and survival. Biological structure/function relationship often become
more comprehensible when viewed in the context of evolution, for example
when we consider the structure and function of proteins, cellular organelles,
or entire body plans. The evolutionary history of the primate and especially
human brain may ultimately hold the key for understanding the structural ba-
sis of cognition (for a modern review of brain evolution, see Striedter, 2005).

As we approach the question of how structure determines function in the
brain, we turn next to measures of brain dynamics based on functional connec-
tivity. As outlined in other chapters of this volume (e.g. Jirsa and Breakspear,
this volume) there are numerous approaches to quantifying or measuring brain
dynamics. In this chapter, we will focus on measures that attempt to capture
global aspects of functional connectivity, i.e. patterns of statistical dependence
between often remote neural units or brain regions (Friston, 1993), building
on the firm foundation offered by statistical information theory (Cover and
Thomas, 1991; Papoulis, 1991). In its most general form, statistical depen-
dence is expressed as an estimate of mutual information. Unlike correlation,
which is a linear measure of association, mutual information captures all linear
or nonlinear relationships between variables. While the mathematical defini-
tion of mutual information is quite straightforward, the actual derivation of
valid estimates for entropy and mutual information for any given application
can be challenging and is the subject of much ongoing research.

Mutual information between two units A and B is defined as the difference
between the sum of their individual entropies and their joint entropy:

MI(A,B) = H(A) + H(B)−H(AB) (4.1)
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Note that MI(A,B) ≥ 0 and MI(A,B) = MI(B,A). The mutual information
MI(A,B) will be zero if no statistical relationship exists between A and B,
i.e. if A and B behave statistically independently such that H(AB) = H(A) +
H(B). The upper bound for mutual information between A and B is given by
the lesser of the two entropies. Mutual information expresses the amount of
information that the observation of one unit conveys about the other unit.
Any reduction of the joint entropy H(AB) such that H(AB) < H(A) + H(B)
indicates some degree of statistical dependence between A and B and will
result in a positive value for the mutual information.

Mutual information has certain limitations. First, we note that the exis-
tence of positive mutual information between A and B does not express causal
influences from A on B or vice versa. Hence, mutual information is informative
in the context of functional connectivity, but does not allow (by itself) the in-
ference of effective connectivity. Furthermore, in any real or simulated system,
the estimation of mutual information critically depends on correct estimates
for the individual and joint entropies, which in turn are often derived from
their respective state probability distributions. As mentioned above, these
estimates can be difficult to derive from small or sparse data sets such as
those often encountered in neurobiological applications and, in many cases,
additional statistical assumptions have to be made (e.g. Paninski, 2003; Pola
et al., 2003).

In (4.1) A and B refer to individual variables representing individual neu-
rons or brain regions. Mutual information can also be defined within larger
systems. For example, let us consider a system X composed of n elements
that is partitioned into two complementary subsets of elements. One subset
consists of k elements and is denoted as Xk, while its complement contains the
remaining n− k elements and is denoted as X−Xk. The mutual information
between these two subsets is

MI(Xk,X−Xk) = H(Xk) + H(X−Xk)−H(X) (4.2)

While mutual information captures the degree of statistical dependence be-
tween two elements (or subsets), the integration I(X) of a system measures the
total amount of statistical dependence among an arbitrarily large set of ele-
ments (Tononi et al., 1994). As the definition (4.3) illustrates, integration can
be viewed as the multivariate generalization of mutual information. Consider-
ing a system X, composed of a set of elements {xi}, its integration I(X) is then
defined as the difference between the sum of the entropies of the individual
elements and their joint entropy:

I(X) = ΣiH(xi)−H(X) (4.3)

Given this definition, integration essentially quantifies the divergence between
the joint probability distribution of the system X and the product of the
marginal distributions of the individual elements (Schneidman et al., 2003a;
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McGill, 1954). This measure has also been called the multi-information, as it
expresses the total information shared by at least two or more elements. In-
tegration (multi-information) differs from another multivariate informational
measure called the co-information (Bell, 2003), which captures only the infor-
mation shared by all elements. Venn diagrams illustrating the relationship be-
tween mutual information, integration and co-information are shown in Fig. 4.
Similar to mutual information, integration may be viewed as the amount of
error one makes given the assumption of independence between all variables.
Note further that, like mutual information, I(X) ≥ 0. If all elements are sta-
tistically independent their joint entropy is exactly equal to the sum of the

Fig. 4. Venn diagrams illustrating the relationship between mutual information
(A), integration or multi-information (B) and co-information (C). Integration and
co-information are shown for systems of 3 units, but readily generalize to larger
systems
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element’s individual entropies and I(X) = 0. Any amount of statistical depen-
dence between the elements will express itself in a reduction of the element’s
joint entropy and thus in a positive value for I(X). As is the case for mutual
information, an upper bound for I(X) can be calculated from the spectrum of
the individual entropies. In summary, integration quantifies the total amount
of statistical structure or statistical dependencies present within the system.

Given a system of size n, we can define integration not only for the entire
system but also for all hierarchical levels k < n within it. We denote the aver-
age integration of subsets of size k as the hierarchical integration < I(Xk) >,
noting that under random sampling the average is taken over all k-out-of-n
subsets. Thus, < I(Xn) >= I(X) and < I(X1) >= 0. It can be proven that
for any given system the spectrum of average integration for all values of
k (1 ≤ k ≤ n) must increase monotonically, i.e. < I(Xk+1) >≥< I(Xk) >. The
difference between successive levels < I(Xk+1) > − < I(Xk) > increases and
approaches a constant value, indicating that the amount of integration (statis-
tical dependence) gained by adding further elements to the system approaches
a limit. Intuitively, this characteristic of hierarchical integration reflects simi-
lar properties described for informational measures of population redundancy
(Schneidman et al., 2003b; Puchalla et al., 2005).

The characterization of the spectrum of average integration across all lev-
els of scale (subset size k) within a given system allows us to examine how and
where statistical structure within the system is distributed. How is this possi-
ble? Let us say that we find that a system as a whole has a certain amount of
statistical structure, measured by its integration I(X) > 0. This means that
some statistical dependencies exist somewhere, at some spatial scale, within
the system X. But the global estimate of I(X) does not provide information as
to whether this structure is homogeneously distributed throughout the system,
or whether this structure is localized or “concentrated” among specific units
or subsets. If statistical dependencies are homogenously distributed, the sys-
tem would be, in terms of its functional connectivity, totally undifferentiated,
essentially presenting the same view to an observer zooming in on different
levels of scale. We might say that such as system lacks any functional segrega-
tion. If statistical dependencies exist predominantly within subsets of specific
size, there would be parts of the system that are more integrated than others
and these integrated subsets would represent local structure. Such a system
contains functional segregation in addition to the global functional integration
expressed by I(X) at the highest level.

To differentiate between these possibilities, we need a measure that takes
into account the full distribution of integration across levels of scale (Fig. 5).
Such a measure, which captures the extent to which a system is both function-
ally segregated (small subsets of the system tend to behave independently)
and functionally integrated (large subsets tend to behave coherently), was
proposed by Tononi et al. (1994). This statistical measure, called neural com-
plexity CN(X), takes into account the full spectrum of subsets and can be
derived either from the ensemble average of integration for all subset sizes 1
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Fig. 5. Complexity CN(X) and C(X) for an example network of 32 units, gener-
ated by optimizing C(X) as described in Sporns et al., 2000a. (A) Structural and
functional connectivity pattern. (B) Full spectrum of hierarchical integration (levels
1 to n), with neural complexity CN(X) corresponding to the shaded area. Inset at
right shows a magnified part of the spectrum around levels 29 to 32, with C(X) cor-
responding to the difference between hierarchical integration profiles at level n− 1.
Rightmost plots show an alternative way of plotting complexity emphasizing a max-
imal difference in hierarchical integration profiles at a specific level (top), and the
accelerating increase in hierarchical integration between successive levels (bottom)

to n, or (equivalently) from the ensemble average of the mutual information
between subsets of a given size (ranging from 1 to n/2) and their complement.
CN(X) is defined as:

CN(X) = Σk(k/n)I(X)− < I(Xk) >

= Σk < MI(Xk,X−Xk) > (4.4)

As is evident from the second expression for CN(X), the complexity of a sys-
tem is high when, on average, the mutual information between any subset of
the system and its complement is high. The hierarchical nature of this measure
of complexity spanning all levels of scale within the system is inherently well
suited for a system such as the brain, which is characterized by modularity at
several different levels, ranging from single neurons to brain regions. Thus,
complexity is complementary to recent approaches that investigate brain
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dynamics in the context of a nested multilevel, multiscale architecture (Break-
spear and Stam, 2005).

Another closely related but nonidentical measure of complexity expresses
the portion of the entropy that is accounted for by the interactions among all
the components of a system (Tononi et al., 1998; Tononi et al., 1999; Fig. 5).
There are three mathematically equivalent expressions for this measure, called
C(X):

C(X) = H(X)− ΣiH(xi

∣∣X− xi)
= ΣiMI(xi,X− xi)− I(X)
= (n− 1)I(X)− n < I(X− xi) > (4.5)

H(xi

∣∣X − xi) denotes the conditional entropy of each element xi, given the
entropy of the rest of the system X − xi. We note that CN(X) as well as
C(X) are always greater or equal to zero. Both CN(X) as well as C(X) will be
exactly zero for systems with zero integration (no statistical dependence at
any level), and they will be small (but non-zero) for systems that have non-
zero integration, but for which this integration is homogeneously distributed
within the system.

While the third formulation of C(X) has a straightforward graphical inter-
pretation (Fig. 5), the second formulation of C(X) is perhaps most useful to
provide an intuitive computational basis for this measure. C(X) is obtained
as the difference of two terms: the sum of the mutual information between
each individual element and the rest of the system minus the total amount
of integration. Thus, C(X) takes on large values if single elements are highly
informative about the system to which they belong, while not being overly
alike (as they would tend to be if their total integration, or total shared in-
formation, is high). CN(X) and C(X) are closely related (Fig. 5B), but not
mathematically equivalent.

Within the context of applications of brain functional connectivity, it is
essential to underscore that complexity captures the degree to which a neural
system combines functional segregation and functional integration. Extensive
computational explorations (Tononi et al., 1994; 1998; Sporns et al., 2000a;
2000b; Sporns and Tononi, 2002) have shown that complexity is high for
systems that contain specialized elements capable of global (system-wide) in-
teractions. On the other hand, complexity is low for random systems, or for
systems that are highly uniform, corresponding to systems that lack either
global integration or local specialization, respectively. The relation of connec-
tivity topology and complexity has recently been analytically investigated (De
Lucia et al., 2005).

5 Measures of Brain Dynamics: Effective Connectivity

Measures based on mutual information are useful for analyzing functional con-
nectivity patterns, obtained from neuronal spike trains, local field potential
recordings or fMRI/PET voxel time series. However, functional connectivity
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allows only very limited insights into patterns of causal interactions within
the network. Patterns of functional connectivity are statistical signatures of
hidden causal processes occurring within and among specific and time-varying
subsets of neurons and brain regions. The identification of which subsets are
currently causally engaged in a given task requires the inclusion of and refer-
ence to a structural model in order to access effective connectivity patterns.

Effective connectivity attempts to reconstruct or “explain” recorded time-
varying activity patterns in terms of underlying causal influences of one brain
region over another (Friston, 1994; Büchel and Friston, 2000; Lee et al., 2003).
This involves the combination of (essentially covariance-based) functional con-
nectivity patterns with a structural system-level model of interconnectivity.
A technique called “covariance structural equation modeling” is used to as-
sign effective connection strengths to anatomical pathways that best match
observed covariances in a given task (McIntosh and Gonzalez-Lima, 1994; Hor-
witz et al., 1999). Applied in different cognitive tasks, this technique allows
the identification of significant differences in effective connectivity between a
given set of brain regions, illustrating the time- and task-dependent nature of
these patterns. Another approach called “dynamic causal modeling” (Friston
et al., 2003; Stephan and Friston, 2007) uses a Bayesian framework to estimate
and make inferences about interregional influences, explicitly in the context of
experimental changes. A caveat concerning these and other approaches to ex-
tracting effective connectivity is that they usually require assumptions about
the identity of participating brain regions and the patterns and direction of
cross-regional influences between them.

Another approach to identifying highly interactive brain regions and their
causal interactions involves the use of effective information, a novel measure
of the degree to which two brain regions or systems causally influence each
other (Tononi, 2001; Tononi and Sporns, 2003). Given a neural system that is
partitioned into two complementary subsets, A and B, we obtain the effective
information from A to B by imposing maximal entropy on all outputs of A.
Under these conditions the amount of entropy that is shared between A and
B must be due to causal effects of A on B, mediated by connections linking
A and B. These connections can either be direct connections crossing the
bipartition or indirect links via a surrounding neural context. The effective
information from A to B may then be formulated as

EI(A→ B) = MI(AHmax,B) (5.1)

Note that unlike MI(A,B), effective information may be non-symmetrical,
i.e. EI(A→ B) �= EI(A→ B), owing to non-symmetrical connection patterns.
Furthermore, the estimation of effective information requires perturbations of
units or connections.

It has been suggested that the integration of information is essential for the
functioning of large-scale brain networks (e.g. Tononi et al., 1998; Tononi and
Edelman, 1998). In considering information integration the notion of causal-
ity, or effectiveness, is crucial. A system that integrates information effectively
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must do so via actual causal interactions occurring within it. Mere statistical
coincidences are insufficient to characterize the participating entities as truly
integrated. Tononi and Sporns (2003) developed a measure for information
integration (called Φ) based on effective information that captures the max-
imal amount of information that can be integrated within the system. For a
given system or system subset S composed of subsets A and B, Φ is defined
as the capacity for information integration, or Φ(S), given by the value of
EI(A↔ B) for the minimum information bipartition (MIB):

Φ(S) = EI(MIB(S)) (5.2)

This measure allows the simultaneous quantification of information integra-
tion as well as the identification of all those system elements that participate
in it. It can thus be used to delineate integrated functional clusters or net-
works of effective connectivity from among larger sets of brain regions. It is
important to note that, following this definition, information integration takes
place within complexes, defined as subsets of elements capable of integrating
information that are not part of any subset having higher Φ.

Currently, this measure of information integration has only been tested
in computer simulations of small model systems with varying anatomical
architectures (Tononi and Sporns, 2003; Fig. 6). The results indicate that
information integration is maximized by two main attributes of the anatom-
ical connection pattern. First, each element maintains a different connection
pattern, or connectional “finger-print”, a property that strongly promotes
regional functional specialization. Second, the pattern maintains global con-
nectedness and ensures that a large amount of information can be exchanged
across any bipartition of the network, which in turn promotes global func-
tional integration. Simple models of the connectional organization of specific
neural architectures, such as the thalamocortical system, are found to be well
suited to information integration, while others, such as the cerebellum, are
not. Neural architectures that are highly capable of integrating information
are also associated with consciousness. Tononi (2004) has suggested that con-
sciousness critically depends on the ability of a neural substrate to integrate
information and is therefore tied to specific and quantifiable aspects of effec-
tive brain connectivity.

Several other methods for analyzing causal influences in the brain have
been proposed, many of which utilize the temporal dynamics of the observed
neural system to extract information about effective interactions, building on
the fundamental fact that causes must precede effects in time (for a compar-
ative computational study see Lungarella et al., 2007). Several methods are
based on interpretations or adaptations of the concept of Granger causality
(Granger, 1969), involving estimates of how much information a set of vari-
ables provides for the prediction of another. For example, Kaminski et al.
(2001) develop an approach based on exploiting the directed transfer function
between two neural signals. Granger causality has been applied to EEG data
sets obtained from large-scale sensorimotor networks (Brovelli et al., 2004) as
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Fig. 6. Information integration. All panels show structural connectivity (top), func-
tional connectivity (middle) and effective connectivity (bottom) for networks of 8
units. (A) Network obtained after optimizing for Φ, resulting in a single complex
with Φ = 74 bits. Structural connections are heterogeneous and span the entire net-
work, jointly maximizing functional segregation and functional integration. (B) Uni-
form network (loss of functional segregation), with greatly reduced Φ = 20 bits. (C)
Modular network (loss of functional integration), split into four identical complexes
with Φ = 20 bits each. Modified after Tononi and Sporns (2003), and Tononi (2004)

well as fMRI time series (Roebroeck et al., 2005). Additional causality mea-
sures can discriminate between direct causality and effects mediated through
extraneous system components (see also Liang et al., 2000). Bernasconi and
König (1999) developed statistical measures that allowed the detection of di-
rected dependences within temporal brain data sets. Schreiber (2000) defined
a measure called transfer entropy, which is able to detect directed exchange
of information between two systems by considering the effects of the state of
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one element on the state transition probabilities of the other element. This
yields a non-symmetric measure of the effects of one element on the other,
exploiting the entire system’s temporal dynamics.

The experimental application of measures of effective connectivity presents
a number of difficult problems. Structural equation modeling and dynamic
causal modeling are sensitive to choices made about the underlying structural
model, while causal measures based time series analysis are prone to issues
surrounding sample sizes or systematic sampling biases. Effective informa-
tion, as defined above, shares some of these problems, in addition to issues
related to its use of systematic perturbations, which are likely to be diffi-
cult to estimate in real neuronal systems. These difficulties notwithstanding,
some promising avenues towards extracting effective connectivity from brain
data have recently been pursued. The combination of transcranial magnetic
stimulation (TMS) with functional neuroimaging, for the first time, allows the
quantification of effects of localized perturbations on extended brain networks
engaged in the performance of specific tasks (Paus, 1999; Pascual-Leone et al.,
2000). Using a combination of TMS and high-density electroencephalography
Massimi et al. (2005) reported a striking reduction in the extent of cortical
effective connectivity during non-REM sleep compared to waking. This state-
dependent difference is recorded in the same individual, presumably existing
within an identical structural connectivity pattern. A major implication of this
breakdown of effective connectivity during non-REM sleep is that it points to-
wards a crucial role of causal influences between brain regions associated with
information integration as a neural basis for consciousness (Tononi, 2004).

6 Relating Connectivity and Dynamics

How do the different dimensions of brain connectivity relate to one another?
Answering this question demands the combined manipulation and analysis
of structural and dynamic attributes. In this final section of the chapter, we
briefly review several recent lines of research that have attempted to bridge
structural, functional and effective connectivity with the use of computational
modeling.

A crucial first step in linking structure to function involves the identi-
fication of functionally integrated and structurally connected networks that
are potential building blocks of cognitive architectures. Effective integration
of neural activity requires causal interactions, which must operate through
physical connections. In fact, structural connectivity provides a first approach
towards determining potential functional units, by revealing connectedness
and modularity within graphs, as defined above. A next step is the identi-
fication of functional clusters, using informational measures (Tononi et al.,
1998b; Sporns et al., 2000a) or through the application of standard clustering
techniques to functional connectivity patterns. Finally, effective connectivity
measures such as information integration (Tononi and Sporns, 2003) can aid
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in the delineation of causally linked neural clusters and complexes. Mapping
such clusters in the course of cognitive function would help to identify brain
regions that are generating specific cognitive states and discriminate them
from others that are activated, but not causally engaged.

Computational approaches allow the systematic study of how neural dy-
namics is shaped by the structure of connection patterns linking individual
elements (Fig. 7). This has been investigated in detailed computer simula-
tions of cortical networks with heterogeneous (Jirsa and Kelso, 2000; Jirsa
2004; Assisi et al., 2005) and spatially patterned (Sporns, 2004) connection
topologies. It was found that different connection topologies generated dif-
ferent modes of neuronal dynamics, and some systematic tendencies could
be identified. For example, connectivity patterns containing locally clustered
connections with a small admixture of long-range connections were shown to
exhibit robust small-world attributes (Sporns and Zwi, 2004; Sporns, 2004;
Kaiser and Hilgetag, 2006), while conserving wiring length. These connectiv-
ity patterns also gave rise to functional connectivity of high complexity with
heterogeneous spatially and temporally highly organized patterns. These com-
putational studies suggest the hypothesis that only specific classes of connec-
tivity patterns (which turn out to be structurally similar to cortical networks)
simultaneously support short wiring, small-world attributes, clustered archi-
tectures (all structural features), and high complexity (a global property of
functional connectivity).

The discovery of small-world connectivity patterns in functional connectiv-
ity patterns derived from fMRI, EEG and MEG studies (Stam, 2004; Salvador
et al., 2005b; Achard et al., 2006; Bassett and Bullmore 2006; Salvador et al.,
2007) raises the question of how closely functional connections map onto struc-
tural connections. The state- and task-dependence of functional connectivity
suggests that a one-to-one mapping of structural to functional connections
does not exist. However, it is likely that at least some structural characteristics
of individual nodes are reflected in their functional interactions – for example,
hub regions should maintain larger numbers of functional relations. A variety
of neuro-computational models have suggested that small-world connectivity
imposes specific constraints on neural dynamics at the large scale. Numer-
ous studies suggest that small-world attributes facilitate synchronization and
sustained activity, irrespective of the details of the node dynamics that are
employed in the model (Nishikawa et al., 2003; Buszaki et al., 2004; Masuda
and Aihara, 2004; Netoff et al., 2004; Roxin et al., 2004). Synchronization-
based rewiring rules promote the emergence of small-world architectures from
random topologies (Gong and van Leeuwen, 2004), underscoring the recipro-
cal “symbiotic” relationship between neural dynamics and underlying brain
architectures (Breakspear et al., 2006). Plasticity rules shape structural con-
nectivity, resulting in neural dynamics that in turn shapes plasticity.

Yet another interesting connection between structural connectivity and
global dynamics is based on the idea that the continual integration and redis-
tribution of neuronal impulses represents a critical branching process (Beggs
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Fig. 7. Relation of structural connectivity and functional dynamics in intermediate-
scale cortical networks. The model consists of a single map of 40 × 40 nonlin-
ear neuronal units, each modeled as a single reciprocally coupled Wilson-Cowan
excitatory and inhibitory unit, interconnected in different patterns. Three pat-
terns of structural connectivity are shown: “sparse” (intra-map connections ab-
sent), “uniform” (intra-map connections are assigned at random with uniform
probability across the map), and “clustered” (most intra-map connections are
generated within a local neighborhood, with a small admixture of longer-range
connections). The “clustered” pattern is most like the one found in cortex. Pan-
els at the left show connection patterns of 40 randomly chosen units, middle panels
show a single frame of the unfolding neural dynamics (mpeg movies are available
at http://www.indiana.edu/∼cortex/complexity.html), and rightmost panels show
spatially averaged activity traces obtained from near the center of the map (circled
area). The values for the characteristic path length λ(G), clustering coefficient γ(G),
complexity C(X), and total wiring length (lwire) were: λ = 0, γ = 0, C(X) = 0.143,
lwire = 0 (“sparse”); λ = 3.1310, γ = 0.0076, C(X) = 0.289, lwire = 10, 807 (“uni-
form”); λ = 5.6878, γ = 0.2637, C(X) = 0.579, lwire = 1, 509 (“clustered”), all
means of 5 runs. Note that C(X) is highest for the “clustered” network, which
shows a rich set of spatiotemporal patterns including waves and spirals. This net-
work also exhibits small-world attributes (low λ(G), high γ(G)) and short wiring
length. Modified after Sporns (2004)
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and Plenz, 2003; Haldeman and Beggs, 2005; see also Beggs et al., 2007).
In neural architectures, critical branching processes give rise to sequences of
propagating spikes that form neuronal avalanches. In the critical regime, the
branching parameter expressing the ratio of descendant spikes from ancestor
spikes is found to be near unity, such that a triggering event causes a long
chain of spikes that neither dies out quickly (subcriticality) nor grows explo-
sively (supercriticality). Slice preparations of rat cortex operate at or near
criticality, generating neuronal avalanches with a size distribution following a
power law (Beggs and Plenz, 2003). Criticality is found to be associated with
maximal information transfer and thus high efficacy of neuronal information
processing, as well as with a maximal number of metastable dynamical states.
These results point to additional important links between structural connec-
tivity patterns and the informational processes carried out within them.

The association of certain kinds of dynamics with particular features of
structural connectivity opens up a new computational approach. If we fix key
aspects of the dynamics (for example, by enforcing a high value of integration
or complexity, or of information integration) and then search for connection
patterns that are compatible with this type of dynamics, what relationship,
if any, do we find? For example, what kinds of structural connection patterns
are associated with high values for integration, complexity or information in-
tegration? We used complexity (and other information theoretical measures
of functional connectivity, such as entropy or integration) as cost functions in
simulations designed to optimize network architectures and found that net-
works that are optimized for high complexity develop structural motifs that
are very similar to those observed in real cortical connection matrices (Sporns
et al., 2000a; 2000b; Sporns and Tononi, 2002). Specifically, such networks ex-
hibit an abundance of reciprocal (reentrant) connections, a strong tendency to
form clusters and they have short characteristic path lengths. Other measures
(entropy or integration) produce networks with strikingly different structural
characteristics. While it is computationally expensive to employ most types of
nonlinear dynamics in the context of such optimizations, a closer examination
of specific connection topologies (sparse, uniform and clustered, or cortex-
like) that are simulated as nonlinear systems has shown that the association
of small-world attributes and complex functional dynamics can hold for more
realistic models of cortical architectures as well (Sporns, 2004; Fig. 7). Thus,
high complexity, a measure of global statistical features and of functional con-
nectivity, appears to be strongly and uniquely associated with the emergence
of small-world networks (Sporns et al., 2004; Sporns, 2006).

Evolutionary algorithms for growing connectivity patterns have been
used in evolving motor controllers (Psujek et al., 2006), networks for path
integration (Vickerstaff and DiPaolo, 2005), or in the context of sensorimo-
tor coordination (Seth and Edelman, 2004; Seth, 2005). While many current
applications, for example those used in evolutionary robotics, rely on small
networks with limited connectivity patterns (due to constraints requiring the
convergence of evolutionary algorithms in finite computational time), the gap
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to larger, more brain-like networks is rapidly closing. An exciting future avenue
for computational research in this area involves the evolution of behaviorally
capable architectures that incorporate features of biological organization. Re-
sults from this research may ultimately contribute to resolving long-standing
controversies such as whether biological evolution inherently tends towards
biological structures of greater and greater complexity. Initial studies of evolv-
ing connectivity patterns embedded in simulated creatures within a compu-
tational ecology (Yaeger and Sporns, 2006) suggest that as econiches become
more demanding neural architectures evolve towards greater structural elab-
oration, elevated levels of plasticity, and with functional activity patterns of
higher neural complexity.

7 Conclusion

This review has highlighted recent conceptual and methodological progress in
the analysis of complex networks. Some of this progress has been truly impres-
sive, significantly influencing all major areas of life, physical and information
sciences. Newly developed tools for complex network analysis are now applied
to brain networks, at a pace that appears to be steadily accelerating. Still,
despite all this progress, an integrated theory of how brain function emerges
from brain connectivity has not yet been achieved. Such a theory will have a
dramatic impact. The discovery of principles that link structural, functional
and effective connectivity to mind and cognition will lead to a new theoretical
foundation for future experimental and theoretical approaches in cognitive
neuroscience.
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Introduction

The anatomy of brain wiring is often taken as an established and permanent
body of knowledge, sometimes considered as a ‘ground truth’, which suppos-
edly provides a secure basis for validating structural and functional imaging
data, for building neural network models, or for constraining inferences on
causal mechanisms generating brain activity.

Macroscopical brain anatomy changes only slowly with ontogenetic devel-
opment. Also, at any stage morphological data are less variable than most
functional measurements. Nevertheless, there is considerable dynamics at the
microscopical scale. Also, observer- and method-dependence determine which
structural features are unanimously recognized and which others depend crit-
ically on sensitivity and specificity, or are inferred on the basis of pre-existing
knowledge. Many structural features vary between species or within species
or with plasticity and learning. There are also structural features that lack a
known functional correlate, or where the structure and the function are not as
tightly coupled as we would expect them to be. This variety of observations
illustrates that it is important to know the circumstances and limitations of
anatomical observations.

Here I present anatomical methods used for establishing structural connec-
tivity in the brain and discuss some prerequisites that have to be fulfilled to
ensure that the anatomical data on brain connectivity support the inferences
that we like to base upon them.

Types of Anatomical Connectivity
and Methods for their Detection

The most fundamental principle to be aware of when referring to ‘anatomical’
or ‘structural’ connectivity is that these terms may relate to several different
morphological entities depending on the level of detail and the method of
measurement (Fig. 1).
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Fig. 1. Levels of anatomical detail in the description of brain connectivity. Top:
white matter tracts and interregional projections; middle: neuron types and micro-
circuits; bottom: axon terminals with synapses

Neuronal Connectivity

Functionally meaningful connections in the brain are generally made by neu-
rons (that is ignoring the potential role of glia and other cells in direct informa-
tion processing as opposed to their support of neuronal functions). Therefore,
the basic unit of a connection in the brain is the contact from one neuron
to another, which is characterized by the presence of a specific structure:
the neuronal synapse. Synapses have a defined morphological correlate, which
can be observed by transmission electron microscopy: For chemical synapses
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it requires the demonstration of presynaptic vesicles, a postsynaptic density,
and a synaptic cleft of about 20 nm width (see Fig. 2; Gray 1959; Jones
1975). Thus, the demonstration of anatomical connectivity at the neuronal
level strictly speaking requires electron microscopic (EM) studies.

At this level of detail it is currently only possible to examine small speci-
mens in the μm to mm range, which in many nervous systems does not even
comprise the entire extent of two communicating neurons. The enormous dif-
ficulty to reconstruct and label structures in serial electron micrographs ex-
plains why the nematode worm Caenorhabditis elegans with a length of about
1 mm still remains the only organism whose nervous system has been fully vi-
sualized at the EM level. Although the connectivity of its 302 neurons is
largely determined (White et al. 1986), even in C. elegans the morphological
details of some neuronal connections have not yet been worked up completely
(www.wormbase.org). Electron microscopic reconstructions of an entire corti-
cal column with its roughly 10,000 neurons are being considered, but have not
yet been seriously attempted mainly due to the limitations of automatic re-
construction and analysis of corresponding EM structures in adjacent sections
(Fiala 2002; Denk and Horstmann 2004).

The best approximation at the light-microscopical level to the demon-
stration of a synapse is the visualization of terminal boutons (‘button’-like
axonal swellings of 0.5–3 μm diameter). Boutons can be seen most clearly
in single neurons after intracellular filling, but require confocal microscopy
or very thin sections if their number and their presumed synaptic partners
are to be established. Still today the most serious researchers prepare their
light-microscopical sections such that selected regions of the specimens can be

Fig. 2. Transmission electron microscopic image of synapses with pre- and postsy-
naptic components as the morphological demonstration of the apparatus for electro-
chemical signal transmission between nerve cells. The picture shows axon terminals
(ax) making Gray type I (usually cortical excitatory) synapses (arrows) on spines
(sp) of medium-sized spiny neurons in the striatum. Scale bar: 0.25 μm
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subsequently cut out, re-sectioned and investigated in more detail under the
electron microscope.

While synapses and boutons are hallmarks of the connections between
neurons, these do not unambiguously establish the type and somatic location
of the pre- and postsynaptic neurons. The morphological neuron type is de-
termined as a first approximation by its soma location, the somatodendritic
shape, the presence of dendritic spines, the pattern of axonal termination,
and the combinations of these features. Not all necessary determinants may
be observed in the same preparation, which leads to incomplete morphological
classifications such as ‘non-pyramidal cell’ or ‘aspiny interneuron’. Although
we now have many selective cytochemical markers allowing us to classify in-
dividual cells, this classification tells us little about the precise connectivity
of this cell beyond the statistics associated with its general type. Using recent
molecular approaches to classify neurons based on the expression of individ-
ual genes (see www.gensat.org) it may be possible in the future to deduce the
type of connectivity of individual neurons from the presence of more specific
genetic markers.

The most detailed studies of structural and functional neuronal connec-
tivity so far have been performed using intracellular recordings from nearby
neurons within a cortical column or a subnucleus. Usually the cells are visu-
ally targeted under the microscope and then individually impaled with glass
pipettes containing a hydrophilic diffusible marker of low molecular weight,
such as biocytin. This marker spreads within minutes throughout the cyto-
plasm of the impaled cell and labels the spatially extended neuropil, which can
be observed by fluorescence microscopy (MacDonald 1992). Neuron types in
the cerebral cortex are therefore widely recognized although it remains unclear
exactly how many types there are and how they would be classified best.

Simultaneous targeting of several neurons has demonstrated that the prob-
ability of direct anatomical and functional connections between cells decreases
rapidly with the distance between their cell bodies. Neurons that are monosy-
naptically connected show similar connectivity and electrophysiological prop-
erties (Yoshimura et al. 2004). In general, however, the statistical likelihood
of finding two directly connected neurons at longer distances in the cerebral
cortex is zero most of the time. This statement may not seem intuitive given
the calculation that on the average any two cortical neurons are connected
via three consecutive synapses between them (Braitenberg and Schüz 1998).
It highlights, however, the crucial role of the type of connectivity patterns in
networks where each neuron makes large numbers of connections in absolute
terms, but contributes only a tiny fraction relative to the total number of such
connections. The role of some such patterns in cortical networks is considered
in the chapter by Sporns and Tononi in this volume.
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Regional Connectivity

Moving from connections between individual neurons to connections between
brain regions, the most widespread and valuable method delivering detailed
information about directed long distance connections is neuroanatomical tract
tracing (for reviews see Sawchenko and Swanson 1981; Köbbert et al., 2000;
Wouterlood et al. 2002). The general approach comprises now a vast range
of substances with the common feature that they are taken up by neurons
and spread along their projections, where the label then can be visualized.
Some substances are directly inserted intracellularly and therefore suitable
for tracing of individual neurons. Most of the tracer substances, however, are
applied extracellularly to the living tissue by pressure injection, iontophoresis
or mechanical insertion. Most of them are actively incorporated through the
neuronal membrane and transported in the cytoplasm to reveal the distant
location of cell bodies (fast retrograde transport) or axonal terminals (fast
and slow anterograde transport). A wide variety of substances are used for
tract tracing, which differ in the direction and speed of transport, complete-
ness and intensity of staining, sensitivity and persistence, and the mode of
their detection. Among the best tracer substances are plant lectins, such as
Phaseolus vulgaris leucoagglutinin (PHA-L), which bind to glycoconjugates
on the neuronal membrane and are rapidly internalized and transported both
antero- and retrogradely (Gerfen and Sawchenko 1984). Lectins are being used
either alone or coupled to retrograde fluorescent tracers, horseradish peroxi-
dase (HRP) or cholera toxin subunit B. Radioactive tracers, mainly tritiated
amino acids (TAA), are hydrophilic tracers that are readily incorporated and
transported anterogradely even across the synaptic cleft. They have now been
largely replaced by dextran amines, which are easier to handle and to detect.
For transneuronal tracing, viruses, such as the rabies and herpes virus, are
being tried with the limitation that transgression to subsequent neurons may
involve extrasynaptic sites (Boldogkoi et al. 2004; Hoshi et al. 2005). Prob-
lematic are degeneration studies after physical or toxic destruction of neu-
ronal somata or axon dissection, with subsequent visualization of anterograde
(Wallerian), retrograde, or transneuronal degeneration signs (Nauta 1957).
The signs of degeneration may be difficult to detect, and large lesions tend to
affect fibres of passage. Lipophilic carbocyanine dyes, such as DiI and DiO,
spread by lateral diffusion within the cell membrane. Besides in living tissue
these can also be employed in fixed tissue, notably for post-mortem in the
human brain (Honig and Hume 1989). Although the speed of diffusion in-
creases with temperature, the range of connections identified in fixed tissue is
limited to distances of less than 1 cm and the quality of the images is compar-
atively poor. Thus post-mortem tracing is currently not suitable for tracing
of long-distance connections in the human brain.

In in vivo tracing studies, the tracer is actively transported and maximally
concentrated in the axon terminals (anterograde transport) or the cell body
(retrograde transport) after appropriate survival periods of days to weeks.
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The number of retrogradely marked cell bodies can be counted and the
proportions in different afferent structures be compared. Axon terminals are
hard to quantify leading to density measures in the best case and, more com-
monly, to rough rankings from sparse to dense labelling. In layered structures,
such as the cerebral cortex, the laminar distribution of label at the site of
transport can be observed, whereas the laminar position at the application
site is often doubtful due to the size of the application and its diffusion halo,
where additional uptake may have occurred. Furthermore, tracing studies pro-
vide information primarily about the sites of application and labelling after
transport, whereas the course of the axonal projections is usually not well
observed and hardly ever spatially reconstructed. This limitation results in
the curious situation that we know much about which regions are connected
by direct and directed axonal projections, but not by what route.

Several other anatomical methods have been tried to gain information
about structural connectivity in the brain. Staining for myelin, particularly
in fresh tissue using the Gallyas or Heidenhain-Woelcke stains, reveals the
presence of myelinated axons predominantly in the white, but to some de-
gree also in the grey matter. Myelin is ubiquitous in the white matter, which
makes it impractical to identify individual fibres or to specify the connected
sources and targets. Modified de-staining techniques can leave small sets of
fibres visible so that their course can be followed. The difficulty of staining
specific tracts limits the use of myelin stains mainly to the parcellation of
brain structures on the basis of differential myelin densities.

Other methods, such as polarization microscopy, specify the mean orien-
tation of measure fibres in small regions and allow the spatial reconstruction
of local fibre bundles. Obtaining information about the three-dimensional ar-
rangement of fibre bundles is useful to classify major tracts in the white mat-
ter, but it remains the uncertainty whether all fibres follow the overall course
of the bundle. In some cases, such as the medial forebrain bundle, the bundle
can be more appropriately regarded as a conduit, which groups fibres together
for some part of their course with individual fibres coming in and leaving at
different levels, and possibly not a single one actually continuing throughout
the whole length of the bundle. By contrast, it is reasonable to assume that
some fibre tracts contain a homogeneous set of fibres that originate from and
terminate in a single structure (e.g. the geniculo-cortical tract in the primate
visual system).

It may not be obvious to address diffusion weighted brain imaging in a sec-
tion on anatomical technique. However, if one accepts imaging of calcium- or
voltage-sensitive dyes as an electrophysiological method then it seems equally
valid to consider the contribution of magnetic resonance imaging (MRI) to
the identification of brain structure and anatomical connectivity. This inclu-
sion is particularly relevant since diffusion weighted brain imaging is rapidly
gaining the status of a versatile substitute for missing anatomical studies
and is frequently being interpreted without proper validation against direct
anatomical data.
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Diffusion weighted magnetic resonance imaging (dMRI; more specifically
diffusion tensor imaging, DTI) relies on special pulse sequences, which elicit
signals that reflect the orientation of diffusion processes in soft tissue, specifi-
cally of water molecules in the brain (Le Bihan 2003). The Brownian motion of
water molecules is strongly constrained by myelinated fibre tracts, which hin-
der any motion across them. The signals therefore indicate two main features:
the deviation from randomness of diffusion within each measured voxel, which
is expressed by the fractional anisotropy (FA), and the three-dimensional ori-
entation of the diffusion tensor or the corresponding probability functions.
Comparing the tensors in adjacent voxels one can concatenate the most con-
sistent orientations (‘tractography’) and visualize them as lines, which corre-
spond to major white matter fibre tracts in the human and macaque brain
(Tuch et al. 2005). This abbreviated description may suffice to understand
that dMRI does not directly show fibre tracts (see chapter by Alexander and
Lobaugh in this volume), and that the visualization depends to a great ex-
tent on the parameters of the reconstruction algorithm. In addition, the voxel
sizes are comparatively large at about 6 mm for in vivo imaging with measure-
ment durations not exceeding 1 hour. Tractography cannot disambiguate the
many possible geometric constellations within a voxel that lead to the same
signal as, for example, crossing and ‘kissing’ of fibre tracts. Thus, dMRI re-
sults are based on major assumptions, which need to be thoroughly validated
before they could be equated with directly demonstrated anatomy. Diffusion-
weighted MRI is the method of choice for longitudinal in vivo studies of fibre
tracts in the whole brain, whereas invasive tract tracing remains the gold stan-
dard for identifying selected neuronal connections at a single point in time.
The two methods are complementary in so many respects that it is not at all
obvious how they could be employed for direct cross-validation.

The characteristics of tract tracing experiments and diffusion weighted
imaging are compared in Table 1.

At this time it appears that cross-validation requires a number of addi-
tional approaches:

– Combination of traditional tract tracing with corresponding paramagnetic
tracers that can be visualized by in vivo whole brain imaging to demon-
strate that the two techniques show corresponding results in the same
animal (e.g. Saleem et al., 2002).

– In vivo imaging of paramagnetic tracers in comparison with dMRI in the
same species to evaluate the reliable demonstration of non-trivial fibre
tracts.

– Comparison of dMRI with other indirect measures of connectivity (such as
the functional connectivity measured as ongoing “resting state” activity)
to evaluate which one is the best predictor of anatomical connectivity.

Before these relationships are established and the applicability of the necessary
animal studies to other species, particularly the human brain, is shown, the
interpretation of indirect in vivo imaging results as demonstrating anatomical
connectivity is not justified.



156 Rolf Kötter

Table 1. Comparison of characteristic features of tract tracing and diffusion-
weighted imaging

Tract tracing Diffusion-weighted imaging

microscopic resolution low spatial resolution (several mm)
any species (limited by ethics) applicable to large brains (humans)
fibres quantifiable surrogate myelin measures
long history and known validity unclear validity
invasive animal experiment non-invasive, applicable to humans
post-mortem assessment longitudinal studies possible
few injections per brain entire brain imaged
few population studies done population studies usually done
3D reconstructions rarely done registered in 3D coordinates
fibre origin + destination shows fibre course, no direction
applicable to any brain structure limited to white matter
can be combined with histology can be combined with struct./fMRI

Mapping Neuronal and Regional Connectivity

For understanding the connectional architecture of the brain it would be very
helpful if neuronal and regional connectivity could be related to each other.
Unfortunately, their relationship is not straightforward.

When studying neurons in brain sections the dendritic tree and even most
of the local axon arborizations can be assessed (Staiger et al. 1999). It is not
known, by contrast how many of the distant interregional projections have
been severed. It is exceedingly rare that individual axons have been followed
and reconstructed beyond the direct vicinity into other brain regions (e.g.
Rockland et al. 1999; Zhong et al. 2006). From the available studies, however,
important general rules have been gleaned, which are of great significance
for our understanding of cortical organization. Such general rules state that
interregional projections originate from neurons in supra- and infragranular
layers, that the projection neurons (emanating intrahemispheric association
fibres, contralateral commissural fibres and extracortical projection fibres) are
pyramidal cells, and that the size of the pyramid-shaped somata is roughly
related to the length of their axons. Since pyramidal cells invariably use ex-
citatory amino acids (mainly glutamate) as their transmitter, it is reasonable
to infer that all interregional projections are excitatory. The effect of one cor-
tical area on another, however, depends not only on the type of projection
neuron but also on the type of neuronal targets and their dynamics: Func-
tionally, association fibres appear to have predominantly excitatory effects on
most cortical regions, whereas commissural fibres tend to evoke contralateral
inhibition (e.g., Ferbert et al. 1992).

There remains the question of what it means when we say that one brain
region projects to another? Here, brain regions, in particular cortical areas,
are conceptualized as homogeneous units whose characteristics are invariant
along major spatial dimensions. Nevertheless, the criterion of homogeneity
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depends on the particular feature studied with the result that there are many
different definitions of brain regions, which vary in their level of detail and
precision. This variability is comparable to the variability in neuron classifica-
tions at the cellular level, and the uncertainties resulting from the two sets of
variability are independent and thus not constrained by mutual comparisons.
As a result of this enormous variability it is difficult to obtain precise state-
ments on the neuronal underpinnings of interregional connectivity. For exam-
ple, along the vertical dimension of the cerebral cortex different layers of the
same cortical region have long been known to reach different intra- and sub-
cortical targets; the horizontal dimension along neurons in the centre and in,
the periphery of cortical columns have different projection preferences among
neighbouring columns with different functional consequences. Such intrare-
gional differences need to be taken into account at the level of interregional
projections.

Current interregional tract tracing experiments provide some information
about vertical intraregional differentiation referring to the laminar origin and
termination of interregional fibres in the cerebral cortex: In analogy to the
ascending thalamocortical fibres, which terminate predominantly in layer IV
of their cortical target regions, corticocortical fibres that target preferentially
layer IV of another region are also referred to as ascending or feedforward
connections. By contrast, the axon terminals of reciprocal pathways usually
avoid layer IV and are consequently named descending or feedback connec-
tions (Rockland and Pandya 1979; Felleman and Van Essen 1991). Although
the clarity of laminar termination preferences varies with the presumed hier-
archical distance between two connected areas, the most obvious ascending
termination patterns arise from supragranular neurons, whereas infragranular
neurons contribute predominantly to descending projection patterns (Barone
et al. 2000). A third type of columnar termination pattern across all layers is
attributed to so-called ‘lateral’ projections between cortical regions that are
supposed to belong to similar levels in the processing hierarchy.

In contrast to the laminar preferences, the neuronal preferences of axon
terminals are largely unknown. For example, it is not known whether interre-
gional projections contact excitatory or inhibitory interneurons or projection
neurons in their target regions. Knowing the identity of those target cells
would be very important for understanding the functional impact of inter-
regional projections (see difference in functional impact between association
fibres and commissural fibres mentioned above). One may even go as far as
measuring the volume of axonal boutons of region-specific projections to ob-
tain an estimate of their functional impact on distinct cortical layers (Ger-
muska et al. 2006).

It is also relevant to obtain an estimate of the specific processing of ex-
trinsic versus intrinsic signals, and of the likelihood and timing of further
transmission to subsequent brain regions. It has been estimated that even in
primary sensory regions thalamocortical afferents form only a small propor-
tion of the total number of synapses, even in the dominant target layer IV in
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the cerebral cortex. Whether networks of intrinsic granule cells act to boost
thalamocortical signals is a matter of speculation although they certainly pos-
sess the required connectional features (e.g. Schubert et al. 2003). It is likely
that thalamocortical inputs contribute only a fraction of the input required to
activate a cortical brain region. Thus an input-driven mean-field model of cor-
tical activity spread (e.g. Kötter et al. 2002) is a gross simplification applying
to the situation where the cortical system is ready to respond to such inputs.
To improve our understanding of whether certain inputs lead to a significant
change in cortical activity we depend crucially on more detailed data on their
cellular targets. This may serve as an example that the characteristics of lo-
cal microcircuits will influence the models of global activity patterns in the
cerebral cortex.

Assembling Connectivity Matrices

Interregional connectivity patterns of the brain are often represented as con-
nectivity matrices of size n2, where n is the number of brain structures. While
the matrix representation is a very concise notation and widely used it can
be very differently interpreted. It is commonly assumed that every row or col-
umn entry is a single entity, which represents a unique part of the brain. The
union of all entities would then be equivalent to a coherent part of the brain
such as the visual cortex or the set of thalamo-cortical projections. While
such sets of brain regions more often than not represent only a fraction of
the brain system of interest, the designation of individual locations may not
be unique, for example, when subdivisions are simultaneously listed with a
supra-ordinate brain structure or when overlapping entities occur in the same
matrix. Several such mapping issues, which are relevant to understanding the
scope and reliability of structural and functional connectivity data have been
discussed in detail by Kötter and Wanke (2005)

Analyses of connectivity matrices may be influenced by the resolution
applied: At the level of lobes the cerebral cortex is a completely connected
network, using area granularity the connection density declines to about 50%.
Finer divisions produce sparser matrices because of the absence of detailed
data but probably also in reality since long-range axons show locally clus-
tered branching patterns leading to increasing sparseness until the resolution
matches the branch cluster size. Therefore, when analyzing connectivity ma-
trices it is relevant to note the absolute and relative size of the entities and
to consider alternative partitioning schemes as controls.

Over the last 15 years tract tracing data have been collated in several non-
human species: rats, cats, monkeys (mainly macaques). Some of these have
become legacy data. In macaque monkeys, the first comprehensive review of
connectivity within the visual system and within the sensorimotor system was
published by Felleman and Van Essen (1991). Connectivity matrices resulting
from this study have been published and analyzed by others numerous times
(see e.g. Sporns and Tononi in this volume). Young added additional data from
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his reading of the literature and analyzed for the first time a matrix compris-
ing almost the entire cerebral (neo-)cortex at the regional level (Young 1993).
Improvements in databasing technology and coordinate-independent brain
mapping have subsequently led to a systematic effort in collating tracing data
from the entire forebrain in macaques with about 40,000 entries in many dif-
ferent parcellations schemes (www.cocomac.org; Stephan et al. 2001; Kötter
et al. 2004). Several specialized regional matrices have been published and an-
alyzed subsequently (e.g. Bozkurt et al. 2001, 2002; Kötter and Stephan 2003).

Related efforts were made to gain an overview of the regional cortical
connectivity (Scannell et al. 1995) and thalamocortical connectivity (Scannell
et al. 1999) in the cat. The cortical regions included a large extent of allocor-
tex. Burns collected and analyzed regional connectivity of the allocortex and
the hypothalamus of the rat (e.g. Burns and Young 2000).

All these efforts relied on data from published anatomical tracing studies.
Although these have contributed much to our understanding of cortical or-
ganization they are lacking detail addressing important issues: Quantitative
and laminar data are rare, and-where available-they do not cover much of the
cortex. For example, many data on connections between visual areas in the
macaque have been specified in terms of their laminar origin and termination,
but they the anatomical density of fibres (“strength”) has not received the
same amount of attention. The situation is almost the opposite in the sensori-
motor system where a group of researchers around Rizzolatti have performed
extensive quantifications of connection density. But even fundamental data on
the gender of the animals or on the identity of the investigated hemisphere
are frequently missing even though they must have been known at the time of
the experiments. Whether his shortcoming results from the opinion that such
differences are not important or so small that they cannot be demonstrated
in a single study or in a single laboratory, it now hampers the insights that
could be gleaned from meta-analyses in large data collations. While there is
still much information to be gained from investigating tracing data, this does
require more detailed attention to the available data and suitable methods for
analyzing them.

While macaques are a well investigated genus with particular relevance to
the human brain, the wide availability of rodents has resulted in more detailed
investigations at the columnar and cellular levels. This bears the promise to
bridge levels and to understand the relationship between them. Unfortunately,
not much corresponding efforts have been made to match investigations at the
different levels.

Summaries of connectivity data suitable for generating matrices at the
cellular or laminar levels are rare (see e.g. Häusler and Maass 2007; Bannister
2005; Thomson and Bannister 2003). Corresponding morphological studies of-
ten describe individual cases whereas connectivity matrices show cell types,
which depend on the classificatory scheme applied. For example, whether ev-
ery supragranular pyramidal cell has the same cellular or laminar targets or
whether the correct number of fundamental inhibitory neuron types has been
distinguished, such issues remain a matter of controversy.
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There is some hope that characterizations at the molecular level could
bring to light a fundamental underlying principle that would motivate a
meaningful objective classification. So far, multivariate classifications of neu-
rons based on mRNA or peptide expression (e.g. Markram et al. 2004; Sugino
et al. 2006) or genetic constructs for visualizing cells expressing a specific
gene product (Hatten and Heintz 2005) have provided exciting new ways of
classifying neurons, but they have not resulted in a unified objective scheme.

Thus, the classification of individual cells, similar to the classification of
brain structures, relies to a large degree on subjective experience and group
consensus. Objective quantitative and universally recognized measures are still
elusive.

Last not least, there are simpler animals where the whole nervous system
has been targeted. Probably the simplest vertebrate whose motor behaviour
has been extensively analyzed to the level of repetitive circuits is the lamprey
(e.g., Grillner and Wallen 2002). Physiologically motivated studies that in-
clude the anatomy of cellular circuitry are being carried out in invertebrates,
such as the leech (e.g., Zheng et al. 2007). Finally, there have been the elec-
tron microscopic studies of the whole organism in C. elegans mentioned in the
section on neuronal connectivity above (White et al. 1986).

Perspectives in Demonstrating Anatomical Connectivity

Labelling all Synaptic Connections of a Single Neuron

Labeling of “one neuron with a substance that would then clearly stain all
the neurons connected to it, and no others” (Francis Crick) has been a sort
of holy grail in the field of neural circuitry, and many attempts to achieve
this have failed. Wickersham et al. (2007) have developed a strategy which
uses a modified rabies virus whose genome is missing a gene required to make
infectious viral particles. It would thus replicate within a neuron but spread
no further because it is missing an envelope glycoprotein that it requires to
leave the cell. They further modified the virus so that it would only be able to
infect cells expressing a receptor for an avian virus called TVA. By expressing
TVA, as well as the missing envelope gene, it was possible to initiate viral
infection in that one cell and to produce infectious viral particles. By virtue
of complementation of the missing gene, these viral particles then spread to
and labelled all of the cells that were retrogradely connected to the first neu-
ron. But then the virus could spread no further because the infected neurons
did not express the missing envelope gene. Since the genetic modification of
the rabies virus included also a sequence expressing Green Fluorescent Pro-
tein (GFP), the spread of the virus could be visualized under the fluorescence
microscope. This method was applied to pyramidal cells in cortical slice cul-
tures and is compatible with in vivo physiological assays that will allow the
visual responses of single neurons to be directly correlated with their detailed
connectivity. If successful this method will be invaluable for teasing apart the
detailed circuitry of the brain.
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Molecular Approaches to Study Neuronal Cell Types
and their Connections in Mice

Genomic approaches can be used to visualize specific neuronal cell types
including their axonal projections. Most of the mouse genome is cloned as
large fragments (150–200 kilobases in size) in so-called bacterial artificial chro-
mosomes (BACs) — vectors that can be easily propagated inside cells. The
advantage of BACs is that they are usually large enough to carry both the
coding region of a gene and its regulatory sequences, which determine where
and when the gene is expressed. Using a library of BACs, one can systemat-
ically replace the coding regions of different genes with a ‘reporter’ sequence
that encodes a fluorescent protein (enhanced green fluorescent protein, or
EGFP). By injecting a modified BAC into a mouse egg, one can generate
transgenic animals in which we can study the spatiotemporal expression pat-
terns of each gene in the central nervous system. This approach is currently
being pursued in the Gene Expression Nervous System Atlas (GENSAT) BAC
Transgenic Project (www.gensat.org), which has already provided data on
some 150 genes, but aims to provide detailed expression maps for many more
(Gong et al. 2003). The BAC method still faces several problems such as speci-
ficity when used with very large genes whose regulatory sequences do not fit
into a single BAC, or sensitivity where several copies of a BAC are required
to make the fluorescent signal strong enough to detect it.

Where EGFP is expressed throughout the entire neurons including the
axon, this approach has the potential to trace projections of neurons that are
characterized by their molecular genetic properties rather than by their mor-
phological and physiological appearance. For example, the GENSAT project
has revealed cell classes specific to individual brain regions and to the different
layers of the cerebral cortex. Visualizing their axonal projections in 3D space
will be required to map the connectivity patterns of genetically characterized
neurons.

Large Scale Systematic Tract Tracing in the Rodent Brain

Tract tracing studies require a lot of expertise and are tedious to perform.
Therefore they are usually hypothesis-driven experiments using the method
that appears most suitable to address the specific question. This makes it dif-
ficult to compare tracing studies even within the same species. This limitation
during could be overcome, however, if the studies could be automated both the
experiments and the subsequent analyses. For a large-scale systematic tract
tracing study of a substantial part of the brain a number of requirements must
be met: 1) Since the transport of at most a few tracer deposits can be ana-
lyzed in the same brain there must be a large enough population of brains to
study their circuitry including its possible variability. 2) The tracer injections
should be made in unbiased locations so that an objective estimate of the
circuitry is obtained. Ideally, the entire brain would be divided into voxels of
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an adequate size and an injection be made in every single one of them. 3) The
further processing should be automated as much as possible such that the
results can be compared across individual brains. This requires standardized
protocols for tissue processing, label detection and 3D reconstruction.

Depending on the size of the injections and the size of the brain one would
have to deal with about 100,000 locations even with white matter excluded.
Given that each location would need to be studied about three times and that
one would want to exclude any ambiguity from injecting several locations at
once, this project would seem unlikely to be done in the near future even by
large consortia, or by the Allen Brain Institute, which mapped the expression
patterns of almost the entire genome in the mouse brain.

Assembling the Connectivity Matrix of the Human Brain

Since genetic approaches are not an option to chart the connectivity of the
human brain how could we make progress here? As the human brain is com-
paratively large we have the advantage of being able to use non-invasive imag-
ing techniques to obtain structural and functional images with a resolution
in the millimeter range. As defined above this would allow us to detect re-
gional connectivity but not neuronal connectivity, and at present we have to
rely on indirect measurements indicating anatomical connections. Creating
the connectivity matrix of the human brain, however, is a worthwhile endeav-
our with great importance for cognitive neuroscience and neuropsychology. It
would form a unique neuroinformatics resource for reference in a variety of
fields, which would thereby make closer contact and maybe allow cross-linking
of studies that were conceived with a very specific question in mind but have
wider implications.

As we suggested previously (Sporns et al. 2005) assembling the connectiv-
ity matrix of the human brain would require a multi-modal approach, starting
from the macroscopic level using structural and functional in vivo imaging
techniques. It would eventually make contact with the mesoscopic level of
cortical columns and layers, information that is conceived to be generic to
various locations and would thus be mapped from a certain zoom level on-
wards independent of the exact coordinates. Cellular information (including
animal to the mesoscopic level data) could then be linked to maintaining
strict transparency of the origin of the data. In pursuing this goal a series
of steps would have to be performed, which build on the issues faced with
validating DTI as predicting anatomical connections (see section on Regional
Connectivity above).

• Step 1: Probabilistic tractography of diffusion-weighted imaging data start-
ing with thalamocortical tracts followed by U-fibres of all cortical regions
ultimately resulting in a voxel-wise probabilistic all-to-all structural con-
nectivity matrix.

• Step 2: Correlation analysis of spatially registered and equally resolved
resting activity or multi-stimulus/multi-task activity data (fMRI and/or
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MEG) in the same person resulting in a voxel-wise all-to-all functional
connectivity matrix.

• Step 3: Cluster comparison between the structural and the functional
connectivity matrix identifying regions of consistent structure-function re-
lationships.

• Step 4: Comparison of human analyses (step 3) with structural and func-
tional macaque data to identify correspondences (e.g. visuo-motor path-
ways) and deviations (speech: fasciculus arcuatus?).

• Step 5: Validation of strongest predictions from final connectivity matrix
using custom-designed stimuli and transcranial stimulation in combination
with behavioural testing and functional imaging.

• Step 6: Population analysis of healthy subjects and spatial registration to
standard brain for probabilistic statements about data from steps 1–5.

• Step 7: Comparison of population data on clustered brain regions to his-
tologically identified regions in probabilistic human brain atlas to assess
correspondence.

• Step 8: Comparison of population data between healthy subjects and pa-
tient groups supposedly suffering from connectional disorder (e.g., white
matter stroke, multiple sclerosis, chronic schizophrenia) using same tasks
with similar performance measures.

The steps described here are clearly not the end of this project. However, they
are a beginning and give an idea of the opportunities and the challenges that
lie ahead of us if we pursue this direction. Even before we tackle the task
of relating mesoscopic data to this macroscopic framework, there are enough
detailed problems (e.g. concerning spatial normalization of data sets within
and across individuals, as well as the homology issue that is often ignored
when comparing across species) that need to be addressed.

Conclusions

Anatomical connectivity of the brain is the basis on which physiological inter-
actions unfold and generate the brain’s complex dynamics. While it is clear
that no such dynamics take place in the absence of connectivity, the precise
way in which structure constrains function is still a matter of investigation.
The more we know about the anatomical structure the better we can specify
these constraints and understand how developmental abnormalities or lesions
affect brain function. Modern genetic, morphological and imaging techniques
are revealing many clues as to the structural basis of brain function, but they
have to be appreciated in the context of their limitations to avoid jumping to
conclusions. If used appropriately then anatomy still has much to offer in the
study of the nervous system.
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1 Introduction

Experimental and theoretical studies of functional connectivity in healthy
humans requires non-invasive techniques such as electroenchaphalography
(EEG), magnetoencephalography (MEG), and functional magnetic resonance
imaging (fMRI). Among these, EEG and MEG provide the most direct mea-
sure of cortical activity with high temporal resolution (<∼ 1 msec), but with
spatial resolution (1–10 cm) limited by the locations of sensors on the scalp.
In contrast, functional MRI has low temporal resolution (1–10 sec), but high
spatial resolution (1–10 mm). To the extent that functional activity among
brain regions in the cortex may be conceptualized as a large-scale brain net-
work with diffuse nodes, fMRI may delineate the anatomy of these networks,
perhaps most effectively in identifying major network hubs. Much current
effort is aimed at the integration of these technologies and others, for the ob-
vious reason: to provide the most complete view of dynamical brain activity
both spatially and temporally. This chapter focuses primarily on EEG, but
also makes connections with MEG.

The human brain exhibits interesting and relevant dynamics on all spatial
scales, ranging from single neurons to the entire cortex. The spatial resolution
of a particular measurement technique selects certain physiological processes
over others. Much investigation in animals has focussed on the information
capacities of single neurons, using direct measurements from implanted elec-
trodes. Although EEG measurements integrate over the activity of 10–100
millions of neurons, there is ample evidence that relevant information is rep-
resented at these large scales. Indeed, interactions between remote brain areas
must involve large spatial scales. Furthermore, several techniques have been
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developed for improving the spatial resolution of scalp EEG so that dynamic
behavior at the scale of roughly 2–3 cm may be estimated.

The physics and physiology of scalp EEG have been described at length
elsewhere (Nunez 1981; Nunez 1995; Nunez and Srinivasan 2006). The goal
of this chapter is partly to summarize that material, and partly to extend
it. Section 2 describes the physiological genesis of EEG and MEG in terms
of cellular currents. Section 3 describes the physical basis of EEG and MEG
starting from Maxwell’s equations. The remaining chapters focus exclusively
on EEG. Section 4 shows how a multipole expansion of the electric potential
defines the familiar current dipole. Section 5 adds the effects of head tis-
sue inhomogeneities, which strongly affect the electric potential measured at
the scalp. Section 6 reviews EEG measurement principles. Section 7 develops
lead field theory, an intuitive way of thinking about the sensitivity of scalp
electrodes to brain current sources. Together these sections link concepts of
neural activity from the cellular level to the scalp, and provide a basis for the
application of scalp EEG to study functional connectivity.

2 Biological Basis of EEG

2.1 Cortical Anatomy

The mammalian cortex is the outer mantle of cells surrounding the central
structures, e.g., brainstem and thalamus. It is unique to mammals, and is be-
lieved to be necessary for most higher-level brain functions. Topologically the
cortex is comprised of two spherical shells, corresponding to the two hemi-
spheres. The hemispheres are connected by the corpus callosum. Cortical
thickness varies mostly between 2–3 mm in the human, and is folded around
the subcortical structures so as to appear wrinkled. Its average surface area
is about 2200 cm2 (Zilles 1990).

It is estimated that there are roughly 1011 neurons in the human brain,
and 1010 of these in the cortex. Of these, approximately 85% are pyramidal
cells (Braitenberg and Schuz 1991), whose dendritic trees have a distinctive,
elongated geometry that makes possible the generation of extracellular fields
at large distances. The remaining 15% may be broadly classified as stellate
cells, whose dendritic trees are approximately spherical, and make little or no
contribution to distant fields. Of course, both cells types are interconnected
to form a single dynamical network, but it is believed that the fields at large
distances are dominated by pyramidal cells.

Synaptic connections in the cortex are dense. Each cortical neuron receives
104–105 synaptic connections, with most inputs coming from distinct neurons.
Pyramidal cells make excitatory connections to both cell types. They make
intracortical connections over lengths ranging 0.5–3 mm, and cortico-cortical
connections over lengths ranging 1–20 cm. Stellate cells make inhibitory con-
nections to both cell types. They make intracortical connections over lengths
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Fig. 1. Depiction of the human head, and the positioning of EEG electrodes relative
to the folded cortex. Adapted from Nunez (1995).

ranging only 0.02–0.03 mm. Thus connections in the cortex are said to exhibit
long-range excitation and short-range inhibition. Because of the diversity of
scales of these synaptic connections, and the nonlocal nature of the cortico-
cortical connections, we expect the cortex to exhibit rich spatio-temporal dy-
namics spanning a wide range of length and time scales.

Figure 1 shows a depiction of several layers of the human head and the
positioning of EEG electrodes relative to the cortex. The folds of the cortex
are such that even nearby patches of cortex can have different orientations
and distances from the detectors. Section 6 shows how individual EEG and
MEG detectors spatially integrate neural activity over as much as 100 cm2.
Combining the data from many scalp probes, however, yields an improvement
to the order of several cm2. Using the latter estimate, we must still conclude
that EEG and MEG detectors integrate brain activity over a volume including
as many as 107–109 cortical neurons.

2.2 Neurons and Synapses

Neurons are highly specialized for signal processing and conduction via elec-
trochemical processes. The morphological structure of a neuron includes a cell
body, called the soma, and elaborate branching structures that enable com-
munication with sensory receptors, distant neurons, etc. In the simplest view,
input and output are handled separately. Inputs are collected in a continuous
fashion by the dendrites, and represented as a variation of the transmembrane
voltage. Multiple inputs are summed in the dendritic tree, and the net input
is represented as transmembrane voltage at the soma. When the soma voltage
reaches some threshold, a discrete voltage pulse is generated, called an action
potential, which propagates down the axon as output. The end of the axon
also has elaborate branching to enable communication with target neurons.
The input-output properties of neurons have been studied extensively and
modeled in detail (Koch and Segev 1989).
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2.3 Neuronal Currents

In biological tissues, there are no free electrons. Electric currents are due
to ions, e.g., K+, Na+, Cl−, Ca2+, etc. These ions flow in response to the
local electric field, according to Ohm’s law, but also in response to their local
concentration gradient, according to Fick’s law (Plonsey 1969). In the resting
state of the membrane, the concentration gradients and electric field are due
to ion channel pumps, which use energy acquired from ATP to move ions
across the membrane against their diffusion gradient.

The concentration of each ion inside and outside the membrane remains
essentially constant in time. The transmembrane voltage, however, changes
radically in time, the strongest example being the action potential. Thus for
the purposes of discussing small scale neural activity, we take the transmem-
brane potential Vm as the primary dynamic state variable to be considered.
By convention, Vm is defined as the potential inside relative to that outside,
i.e., Vm = Vi − Vo. The current per unit length im flowing across the mem-
brane, rather than the transmembrane potential, is considered the basic source
variable of the extracellular fields detected by EEG and MEG.

Currents flow in neurons when a neurotransmitter binds to receptors on
ion channels located in the membrane. Detailed consideration of a three-
dimensional dendrite or axon has shown that the phenomenon of current flow
in the cell may be well described by a one-dimensional approximation. The
same mathematical treatment applies to undersea telegraph cables, comprised
of an insulated metal core immersed in conductive salt water, thus the treat-
ment is called “cable theory.”

Assuming a membrane with conductive and capacitive properties, sur-
rounded by fluids with conductive properties only, and applying current con-
servation in each compartment leads to

τm
∂Vm

∂t
= λ2

m

∂2Vm

∂x2
− (Vm − Er)− rm iother(x, t) (2.1)

where the membrane time constant τm = rmcm, the neuron space constant
λm =

√
rm/(ri + ro), the membrane resistance times unit area rm = 1/gm,

and Er is the resting transmembrane potential. Mathematically this is iden-
tical in form to the heat equation, which governs the one-dimensional flow
of heat in a heat-conducting rod. It has been studied extensively and has
well-known analytic solutions for appropriate boundary conditions.

Consider an isolated dendrite of length L, with current injected at one
end. A solution may be derived for Vm(x). The corresponding transmembrane
current per unit length im(x) may be written

im(x) � −I0 δ(x) +
√

ri
rm
Iinj e−x/λm , x ≥ 0 (2.2)
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Fig. 2. (a) Cylindrical cable representing a segment of dendrite or axon. A single
compartment is shown with transmembrane current per unit length im. (b) Trans-
membrane current per unit length im at steady-state, due to current injected at
x = 0. (The delta function at x = 0 is not drawn to scale; the actual area of the
delta function equals the area of the positive (outward) current flow.)

where δ(x) is the Dirac delta function. Figure 2(b) shows the solution for
x ≥ 0. The delta function in Fig. 2(b) is not drawn to scale; the integral
of (2.2) over all x is zero. Section 4 shows that, far away from the cable,
the potential Φ may be approximated as if it were generated by an ideal
dipole, consisting of a point source and sink separated by a distance λm. This
transmembrane current, driven not so much by the transmembrane potential
as by difffusion, implies a nonzero extracellular electric field through current
conservation.

2.4 Large Neural Populations

Neuronal currents of this sort generate extracellular electric and magnetic
fields, which are detected using EEG and MEG. The fields generated by a
single neuron are much too small to be detected at the scalp, but the fields gen-
erated by synchronously active neurons, with advantageous geometric align-
ment, can be detected. Stellate cells have approximately spherical dendritic
trees, so far away the extracellular fields tend to add with all possible orien-
tiations and cancel. Pyramidal cells have similar dendritic trees, but the tree
branches are connected to the cell body (soma) by a long trunk, called the
apical dendrite. It is a fortuitous anatomical feature of the cortex that pyra-
midal cells have their apical dendrites aligned systematically, along the local
normal to the cortical surface. In this way, the fields of pyramidal neurons
superimpose geometrically to be measurable at the scalp.
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Several factors contribute to the net fields measured at the scalp. Many ac-
tive neurons and fortuitous alignment are not enough. As neuronal oscillations
tend to oscillate with predominant frequencies, dependent upon functional
activity, only synchronously active neurons will sum coherently in time
(Elul 1972; Nunez 1981). Consider a 1 cm2 region of cortex, containing
approximately 107 aligned pyramidal cells. Make the idealized assumption
that all these neurons are oscillating at the predominant frequency, (e.g.,
10 Hz resting rhythm). If only 1% of these neurons are synchronously active,
i.e., oscillate in phase with each other, and 99% are oscillating with random
phase. If the contribution from the asynchronous neurons may be treated as
Gaussian then, because N unit-variance Gaussian random numbers sum to√
N , the relative contribution of synchronous to asynchronous neurons would

be 105/
√

107 � 30. Thus scalp EEG and MEG are considered to be dominated
by synchronous neural activity. Indeed, amplitude reduction in EEG clinical
and research circles is often termed desynchronization. Of course, phase desyn-
chronization is only one of many possible mechanisms that could reduce the
amplitude of the net voltage at the scalp. Alternatively, synchronous spike
input to a patch of cortex can generate event-related synchronization in the
dendritic fields. Such phase synchronization is one mechanism for producing
event-related potentials (Makeig et al. 2002).

3 Physical Basis of EEG

3.1 Electromagnetic Fields in Conductive Media

The physics of electric and magnetic fields in matter is summarized by
Maxwell’s equations. This set of coupled, linear equations has source terms
given by the charge density ρ and the current density J. Additional contribu-
tions arise from the time derivatives of the fields. In matter the macroscopic
fields obey (Jackson 1975)

�∇ ·D = ρ (3.1)

�∇ ·B = 0 (3.2)

�∇×E = −∂B
∂t

(3.3)

�∇×H = J +
∂D
∂t

(3.4)

where E is called the electric field, and H is called the magnetic field3. The
electric displacement D is related to the electric field E through ε the dielectric
constant: D = εE. The magnetic induction B is related to the electric field H
through μ the magnetic susceptibility: B = μH.
3 Here Maxwell’s equations are expressed in MKS units. The equations appear

different from those in CGS units (Jackson 1975), but MKS is the more common
in bioelectromagnetism (Gulrajani 1998).
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Maxwell’s equations reflect the basic principle of charge conservation. Tak-
ing the divergence of (3.4) and the time derivative of (3.1) leads to

�∇ · J +
∂ρ

∂t
= 0 (3.5)

Integrating over a closed volume V bounded by a surface S and using the
divergence theorem (Arfken 1995) shows that the component of the current
flowing outward across S equals minus the time rate of change of the charge
in the volume bounded by S.

3.2 Macroscopic Source Current JS

Biological tissues have conductive and capacitive properties, but the magnetic
susceptibility is essentially that of vacuum. In metals the charge carriers are
free electrons, but in biological tissue the charge carriers are ions, e.g., Na+,
K+, Cl−, Ca2+, etc. Section 2 described how the membrane current density
J has both electric and diffusive contributions. In the extracellular space, the
story is more complicated. There is no concentration gradient or diffusive
contribution per se, nevertheless, the fields in the extracellular space may be
computed by considering the current density to have two contributions:

J = JE + JS

= σE + JS (3.6)

where JE is the ohmic current that flows in response to the local electric field,
and JS is the source current (or impressed current). Within the membrane,
(2.1) includes contributions to the current arising from both the transmem-
brane electric field and the transmembrane concentration gradients for each
ion species. For computing fields in the extracellular space, JS is a phenomeno-
logical device that subsumes other physical aspects of the problem (Plonsey
1982; Nunez and Srinivasan 2006).

3.3 Solution to Maxwell’s Equations

Maxwell’s equations may be solved analytically if the parameters ε, μ, and σ
are constant in space. This ideal case forms the basis of solutions in systems
with piecewise constant parameters. The solution to (3.1–3.4) for the fields E
and B is obtained by introducing the magnetic (vector) potential A, defined by

B = �∇×A (3.7)

and the electric (scalar) potential Φ, defined by

E = −�∇Φ− ∂A
∂t

(3.8)
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Because these equations involve the curl of A and the divergence of Φ,
and there are vector identities specifying the conditions in which the diver-
gence and curl vanish, there is additional flexibility in defining these poten-
tials. This flexibility is called gauge invariance, and by choosing a convenient
gauge:

�∇ ·A + με
∂Φ
∂t

+ μσΦ = 0 (3.9)

the differential equations for A and Φ separate (Gulrajani 1998).
Assuming harmonic time dependence Φ(r, t) = Re[Φ̃(ω, t)eiωt], the uncou-

pled equations have the well-known solutions (Arfken 1995).

Φ̃(r, ω) =
−1

4π(σ + iωε)

∫

V

�∇′ · J̃S(r′, ω)
|r− r′| e−ik|r−r′| d3r′ (3.10)

and

Ã(r, ω) =
μ

4π

∫

V

J̃S(r′, ω)
|r− r′| e−ik|r−r′| d3r′ (3.11)

These solutions are valid at any frequency, and are therefore useful in electrical
impedance tomography (EIT) and transcranial magnetic stimulation (TMS),
where the electric and magnetic fields are controlled by an external device
that may be driven to high frequencies, e.g., ∼100kHz. When applied to EEG
and MEG, however, where the frequencies are limited physiologically, these
equations may be simplified by the approximation ω → 0. This is called the
quasi-static limit: the fields at each time point t are computed from the sources
at that same time point, with no electromagnetic coupling or propagation
delays related to the speed of light.

3.4 Quasistatic Formulation

Electric Potential

The solutions for Φ and A may be derived more directly by taking the qua-
sistatic limit at the start, i.e., setting all time derivatives in Maxwell’s equa-
tions equal to zero. The differential statement of current conservation (3.5)
becomes

0 = �∇ · J = �∇ · JE + �∇ · JS (3.12)

Substituting E = −�∇Φ leads to

�∇ · (σ�∇Φ) = �∇ · JS (3.13)

Assuming σ is constant reduces this to Poisson’s equation

∇2Φ =
1
σ
�∇ · JS (3.14)



Primer on Electroencephalography for Functional Connectivity 177

which has the well-known solution

Φ(r, t) =
−1
4πσ

∫

V

�∇′ · JS(r′, t)
|r− r′| d3r′ (3.15)

Thus the electric potential Φ may be computed at each time point t as though
JS were constant in time.

Magnetic Field

Similarly, for the magnetic field,

∇2B = −μ0
�∇× J (3.16)

Assuming σ is constant reduces this to a simpler expression in terms of the
source current JS only

∇2B = −μ0
�∇× JS (3.17)

This is Poisson’s equation for each component of B, and has the solution

B(r, t) =
μ0

4π

∫

V

�∇′ × JS(r′, t)
|r− r′| d3r′ (3.18)

The fundamental similarity between electric and magnetic fields, even when
uncoupled at low frequencies, leads to parallel expressions of the basic EEG
and MEG equations.

4 Dipole Source Modeling

4.1 Multipole Expansion of Φ

Equations (3.15) and (3.18) are the general solutions for Φ and B given an
arbitrary current source density JS in the absence of boundaries. The inte-
grand of each function involves derivatives of JS(r′), and the integration kernel
1/|r − r′| called the Green’s function (Jackson 1975). The basis of the mul-
tipole expansion is to assume that JS(r′) is confined to some finite region of
space, and that the point r at which the field is being computed or measured
is far away compared to the size of the source distribution, i.e., |r| � |r′|.
Computing the Taylor series of 1/|r− r′| through the first two terms gives

1
|r− r′| =

1
|r| +

r · r′
|r|3 +

1
2

3∑
i=1

3∑
j=1

3rirj − δij |r|2
|r|5 r′ir

′
j + . . . , |r′| � |r| (4.1)

The first term is called the monopole term, and falls off as 1/|r|. The second
term is called the dipole term, and falls off as 1/|r|2. The third term is called
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the quadrupole term, and falls off as 1/|r|3, and so on. Inserting (4.1) into
(3.15) gives

Φ(r) = Φ(1)(r) + Φ(2)(r) + Φ(3)(r) + . . . (4.2)
and so on.

The monopole term is

Φ(1)(r) =
−1
4πσ

1
|r|

∫

V

�∇′ · JS(r′) d3r′

(4.3)

=
−1
4πσ

1
|r|

∫

S

JS(r′) · n̂ dS′

where the second equality follows from the divergence theorem. If the volume
V contains as many source as sinks (of equal strength), then the monopole
term vanishes by current conservation.

The dipole term is

Φ(2)(r) =
1

4πσ

[∫

V

r′
(
�∇′ · JS(r′)

)
d3r′

]
· �∇ 1
|r|

(4.4)

=
1

4πσ
p · �∇ 1

|r|
where the dipole moment is defined as

p =
∫

r′
(
�∇′ · JS(r′)

)
d3r′ (4.5)

Because the monopole term normally vanishes, and the quadrupole term falls
off more quickly with distance, the dipole term usually makes the largest
contribution to Φ and B.

4.2 Electric Dipoles

Point Sources

A current dipole may be idealized as a source and sink with equal magnitude,
separated by an infinitesimal distance d. This may be written formally as

�∇ · JS = −I0 lim
d→0

[
δ(3)(r− r+)− δ(3)(r− r−)

]
(4.6)

where r+ (r−) is the source (sink) location, and d ≡ r− − r+ is the directed
distance from sink to source.4 Inserting (4.6) into (4.5) leads to an intuitive
expression for the dipole moment:

p = I0d (4.7)

where I0 is the magnitude of the current, and d is the directed distance from
source to sink.
4 Technically, the limit d → 0 refers to the dual limit: d → 0 and I0 → ∞, such

that the product p = I0d remains constant and finite.
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Dendritic Cable

The current distribution shown in Fig. 2(b) may be written

�∇ · JS = +I0 δ(x)δ(y)δ(z)− im(x)δ(y)δ(z) (4.8)

In both terms, the factors δ(y)δ(z) ensure that the source lies on the x-axis.
In the first term, the factor δ(x) puts the sink at x = 0. In the second term,
the transmembrane current per unit length im(x) is given by (2.2).

Inserting (4.8) into (4.3) gives
∫
�∇ · JS(r) d3r =

∫ ∞

0

[I0 δ(x)− im(x)] dx = 0 (4.9)

where the last equality follows from direct integration of (2.2). Thus the
monopole contribution vanishes by current conservation, i.e., the total of
sources and sinks equals zero.

Inserting (4.8) into (4.5) gives

p =
∫

r [I0 δ(x)− im(x)] δ(y)δ(z) d3r (4.10)

The three vector components may be evaluated separately. Because of the
factor r = (x, y, z), integration over y and z gives py = 0 and pz = 0, respec-
tively. Similarly for px, integrating over x causes the first term involving δ(x)
to vanish, leaving

px = −
∫ ∞

0

x im(x) dx = −I0 λm (4.11)

This result is intuitive: For the ideal dipole (4.6), the dipole moment (4.7)
is equal to the current I0 times the distance d between the source and sink.
For the uniform cable with current injected at one end (4.11), the distance d
is replaced by λm, the characteristic length scale for the decay of the current
along the dendrite. The minus sign indicates that the direction of extracellular
current flow is leftward in Fig. 2(b).

Extracellular Fields of Axons

There are three main arguments that axons make negligible contribution to
EEG-MEG. First, the quadrupolar field falls of rapidly with distance, and is
likely to be dominated at the scalp by the dipolar fields of dendrites. Second,
axons are not arranged systematically in the cortex as are the apical dendrites
of pyramidal cells, thus the geometric superposition of axonal fields can not
occur to the same degree as it does for dendrites. Third, action potentials have
∼ 1 ms duration, and therefore have a dominant frequency near 1000 Hz. The
EEG-MEG signal has most of its power below 100 Hz, which is more like the
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time scale over which dendritic potentials vary. The extracellular field due to
a single neuron is not detectable at the scalp, but the superposition of many
synchronously active neurons is detectable. In order for action potential fields
to superimpose to measurable levels at the scalp, it would be necessary for the
action potentials of multiple neurons to occur with high temporal synchrony.
While it does appear that spike synchrony plays a fundamental role in neural
processing, the requirements on synchrony are much more demanding for ax-
ons than dendrites due to the shorter duration of their potentials. For these
reasons, it is expected that EEG-MEG is dominated by dendritic potentials.
Up to the size of the integration volume of an EEG or MEG sensor, dipolar
sheets created by synchronously active patches of cortex make contributions
to the scalp potential in proportion to their size.

For each argument against axon contributions, there is a reasonable
counter-argument, First, dipole fields likely dominate the scalp potential, but
that does not mean that quadrupole fields are totally negligible. Second, ax-
ons run in fiber bundles, and synchronous input to their neurons generates a
compound action potential. Third, sensory input typically generates a neural
response with abrupt onset and high degree of neural synchrony, at least at the
dendritic level. This increases the firing probability in time and can increase
spike synchrony. Thus spike synchrony in fiber bundles could potentially su-
perimpose to be measurable at the scalp. Thus, although cortical pyramidal
dendrites likely dominate axonal fields in resting EEG, action potentials could
conceivably contribute to the scalp potential, particularly in early sensory re-
sponse. Still, the short duration of spikes puts their power at high frequencies,
which are filtered out in many EEG recordings.

5 Human Head Modeling

So far we have assumed an infinite conducting medium, ignoring tissue bound-
aries and head geometry. The conductivity σ changes abruptly at tissue
boundaries, and has major effects on EEG signals recorded at the scalp. Effects
on MEG are smaller, but nonzero. The “forward” problem of EEG: Given the
brain current sources, compute the electric potential Φ on the scalp are the lo-
cations of the measurement and reference electrodes. Since Φ depends linearly
on the source currents JS, linear superposition applies, and it is sufficient to
compute the fields due to a single dipole at first.

5.1 Mathematical Considerations

Boundary Conditions

Consider a four-layer head model with conductivity parameters σa, where
a = 1, . . . , 4, and define the conductivity of air to be σ5 = 0. Let Φa be
the potential in layer a, and let n̂ be the outward-oriented normal to the
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boundary surface S. In each layer, σ is constant and the homogenous solution
is correct. The solutions to Poisson’s equation in each layer are joined together
by appropriate boundary conditions.

The first condition boundary condition is that the normal current density
J⊥ be continuous across each boundary:

σa
∂Φa

∂n

∣∣∣∣
S

= σa+1
∂Φa+1

∂n

∣∣∣∣
S

(5.1)

where the normal derivative is defined ∂Φ/∂n ≡ �∇Φa · n̂. From Maxwell’s
equation a second boundary condition may be shown: continuity of the parallel
component of the electric field. Assuming no sources or sinks on the surface,
this is equivalent to continuity of the potential Φ across each boundary:

Φa

∣∣∣
S

= Φa+1

∣∣∣
S

(5.2)

as may be shown by drawing a rectangular loop with one side in each layer,
and integrating the electric field around this loop.

The magnetic field B obeys similar boundary conditions involving dis-
continuities in μ (Jackson 1975). These are not relevant to biological tissue,
because to high accuracy μ = μ0, the magnetic susceptibility of vacuum
(Plonsey 1969). Never must we consider discontinuities in μ or boundary
conditions on B in the usual sense. Yet boundary effects do enter at tissue
discontinuities. In passing from (3.16) to (3.17) we assumed σ to be constant.
Without that assumption we have additional contributions to B arising from
discontinuities in σ. These contributions are identically zero for a spherical
head model, but nonzero in general.

Uniqueness of Solution

Poisson’s equation for Φ has a unique solution given an appropriate specifi-
cation of the boundary conditions across the entire surface, including: 1) the
potential Φ, or 2) its normal derivative ∂Φ/∂n, is specified on the boundary
(Jackson 1975). These are called Dirichlet and Neumann boundary condi-
tions, respectively. Mixed boundary conditions are also possible, in which Φ
and ∂Φ/∂n are are specified on non-overlapping parts of the boundary. (Spec-
ifying both Φ and ∂Φ/∂n over any part of the boundary is an overspecifica-
tion of the problem, and the existence of a solution is not guaranteed.) This
uniqueness property allows us to be creative in how we derive the solution,
since finding any solution to Poisson’s equation which matches the boundary
conditions implies that we have found the solution.

5.2 Spherical Head Method

The simplest head model that accommodates the layered tissues is comprised
an inner sphere (brain) surrounded by 2 (ignoring CSF) or 3 (including CSF)
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concentric spheres (see Fig. 1). For a dipole current source at brain location
a with dipole moment m, the potential at the scalp surface location r may be
written compactly

Φ(r) =
∞∑

n=1

cnf
n−1m ·

[
r̂ Pn(cos θ) + t̂

P 1
n(cos θ)
n

]
(5.3)

where f ≡ a/r4 is the dipole eccentricity, r4 is the outer scalp radius, θ is
the angle between r̂ and â, r̂ is the radial unit vector, t̂ is the tangential
unit vector, and the cn are constant coefficients (Salu et al. 1990). Current
conservation ensures that the surface integral of the absolute potential Φ
induced by a dipolar current source is zero. This is reflected in (5.3) by the
absence of a constant term that would be represented by n = 0. Thus the
potential Φ computed with (5.3) is implicitly referenced to infinity.

In numerical implementations of (5.3), the calculation of the Legendre
polynomials Pn(x) is the rate limiting step. Faster implementation is available
by noting the convergence properties of the series (Sun 1997).

5.3 Boundary Element Method

The simplest approach for accommodating realistic head geometry keeps the
assumption that the head is comprised of four tissue layers: brain, CSF, skull
and scalp, and that each layer is described by a single homogeneous and
isotropic conductivity σ, but relaxes the assumption of sphericity. Green’s
theorem may be used to write the solution to Poisson’s equation as an integral
equation for Φ

Φ(ro) =
2σ1

σo + σo+1
Φ∞(ro) +

1
2π

4∑
a=1

σa − σa+1

σa + σa+1

∫

Γa

Φ(r) dΩror (5.4)

where

dΩror ≡
(r− ro)
|r− ro|3 · n̂ dS (5.5)

is the solid angle subtended by the surface element dS at r, as viewed from the
observation point ro (Barnard et al. 1967a; Barnard et al. 1967b; Geselowitz
1967). This equation shows how Φ at each point ro in V depends upon the
integral of Φ over each tissue boundary surface S, and that the surface con-
tributions are of the same form as a surface dipole layer.

In numerical implementations of (5.4), the basic approach is to discretize
the surface with a set of triangular elements, and evaluate the surface integral
as a discrete sum. Figure 3 shows surface meshes for this purpose. In setting
up the sum, the potential on the surface may be expressed in terms of either
the potentials at the corners, or the potentials on the faces. The former is
faster computationally because the number of corners is approximately half
the number of faces (Barr et al. 1977). It also allows an improvement in which
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Fig. 3. (a) Surface mesh for (a) sphere with 1280 faces, (b) human scalp with 8192
faces. Meshes are generated on a spherical surface, then fit to the scalp-air boundary
of a high-resolution structural MRI

the potential varies linearly over each triangle (Gençer et al. 1999). Evaluating
ro at each corner leads to a matrix equation for Φ at the corners, which may
be solved by inversion. Once Φ is known on S, then (5.4) may be evaluated
at any ro in V . Scalp potential values at the electrodes may be computed this
way, or estimated using spline interpolation (see Sect. 8).

5.4 Conductive Properties of Head Tissues

Aside from inhomogeneities and anisotropies ignored in spherical head mod-
els, the conductivity of head tissues are known within some (perhaps large)
range of error (Foster and Schwan 1989). The brain conductivity σ1 � 0.15
S/m (Stoy et al. 1982). The CSF conductivity σ2 � 1.79 S/m (Baumann
et al. 1997). The scalp conductivity σ4 � 0.44 S/m (Geddes and Baker 1967).
The conductivity of the living human skull, however, has been a source of
mass confusion. Rush and Blanchard (1966) measured the conductivity ratio
between the skull and that of saline in which the skull was immersed, and
found conductivity ratios ranging from 50 to 300. Rush and Driscoll (1968)
found a ratio near 80, then applied that ratio between the brain and skull, as
though the living skull were saturated with brain-like rather than saline-like
fluid. Most subsequent studies (e.g., Stok 1987) have used this ratio. Assum-
ing the brain conductivity σ1 � 0.15 S/m, for example, σ1/σ3 � 80 implies
σ3 � 0.002 S/m.

Since then evidence has accumulated that this early reasoning may greatly
underestimate σ3. Even within the context of the Rush and Driscoll (1968)
study, assuming the saline conductivity σ � 1.3 S/m implies σ3 � 0.017
S/m. Kosterick et al. 1984 reported σ3 � 0.012 S/m. Averaging the values
reported in Law et al. (1993) suggests σ3 � 0.018 S/m. Oostendorp et al.
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(2000) reported σ3 � 0.015 S/m. This series of literature seems to implies
consistently that σ3 � 0.015 S/m and σ1/σ3 � 10. This ratio is lower than
the range 20–80 suggested by Nunez and Srinivasan (2005), due partly to a
lower estimate of brain conductivity. With this skull conductivity, assuming
the brain conductivity σ1 � 0.33 S/m (Stok 1987), for example, gives the
ratio σ1/σ3 � 22. Early models assumed the brain and scalp conductivity
were equal (Rush and Driscoll 1968). If this skull conductivity is compared to
the scalp rather than the brain, σ4/σ3 � 29.

As discussed in Nunez and Srinivasan (2006), however, the effective con-
ductivity of a single layered skull used in a volume conductor model may be
substantially lower than its actual conductivity due to several shunting tis-
sues not included in such models, e.g., extra CSF, the middle skull layer, and
the anisotropic white matter. For example, consider a three-layered skull in
which the inner skull layer conductivity is substantially higher than the inner
and outer skull layers (as verified experimentally). Imagine a limiting case
where the resistivity of the inner layer goes to zero so that no current enters
the outer skull layer or scalp (zero scalp potential everywhere). The effective
brain-to-skull conductivity ratio is infinite in this limiting case, even though
the measured value based on a composite skull could easily be less than 20.
This argument implies that effective brain-to-skull conductivity ratios cannot
be accurately estimated from impedance measurements of composite skull
tissue alone.

6 Data Acquisition

6.1 Electrode and Amplifier Systems

In EEG recordings, electric potential is measured on the scalp surface, and
used to make inferences about brain activity. Although potentials relative to
infinity are often considered in theoretical derivations, in practice only poten-
tial differences can be measured. Thus EEG measurements always involve the
potential difference between two sites. This is accomplished using differential
amplifiers, which include the measure electrodes, a reference electrode, and
an “isolated common” electrode that takes the place of true ground.

Huhta and Webster (1973) presented an essentially complete analysis of
electrocardiographic (ECG) recordings using differential amplifiers, including
signal loss and 60 Hz noise. Several of their assumptions are either outdated
or not applicable to EEG. First, they assumed that the subject was resistively
coupled to earth ground. This simplification reduces the number of variables
in the calculations, but is unsafe because it increases the risk of electric shock.
It also allows more 60 Hz noise to enter the measurements because ambient
electric potential fields in the recording environment exist relative to earth
ground. Second, they assumed the grounding electrode was connected to the
subjects foot, at maximal distance from the recording and reference electrodes
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which were located on the torso for cardiac recording. The thinking was that
the foot would be electrically quiet, which may be true, but this increases
60 Hz noise because the entire body acts as an antenna.

Modern EEG systems are designed differently (Ferree et al. 2001). First,
safety regulations require that the subject be isolated from ground so that
contact with an electric source would not result a path to earth ground. This
is accomplished by using an “isolated common” electrode that is electrically
isolated from the ground of the power supply. In this configuration, the subject
is only capacitively coupled to true ground, largely eliminating the risk of
electric shock, and reducing 60 Hz noise. The measurement is then made as
follows. The potential of both measurement and reference leads are taken
relative to the common electrode, then their difference is amplified. Second,
both the reference and common electrodes are located on the head in order
to minimize 60 Hz common-mode noise sources, as well as physiological noise
from cardiac sources.

6.2 Temporal Sampling

The validity of the quasi-static approximation to Maxwell’s equations in bio-
logical materials is equivalent to saying that the electric and magnetic fields
propagate from the brain to the scalp instantaneously. In this sense, the tem-
poral resolution of EEG (and MEG) is unlimited. Because most of the power in
EEG time series falls below 100 Hz, typical sampling rates are 250 Hz, 500 Hz,
and 1 kHz. Higher sampling rates are used to measure the brain-stem auditory
evoked potential, and to adequately represent artifacts when EEG is recorded
simultaneously with fMRI, but usually lower sampling rates are preferred be-
cause they result in smaller file sizes and faster analysis.

In digital signal processing, the Nyquist theorem states that power at fre-
quency f in a signal must be sampled with interval Δt ≤ 1/(2f). For fixed
Δt, this means that only frequencies f ≤ 1/(2Δt) are accurately represented;
this is called the Nyquist frequency. Power at frequencies f > 1/(2Δt) are
aliased, i.e., represented inaccurately as power at lower frequencies. To avoid
this, EEG and other amplifiers sample in two stages. For a given choice of sam-
pling rate Δt, analog filters are applied to remove signal power at frequencies
f > 1/(2Δt), then the signal is sampled discretely. In this way, EEG amplifiers
have a wide range of sampling rates that may be selected without aliasing.

6.3 Spatial Sampling

In clinical EEG, speed, convenience, and culture typically dictate that only
19 electrodes be used, with inter-electrode spacing around 30 degrees. This
configuration reveals large-scale brain activity reasonably well, and taking
the potential difference between neighboring electrode pairs can isolate focal
activity between those electrodes provided other conditions are met. Generally
speaking, however, this low density misses much of the spatial information in
the scalp potential. In research EEG, electrode arrays typically have 32, 64,
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128, or 256 recording channels. The more electrodes, the more information,
but there is a limit to the improvement.

The skull tends to smooth the scalp potential, compared to the brain
surface or inner skull surface potential. Srinivasan et al. (1998) used spherical
head models to quantify this effect. They generated random, many-dipole
configurations in the cortex, and computed the scalp surface potentials. They
sampled the scalp potential discretely using 19-, 32-, 64, and 128-channel
arrays, and quantified the map differences for each array. They concluded
that 128 electrodes are necessary to capture most of the spatial information
available in the scalp potential, and that fewer than 64 channels can result in
significant sampling errors. As in the time domain, if the scalp topography is
sampled too sparsely, it suffers from aliasing artifacts. In the spatial domain,
however, aliasing due to under-sampling can not be corrected by pre-filtering,
as is done in the time domain.

7 Lead Field Theory

This section describes a useful way of thinking about the spatial resolution of
scalp EEG. Previous sections described how each dipole (specified by position
and orientation) gives a unique scalp potential. In this way of thinking, the
potential for a single dipole is normally computed at all electrodes. Alter-
natively, the same problem may be arranged so that the potential difference
across a single electrode pair is computed for each dipole position and orienta-
tions. This yields the lead field vector L for each electrode pair, which may be
computed from the electric field that would exist in the head if current were
injected into those same electrodes. This seems less intuitive but, insofar as
scalp measurements integrate over the activity of large cortical areas (10–100
cm2), this leads to a metric for the field of view of each electrode pair. The
tabulation of the potential at every electrode, for each of a large but finite
number of dipole locations and orientations in the brain, is called the lead field
matrix. This quantity summarizes all the information about the head model,
and is the starting point for inverse solutions.

7.1 Heuristic Definition

Imagine that a single dipole is placed at a point rp inside a volume conductor,
and oriented along the positive x-axis. Make no assumptions about the shape,
homogeneity or isotropy of the volume conductor. Let ΔΦ be the potential dif-
ference measured across two surface electrodes, and px be the dipole strength.
Because Poisson’s equation is linear in the sources, ΔΦ must depend linearly
upon the strength of the dipole, and this may be written algebraically as

ΔΦ = Lxpx (6.1)

where Lx is a proportionality constant. At the point rp, similar relations hold
for the other two dipole orientations. If there were three perpendicular dipoles,
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one along each of three Cartesian axes, then ΔΦ would be the linear sum of
each contribution.

ΔΦ = Lxpx + Lypy + Lzpz = L · p (6.2)

where the last equality derives simply from the definition of vector dot prod-
uct. The quantity L is called the lead field vector. Strictly speaking we have
not shown that L behaves as a vector under coordinate transformations, but
it must if its contraction with the vector p is to yield a scalar ΔΦ.

7.2 Reciprocity Theorem

The reciprocity theorem (Helmholtz, 1853) gives an explicit expression for L.
The mathematical techniques used in deriving it are similar to those used in
boundary element modeling. Consider a conducting volume V bounded by a
surface S. Make no assumptions about the shape or homogeneity of the vol-
ume conductor.5 Figure 4 shows two source and measurement configurations,
denoted t1 and t2.
In configuration t1, the source is a dipole located in the volume and the mea-
surement is made by surface electrodes at positions rA and rB. In configuration
t2, the source is introduced “reciprocally” by injecting current through the sur-
face electrodes, and the potential difference is considered across the dipole.
Now use Green’s theorem to relate the potential Φ in one configuration to the
current density J in the other. Consider the quantities

�∇ · [Φ1J2] = �∇Φ1 · J2 + Φ1
�∇ · J2

�∇ · [Φ2J1] = �∇Φ2 · J1 + Φ2
�∇ · J1

where Ji = −σi
�∇Φi for i = 1, 2. Subtracting these equations and assuming

that σ1 = σ2 = σ, the first terms on the RHS of each equation cancel. By
assumption �∇ · J2 = 0 in V and J1 · n̂ = 0 on S. Integrating over the volume
V and using the divergence theorem to write the LHS as a surface integral
over S leads to ∫

S

Φ1 J2 · n̂ dS = −
∫

V

Φ2
�∇ · J1 dV (6.3)

A

BB

A
p I2ΔΦ1

t=t1 t=t2

Fig. 4. Reciprocal source and measurement configurations for EEG reciprocity
theorem

5 The derivations presented here assume isotropy for simplicity.
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In configuration t1, let the current source and sink be located at r± = r1∓
d/2 and let the dipole strength be p = I1d, where d is the dipole separation.
We have

�∇ · J1 = I1

[
δ(3)(r− r+)− δ(3)(r− r−)

]
(6.4)

where the sign convention is such that J1 = −σ1
�∇Φ1. In the notation of

(3.12), �∇ · J1 = �∇ · JE = −�∇ · JS.
In configuration t2, let rA be the location of the source electrode, which

injects current into the head by establishing a positive potential at that point,
and let rB be the location of the sink electrode, which extracts current from the
head by establishing a negative potential at that point. The normal component
of the current density on the surface may then be written formally

J2 · n̂ = I2

[
δ(2)(r− rB)− δ(2)(r− rA)

]
(6.5)

Inserting (6.4) and (6.5) into (6.3) and performing the integrals trivially over
the delta functions gives

I2

[
Φ1(rA)− Φ1(rB)

]
= −I1

[
Φ2(r+)− Φ2(r−)

]
(6.6)

Expanding the difference Φ2(r±) in powers of d and taking the usual dipole
limit as d→ 0 gives

Φ1(rA)− Φ1(rB) = p · L (6.7)

where the lead field vector is defined

L = −
�∇Φ2(r1)

I2
=

1
σ(r1)

J2(r1)
I2

(6.8)

Thus the lead field vector L for a particular electrode pair (A,B) is propor-
tional to the current density J2 which would be created in V at the dipole
position r1 if unit current I2 were injected through the electrode pair. The
proportionality constant is the reciprocal of the local conductivity σ at the
dipole location r1.

The lead field L has the content of the usual forward problem, but is inter-
preted somewhat differently. It is computed as a function of the dipole position
for fixed electrode positions. That is opposite the normal formulation of the
forward solution, in which the potential at any point is computed for fixed
dipole location. In this way the lead field gives a measure of the sensitivity of a
particular electrode pair to dipoles are arbitrary locations in the volume. This
may be used to reduce the computational demand of the forward problem for
a fixed electrode array.

7.3 Spatial Sensitivity of EEG

The lead field vector L is the proportionality constant between p and ΔΦ,
and is a measure of the sensitivity of an electrode pair to dipoles at various
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locations. Since the orientation dependence implemented by the dot product
is rather trivial, the magnitude of the lead field vector L ≡ |L| may be defined
as the sensitivity of an electrode pair (Rush and Driscoll 1968). The amount
of tissue probed by a particular pair may be quantified through the concept of
half-sensitivity volume (Malmivuo and Plonsey 1995; Malmivuo et al. 1997).

The half-sensitivity volume (HSV) is defined as follows. For a given elec-
trode pair, we compute the scalar sensitivity L(r) for many (∼ 104) points r
inside the brain volume, and determine the maximum sensitivity Lmax for this
pair. We then identify all points in the brain volume whose sensitivity is at
least Lmax/2. The HSV is the volume filled by these points. The threshold of
1/2 is certainly arbitrary, but does give some indication of the volume in which
the largest sensitivities occur. We further define the depth D of the sensitivity
distribution as the maximum depth of all points included in the HSV. Using a
four-sphere model of the human head, the outer radii of the four tissue layers
are 8.0 cm (brain), 8.2 cm (CSF), 8.7 cm (skull) and 9.2 cm (scalp).

Figure 5 shows L in a two-dimensional plane including the electrodes (A,B)
and the origin. The vector nature of L is retained to illustrate its dependence
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Fig. 5. The EEG lead field vector �L(�r) shown only within the HSV, for a four-sphere
head model with σ3/σ4 = 1/24. The electrode separation angles θ are: (a) 10, (b)
30, (c) 60 and (d) 90 degrees. Axes are in cm
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on orientation, but only its magnitude L = |L| is used to define the sensitivity
and the HSV. In such a simple head model, the HSV is seen to be a single
contiguous volume for nearby electrode pairs, which bifurcates near 60 degrees
into two separate volumes for more distant pairs. Like the potential difference
ΦA − ΦB, the lead field L changes only by a minus sign under interchange of
A and B; the geometric pattern of sensitivity is unaffected.

The vector direction of L shows how the direction sensitivity of EEG bipo-
lar recordings changes as a function of angle θ between the electrodes. Between
nearby electrodes the sensitivity is primarily tangential to the sphere, while
under each electrode the sensitivity is more radial. This observation refines the
intuition that nearby electrodes are primarily sensitive to tangential dipoles
between them. In fact, the greatest sensitivity lies not between the electrodes,
but under each electrode, and has a significant radial component. For distant
electrodes, the sensitivity is localized under each electrode separately. It is
primarily radial, yet on the periphery of each lobe of the HSV there is some
tangential component. This observation refines the intuition that distant elec-
trodes are primarily sensitive to radial dipoles. In summary, both nearby and
distant electrodes are sensitive to both radial and tangential dipoles. In both
cases, the location of maximum sensitivity is directly under the electrodes,
where the lead field L is oriented nearly radially. Thus EEG is predominantly
but not exclusively sensitive to radial dipoles. This effect is enhanced by the
fact that cortical gyri are populated with radial dipoles and are located closer
to the detectors than are sulci.

Figures 6 and 7 show summarizations of the HSV results as a function
of the angle θ between electrodes in the visualization plane. Intuitively, the
smaller the HSV, the more refined an estimate of dipole position can be made
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Fig. 6. Half-sensitivity volume (HSV) as a function of electrode separation angle θ,
for σ3/σ4 = 1/24 (solid) and σ3/σ4 = 1/80 (dashed). Figure (a) is expanded in (b)
for small θ
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Fig. 7. (a) Maximum sensitivity Lmax (Ω/m), and (b) depth of HSV (cm) as a
function of electrode separation angle θ. Line types are the same as in Fig 2. Depth
is defined relative to the scalp surface, which is separated from the brain surface
by 1.2 cm

from a single electrode pair. Figure 6 shows the HSV as a function of angle.
It increases rapidly as a function of angle until the bifurcation occurs, then
decreases slightly. For very small θ, the HSV reaches an effective minimum.
This limiting behavior can be understood in two complementary ways: In
terms of the lead field vector computed via scalp current injection, for nearby
electrodes most of the current is shunted through the scalp and little passes
into the head volume. In terms of dipolar source currents, the brain potential
is blurred by the skull such that nearby scalp electrodes sense nearly identical
potentials. For conventional 19-electrode systems, for which nearby pairs are
separated by 30 degrees, we find an optimal spatial resolution (minimum HSV)
of 22–37 cm3. For modern 129-electrode systems, for which nearby pairs are
separated by more like 10 degrees, we find an optimal spatial resolution of
6–8 cm3.

Two other sensitivity measures are maximum sensitivity and depth of sen-
sitivity, shown in Fig.7. The maximum sensitivity (Fig. 7a) rises abruptly from
near zero at small θ and approaches an asymptote. The maximum sensitivity
is found at 180 degrees, and is 350–750 Ω/m depending on skull conduc-
tivity. The depth of sensitivity (Fig. 7b) varies similarly as a function of θ,
with the exception of an abrupt minimum below 10 degrees. Like the small
bumps visible in Figs. 6 and 7, the exact nature of this minimum appears
to be artifactual, depending upon how the electrodes sit in relation to the
Cartesian grid used to compute these quantities. The maximum depth is
found at 180 degrees, and is 2.6–3.7 cm for this range of choices of skull
conductivity.
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Because of the folds of the cortical sheet, it is difficult to estimate the
number of neurons detected by a particular electrode pair, without basing the
analysis on a subject-specific structural MRI. In general, for nearby electrodes
the HSV is confined almost entirely to the cortical sheet. Assuming the sheet is
0.25 cm thick and densely folded, these volume estimates above can be trans-
lated into effective cortical surface area estimates. Dividing the minimum HSV
by the cortical thickness gives 88–148 cm2 at 30 degrees, and 24–32 cm2 at
10 degrees. Each 1 cm2 of cortex is populated by approximately 107 pyrami-
dal neurons (see Sect.2). This implies that on the order of 109 neurons reside
inside the HSV at 30 degree electrode separation, and on the order of 108 at
10 degree electrode separation. These estimates are inflated, however, because
some of the HSV includes noncortical tissue, and because cortical geometry
excludes many neurons from detection when the local cortical surface is not
parallel to the lead field. Nevertheless, these HSV measure provide a useful
and intuitive metric of the spatial resolution of scalp EEG.

8 Topographic Analysis

As seen in Sects. 6 and 7, the reference electrode is an unavoidable fact in EEG
recordings. Apart from attempts at optimal placement, several data processing
methods exist for reducing or eliminating its influence. These include the
average reference, the surface Laplacian, and inverse techniques which solve for
brain dipole sources. The first two are specific to EEG, and avoid the ill-posed
inverse problem. They make no explicit assumptions about the distribution of
brain dipole sources, do not require head volume conductor models, and are
computationally efficient. The average referenced scalp potential approximates
the scalp potential referenced to infinity, and the surface Laplacian estimates
the dura surface potential making the reasonable assumption of low skull
conductivity. This section develops these ideas as simple and effective ways of
handling the reference electrode issue in scalp EEG. Inverse methods based
upon volume conductor models are discussed in the chapter by R. Leahy, and
are applicable to both EEG and MEG.

8.1 EEG Reference Effects

At each time point, the definition of the electric potential by E = −�∇Φ
implies that Φ is ambiguous up to a constant. Physicists usually choose to
reference Φ to infinity, so that the potential at infinity is zero by definition.
This simplifies derivations and allows the potential at finite distances to be
treated as a function of only one spatial variable. EEG recording systems
with N amplifier channels record N potential differences from a common
reference. If the reference electrode is located at the vertex, for example,
then the potential differences measured at nearby electrodes will typically be
smaller. Topographic maps of the raw potential, or derived quantities such
as the Fourier power spectrum, will tend toward zero as the distance to the
vertex is reduced,
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The simplest attempt at eliminating the effect of the reference is to place it
advantageously, i.e., away from active brain sources. Common choices include
the earlobes, the nose, and the mastoids. The earlobes and nose are interesting,
in light of the fact that electric potential tends to vary rapidly near pointed
objects (Jackson 1975). The mastoids ensure secure attachment, which is most
crucial for the reference electrode, but are clearly sensitive to brain activity in
inferior posterior brain areas. Each of these are legitimate choices, although
perhaps not effective in reaching their goal. Another approach, which should
be avoided, is the linked-ears or linked-mastoids reference, in which electrodes
are placed on both ears or mastoids, then physically linked before connecting
to the reference input of the amplifier. EEG amplifiers are designed with high
input impedances, specifically so they will not permit significant current flow
across the scalp-electrode boundary. This reference choice violates that basic
design principle, and leads to major problems. First, the linking introduces
an highly conducting pathway between the two ears. This forces the ears to
have similar potentials, which would not otherwise be the case for any singular
choice of reference. In the limit of low scalp-electrode impedances, which is
always the goal of electrode attachment, the potentials at the two reference
sites are identical. Second, the impedances of the two reference electrodes are
unlikely to be identical, so this choice is unlikely to be symmetrical as intended.
Third, by violating the assumption of zero normal current flow though the
scalp, the data are not suitable for analysis by the many commercial and open-
source software packages. Fourth, because the basic physics of the problem has
been altered, it is not possible simply to re-reference the data to other single
electrodes.

8.2 Average Reference

The average reference is a simple way of estimating the potential at the ref-
erence electrode relative to infinity (Nunez 1981). At each time point, this
quantity is used to compute the potentials at each measurement electrode
relative to infinity (Bertrand et al. 1985). Because the genuine average ref-
erence can not be determined precisely, the operational average reference
(based on limited sampling) has received valid criticism (Tomberg et al. 1990;
Desmedt and Tomberg 1990) in favor of explicit references (Gencer et al. 1996;
Geselowitz 1998), the surface Laplacian (Hjorth 1975; Nunez 1981), or more
complicated methods (Lehmann et al. 1986; Yao 2001; Orekhova et al. 2002).
Still it remains a useful technique for data analysis and visualization.

Biased Estimate

Let Φ(r) denote the scalp potential at point r measured relative to infinity,
i.e., the absolute scalp potential. Let Vi denote the scalp potentials measured
at electrodes i = 1, ..., N . The last electrode i = N is the reference electrode
for which VN ≡ 0. For a perfect EEG amplifier system, we have Vi = Φi−Φref ,
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where Φi = Φ(ri), and ΦN = Φref is the absolute potential at the reference
electrode. We seek Φi but measure Vi; the difference amounts to estimating
Φref .

Let V̄ denote the average of the potentials measured at N scalp electrodes:

V̄ ≡ 1
N

N∑
i=1

Vi (10.1)

Let Ui denote the average referenced potentials, i.e., re-referenced according
to the definition Ui ≡ Vi − V̄ . The Ui have the property

1
N

N∑
i=1

Ui =
1
N

N∑
i=1

(
Vi − V̄

)
=

(
V̄ − V̄ ) = 0 (10.2)

Because the sum over the Ui vanishes like the surface integral of Φ, the Ui

are taken to estimate the Φi, with Φref ≡ ΦN � UN = −V̄ . This estimate is
biased by not including contributions from the inferior head surface: the polar
average reference effect (Junghofer et al. 1999).

Unbiased Estimate

Spherical splines were developed for topographic mapping of the scalp surface
potential and the surface Laplacian (Perrin et al. 1989; Perrin et al. 1990), but
their mathematical form carries implicitly an estimate of the average surface
potential. Let V (r) be the potential at an arbitrary point r on the surface of
a sphere of radius r, and let ri be the location of one the ith measurement
electrode. Spherical splines represent the potential at r on the surface of the
sphere by

V (r) = c0 +
N∑

j=1

ci gm (cos(r̂ · r̂j)) (10.3)

where the function gm(x) is given by

gm(x) =
1
4π

∞∑
n=1

2n+ 1
(n(n+ 1))mPn(x) (10.4)

The functions Pn(x) are the Legendre polynomials of order n, which form a
complete set of basis functions on a spherical surface.6

6 The use of ordinary Legendre polynomials does not imply that the surface poten-
tial must have azimuthal symmetry. The variable x in Pn(x) represents the angle
between electrode position ri and the interpolation point r, so the claim is that
(10.3) is capable of fitting the net scalp potential without inherent symmetry.
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Recently we elaborated the idea put forth in Junghofer et al. (1999) that
the spherical splines permit a better estimate of the average surface poten-
tial (Ferree 2006). Integrating (10.3) over the entire spherical scalp surface,
and using that the integral of Pn(x) on −1 ≤ x ≤ +1 vanishes for n �= 0
(Arfken 1995), leads to

c0 =
1

4πr24

∫
V (r) dS (10.5)

where r4 is the outer scalp radius. Thus the coefficient c0 is equal to the
average of the interpolated potential over the sphere surface.

Current conservation implies that, for dipolar current sources in an ar-
bitrary volume conductor, the surface integral of the absolute potential Φ
vanishes (Bertrand et al. 1985). Substituting V (r) = Φ(r)− Φref leads to

c0 =
1

4πr24

∫
(Φ(r)− Φref) dS � −Φref (10.6)

Based upon (10.6), we expect c0 to provide a reasonable estimate of Φref ,
which can be used to compute the absolute potentials using Φi = Vi + Φref �
Vi − c0. This favorable situation is limited by the fact that the spline fit is
severely under-constrained on the inferior head surface, and is unlikely to be
numerically accurate there. It is conceivable that the estimate Φref � −c0 is
worse than the usual estimate Φref � −V̄ , but further investigation proved
otherwise. A more convincing theoretical argument and numerical simulations
showing that spherical splines generally provide a better estimate of Φref are
given in (Ferree 2006).

8.3 Surface Laplacian

Complementary to the scalp potential is the scalp surface Laplacian, the sec-
ond spatial derivative of the potential. Practically speaking, the surface Lapla-
cian solves the problem of the reference electrode because the second spatial
derivative discards any overall constant (corresponding to the potential at the
reference electrode relative to infinity). The calculation of the surface Lapla-
cian is made separately at each time point. Physically, it is most directly
related to the local current density flowing radially through the skull into the
scalp. Because current flow through the skull is mostly radial, the scalp surface
Laplacian remarkably provides an estimate of the dura potential (Nunez 1987).
Numerical simulations using real data have shown that the surface Laplacian
has 80–95% agreement with other dura imaging algorithms (Nunez and Srini-
vasan 2006). This connection between the scalp surface Laplacian and dura
potential is derived next.

The following derivations make three main assumptions: 1) the current
flow through the skull is nearly radial, 2) the potential drops across the scalp
and CSF are small, at least compared to that across the skull, and 3) the



196 Thomas C Ferree and Paul L Nunez

Fig. 8. A patch of scalp for consideration of the surface Laplacian in Problem 1.
The parameter r3 represents the outer skull surface, and r4 the outer scalp surface.
Alternatively, by replacing 3 → 2 and 4 → 3, the same figure may be used to
represent a patch of skull in Problem 2

potential on the brain surface is much larger in amplitude than that on the
scalp surface, by close proximity to the dipolar sources. Referring to Fig. 8,
we have

I3 =
∫

S

J4 · t̂ dΓ (10.7)

where Γ is the surface on the sides of the scalp patch, and t̂ is a unit vector
normal to Γ and therefore tangential to the scalp-air boundary. Assume that
Φ4(r, θ, φ) depends negligibly on r (on the grounds that the scalp is thin and
σ4 is high, at least compared to σ3), so that Φ4(r, θ, φ) � V (θ, φ) leads to

I3 � −σ4(r4 − r3)A4∇2
sV (10.8)

where A4 is the cross-sectional area of the scalp patch. The boundary condition
on J⊥ on each side of the skull implies that the current flow through the skull
is primarily radial, thus I2 = I3. Given that, the potential within the skull
patch must vary radially according to the function

Φ3(r) =
a

r
+ b (10.9)

Considering how the cross-sectional area of the patch A(r) varies as a function
of r, and making use of the boundary condition on J⊥ at the skull-scalp
boundary r3, shows that the potential difference across the skull is given
approximately by

Φ3(r2)− Φ3(r3) = (r3 − r2) I3
σ3

r3
r2

1
A3

(10.10)

Making use of the boundary condition on Φ leads to

Φ2(r2)− Φ4(r3) = −σ4

σ3

r24
r2r3

(r4 − r3)(r3 − r2)∇2
sV (10.11)
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which states that the potential difference across the skull is approximately
proportional to the surface Laplacian. Finally, assuming that: 1) the potential
drop across the CSF is small compared to that across the skull due to the
low skull conductivity and high CSF conductivity, and the fact that the CSF
layer is thinner than the skull, and 2) that the potential on the dura surface
Φd = Φ2(r1) = Φ1(r1) is large compared to the potential on the scalp surface
Φ4(r4) = V , leads to

Φd � −σ4

σ3

r24
r2r3

(r4 − r3)(r3 − r2)∇2
sV (10.12)

Thus the scalp surface Laplacian is proportional to the dura potential. Be-
cause the scalp surface Laplacian acts as a spatial high-pass filter (Nunez and
Srinivasan 2006), possibly missing some valid information in the data, it is
best used in conjunction with the average-referenced potential to study brain
dynamics on the scalp.

8.4 Bipolar Pairs

Another way of eliminating the reference electrode effect is to based stud-
ies on bipolar pairs, as is common in clinical practice. Figs. 5(a) and (b)
show that the potential difference between nearby electrode pairs have
spatial sensitivity that is restricted to their local. The potential difference
between all such pairs, or perhaps only nearest-neighbor pairs, may be com-
puted easily and completely eliminates the dependence on the original refer-
ence electrode. Whereas the previous two approaches, the average reference
and surface Laplacian, eliminated the dependence on the reference electrode,
this approach makes explicit use of the reference electrode by effectively
moving it around to form local bipolar pairs. Time-domain averages (i.e.,
event-related potentials) or power spectra computed from these time series
are representative of the associated HSV, although the results are difficult to
show graphically because each temporal or spectral measure is associated with
one electrode rather than two. Time series collected from two bipolar pairs,
which are themselves widely separated (e.g., a nearby pair in occipital cortex
and a nearby pair in frontal cortex) may also be used for coherence analysis
(Nunez 1995).

9 Summary

This goal of this chapter is to provide a rigorous introduction to scalp EEG
for research in functional connectivity. We started at the microscopic level and
discussed the cellular basis of current sources that generate extracellular fields,
and developed the steps in electromagnetic theory that describe macroscopic
fields in biological systems. We discussed the solutions to the EEG forward
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problem in spherical and realistic head models. We also discussed EEG mea-
surement technology, to make clear the reasons why the reference electrode
issue arises so frequently in EEG experiments. We developed the concept of
the lead field vector L to help visualize the spatial sensitivity patterns of
scalp electrode measurements. These arguments lead to the conclusion that
the reference electrode acts as a measurement electrode, and this fact must
be addressed before drawing conclusions about the activity under any single
electrode.

Studies of functional connectivity involve temporal measures of correla-
tion, e.g., coherence and Granger causality, applied to two or more electrodes.
Implicitly it is assumed that the time series collected at each electrode de-
tects brain activity near that electrode. Our arguments using lead field theory
show that each electrode is sensitive to large tissue volumes, containing per-
haps 108–109 cortical neurons. Thus EEG measures of functional connectivity
apply only to very large spatial scales, although somewhat smaller scale con-
nectivity may be estimated with high resolution EEG methods like the surface
Laplacian.

The reference electrode continues to confound many EEG studies. This
chapter presented three practical ways of dealing with the reference electrode
issue: adopting the average reference, the scalp surface Laplacian, or bipo-
lar pairs. These data transformations and related concepts are essential to
the estimation of temporal and spectral measures that may be used to make
inferences about functional connectivity. Other facets of these topics are de-
scribed elsewhere (e.g., Nunez and Srinivasan 2006).

Acknowledgements

This work was supported in part by NIH grants R43-MH-53768 and
R43-NS-38788, and the Department of Radiology, University of California,
San Francisco. The authors thank Matthew Clay for the numerical simula-
tions in Section 7.3.

Index Words

EEG, MEG, membrane, cable theory, synchrony, electromagnetism, source
current, return current, volume conduction, multipole expansion, dipole, head
model, conductivity, boundary conditions, lead field, half-sensitivity volume,
data recording, reference electrode, average reference, spline interpolation,
surface Laplacian, spatial filter.



Primer on Electroencephalography for Functional Connectivity 199

References

Arfken GB, Weber HJ (1995) Mathematical Methods for Physicists. Academic Press.
Barnard ACL, Duck IM, Lynn MS, Timlake WP (1967a) The application of elec-

tromagnetic theory to electrocardiography: I. Derivation of integral equations.
Biophysical Journal 7: 443–462.

Barnard ACL, Duck IM, Lynn MS, Timlake WP (1967b) The application of elec-
tromagnetic theory to electrocardiography: II. Numerical solution of the integral
equations. Biophysical Journal 7: 463–491.

Barr RC, Ramsey M, Spach MS (1977) Relating epicardial to body surface potential
distributions by means of transfer coefficients based on geometry measurements.
IEEE Trans. on Biomed. Eng. 24: 1–11.

Baumann SB, Wonzy DR, Kelly SK, Meno FM (1997) The electrical conduc-
tivity of human cerebrospinal fluid at body temperature. IEEE Trans. on
Biomed. Eng. 44(3): 220–223.

Braitenberg V, Schuz A (1991) Anatomy of the Cortex: Statistics and Geometry.
Springer-Verlag.

Elul E (1972) The genesis of the EEG. Int. Rev. Neurobiol. 15: 227–272.
Ferree TC, Luu P, Russell GS, Tucker DM (2001) Scalp electrode impedance, infec-

tion risk, and EEG data quality. Clinical Neurophysiology 112:536–544.
Ferree TC (2006) Spherical splines and average referencing in scalp electroen-

cephalography. Brain Topography 19(1-2): 43–52.
Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological mate-

rials: A critical review. Critical Reviews in Biomed. Eng. 17(1): 25–104.
Geddes, L. A. and L. E. Baker (1967). The specific resistance of biological materi-

als: A compendium of data for the biomedical engineer and physiologist. Med.
Biol. Eng. 5: 271–293.

Geselowitz DB (1967) On bioelectric potentials in an inhomogeneous volume con-
ductor. Biophysical Journal 7: 1–11.

Geselowitz DB (1998) The zero of potential. IEEE Eng. Med. Biol. Mag. 17(1):
128–132.

Gulrajani RM (1998) Bioelectricity and Biomagnetism. John Wiley and Sons.
Helmholtz HLF (1853) Ueber einige Gesetze der Vertheilung elektrischer Strome

in korperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche.
Ann. Physik und Chemie 89: 211–233, 354–377.

Huhta JC, Webster JG (1973) 60-Hz interference in electrocardiography. IEEE
Transactions on Biomedical Engineering 20: 91–101.

Jackson JD (1975) Classical Electrodynamics. John Wiley and Sons.
Koch C, Segev I (1989) Methods in Neuronal Modeling: From Synapses to Networks.

MIT Press.
Law SK, Nunez PL, Wijesinghe RS (1993) High-resolution EEG using spline gener-

ated surface Laplacians on spherical and ellipsoidal surfaces. IEEE Transactions
on Biomedical Engineering 40(2): 145–153.

Law SK (1993) Thickness and resistivity variations over the upper surface of the
human skull. Brain Topography 6(2): 99–109.

Malmivuo J, Plonsey R (1995) Bioelectromagnetism. Oxford University Press.



200 Thomas C Ferree and Paul L Nunez

Malmivuo J, Suihko V, Eskola H (1997) Sensitivity distributions of EEG and MEG
measurements. IEEE Transactions on Biomedical Engineering 44(3): 196–208.

Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E,
Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science
295(5555): 690–4.

Nunez PL (1981) Electric Fields of the Brain. Oxford University Press.
Nunez PL (1995) Neocortical Dynamics and Human EEG Rhythms. Oxford Univer-

sity Press.
Nunez PL, Srinivasan R (2005) Electric Fields of the Brain. 2nd Edition, Oxford

University Press.
Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the hu-

man skull: Results from in vivo and in vitro measurements. IEEE Trans. on
Biomed. Eng. 47(11): 1487–1492.

Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp po-
tential and current density mapping. Electroencephalography and Clinical Neu-
rophysiology 72: 184–187.

Perrin F, Pernier J, Bertrand O, Echallier JF (1990) Corrigenda: EEG 02274, Elec-
troencephalography and Clinical Neurophysiology 76: 565.

Plonsey R (1969) Bioelectric Phenomena. Mc-Graw-Hill.
Plonsey R (1982) The nature of sources of bioelectric and biomagnetic fields.

Biophys. J. 39: 309–312.
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes

in C. Cambridge University Press.
Rush S, Driscoll DA (1968) Current distribution in the brain from surface electrodes.

Anesthesia and analgesia 47(6): 717–723.
Rush S, Driscoll DA (1969) EEG electrode sensitivity – An application of reciprocity.

IEEE Trans. on Biomed. Eng. 16(1): 15–22.
Schwan HP, Kay CF (1957) The conductivity of living tissues. Annals of New York

Academy of Sciences 65: 1007.
Srinivasan R, Nunez PL, Tucker DM, Silberstein RB, Cadusch PJ (1996) Spatial

sampling and filtering of EEG with spline Laplacians to estimate cortical poten-
tials. Brain Topography 8(4): 355–366.

Srinivasan R, Tucker DM, Murias M (1998) Estimating the spatial Nyquist of
the human EEG. Behavioral Research Methods, Instruments and Computers
30(1): 8–19.

Stok CJ (1987) The influence of model parameters on EEG-MEG single dipole source
estimation. IEEE Trans. on Biomed Eng. 34(4): 289–296.

Zilles K (1990) Cortex. In: The Human Nervous System Pixinos G (ed.), Academic
Press, New York.



Functional Imaging of Brain Activity
and Connectivity with MEG
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We present a survey of imaging and signal processing methods that use data
from magnetoencephalographic (MEG) or electroencephalographic (EEG)
measurements to produce spatiotemporal maps of neuronal activity as well
as measures of functional connectivity between active brain regions. During
the course of the chapter, we give a short introduction to the basic bioelectro-
magnetic inverse problem and present a number of methods that have been
developed to solve this problem. We discuss methods to address the statis-
tical relevance of inverse solutions, which is especially important if imaging
methods are used to compute the inverse. For such solutions, permutation
methods can be used to identify regions of interest, which can subsequently
be used for the analysis of functional connectivity. The third section of the
chapter reviews a collection of methods commonly used in EEG and MEG
connectivity analysis, emphasizing their restrictions and advantages and their
applicability to time series extracted from inverse solutions.

1 The Inverse Problem in MEG/EEG

Magnetoencephalography (MEG) measures non-invasively the magnetic fields
produced by electrical activity in the human brain at a millisecond temporal
resolution. The generators of these magnetic fields are dendritic currents in the
pyramidal cells of the cerebral cortex. Since the currents produced by individ-
ual neurons are exceedingly weak, thousands of neurons have to be coherently
active to produce a field that can be measured by MEG. The macroscopic
fields generated by such ensembles of coherent neurons have strengths on the
order of a few picotesla and are still one billion times smaller than the mag-
netic field of the earth.

A common electrical model for an ensemble of coherent neurons is the
equivalent current dipole (ECD), which idealizes the ensemble as a single
point source of electrical current. Due to the columnar organization of the cor-
tex the ECD can be assumed to be oriented normally to the cortical surface
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(Dale, and Serano, 1993, Okada, et al., 1997) and its location to be con-
strained to cortex. However, the model of an ECD with free orientation,
which can be located anywhere within in the brain volume, remains common
(Fuchs, et al., 1999).

The inverse problem is to find the neuronal activity, i.e. the location and
strength of the associated ECDs, on the cerebral cortex or throughout the
brain volume from noninvasive measurements of the magnetic fields produced
outside the head. Likewise, if electroencephalographic (EEG) measurements
are recorded, the change in scalp potentials due to the ECD inside the head
volume is used to determine its strength and location. The solution of the in-
verse problem first requires the solution of a forward problem, which involves
computation of the magnetic fields or electric potential changes outside the
head due to an ECD in the brain volume. The basic physical laws from which
the forward model for either MEG or EEG can be computed are Maxwell’s
equations under the assumption of stationarity (Hämäläinen, et al., 1993).
This assumption is valid for the typical frequencies produced by the human
brain, i.e. for frequencies on the order of 100 Hz, where the respective elec-
tromagnetic wavelengths (∼ 300m) far exceed the size of the head and thus
changes in the fields produced by the neural currents inside the head can be
considered instantaneous. Analytical solutions in geometries with spherical
symmetry for the MEG/EEG forward problem have been discussed exten-
sively by (Mosher, et al., 1999a, Zhang, 1995, Berg and Scherg, 1994, Sarvas,
1987). While for MEG the fields are only minimally distorted by biological tis-
sue, anisotropies and inhomogeneities of the volume conductor have a strong
impact on the scalp surface potentials. A simple spherical homogenous vol-
ume conductor model can be used for MEG with little impact on localization
accuracy in the inverse solution (Leahy, et al., 1998), whereas for EEG it has
been shown (Darvas, et al., 2006, Fuchs, et al., 2002, Baillet, et al., 2001),
that numerical solutions of the forward model using a realistic head geometry
can significantly improve the inverse solution over spherical models. Numer-
ical methods such as the boundary element method (BEM), finite element
method (FEM) and finite difference method (FDM) have been described in
detail elsewhere (e.g. Fuchs, et al., 2001, Johnson, 1997). The forward model
is solely dependent on the electromagnetic properties of the human head and
the sensor geometry and is therefore independent of individual data recordings
and need only be computed once per subject. Another important property of
the forward model is that it is linear in terms of the strength of the neuronal
currents. Consequently the summation of two source configurations produces
the sum of the fields of the individual sources. For an individual ECD, the
forward problem can be cast as a simple matrix-vector product as follows:

d (ti) = g (rk) · q (rk, ti) , d ∈ Rn, g ∈ Rn×3, q, r ∈ R3, (1)

Where d is the vector of measurements collected for each of the n detectors,
g is the forward field for each detector for a source at location rk, and q

is an ECD at location rk. For multiple sources eq. (1) can be expanded to



Functional Imaging of Brain Activity and Connectivity with MEG 203

d (ti) =
[
g (r1) g (r2) . . . g

(
rp

)] ·

⎡
⎢⎢⎢⎣

q (r1, ti)
q (r2, ti)

...
q
(
rp, ti

)

⎤
⎥⎥⎥⎦, and for multiple time points

we can write the compact form:

D = G ·X,G ∈ Rn×3p,X ∈ R3p×T ,D ∈ Rn×T , (2)

where p is the number of sources and T the number of time samples. The
number n of detectors is typically on the order of 100, while the number of
sources p can be either a few (1–10) when using dipole fitting methods or up
to several thousand when using cortically constrained imaging methods.

Solutions to the inverse problem can be generally split into two classes:
the dipole fitting or scanning solutions and imaging solutions (Darvas, et al.,
2004). The aim of inverse methods is typically to minimize the cost function∣∣∣∣D −G ·X∣∣∣∣2

2
with respect to the source parameters, subject to appropriate

constraints on the sources X. In the case of dipole fitting, the solution is con-
strained to consist only of a limited number of sources, which leads to the
least-squares dipole fit (Scherg, 1990). Optimizing the subspace correlation of
the sources with the data and specifying a correlation threshold instead of the
number of sources results in the RAP-MUSIC (recursively applied and pro-
jected multiple signal classification) solution of the inverse problem (Mosher,
et al., 1999b). Distributed sources over the entire cortical surface or brain vol-
ume are allowed in the imaging approaches. To resolve ambiguities resulting
from the larger number of sources, the least squares problem is regularized
by addition of a norm on the image, which is selected to reflect the power,
spatial smoothness or other characteristics of the solution, e.g. Hämäläinen,
et al., 1993, Pascual-Marqui, et al., 1994. If the regularizer is quadratic then
the solution is linear in the data and can be written:
X∗ =

(
Gt ·G+ C−1

)−1
GtD, where the matrix C encodes the source con-

straints. Assuming zero mean noise, the mean of the estimate X∗ can be
related to the true source X through the resolution kernel R: E

⌊
X∗⌋ = RX,

where R =
(
Gt ·G+ C−1

)−1
GtG. The mean of the estimate of the sources

is therefore a linear combination of the true sources.
The beamformer methods (van Veen, et al., 1997, Robinson and Vrba,

1999) represent a hybrid approach to the inverse problem as they make
assumptions of temporally independent dipolar sources, but they can also
be used to compute activation images throughout the brain volume or on
the cortical surface. Alternative solutions to the inverse problem have been
proposed such as multipole fits (Jerbi, et al., 2004), which extend the el-
ementary ECD source model to quadrupoles, a minimum norm type so-
lution in a continuous source space (Riera, et al., 1998), and Bayesian
and other nonquadratic regularization approaches that emphasize sparseness
or other physiologically motivated properties in the solution as reviewed by
Baillet, et al. (2001).
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2 Statistical Significance of Inverse Solutions
from Event Related Data

Once an inverse solution is computed, the question of the statistical signif-
icance of the solution arises. In most applications of MEG or EEG, single
trial data are contaminated by environmental noise (power lines, electrical
equipment), physiological noise (electrocardiogram, eye and muscle artifacts),
and spontaneous brain activity. Consequently, meaningful source reconstruc-
tion usually requires some form of averaging of the measured event related
brain activity over multiple repetitions (or epochs) of the same task. Typi-
cally, a pre-stimulus and a post-stimulus time segment is recorded, where the
pre-stimulus segment is used to establish a baseline.

The inverse problem is solved either on the event related average of these
single epochs or separately for each epoch, depending on the subsequent anal-
ysis to be performed. The single epochs, whose number can range from tens
to hundreds, can also be used as the basis for assessing the significance of
the inverse solution. If the solution is computed by a scanning or dipole fit-
ting method, the significance of individual dipoles can be assessed in terms of
the spatial accuracy with which the source is localized (Darvas, et al., 2005,
Braun, et al., 1997). If the probability density function of the average data is
known, bounds on the spatial confidence intervals for dipoles can be computed
analytically by means of the Cramer-Rao lower bounds (Mosher, et al., 1993).
Residuals can also be used to assess uncertainty with the chi-squared statis-
tic. However, these methods are highly dependent on the assumed model and
do not allow for factors such as missed sources or bias resulting from model-
ing errors. These problems can be avoided using a nonparametric resampling
approach in which we use the single trial data to learn the distribution of
the error. One example of such an approach is the Bootstrap method, which
can be used to assess dipole localization uncertainty from single trial data
(Darvas, et al., 2005). The Bootstrap method approximates the distribution
of the data with the sample distribution formed by the collection of single
epochs. A new representative sample of the data can then be generated by
drawing a new set of single epochs at random and with replacement from the
original epochs. Using this technique one can construct confidence intervals
for each localized dipole, and reject those for which these intervals do not
indicate a sufficiently accurate localization.

In the case of an imaging solution to the inverse problem, significance
cannot be readily assessed in terms of localization uncertainty as sources can
be reconstructed everywhere in the chosen source space (either cortical sur-
face or brain volume). Instead, we can test at each voxel whether there is
significant change in neuronal activity relative to a baseline condition. In
more complex experimental designs, significant effects can similarly be as-
sessed by fitting a general linear model at eachvoxel. This form of analysis is
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very similar to that applied in detecting experimental effects in fMRI data.
The problems differ in the degree of spatial correlation in the images and
the intrinsic spatial resolution of the two modalities. However, in both cases
we need to carefully control for the false positives that may result from per-
forming multiple hypothesis tests (one per voxel). Thresholds for significant
voxels in MEG linear minimum norm inverse solutions can be computed us-
ing either parameteric random fields methods or nonparametric permutation
tests (Pantazis, et al., 2005). In both cases, voxelwise statistics are thresh-
olded to control the family wise error rate (FWER), i.e. the probability of one
or more false positives. Under the null hypothesis, the maximum distribution
of a voxelwise statistic, computed over space or space and time, can be used
to select a threshold for a desired FWER. For common distributions (Gaus-
sian, chi-squared, student-t) and sufficiently smooth fields, the upper tail of
the maximum distribution can be approximated using the expected value of
the Euler characteristic (Worsley, et al., 1996). Application of this approach
requires spatial smoothing of the brain activation maps to satisfy random field
assumptions. Since resolution in MEG is already rather poor, it is preferable
to avoid further smoothing. An alternative nonparameteric approach, which
also avoids the need for smoothing, is to use permutations tests to learn the
maximum distribution under the null hypothesis. The maximum distribution
is learned by randomly permuting the post- and pre-stimulus segments of the
epochs. Under the null hypothesis that there is no change in brain activation
before and after the stimulus, these should be interchangeable and therefore
suitable for generating a new sample of the average dataset. By applying
the threshold to the reconstructed image, we create regions of interest that
represent statistically significant activity (Fig. 1). Similar non-parametric per-
mutation tests have also been applied to images obtained from beamformers
(Singh, et al., 2003).

Time courses of activity for statistically selected regions of interest can be
constructed by spatially integrating source activity over the region of interest
or selecting the voxel that locally maximizes the test statistic.

In both dipole fitting and imaging solutions, one ends up with a number of
localized regions in the brain, each showing significant event related activity.
The time series from these locations can then be used for further processing
to investigate functional connectivity.

If continuous data are recorded for which no event trigger is available,
then the methods as described above cannot be applied. However, steady
state activity under different test conditions can be compared using modi-
fications of the thresholding methods described. Alternatively, if anatomical
regions of interest are known a priori, then time series can be extracted from
inverse solutions at these locations for processing using the methods described
below.



206 Felix Darvas and Richard M Leahy

Fig. 1. Illustration of minimum norm, MUSIC and beamformer inverse methods
for two simulated sources and the effect of thresholding on our ability to localize the
sources (from Darvas, et al., 2004)

3 Assessing Functional Connectivity
from the Inverse Solution

While MEG/EEG does not possess the good spatial resolution of fMRI, these
modalities provide an excellent temporal resolution (< 1ms), which fMRI can-
not achieve as a result of the relatively slow hemodynamic response function
(Kim, et al., 1997). This temporal resolution can be used to look at complex
phenomena in the time-frequency domain, such as coherence, phase synchrony,
or causality between signals from spatially separated brain regions. The goal
of applying such measures is to establish functional correspondence between
these regions in order to gain an understanding of the networks of neuronal
populations that are involved in executing complex tasks. It should be noted
that functional connectivity between regions merely establishes that these re-
gions share mutual information during a specific task, whereas effective con-
nectivity between regions actually implies a causal relationship between these
regions (Friston 1994, Lee, et al., 2003, Horwitz, 2003).

Much of the work on functional connectivity using EEG or MEG
(e.g. Gevins, et al., 1985, Simoes, et al., 2003) analyzes the connectivity
between pairs of electrodes or channels directly. Due to the nature of the
electromagnetic forward problem one has to deal carefully with crosstalk of
sources. Because the fields or potentials created by an active neuronal source
drop off at roughly 1/r2, where r is the distance from the source to the de-
tector, neighboring detectors will typically be sensitive to the same sources,
and in some cases all sensors may detect a single source. As described by
eq. (2), the signals in each detector will be a weighted linear combination of
the signals from all sources. It is possible to reduce sensitivity to crosstalk
when analyzing sensor data, either by using connectivity measures that are
insensitive to linear crosstalk or through application of statistical tests that
allow for crosstalk under the null hypothesis. However, in principle it may be
preferable to perform connectivity analysis in the source domain, since the
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inverse solution can be seen as a spatial unmixing procedure. While the lim-
ited resolution of MEG/EEG means that inverse methods will not entirely
remove crosstalk between sources, it will certainly be reduced. The maximum
amount of crosstalk expected on average from linear inverse methods has been
estimated to be less than 40% for EEG data in simulations (Liu, et al., 2002)
and will be further reduced by combining MEG and EEG or by including
prior information from fMRI. It should be noted that generally the crosstalk
will be higher for sources which are located deeper in the brain due to the
nonuniform resolution of the inverse solution, as reflected in the resolution
kernel R described above.

We now review a number of methods for assessing functional connectivity
between brain regions, which are applicable to time series extracted from
inverse MEG/EEG solutions.

Covariance

A straightforward approach to investigating dependence between regions is to
look at the cross covariance or lagged cross covariance of two signals, the so
called Evoked Potential Covariance (EPC) (Gevins and Cutillo, 1993, Smith
1992, Gevins and Bressler, 1988). The EPC is defined as the maximum co-
variance over all time lags. While this method can work well on regions that
are sufficiently spatially separated, it will be seriously affected by crosstalk
and will have very limited spatial resolution. This can be easily demonstrated
in the following example:

Let x0(t) and y0(t) be two neuronal sources at locations rx and ry,, then the
measurements in two channels a(t) and b(t) are given by a(t) = ga (rx)x0 (t)+
ga

(
ry

)
y0 (t) , b(t) = gb (rx)x0 (t) + gb

(
ry

)
y0 (t) and the channel covariance

is given by

cov(a, b) = ga (rx) gb (rx) cov(x0, x0)

+ ga

(
ry

)
gb

(
ry

)
cov(y0, y0)

+
[
ga

(
ry

)
gb (rx) + ga (rx) gb

(
ry

)]
cov(x0, y0). (3)

Clearly, even if the sources themselves have zero covariance, the channel co-
variance will be non-zero, falsely implying a connectivity between the chan-
nels. It should be noted, however, that these false interactions can be corrected
for in subsequent statistical analysis. Crosstalk can exist regardless of whether
there is any true connectivity and therefore will also appear in data under the
null hypothesis of no interaction. Consequently a suitable baseline condition
can be used to control for false positives. Using a nonparameteric permutation
test, it is straightforward to also correct for multiple comparisons (Blair and
Karniski 1993).
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Coherence

Coherence analysis of two signals is a similar approach in which the signals
are represented in the frequency domain. Instead of looking for linear inter-
actions between signals in the time domain, the cross spectrum of the two
signals is computed and the coherence found as the magnitude of the cross
spectrum normalized by the power spectra of the two signals. Event related
coupling in the sensor domain has been widely reported (e.g. Mima, et al.,
2001, Andres and Gerloff, 1999, Miltner, et al., 1999), but similarly to covari-
ance analysis, is limited in spatial resolution due to the potential for crosstalk
between detectors (Nunez, et al., 1997). Since the cross spectrum can be com-
puted from the covariance of two signals by the Fourier transform, the cross
spectrum between two channels can be found by the Fourier transform of
eq. (3). Consequently, there is the possibility of falsely inferred interactions,
unless controlled for in subsequent statistical analysis. Coherence analysis in
the source domain has been used by Gross et al. in 2001 in their method for
performing Dynamic Imaging of Coherent Sources (DICS) as the first stage of
localizing coherent sources and extracting their time series for further analysis.
In DICS the coherence of the sources is computed as the output of a frequency
domain beamformer constrained to pass activity with unit gain at a specific
location in a specific frequency band. The properties of this frequency domain
beamformer are described in detail by Gross, et al. (2003).

The linearly constrained minimum variance (LCMV) beamformer used in
DICS has the potential for partial cancellation of coherent sources, particu-
larly if short segments of data are used to find the covariance matrix from
which the beamformer weights are computed. Consequently, this method can
give inaccurate results for strongly coherent sources. It should be noted, how-
ever, that the method is used by Gross et al, (2001) as a first step to localize
candidate sources for a subsequent analysis of their phase synchrony (see sec-
tion phase locking), and that in application of the method to experimental
data the actual coherence can be expected to be relatively low (<< 1). Due
to crosstalk effects, the original map will usually show a very high coherence
value in the vicinity of the reference region and might be misleading. Con-
sequently, when working with cortical coherence maps produced from DICS,
it is useful to display the relative increase in coherence as compared to a
baseline condition. An example of a typical DICS map with the baseline map
subtracted is shown in Fig. 2. Coherence was computed in the 9–14 Hz band
for MEG data recorded during a visually cued finger movement of the right
index finger.

Since coherence mixes phase and power information, it might not be a
suitable measure of connectivity between neuronal assemblies (David, et al.,
2002, Le Van Quyen, et al., 2001, Rodriguez, et al., 1999). Furthermore, the
definition of coherence through the cross spectral density requires second order
stationarity, which is rarely the case for event related brain signals. We review
alternative measures that emphasize phase coupling below.
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Fig. 2. Example of a DICS map from 275-channel MEG data for a motor activity
experiment in the 9–14Hz band, where the subject was performing a visually paced
movement of the right index finger. The left image shows the coherence map relative
to a source in the left M1 region. The right image shows a difference map in which
the baseline coherence is subtracted. Both images were thresholded to control the
false discovery rate of the DICS output at 1%

Coherency

Coherency is defined as the imaginary part of the cross spectrum and can
be used to detect non-instantaneous interaction between two signals (Nolte
et al., 2004). Let x(t) and y(t) be signals computed at two locations in the
brain using one of the inverse methods discussed above and assume a set of
sources si(t) located within the brain. Because of limited resolution, x(t) and
y(t) are a linear combination of the true signals. We denote the linear factors
as ax

i and ay
i . The cross spectrum is then given by:

Sxy (f) =
∑

τ

E [x (t) y (t+ τ)] e−j2πττ

=
∑

τ

⎡
⎣∑

i

∑
j

ax
i a

y
jE [si (t) sj (t+ τ)]

⎤
⎦ e−j2πfτ

If the true signals si(t) are uncorrelated, then the above reduces to Sxy (f) =∑
τ

∑
i

ax
i a

y
iE [si (t) si (t+ τ)] e−j2πfτ =

∑
i

ax
i a

y
i Ssisi

(f), which is real valued

as a result of the symmetry of the autocorrelation. A nonzero imaginary part
in the cross spectrum must be due to something other than linear crosstalk and
can be interpreted as a “true” interaction. Consequently, by considering the
imaginary part only, or “coherency”, one can eliminate the effect of crosstalk.
While this approach can be used to detect interactions, quantitation is difficult
since the real part of the cross spectrum, which contains information about
both linear mixing and true interactions, is discarded.
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Phase Locking

An alternative to the classical coherence measure is to separate phase and
amplitude information in the signals and analyze the phase locking or phase
synchrony as a measure of connectivity between neural assemblies. Phase
locking between two oscillators is defined as |ϕn,m(t)| < const, ϕn,m(t) =
nφ1(t)−mφ2(t), where n and m are integers and φ1(t) and φ2(t) are the in-
stantaneous phases of the signals (Tass, et al., 1998). In order to compute any
measure of phase synchrony, the instantaneous phase of the signals must first
be computed. This can be done by first narrowband filtering of the signals and
then extracting the instantaneous phase by applying the Hilbert transform
(Tass, et al., 1998). Alternatively phase can be computed from a time fre-
quency decomposition using Gabor wavelets (Lachaux, et al., 1999). Once the
instantaneous phase has been extracted from the signals, the n:m synchroniza-
tion index (Tass, et al., 1998) or the phase locking value (PLV) (Lachaux, et al.,
1999) can be computed from the phase difference of the signals. Tass et al.
propose two methods to compute the synchronization index, one based on the
Shannon entropy of the distribution of the phase differences and the other
based on the conditional probability of the phases. The integer values n and
m in this method are determined by trial and error, i.e. the synchronization
index is computed for many combinations of n and m and those numbers
which yield the largest index are selected for further analysis. Lachaux et al.

define the PLV as PLVt = 1/N
∣∣∣∣
∑
n

exp (i (φ1 (t, n)− φ2 (t, n)))
∣∣∣∣, where the

sum is taken over the number of trials. The PLV is also computed for surro-
gate data generated by shuffling the trial indices for one signal, while keeping
the other constant, which allows for assessing the statistical significance of
the observed synchronization. A comparison has shown that there is no fun-
damental difference between the synchronization index and PLV and that
they are equally well suited for detecting phase synchrony (Le Van Quyen,
et al., 2001). If applied in the channel domain, as noted by Lauchaux, et al.,
1999, both methods also suffer from the crosstalk effect and can produce false
synchrony measures, even in the absence of synchronous sources. Since sen-
sors pick up signals from multiple sources and the phases of these sources do
not combine linearly, crosstalk can result in a nonzero-phase difference, thus
making it hard to distinguish from genuine phase locking.

Analysis of phase locking has revealed information about cortico-cortical
and cortico-muscular coupling of signals (Fell, et al., 2001, Gross, et al., 2001,
Gross, et al., 2000, Lauchaux, et al., 1999, Tass, et al., 1998). The limitation of
phase locking methods is that they typically only consider interactions within
a narrow frequency band. True large scale neural interactions may involve
interactions between different frequencies, requiring consideration of a larger
bandwidth (Lauchaux, et al., 1999, Tallon-Baudry, et al., 1997). An example
showing the PLV between left and right motor cortices is shown in Fig. 3.
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Fig. 3. Example of a PLV map computed using the wavelet transform for frequencies
between 3 and 30 Hz. Phase locking was computed for the time series of the left
and right motor cortices over a period of 400 ms prior to a movement of the right
index finger. The time series were estimated from 275 channel MEG data using the
minimum norm inverse

Higher Order Spectral Analysis

Higher order spectral analysis (Nikias and Mendel, 1993) can provide infor-
mation about non-linear coupling between frequencies of different signals or
within a single signal and can be seen as an extension of the classical power
spectrum. While the power spectrum can be computed from the Fourier trans-
form of the autocorrelation of the signal (and likewise, the cross spectrum
from the Fourier transform of the cross correlation of two signals), higher or-
der spectra are computed from the third, fourth or nth order cumulants of
the signals. The Bispectrum for example is computed as the two-dimensional
Fourier transform of the third-order cumulant of the signal. Let x(k) be a
nth order stationary discrete time series, then the nth order cumulants are
defined as

cn (τ1, τ2, . . . , τn−1) = mn (τ1, τ2, . . . , τn−1)−mG
n (τ1, τ2, . . . , τn−1)

where

mn (τ1, τ2, . . . , τn−1) = E [x (k)x (k + τ1) . . . x (k + τn−1)] ,

is the nth moment of x, and mG
n is the respective moment of an equivalent

Gaussian signal with the same mean and autocorrelation as x (Nikias and
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Mendel, 1993). The nth order spectrum is thendefined as:

pn (f1, f2, . . . , fn−1) =
∞∑

τ1=−∞

∞∑
τ2=−∞

. . .

∞∑
τn−1=−∞

cn (τ1, τ2, . . . , τn−1)

× exp

(
−i

(
n−1∑
k=1

2πfkτk

))

In a similar fashion, the nth order cross spectra can be computed by using
the Fourier transforms of the cross-cumulants. For example, the bispectrum
p3 (f1, f2) between three signals is defined as the 2D Fourier transform of the
cross-cumulants:

cxyz
3 (τ1, τ2) = E [x (k) y (k + τ1) z (k + τ2)]−mGxyz

3 (τ1, τ2)

The cross-bicoherence can be computed by normalizing by the power spectral
densities of the component signals:
Cxyz

d (f1, f2) = P xyz
3 (f1,f2)√

P x
2 (f1)P

y
2 (f2)P z

2 (f1+f2)
. The bispectrum and cross-

bispectrum, as well as the bicoherence and cross-bicoherence, can detect
quadratic phase coupling between signals x, y and z. By replacing z with either
x or y, we can use the cross bispectrum to detect coupling between any pair of
signals as illustrated in Fig 4. Due to the asymmetry of the cross-bispectrum

Fig. 4. Sample bicoherence map for the same time series described in Fig. 3. The
map shows a non-linear interaction of 12 Hz and 20 Hz prior to the finger movement
between the left and right motor cortex
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for two signals, i.e. Cxxy
2 (f1, f2) �= Cyxx

2 (f1, f2), this measure can potentially
be used to infer the direction of interaction from one signal to another.

Higher order spectra have many desirable properties that make them use-
ful tools for analyzing neuronal interaction. The method is not limited to
narrowband signals and the higher order spectra reveal phase information,
which makes the method well suited to the analysis of time phase coupling
(Jamsek, et al., 2003, Schack, et al., 2002). Because the higher order moments
for a signal with a Gaussian distribution vanish, the higher order spectra
are insensitive to Gaussian noise. Furthermore, in contrast to the coherence
metric, the bispectrum is less sensitive to linear coupling and therefore is
an attractive alternative for the detection of nonlinear interactions (Jamsek,
et al., 2003). Applications of higher order spectral analysis to EEG data in
the channel domain have been presented by Pfurtscheller and Lopes de Silva
(1999), where non-linear interaction between 11 Hz and 22 Hz components
in the post-movement beta event-related synchronization (ERS) was demon-
strated, as well as in the analysis of short-term memory (Schack, et al., 2002)
and in microelectrode recordings from the visual cortices of cats and monkeys
(Schanze and Eckhorn, 1997). Because of its insensitivity to linear relation-
ships and therefore its robustness to linear cross talk effects between signals,
the method is also well suited for application in the source domain.

Structural Equation Modeling

While the methods described so far in this chapter can be used to analyze
the interactions between two signals, it is also of great interest to perform
network analysis involving multiple sources or ensembles of neuronal activity.
A simple approximation to the potentially complex interactions between mul-
tiple regions is given by the structural equation model (SEM) or path analy-
sis, which assumes a linear relationship between the activity in each region
and also with respect to any experimental variables (Astolfi, et al., 2005,
Friston, 1994,, Bollen 1989). This assumption can be cast in a simple equa-
tion (McIntosh and Gonzalez-Lima, 1994):

y = B · y + Γ · x+ ζ

y, ζ ∈ Rm, x ∈ Rn, B ∈ Rn×n,Γ ∈ Rm×n (4)

The vector y represents the signal at a single time point for each of the m
connected components of the network and the vector x represents n inde-
pendent external components, e.g. variations of the experimental conditions.
These can be binary variables that are set to one for the experimental condi-
tion and zero for the control condition (McIntosh and Gonzalez-Lima, 1994).
The matrices B and Γ represent, respectively, the influence of the network on
itself and the influence of experimental conditions on the network. In SEM it
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is assumed that the components of the network do not interact with them-
selves, therefore the diagonal elements of the matrix B are set to zero. The
vector ζ models the residual activity not explained by the linear model. The
model parameters are estimated from the observed signals using least squares
regression (Astolfi et al., 2005). Since typically the number of unknowns in
this optimization problem exceeds the number of equations, a priori informa-
tion about the model has to be provided. This is done by limiting the number
of free parameters, i.e. the elements of the matrix B. By setting some ele-
ments of B to zero, interactions between selected components are precluded
and the number of unknowns is reduced, making the system solvable. Because
the method is based on the covariance it will be affected by linear crosstalk
leading to potentially erroneous inferences of network connectivity when ap-
plied to EEG or MEG data. The SEM approach was originally applied in
functional neuroimaging to PET and fMRI studies in which dynamic data
were not available. However, when applied to dynamic EEG and MEG data,
the assumption of instantaneous linear unidirectional interactions between
the network components is rather restrictive. The use of only the zero-lag co-
variance between regions ignores the temporal structure of the data, so that
shuffling the data in time would have no influence on the SEM parameters
(Ramnani, et al., 2004). We conclude this chapter with a brief introduction to
two network models that do consider dynamic interactions: the linear MVAR
and the nonlinear dynamic causal models.

Multivariate Autoregressive Models (MVAR)

Multivariate autoregressive models can also be used to model interactions
between multiple regions. However, unlike SEM, they do not assume instan-
taneous linear interaction between the regions, but also take the past of each
signal into account. One of the key attractions of the MVAR model is its abil-
ity to make inferences about the direction of interaction of multiple network
components (Brovelli, et al., 2004). The mth order MVAR model is described
by the following equation:

x (t) =
m∑

i=1

A
i
x (t− i) + e (t)

The vector x (t) contains the time series for each region, the vector e (t)
is a zero-mean uncorrelated noise process and the coefficient matrices A

i
can be found by solving the multivariate Yule-Walker equations. If trans-
formed to the frequency domain, the MVAR equation takes on the more sim-
ple form x (f) = H (f) · E (f), where H(f) is the transfer function matrix
(Kus, et al., 2004). From the frequency domain representation we can com-
pute the Directed Transfer Function (DTF), a frequency dependent measure
of the interaction between nodes in the network (Kaminski, et al., 2001).
Similarly to phase-locking and coherence measures, the DTF is a measure of
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interaction at a single frequency, although these interactions are computed
simultaneously across the entire frequency range of interest. An advantage of
MVAR models is that they allow one to determine the direction of interac-
tion by analogy to the concept of Granger Causality. Furthermore, unlike the
SEM models, no a priori knowledge is required about connectivity in the net-
work. The wide sense stationarity requirement does limit the utility of MVAR
models in event related studies, but since they are parametric they can be
fit using relatively few temporal samples (with the covariance computed by
averaging across epochs) and nonstationarity then detected using a sliding
window. Since the method is linear, crosstalk will have a significant effect on
DTF. If the mixed signals are given by y = M · x, then instead of the ‘true’
coefficient matrices A

i
one gets the mixed coefficient matrices A

i
M , but there

is no way to identify the mixing matrix M from the estimated coefficient
matrices.

Neural Mass Models

Neural mass models (David et al., 2004, David and Friston, 2003, Jansen and
Rit, 1995) are physiologically motivated models of cortical activity, which at-
tempt a mathematical description of the network of neurons that generate the
signals measured by MEG/EEG. The purpose of these models is to provide a
realistic network simulation of cortical activity with controllable connectivity
parameters, but they can also be used to estimate network parameters from
real data (David and Friston, 2003). The basic elements of the model are ex-
citatory and inhibitory columns of neurons (Jansen and Rit, 1995). The state
of each element is described by an average membrane potential and a mean
firing rate. The membrane potential and average firing rate are related by non-
linear input/output functions for each element and the parameters of these
functions are thus the parameters of the element. A number of interaction con-
stants between the ensembles can be used to describe the network structure.
If no external input signal is used, the model is typically driven by random
noise. David and Friston (2003) expanded the double column model proposed
by Jansen and Rit (1995) to a meta-ensemble or mass model, which instead
of containing only two columns is comprised of N columns. These neuronal
mass models can be thought of as cortical areas and by introduction of mul-
tiple areas and coupling between those, macroscopic behavior of the brain, as
can be measured by MEG/EEG, can be simulated. Mass models can exhibit a
broad range of frequencies and their non-linear nature and controllable macro-
scopic coupling make them good candidates for testing connectivity measures
(David et al., 2004). Also by defining meta parameters of the model such as the
number of areas and their connectivity, the models themselves can be used to
fit real measurements and thus provide an estimate of functional connectivity
(David and Friston, 2003).
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The vast majority of brain connectivity studies have focused on the activity
of measurable brain signals in the cortex and deep gray matter nuclei regions.
However, the axons in the white matter serve as the connectivity network of
the brain between distant brain regions. Currently, there are not any non-
invasive methods for mapping the signal conduction in specific white matter
networks. Several MR imaging methods have the potential to provide infor-
mation related to the physiology and pathology of the white matter tissue
substrates, which may ultimately affect brain connectivity.

White matter (WM) is comprised of myelinated axons and glial cells.
Axons are the thick branches of neurons, which conduct action potentials (sig-
nals) from the neuron cell body to remote target neurons. Myelin is an insulat-
ing layer of phospholipids and proteins, which significantly increase the speed
of action potential conduction. Either demyelination, myelin degradation, or
poor myelin development will impede the efficiency of action potentials and
affect neural connectivity. The glia (“brain glue”) are non-neural cells and are
the supporting cells of the nervous system. They provide support, form myelin,
respond to injury, maintain the blood-brain barrier, and regulate the chemical
composition of tissue medium. Glial cells include oligodendrocytes (respon-
sible for myelin generation and maintenance), astrocytes (support metabolic
function and provide structural support including the blood brain barrier),
and microglia (protect the brain from insult and injury). Imaging methods
that can characterize the properties of this complex tissue matrix may be valu-
able for investigating the influence of tissue substrates on neural connectivity.

Conventional MRI is a noninvasive imaging method that can create images
with exquisite anatomical detail. While standard MRI methods (e.g., T1-
weighted, T2-weighted, proton-density-weighted) can differentiate gray matter
and white matter, as well as localize certain brain lesions and abnormalities,
it is not quantitative and does not provide information about specific changes
in the tissue. However, several quantitative MRI methods have recently been
developed which provide either direct or indirect measurements of relevant tis-
sue properties including the microstructural tissue architecture, intra-myelin
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water, proteins associated with myelin, axon density, biochemical metabolite
concentrations, and response to injury (e.g., inflammation, microglia). These
MRI methods include diffusion tensor imaging, magnetization transfer imag-
ing, T1 and T2 relaxometry, MR spectroscopy and spectroscopic imaging, and
targeted contrast agents. This chapter will focus on diffusion tensor imaging
(DTI), magnetization transfer imaging (MTI) and myelin water fraction imag-
ing (MWFI) using multi-component T2 relaxometry. Although promising, MR
spectroscopy is not covered here.

1 Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is currently the most widely used method
for investigations of WM and anatomical connectivity. The diffusion tensor
is a simple model of water diffusion in biological tissues and describes the
magnitude, anisotropy (directional variation), and orientation of the diffusion
distribution.

Diffusion is a random transport phenomenon, which describes the transfer
of material (e.g., water molecules) from one spatial location to other locations
over time. The Einstein diffusion equation (Einstein 1926):〈

Δr2
〉

= 2nDΔt (1)

states that the mean squared-displacement, 〈Δr2〉, from diffusion is propor-
tional to the diffusivity, D (in mm2/s), over the diffusion time, Δt. The
displacement is scaled by the spatial dimensionality, n, which is n = 3 in
biological tissues. The diffusivity of pure water at 20◦C is roughly 2.0 ×
10–3mm2/s and slightly higher at body temperature.

The molecules, sub-cellular organelles and cells within biological tissues are
in a continuous state of kinetic motion. In particular, water molecules diffuse
inside, outside, around, and through cellular structures. The diffusion of water
molecules is first caused by random thermal fluctuations. The behavior of the
diffusion is further modulated by cytoplasmic currents and the interactions
with cellular membranes, and subcellular and organelles.

In fibrous tissues such as white matter tracts in the brain, water diffu-
sion is less hindered or restricted in the direction parallel to the fiber ori-
entation. Conversely, water diffusion is highly restricted or hindered in the
directions perpendicular to the fibers. Thus, the diffusion in fibrous tissues is
anisotropic. Early diffusion imaging experiments used measurements of par-
allel (D||) and perpendicular (D⊥) diffusion components to characterize the
diffusion anisotropy (Chenevert et al. 1990; Moseley et al. 1990).

The diffusion tensor is an elegant model of water diffusion (Basser et al.
1994), which assumes that the diffusion is described by a 3D, multivariate
normal distribution

P(Δ−→r ,Δt) =
1√

(4πΔt)3|D|exp
{−Δ−→r TD−1Δ−→r

4Δt

}
(2)
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where Δr is the displacement vector, Δt is the diffusion time, and D is the
diffusion tensor, which is a 3× 3 matrix

D =

⎡
⎣
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦ . (3)

The diffusion tensor may be diagonalized to calculate the eigenvalues
(λ1, λ2, λ3) and corresponding eigenvectors (ê1, ê2, ê3) of the diffusion ten-
sor, which describe the relative amplitudes of diffusion and the directions of
the principle diffusion axes. A common visual representation of the diffusion
tensor is an ellipsoid with the principal axes aligned with the eigenvectors and
axes lengths a function of the eigenvalues (see Fig. 1). In the case where the
diffusion eigenvalues are (roughly) equal (e.g., λ1 ∼ λ2 ∼ λ3), the diffusion
tensor is (nearly) isotropic. When the eigenvalues are significantly different in
magnitude (e.g., λ1 > λ2 > λ3), the diffusion tensor is anisotropic. Changes
in local tissue microstructure with many types of tissue injury, disease or nor-
mal physiological changes (i.e., aging) will cause changes in the eigenvalue
magnitudes. Thus, the diffusion tensor is an extremely sensitive probe for
characterizing both normal and abnormal tissue microstructure.

More specifically in the CNS, water diffusion is typically anisotropic in
white matter regions, and isotropic in both gray matter and cerebrospinal fluid
(CSF). The major diffusion eigenvector (ê1-direction of greatest diffusivity) is
assumed to be parallel to the tract orientation in regions of homogenous white
matter. This directional relationship is the basis for estimating the trajectories
of white matter pathways with tractography algorithms.

Diffusion-Weighted Image Acquisition

The random motion of water molecules in biological tissues may cause the sig-
nal intensity to decrease in MRI. The NMR signal attenuation from molecular

Fig. 1. Schematic representations of diffusion displacement distributions for the
diffusion tensor. Ellipsoids (right) are used to represent diffusion displacements.
The diffusion is highly anisotropic in fibrous tissues such as white matter (left).
The direction of greatest diffusivity is generally assumed to be parallel to the local
direction of white matter
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diffusion was first observed more than a half century ago by Hahn (1950). Sub-
sequently, Stejskal & Tanner (1965) described the NMR signal attenuation in
the presence of field gradients. More recently, field gradient pulses have been
used to create diffusion-weighted MR images (Le Bihan 1990).

Typically, the diffusion weighting is performed using two gradient pulses
with equal magnitude and duration (Fig. 2). The first gradient pulse dephases
the magnetization across the sample (or voxel in imaging); and the second
pulse rephases the magnetization. For stationary (non-diffusing) molecules,
the phases induced by both gradient pulses will completely cancel, the mag-
netization will be maximally coherent, and there will be no signal attenuation
from diffusion. In the case of coherent flow in the direction of the applied gradi-
ent, the bulk motion will cause the signal phase to change by different amounts
for each pulse so that there will be a net phase difference, Δφ = γvGδΔ, which
is proportional to the velocity, v, the area of the gradient pulses defined by the
amplitude, G, and the duration, δ, and the spacing between the pulses, Δ. The
gyromagnetic ratio is γ. This is also the basis for phase contrast angiography.
For the case of diffusion, the water molecules are also moving, but in arbitrary
directions and with variable effective velocities. Thus, in the presence of diffu-
sion gradients, each diffusing molecule will accumulate a different amount of
phase. The diffusion-weighted signal is created by summing the magnetization
from all water molecules in a voxel. The phase dispersion from diffusion will
cause destructive interference, which will cause signal attenuation. For simple
isotropic Gaussian diffusion, the signal attenuation for the diffusion gradient
pulses in Fig. 2 is described by

S = So e−bD (4)

where S is the diffusion-weighted signal, So is the signal without any diffusion-
weighting gradients (but otherwise identical imaging parameters), D is the
apparent diffusion coefficient, and b is the diffusion weighting described by
the properties of the pulse pair:

b = (γGδ)2(Δ− δ/3) (5)

Diffusion weighting may be achieved using either a bipolar gradient pulse pair
or identical gradient pulses that bracket a 180◦ refocusing pulse as shown in
Fig. 2.

Fig. 2. Spin echo pulse sequence scheme for pulsed-gradient diffusion weighting. A
spin-echo refocusing pulse (180◦) causes the gradient pulses to be diffusion-weighted
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The large gradients make DW MRI extremely sensitive to subject motion.
Very small amounts of subject motion may lead to phase inconsistencies in
the raw k-space data, causing severe ghosting artifacts in the reconstructed
images. Recently, the advances in gradient hardware (maximum gradient am-
plitude and speed) and the availability of echo planar imaging (EPI) (Mans-
field 1984; Turner et al. 1990) on clinical MRI scanners have made routine
DW-MRI studies possible. A schematic of a DW-EPI pulse sequence is shown
in Fig. 3. With EPI, the image data for a single slice may be collected in 100ms
or less, effectively “freezing” any head motion. The fast acquisition speed of
EPI makes it highly efficient, which is important for maximizing the image
signal-to-noise ratio (SNR) and the accuracy of the diffusion measurements.
Thus, single-shot EPI is the most common acquisition method for diffusion-
weighted imaging. However, the disadvantages of single shot EPI can also be
significant. First, both magnetic field inhomogeneities (Jezzard and Balaban
1995) and eddy currents (Haselgrove and Moore 1996) can warp the image
data, thereby compromising the spatial fidelity. Distortions from eddy currents
may be either minimized using bipolar diffusion gradient encoding schemes
(Alexander et al. 1997; Reese et al. 2003), or corrected retrospectively using
image co-registration methods (Haselgrove and Moore 1996; Andersson and
Skare 2002; Rohde et al. 2004). Distortions from static field inhomogeneities
may be either reduced by using parallel imaging methods such as SENSE
(Pruessmann et al. 1999) or retrospectively corrected using maps of the mag-
netic field (Jezzard and Balaban 1995). Misalignments of k-space data on odd
and even lines of k-space will lead to Nyquist or half-field ghosts in the image
data. In general, the system should be calibrated to minimize this ghosting al-
though post-processing correction methods have been developed (Zhang and
Wehrli 2004). The spatial resolution of 2D EPI pulse sequences also tends

Fig. 3. Schematic of a DW EPI pulse sequence. A spin echo pulse is used to achieve
diffusion-weighting from the gradient pulse pairs (colored) as illustrated in Fig. 5.
The imaging gradients are shown in black. Diffusion-weighting gradients can be
applied in any arbitrary direction using combinations of Gx (red), Gy (green) and
Gz (blue)
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to be limited. At 1.5T, it is possible to acquire 2.5 mm isotropic voxels over
the entire brain in roughly 15 minutes (Jones et al. 2002b). Smaller voxel
dimensions may be achieved using either more sensitive RF coils or by going
to higher field strengths. Alternative DW imaging techniques, such as PRO-
PELLER (Pipe et al. 2002) and line scan (Gudbjartsson et al. 1997), are less
sensitive to motion, eddy currents and B0 distortions.

In the case of anisotropic diffusion, the direction of the diffusion encoding
will influence the amount of attenuation. The cartoon in Fig. 4 illustrates
the basis for diffusion anisotropy contrast. For anisotropic tissues like white
matter, when the diffusion encoding directions are applied parallel to the white
matter tract, the signal is highly attenuated. However, when the encoding
direction is applied perpendicular to the tract, the diffusion is significantly
hindered and the attenuation is much less than in the parallel case. In more
isotropic structure regions (such as gray matter), the signal attenuation is
independent of the encoding direction.

A minimum of six non-collinear diffusion encoded measurements are neces-
sary to measure the full diffusion tensor (Shrager and Basser 1998; Papadakis
et al. 1999). A wide variety of diffusion-tensor encoding strategies with six
or more encoding directions have been proposed (e.g., Basser and Pierpaoli
1998; Jones et al. 1999; Papadakis et al. 1999; Shimony et al. 1999; Hasan
et al. 2001b). An example of images with DW encoding in twelve directions

Fig. 4. Illustration of anisotropic signal attenuation with diffusion encoding direc-
tion. When the diffusion-weighting (GD) is applied in the direction parallel (green)
to the anisotropic cellular structures (e.g., white matter), the signal (S) is strongly
attenuated and the apparent diffusivity (D) is high. Conversely, when the diffusion-
weighting is applied in the direction perpendicular to the fibrous tissue, the diffu-
sion is less attenuated and the apparent diffusivity is lower. The signal attenuation
and diffusivities are independent of the encoding direction in the anisotropic tis-
sue regions. The difference in the directional diffusivities is the source of anisotropy
contrast in DTI. The direction of diffusion encoding is selected using different com-
binations of the diffusion gradients in Gx, Gy and Gz
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Fig. 5. Example images from a DTI study for a single slice in a human brain. The
image on the left is without any diffusion-weighting and is T2-weighted. The twelve
images on the right were obtained with diffusion weighting (b = 1000 s/mm2) applied
in twelve non-collinear directions. Note that the image contrast changes significantly
with the diffusion encoding direction

for a single slice is shown in Fig. 5. The observed contrast difference for each
of the 12 DW encoded images is the basis for the measurement of diffusion
anisotropy, which is described later. The selection of tensor encoding directions
is critical for accurate and unbiased assessment of diffusion tensor measures.
Hasan et al. (2001b) performed a comprehensive comparison of various heuris-
tic, numerically optimized and natural polyhedra encoding sets. This study
demonstrated that encoding sets with uniform angular sampling yield the
most accurate diffusion tensor estimates. Several recent studies have provided
mounting evidence that more diffusion encoding directions causes the mea-
surement errors to be independent of the tensor orientation (e.g., Batchelor
et al. 2003; Jones 2004).

There are a number of considerations that should be made when pre-
scribing a diffusion tensor protocol. This is moderately complicated by the
wide spectrum of pulse sequence parameters that must be configured. As dis-
cussed above, diffusion-weighted, spin-echo, single-shot EPI is the most com-
mon pulse sequence for DTI. The optimum diffusion-weighting (also called
b-value) for the brain is roughly between 700 and 1300 s/mm2 with a b-value
of 1000 s/mm2 being most common. The selection of the number of encoding
directions is dependent upon the availability of encoding direction sets, the
desired scan time and the maximum number of images that can be obtained
in a series. Measurements of diffusion anisotropy tend to be quite sensitive
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to image noise, which can also lead to biases in the anisotropy estimates
(overestimation of major eigenvalue; underestimation of minor eigenvalue;
increase in uncertainty of all eigenvalues) (Pierpaoli and Basser 1996; Chang
et al. 2005; Rohde et al. 2005). The accuracy of DTI measures may be im-
proved by either increasing the number of encoding directions or increasing
the number of averages. Additional procedures proposed to reduce artifact
include the use of peripheral gating to minimize motion related to cardiac
pulsitility (Skare and Andersson 2001) and inversion-recovery pulses to min-
imize partial volume effects from CSF (Bastin 2001; Papadakis et al. 2002;
Concha et al. 2005b). Unfortunately, these procedures typically increase the
scan time for DTI data collection, and can reduce SNR. The image SNR can
also obviously be improved by using larger voxels, although this will increase
partial volume averaging of tissues, which can lead to errors in the fits to the
diffusion tensor model (Alexander et al. 2001a). The specific parameters for a
protocol will depend upon the application. For many routine clinical applica-
tions (brain screening, stroke, brain tumors), a fairly coarse spatial resolution
can be used with a small number of encoding directions. However, for applica-
tions requiring accurate quantification (i.e., quantifying DTI measures in very
small white matter tracts, or estimating white matter trajectories with white
matter tractography) high spatial resolution is much more important and a
large number of diffusion encoding directions or averaging is desirable. High
quality DTI data with whole brain coverage, 2.5 mm isotropic resolution and
64 diffusion encoding directions may be obtained in approximately 15 minutes
on clinical 1.5T scanners (Jones et al. 2002b). Similar DTI data quality can
be achieved in half the time or less at 3.0T, except the image distortions are
roughly double.

Diffusion Tensor Image Processing

Maps of DTI measures (mean diffusivity, anisotropy, orientation) are esti-
mated from the raw DW images. As discussed previously, the images may be
distorted and misregistered from a combination of eddy currents, subject mo-
tion, and magnetic field inhomogeneities. Ideally, these distortions and sources
of misregistration should be corrected before calculating any subsequent quan-
titative diffusion maps. In cases where corrections are not restricted to in-plane
errors and distortions, this correction should include recalculation of the dif-
fusion gradient directions or reorienting the tensors (Alexander et al. 2001b;
Andersson and Skare 2002; Rohde et al. 2004).

The first step in estimating the diffusion tensor and the associated mea-
sures is to calculate the apparent diffusivity maps, Di,app, for each encoding
direction. The signal attenuation for scalar or isotropic diffusion is described
in (4). However, this equation has to be adjusted to describe the signal atten-
uation for anisotropic diffusion with the diffusion tensor:

Si = So e−bĝT
i Dĝi = So e−bDi,app (6)



Quantitative MRI Measures of White Matter 229

where Si is the DW signal in the ith encoding direction, ĝi is the unit vector
describing the DW encoding direction, and b is the amount of diffusion weight-
ing in (6). The apparent diffusivity maps are generated by taking the natural
log of (6) and solving for Di,app:

Di,app =
ln(Si)− ln(So)

b
(7)

This equation works when measurements are obtained for a single diffusion-
weighting (b-value) and an image with very little or no diffusion-weighting
(So). The six independent elements of the diffusion tensor (Dxx, Dyy, Dzz,
Dxy = Dyx, Dxz = Dzx, and Dyz = Dzy) may be estimated from the apparent

diffusivities using least squares methods (Basser et al. 1994; Hasan et al.
2001a). Maps of the diffusion tensor elements for the data in Fig. 5 are shown
in Fig. 6.

Diffusion Tensor Image Measures

The display, meaningful measurement, and interpretation of 3D image data
with a 3 × 3 diffusion matrix at each voxel is a challenging task without
simplification of the data. Consequently, it is desirable to distill the image
information into simpler scalar maps, particularly for routine clinical appli-
cations. The two most common measures are the trace and anisotropy of the

Fig. 6. Maps of the diffusion tensor elements for the DTI data in Fig. 5. Note that
the off-diagonal images are symmetric about the diagonal and that the values are
both positive and negative
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diffusion tensor. The trace of the tensor (Tr), or sum of the diagonal ele-
ments of D, is a measure of the magnitude of diffusion and is rotationally
invariant. The mean diffusivity, MD, (also called the apparent diffusion co-
efficient or ADC) is used in many published studies and is simply the trace
divided by three (MD = Tr/3). The degree to which the signal is a function of
the DW encoding direction is represented by measures of tensor anisotropy.
Many measures of anisotropy have been described (Basser and Pierpaoli 1996;
Conturo et al. 1996; Pierpaoli and Basser 1996; Ulug and van Zijl 1999; Westin
et al. 2002) Most of these measures are rotationally invariant, but do have
differential sensitivity to noise (e.g., Skare et al. 2000). Currently, the most
widely used invariant measure of anisotropy is the Fractional Anisotropy (FA)
described originally by Basser & Pierpaoli (1996).

FA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

2(λ1
2 + λ2

2 + λ3
2)

(8)

A third important measure is the tensor orientation described by the major
eigenvector direction. For diffusion tensors with high anisotropy, the major
eigenvector direction is generally assumed to be parallel to the direction of
white matter tract, which is often represented using an RGB (red-green-blue)
color map to indicate the eigenvector orientations (Makris et al. 1997; Pajevic
and Pierpaoli 1999). The local eigenvector orientations can be used to identify
and parcellate specific WM tracts; thus DT-MRI has an excellent potential for
applications that require high anatomical specificity. The ability to identify
specific white matter tracts on the eigenvector color maps has proven useful for
mapping white matter anatomy relative to lesions for preoperative planning
(Witwer et al. 2002) and post-operative follow-up (Field et al. 2004). Recently,
statistical methods have been developed for quantifying the distributions of
tensor orientation in specific brain regions (Wu et al. 2004). Example maps
of the mean diffusivity, fractional anisotropy, and major eigenvector direction
are shown in Fig. 7.

Relationship to White Matter Physiology & Pathology

The applications of DTI are rapidly growing, in part because the diffusion
tensor is exquisitely sensitive to subtle changes or differences in tissue at
the microstructural level. DTI studies have found differences in development
(e.g., Barnea-Goraly et al. 2005; Snook et al. 2005) and aging (e.g., Abe et al.
2002; Pfefferbaum et al. 2005; Salat et al. 2005), and across a broad spec-
trum of diseases and disorders including traumatic brain injury (diffuse ax-
onal injury) (Werring et al. 1998; Salmond et al. 2006), epilepsy (Concha et al.
2005a), multiple sclerosis (Cercignani et al. 2000; Rovaris et al. 2002; Assaf
et al. 2005), ALS (Ellis et al. 1999; Jacob et al. 2003; Toosy et al. 2003),
schizophrenia (Buchsbaum et al. 1998; Lim et al. 1999; Agartz et al. 2001;
Jones et al. 2006), bipolar disorder (Adler et al. 2004; Beyer et al. 2005), OCD
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Fig. 7. DTI maps computed from data in Figs. 5 and 6. The images are (top-
left): T2-weighted “reference” (or b = 0) image from DTI data; (bottom-left): mean
diffusivity (note similar contrast to T2-W image with CSF appearing hyperintense);
(top-middle): fractional anisotropy (hyperintense in white matter); (bottom-middle)
major eigenvector direction indicated by color (red = R/L, green = A/P, blue = S/I)
weighted by the FA (note that specific tract groups can be readily identified). Con-
ventional T1-weighted and T2-weighted images (right column) at the same anatom-
ical location are shown

(Szeszko et al. 2005), autism (Barnea-Goraly et al. 2004), HIV-AIDs (Pomara
et al. 2001; Ragin et al. 2004), and Fragile X (Barnea-Goraly et al. 2003). In
nearly all cases, diffusion anisotropy (e.g., fractional anisotropy – FA) is de-
creased and diffusivity increased in affected regions of diseased white matter
relative to healthy controls, while the reverse is true for healthy white matter
in development (FA increases, diffusivity decreases).

It is important to note that diffusion anisotropy does not describe the full
tensor shape or distribution. This is because different eigenvalue combinations
can generate the same values of FA (Alexander et al. 2000). So, for example,
a decrease in FA may reflect a decreased major (largest) eigenvalue and/or
increased medium/minor (smallest) eigenvalues. FA is likely to be adequate
for many applications and appears to be quite sensitive to a broad spectrum
of pathological conditions. However, changes simply indicate some difference
exists in the tissue microstructure. Several recent studies have looked more
directly at the diffusion eigenvalues to determine if they can provide more
specific information about the microstructural differences. The results have
suggested that the eigenvalue amplitudes or combinations of the eigenvalues
(e.g., the radial diffusivity, Dr = (λ2 + λ3)/2) demonstrate specific relation-
ships to white matter pathology. For example, the radial diffusivity appears
to be specific to myelination in white matter (Song et al. 2005), whereas the
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axial diffusivity (Da = λ1) is more specific to axonal density, making it a good
model of axonal degeneration (Song et al. 2002). Tensor shape can be fully
described using a combination of spherical, linear and planar shape measures
(Alexander et al. 2000; Westin et al. 2002), which may also be useful for under-
standing WM pathology. Consequently, it is important to consider alternative
quantitative methods when trying to interpret DTI measurements.

Beyond the Diffusion Tensor

The diffusion tensor is a good model of the diffusion-weighted signal behavior
for low levels of diffusion weighting (e.g., b < 1500 s/mm2). However, the diffu-
sion tensor model does not appear to be consistently accurate in describing the
signal behavior for higher levels of diffusion-weighting (e.g., b > 2000 s/mm2).
The problems with the simple diffusion tensor model arise from two sources –
(1) apparent “fast” and “slow” diffusing components (Mulkern et al. 1999)
that cause the signal decay with diffusion-weighting to appear bi-exponential;
and (2) partial volume averaging (e.g.,Alexander et al. 2001a) between tissue
groups with distinct diffusion tensor properties (e.g., crossing white matter
(WM) tracts, averaging between WM and gray matter tissues). The fast and
slow diffusion signals are likely to arise from local restriction effects from cellu-
lar membranes although some have hypothesized that these signals correspond
to intra- and extra-cellular diffusion.

The effect of partial volume averaging causes ambiguities in the interpre-
tation of diffusion tensor measurements. Whereas the diffusion anisotropy is
generally assumed to be high in white matter, regions of crossing white matter
tracts will have artifactually low diffusion anisotropy. Consequently, in regions
with complex white matter organization, changes or differences in diffusion
tensor measures may reflect changes in either the tissue microstructure or the
partial volume averaging components. As the diffusion-weighting is increased,
the profiles of apparent diffusivity reveal non-Gaussian diffusion behavior in
voxels with partial volume averaging.

A growing number of strategies have been developed for measuring and
interpreting complex diffusion behavior. The methods vary in their acquisition
sampling and analysis approaches. For all of the approaches described here,
increasing the maximum diffusion-weighting will improve the characterization
of both the slow diffusion components and the partial volume effects, although
the measurement SNR will be decreased.

Fast/Slow Diffusion Modeling: Diffusion-weighted measurements over a
range of diffusion-weighting have been used to estimate apparent fast and
slow components of both apparent diffusivities (BEDI: bi-exponential diffu-
sion imaging) and diffusion tensors (MDTI: multiple diffusion tensor imaging)
(Niendorf et al. 1996; Mulkern et al. 1999; Maier et al. 2004). In these cases,
the measurements are fit to:

S = So

(
(k) e−bĝTDf ĝ + (1− k) e−bĝTDsĝ

)
(9)
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where Df and Ds are the fast and slow diffusion tensors, and k is the
signal fraction from the fast compartment. For a fixed diffusion encoding
direction, the signal decay appears bi-exponential with diffusion-weighting.
Bi-exponential strategies are appropriate for the cases where there is no sig-
nificant partial voluming expected and when the diffusion may be modeled
using a combination of narrow and broad Gaussian distributions. As discussed
earlier, partial volume effects (e.g., crossing WM fibers) will significantly com-
plicate the interpretation of fast and slow diffusing components. In addition,
the assignment of these components has been controversial.

High Angular Resolution Diffusion Imaging (HARDI): In order to bet-
ter characterize the angular diffusion features associated with crossing white
matter tracts, several diffusion encoding approaches have been developed that
use a large number of encoding directions (Ne > 40 up to several hundred)
at a fixed level of diffusion-weighting(Alexander et al. 2002; Frank 2002). Al-
though HARDI studies have been reported with diffusion-weighting as low as
b = 1000 s/mm2 (Alexander et al. 2002), the separation of tract components
will be much better for higher diffusion-weighting. The original HARDI meth-
ods estimated the profiles of apparent diffusion coefficients and used spherical
harmonic decomposition methods to estimate the complexity of the diffusion
profiles (Alexander et al. 2002; Frank 2002).

Higher order spherical harmonic basis functions represent signal terms that
may correspond to crossing white matter tracts in the voxel. Odd spherical
harmonic orders do not correspond to meaningful diffusion measurements and
are generally assumed to be noise and artifacts.

The HARDI 3D diffusion profiles may also be modeled using generalized
diffusion tensor imaging (GDTI) (Ozarslan and Mareci 2003; Liu et al. 2004)
which use higher order tensor statistics to model the ADC profile. The GDTI
methods proposed by Liu et al. (2004) demonstrate the impressive ability
to model asymmetrically bounded diffusion behavior, although the method
requires the accurate measurement of the signal phase, which is nearly always
discarded and may be difficult to obtain in practice. One problem with these
approaches is that in the case of crossing white matter tracts, the directions
of maximum ADC do not necessarily correspond to the fiber directions.

One approach to this problem is the q-ball imaging (QBI) solution de-
scribed by Tuch (2004), which estimates the orientational distribution function
(ODF) based upon the Funk-Radon Transform. According to this relationship,
the ODF for a particular direction is equivalent to the circular integral about
the equator perpendicular to the direction

ODF(r̂) =
∫ ∫ ∫

q⊥r̂

E(q,Δ)d3q (10)

This integral requires that the diffusivities be interpolated over the entire sur-
face of the sphere. Whereas the peaks in the HARDI profile do not necessarily
conform to the WM tract directions (see Fig. 8), the peaks in the ODF profiles
do in fact correspond to the specific WM tract direction. Since the ODF is
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Fig. 8. Example QBI orientational density function (ODF) map for region at the
intersection of the corpus callosum, corona radiata and superior longitudinal fasci-
culus. Regions of crossing WM tracts are clearly observed

estimated by integrating several measurements together, the SNR of the ODF
will be much higher than that of the ADC values in the original HARDI.

Diffusion Spectrum Imaging (DSI): The fast/slow diffusion modeling and
HARDI approaches represent opposing approaches to complex diffusion char-
acterization. The combination of high angular sampling at multiple levels of
diffusion weighting may be used to provide information about both fast/slow
diffusion and crossing WM tract orientations. The most basic approach for
this application is diffusion spectrum imaging (DSI) (Wedeen et al. 2005)
which uses diffusion-weighted samples on a Cartesian q-space lattice, where
q = γGδ is the diffusion-weighting wave-vector analogous to wave-vector k
used in k-space sampling for MR image acquisitions. An excellent discussion
of q-space imaging is found in the text by Callaghan (1994). For a speci-
fied diffusion time, Δ, the probability distribution of diffusion displacements,
P(R,Δ), is related to the distribution of sampled diffusion-weighted signals
in q-space, E(q,Δ), through a Fourier Transform:

P(R,Δ) =
∫ ∫ ∫

E(q,Δ)e−i2πq.Rd3q (11)

The derivations of q-space formalism assume that the widths of the
diffusion-pulses, δ, are narrow relative to the pulse spacing, Δ, such that
δ << Δ. The maximum gradient amplitudes on current clinical MRI systems
cause this assumption to be violated for diffusion spectrum imaging, since
δ ∼ Δ. The effect of this will be to slightly, but consistently underestimate
the diffusion displacements, but the overall distribution shape will be correct
(Wedeen et al. 2005). Note that relationship of DSI (q-space) to diffu-
sion tensor imaging is that P(R,Δ) is a multivariate Gaussian and the
diffusion-weighting factor is b = |q|2(Δ − δ/3) or b ∼ |q|2Δ for small δ.
The DSI approach yields empirical estimates of the distributions of diffusion
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displacements (e.g., model free), which are described using the standard def-
initions of Fourier sampling theory.

Since the distributions of diffusion displacements are model independent,
the distributions may be challenging to quantify. Several features have been
proposed including the zero-displacement probability, P(R = 0,Δ), which is
higher in regions with more hindered or restricted diffusion; the mean squared
displacement,

MSD(Δ) =
∫ ∫ ∫

P(R,Δ)|R|2 d3R (12)

which is related to the diffusivity (see Fig. 9); the kurtosis of the diffusion
distribution, which highlights regions of significant slow diffusion; and the
orientational distribution function (ODF)(Wedeen et al. 2005):

ODF(r̂) =
∫

P(Rr̂,Δ)|R|2 dR (13)

Note that this definition of ODF (Eq (9)) for DSI is derived differently for
DSI than it is for QBI (Tuch 2004).

While Cartesian sampling facilitates the straightforward FFT for esti-
mation of the displacement densities, Cartesian sampling is not required.
Recently, investigators have proposed non-Cartesian sampling strategies of
q-space including sampling on concentric spherical shells of constant |q|
(Assaf et al. 2004; Wu and Alexander 2005). Assaf et al. then applied a
model (CHARMED) of slow and fast diffusing compartments to estimate what
they deemed as hindered and restricted diffusion (Assaf et al. 2004). Wu and

Fig. 9. Example P(R = 0; Δ) and mean squared displacement maps from DSI
study (Ne = 257; bmax = 9000 s/mm2)
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Alexander (2005) demonstrated that the concentric q-space shell samples in
hybrid diffusion imaging (HYDI) could be used for DTI, DSI and QBI in the
same experiment.

Applications of High Diffusion-Weighting: The complexity and time re-
quired to perform advanced diffusion imaging methods with high diffusion-
weighting has limited the number of clinical and research studies relative
to the work in diffusion tensor imaging. The pathophysiologic significance
of fast/slow diffusion measurements is unclear. Only one published study to
date (Brugieres et al. 2004) has specifically examined the effects of pathology
(ischemia) on the fast and slow diffusion components. Several small studies
of hybrid DSI methods have shown promise in being sensitive to white mat-
ter changes associated with multiple sclerosis (Assaf et al. 2002a; Cohen and
Assaf 2002), autoimmune neuritis (Assaf et al. 2002b), and vascular dementia
(Assaf et al. 2002c). Clearly, more studies are necessary to justify longer
imaging times than DTI. To date, none of these methods have been used
to directly investigate the relationships to brain connectivity.

From Diffusion to Pathways: White Matter Tractography

In addition to providing information about the mean diffusivity and anisotropy,
diffusion imaging methods can also yield novel information about the orien-
tation of local anisotropic tissue features such as bundles of white matter
fascicles. In diffusion tensor imaging, the direction of the major eigenvec-
tor, e1, is generally assumed to be parallel to the direction of white matter.
This directional information can be visualized by breaking down the ma-
jor eigenvector into x, y and z components, which can be represented using
RGB colors – e.g., Red = e1x =Right/Left; Green= e1y =Anterior/Posterior;
Blue= e1z =Inferior/Superior. Maps of WM tract direction can be gener-
ated by weighting the RGB color map by an anisotropy measure such as FA
(Pajevic and Pierpaoli 1999). For many applications, the use of color labeling
is useful for identifying specific WM tracts and visualizing their rough trajec-
tories. An alternative strategy is white matter tractography (WMT), which
uses the directional information from diffusion measurements to estimate the
trajectories of the white matter pathways. WMT increases the specificity of
WM pathway estimates and enables the 3D visualization of these trajectories,
which may be challenging using cross-sectional RGB maps.

Deterministic Tractography Algorithms: Most WMT algorithms estimate
trajectories from a set of “seed” points. Generally, WMT algorithms may be
divided into two classes of algorithms – deterministic (e.g., streamline) and
probabilistic (see below). Streamline algorithms are based upon the equation:

dr = vtrajdτ (14)

where r(τ) is the path and vtraj is the vector field that defines the local path
direction. Typically, streamline WMT algorithms use major eigenvector field
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to define the local trajectory directions vtraj = e1 at each step (Conturo
et al. 1999; Mori et al. 1999; Basser et al. 2000) (see Fig. 10). Alternatively,
tensor deflection (TEND) vtraj = D.vin uses the entire diffusion tensor to
define the local trajectory direction (Lazar et al. 2003). The integration of
deterministic pathways may be performed using simple step-wise algorithms
including FACT (Mori et al. 1999) and Euler (e.g., Δr = vtraj Δτ) (Conturo
et al. 1999) integration, or more continuous integration methods such as 2nd

or 4th order Runge-Kutta (Basser et al. 2000), which enable more accurate
estimates of curved tracts.

Deterministic Tractography Errors: WMT can be visually stunning (see
Fig. 11). However, one significant limitation with WMT is that the errors
in an estimated tract are generally unknown. Further, the visual aesthetic of
WMT, which look like actual white matter patterns, can potentially instill
a false sense of confidence in specific results. Unfortunately, there are many
potential sources of error that can confound WMT results. Very small pertur-
bations in the image data (i.e., noise, distortion, ghosting, etc.) may lead to
significant errors in a complex tensor field such as the brain. Recent studies

Fig. 10. FA and e1 color map depicting WM tract orientation. The principle concept
of streamline WMT is depicted in a region of corpus callosum. The trajectory is
started from a single seed point and the path estimated at discrete steps
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Fig. 11. WMT (left) appears to be very similar to an actual white matter
dissection (right) (Virtual Hospital). http://web.archive.org/web/20050407073533/
www.vh.org/adult/provider/anatomy/BrainAnatomy/BrainAnatomy.html

have shown that the dispersion in tract estimates < Δx2 > from image noise
is roughly proportional to the distance (N.w, where N is the number of voxels
and w is voxel size) and inversely proportional to the squares of the eigenvalue
differences (Δλj = λ1−λj) and SNR (Anderson 2001; Lazar et al. 2003)

< Δxj
2 >= N.w2 · E/(Δλj

.SNR)2 (15)

where E is a factor related to the diffusion tensor encoding scheme and the
diffusion tensor orientation, and j = 2, 3. Further, the tract dispersion is also
affected by the local divergence of the tensor field (Lazar et al. 2003). Even in
the complete absence of noise and image artifacts, most current deterministic
methods cannot accurately map WM pathways in regions with crossing or
converging fibers, which has led to the development of visualization tools to
highlight these regions of uncertainty (Jones 2003; Jones et al. 2005c). An
alternative approach, recently tested in visual cortex, is likely to be most
applicable for mapping interhemispheric fibers. In this method, rather than
placing seed voxels in regions of high coherence (e.g., splenium of the corpus
callosum), the two hemispheres were seeded separately. Only those obtained
tracts that overlapped in the corpus callosum were considered to be valid
tracts (Dougherty et al. 2005). This method produced anatomically plausible
results for projections from primary visual cortex, but the authors cautioned
that many tracts were likely missed, due to the low specificity of WMT and
the resolution of current DTI acquisition protocols. New diffusion imaging
methods such as DSI and QBI described above are capable of resolving regions
of white matter crossing and may ultimately improve WMT in regions of
complex WM.

Probabilistic Tractography Algorithms: Although deterministic streamline
algorithms are nice tools for visualizing WM patterns, they provide very lit-
tle information about the reliability of specific results. They rely on accurate
placement of seed and deflection point ROIs by the operator, and can vary as a
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function of ROI size and shape, making them susceptible to generating highly
errant results arising from small errors at a single step. Probabilistic tractog-
raphy algorithms can overcome some of these limitations. Most probabilistic
WMT algorithms are based upon some sort of iterative Monte Carlo approach
where multiple trajectories are generated from the seed points with random
perturbations to the trajectory directions. Model based tractography algo-
rithms include PICo (Probability Index of Connectivity (Parker et al. 2003),
which uses a fast marching technique (Parker et al. 2002), RAVE (Random
Vector (Lazar and Alexander 2002)) and ProbTrack (Behrens et al. 2003b).
An alternative strategy is to acquire multiple DTI datasets and use bootstrap
resampling to derive data-driven estimates of probabilistic tractography (e.g.,
BOOT-TRAC (Lazar and Alexander 2005) (see Fig. 12). The main difference
between model and data-driven approaches is that the variance of the data
driven approaches will include the effects of variance in the actual data (e.g.,
effects of physiologic and artifact noise), not just an idealized model. All of
these algorithms create a distribution of tracts, which can be used to estimate
the probability of connectivity for the tractography algorithm, which may be
used as a surrogate measure of WMT confidence. Additionally, connection
probability may be used to segment structures such as the thalamus (Behrens
et al. 2003a), cerebral peduncles (Lazar and Alexander 2005), corpus callosum

Fig. 12. Probabilistic bootstrap tractography from a single seed point in the corpus
callosum illustrating the tract dispersion associated with WMT at two planes above
the seed point. The estimated tract density or probability is shown using a hot color
scale. The dispersion increases with distance from the seed
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(Ciccarelli et al. 2003a), and cortex (Rushworth et al. 2005) according to pat-
terns of maximum connectivity.

Diffusion Imaging and Brain Connectivity:
Issues and Considerations

To date, most studies using DTI have focused on analysis of scalar tensor
data (anisotropy measures, diffusivity) and have been conducted at three lev-
els of precision: whole-brain histograms; regions-of-interest, and single-voxel
analyses. Early studies focused on analysis of whole-brain histograms (e.g.,
Cercignani et al. 2000; Rovaris et al. 2002), which identify non-specific, global
changes in diffusion properties, and may be useful for laying the foundation
for more focused analyses. More recently the focus has been on region-of-
interest (ROI) and voxel-based analyses. Discussion is ongoing regarding the
best methods for accomplishing each type of analysis. When using ROI anal-
yses, it is important to consider the size of the ROI being used, as large ROIs
may obscure interesting changes in diffusion measures, and there is a greater
possibility that the underlying anatomy will not be consistent across obser-
vations. In addition to the usual requirement that the ROIs be placed by a
well-trained operator, ROI analyses of DTI data may be may be more sensi-
tive to placement bias in the presence of disease or atrophy. This is especially
the case if FA maps are used to define the ROIs. Some have attempted to
minimize this potential for bias by lowering the intensity threshold on the FA
maps so that local variations in FA are no longer able to guide ROI place-
ment (e.g.,Madden et al. 2004). For voxel-based analyses, the non-diffusion
weighted images (b = 0) are often used to register subject data to a common
space (Jones et al. 2002a), but this does not guarantee that the underlying
fiber architecture (defined by FA or ê1) is in register. This lack of correspon-
dence is in part due to the high inter-subject variability of the smaller fiber
bundles as well as tract characteristics such as their width, neither of which
are evident on the b = 0 images. Inter-subject variability is clear when tracts
or FA maps are transformed into stereotaxic space. In Fig. 13, optic radiations

Fig. 13. Optic radiation variability (n = 21). Maximum overlap was 70%. Similar
variability would be present if FA maps had been transformed into stereotaxic space.
(Reprinted from Ciccarelli et al. 2003b, with permission from Elsevier)
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were first identified using probabilistic tractography for individual subjects in
native image space. The individual subject data were then resampled into a
standardized space, using the b = 0 images as the reference image (Ciccarelli
et al. 2003b). Similar dispersion occurs if FA maps are resampled instead of
tract probabilities (Jones et al. 2002a).

The large variability across subjects away from tract centers raises the
possibility that when correlations of FA and some behavioural or functional
measure are found at tissue interfaces, that they may arise simply from the
increased variability in FA in these regions. Many published results of voxel-
based assessment of group FA differences or FA correlations have identified
significant effects in regions of more variable FA. These tend to be located at
interfaces of white matter with gray matter or CSF (as seen on T1-weighted
images), or in regions of complex fibre architecture. An example of one such
finding is shown in Fig. 14, where correlations of FA with performance on
a working-memory task were strongest at tissue interfaces. Because of the
error introduced by imperfect registration, residual noise from flow artifact
and partial volume effects, as well as the application of smoothing filters (see
below), most authors have interpreted such findings with caution. In fact,
similar concerns prompted one group to abandon a preliminary voxel-based
analysis for one using tractography to define ROIs in the corpus callosum
(Kanaan et al. 2006).

Results seem to be more robust to these noise sources if mean tract FA is
used rather than voxel-wise FA. An example is seen in recent work examining
structure-function relations in the visual system (Toosy et al. 2004). In this
study, dispersion was also seen in optic radiations, and it increased as more
liberal thresholds were used to define connectivity (Fig. 15, left panel). How-
ever, since the regions of high overlap (red) dominated mean FA in the optic
radiations, the magnitude of the correlation of FA with the BOLD response
in visual cortex was not affected (Fig. 15, right panel).

In voxel-based analyses of functional MRI data, spatial smoothing filters
are typically applied to bring the statistical properties of the data more in

Fig. 14. Example of FA-behavior correlations at tissue interfaces. FA in fronto-
parietal white matter (a) ranged from 0.2 to 0.6 (n = 21), and correlated with
both working memory and BOLD fMRI signal intensity in superior frontal cortex.
(Reprinted from Olesen et al. 2003, with permission from Elsevier)
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Fig. 15. Left: Optic radiation variability as a function of threshold used to define
connectivity (n=22). Right: Mean FA decreased as optic radiation ROI size became
larger and more dispersed, but the relation to BOLD response in visual cortex was
similar. (Reprinted from Toosy et al. 2004, with permission from Elsevier)

line with random-field theory (Kiebel et al. 1999). It is not yet clear whether
smoothing is appropriate for analysis of DTI data, but the size of the smooth-
ing filter can dramatically affect residual errors and the sensitivity to detect
group-wise differences (Jones et al. 2005b). In the latter study, significant FA
differences between schizophrenic patients and controls were either not found,
or were localized to superior temporal sulcus (STS), STS and cerebellum, or
cerebellum only. This variability was due only to the size of the smoothing
filter, and indicates the reasons for the choice of a specific smoothing filter
should be specified.

Alternative methods for voxel-based studies have focused on registering
the tensor directly (Xu et al. 2003) or tensor components (Park et al. 2003).
Another approach is to use iterative registrations of FA maps to create study-
specific templates (Toosy et al. 2004), as is frequently done with voxel-based-
morphometry analyses (Good et al. 2001). Finally, a new method has been
suggested where non-linear registration is used as the first step in aligning
all subjects’ FA images together; peak FA “ridges” on are found on the
group-averaged FA template, creating a skeleton of the dominant WM tracts.
Subject-specific FA values are then derived by finding the location in each sub-
ject’s data that most closely matches the spatial location of the ridge (Smith
et al. 2006, Fig. 16). This approach appears to be robust against residual
misregistration since only peak FA values (corresponding to probable tract
centers) are analyzed. The use of approaches that attempt to ensure bet-
ter alignment of tracts across subjects or provide more robust estimates of
tract-specific DTI parameters such as FA are critical to furthering our un-
derstanding of how alterations in brain connectivity affect brain function and
behavior.

Tractography. Obviously, the ability of white matter tractography to es-
timate patterns of brain connections in vivo has piqued the interest of the
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Fig. 16. (A) Example of an FA skeleton on a coronal FA map. The outlined region
includes the cingulum bundle, corpus callosum, fornix, ventricles and thalamus and
is shown in B-E. (B) FA skeleton is shown in blue, and significant differences between
a group of controls and schizophrenics are in red. (C) Voxel-based analysis found
additional differences at the lower edge of the ventricles (arrow). (D,E) Examination
of the separate group-mean FA maps indicates this spurious finding was produced
because the larger ventricles in the patient group (E) were not in register with the
controls (D). Note that the corpus callosum was well-registered, and the location of
FA differences more closely matched the skeletonized FA results. Images courtesy of
S. Smith

neuroscience and neuroimaging communities. It is currently the only non-
invasive method for reconstructing white matter trajectories in the human
brain. Detailed and careful studies using white matter tractography will po-
tentially reveal important information about brain connectivity. However, the
links between tractography results, which provide information about anatomi-
cal connectivity, and measures of functional and/or effective connectivity (see
below) have not yet been clearly established. Several potential anatomical
measures that could influence connectivity may be derived from tractography,
including the volume, length and/or cross-sectional area of the reconstructed
tracts, but these are not routinely applied.

WMT has several potential applications. (1) WMT offers the unique ability
to non-invasively visualize the organization of specific WM pathways in in-
dividual subjects (e.g., Fig. 11). To date, most studies of white matter neu-
roanatomy have been conducted using either anatomic dissection methods or
axonal tracer studies in animals. The majority of tractography studies have
focused on well-known and readily identifiable WM pathways such as the
cortico-spinal tract, the corpus callosum and optic radiations. Many of these
studies have demonstrated that WMT can generate tract reconstructions that
are consistent with known neuroanatomy (e.g., Mori et al. 1999; Stieltjes et al.
2001; Catani et al. 2002; Jellison et al. 2004; Wakana et al. 2004). Recent WMT
studies have moved beyond tracking prominent bundles and have attempted
to determine the utility of WMT to distinguish between direct and indirect
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connections (Catani et al. 2003) and whether highly curved pathways near
CSF can be mapped with confidence (Concha et al. 2005b). A common
criticism of WMT is that the validation of these results are missing. Two ap-
proaches have been applied to address this concern – histopathological mea-
surements and WMT have been compared in animal models (e.g., Burgel
et al. 2005; Ronen et al. 2005); and measures of WMT confidence have been
developed and applied to provide an estimate of the reliability of specific trac-
tography results. It should also be noted that most neuroimaging results must
be interpreted without validation. Thus it is critical to establish the reliabil-
ity and repeatability of any new WMT method (e.g., Ciccarelli et al. 2003a;
Ding et al. 2003; Heiervang et al. 2006). (2) WMT may be used to parcellate
specific WM pathways or portions of WM pathways (see Fig. 17). This will en-
able tract-specific measurements such as tract volume, cross-sectional dimen-
sions, and the statistics of quantitative measurements within the pathways
such as mean diffusivity and FA. Several studies have used WMT to perform
measurements in specific WM pathways: e.g., fronto-temporal connections in
schizophrenia (Jones et al. 2005a; Jones et al. 2006); pyramidal tract devel-
opment in newborns (Berman et al. 2005), and the pyramidal tracts and cor-
pus callosum in multiple sclerosis (Vaithianathar et al. 2002). Concurrently,
progress has been made in the development of tract-specific group templates,
which may be useful for voxel-based analyses (Ciccarelli et al. 2003b; Burgel
et al. 2005; Johansen-Berg et al. 2005; Thottakara et al. 2006). (3) WMT may
be used to visualize specific white matter patterns relative to pathology in-
cluding brain tumors, M.S. lesions, and vascular malformations. The increased

Fig. 17. Parcellation of major white matter pathways using white matter tractogra-
phy in a single subject. Superior longitudinal fasciculus (red); corpus callosum (pur-
ple); inferior occipital fasciculus (light blue); inferior longitudinal fasciculus (yellow);
uncinate fasciculus (orange); fornix/stria terminalis. (dark orange); corona radiata
(green)
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specificity of WM trajectories may ultimately be useful for planning surgeries
(Holodny et al. 2001; Henry et al. 2004) as well as following the patterns of
brain reorganization after surgery (Lazar et al. 2006). However, it should be
noted that WMT reconstructions still need further validation before advocat-
ing their use as a tool for surgical guidance on a widespread basis. Indeed
one recent study demonstrated that their WMT method underestimated the
dimensions of the specific tract of interest (Kinoshita et al. 2005). Other stud-
ies have started to examine the relationship between specific white matter
tracts affected by multiple sclerosis lesions and specific clinical impairments
(Lin et al. 2005).

Integrating DTI and WMT with Function

New work is emerging that attempts to do more than simply identify differ-
ences in DTI measures as a function of some important variable such as age,
disease, or performance. In these studies, the question is: what are the impli-
cations of local variations in FA and/or tract characteristics for behavior and
brain activity?

Three recent studies examining correlations of local variations in FA with
reaction time have found conflicting results. In an ROI analysis, FA was corre-
lated with reaction time in a target-detection task in young and older adults.
The results suggested higher FA in the splenium in younger adults and higher
FA in the internal capsule in older adults were related to faster reaction times
(Madden et al. 2004). Conversely, and somewhat counter intuitively, a voxel-
based analysis in a different target detection task revealed primarily positive
correlations: high FA was associated with longer reaction times (Tuch et al.
2005), with the strongest effects in the optic radiations. Finally, in traumatic
brain injury patients, FA was not correlated with reaction time or cognitive
measures, although mean diffusivity did correlate with learning and memory
scores (Salmond et al. 2006). Clearly more work is required to understand
these relationships.

A more integrative strategy is to examine interactions among FA, BOLD
fMRI responses, and behavior or some other external variable, such as age.
The few studies attempting to do this have taken a hierarchical approach
(e.g., Olesen et al. 2003; Baird et al. 2005). In the first step behavior-FA and
behavior-BOLD relations or BOLD activations are assessed separately, effec-
tively reducing the analysis space by creating ROIs from significant clusters.
The second step then examines BOLD-FA relations in the smaller subset of
regions.

Alternatively, one could ask whether specific tracts are related to be-
havioural differences. Beaulieu, et al. (2005) used a voxel-based analysis to
correlate FA with reading ability in a group of healthy children. The novel
aspect to this work was that the authors then used the direction of the prin-
cipal eigenvector in significant clusters as seeds for WMT. This allowed them
to identify potential tracts passing through the significant clusters. They were
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able to demonstrate that the largest cluster was more likely associated with
a tract not expected to be related to language processing (Fig. 18).

Finally, a number of studies have incorporated diffusion data with the re-
sults of fMRI activation studies.. The most common approach has focused on
using activated clusters as starting points for tractography to identify anatom-
ical connections. As in any tractography exercise, the choice of which activated
voxels to use as seeds for tractography can result in substantially different
tracts (Guye et al. 2003). The dependency of tract trajectory on the seed
point chosen is compounded by the fact that significant BOLD responses are
primarily measured in gray matter, which has generally has low anisotropy,
and may be some number of voxels away from highly anisotropic white mat-
ter. Since regions of low anisotropy are typically excluded from fibre tracking
algorithms, the user must select from nearby voxels with high FA for seeding
the WMT. Because of this added uncertainty, it is even more critical to evalu-
ate the robustness of identified tracts. Some progress in tracking between and
through gray matter regions has been achieved through the use of probabilis-
tic tractography methods that have been optimized to traverse regions of low
anisotropy (e.g., Behrens and Johansen-Berg 2005).

That there is some correspondence between functional and anatomical
regions has been recently shown by the Oxford group (Johansen-Berg et al.
2004). In this study, SMA (supplementary motor area) and preSMA were iden-
tified in each subject using tasks known to activate those areas independently.
Probabilistic tractography was then applied to generate path probabilities
from each of the two brain regions. The authors were able to show that sepa-
rate groups of regions were connected to each of the BOLD regions, with little
overlap, as would be expected based on known anatomy. They have recently
expanded this analytical approach to show that the functional separation of

Fig. 18. (a) FA in the purple cluster of voxels (arrow) correlated with reading
ability. Fibre tracking indicated this cluster was in the posterior limb of the internal
capsule (b), and not in tracts more commonly associated with language (superior
longitudinal fasiculus, in green; or superior fronto-occipital fasciculus, in yellow).
(Reprinted from Beaulieu et al. 2005, with permission from Elsevier)
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these two regions across subjects is more closely aligned to commonalities in
local fibre architecture in adjacent white matter than to structural similari-
ties based on conventional T1-weighted images (Behrens et al. 2006). As the
authors point out, they do not yet know if similar relations will hold in other
cortical regions. Additionally, the scan time needed to acquire the high resolu-
tion DTI dataset (45 min) is not amenable for routine applications. However,
the possibility for describing common patterns of functional activations based
on common features in the properties of the underlying fibre architecture
would be an important adjunct for understanding similarities and differences
in brain connectivity.

It is important to keep in mind that DTI tractography is simply defining
a model system for brain connectivity. The choice of a particular seed point
will influence the derived tracts because of the inherent noise in the data
acquisition and the sensitivity of the chosen algorithm to this noise. Tractog-
raphy is blind to whether the seed point derives from a functional activation
or from a well-placed ROI based on expert anatomical knowledge. Therefore,
the tracts indicate only the possibility of an anatomical connection between
a set of regions; tracts based on functional activations carry no additional
“meaning” relative to those derived based on anatomical knowledge. Methods
such as those being developed by the Oxford group (e.g., Behrens et al. 2006)
will allow for refined anatomical models, but then the task will be to move
beyond describing the possibility for information flow to describing how and
when information is conveyed along the identified connections.

To fully understand brain function requires more than defining functional
“blobs” correlated with some task or behavior. Methods for identifying neural
systems and evaluating their interactions have been around for quite some
time. Some of the earliest work examined functional connectivity using inter-
regional correlation analyses (e.g., Clark et al. 1984; Horwitz et al. 1984); these
were followed with more explicit systems-level analyses of functional and effec-
tive connectivity (e.g. Friston et al. 1993; Horwitz et al. 1999; McIntosh 2000),
and more recently methods such as dynamic causal modeling (Friston et al.
2003). The importance of moving beyond identifying regions that correlate
with some task or behavior has been reemphasized recently by Stephan (2004),
who nicely illustrated how two brain regions can correlate independently with
a task condition, but have no correlation between themselves (Fig. 19).

The possibilities for incorporating diffusion and other quantitative MRI
data into analyses of functional and effective connectivity are many. However
it is critical to recognize that simply demonstrating that a pathway exists
between two regions that are separately related to some task or behavior does
not imply nor guarantee that the identified path mediates the activity between
those regions. A more fruitful strategy may be to concurrently determine the
existence of pathways between functionally connected regions, forming the
basis for models of effective connectivity. Regardless of how paths are iden-
tified, the information conveyed along those paths should be measured and
assessed. Some common and readily available modeling techniques available
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Task: —
Voxel1: —
Voxel2: —

Fig. 19. A) Region A1 (red dotted line) and region A2 (green dashed line) are each
correlated with the “task” (blue, solid line) at r = 0.73. B) Scatterplot showing
that while the correlation of each voxel with the task is high (green, r = 0.73),
the correlation between the two voxels is low (magenta, r = 0.07). Adapted from
Stephan, 2004

for assessing effective connectivity are reviewed in (McIntosh 2000; Penny
et al. 2004; Ramnani et al. 2004; Stephan et al. 2004; Stephan et al. 2005)
See also chapters by Bressler and McIntosh, Sporns and Tononi, and Stepan
and Friston in this volume. Perhaps the most important contribution from
diffusion and other qMRI techniques will come from their ability to provide
additional anatomical and physiological constraints to the models. Thus, the
confidence that a fibre exists, its length, diameter, “integrity”, and myelin
content are all important contributions to the regulation of information flow
between two regions. Incorporating this information into systems-level analy-
ses of functional imaging data will greatly enhance our understanding of brain
function.

Beyond Diffusion

The use of diffusion tensor imaging has become very popular in the last few
years, but is not possible to know precisely from DTI studies alone the degree
to which observed changes in FA reflect differential changes in myelin compo-
sition, fibre number, fibre density or other factors (e.g., Beaulieu 2002; Neil
et al. 2002; Prayer and Prayer 2003). Some methods that may help distinguish
among these biological properties of white matter are described in the next
two sections.

2 Magnetization Transfer

Water provides the largest signal contribution to the MRI signal in brain
tissues. While estimates of conductivity can be calculated from diffusion tensor
data (Tuch et al. 2001), a more ideal probe of the effectiveness of white matter
conduction properties would be obtained from images of myelin components.
The problem is that the signals from protein and lipid molecules associated
with myelin are essentially undetectable in an MRI experiment because they
have ultrashort T2 values (10s of microseconds). However, the magnetization
(sum of dipole moments) of free water does interact with the macromolecules
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through chemical exchange and dipolar coupling. This exchange of magnetic
moments is referred to as magnetization transfer (Balaban and Ceckler 1992).

Magnetization transfer (MT) effects may be detected in an MRI experi-
ment by applying strong radio-frequency (RF) pulses at a frequency shifted by
roughly 1000 Hz or more from the resonance frequency of free water. The RF
pulse energy will partially saturate the magnetization of the protons bound
to macromolecules, which have a very broad frequency spectrum relative to
that of free water (width inversely proportional to T2). The fast exchange
of magnetization between the macromolecular and free water pools will indi-
rectly attenuate the signal from the free water. The process is illustrated in
Fig. 20. The attenuation is a function of the amplitude, rate, and frequency
offset of the RF attenuation pulses, and the concentration of macromolecules
and exchange rate of the magnetization between the free water and bound
macromolecular pools.

The most common approach for characterizing MT is to acquire two sets
of images – one with the off-resonance saturation MT pulses (Ms) and one set
without (Mo). The MT contrast (MTC) is the difference between the images,
MTC = Mo − Ms. Since absolute signal intensities are arbitrary, the MTC
is typically normalized by the signal without MT saturation, which is the
MT ratio

MTR = (Mo−Ms)/Mo (16)

The MTR is the most commonly used measure of magnetization transfer and
example maps are shown in Fig. 21. Increased MTR values may correspond
to increased macromolecular concentrations in the tissue. The MTR values in
healthy WM and GM are roughly 0.4-0.55 and 0.25–0.35, respectively. The
higher MTR in WM is believed to be associated with the proteins and lipids
associated with myelinated axons (Stanisz et al. 1999). Consequently, the
MTR in WM is reduced in demyelinating diseases such as multiple sclerosis

macromolecule

free

So

Δf > 1000Hz
SMT

f

Fig. 20. Schematic of the MT saturation process. An intense RF pulse is applied
off-resonance, which saturates the magnetization of the macromolecule pool. Rapid
exchange between magnetization of the macromolecule pool and the free water pool
causes the free water signal to be partially attenuated
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Fig. 21. Example images from an MTR experiment. The image on the left was
obtained without any MT saturation. The MT-weighted image in the middle was
obtained by applying a 90◦ pulse 3000 Hz off-resonance (TR = 30 ms). The image on
the right is the estimated MT ratio (MTR) map using Equation 16. Images courtesy
of A. Samsonov and A. Field

although the MTR can also be influenced by overall water content and other
macromolecules in processes such as neuroinflammation (Stanisz et al. 2004).

MT saturation is achieved using an RF pre-pulse, which may be applied
in combination with any RF pulse sequence o. An example spin-echo CPMG
pulse sequence with RF saturation is shown in Fig. 22. There has been consid-
erable variation of reported MTR properties in the literature, which is likely
caused by inconsistencies in the pulse sequence protocols. The exact MTR
measurement will depend upon the pulse sequence parameters (e.g., TR, TE,
excitation flip angle), the magnetic field strength, as well as the shape, am-
plitude and frequency offset of the saturation pulses. Consequently, within a
single MTR study, the imaging parameters should be fixed to maximize con-
sistency. Common problems with MTR experiments include spatial inhomo-
geneities in both the static magnetic field (B0) and the RF magnetic field (B1).

Fig. 22. Measurement of T2 relaxation in the presence and absence of an RF
saturation pulse. Courtesy of G.J. Stanisz
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B0 inhomogeneities are caused by poor shimming and spatial variations in
the magnetic susceptibilities in soft tissue, bone and air, which lead to shifts
(errors) in the saturation frequency offsets. Inhomogeneities in the B1 field,
which are common using volume head coils particularly at high magnetic fields
(B0 > 1.5T) will affect the saturation pulse amplitude and consequently alter
the level of MT saturation. Both B0 and B1 fields may be measured and used
to retrospectively correct MTR measurements (Sled and Pike 2000; Ropele
et al. 2005) Another source of MT saturation is the application of RF ex-
citation pulses for slice selection in 2D pulse sequences (Santyr 1993). The
slice selective RF pulses of other slices shifted relative to the current one will
cause MT saturation. This is more problematic for multi-slice 2D pulse se-
quences with many 180◦ pulses (e.g., fast spin echo, and T1-weighted spin
echo); therefore, 3D scans are generally preferable for MTR measurements.
Other considerations for MTR measurements are discussed in two excellent
review papers (Henkelman et al. 2001; Horsfield et al. 2003).

As discussed above, the MTR measurement is highly dependent upon a
broad range of pulse sequence and scanner factors. Consequently, several re-
search groups have been developing models and imaging protocols for quanti-
tative measurements of MT properties (Henkelman et al. 1993; Stanisz et al.
1999; Sled and Pike 2001; Yarnykh 2002; Tozer et al. 2003; Yarnykh and
Yuan 2004). these techniques typically require measurements at multiple fre-
quency offsets and saturation pulse amplitudes. Since MT saturation is per-
formed using RF pulses, the MT models are usually based upon a two-pool
model (free water and macromolecule) with continuous RF saturation approx-
imated by regular RF saturation pulses. By using these models, it is possible
to estimate the macromolecular concentration (bound pool fraction), the ex-
change rate between the free and bound pools, and the T2 of the bound pool
(Fig. 23). Unfortunately, the acquisition of the required images can be quite
time consuming, which has limited the overall applicability of the technique.
Nonetheless, quantitative MT methods are much more specific than the con-
ventional MTR methods.

Fig. 23. Quantitative MT maps obtained by acquiring data at multiple frequency
offsets and flip angles and using a two pool (free water and macromolecule) model
with exchange. The images from left to right are: no MT contrast, T1 map, exchange
rate (k), bound pool fraction (fb), and the T2 of the bound pool (T2b). The images
demonstrate the wide range of quantitative imaging measures that can be obtained
in a quantitative MT experiment. Images courtesy of A. Samsonov and A. Field
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Relationship to Behavioural and Neural Functioning

As for FA, MTR is a non-specific marker of neural damage, such as demyelina-
tion. Many of the published MT studies have focused on patients with multiple
sclerosis, who show decreased MT in both ROI and whole-brain histogram
analyses. In other diseases, results are similar, indicating MTR is a viable
marker for affected white and gray matter. MTR has been shown to increase
with brain development during the first several years of life (Rademacher et al.
1999; van Buchem et al. 2001) and regional decreases with aging have been
found (Armstrong et al. 2004). Differences in MTR were sufficiently large
to distinguish patients with mild cognitive impairment from patients with
Alzheimer’s disease and controls (Kabani et al. 2002a; Kabani et al. 2002b).
A number of published studies have also used magnetization transfer methods
to compare the brains in patients with schizophrenia against healthy control
subjects (Foong et al. 2001; Bagary et al. 2003; Kiefer et al. 2004; Kubicki et al.
2005). Reduced MTR measurements have also been observed in a small sample
of patients with late-life major depressive disorders (Kumar et al. 2004).

Only a few studies have attempted to relate magnetization transfer mea-
surements to measures reflecting brain function. A serial MTR study in the
optic nerves of 29 patients with acute optic neuritis was performed with mea-
surements of visual system functioning using visual evoked potentials (VEP)
(Hickman et al. 2004). No significant differences in MTR were observed be-
tween patients and controls at the onset of optic neuritis, although the MTR
did decrease in patients over a period of one year. There did not seem to be any
direct relationship between MTR and VEP measurements. Another study of
18 patients with early-stage multiple sclerosis (Au Duong et al. 2005) demon-
strated a correlation between functional connectivity between left Brodmann
areas 45/46 and 24 using an fMRI working memory task, and the MTR of nor-
mal appearing white matter and also with brain T2 lesion load. Consequently,
the functional connectivity relationship with MTR suggests that changes in
the functional working memory network is related to changes in the white mat-
ter pathophysiology. A combined MTR and fMRI study (Filippi et al. 2002) of
simple motor function in patients with multiple sclerosis revealed correlations
between the MTR histogram features of whole-brain, normal appearing brain
tissue (both GM and WM) and fMRI signal strengths in ipsilateral sensori-
motor cortex and supplementary motor area (bilaterally). The fMRI signal in
contralateral sensorimotor cortex was significantly correlated with MTR his-
togram features in patients with cervical but not dorsal spinal cord myelitis
(Rocca et al. 2005). Finally, a recent study measured diffusion and MT in
patients with schizophrenia (Kalus et al. 2005). The amygdala showed lower
anisotropy (inter-voxel coherence), and differences in quantitative MT mea-
sures (T1, fraction bound pool), but not MTR. The authors interpreted the
findings as indicating a possible increase in neuronal density in the amygdala
of schizophrenics. The functional significance of these changes is not clear,
however, as there were no significant correlations of any of the quantitative
MR measures with disease duration or symptom severity.
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3 T1 and T2 Relaxometry

Contrast in most human neuroimaging studies is a function of the T1 and T2
relaxation times of the brain tissues. Consequently, regional signal differences
in brain images are often caused by differences in the relaxation properties.
T1 is the recovery time of the longitudinal magnetization and T2 is the decay
constant associated with the transverse magnetization. Both characteristic
times are highly sensitive to bulk water of the tissue and tend to increase
with water content. Significant changes in both T1 and T2 are observed with
early brain maturation (e.g., Miot et al. 1995; Miot-Noirault et al. 1997; Sie
et al. 1997; Steen et al. 1997; Paus et al. 2001) and aging (Jernigan et al.
1991; Autti et al. 1994; Salonen et al. 1997). In development, these changes
are likely caused by decreased water content and increased water binding and
compartmentalization including during premyelination periods when lipids,
proteins, and glial cells are increasing. T2 appears to be more sensitive to
the changes associated with brain maturation although T1 changes have been
reported to be more closely linked to the onset of myelination (e.g., Barkovich
et al. 1988; Martin et al. 1988).

There are two principle approaches for measuring T1– inversion recovery
and variable saturation. The inversion recovery methods work by inverting
the longitudinal magnetization with a 180◦ pulse and then obtaining mea-
surements with different inversion times. Variable saturation methods work
by obtaining measurements with either several RF excitation flip angles or
several different TR periods. All methods are highly sensitive to the accuracy
of the RF magnetic field, although new analytical methods can retrospectively
correct for inhomogeneities (Cheng and Wright 2006).

T2 is generally measured using spin echo pulse sequences, where measure-
ments are obtained at different TE (echo times). The signal decay is governed
by the equation S = So exp(-TE/T2). The most efficient method is to use a
multiple spin-echo pulse sequence, where measurements are obtained at mul-
tiple TE values for a single excitation, although there continue to be lively
discussions in the literature concerning the appropriate number and spacing
of echos for quantitative T2 calculations (e.g., Duncan et al. 1996; Whittall
et al. 1999; Townsend et al. 2004), related primarily to the nature of T2 decay
(see below). The measurement of T2 is also highly sensitive to imperfections
in the RF and static magnetic fields (Poon and Henkelman 1995). Further, the
RF imperfections will also lead to stimulated echoes in multi-echo sequences,
which are governed by T1, which can lead to overestimation of the T2. The
stimulated echo components can be suppressed using variable amplitude gra-
dient crusher pulses around each 180◦ refocusing pulse (Poon and Henkelman
1995). As for MT, the accuracy of T2 measurements will depend on these
parameters, so if the number of echos possible are limited, they should be
chosen with care (Duncan et al. 1996).

In spite of the fact that T1 and T2 are highly sensitive to a wide range
of tissue factors, and are therefore likely to be nonspecific, relaxation time
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measurements have been shown to be affected in many neurological diseases
that have impairments in connectivity including epilepsy, substance abuse and
neurodegenerative diseases such as M.S., dementia, schizophrenia, Alzheimer’s
disease, Parkinson’s disease. One potentially confounding factor in many of
these studies is the presence of edema, which will increase the bulk water con-
tent in the tissue. To date, only one study has specifically related relaxation
time measurements to measures of brain connectivity (Vaithianathar et al.
2002). In this study of MS patients, DTI was used to identify the pyrami-
dal tracts and fibers passing through the corpus callosum. Histograms of T1

relaxation data along the pathways were generated and indicated decreased
T1 relaxivity in patients relative to controls. There was no correlation of T1

relaxation in these paths with standard clinical disability rating scale scores,
and no cognitive measures were available for analysis.

Myelin Water Fraction

Although the specificity of T1 and T2 measurements are generally perceived
as being poor, several investigators have recently shown that the T2 signal
decay in neural tissue is multi-exponential with echo time (Menon and Allen
1991; MacKay et al. 1994; Whittall et al. 1997). Further investigation has
shown that different water tissue compartments each have distinct T2 char-
acteristics, and may be separated (see Fig. 24). In white matter, the water
signal compartments are believed to originate from components of free water
(e.g., edema, CSF, which have long T2 > 120ms), extracellular water (T2 ∼
60–90 ms) and water within the myelin membranes of axons (T2 ∼ 10–40 ms)
(MacKay et al. 1994; Beaulieu et al. 1998; Stanisz and Henkelman 1998; Vava-
sour et al. 1998; Laule et al. 2004). The T2 of the extracellular fraction can
be used to identify inflamed neural tissues (Stanisz et al. 2004), and the lat-
ter component is of significant interest because it is specific to myelin, which
is critical for signal conduction in the brain. Consequentially, a potentially
important biomarker is the myelin water fraction, which is the total signal

T2 (ms)
10-50 70-95 >1000

Myelin water

Intra-and 
 extra-cellular water

CSF

Fig. 24. T2 spectrum of water signal in white matter. The water in the myelin layers
has a very short T2 (between 10 and 50 ms), intra- and extra-cellular water have
intermediate T2 values, and CSF and unrestricted water pools have much longer T2
values
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from the short T2 signal component relative to the total signal from both the
short and intermediate tissue signal components. In healthy adult WM, the
myelin water fraction (MWF) is typically 6–15% dependent upon the region
(Whittall et al. 1997). A representative map of MWF is shown in Fig. 25.

Measurements of MWF are usually obtained using a 2D multiple spin
echo sequence, which consists of a train of equally spaced 180◦ refocusing
pulses (Poon and Henkelman 1992; Poon and Henkelman 1995; Whittall et al.
1997). T2 measurements are highly sensitive to errors in the RF magnetic
field, which are problematic for typical slice-selective RF refocusing pulses.
Consequently, non-selective refocusing pulses are often used, which limits the
acquisition to a single 2D slice. Variable amplitude crusher gradient pulses are
typically placed around each refocusing pulse to suppress the signal from stim-
ulated echoes. The fitting of the T2 model is also highly sensitive to image
noise; consequently, long scan times are typically required to achieve suffi-
cient SNR. Different strategies exist for fitting the T2 signal decay to a multi-
exponential function (e.g., Stanisz and Henkelman 1998; Webb et al. 2003;
Jones et al. 2004) although the non-negative least squares (NNLS) method
is probably most commonly used (Whittall et al. 1997). The slow acquisi-
tion time (typically > 10 minutes) for a single 2D slice has ultimately lim-
ited the application of this approach. However, one consideration is that the
2D imaging times are in line with MR spectroscopy. Further, the MWF is
one of the more specific measures of white matter tissue properties, which
makes it promising for correlations with measures of brain connectivity. Care-
ful selection of echos in conventional pulse sequences may provide reasonable
myelin maps (Vidarsson et al. 2005; Oh et al. 2006), although the option to
acquire such data is not available routinely on most clinical scanners. Future

Fig. 25. Maps from a myelin water fraction experiment. The image on the left is
a proton-density weighted image obtained from the first TE (8 ms) in the CPMG
echo train. The map on the right is the estimated myelin water fraction image at the
same slice location. Note that the myelin water fraction is much higher in regions of
white matter
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developments are clearly needed to improve both the acquisition speed and
spatial coverage of the technique, which are somewhat at odds with one an-
other. Imaging at higher magnetic field strengths, with better RF coils, par-
allel imaging and 3D pulse sequences may ultimately improve the utility of
the method.

To date, no studies have been performed which have related MWF mea-
surements to measures of brain connectivity. However, MWF measurements
in WM have been shown to be affected in brain diseases with aberrant brain
connectivity behavior including schizophrenia (Flynn et al. 2003) and multi-
ple sclerosis (Vavasour et al. 1998; Gareau et al. 2000; Whittall et al. 2002;
Laule et al. 2004; Tozer et al. 2005).

4 Discussion and Future Directions

In this chapter, we have described several quantitative MRI measures, which
are promising for the characterization of brain connectivity. However, to date,
there has been a relative paucity of experiments that have directly compared
functional and effective measures of brain connectivity with these structural
and anatomical measures of brain connectivity and physiology. This is likely
to change in the near future as these techniques become more available. Char-
acterization of WM anatomy and physiology with MRI may enable more com-
plex models of brain connectivity to be developed, as the circuitry of brain
connectivity becomes more well-defined. For example, many have proposed
that FA increases are primarily reflecting myelination. This leads to the pre-
diction that FA would be correlated most strongly with the short myelin-water
fraction from T2 relaxometry experiments, as well as to the size of the macro-
molecular pool in quantitative MT studies. On the other hand, if changes
in fibre density underlie changes in FA (Beaulieu 2002), FA should be more
strongly associated with the extracellular water peak. Preliminary evidence
for this prediction comes from recent work showing FA was not correlated with
the myelin water fraction in white matter (MacKay et al. 2006). Functional
and effective connectivity studies so far have generally modeled the brain as
a “black box” with inputs and outputs, and most of the internal circuitry has
been derived from non-human primate studies. Quantitative structural and
physiological image data from MRI may provide critical information about
the functional circuitry within the black box.

To move quantitative MRI into the forefront of techniques for character-
izing brain connectivity, further developments are necessary. Obviously, im-
provements to both the imaging technology through better and more efficient
pulse sequences, imaging RF coils, and gradient coils, and quantitative imag-
ing models and image analysis methods will facilitate comparisons between
more conventional connectivity measures with quantitative MRI measures of
WM. However, even with improvements in the technology, the application
will be somewhat limited unless they become more readily available, either
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through the MRI system manufacturers or through research collaborations.
While the methodologies are still young and emerging, we can already pose
some interesting questions: Do variations in diffusion parameters or myelin
content along tracts relate to function? Is the whole fibre tract affected? Does
knowing something about tract likelihood help predict differences in functional
and effective connectivity? Answers to these and similar questions will require
multimodal imaging, as most quantitative MRI studies have focused on a sin-
gle measure or measurement type We will also need a better understanding
of the statistical properties of the data, and sophisticated multivariate and
nonlinear modeling techniques, some of which are already available, and oth-
ers of which are discussed throughout this volume. This will be an iterative
process and will require refinement of both imaging and analysis techniques.
However, we have optimism that in the end the model fits will be acceptable
and we will know something useful about how brain structure contributes to
brain function.
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Simulation Frameworks for Large-Scale
Brain Systems
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In this paper we review the relatively recent effort on the part of cogni-
tive neuroscientists to use computational neural modeling in conjunction with
functional brain imaging, especially the hemodynamic-based methods such as
functional magnetic resonance imaging (fMRI) and positron emission tomog-
raphy (PET). The reason why such a review is in a book on brain connectivity
is that many of these efforts involve neural models that consist of multiple in-
teracting neuronal populations, and thus issues associated with connectivity
are often implicitly or explicitly addressed.

1 Neural Modeling – an Introduction

The term neural modeling refers to a variety of different computational
schemes (Arbib 2003), a spectrum if you will, ranging from those using percep-
trons and backpropagation (McClelland & Rumelhart 1986) that often lack
biological plausibility, to neural neworks that incorporate elements with bio-
logically realistic properties (Dayan & Abbott 2001). Although, as we shall
see, models at various points along this spectrum are now being utilized in
conjunction with neuroimaging data, this review will emphasize the use of
biologically realistic neural models.

Until recently, the focus of most mammalian neural modeling work centered
on the behavior of single neurons, or small populations of neurons, usually
located in a single brain area (Arbib 2003; Dayan & Abbott 2001; Rolls
& Treves 1998), although there were some important exceptions, such as
Tononi et al. (1992). The reason for such a focus was clear: most neural
data suitable for modeling were acquired from single unit electrophysiolog-
ical recordings. Beginning in the early 1990s, investigators started employing
various types of computational network modeling methods that were directed
at functional brain imaging data (e.g., Arbib et al. 1995; Friston 1994;
Friston et al. 1991; Horwitz 1990; McIntosh & Gonzalez-Lima 1991; McIntosh
et al. 1994; Tagamets & Horwitz 1998). Hemodynamic-based functional brain
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imaging has the ability to provide information about brain activity during the
performance of cognitive tasks with a spatial resolution ranging from several
millimeters to 1–2 centimeters from essentially all brain regions simultane-
ously. Moreover, because these methods are relatively non-invasive and can
be performed in normal subjects, they enable brain researchers to investigate
the brain basis of human cognition (for a review, see Frackowiak et al. 2004).
However, the temporal resolution of these types of data are much inferior to
the millisecond scale of neural dynamics (for PET, the temporal resolution
is about 30–60 sec; for fMRI, it is several seconds). Other techniques, such as
electroencephalography (EEG) and magnetoencephalograpy (MEG) can also
be used, and these methods do provide the requisite temporal information, but
spatial localization is less well defined than is the case for fMRI and PET (see
Horwitz et al. (2000) and Horwitz & Poeppel (2002) for brief discussions of
the various neuroimaging methods and for the difficulties in combining them).
Nonetheless, EEG/MEG has also elicited a number of computational neural
modeling efforts (e.g., David & Friston 2003; Jirsa & Haken 1997; May et al.
1999; Nunez 1981; Robinson et al. 2005).

The central role that functional neuroimaging now plays in human cogni-
tive neuroscience cannot be emphasized enough. Although there are numerous
tasks that can be similarly performed in humans and nonhumans (especially
nonhuman primates), there are many cognitive functions that are difficult, if
not impossible, to study in nonhumans, especially those related to language,
to some aspects of social cognition, and to high level executive function. Until
the advent of functional neuroimaging the only ways to investigate the neural
basis of human cognition were: (1) analysis of the behavioral consequences
of brain lesions (e.g., strokes); (2) electrophysiological studies in neurosurgi-
cal patients; (3) examination of behavior following pharmacologic interven-
tion or in relation to genetic analysis; and, (4) extrapolation from nonhuman
neurophysiological and other neuroscientific approaches. The hemodynamic
functional neuroimaging methods (fMRI and PET) allowed numerous inves-
tigators to view the changes in brain activity between tasks and/or groups of
subjects (e.g., normal volunteers and subjects with neurological or psychiatric
disorders) with a spatial scale of a few millimeters, and, most importantly, to
view these changes in most of the brain at the same time. The interpretation of
these patterns of activity, involving the interaction of multiple and distributed
neuronal populations, generated the need for computational modeling.

Modeling serves a number of purposes in this regard, including a way to
keep track of the complex interactions between the various neural populations
and a way to relate these patterns to neural mechanisms (e.g., Horwitz &
Glabus 2005) or to hypothesized cognitive mechanisms (e.g., Anderson et al.
2003). Moreover, neural modeling is necessary, we would argue, for another
reason. As indicated in the last paragraph, there are numerous and diverse
sources of neuroscientific data that relate to the neural basis of cognitive
function. All these types of data have different spatial, temporal and featural
properties that make them hard to relate to one another. Furthermore, each
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type of data has its own interpretational limitations. The net effect is that
no one kind of neuroscientific data can be thought of as being a “gold stan-
dard”. That is, all these different types of data (lesions, electrophysiological,
functional neuroimaging, etc.) are providing us with some information about
the neural basis of a cognitive function, but there is no easy and straightfor-
ward way to put all these types of information together. We have argued for a
long time now (e.g., Horwitz et al. 1999) that computational neural modeling
provides a method by which all relevant neuroscientific data pertaining to a
cognitive task can be accounted for in terms of the dynamic interactions of
multiple neuronal populations. We will illustrate this later in this paper.

Conceptually, there are two different ways to employ computational model-
ing, although both can be used in conjunction with one another. In simulation
mode, a model is constructed (i.e., a set of model parameters is defined and
values for each parameter are assigned) and data are generated from each
of the elements of the model. These data are then compared with appro-
priate experimental data and the model is considered successful if there is
close agreement between the experimental and simulated data. In data-fitting
mode, some computational procedure is used to vary the model parameters
until there is agreement between experimental data and data generated by
the model. Examples of data-fitting modeling are (1) the use of Structural
Equation Modeling (SEM) with PET or fMRI data (e.g., Buechel et al. 1999;
McIntosh et al. 1994) and (2) the use of Dynamic Causal Model with fMRI
data (Friston et al. 2003) (see also Stephan and Friston, this volume). Several
papers in this volume focus on data-fitting modeling. Although the distinc-
tion between simulation and data-fitting is fuzzy, it is often the case that the
models used in data-fitting are less detailed and less specific about the model
parameters than are the models used in simulation. Importantly, the param-
eters used in simulation models often have their values based on a different
set of data than on the data to which the model is being applied.

Simulation modeling can also be used directly at the level of PET/fMRI
data (e.g., using SEM to simulate new results; see Horwitz 1990; Kronhaus &
Willshaw in press). However, its main use has been to relate neurobiological
data to fMRI or PET results, or conversely, to relate the performance of
cognitive models to such data. The focus of this paper is on the former, but
we shall also briefly review the latter.

Another way to think about the different types of modeling is that some
are “bottom-up” and some are “top-down”. In a bottom-up approach, the
data one tries to explain are at one level, and the explanatory variables are
at a “lower” level (lower can mean such things as more fundamental, more
microscopic, more basic). As will be shown, this means, for example, trying
to account for fMRI data in terms of the activity of neurons. Importantly,
the goal of such modeling is to propose neural mechanisms that result in par-
ticular cognitive functions. In essence, one wants the cognitive function to
appear as an emergent phenomenon. In a top-down approach, the hypothe-
sized mechanisms are cognitive, and the goal is to locate the brain regions
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that implement these cognitive mechanisms. The way this is done is to find
the brain region(s) whose fMRI signals behave as proposed by the model.

In the next section, we will review some recent top-down approaches. In
the following section, we will review some bottom-up studies. We will end
with some concluding comments.

2 Top-down Methods

Cognitive models make assumptions about the types of functions that mediate
a cognitive task. In many cases these models do not have any relationship to
the functional neuroanatomy of the brain. For example, a well-known cogni-
tive model of reading (Coltheart et al. 2001) includes, among others, modules
for visual analysis and for grapheme-phoneme conversion, although no at-
tempt was made to link activity in these modules to fMI or PET data, or
even to link them to specific brain regions based on lesion studies. Recently,
however, such efforts have been made by imposing additional assumptions
relating each cognitive function to specified brain regions. An early attempt
at combining a cognitive model with fMRI data can be found in the work of
Just et al. (1999), who used a computational (production) model of sentence
comprehension called 4CAPS to explain how fMRI activation levels varied
as a function of sentence complexity in three brain areas (Broca, Wernicke
and dorsolateral prefrontal cortex). In their computational model, Just et al.
proposed that resource utilization in a given unit of time in each compo-
nent of the system corresponds to the amount of activation observed with the
neuroimaging measure in the corresponding component during that time in-
terval. Good agreement between the experimental number of activated voxels
in Broca and Wernicke’s areas and the predictions of their model for three
types of sentences of different complexity were found.

A recent study by Anderson et al. (2003) represents another example of this
type of modeling. They examined symbol manipulation tasks using a model
called ACT-R, which contains a number of buffers. Somewhat different from
the assumption used by Just et al. (1999), Anderson et al. (2003) proposed
that the fMRI response in a brain area represents the integrated duration of
time that a buffer is active. They showed that calculated fMRI activity in
one buffer of the model (the imaginal buffer, which tracks changes in problem
representation) predicted the fMRI response of a left parietal region, activity
in a second buffer (the retrieval buffer) predicted activity in a left prefrontal
region, and activity in a third buffer of the model (the manual buffer) was
related to fMRI activity in a motor region. In a second study (Anderson
et al. 2005), they extended the model to a more complex task, the Tower of
Hanoi, and were able to explain latency data in move generation and the fMRI
responses in the three aforementioned regions.

One difference between the approaches of Just and Anderson is that
Anderson and colleagues (Anderson et al. 2003, 2005) assume that each
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module of their model corresponds to a given brain region. Just et al. (1999)
also ascribe specific cognitive functions to different brain regions, although
more than one cognitive function can occur in a region and, conversely, they
also assume that a given cognitive specialization may occur in more than one
area, albeit with different degrees of efficiency.

Another example of this type of modeling involves an investigation of the
role of the anterior cingulate in cognitive control. Brown and Braver (2005)
used a cognitive computational model that embodied the hypothesis that the
response of the anterior cingulate to a given task condition is proportional to
the perceived likelihood of an error in that condition. Simulations performed
using the model with a modified stop-signal task resulted in a pattern of
behavioral performance that fitted human data. Moreover, the pattern of cin-
gulate activity in the model across task conditions (as indexed by the neural
firing rate) was qualitatively similar to fMRI activity in the anterior cingu-
late obtained in an event-related experimental study. They also constructed a
second model that viewed the anterior cingulate as detecting conflict between
incompatible response properties. They found that they could also fit this
model to human behavioral data, but that the pattern of simulated activity
of the anterior cingulate across conditions did not match the pattern of the
fMRI data. The Brown-Braver study provides an interesting example of how
functional brain imaging data can be used in conjunction with cognitive mod-
eling. Namely, different and competing cognitive models may equally well fit
the performance data that they typically aim to explain. By comparing the
ability of competing models to also match functional neuroimaging data, one
is able to select one of the competing models over the other.

The examples we have presented illustrate some of the limitations to this
“top-down” approach. One important limitation is that each study we pre-
sented employed a different relationship between the activity of a module
and fMRI activity. For Just et al. (1999), the fMRI signal was indexed by
the rate of resource utilization. This is probably similar to the measure used
by Brown and Braver (2005) (i.e., the neural firing rate). For Anderson and
colleagues (2003), the fMRI signal is proportional to the integrated duration
of time that a buffer is active. Note that although each of these relationships
between model activity and fMRI signal is plausible, and all are probably sim-
ilar, there is no experimental way to verify the relation between a cognitive
model component and a neural/hemodynamic variable. As we shall see in the
next section, one advantage of a bottom-up approach is that it allows one to
relate neural activity to the hemodynamic signal in a testable way. That is,
assumptions about the relationship between neural activity and fMRI activity
are also expressed in biological, not cognitive or functional, terms.

On the other hand, a big advantage, at least at the present time, for
employing cognitive models in conjunction with functional neuroimaging data
is that only relatively low-level cognitive functions can be readily addressed in
neural terms, since non-human models of high-level human cognitive function
(e.g., language) do not exist. The use of cognitive models with fMRI data
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allows one to deal with very high-level cognitive phenomena (e.g., sentence
processing, symbol manipulation), but gives little indication as to how such
functions are implemented at a neural level. For the near future, this approach
will be useful and will provide interesting insights, and the cognitive model-
imaging combination can, when successful, generate a set of target functions
at which neurally based large-scale modeling can aim. It is to these bottom-up,
biologically based models that we now turn.

3 Bottom-up Methods

The “bottom-up” type of neural modeling has variously been referred to as
synthetic functional brain imaging (Arbib et al. 1995), or large-scale neural
modeling (Horwitz & Tagamets 1999; Husain et al. 2004; Tagamets & Horwitz
1998), or forward or generative modeling (David et al. 2005). An important
goal is to relate neural electrical activity to functional neuroimaging data. This
simulation approach is in many ways more ambitious, and less (PET/fMRI)
data driven, than is the data-fitting use of neural modeling, but is crucial
for furthering our understanding of the neural basis of behavior. Impor-
tantly, it entails determining both the neural basis for local brain activations
and the neurobiological correlates for the PET/fMRI-determined functional
connections.

We will illustrate this type of modeling by examining a number of studies
that addressed different questions associated with the relationship between
neural activity on one hand and functional neuroimaging on the other. The
first set of studies focuses on the relation between neural activity and the
corresponding hemodynamic response that is measured by PET and fMRI.
The second set illustrates how this approach enables one to integrate neural
information across different spatiotemporal scales. The third subsection dis-
cusses the use of large-scale neural modeling to help understand the neural
bases of functional and effective connectivity.

3.1 Excitatory and Inhibitory Neural Activity

The first paper that discussed ways to relate neural modeling to functional
brain imaging data was by Horwitz and Sporns (1994). The first actual study
that compared simulated data generated by a biologically-based neural model
to hemodynamic-based functional neuroimaging data was by Arbib et al.
(1995), who used a large-scale model of saccade generation (Dominey & Arbib
1992) and adapted it to generate simulated PET data. Their model included
a number of brain structures, such as posterior parietal and visual cortex, su-
perior colliculus, the frontal eye field, the mediodorsal and lateral geniculate
nuclei of the thalamus, and the caudate nucleus and substantia nigra of the
basal ganglia. Because some of the pathways involving the basal ganglia are
inhibitory, this model was a good testing ground for examining the effects
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of inhibitory synaptic activity on simulated blood flow. The main hypothesis
tested in the PET simulation was that regional cerebral blood flow, as mea-
sured by PET, correlates with local synaptic activity. Although at the time
there was some, but not very much, experimental support for this hypothe-
sis (Jueptner & Weiller 1995), since the publication of the Arbib et al. study,
the evidence has grown much stronger that the hemodynamic methods are in-
dicative of synaptic and postsynaptic activity (e.g., Lauritzen 2001; Logothetis
et al. 2001). One consequence of this notion is that increases in excitatory and
inhibitory synaptic activity can lead to increased blood flow and metabolic
activity (Logothetis 2003). In the Arbib et al. (1995) study, PET activation in
the model was computed by summing the absolute values of both excitatory
and inhibitory synaptic weights times firing rates of presynaptic neurons and
integrating these values over a time period that corresponded to the time scale
of PET while the model performed a specific task.

Computed PET activity was calculated by Arbib et al. (1995) during two
different tasks (generating simple saccades and memory-driven saccades) and
the differences between the two conditions were evaluated in all regions of the
model. Memory driven saccades are generated in the model by activation of
a memory loop between the frontal eye field and mediodorsal nucleus (MD)
of the thalamus, which is disinhibited by the substantia nigra, generating a
saccade (via the superior colliculus) to a remembered target when there is
no stimulus present. When compared to the simple saccade task, in which
disinhibition of the superior colliculus allows a saccade to be generated to a
target present in the field of view, spiking activity in the modeled MD re-
gion increased as a result of the disinhibition, while simulated PET activation
decreased in MD. This result showed how modeling can illuminate a coun-
terintuitive effect: during the simple saccade, synaptic activity from the tonic
inhibition of the MD contributes more synaptic activity to the PET measure
than the increase in excitation that results from disinhibition.

As shown by the above study, the interpretive difficulty associated with
synaptic inhibition provided a good example of how large-scale modeling can
help interpret the activations observed in functional neuroimaging studies,
even when they lead to results that appear counterintuitive. Because different
parts of the brain have different neural architectures, and because the com-
position of the excitatory and inhibitory elements will be different in these
various architectures, a number of separate modeling efforts will be needed to
understand fully the role of inhibition in PET/fMRI activation patterns. For
neocortex the inhibition theme was explored by Tagamets and Horwitz (2001)
using a large-scale model of the ventral cortical visual processing stream (the
details of this model will be discussed below). They used the same assump-
tion as did Arbib et al. (1995) – that PET regional cerebral blood flow is
indexed by the absolute value of the total synaptic activity in a brain region.
They identified three factors that may play a role in how neural inhibition
affects imaging results: (1) local connectivity; (2) context (e.g., the type of
task being performed by the network); and (3) type of inhibitory connection.
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Simulation results showed how the interaction among these three factors can
explain seemingly contradictory experimental results. Specifically, the mod-
eling indicated that neuronal inhibition can raise brain imaging measures if
there is either low local excitatory recurrence or if the region is not other-
wise being driven by excitation. On the other hand, with high recurrence or
actively driven excitation, inhibition can lower observed neuroimaging values.

To summarize this section, we have shown that an important use for large-
scale modeling is to help interpret how task-specific mixtures of excitatory and
inhibitory neural activities result in the complex patterns of activations often
seen in functional neuroimaging studies.

3.2 Integrating Neuroscientific Data Across Spatiotemporal Scales

We have already emphasized that the major goal of large-scale neural mod-
eling is to enable one to propose a set of neural-based mechanisms that can
explain particular human cognitive functions. If these mechanisms are rea-
sonable representations of what actually occur in the brain, then simulated
data generated by the model, at multiple spatiotemporal scales, should closely
approximate corresponding experimental data. We will illustrate this use of
modeling by discussing a model of object processing that was developed in
our laboratory.

There are two versions of this model, one for processing visual objects
(Tagamets & Horwitz 1998) and one for auditory objects (Husain et al. 2004).
Although the notion of visual object (e.g., chair, table, person) seems straight-
forward, that of auditory object is more elusive, but can be thought of as an
auditory perceptual entity subject to figure-ground separation (for a detailed
discussion see Griffiths & Warren 2004; Kubovy & Van Valkenburg 2001).
Examples of auditory objects would include words, melodic fragments, and
short environmental sounds. There is much experimental evidence implicat-
ing the ventral visual processing pathway, which runs from primary visual
cortex in the occipital lobe into the inferior temporal lobe and thence to infe-
rior frontal cortex, as being involved with visual object processing in human
and nonhuman primates (Desimone & Ungerleider 1989; Haxby et al. 1994;
Ungerleider & Mishkin 1982). Although the supporting evidence is less exten-
sive, an analogous processing stream along the superior temporal gyrus (STG)
for auditory object processing has been hypothesized by Kaas, Rauschecker
and others (Kaas et al. 1999; Rauschecker & Tian 2000). Our models build on
these notions; we have proposed (and instantiated in our models) that visual
and auditory (and possibly tactile) object processing uses a set of similar
cortical computational mechanisms along each of their respective pathways,
although the features on which these mechanisms act depend on the sensory
modality (Husain et al. 2004). However, it is important to emphasize that we
are not implying that all sensory features have analogues in the three systems,
only that some do.
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Visual model

The visual model (Tagamets & Horwitz 1998) performs a set of tasks, specif-
ically a delayed match-to-sample (DMS) task for shape, and a “passive”
viewing task. We chose the DMS task because there exist much functional
neuroimaging, neuroanatomical, electrophysiological, and cognitive data in
human and nonhuman primates relevant for this type of task. The DMS task
involves the presentation of a shape, a delay, and the presentation of a second
shape; the model has to decide if the second stimulus is the same as the first.
Multiple trials (e.g., 10) are used to simulate an fMRI or PET study.

We incorporated four major brain regions of the ventral occipitotempo-
ral pathway into the visual model: ((1) primary visual cortex (V1/V2); (2)
occipitotemporal cortex (V4); (3) inferior temporal cortex (IT); and (4) pre-
frontal cortex (PFC) (see Fig. 1). Each region contains populations of neuronal
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Fig. 1. Network diagram of the object processing model (Tagamets & Horwitz
1998; Husain et al. 2004). The regions of each model form a complex network of
feedforward and feedback connections; these interregional connections can be ei-
ther excitatory (excitatory-to-excitatory elements, shown as solid lines) or inhibitory
(excitatory-to-inhibitory elements, shown as dashed lines). Regions specific to the
visual model (LGN, V1–V2, V4, IT) are shown in red; regions specific to the au-
ditory model (MGN, A1–A2, Aii, ST) are shown in blue; the prefrontal module is
structured in the same way in both models. The sub-modules for each model are
also indicated. In the PFC region, there are four submodules: FS contains stimulus-
sensitive units, D1 and D2 contain units active during the delay part of a delayed
match-to-sample task, and FR contains units whose activity increases if there is a
match between the first and second stimuli of a trial. Abbreviations: LGN – lat-
eral geniculate nucleus; MGN – medial geniculate nucleus; Aii - secondary sensory
auditory cortex; PFC – prefrontal cortex
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assemblies of basic units, each of which is an interacting excitatory-inhibitory
leaky integrator neuronal pair that represents a simplified cortical column
(Wilson & Cowan 1972). Although there are many attributes that can be
used to characterize an object (e.g., shape, color, texture), we chose to focus
on shape and assumed that the basic feature, based on the work of Hubel and
Wiesel (Hubel & Wiesel 1977), is line orientation. So, the excitatory neurons
in the V1/V2 module were constructed to respond in a retinotopically con-
figured manner to lines oriented in particular directions (for computational
simplicity, we use only horizontal and vertical lines). The V4 module is similar
to the V1/V2 one in that it is retinotopically organized, and contains neurons
with horizontal and vertical line orientation selectivity. It also contains neu-
rons that respond to a combination of features (i.e., neurons that respond best
to a change in line orientation, what can be called second-derivative neurons).
Importantly, the receptive field of these neurons, like those of actual V4 neu-
rons, are larger than those for V1/V2 neurons (by about a factor of 3). This
was achieved by increasing both the divergence and sparseness of connections
in the feedforward direction, with neighboring V1/V2 units sending connec-
tions to neighboring V4 units. Likewise, V4 units project to IT with the same
3-fold divergence, with the result that IT units no longer show retinotopy and
each IT neuron’s receptive field is essentially the entire visual field, which is
the situation with real IT neurons (Desimone et al. 1984). The upshot of this
is that a visual object is represented in IT in a highly distributive manner.
In the PFC module, we have four submodules whose neuronal units have the
response properties based on the findings of Funahashi et al. (1990): units
that respond when a visual stimulus is present, two kinds of units that show
activity during the delay interval, and units whose activities increase when a
match between the second and first stimuli occurs. A particular arrangement
of connectivity between these four submodules, and between these submod-
ules and the other regions, enable a short-term memory trace to be maintained
during the delay interval between the presentation of the two stimuli in the
DMS task.

Feedforward and feedback connections between regions were based, where
available, on primate neuroanatomical data. Parameters were chosen so that
the excitatory neuronal elements of each module had simulated neuronal activ-
ities resembling those found in electrophysiological recordings from monkeys
performing similar tasks (e.g., Funahashi et al. 1990).

The method by which the “task instructions” are implemented, so that
the model knows whether to perform the DMS task or a control task, is
by means of a continuous “attention” or “biasing” variable that modulates a
subset of prefrontal units by means of diffuse synaptic inputs. These prefrontal
units, through feedback connections, modulate activity in posterior areas. The
strength of the biasing variable controls whether the stimuli are maintained
in short-term memory or not. As a consequence, activity in each brain area
is a mixture of feedforward activity (“bottom-up”) determined in part by the
presence of an input stimulus, feedback activity (“top-down”) determined in



Simulation Frameworks for Large-Scale Brain Systems 285

part by the strength of the biasing attention signal, and local activity within
each region.

Functional neuroimaging studies are simulated by presenting stimuli to
an area of the model representing the lateral geniculate nucleus (LGN) for
the visual model. Approximately 10 such trials per condition would be used
for a PET or fMRI study. To simulate the data acquired in a PET scan,
we integrated the absolute value of the summed synaptic activities in each
brain region over all the trials, separately, for the DMS condition and for a
control condition (‘passive’ viewing of degraded shapes) (Tagamets & Horwitz
1998). In the case of fMRI, regional activity is simulated by first temporally
and spatially integrating the absolute value of the synaptic activity in each
region over a time period representing 50–100 m sec, which corresponds to the
time needed to collect a single slice of fMRI data. The time integrated synaptic
activities are then convolved with a function representing hemodynamic delay,
and subsequently sampled at a time corresponding to the repetition time (TR)
of an fMRI scan (Horwitz & Tagamets 1999).

The simulated PET values for the visual model of the DMS condition,
when compared to the control condition, were similar (Tagamets & Horwitz
1998) to those found in experimental PET studies of face working memory
(Haxby et al. 1995), as shown in the bar graph on the left of Fig. 2. In

Simulation vs. Experiment Comparison
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Fig. 2. Comparison between model simulation and experimental results. (Left) Bar
graphs of the percent signal change in simulations using the visual model (blue bars)
in each brain region and the corresponding results (red bars) from the comparable
PET study of (Haxby et al. 1995). The percent signal changes were evaluated as
the difference between the DMS task of object shape vs. a passive viewing task of
degraded shapes (see Tagamets & Horwitz (1998) for details). (Right) A similar
comparison for the auditory model and the corresponding fMRI study. The percent
signal changes were computed as the normalized difference of the percent signal
changes of both the DMS and control tasks relative to baseline (see Husain et al.
(2004) for details)



286 Barry Horwitz and Fatima T Husain

summary, the visual model was able to generate simulated electrophysiological
data and simulated PET data that generally were in close agreement with
experimental data. Moreover, the model could perform the DMS task.

We have dwelt at length on the visual model because many of the as-
sumptions used in its construction have significant experimental support, and
consequently, require little justification on our part. The really new thing is the
way in which these multiple mechanisms are put together. What the modeling
shows is (1) these quantitative agreements between simulation and experiment
strongly argue for the specific hypotheses that were made concerning the neu-
ral mechanisms by which multiple interacting brain regions implement this
visual DMS task; (2) the assumptions used to related the neural activity to
the functional neuroimaging data are sound; and (3) it is possible to account
for neuroscientific data at a macroscopic (brain area) level in terms of activity
at a mesoscopic (cellular/columnar) level.

Auditory Model

The large-scale auditory model that was developed by Husain et al. (2004)
implements a DMS task for auditory objects. The key features that we chose
to model were frequency sweeps, and the auditory objects, which we call
tonal contours (TC), consist of combinations of sweeps and pure tones, each
TC lasting about 350 m sec (Fig. 3). Other auditory features, such as timbre,
are not included in the model. Like the visual model, the auditory model
contains four major modules (see Fig. 1): (1) primary sensory cortex (A1/A2),
where neurons respond in a tonotopically-organized fashion to up and down
frequency sweeps ; (2) secondary sensory cortex (e.g., lateral and parabelt
auditory cortex, labeled Aii), where neurons respond to longer up and down
sweeps, as well as to changes in the direction of frequency sweeps; (3) an area in
the superior temporal gyrus and/or sulcus (ST) similar to IT where a complex
sound is represented in a distributive manner in the neuronal population; and
(4) a prefrontal module analogous to that in the visual model.

Timeline of a DMS Trial

Stimulus 1
0.35 sec
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1.0 sec

Stimulus 2
0.35 sec
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2.0 sec

Next Trial
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nc

y
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Fig. 3. Timeline of a single delayed match-to-sample (DMS) trial for the auditory
model (and the corresponding auditory fMRI experiment). Shown are frequency vs.
time representations of the tonal contours (TCs)
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The experimental evidence for the presence of neurons with these proper-
ties was reviewed in Husain et al. (2004). In brief, there were reports show-
ing that there are neurons in auditory cortex that respond to the direction
of frequency sweeps (e.g., Mendelson & Cynader 1985), and that there are
neurons in prefrontal cortex that are active during the delay interval in a de-
layed response task for auditory stimuli (Kikuchi-Yorioka & Sawaguchi 2000).
However, unlike the situation in visual cortex, there have been relatively few
studies in awake monkeys and other mammalian preparations in which the
response properties of neurons in various parts of the STG were evaluated.
So, for example, there is only a small amount of evidence showing that neu-
rons in the anterior part of the STG respond to complex auditory patterns
(e.g., Kikuchi et al. 2004). Similarly, a number of other crucial assumptions
that Husain et al. (2004) made in constructing the auditory model also rested
on either weak experimental data (i.e., just a few studies), or else were made in
analogy to the visual case. To illustrate, a key assumption we used was that
in going from primary to secondary auditory cortex and thence to ST, the
spectrotemporal window of integration increased (analogous to the increase
in the size of the spatial receptive field in the visual model), so that, for exam-
ple, neurons in the secondary auditory area respond best to longer frequency
sweeps that do the neurons in A1/A2. Experimental support for this assump-
tion could only be found in Harrison et al. (2000). Another key assumption
was that in the secondary auditory area there was a neuronal population that
responded best to a change in the direction of frequency sweeps. There was
no published evidence for such ‘second-derivative’ neurons in auditory cortex.

In essence, each of these assumptions can now be considered predictions
of the model. To focus on a case that we shall come back to, the assumption
concerning the increase in the spectrotemporal window of integration is in-
stantiated in the model by increasing both the divergence and sparseness of
connections in the feedforward direction, with neighboring A1/A2 units send-
ing connections to neighboring units in secondary auditory cortex. Likewise,
these latter units project in a similar divergent fashion to ST. Consequently,
the assumption of increasing spectrotemporal receptive field size ultimately
rests on assumptions concerning the pattern of interregional neuroanatomical
connectivity in STG.

Identical stimuli were used for both modeling and the corresponding fMRI
experiment (Husain et al. 2004). The bar graph on the right of Fig. 2 shows
the percent signal changes (comparing the fMRI activity for tonal contours
to that for pure tones) in each brain region for both the simulated and the
experimental data. Two important points arise from this part of Fig. 2. First,
our simulated results in primary auditory cortex (A1/A2) did not match the
experimental value (in the simulation, the percent change between tonal con-
tours and tones was near zero). A likely reason for this is that we included in
our model only one type of neuron found in primary auditory cortex (selective
for frequency sweeps), but there are many neuronal types in the brain selective
for other features in the auditory input (e.g., loudness, on and off properties
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of the input) that we were not modeling. Moreover, there was a large amount
of scanner noise during the experiment that could have had some effect on the
experimental data that was not taken into account in the simulation. The sec-
ond important point is that we were able to get close quantitative agreement
between simulated and experimental data in all the right hemisphere regions
that corresponded to those in the model (except, as noted above, A1/A2).
As far as we know, this was the first study in which a biologically realistic
neural model generated stimulated fMRI data that generally agreed quanti-
tatively with experimental fMRI values in which task design and stimuli were
identical to those used in the modeling.

To test the robustness of the auditory model, we (Husain et al. 2005)
used it to investigate the auditory continuity illusion, which is an example of
one type of auditory perceptual grouping phenomenon. Perceptual grouping
permits the auditory system to integrate brief, disparate sounds into cohe-
sive perceptual units, which is important for perception because it enables,
for example, one to separate attended sounds from environmental noise. The
auditory continuity illusion emerges when a sound object (e.g., pure tone, fre-
quency sweep, word) is perceived to continue through occluding noise even
though no such signal need be physically present in the noise. Although it
serves the important purpose of making communication sounds intelligible in
a noisy environment and although it been extensively studied by means of
psychophysical experiments, little is known concerning neural basis of this
illusion.

In our simulations, intact stimuli (tonal contours) were matched with frag-
mented versions (i.e. with inserted silent gaps) of the stimuli (Fig. 4). The abil-
ity of the model to match fragmented stimuli declined as the duration of the
gaps increased (Fig. 5, top). However, when simulated broadband noise was
inserted into these gaps, the matching response was restored indicating that a
continuous stimulus was perceived (Fig. 5, bottom). The electrical activities of
the neuronal units of the model agreed with electrophysiological data obtained
by Sugita (1997), and the behavioral activity of the model matched human
behavioral data (Ciocca & Bregman 1987; Dannenbring 1976). The most im-
portant aspect of this study relevant to this chapter concerns how our model
implements the illusion. The predominant mechanism is the divergence of the
feedforward anatomical connections along the auditory processing pathway in
the temporal cortex. Not only do our results attest to the robustness of the
model, but further, they predict the primary role of the anatomical connectiv-
ity of the auditory processing areas in mediating the continuity illusion. Note
that these results were obtained without changing any of the parameters of
the auditory model.

In summary, our simulation results for the auditory model demonstrate
that our assumptions concerning the neural mechanisms by which auditory
objects are processed in the cerebral cortex are such that they enabled us
(1) to simulate neuronal data from multiple brain regions that agreed with
available experimental data, (2) to simulate fMRI data that quantitatively
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D

Fig. 4. Illustration of the auditory continuity illusion. (A) Shown is the DMS task
for a tonal contour (indicated as a frequency vs time pattern; each tonal contour
is about 350m sec in duration). (B & C) Fragmented tonal contours, with and
without inserted noise. If the noise spans the frequency range of the contour, and is
loud enough, the fragmented tonal contour is perceived as intact. (D) If the noise is
outside the range of the contour, the fragmented tonal contour is not perceived as
intact. Modified from Husain et al. (2005)

matched experimental data, again in multiple brain regions, and (3) to gener-
ate simulated behavioral data for the auditory continuity illusion that matched
experimental data obtained in humans.

Other Large-Scale Modeling Work

There have been several other recent studies in which large-scale neural mod-
eling has been used to relate neural activity to functional neuroimaging data.
We will briefly mention a few of them.

Deco et al. (2004) modeled the mechanisms that underlie working memory-
related activity during the execution of delay tasks that have a “what”-
then-“where” design (with both object and spatial delayed responses within
the same trial). They were interested in examining two notions related to
the topographical and functional organization of the PFC: (1) organization-
by-stimulus-domain, which proposes that dorsolateral PFC is involved with
spatial processing and ventrolateral PFC is specialized for object processing
(e.g., Wilson et al. 1993); (2) organization-by-process, which puts forward a
hierarchical organization of the PFC, with non-memory related higher order
functions (e.g., manipulation of items in memory) associated with dorsolat-
eral PFC regions, and short-term memory maintenance functions ascribed
to ventral PFC (e.g., Petrides 1994). Deco and colleagues utilized a network
composed of integrate-and-fire neurons to model both single-neuron and fMRI
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data on short-term memory in topologically different parts of the PFC during
delay tasks having the what-then-where design. The model contained differ-
ent populations of neurons (as found experimentally) in attractor networks
that responded in the delay period to the stimulus object, the stimulus po-
sition, and to combinations of both object and position information. These
neuronal populations were arranged hierarchically and global inhibition me-
diated through inhibitory interneurons was employed to implement competi-
tion. The relative activity of the different attractor populations required to
perform what-then-where and where-then-what short-term memory tasks was
provided by an external attentional signal that biases the different neuron pop-
ulations within the framework of the biased competition model of attention
(Desimone & Duncan 1995; Rolls & Deco 2002).

It was shown that their model could account for the neurophysiological
activity seen in both the ventrolateral and dorsolateral PFC during the de-
lay periods of working memory tasks utilizing the what-then-where design,
obtained by Rao et al. (1997). Furthermore, the Deco et al. model gener-
ated simulated fMRI patterns that matched experimental findings during a
what-then-where short-term memory task for both PFC sectors as shown by
the fMRI findings of Postle & D’Esposito (1999). However, this could not be
done if it was assumed that the difference between ventrolateral and dorsolat-
eral PFC followed the organization-by-stimulus-domain hypothesis, with the
dorsal PFC being specialized for spatial processing and ventral PFC being
specialized for object processing. Rather, Deco et al. (2004) had to assume
that the differences between these two prefrontal regions arose from having a
larger amount of inhibition in the dorsolateral portion of the PFC than in the
ventrolateral part.

The Deco et al (2004) study is important for several reasons. First, it is the
first large-scale neural model applied to fMRI data that employed spiking neu-
rons. Second, it demonstrates how this type of modeling can shift the terms of
a scientific debate. There is great deal of controversy concerning the different
functional roles of dorsal and ventral PFC. Heretofore, the controversy was
cast in cognitive terms (i.e., spatial vs. object processing on the one hand,

�
Fig. 5. Performance of the auditory model of Husain et al. (2004) for the auditory
continuity illusion. Above-threshold activity of 5 or more neurons in the response
module (FR) indicates a match between the two stimuli of a DMS trial. The top
graph shows that with a short duration gap in the second stimulus, the model (like
actual subjects) indicates a match, thus grouping the parts of the tonal contour
into a perceptual whole. As the gap widens, a non-match results. If noise is inserted
in the gap, and is of weak intensity (green), the tonal contour is not considered
as continuing through the gap (bottom); if the noise is more intense (red), then
perceptual grouping occurs, but only if the band of noise is in the part of frequency
space occupied by the tonal contour. See Husain et al. (2005) for details. Modified
from Horwitz & Glabus (2005)
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manipulation vs. maintenance on the other). The results of the Deco et al.
study demonstrate that one can rephrase the debate in neural terms (i.e., dif-
ferent neuronal populations compared to different levels of inhibition), and
in these terms, a variety of neuroscientific results can be brought forward to
resolve the issue.

The next study we present comes from Chadderon and Sporns (in press)
and it also focuses on prefrontal cortex. A large-scale computational model
of prefrontal cortex and associated brain regions was constructed. It was de-
signed to investigate the mechanisms by which working memory and task
state interact to select adaptive behaviors from a behavioral repertoire. The
model consisted of multiple brain regions containing neuronal populations
with realistic physiological and anatomical properties: extrastriate visual cor-
tical regions, inferotemporal cortex, prefrontal cortex, striatum, and midbrain
dopamine neurons. Like the visual model of Tagamets and Horwitz (1998)
discussed earlier, the Chadderon-Sporns model used Wilson-Cowan leaky in-
tegrator neurons (Wilson & Cowan 1972).

In the Chadderon-Sporns model the onset of a delayed match-to-sample
or delayed non-match-to-sample task triggers tonic dopamine release in pre-
frontal cortex, which causes a switch into a persistent, stimulus-insensitive
dynamic state that promotes the maintenance of stimulus representations
within prefrontal networks. Other modeled prefrontal and striatal units select
cognitive acceptance or rejection behaviors according to which task is active
and whether prefrontal working memory representations match the current
stimulus. Working memory task performance and memory fields of prefrontal
delay units were degraded by extreme elevation or depletion of tonic dopamine
levels. Analyses of cellular and synaptic simulated activity indicated that hy-
ponormal dopamine levels resulted in increased prefrontal activation, whereas
hyper-normal dopamine levels led to decreased activation.

Chadderon and Sporns also used their simulated results to derive synthetic
fMRI signals, in a similar manner to that discussed earlier (Horwitz & Taga-
mets 1999). They found that under normal dopamine conditions, there was
a significant increase in PFC fMRI activity in a DMS working memory task,
as compared to an “idle” control condition. If a relatively fast hemodynamic
delay function was used to derive fMRI signals, the increase was confined to
the delay periods of the task, and absent during the cue/distractor/target
periods. Decreasing tonic dopamine levels led to higher baseline activation of
PFC, but the activity differences between idle and working memory conditions
were not significant. Conversely, if tonic dopamine levels were elevated, base-
line activation of PFC was reduced, and activity during a working memory
task was decreased with respect to corresponding control trials, thus showing
a reversal of the increase found under normal dopamine levels.

The Chadderon and Sporns model (Chadderdon & Sporns in press) repre-
sents an important step forward over the previous models we discussed in that
it explicitly incorporates a modulatory neurotransmitter (dopamine) so that
more complex behavior can be addressed. In particular, they implemented



Simulation Frameworks for Large-Scale Brain Systems 293

two separate domains of prefrontal working memory. Task identity (i.e., de-
layed match-to-sample, delayed nonmatch-to-sample and their corresponding
control tasks) was maintained by a segregated set of recurrently excitatory
and mutually inhibitory cell populations. Stimulus feature memory was main-
tained by tonic dopamine level. It seems likely that in the near future, the
level of model complexity will increase even further.

The final example we present in this subsection involves a model that
simulates EEG/MEG dynamics. As mentioned in the introductory section,
EEG/MEG activity has engendered a number of computational neural mod-
eling efforts (e.g., David & Friston 2003; Jirsa & Haken 1997; May et al. 1999;
Nunez 1981; Robinson et al. 2005). Here, we shall discuss a recent study by
David et al. (2005) that describes a neurally plausible forward model designed
to reproduce responses seen empirically, thus allowing mechanistic enquiries
into the generation of evoked and induced EEG/MEG responses to be made.
As these authors point out, most neural models of EEG/MEG were con-
structed to generate alpha rhythms (e.g., Jansen & Rit 1995; Stam et al.
1999), but recent work has shown that models that produce the entire spec-
trum of EEG/MEG oscillations can be created (e.g., David & Friston 2003;
Robinson et al. 2001). The model developed by David and colleagues (David
et al. 2005) focuses on simulating event-related activity.

One important aspect of the David et al. model is that the basic func-
tional unit, based on the work of Jansen and Rit (1995), uses three neuronal
subpopulations to represent a cortical area; one subpopulation corresponds to
pyramidal neurons, a second represents excitatory interneurons and the third
corresponds to inhibitory interneurons. A second important feature is that
their neural mass model consists of hierarchically arranged areas using three
kinds of inter-area connections (forward, backward and lateral). The excita-
tory interneurons can be considered to be spiny stellate cells found primarily
in layer 4 of the cortex; they receive forward connections. The excitatory pyra-
midal neurons are the output cells of a cortical column, and are found in the
agranular layers, as are the inhibitory interneurons. The MEG/EEG signal is
taken to be a linear mixture of the averaged depolarization of the pyramidal
neurons.

Using this model, David et al. (2005) investigated how responses, at each
level of a cortical hierarchy, depended on the strength of connections. They
did this in the context of deterministic responses and then with stochastic
spontaneous activity. One important result of their simulations was that with
the presence of spontaneous activity, evoked responses could arise from two
distinct mechanisms: (1) for low levels of (stimulus related and ongoing) activ-
ity, the systems response conforms to a quasi-linear superposition of separable
responses to the fixed and stochastic inputs, which is consistent with the tra-
ditional assumptions that motivate trial averaging to suppress spontaneous
activity and reveal the event-related response; (2) when activity is sufficiently
high, there are nonlinear interactions between the fixed and stochastic inputs,
which results in a phase resetting, which in turn leads to a different explana-
tion for the appearance of an evoked response.
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3.3 Investigating the Neural Substrates
of Functional and Effective Connectivity

In the last section, we presented a number of examples in which large-scale
neural models were used to simulate PET and fMRI data. In both the sim-
ulated and experimental cases, the data of interest usually are the “activa-
tions”, which are the differences between regional activities in the condition of
interest compared to activities in a control condition. However, a second, and
increasingly important, way to analyze functional neuroimaging data is to use
the covariance paradigm (Horwitz et al. 1992), which asserts that a task is
mediated by a network of interacting brain regions, and that different tasks
utilize different functional networks (see also McIntosh 2000). The fundamen-
tal concept employed by the covariance paradigm is functional connectivity,
which is used in the context of neuronal processes to allude to the functional
interactions between different areas of the brain. The formal mathematical
quantification of these functional relationships depends on the use of interre-
gional covariance or correlation coefficients (e.g., Friston 1994). However, the
actual definition used by different researchers varies widely, as do the compu-
tational algorithms employed to evaluate interregional functional connectivity
(Horwitz, 2003).

Functional connectivity doesn’t distinguish explicitly between the case
where regions are directly influencing one another (e.g., along specific anatomi-
cal pathways) compared to simply indicating some kind of indirect interaction.
To do the former, some type of computational top-down modeling needs to
be employed (Friston 1994; Horwitz 1994; McIntosh & Gonzalez-Lima 1994)
to calculate the interregional effective connectivity. This term has come to
mean, at the systems level, the direct influence of one neural population on
another (Friston 1994). We think of it as meaning the functional strength of
a particular anatomical connection; for instance, during one task a specific
anatomical link may have a stronger effect than during a second condition;
likewise, such a link may be stronger in normal subjects than in a patient
group. The evaluation of effective connectivity requires modeling because one
needs to select a small group of brain regions to include in the network, and
one needs to combine functional neuroimaging data with information about
the anatomical linkages between these regions. That is, the validity of effec-
tive connectivity modeling builds on a combination of implied anatomical and
functional connections between brain regions. A number of chapters in this
volume address functional and effective connectivity; see, for example, the
contributions by Stephan and Friston, by Bullmore, and by Strother.

As we have emphasized in several previous papers (Horwitz 2003; Horwitz
et al. 2005), there are multiple measures of functional and effective connectiv-
ity in use, and there is no guarantee that the conclusions one draws using one
measure will be the same as using another. Furthermore, the terms functional
and effective connectivity are applied to quantities computed on types of func-
tional imaging data (e.g., PET, fMRI, EEG) that vary in spatial, temporal,
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and other dimensions, using different definitions (even for data of the same
modality) and employing different computational algorithms. Until it is un-
derstood what each definition means in terms of an underlying neural sub-
strate, comparisons of functional and/or effective connectivity across studies
may lead to inconsistent or misleading conclusions. Perhaps more important
is the fact that since the neural substrates of each measure are unknown, it is
unclear how well a particular way in which the functional or effective connec-
tivity is computed accurately represents the underlying relationships between
different brain regions.

To address these issues, we have started using our large-scale neural mod-
els to help determine the neurobiological substrates for the most widely used
definitions and algorithms for evaluating interregional functional and effec-
tive connectivity. That is, we simulate fMRI time series with our models and
compute a particular version of the functional or effective connectivity. Be-
cause in the model we know what each neuron and synapse are doing at
every moment in time (unlike the situation for real brain data), we can de-
termine how well the computed functional/effective connectivity reflects the
actual underlying neural relationships in the models. Because our models are
neurobiologically plausible, complex, contain both excitatory and inhibitory
neurons, have feedforward and feedback connections and include a diversity
of regions containing neurons that possess different response properties, they
provide useful testing grounds for investigating various kinds of data analysis
methods (Horwitz 2004).

One example of this approach can be found in Horwitz et al. (2005), where
one of the simplest definitions of fMRI functional connectivity – the within-
condition correlation between fMRI time series - was examined. The crucial
aspect of simulating functional and effective connectivity is to be able to sim-
ulate in biologically plausible ways variability in neural activity, because the
key to evaluating functional or effective connectivity is to assess interregional
co-variability. There are multiple sources of the variability found in functional
neuroimaging data. Although some of these originate from the scanning tech-
nique and some are non-neural in origin (e.g., changes in the vasculature may
lead to changes in the fMRI hemodynamic response function), some of the
variability observed in the functional neuroimaging signal can be utilized to
provide the covariance needed to evaluate functional or effective connectivity.
The main idea is that variability in the activity in one region of the neural
network mediating the task under study is propagated to other regions, re-
sulting in a larger covariance between the regions than would be the case if
they were not interacting with one another. The various methods of evalu-
ating functional connectivity try to tap one or more of these neurally-based
sources of covariation. For fMRI, the three main sources of variation that can
be employed to assess within-condition functional connectivity are subject-to-
subject variability, block-to-block variability and item-to-item (or MR volume-
to-volume) variability (see Horwitz et al. (2005) for a more extensive discussion
of this topic).
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In our modeling approach, these types of variability were incorporated as
subject-to-subject differences in the strengths of anatomical connections, scan-
to-scan changes in the level of attention, and trial-to-trial interactions between
the neurons mediating the task and nonspecific neurons processing noise stim-
uli (Horwitz et al. 2005). Recall that in our modeling framework, simulated
fMRI is computed by integrating the absolute value of the synaptic activities
in each module every 50msec (we call this the integrated synaptic activity or
ISA), convolving this with a function representing the hemodynamic response
and then sampling the resulting time series every TR seconds. Because the
hemodynamic convolution and sampling lead to a loss of temporal resolution,
one can think of the functional connectivities calculated from the ISA as a
kind of ‘gold standard’ in that they represent the most ideal evaluation of
the neural interrelationships that one could get at the systems level. Indeed,
it has been argued by Gitelman and colleagues (Gitelman et al. 2003) that
deconvolving an experimental fMRI time series improves the evaluation of
functional and effective connectivity.

Using the visual model of Tagamets and Horwitz (1998), we (Horwitz et al.
2005) explored the functional connectivity, evaluated as the within-condition
correlation between fMRI time series. Focusing on the link between IT and
PFC (see Fig. 1 above), we found that time series correlations between ISAs
between these two modules were larger during the DMS task than during a
control task. These results were less clear when the integrated synaptic activi-
ties were hemodynamically convolved to generate simulated fMRI activities. In
a second simulation using the auditory model of Husain et al. (2004), we found
that as the strength of the model anatomical connectivity between temporal
and frontal cortex was weakened, so too was the strength of the corresponding
functional connectivity, although the relation was nonlinear. This latter result
is important, since it demonstrates that the fMRI functional connectivity can
appropriately reflect the strength of an anatomical link.

A final illustration of using large-scale neural modeling to investigate the
neural substrates of functional/effective connectivity is a recent study by Lee
et al. (in press). Friston and colleagues (Friston et al. 2003) developed a
method called Dynamic Causal Modeling (DCM) for estimating and making
inferences about the changes in the effective connectivities among small num-
bers of brain areas, and the influence of experimental manipulations on these
couplings (see the article by Stephan and Friston in this volume for a thorough
discussion of this method). Lee et al. used DCM to evaluate the change in ef-
fective connectivity using simulated data generated by our large-scale visual
model implementing the DMS task. System-level models with hierarchical con-
nectivity and reciprocal connections were examined using DCM and Bayesian
model comparison (Penny et al. 2004), and revealed strong evidence for those
models with correctly specified anatomical connectivity. An example of this
is illustrated in Fig. 6. A simple model incorporating the first three regions
of the large-scale visual model (V1/V2, V4 and IT) was analyzed. Three ar-
rangements of the anatomical linkages between regions were compared: (1) the
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Fig. 6. DCM analysis of visual model. (Top) Coupling parameters for the simple
model, with interarea connectivity and modulatory input specified correctly with re-
spect to the underlying large scale neural model. The posterior parameter estimates
for the coupling parameters are shown in black and grey; the values in brackets are
the confidence that these values exceed a threshold of ln2/4Hz. Coupling parameters
exceeding threshold with a confidence of greater than 90% are shown in black. The
posterior parameter estimates for the coupling parameters for direct visual inputs
are shown next to the solid grey arrows. The posterior parameter estimates for the
coupling parameters for modulatory effect of task (shapes vs. degraded stimuli) are
shown next to the dotted grey markers. The values in brackets are the percentage
confidence that these values are greater than zero. (Middle) Coupling parameters
for the simple model, specified as a hierarchy. Inputs are specified and displayed as
in the top panel. (Bottom) Coupling parameters for the simple model, specified with
full inter area connectivity. Inputs are specified and displayed as in the top panel.
Modified from Lee et al. (in press), which should be consulted for further details

actual anatomical connectivity (top); (2) a hierarchical arrangement (middle)
and (3) an arrangement in which every region was reciprocally connected to
every other (bottom). It can be seen that all the coupling parameters in the
model on the top of Fig. 6 (the correctly specified model) exceeded threshold
with greater than 90% confidence. In Fig 6 middle, the posterior probability
of correctly specified connections exceeded 90% confidence, whereas the in-
correct connections did not. The middle model shown in Fig. 6 reduces to the
correct model when the coupling parameters that do not exceed threshold are
excluded. Bayesian model comparison suggested that there was positive evi-
dence for the correct model (the top model) over the two alternatives. For the
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cases examined, Bayesian model comparison confirmed the validity of DCM
in relation to our well established and comprehensive neuronal model.

It should also be mentioned that evaluation of interregional functional
connectivity using EEG/MEG data is also performed by many groups, and
computational neural modeling has been used to investigate these methods
(e.g., David et al. 2004).

In summary, the use of large-scale modeling is starting to provide results
that add support for some methods for computing functional and effective
connectivity. However, the results so far also suggest that caution is needed in
using fMRI-based calculations of functional and effective connectivity to infer
the nature of interregional neural interactions from functional neuroimag-
ing data.

4 Conclusions

In this chapter we have attempted to provide an overview of how compu-
tational modeling, especially those efforts employing large-scale neurobio-
logically realistic models, has in the last few years started to be used in
conjunction with functional neuroimaging data. In our view, the major reason
why neural modeling has become more central for interpreting functional brain
imaging data is that there is a paradigm shift currently underway in cogni-
tive neuroscience (see Fuster 2000), brought about primarily by the increased
importance of functional neuroimaging studies. When the main sources of in-
formation about the neural basis of human cognitive operations came from
the neuropsychological investigation of brain damaged patients and from elec-
trophysiological and lesion studies in nonhuman preparations, scientific inves-
tigation focused on single brain regions and aimed at the notion of functional
segregation (Zeki 1990). Functional brain imaging, especially PET and fMRI,
demonstrated the importance of networks and has necessitated the devel-
opment of network analysis methods. For the future, combined use of the
different kinds of functional brain imaging methods – those, like fMRI, that
provide good spatial information and those, like MEG, that provide good tem-
poral information – will, in our view, necessitate even more intensive use of
computational neural dynamic models.
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It is a longstanding scientific insight that understanding processes that result
from the interaction of multiple elements require mathematical models of sys-
tem dynamics (von Bertalanffy 1969). This notion is an increasingly important
theme in neuroscience, particularly in neuroimaging, where causal mechanisms
in neural systems are described in terms of effective connectivity. Here, we
review established models of effective connectivity that are applied to data
acquired with positron emission tomography (PET), functional magnetic reso-
nance imaging (fMRI), electroencephalography (EEG) or magnetoencephalog-
raphy (MEG). We start with an outline of general systems theory, a very
general framework for formalizing the description of systems. This framework
will guide the subsequent description of various establishd models of effective
connectivity, including structural equation modeling (SEM), multivariate au-
toregressive modeling (MAR) and dynamic causal modeling (DCM). We focus
particularly on DCM which distinguishes between neural state equations and
a biophysical forward model that translates neural activity into a measured
signal. After presenting some examples of applications of DCM to fMRI and
EEG data, we conclude with some thoughts on pharmacological and clinical
applications of models of effective connectivity.

1 General Systems Theory

The central goal of most scientific disciplines is to understand systems, i.e. en-
sembles of interacting elements. Today, this statement sounds almost trivial,
yet in biology at least, the importance of the systems concept has been es-
tablished only relatively recently. A key figure was Ludwig von Bertalanffy,
a biologist and philosopher, who wrote a series of seminal articles in the
first half of the 20th century in which he argued that complex phenomena
in biology (and indeed any other scientific field) invariably result from sys-
tems and could only be understood properly through a mathematical descrip-
tion of how system behavior emerged from the interactions of its constituent
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elements. Demonstrating the existence of system isomorphisms, i.e. general
mathematical descriptions that explained the dynamic behavior of very dif-
ferent kind of systems at different scales and across fields as diverse as physics,
biology, economy and sociology, he introduced a very general framework that
became known as general system theory (see the collection of essays in von
Bertalanffy 1969). By the 1940s, the systems concept had experienced a sci-
entific breakthrough in biology and led to the rise of cybernetics, “the science
of control and communication in the animal and the machine” (Wiener 1948;
Ashby 1956).

Today, biology uses the systems concept to address questions at all levels,
from the molecular level to whole organisms and populations. The systems
concept is now so omnipresent in biology that a recent special issue of the
journal Science on systems biology renewed von Bertalanffy’s (1969) previous
diagnosis: “The [systems] concept has pervaded all fields of science and pene-
trated into popular thinking, jargon, and mass media” (Chong & Ray 2002).

But what exactly is a “system” and why is the systems concept so useful
for framing scientific questions? A general, yet informal, definition is that a
system is a set of elements which interact with each other in a spatially and
temporally specific fashion. Before we attempt a formal definition of a system
in the next section, let us remind ourselves that one of the classic scientific
methods is to “analyze” a given phenomenon, i.e. to break it down into atomic
units and processes that can be investigated independently of each other. This
approach is appealing because it reduces a complex problem to a set of sim-
pler problems, each of which can be addressed under conditions which can be
controlled more easily for potentially confounding influences. For example, if
one wanted to understand the physiological properties of a single neuron, one
might decide to isolate it from its environment (e.g. let it grow in a dish) and
then map its responses to currents injected into various parts of its dendritic
tree. Unfortunately, this analytic approach cannot fully predict the neuron’s
behavior when it is part of a neural system, e.g. in the brain, and thus inter-
acts with other neurons. When part of a system, the response of an individual
neuron to a particular synaptic input (or injected current) u1 depends on the
spatial and temporal distribution of inputs u1 . . . un that its dendritic tree
receives from other neurons. If these additional inputs occur sufficiently close
in time and space to u1, they will affect the magnitude of the postsynaptic
potential elicited by u1, either linearly (by spatio-temporal summation) or
nonlinearly (e.g. by changing the opening probability of voltage-gated chan-
nels) (Magee & Johnston 2005). In other words, the connectivity in the system
mediates effects that cannot be predicted by studying a single neuron. Similar
scenarios can be described for any other scientific field, for example biochem-
istry. Having studied a set of different biochemical processes in isolation, one
would not necessarily be able to predict their collective dynamics. The prob-
lem is, as above, that different processes may interact, e.g. one process may
change the substrate/product ratio of another process, or the efficacy of an
enzyme that is relevant for a particular process may change due to the presence
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of allosteric (in)activators that are produced by a second process or due to
dynamic changes in gene expression mediated by a third process.

In summary, the general problem of analytical procedures in science is
that they are blind to predicting the consequences arising from interactions
between the elements in a system. Analytical procedures therefore need to
be complemented with a theoretical framework that takes into account both
the connectivity between the elements and external perturbations in order to
achieve a mechanistic explanation of the dynamics of the system as a whole.
This framework is provided by general system theory.

2 A General Form for System Models

Why is it useful at all to strive for formal mathematical definitions of systems?
First, as described below, it allows one to pinpoint precisely what is meant
by structure, function, and structure-function-relationships. Second, it allows
one to predict system behavior for situations in which the system has not been
observed before (see Bossel 1992 for an impressive collection of examples from
biology). Third, it is the only way to fully understand how a system works and
particularly, how system function could be restored if some of its components
are rendered dysfunctional, e.g. by disease (Payne & Lomber 2001).

Here, we choose deterministic differential equations with time-invariant
parameters as a mathematical framework; note that these are not the only
possible mathematical representation of dynamic systems (see Bar-Yam 1997
for alternatives). The underlying concept, however, is quite universal: a system
is defined by a set of elements with n time-variant properties altogether that
interact with each other. Each time-variant property xi (1 ≤ i ≤ n) is called
a state variable, and the n-vector x(t) of all state variables in the system is
called the state vector (or simply state) of the system at time t:

x(t) =

⎡
⎢⎣
x1(t)

...
xn(t)

⎤
⎥⎦ (1)

Taking an ensemble of interacting neurons as an example, the system
elements would correspond to the individual neurons, each of which is repre-
sented by one or several state variables. These state variables could refer to
various neurophysiological properties, e.g. postsynaptic potentials, status of
ion channels, etc. This touches on an important distinction: in system con-
struction (e.g. in engineering), the relevant state variables and their mutual
dependencies are usually known; in system identification (e.g. when trying to
understand a biological system), however, they are not known. This means
that we always require a model of the system that represents our current hy-
pothesis about the structure of the system and how its function emerges from
that structure (the structure-function relationship, SFR).
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The crucial point is that the state variables interact with each other, i.e. the
evolution of each state variable depends on at least one other state variable.
This mutual functional dependence between the state variables of the system
is expressed in a very natural fashion by a set of ordinary differential equations
that operate on the state vector:

dx

dt
=

⎡
⎢⎣
f1(x1, . . . , xn)

...
fn(x1, . . . , xn)

⎤
⎥⎦ = F (x) (2)

However, this description is not yet sufficient. First of all, the specific
form of the dependencies fi needs to be specified, i.e. the nature of the causal
relations between state variables. This requires a set of parameters θ which de-
termine the form and strength of influences between state variables. In neural
systems, these parameters usually correspond to time constants or strengths
of the connections between the system elements. And second, in the case of
non-autonomous systems (and these are the ones of interest to biology) we
need to consider the input into the system, e.g. sensory information enter-
ing the brain. We represent the set of all m known inputs by the m-vector
function u(t). Extending (2) accordingly leads to a general state equation for
non-autonomous deterministic systems

dx

dt
= F (x, u, θ) (3)

where θ is the parameter vector of the system. Such a model provides a
causal description of how system dynamics results from system structure, be-
cause it describes (i) when and where external inputs enter the system and (ii)
how the state changes induced by these inputs evolve in time depending on the
system’s structure. As explained below in more detail in Sect. 3, (3) therefore
provides a general form for models of effective connectivity in neural systems,
i.e. the causal influences that neural units exert over another (Friston 1994).

We have made two main assumptions to simplify the exposition. First,
it is assumed that all processes in the system are deterministic and occur
instantaneously. Random components (noise) and delays could be accounted
for by using stochastic differential equations and delay differential equations,
respectively. Second, we assume that we know the inputs that enter the sys-
tem. This is a tenable assumption in neuroimaging because the inputs are
experimentally controlled variables, e.g. changes in stimuli or instructions.1

1 Note that using time-invariant dependencies fi and parameters θ is neither an as-
sumption nor a restriction. Although the mathematical form of fi per se is static,
the use of time-varying inputs u allows for dynamic changes in what components
of fi are “activated”. For example, using box-car functions that are multiplied
with the different terms of a polynomial function one can induce changes from
linear to nonlinear behavior (and vice versa) over time. Also, there is no principled
distinction between states and time-invariant parameters. Therefore, estimating
time-varying parameters can be treated as a state estimation problem.
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On the basis of the general system description provided by (3) we can
now state accurately, given a particular system model, what we mean by
structure, function, and structure-function relationships (see Stephan 2004
for more details):

• Structure is defined by the time-invariant components of the system,
i.e. the binary nature of θ (which connections exist and which do not;
see (8)) and the mathematical form of the state variable dependencies fi.

• Function refers to those time-variant components of the system model that
are conditional on its structure, i.e. x(t), but not u(t).

• The structure-function relationship (SFR) is represented by F : integrating
F in time determines the temporal evolution of the system state x from
time t=0 up to a time point τ , given an initial state x(0):

x(τ) = x(0) +

τ∫

0

F (x, u, θ)dt (4)

In other words, given a particular temporal sequence of inputs u(t), (4)
provides a complete description of how the dynamics of the system (i.e. the
trajectory of its state vector x in time) results from its structure and initial
state.

3 Functional Integration and Effective Connectivity
are Assessed through System Models

Modern cognitive neuroscience has adopted an explicit system perspective.
A commonly accepted view is that the brain regions that constitute a given
system are computationally specialized, but that the exact nature of their in-
dividual computations depends on context, e.g. the inputs from other regions.
The aggregate behavior of the system depends on this neural context, the
context-dependent interactions between the system components (McIntosh
2000; see also the chapter by Bressler & McIntosh in this volume). An equiv-
alent perspective is provided by the twin concepts of functional specialization
and functional integration (Friston 2002). Functional specialization assumes
a local specialization for certain aspects of information processing but allows
for the possibility that this specialization is anatomically segregated across
different cortical areas. The majority of current functional neuroimaging ex-
periments have adopted this view and interpret the areas that are activated
by a certain task component as the elements of a distributed system. How-
ever, this explanation is incomplete as long as no insight is provided into how
the locally specialized computations are bound together by context-dependent
interactions among these areas, i.e. the functional integration within the sys-
tem. This functional integration within distributed neural systems can be
characterized in two ways, functional connectivity and effective connectivity.
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Functional connectivity has been defined as the temporal correlation be-
tween regional time series (Friston 1994). Analyses of functional connectivity
therefore do not incorporate any knowledge or assumptions about the struc-
ture and the SFR of the system of interest. Depending on the amount of
knowledge about the system under investigation, this can either be a strength
or a weakness. If the system is largely unknown, functional connectivity ap-
proaches are useful because they can be used in an exploratory fashion, either
by computing functional connectivity maps with reference to a particular seed
region (Horwitz et al. 1998; McIntosh et al. 2003; Stephan et al. 2001a) or
using a variety of multivariate techniques that find sets of voxels whose time
series represent distinct (orthogonal or independent) components of the co-
variance structure of the data (Friston & Büchel 2004; McIntosh & Lobaugh
2004). The information from these analyses can then be used to generate hy-
potheses about the system. Conversely, given sufficient information about the
system structure and a specific hypothesis about the SFR of the system, mod-
els of effective connectivity are more powerful. Here, we only deal with models
of effective connectivity. For analyses of functional connectivity, please see the
chapters by Salvador et al., Bressler & McIntosh and Sporns & Tononi in this
volume.

Effective connectivity has been defined by various authors, but in comple-
mentary ways. A general definition is that effective connectivity describes the
causal influences that neural units exert over another (Friston 1994). Other
authors have proposed that “effective connectivity should be understood as
the experiment- and time-dependent, simplest possible circuit diagram that
would replicate the observed timing relationships between the recorded neu-
rons” (Aertsen & Preißl 1991). Both definitions emphasize that determining
effective connectivity requires a causal model of the interactions between the
elements of the neural system of interest. Such a causal model has to take
into account the external inputs that perturb the system and the anatomical
connections by which neural units influence each other. In other words, any
such model is a special case of the general system model as described in Sect. 2
and formalized by (3).

The equations presented in Sect. 2 are extremely general. To illustrate how
the concept of effective connectivity emerges naturally from system models,
we discuss the special case of a linear dynamic system. Although most natural
phenomena are of a nonlinear nature, linear models play an important role
in systems science because (i) they are analytically tractable, and (ii) given
sufficiently long observation periods and non-negligible external input, their
dynamics are largely independent of the initial state (Bossel 1992). Therefore
nonlinear systems are usually investigated in restricted sub-spaces of interest,
using linear models as local approximations. The following model of n inter-
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acting brain regions is a simple linear case of (3) which uses a single state
variable per region and m external inputs:

⎡
⎢⎣

dx1
dt
...

dxn

dt

⎤
⎥⎦ =

⎡
⎢⎣
a11 · · · a1n

...
. . .

...
an1 · · · ann

⎤
⎥⎦

⎡
⎢⎣
x1

...
xn

⎤
⎥⎦ +

⎡
⎢⎣
c11 · · · c1m

...
. . .

...
cn1 · · · cnm

⎤
⎥⎦

⎡
⎢⎣
u1

...
um

⎤
⎥⎦ (5)

In this model the change of any given element depends on the state of
the other system elements and on external inputs which affect it directly or
indirectly. This system model can be written in compact matrix form as

F (x) =
dx

dt
= Ax+ Cu (6)

where the non-zero values of A and C represent the parameters of the system
(i.e. θ in (3)) and the state of the system at time point τ can be obtained by
integration (compare (4))

x(τ) = eAτx(0) +

τ∫

0

eA(τ−t)Cu(t)dt (7)

where eAt is the matrix exponential (Bossel 1992). In this model, the system’s
behavior has two separable components: intrinsically sustained dynamics (pa-
rameterized by matrix A) and dynamics enforced by external inputs (param-
eterized by matrix C). The first term of (6) says that the change of the state
variable xi is a linear mixture of all state variables in the system, weighted
by the parameters aij . By defining a particular parameter aij to be zero, we
disallow for a direct effect of xj on xi (see Fig. 1 for an example). Conversely,
any non-zero parameter aij represents a causal influence of the dynamics of
xj on that of xi. The binarized parameter matrix Ã

Ã = χ(A) =

⎡
⎢⎣
χ(a11) · · · χ(a1n)

...
. . .

...
χ(an1) · · · χ(ann)

⎤
⎥⎦ ,

χ(a) =

{
1 if a �= 0
0 if a = 0

(8)

represents the structural connectivity of the system model (see the chapter by
Sporns & Tononi in this volume on how patterns of anatomical connections
constrain effective connectivity and thus the dynamics of neural systems).
The definition of the structural connectivity is usually guided by anatomical
investigations in primates (Stephan et al. 2001b, Kötter 2004; see the chapter
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by Paus in this volume for alternative approaches in humans). The values of
A represent the influences of system elements over each other and thus corre-
spond to the effective connectivity within the system. Finally, the values of the
matrix C represent the magnitude of the direct effects that external (e.g. sen-
sory) inputs have on system elements. By setting a particular parameter cij to
be zero, we disallow for a direct effect of the external input uj on xi (see Fig. 1
for an example). A and C represent the system parameters (θ) that one needs
to estimate when fitting this model to measured data. Simple linear models
of this kind have found widespread application in various scientific disciplines
(von Bertalanffy 1969). In Sect. 6, we will see that Dynamic Causal Modelling
(DCM, Friston et al. 2003) extends the above formulation by bilinear terms
that model context-dependencies of intrinsic connection strengths.

It should be noted that the framework outlined here is concerned with
dynamic systems in continuous time and thus uses differential equations. The
same basic ideas, however, can also be applied to dynamic systems in discrete
time (using difference equations), as well as to “static” systems where the
system is at equilibrium at each point of observation. The latter perspective,
which is useful for regression-like equations, is used by classic system models
for functional neuroimaging data, e.g. psycho-physiological interactions (PPI;
Friston et al. 1997), structural equation modeling (SEM; McIntosh et al. 1994;
Büchel & Friston 1997) or multivariate autoregressive models (MAR; Harrison
et al. 2003; Göbel et al. 2003). These will be described in the following sections.
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Fig. 1. A simple linear dynamic system as an example for a concrete implementation
of (3), describing interactions between the lingual (LG) and the fusiform gyri (FG)
in both hemispheres. The top panel shows the system structure and the sensory
inputs (visual stimuli displayed in the left and right peripheral visual field) that
perturb the system. The lower panel shows the state equation in matrix form
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4 Psycho-Physiological Interactions (PPI)

PPI are one of the simplest models available to assess functional interactions
in neuroimaging data (see Friston et al. 1997 for details). Given a chosen refer-
ence time series y0 (obtained from a reference voxel or region), PPI computes
whole-brain connectivity maps of this reference voxel with all other voxels yi

in the brain according to the regression-like equation

yi = ay0 + b(y0 × u) + cu+Xβ + e (9)

Here, a is the strength of the intrinsic (context-independent) connectivity
between y0 and yi. The bilinear term y0 × u represents the interaction be-
tween physiological activity y0 and a psychological variable u which can be
construed as a contextual input into the system, modulating the connectivity
between y0 and yi (× represents the Hadamard product, i.e. element-by ele-
ment multiplication). The third term describes the strength c by which the
input u determines activity in yi directly, independent of y0. Finally, β are
parameters for effects of no interest X (e.g. confounds) and e is a Gaussian
error term.

Notwithstanding the fact that this is a non-dynamic model, (9) contains
the basic components of system descriptions as outlined in Sect. 2 and (3),
and there is some similarity between its form and that of the state equation of
DCM ((13), see below). However, since only pair-wise interactions are consid-
ered (i.e. separately between the reference voxel and all other brain voxels),
this model is severely limited in its capacity to represent neural systems. This
has also been highlighted in the initial description of PPIs (Friston et al.
1997). Although PPIs are not a proper system model, they have a useful role
in exploring the functional interactions of a chosen region across the whole
brain. This exploratory nature bears some similarity to analyses of functional
connectivity. Unlike analyses of functional connectivity, however, PPIs model
the contextual modulation of connectivity, and this modulation has a direc-
tional character, i.e. testing for a PPI from y0 to yi is not identical to testing
for a PPI from yi to y0. This is because regressing y0×u on yi is not equivalent
to regressing yi × u on y0.

5 Structural Equation Modeling (SEM)

SEM has been an established statistical technique in the social sciences for
several decades, but was only introduced to neuroimaging in the early 1990’s
by McIntosh & Gonzalez-Lima (1991). It is a multivariate, hypothesis-driven
technique that is based on a structural model which represents the hypoth-
esis about the causal relations between several variables (see McIntosh &
Gonzalez-Lima 1994, Büchel & Friston 1997, Bullmore et al. 2000 and Penny
et al. 2004a for methodological details). In the context of fMRI these vari-
ables are the measured BOLD (blood oxygen level dependent) time series
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y1 . . . yn of n brain regions and the hypothetical causal relations are based
on anatomically plausible connections between the regions. The strength of
each connection yi → yj is specified by a so-called “path coefficient” which,
by analogy to a partial regression coefficient, indicates how the variance of yj

depends on the variance of yi if all other influences on yj are held constant.
The statistical model of standard SEM implementations for neuroimaging

data can be summarized by the equation

y = Ay + u (10)

where y is a n×s matrix of n area-specific time series with s scans each, A
is a n×n matrix of path coefficients (with zeros for non-existent connections),
and u is a n× s matrix of zero mean Gaussian error terms, which are driving
the modeled system (“innovations”, see (11)). Note that the model on which
SEM rests is a special case of the general equation for non-autonomous linear
systems (with the exception that SEM is a static model and the inputs to
the modeled system are random noise; compare (11) with (6)). Parameter
estimation is achieved by minimizing the difference between the observed and
the modeled covariance matrix Σ of the areas (Bollen 1989). For any given
set of parameters, Σ can be computed by transforming (10):

y = (I −A)−1u

Σ = yyT

= (I −A)−1uuT (I −A)−1T

(11)

where I is the identity matrix and T denotes the transpose operator. The
first line of 11 can be understood as a generative model of how system function
results from the system’s connectional structure: the measured time series
y results by applying a function of the inter-regional connectivity matrix,
i.e. (I −A)−1, to the Gaussian innovations u.

In the special case of fMRI, the path coefficients of a SEM (i.e. the param-
eters in A) describe the effective connectivity of the system across the entire
experimental session. What one would often prefer to know, however, is how
the coupling between certain regions changes as a function of experimentally
controlled context, e.g. differences in coupling between two different tasks. No-
tably, SEM does not account for temporal order: if all regional time series were
permuted in the same fashion, the estimated parameters would not change.
In case of blocked designs, this makes it possible to proceed as if one were
dealing with PET data, i.e. to partition the time series into condition-specific
sub-series and fit separate SEMs to them. These SEMs can then be compared
statistically to test for condition-specific differences in effective connectivity
(for examples, see Büchel et al. 1999; Honey et al. 2002). An alternative ap-
proach is to augment the model with bilinear terms (cf. (9)) which represent
the modulation of a given connection by experimentally controlled variables
(e.g. Büchel & Friston 1997; Rowe et al. 2002). In this case, only a single SEM
is fitted to the entire time series.



Models of Effective Connectivity in Neural Systems 313

One limitation of SEM is that one is restricted to use structural models of
relatively low complexity since models with reciprocal connections and loops
often become non-identifiable (see Bollen 1989 for details). There are heuris-
tics for dealing with complex models that use multiple fitting steps in which
different parameters are held constant while changing others (see McIntosh
et al. 1994 for an example).

6 Multivariate Autoregressive Models (MAR)

In contrast to SEM, autoregressive models explicitly address the temporal
aspect of causality in time series. They take into account the causal depen-
dence of the present on the past: each data point of a regional time series is
explained as a linear combination of past data points from the same region.
MAR models extend this approach to n brain regions, modeling the n-vector
of regional signals at time t (yt) as a linear combination of p past data vectors
whose contributions are weighted by the parameter matrices Ai:

yt =
p∑

i=1

yt−iAi + ut (12)

MAR models thus represent directed influences among a set of regions
whose causal interactions are inferred via their mutual predictability from
past time points. Although MAR is an established statistical technique, spe-
cific implementations for neuroimaging were suggested only relatively recently.
Harrison et al. (2003) suggested a MAR implementation that allowed for
the inclusion of bilinear variables representing modulatory effects of con-
textual variables on connections and used a Bayesian parameter estimation
scheme specifically developed for MAR models (Penny & Roberts 2002). This
Bayesian scheme also determined the optimal model order, i.e. the number of
past time points (p in (12)) to be considered by the model. A complementary
MAR approach, based on the idea of “Granger causality” (Granger 1969), was
proposed by Goebel et al. (2003). In this framework, given two time-series y1
and y2, y1 is considered to be caused by y2 if its dynamics can be predicted
better using past values from y1 and y2 as opposed to using past values of
y1 alone.

7 Dynamic Causal Modeling (DCM)

An important limitation of the models discussed so far is that they operate
at the level of the measured signals. Taking the example of fMRI, the model
parameters are fitted to BOLD series which result from a haemodynamic con-
volution of the underlying neural activity. Any inference about inter-regional
connectivity obtained by PPI, SEM or MAR is only an indirect one because
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these models do not include the forward model linking neuronal activity to
the measured haemodynamic data. In the case of EEG, this forward model
means there is a big difference between signals measured at each electrode
and the underlying neuronal activity: changes in neural activity in different
brain regions lead to changes in electric potentials that superimpose linearly.
The scalp electrodes therefore record a mixture, with unknown weightings, of
potentials generated by a number of different sources.

The causal architecture of the system that we would like to identify is
expressed at the level of neuronal dynamics. Therefore, to enable inferences
about connectivity between neural units we need models that combine two
things: (i) a parsimonious but neurobiologically plausible model of neural
population dynamics, and (ii) a biophysically plausible forward model that de-
scribes the transformation from neural activity to the measured signal. Such
models make it possible to fit jointly the parameters of the neural and of
the forward model such that the predicted time series are optimally similar
to the observed time series. In principle, any of the models described above
could be combined with a modality-specific forward model, and indeed, MAR
models have previously been combined with linear forward models to explain
EEG data (Yamashita et al. 2004). So far, however, Dynamic Causal Model-
ing (DCM) is the only approach where the marriage between models of neural
dynamics and biophysical forward models is a mandatory component. DCM
has been implemented both for fMRI (Friston et al. 2003) and EEG/MEG
data (David et al. 2006; Kiebel et al. 2006). These modality-specific imple-
mentations are briefly summarized in the remainder of this section (see Fig. 2
for a conceptual overview).

),,( θuxFx =⋅
Neural state equation:

Electromagnetic
forward model:

neural activity→EEG
MEG

(linear)

Neural model:
1 state variable per region
bilinear state equation
no propagation delays

Neural model:
8 state variables per region

nonlinear state equation
propagation delays

fMRIfMRI ERPsERPs

inputs

Hemodynamic
forward model:
neural activity→BOLD
(nonlinear)

Fig. 2. A schematic overview that juxtaposes properties of DCM for fMRI and
ERPs, respectively. It illustrates that DCM combines a model of neural population
dynamics, following the generic form of (3), with a modality-specific biophysical
forward model. Given appropriate formulations of the neural and the forward model,
DCM can be applied to any kind of measurement modality
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7.1 DCM for fMRI

DCM for fMRI uses a simple model of neural dynamics in a system of n
interacting brain regions. It models the change of a neural state vector x
in time, with each region in the system being represented by a single state
variable, using the following bilinear differential equation:

dx

dt
= F (x, u, θn)

=

⎛
⎝A+

m∑
j=1

ujB
(j)

⎞
⎠x+ Cu (13)

Note that this neural state equation follows the general form for deter-
ministic system models introduced by (3), i.e. the modeled state changes are
a function of the system state itself, the inputs u and some parameters θn

that define the functional architecture and interactions among brain regions
at a neuronal level (n in θn is not an exponent but a superscript that denotes
“neural”). The neural state variables represent a summary index of neural pop-
ulation dynamics in the respective regions. The neural dynamics are driven
by experimentally controlled external inputs that can enter the model in two
different ways: they can elicit responses through direct influences on specific
regions (e.g. evoked responses in early sensory cortices; the C matrix) or they
can modulate the coupling among regions (e.g. during learning or attention;
the B matrices).

Equation (13) is a bilinear extension of (6) that was introduced earlier as
an example of linear dynamic systems. Given this bilinear form, the neural
parameters θn = {A,B,C} can be expressed as partial derivatives of F :

A =
∂F

∂x

∣∣∣∣
u=0

B(j) =
∂2F

∂x∂uj

C =
∂F

∂u

∣∣∣∣
x=0

(14)

The matrix A represents the effective connectivity among the regions in the
absence of input, the matrices B(j) encode the change in effective connectivity
induced by the jth input uj , and C embodies the strength of direct influences
of inputs on neuronal activity (see Fig. 3 for a concrete example and compare
it to Fig. 1).

DCM for fMRI combines this model of neural dynamics with an exper-
imentally validated haemodynamic model that describes the transformation
of neuronal activity into a BOLD response. This so-called “Balloon model”
was initially formulated by Buxton et al. (1998) and later extended by
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Fig. 3. A simple bilinear extension of the linear dynamic system shown in Fig. 1.
This is an example for a concrete implementation of the neural state equation of
DCM for fMRI. Note the role of the bilinear terms which model context-dependent
(additive) changes of the strengths of the connections from the right to the left
hemisphere (circled elements in the B matrix)

Friston et al. (2000). Briefly, it consists of a set of differential equations that
describe the relations between four haemodynamic state variables, using five
parameters (θh). More specifically, changes in neural activity elicit a vasodila-
tory signal that leads to increases in blood flow and subsequently to changes
in blood volume and deoxyhemoglobin content. The predicted BOLD signal is
a non-linear function of blood volume and deoxyhemoglobine content. Details
of the haemodynamic model can be found in other publications (Friston et al.
2000; Stephan et al. 2004). Figure 4 provides a conceptual overview of DCM
for fMRI.

The combined neural and haemodynamic parameter set θ = {θn, θh} is
estimated from the measured BOLD data, using a fully Bayesian approach
with empirical priors for the haemodynamic parameters and conservative
shrinkage priors for the coupling parameters. Details of the parameter esti-
mation scheme, which rests on a gradient ascent procedure embedded into an
expectation maximization (EM) algorithm and uses a Laplace (i.e. Gaussian)
approximation to the true posterior, can be found in Friston (2002). Even-
tually, the posterior distributions of the parameter estimates can be used to
test hypotheses about connection strengths. Usually, these hypotheses con-
cern context-dependent changes in coupling. If there is uncertainty about the
connectional structure of the modeled system, or if one would like to compare
competing hypotheses (represented by different DCMs), a Bayesian model
selection procedure can be used to find the DCM that exhibits an optimal
balance between model fit and model complexity (Penny et al. 2004b).
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Fig. 4. Schematic summary of DCM for fMRI. The dynamics in a system of interact-
ing neuronal populations (left panel), which are not directly observable by fMRI, are
modeled using a bilinear state equation (right panel). Integrating the state equation
gives predicted neural dynamics (x) which are transformed into predicted BOLD
responses (y) by means of a haemodynamic forward model (λ). Neural and haemo-
dynamic parameters are adjusted jointly such that the differences between predicted
and measured BOLD series are minimized. The neural dynamics are determined by
experimental manipulations that enter the model in the form of external inputs.
Driving inputs (u1; e.g. sensory stimuli) elicit local responses which are propagated
through the system according to the intrinsic connections. The strengths of these
connections can be changed by modulatory inputs (u2; e.g. changes in task, atten-
tion, or due to learning). Note that in this figure the structure of the system and
the scaling of the inputs have been chosen arbitrarily

7.2 DCM for Event-Related Potentials (ERPs)

ERPs as measured with EEG or MEG have been used for decades to study
electrophysiological correlates of cognitive operations. Nevertheless, the neu-
robiological mechanisms that underlie their generation are still largely un-
known. DCM for ERPs was developed as a biologically plausible model to
understand how event-related responses result from the dynamics in coupled
neural ensembles (David et al. 2006).

DCM for ERPs rests on a neural mass model, developed by David &
Friston (2003) as an extension of the model by Jansen & Rit (1995), which
uses established connectivity rules in hierarchical sensory systems (Felleman
& Van Essen 1992) to assemble a network of coupled cortical sources. These
rules characterize connections with respect to their laminar patterns of origin
and termination and distinguish between (i) forward (or bottom-up) connec-
tions originating in agranular layers and terminating in layer 4, (ii) backward
(or top-down) connections originating and terminating in agranular layers,
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and (iii) lateral connections originating in agranular layers and targeting all
layers. These long-range (extrinsic or inter-areal) cortico-cortical connections
are excitatory, using glutamate as neurotransmitter, and arise from pyrami-
dal cells.

Each region or source is modeled as a microcircuit following the model by
David & Friston (2003). Three neuronal subpopulations are combined in this
circuit and assigned to granular and supra-/infragranular layers. A popula-
tion of excitatory pyramidal (output) cells receives inputs from inhibitory and
excitatory populations of interneurons via intrinsic (intra-areal) connections.
Within this model, excitatory interneurons can be regarded as spiny stellate
cells found predominantly in layer 4 and in receipt of forward connections.
Excitatory pyramidal cells and inhibitory interneurons are considered to oc-
cupy infra- and supragranular layers and receive backward and lateral inputs
(see Fig. 5).

The neural state equations are summarized in Fig. 5. To perturb the sys-
tem and model event-related responses, the network receives inputs via input
connections. These connections are exactly the same as forward connections
and deliver input u to the spiny stellate cells in layer 4. Input u represents
afferent activity relayed by subcortical structures and are modelled as two
parameterized components, a gamma density function (representing an event-
related burst of input that is delayed and dispersed by subcortical synapses
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Fig. 5. Schematic of the neural model in DCM for ERPs. This schema shows the
state equations describing the dynamics of a microcircuit representing an individual
region (source). Each region contains three subpopulations (pyramidal, spiny stel-
late and inhibitory interneurons) that are linked by intrinsic connections and have
been assigned to supragranular, granular and infragranular cortical layers. Different
regions are coupled through extrinsic (long-range) excitatory connections that follow
the laminar patterns of forward, backward and lateral connections, respectively
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and axonal conduction) and a discrete cosine set (representing fluctuations in
input over peristimulus time). The influence of this input on each source is
controlled by a parameter vector C (see David et al. 2006 for details). Overall,
the DCM is specified in terms of the state equations shown in Fig. 5 and a
linear output equation

dx

dt
= f(x, u, θ)

y = Lx0 + ε (15)

where x0 represents the transmembrane potential of pyramidal cells and L
is a lead field matrix coupling electrical sources to the EEG channels (Kiebel
et al. 2006). In comparison to DCM for fMRI, the forward model is a simple
linearity as opposed to the nonlinear haemodynamic model in DCM for fMRI.
In contrast, the state equations of DCM for ERPs are much more complex
and realistic (cf. Fig. 5). As an example, the state equation for the inhibitory
subpopulation is

dx7

dt
= x8

dx8

dt
=
He

τe
((AB +AL + γ3I)S(x0))− 2x8

τe
− x7

τ2
e

(16)

The parameter matrices AF , AB , AL encode forward, backward and lateral
connections respectively. Within each subpopulation, the dynamics of neural
states are determined by two operators. The first transforms the average den-
sity of presynaptic inputs into the average postsynaptic membrane potential.
This is modeled by a linear transformation with excitatory (e) and inhibitory
(i) kernels parameterized by He,i and τe,i. He,i control the maximum postsy-
naptic potential and τe,i represent lumped rate constants (i.e. lumped across
dendritic spines and the dendritic tree). The second operator S transforms
the average potential of each subpopulation into an average firing rate. This
is assumed to be instantaneous and is a sigmoid function. Intra-areal inter-
actions among the subpopulations depend on constants γ1...4 which control
the strength of intrinsic connections and reflect the total number of synapses
expressed by each subpopulation. In (16), the top line expresses the rate of
change of voltage as a function of current. The second line specifies how cur-
rent changes as a function of voltage, current and presynaptic input from
extrinsic and intrinsic sources. For simplification, our description here has
omitted the fact that in DCM for ERPs all intra- and inter-areal connections
have conduction delays. This requires the use of delay differential equations
(see David et al. 2006 for details).

For estimating the parameters from empirical data, a fully Bayesian ap-
proach is used that is analogous to that used in DCM for fMRI and is
described in detail by David et al. (2006). The posterior distributions of
the parameter estimates can be used to test hypotheses about the modeled
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processes, particularly differences in inter-areal connection strengths between
different trial types. As in DCM for fMRI, Bayesian model selection can be
used to optimize model structure or compare competing scientific hypotheses
(Penny et al. 2004b).

8 Application of System Models in Functional
Neuroimaging: Present and Future

Models of functional integration, which were originally developed for electro-
physiological data from multi-unit recordings (Gerstein and Perkel 1968), are
now taking an increasingly prominent role in functional neuroimaging. This
is because the emphasis of the scientific questions in cognitive neuroscience
is shifting from where particular processes are happening in the brain to how
these processes are implemented. With increasing use, a word of caution may
be appropriate here: Models of effective connectivity are not very useful with-
out precise a priori hypotheses about specific mechanisms expressed at the
level of inter-regional coupling. Simply describing patterns of connectivity that
require post hoc interpretation does not lead to a mechanistic understanding
of the system of interest. What is needed are parsimonious, well-motivated
models that test precise hypotheses about mechanisms, either in terms of
changes in particular connection strengths as a function of experimental con-
dition, time (learning) or drug, or in terms of comparing alternative expla-
nations by model selection (for examples, see Büchel & Friston 1997; Büchel
et al. 1999; Honey et al. 2003; McIntosh et al. 1994, 1998; Rowe et al. 2002;
Stephan et al. 2003, 2005; Toni et al. 2002). Figure 6 shows an example of
such a model (Friston et al. 2003) where the parameters are mechanistically
meaningful.

This search for mechanisms seems particularly promising for pharmaco-
logical questions. Since many drugs used in psychiatry and neurology change
synaptic transmission and thus functional coupling between neurons, their
therapeutic effects cannot be fully understood without models of drug-induced
connectivity changes in particular neural systems. So far, only relatively few
studies have studied pharmacologically induced changes in connectivity, rang-
ing from simple analyses of functional connectivity (e.g. Stephan et al. 2001a)
to proper system models (e.g. Honey et al. 2003). As highlighted in a re-
cent review by Honey and Bullmore (2004), an exciting possibility for the
future is to use system models at the early stage of drug development to
screen for substances that induce desired changes of connectivity in neural
systems of interest with a reasonably well understood physiology. The success
of this approach will partially depend on developing models that include ad-
ditional levels of biological detail (e.g. effects of different neurotransmitters
and receptor types) while being parsimonious enough to ensure mathematical
identifiability and physiological interpretability; see Breakspear et al. (2003),
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Fig. 6. DCM analysis of a single subject fMRI data from a study of attention to
visual motion in which subjects viewed identical stimuli (radially moving dots) un-
der different levels of attention to the stimuli (Büchel & Friston 1997). The model
was introduced and described in detail by Friston et al. (2003). The figure is repro-
duced (with permission from Elsevier Ltd.) from Stephan et al. (2004). Only those
conditional estimates are shown alongside their connections for which there was at
least 90% confidence that they corresponded to neural transients with a half life
shorter than 4 seconds. The temporal structure of the inputs is shown by box-car
plots. Dashed arrows connecting regions represent significant bilinear affects in the
absence of a significant intrinsic coupling. Fitted responses based upon the condi-
tional estimates and the adjusted data are shown in the panels connected to the
areas by dotted lines. The important parameters here are the bilinear ones. Note
that while the intrinsic connectivity between areas V1 and V5 is non-significant and
basically zero, motion stimuli drastically increase the strength of this connection,
“gating” V1 input to V5. Top-down effects of attention are represented by the mod-
ulation of backward connections from the inferior frontal gyrus (IFG) to the superior
parietal cortex (SPC) and from SPC to V5. See Penny et al. (2004b) and Stephan
(2004) for a discussion how different neurophysiological mechanisms can be modeled
with DCM

Harrison et al. (2005), Jirsa (2004) and Robinson et al. (2001) for examples
that move in this direction.

Another important goal is to explore the utility of models of effective con-
nectivity as diagnostic tools (Stephan 2004). This seems particularly attractive
for psychiatric diseases whose phenotypes are often very heterogeneous and
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where a lack of focal brain pathologies points to abnormal connectivity
(dysconnectivity) as the cause of the illness. Given a pathophysiological theory
of a specific disease, connectivity models might allow one to define an en-
dophenotype of that disease, i.e. a biological marker at intermediate levels
between genome and behaviour, which enables a more precise and physio-
logically motivated categorization of patients (Gottesman & Gould 2003).
Such an approach has received particular attention in the field of schizophre-
nia research where a recent focus has been on abnormal synaptic plasticity
leading to dysconnectivity in neural systems concerned with emotional and
perceptual learning (Friston 1998; Stephan et al. 2006). A major challenge
will be to establish neural systems models which are sensitive enough that
their connectivity parameters can be used reliably for diagnostic classification
and treatment response prediction of individual patients. Ideally, such models
should be used in conjunction with paradigms that are minimally dependent
on patient compliance and are not confounded by factors like attention or
performance. Given established validity and sufficient sensitivity and speci-
ficity of such a model, one could use it in analogy to biochemical tests in
internal medicine, i.e. to compare a particular model parameter (or combina-
tions thereof) against a reference distribution derived from a healthy popula-
tion (Stephan et al. 2006). Such procedures could help to decompose current
psychiatric entities like schizophrenia into more well-defined subgroups char-
acterized by common pathophysiological mechanisms and may facilitate the
search for genetic underpinnings.
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1 Introduction

Multivariate data can be encountered in many fields of science or engineering.
Any experiment or measurement with several quantities simultaneously
recorded delivers multivariate datasets. This is especially true in biomedi-
cal investigations where most of the recordings are nowadays multichannel.
EEG equipment is able to record signals from still more and more electrodes,
but the notion is not confined only to electrode recordings: even fMRI data
can be treated as a multivariate set of voxels changing their state in time.
Such multichannel recordings are intended to deliver more information about
the investigated object. However, the amount of knowledge obtained from the
data analysis depends on the analysis method used. An analytical tool which
is improperly applied may not give the correct answers, in fact, it may deliver
incomplete or false information unbeknownst to the researcher.

The aim of this chapter is to describe the main aspects that are important
in processing multivariate data. In the first, theoretical part, the specific prop-
erties of that type of data will be described and related functions will be intro-
duced. In the second part, examples of treating typical problems arising during
the analysis will be presented from a practical point of view and solutions will
be proposed. The linear modeling approach will be discussed. This chapter
can be viewed as a guide explaining basic properties of multivariate datasets
and problems specific for multivariate analysis presented with selected rele-
vant examples. For the issues considered in the text references to the literature
for further, more comprehensive reading will be given.

2 Terminology

Let X denote a multivariate stochastic process containing k subprocesses. A
value of the process at a time t can be expressed as (T denotes transposition)

X(t) = (X1(t),X2(t), . . . , Xk(t))T (1)
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In the further discussion we assume that every process Xi has a zero mean.
In the data collecting practice, data acquisition requires sampling values of
each process Xi at certain equally spaced time points. This results in a time
domain representation of multiple time series with a certain sampling period
Δt. The quantity fs = 1/Δt is the sampling frequency. Although many char-
acteristics of the measured signals can be evaluated directly from the data
in the time domain, quite often spectral properties are of primary interest.
The signal X(t) can be transformed into the frequency domain by application
of the Fourier transform. The frequency representation of the signal, X̃(f),
is a complex valued function describing amplitudes and phases of frequency
components of the signal at the frequency f . Later in the text we will omit
the tilde above symbols representing frequency representations of respective
time domain quantities, remembering that both symbols (like X(t) and X(f))
signify different quantities. The power spectral density matrix of the signal X
is defined as

S(f) = X(f)X∗(f), (2)

where the superscript asterisk represents transposition and complex conju-
gate. The matrix S is often simply called a spectrum. Its diagonal elements are
called the auto-spectra, the off-diagonal elements are called the cross-spectra.

3 Multivariate Analysis

Typically, when analyzing a univariate data record (a single time series), sev-
eral quantities describing properties of the data are estimated. In the case of a
multivariate dataset the same estimations can be repeated for each data chan-
nel separately. Information gathered from each channel can be very useful, for
instance in mapping procedures. However, a multivariate dataset contains ad-
ditional information about relations between channels. To evaluate these so
called cross-relations, specific functions depending on two (or more) signals
simultaneously were defined.

Covariance (or correlation in a normalized version) is a function describing
common trends in behavior of two time series Xi and Xj . The function oper-
ates in the time domain. The simplest general formula can be written as:

cov(Xi,Xj , s) =
1
τ

∑
m

Xi(m)Xj(m+ s) (3)

Depending on the version used, the covariance may have different normaliza-
tion terms τ ; the set of indices m covers the range applicable in a particular
case. The value s is called the time lag. Covariance applied to two different
signals is known as cross-covariance (cross-correlation), and when Xi and Xj

are the same signal the name auto-covariance (auto-correlation) is used.
In the frequency domain a function analogous to correlation is (ordinary)

coherence. It compares common behavior of components of the signals at dif-
ferent frequencies. It is defined by means of elements of the spectral matrix S
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and depends on the signals Xi and Xj and on the frequency f . For simplic-
ity a notation will be introduced: subscript indices of the function variable
(ordinary coherence K) will correspond to the indices of the signals:

K(Xi,Xj , f) = Kij(f) =
Sij(f)√

Sii(f)Sjj(f)
. (4)

The modulus of ordinary coherence takes values in the [0,1] range. It describes
the amount of in-phase components in both signals at the given frequency
f(0 indicates no relation).

When a multivariate dataset consists of more than two signals, relations
between them can be of a more complicated structure. Let us consider three
signals X1, X2 and X3 constituting a multivariate set. If X1 influences X2

and X2 influences X3 then signals X1 and X3 will be related with each other
as well. However, contrary to relations of X1 with X2 and X2 with X3, the
relation of channels X1 and X3 will not be direct because of the presence
of intermediate signal X2. Distinguishing between direct and indirect rela-
tions may play the crucial role in understanding the investigated system. To
study relations within multi-(k > 2)-variate datasets another functions were
introduced.

Functions which help to decompose complex relations between signals and
describe only direct ones are called partial functions. In multivariate systems
partial functions identify only direct relations, with the influence of the rest of
signals on that relations statistically removed. The partial coherence function
Cij(f) describes the amount of in-phase components in signals i and j at
frequency f while the part of the signals which can be explained by influence
of a linear combination of the other signals is subtracted.

Cij(f) =
Mij(f)√

Mii(f)Mjj(f)
. (5)

Its modulus takes values within the [0, 1] range similar to ordinary coherence,
but it is nonzero only when the relation between channel i and j is direct.
Mij is a minor (determinant) of S with i-th row and j-th column removed.
After some algebraic manipulations Cij can be expressed by elements of the
inverse of S: dij = [S−1]ij

Cij(f) = (−1)i+j dji(f)√
djj(f)dii(f)

. (6)

We may notice that in multichannel sets a signal can be simultaneously
related with more than one signal. Multiple coherence Gi(f) describes the
amount of in-phase components in channel i common with any other channel
of the set. It is given by the formula:

Gi(f) =

√
1− det(S(f))

Sii(f)Mii(f)
. (7)
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As in the case of other coherence functions, its modulus takes values within
the [0, 1] range; its high value indicate the presence of a relation between the
channel i and the rest of the set.

Partial coherences are especially useful to find a pattern of connections
within sets of highly correlated signals. Example presented in Fig. 1 shows
a result of coherence analysis of a 21-channels dataset of human scalp sleep
EEG (see also Sect. 8). We see that each type of coherence forms a differ-
ent pattern of connections. Multiple coherences (on the diagonal) are all high

Fig. 1. Coherence analysis for a healthy human subject in sleep stage 2. Each box
in the matrix is a graph of a coherence function connecting the channel marked
below the relevant column and channel marked left of the relevant row. Frequency
runs along the horizontal axes (0–30 Hz), the function value on the vertical axes
(0–1). Ordinary coherences are plotted above the diagonal, multiple coherences on
the diagonal and partial coherences below the diagonal of the matrix of graphs.
Reprinted from (Kamiński et al. 1997) c© 1997 with permission from International
Federation of Clinical Neurophysiology
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indicating strong relations of every channel with the rest of the set. While
ordinary coherences (above the diagonal) are quite big and appear in certain
groups, partial coherences have significant values only for few specific connec-
tions. Closer topographical analysis of those results revealed that the value
of ordinary coherence depends mostly on the distance between electrodes. On
the other hand, partial coherences mainly connect neighboring sites; for more
distant locations they usually decrease quickly.

Coherence analysis is a popular and valuable tool in multichannel data
analysis. When properly applied, it can quickly give insight into the connec-
tions pattern. Coherence results can be combined with other methods to get
precise information about the network properties of the investigated system.

4 Parametric Modeling

In order to analyze data in the frequency domain, spectral quantities
(e.g. X(f), S(f), etc.) have to be estimated. As said before, one very popu-
lar method is the Fourier transform, which gained popularity due to its ease
of use. The Fast Fourier Transform (FFT) algorithm evaluates the spectral
power of a signal in a fast and effective way. However, there are concurrent
methods of spectral estimation, based on a parametric description of time
series. In this approach a stochastic model of data generation is assumed.
The model is fitted to the data resulting in a set of model parameters. The
whole analysis is then conducted on the model parameters, not on the data
samples.

The parametric approach has certain advantages over Fourier analysis
(which belongs to the class of nonparametric methods, applied directly to
the data). Parametric spectral estimates perform much better than nonpara-
metric ones when applied to short data segments. In the Fourier approach the
assumption is made that the time series are infinite or periodic. In practice, a
finite and stochastic data epoch has to be analyzed. Finite stochastic datasets
are then expressed as a multiplication of the signal by a window function, zero-
ing signal values outside the window. The window function induces distortions
in the estimated spectra known as sidelobes. In the parametric approach, the
validity of the model over the whole time scale is assumed, there is no need to
introduce a window function and parametric spectra are smooth and free of
sidelobe effects. More detailed discussions about these problems can be found
in theoretical signal analysis textbooks (Kay 1988; Marple 1987) comparisons
between Fourier methods and linear models can be found in (Isaksson et al.
1981; Blinowska 1994; Spyers-Ashby et al. 1998).

In biomedical data analysis practice two models are of primary importance:
autoregressive (AR) and autoregressive-moving average (ARMA) models.

The multivariate autoregressive model (MVAR, MAR, VAR) is con-
structed by expressing X(t)—a value of a (multivariate) process X at a time
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t—by its past values taken with certain coefficients Ã and a (multivariate)
white noise value E(t).

X(t) = (X1(t),X2(t), . . . , Xk(t))T,E(t) = (E1(t), E2(t), . . . , Ek(t))T

X(t) =
p∑

j=1

Ã(j)X(t− j) + E(t) (8)

The Ã coefficients are the model parameters. The number p (of past samples
taken into account) is called the model order.

Note that for given N time points of a k-variate process X, we must
estimate pk2 parameters (p matrices Ã of size k × k) from Nk data points.

Assuming Ã(0) = I (the identity matrix) and A(j) = −Ã(j), (8) can be
rewritten in the form:

E(t) =
p∑

j=0

A(j)X(t− j) (9)

After transforming (9) into the frequency domain we obtain (Marple 1987):

E(f) = A(f)X(f)

X(f) = A−1(f)E(f) = H(f)E(f)

H(f) =

(
p∑

m=0

A(m) exp(−2πimfΔt)

)−1

(10)

(Δt is the data sampling interval). This equation leads to the observation
that the signal in the frequency domain X(f) can be expressed as a product
of H(f) and the white noise transform E(f). Because the spectral power of
white noise is flat over frequency, the information about spectral properties
of the process is contained in the matrix H. This matrix is called the transfer
matrix of the system.

The power spectrum of the signal is then given by

S(f) = X(f)X∗(f) = H(f)E(f)E∗(f)H∗(f) = H(f)VH∗(f) (11)

where V denotes the input noise variance matrix (not dependent on fre-
quency). The matrix V is evaluated from the data during the model fitting.

The autoregressive-moving average (ARMA) model of time series is de-
scribed by:

q∑
i=0

B(i)E(t− i) =
p∑

j=0

A(j)X(t− j) (12)

where B(i) are parameters in addition to AR models; they are called a
moving-average part. ARMA model can be viewed as an extension of AR
model. Although the ARMA model is more universal than the AR model, it
is rarely used in biomedical signal analysis. One reason is that the ARMA
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model parameters estimation procedure is more complicated than the al-
gorithms for AR model fitting. It often starts from an AR part estima-
tion and then the MA parameters B are estimated separately. Second, it
can be shown that the spectrum of the AR model can be fitted espe-
cially well to signals of a form of periodic components embedded in the
noise (Franaszczuk and Blinowska 1985, Marple 1987). The rhythmic com-
ponents are represented by peaks in the spectrum. Biomedical signals in
general are of such type. A model with the B parameters can, in addition
to modeling frequency peaks, describe dips in the spectrum. However, this
signal feature is not typical for biomedical signals, so the ARMA model is
seldom used.

Attempts to utilize AR models in biomedical signal processing date back
to the 1960’s (Achermann et al. 1994; Fenwick et al. 1969; Zetterberg 1969;
Zetterberg 1973; Gersch 1970; Fenwick et al. 1971). AR modeling became
popular with the wider accessibility to computers. Autoregressive models,
especially in the multivariate version, are now quite often used, in particular
in EEG and MEG analysis. Overviews of the linear modeling in applications
to biomedical signals can be found in the literature (Jansen 1985; Kemp and
Lopes da Silva 1991; Kelly et al. 1997; Kamiński and Liang 2005).

5 Causal Analysis

5.1 Defining Causal Estimators

Proper analysis of cross-relations in a multivariate dataset can provide infor-
mation about causal relations between time series, for instance, sources of a
signal can be identified. Before analyzing causal influences, causality for time
series must be defined. The definition given by (Granger 1969), formulated
originally for economic time series, recently became popular in biomedical
data analysis. Its definition is expressed in terms of linear models of time
series and can be easily applied to a parametric description of data.

Granger’s original definition is based on predictability of time series. Let
us assume that we try to predict the value of a process X1 at a time t using
p (an arbitrary number) past values of that process:

X1(t) =
p∑

j=1

A11(j)X1(t− j) + ε(t) (13)

We get a prediction error ε. If the prediction can be improved by adding to it
some (q) values of another time series X2 then we call X2 causal for the X1

series.

X1(t) =
p∑

j=1

A′
11(j)X1(t− j) +

q∑
j=0

A12(j)X2(t− j) + ε′(t) (14)
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The improvement of the prediction should be understood in a statistical sense,
measured for instance by comparing the variances of the errors ε and ε′.

This definition can be extended to an arbitrary number (k) of signals. In
that case we predict the signal X1(t) using all other available signals. That is
to say if a signal Xm is causal for the X1 the prediction error variance should
be compared in two situations: when the signal Xm is either included or not
included in the prediction

X1(t) =
k∑

i = 1
(i �= m)

pi∑
j=1

A1i(j)Xi(t− j) + ε′′(t). (15)

Historically, there were several attempts of defining various causal mea-
sures. Although the phase of coherence seems to be a good proposition for
such a measure, in practice the ambiguity of phase values (which are defined
modulo 2π) makes it difficult to utilize. Among proposed functions there were:
various modifications and decompositions of coherences (like directed coher-
ence (Baccalá and Sameshima 1998; Baccalá et al. 1998; Saito and Harashima
1981), analysis of feedback loops approach (Caines and Chan 1975; Gevers and
Anderson 1981; Schnider et al. 1989), information theory measures (Kamitake
et al. 1984; Saito and Harashima 1981; Gersch and Tharp 1976; Liang et al.
2001) and linear and nonlinear extensions to various versions of the corre-
lation function (Chen et al. 2004; Freiwald et al. 1999; Chavez et al. 2003).
In this chapter we will focus on methods based on and taking advantage of
a parametric description of time series. Although applications of paramet-
ric (AR) modeling in causal relations analysis of biomedical data appear as
early as the 1960’s and 1970’s (Whittle 1963; Gersch and Yonemoto 1977;
Gersch 1972; Blinowska et al. 1981), it was often considered for bivariate sys-
tems rather than for an arbitrary number of signals. A truly multichannel mea-
sure, the Directed Transfer Function (DTF) was proposed in 1991 (Kamiński
and Blinowska 1991). The DTF function operates in the frequency domain.
Its construction is based on the elements of the transfer matrix H(f) of an
AR model fitted to the whole multivariate system. The element Hij(f) can
be related to the “amplitude” of the connection between input j and output i
at frequency f . In the simplest (non-normalized) form the DTF is defined as

θ2ij(f) = |Hij(f)|2 (16)

Alternatively it can be calculated in a normalized form (Kamiński and
Blinowska 1991):

γ2
ij(f) =

|Hij(f)|2
k∑

m=1
|Him(f)|2

(17)

representing a ratio between the inflow to channel i from channel j to all
inflows to channel i. The choice between the normalized and non-normalized
version of DTF should be made according to a particular application.
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The DTF, a measure constructed from elements of the transfer matrix H,
shows the total transmission between channels j and i, summed over all paths
of the transmission. To indicate direct causal relations between channels a par-
tial causal measure is needed. Partial Directed Coherence (PDC) was proposed
by Baccalá and Sameshima (Baccalá and Sameshima 2001; Sameshima and
Baccalá 1999). The PDC is constructed from A(f), elements of the Fourier
transformed matrices of model coefficients A(t):

Pij(f) =
Aij(f)√

a∗
j (f)aj(f)

(18)

where aj(f) denotes j-th column of the matrix A(f), the asterisk represents
transposition and complex conjugate operation.

The normalization in PDC is different than in DTF; PDC shows a ratio
between the outflow from channel j to channel i to all outflows from the source
channel j. For comparison, we may rewrite the DTF definition (17) using a
notation similar to (18):

γij(f) =
Hij(f)√

h∗
i (f)hi(f)

(19)

Here hi(f) denotes i-th column of the matrix H(f).
Another measure of (partial) direct causal relations is proposed in

(Korzeniewska et al. 2003). The direct DTF (dDTF) function is defined as
a product of a modification of the DTF (Fij in (20), with the denominator
independent of frequency) with partial coherence.

F 2
ij(f) =

|Hij(f)|2
∑
f

k∑
m=1
|Him(f)|2

(20)

χ2
ij(f) = F 2

ij(f)C2
ij(f)

The result has a nonzero value when both functions are nonzero which occurs
when the given causal relation exists and is direct.

A comparison of DTF, PDC and dDTF applied to 21-channel human sleep
EEG data is presented in Fig. 2 (see also Sect. 8 below). The data epoch was
20 s long; a MVAR model of order 4 was fitted and the respective functions
were calculated. The values of the functions were integrated in 7–15 Hz range.
The integrated functions are shown as topographic plots in form of arrows
pointing toward the destination electrodes, the shade of gray represents the
function value (black = the strongest). For clarity, each time only the 40
strongest flows are shown. In this case the alpha rhythm generators, known
to be located in the back of the head, are active. The DTF pattern shows
two main sources of activity around the electrodes P3 and P4, transmitting in
various directions and especially to the front of the head. For dDTF the picture
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Fig. 2. Comparison of the DTF, dDTF and PDC functions applied to 21-channel
human EEG sleep data. Flows are represented by arrows pointing from the source
to the destination electrode. Intensity of the transmission is coded in shades of gray
(black = the strongest). Only the 40 strongest flows are shown for each function.
Reprinted from (Kuś et al. 2004) with permission ( c© 2004 IEEE)

is simpler. We see practically a subset of previously shown arrows where most
of the longer distance connections do not exist anymore. On the PDC picture
we find the main transmissions as indicated by dDTF and additional arrows
indicating sinks of activity, as a result of the different normalization.

A comparison of DTF and PDC is also found in (Baccalá and Sameshima
2001). The relation between DTF, PDC and Granger causality is discussed
in (Eichler 2006).

It should be noted that DTF does not give a value for the time delay be-
tween two signals. When the time relations are important other methods may
perform better, e.g. the Hilbert transform in the time domain gives informa-
tion about the instantaneous relative phase of a pair of signals which may be
used for estimating the time delay.

5.2 Dynamic Phenomena

When estimating spectral properties of signals in the frequency domain, the
data record length determines the statistical quality of the estimate. The
model should be fitted to stationary records of data where the statistical
properties of the signals do not change in time. Typically, the assumption of
stationarity it is not valid for longer data records. When the record length is
too short, the estimates become unreliable. Although linear modeling allows to
perform spectral estimations even for very short data segments, nevertheless
the limitation for a minimal record length is a serious problem in the analysis
of dynamical processes. Data recordings of rapidly changing phenomena, like
evoked potentials, cannot be split into long and stationary epochs, and other
methods are required to treat them.

One solution to the above problem is to allow the model parameters to
change in time. The big class of adaptive methods is based on this idea.
Traditional adaptive algorithms include a progressive update of the model
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parameters by extending the data epoch under consideration. Another tech-
nique is the recursive Kalman filter method (Arnold et al. 1998). Descriptions
of those methods are given in the literature (Benveniste et al. 1990; Gath
et al. 1992; Gersch 1987; Hesse et al. 2003; Möller et al. 2001; Schack et al.
1995; Schack and Krause 1995). In this chapter we will present yet another
approach—an application of the short sliding window method to parametric
spectral estimation. The procedure was proposed in (Ding et al. 2000) and
applied in e.g. (Kamiński et al. 2001). It can be used when multiple repetitions
of a process are available from recordings. In that case, the repetitions will
be treated as different realizations of the same stochastic process. This as-
sumption allows for utilization of all realizations in the estimation of spectral
quantities. This way even data records of drastically reduced length (depend-
ing on the number of repetitions available) can still produce reliable spectral
estimates. The whole nonstationary data record can be divided into short
time windows, often short enough to treat the data inside them as stationary.
If the window size is n, we must estimate pk2 parameters from nkNR data
points (NR is the number of repetitions). The bigger NR, the shorter the win-
dow length n can be chosen. The actual decision about the window size must
consider a balance between the time resolution of the results and the quality
of the fit.

During model fitting the data covariance matrix is calculated for each rep-
etition of the experiment. Then the averaged covariance matrix is calculated
over all repetitions and this average is used to determine the parameters of a
model within a given window. Note that the procedure does not involve data
averaging. On the contrary, as a preprocessing step it is recommended to sub-
tract the ensemble mean from all the repetitions; all future work is performed
on the residual signals. This is done to fulfill the assumption of zero mean
for the input signals. Omitting that step may result in unstable models for
certain types of data. The details of data preprocessing and the procedure are
described in (Ding et al. 2000; Kamiński et al. 2001). In Sect. 8 an example
of the analysis will be presented.

The short-time DTF function (SDTF) (Kamiński et al. 2001) is an exten-
sion of the DTF allowing to trace the dynamics of a process. For each window
a set of coherences and DTF functions can be calculated. By combining results
for all the windows we obtain a picture of the dynamical changes of transmis-
sions pattern between signals during the process. This approach assumes that
all windows are processed with the same model order and the non-normalized
DTF version is used in order to maximize comparability between the results
from different windows.

6 Model Estimation

The first step in parametric analysis is fitting a model to the data. This is
an essential step: the quality of the fit will determine our confidence in the
results of the analysis. There are several issues which must be considered
before starting the procedure.
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The choice of the model is a fundamental decision. The AR model fits very
well to data containing specific frequency rhythms with a noisy background.
This description matches well the structure of EEG or MEG data, and in
fact a big class of biomedical signals can be investigated using this formalism,
including spike trains (as will be discussed later).

Another important step is to choose a proper data epoch: stationary and
sufficiently long to produce a reliable fit (for the AR model we must estimate
pk2 parameters having Nk data points). It is difficult to give any precise limits,
but it is safe to assume that we need several times more data points than
parameters to be fit. If the data are nonstationary, a special approach for
dynamic phenomena should be considered.

There is a wide range of publications concerning linear model fitting
(Anderson 1984; Box et al. 1994; Hamilton 1994; Hayes 1996; Jenkins and
Watts 1968; Kay 1988; Lutkepohl 1993; Marple 1987; Oppenheim and Schafer
1989; Priestley 1981; Proakis and Manolakis 1996) so there is no need to copy
other handbooks here. Today a choice of a particular algorithm does not de-
pend on calculation time anymore. However, certain algorithms may perform
better when applied to certain types of data. Among different algorithms of
parameters fitting the Yule-Walker (Marple 1987), Burg (Morf et al. 1978)
and covariance (Schneider and Neumaier 2001) algorithms are often encoun-
tered. The Yule-Walker method is probably historically the first approach.
The covariance matrix of the input signals is calculated and this matrix is
the basis for solving a set of linear equations (called Yule-Walker equations)
for the model parameters. The Burg algorithm is recursive, the data corre-
lation matrix is not calculated. It provides high resolution for spectra. The
covariance algorithm is useful for data with purely sinusoidal components
over a stochastic background. Some comparisons of algorithms can be found
in e.g. (Marple 1987) and other signal processing textbooks.

Typically, the algorithms assume data with zero mean which can be ob-
tained by subtracting the temporal mean from every data channel. Sometimes
it may be recommended to divide each channel by its temporal variance.
Such a normalization can be useful if the data channels differ significantly in
amplitude.

Next, the model order p must be selected. In practice, for a multivariate
data the only possibility is to use one of the statistical criteria developed to find
an optimal order. The optimal model order is a balance between obtaining
a better fit by increasing the order (extending the number of past samples
included) and keeping the order low to avoid artifacts which may appear in
spectral estimates when the order is too big. Two criteria are particularly
popular: AIC and FPE (Akaike 1974; Marple 1987). For instance, the AIC
criterion is defined as:

AIC(p) = n log(det(V)) + 2pk2 (21)

where n is the number of the data points, k is the number of channels and
V is the noise variance matrix of the model. The criterion gives a numerical
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value for a range of model orders ranging from 1 to a predefined maximum.
Typically, the order for which a criterion reaches its first minimum is the
optimal one.

Recently, Bayesian algorithms for optimal order selection and parameters
fitting have been proposed (Box and Tiao 1992; Kitagawa and Gersch 1996;
Penny and Roberts 2002).

7 Related Issues

7.1 Multivariate Versus Bivariate Time Series

In the previous sections some methods were referred to as “truly multichan-
nel”. This property cannot be attributed to methods applicable to a pair of
channels only (pairwise or bivariate analysis). When a multivariate set of sig-
nals is analyzed in a bivariate manner, pair by pair, the whole structure of the
set may not be revealed. Let us consider a simulation presenting the common
source problem (Fig. 3).

Fig. 3. DTF results for Simulation 1. (a) Scheme of simulated flows. Δ represents
time delay in samples. (b) Multichannel DTF results. Each cell represents a (solid
filled) graph of the function. Frequency is on the horizontal axis (0–64Hz), the
function value on the vertical axis. Each graph represents the function describing
transmission from the channel marked above the relevant column to the channel
marked left of the relevant row. On the diagonal of the matrix of graphs power
spectra are shown. (c) Scheme of flows deducted from multichannel DTF (d) Pair-
wise DTF results (organization like in b) (e) Scheme of flows deducted from pair-wise
DTFs. Reprinted from (Kamiński 2005)
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In this system channel 1 is a common source of signal for channels 2 and 3.
Delays of the transmitted signals are different: one sample for 1→2 and two
samples for 1→ 3 connections. This set of signals was analyzed twice us-
ing the same tool: the DTF function. In the first case DTF was applied to
the whole 3-variate system. The second result was obtained applying DTF
to every pair of channels of the system. In both cases we detect 1→ 2 and
1→ 3 transmissions. Additionally, in the bivariate case we detect a signifi-
cant transmission 2→ 3 which originally did not exist in the system. This
property of pairwise analysis may lead to improper conclusions, especially for
more complicated situations. Such a more complex situation is presented in
Fig. 4.

A record of human sleep EEG data (20 s, 21 channels) was analyzed twice
using DTF calculated from one 21-variate model and 210 2-variate models (for
every pair of channels). The patterns obtained for the connections are sub-
stantially different. In the case of bivariate analysis the alpha activity sources
(located in the posterior region, visible in the first case around electrodes P3
and P4) are much less pronounced. Certain locations (F8) became sinks of ac-
tivity. This effect is a direct consequence of a bivariate approach. Additional
simulations showing possible pitfalls of bivariate analysis interpretation are
given in (Kuś et al. 2004; Blinowska et al. 2004).

The fact that common sources of activity influence the interpretation
of causality estimates is very important in experimental practice. Omitting
a significant source of signal during a recording may lead to an improper

Fig. 4. Comparison of multichannel and pair-wise approach for estimating trans-
missions. DTF function was applied to a human EEG sleep data record twice–to
the whole set of 21 channels simultaneously (left plot) and separately to every pair
of channel (right plot). Flows are represented by arrows pointing from the source
to the destination electrode. Intensity of transmission is coded in shade of gray
(black = the strongest). Only the 40 strongest flows are shown for each case.
Reprinted from (Kuś et al. 2004) with permission ( c© 2004 IEEE)
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estimation of the connections pattern and false conclusions. If possible,
all relevant sources of activity should be identified and included in the
multivariate dataset.

7.2 Linear Versus Nonlinear Approaches

The formalism of linear parametric models describes the linear relations
between signals. How can the linear approach be justified to process data
generated by systems of inherently nonlinear nature (e.g. neurons)? The pos-
sibility of successful application of linear modeling depends on properties of
the investigated system. Fortunately, there is evidence that many biomedical
signals, like EEG, can be successfully treated with a linear approach and there
is no need to apply a nonlinear procedure (Achermann et al. 1994, Veeramani
et al. 2004, Blinowska and Malinowski 1991). Even during epilepsy, when non-
linear effects are most pronounced, we may still expect correct results (Stam
et al. 1999, Pijn et al. 1991, Pijn et al. 1997). It has been demonstrated by
several studies that linear methods can be used to solve some highly nonlin-
ear problems such as the epileptogenic focus localization (Franaszczuk and
Bergey 1998; Franaszczuk et al. 1994). Linear methods are quite simple to
implement computationally, they have fewer restrictions about the input data
characteristics than non-linear approach and can quickly give an insight into
the nature of the problem. Nonlinear methods, which are typically more dif-
ficult to implement and more vulnerable to noisy signals, need to be used
only when really necessary, possibly for a more detailed verification of linear
analysis result.

It was shown in a separate study (David et al. 2004) that if there is a
need for analyzing truly nonlinear relations, the risk of using a linear method
is that we may not reveal all connections rather than obtaining completely
false patterns (Franaszczuk et al. 1994; Zhu et al. 2003). However, a pure
model situation is not common in practice. In reality, when recorded signals
are intermixed from many different neuronal populations, the data effectively
have a form of colored noise1. In such cases, there is a high risk that nonlinear
methods may perform worse than linear analysis, producing inferior results.

7.3 Statistical Significance

In order to detect connections patterns correctly, statistical significance lev-
els must be determined. Since quite often, especially for causal connection

1 The pure white noise signal has its samples uncorrelated with each other for
different time points. A spectrum of such signal is flat over the frequency. By a
colored white noise we understand a signal which has this property disturbed – its
power spectrum has a flat background but certain frequencies are “stronger”. Of
course it affects autocorrelation structure of such signal but it not necessarily
affects relations of such signal with other signals.
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estimators, it is difficult to give an analytical formulation for their statistical
distributions, resampling statistics methods are applied.

Baseline levels are needed to reject insignificant connections. We may es-
timate them using a modification of the surrogate data algorithm proposed
in (Theiler et al. 1992). The algorithm consists of the following steps: first,
the data is Fourier transformed to the frequency domain. Then all relations
between channels are removed by replacing all phases of the data by random
numbers. The modified data is transformed back to time domain obtaining
so-called surrogate data. The basic spectral properties of such signals are pre-
served (amplitudes of the transforms were unchanged), only the cross-channel
relations have been removed. Analysis performed on the surrogate data should
indicate zero cross-channel relations. By repeating the above procedure many
times for (each time newly created) surrogate datasets we get a set of different
estimates of coherences or DTF values for signals not related to each other.
These estimates provide the statistical distribution of the baseline level.

Bootstrap technique (Efron 1979; Efron and Tibshirani 1993; Zoubir and
Boashash 1998) can be used to evaluate the variance of SDTFs. In order to
get the distribution of a function we simulate additional repetitions of the
experiment: a randomly selected (out of all available) set of trials serves as
a new input for the calculations. Again, we repeat the trial selection and
functions calculation procedure many times. The set of estimates obtained for
the repeated simulations provides the statistical distribution of the function
value. Details about the procedures can be found in (Kamiński et al. 2001).

Recently, an analytical formula for significance levels for DTF has been
proposed in (Eichler 2006).

7.4 Data Preparation

Multivariate analysis, and especially analysis of relations between channels,
is vulnerable to proper data preprocessing. One must be very careful when
preprocessing techniques are applied. Operations which introduce artificial
correlations between channels, e.g. (Hjorth 1975) or laplacian, often performed
for spatial “de-blurring”, are unsuitable. During such the processing certain
signals may become linear combinations of other signals. Similarly, the often
used EEG practice of a “common average” reference electrode, where in fact
a sum of all signals becomes the reference, should not be used here. The
procedure mixes data from all the channels introducing strong correlations
between all of them.

In experimental practice data are often filtered to enhance interesting fre-
quency bands or remove artifacts. Any filters, analog or digital, may change
phases of signals, possibly differently for different frequencies. Such filters,
applied separately to different channels may distort estimates of relations be-
tween the channels in the frequency domain. Unfortunately, sometimes it is
difficult to exactly know what operation is done on a measured signal within
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a recording device by its firmware. When digital filtering is performed, all sig-
nals must be filtered identically and simultaneously or filters must be applied
in both directions to cancel their phase shifts.

8 Examples of Applications

In this chapter a few typical examples of possible applications of the formalism
debated above will be presented. Different practical situations will be consid-
ered allowing for a discussion of key issues related to techniques of multivariate
data analysis using the linear modeling approach presented here.

8.1 Long and Stationary Data Epochs

In the previous sections various coherences and DTF results for human scalp
sleep EEG data were already presented in Figs 1, 2 and 4. The data used
for preparing those figures, were recorded as part of a bigger study of topo-
graphical patterns of connections during sleep (Kamiński et al. 1997). The
data were collected from 21 electrodes placed on the human scalp according
to 10–20 standard (Rechtschaffen and Kales 1968). The sampling frequency
was 102.4 Hz. Whole night sleep data were recorded. Three independent ex-
perts scored a sleep stage for each 20 s epoch of data. To each continuous
data segment of the same sleep stage a MVAR model was fitted. The optimal
model order estimated by means of the AIC criterion was between 4 and 7.
In this case (say, order 7) the number of fitted parameters is 21 · 21 · 7 = 3087
and one second of input data contains 21 · 102 = 2142 numbers, so we need
several seconds long epochs in order to get reliable estimates. In this study
long and artifact free stationary data segments were available to the analysis;
especially during the sleep stage 2 records were many dozens seconds long.
From the model parameters power spectra, coherences and DTFs were calcu-
lated in the 0–30 Hz range. An example of the outcome for coherences is shown
in Fig. 1. In order to better visualize the results the functions were integrated
over interesting frequency ranges. The integrated values are shown as topo-
graphical plots of arrows (with grey shade indicating intensity). The typical
DTF result (40 strongest flows) for sleep stage 2 is presented in Fig 2 (left).

An interesting comparison can be made between mapping and DTF. Al-
though information from multiple channels is used to generate a map of spec-
tral power, it cannot be considered a truly multichannel measure because no
cross-channel information is utilized. In Fig. 5 mapping and DTF results for
two EEG segments are shown (the segments are from recordings of EEG of
human sleep stage 2, and wakefulness, respectively). For segment 1 we see a
correspondence between the map and the DTF (a multichannel measure)—
the maximum of spectral power falls off in the region identified as the source
of the signal. For the second segment two sources were identified, transmitting
signals diagonally to the front of the head. The maximal power on the map
falls at the place where transmitted signals overlay each other.
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Fig. 5. Comparison of the DTF method with mapping. Two 20 s epochs of data
were evaluated by both methods. Conventional maps represent total power in
the 0–30 Hz frequency band, the DTF maps propagation in the same frequency
band. The strength of flow is reflected by shades of gray of the arrows. Reprinted
from (Kamiński et al. 1997) c© 1997 with permission from International Federation
of Clinical Neurophysiology

8.2 Dynamic Processes with Multiple Repetitions

Event related potentials are examples of dynamical phenomena where the
character of the signals changes in time. The recorded data is not stationary
and cannot be described by one linear model. However, when multiple
repetitions of a brain response to the same stimulus are available, we may
apply the short time window formalism. We treat the EEG signal from each
repetition as a realization of the same stochastic process which has its ori-
gin in functional connections of brain structures. The signals are stochastic
and different each time, but relations between them should be preserved as
presumably generated by the same system every time. The following example



Multichannel Data Analysis in Biomedical Research 345

presents human ECoG recordings from Johns Hopkins University Hospital in
Baltimore. The subjects were epilepsy patients with grids of electrodes im-
planted over various regions of the cortex. Some of the patients took part in
a motor task study. They were required to clench their fist after a cue presen-
tation on a screen (stimulus onset), sustain the contraction for three seconds,
and release. Such tasks were repeated many times and 64-channel data were
recorded and sampled at 1 kHz. For the further analysis seven seconds long
epochs were selected from 3 s before to 4 s after the stimulus onset. For AR
modeling, sets of 12 channels were selected according to their relevance to
the task (a relative change of power during the task was measured and the
placement over the hand motor cortex was considered).

To emphasize features in interesting frequency bands (beta: 20–30 Hz,
gamma: 35–45 Hz) the data were lowpass frequency filtered and downsam-
pled to 250 Hz. Later, bandpass filters were applied for the extraction of beta
and gamma rhythms. The typical number of artifact-free trials was around
50. A time window of size 125 ms (31 samples) was used. For such a window
the number of data points is 12 · 31 · 50 = 18600; at the optimal (AIC crite-
rion) model order 5 we must estimate only 12 · 12 · 5 = 720 model parameters.
Successive windows overlapped each other to get smoother results. Figure 6
presents SDTF results for the beta frequency range.

The figure is organized as a matrix of maps of the intensity of trans-
missions in time-frequency space. Placement of each map in the matrix de-
termines which connection is described: from the electrode marked below
the given column to the electrode marked left of the given row. Black color
represents the strongest transmission, white color is indicating no transmis-
sion. Each map has a time scale −3–4 s on the horizontal axis (stimulus on-
set at time 0 marked by vertical lines) and frequency on the vertical scale
from 20 to 50 Hz. We observe transmissions mostly in the 20–30 Hz range
between specific electrodes. A characteristic feature is a rapid decrease of
transmissions, occurring just after the stimulus onset, distinct especially for
connections 35→ 53, 35→ 51, 53→ 61, 61→ 53, 43→ 53, 43→ 45 and
others. This decrease of propagations can be connected with the effect of
event-related desynchronization, known to occur for spectral power in the
beta band. Additionally, we see that after the movement, certain transmis-
sions reappear at slightly higher frequency and often at different locations
(e.g. 28→ 36, 53→ 35, 61→ 44). This effect can be related to the beta re-
bound effect known from analysis of changes in power during movement tasks.

The matrix of SDTFs is a basis for many detailed analyses. Profiles of
changes in specific frequencies at different time points can be investigated.
As done previously, integrated values of SDTF can be used for topographical
presentation of the results in form of arrows. In this situation, a movie can be
created visualizing dynamic changes of transmission patterns. As an example,
a frame from a movie showing transmissions in the beta range for 1.7 s before
stimulus onset is given in Fig. 7. More about this experiment was published
in (Kamiński et al. 2005), see also (Crone et al. 1998a, Crone et al. 1998b).
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Fig. 6. SDTF results (transmissions) in the beta range (20–30 Hz) for a set of 12
electrodes for patient 1. In each small panel SDTF as a function of time (horizontal
axis, from −3 to 4 s) and frequency (vertical axis, from 20 to 50Hz) is shown. For
the sake of clarity, a bigger legend is given only for the bottom left panel; settings
are the same for all the panels. The flow of activity takes place from the electrode
marked under the column to the electrode marked left of the relevant row. Black
color corresponds to the highest intensity, white to the lowest. The value of the
transmission grayscale is the same for all the panels. Time zero is marked by vertical
lines. Reprinted from (Kamiński et al. 2005) with permission
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Fig. 7. Propagations in beta range (20–30 Hz) for a set of 10 electrodes for 1.7 s
before stimulus onset. Directions are shown as triangle-shapeds arrow pointing
from the source to the destination electrodes. Intensity of transmissions is coded
in color and transparency of arrows (scale bar on the left of the picture). Reprinted
from (Kamiński et al. 2005) with permission

8.3 Hybrid Spike Train-LFP Dataset

Spike train data have the form of a point process. Such type of data does
not conform to the stochastic time series description. The problem of spectral
analysis of spike trains was considered important as early as in 1971 (French
and Holden 1971). However, after some preprocessing, even spike train signals
can be analyzed using AR modeling (Brillinger 1978).

In the experiment signals were recorded in the brain structures of a rat
(Kamiński and Kocsis 2003). Three sites related to generation of activity in the
theta (3.7–5.6 Hz) range were chosen: septum (SEP), supramammilary nucleus
(SUM) and hippocampus (HIP). The role of the SUM, a structure reciprocally
connected with two other structures, was investigated during theta rhythm
generation. In the hippocampus local field potentials (LFP) were recorded
while in the SUM the specific activity of selected single neurons was mea-
sured. Sampling frequency of the LFP was 250 Hz. To prepare the data for
AR modeling, the spike trains were lowpass filtered at a 12.5 Hz cutoff fre-
quency. The stochastic component was added to the filtered signals in form
of white noise of small amplitude (10% of the signal). The data for different
stages of processing are shown in Fig. 8.
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Fig. 8. Examples of signals investigated in the study. (a) two channels of LFP
with theta activity recorded from the hippocampus; (b) spike train recorded from
a neuron located in SUM; (c) lowpass filtered spike train from section c; (d) low-
pass filtered spike train (from section c) with 10% of a noise added. Reprinted
from (Kamiński and Liang 2005) with permission from Begell House, Inc., c© 2005

Changes in theta rhythm generation occurred during pinching the tail
of a rat. Interesting fragments of data including the tail pinch period were
selected for causal relations analysis. Although there was only one experiment
with no repetitions, the short time window methodology was used to visualize
changes of transmissions in different situations. The sliding window has to be
long enough to fulfill requirements about statistical properties of the estimates
and, moreover, it must contain several spikes. On the other hand, the window
should be short enough to capture the dynamics of the changes. Finally, a 500
samples (2 s) long window was chosen. Successive windows were shifted with
10 samples of overlap between each other. Example of SDTF results for SUM
and HIP is shown in Fig. 9.

The SDTF calculated for several neurons revealed a similar trend: although
both influences SUM → HIP and HIP → SUM are present, the HIP → SUM
transmission is stronger and changes its character during the tail pinch. The
description of the whole experiment can be found in (Kocsis and Kamiński
2006).
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Fig. 9. Example of SDTF functions for set of: two LFP traces recorded in the hip-
pocampus (LFP 1, LFP 2) and filtered spike trains recorded from a neuron located
in SUM. On the diagonal the data time courses are shown. Time on horizontal axis.
Tail pinch from 1 do 7 s (marked by bars above data time courses). In grey panels
frequency in Hz on vertical axis. Convention similar to the scheme used in Fig. 6.
Reprinted from (Kamiński and Liang 2005) with permission from Begell House,
Inc., c© 2005

The above methodology is suitable for spike trains containing a large num-
ber of spikes. When the spikes are sparsely distributed, better results could be
obtained after converting the spike train into time series of the instantaneous
firing rate (Zhu et al. 2003).

9 Summary and Discussion

In this chapter an introduction to basic problems concerning multivariate
analysis was presented. To interpret the informational content of a multi-
variate dataset correctly we must take into account both auto-quantities, de-
scribing properties of every channel separately, and cross-quantities describ-
ing common network properties of the whole set (inter-relations between sig-
nals). Correlation and coherence functions are popular and useful examples
of cross-functions. One must remember that with the number of channels
increasing, more possibilities arise for relations between signals. Conducting
the research in the frequency domain, partial coherences allow to distinguish
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between simple (direct) and more complex connections. Although coherence
functions can be estimated from data in a nonparametric way, the paramet-
ric approach is an interesting alternative providing several advantages. In
parametric analysis a linear stochastic model is assumed as the generation
scheme of the data. From the model parameters power spectra, coherences
and other functions can be estimated. MVAR spectra are smooth and can be
estimated reliably from short data epochs. Moreover, a multivariate model
can be fitted simultaneously to all signals as a single system, therefore we
get truly multivariate estimates, free of certain interpretation pitfalls. When
applying a causal estimator it is important to include the whole set of relevant
channels. If the signals are not treated as one system and measures are ap-
plied pair-wise the results may be misleading or at best difficult to interpret.
Another advantage of parametric models is their natural ability of defining a
causal multivariate estimator describing transmissions of signals between data
channels.

The most popular linear models are the AR and ARMA models. The
AR model is especially well suited for describing damped sinusoidal signals
over a noisy background and is valid for many biomedical signals. AR model
equations in the frequency domain have the form of a transfer matrix oper-
ating on white noise. The transfer matrix is the basis for constructing the
Directed Transfer Function, a multivariate estimator of causal relations be-
tween channels. Partial causal estimators were also proposed in the literature,
they include the PDC and dDTF functions presented above.

Linear modeling is not in contradiction to nonlinear methods. In doubtful
cases, the linear approach can be applied to get a first insight into the connec-
tions of the system. The selected relations can be further investigated using
nonlinear analysis tools. Similarly, if a bivariate method should be applied, it
is recommended to process the whole dataset in the multivariate mode and
then select interesting relations on the basis of multivariate results for further
bivariate analysis.

As shown in the presented examples, linear modeling can be applied to
various types of multivariate data differing in length, number of channels and
overall character. The examples were selected in order to cover methodologi-
cal issues discussed before. In the presented examples sleep EEG, task related
ECoG, rat LFP and spike train data were analyzed. Of course the list can be
extended to another types of signals (e.g. fMRI (Harrison et al. 2003) or car-
diovascular signals (Korhonen et al. 1996)), making the parametric approach
a very useful tool in various applications, not only in biomedical research.
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Kamiński M, Blinowska KJ, Szelenberger W. Topographic analysis of coherence and
propagation of EEG activity during sleep and wakefulness. Electroenceph Clin
Neurophys 1997; 102:216–27.
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Kitagawa G, Gersch W. Smoothness priors analysis of time series. Lecture Notes in
Statistics, NY: Springer, 116, 1996.
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In this chapter we show how beamforming, an analysis procedure for EEG
and MEG data sets that is becoming increasingly popular, can be used to
obtain insight about functional connectivity between brain regions. To this
end we introduce a parameterization of cortical surfaces based on output from
the software package Freesurfer and restrict the potential current sources to
the cortical gray matter. We create a data set assuming two brain areas being
active with different time dependencies of the activation. These activation
patterns are then reconstructed using beamforming procedures with a variety
of parameters demonstrating the dependencies of the reconstructed patters
of activity on these parameters. Finally, we apply two statistical techniques,
namely coherence and Granger causality to the data set, showing that the
data can be understood by assuming a one-directional connection between
the two active brain regions.

1 Introduction

In recent years an analysis procedure called beamforming has become increas-
ingly popular for the analysis of non-invasively recorded electrophysiological
data sets like EEG (electroencephalogram) and MEG (magnetoencephalo-
gram). The original ideas can be found in the engineering literature of the
1970’s (Frost III 1972, Borgiotti and Kaplan 1979) (see also Van Veen and
Buckley 1988) before they were applied to brain imaging roughly 25 years later
(Sekihara 1996, Van Veen et al. 1997, Robinson and Vrba 1999). The goal of
beamforming is to use an array of sensors and combine the signals recorded at
individual sites to increase the signal/noise ratio or resolution, and to focus
the entire array on a certain region in space. The best known example for
this technique is found in astronomy where many radio telescopes that can be
distributed all over the earth behave as a virtual single antenna. In brain imag-
ing, arrays of up to about 250 electrodes (EEG) or SQuID (superconducting
quantum interference device) sensors (MEG) are used to measure the electric
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potential on the scalp surface or the tiny magnetic fields produced by the elec-
tric currents flowing inside the brain, respectively. When beamforming is ap-
plied to electrophysiological recordings the intention is to find the magnitudes,
locations and directions of these currents, in short, detect the neurally active
regions of the brain under a certain task. Various flavors of beamforming algo-
rithms can be found in the literature and we will discuss their similarities and
differences later in this chapter. In most applications beamformers are used
to scan regions of interest or the entire brain volume on a voxel by voxel basis
(Sekihara 1996, Van Veen et al. 1997, Robinson and Vrba 1999). More recently
a slightly different approach has been developed which applies anatomical con-
straints to the locations and directions of potential cortical sources (Fuchs
2002, Hillebrand and Barnes 2003). Specifically, the locations of neural activity
are restricted to the cortical gray matter and the directions of the currents are
assumed to be perpendicular to the cortical surface. The reasons for these con-
straints on location and direction are twofold: first, in the cortical gray matter
pyramidal cells form columns which are orthogonal to the folded surface and
the current flow is along these columns (Abeles 1991). Second, the columns
are bundled together to form so-called macrocolumns of about 105 neurons
acting coherently (Braitenberg and Schüz 1991). It has been estimated that
several tens of thousands of simultaneously active cells are necessary to pro-
duce a signal that can be picked up by EEG or MEG (Nunez 1981) and the
only part of the brain where this is the case is the cortical gray matter1.

We will proceed through this chapter in four steps: first, we will show how
MRI scans and the locations of sensors of a magnetometer used to record
MEG can be coregistered to a common coordinate system, and how the cor-
tical surfaces can be extracted and parameterized. Second, we will create a
dataset by assuming neural activity in two distinct regions along opposite
walls of the central sulcus and calculate the spatiotemporal patterns that
would be measured by the MEG system. Third, we will use this dataset and
apply beamformers to reconstruct the activity in order to show how certain
parameters affect the quality of performance. Finally, fourth, we will demon-
strate how the statistical measures known as coherence and Granger causality
allow us to identify functional connectivity between brain regions including
the direction of influence between different locations on the cortical surface.

2 Coregistration and Parameterization
of Cortical Surfaces

In order to combine the recordings from different imaging modalities it is
necessary to represent all data in a common coordinate system. This sounds
like a trivial prerequisite but the different manufacturers of EEG and MEG
1 An exception to this rule is the auditory brainstem response but in this case sev-

eral thousand events have to be averaged in order to obtain a decent signal/noise
ratio.
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recording systems all have their specific preferences and a commonly accepted
standard is nowhere in sight. Moreover, radiologists like to display the pa-
tient’s left side on the right and vice versa, because this is the view they get
when they look at them face to face.

2.1 Coregistration

The coordinate system we will use here is based on three landmarks on the
human head that can easily be identified: the left and right pre-auricular
points and the nasion. Our x-axis runs from the left to the right pre-auricular
point, the y-axis runs through the nasion and has an intersection with the
x-axis at a right angle. The z-axis is orthogonal to the xy-plane through the
origin and points upwards to form a right-handed coordinate system. In a
first step we will transform a structural MRI scan and the locations of EEG
electrodes and MEG sensors into these coordinates.

Our starting point is a MRI volume of axial slices from a fullhead scan
with a voxel size of 1×1×1mm3. From this scan the 3d-coordinates of three
landmarks on the subject’s head, i.e. the nasion and the left and right pre-
auricular points, have to be found. This task is considerably simplified if
vitamin E capsules have been attached to these points prior to the scan so that
they can be easily identified as bright spots on a T1 weighted scan due to the
short spin-lattice relaxation time in its C-H2 chains. The top row of Fig. 1
(left) shows examples for such landmarks in an axial, coronal and sagittal
slice, respectively. In these images no two of the fiducials are located in the
same slice. Our goal is to find a transformation matrix that defines a rotation
and shift of the volume in 3d-space such that all three landmarks end up in
the same axial slice which then defines the new xy-plane.

Fig. 1. Left top: Locations of fiducial points in a T1 weighted fullhead MRI scan.
Left bottom: The transformed volume. Note that all three landmarks are now lo-
cated in the same axial slice, which represents the xy-plane. Right: The skin surface
reconstructed from the MRI with fiducials (rod dots), EEG electrode locations (blue
dots) and the surface defined by the locations of the MEG sensors (green)
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x–axis

y–axisn–l
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Fig. 2. Relation between the origin of the old coordinate system (o), the landmarks
(l, r and n) and the new x- and y-axis. The shaded triangle represents the vector
relation (3)

Figure 2 shows a sketch of the relation between the landmarks (r, l, n)
and the old origin (o). The new x-axis which runs from the left to the right
pre-auricular is given by l + α (r − l). In the same way the xy-plane can be
expressed as l + γ (r − l) + β (n− l), where α, β and γ are arbitrary real
numbers. The new y-axis is represented by the line in the xy-plane which is
orthogonal to the x-axis and runs through the nasion (n). All lines in the
xy-plane perpendicular to the x-axis fulfill the condition

{γ (r − l) + β (n− l)} · {r − l} = 0 (1)

which leads to a relation between γ and β, namely

γ = −β (n− l) · (r − l)
|r − l |2 (2)

Using (2), the expression for the xy-plane and the abbreviations r − l = rl and
n− l = nl the boundary of the shaded triangle in Fig. 2 can be expressed as

α rl + β {nl − nl · rl

|rl |2 rl} = nl (3)

representing a set of three linear equations for the three vector components,
and α and β can readily be calculated from any two of them. The origin of the
new coordinate system is then given by l + αrl, for instance. The directions
of the new axes can be written in the form

rl for the x-axis,

nl − nl·rl

|rl|2 rl for the y-axis, and

rl × {nl − nl·rl

|rl|2 rl} for the z-axis.

(4)
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Once normalized, these vectors compose the rotation matrix R which defines
the new coordinate systems after the origin has been shifted to its new location
l + αrl.

In general, a rotation in three dimensional space can be described by con-
secutive rotations around three axes and parameterized by the Euler angles
φ, θ and ψ. There are various ways to define these angles and the sequence
of rotations. We will use here a form that first rotates the volume around the
z-axis, then around the y-axis and finally around the x-axis. The correspond-
ing transformation matrix R is the product of the matrices that describe the
single rotations and reads explicitly

R = RxRyRz =

⎛
⎝

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎞
⎠

⎛
⎝

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞
⎠

⎛
⎝

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎞
⎠

=

⎛
⎝

cos θ cosφ cos θ sinφ − sin θ
sinψ sin θ cosφ− cosψ sinφ sinψ sin θ sinφ+ cosψ cosφ sinψ cos θ
cosψ sin θ cosφ+ sinψ sinφ cosψ sin θ sinφ− sinψ cosφ cosψ cos θ

⎞
⎠

(5)

From the components Rij of the rotation matrix on the right hand side of
(5) we can determine the Euler angles as

φ = arctan
R12

R11
θ = arctan

−R13 sinφ
R12

ψ = arctan
R23

R33
(6)

These angles together with the shift of the origin can be used in standard
MRI software to create a new volume which has all three landmarks in the
slice that now represents the xy-plane as shown in the bottom row of Fig. 1
(left).

Transforming the locations of electrodes or sensors into the the same coor-
dinate system is straightforward. First the new origin is calculated according
to (3) and the locations are shifted. Then a rotation with the normalized
matrix (4) is performed which completes the coregistration procedure be-
tween the subject’s head, and the electrodes and sensors as shown in Fig. 1
(right).

2.2 Parameterizing the Folded Brain Surfaces

The work of Dale, Sereno, Fischl and co-workers provided the scientific com-
munity with a powerful software tool known as Freesurfer (Dale and Sereno
1993, Dale et al. 1999, Fischl et al. 1999a). Freesurfer creates tessellations of
cortical surfaces like the boundary between the gray and white matter or the
boundary between the gray matter and the cerebral spinal fluid. The folded
surfaces for each hemisphere can then be inflated by reducing the local cur-
vature in an iterative process and eventually mapped onto the surface of a
sphere. This transformation is unique and invertible, i.e. every point on the
cortical surfaces corresponds to a single point on the sphere and vice versa
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(a property mathematicians call an isomorphism). Moreover, the neighbor-
hood relation between points, i.e. the topology, is preserved. Such a one to
one mapping is possible because the spherical and the cortical surfaces are
both singly connected and therefore topologically equivalent. For each corti-
cal hemisphere Freesurfer creates files containing the vertex coordinates (of
about 100,000 vertices) and the corresponding tessellation (of about 200,000
triangles) for the gray-white matter boundary, the boundary between the gray
matter and the cerebral spinal fluid, the spherical surface, and surfaces from
inflation steps as desired. The tessellation for all of these surfaces is the same
and every point on the sphere has a unique partner on all the other surfaces.
This allows for a parameterization which maps the 3-dimensional cartesian co-
ordinates (x, y, z) of the vertices for each surface onto two angles, the latitude
ψ and longitude ϕ on the sphere. In other words, for each pair of angles (ψ,ϕ)
there exists a triple of coordinates (x, y, z), which corresponds to a point lo-
cated on a cortical or inflated surface. An example for the color coded x-, y-
and z-coordinates of the gray-white matter boundary is shown in Fig. 3 (top
row) with ϕ running along the horizontal axis and ψ running vertically. The
middle row shows a representation of the same quantities in polar coordinates
where ψ runs in the radial and ϕ in the azimuthal direction. Contour lines
for constant values of x, y and z (indicated in green) represent the surface in
sagittal, coronal and axial slices, respectively, as shown in the bottom row.

Fig. 3. Parameterization of the cortical surface. The x-, y- and z-coordinates of
the folded three dimensional surface are expressed as continuous functions of the
variables ψ and ϕ
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Fig. 4. Inflation steps of the cortical surface into a sphere. Because of the topolog-
ical equivalence between the folded surfaces and the inflated sphere, the spherical
coordinate system can be mapped back onto the cortical surface

Such a parameterization in spherical coordinates also allows for defin-
ing a coordinate system on the folded surfaces as shown in Fig. 4. Such a
coordinate system is useful for visualization purposes and for comparisons
between different subjects (Fischl et al. 1999a, Fischl et al. 1999b).

3 The Dataset

Throughout this chapter we will use a dataset that simulates an MEG ex-
periment where sources are active at two locations along the anterior and
posterior wall of the central sulcus pointing into a direction perpendicular to
the gray-white matter boundary as shown in Fig. 5.

Fig. 5. Sources at two locations along the anterior and posterior wall of the central
sulcus pointing into a direction perpendicular to the gray-white matter boundary.
The red and blue curves in the inserts represent the time course of neural activity
in these regions
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We assume the time courses of activity at these locations to be damped
oscillations plotted in the inserts, where the red curve is a time shifted version
of the time series plotted in blue. We further assume that we measure the
gradient of the radial component of the magnetic field at locations derived
from a CTF Omega-151 magnetometer system (VSM MedTech Ltd., Port
Coquitlam, BC, Canada), by calculating the superposition of magnetic fields
form the individual six dipoles using the formula by (Sarvas 1987), which
implicitly takes the contributions from the induced secondary currents in a
spherical conducting volume into account.

�B(�r) =
μ0

4πF 2(�r, �rq)
{F (�r, �rq) �q × �rq − [(�q × �rq) · �r]∇F (�r, �rq)} (7)

where �r denotes the location where the field is measured and �rq is the location
of the dipolar current source with direction �q. The scalar function F (�r, �rq) and
its gradient ∇F (�r, �rq) are explicitly given by

F (�r, �rq) = d (r d+ r2 − �rq · �r)

∇F (�r, �rq) = {d
2

r
+
�d · �r
d

+ 2(d+ r)}�r − {d+ 2r +
�d · �r
d
} �rq

(8)

where the abbreviations �d = �r − �rq, d =| �d | and r =|�r | have been used.

Fig. 6. Time series of the simulated data at 144 spatial locations, assuming that
7 of the 151 sensors were broken. Sensors are shown in polar projections with the
nose on top
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Fig. 7. Spatial patterns at 20 time points from top left to bottom right

The signal that is picked up by a sensing coil is given by the scalar prod-
uct of the vector of the magnetic field and the normal vector of the coil
area. A first order gradient is simulated by subtracting the signal measured
at the outer coil from the signal picked up by the inner coil. In addition to
the deterministic activity from the sources in the two active regions in the
central sulcus two kinds of noise are added. First, to the sources themselves,
and second to 500 locations on the cortical surface that are randomly cho-
sen at each of the simulated 100 time steps. This way a total of 200 ’trials’
are created. Plots of the average time series across trials in a topological lay-
out of the sensors as well as the spatial patterns at 20 points in time that
would be measured in the given scenario are shown in Fig. 6 and Fig. 7,
respectively.

4 Beamforming

4.1 The Basics

The basic idea behind beamforming in human brain research is to estimate the
time course q(t) of a current dipole at location �r and direction �d given measure-
ments of one or more components of the magnetic field along a surface outside
the head (MEG) or/and the electric potential on the scalp surface (EEG). We
assume that we have recordings fromM different sensor locations taken within
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a time span T and lumped together to a vector �H(t) representing the measured
signal. The goal is to find a set of filter coefficients �w such that the relation

q(t) = �w · �H(t) (9)

is fulfilled. The components of �w are called the beamformer weights and are
determined by minimizing the source power P over a time span T while keep-
ing the projected signal constant �w · �L = 1, where �L is the forward solution or
lead field (Moscher et al. 1999) of a unit source located at �r with direction �d.
The (average) source power can be expressed as

P =
1
T

∫ T

0

q2(t) dt =
1
T

∫ T

0

{�w · �H(t)}2 dt = �w ·C �w (10)

where C represents the correlation matrix Cij = 1
T

∫ T

0
Hi(t)Hj(t) dt.

The details on how to deal with such a minimization under constraints
are described in appendix A where the beamforming vector �w is explicitly
derived as

�w =
C−1 �L

�L ·C−1 �L
(11)

and where it is also shown that the source power P can be written in the form

P = �w ·C �w = {�L ·C−1 �L}−1 (12)

As pointed out by Huang et al. (2004) the expression for the beamformer
weights (11) and the global source power (12) are the same for all so-called
linearly constrained minimum variance beamformers (LCMV) that exist in
the literature. The differences between them are essentially threefold: First,
in the way two quantities called the global and time dependent neural activity
index are calculated. The global neural activation is a measure of activation
in brain areas over a certain time span. The time dependent neural activity
index is a time series representing local activations and is most meaningful at
locations where the global index is large. The beamformers differ in the way
these quantities are normalized, an issue originating from the inhomogeneous
sensitivity of the beamformers with respect to depth and direction of the
sources. An extreme case is MEG which is virtually blind to dipoles with a
radial direction2.

2 It should be pointed out that this is not due to technological limitations and also
has nothing to do with the fact that the CTF system we are using here measures
mainly the radial component of the field. The reason is that a radial current in a
spherical conductor does not produce any magnetic field outside the sphere which
can be easily seen in the formula by Sarvas (7). As the direction of any radial
current �q is parallel to the position vector �rq, their vector product is equal to �0,
which implies �B(�r) = �0.
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The second difference is how the beamformers treat low dimensional sig-
nals, i.e. signals with a low noise level like averages, where the correlation
matrix C is singular and does not have an inverse. This problem can be dealt
with by either subspace projection or regularization. The former reduces the
dimensionality to the subspace defined by the eigenvectors of the correla-
tion matrix which correspond to eigenvalues that are significantly bigger than
zero. The latter is performed by adding a constant (representing uncorrelated
noise) to the diagonal of the correlation matrix while keeping its original
dimension. Both techniques, as discussed in detail in the following section,
lead to matrices that are invertible. Explicit expressions for the global and
time dependent neural activity index for the different types of beamformers
found in the literature as distinguished by Huang et al. (2004) are given in
table 1.

The third difference between the linearly constrained minimum variance
beamformers concerns the way the underlaying brain volume is scanned. There
are essentially three procedures to estimate the neural activity inside the
brain. First there is vector beamforming: the volume is divided into voxels
of a certain size (typically cubes with a side length of a few millimeters)
and the global neural activity index for the center of each voxel is calculated
three times for unit sources pointing into the x-, y- and z-direction. This
way not only the activity is detected but also the direction of the source can
be found. There are drawbacks using this method particularly with MEG,
which is insensitive to radial currents, and therefore the estimate of a vector
with a strong radial component is prone to large errors. This problem with
radial components is avoided in the procedure introduced by Robinson and
Vrba (1999) known in the literature as SAM (Synthetic Aperture Magnetome-
try). For this procedure within each voxel only tangential dipole directions are
scanned and the direction showing the largest activity is used. It is this search
in the tangential plane, which is different for every voxel as opposed to the
fixed three components of the vector beamformers that has led some authors
to call SAM a nonlinear procedure (Vrba and Robinson 2001). The third pos-
sibility to define locations and directions of potential sources, which we will
use for demonstrating beamformers’ performances later in this chapter, is to
apply anatomical constraints where the currents are restricted to the cortical
gray matter with a direction perpendicular to the gray-white matter bound-
ary. This constraint is motivated by the fact that gray matter is organized
in macrocolumns of pyramidal cells that act coherently to build assemblies
of 104 − 105 simultaneously active neurons which are necessary to produce
a signal strong enough that it can be picked up by MEG sensors or EEG
electrodes. The disadvantage here is the need for high-resolution structural
MRIs from all subjects that are well coregistered with the sensor or electrode
locations.
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4.2 Beamformer Performance: Regularization
and Subspace Expansion

Independent of which one of the beamformer types is used it is always neces-
sary to obtain the inverse of the covariance matrix3 C. An inverse may not
exist or its computation can be numerically unstable if C is close to singular
which happens if the signal space has a dimension smaller than the number of
sensors. In a covariance matrix calculated from averaged signals, for instance,
there are typically only a few eigenvalues that are significantly different from
zero and the matrix is at least numerically singular. As mentioned above there
exist two ways to work around this problem called regularization and subspace
projection.

In regularization a constant σ is added to the diagonal of the covariance
matrix in order to create a non-singular matrix. The effects of regularization
are shown in Fig. 8 for both the global and time dependent neural activity
index calculated from the dataset described previously using a beamformer of
type III. In contrast to Huang et al.’s version given in the table, we will not
use the square in the numerator for the time dependent activity index in order
to preserve direction of current flow. The global activity index is color-coded
from red to yellow and thresholded at the same level for all four plots at 30%
of its maximum. The inserts show the time series (solid) representing the time
dependent activity index on top left in red for the active region in the posterior
wall of the central sulcus and on bottom right in blue for the source in the
anterior wall. The dashed lines in the inserts represent the ideal response.

In the top left plot a regularization parameter of σ = 5×10−4 is used.
The time series for the time dependent activity index are in good agreement
with the ideal shape, but the global index shows activity in many regions
where no source is present. The determinant of the covariance matrix in this
case is too small so that numerical errors prevent the calculation of a correct
inverse. In the plot on the top right the regularization is σ = 5×10−3 and the
matrix is well regularized. The time series overlap well with the ideal curves
and the global activity index is focused and localized at the correct spots.
In the lower left σ is 0.05. The spots of activity become slightly blurred and
the time series start to show a phase shift with respect to the ideal functions
indicating a superposition of the two original curves. These effects are even
more pronounced on the bottom right with σ = 0.5, where over-regularization
is obvious: the activity is blurred over wide regions and the time dependent
index is clearly shifted, i.e. we obtain superpositions of the two time series.
In short, if the regularization parameter is too small numerical instabilities
distort the beamformer performance, if σ is too big the beamformer becomes

3 The covariance matrix is the correlation matrix scaled such that the sum of all
its eigenvalues is equal to 1. As we give numerical values for the regularization
parameters this is a more appropriate representation than the correlation matrix,
since the values in the covariance matrix do not depend on the units the magnetic
field is measured in.
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Fig. 8. Global neural activity index on the cortical surface for four different regu-
larizations calculated from a beamformer of type III. From left top to right bottom
the regularization parameter σ is increased from 5×10−4 to 0.5 by factors of 10. On
the top left the regularization parameter is too small and numerical instabilities dis-
tort the beamformer performance. In the bottom row σ is too big, the beamformer
becomes less focussed or even blurred and activity from other regions leaks into the
locations of interest. Inserts show the time dependent index reconstructed at the
regions of maximum activity (solid) and the ideal curve (dashed). Especially on the
bottom right a phase shift between these curves can be seen that originates from
leakage of activity between the two regions due to a lack of focus

less focussed or even blurred and activity from other regions leaks into the
locations of interest. Unfortunately, σ is not known upfront and needs to be
determined by trial and error.

The subspace projection is done by using the subspace defined by the
eigenvectors of the covariance matrix whose corresponding eigenvalues are
sufficiently different from zero. Subspace expansion of the type III beamformer
is shown in appendix A and the beamformer weights and the neural activity
indices with the proper normalizations turn out to be

�w =
N∑

k=1

{�L · �v(k)}2
λ(k)

{
N∑

n=1

{�L · �v(n)}2
λ(n)

}−1 �v(k)

Na =
∑N

n=1{�L · �v(n)}2
∑N

n=1
{�L·�v(n)}2

λ(n)

na(t) =
�w · �H(t)
| �w |

(13)
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Fig. 9. Global neural activity index on the cortical surface for four different subspace
dimensions calculated from a beamformer using (13). From top left to bottom right
the subspace dimensions are 4, 8, 12 and 50, respectively. The global activity index
is blurred if not enough dimensions are taken into account and gets more focused
as this number increases. On the other hand, if too many dimensions are used the
time dependent index becomes contaminated by noise

where λ(n) and �v(n) are the eigenvalues and eigenvectors of the covariance
matrix, respectively.

Figure 9 shows the effects of subspace projection when taking different
numbers of eigenvalues and eigenvectors into account. Specifically, starting at
the top left to bottom right these numbers are 4, 8, 12 and 50, respectively. The
global activity index is blurred if not enough dimensions are taken into account
and gets more focused as this number increases. On the other hand, if too
many dimensions are used the time dependent index becomes contaminated
by noise.

5 Coherence and Granger Causality

Statistical measures have been used for a long time to study synchronization
and desynchronization in higher frequency bands in datasets from EEG/MEG
recordings (see e.g. (Pfurtscheller and Lopes da Silva 1999)) and measure-
ments of the local field potential from implanted electrodes (Brovelli et al.
2004). Here we will establish coherence and Granger causality obtained from
the time dependent neural activity index of the two active regions on the
cortical surface as measures that allow for detecting connections between dif-
ferent brain regions or functional brain connectivity in general. We will briefly
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describe how these quantities are defined and calculated, and refer the reader
to the chapter by Kaminski (this volume) for more detailed discussions on
related topics.

5.1 Coherence

Coherence is calculated starting from two time series x(t) and y(t) and ob-
taining their Fourier transforms

X(ω) =
∫ T

0

x(t) eiωt dt and Y (ω) =
∫ T

0

y(t) eiωt dt (14)

which leads to their spectral density functions

Sxx(ω) =
1
T
|X(ω) |2 Syy(ω) =

1
T
|Y (ω) |2

Sxy(ω) =
1
T
X∗(ω) Y (ω) = Syx(ω) =

1
T
Y ∗(ω)X(ω)

(15)

From these functions the so-called squared coherence spectrum can be calcu-
lated as

Cxy(ω) =
|Sxy(ω) |2

Sxx(ω) Syy(ω)
(16)

and we can define a global coherence as the integral of Cxy(ω) across all
frequencies.

5.2 Granger Causality

From the coherence between two signals we can conclude whether they have
an influence on each other. We cannot identify the direction, i.e. whether x
drives y or y drives x, or whether there is mutual feedback between the two.
A quantity which allows for such a distinction is a measure called Granger
causality, where the word ’causality’ in its name is a rather unlucky choice.
Given two time series x(t) and y(t) we can never determine by any kind
of analysis alone whether there is a causal relation between them, let alone
who causes who. What Granger causality does allow to determine is whether
the knowledge of one of the time series enables us to make a better pre-
diction about the other one than would have been possible without that
knowledge.

Granger causality is usually calculated from multivariate autoregressive
models. To this end we assume that we have two time series xt and yt sampled
at discrete4 times t. Now we can set up autoregressive models for xt andyt,

4 We assume discrete time steps for simplicity, for continuous time series an em-
bedding has to be determined, see Chen et al. (2004) for details.
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i.e. express their values at times t in terms of their past

xt =
p∑

k=1

ak xt−k + ε
(x)
t yt =

p∑
k=1

ck yt−k + ε
(y)
t (17)

where we take p previous values of the time series into account to obtain a
prediction of xt and yt. The equations in (17) are models of order p and the
coefficients ak and ck have to be determined across all sequences in the time
series. The difference between the predicted and the actual values for each xt

and yt is given by the errors ε(x)
t and ε

(y)
t , respectively. Similarly we can set

up multivariate autoregressive models where xt does not only depend on its
own past but also on previous values of yt and vice versa

xt =
p∑

k=1

ak xt−k + bk yt−k + ε
(x|y)
t yt =

p∑
k=1

ck yt−k + dk xt−k + ε
(y|x)
t (18)

We now say that y has a Granger causal influence on x if including y in the
model for x on average improves the model, i.e. decreases the error

< ε
(x|y)
t >

< ε
(x)
t >

< 1 (19)

where < . . . > denotes the expectation value.
There are different ways to quantify the Granger causal influence of one

time series onto another. One straightforward definition is evidently by means
of the errors

gy→x = 1− < ε
(x|y)
t >

< ε
(x)
t >

(20)

which is a number between zero and one with gy→x = 0 indicating that there
is no influence.

5.3 Application to the Dataset

We applied the coherence measure and Granger causality to data sets that
were constructed in the following way. A beamformer was separately applied to
the 200 trials of simulated MEG data. Then the time series from each trial at
the two active locations were extracted, the average time series was subtracted
from each of the realizations and concatenated for each of the two regions.
The time series corresponding to the red curve in Fig. 5, we shall call x(t), is a
shifted version of the blue curve y(t), which can be interpreted as originating
from a one-directional coupling from the lower to the upper brain region with
the finite distance between them leading to a time delay. We can vary the
coupling strength between the two regions by gradually varying the second
time series from random noise to y(t). We therefore define a time series yc(t) as

yc(t) = c y(t) + (1− c) ξ(t) with 0 ≤ c ≤ 1 (21)
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Fig. 10. Coherence (left) and Granger causality (right) as a function of the coupling
strength between the two active regions. On the right, squares indicate a feed from
the lower into the upper region whereas circles stand for a feed into the opposite
direction. We can conclude that there is a one-directional connection between the
two regions as the dashed line with circles stays close to zero for all couplings

where ξ(t) represents gaussian white noise. Plots of coherence and Granger
causality as functions of coupling strength c are shown in Fig. 10. In the left
plot the coherence between the two time series x(t) and yc(t) increases with
increasing coupling strength c. On the right, the line with squares represents
the Granger causal influence gyc→x of yc(t) on x(t) which also increases with
coupling c, whereas gx→yc

represented by the line with circles stays close to
zero independent of c. We can therefore conclude that there is a one-directional
connection between the two brain regions where the lower region feeds into
the upper but not vice versa.

6 Conclusions and Outlook

Noninvasive recording of human brain activity has undergone a major change
during the last decades with the development of high-density electrode and
sensor grids in EEG and MEG, the introduction of MRI and functional MRI,
and the explosion in computational power and storage capacity, representing
one side of the coin: advances in technology. On the other side of this coin
is written: “What do we get from all this stuff and how do we make sense
of it?” How do we extract relevant information from a humongous tangled
mass of data. Even though “relevant information” is a subjective matter that
strongly depends on the specific questions one is interested in, relying on a
single technology is in most cases not a good idea. In this chapter we have
tried to show how different imaging technologies can be used to implement
anatomical constraints on potential sources whose time series can then be
identified from electrophysiological recordings and, moreover, give us insight
regarding the existence and nature of a connection between two brain areas.
There are other independent methods like Diffusion Tensor Imaging (Westin
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et al. 2002) or Structural Equation Modeling of functional MRI data (McIn-
tosh and Gonzalez-Lima 1994) that can be used to probe connectivity, and
only if different methods converge onto the same results can we have confi-
dence that we have found something that really exists. In any case, there is
no doubt that beamforming can become and probably will become one of the
pillars that a future understanding of brain connectivity will be built on.
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A Minimizing the Source Power under Constraints

Here we show explicitly how the beamformer coefficients �w and the source
power P as given in (12) can be derived. Our starting point is a signal �H(t)
from EEG or MEG recordings where each of the M component Hi(t) repre-
sents a time series from a single channel. Even though in practice these time
series will be sampled at a finite rate we will treat time here as a continuous
variable because the notation is less confusing that way. It is our goal to find
a set of coefficients �wθ such that the sensor array becomes most sensitive to
a current source at a certain location (x, y, z) and a certain direction (ϑ, ϕ)
which we will abbreviate by �θ = �θ(x, y, z, ϑ, ϕ). Applying the beamformer �wθ

to the signal �H(t) we can write the global source power originating at �θ in
the form

Pθ = 1
T

∫ T

0
dt { �wθ · �H(t)}2

= 1
T

∫ T

0
dt

∑M
i=1{wi

θ H
i(t)}2

=
∑M

i=1

∑M
j=1 w

i
θ w

j
θ

1
T

∫ T

0

Hi(t)Hj(t) dt
︸ ︷︷ ︸

Cij

(22)

where Cij represents the correlation matrix. Using C, the global source power
originating from �θ can now be written in the compact form

Pθ =
M∑
i=1

M∑
j=1

Cij w
i
θ w

j
θ = �wθ ·C �wθ (23)

The goal of finding a vector �wθ such that the sensor array becomes most
sensitive to a current source at �θ is achieved by minimizing the global power
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from all locations and directions while keeping the signal originating at �θ
constant. In other words

Pθ = �wθ ·C �wθ = Min with the constraint �wθ · �Lθ = 1 (24)

where �Lθ is the forward solution or lead field from a unit current source
at �θ. The constraint in (24) means that the components of �wθ cannot be
varied independently in order to find the minimum but only combinations for
which the constraint is fulfilled are allowed. Without the constraint an obvious
solution for the minimum would be �wθ ≡ �0, which is certainly not what we
are looking for, and it also violates the constraint.

The problem of finding the minimum under constraints of the form (24) is
well known in physics and engineering, and can be solved using the method
of Lagrange multipliers. The idea is to rewrite the constraint in the form

�wθ · �Lθ − 1 = 0 (25)

where now the expression on the left hand side of (25) vanishes. It still vanishes
if we multiply it by a constant λ, and it does not change anything if we add it to
the global power we want to minimize, because we are essentially adding zero

Pθ =
M∑
i=1

M∑
j=1

Cij w
i
�θ
wj

�θ
+ λ {

M∑
i=1

wi
�θ
Li

�θ
− 1} = Min (26)

But now we can vary the components of �wθ independently and we find the
minimum by taking the derivative of Pθ with respect to wk

θ and solve

∂Pθ

∂wk
θ

= 2
M∑
i=1

Cik w
i
θ + λLk

θ = 0 (27)

for �wθ. If we rewrite (27) in matrix form

2C �wθ = −λ �Lθ
(28)

we find immediately

�wθ = −λ
2

C−1 �Lθ
(29)

This solution still depends on the unknown Lagrange parameter λ, which can,
however, be determined by inserting (29) into (25) leading to

{−λ
2

C−1 �Lθ} �Lθ = 1 or λ = −2 { �Lθ ·C−1 �Lθ}−1 (30)

By inserting (30) into (29) we finally obtain for the beamformer coefficients
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�wθ =
C−1 �Lθ

�Lθ ·C−1 �Lθ

(31)

and for the global source power

Pθ = �wθ ·C �wθ = { �Lθ ·C−1 �Lθ}−1 (32)

As mentioned previously, if the signal space is low-dimensional as for av-
eraged signals for instance, the correlation matrix C is singular and does not
have an inverse. In this case a projection onto the relevant subspace can be
achieved by expanding the beamformer vector �w and the lead field �L into the
eigenvectors �v(k) of the correlation matrix that correspond to the N eigenval-
ues λ(k) that are significantly bigger than zero5

�w =
N∑

n=1

ωn�v
(n) and �L =

N∑
n=1

ζn�v
(n) (33)

Inserting (33) into (31) and (32) we obtain after straightforward calculations

ωk =
ζk
λ(k)
{

N∑
n=1

ζ2
n

λ(n)
}−1 and P = {

N∑
n=1

ζ2
n

λ(n)
}−1 (34)
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Llobregat (Barcelona), Spain

2 Brain Mapping Unit and Wolfson Brain Imaging Centre, University of
Cambridge, Departments of Psychiatry and Clinical Neurosciences,
Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK

The analysis of physiological relationships between multiple brain regions has
been spurred by the emergence of functional magnetic resonance imaging
(fMRI), which provides high spatial resolution of dynamic processes in the
human brain with a time resolution in the order of seconds. Many different
conceptual approaches and algorithmic solutions have been proposed for con-
nectivity analysis in the last 10 years or so (see some examples in Bullmore
et al 1996, McIntosh 1999, Horwitz 2003, Ramnani et al 2004). These can be
broadly sub-divided into analyses of functional connectivity – usually defined
as a statistical association between spatially remote time series – or effective
connectivity – the causal influence that one time series exerts over another
(Espinosa & Gerstein 1988, Friston et al. 1997). While functional connectivity
between brain regions is frequently depicted through undirected graphs, effec-
tive connectivity networks are more naturally portrayed by directed graphs.

In addition to this well-rehearsed distinction, we can also categorise avail-
able methods according to the mathematical domain in which they are imple-
mented. While the great majority of methods for both functional and effective
connectivity analysis of fMRI data have been implemented in the time domain,
considerably fewer methods to date have been implemented in the Fourier
domain (Cordes et al. 2001, Sun et al. 2004, Salvador et al. 2005a, Yamashita
et al. 2005); and the development of approaches in the wavelet domain has
been very recent (Achard et al. 2006). In comparable analyses of brain func-
tional networks based on electromagnetic (EEG or MEG) data, the adoption
of tools in the Fourier and wavelet domains has been more widespread (see
reviews by Samar et al. 1995 and Koenig et al. 2005).

The main motivation for further consideration of Fourier and wavelet
methods for functional connectivity analysis of fMRI data is that associations
between brain regions may not be equally subtended by all frequencies; rather,
some frequency bands may be of special importance in mediating functional
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connectivity. There is, for example, abundant prior evidence that functional
connectivity measured with subjects lying quietly in the scanner at “rest” is
subtended predominantly by very low frequencies, <0.1 Hz, for many pairs of
connected regions (Biswal et al. 1995, Lowe et al. 2000, Cordes et al. 2001,
Robouts et al. 2003). This presumably reflects at a bivariate or multivariate
level of analysis the well-replicated but still incompletely understood phe-
nomenon of low frequency endogenous oscillations in resting fMRI (Maxim
et al. 2005, Salvador et al. 2005b), optical imaging (Mayhew et al. 1996) and
EEG time series (Leopold & Logothetis 2003). Functional connectivity analy-
sis using tools that naturally support the frequency decomposition of physio-
logical associations between regions may therefore be of interest in “denoising”
the analysis (by restricting attention to a frequency band of special relevance);
in supporting multimodal analysis of brain connectivity combining fMRI and
EEG/MEG data; and in exploring changes in frequency-dependent connec-
tivity related to drug treatments or pathological states.

Here we aim simply to provide a technical introduction to methods in the
Fourier and wavelet domains that are appropriate to frequency-dependent
analysis of functional connectivity in fMRI, and to illustrate them through
examples.

1 Functional Connectivity Analysis
in the Fourier Domain

The first steps of a functional connectivity analysis generally involve the cor-
rection of geometrical displacements (due to involuntary head movement) and
the co-registration of fMRI volumes to a standard template. The examples
used here come from a sample of healthy individuals that underwent a long
scanning session (2048 acquisitions, TR = 1.1 s) while lying in a “resting con-
dition” with the eyes closed. Mean time series of 90 areas corresponding to
major cortical and subcortical regions of the brain were obtained from the
Automated Anatomic Labelling system (AAL; Tzourio-Mazoyer et al 2002).
These multivariate sets of motion-corrected time series provided the “raw”
data for the frequency-dependent functional connectivity analyses described
in this chapter (Fig. 1).

1.1 A General Model Underlying the Data

Some general assumptions on the statistical model underlying the data are
frequently made to allow a proper analysis of the multivariate time series
in the Fourier domain. Stationarity of time series is one of the most usual
assumptions. Under stationarity each one of the P time series is expected to
fluctuate around a fixed mean value μp (p : 1, . . . P ), and to have covariances
between their observations dependent solely on the relative difference in their
timings, i.e., the lag between timepoints, k = ta − tb.
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Fig. 1. Four examples of time series extracted from one subject after a long “rest-
ing state” fMRI time series. The regions shown are a subset of a parcellation that
divides the brain in 90 major areas. THA.L: left thalamus, THA.R: right thalamus,
TPOsup.L: left temporal pole, superior temporal gyrus, TPOmid.L: left temporal
pole, middle temporal gyrus

Joint multivariate normality of the observations from all the time series is
another assumption frequently made for convenience. The probability law of
a stationary multivariate set of time series (a multivariate time series) is fully
described by a vector of means μ = (μ1, . . . , μP ) and a set of cross-covariance
functions

γp,q(k) = Cov (Xp(t),Xq(t+ k)) . (1)

For p = q, i.e. the observations belong to the same individual series, these
functions are called auto-covariance functions. Null lag values of the auto-
covariance function (γp,p(0) = σ2

p) give the marginal variances of any obser-
vation of the time series; stationary covariances imply equality of variances
among observations. Figure. 2 shows the estimates of the cross-covariance
functions for two pairs of time series previously shown in Fig.1.

1.2 The Frequency Representation of Covariance Functions

Under the normal multivariate model, all the information on the intensity of
the functional connectivity between pairs or groups of regions will be con-
tained in the auto- and cross-covariance functions. Alternatively, the same
information can be represented in the Fourier domain.
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Fig. 2. Estimates of cross-covariance functions for two pairs of fMRI time series
shown in Fig. 1. Standard sample cross-covariance formulas have been used (Brock-
well & Davis 1991)

Encoding the covariability information in the frequency domain clarifies
aspects of the data not portrayed directly by the cross-covariance. Mainly, it
can be used to highlight the frequencies that subtend stronger links between
two time series, and the degree of synchrony (or de-phasing) of the two signals
at these specific frequencies.

The cross-spectral density is the counterpart of the cross-covariance func-
tion in the frequency domain. Provided that the covariances are summable

(
∞∑

k=−∞
|γp,q(k)| <∞) the cross-spectral density is defined by (Brillinger 1981)

fp,q(λ) =
1
2π

∞∑
k=−∞

γp,q(k)e−ikλ. (2)

It is a continuous complex function with a periodicity of length 2π but, due
to a symmetry given by the complex conjugate (fp,q(−λ) = fp,q(λ)), it can
be fully described by its values in the interval (0, π]. Here, using π as an
upper boundary is a mathematical convention. If the time interval between
two observations (the TR for fMRI) is known, the interval (0, 1/2TR] in
absolute frequencies can be used alternatively.

Estimates of the cross-spectral density are usually obtained through the
discrete Fourier transforms (DFT) of the original observed time series of the
different brain regions, without the need to estimate their cross-covariance
function. For a given Fourier frequency λ these estimates are obtained by
means of a simple product of Fourier coefficients (dp(λ))

f̂p,q(λ) = dp(λ) dq(λ) (3)
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The set of estimates at the different Fourier coefficients in the (0, π] inter-
val is known as the cross-periodogram (Brillinger 1981). The value of the
product at λ = 0 is related to μ (in the time domain) and should be
excluded.

However, the cross-periodogram is a rather noisy estimate of the cross-
spectral density. Its variance doesn’t decrease by including new observations
in the time series (i.e. it is not a consistent estimator). This problem is usu-
ally solved by applying a smoothing filter over the cross-periodogram (Parzen
1961, Hannan 1970). Choosing the size of the filter will entail a trade-off be-
tween variance reduction and increased bias of the estimates. Window tapering
(Tukey 1967, Brillinger 1981) over the time series, especially if these are not
very long, is a recommended pre-processing step to avoid discontinuity effects
on the discrete Fourier estimates. The first two rows of Fig. 3 show the mod-
uli of the raw and filtered cross-periodograms for the two pairs of time series
shown in Fig. 1.

In the same way that a standard measure of covariance does not just de-
scribe the degree of co-variability between two variables, but is also dependent
on their individual variances, the cross-spectral density is also affected by the
values of the individual spectral densities of each time series. Standardized
measures of covariability are given by the spectral coherence

Rp,q(λ) =
fp,q(λ)√

fp,p(λ) fq,q(λ)
(4)

which has an obvious resemblance to a correlation. As with the cross-
spectral density, it is a complex function but it is bounded in the complex
unit circle (in the same way that correlation measures are bounded in the
[−1, 1] interval). Perhaps confusingly, some authors call it spectral coherency
(e.g. Brillinger 1981), reserving the term spectral coherence to describe the real
valued squared modulus (|Rp,q(λ)|2). Sample estimates of the cross-spectral
density may be obtained by plugging in the filtered cross-periodogram esti-
mates in (4) (see some examples in Fig. 3).

When dealing with large numbers of brain regions, it may be useful to
have summary measures over parts or the totality of the spectrum. This will
avoid the individual analysis of all possibly generated cross-periodograms. In
an information theoretical framework, the coherences can be used to define
the mutual information between two time series (Granger & Hatanaka 1964,
Brillinger 1996)

Ip,q = − 1
2π

∫
log

{
1− |Rp,q(λ)|2

}
dλ (5)

which, although here defined over the whole spectrum, can also be applied
to specific frequency intervals of interest. The mutual information is an un-
bounded quantity, i.e., as coherences increase, it rises without limit. However,
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Fig. 3. Moduli of the non-filtered cross-periodograms (top row), filtered cross-
periodograms (middle row), and estimated coherence functions (bottom row) of
the two pairs of time series shown in Fig. 1

it can be normalised to give scores in the [0,1] interval (Granger & Lin 1994,
Harvill & Ray 2000)

φp,q =
√

1− exp(−2Ip,q) (6)

Estimates for both parameters can be obtained from the sample coherences
by performing a finite sum over the Fourier frequencies instead of the definite
integral in (5).
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1.3 Conditional Measures of Association

Coherences describe the joint dynamics of two regions of the brain without
taking into account their relation with the other regions included in the mul-
tivariate dataset. In that sense, they are not multivariate descriptors but just
bivariate measures. Quite often one may be interested in assessing the resid-
ual covariation between two brain regions after excluding the effects on their
total covariation of all other regions in the dataset, i.e., to have a condi-
tional or partial measure of association. This may be specially appropriate
for fMRI datasets where, due either to spatially spread haemodynamic pat-
terns (Biswal et al. 1995, Lowe et al. 1998), or to movement related artifacts
(Friston et al. 1996), significantly high correlations between many regions are
frequently observed.

Quantities used to describe the conditional dependence between two time
series in the frequency domain are developed in a similar way to those ex-
plained before for the non-conditional setting. We start by defining the con-
ditional cross-covariance function

γc
p,q(k) = Cov

(
Xp(t)|Xq+1(u), . . . , XP (u) , Xq(t+ k)|Xq+1(u), . . . , XP (u)

)
(7)

where Xq+1, . . . , XP are the rest of the time series apart from p and q, and u
is the set of all integers. Under multivariate normality, (7) will be equivalent
to a partial cross-covariance function, which is the covariance function of the
residuals of a least squares optimal linear filter (see Dahlhaus 2000 and Eichler
2005a)

γp
p,q(k) = Cov (εp(t), εq(t+ k)) . (8)

From (8) we can now define the partial cross-spectral density (fp
p,q(λ)) and

the partial coherence (Rp
p,q(λ)) using formulas analogous to (2) and (4)

above.
Inference on these quantities, however, is not straightforward. No esti-

mates are directly available for the residuals of (8) under the broad nor-
mal multivariate model. This problem is overcome by an equality relating
the partial coherences to the inverse of the matrix of cross-spectral densities
from all pairs of regions at frequency λ (here symbolized by g(λ)) (Dahlhaus
2000)

Rp
p,q(λ) =

−gp,q(λ)√
gp,p(λ)gq,q(λ)

. (9)

Estimates of this parameter may be obtained by plugging in the values of the
filtered cross-periodograms in (9). Two examples of partial coherence func-
tions are given in Fig. 4.

The argument of the complex value Rp
p,q(λ) conveys information on the

degree of synchronicity or phase relations between time series p and q at
frequency λ (Brillinger 1981). Partial coherence functions, however, can be
transformed back to the temporal domain (as a partial cross-correlation
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Fig. 4. Top row shows the moduli of estimated partial coherences between the two
pairs of time series of Fig. 1. These are clearly different to the coherence functions
shown in bottom row of Fig. 3. Bottom row shows the plots of sample partial cross-
correlation functions derived from the estimated partial coherence functions. There
is a clear dominance of values at zero lag (a synchronous connectivity)

function) allowing an easier visualization of time shifts in connectivity pat-
terns. Complete explanations on how to derive the partial correlation func-
tions from partial coherences are given in Eichler et al. (2003) and Salvador
et al. (2005a). The bottom row of Fig. 4 shows the two partial correlation
functions obtained from the partial coherence estimates plotted in the same
figure.

Finally, when dealing with a large number of pairs of brain regions, it may
be more adequate to give summary measures of conditional association over
all or parts of the spectrum. For this purpose, quantities analogous to those
given for the marginal coherences (5 and 6) can be simply defined for the
partial coherences.
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1.4 Undirected Graphs

Based on these continuous measures of frequency-dependent functional con-
nectivity between regions it is possible to construct undirected graphs
(Whittaker 1990, Cowell et al 1999), which will represent the topology of
connections as a brain functional network. An undirected graph (G) is a math-
ematical object fully characterized by a set of vertices V = {V1, . . . , VP } and
a set of undirected edges E = {(a, b) ∈ V xV } connecting some of these ver-
tices. In our connectivity framework, V would define the set of brain regions
included in the analysis and E would contain all relevant connections between
regions.

Undirected graphs are specially appropriate to portray conditional inde-
pendences. Under a multivariate normal time series model, Dahlhaus (2000)
defines the conditional independence between two time series by

Rp
p,q(λ) = 0 ∀ λ ∈ (0, π]. (10)

That is, it implies having null partial coherences for all frequencies of the
spectrum. Conditional independence will be depicted by an absent edge be-
tween regions p and q in the graph; conditional dependence will be represented
by the presence of an edge between vertices. Besides portraying such pairwise
conditional relations, undirected graphs convey information on the conditional
independence of any two subsets of variables within the graph (what is known
as the global Markov property [see Speed & Kiiveri 1986 and Cowell et al. 1999
for a more formal description]).

In real applications, the sample estimates of the partial coherences will
never be zero, and some kind of decision rule will have to be applied to
select the edges to include in the graph. Figure 5 shows the undirected
graphs obtained by thresholding the normalized values of the partial mu-
tual information. Values used were averages over 5 individuals scanned while
resting in the scanner (Salvador et al. 2005a). Graphs are shown for low
(0.0004–0.1518 Hz) and high (0.3032–0.4545 Hz) frequency ranges separately.
In accordance with previous resting state studies, the amount and strength of
connections is higher in the low frequencies (Cordes et al. 2001, Robouts et al.
2003), and there is an apparent symmetry between left and right hemisphere
homologous regions (Lowe et al. 1998, Greicius et al. 2003). We can also show
that, for most pairs of brain regions, partial coherences tend to fall off rapidly
as a function of increasing anatomical distance between regions; although
some pairs, such as bilaterally homologous regions of right and left cerebral
hemispheres, show strong functional connections despite being separated by
large distances (see Fig. 6).

1.5 Considerations on Fourier Domain Analysis
of Functional Connectivity

The use of the Fourier basis to assess functional connectivity has several ad-
vantages. It allows us to find the range of frequencies subtending stronger
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Fig. 5. Undirected graphs obtained by thresholding averaged values of the nor-
malized partial mutual information between brain regions, for low and high fre-
quencies separately. More connections are observed in the low frequencies. Black
edges belong to inter-hemispheric symmetric pairs, and the rest of selected edges
are shown in grey. The graphs are a 2D projection of the brain volume in the coro-
nal plane; the top left quadrant of each panel representing the superior part of
the left hemisphere, and so on; regional abbreviations are listed in full by Salvador
et al (2005a). Reproduced with permission from Salvador et al (2005a) c© Royal
Society
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functional links between regions and to assess the synchronicity of such
connections. Furthermore, conditional measures of association may be quickly
derived and portrayed visually through undirected graphs.

Some specific points should be kept in mind, though, for a proper ap-
plication of the theory in functional connectivity. Although the concept of
a partial correlation is rather easy to grasp, it may lead to counterintuitive
results. For instance, two variables may be marginally independent but be
conditionally dependent (through what is known as Berkson’s paradox). In
addition, the presence of latent variables (variables not included in the analy-
sis) may have a strong effect on the connections depicted. The latter situation
may be quite common in any fMRI connectivity study, where some of the
neurophysiologically relevant factors may not have a spatially explicit loca-
tion, or may simply not be included in the dataset. Some unavoidable degree
of arbitrariness when using regions of interest will heighten this problem. The
combination of marginal and conditional measures of association may help in
discerning those brain connections driven by latent variables (Eichler, 2005b).

Finally, there is still a need for methodological developments. Although a
significant amount of work has been done to derive the statistical properties
of the parameters described here (see, for instance, Brillinger 1981, Dahlhaus
et al. 1997, Dahlhaus 2000, Eichler 2004 for asymptotic distributions and
for non-parametric tests, and Fried & Didelez 2003 for model selection pro-
cedures), further improvements in different aspects, such as the problem of
multiple comparisons, or the development of hierarchical models to assess
differences between groups may be required.

2 Functional Connectivity Analysis
in the Wavelet Domain

As with the Fourier techniques, where a given signal is described as a weighted
sum of sine and cosine functions, wavelet techniques use another set of basis
functions (the wavelets) with a similar objective. However, while the Fourier
basis gives a precise frequency localization, wavelets have the advantage of
decomposing the signal in both time and scale (each scale being equivalent
to a frequency band; see the example of Table 1). Such dual decomposition is
achieved by using filter functions with local scope (Percival & Walden 2000);
see Bullmore et al (2004) for a review of wavelets in relation to fMRI data
analysis.

Although the discrete wavelet transform (DWT) has been the most fre-
quently applied method to decompose time series on a scale by scale basis, in
this chapter we will use the Maximal Overlap DWT (MODWT), as it is bet-
ter suited to derive wavelet based connectivity measures and their estimates
(Whitcher et al. 2000, Gençay et al. 2002).

Wavelet transforms are applied through linear filters on the original time
series. Different filters are used to obtain the wavelet coefficients at different
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Table 1. Values of the main ‘small world’ quantities for each scale obtained when the
maximum permissible thresholds (R) were applied to wavelet correlation matrices
representing human brain functional connectivity. All quantities have been defined
in the main text. f is the frequency interval spanned by each wavelet scale

Scale f (Hz) R Lnet Cnet λ γ σ

1 0.23–0.45 0.13 2.9 0.534 1.28 1.81 1.42
2 0.11–0.23 0.2 2.6 0.566 1.12 2.2 1.97
3 0.06–0.11 0.39 2.69 0.555 1.16 2.26 1.95
4 0.03–0.06 0.44 2.49 0.525 1.09 2.37 2.18
5 0.01–0.03 0.35 2.4 0.554 1.05 2.35 2.25
6 0.007–0.01 0.17 2.65 0.515 1.14 2.15 1.87

scales. Each scale (τj) is related to a time resolution (and to its associated
frequencies) by τj = 2j−1 but, for simplicity, scales are frequently identified
through their scale index j.

For a time series of length N , and a chosen primary wavelet filter of length
L, a filter hj for scale τj with Lj = (2j−1)(L−1)+1 coefficients will be defined.
Next, MODWT filters are derived by rescaling hj , and by circularly shifting
the rescaled filters by integer units to the right (see Percival & Walden 2000 for
an exhaustive description of the MODWT filters and their implementation).
Fig. 7 shows the N -dimensional wavelet coefficients for three different scales,
obtained by applying the MODWT filters on a fMRI time series of the left
thalamus.

The main advantage of wavelet filters over Fourier filters, in a functional
connectivity framework, is their ability to deal with a broader range of time

series. Stationary time series with non-summable covariances
∞∑

k=−∞
|γi,j(k)| =

∞, known as long range dependent processes (Abry & Veitch 1998), can
not be properly analyzed with Fourier methods, since the spectral density
is unbounded for some of the frequencies. This is a pertinent issue for fMRI
data analysis because these time series are often characterized by such long-
memory properties (Maxim et al. 2005). Furthermore, the use of wavelets can
be extended to non-stationary models. Specifically, they are also appropriate
for the general family of d-backward difference stationary models (Hosking
1981) which do have a covariance function, although it cannot be easily es-
timated due to the non-stationarity of the mean. An appropriately chosen
initial wavelet filter (with length L > 2d) will return zero mean stationary co-
efficients, and will allow proper estimation of connectivity measures between
non-stationary time series based on their wavelet coefficients.

2.1 Measures of Association Based on the Wavelet Coefficients

Several measures of association between two time series have been derived
from the wavelet coefficients (see Whitcher et al. 2000 and Gençay et al. 2002).
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Fig. 7. Time series for the left thalamus together with the series of derived MODWT
wavelet coefficients for three different scales (τ2 = 2, τ5 = 16, τ8 = 128). As the
scale index j increases the time span increases and the wavelet coefficients describe
lower frequency patterns of the original series

Given two d-backward differentiable stochastic processes, X1(t) and X2(t),
with stationary MODWT coefficients W1,j(t) W2,j(t) at scale τj = 2j−1, the
wavelet covariance is defined by

γW1,W2(τj) =
1

2τj
Cov(W1,j(t),W2,j(t)) (11)

which, due to the stationarity of the coefficients, will be time invariant. An
estimate of the wavelet covariance from the MODWT coefficients of the N -
length observed time series is given by

γ̂W1,W2(τj) =
1

N − Lj + 1

N−1∑
t=Lj−1

w1,j(t) w2,j(t). (12)

The top row of Fig. 8 plots the estimated wavelet covariances, at different
scales, for the two pairs of time series in Fig. 1.
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Fig. 8. Estimated wavelet covariances (top row) and wavelet correlations (bottom
row) as a function of scale index j, for the two pairs of time series shown in Fig. 1.
Low frequencies, represented by larger scales, account for strongest correlations be-
tween right and left pairs of thalamic and temporal polar regions

As happens with any standard covariance measure, the wavelet covariance
will be affected by the intrinsic variability of both time series. This can be
overcome using a standardized measure of covariability, which is given by the
wavelet correlation

ρW1,W2(τj) =
γW1,W2(τj)√

γW1,W1(τj) γW2,W2(τj)
(13)

A simple estimate of this quantity is obtained by plugging-in values of (12)
(see examples in Fig. 8). Good asymptotic properties for both wavelet covari-
ance and correlation estimates are shown in Whitcher et al. (2000) under some
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general conditions. Finally, by considering lagged relations between wavelet
coefficients, both γW1,W2(τj) and ρW1,W2(τj) can be extended to wavelet cross-
covariance and cross-correlation functions, although these may be difficult to
interpret and are not widely used yet.

2.2 A Small World Analysis of Wavelet
Based Connectivity Graphs

In a similar way to the frequency specific graphs derived in Sect. 1.4, the
wavelet correlation matrices obtained at each scale may be used to generate
an undirected graph portraying the scale specific topology of brain functional
networks. Figure 9 shows the steps involved in the creation of these wavelet
based connectivity graphs. After deriving the estimates of the wavelet correla-
tion matrices from the MODWT coefficients, the correlations are thresholded
to generate binary matrices coding the edges between nodes in the graph.
Finally, a spatially explicit representation of these adjacency matrices leads
to visualization of the graphs as brain networks in anatomical space.

Once an undirected graph of whole brain functional connectivity subtended
by a specific frequency interval has been constructed in this way, we can ex-
plore its topological properties using tools drawn from small-world analysis
of other complex networks (Watts & Strogatz 1998; Strogatz 2001). Small
world networks are associated with a high density of local connections be-
tween nodes and a short geodesic distance between any two nodes in the net-
work. This makes them attractive as models of brain functional architecture,
which is theoretically anticipated to support both segregated/modular and
distributed/global modes of information processing (Sporns and Zwi, 2004).
The basic metrics required for a small world analysis are:

a) ki, the number of undirected edges reaching vertex (brain region) Vi.
b) The clustering coefficient Ci (0 < Ci < 1), a ratio which defines the

proportion of possible connections that actually exist between the nearest
neighbors of a vertex (Watts & Strogatz 1998); high values of Ci imply that
most of the nearest neighbors of that vertex are also nearest neighbors of
each other, or that the vertex is located in a cliquish local neighborhood.

c) The minimum path length, defined as the number of edges comprising the
shortest path between a given pair of vertices; the mean minimum path
length Li is the average of the n-1 minimum path lengths between Vi and
all other vertices in the network.

Values of these parameters can be used to identify the “hubs”; highly
connected nodes with largest values of ki or smallest values of Li. Furthermore,
all these quantities can be averaged over vertices to estimate the network
means knet, Cnet and the characteristic path length Lnet.

To diagnose small-world properties, the characteristic path length and
clustering coefficient are compared to the same parameters estimated in ran-
dom networks configured with the same number of vertices, mean degree
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kran and degree distribution as the network of interest, under the constraint
that kran > log(#V ) (#V being the number of vertices). Typically in a
small-world network we expect the ratio γ = Cnet/Cran > 1 and the ratio
λ = Lnet/Lran ∼ 1. A scalar summary of “small-worldness” is therefore the
ratio σ = γ/λ which is typically greater than 1 (Watts & Strogatz, 1998;
Montoya & Solé 2002; Humphries et al. 2005).

As shown in Fig. 10, the value of these parameters may be significantly
affected by the values of the threshold used to obtain the graphs. Specifically,
for the fMRI datasets analyzed, the most “small world-like” graphs (highest
values of σ) were obtained with the highest possible thresholds applied to
scales 3, 4 and 5, just before reaching the limit set by k > log(#V ); see also
Achard et al. (2006). Table 1 gives the values of the parameters at the 6
different scales when the highest allowable thresholds were applied.

Finally, the analysis of the distribution of the ki values for all vertices may
give some additional clues on the properties of the brain connectivity graphs.
Figure. 11 shows the histogram of ki values for scale 4, together with its
degree of fit to different theoretical models. A truncated power law model for
the cumulative degree distribution seems to be the most appropriate for this
data. Similar forms for the degree distribution have previously been reported
for diverse biological and other networks and typically indicate the existence
of important physical constraints (such as aging of nodes or connection costs)
on emergence of very highly connected hubs (Strogatz, 2001, Amaral 2000).

Conclusions

We have described and illustrated Fourier and wavelet methods of frequency-
dependent functional connectivity analysis applied to human fMRI data. We
have shown how analysis of multivariate time series in both domains can
support construction of undirected graphs representing sparse but complex
whole brain functional networks; and in the wavelet domain we have shown
that in the framework of the small-world theory, these networks are not
scale free.

�
Fig. 9. Plot showing the main steps needed to create wavelet based connectiv-
ity graphs. Functional MRI time series from the different regions are filtered to
MODWT coefficients. For each scale, the coefficients are used to estimate the wavelet
correlation matrix (matrices shown here are averages from five different individuals
scanned under resting conditions). Next, a threshold parameter (R) is used to create
the binary matrices that will code for the edges in the spatially explicit undirected
graphs. As shown for scale 4, different values of the threshold parameter will lead
to graphs of different sparsities. The typically small-world combination of high clus-
tering (e.g. in occipital cortex) and short path length mediated by some long-range
connections (e.g. between frontal and parietal association cortex) is evident by in-
spection of the more conservatively thresholded graphs. Reproduced with permission
from Achard et al (2006) c© Society for Neuroscience
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Fig. 10. Plots showing the values of some of the small world quantities described in
the text as a function of the thresholds applied to the wavelet correlation matrices of
Fig. 9. Each line refers to a different scale. Both mean degree and maximum cluster
size are decreased by increasing thresholds. While λ = Lnet/Lran values remained
stable around one, γ = Cnet/Cran values were increased with R, leading to an overall
increase in the small-worldness scalar σ = γ/λ with values greater than 2 for low
frequency scales at high thresholds. Reproduced with permission from Achard et al
(2006) c© Society for Neuroscience
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Fig. 11. Degree distribution of a small-world brain functional network. Left plot:
histogram of regional degree ki distribution. Right plot: plot of the log of the cumu-
lative probability of degree, log(P(ki)), versus log of degree, log(ki). The plus sign
indicates observed data, the solid line is the best-fitting exponentially truncated
power law, the dotted line is an exponential, and the dashed line is a power law.
Reproduced with permission from Achard et al (2006) c© Society for Neuroscience
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Brain connectivity has been a central factor in the development of theories
about the mind-brain link. In its simplest form, brain connectivity analy-
sis has revealed serial processing systems, wherein specific neural elements
(neurons, neuronal assemblies, neuronal populations) cooperate to express a
circumscribed function that is realized as information passes through the sys-
tem in a feedforward manner. Consideration of parallel architectures provides
a more complex view of system processing by revealing that each brain region
may impact many other regions through direct and indirect routes, including
areas from which it receives its input. Regardless of the specific architecture,
the notion that cognition results from the operations of large-scale neural
networks has been present in various forms throughout the history of neuro-
science (Finger, 1994; Bressler 1995, 2002). For a large part of that history, it
was difficult to verify this notion because most available methods only allowed
investigation of small parts of the nervous system in isolation. Ideally, simulta-
neous measures from many parts of the brain must be analyzed to understand
the operations of large-scale networks that underlie cognition. In the past
few decades, advances in functional neuroimaging, including Positron Emis-
sion Tomography (PET) functional Magnetic Resonance Imaging (fMRI), and
EEG/MEG-based source localization, have allowed simultaneous distributed
measures of brain function to be related to cognition.

This chapter examines the role of a critical aspect of brain function, which
we call neural context, in the selective functioning of interacting neural systems
in cognition. We define neural context as the local processing environment of
a given neural element that is created by modulatory influences from other
neural elements. Neural context allows the response properties of one element
in a network to be profoundly affected by the status of other neural elements
in that network. As a result of neural context, the relevance of a given neu-
ral element for cognitive function typically depends on the status of other
interacting elements (McIntosh 1999; Bressler 2003a). By this definition, the
processing performed by a given brain area may be modulated by a potentially
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large number of other areas with which it is connected. Since brain areas are
most often bidirectionally connected, the neural context of each connected
area emerges spontaneously from its interactions. Furthermore, to the extent
that basic sensory and cognitive operations share similar brain constituents,
they experience similar neural contextual influences.

Neural context refers only to the context that arises within the brain as a
result of interactions between neural elements. In this chapter, we also distin-
guish a related form of context, which we refer to as situational context. Unlike
neural context, situational context represents a host of interrelated environ-
mental factors, including aspects of the sensory scenes and response demands
of both the external and internal milieus. A red light presented to a person
in isolation usually means nothing, but a red light presented to that person
while driving elicits a situationally specific response. Situational context is
most often what researchers have in mind when they examine “contextual
effects” on the brain (Hepp-Reymond et al., 1999; Chun 2000; Herzog et al.,
2002; Bar 2004; Beck & Kastner 2005).

In most normal circumstances, neural context is shaped by situational
context. The environments in which animals and humans must survive have a
high degree of structural complexity, an important consequence of which is a
fundamental uncertainty in the organism’s perceptuo-motor interactions with
those environments. Complete information is never available to allow total
certainty about the state of the environment and the optimal course of action
in it. The limited information that the organism has about its environmental
situation usually renders ambiguous its perceptual interpretation of environ-
mental entities and the appropriate actions to be directed toward them. The
ability to utilize and manipulate information about the organism’s situational
context, can dramatically reduce uncertainty, thereby enhancing the organ-
ism’s interactions with the environment and lending survival advantage to its
species.

Since the complexity of the environment’s structure spans multiple struc-
tural and temporal scales, situational context must affect all types of cognitive
function, including sensation, perception, emotion, memory, planning, decision
making, and action generation. It is reasonable to infer therefore that neural
context should also be of primary importance in the implementation of those
functions by the brain. In other words, just as situational context can have
effects at multiple scales and across multiple behaviors, so too is neural con-
text expected across all spatial and temporal scales in the brain and across
all behaviors.

1 Anatomical and Physiological Foundations
of Neural Context

A fundamental factor that supports contextual processing in the brain is its
large-scale connectivity structure. The anatomical connectivity of the cere-
bral cortex, in particular, appears to have evolved to support contextual
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processing. The cortex consists of a large number of areas profusely inter-
connected in a complex topological structure, which places strong constraints
on its functional dynamics (Sporns et al., 2000; Bressler & Tognoli 2006;
Sporns & Tononi 2007). In sensory systems, local cortical networks are inter-
connected by feedforward, feedback, and lateral connections (Felleman & Van
Essen 1991), all of which may serve to provide neural context for the processing
that occurs in a given local network. Integration along convergent feedforward
pathways from peripheral receptor sheets may be sufficient for some forms of
sensory contextual processing, whereas other forms may require lateral and
feedback connections. Contextual processing in cortical motor and association
areas also critically depends on the complex patterning of interconnected local
networks (Brovelli et al., 2004).

Although the local networks in different cortical areas show cytoarchitec-
tonic variation, the cellular components and internal connectivity of cortical
circuits are generally similar throughout the cortex. What distinguishes the
specialized function of any local cortical network is its topological uniqueness,
i.e. its particular pattern of interconnectivity with other networks. The unique
set of local networks with which a given local cortical network is directly con-
nected has been called its “connection set” (Bressler 2002, 2003a) or “connec-
tional fingerprint” (Passingham et al., 2002). Providing direct synaptic input
to the circuit elements of the local network, the networks of the connection
set have privileged status in creating context for the processing in that local
network. The connection set of a local network thus determines the contex-
tual guidance that the network receives during processing, and consequently
modulates the trajectory of the local processing dynamics.

A second factor in cortical contextual processing is spatial pattern forma-
tion in local cortical networks (Beggs et al., 2007). The generation and trans-
mission of spatially patterned activity by local networks is central to interarea
communication in the cortex (Freeman 2003; Andras 2005), and provides a
realistic framework for contextual modulation. From this viewpoint, the pro-
cessing dynamics in a local cortical network is manifested by the formation
of spatially patterned activity under modulation by spatial activity patterns
transmitted from the members of its connection set (Bressler 2004). Neural
context is thereby implemented through the interaction of transmitted spatial
activity patterns from the connection set with patterns generated by the lo-
cal circuitry. Transmission uses parallel, convergent, and divergent pathways
between transmitting and receiving networks (Fuster 2003).

A third aspect of cortical function necessary for contextual processing is
reentrant interaction (Tononi et al., 1992). Since the anatomical interconnec-
tion of cortical areas is largely bidirectional (Felleman & Van Essen 1991), a
local network in one area receives feedback from the same local networks to
which it transmits in other areas, i.e. transmitted influences are reciprocated
by reentrant influences from receiving networks. Reentrant interactions that
a local network undergoes with its connection set modulate its spatial pattern
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processing, resulting in the alteration of its generated patterns. Reentrant
interactions thereby enrich the processing capability of the local circuitry.

Natural environments are rich with information about situational context.
The capacity to utilize that information enhances the behavioral adaptation
of animals to their surroundings. The exploitation of situational context infor-
mation affords an adaptive advantage, which exerts a strong selection pressure
for the evolution of neural architectures and mechanisms conducive to the effi-
cient processing of that information. Primates appear to have evolved special
behavioral prowess due to their highly developed contextual processing abil-
ities. The behavioral capability for taking advantage of situational context
information depends on the brain’s faculty for processing that information.
It is quite likely that the neural processing of information about situational
context depends on the deployment of neural context, by which the local pro-
cessing in an area of the brain is modulated by its interactions with other
brain areas. To understand the use of situational context information in be-
havior, we consider here the implementation of neural context in the primate
cerebral cortex, treating in particular some basic anatomical and physiological
features that allow and promote cortical contextual processing.

It is generally agreed that the functions of local networks in circumscribed
cortical areas depend on interactions among the neuronal elements of their
circuitry (DeFelipe et al., 2002; Douglas & Martin 2004; Bressler & Tognoli
2006). There is also growing appreciation of the fact that cortical circuit func-
tion is expressed in real time by the dynamics of these interactions (Lopes
da Silva et al., 1994; Friston & Price 2001; Siegel & Read 2001; Breakspear
& Jirsa 2007). Neural context for the functional dynamics of a local cortical
circuit is provided by modulations impinging on the circuit elements from
other connected circuits. It may be said that the circuit dynamics undergo
contextual guidance by such modulatory influences. In simulation studies, it
has been shown that the computational capabilities of a local processor can
be greatly enhanced by contextual guidance from the outputs of other pro-
cessors. (Becker & Hinton 1992; Kay & Phillips 1997; Phillips et al., 1998).
Contextual guidance may similarly be at work in normal cortical operations
(Phillips & Singer 1997).

In our view, the neural context for processing in a local network emerges
spontaneously through the reentrant interactions that the network undergoes
with the members of its connection set. The modulation of spatial pattern
formation that occurs in the local network as a result of those interactions
constitutes contextual guidance of the local processing dynamics, constraining
it to trajectories that are contextually consistent with activity in the connec-
tion set. Since reentrant interactions involve interconnected local networks
distributed throughout the cerebral cortex, it is to be expected that spatial
pattern formation will proceed concurrently in each local network under con-
textual modulation from all the networks to which it is connected. Thus, due
to the massive large-scale interconnectivity of cortex, contextual effects are
expected to be ubiquitous, and contextual guidance to occur concurrently in
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numerous widespread local networks, each both transmitting and receiving
contextual effects.

The interplay of multiple recurrent interactions across the cortex has been
postulated (Bressler 2004) to lead to the emergence of a global cortical con-
text that reflects the current situational context. This process is thought to
involve the convergence of local networks to mutually consistent activity pat-
terns that realize informational coherence and incoherence relations (Thagard
& Verbeurgt 1998). Thus global neural context is proposed to achieve congru-
ence with the situational context by convergence of spatial activity patterns
in interacting networks to informationally consistent states. Currency with
changes in situational context is maintained by ongoing disturbance and re-
establishment of consistent states (Freeman 2006).

2 The Role of Neural Context in Cognition

Neural context at multiple scales

As a principle of brain function, neural context can be most easily demon-
strated in relatively simple nervous systems, such as those of invertebrates.
While these systems admittedly do not have the broad behavioral repertoire of
primates, if contextual effects are indeed central to neural network operation,
they should be present in simpler organisms. It has indeed been demonstrated
in the Aplysia abdominal ganglion that the same neurons fire during perfor-
mance of quite different behaviors (Wu et al., 1994). What appears to differ-
entiate these behaviors is not the activity of a particular neuron, or group of
neurons, but rather the overall activity patterns of an entire network. Such
observations have been made in other invertebrate species across highly dis-
similar behaviors (Popescu & Frost 2002), suggesting that the observed be-
havioral variation resides in the large-scale dynamics of entire networks rather
than dedicated circuits (Kristan & Shaw 1997).

In the mammalian primary visual cortex (V1), neural context has been
established as playing a major role in determining the receptive field proper-
ties of single neurons (Zipser et al., 1996; Gilbert 1998; Das & Gilbert 1999;
Wörgötter & Eysel 2000; Gilbert et al., 2001; Stettler et al., 2002; Li et al.,
2004). The receptive fields of V1 neurons were traditionally viewed as being
spatially limited and tuned to simple stimulus attributes. However, it is now
known that neural context influences the receptive field structure of V1 neu-
rons. Thus, the response properties of these neurons are not determined solely
by feedforward, convergent excitation from visual thalamic cells, but are also
affected by lateral and feedback connections, some of which may be inhibitory.
Neural contextual influences on V1 neurons reflect situational context in a va-
riety of its forms. These include external situational factors derived from the
global spatial and temporal characteristics of the visual scene. They also in-
clude internal situational factors such as the activation history of the local
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cortical network in which the neuron is embedded, attentional influences, and
the global state of arousal. The substantial body of evidence demonstrating
these effects in V1 provides a vivid picture showing how situational context
can affect neural operations through neural context.

Evidence that neural context also operates at a larger scale across cortical
areas comes from studies showing that the processing of sensory input in one
cortical area or region can depend on the processing status in another. Within
the visual system, V1 neuron responses to illusory contours appear to depend
on contextual guidance from V2 neurons that integrate spatial information
over a broader spatial range (Lee 2003). Inter-sensory contextual modulation
may also occur. For example, contextual modulation of responses in the visual
cortex to visual stimuli can result from the concurrent processing of auditory
stimuli (Bhattacharya et al. 2002).

As mentioned above, it has been hypothesized (Bressler 2004) that cortical
context emerges from multiple recurrent interactions among cortical areas. An
important prediction from this hypothesis is that the representation of cate-
gorical information in the cortex should be reflected by patterns of activity
distributed across large cortical expanses rather than by the activity in a single
specific area. Category-specificity has rapidly become a major focus in human
neuroimaging research, exemplified by studies demonstrating face-category-
specific responses in the fusiform gyrus (Kanwisher et al., 1997). However, a
drawback of many such studies is that they employ very strict univariate sta-
tistical criteria that conceal all but the largest amplitudes in the activity pat-
terns. Nonetheless, studies that have characterized the distributed response to
faces have reported that greater category-specificity is revealed by the entire
activity pattern in occipital and temporal cortices than by any specific area
(Ishai et al., 1999; Haxby et al., 2001). Importantly, these studies have de-
termined that the specificity of the distributed response is not dramatically
altered if the regions typically associated with the category of interest are
excluded.

The effect of neural context is seen in other cognitive operations as well.
Working memory function, for example, is known to be supported by mutual
influences among neurons in many different brain regions, and is not uniquely
localized to prefrontal cortex (PFC) as was long thought (Fuster 1997, 2003).
In a study of visual working memory, similar delay-period activity was ob-
served in dorsolateral prefrontal and inferior temporal cortices, and cooling
of either area induced similar effects on the activity in the other area (Fuster
et al. 1985). Furthermore, a study of spatial working memory demonstrated
nearly identical delay-period activity profiles in dorsolateral PFC and poste-
rior parietal cortex (PPC) (Chafee & Goldman-Rakic 1998), and a follow-up
study showed similar effects in either area from cooling of the other (Chafee
& Goldman-Rakic 2000).

On balance, these studies support the conclusion that neural context op-
erates in working memory through mutual interactions among distributed
cortical association areas (Barash 2003). Regions such as dorsolateral PFC
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and PPC seem central to working memory operations, but their contribution
can only be realized by the particular set of interactions in which they engage
at a given point in time.

Neural context and effective connectivity

The estimation of effective (or functional) connectivity provides strong evi-
dence for variation in the recurrent interactions between neural elements that
is thought to underlie neural contextual effects. To characterize interactions
within the dorsal and ventral visual cortical processing streams (Ungerleider
& Mishkin 1982) McIntosh et al. (1994) applied structural equation mod-
eling to PET data to measure the effective connections specific to object
(face matching) and spatial processing (location matching). Results from the
right hemisphere analysis are presented in Fig. 1 (left hemisphere interactions
did not differ between tasks). As expected, effects along the ventral path-
way extending into the frontal lobe were stronger in the face-matching model,
while interactions along the dorsal pathway to the frontal lobe were relatively
stronger in the location-matching model.

Among posterior areas, the differences in path coefficients were mainly
in magnitude. Occipitotemporal interactions between area 19v and area 37
were stronger in the face-matching model while the impact of area 17/18 to
19d and the occipitoparietal influences from area 19d to area 7 were stronger
in the location-matching model. The model allowed for interactions between
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Fig. 1. Effective connectivity between cortical areas in the right hemisphere for
object and spatial vision operations. The numbers on the cortical surface refer to
Broadmann areas (d=dorsal, v=ventral). The arrows represent the anatomical con-
nections between areas and the magnitude of the direct effect from one area to
another is proportional to the arrow width for each path (Adapted from McIntosh
et al. 1994)
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the dorsal and ventral pathways with connections from area 37 to area 7
and from area 7 to area 21. In the right hemisphere, the interactions among
these areas showed task-dependent differences in magnitude and sign. The
temperoparietal influence of area 37 on area 7 was relatively stronger in the
location-matching model. The parietotemporal influence of area 7 on area 21
showed a difference in sign between the two functional models. These results
show that while the strongest positive interactions in each model may have
been preferentially located within one or the other pathway, the pathways did
not function independently, but exerted contextual modulatory influences on
one another.

Another important result of this study is that, although the PFC did not
show a difference in mean activity between tasks, processes involving PFC
shifted depending on the task. The influence of the dorsal and ventral path-
ways on frontal cortex was similar in magnitude for the two tasks, but the
origin of the positive and negative influences differed, implying that the quali-
tative nature of influence on the frontal lobe was different (positive influences
in the location-matching model were from areas 7 and 19d, and in the face-
matching model was from area 21). In terms of neural context, this result
demonstrates that it is not an area’s activity per se that is the key to under-
standing its contribution to a task, but rather its pattern of interaction with
other areas in large-scale networks.

Network interactions that underlie cognitive operations are observable as
differences in the effective connections between elements of the network. As
illustrated above, if visual attention is directed to the features of an object, ef-
fective connections among ventral posterior cortical areas tend to be stronger,
whereas visual attention directed to the spatial location of objects leads to
stronger interactions among dorsal posterior areas. Another way that cognitive
operations may be observed is through the modulation of effective connections
that occurs when one area provides an enabling condition to foster commu-
nications between other areas. Such enabling effects may represent a primary
mechanism whereby situational context is translated into neural context.

The most obvious example of neural context is top-down attentional con-
trol, whereby elements at higher processing levels can alter the processing
mode of lower-level elements. In an fMRI study by Buchel and Friston (1997),
subjects alternated between periods of overt attention to changes in a moving
visual dot pattern and periods where they did not attend to the display. Two
models were evaluated. In the first, a feedforward network from primary vi-
sual cortex (V1) to dorsal occipital cortex (V5) to PPC, visual attention was
associated with elevated path coefficients as compared to inattention. The
second model was an elaboration of the first, designed to assess whether the
PFC had a modulatory influence on the effective connections between V5 and
PPC. This second model, displayed in Fig. 2, revealed that PFC activity had
a direct influence on PPC, as well as on the interaction term for the effect
of V5 on PPC (PFC Mod → PP). This modulatory effect was shown to vary
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V1 V5

Stimulus

PFC
Mod

PP PFC

Fig. 2. Effective connectivity model for attentional modulation of visual processing
of motion. Stimulus effects impact on V1 and PFC, and determine when attentional
demands change via PFC Mod. The attentional effect was strongest at PFC, and
through the modulatory effects, PFC also impacted the responsiveness of PP to the
influence from V5. (Adapted from Buchel and Friston 1997)

in an activity-dependent manner, such that the effect from V5 to PPC was
strongest when PFC activity was highest.

In a second study, Buchel et al. (1999) provided a convincing demon-
stration that changes in effective connectivity are directly related to learning.
Training subjects to associate visually-presented objects with their location in
space forced a learning-dependent change in the effective connections between
dorsal and ventral visual processing streams. Furthermore, a remarkable cor-
relation was found between the rate of learning and the change in the influence
of the dorsal-stream PPC on the ventral-stream inferior temporal cortex.

A salient demonstration of neural context comes from a recent paper ex-
amining functional connectivity of the medial temporal lobe (MTL) in rela-
tion to learning and awareness (McIntosh et al., 2003). In a sensory learn-
ing paradigm, subjects were classified as AWARE or UNAWARE based on
whether they noted that one of two tones predicted a visual event. Only
AWARE subjects acquired and reversed a differential response to the tones,
but both groups showed learned facilitation. The observation that MTL ac-
tivity was related to learned facilitation in both groups at first appeared in-
consistent with an earlier hypothesis that the MTL is critical for learning
with awareness, but not when learning proceeds without awareness (Clark
& Squire 1998). However, it was discovered that the functional connectivity
patterns of the MTL were completely different for the two subject groups. In
the AWARE group, dominant MTL effective connectivity was observed with
prefrontal, occipital and temporal cortices, whereas in UNAWARE subjects,
functional connectivity was more spatially restricted to inferior temporal cor-
tex, thalamus and basal ganglia. We conclude that the MTL was involved
in learning in both groups, but its functional role differed between the two
groups because the neural context for its processing was different.
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Another perspective on working memory emphasizes its close relation to
sustained attention (McElree 2001; Fuster 2003; Deco & Rolls 2005; Bressler
& Tognoli 2006). Both working memory and sustained attention involve activ-
ity in overlapping regions of PPC, PFC, and anterior cingulate cortex (ACC).
In an fMRI study of the relationship between attention and working memory,
Lenartowicz and McIntosh (2005) used two variants of a two-back working
memory task: a standard version with strong attentional demands, and a
cued version that more strongly promoted memory retrieval. Activation of
ACC was found in both tasks, though it was more sustained in the standard
condition. However, the regions functionally connected to the ACC, and the
relation of the connectivity patterns to memory performance, differed com-
pletely between tasks. In the standard task, the observed pattern was related
to a speed-accuracy tradeoff, with strong functional connection of ACC to
PFC and PPC. In the cued task, the connectivity pattern was related only to
better accuracy, and involved functional connections with middle and inferior
PFC, and inferior temporal cortex. By virtue of these different patterns of
functional connectivity, the contribution of ACC to attention- and memory-
driven performance was similarly changed. In other words, although the ac-
tivity of ACC was similar in both tasks, each task invoked a different neural
context within which the ACC interacted, resulting in two very different be-
havioral profiles. The difference in neural context, and not in the activity of
ACC per se, reflected the difference in the functional role that this region
fulfilled.

In another study of ACC functional connectivity (Stephan et al., 2003),
the question was examined of whether hemispheric functional asymmetry was
determined by a word stimulus (short words, with one letter colored red) itself
or by the task, i.e. the situational context. In one instance, subjects judged
whether the word contained the letter “A”, ignoring the red letter, and in an-
other instance, they made a visuospatial judgment indicating whether the red
letter was right or left of center. A direct comparison of the activity (measured
with fMRI) revealed strong hemispheric differences. The letter task produced
higher activity in the left hemisphere, while the visuospatial task produced
higher activity in the right hemisphere. The ACC was similarly active in both
tasks relative to baseline, but showed distinctly different patterns of effective
connectivity between tasks. Specifically, during the letter task, the ACC was
coupled to the left PFC; during the visuospatial task, the ACC was linked
with the right PPC. These data are a compelling example of how situational
context (in this case, task demands) can modulate the neural context within
which a cortical area (i.e., the ACC) operates.

Disruption of contextual processing in cognitive disorders

We propose that the interplay between situational and neural context lies at
the heart of normal brain operation. It follows that brain dysfunction should
result from disruption of this interplay. In neurodegenerative diseases, neural
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contextual effects may change as a result of primary damage, and also as
the brain attempts to compensate for the degenerative process. In this re-
gard, Grady et al. (2001) observed that patient with mild Alzheimer’s Disease
(AD), showed a distinctly different pattern of functional connectivity support-
ing working memory for faces, despite having similar behavioral profiles as
age-matched controls. More direct evidence for new patterns of interactivity
supporting cognition was provided by Grady et al. (2003), where increased
functional connectivity in ventral prefrontal cortex was directly related to
preserved memory performance in episodic memory of AD patients (Fig. 3).

In mental disorders, it is likely that the exact mapping between situa-
tional context and neural context is altered, such that changes in situational
context are not properly reflected in neural context changes. In seeking to un-
derstand the neural basis of schizophrenia, some authors (Cohen et al. 1999)
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Fig. 3. Pattern of ventral prefrontal cortex (VPFC) functional connectivity in pa-
tients with mild Alzheimer’s Disease (AD patients) and age-matched controls in an
episodic memory task. Areas in yellow indicate strong positive functional connection
(correlation) with VFPC, while blue indicates a negative correlation. Areas are plot-
ted on an axial structural MRI (left is left). Scatterplots on the bottom indicate the
relation to the functional connectivity pattern (brain scores) with memory accuracy
in the AD patients, indicating the stronger the functional connection, the better the
memory performance (Adapted from Grady et al. 2003)
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have focused on the impaired utilization of situational context, whereas others
(Bressler 2003b; Phillips & Silverstein 2003; Must et al., 2004; Dakin et al.,
2005) have emphasized the impairment of neural contextual operations. Yet,
these two aspects of contextual processing are likely to be related, as de-
scribed above. The relation between situational and neural context may hold
the key for both the understanding and treatment of mental disorders. Semi-
nowicz et al. (2004), using estimation of effective connectivity, demonstrated
distinctly different interaction patterns of limbic, cingulate and prefrontal re-
gions across three groups of patients with major depression. Importantly, the
groups were defined based on the form of therapy that was most effective in
treating their depression. Patients responding to cognitive-behavioral therapy
were distinguished from patients responding best to pharmacotherapy by the
pattern of limbic-coritcal and cortico-cortical effective connections.

3 Concluding Remarks on the Generality
of Neural Context

Although the notion of neural context may appear to be at odds with the
idea of specialization of function in the brain, this is not the case. In our view,
a brain area is only able to contribute to cognitive operations through the
interactions that it undergoes with the other areas to which it is connected.
From this perspective, a brain area plays a specialized role in any cogni-
tive function by virtue of its unique position within the overall connectional
framework of the brain. However, for the same brain area to be involved in a
number of different functions does not necessarily imply that it exercises the
same functional role in each. To the contrary, a large body of neuroimaging
results indicates that different cognitive functions are associated with differ-
ent neural contexts, and individual areas may contribute in a differentially
specialized manner within each neural context. For example, since frontal
cortical areas typically interact with parietal cortical areas in performing cen-
tral executive functions (Collette & Van der Linden 2002), frontal or parietal
areas may be considered as playing a specialized role in each function based
on their contribution within the unique neural context associated with that
function.

Clearly, we view neural context as a general effect that modulates the pro-
cessing which occurs in any part of the brain. The neural context for processing
in any area is firstly dependent on its connectivity with other brain areas, and
secondly on the processes occurring in those other areas. Nonetheless, within
the overall connectional architecture of the brain, some areas may occupy
privileged positions for translating situational context into neural context.

As one example, the dorsolateral PFC may play a special role in establish-
ing the neural context of working memory. Located at theapex of the frontal
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executive hierarchy (Fuster 2003), this area is ideally situated to integrate
information about situational context, such as the input modality and the
type of response required in a given task situation. Our picture is that the PFC
contributes to working memory by shaping the neural context of distributed
sensory and motor networks through the modulatory influences that it exerts
on them. Furthermore, its own neural context is shaped by the modulatory
influences that it receives back from them. In this process, the PFC interacts
with different other areas to instantiate different aspects of situational con-
text, as when it interacts with the basal ganglia to maintain cross-temporal
context (Dominey and Boussaoud 1997). By virtue of its different interactions,
its own neural context is expected to depend on the situational context.

The hippocampus (along with surrounding medial temporal areas) also
appears to occupy a privileged position with regard to the learning of situa-
tional contexts (Chun & Phelps 1999; Bucci et al., 2000; Smith & Mizumori
2006). In some theories of memory consolidation (e.g., Squire et al., 2004),
the hippocampus acts gradually to strengthen the synaptic connections among
neocortical areas representing the long-term memory content; after a sufficient
degree of neocortical reorganization this memory content can be accessed inde-
pendently of the hippocampus. From our perspective, this neocortical memory
content is constrained by the global neocortical context that exists at the time
that the consolidative processes are in effect. In this way, neural context may
impact the integration of new memory into existing representations, and affect
the ultimate accessibility of long-term memory to retrieval.

In this chapter, we have only touched on some of the main aspects of neural
context with respect to the operation of large-scale neurocognitive networks.
A number of additional facets of neural context are highly important in their
bearing on neurocognitive function. The concept of contextual congruence,
for example, may be a relevant aspect of that function. Laurienti et al. (2003)
have demonstrated that the ACC and adjacent medial PFC are sensitive to
the contextual congruence of multisensory input. Whether the congruence of
this type of context, which is situational in nature, has a correspondence in
some property of neural context, such as spatial coherence (Bressler 2004),
remains to be tested.

This chapter has been concerned with the relation between neural context
and one form of non-neural context, namely situational context. It is clear,
however, that contextual effects can encompass a long list of other influences
such as the personal and evolutionary history of the organism. We predict that
the concept of neural context will take on increasing significance for brain
research in coming years as researchers come to grips with the functional
consequences of large-scale brain connectivity, and that it will come to be
seen as a common form of implementation for a number of different types of
non-neural context.
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1 Introduction

Coordination symbolizes one of the most fundamental, yet arguably least
understood ability of living things. Humans effortlessly coordinate complex
interactions between their bodies and the world in order to accomplish even
the simplest of tasks. Coordination Dynamics, defined broadly as the science
of coordination (see contributions, e.g. in Tschacher and Dauwalder 2003;
Jirsa and Kelso 2004) describes, explains and predicts how patterns of co-
ordination form, adapt, persist and change in natural systems. It uses the
language, methods and tools of self-organizing dynamical systems (e.g. Haken
1983; Nicolis and Prigogine 1989) to provide a conceptual and theoretical
framework for understanding coordination at multiple levels, from behavior
to brain (Kelso 1995; Haken 1996; Kelso et al. 1999). A primary goal of coor-
dination dynamics is to understand the laws, principles and mechanisms gov-
erning how patterns of behavior form in space and time; how these patterns
are maintained; how they change in response to environmental or physiologi-
cal demands; and how they are reorganized in an adaptive way, often allowing
for the adoption of new patterns. “Understanding” means identifying both
the essential variables and parameters that characterize dynamic patterns of
coordination on a given level of description and the usually low-dimensional
pattern dynamics that gives rise to a broad range of complex, dynamic behav-
iors. As a science of coordination that embraces both structure and function
in living things, coordination dynamics deals essentially with informationally
coupled self-organizing systems. That is, in coordination dynamics otherwise
independent component subsystems are coupled by functionally meaningful
information.

In studies of coordination dynamics, behavioral coordination has proven
a fertile entry point into uncovering principles and mechanisms of human
action (Kelso 1995; Jirsa and Kelso 2004). Within this conceptual and theo-
retical framework, coordination is defined in terms of collective or coordina-
tion variables that specify the spatiotemporal ordering between component
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parts. In the vicinity of critical points, emergent behavior has been shown
to be governed by the low-dimensional dynamics of these collective variables
(e.g., Haken, Kelso & Bunz, 1985). This low-dimensional dynamics is revealed
by manipulating one or more control parameters whose role is simply to move
the system through a series of state changes. Adopting this strategy in the
case of human behavioral coordination has revealed that the relative phase be-
tween component subsystems is a crucial collective variable and that the rate
of coordination is a key control parameter (Kelso 1984; Haken et al. 1985).
Thus, when rate is systematically increased, instabilities in coordination de-
velop and spontaneous switches between patterns of coordination ensue. It is
these transitions and the features that surround them that have established
the self-organizing nature of human behavior (see Kelso, et al., 1987; Schöner
and Kelso 1988 for early reviews).

A deeper understanding of human behavior and cognition rests on uncov-
ering how the rich dynamics of human behavioral pattern formation is rooted
in underlying brain processes. In this chapter we take the case of sensorimotor
coordination as an entry point for determining the relation between the dy-
namics of human behavior and the dynamics of brain function. We begin with
a brief description of levels of observation, including the kinds of measures that
may help us to connect behavioral and neural levels (see also Fuchs et al. 1999;
Jirsa et al. 1999; Kelso et al. 1999). We then go on to describe the experimental
‘workhorse’ paradigm used to study human behavioral pattern formation and
the basic phenomena it reveals. This is followed by a brief overview of the the-
oretical and mathematical framework employed to explain these phenomena.
Such concepts aid in identifying the key variables that govern coordination
and hence provide experimental insight into its nature. Having identified key
coordination variables, we then review the literature that has either directly
or indirectly shown how patterns of human sensorimotor behavior may be
mapped onto neural function. Finally, we conclude with some key questions
that future research needs to address and how technological and analytical
advances in functional neuroimaging may aid in finding the answers.

2 Levels of Observation

At the behavioral level we take as our entry point sensorimotor or perceptual
motor coordination (Kelso et al. 1990). This can be broadly defined as coordi-
nating one’s actions in space and time with environmental stimuli. Such stim-
uli can vary widely in scope ranging from a simple rhythmic stimulus presented
over one or more perceptual modalities to multifaceted biologically relevant
stimuli such as the actions of another person (e.g., DeGuzman, et al., 2005;
Oullier, et al., 2003). Regardless, the idea is to identify key measures of the
coordination between interacting elements and the dynamics governing this
interaction. Much research over the last two decades has demonstrated that
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relative phase is a relevant collective or coordination variable that: a) captures
(multiple) patterns of behavior of coupled systems; b) reveals specific features
of the underlying dynamics of the coordinated system such as loss of stability;
and c) demonstrates the existence of pattern switching. Operationally, rela-
tive phase is defined as the time difference between an environmental event
(e.g., a simple tone beep, tactile vibration or visual flash), and the associated
behavioral action (e.g., a simple finger flexion) divided by the stimulus pe-
riod. Since we are dealing in the first instance with rhythmic behavior, this
normalized time difference is often expressed in radians or degrees by multi-
plying it by 2π or 360 respectively (see Jirsa & Kelso, 2005 for a more generic
treatment).

At the neural level we concentrate on relatively macroscopic measures
of brain function derived from electroencephalography (EEG), magnetoen-
cephalography (MEG), functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET). These technologies supply a variety of
measures of the activity of neural ensembles that, when combined with var-
ious analytic methods provide insight into the large scale functioning of the
human brain. It should be noted that each of these recording tools provides
unique information about large-scale patterns of neural activity and possesses
advantages and disadvantages relative to one another. The latter will become
clear as we proceed through forthcoming sections.

Current technologies restrict us to questions concerning how the rich dy-
namics of behavioral coordination originates from activity arising at the level
of macroscopic brain function. Of course, this is not to say that other scales
of observation are uninformative and do not provide additional insight into
the questions addressed here. Neural activity unfolds over multiple spatial
and temporal scales (e.g. cortical column, local field potential, single unit,
ion channels, neurotransmitters, gene expression, etc.) that are likely to be
important to understanding coordination at other levels. As for sensorimotor
behavior, work at intermediate levels of observation suggests that biomechan-
ical factors can play a role in modulating the intrinsic dynamics of human
behavioral coordination (e.g. Ridderikhoff et al. 2004). For example, there ap-
pears to be a preference for recruitment of specific muscular synergies during
coordination as revealed by the observation of transitions from extension on
the beat to flexion on the beat (Carson et al. 1996; but see also Kelso, et al.,
2001). This finding has been couched in terms of the modulation of cen-
tral supraspinal mechanisms on spinal tendencies favoring the entrainment
of flexors. Similarly, in wrist supination/pronation the most stable pattern
(pronation or supination on the beat) is determined by the location of the
axis of rotation with respect to the skeletal structure (Byblow et al. 1995;
Carson and Riek 2000) suggesting that altering musculoskeletal constraints
impacts the stability of performed coordination patterns. In short, although
we concentrate here on understanding relative phase dynamics in terms of
large scale neural activity we also recognize that the rich repertoire of both
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bimanual (Swinnen 2002) and unimanual coordination (Ridderikhoff et al.
2004) arises from a coalition of constraints (Kelso et al. 2001; Temprado and
Swinnen 2005) that includes, but is not limited to the combined influence of
supraspinal, musculoskeletal and environmental factors.

3 Behavioral Level: Stability and Instability

To illustrate the key ideas and features of coordination dynamics, we describe a
simple experimental system that treats the problem of sensorimotor coordina-
tion as a pattern forming process (Kelso et al. 1990). In the paradigmatic case,
the temporal coupling is between a finger flexion/extension movement and a
periodic auditory beep. The task requires participants to coordinate in one of
two or more possible patterns. For the synchronized patterns movements are
coordinated such that peak flexion of the movement occurs coincident with the
metronome beat. Syncopation is accomplished by placing peak flexion directly
in between two consecutive beats. In Kelso et al. (1990) the metronome was
systematically increased in frequency from 1 Hz to 3.5 Hz in steps of 0.25 Hz.
Instructions emphasized the importance of maintaining a 1:1 relationship be-
tween finger movement and metronome at all times, and if the pattern changed
“not to intervene” or to intentionally restore the pattern (see also Kelso et al.
1988; Scholz and Kelso 1990). When finger flexion and metronome occur si-
multaneously in time the relative phase difference between them is 0◦. Perfect
syncopation is achieved when the relative phase difference is 180◦.

A rich and reproducible set of behaviors flows from this paradigm. At
low metronome rates a strong tendency exists toward frequency- and phase-
locking in both conditions. That is, both patterns are performed in a stable
manner with relative phase between finger and metronome close to 0 or 180
degrees. As the rate of the movement is parametrically increased, a sponta-
neous transition from syncopation to synchronization is observed at a critical
frequency marking the change from a bistable regime (where both patterns
are possible and may be said to coexist) to a monostable regime where syn-
chronization predominates. In some cases further increases in rate result in the
loss of entrainment between the finger and metronome resulting in-phase wan-
dering and various patterns of phase drift. Transitions between coordination
patterns are typically preceded by an increase in the variability of the relative
phase between sensory and motor events. Such fluctuation enhancement in the
vicinity of transition points indicates a characteristic loss of stability typical
of nonequilibrium pattern forming systems in nature (Haken, 1983). Indeed,
the foregoing experiments and resultant theoretical modeling (Kelso, et al.,
1990) have been taken to provide strong evidence that action-perception fol-
lows laws of general pattern forming processes (Turvey, 2004). The symmetry
breaking property of the theory developed in the Kelso et al (1990) work has
proven to be generalizable across different experimental paradigms, thereby
providing a framework for understanding and investigating human behavior
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in a variety of contexts. For example, the same dynamical features such as
loss of stability, critical slowing down and qualitative changes in the order
parameter have been observed across different task contexts such as coordi-
nation between homologous limbs (Kelso 1984), non-homologous limbs (Kelso
and Jeka 1992; Jeka and Kelso 1995; Swinnen et al. 1997), between persons
and their environment (Kelso et al. 1990; Jirsa et al. 2000) and even in so-
cial coordination between people (Schmidt et al. 1998; 1999; Oullier, et al.,
2003; Richardson et al., 2005). Similar principles govern perceptual grouping
and coordination as nicely illustrated by the classic bistable properties of re-
versible figures such as the Necker cube (e.g. Kelso, et al., 1995), the visual
perception of spatiotemporal in-phase and antiphase moving stimuli (Hock
et al. 1993; Bingham et al. 1999; Zaal et al., 2000) and speech categorization
(Tuller et al. 1994; Case et al. 1995). For present purposes, the key aspect
of this essentially ‘nonlinear paradigm’ is that it provides a convenient entry
point for investigating the dynamics of pattern formation and change at both
behavioral and brain levels.

4 Theoretical Foundations

The theoretical model first proposed by Haken, Kelso and Bunz (1985), and its
fundamental extensions to include stochastic (Schöner et al. 1986) and symme-
try breaking features (Kelso et al. 1990) form the foundation for the science of
coordination and provide a basis for understanding the self-organizing dynam-
ics of human behavioral and neural function (Kelso 1995; Haken 1996; Bressler
and Kelso 2001). The original HKB formulation assumed, for simplicity’s sake,
identical (homogeneous) elements. Here we provide a brief introduction to the
computational model that accounts for the basic coordination phenomena in
terms of the non-linear coupling between heterogeneous coordinating elements
(Kelso et al. 1990). In this theoretical model, the coordination between finger
flexion/extension movements and the environment is captured by the relative
phase (φ) and represented by a nonlinear equation of motion that specifies
the relative phase dynamics:

.
φ = δω − a sinφ− b sin 2φ+

√
Qεt

The parameter δω accounts for inevitable differences between the individ-
ual coordinating elements, here different intrinsic oscillatory frequencies. The
parameters a and b govern the strength of the coupling, the ratio (b/a) corre-
sponding to a control parameter of rate or frequency in experiments. Thus, a
decrease in the ratio signifies a decrease in the period or duration of coupled
dynamical behavior. The final parameter εt represents the presence of (delta
correlated) noise fluctuations of strength Q.

For high values of the coupling ratio b/a (Fig. 1; left) the system exhibits
bistability: two modes of behavioral coordination coexist for the same param-
eter set. Stable states of coordination, indicated by points where the negative
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Fig. 1. The theoretical model of Kelso et al. (1990) showing plots of the relative
phase dynamics under conditions of high (left), medium (middle) and low (right)
coupling strength with δω set at a small value. As a result of symmetry breaking,
notice the fixed points of relative phase are not exactly at 0 and 180 deg. On the left,
the coordinative system is in a bistable regime where both in-phase and antiphase
coordination states exist (filled circles). Decreasing the coupling results in a switch to
a monostable state where only in-phase coordination is supported (middle). Further
decreases in coupling, in combination the symmetry breaking term δω, abolish all
stable states leaving only the remnants of attractors in the landscape or phase
portrait

slope of the function crosses the
.
φ axis (solid circles; open circles indicate

unstable states) occur at relative phase relationships near 0 and 180 degrees.
These values of the coordination or collective variable correspond to patterns
of synchronization and syncopation respectively. As the ratio is decreased the
system reaches a critical point and undergoes a switch from a bistable to a
monostable regime where only the synchronized coordination pattern is sta-
ble. Note in the middle panel of Fig. 1 that only a single fixed point exists near
0 degrees and the negative going portion near syncopation no longer crosses
the

.
φ axis. Further decreases in b/a result in destabilization of the in-phase

pattern corresponding to a complete lack of stable and unstable fixed points
such that the function is lifted entirely off the axis (Fig. 1, right).

The fact that the function retains its curvature is taken as evidence for
remnants of attraction toward previously stable states. This effect is due to
broken symmetry that arises as a result of intrinsic differences in the individ-
ual coordinating elements (embodied by the δω parameter). Such metastabil-
ity represents a more flexible form of self-organization where the component
parts are free to express their individual behavior though still working to-
gether in loose association (Kelso, 1995; Friston, 1997). Systematically guid-
ing the system through an appropriate parameter range exposes qualitatively
different behavioral regimes and provides an entry point for studying neural
mechanisms of pattern selection, formation and change—a kind of dynami-
cal decision-making. Some of the key questions that arise from this theoretical
and experimental programme that aims to connect the dynamics of behavioral
coordination with the dynamics of neural activity are:
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1. How are intrinsic differences in stability between syncopated and synchro-
nized patterns of sensorimotor coordination manifest at the level of brain
structure and function?

2. Since increases in movement rate for the syncopated pattern result in a
decrease in coordinative stability whereas comparable decreases are not
observed for synchronization, how are such changes in rate and stability
manifest at the neural level?

3. Typical of informationally-based self-organizing dynamical systems (aka
coordination dynamics), at a critical value of the control parameter of
rate or frequency, spontaneous switches in pattern from synchronization
to syncopation occur. Is a similar reorganization observed at the level of
the brain? If so, what is the neuroanatomy and neurophysiology behind
such pattern switching? Putting our cards on the deck, we wish to empha-
size that although switching is common in the self-organizing behavioral
and neural systems described by coordination dynamics, this by no means
implies the existence of “switches”(cf. Martin, 2006).

In the following we review the imaging literature relevant to establishing con-
nections between brain and behavioral dynamics in light of the foregoing
questions. Because different technological and analytical approaches provide
substantially different information about aspects of cortical and sub-cortical
structure∼ function the remainder of this review is organized according to the
methods used in acquiring or analyzing information from the brain.

5 Evoked Responses and the Search
for Shared Dynamics

Early studies in the present framework employed sensorimotor coordination
tasks as a means to uncover the link between the dynamics of behavior and the
dynamics of the brain; connecting these levels by virtue of their shared dynam-
ical properties (Fuchs et al. 1992; Kelso, 1981; Kelso et al. 1991; 1992). The
high temporal resolution of electroencephalography and magnetoencephalog-
raphy was exploited to quantify the relationship between behavioral patterns
and spatiotemporal patterns of neural activity. Common features of the dy-
namics expressed at both levels of description were taken as evidence that
similar principles of (self) organization govern pattern formation in brain and
behavior. Of particular initial interest was the identification of qualitative
changes in the pattern of neural activity that occurred simultaneously with
transitions between coordination patterns.

In the first of these studies, a 37 channel SQUID (Superconducting Quan-
tum Interference Device) sensor array was used to measure the spatiotempo-
ral patterning of neuromagnetic fields generated by the intracellular dendritic
current flow of large ensembles of cortical neurons located over left temporo-
parietal cortex (2 cm. posterior to C3) during auditory-motor coordination
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(viz. Kelso et al. 1990). Unlike EEG signals that are subject to blurring at the
various tissue boundaries, magnetic signals pass unimpeded through skull,
scalp and cerebrospinal fluid providing a relatively undistorted measure of
the neural sources underlying coordination patterns and pattern switching.
The task was to syncopate right index finger flexion in time with an audi-
tory stimulus that parametrically increased in rate from 1.0 Hz to 3.25 Hz in
0.25 Hz increments. Under instructions to maintain a 1:1 stimulus-response
coordination, increases in rate resulted in a gradual loss of stability of and
a transition from syncopation to synchronization at a critical frequency of
1.75–2.00 Hz.

This neurophysiological data may be summarized by three main find-
ings. First, time-frequency analysis showed a frequency-dependent change in
the temporal relationship between rate and the dominant frequency in the
averaged MEG signal. At slow, pre-transition plateaus (< 1.75Hz) the fre-
quency of the neural response was at the fundamental frequency of the stimu-
lus/response. Following the transition, the spectral pattern’s dominant Fourier
component changed to twice the stimulus frequency (Fuchs et al. 1992), a find-
ing interpreted in terms of a period doubling bifurcation in forced nonlinear
systems (see Kelso & Fuchs, 1995 for a possible model). The second finding
was a qualitative change in the phase relations of the MEG sensors occurring
coincident in time with the period doubling and with the behavioral transi-
tion. Relative phase was employed to capture, within a single quantity, both
the spatiotemporal organization between the brain signals and the auditory
stimulus as well as the finger position and the auditory stimulus. Particularly
the anterior sensors demonstrated a phase shift of π at the point of the behav-
ioral transition signifying a similar transition in relative phase for both brain
and behavior (Kelso et al., 1991; 1992). Third, using principal component
analysis, it was determined that a majority of the variance (97%) in the spa-
tiotemporal signal could be accounted for by only four temporally evolving
spatial patterns (Fuchs et al. 1992; Kelso et al. 1992). Theoretical model-
ing used coupled differential equations to capture the observed facts (Jirsa
et al. 1994), two of the mode amplitudes acting as collective variables or or-
der parameters to which lower amplitudes are “enslaved” (in the language of
synergetics). These spatial modes demonstrated notable qualitative effects in
the time and frequency domain in relation to the occurrence of the behavioral
transition. Unfortunately, due to the limited coverage of the MEG sensor ar-
ray, specific neuroanatomical substrates could not be determined. However,
given the frontal concentration of activity, involvement of pre-motor and pre-
frontal regions was assumed (Kelso et al. 1992). Nevertheless, the key point is
that when a complex system like the brain is placed in a behavioral context
that requires pattern formation and switching, it appears to be governed by
just a few order parameters. This supports the general view that the brain op-
erates (or can be induced to operate) close to instability where only a few key
quantities capture its behavior and the system is governed by low-dimensional
dynamics (Haken, 1996; Kelso, 1992; 1995). Significantly, it was possible to
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derive these equations from a more microscopic approach in which neurons are
defined in terms of their pulse rates and dendritic currents (Jirsa and Haken
1997; Jirsa et al. 1998). The latter of course are very relevant for the present
discussion, since they give rise to the magnetic fields observed by MEG.

Subsequent work confirmed some of the findings in the Kelso et al.
(1991; Kelso et al. 1992) MEG experiment while calling others into ques-
tion. Daffersthofer and colleagues provided a replication of the original exper-
iments using a 151 sensor MEG system that provided extended coverage and
36 EEG electrodes located primarily over bilateral motor areas (Daffertshofer
et al. 2000). In line with the earlier studies, a phase shift of approximately
π was observed simultaneously in behavior, EEG and MEG. This phase shift
was broadly distributed across the MEG sensors suggesting a global reorgani-
zation of neural activity associated with the behavioral transition. In contrast
to the analysis by Fuchs et al. (1992), no post-transition period doubling
was observed leading to a suggestion that such a finding may have resulted
from the specific method of analysis employed. Several arguments were sub-
sequently made against this conclusion (Fuchs et al. 2000a) with a second
MEG study definitively revealing the source of the observed period doubling
(Fuchs et al. 2000b).

Further insight came in the form of EEG studies that provided homo-
geneous full head coverage to investigate spatial and temporal properties of
activity arising from the entire cortical surface during both synchronized and
syncopated coordination (Wallenstein et al. 1995; Mayville et al. 1999). The
inclusion of synchronization is important to control for the effect of move-
ment frequency since synchronization does not change in stability or switch
pattern when performed at the same rates as syncopation (Kelso et al. 1990).
Large-scale reorganization of the dominant pattern of neural activity over
contralateral sensorimotor cortex was observed coincident with transitions in
coordination at the behavioral level (Wallenstein et al. 1995; Mayville et al.
1999). Importantly, this reorganization was associated with syncopation and
not synchronization indicating that the reorganization was related to changes
in pattern stability and not simply a product of changes in movement rate
per se. Experimentally induced effects were confined to electrodes overlying
contralateral central and parietal regions suggesting that dynamic changes
in cortical function associated with behavioral change occurred principally in
primary sensorimotor and premotor cortex.

In a definitive study, Fuchs and colleagues (Fuchs et al. 2000b) proposed
an explanation for previous findings in terms of the interplay between audi-
tory and motor evoked signals. In this work the syncopation paradigm was
investigated using a 143 channel SQUID array allowing for the measurement
of neuromagnetic signals from the entire cortex. As in previous studies, move-
ments began at 1.0 Hz in a syncopated pattern of coordination and increased
in rate by 0.25 Hz after every 10 cycles to a maximum of 2.75 Hz. Auditory
(listening to tones presented with a randomized ISI from 2–4 seconds) and
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motor alone (self-paced movements separated by intervals of approximately
3s) conditions acted as controls.

Based on the spatiotemporal decomposition of the motor related response,
the authors concluded that the π phase shift was due to the shifting in time
of the motor response with respect to the auditory metronome. A shift of
this kind reflects the tight time and velocity coupling between flexion of the
index finger and the evoked magnetic response (Kelso et al. 1998). Compari-
son between the topographic patterns observed during coordination and those
generated during control conditions indicated that at low movement rates the
pattern of neural activity appeared to be dominated by auditory related ac-
tivity while at higher rates a motor pattern was most prevalent. Principal
component analysis was again used to decompose the signal into dominant
spatial patterns and their temporal evolution. During pre-transition plateaus
a majority of the variance was accounted for by a spatial mode that closely
resembled the auditory control. Post-transition plateaus, on the other hand,
were dominated by a clearly motor related mode. Projecting the data from
each plateau onto a basis composed of the auditory- and motor-only controls
demonstrated that the auditory related pattern (characterized by the N1m
response) decreased in amplitude with increasing frequency while the motor
component remained stable throughout (Fig. 2). Moreover, the period dou-
bling reported previously (Fuchs et al. 1992) was shown to result directly from
this interaction. Thus, at low movement rates the primarily monophasic audi-
tory evoked response dominates the power spectrum resulting in a dominant

Fig. 2. Shown are the relative strengths of the spatial modes corresponding to the
auditory (red, top left) and motor (blue, top right) components of the sensorimotor
task. As movement rate increases (left to right in bottom panels) the strength of the
auditory component systematically decreases while the motor component remains
fairly constant for all rates. The place where they overlap corresponds approximately
to the behavioral transition. The three panels show data from different subjects.
Adapted from Fuchs et al. (2000)
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frequency at the stimulus rate. As rate increases, the biphasic motor response
becomes dominant resulting in the observed frequency doubling. From these
data, we may conclude that the reorganizations observed in the brain dynam-
ics are a reflection of the change in the relationship between the brain signals
underlying the generation of movement and those arising from auditory pro-
cessing.

Frequency dependent decreases in the amplitude of the average audi-
tory evoked response have been reported during sensorimotor synchronization
(Mayville et al. 2001) and auditory perception in the absence of movement
(Carver et al. 2002). The relationship between response amplitude and tone
interval is well established for long intervals on the order of 1 or more seconds
(Hari et al. 1982; Lu et al. 1992; Sams et al. 1993). Carver et al. (2002) in-
vestigated the auditory response at frequencies ranging between 0.8 and 8Hz
(ISI = 1250 –125 ms), a relevant parameter regime for sensorimotor coordina-
tion and rhythm perception and processing in general (Fraisse 1982). These
authors reported both a cessation of the N1m and a transition from a transient
to a steady state response at stimulus rates of approximately 2.0 Hz, a rate of
demonstrable perceptual significance (Fraisse 1982; Drake and Botte 1993) as
well as the typical rate at which transitions from syncopation to synchroniza-
tion occur (Kelso et al. 1990). Such findings provoke questions as to whether
behavioral transitions might be a consequence of a qualitative change in au-
ditory processing (and perception) associated with the onset of a steady state
response. Controversy exists as to whether steady state responses reflect sum-
mation of overlapping long latency responses, implying a shared functional
anatomy, or whether responses occurring on these two timescales are repre-
sented by separate neural networks (Pantev et al. 1996; Gutschalk et al. 1999).
Functional MRI and PET studies may offer some insight into this controversy
(Pastor et al. 2002). In either case, dynamic changes in auditory processing
could ultimately alter the nature of the auditory to motor coupling in a way
that disrupts the syncopated pattern in favor of the synchronized one. The
intriguing relationship between stimulus processing and behavioral dynamics
may represent a potential line of inquiry that has received little attention thus
far (e.g. Lagarde and Kelso 2006).

Finally, to better understand the rate-dependence of cortical motor-related
processes, Mayville et al. (2005) investigated self-paced movements using a
continuation paradigm. Twenty one different metronome pacing rates were in-
cluded spanning the range of .5Hz to 2.5 Hz in steps of 0.1 Hz. After 20 pacing
tones, the stimulus was turned off and participants continued moving at the
designated rate. They show that the time course of the classic motor-evoked
field (MEF) is tightly coupled to the behavioral response (as had previously
been found by Kelso et al. 1998) and does not depend on rate per se. However,
a second, weaker motor-related field, consistent with a readiness field, was ob-
served to strongly decrease in amplitude at rates above 1Hz. Interestingly, this
is exactly the rate at which subjects switch from a reactive mode of coordina-
tion, in which responses follow the stimulus and an anticipatory or predictive
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pattern in which responses begin before the metronome beat (Engstrom et al.
1996). The topology of this readiness field and its gradual accumulation of
field amplitude prior to movement is consistent with a bilateral SMA source
(Cheyne and Weinberg 1989; Erdler et al. 2001). Its decrease (by more than
half when the rate exceeds 1.0Hz) may signify changes in the degree of motor
processing necessary to move rhythmically at faster rates.

6 Oscillatory Activity and Coherence

There is currently considerable interest in understanding cognitive and motor
functions in terms of large scale neural integration mediated by synchronous
activity across different frequency bands (e.g., Babiloni et al. 2005; Brovelli
et al. 2004; Chen et al., 2003; Gross et al. 2002; Gross et al. 2005; Varela
et al. 2001). This interest reflects the hypothesis that synchronous oscilla-
tions may support the coordination of activity across distributed specialized
cortical and subcortical regions and thereby form the foundation for com-
plex neural representations and cognition (Basar, 2005; Bressler and Kelso
2001; Crick and Koch 2003; Singer 1994; 2001). Dynamic changes in the syn-
chronous activity of the brain are reflected in large scale EEG and MEG
recordings of human neural function (Nunez 1995) and are typically character-
ized as relative decreases or increases in power within specific frequency bands
(Neuper and Pfurtscheller 2001). Decreases in band power are thought to
reflect event-related desynchronization (ERD) within localized neuronal en-
sembles indicative of a change from an idling to a processing state (Lopes
da Silva and Pfurtscheller 1999; Pfurtscheller and Andrew 1999). Conversely,
event related synchronization (ERS) is thought to indicate an inhibitory or
deactivated state in which the localized neural area is not involved in cortical
processing (Lopes da Silva and Pfurtscheller 1999; Neuper and Pfurtscheller
2001). Regional changes in the power of oscillatory brain activity is comple-
mented by the analysis of coherence in oscillations between distributed brain
areas; a measure used to characterize the degree of functional coupling be-
tween brain regions (Singer 1993;1994; Gerloff et al. 1998). In this section
we will draw from research that investigates, both directly and indirectly,
the relationship of oscillatory power and coherence in the brain to behavioral
coordination and stability.

6.1 Desynchronization, Coherence
and the Stability of Coordination

A growing number of studies have investigated the spatiotemporal pattern of
movement-related oscillatory power and coherence associated with uniman-
ual sensorimotor synchronization (e.g. Pollok et al. 2005). Sensorimotor syn-
chronization between finger movements of the dominant hand and external
sensory stimuli is accompanied by a decrease in oscillatory power in both
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alpha and beta bands over bilateral sensorimotor/premotor and medial pre-
motor cortical areas (Gerloff et al. 1998; Manganotti et al. 1998; Deiber et al.
2001; Toma et al. 2002). Localized decreases in power have been reported in
conjunction with an increase in interregional coherence, particularly between
sensors approximately overlying contralateral sensorimotor cortex and me-
dial premotor regions such as supplementary motor area (Gerloff et al. 1998;
Manganotti et al. 1998; Toma et al. 2002). Such findings are thought to re-
flect a task-related increase in functional coupling between neural areas and
underscore the importance of integration within a motor-premotor circuit for
coordination.

Whereas frontal and parietal areas play an accepted role in the control
of action (Rizzolatti et al. 1998), the specific relationship between activity in
these regions and measures of behavioral dynamics such as stability and pat-
tern switching is less established. However, there is growing evidence that
such a relationship may exist. For example, moving from simple to more
complex sequences of finger movement results in increased coherence in al-
pha and beta bands between contralateral sensorimotor and medial premotor
sites (Manganotti et al. 1998). This increased coherence is accompanied by
a decrease in low (8–10 Hz) (Manganotti et al. 1998) and high (10–12 Hz)
(Hummel et al. 2003) alpha power over bilateral sensorimotor and parietal
regions. Additional evidence suggests that the level of desynchronization in
alpha and beta bands during coordination is related to the stability of the pat-
tern (Chen et al. 2003; Jantzen et al. 2001; Mayville et al. 2001). Using MEG,
Mayville and colleagues (2001) investigated differences in power in several
frequency bands while participants produced syncopated and synchronized
coordination at rates that increased systematically from 1.0 to 2.75 Hz. Syn-
copation was associated with significantly less power in the low (15–20 Hz) and
high (20–30 Hz) beta bands over contralateral and central sensorimotor sensor
sites. Greater desynchronization within these bands suggests greater neural
engagement and higher processing demands during the less stable syncopa-
tion task. Taken together these findings lay the foundation for an hypothesis
concerning the relationship between coordinative stability and neural func-
tion: less stable patterns of movement may be associated with both increased
engagement in localized brain regions (indicated by increased event-related
desynchronization) and concomitant increases in the functional coupling be-
tween motor and premotor areas (suggested by the increase in coherence in
the EEG and MEG).

Studies that investigate how movement-related changes in power and co-
herence are influenced by practice further support the connection between
brain activity and the stability of behavior. Behavioral studies already show
that the intrinsic stability of a coordination pattern can be altered through
practice. Learning increases both the stability of a previously unstable pattern
(Zanone and Kelso 1992; Zanone and Kelso 1997) and the availability of at-
tentional resources (Monno et al. 2002; Temprado et al. 2002; Temprado and
Laurent 2004; Zanone et al. 2001). In an MEG experiment, Jantzen, Steinberg
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and Kelso (2001) trained participants to syncopate at their individual critical
frequencies (frequency at which transitions from syncopation to synchroniza-
tion typically occur). Initially, syncopation resulted in a significant reduction
in alpha and beta power at sensors overlying bilateral sensorimotor and premo-
tor areas when compared to synchronization. Training successfully increased
the stability of syncopation thereby shifting the critical frequency and delay-
ing transitions to synchronization. Behavioral improvement was accompanied
by a reduction or elimination in power differences between syncopation and
synchronization suggesting that alpha and beta power may reflect the stabil-
ity of the performed pattern. Interestingly this reduction was observed not
only at the practiced rate but also at lower rates suggesting that stability
improvements generalize to all movement rates.

Learning–dependent modulation of task related coherence has also been
reported in subjects who practiced a task in which two independent uni-
manual finger sequences had to be combined in order to form a new biman-
ual antiphase coordination pattern (Andres et al. 1999; Gerloff and Andres
2002). Early in learning significant coherence in alpha (8–12.9 Hz) and beta
(13–30.9 Hz) bands was observed between right and left sensorimotor areas
and between these regions and mesial premotor cortex (SMA) (Andres et al.
1999). Such interregional functional coupling was greatly reduced at a later
learning stage when performance was also found to be significantly more
stable.

Although provocative, research findings suggesting that oscillatory power
and coherence in motor and premotor areas are influenced by stability and
changes in stability as a result of learning are still quite preliminary. So far,
they allow one to infer a relationship between changes in neural activity and
changes in stability in the case of learning a single coordination pattern only.
Learning, however, has been shown to alter the dynamics of the entire system
by either increasing or decreasing the accuracy and stability of coordination
across a broad repertoire of patterns beyond those explicitly practiced (Kelso
1995; Schöner et al. 1992; Zanone and Kelso 1991; Zanone and Kelso 1992).
Moreover, the nature of the change due to learning arises from the cooperative
or competitive interplay between the pattern to be learned and pre-existing
tendencies or “intrinsic dynamics” (Zanone and Kelso 1992). Understanding
the neural basis of this interplay may provide greater insight into how stability
and changes in stability are represented by the ongoing activity within and
between a network of brain areas that minimally includes M1 and SMA (a
broader network will be described in sect. 7).

6.2 Rate Dependence of Oscillatory Power and Coupling

Important insight into how localized oscillatory power and functional coupling
is moderated by different rates of coordination is provided in a recent study
(Toma et al. 2002). The brain dynamics was assessed on a rapid time scale to
allow for a quantification of changes in power and coherence over the course of
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a single movement cycle. Such work complements the majority of research in
this area in which power and coherence measures are integrated over a longer
time scale that typically includes multiple movement cycles. Thumb move-
ments were synchronized with an auditory tone presented at 0.5, 0.75, 1, 2,
3 and 4 Hz. At slow movement rates (1 Hz and below), a transient pattern of
power changes in both alpha and beta bands was observed over bilateral pri-
mary sensorimotor cortex and SMA. Desynchronization was evident just prior
to and following the onset of EMG activity. This was followed by a relative
increase in synchronized activity reflecting post movement rebound (Lopes da
Silva and Pfurtscheller 1999). Cortical desynchronization was accompanied by
a transient increase in coherence that quickly returned to or dropped below
baseline levels prior to the start of the next movement cycle. This tempo-
ral progression of activity suggests that at low rates (where coordination is
known to be multistable) successive coordinated movements are characterized
by a phasic pattern of localized activation and deactivation accompanied by
interregional coupling and decoupling. At rates of 2 Hz and above, a differ-
ent temporal pattern of activity emerges: activity in alpha and beta bands
remains desynchronized with respect to baseline for the entire movement cy-
cle. Moreover, the functional coupling between motor and premotor regions
remains elevated during the entire movement cycle.

The importance of the Toma et al (2002) study lies in uncovering the
temporal evolution of neural interactions over the course of a single action-
perception cycle and how such interactions change under increases in the
control parameter of rate. The results show that during the synchronization
task a qualitative change in the transient pattern of desynchronization and
interareal coupling occurs at about the same frequency at which spontaneous
switches between coordination states are observed (≈ 2Hz). The inclusion
of additional, intrinsically less stable patterns such as syncopation in future
work would allow for a better determination of the specific role that changes in
motor-premotor coupling play in mediating stability and switching between
patterns. The results of such studies may also offer an explanation for the
intrinsic differences between coordination patterns in terms of altered coupling
within specific neural circuits.

6.3 Differential Roles for Alpha and Beta Oscillations

Previous work has suggested a functionally distinct role for movement related
alpha and beta desynchronization. For discrete self paced movements, beta or
mu desynchronization (20 Hz) has been associated with activity of the primary
motor cortex (i.e. precentral gyrus) and alpha desynchronization (10 Hz) with
activity of somatosensory cortex (Salmelin et al. 1995). Definitive evidence
determining whether alpha and beta desynchronization reflect dissociable pro-
cesses during sensorimotor coordination is still lacking, however. For example,
an increase in desynchronization during performance of the less stable syn-
copated pattern of coordination is observed in both alpha and beta bands
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(Jantzen et al. 2001; Mayville et al. 2001). Moreover, the spatial distribution
of this desynchronization is similar for both bands suggesting that alpha and
beta desynchrony may reflect a single underlying process. Although Toma
and colleagues (Toma et al. 2002) reported rate related changes in oscilla-
tory power and coupling in both alpha and beta bands, their experimental
effects were clearly more pronounced in the beta band. In contrast, Pollok
et al. (2005) reported that coherence between distributed brain regions in-
volved in auditory-motor synchronization was mediated primarily within the
alpha range with relatively little beta contribution. However, because only
synchronization was investigated in the latter study, the possibility that beta
desynchronization increases when performing less stable patterns of coordina-
tion could not be assessed.

Recent MEG work by Chen, Ding and Kelso (2003) suggests different
functional roles for alpha and beta bands. Subjects performed a combina-
tion of four conditions that allowed for a distinction between patterns of
activity related to kinematic (flexion/extension) and relative timing (syncopa-
tion/synchronization) demands. Alpha activity was associated with the pres-
ence or absence of movement with similar desynchronization observed across
all conditions. In contrast, beta activity distinguished between patterns of co-
ordination: synchronization conditions revealed an increase in task related
power in left sensorimotor and frontal regions whereas syncopation resulted
in beta power decreases in contralateral sensorimotor areas. These findings
suggest that alpha reflects neural processes associated with making finger
flexion-extension movements while beta reflects more abstract or cognitive
demands associated with the organization of different coordination patterns.
Such an hypothesis is supported by a recent EEG study from Deiber and
colleagues (2005). These authors employed a bimanual coordination task and
assessed cortical activity following a precue that specified information con-
cerning the coordination pattern (“abstract” feature), the fingers to move
(“concrete” feature) or both. Conditions that allowed for pre-planning of the
pattern demonstrated the greatest beta (15–25 Hz) desynchronization. Since
such desynchronization was observed prior to movement onset, it may reflect
processes related to the organization of the coordination pattern more so than
those occurring during the movement itself.

Taken together, these results show that the neural activity manifest by a
change in oscillatory (alpha and beta) power is related to the organization of
coordinated action. Both bands reflect differences in stability between coor-
dination patterns and track learning induced changes of intrinsically unstable
patterns. Such neural activity may be related to the organization of abstract
features of coordination at the level of the stability of the spatiotemporal pat-
tern produced as opposed to the activation of the fingers per se. Although
EEG lacks a high degree of spatial specificity, the spatial distribution of beta
ERD implicates bilateral sensorimotor, premotor and supplementary motor
areas in this process suggesting that these regions form a network critical
to the organization of coordinated action. Although methods to extend and
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improve spatial resolution and localization accuracy of EEG and MEG are
under development (see sect. 8.0), the inherent limitations of these two mea-
surement techniques restrict their effectiveness for investigating and identify-
ing multiple distributed neural sources, particularly those in the midbrain and
cerebellum. As a consequence, subsequent research has turned to functional
imaging approaches such as functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET) to identify and characterize the
distributed neural networks supporting sensorimotor coordination. We turn
to a consideration of these next.

7 Brain Networks Underlying Patterns of Coordination
Revealed Using fMRI and PET

A first objective is to identify the basic cortical and subcortical networks that
support sensorimotor coordination and to determine whether these networks
differ for different behavioral patterns. Using fMRI, Mayville and colleagues
(Mayville et al. 2002) sought to determine whether different brain networks
underlie the two dominant coordination modes, synchronization and synco-
pation. During coordination conditions participants were required to either
syncopate or synchronize with an auditory metronome presented at a con-
stant rate of 1.25 Hz. At this slow rate both synchronization and syncopation
can be performed accurately. Controls included a listening condition in which
participants heard the metronome but did not move, and a motor only condi-
tion during which rhythmic self-paced movements were made in the absence
of an auditory metronome. All experimental conditions were presented in a
standard block design of alternating periods of task and rest during which no
stimuli were presented and participants remained still.

A contrast between coordination modes revealed a large-scale brain net-
work that was more active for the intrinsically less stable syncopated coordina-
tion pattern. Syncopation was associated with either increased or additional
activity in bilateral dorsal premotor cortex, supplementary motor area, in-
sula, bilateral cerebellum and bilateral basal ganglia and thalamus. No areas
demonstrated greater activity during synchronization compared to syncopa-
tion. Individual subject results suggested that activity in primary sensorimo-
tor cortex, SMA and ipsilateral cerebellum was common to both coordination
modes since the majority of participants showed activity in these areas during
both tasks. However, activity in the SMA and cerebellum was greater for syn-
copation. In contrast, activity in lateral premotor cortex, basal ganglia and
contralateral cerebellum was observed in only a small subset of subjects dur-
ing synchronization. The Mayville et al (2002) results confirm previous EEG
and MEG findings that found coordination dependent modulation of activity
over premotor areas (e.g. Fuchs et al., 1992, 2000b). In addition, they target a
broader set of cortical and subcortical regions for the less stable coordination
pattern.
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Follow-up fMRI studies have replicated and extended the foregoing find-
ings, consistently identifying syncopation dependent increases in blood oxygen
(BOLD) in a network that includes SMA, dorsal premotor cortex, basal gan-
glia, insula and cerebellum (Jantzen et al. 2002; 2004; 2005; Oullier et al.
2005). This work has demonstrated that the BOLD differences identified by
Mayville et al. (2002) are not strictly related to differences in sensory and mo-
tor demands of the two patterns, but instead may be related to higher-level
cognitive processes associated with the formation of the required coordination
pattern. In one of these studies, the importance of explicit motor output and
the resulting sensory feedback in determining coordination dependent differ-
ences between synchronization and syncopation was assessed using an imagi-
nation paradigm (Oullier et al. 2005). The primary finding was that compared
to synchronization, syncopation resulted in significantly greater BOLD signal
amplitude in SMA, premotor cortex, thalamus and contralateral cerebellum
regardless of whether coordination was actually performed or only imagined
(i.e. in the absence of any movements). This finding may be taken as evidence
that activity in these brain areas is related to processes critical for organiz-
ing the pattern of coordination regardless of whether it is actually performed
or not. Activity in primary motor cortex and ipsilateral cerebellum, on the
other hand, was much greater for actual performance conditions, as might be
expected given their proposed role in purely sensory and motor aspects of
coordination.

7.1 Parametric Approaches Connecting Rate,
Stability and BOLD

The foregoing studies employed fMRI to investigate the brain networks under-
lying synchronized and syncopated patterns of coordination when performed
at a single, slow rate. Results revealed a distributed network of areas that
are more active in response to syncopation when compared to synchroniza-
tion. But what is the role of this brain network? How can activity within this
network be related to the pattern dynamics of behavioral coordination ex-
pressed through the collective variable (relative phase) and its stability? The
beauty of the ‘nonlinear paradigm’ is that stability can be experimentally
manipulated by parametrically controlling the rate of movement for different
coordination patterns. Thus, increasing rate during synchronization has little
or no effect on the stability of coordination whereas similar increases dur-
ing syncopation result in a gradual decrease in stability, eventually leading to
large scale switching between patterns. It would seem, therefore, that a critical
link for tying together behavioral pattern formation and brain activity is to
determine how activity within and between specific brain networks is altered
by systematic parametric variation in coordination rate (and hence stability).

Rate

The majority of studies investigating the relationship between measures of
neural function and changes in the rate of movement or stimulus presentation
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have emphasized the dissociation between brain areas that are task dependent
(i.e., demonstrate similar increases in activity regardless of rate) and areas
that are rate dependent. There is widespread agreement for a positive linear
relationship between rate and level of activity observed in primary visual (Fox
and Raichle 1984), auditory (Binder et al. 1994; Price et al. 1992; Rees et al.
1997) and sensorimotor (Jancke et al. 1998; Jenkins et al. 1997; Kawashima
et al. 1999; Rao et al. 1996; Sabatini et al. 1993; Sadato et al. 1997) regions.
In this latter group of studies, activity in primary somatosensory and mo-
tor regions (i.e. pre and post central gyrus) has been shown to increase in a
monotonic (and in most cases linear) way with systematic increases in the rate
of sensorimotor synchronization. However, reports are mixed when consider-
ing rate dependence across broader sensory and motor networks that include
premotor, insular and cerebellar regions. Inspection of the literature reveals
that such discrepancies likely stem from experimental factors and may be at-
tributed primarily to differences in the nature of the motor tasks employed
and, to a lesser degree, differences in the range of rates investigated.

In studies employing relatively simple movement paradigms, rate depen-
dent activity has been restricted to primary perceptual-motor areas and their
dominant pathways. For instance, Jancke and colleagues (Jancke et al. 1998)
measured BOLD signal changes in response to simple button presses synchro-
nized with a visual stimulus presented at rates from 0.5 to 5.0 Hz in 0.5 Hz
increments. Activity was positively correlated with movement rate in con-
tralateral sensorimotor cortex and posterior parietal cortex, both of which are
likely related to motor and sensory (dorsal visual stream) processing. In a
study of self-paced finger tapping, with movements performed at 1/4, 1/2, 1, 2
and 4 times the subject’s preferred rate, related CBF increases were confined
to contralateral primary sensorimotor cortex (Kawashima et al. 1999). Al-
though SMA, parietal,and cingulate cortex were all activated during the task,
their level of activity did not scale with rate. These data tend to support
the notion that activity in primary input-output regions is modulated by the
basic motoric demands associated with increasing the number of movements
per unit of time, whereas activity in other areas is associated with processes
that are not directly altered by rate. Interestingly, in the Kawashima et al.
(1999) work, the non-rate dependent areas demonstrated increased blood flow
for all rates other than the preferred frequency, regardless of whether move-
ments were faster or slower. Such a finding suggests that activity in such areas
may be more responsive to movement features such as difficulty, stability or
variability as opposed to rate per se.

In contrast to simple motor tasks, more elaborate movements or move-
ments performed at fast rates (> 4.0Hz) reveal a rate dependency expressed
over a much broader network of functional areas (Jancke et al. 1998; Jenkins
et al. 1997; Riecker et al. 2003; Sabatini et al. 1993). For instance, when finger
to thumb opposition movements are performed in place of simple finger tap-
ping, a rate dependency is observed in SMC as well as in SMA and bilateral
cerebellum (Sabatini et al. 1993). Jenkins and coworkers (1997) employed a
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coordination task in which participants were free to make joystick movements
in any chosen direction. These multi-faceted movements (requiring coordina-
tion across multiple joints) were paced with an auditory signal presented at
rates between 0.2 and 1.0 Hz. This paradigm was associated with a positive
linear relationship between rate and cerebral blood flow (CBF) within SMC,
SMA, cerebellum, premotor cortex, insula and primary auditory cortex.

At higher movement rates two different relationships are found depending
on the functional area under question. Reicker et al., (2003) had participants
perform synchronized tapping at rates from 2.0 Hz to 6.0 Hz, frequencies typ-
ically at or above the rates at which syncopation can be stably performed
(Kelso et al. 1990) and that approach the biomechanical limit for producing
rhythmic movements. Linear rate related increases in BOLD were observed
in contralateral SMC, SMA proper, pre-SMA and left thalamus. A step-wise
increase from low (< 4.0Hz) to high (> 4.0Hz) rates was also observed in two
areas of the ipsilateral cerebellum. This increase occurred at the same fre-
quency at which activity in SMC appeared to reach an asymptote suggesting a
qualitative change in processing and production at these high movement rates.

Taken together these data support two important conclusions concerning
the role of movement rate in modulating neural activity. First, the combined
evidence from a large number of studies strongly supports the conclusion
that activity in primary sensorimotor cortex is modulated by the speed at
which movements are performed, at least up to rates below those at which
biomechanical influences are felt. Second activity in non-primary motor areas
including lateral premotor cortex, SMA, cerebellum and the insula are not
influenced by movement rate per se, but likely reflect changes in more abstract
task features such as difficulty or complexity that arise from the combined
influence of task demands and movement rate.

Behavioral Complexity

More recently there has been an explicit attempt to understand the specific
link between the complexity of motor behavior and levels of brain activity.
Such studies serve to further dissociate brain regions that respond differen-
tially to parameters such as rate, force, complexity and so forth (Wexler et al.
1997). It is necessary to clarify here that although the term “complexity”
has been used to imply a specific conceptual, theoretical or mathematical
approach to understanding human action in terms of emergence, pattern for-
mation, self organization and the like (e.g. Coveney and Highfield 1995; Kelso
1995) and also in terms of neural complexity (e.g. Sporns, 2004; Tononi, et al.,
1998), in the literature cited in this section, “complexity” is employed in a
more colloquial way to refer to the categorization of movements according to
the difficulty people have producing them. Consequently, the specific features
manipulated in altering the complexity of a movement vary across the liter-
ature according to how complexity is conceived. Complexity has often been
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explored by employing tasks that involve the spatiotemporal ordering of spe-
cific sequences of finger movements of the same hand (Harrington et al. 2000)
or of movements of the two hands (Tracy et al. 2001; Meyer-Lindenberg et al.
2002; Ullen and Bengtsson 2003; Debaere et al. 2004). In the unimanual case,
manipulation of complexity has been achieved by increasing the number of
movements performed (Catalan et al. 1998), by altering the relative timing
between movements (Dhamala et al. 2002; Lewis et al. 2004) or by adjusting
the ordering between fingers with less sequential orderings being considered
more complex (Haaland et al. 2000). Varying complexity on a number of arbi-
trary dimensions has resulted in a broad interpretation of the functional role
of the brain areas involved.

Initial studies explored the role of predictability in accounting for activ-
ity in premotor networks. Predictability of a motor sequence has been as-
sociated with increased activity in a network of brain regions (VanOostende
et al. 1997; Dassonville et al. 1998) that overlap with those sensitive to rate
(Sabatini et al. 1993; Jenkins et al. 1997; Jancke et al. 1998; Riecker et al.
2003) and those distinguishing between coordination patterns (Mayville et al.
2002). When compared to predictable cued finger sequences such as repet-
itively moving fingers in a fixed order, random and therefore unpredictable
movements were associated with increased BOLD activity in premotor cor-
tex, SMA, pre-SMA and parietal cortex (VanOostende et al. 1997; Dassonville
et al. 1998). These empirical results have been interpreted in terms of a link
between activity in frontal and parietal regions and cognitive operations asso-
ciated with decreased predictability (i.e. greater demands on planning, deci-
sion making and memory). However, in terms of the ordering between fingers,
the predictable condition always required a simple sequential pattern whereas
the unpredictable condition required transitions between non-adjacent fingers.

An alternative explanation is that activity in premotor and parietal regions
was influenced by changing the spatiotemporal pattern to be produced in the
two conditions. Ordered movements that produce simple patterns where fin-
gers are moved in increasing or decreasing order (e.g. 2345) are less complex
than patterns requiring coordination between non-adjacent fingers (3425).
This alternative view has been supported by subsequent EEG work that in-
dependently varied predictability of a sequence and sequence order (Hummel
et al. 2003). These authors showed that task related power decreases, a mea-
sure of cortical engagement thought to reflect local neural resources (Lopes da
Silva and Pfurtscheller 1999), were modulated by the complexity of the spa-
tiotemporal pattern produced, but were similar across conditions that varied
in predictability and memory load.

In keeping with the foregoing research is a study in which movement pat-
terns were reformulated in terms of muscular synergies in which synergis-
tic movements occur when fingers flex together in a synchronized (in-phase)
fashion and non-synergistic movements involve alternating flexion of digits
in a syncopated (anti-phase) fashion (Ehrsson et al. 2002). Nonsynergistic
movements were associated with greater activity in SMA, cingulate motor
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area (CMA), bilateral dorsal premotor cortex, intraparietal sulcus and lateral
cerebellum. This pattern of neural activity is remarkably similar to the one re-
sulting from comparisons between synchronized and syncopated coordination
(Mayville et al. 2002) where behavior is defined in terms of relative phase and
the pattern of muscle recruitment remains the same throughout. It is no secret
that one of the hallmarks of synergies is ‘invariant’ or stable timing relations
among component elements across parametric change (Kelso 1986; 1997).

The relative importance of the coordination between fingers as opposed
to predictability, rate or memory has been further supported by a group of
fMRI studies in which motor sequences were over-learned prior to the onset of
scanning. Catalan et al. (1998) increased complexity by increasing the number
of fingers used to perform a sequence and by altering the movement order and
length of the sequence to be performed. Their PET results showed that in-
creasing complexity was associated with increases in CBF in SMA, premotor
cortex, cerebellum, bilateral parietal cortex and precuneus. A similar approach
in which finger sequence length and complexity were defined with respect to
the order of fingers moved was employed in PET (Boecker et al. 1998) and
fMRI (Haslinger et al. 2002) studies. All movements were well practiced and
movement rate, force and the overall number of movements performed were
maintained across conditions. The fMRI results revealed clusters of complex-
ity related BOLD activity in bilateral parietal cortex, left premotor cortex and
the dentate nucleus in the right cerebellar hemisphere (Haslinger et al. 2002),
further implicating the cerebellum in this complexity related network. The
PET results suggest a role for central midline structures, showing a relation-
ship between increased complexity and greater activity in the SMA, pre-SMA,
and bilateral basal ganglia (Boecker et al. 1998). Taken together, this body of
work supports the hypothesis that frontal motor networks and possibly cere-
bellum play an important role in mediating coordination in functional tasks
of increasing complexity.

A further distinction has been offered by Harrington et al. (2000) who
sought to directly differentiate the role of physical (surface) features of the
sequence task and more cognitive or abstract aspects. Of relevance to the cur-
rent review is that activity in dorsal premotor cortex, middle frontal gyrus,
supra marginal gyrus and left insula was associated with the number of tran-
sitions between fingers, independent of the number of fingers used to generate
the sequence (3 vs. 2). Such a finding suggests that these brain areas mediate
processes central for guiding the coordination between fingers, that is, for gen-
erating the required spatiotemporal pattern. In contrast, a network comprised
of superior parietal lobe and contralateral cerebellum was found to be active
exclusively in response to changes in the number of fingers employed. However,
two curious findings emerged from this important study. First, complexity did
not modulate activity in SMA, a region commonly reported to be responsive
to changes in complexity (Harrington et al. 2000). Second, in contrast to most
of the literature, a negative relationship was found between BOLD amplitude
and complexity in a majority of the regions identified. The Harrington et al.
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work provides important methodological and conceptual advances for under-
standing complexity in terms of specific motor demands and task dimensions,
specifically the spatial and temporal relation between individual movements.
However, their somewhat discrepant results underscore the need for further
investigation of this relationship with particular focus on how specific task
features are represented at the neural level.

Stability

Research linking parameters such as rate and concepts such as complexity
to changes in activity within (and across) functional networks of the brain is
provocative because it suggests that brain areas supporting basic sensory and
motor aspects of coordination (i.e. primary sensory and motor areas) might
be distinguished from those involved in processing more abstract demands
(i.e. SMA, premotor cortex and cerebellum). Such research has important
implications for understanding coordinated behavior and leads us to an ex-
citing hypothesis regarding the neural circuitry underlying syncopation and
synchronization, namely that the basic neural circuitry for processing sensory
and motor elements of a task may be separable from the neural circuitry re-
sponsible for mediating the coordination between component elements. The
former network may be expected to reflect changes in rate and not be sen-
sitive to intrinsic differences in stability between coordination patterns. In
contrast, the network of areas identified by Mayville et al. (2002) and others
may underlie the stability of coordinated behavior regardless of the particular
sensory and motor elements involved.

Within the Coordination Dynamics framework, relative phase (with its
multi- and metastable properties) provides a low dimensional description of
the collective spatiotemporal ordering between coordinating elements. This
has led some to hypothesize that changes in stability measured by the param-
eter of relative phase may be reflected in networks that differentiate between
in-phase and antiphase modes of coordination (Meyer-Lindenberg et al. 2002).
This hypothesis leads to the prediction that activity in networks concerned
with the relative phase between components should track the variability (in-
verse of stability) of this parameter. Since decreases in stability with increasing
movement rate are observed during antiphase and not in-phase coordination,
increases in neural activity within this network should be observed only for
the former pattern. However, areas active in response to changes in movement
rate should respond similarly regardless of pattern.

To address these predictions recent studies have investigated the relation-
ship between large scale measures of brain function and the stability of biman-
ual coordination using PET, TMS (Meyer-Lindenberg et al. 2002) and fMRI
(Debaere et al. 2004). In the former work cerebral blood flow was measured
while performing in-phase and anti-phase movements at four movement rates
(1.0, 1.5, 1.7, 2.0 Hz) below the critical frequency (Meyer-Lindenberg et al.
2002). Moving at increasingly higher rates resulted in a significant reduction
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in stability only for antiphase movements, a finding compatible with well-
known studies of bimanual coordination and theoretical predictions thereof.
Increases in measures of cerebral blood flow concomitant with increasing insta-
bility were observed in bilateral dorsal premotor cortex, SMA and cingulate
as well as the left frontal operculum, ipsilateral cerebellum and left supra-
marginal gyrus. Activity in contralateral sensorimotor cortex, on the other
hand, demonstrated a linear increase in CBF for both patterns indicating
sensitivity to changes in rate regardless of pattern stability.

Comparable changes in BOLD were reported when movements were made
either in-phase, anti-phase or in a 90 degree pattern (Debaere et al. 2004).
For the latter performance was measured in terms of relative phase error.
Error may not provide an optimal index of stability since, when averaged
over a relatively long period of time, even unstable coordination patterns can
appear to have little or no phase error. Nonetheless, a monotonic decrease in
performance with increasing cycling frequency was observed for the antiphase
and 90 degree patterns but not for the in-phase pattern. As expected, both
dorsal premotor cortex and cerebellum demonstrated an interaction between
movement rate and coordination pattern, showing a BOLD increase for the
out of phase and 90 degree patterns and not for the in-phase pattern.

We recently performed a similar parametric study to investigate the map-
ping between BOLD amplitude, movement frequency and stability of uni-
manual sensorimotor coordination patterns (Jantzen et al., submitted). Par-
ticipants coordinated right hand finger flexion with an auditory metronome in
either a synchronized or syncopated pattern at five different movement rates
(0.75, 1.0, 1.25, 1.50, 1.75 Hz), all below the critical frequency at which spon-
taneous transitions from syncopation to synchronization are known to occur.
Changes in stability-related brain regions induced by parametric manipula-
tion of coordination frequency should be mirrored as systematic increases in
BOLD signal intensity during syncopation but not during synchronization
since stability remains relatively unaffected for the latter. Theoretical con-
siderations (see Sect. 4) further predict that regions sensitive to systematic
increases in rate or frequency should exhibit monotonic increases in signal
intensity independent of the coordination pattern performed.

The results provide neurophysiological evidence for the existence of
two separate but interacting brain networks underlying basic patterns of
perceptual-motor coordination. BOLD amplitude in contralateral SMC and
bilateral primary auditory areas increased linearly with increases in movement
rate for both syncopated and synchronized coordination (Fig. 3). This pattern
of activity is consistent with a modality dependent processing role focused pri-
marily on the elementary sensory and motor demands of the task. In contrast,
a second network consisting of pre-SMA, bilateral premotor, ipsilateral cere-
bellum and right insula, exhibited activity that mirrored behavioral stability.
In keeping with our theoretical framework, BOLD amplitude in this network
of brain areas increased linearly with decreases in the stability of the syncopate
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Fig. 3. Cortical regions exhibiting a main effect of movement rate/coordination
frequency are plotted in color on a template brain rendered in 3 dimensions and
viewed from the left (top) and right (bottom) lateral views. The between subject
mean of the regression coefficients (beta weight) for each experimental condition
is plotted as a function of the required coordination frequency. BOLD amplitude
patterns were very similar for both synchronization (open circles) and syncopation
(closed squares) suggesting that these brain areas are related to basic sensory and
motor demands regardless of mode of coordination.The brain areas identified as
well as the Tailarach coordinates are presented in each plot. Error bars are set to ±
standard error

pattern (Fig. 4). No such increases were observed during synchronization since
this pattern was observed to remain stable across movement rate.

The parametric approach of coordination dynamics thus allows for the
differentiation between brain networks related to a) dynamic features of
coordination that represent the global organization of the behavioral pattern,
in particular its stability and b) those related to more elementary modality
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Fig. 4. Regions exhibiting an interaction between movement rate/coordination fre-
quency and sensorimotor pattern are plotted in color on a template brain rendered
in 3 dimensions. Views are of the dorsal surface of the brain viewed from the top,
and the left medial and right lateral surface of the brain both viewed sagitally. Plot-
ting conventions are as in Fig. 3. Here a clear dissociation between synchronization
and syncopation is observed in medial and lateral premotor areas as well as in the
right insula. The pattern of BOLD activity closely follows the pattern of behavioral
variability, a measure of stability, by increasing monotonically with increasing rate
during syncopation but not during synchronization. Thus, these areas respond in re-
lation to differences in pattern stability as opposed to movement rate per se. vPMC:
ventral premotor cortex., preSMA pre supplementary motor area
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dependent sensory and motor features. Studies using transcranial magnetic
stimulation (TMS) have provided further support for a link between the
stability of coordination patterns and activity in cerebellar-frontal networks
(Meyer-Lindenberg et al. 2002; Serrien et al. 2002; Steyvers et al. 2003). TMS
was used to transiently disrupt SMA and lateral premotor cortex during per-
formance of bimanual coordination. Applying TMS to these regions during
antiphase coordination resulted in increased phasing errors between the hands
(Meyer-Lindenberg et al. 2002; Serrien et al. 2002; Steyvers et al. 2003) and in-
duced behavioral transitions from anti-phase to in-phase coordination (Meyer-
Lindenberg et al. 2002). No like alterations in behavior were observed when
TMS was applied during in-phase coordination. Moreover, the magnitude of
the TMS perturbation needed to provoke a behavioral transition decreased as
behavioral instability increased (Meyer-Lindenberg et al. 2002). Similar TMS
disturbances applied to primary motor cortex did not affect the pattern of co-
ordination indicating that the results were not due to a simple perturbation
of the efferent signal (Meyer-Lindenberg et al. 2002). Overall the foregoing
results suggest the following hypothesis: Activity across a network that mini-
mally includes SMA, lateral premotor cortex and cerebellum is linked to the
degree of behavioral stability. Depending on how close the brain is to an insta-
bility, disruption of this network may result in the destabilization and eventual
dismantling of a less stable pattern in favor of a more stable one.

7.2 The Generic Nature of Coordination Dynamics and Stability
Dependent Networks

The research reviewed here supports the notion that key collective variables
or order parameters that capture coordination at the behavioral level are also
critical for representing coordinated action at the level of the brain. New find-
ings illustrate how such pattern formation and change is mediated by the
integrated activity of cortical and subcortical networks. An important fea-
ture of relative phase dynamics is that it provides an effector- and modality–
independent description of the emergence of coordination patterns. This begs
the question: Is there an effector or modality independent representation of
this quantity at the level of the brain? While the present review has been
focused on sensorimotor coordination, it appears that highly similar brain
networks support coordination whether coordinating with oneself or with the
external environment. The existence of such stability dependent networks
leads inevitably to the proposal that common neural substrates may support
behavioral coordination regardless of the coordinating elements themselves.

Considered as a whole, the imaging work underscores the importance of
the SMA and premotor cortices in mediating coordinative stability indepen-
dent of the specific elements being coordinated. There is growing evidence for
stability dependent networks regardless of whether the patterns of behavior
refer to the fingers of a single hand (Ehrsson et al. 2002; Nair et al. 2003), be-
tween oneself and the environment (Jantzen et al. 2002; Mayville et al. 2002;
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Jantzen et al. 2004; Jantzen et al. 2005; Oullier et al. 2005), between homolo-
gous (Sadato et al. 1997; Immisch et al. 2001; Meyer-Lindenberg et al. 2002;
Ullen and Bengtsson 2003; Debaere et al. 2004) and non-homologous limbs
(Debaere et al. 2003) . Stability dependent networks are engaged even when
coordination is imagined (Nair et al. 2003; Oullier et al. 2005). Such evidence
speaks compellingly for the tenet that, like behavior itself, the coordination
dynamics of the human brain can be captured by informationally relevant
quantities such as the relative phase among interacting coordinating elements
(Kelso 1994; Deiber et al. 2005). The specific neural representation of the co-
ordinating elements or agents will vary in task and modality dependent ways.
In the examples described here, activity of primary sensory and motor areas
is related to the elements being coordinated independent of the pattern of
coordination. However, an emerging insight is that other brain regions form
a network that can be differentiated from modality specific areas by virtue of
their relationship to the underlying coordination dynamics.

8 Summary and Future Directions

In the last 20 years or so, sensorimotor coordination has proven itself a car-
dinal example of self-organizing, pattern forming processes and, by virtue
of that fact, has provided an ideal experimental platform for studying the
dynamics of brain and behavior. In this chapter we have reviewed literature
relevant to forming a conceptual and theoretical link between dynamic aspects
of behavioral coordination and spatio- temporal properties of brain function.
Taking the theoretical perspective that coordination in complex biological
systems is fundamentally a result of self-organizing dynamics, we have dis-
cussed research that describes how interactions among coordinating elements
is mediated at the level of the brain and how such brain activity may underlie
specific dynamic features of behavioral coordination such as loss of stability
and switching between patterns. Evoked potential studies of auditory-motor
coordination have highlighted the possible role of the dynamic interplay be-
tween auditory and motor related activity in the brain. Transitions between
behavioral patterns occur at approximately the same frequency as the onset
of auditory steady state evoked responses. This intriguing finding has received
little subsequent inquiry and additional investigations are required to firmly
establish the role of primary perceptual areas in mediating rate-dependent
coordination stability and switching.

A relationship between the stability of the coordination pattern and ac-
tivity within a fronto-cerebellar network has also been established based on
converging evidence from multiple imaging studies. Activity in a network that
includes SMA, lateral premotor cortex, insula and cerebellum appears to be
related to the stability of the relative phase dynamics, suggesting a role for this
network in organizing and monitoring the global relationship between coordi-
nating elements. This network (a) is more active for less stable coordination
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patterns; (b) reflects changes in stability induced through learning; and (c) re-
flects changes in stability induced through manipulation of control parameters.
This stability related network has been distinguished from primary sensory
and motor processing areas that respond to changes in the rate of coordi-
nation but do not appear to be sensitive to alterations of pattern stability.
Although detailed information about the interaction between areas that form
these networks is still lacking, initial work suggests that less stable patterns
are associated with increased coherence between SMA and M1.

A schematic representation of the rate and stability related networks and
the putative connections between them is provided in Fig. 5. The critical
next steps in understanding the relationship between cortical and subcorti-
cal networks underlying dynamic properties of coordination will focus on the
pattern of neural coupling between individual brain areas and how that pat-
tern relates to coordination. What are the dynamics of the two networks and
how do they interact? It is now widely accepted that cognition and behavior
emerge from the dynamic interplay between the dual tendencies of segregation,
in the form of localized activity within functionally specific neural regions,

Fig. 5. A schematic representation of brain circuits supporting sensorimotor coor-
dination and the primary functional connections between them (arrows). Blue and
red areas demonstrate rate and stability dependent activity respectively. Green areas
have been inconsistently observed in the literature and therefore their importance for
rhythmic coordination is less established. SMA: supplementary motor area, SMC:
sensorimotor cortex, PMC: premotor cortex, PPC: posterior parietal cortex, STG:
superior temporal gyrus, Cbl: Cerebellum



450 Kelly J Jantzen and JA Scott Kelso

and integration as realized by interregional communication between regions
(see Bressler & Kelso 2001; Bressler & McIntosh 2007; Kelso 1995; Kelso &
Engstrom 2006; Sporns & Tononi 2007). While the work represented in this
chapter has made significant strides in identifying specific brain regions and
patterns of brain activity corresponding to patterns of human behavior, much
more research is needed to understand the networks themselves in terms of
detailed structure, connectivity and dynamics — both in normal and clinical
populations.

Advances in understanding neural dynamics and how this dynamics maps
onto behavior will be aided by new analysis techniques that provide enhanced
temporal and spatial resolution (Gross et al. 2001; Jirsa et al. 2002; Astolfi
et al. 2005; Babiloni et al. 2005) and allow for a characterization of the di-
rected influence between interconnected brain regions (Beggs, Clukas & Chen
2007; Breakspear & Jirsa 2007; Horwitz & Husain 2007; Stephan & Friston
2007). Spatial filtering techniques such as the variety of beamformer methods
(Darvas & Leahy 2007; Fuchs 2007) provide a means to move toward brain-
based measures of neural activity that possess both high spatial (mm) and
temporal (ms) resolution. The promise of such approaches for combining re-
sults from multiple imaging modalities is demonstrated by the spatial overlap
between desynchronization in beta band oscillations localized on the surface
of the cortex and BOLD based imaging results generated during simple motor
(Taniguchi et al. 2000), as well as language and motion detection tasks (Singh
et al. 2002). Initial investigations have begun to probe the network properties
supporting simple internally and externally paced movements (Gross et al.
2002; Tass et al. 2003; Babiloni et al. 2005; Pollok et al. 2005). Also, some
advances have been made toward understanding how the coupling between a
restricted network of brain areas changes as a function of different coordina-
tion patterns (Gross et al. 2005).

Questions critical to understanding the relationship between behavior and
the spatiotemporal dynamics of the brain that are now open to new analytical
approaches include:

• What is the nature of the functional interaction between brain areas
forming hypothesized stability and modality dependent networks? How
are neural interactions facilitated within and between these networks (see
Fig. 5)?

• How are interactions within and between networks supporting differ-
ent behavioral patterns altered by systematic changes in coordination
pattern, rate and stability? Are losses in stability accompanied by a de-
crease/increase of coupling between brain areas forming these two net-
works? Alternatively, is coupling between brain areas altered by learning,
intention or attention induced increases in stability of coordination?

• Can different functional networks be defined based on the oscillation fre-
quencies of participating areas (e.g. alpha vs. beta vs. gamma), and if so
how do these networks interact in space and time?
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• What happens to established brain networks around critical points where
stability is lost and new patterns adopted? Are the neural processes that
underlie switches from syncopation to synchronization generalizable across
different instances of behavioral pattern switching and decision-making?

• Does the brain contain generic networks for supporting dynamic properties
of behavior, such as stability? Can a similar network be identified across
multiple forms of coordination (e.g. multisensory, interpersonal, interlimb)
independent of the coordinating elements (visual, auditory, somatic, etc)
involved? Although there is some evidence that such is the case, this ques-
tion has never been addressed exhaustively across experimental tasks par-
ticularly at the level of large scale brain networks.

• How is behavioral coordination achieved under conditions in which key
connections or nodes of the network are damaged or disrupted as in trau-
matic brain injury, Parkinson’s Disease, stroke, cortical or cerebellar le-
sions, etc.

Clearly the foregoing list of questions is far from inclusive, representing but a
small sample of how recent advances in analytical approaches to neuroimaging
data may be used to explore coordination. The questions posed are meant to
provoke further research into establishing a direct connection between the the-
oretical and mathematical formulations of behavioral dynamics and measures
of brain function on the one hand, and to understand how the rich dynamics
of human behavior arise from the large-scale interaction among distributed
brain areas that share a degree of specialization on the other.
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Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural
systems. Science 239: 1513–1520
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Smooth flow of neural impulses throughout the brain allows for information to
be integrated across the many spatially segregated and functionally specialized
modules. Structural and functional maturation of neural pathways connecting
individual brain regions is therefore a condition sine qua non for the successful
development of cognitive, motor and sensory functions from infancy, through
childhood and adolescence, and into adulthood.

Typically, region A is said to be connected with region B only if neurons
A possess synaptic connections with neurons B. Techniques available today
for the study of neural connectivity in the human brain do not provide such
a level of spatial neuron-to-neuron specificity, however. With the exception
of post-mortem studies of short-range cortical connectivity with the carbo-
cyanin tracer DiI (e.g. Tardif and Clarke 2001), most of the current research
focuses on in vivo studies of structural and functional connectivity at the
macroscopic level. This work is carried out with a variety of brain mapping
techniques, including structural and functional magnetic resonance imaging
(MRI), positron emission tomography (PET), transcranial magnetic stimu-
lation (TMS), electroencephalography (EEG) and magneto-encephalography
(MEG). In this context, the term “connectivity” refers either to the structural
properties of white matter and major fibre tracts (structural connectivity) or
to the statistical relationship in neural activity recorded simultaneously in
a number of spatially distinct regions (functional connectivity). Under cer-
tain circumstances, we can also evaluate how one region influences another
(effective connectivity). In this chapter, I will review the current knowledge
regarding maturation of structural, functional and effective connectivity as
assessed in vivo with some of the above brain mapping tools.

1 Structural Connectivity

The initial developmental studies of structural connectivity in newborns and
infants assessed changes in magnetic resonance (MR) relaxation times and in
the qualitative appearance of T1- and T2-weighted images, focusing on the
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timing of the initial reversal of grey-white differentiation and on the tem-
poral order in which different brain structure first acquire a “myelinated”
appearance (reviewed in Paus et al. 2001). Studies carried out in children
and adolescents allowed investigators to evaluate age-related changes in the
overall and regional volumes in white matter. To date, one of the largest
datasets of MR images obtained in typically developing children and ado-
lescents has been acquired at the Child Psychiatry Branch of the National
Institute of Mental Health (NIMH) in the U.S.A. A combination of cross-
sectional (161 subjects) and longitudinal (329 scans) data is available (Giedd
2004). In this cohort, Giedd and colleagues observed a steady increase in the
overall volume of white matter throughout the studied age-range of 4 to 21
years (Giedd et al. 1999a). This finding is consistent with previous obser-
vations (Pfefferbaum et al. 1994 [n = 88, 1 to 30 years]; Reiss et al. 1996
[n = 85, 5 to 17 years]). In a subsample of the NIMH cohort (n = 111),
Paus et al. (1999) have documented an increase in white-matter density in
the internal capsule and the left arcuate fasciculus, the latter containing fi-
bres presumably connecting the anterior (Broca) and posterior (Wernicke)
speech regions. Another example of regional variation in white-mater matu-
ration is a region-specific growth of the corpus callosum; both cross-sectional
and longitudinal analyses revealed continuous age-related changes in its pos-
terior but not the anterior section (Giedd et al. 1996, 1999b, Pujol et al. 1993).
In a recent study, Blanton et al. (2004) documented significant gender differ-
ences in white matter of the left inferior frontal gyrus, a region consisting of
the pars opercularis, triangularis and orbitalis and, presumably, containing
speech-related areas: boys (n=25, 6 to 17 years) but not girls (n=21, 6 to 15
years) showed a linear age-related increase in the WM volume in this region.
This regional age-gender interaction is consistent with the steeper age-related
increases in the overall white-matter volume in boys, compared with girls
(Giedd et al. 1999a).

With a few exceptions (corpus callosum), the above studies suffer from
the absence of natural anatomic boundaries in white matter. Note, however,
that voxel-wise analyses are capable of detecting regional effects in poorly de-
fined white-matter structures, such as the internal capsule and the putative
arcuate fasciculus (Paus et al. 1999). Nonetheless, the ability to define pre-
cisely major fibre tracts with diffusion tensor imaging (DTI) facilitates further
the regional evaluation of structural properties of distinct white-matter sys-
tems. This imaging technique has been employed to assess age-related changes
in magnitude (apparent diffusion coefficient, ADC) and directionality (frac-
tional anisotropy, FA) of the diffusion of water in the human brain during
childhood and adolescence. Overall, DTI-based studies reveal age-related de-
creases in ADC and increases in FA in a number of WM regions, many of
which are identical to those revealed by the above MR studies (Klingberg
et al. 1999, Schmithorts et al. 2002, Snook et al. 2005); changes in FA are in-
terpreted as reflecting an increase in density of fibres and/or increase in myeli-
nation. It is of note that FA in the white matter of frontal lobes appears to
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correlate with IQ (Schmithorst et al. 2005) while FA in the left temporo-
parietal white matter correlates with reading skills (Beaulieu et al. 2005,
Deutsch et al. 2005). Interpretations of DTI-based observations should be
made with caution, however. As much as this technique allows investigators
to visualize distinct fibre tracts, it does not speak to the point-to-point con-
nectivity between spatially distinct brain regions; individual axons may join
and leave fibre tracts undetected. To some extent, this limitation may be over-
come in the future by further refinements of fibre tractography (e.g. Lee, Mori
et al. 2005, Johansen-Berg et al. 2005). It is also unclear which of the cellular
properties affect water diffusion the most. Movement of the water molecules
in the intracellular and extracellular space can be affected by structural prop-
erties of the axon (e.g. myelin sheath, microtubules, neurofilaments) as well
as by the indirect effects of neighbouring cells on the size and shape of the
extracellular space.

Overall, it is clear that, at the macroscopic level, structural connectivity
of the human brain continues to mature during childhood and adolescence.
Future studies will clarify which aspects of structural connectivity are most
dynamic, and whether or not experience plays a role in shaping structural
connectivity in a similar manner as it does in the case of grey matter.

2 Functional Connectivity

Functional connectivity can be defined operationally as the extent of corre-
lation in brain activity measured across a number of spatially distinct brain
regions (e.g. Friston 1994, Horwitz 2003, Sporns et al. 2004). When discussing
various approaches to the study of functional connectivity in the adult human
brain, Horwitz (2003) pointed out that conclusions reached by different inves-
tigators regarding the presence or absence of functional connectivity between
a set of brain regions depend on the type of measurement (e.g. functional MRI,
EEG, MEG), type of analysis (e.g. correlation, structural equation modelling)
and, most importantly, the state of the subject during the recording of brain
activity (rest, type of stimulation/task). This is, or will be, very much the
case in studies of the developing brain. At the moment, however, the majority
of investigators have employed only two approaches: (1) coherence of EEG
signals; and (2) inter-regional correlations in fMRI time series.

Coherence is analogous to the squared correlation in the frequency domain
between two EEG signals (time series) measured simultaneously at different
scalp locations (Nunez 1981). In most previous EEG studies of brain develop-
ment, EEG was recorded at rest with a relatively small number of electrodes
(< 20) placed over the left and right hemispheres according to the inter-
national 10–20 system, and analyzed in four frequency bands (delta, theta,
alpha and beta). When interpreting differences in EEG coherence between
electrodes with different physical distance within (e.g. F3-P3 vs. F3-O1) or
between (O1-O2 vs. T5-T6) hemispheres, two important factors come to play.
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Volume conduction inflates coherence at short (< 10 cm) distances, while an
increasing phase difference reduces coherence at large (> 15 cm) distances (see
e.g. Nunez et al. 1997, Srinivasan et al. 1998, Barry et al. 2005). Thatcher et al.
(1986) mapped the physical distinction between “short” and “large” distances
between scalp electrodes on to an anatomical one, namely the Braitenberg’s
(1978) two-compartment model of axonal systems in the cerebral cortex. Ac-
cording to Braitenberg, compartment “A” is composed of the basal dendrites
that receive input from the axon collaterals given off by the neighbouring
pyramidal cells, while compartment “B” consists of the apical dendrites of
pyramidal cells that receive input from “large-distance” cortico-cortical pro-
jections. The subsequent empirical work on the development of EEG coherence
has provided the following observations.

Using EEG recorded with 19 electrodes in 577 children and adolescents
(age from 2 months to 26 years), Thatcher et al. (1987) described increases
in EEG coherence that took place over different brain regions at different
periods of development. For example, fronto-occipital coherence increased in
the left hemisphere between 4 to 6 years, while fronto-temporal coherence in-
creased in the right hemisphere from 8 to 10 years (Thatcher et al. 1987). In
another sample (n = 253, 6 months to 7 years), Thatcher et al. (1992) ob-
served rapid changes (“growth spurts”) in EEG coherence that suggested op-
posite developmental changes taking place in the two hemispheres: increases
in large-distance and short-distance coherence, respectively, in the left and
right hemispheres. More recently, Barry et al. (2004), measured EEG coher-
ence (18 electrodes) in 80 children between 8 and 12 years of age (8 boys and 8
girls in each 1-year age-band) and reported interesting age- and gender effects
in the maturation of large-distance coherence. For example, intra-hemispheric
coherence increased with age in all but the beta band, boys showed an over-
all higher coherence in the higher EEG bands and, unlike girls, a continued
increase in alpha coherence at older ages. Note that these gender differences
are consistent with the more pronounced volumetric increase of white matter
in boys, as compared with girls, as described in the structural MR studies
(see above). They also observed age-related changes in inter-hemispheric co-
herence; robust age-related changes in EEG coherence took place between the
(left and right) temporal but not the (left and right) frontal electrodes; this
finding is consistent with the continuing growth of the splenium of the corpus
callosum (e.g. Giedd et al. 1996). Using a 128 channel Geodesic Sensor Net
(mean nearest-neighbour electrode separation of 2.7 cm), Srinivasan (1999)
computed EEG coherence in alpha band for every possible pair of electrodes
(∼ 6, 000 pairs) and compared the values obtained in children (n = 20, 6 to
11 years) and young adults (n = 23, 18–23 years). For electrode pairs sep-
arated by more than 15 cm (i.e. large-distance coherence), he found higher
intra-hemispheric coherence in adults, as compared with children, in both
hemispheres; these “large-distance” pairs are between electrodes placed over
the frontal and occipital cortex. Srinivasan speculated that such an increase
in the EEG coherence between distant anterior and posterior sites in the same



Maturation of Brain Connectivity 467

hemisphere might be related to the structural maturation of long-range fibre
tracts such as the arcuate fasciculus, which we did describe in our structural
MR studies (Paus et al. 1999, Watkins et al. 2002). In addition, Srinivasan
observed more subtle differences between children and adults in large-distance
inter-hemispheric coherence, but only for the anterior electrodes. The latter
finding is at odds, however, with those of Barry et al. (2004) and with the
clear age-related differences in the size of the splenium of the corpus callosum
(see above). Finally, van Baal and colleagues (2001) examined heritability of
EEG coherence in theta band and its possible (longitudinal) changes over an
18-month period during childhood (from 5.3 years to 6.8 years). In a total
of 152 monozygotic and dizogotic twin pairs, they recorded resting EEG at
10 scalp locations and computed genetic and environmental contributions to
short- and large-distance intra-hemispheric coherence. The overall heritabil-
ities were moderate to high for all coherences (average 58%). Heritability
of short-distance coherence recorded over the frontal and occipital lobes ap-
peared to decrease and increase with age, respectively. At the second time
point (age 7), new genetic factors were found for some of the large-distance
coherences, such as the one between prefrontal and parietal electrodes.

Overall, the existing developmental studies of EEG coherence show clearly
the potential of this approach for the assessment of functional connectivity
in typically developing children and adolescents. One of the main advantages
of EEG is its high temporal resolution; high coherence indicates similar val-
ues of phase angle between two channels from one EEG epoch to the next,
with the epoch duration being typically about two seconds and the recording
lasting for a few minutes. But given the absence of experimentally controlled
stimulation in most developmental studies of coherence, it is likely that func-
tional connectivity assessed by coherence may be limited only to the neural
circuits that display spontaneous oscillations at rest and that are, at the same
time, inter-connected structurally, whether directly (e.g. cortico-cortical) or
indirectly (e.g. cortico-subcortical-cortical). Nonetheless, assessment of EEG
coherence, in particular in combination with structural MRI and/or DTI ob-
tained in the same individual, will likely continue to further our understanding
of physiological processes underlying the maturation of functional connectivity
in humans.

Today, functional fMRI represents the most common approach for map-
ping age-related changes in brain activity in childhood and adolescence; its
high spatial resolution makes this technique ideal for determining where in
the brain changes in neural activity occur. It is important to note, however,
that the relationship between fMRI signal and brain activity is not straightfor-
ward. Changes in local hemodynamics most likely reflect the sum of excitatory
postsynaptic inputs in the sample of scanned tissue (Logothetis et al. 2001).
Inhibitory neurotransmission may lead to decreases in CBF indirectly, through
its presynaptic effects on postsynaptic excitation (Mathiesen et al. 1998). In-
terpretation of the BOLD signal aside, the use of fMRI in studies of children
and adolescents presents many specific challenges of both technical (e.g. head



468 Tomáš Paus

motion and its correction) and conceptual (e.g. age vs. performance) nature
(reviewed in Davidson et al., 2003).

Over the past 10 years, a number of fMRI studies examined neural corre-
lates of developmental changes in various cognitive functions, such as work-
ing memory, behavioural inhibition, language or face processing. This work
has been done not only in children and adolescents (reviewed in Paus 2005a,
Durston and Casey 2005) but also in infants (e.g. Dehaene-Lambertz et al.
2002). But only a handful of investigators included assessment of functional
connectivity in their analyses. In a study of memory encoding, Menon et al.
(2005) observed age-related (n = 15, 11 to 19 years) decrease in the fMRI
signal in the left medial temporal lobe while subjects viewed a series of novel
photographs of natural outdoor scenes, as compared with viewing the same
scene (control condition). They then used voxel-wise regression analysis to
identify brain regions that showed correlation in the fMRI signal with that
measured in two subregions of the left medial temporal lobe, namely the hip-
pocampus and the entorhinal cortex. This analysis revealed an age-related
increase in the correlation between the left entorhinal cortex and the left
dorsolateral prefrontal cortex. This work nicely illustrates the importance of
including the analysis of functional connectivity in developmental studies: al-
though the fMRI signal decreased in one of the memory-relevant structures
(entorhinal cortex), the hypothesized interaction between this structure and
other brain regions (prefrontal cortex) actually increased. In a different devel-
opmental study, Schmithorst and Holland (2006) investigated the relationship
between intelligence and functional connectivity in a large sample of typically
developing children and adolescents (n=323, 5 to 18 years). They measured
fMRI signal during a task requiring the child to generate silently appropri-
ate verbs in response to hearing nouns (every 5 sec). After identifying brain
regions engaged during this task, as compared with simply tapping fingers in
response to a warble tone, they correlated fMRI signal in all such voxels with
the subjects’ full-scale intelligence quotient (FSIQ). This analysis revealed
positive fMRI-FSIQ correlation in five regions of the left hemisphere: Broca’s
area, middle temporal gyrus, the anterior cingulate, the precuneus and the
medial frontal gyrus (putative supplementary motor area). Next, the authors
computed the connectivity coefficient, defined as a weighted sum of the pair-
wise covariances between these regions. Using the connectivity coefficient as
a measure of functional connectivity, Schmithorst and Holland found the fol-
lowing age and gender effects vis-à-vis the relationship between intelligence
and connectivity. In boys, functional connectivity appeared to increase as a
function of intelligence between age 5 and 9 years; no such relationship was
present in older boys (10 to 12 years), and a negative correlation was observed
in the oldest boys (13 and 18 years). In girls, on the other hand, no relationship
was found in younger girls (age 5 to 13 years) but a strong positive correla-
tion between functional connectivity and intelligence was clearly present in
older girls (13 to 18 years). It is of note that the above effects were found
in the time series measured during both the verb-generation and the control
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task, while some other effects were only found when the control time series
was subtracted from the task one. As the authors point out in their discus-
sion, the above gender differences in the relationship between intelligence and
functional connectivity are consistent with some structural findings in adults,
such as significant correlations between intelligence and regional white-matter
volumes in women but grey-matter volumes in men (Haier et al., 2005).

Overall, studies of functional connectivity with fMRI are in their infancy.
The two examples given above illustrate the power of this approach but
also indicate that large numbers of subjects of both genders in different age
groups may be necessary to reach valid conclusions. This is clearly a chal-
lenge; acquisition of high-quality fMRI datasets in children is not easy. As
illustrated elsewhere (e.g. Schlaggar et al. 2002), possible differences in per-
formance between subjects of different ages (and gender) must also be taken
into account when interpreting fMRI data. Finally, acquiring high-resolution
structural MRI and/or DTI in the same individuals would greatly facilitate
the identification of possible similarities, and differences, between functional
and structural connectivity in the same sample.

3 Effective Connectivity

Effective connectivity attempts to describe causal effects exerted by one brain
region onto another (Friston 1994). As pointed out by Sporns et al. (2004),
effective connectivity can be inferred through a perturbation or through the
observation of temporal order of neural events (Granger causality; Granger
1969). At least theoretically, the latter approach is possible in the case of elec-
trophysiological signals. It is still unclear, however, whether relatively short
(a few milliseconds) delays in monosynaptic pathways can be discerned using
EEG or MEG measures, which are based on a spatially integrated response of
a large population of neurons. The perturbation approach seems to be more
widely used at the moment; it typically involves stimulation of one cortical
region with TMS while brain activity is recorded simultaneously with EEG,
PET, or fMRI (reviewed in Komssi and Kahkonen 2006, Paus 2005b, 2002).
But the combination of brain stimulation with brain imaging is a technically
challenging approach that places high demands on both the experimenter
and the subject. It is therefore not surprising that only one developmental
study has so far combined TMS with brain mapping, namely with EEG
(Bender et al. 2005). Rather than studying connectivity, however, these
authors focused on local EEG effects of single-pulse TMS applied over the
primary motor cortex in healthy children (n = 17, 6 to 10 years).

Nonetheless, there is a relative wealth of data about the development of
effective connectivity of the motor cortex, both with the spinal cord and the
contralateral motor cortex (see Garvey and Gilbert 2004 for a review of the
use of TMS in children). Applying a single pulse of TMS over the motor
cortex elicits a muscle evoked-potential (MEP) in the contralateral (hand)
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muscles. One can calculate the time it takes for such a TMS-induced activa-
tion to reach the (cervical) spinal cord; the so called central motor conduction
time (CMCT) is computed by subtracting the latency of the MEP elicited by
stimulating cervical motor roots from that elicited by stimulating the mo-
tor cortex. Age-related shortening of the CMCT has been reported in several
studies of healthy children and adolescents (Nezu et al. 1997, n = 46, 1 to
14 years; Muller et al. 1994, n = 91, 2 months to 13 years; Eyre et al. 1991,
n = 308, newborn to 55 years). These studies clearly show that motor cortex
possesses effective connectivity with the spinal cord from an early age but,
most importantly, that the speed with which signals are transmitted along
this pathway increases as a function of age. This change is fast during the
first two years of life and slow, but present, until late adolescence. The two
phases likely correspond, respectively, to the initial robust myelination of the
corticospinal tract during infancy (Yakovlev and Lecours 1967) and its con-
tinuing structural maturation during childhood and adolescence (Paus et al.
1999). A handful of developmental studies also address the question of effective
connectivity between the left and right primary motor cortex. The experimen-
tal approach used in these studies takes advantage of the phenomenon called
transcallosal inhibition: in adults, a single pulse of TMS applied over, say,
left motor cortex not only elicits an MEP in the muscles of the right hand
but it also suppresses muscle activity, which is maintained by a voluntary
contraction of the muscles, in the left hand. It is likely that this suppression
is mediated by inter-hemispheric cortico-cortical connections, from the left
to the right motor cortex, passing through the posterior half of the trunk of
the corpus callosum (Meyer et al. 1995, 1998). It appears that transcallosal
inhibition cannot be elicited in young children (Heinen et al. 1998, n = 7, 4.2
to 5.7 years), emerging only between the age of 6 and 10 years (Garvey et al.
2003, n = 34, 6.4 to 13.9 years). After the age of 10 years, it is present in
most healthy children (Garvey et al. 2003; Heinen et al. 1999, n = 4, 10 to 15
years). Interesting hemispheric asymmetries exist in effective connectivity be-
tween the two motor cortices in that transcallosal inhibition of the dominant
motor cortex develops earlier than that of the non-dominant motor cortex
(Garvey et al. 2003). Even when present, latency of the transcallosal inhibi-
tion is longer in younger (6 to 9 years) compared with older (10 to 14 years)
children (Garvey et al. 2003). Thus, despite the presence of a well-developed
corpus callosum, it seems that effective connectivity between the primary mo-
tor cortices of the two hemispheres does not develop until late childhood. It is
possible that subtle age-related changes in structural connectivity (measured,
for example, with DTI) may explain the emergence of inter-hemispheric effec-
tive connectivity and, in particular, its shorter latency in older children. But
it is equally, if not more, likely that suppression of ongoing activity in the
motor cortex by the transcallosal input also requires a mature intracortical
(inhibitory) circuitry.
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Overall, the handful of TMS-based studies of the developing motor system
suggests that the primary motor cortex possesses effective connectivity with
the spinal cord from an early age (< 1 year) whereas its effective connectivity
with the contralateral motor cortex develops only later (between 6 and 10
years). In both cases, the speed of signal transmission along a given pathway
continues to increase with the child’s age.

4 Conclusions

Over the last 20 years, methodological advancements in in vivo measurement
of neural connectivity have opened up new avenues for studies of brain matu-
ration in infancy, childhood and adolescence. In the mid 1980’s, initial studies
of EEG coherence focused on developmental trajectories in local (short-range)
and distal (long-range) coherence, the latter most likely reflecting functional
connectivity in anatomically connected networks oscillating spontaneously at
a certain frequency. The mid and late 1990’s brought a wealth of data doc-
umenting age-related changes in the global and regional volumes of white
matter; we have learned that at least some of the volumes continue to in-
crease into the third decade of life and that significant gender differences exist
in the size and location of these maturational effects. The new century saw
further developments in the application of DTI to the refinement of develop-
mental studies of structural connectivity and the first attempts to investigate
functional connectivity by inter-regional correlation of fMRI timeseries. Fi-
nally, maturational studies of effective connectivity to date remain limited to
a TMS-based assessment of the motor cortex and its connectivity with the
spinal cord and the contralateral motor cortex.

Where do we go from here? It is likely that the current acquisition and
analysis methods will continue to improve and increase, in turn, the spatial
and temporal resolution of our datasets and the statistical power necessary for
revealing subtle age-related variations in structural and functional connectiv-
ity. It is also clear that an increasing number of studies will attempt to collect
multimodal datasets (e.g. EEG and structural MR) in order to investigate
similarities and differences in structural and functional connectivity, thus ex-
plaining age-related variance at different levels. The main challenge here will
be that of collecting large enough samples representing different age groups
and both genders. But, as always, the new breakthroughs will come from dis-
coveries of new measurement techniques allowing us, for example, to study
intra-cortical (structural and functional) connectivity within a cortical area
or to perturb a given cortical region in a highly selective (and non-invasive)
manner. It is without a doubt that future studies of structural and functional
connectivity will provide important insights regarding the environmental and
genetic mechanisms shaping the human brain.
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The occurrence of an epileptic seizure is the result of a paroxysmal and uncon-
trolled discharge of an enormously large population of neurons. Here we focus
on those seizures, referred to by clinicians as secondarily generalized seizures3,
that initiate in a spatially localized epileptic focus and subsequently spread
to involve a large portion of the cortex. As the spatial extent of the neuronal
population involved in the seizure increases, it becomes natural to question
how activity spreads from one point to the other. The apparent simplicity
of this question is deceptive. Indeed, obtaining the answer(s) requires a ma-
jor change in the way that we think about epilepsy. On the one hand, the
attention of basic scientists is shifted away from the dynamics of individual
neurons towards considerations of how large systems of neurons interact. On
the other hand, clinicians must begin to think in terms of an epileptic sys-
tem (Chkhenkeli and Milton 2002), i.e. a dynamic, ever-changing and evolving,
distributed system of neural aggregates that control the onset, propagation,
and arrest of epileptic seizures.

The words “spread”, “propagation”, and “synchronization” of epileptic
seizure and epileptic activity have been used for more than a century to fa-
cilitate communication between health professionals and basic scientists. The
invention and development of the electro–encephalogram (EEG) reinforced
this termonology, in part, because the EEG changes during a seizure seemed
visually to capture what the terminology attempted to describe. However,

3 The term “epilepsy” is used when seizures have the tendency to recur. To the
non–clinician the terminology used by neurologists to describe seizures can be
quite confusing. Here is a simplified overview. The classification of seizures is
based on how the seizure begins in the first split second. If the seizure begins in
a focal region of the brain it is called partial, if it begins generally everywhere at
the same time it is called generalized. Partial seizures are further sub-divided into
those in which the level of consciousness is not impaired (partial simple seizures)
and those in which it is (partial complex). The term “secondarily generalized
seizure” refers to a generalized seizure that was initiated in a spatially localized
epileptic focus and then spread to involve a significant portion of the cortex.
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recent data suggest that phenomena that occur in association with seizures
are actually not well described by these terms. This is one of the main points
of this chapter. Nonetheless, during the chapter we will continue to use these
habitual words, bearing in mind that they do not fully embrace the complexity
of the phenomena that they purport to describe.

The identification of the pathways for the spread of partial seizures is
of immense relevance to the subject of human brain connectivity. Not too
many years ago, neuroscientists thought that any two neurons in the central
nervous system could be connected by pathways that contained no more than
three synapses (Guyton 1976). Given that there are ∼ 1010−1011 neurons
and ∼ 1013− 1014 synapses (Stevens 1965) in the central nervous system,
this would imply that there must be a huge number of pathways by which
seizures could secondarily generalize from an epileptic focus. The study of
the spread of seizure activity provides a unique opportunity to identify those
pathways that have the major functional significance. Although abnormalities
in circuitry do arise within the epileptic focus (Engel 1990; Sutula et al.1989)
(e.g. sprouting of axon branches and terminals, pruning of dendritic branches
and spines), the pathways by which a seizure spreads are often normal. Thus
we can anticipate that the pathways for seizure propagation from an epileptic
focus will be the same pathways used for information flow within the nervous
system under normal circumstances.

Clinical investigations related to seizure onset and spread are typically per-
formed in the context of the pre–surgical evaluation of patients with medically
intractable epilepsy. Our goal is to present selected examples obtained dur-
ing clinical investigations in order to motivate a discussion between clinicians
interested in epilepsy, basic scientists interested in brain connectivity, and
computational neuroscientists interested in the effects of connectivity on the
spatio–temporal dynamics exhibited by large–scale populations of neurons.

1 EEG Signatures of Epilepsy

The primary tools available to monitor the spread of a seizure in a patient
with epilepsy are clinical observation and the EEG. The EEG represents
a spatiotemporal record of the variations in potential (measured in micro-
volts) recorded from the brain (Ferree and Nunez 2006; Nunez 1981; Nunez
1995; Nunez and Srinivasan 2006). A rich variety of EEG changes are seen in
patients with epilepsy (Fig. 1). The morphology, frequency and spatial distri-
bution of these changes are used by epileptologists to diagnose the epilepsy.
Focal epileptic spikes (Fig. 1a) are frequently recorded from patients with
partial epilepsy and provide an important clue for the possible location of the
epileptic focus. On the other hand, patients with generalized epilepsy exhibit
a variety of characteristic generalized EEG waveforms that have diagnostic
significance: 3–Hz spike–and–wave patterns in patients with absence seizures
(Fig. 1b), the lower frequency spike and wave patterns seen in patients with
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Fig. 1. Examples of EEG changes recorded from patients with epilepsy. (a) Isolated
epileptic spike recorded from left temporal lobe in a patient with partial complex
seizures; (b) train of 3 Hz spike–and–wave discharges recorded from a patient with
absence seizures; (c) train of 2–2.5 Hz slow spike and slow discharges recorded from
a patient with Lennox Gastaut syndrome; (d) polyspike spike and slow wave activity
recorded from a patient in absence status epilepticus

Lennox–Gastaut syndrome (Fig. 1c), and the polyspike and slow waves com-
plexes seen in patients with absence status epilepticus (Fig. 1d). Despite con-
siderable progress in our understanding of the basic molecular and cellular
mechanisms of the epilepsies it has not yet been possible to translate this in-
formation into a deeper understanding of the EEG phenomena measured on
a daily basis in EEG laboratories and epilepsy monitoring units throughout
the world.

Little attention has been given to the evolution of EEG patterns, i.e.
changes in frequency and morphology of waveforms, as a seizures progresses.
One example, that has been emphasized in the clinical literature (Ebersole and
Pacia 1996; Pacia and Ebersole 1997), arises in the setting of partial complex
seizures in adults that originate from the amygdala–hippocampal–temporal
lobe complex. Three different ictal patterns have been described using scalp
EEG: a regular and well modulated 5–6 Hz pattern, a pattern characterized
by slower rhythms (2–5 Hz) and patterns characterized by diffuse slowing
or arrhythmic patterns. These patterns are not unique to the site of seizure
onset, but can be observed, for example, in consecutive seizures from the
same patient (Chkhenkeli and Milton 2002). The mechanism that produces
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Fig. 2. Different variants of ictal hippocampal activity recorded in eight patients
with partial complex seizures. The depth electrodes were implanted in the hip-
pocampus using stereotaxic procedures. ‘1’ refers to channels that record from the
hippocamous; ‘2’ to recordings from the amygdala

these ictal EEG patterns is not well understood. Figure 2 shows the EEG
recorded using depth electrodes implanted in the hippocampus at seizure on-
set recorded in eight different patients. Clearly, great variability is observed
in the EEG at seizure onset. Thus it is quite likely that the different ictal
EEG patterns measured using scalp electrodes arise from the subsequent spa-
tiotemporal dynamics and development of synchrony in neuronal populations
as seizure activity spreads from the epileptic focus. Indeed, the observation of
a faster and a slower rhythm is quite reminiscent of the fast (∼ 9 Hz) and slow
(∼ 3 Hz) bulk oscillations observed in computer simulations of randomly con-
nected networks of integrate–and–fire neurons (Farley 1965). The fact that
the oscillations in the EEG and the bulk oscillations in the randomly con-
nected neural networks are considerably slower than the spiking frequencies
of typical cortical neurons, e.g. 10–100 Hz, suggest that these EEG patterns
are related to emergent statistical properties of large populations of neurons.
However, it is not known whether these statistical properties are generated
entirely within the cortical mantel or also involve interactions between cortical
and subcortical pacemakers.

Since depth electrodes offer the best opportunity for the precise localiza-
tion of an epileptic focus, the curious reader might wonder why these proce-
dures are not more widely used. The problem with depth electrodes is that
they record only from small localized areas of tissue adjacent to the tip of
the electrode. Thus, it would be necessary to implant an enormous number
of depth electrodes in order to cover all of the brain structures responsible
for the onset of a seizures. The current interest in deep brain stimluation for
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Fig. 3. (a) Photograph of the exposed surface of brain revealing the placement of
three 8×8 grids of electrodes. Electrode 64 is over the left inferior temporal lobe; the
prominent blood vessels indicate the left Sylvian fissure. Pertinent clinical history
is given in the legend to Fig. 9. (b) CT scan showing the placements of subdural
grids of electrodes. ECoG recordings using these grids are shown in Fig. 8. Pertinent
clinical history is given in the legend to Fig. 8

the treatment of seizures and other neurological diseases such as Parkinson’s
disease has produced a resurgence in the use of depth recordings (Chkhenkeli
and Chkhenkeli, 1997; Lüders 2004; Milton and Jung 2002).

A practical compromise between scalp and depth electrodes involves the
surgical implantation of grids of electrodes (inter–electrode spacing ranging
from 2 mm to 10 mm) in the subdural space over the surface of the brain
(Fig. 3a). The term ‘electro–corticography (ECoG)’ is used to refer to EEG
recorded directly from the surface of the brain. The location of these electrodes
relative to the skull and cortical surface can be determined post-implantation
using radiological techniques (Fig. 3b). An advantage of subdural over scalp
EEG recordings for the study of seizure propagation is that such recordings
are relatively free from motion and scalp muscle artifact: the grids can be
attached with a stitch to the dura mater.

The combination of ECoG with modern techniques for neuro–imaging and
time series analysis makes it possible to visualize the spread of seizures on the
scale of a signification portion of the brain. Figure 4 shows a seizure recorded
in a patient with multifocal onset partial epilepsy in whom four subdural
grids of electrode were implanted over the left hemisphere: an anterior grid
implanted over the frontal lobe, a posterior grid over the parietal–occipital
lobe, and two strips of electrodes inferiorly under the temporal lobe. As the
seizure spreads, the frequency and morphology of the EEG recorded from
the electrode nearest the presumed epileptic focus (colored red) continually
changes. The green lines in the figure indicate the electrode pairs for which the
EEG is significantly coherent. The important observation for this discussion is
that the EEG activity between two electrodes located a great distance apart
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Fig. 4. ECoG recorded during a seizure onset from a patient with multifocal seizure
onset using four implanted grids of subdural electrodes: the frontal grid electrodes
are colored red, the parietal–occipital grid electrodes are yellow, and the two tempo-
ral electrode strips are green. The top row of panels show ECoG recorded from 17 of
the total of 128 channels. The ECoG is 36 second long and has been subdivided into
five sections: A: interictal epileptic activity; B: increased spike activity; C: electro-
decremental stage, D: seizure onset, E: later stage of seizure. The second row of
panels show the changes in the ECoG power recorded from the electrode cloest to
the presumed epileptic focus for the shown seizure (red). The x–axis of each panel
shows the time measured in seconds, the y–axis shows the frequency content (0 Hz
at the bottom, 100 Hz at the top, and a color scale is used to represent the ECoG
power at each frequency (red is high power, blue is low). The third row of panels
show examples of the ECoG recorded from the electrode placed closet to the epilep-
tic focus (the red ECoG tracing shown in the top row of panels). The bottom row
of panels summarizes the coherence between measured between two electrode pairs:
a green line connects those electrode pairs which had significant coherence (Fuchs
2007; Kamiński 2007). The voltages were recorded relative to the contralateral mas-
toid. The grand mean was subtracted from each electrode before the coherence was
calculated



Seizure Propagation Pathways 483

(the electrodes on the grid are spaced at 1 cm intervals) can be coherent even
though coherence is not seen for the intervening electrode pairs.

1.1 Generation of the EEG

In order to better understand the significance of the EEG changes associated
with a seizure it is useful to have an understanding of how the EEG is gen-
erated. The EGG measured using scalp or subdural electrodes is a measure
of the activity of neurons which are located in a thin circumferential cortical
band measuring 1.5–4.5 mm in thickness that is located directly at the surface
of the brain The neurons are not scattered in a haphazard manner but are
arranged according to two major organizational features: horizontal lamina-
tion and vertical columnation. To a first approximation, the EEG is generated
by the large vertically oriented pyramidal neurons located in layers II, III, V
and VI. These neurons have two features that are critically important for the
EEG: 1) they are oriented perpedicular to the cortical surface; and 2) the
inhibitory and excitatory inputs are spatially segregated over the surface of
these neurons. In particular, only inhibitory synapses are made at the soma.
On the other hand, dendrites receive both excitatory and inhibitory synapses:
most of the synapes made onto dendritic shafts (axodendritic) are inhibitory,
whereas those onto spines (axospinous) are usually excitatory.

The generators of the EEG are the excitatory and inhibitory postsynaptic
potentials, respectively the EPSPs and the IPSPs, that summate on the pyra-
midal neurons (Fig. 5). Consider the effect of increasing excitation on the more
distal part of the apical dendritic tree. By definition, the direction of current
flow is taken with respect to the direction that the positive ions flow. Since an
EPSP causes an inward flux of positive ions, the extracellular compartment
at this point in space becomes more negative. To maintain neutrality this
inward flux of positive ions must be balanced by an outward flux of positive
ions at the soma. Hence, the deeper extracellular compartment becomes more
positive. Consequently, the pyramidal neuron can be thought of as a vertical
dipole oriented so that the sink (negative pole) is near the cortical surface
and the source (positive pole) located slightly deeper from the surface (i.e.
≤ 1−2 mm) (Darvas and Leahy 2007). If, on the other hand, excitatory input
is increased to synapses located closer to the soma, the dipole has the reverse
orientation. By repeating these arguments it is easy to see that the effects of
increasing IPSPs at deeper cortical layers is identical to increasing EPSPs at
more superficial layers: increasing IPSPs at superficial levels is the same as
increasing EPSPs at deeper levels.

The potential generated by a single neuronal dipole is too small to be
measured by an EEG electrode. The reason why these very small extracellular
currents can be measured is because the pyramidal neurons are aligned in a
parallel fashion throughout the gray matter. This anatomical feature means
that individual dipoles can summate to produce an equivalent dipole large
enough to be measured. Thus, the EEG is generated by a dipole layer of
neurons.

There are three important consequences of this dipole layer theory for the
generation of the EEG. First, the potential generated by a dipole layer falls
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Fig. 5. Schematic representation of a pyramidal neuron. Reproduced from (Ebersole
and Milton 2002) with permission

off less quickly with distance than that generated by a single dipole (Lopes da
Silva and van Rotterdam 1982). Second, the amplitude of the EEG recorded
from a cortical region in which neurons are not parallel will be much lower
than that recorded from cortical regions having vertically oriented neurons.
This is because the dipoles generated by a population of randomly oriented
dipole will tend to cancel. Since neurons in subcortical neurons tend not to
be aligned in parallel, this means that the activity of these neurons do not
meaningfully contribute to EEG recorded by electrodes placed on the cortical
surface. Finally, the EEG is essentially a measure of synchrony of the neuron
dipoles within the dipole layer. The time–averaged potential, |Φ|, form parallel
dipoles which oscillate in phase is (Nunez 1981)

|Φ| ∼ m

whereas if they oscillate with random phase it is

|Φ| ∼ √m
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Since for a scalp electrode there are no local sources, the relative contribution
of the m synchronous and n asynchronous oscillating dipoles to |Φ| is m/√n
(Nunez 1981), the EEG emphasizes the contribution of the synchronously
oscillating dipoles (Ebersole and Milton 2002).

1.2 Synchronization, or something else?

A word that is frequently abused in discussions of neural activity during a
seizure is synchronization. Historically it was felt that a seizure represented
a state of “hypersynchrony”, i.e. synchronous activity in a very large popu-
lation of neurons (Penfield and Jasper 1954). However, it has proven to be
very difficult to directly demonstrate synchrony between the firing of indi-
vidual neurons during a seizure (Babb et al. 1987; Netoff and Schiff 2002;
Wyler et al. 1982). For example, in animal models with penicillin–induced
generalized 3 Hz spike–and–slow wave epilepsy, the neurons do not typically
fire synchronously (Steriade and Amzcia 1994; Steriade and Contreras 1998).
Even during ongoing human partial complex seizures, depth electrode record-
ings from the ipsilateral hippocampus indicate that less than 30 % of the
neurons change their firing frequency (Babb et al. 1987). Indeed recent stud-
ies of epileptic seizures occuring in hippocampal slices (Netoff and Schiff 2002)
and computer simulations (van Drongelen et al. 2005) have argued that desyn-
chronization of neurons may be more relevant to the occurence of an epileptic
seizure.

There are three issues that have contributed to this confusion. First, epilep-
tologists do not usually recognize the fact that synchrony is not simply limited
to the situation in which all neurons spike at the same time. Synchronization
describes the adjustment in rhythms that occur as a result of interactions
between oscillators (Pikovksy et al. 2003). From this perspective, complete
coincidence of signals is but one of a rich array of possibilities that range from
a variety of phase locking patterns (Bressloff and Coombes 2002), some of
which are very complex, to phase synchronization, i.e. populations of coupled
chaotic oscillators that are synchronous in phase but not in amplitude (Rosen-
blum et al. 1996). Although new techniques to detect synchronization are
increasingly being used to study epileptic seizures, sometimes with great ef-
fect (Dominguez et al. 2005), it is important to realize that these approaches
are not without their own problems (So et al. 2002).

Second, scientists have tended to overlook the fact that epileptologists
have traditionally used the word synchronization in the context of the dipole
layer mechanism that generates the EEG. As we have seen this dipole layer
theory does not necessarily imply that all neuronal dipoles oscillate in phase,
only that a certain fraction of them do. Consequently, it can be very difficult
to relate rhythmic changes recorded in the scalp EEG with changes in the
spiking patterns of the underlying neural populations. An important exception
is the high correlation that exists between the probability of a spike occuring
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in a single neuron and the waveform and amplitude on an evoked potential
measured using EEG (Fox and Norman 1968).

Finally, and perhaps more importantly, both scientists and epileptologists
often overlook the fact that the EEG is a measurement of the statistical prop-
erties of a large population of neurons (Milton 1996; Milton and Mackey 2000).
It has been estimated that a typical scalp EEG electrode records from about
5–10 cm2 of the underlying cortical surface, i.e. approximately ∼ 108 neu-
rons (Cooper et al. 1965; Tao et al. 2005). From this perspective the potential
measured by a single EEG electrode corresponds to the average activity of
the underlying population of neurons: rhythmic changes in the EEG potential
imply that cycle changes occur in the average activity. Theoretical (Lasota
and Mackey 1994; Milton and Mackey 2000) and experimental (Cole 1991)
investigations have shown that it is possible for the population average to be
cyclic even though no element in the population itself exhibits periodic ac-
tivity! One possible explanation is statistical periodicity, i.e. the probability
density function cycles in a periodic manner (Lasota and Mackey 1994; Milton
and Mackey 2000). This phenomenon occurs only in time–delayed dynamical
systems. Hence one would be anticipate that statistical periodicity might be
very relevant for populations of neurons since axonal conduction velocities are
finite. Statistical periodicity is a very robust phenomenon: it arises in popula-
tions of chaotic elements and in populations of linear dynamical elements sub-
jected to the effects of either state-independent (additive) or state-dependent
(multiplicative) noise (Lasota and Mackey 1994). However, the relationships
between statistical periodicity, synchronization, and the EEG, if any, have not
yet been established.

2 Seizure onset

Patients with epilepsy always ask their physician, “Why do seizures occur?”
Perhaps the more astute might ask why doesn’t everyone have epilepsy! In-
deed, from an anatomical point of view the cortex appears to be set up as
a time bomb just waiting to go off. Approximately 75 % of the cortical neu-
rons are excitatory. Each neuron receives ∼ 103−104 inputs (Stevens 1965)
and the excitatory inputs outnumber the inhibitory ones by 6.5 : 1. (Beaulieu
et al. 1992). Local excitatory input arises from the collaterals of the excita-
tory neurons themselves and ramifies through the laminae as well as both
upward and downward to create a rich arborization of local excitatory input.
Thus it is not surprising that mathematical studies (Traub and Miles 1991;
Traub et al. 1989; Wright 1999) and experimental observations (Buzsáki 1986;
Buzsáki 1989; Buzsáki et al. 1987) have indicated that the isolated cortex is
operating near a threshold that separates quiescent behavior on the one hand
from an active epileptic state on the other hand. These observations suggest
that the inhibitory mechanisms present in the cortical layer of healthy brain
are not sufficient by themselves to maintain the cortex in a non-seizing state.
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The episodic nature of seizure occurence (Milton et al.1987) implies that the
epileptic focus may face a similar problem for maintaining an ever teetering
balance made even more difficult because of the pathological alterations to its
control mechanisms.

It has long been known that the onset of partial seizures can be heralded by
a flattening of the EEG (see, for example, section C in Fig. 4). Historically this
EEG flattening, or electrodecremental response, was interpreted in terms of a
reorganization of neuronal dipoles. With modern EEG recording technologies
it has been shown that high frequency (100−500 Hz) oscillations occur during
this period, particularly in electrodes placed in the region of the suspected
epileptic focus (Bragin et al. l999; Jirsch et al. 2006; Schiff et al. 2000; Worrell
et al. 2004). Initially it was thought that the spatial extent of these high
frequency oscillations was small, i.e. < 1 mm (Bragin et al. l999; Bragin et al.
2002); however, it is now known that they can be detected using electrodes of
various sizes (Jirsch et al. 2006; Worrell et al. 2004). This observation implies
that high frequency oscillations may exist on a variety of length scales perhaps
up to the order of the size of the epileptic focus but certainly less than that
of the whole cortex. Gap junction connections between principle neurons may
play an important role in the generation of these high frequency oscilations
(Bragin et al. 2002; Traub et al. 2001).

Brief sensory (Milton 2000) and electrical (Lesser et al. 1999; Motamedi
et al. 2002) stimuli applied near seizure onset can abort the seizure. These
observations provide very suggestive evidence for multistability (Beggs et al.
2007; Campbell 2007; Milton 2000), i.e. the coexistence of a quiescence and a
seizing state of the cortex. The possibility of multistability was first suggested
by computational studies of studies of model populations of neurons which
indicated that the onset of traveling waves was characterized by a subcritical
bifurcation (Chu et al. 1994; Milton 1996; Milton et al. 1993; Milton et al.
1995), i.e. by a bifurcation associated with the coexistence of two or more qual-
itatively different activity states. An understanding of how seizures initiate
may led to the development of new treatment strategies for epilepsy (Milton
and Jung 2002).

A more modern concept has been to explore the implications of a cortex
stabilized near, or at, “the edge of stability” by subcortical inputs (Buzsáki
and Traub 1997; Milton and Jung 2002; Milton et al. 2004). Although electrical
stimulation of the sub–cortical nuclei does not result in the generation of
epileptic seizures (Ajmone–Marsan 1972), both animal studies and studies
in humans with depth electrodes have demonstrated that three structures:
thalamus, cingulum, and midbrain, are so important that seizure spread is
not possible without their participation (Chkhenkeli and Milton 2002). The
advantage of tuning a control system near the edge of stability is that it can
respond to perturbations very quickly (Cabrera and Milton 2002; Cabrera
et al. 2004; Chialvo and Bak 1999; Kelso 1995; Langdon 1990; Moreau and
Sontag 2003). Presumably this advantage outweighs the risk of the occurence
of a seizure. An attractive aspect of the hypthesis that cortical–subcortical
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interactions are important for epilepsy is that it readily explains why any
person, under the appropriate circumstances, can experience a seizure and
why so many subcortical structures exist in the healthy nervous system that
are capable of inhibiting seizure generation and generalization (Chkhenkeli
2002; Chkhenkeli and Milton 2002; Chkhenkeli et al. 2004; Lüders 2004), e.g.
cerebellum, caudate nucleus, centromedian nucleus of the thalamus, the raphe
nuclei, the locus coeruleus, substantia nigra and the nucleus of the solitary
tract.

If the cortex is indeed tuned at the edge of stability then one would an-
ticipate that cortical dynamics, including seizure onset, should demonstrate
the same dynamical phenomena observed for other dynamical systems tuned
near a stability boundary (Milton et al. 2004; Worrell et al. 2002). These
properties, collectively referred to as critical phenomena, include the appear-
ance of power laws, intermittency, multistability, and critical slowing down.
Current interest has focussed on determining whether long-range correlations
with power-law scaling occur in cortex. Such correlations are expected find-
ings for relaxational processes, i.e. processes which occur whenever a critical
variable exceeds a certain critical threshold. It has been shown that fluctu-
ations in EEG energy in both normal (Linkenkaer–Hansen et al. 2001) and
epileptogenic (Cerf et al. 2004; Parish et al. 2004; Worrell et al. 2002) brain
exhibit long range temporal correlations with power law scaling. Theoretical
arguments have suggested that neural systems at the edge of stability are ex-
pected to exhibit a power law with exponent −3/2 (Cabrera and Milton 2002;
Chialvo and Bak 1999; Eurich et al. 2002; Milton et al. 2004). Although such
power laws have been observed in a variety of neural experimental paradigms
including bursting behavior in cultured neurons (Segev et al. 2002) and brain
slices (Beggs and Plenz 2003) and in motor tasks controlled by the intact
nervous system (Cabrera and Milton 2002; Cabrera et al. 2004), they have
not yet been reported for cortical activity in the intact brain.

In summary, the presence of long range correlations in EEG data with
power law exponents suggests that seizure onset may share features exhib-
ited by physical systems such as the water–ice phase transition. Computer
simulations of water freezing indicate that the nucleation sites for ice forma-
tion initially expand slowly until they reach a certain critical size after which
they expands on a much faster time scale (Matsumoto et al. 2002) What
corresponds to the nucleation sites for a seizure? Perhaps the localized high
frequency oscillations observed at seizure onset will provide a clue.

3 Seizure Spread in Slices of Disinhibited Brain

Propagation of activity in spatially extended populations of randomly inter-
connected excitable cells is expected to take the form of waves of neural ac-
tivity (for introductory reviews see (Milton 1996; Milton et al. 1995). In this
situation, the nature of the waves, i.e. standing or traveling, depends primar-
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ily on the relative spatial extent of the inhibitory and excitatory connections.
When the spatial range of inhibition exceeds that of excitation, standing wave
patterns predominate. On the other hand, traveling waves, e.g. target waves
and spirals, occur when the spatial range of excitation is relatively larger
(Fig. 6a). These patterns depend on the strength of the interneuronal exci-
tation. Although it is difficult to alter the spatial extent of the excitatory
connections in neocortex experimentally, the spatial extent of the inhibitory
connections can be readily changed. To understand why this is true it is nec-
essary to remember that the integrate–and–fire properties of neurons imply
that there are two distinct mechanisms that produce a decrease in the rate of
neural spiking. First, the resting membrane potential can be lowered (hyper-
polarized). This effect is typically the result of synaptic transmission involving
inhibitory interneurons, and hence can be blocked pharmacologically using,
for example, bicuculline, carbachol and/or penicillin. Second, the threshold for
spiking can be increased to produce the absolute and relative refractory peri-
ods. Refractoriness occurs intrinsically in all spiking neurons to some extent
following the generation of a single action potential. Thus, when the neo-
cortex is disinhibited pharmacologically the spatial range of the excitatory
connnections necessarily exceeds that of the inhibitory ones and consequently
traveling waves are expected to occur.

Initial attempts to demonstrate the presence of spiral traveling waves in
disinhibited slices of mammalian cortex (Chen et al. 2000; Friedrich et al.
1991; Fuchs et al. 1987; Iijima et al. 1996; Petsche et al. 1974) and intact

Fig. 6. (a) Spatio–temporal activity generated in excitatory networks of integrate–
and–fire neurons (Chu et al.1994; Milton et al.1993). (b) Wave patterns measures in
tangential slices from rat occiptal cortex. Spiral, plane, and irregular waves are seen
from the same field of one slice. Colors represent the amplitude of the signal following
a linear color scale (top right). Images are 1 msec snapshots of the waveforms.
Reproduced from (Huang et al. 2004) with permission
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human cortex (Haglund 1997; Haglund et al. 1992) were disappointing. Re-
cently, Huang and co–workers (Huang et al. 2004) successfully demonstrated
the presence of traveling spiral waves in disinhibited slices of rat occipital
cortex using voltage sensitive dyes (Fig. 6b). The wavelength of the observed
spiral waves is of the order of ≤ 1−2 mm; in excellent agreement with that
predicted from computer simulations of networks of integrate–and–fire neu-
rons, i.e. ≤ 1−4 mm (Chu et al. 1994; Milton et al. 1993; Milton et al. 1995).
A key step was that the neocortical slices were tangentially sectioned so that
the sectional plane was parallel to the cortical laminae, and hence preserved
the horizontal connections in layers III–V. It is quite possible that the fail-
ure of previous investigators to observe spiral waves in mammalian cortex
was because the tissue used was not sufficiently smooth and isotropic as in
heart (Winfree 2002).

The above observations indicate that the spatio–temporal dynamics of dis-
inhibited spatially extended networks of neurons closely resemble those that
arise in other excitable media (Winfree 2002). However, inhibitory mecha-
nisms are always active in intact cortex and even in the epileptic focus (Babb
et al. 1989; Haas et al. 1996). Traveling wave patterns similar to those shown
in Fig. 6 have not been demonstrated in cortical slices when inhibition is
present (Chervin et al. 1988; Rinzel et al. 1998).

A related question concerns the nature of the wave–like properties of neu-
ral activity that would be detected by the EEG (Nunez 1981; Nunez 1995;
Nunez and Srinivasan 2006). Provided that the neocortex has a closed topol-
ogy, i.e. all cortical regions are interconnected, it been possible to show that
all weakly damped traveling waves will tend to develop into standing waves
on appropriate scales of length and time (Nunez and Srinivasan 2006). An im-
portant conclusion of this analyses is the demonstration that the properties
of EEG waves can depend on how the EEG was measured. In particular, the
global nature of these calculations implies that they are most valid the larger
the neural population monitored by the EEG electrode (Nunez and Srini-
vasan 2006). In other words, different conclusions can be reached depending
on whether, for example, the EEG was measured using scalp, subdural or
depth electrodes.

4 Seizure Spread in Intact Brain

For many the term ‘seizure spread’ conjures up the mental picture of abnormal
neural activity spreading out from an epileptic focus progressively engulfing
more and more neurons “like a diffusing oil drop” (Kreindler 1965). Unfortu-
nately, the image of a diffusing oil drop is not always a totally valid representa-
tion for the spread of seizures in the intact human brain. In fact, the study of
seizure spread provides a most convincing demonstration of the importance of
getting the brain connectivity right before speculating on mechanism! There
are four features of the EEG recorded during secondarily generalized seizures
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Fig. 7. Scalp EEG recording of a partial complex seizure arising from the
left amygdala–hippocampal complex. The electrode placements are shown in the
schematic on the left–hand side of the figure. Vertical bars delineate a time interval
of 5s. The EEG recording is adapted from (Ebersole and Milton 2002)

that provide clues for understanding how seizures spread in the intact human
brain.

First, during seizure propagation the expected lag between signals recorded
near the epileptic focus and far from it is much smaller than would be an-
ticipated from estimates of the intracortical (horizontal) seizure propagation
velocity of ≤ 6−18 cm/sec. For example, consider the partial complex seizure
recorded in Fig. 7. This seizure arises in the amygdala–hippopcampal complex
spreads to the surface of the temporal lobe via the temporal pole (Buser and
Bancaud 1983; Buser et al. 1972). In terms of electrodes (left side of Fig. 7),
the seizure would propagate, for example, from F7 → T7 → P9. These elec-
trode placements are approximately 2-3 cm apart, and hence we would expect
the rhythmic activity recorded at P9 to lag that recorded at F7 by ∼ 280−850
m sec. However, as can be seen, the actual lag is much smaller, i.e. approxi-
mately zero. Indeed, even when EEG changes are compared between the two
hemispheres during a secondarily generalized seizure, the lag is typically ≤ 20
msec (Gotman 1983). These observations clearly imply that there must be a
faster route for seizure generalization than intracortical propagation via the
horizontally–directed unmyelinated axons of the cortex.

Second, secondarily generalized seizures terminate in a manner that sug-
gests that the epileptic focus is not the primary pacemaker at the time of
seizure cessation. Figure 8 shows the termination of a secondarily general-
ized seizure. Contrary to expectation, the ECoG changes associated with the
seizure stop abruptly in the frontal, parietal, and both temporal lobes at ap-
proximately the same time. The simplest explanation for these observations
is that the secondarily generalized seizure is being driven by a common sub–
cortically located pacemaker. This suggestion in turn implies that at some
point during the secondary generalization of a seizure, the mechanisms for
maintaining the seizure must shift from the cortex (i.e. the location of the
epileptic focus) to some other structure, possibly located in the sub–cortex.

Third, seizures can simultaneously involve non–contiguous regions of cor-
tex (see also Fig. 4). Figure 9 shows a ECoG recording of seizure using the
subdural grid of electrodes shown in Fig. 3a. For each electrode the Fourier
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Fig. 8. ECoG recordings of the cessation of a secondarily generalized seizure
recorded from a ten–year old female with multifocal seizures (one epileptic focus
was located in the left frontal lobe, the other in the left parietal–occipital region.
Magnetic resonance imaging (MRI) showed an area of encephalomalacia in the left
temporal lobe. The location of the EEG channels correponds to the red electrodes in
Fig. 3b. The bottom of the figure shows the ECoG power recorded from the parietal
electrode PG5; i.e. the channel at the very top of this figure

power spectrum was calculated and the total power represented in a color scale
(red indicates the highest power, blue the lowest). This seizure began in a mal-
formed region of the lateral occipital lobe and then spread to more superior
and anterior regions of the posterior temporal lobe. During the seizure there

Fig. 9. Changes in ECoG power recorded from the occipital grid (Fig. 3a) be-
fore (a) and during (b,c) a seizure recorded from an eight–year old male with left
hemimegencephaly involving the left temporal–parietal–occipital region. The seizure
(red) begins in the posterior aspect of the grid. A color scale has been used to rep-
resent the power: highest (red) to lowest (blue)
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were intervening areas in the middle of the grid that did not display epileptic
activity. However, the frequency content of the seizing areas was similar sug-
gesting that these non-contiguous areas were nonetheless functioning as a
unitary phenomenon. This interpretation was supported by measurements of
the coherence between EEG electrodes (Towle et al. 2002).

5 Pathways for Seizure Spread

The observations in Sect. 4 indicate that seizures in the human brain do
not significantly propagate via horizontal connections confined to the corti-
cal layer4. In order to appreciate the nature of the other pathways available
for seizure propagation it is helpful to represent the brain schematically as
the double sphere shown in Fig. 10. In this representation the neocortex is
represented by the circumference of the outer sphere and the inner sphere en-
closes all of those sub–cortical and brainstem nuclei that modulate the onset,
propagation and subsequent termination of the epileptic seizure. The large
area between the circumferences of the inner and outer spheres is the white
matter and contains all of the cabling, i.e. the myelinated and unmyelinated
axons, that interconnect neurons located in the gray matter and sub-cortical
regions as well as those that convey the sensory inputs and motor outputs of
the central nervous system. It follows that there are three routes by which
seizures can spread:

1. Intracortical spread (Path 1 in Fig. 10): epileptic activity spread horizon-
tally from the epileptic focus via thin diameter, unmyelinated axons;

2. White matter mediated spread (Path 2 in Fig. 10): seizure activity prop-
agates from the gray matter vertically via myelinated axons that subse-
quently arc back towards the surface to interconnect adjacent as well as
distant areas of cortex in both the ipsilateral and contralateral hemisphere;

3. Sub–cortical nuclei mediated spread (Path 3 in Fig. 10): seizure activity
spreads vertically via myelinated axons to the underlying sub–cortical
nuclei which subsequently project more diffusely back to the cortex.

It is quite likely that all of the pathways shown in Fig. 10 participate, to
varying extents, in the spread of seizure activity from an isolated epileptic
focus. The velocity of seizure propagation along each of these pathways is
expected to differ markedly: seizure generalization via intracortical spread is
slower than by white matter mediated spread which is slower than spread
mediated by sub–cortical nuclei (Milton 2002). The faster a clinical seizure
spreads, the more likely that the faster propagation pathways are involved.
However, it is clear that there is not necessarily a perferred pathway for a
seizure to spread from an epileptic focus; consecutive seizures from the same

4 A possible exception concerns Jacksonian march seizures that are confined to the
primary motor cortex.
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Fig. 10. Schematic representation of three potential seizure propagation pathways
(A). A simplification of these pathways is shown in (B). The starburst symbol for
the sub–cortical nuclei (SC) indicates that they have a diffuse projection. WM: white
matter, GM: gray matter. Reproduced from (Milton 2002) with permission

patients can spread via different pathways; for an example see (Chkhenkeli
and Milton 2002).

An important corollary of the columnar organization of cortex is that the
major direction for the flow of neural activity is perpendicular to the corti-
cal surface, i.e. in the direction that the myelinated axons conduct (Petsche
et al. 1988). Measurements of spike propagation in human temporal lobes
(Baumgartner et al.1995; Emerson et al. 1995; Sutherling and Barth 1989)
and between the two hemispheres (Gotman 1983, Ktonas and Mallart 1991),
the spread of electrically induced after–discharges in animal models (Kreindler
1965), and of dispersive waves over the cortical surface (Nunez 1981;

Nunez 1995) provide convincing evidence that neural activity can indeed prop-
agate via the interconnecting axons that form the association and commis-
sural fibers of the white matter. However, focal electrical stimulation studies
in animals demonstrate that cortically generated after–discharges spread pref-
erentially to sub–cortical structures rather than directly to contiguous cortical
regions (Ajmone–Marsan 1972; Konigsmark et al. 1958). The lone exception
appears to be after–discharges generated in primary sensorimotor cortex which
spread first to homologous regions in the contralateral hemisphere.

An illustrative example concerns the spread of seizure activity from one
temporal lobe to the other. Intuitively, one might anticipate that the route
would be along the anatomical commissures that interconnect the temporal
lobes, i.e. the anterior and hippocampal commissures. However, this is not the
case (for a review see (Chkhenkeli and Milton 2002)). The major route for
seizure propagation between the two temporal lobes is via vertical spread of
seizure activity by indirect pathways involving many deep brain structures,
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Fig. 11. Diagramatic representation of the main pathways for the spread of epilep-
tic discharge from the right amygdalo–hippocampal complex: (A) spread involving
the anterior thalamic nuclei, gyrus cinguli and corpus callosum; (B) spread involv-
ing the non–specific thalamic nuclei; (C) spread involving the mesencephlic reticular
formation. The solid lines show the “main” directions of spread and generalization of
the epileptic discharge and the dotted lines show the auxillary routes. 1– amygdala,
3–hippocampus, 4–gyrus hippocampus, 5–dorsomedial thalamic nuclei, 6–anterior
thalamic nuclei, 7–centrum median thalamic nucleus, 9–gyrus cinguli, 10–fornix,
11–hypothalamus, 12–corpus callosum, 14–mesencephalic reticular formation. Re-
produced from (Chkhenkeli and Milton 2002) with permission

including the brainstem. This is a consequence of the fact that the projections
of the amygdala–hippocampal complex, the typical site for the epileptic focus
in patients with partial complex seizures, are not directed to the symmetric
contralateral structures, but rather to ipsilateral deep–brain structures from
which the seizure activity subsequently spreads. A variety of possible routes
have been discovered; three examples are shown in Fig. 11. The common route
(Fig. 11a) is hippocampus → fornix → mamillary body → mamillothalamic
tract→ posterior cingulate gyrus (Brodman areas 23 and 29)→ contraleteral
frontal lobe→ contraleteral temporal lobe. Another possibility is amygdala→
non–specific thalamic nuclei → ipsilateral anterior cingulate gyrus (Brodman
area 24) → contraleteral temporal lobe (Fig. 11b). Although often neglected
in discussions of seizure spread, structures located in the midbrain likely play
important roles (Weir 1964); this is illustrated in Fig. 11c.

6 Discussion

The spread of a seizure is clearly a very complicated phenomenon that involves
a dynamic cooperation between neurons located in the cortex with those lo-
cated in sub–cortical nuclei. However, this cooperation is not restricted to
epilepsy: many functions of the brain are actually functions that involve an
interplay between cortex and subcortex (Jentzen and Kelso 2007). For neuro-
scientists focussed on the cortex, it is rather sobering to observe the behavior
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of birds (Romer 1967). Despite the fact that a bird brain is dominated by its
basal nuclei, birds nonetheless can exhibit a complex series of action patterns
appropriately in response to a great variety of situations. The important dis-
tinction between birds and animals that possess a relatively larger cortex is
that birds have only a very limited capacity to learn. However, it must not be
forgotten that the execution of learned action plans formulated by the cortex
in animals must take into account the role of the subcortical structures, but
also the physics of the system and the task (Chiel and Beer 1997). Thus, it
should not be surprising that to learn that although seizures are generated
by the cortex (but not always (Kuebler and Tanouye 2000)), their spread is
dominated by the cortical–subcortical interactions.

The dynamical landscape over which the seizure evolves is not static, but is
rather a continuously undulating one, evolving over times scale ranging from
minute–to–minute, to the lifetime of the patient (Milton 2002). The techni-
cal problems for studying interactions between cortex and subcortex stem
from the fact that these regions are spatially separated: the cortex is closer
to the surface of the skull that the subcortex. Although the combination of
magnetic resonance imaging with neurophysiological techniques, e.g. EEG or
the magneto–encephalogram, is capable of providing high spatial and tem-
poral resolution, their use for monitoring seizure spread is obviously limited
by concerns for the safety of a seizing patient while inside the scanner. We
believe that it is unlikely, at least in the foreseeable future, that new technolo-
gies will become available that can directly monitor the cortical-subcortical
interactions that occur during a seizure in a patient with epilepsy.

On the other hand, we believe that a more feasible approach will be to
combine existing technologies with computational methods that “fill in the
gaps” between what can and cannot be measured (Beggs et al. 2007; Camp-
bell 2007; Breakspear and Jirsa 2007; Horwitz and Husain 2007). For example,
the double sphere model for seizure spread shown in Fig. 10 is very reminiscent
of paradigms for the feedback control of wave propagation in excitable sys-
tems, e.g. (Mihaliuk et al. 2002; Sakurai et al. 2002) and the feedback control
of epilepsy (Chkhenkeli 2002; Fountas et al. 2005; Gluckman et al. 2001). This
analogy is strengthened by experimental observations that suggest that the
cortex behaves like an excitable system (Sect. 3) and that the subcortex con-
tains nuclei with diffuse projections that can inhibit or promote seizure spread.
The main difference between the double sphere model for seizure spread and
the control of spatiotemporal chaos in physical and chemical systems is that
in the brain there are several different pathways for conduction each hav-
ing different conduction velocities. The recent development of diffusion tensor
imaging gives the possibility of measuring the white matter tracts that in-
terconnect different regions of cortex and the cortex with the sub-cortex in
patients with epilepsy (Beaulieu and Allen 1994; Rugg–Gunn et al. 2001).
Although this method presently uses measurements of water molecule diffu-
sivity to determine the orientation of these fiber tracts, it is conceivable that
measurements of water mobility could provide even more information (see,
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for example (Milton and Galley 1986)). In this context, the object would be
to explain the observed patterns of intra-electrode coherence measured using
subdural electrode grids on the basis of the properties of cortex, sub-cortex
and their connection pathways in order to design startegies to prevent, limit,
or abort the spread of seizures (Milton and Jung 2002).
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Large Scale Brain Dynamics and Connectivity
in the Minimally Conscious State

Nicholas D Schiff

Weill Medical College of Cornell University, 1300 York Avenue,
New York, 10021

It is increasingly recognized that some patients who sustain severe brain in-
juries nonetheless recover the ability to communicate and express cognitive
function after long convalescent intervals. The physiological mechanisms un-
derlying this recovery are poorly understood and few measurements are aimed
at identifying the potential for further recovery in individual patients. In this
chapter we review the emerging literature of investigative studies that em-
ploy quantitative measurements of cerebral function in the minimally con-
scious state (MCS), the clinical subcategory from which patients have made
late recoveries of goal-directed behavior and communication. Several studies
demonstrate evidence of intact large-scale cortical networks in MCS patients
providing a potential substrate for both behavioral fluctuations and residual
cognitive capacities. Thus, MCS presents several challenges for understanding
the role of brain connectivity and dynamics underlying integrative functions
of the human brain.

Based on findings from our own studies and others in the published
literature we develop a working hypothesis that MCS reflects the preser-
vation of large-scale cerebral cortical networks in a chronically underactive
brain. Preliminary studies using quantitative electroencephalography (EEG),
fluorodeoxyglucose-positron emission tomography (FDG-PET), diffusion ten-
sor imaging (DTI) and functional magnetic resonance imaging (fMRI) tech-
niques provide support for this model. In some patients MCS may reflect a
brain retaining recruitable, functionally connected networks that exhibit un-
stable thalamocortical dynamics producing bi-hemispheric dysfunction. Sev-
eral possible physiologic mechanisms may limit more normal expression of
network function in MCS patients including hypersynchrony within selective
forebrain networks, broad loss of tonic background activity across cerebral
structures, and specific functional disturbances arising from focal injuries to
midline brain structures. We propose a strategy of combined measurements
to isolate such possible contributions to global brain dysfunction in MCS.

Spontaneous emergence late in the course of MCS may also depend in some
cases not only on changes in brain dynamics but also on structural changes
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that arise over long time courses. Mechanisms and data suggestive of such a
slow variable relating to recovery are briefly reviewed.

We conclude that there is a need to further develop measurements of large-
scale brain dynamics in MCS and longitudinally track changes in brain func-
tional and structural connectivity associated with recovery. Points of contact
with several other contributions to this volume are highlighted, as are direc-
tions for future research.

1 Framing the Problem

The minimally conscious state (MCS) denotes a specific level of functional
recovery following severe brain injuries characterized by reproducible and un-
equivocal evidence of response to the environment (Giacino et al. 2002). MCS
patients fail to recover the ability to communicate reliably, although they typ-
ically demonstrate spontaneous behavioral fluctuations, and rare patients in-
termittently exhibit sustained periods of consistent communication with later
regression back into MCS (e.g., Burrus and Chacko 1999, Clauss et al. 2001).
The possibility that this condition may produce a unique burden of isolation
motivates efforts to better define brain function in MCS patients in the hope of
promoting further recovery (cf. Fins 2003). Emergence from MCS is defined by
the recovery of reliable communication. MCS patients near the borderline of
emergence may harbor significant residual capacity for interactive awareness
and communication.

MCS patients and other patients with severe disabilities following trau-
matic brain injury (TBI) constitute a large and significantly understudied pa-
tient population. In the United States there is an estimated prevalence of 3–5
million Americans with significant residual functional impairment following
TBI (NIH Consensus Panel 1999). The prevalence of MCS per se is estimated
at 112,000–280,000 adult and pediatric patients in the U.S. (Strauss et al.
2000). These considerations motivate the goal of identifying the mechanisms
limiting cognitive capacity in MCS patients. Understanding mechanisms un-
derlying MCS will also provide important insight into the recovery of cogni-
tive function in patients with less severe brain injuries, as principles of brain
network recovery are unlikely to be sharply divided across these descriptive
functional categories.

Figure 1 places MCS in the context of other global disorders of human
consciousness. It is important to distinguish MCS from coma and the vege-
tative state (VS) as well as the locked-in state (LIS), which is not a disorder
of consciousness but may be mistaken for these other conditions. By defini-
tion coma is a condition in which patients show no response to environmental
stimulation and cannot be aroused from an eyes closed state that resembles
sleep. Comatose patients show distinct reflex movements of the eyes and limbs
(Plum and Posner 1982). The vegetative state, VS, is also characterized by
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Fig. 1. Overview of global disorders of consciousness indexed by level of cognitive
(horizontal axis) and motor functions (vertical axis). VS, vegetative state; MCS,
minimally conscious state; LIS, locked-in state; asterisk indicates that LIS is not
a disorder of consciousness. See text for further details. Figure adapted from MIT
Press with permission)

a lack of response to environmental stimuli and is distinguished from coma
by the recovery of a crude form of sleep-wake cycling with alternation of eyes
open and eyes closed time periods. VS patients also may exhibit a variety of
stereotyped (often limbic) behavioral displays (Jennett and Plum 1972). MCS
patients, however, demonstrate clear and unequivocal responses to stimula-
tion or spontaneous volitional behaviors (Giacino et al. 2002). MCS patients
may sustain visual fixation, follow one-step commands, verbalize, and in some
cases briefly communicate. Very limited behavioral responses may also be
seen in locked-in patients (LIS) where incomplete motor responses may mask
a normal level of conscious experience (cf. Laureys et al. 2005).

Spontaneous fluctuations in level of response are often seen in MCS pa-
tients and verified examples of late recoveries of consistent communication fol-
lowing severe brain injuries are drawn from this population. Brain mechanisms
underlying such a cognitive reserve are unknown and measurements to predict
recovery and functional level are currently unavailable. To frame these ques-
tions properly both empirical data and conceptual models are needed. Below
we consider the available evidence of brain network activity and connectivity
in MCS and possible mechanisms limiting the greater functional recovery in
this patient population.
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2 Brain Connectivity in MCS

Few pathological studies have described findings from MCS patients. Jennett
and colleagues (2001) compared autopsies findings of TBI patient who re-
mained in VS or with severe disability including 12 patients with histories
consistent with MCS at the time of death. Patients remaining in VS showed
extensive neuronal death throughout the thalamus of both cerebral hemi-
spheres (cf. Adams et al. 2000). A majority of the patients in the severely
disabled group showed focal brain injures, without diffuse axonal injuries or
diffuse thalamic injuries. Of note, this pattern of widely preserved brain struc-
ture was seen in 2 of the MCS patients. The findings indicate a wide variance
of underlying substrate of brain connectivity producing a low-level clinical
exam; this provides an important starting point when considering the ques-
tion of brain network activity after severe injuries.

Permanent VS can be modeled as arising in the context of a massively
disconnected brain that preserves only few thalamocortical projections from
the sensory periphery to the early cortical regions (see Schiff 2005 for review).
Sufficient bilateral damage to primarily to the thalamus leads to permanent
loss of the resting patterns of cortical activity associated with goal-directed
behavioral and sensory responsiveness. Patients in a permanent VS show loss
of late evoked potential components, and cerebral metabolic activity, as well as
gross abnormalities of the EEG spectrum (cf. Schiff et al. 2002). This picture
of VS gives way to several variations particularly if VS is not the result of
widespread anoxic or traumatic brain damage.

Identification of diffuse structural injury has been explored as a method
of outcome assessment in severe brain injuries producing VS using MRI in-
dices. Some studies have found relatively high predictive accuracy (∼ 84%)
when combined with time in VS for a permanently vegetative outcome of TBI
(cf. Kampfl et al. 1998). Recent observations, however, indicate that patients
fulfilling these criteria can recover after long intervals if reaching MCS within
one year. In our ongoing studies we have identified two MCS patients with
very severe diffuse axonal injury patterns one who emerged at 8 months and
the other 19 years after remaining in MCS (Voss et al. 2005 and unpublished
observations). These observations underscore the complexity of the structure-
function relationships that may arise in a severe damaged human brain over
extended periods of time. Furthermore, experimental studies suggest the pos-
sibility for late and ongoing changes in brain structure to arise after severe
injuries. Dancause et al. (2005) found extensive cortical rewiring in the adult
primate brain after stroke lesions. In their studies done 5 months after in-
jury, extensive proliferation of novel terminal fields within distant cortical
states were produced by axonal sprouting. Several other mechanisms that
could support cortical rewiring have also been identified (Chklovskii et al.
2004). These clinical and experimental findings indicate that ongoing assess-
ment of both grey and white matter structures will be necessary to under-
stand recovery from severe brain injuries. Longitudinal evaluations of changes



Brain Dynamics and Connectivity in the Minimally Conscious State 509

in brain structure using magnetic resonance spectroscopy (1H-MRS) and
diffusion tensor imaging (DTI) measurements will provide important infor-
mation (cf. Lobaugh and Alexander, this handbook).

Beyond the contributions of multi-focal cortical or diffuse axonal patterns
of injury an important consideration in the evaluation of structural injuries
producing impaired consciousness is the integrity of the paramedian regions of
the thalamus and midbrain (Schiff and Plum 2000). Sustained VS and MCS
can arise from focal injuries concentrated bilaterally in these regions (see
e.g., patient 5 in Schiff et al. 2002). Such injuries will typically encompass
damage to the mesencephalic reticular formation and projections into the
intralaminar thalamic nuclei and often occur following brain swelling from
injury because of the vulnerability of these structures to be pressed through
the base of the skull (cf. Plum and Posner 1982). Most severe brain injuries
present a mix of these pathologies, combining moderately diffuse or multi-
focal regional damage with limited injuries to paramedian structures. The
functional role of the neuronal populations within the paramedian thalamus
and mesencephalon in MCS is considered below (see Schiff and Plum 2000,
Schiff and Purpura 2000 for review).

3 Large Scale Brain Network Function in MCS

Understanding the time-evolving functional recovery of large scale brain dy-
namics in the setting of severe brain injury will provide important clues to
the mechanisms underlying human consciousness and cognitive capacities. At
present only a small number of MCS patients have been studied using func-
tional neuroimaging methods. Boly et al. (2004a) compared brain activation
in response to simple auditory stimuli from 5 MCS patients using functional
15O PET techniques earlier applied by Laureys et al. (2000) to study 15 VS
patients. In this study, both the MCS patients and healthy controls both acti-
vated auditory association regions in the superior temporal gyrus that did not
activate in the PVS patients. In contrast all groups activated primary auditory
sensory regions consistent with evoked potential studies and other functional
imaging of VS patient responses (see Laureys et al. 2004, Schiff 2005 for re-
views of neuroimaging in VS patients). In addition, Boly et al. found a strong
correlation of the auditory cortical region response with that of frontal cortical
regions possibly suggesting cerebral processing associated with higher-order
integrative function. Similar findings of a widely preserved normal pain net-
work response were also observed following noxious somatosensory stimulation
in the MCS patients (Boly et al. 2005).

Coleman et al. (2005) used combined FDG-PET and quantitative EEG
studies to investigate homeostatic relationships between regional cerebral
metabolic rates and the distribution of EEG power across frequencies. In a
small sample of VS and MCS patient, coupling between neuronal electrical
function and cerebral metabolism was preserved in the MCS but not the VS
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patients. This finding adds important detail to the well-established correla-
tion of very low resting metabolism (< 50% of normal) in VS (e.g., Levy et al.
1987).

Schiff et al. (2005) studied two MCS patients using passive fMRI paradigms
and FDG-PET. FDG-PET measurements demonstrated severe reductions in
resting brain metabolic activity to ∼ 50% normal, roughly equivalent to the
low levels found in FDG-PET studies of VS patients (discussed above). Brain
activation patterns from the patients and 7 control subjects were obtained
using passive language stimulation fMRI paradigms similar to those in used
in normal subjects and neurosurgical candidates to map language networks
(Hirsch et al. 2000). Two 40-second narratives were pre-recorded by a famil-
iar relative and presented as both normal speech and played as time-reversed.
Forward presentations generated robust activity in several language-related
areas in both patients. Figure 2 shows data corresponding to one MCS pa-
tient. Significant regions of activation included the inferior and medial frontal
gyri (not shown), superior and middle temporal gyri, as well as primary and
secondary visual areas including the calcarine sulcus, inferior and middle oc-
cipital gyri, precuneus, cuneus, and inferior parietal lobule. For this patient,
the total volume and the specific regional cerebral activity overlapped with
controls for the forward narrative presentations. Importantly, broad network
activations in the two MCS patients were only seen for forward speech, and not
for reversed speech; in normal controls, both presentations activated similar
areas. Additionally, the posterior occipital activity suggests possible visual-
ization during presentation of the forward narratives. While this study clearly
demonstrates language-specific activations of large-scale networks in MCS pa-
tients, the implications of this difference between MCS patients and normals
are unclear. One possibility is that the lack of activation for the time-reversed
narratives reflects the loss of anticipatory, ongoing perceptual processing of
environmental stimuli in MCS patients. The time-reversed narratives may
thus fail to overcome low resting activity in the MCS patients (inferred from
the low metabolic rates measured using PET) and engage dormant large-scale
network processing capacities.

Other investigators have also identified language responsive networks in
MCS patients. Bekinschtein et al. (2004) reported brain activations obtained
using fMRI in a MCS patient recovering from traumatic brain injury. Com-
parison of responses to presentations of the patient’s mother’s voice and a
neutral control voice revealed selective activation of the amygdala and insular
cortex suggesting emotional processing associated with the mother’s voice.
Laureys et al. (2004) identified more widespread activation of cerebral net-
works with emotionally salient stimuli in an MCS patient. The demonstration
of recruitable large-scale networks in MCS patients importantly establishes
a continuity of functional correlations of cognition in this patient popula-
tion and normal subjects. The findings thus focus attention on improving our
measurements of the quality of network interactions in MCS brain and other
conditions associated with less severe brain damage.
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Minimally Conscious 
State Patient

Normal Subject

Forward Speech Reversed Speech Overlap

Fig. 2. Brain activations in response to passive language stimuli from a MCS patient
and normal measured by functional magnetic resonance imaging. Yellow color indi-
cates response to spoken narratives, blue color indicates response to time-reversed
narratives, red color indicates regions of overlapping response to both conditions.
See text for details of paradigm. Figure adapted from Schiff et al. 2005 Neurology
(with permission)

As Owen et al. (2005a) have recently proposed, more hierarchically struc-
tured evaluation of network function will be necessary to interrogate network
processing in MCS and VS patients. In a recent single case study, Owen and
colleagues found evidence for processing of semantic information in a patient
with an exam consistent with VS. Related work by Kotchoubey (2005) and
colleagues has examined EEG and evoked response in large numbers of VS
and MCS patients and found differential response profiles correlated with the
spectral content of the background EEG rhythms. In these studies MCS and
some VS patient also showed differential responses to semantic content of
auditory stimuli.

In the aggregate, available studies suggest that MCS has a broad spectrum
pathologically that includes some patients with strongly connected brain net-
works capable, in principle, of higher-level cognitive processing, including suf-
ficient resources to regain access to communication, memories and internally
motivated goal-directed behaviors. These findings motivate further research to
understand the longitudinal process of recovery of brain network function in
MCS and the mechanisms limiting the expression of this capacity, if present,
in individual patients.
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4 A Working Hypothesis for the Role of Altered Brain
Dynamics Underlying the Minimally Conscious State

The studies reviewed above indicate that MCS is not generally characterized
by global structural disconnection of the brain nor functionally limited to
early sensory processing as measured by functional imaging studies or evoked
potentials. However, despite the evidence of distributed cerebral activity in
fMRI or PET studies and electrophysiological evidence of processing of au-
ditory stimuli including aspects of semantic encoding, MCS per se reflects a
failure of consistent goal directed behavior and communication. Thus, these
data challenge us to reconcile the clear behavioral limitations of the patients
with the evidence of, in some cases, normal network activation profiles. Set-
ting aside the patients for whom a specific loss of motor function is predicted
by structural injuries, at least two general hypotheses can be supported by
the current literature (see Schiff 2005 more detailed review). On the one hand,
the lack of self-generated behaviors may reflect the loss of intrinsic internal
states characterized by specific, if nonetheless currently underspecified, brain
dynamics. A complementary mechanism likely underlying failure of consistent
engagement of potentially functional brain networks in MCS is the presence of
stable abnormal brain dynamics within the thalamocortical system impairing
intra- and interhemispheric interactions. To address the possible contributions
of these mechanisms it is necessary to examine the state-dependence of brain
network activations. That this is necessary is further supported by evidence of
significant variations in observed clinical exam of MCS patients depending on
the time in the day or the patient’s recumbent posture among other variables
(Elliott et al. 2005).

In both MCS patients studied by Schiff et al. (2005) with preserved
large-scale network activations demonstrated by fMRI and low global resting
metabolic rates assessed by FDG-PET, quantitative EEG analyses revealed
hemispheric abnormalities of inter-regional coherence that corresponded to
differences in resting metabolism (Kobylarz et al. 2005). Coherence is a mea-
sure of cross-correlation in the frequency domain (Mitra and Pesaren 1999). A
statistically significant coherence suggests potential relationships between two
given signals, e.g., one driving the other, mutual driving, or both partly driven
by a common input signal (cf. Bendat and Piersol 2000). Because coherence is
a ratio of coherent power to total power, changes in coherence cannot be sim-
ply the result of amplification or filtering of the power spectrum, but rather
imply changes in functional connectivity or increased common input. The
resting awake EEG studies in both MCS patients revealed significant reduc-
tions in inter-regional coherence of the less metabolically active hemisphere
(see Fig. 3 for an example). The abnormalities of EEG coherence were appar-
ent in all adjacent electrode pairs of the less metabolically active hemisphere
indicating a significant alteration of the functional integration of cortical re-
gions . For the patient the shown in Fig. 3, this interregional coherence pattern
had a marked dependence on arousal state with sharp coherence decreases ob-
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Fig. 3. Multimodal imaging data from MCS patient. Upper Left: single image
of passive language fMRI activations, see Fig. 2 [image from Neurology with per-
mission]; Upper Right: EEG Coherence spectra from adjacent frontal EEG leads
(F3-F7 [left hemisphere, blue], F4-F8 [right hemisphere, red ]). Coherence spectra
demonstrate a sharp, broadband reduction of coherence over the right frontal lobe
channels during awake states with near total normalization of the difference between
the inter-regional coherence in the two hemispheres during sleep. Dotted lines indi-
cate 95% confidence levels [EEG coherence spectra and resting metabolic data from
Kobylarz et al. 2005, unpublished images]

served across frequencies only in the state of wakefulness (see normalization
in the sleep state). These quantitative EEG findings suggest that the abnor-
malities observed in the coherence measurements obtained during wakefulness
could be a possible marker of abnormal dynamics masking greater network
response (Kobylarz et al. 2005).

Although not assessed in these patients, it is possible that salient stimuli
such as personally meaningful narratives may produce a relative normalization
of both resting metabolism and interregional EEG coherence. Several studies
have addressed EEG power spectral and coherence measures in TBI patients
and other forms of brain injury or dysfunction (Knyazeva and Innocenti 2001,
Walker et al. 2000, Thatcher et al. 1998, 2001). Thatcher et al. (2001) re-
ported an EEG severity index in which EEG coherence, phase and amplitude
differences but not power variables provided significant contributions. These
findings support the sensitivity of spectral measures for identifying patho-
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physiological relevant changes in the EEG of MCS patients and suggest the
potential for further development. The intermittent fluctuations of cognitive
function observed in MCS patients over periods of hours, days or weeks, are
proposed to originate from unstable interactions of the brainstem arousal
systems with paramedian regions of the midbrain and thalamus that sup-
port activation and gating of large-scale cerebral networks (Schiff et al. 2005,
Schiff 2005). The broadband, hemispheric reductions in EEG coherence ob-
served in MCS patients may directly reflect functional impairment of thalamic
driving inputs to the cerebral cortex.

We speculate that fluctuations of interactive behavior observed clinically
in the MCS patient shown in Fig. 3 relate to ongoing dynamic changes of inter-
regional interactions within and across the hemisphere controlled by such a
thalamic driving input. The FDG-PET data shown Fig. 3 provide support for
this hypothesis. As seen in the figure, the right thalamus shows markedly re-
duced metabolic activity throughout its visible extent. Schiff et al. (2005) pro-
posed that impaired thalamocortical function resulting from bilateral damage
to the thalami and upper brainstem during the acute phase of injury provided
the mechanism for low metabolic activity, and an inferred loss of ongoing ac-
tivation of the brain networks in both patients. Selective structural injuries to
the paramedian thalamus and midbrain are unique in producing hemisphere-
wide metabolic reductions (Szelies et al. 1991, Caselli et al. 1991). In addition,
alteration of global dynamics may arise through structural injuries to these
same regions (reviewed in Schiff 2005)

Taken together, the correlation of metabolic depression in the thalamus
and broadband reductions of coherence across the entire cerebral hemisphere
suggest a basis for a bi-hemispheric dysfunction in the MCS brain: an overall
loss of cerebral integrative activity in one hemisphere that remains nonethe-
less functionally connected to the less inactive hemisphere may prevent orga-
nized responses of large-scale networks across the hemispheres. For example,
the normalization of coherence patterns in during sleep may model similar
fluctuations of hemispheric integration within the state of wakefulness when
hemispheric is synchronized by salient stimuli as opposed to generic changes
in the ongoing sleep-wake cycle.

Based on the above, we hypothesize that in some patients MCS reflects a
chronically underactive brain that nonetheless retains widely connected and
recruitable cerebral networks capable of supporting sensorimotor integration,
limited behaviors, and intermittent communication. Testing this hypothesis
will require establishing quantitative measurements to evaluate the correlation
of quantitative EEG measurements with metabolic, structural and functional
activation measures. It is expected that MCS patients will exhibit severely
depressed global cerebral metabolic rates measured by FDG-PET reflecting
marked downregulation of neuronal activity. The spectral content of the EEG
may covary with metabolic rates in the thalamus and cerebral hemisphere.
Changes of these measures in response to structured stimuli could index
changes in the integrative activity of cerebral networks within and across brain
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hemispheres in MCS (as suggested by the data shown in Fig. 3). If behavioral
variations correlate with specific patterns of EEG abnormalities, a recruitable
normalization of EEG responses may then be a marker for cognitive reserve
in MCS.

An important limitation of the above hypothesis, however, is that the
wide variance of possible brain injuries producing a clinical exam consistent
with MCS limits any one model from having application in all cases. Other
MCS patients who maintain only modest evidence of sensorimotor integration
may not harbor extensive responsive brain networks. Moreover, even recov-
ery of goal-directed communication and behavior following MCS is likely to
be accompanied by significant cognitive disability. However, since recovery
of the capacity to communicate and organize behavior presents an impor-
tant threshold for many families and different ethical obligations to the pa-
tients themselves (cf. Fins 2005), it seems warranted to apply further efforts
to develop measurements to identify patients who harbor greater network
reserve.

5 Late Emergence from MCS

Perhaps no aspect of the problem of impaired human consciousness captures
more general interest than the rare occasions of late recovery of communica-
tion and goal-directed behavior following severe brain injury. Although several
verifiable cases have arisen, almost none have been evaluated with brain imag-
ing and reported in the scientific literature. In a collaborative research effort
we have recently extensively characterized brain structural connectivity and
functional activation profiles in a 40 year-old male who fully recovered expres-
sive and receptive language after remaining in MCS for 19 years following a
severe traumatic brain injury (Voss et al. 2005, Goldfine et al. 2005; Giacino,
Hirsch, Schiff unpublished data). Structural brain imaging using standard
MRI evaluations showed marked volume loss and brainstem atrophy; diffu-
sion tensor imaging (DTI) indicated very severe diffuse axonal injury with for
example, a reduction of volume of the corpus callosum to one-third or two-
thirds normal volume throughout the structure and aggregate measures of dif-
fusion showed marked abnormality compared to normal subjects (Voss et al.
2005). The patient’s recovery was spontaneous and has been sustained for
over 2 years with further gradual clinical improvements.

Evaluation of brain network activations using the passive language paradigm
(cf. Fig. 2) in this patient showed a response consistent with that of normal
subjects for both forward and time-reversed narratives. EEG responses to the
presentation of the same auditory stimuli were also obtained from multiple
presentations during resting wakeful states over several days (Goldfine et al.
2005). Spectral analysis of averaged EEG from single channels across three
conditions (forward narratives, time-reversed narratives and baseline) revealed
changes in EEG leads over the left and right temporal lobes. These EEG
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channels showed suppression of activity in the ∼0–10Hz frequency range and
increases in power in the ∼30–50 Hz frequency range during presentation of
passive ‘forward’ language stimuli compared to silent baseline periods. The
time-reversed narratives produced a similar but not identical profile across
the temporal lobe leads. The findings are consistent with other studies of elec-
trocorticographic recordings from the human temporal lobe during language
processing (Crone et al. 2001). The temporal lobe response profiles correlated
with measured increases in BOLD response from the patient’s temporal cor-
tices underlying these electrode positions as identified in independent fMRI
experiments using the same stimuli (J. Hirsch unpublished). Initial pilot EEG
studies in a normal human subject’s showed similar response profiles. Taken
together, the fMRI and EEG data reflect a strong preservation of normal brain
dynamics further raising the question of how this patient’s recovery occurred.

One possible clue is that in addition to severe reduction of brain con-
nectivity as assessed with DTI, the patient showed unusual large regions of
increased connectivity in posterior brain structures not seen in 20 normal
subjects (Voss et al. 2005). These findings suggest the possibility of a slow
variable of structural change playing a role in the patient’s recovery. Similar
clinical observations in other MCS patients suggest such a slow process of re-
covery may exist and should be quantified through further structural imaging
and longitudinal analysis of brain dynamics. McMillan and Herbert (2004) re-
cently reported a 10-year follow-up on who remained in MCS for 2 years after
a severe traumatic brain injury and then emerged to the point of indicating
reliable yes or no responses. This patient, however, continued to recover 7–10
years following to a point of regaining the capacity to initiate conversation
and express spontaneous humor and clear preferences. It is likely that such
improvements over long time-intervals in severely brain-injured patients result
from both functional and associated structural changes in the brain. Altering
the level of neuronal activity may improve the probability that large-scale
networks organize to support goal-directed behavior, perception, and commu-
nication. These functional changes may then lead to ongoing remodeling of
brain structure over time.

6 Where do we go from here?

The small number of available datasets and the large variance of possible
alterations of brain structure and dynamics arising in MCS prevent any
more detailed conclusions. The studies reviewed above hopefully suggest the
opportunities to link detailed brain measurements with simple models at
this time and why it is potentially interesting. Many of the techniques and
models discussed in this volume may ultimately play an important role. The
significant structural injury patterns observed in MCS and other severely
brain-injured patients provide a unique opportunity to examine predictions
of physiologically realistic models such as presented by Breakspear and Jirsa
(this volume). Preliminary attempts to relate measured human EEG to such
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models appear promising (Rowe et al. 2004). Another important conceptual
consideration is the role of specific neuronal structures that play critical roles
in organizing network interactions. McIntosh (2004) has proposed that certain
regions such as the hippocampus can be considered catalysts in determining
network response profiles. Although the paramedian thalamus and midbrain
are identified in this review as a common locus of brain damage in MCS, the
catalyst approach is likely to identify the contributions of other cortical and
subcortical structures to recovery of function following brain injuries.

What kind of new measurements will be useful? The measures applied
above and suggested in this review remain relatively basic in terms of both
brain imaging and signal processing techniques. However, this initial approach
has the advantage of putting very complex brain injuries onto a more roughly
equal footing than simple structure-function correlations. Eventually, more
model driven approaches and paradigms will be needed. In addition to tradi-
tional methods of spectral analysis, related measures that allow more mech-
anistic inferences to be drawn from causal structure in the EEG data (see
chapters by Kaminski, Stephan and Friston this volume) or related methods
that model specific underlying generator structures (Repucci et al. 2001) may
provide important and interpretable frameworks. A role for more general, ab-
stract approaches to connectivity measurements as suggested by Tononi (this
volume) and Sporns et al. (2005) is also supported by the EEG and DTI find-
ings in the patient studied with late emergence from MCS. Tononi (2004) has
proposed that consciousness per se requires a quantifiable level of complexity
of connections; along these lines it would be interesting to examine recovery of
EEG patterns against such metrics evaluating both slow structural alterations
in the damaged brain and behavior. Ultimately, to usefully apply these meth-
ods to questions of recovery of brain function in MCS it will be necessary to
obtain datasets from larger numbers of patients measured both prospectively
and longitudinally.
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Anterior cingulate cortex, 412

Arcuate fasciculus, 464, 467

ARMA model, 332, 333, 350

AR model, 333–336, 338, 343, 344,
348, 350

Asymptotic stability, 18, 19, 20, 23, 24

Attention, 47, 110, 119, 159, 284,
284–285, 291, 296, 315, 317, 322,
410–412, 479, 510

Attractor, 14–25, 81, 82, 85, 92–98, 101

Attractor neural network (ANN), 81,
82, 98

Audition, 185, 282, 286–289, 428–431,
437, 509, 511, 612

Auditory continuity illusion, 288–289

Auditory object processing stream,
282, 288

Auditory objects, 282, 286, 288

Autoregressive model, 332, 333

Autoregressive-moving average model,
332, 333

Avalanche, 104–106, 139
Average reference, 192, 193–195, 197,

198, 343

Backward connections, 321
Basin boundary, 16, 24
Basin of attraction, 15–16, 93,

98, 99, 109
Bayesian model comparison, 296–298
Behavioral complexity, 440–443
Behavioral pattern formation, 422, 438
Beta, 213, 345, 347, 433–436,

445, 450, 466
Bi-exponential diffusion imaging, 232
Bifurcation, 17–25, 31–34, 35, 36, 55,

70, 73–75, 78–81, 82, 83, 487
Bi-hemispheric dysfunction, 505, 514
Bimanual, 82, 424, 434, 436, 443
Bimanual coordination, 82, 436,

443–444, 447
Bispectrum, 211–213
Bistability, 18, 23, 81–82, 425
Bistable, 424–425, 426
Blowout bifurcation, 23–24, 25
BOLD see fMRI, 241–242, 245–246,

315–317, 438, 439, 440, 442, 444,
467, 516

Brain connectivity graph, 395
Brainstem, 122, 170, 493, 494, 514, 515
Branching, 104–107, 110, 139, 158, 171
Burg, 338, 339

Cable theory, 172
Category-specificity, 408
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Causality, 133–135, 206, 313,
333–334, 340

Central motor conduction time, 470
Cerebellum, 134, 242, 437–438, 439,

440, 442, 444, 447, 449, 450, 488
Cerebral cortex, 117, 119–120, 152, 154,

156, 157, 158, 161, 406, 514
Chaos, 15, 23, 37, 109
Chaotic attractor, 14–15, 20, 24, 38
Chaotic synchronization, 38
Characteristic equation, 71
Children, 245, 464, 466–470
Clustering coefficient, 122–123, 393
Codimension, 81
Codimension two bifurcation, 81
Cognitive models, 277, 278–279
Coherence, 208–209, 329–331, 334, 335
Co-information, 129
Collective, 92, 423, 426, 438, 443
Collective variables, 422, 428, 447
Complex, 5, 12, 16, 17–19, 24, 27, 38,

42, 47, 70–73, 85, 126, 139, 206,
237, 238, 276, 278, 282, 287, 329,
350, 382, 383, 405, 428, 432, 433,
441, 448, 485, 491

Complexity, 26, 17–19, 39, 45, 110, 130,
131, 132, 137–140, 236, 278, 293,
313, 316, 404, 440–443, 517

Computation, 39, 75, 91, 108–110, 202,
307, 369

Conditional cross-covariance function,
385

Conductance based modeling, 25, 26–27
Connection set, 405–406
Connectivity, 3–4, 10, 25, 37, 49–52,

54, 91, 102–104, 110,
409–412

Consciousness, 134, 136, 506, 509,
515, 517

Contextual guidance, 405, 406, 408
Control parameter, 422, 425, 427,

435, 449
Coordination, 139, 421–451
Coordination dynamics, 421, 424, 427,

443, 447–448
Coordination pattern, 423, 424, 426,

428, 433, 434, 435, 436, 438, 441,
443, 444, 447, 449

Coordination stability, 449

Corpus callosum, 170, 238, 241, 243,
244, 254, 464

Correlations, long range, 488
Cortical rewiring, 508
Corticothalamic model, 53
Coupled systems, 38, 81, 423
Coupling, 7, 8, 9, 24, 42, 44, 65–68,

73, 77, 79–81, 83,
434–435

Crisis bifurcation, 24
Critical frequency, 424, 428, 434,

443, 444
Criticality, 57, 139
Cross-covariance function, 381–382, 385
Critical phenomena, 488
Critical points, 106, 108, 422, 426, 451
Cross-periodogram, 383, 384, 385
Cross-spectral density, 382
Crosstalk, 206–207, 209, 211, 214, 215
Cycles, 14–18, 20–23, 25, 31–32,

80–81, 101–102,
435, 486

Data acquisition, 184–186, 247, 328
dDTF, 335–336, 350
Degree, 57, 121–123, 132, 154, 154, 191,

205, 230, 279, 382, 389, 395, 423,
432, 436, 439

Degree distribution, 121–122, 395, 397
Delay, 8, 45, 48, 52, 53, 54, 65–69, 73,

75, 76, 77, 78, 79, 80–86, 284, 287,
291, 292

Delayed match-to-sample task (DMS
task), 283–286

Delay-induced oscillation, 79
Desynchronization, 174, 432, 433, 435,

435–436, 450, 485
Development, 4, 5, 11, 40, 51,

56, 118, 238, 244, 253,
256, 379, 389, 463,
465–471

Difference map, 6–7, 209
Differential equations, 7–12, 26,

27, 29, 52, 68, 69, 75–79,
83, 305–306, 315,
316, 428

Difficulty, 151, 154, 281, 439, 440
Diffuse brain injury, 230, 245, 509, 510,
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Diffusion
gradients, 172, 224–225
spectrum imaging, 234
tensor imaging, 155, 222–240, 248,

496, 505, 509
Diffusive coupling, 66
Dimension reduction, 27–37
Dipole

fitting, 203, 204, 205
layer, 182, 483, 485
neuron, 484

Directed transfer function (DTF), 134,
214, 335, 350

Discrete Fourier transform (DFT), 382
Discrete map, 6–7
Discrete wavelet transform (DWT), 389
Distance matrix, 120–122
Dopamine, 292–293
Dorsal premotor, 437–438, 442, 444
Dorsal visual pathway, 123
Dorsolateral prefrontal cortex, 278, 468
DTF, 214–215, 335–341, 343–344
Dynamical motif, 126
Dynamical system, 5–6, 12, 14, 16,

20, 24, 26, 56, 98, 102, 421, 427,
486, 488

Dynamic causal modeling (DCM),
133, 136, 247, 296, 310, 313–314,
317–320

Dynamics, 3–5, 12–24, 39, 44, 55, 81,
91–94, 98–110

Dysconnectivity, 322

Edge of stability, 487–488
Edges, 98, 109, 120–122, 126, 387,

393, 487–488
EEG, see Electroencephalogra-

phy(EEG)
coherence, 465–467, 512–514
electrodecremental response, 487
epileptic patterns, 478–483
generation, 483–485
high frequency oscillations, 487–488
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temporal lobe seizures, 481,

491–492, 494
Effective connectivity, 117–118,

132–136, 294–298, 306, 307–310,
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Effective information, 133, 134, 136
Eigenvalue, 19–20, 71, 73, 80, 223, 228,

231, 369–371
Eigenvector, 223, 230, 236, 245, 367,
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Electric coupling, 66
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344, 481, 482, 492
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subdural, 482, 483, 497

Electroencephalography(EEG), 169–198
Electromagnetism, 174
Emergent behavior, 422
Entropy, 127–130
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490–491, 493, 494
Epileptic system, 477
Event related synchronization (ERS),

213, 482
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347, 432, 433, 436
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Evolutionary robotics, 139
Evolution equation, 3–6, 10–13, 16–17,
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139, 316, 404, 440–443,
508, 517

Excitatory synaptic activity, 49

Face-matching, 409
Feed forward, 92
Fibre tracts, 154–155, 257,
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Firing rate, 5, 9, 11, 42–43, 48–49, 96,
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Fitzhugh-Nagumo model, 44, 68, 71, 72,

75, 79, 81, 84
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47, 52, 55, 101, 426
Floquet theory, 20, 75
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tomography (FDG-PET), 505,
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fMRI, see functional magnetic
resonance imaging (fMRI)

Focal brain injury, 322
Fokker Planck, 43, 44, 52
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Forward connections, 92, 157, 293, 318
Fourier coefficients, 382–383
Fourier domain, 380–389
Functional brain imaging, 275, 279, 280,

282, 298
Functional connectivity, 39, 54, 110,

118, 119, 127–132, 134, 136–137,
139, 169–197, 206–207, 215, 252,
294, 295–296, 308, 311, 320,
379–381, 387, 389, 463, 465–469

Functional coupling, 320, 433, 434–435
Functional integration, 119, 130, 132,
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Functional magnetic resonance imaging

(fMRI), 91, 126, 132–133, 135,
137, 169, 185, 205, 206–207,
214, 245–246, 252, 276–281,
283, 285–289, 291–292, 294–296,
313–317, 319–320, 379–397, 437,
463, 505, 510, 516

Functional neuroimaging, 136, 214, 276,
277, 279–283, 285–286, 289, 294,
295, 320–322, 509

Functional segregation, 118, 130, 132

Gap junction, 66, 79, 80, 82, 84, 487
General system theory, 304, 305
Global bifurcation, 19, 23, 24–25
Global Markov property, 387
Granger causality, 134, 198, 215, 313,

336, 358, 371–373, 374, 469
Graph theory, 56, 120
Grey matter, 159, 465, 469

Hartman-Grobman theorem, 20
Head modeling, 180–184
Hebb rule, 92
Hemodynamic response function,

206, 295
Heritability, 467
Heterocline, 16, 24, 29, 31
Heterogeneous connectivity, 54–55
Hierarchical graph measures, 120–121,

131
High angular resolution diffusion

imaging (HARDI), 233–234
Hindmarsh-Rose model, 35–37, 87
Hippocampus, 94, 95, 98, 348–349, 415,

468, 480, 517

Hodgkin-Huxley model, 25, 26, 27, 34,
35, 65

Homocline, 16, 24–25
Homogeneous connectivity, 54
Hopf bifurcation, 21–23, 32–34, 36, 55,

74–75, 79–84
Hopfield model, 94
Hubs, 121–122, 137, 393, 395

Indegree, 121–122
Inferior temporal cortex (IT), 283–286,

296, 411–412
Infinite period bifurcation, 74, 75, 81
Informational coherence, 407
Information integration, 129,

134–136, 139
Inhibitory synaptic activity, 281
Initial condition, 5, 13–15, 21, 30, 106
Instability, 85, 424–425
Insula, 437, 440, 442, 449
Integral equation, 182
Integrate-and-fire neuron, 104, 289, 480,

489, 490
Integration, 9, 42, 78, 118–120, 122,

128–136, 139, 237, 287, 307, 320,
405, 432, 514–515

Integrodifferential equation, 9
Intelligence, 468–469
Inter-hemispheric coherence, 466–467
Internal capsule, 245–246, 464
Interneurons, 51, 82, 152, 157, 291, 293,

318, 489
Intra-hemispheric coherence, 466, 467
Intrinsic dynamics, 44, 45, 46, 65,

423, 434
Invariant set, 14, 16, 18, 20
Inverse methods, 192, 203, 206, 207, 209
Ion channel, 6, 8, 10, 27, 28, 39, 172,

305, 423

Jirsa-Haken model, 52, 53, 55

Language responsive networks, 510
Large-distance coherence, 466–467
Large-scale cortical network, 122–124
Large-scale model, 57, 280–281,

289–293, 291
Lateral connections, 318–319, 405
Lead field theory, 170, 186, 198
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Learning, 26, 44, 93–94, 96, 118, 245,
315, 317, 320, 322, 411, 415, 434,
436, 449

Limit cycle, 14–17, 20–23, 25, 31–32,
75, 80–81, 101–102

Linear model, 76, 205, 214, 308, 310,
332–333, 334, 337, 338, 341, 344,
350–351

Linear stability, 70–73
Line scan, 226
Local bifurcation, 19–20
Local cortical network, 91–110
Location-matching, 409–410
Long range dependent process, 390
Lyapunov exponent, 20, 100–101,

106–107, 110
Lyapunov function, 76
Lyapunov functional, 76, 83
Lyapunov theory, 70, 76

M1, 434, 449
McCulloch-Pitts model, 25–26, 51
Magnetization transfer, 222,

248–251, 252
Manifold, 12–15, 24, 38, 75
Matrix, 19, 25, 49, 66, 70, 80, 94,

120–122, 158, 162–163, 214, 221,
309–310, 312, 315–316, 319, 328,
333, 335, 337–340, 346–347, 350,
361, 366–367, 369–371

Maximal Overlap Discrete Wavelet
Transform (MODWT),
389–391, 393

Mean field, 10–11, 41–45, 54, 57, 158
Medial temporal lobe, 119, 411, 468
Magnetoencephalography (MEG), 45,

51, 52, 137, 169–170–174, 176,
179–180, 185, 192, 198, 201–204,
208, 214, 215, 276, 293, 317,
357–358, 367, 423, 428–429, 432,
433, 437, 463, 469

Membrane potential, 9, 11, 12, 27,
28–30, 215, 319, 489

Mesoscopic, 10, 37–38, 57, 91–92,
162–163, 286

Midbrain, 292, 437, 487, 495, 509,
514, 517

Minimum path length, 393
Monostable, 424, 426

Morris-Lecar model, 29

Motif fingerprints, 125

Motifs, 123–126, 139

Motor cortex, 252, 435, 469–471

Movement rate, 429–430, 434, 435,
439–440, 442–445

Multichannel, 327–350

Multichannel analysis, 327–350

Multi-information, 129

Multiple coherence, 330–331

Multiple diffusion tensor imaging, 232

Multiscale, 58, 132

Multistability, 18, 81–82, 85, 487, 488

Multivariate, 128–129, 214, 222, 234,
257, 308, 310, 311, 327–328,
332–333, 335, 339–341, 350, 380,
381, 385, 387, 390

Multivariate analysis, 328–331, 343, 350

Multivariate autoregressive models,
214–215, 310, 313, 332, 372–373

Multivariate normality, 381, 385

Muscle evoked-potential, 469–470

Mutual information, 127–132, 206, 383,
387–388

MVAR model, 214–215, 336, 343

Myelin, 52, 66, 154–155, 221–222,
248–249, 254–257, 464–465, 494

Myelination, 231, 253, 256, 464, 470

Network topology, 110

Neural context, 133, 307, 403–415

Neural field, 11, 40, 46, 49,
51–53, 55

Neural mass

action, 40–45, 49–50, 52

models, 45, 215

Neural modeling, 275–278, 280, 282,
289, 293, 296

Neurocognitive network, 403–414

Neuroimaging, 119, 136, 214,
243–244, 253, 275–277,
278–283, 280, 285–286,
294–295, 307, 310,
311–312, 320–322, 509

Non-linear coupling, 211, 425

Nullcline, 16–17, 24, 29, 30,
31–32, 34–35

Nunez model, 51, 52
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Occipitotemporal cortex, 283
Orbit, 38, 73–75, 78, 80–81, 99
Ordinary coherence, 329–331
Ordinary differential equation, 7–9, 26,

68, 69, 70, 71, 72, 75, 76, 81, 306
Oscillator death, 42, 79–81, 85
Oscillatory activity, 42, 432–437
Outdegree, 121–122

Pairwise analysis, 339–340
Parametric, 215, 331–333, 334, 337, 338,

341, 350
Partial coherence, 329, 336, 385–386
Partial cross-correlation function,

385–386
Partial cross-spectral density, 385
Partial differential equation, 10, 12, 52
Partial directed coherence, 335
Passive language stimulation, 510
Path, 51, 54, 108, 121–123, 139, 185,

236–237, 313, 393, 409
Path length, 5, 122–123, 139, 393
Pattern formation, 57, 405–406, 422,

425, 427–428, 438, 440
Pattern Forming, 424–425, 448
PDC, 335–336, 350
Perceptual grouping, 288, 425
Period-doubling, 23
Phase flow, 13–14, 248
Phase space, 12–17, 22, 23, 24, 29, 31,

42, 44, 99
Pitchfork bifurcation, 20–21, 81
Planar neural model, 34
Positron emission tomography (PET),

132, 276–278, 280–281, 283,
285–286, 294, 403, 409, 423, 431,
437–438, 442, 463, 505

Posterior parietal cortex, 408, 439, 450
Power laws, 105–106, 139, 395, 488
Practice, 39, 71, 100, 102, 184,

233, 332, 339, 340, 342,
343, 433

Prefrontal cortex, 278, 283, 287, 292,
408, 413, 468

Premotor, 433–434, 435, 436, 439,
441–442, 448

Primary auditory cortex, 287, 440
Primary visual cortex, 238, 282, 283,

407, 410

PROPELLER, 226
Psycho-physiological interactions,

310, 311
Pulse-wave, 48, 51

Q-ball, 233
Q-space, 234–235, 236

Rate, 5, 13, 14, 27, 42–43, 48–49,
100, 205, 215, 249, 279, 425,
428, 431–432, 434–435, 438–440,
444, 449

Rate-dependence, 431
Razumikhin theory, 76
Reachability matrix, 120–121
Recurrent, 79, 82, 85, 92–94, 98, 110,

293, 408, 409
Reentrant interaction, 405–406
Reference electrode, 180, 184, 192–195,

197, 198, 343
Relative Phase, 422, 423, 425–426, 428,

438, 443–444, 447–448
Repellor, 16, 18, 21–24
Resting metabolism, 510, 512, 513

Saccade generation, 280
Saddle node, 23–25, 31–34, 36, 75, 81
Saddle-node bifurcation, 24–25, 31–32,

33, 75, 81
Scale-free networks, 122, 126
SDTF see Short time directed transfer

function, 338, 342, 345–347, 349
Secondary auditory cortex, 287
Segregation, 118–120, 122, 130, 132, 449
Seizure

onset, 486–488
propagation pathways, 493–495

Self-organizing, 96, 421–422, 425, 448
Semantic processing, 511, 512
Sensorimotor, 134, 139, 158–159, 252,

421–451
Sensorimotor coordination, 139, 422,

424, 427, 431, 435, 437, 444, 448
Sensorimotor cortex, 252, 429, 433, 435,

437, 439, 440, 494
Sensorimotor synchronization, 431,

432–433, 439
Separatrix, 30
Shared dynamics, 427–432
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Short-distance coherence, 466–467
Short term memory, 213, 284, 289, 291
Short time directed transfer function

(SDTF), 335, 350
Short time method, 337–338, 344, 349
Sigmoidal coupling, 68, 80, 82
Sink, 19, 122, 173, 178–179, 181, 483
Situational context, 404, 406–408, 410,

412–415
SMA, 246, 434, 435, 437–438, 439–444,

447–449
Small world analysis, 393–395
Small-world networks, 122–123, 393, 395
Source, 19, 21, 66, 120, 122,

154, 172–173, 175, 177–179,
202–209, 295

Spatial filtering, 449
Spatial receptive field, 287
Spatiotemporal decomposition, 430
Spectral coherence, 118, 383
Spectrotemporal receptive field, 287
Spike-burst, 36–37
Spike train, 43, 95, 132, 338,

348–350
Spiking, 35, 37, 281, 291, 480,

485, 489
Spiral, 19, 21–23, 29, 32, 45, 138,

489–490
Spontaneous switches, 422, 427
Stability, 4, 16, 18–20, 21, 23–24, 70,

78–79, 96, 424–425, 433–434, 438,
443–448

Stationarity, 202, 208, 215, 337,
380, 391

Statistical analysis, 207–208
Statistical periodicity, 486
Stochastic differential equation, 10–12
Structural connectivity, 110, 127,

136–139, 149, 154, 162, 309,
463–465, 515

Structural equation modeling (SEM),
133, 136, 213–214, 310, 311–313,
375, 409

Subcritical, 21–23, 36, 80, 83, 139, 487
Subgraphs, 123
Supercritical, 20–22, 23, 32, 139
Superior temporal cortex (ST), 286–287
Supplementary motor area (SMA), 246,

433, 436, 468

Surface Laplacian, 192, 193,
195–197, 198

Sustained attention, 412
Synchronization, 7, 14, 24, 38, 42,

83–84, 137, 174, 210–211
Syncopation, 424, 429, 431,

433–435, 437–438, 440,
444–445

Synfire chain., 42, 95

T1 and T2 relaxometry, 222, 253
Task complexity, 206, 278, 442
Task dependent, 119, 133, 410
Temporal Evolution, 30, 45, 430
Temporal lobe, 119, 282, 411, 468, 479,

491, 492, 516
Thalamocortical loop, 53, 55
Thalamocortical system, 119, 134, 512
Thalamus, 54, 170, 239, 281, 390,

487, 509
TMS, 136, 176, 447, 463, 469,

470, 471
Top-down attentional control, 410
Topology, 12, 45, 54, 110, 132, 387, 432
Trajectory, 13, 17, 99, 101, 237, 405
Transcallosal inhibition, 470
Transcranial magnetic stimulation, 136,

176, 447, 463
Transcritical bifurcation, 21
Transfer entropy, 135
Transfer function, 134, 214
Transition, 7, 25, 82, 422, 423, 427, 428
Transmission, 67, 104, 106, 107–108,

110, 122, 405
Traumatic brain injury (TBI), 230, 245,

506, 510, 515
Twins, 307, 467
Two-point connection, 55

Undirected graph, 126, 387
Unimanual coordination, 424
Universality, 15, 80, 82, 83

Van der Pol oscillator, 15, 80, 82, 83
Vector field, 13, 16, 17–18, 32
Vegetative state (VS), 506–507
Ventral visual pathway, 123
Vertices, 120–124, 387
Visual attention, 410



528 Index

Visual object processing stream, 282
Visual objects, 282, 284
Volume conduction, 198, 466

Wakefulness, 110, 344, 513, 514
Wave equation, 4, 50, 52
Wavelet

coefficient, 389, 390, 391, 393
correlation, 390, 392, 393
covariance, 391, 392
domain, 379–397

filter, 390

scale, 390

Wave-pulse, 52

White matter, 154, 221–257, 463,
464–465, 493, 496

Wilson-Cowan model, 51, 138, 292

Working memory, 46, 47, 252, 292, 293,
408, 412, 468

Yule-Walker, 214, 327, 338, 339
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