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The words or the language, as they are written or spoken, do not seem to play any role in my
mechanism of thought. The psychical entities which seem to serve as elements in thought are
certain signs and more or less clear images which can be “voluntarily” reproduced or combined
… . The above-mentioned elements are, in my case, of visual and some of muscular type.
Conventional words or other signs have to be sought for laboriously only in a secondary stage.

Albert Einstein, 1954: Ideas and Opinions. Crown Publishers. Pg 25
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1

Introduction

■ This book is about teaching mathematics to pupils who have learning differences,
not learning difficulties.

■ Pupils with visual and kinaesthetic learning styles often struggle with a school
curriculum that is largely based on print.

■ The development of ‘pictures in the mind’ can help all pupils to understand key
mathematical concepts.

a) Different Learning Styles in the Classroom – a Vicious Circle

This is a book about teaching maths to pupils with learning differences, not learning difficulties.
Teaching and learning in our schools is, and always has been, print based. Literacy is all. Other
ways of thinking – visual, kinaesthetic, practical – are discounted in the classroom. To become
teachers, students must jump over a long series of hurdles, formal and informal, at school, at
college and at university. These hurdles consist of print-based activities and assessments that
demand a high level of linguistic and symbolic thought but take little account of other ways of
thinking and learning. As a result, teachers are rarely selected for their visual or kinaesthetic
abilities as these have little impact on their academic achievement. It is their verbal and numer-
ical skills that have opened the doors to success, not their spatial skills. This may make it
difficult for teachers to recognise spatial ability in their pupils, so real strengths and aptitudes
are neglected as pupils are forced to struggle with a curriculum which is largely presented
through printed materials that they find hard to access. 

Because the curriculum is so heavily print based, ‘proper’ school maths is defined as
maths that can be printed in a book, and preferably in text. Definitions and proofs that depend
on models or dynamic geometry rather than on symbols are second best. So, for example,

CHAPTER 1

orThe number seven is not it is the symbol 7,
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Pictures and models may be used to support learning, especially in the early stages, but the end
point is symbolic. Symbols are easier to print, and they always take precedence over visual or
kinaesthetic representations.

But to some children, the numbers and symbols on the page are just squiggles. They can
see that seven is five plus two, or that twice two two’s will fit together to make four two’s, or that
the sum of the first n counting numbers is half the area of a rectangle with sides n and n + 1.
They may not be able to put it into words, but they can see it, and perhaps draw it. It is for these
children, and for their teachers, that this book is written. 

b) Visual, Auditory, Kinaesthetic

So – what are these different learning styles? There are nearly as many theories about learning
as there are researchers writing about it. Steve Chinn offers a useful summary of ‘thinking styles
in mathematics’, and shows how, to some extent at least, the different models overlap and inter-
relate (Chinn, 2004, pp59–75). But for general classroom use the VAK model – Visual,
Auditory, Kinaesthetic – will serve us well. It is at least as old as Confucius – 

I hear, and I forget;

I see, and I remember;

I do, and I understand.

This model is quite straightforward, and it works well in the classroom so it can provide the the-
oretical structure we need for the ideas and activities discussed in this book. 

The phrase kinaesthetic learning is sometimes taken to mean any activity that involves the
use of apparatus. This may be considered particularly appropriate for ‘slow learners’ – at least
they will have something to do in their mathematics lessons. But if the focus of the teaching is
primarily on the correct use of the apparatus, rather than on the mathematical understanding
that the apparatus is designed to develop, then it may have only a limited impact. Pupils will
just follow the instructions to use the equipment, without necessarily relating what they are
doing to mathematics. 

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES

2

The 2 times table is not , it is the symbols

2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
2 × 4 = 8

The formula for 1 + 2 + 3 + … n is not , it is the symbols
n2 + n

––––––––
2
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Kinaesthetic learning calls for a lot more than a pile of cubes or a pair of scissors and some
card. It involves using your whole being, engaging all your senses to feel or imagine what is hap-
pening. Visual, aural and kinaesthetic learning are all intertwined: together they can lay down a
memory – of movement, feeling, sight and sound – that will be recalled as a total experience, not
just as a recited chant. For example, when I think about the number seven I can feel
the seven in all the fingers of one hand and two fingers of the other. When I factorise,
I can imagine pulling apart eight to make two sets of two twos. And I can feel myself
breaking up a 10 by 11 unit rectangle into two halves to find the sum of the first ten
counting numbers, 1 + 2 + 3 + … + 10. Because I have done all these activities, and have under-
stood the mathematics that they represent, I do not need to actually hold up my fingers or make
blocks of cubes in order to recall them. But what I recall is most certainly not a chant or a formula:
it is more like a moving picture – a sort of waking dream. This, I believe, is kinaesthetic learning.

Any teaching idea, no matter how inspirational, can be reduced to ‘rote learning’ – I hear
and I forget. On the other hand, the dreariest exercise might be transformed into a basis for real
understanding by a teacher who can unpack the underlying concepts and help pupils to under-
stand and use them. We all use a range of learning styles at different times, and the most
effective mathematical thinkers are flexible. They try different approaches to the problem in
hand, finding out what works best and relating each new idea to what they already know. The
hearing, the seeing and the doing support one another, as the pictures, models and activities give
meaning to the spoken or written definitions and procedures. Pupils may adopt different styles
as they first explore and understand, and then rehearse and apply, each new concept. But for
learners who think more easily in pictures and movement than in words and symbols, seeing
and doing may offer access to key mathematical ideas, while too much time spent hearing may
slam the door shut.

c) Pictures in the Mind

Some people can follow a set of directions easily, but others find it much more helpful to have a
visual image. For example, one person might find it easy to follow a written description of a route:

Turn left out of the gate, and walk to the T-junction at the end of the road. There you should
cross the road and turn right. Take the first left turn, and walk past the school and across the
crossroads. You will come to another crossroads, with a church on the corner; there you must
turn left. Walk about fifty metres down the road, and the house you want, number 33, is on
the right, opposite the post office.

But another might prefer a map.
They find the map easier than the
linear series of instructions to under-
stand and to follow, and they can
recall it more easily when they need
to find their way again along the
same route.

1 ■ INTRODUCTION

3

School

33
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In the mathematics classroom diagrams may be used, but, as we have seen, they are gen-
erally subservient to the written, symbolic forms. A map (or its equivalent) is rarely considered
to be enough on its own – while a written formula, or a set of rules for carrying out a procedure,
can stand alone. Pupils who can take in and remember a series of instructions, or a formula, or
the ‘rules’ for adding fractions or finding the sine of an angle, achieve high grades and feel suc-
cessful. But those pupils for whom such rules and procedures seem meaningless have great
difficulty recalling them, and cannot use them efficiently to solve problems. They may struggle
to make sense of the symbols and instructions – or they may just give up in despair. Either way,
they do not achieve any real understanding of the concepts that underlie the routines and
methods that they are trained to use.

The main purpose of any model or image is to develop the pupils’ understanding, so they
do not just learn how to use a method to solve a problem, but they also understand why it
works. For example, the image of a number line may help some pupils to see a subtraction as
finding the ‘distance’ between two numbers. 

This approach may make much better sense than a standard algorithm – 

Nought take away three, I can’t, borrow one, I can’t, borrow one, I can’t,
borrow one, cross out the seven and put six, make ten in the next column,
cross out the ten and make nine, make ten in the next column, cross out the
ten and make nine … and so on. 

The number line offers far more than this sequential set of ‘rules’ for getting the right answer.
The picture itself – whether printed, drawn, or just imagined – carries within it an explanation
of why the method works. In this way, mathematical ideas from the simplest to the most com-
plex can be made manifest, and so become meaningful and memorable to all our pupils – not
just to the visual and kinaesthetic learners.

But the number line, like any other model, could be used as just another routine, to be
learnt by rote and followed blindly without any understanding of the meaning of each step.
Used like this it will be no more helpful, and it will be considerably less tidy, than a numerical
algorithm. This book offers a range of models and images that may be useful, particularly for
pupils who think more easily in pictures than in words and symbols. By themselves, however,
learnt as yet more methods and routines, these models will be useless. If some pupils can, and
if they really must, learn and recall mathematics without understanding, then they will do
better to acquire the numerical and symbolic routines. These are generally shorter, neater, and
easier to memorise and apply than the pictures and models exemplified in this book. For visual
and kinaesthetic thinkers, however, this is not an option. They must understand the mathemat-
ics that they are taught. Otherwise they may learn … but they will forget. 

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES

4

4533 4540 4600 5000 7000

7 60 400 2000
= 24677000 – 4533

7101010
4 5 3 3
2 4 6 7

6 9 9
7 0 0 0
4 5 3 3
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d) Using Symbols and Understanding Diagrams

Our single most important function as maths teachers is to develop our pupils’ understanding
of mathematics. Using mathematical language, manipulating numbers and symbols, applying
mathematics to solve problems – all this comes into it, of course. But the basis, the rock on
which mathematics education is built, is understanding. 

Unfortunately, it is terribly easy to teach pupils how to manipulate symbols without
understanding. Any teacher with a little determination can teach how to add fractions, or how to
find the area of a circle, or whatever. Pupils can learn to get ‘right answers’ using symbols and
the rules for combining them with little understanding of what they mean. Those who can
manipulate symbols quickly and efficiently are often thought to be working at a ‘higher level’
than those who use diagrams or equipment to work through a problem, making sense of each
step on the way. As Keith Devlin puts it, ‘Learn how to perform the mumbo-jumbo and you get
an A’ (Devlin, 2000, p67). A pupil who writes 

may be rated much more highly that one who uses a more meaningful graphical approach,

But a pupil who just goes through the steps, and cannot explain why 2/3 is equal to 4/6, and
4/6 + 3/6 is equal to 7/6 which is equal to 11/6, is not working at a higher level than a pupil
who can use, understand and explain the drawings. The diagrams lead, not just to the ‘right
answer’, but to an explanation – a sort of proof that 2/3 + 1/2 really does equal 11/6. This
involves much more mathematics than any rote learning of meaningless symbolic manipu-
lation. Written numbers and symbols are valuable, and indeed essential, tools for
mathematics, but we must always ensure that they are used to express, support and com-
municate mathematical understanding, not to take its place.

e) Identifying Different Learning Styles 

All the pupils in a mathematics classroom – like all the teachers – are able to think visually and
kinaesthetically to a greater or lesser degree. There is not a clear-cut divide between spatial
thinkers and those who think in words and symbols. The chief difference lies, not in the ability
of different pupils to think spatially or numerically, but on the value that is placed on the dif-
ferent thinking styles. But how can teachers spot visual and kinaesthetic ability, and identify
pupils who are likely to learn more effectively through models that they can construct and take
apart, and through ‘pictures in the mind’?

Teachers may well notice the visual and kinaesthetic thinkers in their classroom by their
responses to different types of mathematical task. These are the pupils who have found all the
nets of a cube before most of the rest of the class have grasped what a net is – but for whom

1 ■ INTRODUCTION
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‘seven eights’ are ‘forty-three’ on Tuesday, and ‘sixty-two’ on Wednesday. With a print-based cur-
riculum they rarely shine – but just occasionally they take everyone (including, quite possibly,
themselves) by surprise with their ability to just see the solution to a problem with which other
pupils are struggling.

There are more formal approaches to the identification of pupils with high spatial ability.
Many schools in the UK routinely screen pupils with the NFER-Nelson (2001) Cognitive Ability
Tests. These give three different scores for each pupil: a Verbal Reasoning score, a Quantitative
Reasoning score, and a Non-verbal Reasoning score (Strand, 2003, p5). A pupil with high spa-
tial but low symbolic and numerical ability will be likely to have a high Non-verbal Reasoning
but a lower Verbal Reasoning score. As Steve Strand explains in his book, Getting the Best from
CAT, such pupils may have difficulty accessing much of the school curriculum. On the other
hand, pupils with high Verbal Reasoning scores

tend to have higher national test and examination attainment than pupils with a similar mean
CAT score who have their strength on the Quantitative or Non-verbal batteries.
(Strand, 2003, p41)

He argues that

Verbal ability is so crucial to academic success that interventions to directly address … verbal
weaknesses may be necessary, especially where verbal scores are low. 
(Strand, 2003, p49)

On the other hand,

a relative verbal strength can compensate for lower scores in the quantitative and non-
verbal areas.
(Strand, 2003, p42)

This evidence again indicates the importance given to verbal ability in our educational system.
High verbal ability can compensate for a lack of other sorts of learning ability – but other
strengths, such as high spatial ability, cannot. Spatial ability is undervalued, and is not usually
exploited to compensate for a lack of verbal ability in enabling pupils to access the curriculum. 

Another more specialised series of Spatial Reasoning Tests is also available (Smith and
Lord, 2002). These give teachers the means to routinely identify pupils with strong spatial abil-
ity, and so, with time, may encourage the development of a range of approaches which build
more effectively on their strengths.

f) Assessment for Learning

Assessment drives the curriculum. This is regrettable, certainly. It would be much better if a
broad and balanced curriculum could be established and taught, with assessment following,
not leading, the whole process. But the reality is otherwise. If a topic or a mathematical idea is
never assessed, then in many cases at least it will not be learnt. 

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES
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Formal written maths tests tend to militate against teaching for understanding, because it
is so hard to write a markable test question that actually does assess the why rather than the how
(Clausen-May, 2001, p8). As Black and Wiliam argue in their booklet, Inside the Black Box, 

short external tests … can dominate teachers’ work, and insofar as they encourage drilling to
produce right answers to short out-of-context questions, this dominance can draw teachers
away from the paths to effective formative work.
(Black and Wiliam, 1998, p17)

‘Effective formative work’ focuses on pupils’ understanding – on finding what they understand
now, and building on this to develop their understanding in the future. It is best done infor-
mally, in the everyday interchange between teachers and pupils. And since formative assessment
focuses on the pupils’ understanding, on the why rather than the how, it supports the use of a
full range of teaching and learning styles.

Assessment for learning enables teachers to relate what pupils are learning now to what
they have learnt in the past, and to pave the way for what they will learn in the future. The aim
is to help pupils at all stages of mathematical development to recognise the links between the
different aspects of mathematics and the various individual topics that they meet. An often
quoted example is in the connections between decimals, fractions and percentages (Askew et
al., 1997, p 26). Pupils learn to ‘convert’ from one to another, and hopefully to understand the
relationships between them. 

For visual and kinaesthetic thinkers, however, mathematics is shot through with connec-
tions. Multiplication may be seen and understood as area. Fractions, fractions of a turn, angle
and telling the time may all be tied together through the image of a clock face. Ratio and place
value may be thought of as concepts relating primarily to mathematical similarity – to shapes
and solids that expand and contract without distorting. And so on. So for a visual and kinaes-
thetic thinker the distinctions between Number, Algebra, Shape, Space and Measures, and Data
Handling may be very blurred. But are these, in any case, strictly mathematical distinctions?
They are useful administrative and organisational categories, and they lie at the heart of the
school mathematics curriculum. But they do not, perhaps, lie at the heart of mathematics.

This book is written to help teachers to recognise those pupils who think more easily in
pictures and movement than in words and symbols, and to help them to find or build the
visual and kinaesthetic ‘pictures in the mind’ that they need. There is not just one model that
will work for every topic for every pupil – there are many possibilities. The chapters that follow
offer a range of suggestions, relating to a variety of topics at different levels, but teachers may
well have others that work better in their classrooms. The ideas put forward here are intended
primarily as illustrations of an approach – an approach that seeks out ‘models to think with’
that can help pupils to develop their understanding. Some of these ideas may be useful for par-
ticular pupils, but they are only a start. Teachers – and the pupils themselves – need to be
constantly alert, on the lookout for images and models that will represent and explicate specific
concepts. You can start with practically any resource or activity, and see how it could be adapted
for visual and kinaesthetic learners. It is the approach that matters, not the details of particular
activities or materials. Making mathematical concepts manifest with pictures and models will
help all pupils – even those who could, if it were really demanded of them, learn and remem-
ber routines for getting ‘right answers’. 

1 ■ INTRODUCTION

7
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TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES

8

Introduction – Key Points

■ Children have different learning styles – Visual, Auditory and Kinaesthetic (VAK).

■ The school curriculum is heavily print based. This favours auditory learners.

■ Visual and kinaesthetic thinking and learning styles are under-valued in the classroom.

■ Visual and kinaesthetic learners need a ‘picture in the mind’ to hang their thinking on.

■ A visual approach is worthwhile only if it is based on understanding. 

■ Mathematical symbols are there to express, support and communicate understanding, not to take
its place.

■ Teachers can identify pupils with different learning styles informally, through observation, or more
formally, using a range of tests. 

■ Assessment for learning supports teaching for understanding.

■ Appropriate models will help pupils to recognise links between different aspects of mathematics.
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9

The Concept of Number

■ Pupils’ understanding of Number is key to their mathematical development. 

■ Numbers may be counted in a sequence or seen as wholes.

■ Pupils spend a lot of time counting, but less attention may be paid to seeing the whole.

■ Kinaesthetic and visual representations of numbers will help all pupils to understand
numbers as wholes.

a) Counting and Seeing

When numbers are written on paper or shown on a calculator screen they are represented by a
set of abstract symbols, which to many children are mere squiggles. Children train long and
hard to learn which squiggle to associate with which sound – 1 with one, 2 with two, and so on.
They recite the sounds in turn, as they learn to count a group of objects. But the outcome of all
this counting and sequential recitation may be to build up an understanding of each number as
a collection of ones, rather than as a concept in its own right. Five, for example, is given meaning
and existence primarily as the number that comes after four. There is no real understanding of the
fiveness of five. Rather, it is seen as the result of one add one add one add one add one. 

But this focus on the sequential nature of numbers is not the only one possible. It has
perhaps been forced on us in the school curriculum by our reliance on print, but we, as teach-
ers, have other resources available that encourage a different approach. For some children – and
particularly for visual and kinaesthetic thinkers – a more holistic approach, which emphasises
the nature of each number as a whole rather than as a collection of units, may be much more
meaningful.

Most people can scan up to four objects, and see at a glance how many there are, without
counting (Butterworth, 1999, p304). This ability to subitise, as it is called, lies at the heart of the
holistic approach to Number. We can see a collection of four dots, or fingers, or objects, and
know that there are four, with no need to go through the sequential process of counting one,
two, three, four. Some arrangements are easier to see than others, but we can learn to recognise
the number of objects in any group of up to four.

CHAPTER 2
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So we can understand four not as one add one add one add one, but as an image of four objects.
Similarly for one, two or three, we can see the whole, not just the sequence of parts.

So much for numbers up to four. But this is a bit limited. How can we go further?

The first and most readily available resource is literally to hand. We can learn to see (see,
not count) up to four fingers on one hand.

But because it is a coherent whole, we can also see the whole hand, and we can learn that this is
a representation of five – although other, more random representations of five are much harder
to just ‘see’. They may have to be counted.

So now we have the numbers one to five, each able to be represented by the digits on one hand.

But, of course, we have two hands. 

So, just as we can learn to see (not count) 
that this pattern of fingers is three:

so, in the same way, we can learn to see 
(not count) that this pattern is eight:

In this way the numbers one to ten can be represented as patterns of fingers on a pair of hands.
This approach helps to establish the concept of each number as a whole, rather than as a part of
a sequence. It also offers concrete, rather than symbolic, images of numbers. And finally, the
representation of each number involves physical movement. So children can develop an under-
standing of number that is based on aural, visual and kinaesthetic images. How much more
powerful than any merely symbolic representation!

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES
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is easier to see (not count) than
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But … we have only five digits on each hand. Ten altogether. How can we go beyond ‘ten’
without symbols? This is where the abacus – some types of abacus – comes in.

b) The Slavonic Abacus

The majority of abaci that are readily available in the UK lead naturally to a ‘counting’ approach
to Number. There are typically five or ten rows of ten beads, with each row painted a different
colour – ten red beads, then ten blue, then ten yellow, and so on. Nothing about the row of ten
red beads helps us to see (not count) numbers up to ten. Given a row of nine identical beads to
look at, for example, we have no choice but to count them to discover how many there are.

But there are other types of abacus, which support the seeing rather than the counting
approach to number. One of these is the Slavonic abacus. These are much more common in
other parts of Europe than in the UK or the USA, but they are well worth finding, or making. 

2 ■ THE CONCEPT OF NUMBER

11

In the Classroom – See and Say

To start with, the teacher can hold up a number of fingers, and call out the total (includ-
ing, sometimes, nought or zero). The children copy the teacher.

Then the teacher calls a number up to ten and the children show this on their fingers, or
the teacher shows the number and the children call it.

When they are confident, one child can take the teacher’s place showing or calling num-
bers to which the other children respond. 

Parents and carers may be encouraged to play this game with individual children for a
few minutes each day after school.

cannot be seen without counting.
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The Slavonic abacus has the usual ten rows of ten beads, but these are coloured with only
two, or at the most four, colours, in such a way that each row and each column is made up of
five beads of one colour and five of another (Grauberg, 1998, pp18–19).

One row of beads on the Slavonic abacus allows us to represent numbers up to ten. These
are shown in the same way as on a pair of hands, so work on the first row of beads follows nat-
urally from simple finger pattern arithmetic. As with the finger patterns, the emphasis is always
on seeing whole numbers at a glance, not on counting them one by one. 

We can see (not count) the numbers one to
four in the usual way. 

But now we can also see (not count) five
beads, because they are distinguished by
their colour from the rest of the row. 

And we can learn to see (not count) eight as a
pattern, with five beads of one colour and
three of the other.

This approach to whole numbers up to 10 has the great strength that every number is seen
with its complement to 10, so each number becomes deeply associated with its complement.
The two that goes with eight, for example, becomes an inbuilt aspect of the concept of the
number of eight. 

But the way in which the beads on the
Slavonic abacus are coloured allows us to go fur-
ther, and to see numbers up to 100, with their
complements to 100. For example, we can see that
this abacus shows seventy-two beads – that is, seven
whole rows, plus two single beads. We can also see
that there are twenty-eight beads – two whole rows,
plus eight single beads – left over to make the full
complement of a hundred.

So the Slavonic abacus offers pupils a way to
understand each number up to a hundred, not as a point in a recited sequence, but rather as a
whole that is seen, not counted. This whole may then be associated with the relevant symbol –
6 with a row of six beads, for example, or 40 with four rows of ten. Place value and its use in the
representation of multi-digit numbers is discussed in more detail in Chapter 4, but the abacus
provides a visual and kinaesthetic experience which will give pupils a thorough grasp of the
concept of Number. Their understanding of the symbols which are used to represent numbers
will then be based on a meaningful, and therefore memorable, concept. 

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES
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If a Slavonic abacus is unavailable then an overhead projector slide with a coloured trans-
parent plastic sheet cut to mask dots to the right and below the number being shown, or a
block of interlocking cubes, may be used instead to convey the same ideas. Pupils may use a
scaled-down version of the grid, with a smaller transparent plastic sheet.

Photocopiable Resource Sheets 1 and 2 may be used to create the grids. Alternatively, teachers
can download a free electronic Slavonic abacus from the Xavier website at the University of
Bangor (go to www.xavier.bangor.ac.uk/xavier, and try all the options for ‘Slavonic Abacus’).
However, neither the static grid and model nor the electronic abacus offer the same kinaesthetic
experience as an actual Slavonic abacus made of beads that can be manipulated by the teacher
and the pupils. A large classroom abacus may be bought from the Xavier website, or from Class
Creations (www.classcreations.co.uk).

2 ■ THE CONCEPT OF NUMBER

13

In the Classroom – Numbers and their Complements

Using a large Slavonic abacus, the teacher shows a one-digit number on the top row. The
children call the number, and then they call its complement to ten. They may also show
first the number, then its complement, on their fingers.

In the same way, the teacher uses the whole abacus to
show a two-digit number, being careful to move all the
rows of ten in one movement, followed by the one beads.
So to show the number forty-six, for example, the teacher
moves the top four rows of the abacus across, and the
children call ‘forty … ’. 

Then the teacher moves six beads in the fifth row
across, and the children call ‘ … six’. 

Now the teacher points to the remaining beads, and
the children say, ‘and fifty-four make a hundred’. 
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The Concept of Number – Key Points

■ A lot of time and effort is spent teaching children to count.

■ Children who think more easily in pictures and movements (visual and kinaesthetic learners) may
do better with a more holistic approach.

■ Representing whole numbers up to 10 on a pair of hands enables children to see and feel the
mathematical structure of numbers. 

■ One- and two-digit numbers may be represented on a Slavonic abacus.

■ Pupils can see the complements to 10 or 100 of numbers represented on the Slavonic abacus.

■ Such representations enable pupils to see, not count, a number of objects. This is called subitising.
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Models for Multiplication and Division

■ Multiplication may be understood using an area model.

■ Single-digit multiplication may be modelled on the Slavonic abacus.

■ An image of a large rectangle divided into smaller rectangles may be used to
understand long multiplication.

■ A different ‘picture in the mind’, modelling the process of repeated subtraction, is
needed for long division.

a) Multiplication Arrays – ‘Seeing’ up to Four Fours

To visual and kinaesthetic thinkers, arithmetic can seem very daunting. There are so many num-
bers. Masses of those wretched squiggles, and endless rules for putting them together. To pupils
who think more easily in pictures than in words and symbols neither the squiggles nor the rules
will make much sense. So the challenge for the teacher is to find ways of presenting the important
concepts with models, visual and kinaesthetic ‘pictures in the mind’, on which to hang them.

Multiplying two numbers can always
be thought of as finding the area of a rec-
tangle. Pupils can learn to recognise arrays
of up to four by four, and associate them
with their totals. So, for example, they can
see the array

as two rows of three, and they can learn to
recognise this as six.

Arrays like this may be printed onto
cards, to be handled by pupils until they
become very familiar. These cards do not
have a ‘right way up’ – so, for example, it is
clear that:

CHAPTER 3
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are both equally six. The concept of commuta-
tivity – that two threes are the same as three twos
– becomes established as a fact relating to the
patterns of dots, not to the inter-changeability
of squiggles.

Similarly, the squareness of square numbers becomes self-evident – 

for example, are square numbers because they are square, not just because they are squiggles
multiplied by themselves.

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES
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In the Classroom – Dotty Arrays

Photocopy masters for a set of cards showing each of the arrays from one by two to four
by four may be downloaded from the Paul Chapman Publishing website,
www.paulchapmanpublishing.co.uk/clausen-may. Working with the whole class, the
teacher holds up each array in turn and the pupils call both the total product and its two
factors. Photocopiable Resource Sheet 3 can be used to prepare sets of array cards for
individual pupils. When they are confident, pupils can work in pairs to build up speed
so they can instantly recognise, for example, the three by four array as twelve whatever its
orientation – three by four, four by three, or on a slant. 

12 12 12

In the Classroom – Factorising

Blocks of interlocking cubes can also be used to represent each array. These have the
advantage that they can be split up and re-combined, to demonstrate the process of 
factorisation – so four threes, for example, can be broken up and reassembled into two sixes.

3 × 2 × 23 × 4 3 × 2 × 2 6 × 2
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Just as pupils can learn to see, not count, a row or column of up to four beads, so they can
learn to see, not count, an array up to of up to four by four beads. This will give them the ‘pic-
tures in the mind’ they need to enable them to visualise, and so recall, the multiplication facts
up to 4 × 4. These need to be established first, before pupils go on to work with multiplication
facts involving larger numbers, 5 and above.

b) Multiplying up to Ten by Ten

Just as it is hard to see, not count, a row or column of seven
or eight identical beads, so it is hard to see, not count, an
array involving a pair of such numbers, such as seven eights.
But here again, the Slavonic abacus can provide the ‘picture
in the mind’ that we need.

First, pupils must learn to recognise the products in
the five times table. These may be modelled using the
beads on one side of the Slavonic abacus. So four fives, for
example, may be represented as four rows of five beads.

These four rows are then grouped into pairs, to give two tens.

Alternatively, this relationship can be modelled with
interlocking cubes. The four rows of five can be broken up
into two blocks of two by five, then joined up again to
make two rows of ten.

3 ■ MODELS FOR MULTIPLICATION AND DIVISION
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5 × 2 × 25 × 4 10 × 2

In the Classroom – Multiplying by Five

Teachers can use the Slavonic abacus to demonstrate a
multiplication fact for five, such as the relationship
between seven fives and three tens plus five. 

Then pupils can use interlocking cubes to build a model of
the same relationship, and of others in the five times table.

5 × 3 × 2   + 55 × 7 10 × 3   + 5
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Once pupils know the products up to ten
times five – and understand them as rearrangements
of the fives into pairs to make tens – they can go on
to multiply higher single digit numbers.

To create a model for the product of seven and
eight, for example, an array of seven rows of eight
must be set up on the abacus. Pupils should be able
to set this array in one movement, selecting the seven
rows of eight beads at a glance, without counting.

The array on the Slavonic abacus splits
into four rectangles, identified by their
colours. On the left are two rectangles,
comprising seven rows of five – five in one
colour, and two in the other. On the right
are three columns of five in one colour, plus
a three by two rectangle. So altogether we
have ten fives – seven rows of five plus
three columns of five – plus six, giving a
total of fifty-six.

Here again a printed grid, this time with an
L-shaped shield to mark off the product
being calculated, may be used if no Slavonic
abacus is available (see Photocopiable
Resource Sheet 4). So to calculate the product
of nine and seven, for example, we shield off
an array of nine rows of seven.

This gives nine rows of five on the left, plus
two columns of five on the right, plus eight.
So we have eleven fives plus eight, or fifty-
five plus eight, which is sixty-three.

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES
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7 rows of 5 plus 3 columns of 5

plus 6

9

7

9 rows of 5 plus 2 columns of 5

plus 8
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This approach to single-digit multiplication may well seem tedious and long-winded to those
pupils who are able to simply learn the ‘magic spells’ of the multiplication tables –

Grue chups are glonk

Grue sleps are fruggle

and so on. But for pupils for whom the spells never come out the same way twice running, a
‘picture in the mind’ may be much more meaningful. For visual and kinaesthetic learners, learn-
ing without understanding is not an option – they will just forget. So in the long run, although
it takes more effort to ‘see’ the rows and columns of five and the rectangle in the bottom right
corner, and to put all the beads together to find the product, a mental image of the Slavonic
abacus is much easier to recall when it is needed. But here again, if the use of the Slavonic
abacus is taught as just another method, a series of steps to be followed blindly in order to find
a right answer, it will not help at all. The abacus does not simply state that ‘seven eights are fifty-
six’: it offers a visible representation of the number fifty-six as the product of seven and eight. If
pupils are to remember this method, and to use it effectively, then they must understand the
why, not just know the how.

c) Multi-digit Multiplication – the Area Model

The ‘rules’ for long multiplication are amongst the most confusing and incomprehensible that
pupils have to contend with. 

Multiply the end underneath number by each of the top numbers in turn, carrying the left-
hand digit whenever the answer is more than nine. Then put a nought on the end of the next
line, and multiply the next underneath number by each of the top numbers. Then if there is
another underneath number you put two noughts on the next line, and … and so on. Oh –
and you work the other way round from the way you read: right to left, not left to right.

Just remembering when and where to put in the noughts is hard! Doing each of the computa-
tions in turn, in the right order, without ever losing one’s place – that is well nigh impossible
for many pupils. 

3 ■ MODELS FOR MULTIPLICATION AND DIVISION
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In the Classroom – Practising the Multiplication Tables

Teachers can set up arrays on the Slavonic abacus for the products of single digits, and
pupils can first say what product is being represented and then give the total. When they
are confident, pupils can practise using the abacus or the grid to find products of pairs of
single digits by themselves. With time, they will develop a mental image of the arrays on
a Slavonic abacus, which they can recall and use to calculate the elusive number facts of
the multiplication tables.
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In the Classroom – Handy Multiplication

Another method for finding the harder multiplication facts from the six, seven, eight
and nine times tables is also worth mentioning. It involves memorising a routine – but
the routine is something to do, rather than something to say, so it may be helpful for
kinaesthetic learners who can remember movements more easily than words. 

The thumb and fingers of each hand are first labelled with
the numbers 6 to 10.

Then the tips of the two fingers whose numbers are to be multiplied are brought
together so they are just touching. For example, to multiply 7 by 8 the tip of the
forefinger (labelled 7) must just touch the tip of the middle finger (labelled 8) to form
a link. Now the two touching fingers, and all the fingers (and the thumbs) above them,
are counted, giving 2 on one hand and 3 on the other – or 5 altogether. This is the
number of tens in the total product.

Next we look at the fingers below the link. There are 3 on one hand and 2 on the other.
These two numbers are multiplied together, and the product, 6, is added to the 5 tens we
already have.

So 7 times 8 is 5 tens, plus 6 – or 56 altogether.

6

7 8 910 10 9 8 7

6

5 fingers (and thumbs)
above and across the link 10 × 5 = 50

87

3 fingers below the
link on one hand

and 2 fingers below the
link on the other hand

87

3 × 2 = 6
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Fortunately, the ‘area’ model for multi-digit multiplication has recently become much
more common in our classrooms. The 1999 Key Stage 3 Mathematics Tests had a question in
the non-calculator paper that used this approach. Pupils were first offered an area model for the
calculation 18 × 14. They were then asked to carry out exactly the same computation, but this
time presented as a conventional multiplication. This might appear to be asking the same ques-
tion twice – but, as the Standards at Key Stage 3 – Mathematics report for 1999 indicates, while
56% of the pupils taking the test found the area of the rectangle, only 49% gave the correct
response to 18 × 14 (QCA, 2000). 

3 ■ MODELS FOR MULTIPLICATION AND DIVISION
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If you want to see how Handy Multiplication works, then the formula you need is:

a × b = 10 × ((a – 5) + (b – 5))        +       (10 – a) × (10 – b)

It is unlikely that many pupils will be able to follow this algebra – but for some, the
movements can be memorised and recalled much more easily than the recited chants of
the multiplication tables.

The number of
fingers (and thumbs)
touching and above
on one hand …

plus the
number on
the other
hand.

The number
of fingers
below on
one hand …

multiplied by
the number
on the other
hand.
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Key Stage 3 Mathematics Test Question (1999)

Sadly, many pupils calculated the area of the rectangle correctly using the diagram given, but
then started again with the computation 18 × 14 using a written algorithm. They were more
likely to get this wrong, and some pupils then went back and changed their original correct
answer for the area of the rectangle to their incorrect solution to the long multiplication. For
example, Alison wrote:

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES
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This diagram shows a rectangle 18cm long and 14cm wide.

It has been split into four smaller rectangles.

Write the area of each small rectangle on the diagram.

One has been done for you.

✎
What is the area of the whole rectangle?

. . . . . . . cm2

✎
What is 18 × 14?

18 × 14 = . . . . . . .

10cm

4cm 40cm2

10cm 8cm✎
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✎
What is the area of the whole rectangle?

. . . . . . . cm2

✎
What is 18 × 14?

18 × 14 = . . . . . . .

Alison’s belief in the ‘correct’ method (that is to say, in the formal, written algorithm) in which she
had been drilled undermined her confidence in the more meaningful, and therefore more reliable,
area-based calculation. But, hopefully, the increased acceptance of a range of methods will, in time,
encourage pupils to use the more meaningful approach even in formal test situations.

The area model of multiplication has a number of advantages over the standard written
algorithm. The different parts of the computation are tied directly to different parts of the rectan-
gle, so it is easier to keep track of them. The most significant numbers (in the example above, the
‘10’s from the ‘18’ and the ‘14’) are multiplied first – while in the standard written algorithm, all
the attention is focused first on the relatively insignificant 8 and 4. But above all, the area model
is meaningful. It allows pupils to see why the ‘1’ in the ‘18’ multiplied by the ‘1’ in the ‘14’ gives
‘100’, not ‘1’. Here again, to make it worthwhile pupils must understand what the model repre-
sents. Without that understanding the area model is no more memorable, and may be
considerably less tidy and concise, than the conventional numerical algorithm. Checking the
pupils’ understanding is best done informally by the teacher in the classroom, both when long
multiplication is first introduced and when it is used to solve other, more complex, problems.

d) Using the Area Model for Mental Calculation

The area model for multiplication can also offer a useful ‘picture in the mind’ for mental calcu-
lation. For example, finding the square of 29 using the standard written algorithm is
complicated and hard to understand. It has a total of about a dozen steps – find nine nine’s; put
down the one and carry the eight; find nine two’s; add on the carried eight; put down the total next to
the one … and so on. All the steps must be done in exactly the right order, or the whole thing
will go haywire.

3 ■ MODELS FOR MULTIPLICATION AND DIVISION

23

10cm

4cm 40cm2

10cm 8cm

100 80

32

✎

252 738

738

18
× 14

18
720
738

100
80
40

  32
252
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But a ‘picture in the mind’ offers a quite different, more meaningful approach. To find the area
of a square with edges 29 units long, we can start by imagining a square with edges that are 30
units long, which has an area of 900 square units.

Now we strip a long thin rectangle, 30 units long and
1 unit wide, away from the top of the 302 square, and
another one from the side. 900 – (30 + 30) = 840

But this means that we have stripped away the single
unit square in the corner twice – so we must add 1 back
on to get the area of the 292 square. 840 + 1 = 841

It is much easier for visual and kinaesthetic thinkers to keep track of this computation. To
start with they may sketch a simple diagram, but with time they will just imagine the square
with the unit-wide strips being peeled off from the top and side, and then the little 1 by 1
square that has been stripped off twice being replaced. Every step of the calculation is matched
by a relevant change to the model, making it meaningful and, therefore, memorable. 

These examples of the use of the area model for multiplication demonstrate the funda-
mental approach to making mathematics visible for visual and kinaesthetic learners. Teachers
should always seek a model, sometimes physical, sometimes just a ‘picture in the mind’, but
always an image which encapsulates the basic mathematical concepts and methods being used.
The pupils then have something to hang their thinking on, so there is no need to try to remem-
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102 102 102

102 102 102

102 102 102

30

30

302 = 90030

30

30 × 1

29229

29

30 × 1

29229

29

1 × 1
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ber a lot of number facts or rules for computation. The mental images speak for themselves:
each step in the calculation is performed for a reason, so the whole is a meaningful operation,
not a blind routine based on inevitably unreliable memory. Pupils develop strategies which
enable them to work out solutions for themselves when rote memory fails – and so they
become, not just ‘mathematical doers’, but ‘mathematical thinkers’.
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In the Classroom – Stripping Edges

Teachers can draw a series of diagrams to demonstrate
the method of stripping the edges from a rectangle in
order to multiply any pair of two-digit numbers.

For example, the ‘picture in the mind’ for 36 × 47
starts with a 40 by 50 rectangle.

Long thin rectangles, 50 by 4 and 40 by
3, must be stripped off the edges of the
40 by 50 rectangle. 

Then a little 3 by 4 rectangle is put back
in the corner where it has been taken off
twice. 

So:

36

47

36 × 47 

40

50

40 × 50 = 2000

36

47

36 × 47

–40 × 3 =
–120

+4 × 3 =
+12

–50 × 4 =
–200

1680 1700 1800 2000

–20 –100 –200

1692
+12

36 × 47

= (40 × 50) – (50 × 4) – (40 × 3) + (4 × 3)

= 2000 – 200 – 120 + 12

= 1692
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e) Division

Division is a tricky concept for all pupils – but particularly for visual and kinaesthetic thinkers.
Mathematically speaking, division is the inverse of multiplication – so if 14 × 18 = 252, for
example, then 252 ÷ 14 = 18. Using an area model for multiplication, we can say 

The area of a 14 by 18 rectangle is 252. 

This can be re-phrased as a division to give 

A rectangle with an area of 252 and one side of length 14 must have another side of length 18. 

The area model works well for multiplication. If I know the lengths
of its two sides then I can build up a visual image of the whole rec-
tangle. I can imagine the rectangle, even if I have not yet started to
split it up into its smaller rectangles in order to work out its area.

But if all I know are the area and the length of one side, it is much
harder to visualise the rectangle. I do not know what shape it is. 

Is it this shape? Or this shape? Or…. ?

Steve Chinn recommends a ‘repeated subtraction’ approach to division (Chinn, 1998, p68).
This does not lend itself well to the area-based image of a rectangle. Rather, it needs a more neb-
ulous, undefined shape to represent the total product which is to be divided. A pile of counters
that can be split up into a number of smaller heaps may offer a more useful ‘picture in the
mind’ for division. 

TEACHING MATHS TO PUPILS WITH DIFFERENT LEARNING STYLES
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14

18

Area?

14

?

252 14

?

252
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For example, 252 ÷ 14 may be thought of as ‘How many 14s are there in 252?’ To model
this, we need a pile of 252 counters, to be sorted into heaps of 14.

Then, following Chinn’s method, we subtract
convenient ‘chunks’ from the 252, made up of
easy multiples of 14. In this case we can start by
taking ten heaps of 14. That is, we subtract 140
counters from our pile. 

This reduces the pile considerably. We are left with 112 counters. Not enough for another ten
heaps, but we can manage five more. That will remove
another 70 counters from the pile.

Now we have fifteen heaps of 14 counters, and there are 42 left in the pile. Well, two more
heaps will get rid of 28 of them.
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252 252 ÷ 14 = ?

10

112 252
Take out 10 14s – 140

112

Take out 10 14s
252

–140
112
–70
42

Take out 5 14s

Take out 10 14s
252

–140
112
–70
42

–28
14

Take out 5 14s

Take out 2 14s

42

14

15

17
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That gives us seventeen heaps of 14 counters, and just 14 left in the pile. Enough for one
more heap.

So now we have divided all our 252 counters into heaps of 14, giving us 10 + 5 + 2 + 1, or 18,
heaps all together.

This example serves to illustrate Chinn’s approach to division. Clearly some pupils may
be able to take out larger numbers of counters in one go, while others might have to go more
slowly, removing fewer counters at a time from the pile. The important point is to ensure that
pupils have a ‘picture in the mind’ to help them to understand what is happening at each step
as they divide the pile of 252 counters into heaps of 14. 

Those pupils who do eventually go on to use the conventional algorithm
for long division will find that the model still holds. To divide 8802 by 27,
for example, we start by finding that there are 300 27s (8100) in 8802, with
702 left. In the 702 there are 20 27s (540), with 162 left. The remaining
162 gives us another 6 27s, so we have a total of 300 + 20 + 6, or 326 27s
in 8802.
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18

Take out 10 14s
252

–140
112
–70
42

–28
14

–14
0

Take out 5 14s

Take out 2 14s

Take out 1 14s

326
27  8802

8100
702
540
162
162

0

Models for Multiplication and Division – Key Points

■ Arithmetic can be very daunting for visual and kinaesthetic thinkers.

■ The multiplication of two numbers is more meaningful if it is thought of as finding the area of a rectangle.

■ For single-digit multiplication, arrays and the Slavonic abacus offer useful models.

■ Long multiplication can be understood using the area method.

■ Some calculations which are hard and complicated to do using a conventional written algorithm
can be done mentally using an area model.

■ Division requires a different model to multiplication. 

■ The conventional algorithm for long division is based on repeated subtraction. This may be
adapted using a ‘picture in the mind’, such as a of a pile of counters being distributed into equal-
sized heaps.
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Place Value and Decimals

■ The concept of place value is essential to the representation of both whole and
decimal numbers.

■ The key to understanding place value is scale. 

■ The key to the representation of place value is movement. 

a) Whole Number Place Value

Place value in our number system tells us the size of a number. Because we use a decimal
system, place value gives us the size in powers of ten – 1s, 10s, 100s, 1 000s and so on. Any
number, no matter how big, is broken up into its constituent powers of ten – so three hundred
and seventy-six, for example, is exactly what it says: three hundreds, seven tens and six ones.

The key to understanding place value is scale. The calculation 400 + 200, for example,
works in the same way as the calculation 4 + 2. The numbers are similar – they are just on a
bigger scale. 40 is ten times as much as 4, and 400 is ten times as much as 40, and so on. This
idea lies at the heart of our representation of whole numbers. Place value is just a symbolic rep-
resentation of the powers of ten, so it can be visualised as a representation of scale.

Place value equipment – Diennes blocks and other base 10 materials – usually represent 1
as a single unit cube, 10 as ten cubes in a stick, 100 as ten sticks in a slab and 1000 as a ten slabs
in a bigger cube.

CHAPTER 4
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And then the cycle starts again. We can imagine, even if we
cannot actually represent, ten 1 000 cubes that make up a
10 000 stick, ten 10 000 sticks in a 100 000 slab, and ten
100 000 slabs in a 1 000 000 cube. If the single unit 1 cube
has an edge length of one centimetre then the 1 000 cube
will be ten centimetres cubed, while the 1 000 000 cube will
be a whopping metre cubed. These are much too big to
make with ordinary base 10 materials, although a good
model of a cubic metre may be made with twelve garden
canes cut to size and fastened together at the corners. But
the cycle, from cubes to sticks to slabs to cubes, goes on and on. It gives us a ’picture in the
mind’ of whole numbers getting infinitely large, but always in a precise, controlled pattern.

It is a bit awkward, though, that the 1, the 10 and the 100 are completely different shapes.
It may be difficult to see how 

for example, can work in the same way as

The 1 cubes are there, at the ends of the 10 sticks – but the cubes and sticks are different shapes,
so they cannot fit together in the same way.

On the other hand, making 1 and 10 the same shape – so they are both cubes, for
instance, where the 10 cube has ten times the volume of the 1 cube – does not work either. It is
not obvious that

even though the 10 cube has a volume ten times greater than the 1 cube. We cannot see the ten
1s in the 10 here, as we can see the ten 1 cubes in a 10 stick.

This being the case, children who think more easily in pictures than in words and numbers
may actually find it easier to see the connection between, say, 4 and 4 000, than between 4 and
40 or 400. Using conventional base 10 materials, 4 is represented by four 1 cubes, and 4 000 is
represented by four 1 000 cubes. The picture in the mind for 4 000 + 2 000 is exactly the same as
the picture for 4 + 2 – it is just bigger. 

The four 1 000
cubes are com-
bined with the two
1 000 cubes in

exactly the same way as the four 1 cubes
combine with the two 1 cubes. We can
see the thousand 1s in the 1 000, but we
can also see the 1 000 as a whole, so we
can think in thousands.
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10 cubes
= 1 stick

10 slabs
= 1 cube

10 sticks
= 1 slab

4 + 2 = 6

40 + 20 = 60

if this is 1: then this is 10:

4 + 2 6=

4000 + 2000 = 6000
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b) Decimal Place Value

The idea that 4 000 is the same shape as 4, but bigger, suggests a way to think about decimal
numbers. If 4 000 is the same as 4, but a thousand times bigger, then 4.378, for example, is the
same as 4 378, but a thousand times smaller. There is nothing new to learn about the numbers:
we are just ‘zooming in’, seeing the thousand little unit cubes inside each thousand cube. The
model for the two numbers is the same – but in the one case we are working with thousands,
and in the other with units. 

It may be useful, at this point, to make the connection with capacity. If 1 is represented by
a centimetre cube, then it has a capacity of a millilitre. In that case, the 1000 cube has a capacity
of a litre. So the model can be seen as representing either 4 378 millilitres or 4.378 litres – it
depends how it is viewed.
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In the Classroom – Modelling Whole Numbers

Pupils who have difficulty interpreting printed symbols and numerals are likely to find
written work on place value hard to understand and remember. They need something, a
model or a mental image, to hang the symbols on to. Teachers can use base ten equipment,
or interlocking cubes such as Centicubes, to model a number with up to four digits. 

Sets of base 10 equipment rarely have
more than one 1 000 cube, but it is not
difficult to make these so that numbers
over 2 000 can be modelled. If the 1 cube
is a centimetre cube then extra 1 000
cubes, 10 centimetres by 10 centimetres
by 10 centimetres, may be made from
card or thick paper.4378
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c) Using Symbols to Represent Place Value

We have seen that the key to understanding place value is scale. But the key to understanding
the use of numbers and symbols to represent place value is movement. When 4 is multiplied by
10, so that it becomes 40, it moves. It moves one place to the left.

But the trouble is, it doesn’t. Few teachers would ever actually teach a pupil that
they should ‘add a nought’ to multiply a whole number by ten – but that, in reality, is
what happens. If written symbols are used to represent 4 multiplied by 10, then the
teacher may talk about the 4 moving up one place to the left, but to the pupil it is
obvious that the 4 stays put. The 0 just takes up its position after it.

In the Classroom – Modelling Decimal Numbers

The same model will serve equally well to represent a 4-figure whole number, like 4 378,
or a number which is less than 10 but runs to three decimal places, such as 4.378

In a decimal number greater than 10, however, the centimetre cube must represent 1,
so for the decimal part of the number we need 0.1 ‘slabs’ on the same scale as the whole
numbers. These are the slabs one would get by slicing a centimetre cube into ten. Making
these may seem more difficult, but in fact thick card, from a shoe box or from the back
of a pad of paper, is usually about a millimetre thick – or near enough. Centimetre
squares can be cut from this card, and ten of these will lie on top of each other to form a
cube (of sorts) about a centimetre high. Each of these 1 centimetre by 1 centimetre by 1
millimetre slabs represents 0.1 on the same scale as the centimetre cubes representing 1. 

One of these card centimetre squares may again be cut into ten ‘sticks’ a millimetre wide,
and even into millimetre cubes, to represent the 0.01s and the 0.001s, if these are required.

The bits of the number are getting almost too small to see and handle now – but this
gets across the idea of the relative sizes of whole numbers and decimals in a very
powerful manner. And while it would obviously
be absurd to try to slice the tiny millimetre cubed
0.001 cube into 0.0001 slabs one tenth of a mil-
limetre thick, the idea is there. The same cycle as
we used for whole numbers, but going in reverse –
from cubes to slabs to sticks – can give us the ’pic-
ture in the mind’ that we need to see decimal 
numbers getting infinitely small, but still accord-
ing to a strict, regular pattern.

1 cube
= 10 slabs

1 stick
= 10 cubes

1 slab
= 10 sticks

352.4

4
40
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Calculators can certainly help here. They do not just ’add a nought’
when a whole number is multiplied by 10: they visibly move the number
one position to the left. Teachers may hesitate to encourage pupils to use
a calculator to do something as ‘easy’ as multiplying a whole number by
10 – but getting the right answer really is not the point here. The calcula-
tor offers a ‘picture to think with’ which will help to combat pupils’
misconceptions about the function of the ‘0’ in this context.

Although it is a valuable tool to help pupils to understand what
happens when a whole number is multiplied by 10, with decimal num-
bers the calculator undermines its own good teaching practice. What
appears on the screen when 24.69 is multiplied by 10 is 246.9 Most of
the digits are in the same place as before: it is the decimal point that
appears to have moved, swapping positions with the 6. This image does
not convey the key concept of the movement of all the digits up one place to the left. So, rather
than a calculator, teachers need to use resources and activities that emphasise that the digits
move while the decimal point stays put. 

4 ■ PLACE VALUE AND DECIMALS
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In the Classroom – Modelling Place Value

A chart showing how each written number relates to its model will help to give meaning
to the written symbols.

4000

400

40

4

4

40

400

24.69

246.9
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In the Classroom – The Decimal Slide

A sliding model which demonstrates the movement of the digits when a decimal
number is multiplied or divided by a power of ten can be made out of a sheet of A4
paper. The paper is folded and two windows are cut, with the decimal point between
them. Then a 1- or 2-digit number, followed by some 0s, are written on a strip of paper. 

The strip of paper is fed through one end of the folded paper to slide beneath the windows.

As the strip slides to the left, the number is multiplied by 10: as it slides to the right, it is
divided by 10.

6 3 0

6 3 0 0

6 3 0 0 0

In the Classroom – Place Value and Position

Arrow Cards or a Place Value Chart (obtainable from www.education-initiatives.co.uk)
are useful tools to help pupils to relate the position of a digit to its value. 

Pupils can also make a ‘folding number’, cut out of a sheet of A4 paper, to show how
a multi-digit whole number breaks down into its constituent parts. 376, for instance,
breaks down into 300, 70 and 6, while 444 breaks down into 400, 40 and 4. See
Photocopiable Resource Sheet 5.
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All the models and activities that teachers can use to explain whole numbers and deci-
mals, and their multiplication and division by powers of ten, have one driving purpose. They all
offer a ‘picture in the mind’ that the pupil can use to make sense of place value. Symbols and
rules may mean little in themselves, and are easily forgotten. But once the conventions have
meaning, pupils are far more likely to recall and use them effectively.
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See Photocopiable Resource Sheets 6 and 7.

The vital role played by the 0 as a ‘place holder’ in, say, the number 630 becomes
clear with this sliding model. If we did not have the 0 to fill the units column then there
would be nothing to distinguish 630 from 63. Even if the paper strip is too short to show
them all, we can imagine a string of 0s trailing off to the right, ready to slide up as the
number on the strip is multiplied by ten again and again. A larger model, and a longer
strip, would allow for numbers with more digits – but a model made from a sheet of A4
paper, with two non-zero digits and three zeros, will get the idea across. It will give
pupils a visual and kinaesthetic ‘picture in the mind’ of the movement of the digits
across the decimal point that they are far more likely to remember than any number of
written exercises on static, printed sheets.

In the Classroom – Pupil Numbers

A row of pupils, each holding a card showing one digit of a ‘decimal number’, stand on
either side of a fixed decimal point drawn on a flip chart. On the command ‘Multiply by
ten’, all the pupils move up one place; ‘Divide by a hundred’ means they must all move
down two places; and so on. Other calculations involving a change to a single digit may
also be used – so ‘subtract ten’, for example, means that the pupil currently in the ‘tens’
position must swap their card for one with a lower value, while ‘add three tenths’ means
that the pupil two places down must display a higher-value card. This activity helps to
focus attention on the position of each digit, and on the way this changes depending on
the magnitude of the number being displayed. 

Place Value and Decimals – Key Points

■ The key to understanding place value is scale.

■ The cycle cubes → sticks → slabs → cubes gives us a ‘picture in the mind’ of place value at any
position in the system.

■ A 1 000 cube is the same shape as a 1 cube. It is just on a different scale.

■ The model for 4.378 is the same as the model for 4 378. Again, it is just on a different scale.

■ The key to understanding the representation of place value is movement.

■ When a number is multiplied by 10, the digits move to the left. Every teacher teaches this – but
not every pupil learns it!

■ The movement should be demonstrated not on static paper, but with a sliding model.
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Fractions

■ The ‘four rules’ for fractions are commonly presented as a set of instructions for
manipulating numbers and symbols. 

■ Shapes and patterns may be used to represent fractions, and these will help to give the
symbols meaning.

■ When the symbols have meaning pupils can understand, not just learn, the ‘four rules’.

a) Symbols and Images

The ‘four rules’ for the manipulation of fractions are some of the most complicated, confusing,
and just plain bizarre that are ever inflicted on children in our schools. 

To add two fractions, you give them a common denominator by multiplying the top and
bottom numbers by the same number and then you add the two top numbers and then you
cancel down.

To multiply two fractions you multiply the two top numbers together and the two bottom
numbers together and then you cancel down.

To divide one fraction by another you turn them upside down … No, you turn the first one …
No, the second one … Well, anyway, you turn one of them upside down and then you
multiply. Or is it divide? Divide would make more sense … Oh, and then you cancel down.
When in doubt, always cancel down. You may get a mark.

No wonder pupils – even relatively numerate pupils, who can remember the multiplication
tables at least some of the time – get confused. For a visual and kinaesthetic learner the whole
thing can be a nightmare.

It need not be. Fractions, after all, are just bits of things. They have shape and pattern.
They can be understood spatially. But the numbers can get in the way.

CHAPTER 5
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The problem with fractions is that, like so much of mathematics, they are usually repre-
sented with numbers. So the universal representation of three quarters, for example, is 3/4, not 

Each of these diagrams offers a possible interpretation of the symbol 3/4. And like numbers rep-
resented on the Slavonic abacus, each one also carries a representation of the complement to
the whole – the ‘missing’ quarter. 

The symbol 3/4 can have any of the interrelated meanings represented by the diagrams,
and many more besides – three out of every four of something; forty-five minutes in an hour;
the probability of not getting a heart when one card is picked from a pack of fifty-two; and so
on. This generality of the symbolic representation makes it very powerful, but it also makes it
confusing. All the different meanings of three quarters, and the interconnections between them,
need to be recognised and discussed – and, as always, represented in a way that can be grasped
and recalled by pupils who think more easily in pictures than in words. 

b) n nths Make a Whole One

If we want to do anything with the parts that fractions represent – if we want to add or subtract
them, for example – then we must first make sure that they are all made up of the same-sized
bits. We cannot add

, for instance, because these two fractions are different sizes and shapes.
We must first break up the two thirds and the half into pieces that are all
the same size. If we break the two
thirds into four pieces, and the half

into three, then all our pieces will be the same size and
shape – they will all be sixths.

Now all the pieces will fit together
properly, because they are all the same
size and shape. There are seven of them
altogether – four from the two thirds and
three from the half – so the total is seven sixths, or one whole and one sixth.

The key concept here, one that that needs to be rehearsed and emphasised in a lot of dif-
ferent contexts, is that n nths make a whole one. This applies no matter what constitutes the
‘whole one’. It might be a circular ‘pie’ like the ones illustrated above, or a step one unit long on
a number line, or a number of objects – a dozen eggs, say, or a bag of apples. Pupils need plenty
of experience of breaking up whole ones into n nths, physically and mentally, so they learn not
just that 1/4 is less than 1/3, and 1/96 is less than 1/57, but why. There are more quarters than thirds
in the whole one, so each quarter must be smaller than a third.

There is evidence that many pupils – not just predominantly visual and kinaesthetic
learners – find fractions easier to understand, and to work with, when they are presented as
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or or or or or
0 1 2

to

+ =
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fractions of something. This was indicated by the results of a trial to develop a series of age-
standardised mathematics tests for pupils in primary and secondary schools. Two groups, with
1 300 pupils aged between 8 and 14 years in each, were given different versions of what was
essentially the same question (Clausen-May et al., 2005; Clausen-May and Vappula, 2005). In
one version the question was presented graphically, while in the other it was presented only
with numbers and symbols. 
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Question presented with a graphic

5
7

of this rectangle is shaded.

What fraction is not shaded?

Question presented with
numbers and symbols

1 – 5
7

=

In the Classroom – n nths make a Whole One

Pupils can make a poster showing examples of shapes divided into a number of equal parts.
This will help to reinforce standard exercises on the use of conventional fraction notation.

One
whole one

1
1

= 1
Two halves

make a
whole one

2
2

= 1

Three thirds
make a

whole one

3
3

= 1

Five fifths
make a

whole one

5
5

= 1

Four quarters
make a

whole one

4
4

= 1

Six sixths
make a

whole one

6
6

= 1
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The proportion of pupils getting each question correct rose with age, as one would expect.
But overall, only 38% of the pupils were able to answer the numerically presented question,
while 61% – nearly two thirds as many again – were able to give the correct answer when the
question was presented graphically. These results offer a clear demonstration of just how power-
ful a simple ‘model to think with’ can be in helping pupils to understand what is going on
when they manipulate and calculate with fractions.

c) Calculating with Fractions

Once pupils really understand that there are n nths in a whole one they may go on to use the four
rules for fractions, using diagrams to justify and explain each step of the operation. This process
of justification and explanation is the basis of mathematical proof. It is relevant at every level
and in every area of mathematics, but it is particularly valuable for those topics, of which frac-
tions is a prime example, that are peculiarly prone to teaching and learning by rule-based rote.
Children may know how to solve a routine problem, but be quite unable to explain why the
method they are using works. A model or a diagram will very often open the door to the why,
even for pupils who are, at least for a time, capable of recalling and reproducing the steps for
the how.

Most text books introduce the four rules for fractions using a diagrammatic approach.
For example:

5 ■ FRACTIONS

39

2
3

1
2

+ = + = =

2
3

1
2

+

+

= 4
6

3
6

7
6

+ = = 1
6

1

2
3

1
2

2
3

1
2

2
3

1
2

2
6

1
3

2
3

÷ 1
2

How
many
halves

are
there in

two thirds?

How
many

three sixths

are
there in

four sixths?

A whole
three sixths

and     of
three sixths

1
3
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Diagrams like these are certainly helpful to visual and kinaesthetic thinkers. But they are often
abandoned much too quickly, before the pupil has had time to establish a ‘picture in the mind’
on which to hang their understanding, not just of the particular computation involved in the
individual question, but of the whole principle of the addition or multiplication of fractions.
Instead, they are given rules expressed in words and numbers – which they promptly forget.

But an understanding of the rules for manipulating the symbols can be based on an
understanding of the graphics. If the connections between the graphics and the rules are made
clear, then pupils who cannot recall the rules but can recall the graphics for a simple example
can work out the rest for themselves when they need to. 

In each of the tables below, the column on the left shows how the shapes are manipu-
lated for one operation. The column on the right describes the same manipulation, but in terms
of numbers and symbols. The aim should be to develop the pupils’ understanding of the con-
nections between the two. 

So, for example, the picture for the addition or subtraction of fractions is of breaking up
two different sized and shaped fractions of a whole in order to fit them together neatly. Finding
a common denominator is the numerical and symbolic equivalent of this process. 

Adding Fractions
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Using Graphics Using Rules

To add two fractions of a whole, To add two fractions, 

you break them up into same-sized bits you give them a common denominator by 
multiplying the numerator and the denominator 
by the same multiplier 

and then you put the bits together and then you add the two numerators

into whole ones and the biggest same-sized and then you cancel down and make a mixed
bits you can. number.

2–3
1–2+e.g. e.g. 

e.g. 

e.g. 

e.g. 

e.g. +

+e.g. 

e.g. 

+

4–6
3–6

+

7–6

1–6
1
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For multiplication we use the area model again, just as for the multiplication of whole
numbers (see Chapter 3). 

Multiplying Fractions

The diagrams for both addition and multiplication lead directly to the standard rules
for the addition and multiplication of fractions. The picture for the division of fractions, on
the other hand, does not lead to the ‘turning upside down’ method that pupils are often
asked to commit to memory with little or no understanding. It offers a different – and more
meaningful – approach.
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Using Graphics Using Rules

To multiply two fractions of a whole, To multiply two fractions,
you draw the two fractions of a line,

then you draw the rectangle with the two lines you multiply the two numerators together and 
as its edges the two denominators together

and find its area

using the biggest same-sized bits you can. and then you cancel down.

2–3
1–2

e.g. 

e.g. 

e.g. 

e.g. 

e.g. 

e.g. 

e.g. 

×

2–6

1–3

e.g. 

=

2 × 1–––––––3 × 2
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Dividing Fractions

Using this approach, the two fractions are first given a common demonina-
tor (or, in graphical terms, broken up into the same-sized bits), just as they are for
an addition.

Now we have a simple division – How many of the second fraction are there in the first? Because the
two fractions are made up of the same-sized bits they are directly comparable so
we are just asking, How many of the second set of bits do we need to make the first?
or What is the first set divided by the second? This translates back into the symbolic
and numerical rule, Divide the first numerator by the second.
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Using Graphics Using Rules

To divide one fraction of a whole by another To divide one fraction by another

you break them up into same-sized bits so you give them a common denomiator by 
you can compare them easily multiplying the numerator and the demoninator 

by the same mulpitplier

and then see how many of the first set of and then you divide the first numerator by the 
bits there are in the second. second numerator

and then you cancel down and make a 
mixed number.

2–3
1–2

e.g. 

e.g. 

e.g. 

e.g. 

e.g. 

e.g. 

e.g. 

÷

4–6
3–6

÷

How
many
halves

How
many
three
sixths

A whole
three
sixths

and     of
three
sixths

are
there in

four
sixths?

are
there in

two
thirds?

1–3

1–3
1

2/3 ÷ 1/2
= 4/6 ÷ 3/6

4/6 ÷ 3/6
= 4 ÷ 3

4 ÷ 3
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In each case – for addition (or subtraction), multiplication and division, the ‘picture in
the mind’ makes sense of the method. This makes it possible for the visual and kinaesthetic
thinker to work out how to carry out the calculation by recalling why the method works. 

d) The Clock Face – Another Useful Model

Another useful model for work with fractions, and one that is connected with other areas of the
mathematics curriculum, is the analogue clock face. This is divided into twelve equal sections,
conveniently labelled 1 to 12. The minute hand of the clock turns through a quarter turn to the
three, and a half turn to the six, to show ‘quarter past’ and ‘half past’ the hour. So there we are,
even before we have begun to think about fractions, with three twelfths and six twelfths equal to a
quarter and a half – all from learning to tell the time.

The other fractions on a clock face are not commonly used in the context of time – we do
not usually say three quarters past four or one third past seven. But these, along with sixths and
twelfths, may be demonstrated, using an overhead transparency of the clock face and a ‘hand’
cut out of card and attached with a split-pin paper fastener. The standard analogue clock face is
useful only for computations involving halves, thirds, quarters, sixths and twelfths – but these
are enough to establish a feel for what it means to add and subtract fractions. Pupils may have
their own smaller versions of the clock face with a rotating hand, cut out of card. Photocopiable
Resource Sheets 8 and 9 can be used to prepare these materials.
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quarter
past

half

12
1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11

12
1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11
1
3

7
12
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In the Classroom – Clock-Face Fractions

The clock face may be used to add and subtract halves, thirds, quarters, sixths and twelfths.

To start with, pupils will need to use the phys-
ical model of the clock face for computations like
these. But later, when the visual and kinaesthetic
‘picture in the mind’ has become firmly estab-
lished, they can learn to work mentally, using a
mental image to imagine the clock hand moving
around the clock face. 

This is a quick and flexible method for
the solution of such problems as 1/4 + 1/3 or
2/3 – 5/12, which, like any meaningful piece
of mathematics, is much easier to recall
than a rote-learnt rule.

12
1

2

3

4

5
6

7

8

9

10

11

1
4

1
4

+ 1
3

1
3

12
1

2

3

4

5
6

7

8

9

10

11

2
3

2
3

– 5
12

5
12

–
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Fractions – Key Points

■ Pupils often practise using the ‘four rules for fractions’ with little understanding.

■ The symbolic representation of a fraction can carry a great range of different meanings, which
need to be identified and understood. 

■ Pupils who think more easily in pictures than in words need a variety of mental images that they
can recall.

■ Diagrams for operations on fractions give the why as well as the how. 

■ The key concept is that n nths make a whole one.

■ A useful image for the addition, subtraction and division of fractions is of chopping the fractions
up into sets of equal-sized bits which can then be combined or compared directly.

■ The multiplication of fractions can be understood with an area model.

■ A clock face offers another useful model for the addition and subtraction of fractions.
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Ratio, Proportion and Percentages

■ Ratio and proportion are usually presented as primarily numerical concepts. 

■ This may make them hard for visual and kinaesthetic thinkers to grasp. 

■ Similar shapes offer a useful ‘picture in the mind’ for ratio.

■ The image of ‘bundles’ may also be used.

■ The hundred-unit percentage grid brings together fractions, decimals and percentages,
and helps to show how these are interrelated.

a) Picturing Ratios

The concept of ratio is complex. It is normally introduced in the context of relationships
between sets of numbers, rather than lengths or shapes – but this may make it more confusing
for pupils who think more readily in pictures than in words and symbols. Pupils are expected to
understand the idea of a ratio between two numbers, such as two to three, long before they meet
the concept of a pair of similar shapes, one of which is an enlargement of the other. For visual
and kinaesthetic thinkers, this may be the wrong way round.

For example, take a purely numerical problem: 

If two pounds are worth three Euros, what are four pounds worth? 

This may be represented as: 

2:3 = 4:?

There are four numbers to think about here – three given, and one to find. The pupil must
realise that the relationship between the 2 and the 3 is the same as the relationship between the
4 and the ?, and that the relationship between the 2 and the 4 is the same as the relationship
between the 3 and the ?, but the relationship between the 3 and the 4, or the 2 and the ?, is
irrelevant. Working out which relationship is which, and which ones matter, is difficult. They
are, after all, just a lot of numbers. It is not obvious which ‘go together’, or why.

CHAPTER 6
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But if, instead, the
problem relates to a pair
of mathematically similar
shapes, then the numbers
may make better sense. For
example, if the numerical
problem 2:3 = 4:? is pre-
sented in the context of a
pair of rectangles, then the
first rectangle has a height
of 2 units and a width of 3 units. The second rectangle is exactly the same shape as the first. It is
just bigger. It is twice as high as the smaller rectangle, but it has not changed its shape. It has
just grown steadily. So if it is twice as high, then it must also be twice as wide. 

Now the important relationships – the pairs of numbers that ‘go together’ – can be iden-
tified from the rectangles. The width of the first rectangle is one and a half times its height – so
the second rectangle must also have a width that is one and a half times its height. That is, the
relationship between the 2 and the 3 (the ratio 2:3) must be the same as the relationship
between the 4 and the ? (the ratio 4:?). Again, the height of the second rectangle is twice the
height of the first, so the width of the second rectangle must also be twice the width of the first.
That is, the relationship between the 2 and the 4 (the ratio 2:4) must be the same as the rela-
tionship between the 3 and the ? (the ratio 3:?). Either way I can get a feel for the size of the ?,
before I calculate it more exactly as 6. If we change the height of any rectangle then we must
also change its width, or it will distort and become a different shape. But there is clearly no
reason to focus on the relationship between the 3 and the 4, or between the 2 and the ?,
because this would involve comparing the width of one rectangle with the height of the other. 
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2

3

4

?

In the Classroom – Similar shapes

The model of a shape that ‘grows’ but does not distort may be reinforced with plenty of
graphical examples. 

If pupils have access to a
drawing package on a computer,
then holding down the shift key
and dragging one corner of any shape will cause it to shrink or expand without
distorting. This moving image provides a vivid ‘picture in the mind’ on which pupils
may base their understanding of ratio.

2 3

4

3 ?

?

1 ?

?
4 ?

?
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b) Proportion

Another useful image to help pupils to picture ratio and proportion is the
idea of ‘bundles’. The problem 2:3 = 4:? may be represented with ’bundles’
of two – with two bundles of, say, white cubes, and three bundles of grey.
This gives two white to three grey bundles, but it also gives four white to six
grey cubes. If each of the bundles contained more cubes then there could
be six white to nine grey cubes, or twenty white to thirty grey cubes, or
whatever, but there would still be only two white to three grey bundles, so
all these ratios are equivalent.

This image is particularly useful in helping pupils to understand the concept of propor-
tion, and its connection with fraction of. The terms ratio and proportion go together, but they
mean different things. A proportion is out of the whole, while a ratio is of one part to another.
The picture of the bundles of cubes allows us to use the different terms in a way that brings out
their connected meanings.

There are 2 white cubes for every 3 grey cubes. 

There are 3 grey cubes for every 2 white cubes. 

The ratio of white cubes to grey cubes is 2 to 3, or 2:3. 

The ratio of grey cubes to white cubes is 3 to 2, or 3:2. 

The proportion of white cubes is 2 out of 5. 2/5 of the cubes are white. 

The proportion of grey cubes is 3 out of 5. 3/5 of the cubes are grey.

The image of the bundles of cubes may seem easier to understand than the similar rectangles.
An example like this, perhaps involving bundles of apples and pears, or the ingredients for a
recipe, rather than different colours of cubes, is
common in primary mathematics text books. But
the bundles model is heavily dependent on num-
bers, and it may, for that reason, be less
appropriate as an introduction to ratio and pro-
portion for pupils who find numbers difficult to
comprehend. The image of a shape, growing or
shrinking but never distorting, is easier to manip-
ulate mentally. I can make a shape grow, or shrink, in one easy movement. The kinaesthetic
experience is smooth and comfortable. On the other hand, the bundles showing the connection
between the ratios twelve to sixteen, eighteen
to twenty-four, and three to four, for example,
are more fiddly. I am likely to lose track of the
difference between the numbers of  bundles
(the 3:4) and the numbers of white and grey
cubes (the 12:16 and the 18:24) in the picture.
Shapes that grow and shrink offer a more
holistic model. This may help visual and
kinaesthetic learners to grasp the principle of
ratio without having to worry about specific
numbers of cubes and bundles.
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12:16 = 3:4

18:24 = 3:4
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c) Percentages

A percentage is a proportion. It is what a fraction would be if it were out of a hundred. So to
convert a fraction to a percentage we must divide the whole up into a hundred parts. This can
be represented with a hundred-unit percentage grid superimposed on the whole. 

But the problem with converting many fractions into percentages is that they do not map easily
onto a proportion of a hundred. When the fraction is a proportion of a factor or a multiple of a
hundred it is not too difficult. The hundred-unit percentage grid can be manipulated to fit
neatly over the parts of the original fraction. So 9 out of 25, for example, can be seen as 36 out
of a hundred, or 36%. 
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In the Classroom – Maps and Scale

Maps and scale models provide a useful context for the development of pupils’ under-
standing of proportion. 

A series of maps or aerial photographs, each covering the position of the school at a
different scale, will convey a sense of ‘zooming in’ which can help pupils to develop an
understanding of scale. These could range from a plan of the solar system or a satellite
picture on a very small scale, through a selection of maps or photographs to a large-scale
plan or photograph of the classroom. Maps centring on the school may be downloaded
and printed off from the web (www.streetmap.co.uk).

Some pupils may find it interesting to consider how some dolls are distorted, while
others are fairly accurate scale models. It is commonly reported that if a Barbie doll were
a full-size woman, she would be six feet tall and, at 101 pounds, seriously underweight
(www.anred.com/stats.html). What conclusions may be drawn about other dolls? 

A collection of cereal boxes, from the ‘individual portion’ to the ‘giant’ 750 gram or 1
kilo size, can present an interesting problem. Are all the boxes the same shape (that is,
mathematically similar), or do they distort as they change size? 

3 out of 5 parts (3/5)
of the square are shaded.

60 out of 100 parts (60%)
of the square are shaded.

9 out of 25 parts (9/25)
of the square are shaded.

36 out of 100 parts (36%)
of the square are shaded.
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Similarly, a proportion of 200 can be represented by stretching the percentage grid out to show
that each ‘one per cent’ covers 2 out of the 200. 

But a hundred does not have many factors. Compared to 144, say, or 360, it has very few. Many
real problems involve proportions that cannot be represented by whole number percentages –
that is, by a whole number ‘out of a hundred’. Hampered as we are with ten fingers and thumbs,
our number system is inevitably clumsy because the base we use is not easily divisible by anything
but multiples of 2 or 5. When the fraction to be converted is not a factor or a multiple of a hun-
dred it can be difficult to ‘see’ how the hundred-unit percentage grid can be made to fit over it. 

The picture for 7 out of 15, for example, is more complicated. The hundred units of the
percentage grid will not fit neatly over the fifteenths in the fraction. Forty-six of the unit squares
are covered completely, but an odd third of each of two unit squares in the percentage grid have
to be added together to give 2/3, or 0.6

.
.

And even a common, straightforward fraction like 1/3 gives an awkward, ‘bitty’ picture which
leads to a fraction or a repeating decimal in the equivalent percentage. 
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135 out of 200 parts (135/200)
of the rectangle are shaded.

671/2 out of 100 parts (67.5%)
of the rectangle are shaded.

7 out of 15 parts (3/5)
of the rectangle are shaded.

462/3 out of 100 parts (46.6%)
of the rectangle are shaded.

1 out of 3 parts (1/3)
of the rectangle are shaded.

331/3 out of 100 parts (33.3%)
of the rectangle are shaded.
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Here there are ten odd thirds that have to be combined to make 31/3, which must then be added
to the 30 unit squares that are completely shaded in the hundred-unit percentage grid.

So the concept of a percentage may be difficult for visual and kinaesthetic thinkers to
grasp. They may understand that, when using a percentage, they are expressing a proportion out
of a hundred rather than out of some other convenient whole number. Per cent, after all, means
per hundred – out of a hundred. Using a common denominator – that is, splitting each of the
‘wholes’ into the same number of parts – makes it easy to compare the relative sizes of the dif-
ferent fractions. But a hundred is a clumsy number to use to divide up the wholes. Its use is a
matter of convention, leading directly from our decimal number system, but it is likely to cause
pupils who think more easily in pictures and models than in words and symbols some diffi-
culty. It is not easy to create the visual and kinaesthetic ‘pictures in the mind’ needed to think
effectively about percentages.

d) Making Links – Fractions, Percentages and Decimals

Most mathematics textbooks have a table showing the equivalences between some common frac-
tions, decimals and percentages. There may be a
poster displayed in the classroom showing some
of these number facts. But what these tables and
posters lack is any explanation of the why that
underlies the how. Here again, we need a picture
that will link together the three concepts – frac-
tions, decimals and percentages. It is not
immediately obvious, for example, what 1/4 has to do with 25%. The two symbolic representations
do not have a single squiggle in common. But a simple diagram can make the connection clear. 

The key here is in the use of the hundred-unit square. The poster stating the equivalences may
seem to summarise what the diagrams show – but to visual and kinaesthetic learners it is the
diagrams, rather than the lists of symbols, that summarise each set of relationships. 
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3
10

1
4

1
3

0.30.25 0.3

30%25% 33.3%

25
100

0.25

1
4

25%

30
100

0.30

3
10

30%

33.3
100

0.3

1
3

33.3%

is meaningful and memorable, but 1/4 = 0.25 = 25% is not.

.
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As always, the focus, at least for the spatial thinkers in the classroom, must be on developing
their understanding of the relationships. Then even if they cannot recall the equivalences, they
will have a way to work these out for themselves.
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In the Classroom – Making Links

Pupils can make a series of posters, each one based on a partially shaded hundred
square, with the shading expressed as a fraction out of a hundred, a fraction in its lowest
terms, a decimal and a percentage. Where the percentage is a whole number it may also
be shown on the Slavonic abacus.

Ration, Proportion and Percentages – Key Points

■ For visual and kinaesthetic thinkers, the concept of mathematical similarity holds the key to under-
standing ratio.

■ Images of ‘bundles’ are useful to bring out the relationship between ratio and proportion.

■ A percentage is a ‘proportion out of a hundred’. 

■ It can be difficult to see how the whole will split into a hundred parts, so percentages may be
difficult for spatial thinkers to visualise and understand.

■ The image of a shaded hundred square can serve to bring out the links between equivalent frac-
tions, decimals and percentages.
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Algebra

■ Algebra is, by its very nature, symbolic.

■ The algebraic x is used in different ways.

■ The image of a balancing scale may be used to establish the meaning of the equality
sign.

■ Meaningful algebraic expressions may be developed from patterns.

a) Using Symbols 

Algebra is full of symbols. The quintessential algebraic symbol for most people – adults as well
as children – is x. x crops up all over the place, with different meanings and different values in
different situations. This can be very confusing.

x can represent one or more specific values in an equation. These values are (at least to
begin with) unknown, but it may be possible to work out what they are – so x is 6 in 4 + x = 10,
for example, but it is 3 or –3 in x2 = 9. x has different values in different equations, but only
one, or a limited set, in any one equation. 

But x can also represent the variable in a function. You can choose different values for x,
and these will produce different outputs. So in the function y = x + 3, for example, y is 4 when x
is 1, but y is 96 when x is 93. 

These two uses of x, in an equation where it has a specific, unknown value, and in a func-
tion where it serves as a variable that can take different values, need to be understood. So for
early work in algebra the first thing we need is a symbol that indicates clearly, in itself, the range
of meanings and values that x can have. Some textbooks use a box for the unknown when equa-
tions are introduced, with 4 + � = 10, for example, or � – 7 = 2. This is helpful, as the boxes are
closed so we do not know what is inside, but we may be able to open them to find out. The
variable in a function, on the other hand, may be thought of as a box into which we can put a
range of values – so in = � + 3 we have a function relating the variable to the variable �,
where the number in is always three more than the number in �. Then, with time, the more
conventional letters can be introduced. 

CHAPTER 7
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b) Solving Equations – the Balancing Model 

The equality sign has a very clear meaning. It means that the total value of everything on one
side of the ‘=’ is equal to the total value of everything on the other side. 

That, at least, is the theory. But what many pupils understand by the equality sign is the
instruction: Work out the answer. They meet thousands of such orders over a period of years in
exercises set out with an equality sign and an answer space: 
3 + 6 = _____ ; 4 × 9 + 17 = _____ ; 16π – √(3.6) = _____ ; (x + 3)(x + 1) = _____ ;
and so on. In each case, the equality sign actually carries the message Do the calculation on the
left, and write the answer on the right. This can lead to such nonsensical working as:

4 × 9 + 17 = 4 × 9 = 36 + 17 = 53

The real meaning of the equality sign should be discussed early, before the introduction
of formal algebra. The visual and kinaesthetic ‘picture in the mind’ that we need here is a well-
established one, and
it is very effective. It
shows a set of balanc-
ing scales, which
must be kept bal-
anced by ensuring
that the total value of
everything in each of
the two pans is equal.

This image is
very powerful. If it is
firmly established early
on it will help to dis-
courage pupils from
representing a series of
non-equivalent expres-
sions as though they
were all equal, as in
the nonsensical work-
ing above. Since there
is a pan on each side
the equivalences work
both ways, giving both 3 + 6 = 9, and 9 = 3 + 6. The former represents the aggregation of two groups,
and the latter a partitioning of a whole number. The concept of the balance helps to discourage the
use of meaningless rules for algebraic manipulation, such as Change sides, change sign. As always, it is
the meaning that underlies the symbols that must be the focus of attention, not a set of rules for their
manipulation.

TEACHING MATHS TO CHILDREN WITH DIFFERENT LEARNING STYLES

54

3 + 6 =
?

4 × 9 + 17 ? + 17

36 + 17

4 × 9 + 17 =

?

4 + = 10
?

– 7 = 2

2 ?

7
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c) Writing Expressions

Just as numbers may be understood holistically, as patterns of dots on a Slavonic abacus, so
algebraic expressions may be given a graphical meaning that will help pupils who think more
easily in pictures than in words and symbols to understand and work with them effectively. 

A series of patterns that grow according to a regular rule offers a useful context for writing
a meaningful generalised expression. The algebraic expression for the nth member of the series
can be pulled directly out of the patterns. The series can start simply, but combine and build up
to more elaborate patterns which are represented by complex, but still meaningful, expressions. 
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In the Classroom – Writing Simple Algebraic Expressions

Pupils can use a set of shapes with given areas to make
simple patterns, then express the total areas of their pat-
terns algebraically.

s

t

s + 4t

2s 2s 2s

2s 1/2s + 2t

They may be challenged to make two or more patterns with areas that are represented by
the same algebraic expression.

This gives a kinaesthetic and visual meaning to the process of ‘collecting like terms’, in
a meaningful mathematical context.

Geoff Giles uses this approach in Algebra through Geometry, a DIME resource available
from Tarquin Publications (www.tarquinbooks.com).
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In the Classroom – Generalised Expressions from Series

Pupils can make a series of simple patterns of counters, then use this as a basis for more
complex patterns. For example, Pattern n in this series is made of n2 counters.

Adding 4 counters to each pattern gives a related series. Pattern n in this series is made of
n2 + 4 counters.

Or we can double up on the original series, to get a series of patterns made with 2n2 counters.

Making two patterns for n2 overlap can give us 2n2 – 2,

Pattern 1
(12)

Pattern 2
(22)

Pattern 3
(32)

Pattern 4
(42)

Pattern 1
(12 + 4)

Pattern 2
(22+ 4)

Pattern 3
(32+ 4)

Pattern 4
(42+ 4)

Pattern 1
(2 × 12)

Pattern 2
(2 × 22)

Pattern 3
(2 × 32)

Pattern 4
(2 × 42)

Pattern 1
(2 × 12 – 2)

Pattern 2
(2 × 22 – 2)

Pattern 3
(2 × 32 – 2)

Pattern 4
(2 × 42 – 2)
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If algebraic expressions mean something, then the rules for algebraic manipulation will make
much more sense. A series of patterns can be shaded in different ways to show why two expressions
which look very different may be equivalent. For example, the counters in the series of patterns:

may be coloured to show that Pattern n in the series has n2 + 4n counters:
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or 2n2 – n.

And what about a series of patterns with n2 – 2n counters? Or 2n2 – 3n + 4? The possi-
bilities are endless – but each expression, no matter how complex, has meaning when it
is used to express the number of counters in the nth member of a series of patterns. 

Pattern 1
(2 × 12 – 1)

Pattern 2
(2 × 22 – 2)

Pattern 3
(2 × 32 – 3)

Pattern 4
(2 × 42 – 4)

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Pattern 1 Pattern 2 Pattern 3 Pattern 4

n

n

n

nn2
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Alternatively, they may be coloured to show that it has n(n + 2) + 2n counters:

Or, with attention drawn to the ‘missing’ counters in the corners, the number of counters in
Pattern n can be seen to be (n + 2)2 – 4: 

These diagrams are a graphical representation of the algebraic equivalences,

n2 + 4n = n(n + 2) + 2n = (n + 2)2 – 4. 

In each case, the expression can be pulled directly out of the structure of the series of patterns.
Each part of the expression can be related back to the relevant sections of the pattern, to give it
a meaning that can be seen and understood.

d) Multiplying Algebraic Expressions 

We have seen how the physical and spatial concept of the area of a rectangle can help pupils to
put meaning into both single-digit and long multiplication (see Chapter 3). The same approach
may be used to explain what we are doing when we multiply two fractions (see Chapter 5).
Now this invaluable ‘picture in the mind’ makes another appearance, as we come to multiply a
pair of algebraic expressions.

Algebraic expressions may be multiplied out sequentially, taking pairs of terms, one from
each expression, in turn. For example:

TEACHING MATHS TO CHILDREN WITH DIFFERENT LEARNING STYLES

58

Pattern 1 Pattern 2 Pattern 3 Pattern 4

n

n(n + 2) n

Pattern 1 Pattern 2 Pattern 3 Pattern 4

–1

–1

(n + 2)2
–1

–1

(x + 3)(x + 1) = x2 + x + 3x + 3 = x2 + 4x + 3
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Provided pupils keep track of the pairs of terms this will generally lead to the right answer. But it
may leave pupils unsure as to why the method works. It may be clear where the x2 comes from –
after all, the x in one bracket has been multiplied by the x in the other. But why does the final
expression contain all those loose xs? What do they mean? How are they different from the x2? 

Finding the area of a rectangle with sides
of length (x + 3) and (x + 1) gives meaning to
the whole process. 

The expressions to be multiplied
out may be more complex – for
example:

If there are negative signs in the expressions then
it is helpful to think in stages. For example, to
find the area of a rectangle with sides of length
(a + 6) and (a – 2), we first find the area of a
rectangle with sides of length (a + 6) and (a), 

and then we ‘strip off’ a rectangle with
sides of length (a + 6) and 2.
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x

x 3

1

(x + 3)(x +1)

x2 3x

x 3

x2 + 3x + x + 3

2n

3n 4
(3n + 4)(2n +2)

n2

6n2 + 8n + 6n + 8

2

n2n2

n2n2n2

6n

8n

8

a 6

a

(a + 6)(a – 2)

–2

a 6

a

a2 + 6a……

6aa2

a 6

a

……–2a – 6

–6–2a –2
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Similarly, to find the area of a rectangle
with sides of length (m – 3) and (m – 4), 

we start with a rectangle
with sides of length m.

But now we have stripped off the darkly
shaded rectangle in the bottom right-hand
corner twice. This has sides of length 3 and 4,
so this area, 12, must be added back on. This
gives us the expansion: 

(m – 3)(m – 4) = m2 (the m by m square, with nothing stripped off) 

– 3m (the 3 by m rectangle stripped off)

– 4m (the 4 by m rectangle stripped off)

+ 12 (the doubly-stripped 3 by 4 rectangle replaced.)

The series of diagrams, like those for the previous calculations, not only enable us to expand a
pair of brackets, but also to see where each term in the expansion comes from. Why are the
terms in m negative? Because we stripped these rectangles away from the m by m square that we
started with. Why is the final numerical term positive? Because we have to put back what we
have stripped off twice. The whole thing makes sense. 

But here again, as so often in mathematics, understanding what is going on takes longer
and is more demanding than simply learning a method to get the right answer. The so-called
‘boxes method’ – see below – may help some pupils to keep track of the steps in the calcula-
tion, but it will do little to enable them to understand what they are doing. This example serves
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m

m

–4

–3

(m – 3)(m – 4)

m

m m2

m2

m

m –3m

–3

m

m –3m

–3

–4 m –4

m

m –3m

–3

–4 m –4+12

Then we strip off two
rectangles – first one
with sides of length
m and 3

followed by a rectangle
with sides of length m
and 4.

+ 12

– 3m
– 4m
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to demonstrate how easily an approach designed to foster pupils’ understanding of key mathe-
matical concepts can be corrupted into yet another set of ‘rules’ for getting ‘right answers’ –
meaningless, irrelevant, and altogether forgettable!
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� NOT to be used – The ‘Boxes’ Method

The area approach to the multiplication of two algebraic expres-
sions can be corrupted quite easily into just another routine – the
so-called ’boxes’ method. This is nothing more than a way of
laying out the computation. It does not show why both the terms
in m are negative, nor why the ‘12’ is positive. If anything, it is
likely to prove more confusing than the linear layout, as it seems
to suggest that all the ‘boxes’ are the same size, and that three of
them have one or more negative edge lengths. This method is
more cumbersome, and takes longer to draw, than the
conventional ‘pairing off’ routine. It has little to recommend it – and it will certainly not
offer a ‘picture in the mind’ that will support pupils’ understanding of the principles that
underlie the process of multiplying a pair of algebraic expressions.

m

m –3m

–4m 12–4

m2

–3
(m – 3)(m – 4)

Algebra – Key Points

■ An algebraic x can have two different uses: as the unknown in an equation, or as a variable in a
function. These different uses need to be understood.

■ The equality sign, =, means that the total value of everything on one side of the symbol is equal
to the total value of everything on the other. It does not mean ‘Do this sum’.

■ The balancing model is a valuable ‘picture in the mind’ to help pupils to understand the meaning
of the equality sign.

■ Simple patterns and growing series can give meaning to simple and generalised algebraic expressions.

■ The area model is once again useful in helping pupils to understand what happens when a pair of
algebraic expressions are multiplied together.
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Shape, Space and Measures 

■ Diagrams and models form the basis of Shape, Space and Measures, but the static
limitations of the printed page often dominate the curriculum.

■ ‘Mathematical’ vocabulary hides, instead of revealing, meaning.

■ Key concepts in Shape, Space and Measures are often reduced to a set of formulas.

■ ‘Pictures in the mind’ can enable pupils to re-create concepts and formulas when they
need them.

a) Vocabulary 

School mathematics is steeped in hard words. Nowhere is this more evident than in the Shape,
Space and Measures curriculum. Mathematical language may present a major hurdle to pupils
who could otherwise fly with the ideas and images of shape and space, causing them instead to
crash on the mass of mathematical jargon. Kilogram, perimeter, pentagon … these are all hard
words, although they refer to quite straightforward ideas. 

It is worth spending time making as much sense as possible out of the jargon, de-mystifying
it wherever you can. Pentagon, for example, is simply the Greek for five sides. Talking in Greek is no
more mathematically correct than talking in English – so pentagon is not a more mathematical
term than five sides. Our use of Greek in the mathematics classroom is just a historical accident –
and it is not helpful to pupils who may find it harder to remember the new word than to under-
stand what it means in the first place. 

Pupils need to learn a lot of mathematical jargon in order to achieve under our curricu-
lum. However, it is important always to keep a clear distinction between the mathematical
concepts that need to be understood, and the vocabulary used to describe them. So, for exam-
ple, pupils may identify pairs of shapes that are exactly the same, and others that are the same
shape but different sizes, long before they learn the ‘mathematical’ terms congruent and similar.
Some pupils may succeed in such mathematical activities but struggle to get started in vocabu-
lary-heavy tasks. Mathematical terminology may form a barrier for these pupils, and they are
likely to engage with the subject better if they are presented with some activities that do not
contain such linguistic hurdles.

CHAPTER 8
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Posters headed ‘Hard Words, Easy Ideas’, illustrating the concepts and offering a simple,
straightforward translation of so-called ‘mathematical’ terms may help pupils to understand, and so
to remember, the words they need. Some pupils may also find it helpful to associate words with
movements. If you are fortunate enough to have a hearing-impaired pupil who uses Sign in the class-
room, then they might be willing to demonstrate some of the signs they use for ‘mathematical’ terms.
These are often far more meaningful than the accepted spoken and written words. Alternatively,
pupils might create their own movements which convey the meanings of mathematical terms that
they find hard to remember, and practise saying the words while carrying out the movements. 

b) Area and Perimeter

Two concepts that are often introduced together are area and perimeter. Pupils spend time draw-
ing shapes on squared paper, and counting and recording the number of squares used (the
area), and the number of units around the edge (the perimeter).
But this approach focuses on the numbers – and to a visual and
kinaesthetic thinker one number is very like another, so area and
perimeter are likely to get muddled. 

Activities that relate area and perimeter to different materials
may provide a firmer foundation than mere counting for the
development of these concepts. Square tiles, which can be picked
up and moved around, provide a better starting point for area
than drawn squares. A set of sticks that are the same length as the
edge of a tile provide a model of the perimeter. The challenge
may then be set to surround a given number of tiles with differ-
ent numbers of sticks, or to fill a space surrounded by a given
number of sticks with different numbers of tiles. This is mathe-
matically equivalent to finding sets of shapes with the same area
but different perimeters, or the same perimeter but different
areas – but it focuses on the common values of the area or the perimeter, not on the words. 

This is certainly not a new type of activity. Shapes made with squares joined together
edge-to-edge are called polyominoes – like dominoes, which are made with two squares, but with
‘many’ (poly) instead of ‘two’. Simply finding lots of different polyominoes made with different
numbers of square tiles is a valuable activity in itself. Finding their areas and perimeters is a
natural development. But using square tiles and unit sticks will help pupils to focus distinctly
on the two different measures, area and perimeter. In time they may well switch to the conven-
tional drawings on squared paper – but the memory and feel of the square tiles and the sticks
will help them to keep sight of the meaning of the different measures they are using.
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In the Classroom – Metric Measures

The system of metric measures has the advantage that it is consistent, so there are not, in fact,
very many new words to learn. The word kilo, for example, just means a thousand, whether it
be a kilo-gram, a kilo-metre, or a kilo-litre. Pupils may be invited to invent their own uses of kilo
– so a kilo-tree, for instance, might be a wood with a thousand trees, or a kilo-book, a library
with a thousand books. What could we mean by a kilo-pupil, or a kilo-smile?

12 sticks

5 tiles 9 tiles

5 tiles

10 sticks 12 sticks
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In the Classroom – Area and perimeter Scatter Graph

A scatter graph may be used to develop pupils’ understanding of the relationship
between area and perimeter. Shapes made with different numbers of squares
(polyominoes) may be cut out, and stuck onto a large graph with Perimeter along the x-axis
and Area along the y-axis. 

This representation can encourage pupils to ask more questions – 

What is the greatest/smallest number of tiles that can be used to make a polyomino with
a given perimeter? What is the greatest/smallest perimeter of a polyomino made with a
given number of tiles?

Other ways to develop this activity, and its use in assessment for learning, can be found
in Clausen-May (2003).

Area
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4
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6

4 6 8 10 12 14 Perimeter

In the Classroom – Vocabulary: Area and Perimeter

The ‘mathematical’ terms area and perimeter may become easier to remember if they are
associated with appropriate movements. 

Area is a measure of flatness. A common sign for area is a hand held flat above the
table, and moved round in a horizontal plane as if to
smooth the air underneath.

A perimeter is the distance around a shape. The
common sign for this uses both hands. The forefinger of the
left hand is held up, and then a roughly square path is
sketched out in the air with the forefinger of the right hand. 

A CD showing signs for a wide range of mathematical
terms, Signs for Education – Mathematics, is available from
Microbooks Ltd, at www.microbooks.org. These may be useful
for any pupil who finds it easier to remember meaningful
movements than arbitrary words.
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c) Models for Formulas 

School mathematics is riddled with ‘procedures’, which pupils may be expected to learn,
remember and apply. Shape, Space and Measures is as badly affected in this respect as any other
area of the curriculum. Test and examination papers commonly include a Formula Sheet, in
which all the pupil’s understanding of the concepts of area and volume is reduced to a set of
rules. Even when this sheet is not provided, pupils may still be taught the formulas by rote,
rather than developing an understanding of the mathematics that underlies them. Then, of
course, they forget them.

So here again, pupils who think more easily in pictures than in words and symbols need
‘models to think with’. The models make sense, so they are memorable – unlike the formulas.
And having remembered the relevant model, the ‘picture in the mind’, the pupil can work out
the formula they need for the problem they are working on. 

The first formula pupils are likely to meet is for the area of a rectangle. They start by find-
ing the areas of small rectangles by counting squares – that is, by yet more sequential recitation
of disconnected number words. This follows logically from the standard introduction to
Number, relying heavily on counting, that was discussed in Chapter 2, but it is less helpful for
pupils who see the whole picture at once. On the other hand, visualising a rectangle, and find-
ing its area, lies at the heart of the area model of multiplication discussed in Chapter 3. Pupils
who see the calculation 3 × 4, for example, as

have no need of a formula. They already understand the relationship between the edge lengths
and the area of a rectangle on which the formula is based.

The area of a parallelogram can be worked
out directly from the area of a rectangle. The paral-
lelogram can be cut into pieces, then reconstructed
into a rectangle.

Alternatively, a possibly more memorable model can be made from a stack of cards, such
as playing cards or off-cuts from a print shop, formed into a block. 

An elastic band holds the stack together,
but allows it to be sheared one way or the
other. The front face of the stack, which was a
rectangle, is transformed by the shearing into a
parallelogram with the same height and base. 
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It also has same area as the original rectangle,
as no cards have been added or removed. With this
kinaesthetic and visual ‘picture in the mind’ on
which to base their thinking, pupils can see how 

any parallelogram can be sheared back into a rectangle with the same base length, height and area.

Using the same model, a diagonal line and
some shading drawn on the other side of the stack
will help pupils to perceive a right-angled triangle
as half of a rectangle. Any other triangle can then
be seen as a shearing of a right-angled triangle
with the same base length, height and area.

A different stack, made of thin tiles
rather than cards, offers a model from which
the area of a trapezium can be seen. Like the
model for the parallelogram this is made up of
a stack of rectangles – but the width of each
rectangle is slightly less than the width of the
one below. Since they are all slightly different
shapes it is easier to make this model with a
thicker material than card. Expanded poly-
styrene ceiling tiles are suitable: they are easy
to cut to size, and are thin enough to give a
clear outline to the trapezium in the model. 
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The model shows how any trapezium can be sheared into a right-angled trapezium,
whose area can be partitioned into a rectangle and a triangle.

The area of the rectangle is a × h, and the area of the triangle is 1/2 (b – a) × h, so the total
area of the trapezium is the sum of these, a × h + 1/2 (b – a) × h. This is not the standard formula
for the area of a trapezium (1/2 (b + a) × h), but it is algebraically equivalent so the outcome is
the same. The model makes sense in a way that the formula may not, so it can be recalled as a
‘picture in the mind’ and used to work out the formula when this is needed.
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Shape, Space and Measures – Key Points

■ ‘Mathematical’ vocabulary may present a greater hurdle to some pupils than any aspect of the
mathematics itself. It should be de-mystified as much as possible.

■ Meaningful movements, such as those used in signing, may help pupils to recall some
mathematical terms.

■ Area and perimeter are often confused.

■ The distinction between area and perimeter can be established more firmly with the use of a dif-
ferent material to represent each measure.

■ Pupils who think more easily in pictures than in words and symbols struggle to remember formulas.
A kinaesthetic and visual ‘picture in the mind’ is more meaningful, and therefore more memorable.
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Angles and Circles

■ Angle is a measure of turn. π is a ratio.

■ These key concepts are often lost in static images on the printed page. 

■ Here again, pupils need visual and kinaesthetic ‘pictures in the mind’ that they can use
as a basis for their mathematical thinking.

a) Angle

An angle is a measure of turn. It is a measure, not a shape. Yet it is not classified as part of the
Measures curriculum. It is commonly introduced, first and foremost, as a property of two-
dimensional shapes.

So – what is an angle? Can we draw an angle, and print the drawing on the page?

Well … no. We can’t. An angle is a measure of turn. A turn is a move-
ment. And we cannot draw a movement. At best, we can draw a
representation of the movement – something like this, perhaps:

But very often, right from the start, we speak and
write of an angle, and represent it, as if it were a
relationship between a pair of lines. The crucial
arrow, to show that the curved line represents a
movement, is lost:

And in the case of a right angle, convention has done away with even the hint
of movement conveyed by the arc:

So here again, the predominance of print over objects and models in the representation
of a mathematical concept may undermine pupils’ understanding, and lead them to perceive an
angle as a pair of straight lines rather than as a measure of turn. The kinaesthetic concept, which
is all about movement, has been superseded by a static representation that is easier to print, but
does nothing to convey the real meaning of angle.

CHAPTER 9
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Introducing angle with Shape rather than with Measures may lead to a common miscon-
ception about the relative sizes of angles. 

These two lines:

are longer than these two lines:

so pupils may not unreasonably
assume that this angle: 

They focus on the static, printed image of a pair of intersecting lines, rather than on the movement.
The meaning of angle as a measure of turn, going from one direction to another, is lost.

Activities (activities – not written exercises) that involve pupils in turning either them-
selves or an object are essential to establish a foundation for the understanding of angle as a
measure of turn. An angle machine, cut from card, provides a good model of angle as a measure
of a turning movement (see Photocopiable Resource Sheet 10). This can be marked off first in
simple fractions of a turn – halves, quarters, thirds, sixths and, perhaps, eighths or twelfths.
Degrees can be introduced later as just another, smaller, fraction of a turn.
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is greater than this angle: 

In the Classroom – Following Routes

Pupils can follow a series of instructions
involving movement forward (and
backwards) a number of steps, and clock-
wise or anti-clockwise turns. The turns may
be expressed first as simple fractions of a
turn – quarter, half and three quarter turns,
and then perhaps eighths of a turn. Later,
pupils may use an angle machine (see
below) to help them to turn through other
fractions of a turn, or angles. Logo may be
used to program a robot or a screen turtle to
follow a path.
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If angle is thoroughly understood as a measure of turn then, here again, links may be
made with other topics in different areas of the curriculum. A degree is just one particular
example of a fraction of a turn. Degrees have been adopted by convention as the common
units for the measure of angle, but they are not essentially different to other fractions of a turn.
An analogue clock and a compass both rely on our ability to measure turn, although they use
different units of measurement. On an analogue clock the hours, minutes and seconds are rep-
resented by the movement of the hands through twelfths and sixtieths of a whole turn, while a
compass movement from, say, North to North East is an eighth of a turn. Linking angles firmly
to the concept of fractions of a turn will help pupils to understand both, and to use them in a
range of contexts.
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In the Classroom – Growing Angles

The angle machine can be used to show an angle
increasing steadily in size. As it passes through 90° it
goes from being acute to being obtuse. Similarly, the
idea of an ‘angle’ of 180°, which marks the barrier
between obtuse and reflex angles, is much easier to
grasp in the context of angle as a measure of turn.
(The ’mathematical’ terms acute, obtuse and reflex are
Latin, not Greek this time – they just mean ‘sharp’,
‘blunt’ and ’reflected’.) 

The dark centre-circle of the angle machine may be
inserted on the plain side of the frame. This allows the
teacher to show an angle ‘growing’ to a given size,
which pupils can estimate. 
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b) Angle Properties

If an angle is understood as a measure of turn, not as a static relationship between two straight
lines, then many of its properties become easier to understand. For example, turning through a
pair of angles on a line involves turn-
ing through a half turn, or 180°. So
angles on a line, or complementary
angles, have a total measure of 180°. 

Opposite, corresponding and alternate angles (more hard word for easy ideas!) form an inter-
connected whole when they are
placed in a grid of parallel lines.
If the grid is squeezed, then all
the angles change together. 
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In the Classroom Playground – 360° Protractor and Compass

A giant 360° protractor marked out at 10° or 30° intervals in the playground will encour-
age pupils to think about angle as a measure of turn. Pupils can stand in the middle, then
turn themselves through a given angle. This kinaesthetic experience will be much more
meaningful, and memorable, than measuring or ‘drawing’ static angles on paper.

If the protractor is oriented so that ‘0’ is to the north, and the points of the compass
are added, then the link between angle as a measure of turn and compass directions will
become clearer. 

In the Classroom – 360 Degrees

Pupils may be asked to find out why there are 360 degrees in a whole turn. Research into
the history of mathematics should turn up the link to the Babylonians (for example, visit
www.bbc.co.uk and search for ‘360 degrees’) – but the pragmatic reasons for choosing
360, as opposed to any other number, may also be discussed. 360 has a lot of factors,
including 3, 4, 5 and 6, so the external and internal angles of an equilateral triangle, a
square, and a regular pentagon and hexagon are all a whole number of degrees. Pupils
might like to consider what the effect would be of adopting a different convention –
with, say, 100 degrees in a whole turn. 
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A pair of opposite angles are, of course, opposite each
other – so if one gets bigger, then so does the other.
Similarly, a pair of alternate angles (the angles inside a Z-
shape) will change together. Corresponding angles sit on a
pair of parallel lines. The lines move together in the grid, so
these angles, too, change together. The visual and kinaes-
thetic ‘picture in the mind’ is of the grid being squeezed,
first one way and then the other. There are only two sets of
angles, and all the angles in each set are the same size. They
all change together when the grid is transformed.

c) Circles and π

The formulas for the circumference and the area of a circle are probably the most consistently
confused in the mathematics curriculum. There are few combinations of ‘2’, ‘r’, ‘π’, ‘r2’ and ‘π2’
that do not turn up, at one time or another, masquerading as ‘formulas’ in the piles of exercise
books from pupils who are struggling with the dimensions of a circle.

The first problem is π. What is it? Is it a number? Is it 3.14159 … , or whatever?

Well – not exactly. It is a ratio. π is the number of times I would have to walk across a
circle in order to go the same distance as someone walking all the way round it.

How many times straight across is the same as all the way round?
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Opp.
Opp.

Cor.

Cor.
Alt.

Alt.

In the Classroom – Angles in a Grid

Pupils can make a grid of plastic or card
strips, joined together with split pin paper
fasteners. As the model is expanded and
contracted the pairs of opposite,
corrresponding and alternate angles increase
or decrease together, always maintaining
their equal measures. 
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Using this kinaesthetic, movement-based
approach, it is not hard to see that the
number of times must be greater than 2. 2
would take me straight across and straight
back, with no allowance made for the
curved nature of the path around the edge
of the circle. 

But it cannot be as much as 4, because 4
times the distance straight across the
middle of the circle would take me along
the edge of a square which surrounds the
circle. I would be walking further than the
person going right round the edge of the
circle, because she would be cutting the cor-
ners of my square.

So π must be more than 2 but less than 4. As a first approximation, π is 3.

In fact, π is just a little bit more than 3. We can see this by thinking
about a regular hexagon, made up of equilateral triangles.

Walking right round the hexagon would take me along six triangle edge-
lengths. This is exactly 3 times the distance straight across the middle.

A circle that just fits around the hexagon will have the same distance
straight across the middle as the hexagon. 
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All the way round is more than there and back.
So π is more than 2.

Round the circle is less than round the square.
So π is less than 4.

The distance
right round the hexagon

3 times the distance
straight across the middle

is exactly
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But the distance round the circle is a little bit more than the distance
round the hexagon. So it is a little bit more than 3 times the distance
straight across the middle. So π is a little bit more than 3.

π relates the distance all the way round a circle to the distance straight across it. It relates
the circumference to the diameter, to use the popular (among mathematicians) jargon. The cir-
cumference is a little bit more than 3 times the diameter. This number, ‘a little more than 3’, is
π. So the circumference is π times the diameter. 

But that can create another confusion. π is
defined in terms of the circumference and the
diameter – the distance around the circle, and the
distance all the way across. But the standard for-
mulas for the circumference and area of a circle,
C = 2πr, and A = πr2, are expressed in terms of
the circumference and the radius. This is the dis-
tance half way across the circle, not all the way.
Pupils need to understand clearly the difference
between these two distances – which is easy if
they are part of a picture, on paper or in the
mind, but much more difficult if they are just
squiggles on the page.

So we can see – literally see if we draw or imagine a circle that just fits around a regular
hexagon – that the circumference of a circle is 3 and a bit, or π, times the diameter. This is the
same as twice π times the radius, so C = 2πr. The formula can be taken directly out of the ‘pic-
ture in the mind’: there is no need to memorise it.
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Circumference Radius

Circumference Diameter

In the Classroom – Circle Vocabulary

’Mathematical’ terms may be associated with movement to make them more memorable.
For example, to learn the words associated with a circle, the pupil stands and chants:

I am the centre of the circle;

Radius; [Flings one arm straight out.]

Diameter; [Flings out the other arm.]

Circumference! [Turns right round on the spot.]

If some pupils are unwilling to take part in this activity, they will still benefit from
watching other pupils (or the teacher) do it.
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d) The Area of a Circle

A different ‘picture in the mind’ is needed to find the area of a circle. For this we can imagine a
circle that is sliced from the top to the centre, and then opened out into a wide, low triangle.

The area of the circle is the same as the area of the triangle. 

The base of the triangle is the circumfer-
ence of the circle.

The height of the triangle is the radius of
the circle. 

The area of any triangle is half its base
times its height. So the area of this circle-
turned-triangle is half the circumference
times the radius. 

In symbols, the area of the circle (or of the triangle) is 1/2 × 2πr × r, or πr2. 

Here again, the aim of the models and images is to establish visual and kinaesthetic ‘pic-
tures in the mind’ that pupils can recall later. These will enable the pupils not to remember the
formulas but, rather, to re-construct them when they are needed.
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Angles and Circles – Key Points

■ An angle is a measure of turn, not a pair of static straight lines.

■ Activities that involve pupils moving an object or themselves through angles will help them to
recognise angle as a measure of turn.

■ A degree is just one particular fraction of a turn. 

■ Other fractions of a turn are used to measure time on an analogue clock, or movement between
the points of a compass.

■ Opposite, corresponding and alternate angles are pairs of angles that change together on a
transforming grid.

■ π is the number of times I would have to walk straight across a circle (the diameter) in order to
go the same distance as someone walking all the way round it (the circumference).

■ π is a bit more than 3, so the circumference of a circle is a bit more than 3 times the diameter.

■ A circle may be opened out into a triangle whose base is the circumference, and whose height is
the radius. The area of the triangle (half its base times its height) is the same as the area of the
circle (half its circumference times its radius).

■ The formulas for the circumference and area of a circle can be taken directly out of the models
and the ‘pictures in the mind’. They do not need to be memorised.

In the Classroom –Area of a circle

A model may be made, consisting of a series of rings of 
beads that can be opened out to form a triangle.

Alternatively, a set of magnetic balls
(‘Magic Marbles’, available from the
Mathematics Enrichment area of the
Tarquin website, www.tarquinbooks.com)
may be arranged into a (rough) circle,
starting from the centre and building out
one ring at a time. With care and a little
practice, this can be opened out to form
the triangle. Either of these models can be shown on an overhead projector. 
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Data Handling

■ Data Handling lends itself to a more practical approach than other parts of the
mathematics curriculum. 

■ Pupils are likely to engage with activities in which they collect, process and represent
their own data.

■ Some pupils’ confidence may be undermined by the sheer quantity of numerical data in
lists and tables.

■ Graphical representations can convey the overall shape of the data, but they may
disguise unreliably small sample sizes.

■ Some data-handling activities can involve shapes rather than numerical data.

a) Seeing the Data

Data handling has a rather special place in the school mathematics curriculum. It is generally
agreed that an understanding of statistics and their representation is essential in a literate and
numerate society, if only to help us to distinguish the ‘damn lies’ from the ‘statistics’ in political
speeches or newspaper articles. But data handling is a relative newcomer to the school curricu-
lum, and this may be why it is often approached in a different way to the rest of mathematics.
Statistics, after all, have to be about something – and that ‘something’ may affect the way the
subject is presented and discussed. It may provide a context for the lists and tables of figures,
and this can help to give them some meaning. Mathematics textbook writers and examiners are
often happy enough to require pupils to do a calculation, or to find a length or an angle in an
abstract diagram, with no context. But if pupils are asked to draw a bar chart or to find the
mean of a set of figures, then this must be in order to represent and process some data – and
that data is likely to have a context. It may even relate to observations or results that the pupils
themselves have collected. Generally speaking, school mathematics exercises in data handling
are more likely than those in other areas of the curriculum to be in context.

The raw data itself – the lists of figures and tables – can be quite daunting. But many
school data-handling activities involve data that is summarised and represented in a range of

CHAPTER 10
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graphical forms, and this can make the topic more meaningful to pupils who think more easily
in pictures than in numbers and symbols. For example, the same information about a group of
pupils who go to dance and to music lessons might be shown in two forms – in a table and in a
Venn diagram. 

The diagram brings out the relationships between the figures in a way that the simple table
cannot do. The total group of dancers, for example, is shown in the right-hand loop, while the
dancers who also go to music lessons are shown in the middle where the two loops overlap.
The position of the figures on the diagram mirrors the positions of the pupils they represent in
the two groups.

A long list of figures may convey little in itself, while a simple bar chart gives the numbers a
dimension that makes it possible to take in the overall shape of the data at a glance. For example,
the table below shows the number of goals scored by a team in each of twelve matches one season.

This raw data can be col-
lected into a frequency
table, to show how
often the team scored 0,
1, 2, 3 or 4 goals.

But this table still presents a bewildering
array of figures. The same information
can be presented more graphically in a
bar chart.

The bar chart gives an overall pic-
ture of the data. For example, it enables us
to see at once, with no need for any com-
putation, that in more than half of the
matches the team scored two or three
goals. Graphical representations like these
can help pupils to get beyond the detail of
the specific figures to look at their overall
shape, and the relationships between the different parts. This will enable them to grasp the
whole pattern without being distracted, and possibly confused, by the individual values that
make up the total data set. 
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Music Dance

11 84
Music Dance Both
only only

11 8 4

Match 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Goals 2 0 3 2 3 2 2 0 4 1 3 2

Number of goals 0 1 2 3 4

Number of matches 2 1 5 3 1

1

0

2

3

4

5

6
Number of
matches

Number of goals
0 1 2 3 4

9620 CHAP 10 77-83  17/8/05  1:45 pm  Page 78



10 ■ DATA HANDLING

79

In the Classroom – Scattered Pupils

The pupils themselves can provide a useful starting point for a lot of work with data han-
dling. For example, each point on a scatter graph can represent a pupil, so the meaning
of the statistics and their representation will be clear and relevant.

Prepare a large grid with the axes labelled with the two measures whose relationship is
to be graphed. For instance, the scatter graph might show two body measurements, such
as height and hand span, or it might show distance travelled to school against time taken.

Each pupil takes a sticky label, such as a small Post-it note, writes their initials on the
label, and sticks it in the correct position on the scatter graph. If this is done bit by bit,
with different groups of pupils adding their labels one after another, the overall pattern
of the relationship between the two sets of data will emerge gradually. Each pupil’s iden-
tity with one particular point on the scatter graph – ‘That label there is me!’ – will help
them to understand the whole diagram as a collection of individual data points, without
losing sight of the overall shape of the data. With this approach there are no lists of fig-
ures to be processed. Rather, the graph is built up directly from the data.

Plotting different measures against each other will help pupils to recognise the con-
cepts of strong, weak and no correlation. Either of the graphs described above, for
example, is likely to produce some degree of positive correlation – taller pupils are more
likely to have a larger hand span than shorter, and pupils who travel further are likely to
take longer. On the other hand, hand span is not likely to correlate with distance travelled
to school, and a plotting of these two factors may show the lack of relationship clearly.

Once they have grasped the concept of a scatter graph, the pupils themselves may
suggest other data sets that can be graphed against one another. 
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b) Using Non-numerical Data

Many data-handling activities require pupils to work with a lot of numbers. Data sets are often
composed solely of numbers, sometimes in large collections. For those pupils who think more
easily in pictures and movements, the
numbers may get in the way of their
understanding of key concepts of
data handling. 

But some aspects of the topic
can be introduced with shapes, and
this may offer a more effective way in
for pupils for whom numbers will
always remain suspect and hard to
grasp. In Chapter 8, Shape, Space and
Measures, we saw how shapes made
with squares joined together may be
placed on a scatter graph according to
their areas and perimeters. Similarly,
different kinds of sorting diagrams,
such as Carroll or Venn diagrams, may be introduced using a set of shapes. Activities like these,
which bypass the numbers and enable pupils to build up a graph or a diagram directly as the
data is collected, will help them to understand the principles of data handling without having
to worry about the figures. 
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80

Line of
symmetry

No Line of
symmetry

4 squares
or fewer

More than
4 squares

In the Classroom – Sorting Pupils

The pupils themselves may again provide a good entry point for work on sorting dia-
grams. Pupils may be physically arranged on a giant sorting diagram marked out on the
floor, with the cells labelled with two different pairs of mutually exclusive criteria – for
example, Girls and Boys, and Left-handed and Right-handed. 

This sort, or a similar one on a Venn diagram, may again be recorded on paper using a
sticky label to represent each pupil. 

Girls Boys

Left-handed

Right-handed
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c) Mean and Median

As well as collecting and representing data, pupils may need to process it, for example by find-
ing the mean of a set of numbers. The definition of the mean, and the procedures to be
followed to work it out, are usually presented entirely in symbols, without any pictures or
models. So here again, as in so many areas of mathematics, there is a danger that the rules will
be learnt by rote, with little understanding – and then forgotten.

But the mean of a set of numbers is a very simple idea. It is the answer to the question,
What would it be if I shared them all out equally? This can be demonstrated effectively with a set of
sticks of interlocking cubes, representing the numbers
whose mean is to be found. For example, to find the mean
of five numbers, 7, 4, 8, 2 and 9, five sticks may be made:

The cubes in the sticks can then be
rearranged to even them out, giving
five sticks of 6 cubes – so the mean
of the five numbers is 6.

In this case the mean is a whole number – but it clearly need not be. 
For example, take the mean of 5, 3, 8 and 6.

Most of the cubes can be shared out equally, 
to give four sticks of 5 cubes each.

But two cubes will be left over.

These last 2 cubes must also be shared out. There are 2 cubes to share
between four sticks, or an extra half cube for each stick, giving a mean
of 51/2. 

This model helps to explain why the mean of a set of whole numbers may not be a whole
number.

10 ■ DATA HANDLING
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Rearranging the sticks in order of height
will help pupils to see the value of the median –
the middle value.

In the set of five sticks, the third, which has a height of 7, is in the
middle, so the median of this set of numbers is 7.

When we have an even number of sticks, however,
there is no stick in the middle – so the median
must lie halfway between the two middle sticks.

These are 6 and 5 cubes high, so the median of
these four numbers is 51/2.

d) Sample Sizes

Some pupils who have difficulty working with graphical representations, and who need num-
bers to give the data meaning, may be puzzled by statistical diagrams that do not include
figures. On the other hand, visual and kinaesthetic thinkers are more likely to be able to draw
conclusions from the overall shape of the data, rather than from the detailed figures. For exam-
ple, the pie charts on the next page show the proportions of boys and girls, and the proportions
of right and left-handed pupils, in one group.

From these pie charts it is possible to tell, for instance, that all the boys could be right-
handed, but not all the right-handed pupils are boys. But we cannot tell how many boys, or how
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In the Classroom – Bits and Pieces

Sometimes non-whole-number means can be surprising. For example,

What is the mean number of brothers and sisters of the pupils in the class?

What is the mean number of pupils in one class in the school?

What is the mean number of pets per pupil?

All of these examples involve working with whole brothers and sisters, or whole pupils,
or whole pets – but the mean is likely to involve bits of people or of animals. Pupils may
come up with other examples – but the concept of sharing out will help to explain, for
example, why the ‘average’ cat does not have four legs!
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many right-handed pupils, there are in the group. The pie charts could represent a group of any
size – a single class, a school, all the pupils in the country, or even all the pupils in the world.

When we are not told how large the group is, however, there is a danger that conclusions may
be drawn on the basis of too small a sample. A similar problem may arise when data is presented in
percentages. Percentages are convenient because they can be used to compare proportions easily – it
is difficult to tell immediately whether 132 out of 360 is more or less than 13 out of 30, but it is
obvious that 362/3%. is less than 431/3%. But because percentages are always out of a hundred, they
can convey a totally false impression that there are at least a hundred members in the sample. For
example, it is arithmetically correct to say that 3 out of 4 is 75%. But in a statistical context this may
not be useful. If three out of a group of four pupils can ride a bicycle then all we can really say is that
those three pupils can, and that one pupil cannot, ride. To talk about ‘seventy-five per cent’ of the
pupils being able to ride gives a spurious generality to the observation. 

The idea that samples need to be big enough to be confident that the results are valid is
not easy to grasp. One approach is to find ways to deliberately ‘cook’ a set of data, by choosing
only the left-handed girls and the right-handed boys, for instance, and then seeing what conclu-
sions might be falsely drawn. 

10 ■ DATA HANDLING
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Data Handling – Key Points

■ Data-handling exercises are more likely to involve contextualised problems than those in other
areas of mathematics.

■ Pupils may engage more effectively with activities which involve processing and representing data
that they have collected themselves.

■ Large quantities of numerical data may undermine the confidence of visual and kinaesthetic learn-
ers, but its representation in graphical form makes it more comprehensible.

■ Graphical representations of data can help pupils to get beyond the detail of the specific figures
to look at their overall shape, and the relationships between the different parts.

■ Some aspects of data handling may be introduced using shapes rather than numbers. This may
make the underlying concepts more accessible to some pupils.

■ The process of finding the mean and median of a set of data may be represented with a model
made of interlocking cubes.

■ Both graphical representations, such as pie charts, and data that is presented as percentages may
disguise unreliably small sample sizes. 
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This book is about teaching mathematics to pupils with learning differences. These are the pupils
who favour a visual and kinaesthetic, rather than an auditory, thinking style, and for whom the
conventional print-based curriculum may not be appropriate. Their learning differences may,
on occasion, lead to learning difficulties, but such difficulties are an outcome of inappropriate
teaching. They are not, in themselves, a cause of failure. 

Visual and kinaesthetic thinkers are likely to benefit from an approach that focuses on the
development of models and images that make key mathematical concepts manifest. The ideas
and activities described in this book offer examples of this approach, and are designed to help
pupils to understand, not just the how, but also, crucially, the why of mathematics. Teachers may
draw on these suggestions to develop materials that will support their own pupils’ understanding.

It is still not clear, however, how many of our pupils might benefit from the approach
suggested here, or how much difference it could make. Nor do we know where these pupils are
– whether they are distributed evenly throughout the educational system, or are more likely to
be found in particular types of school or institution. There is some evidence that many dyslexic
pupils can learn to read more easily using a visual and kinaesthetic approach, rather than the
more conventional decoding of printed symbols, although, as Kay and Yeo explain, different
dyslexic pupils have different thinking styles. (Davis, 1994; Kay and Yeo, 2003). Pupils with
Down’s syndrome often show ‘strengths for visual learning’ (Bird and Buckley, 2004), and they
may benefit from visual and kinaesthetic materials at an appropriate level. There is anecdotal
evidence that a disproportionate number of youngsters in Pupil Referral Units, and in special
schools for emotionally and behaviourally disturbed children, are strong spatial thinkers. And
even if they manage to remain in mainstream education, the print-based assessment system
may place visual and kinaesthetic learners in the ‘bottom set’ for mathematics, and make it dif-
ficult for them to show what they understand in formal written tests. But there has not yet been
a thorough study to establish the proportion of pupils in different settings who have different
preferred learning styles. This is an area of research that could prove rewarding.

Of course, nobody uses only one thinking style. The great majority of pupils in most
classrooms do access much of the curriculum more or less effectively through the conventional
auditory channels. But an approach that focuses on the use of ‘models to think with’ to develop
pupils’ understanding of mathematics is likely to help all the pupils in the group. We all know
that If it’s good for special, then it’s good for mainstream. But even more significant here is the
inverse: If it’s bad for mainstream, then it’s bad for special. Teaching that relies on the pupils’ acqui-
sition of meaningless algorithms will serve the highest achievers poorly – but for those in the
‘bottom set’ it can be a disaster.

CONCLUSIONS
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As they stand, the philosophy, ideas and materials in this book are just yet more print. If
they are to serve any purpose at all then they have to be activated. And that is down to teachers
teaching mathematics – in classrooms, in units, at home, wherever they may be. Learning differ-
ences are not a weakness to be remedied; they are a strength to be exploited. They are not a
difficulty to be overcome; they are an opportunity to be seized. They are not a failure to be
regretted; they are a success to be celebrated. 

Let’s do it!

CONCLUSIONS
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Set 9 Mathematics

Adding Fractions

2
3

+ 1
2

2
3

+ 1
2

4
6

+ 3
6

= 7
6

= 1
6

1

× 2 × 3

I’m afraid they
just aren’t very bright.

They can never
remember the rules

I teach them.
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Slavonic Abacus – OHP Grid
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 2,
Resource Sheet 1
Copy onto an Overhead Transparency sheet.
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Slavonic Abacus – Pupils’ Grids
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 2,
Resource Sheet 2 
Copy onto card, and cut out.
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Spatial Multiplication Array Cards
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 3,
Resource Sheet 3 
Copy onto card, and cut out.
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Slavonic Abacus – OHP Multiplication Grid
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 3,
Resource Sheet 4 
Copy onto an Overhead Transparency sheet.
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Folding Number
Teaching Maths to Pupils with Different Learning Styles,
© Tandi Clausen-May, 2005, Chapter 4, Resource Sheet 5
Cut out and fold as shown.
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Fold out

Fold out

Fold out

Cut out Cut out

Decimal Slide – Holder
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 4,
Resource Sheet 6
Cut out windows. Fold along dotted lines. Insert Decimal Slide Number (see Resource Sheet 7).
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000

000

000
Decimal Slide – Number
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 4, Resource Sheet 7
Cut along dotted lines. Write two digits. Insert in Decimal Slide Holder (Resource Sheet 6)
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OHP Fraction Clock
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 5,
Resource Sheet 8
Copy onto an Overhead Transparency sheet.
Cut out a ‘pointer’ from card, and attach it with a split pin fastener.
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Pupils’ Fraction Clocks
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 5,
Resource Sheet 9
Copy onto card, and cut out. Attach the ‘pointer’ with a split pin fastener.
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Angle Machine
Teaching Maths to Pupils with Different Learning Styles, © Tandi Clausen-May, 2005, Chapter 9,
Resource Sheet 10
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Entries in italic refer to activities.

A
acute 70
adding fractions 40
algebra 53–61

solving equations 54
using symbols 53

algebraic expressions
multiplying 58–61
writing 55–8

alternate angles 71, 72
angle machine 70
angles 68–72

properties 71–2
Angles in a Grid 72
area

of a circle 75–6
models for 65–7
and perimeter 63–4

Area of a Circle 76
area model, for multiplying

algebraic expressions 58–61
fractions 41
mental calculation 23–5
multi-digit numbers 19–23

Area and Perimeter Scatter Graph 64
arrays, multiplication 15–17
Arrow Cards 34
assessment, for learning 6–7
aural learning 3

B
balancing model 54
bar charts 78
Bits and Pieces 82
boxes method 53, 60–1
Boxes Method 61
bundles, to represent proportion 48

C
calculation

with fractions 39–43
see also mental calculation

calculators, decimal place value 33
capacity, place value 31
Carroll diagrams 80
Chinn's method, division 26–8
Circle Vocabulary 74
circles

area of 75–6
and pi 72–4

circumference 74
clock face

angles 70
fractions 43–5

Clock-Face Fractions 44
common denominators 42, 51
commutativity 16
complementary angles 71
corresponding angle 71, 72
counting and seeing 9–11
cubes

to demonstrate mean and median 81–2
to represent multiplication 16, 17
to represent place value 29–31, 32, 33
to represent proportion 48

curriculum, print-based 1–2

D
data handling 77–83

mean and median 81–2
sample sizes 82–3
seeing data 77–9
using non-numerical data 80

decimal place value 31–2
Decimal Slide 34–5
decimals, equivalences with fractions and percentages

51–2
360 Degrees 71
degrees 70
diagrams 4

four rules for fractions 39–40
to represent fractions 37
understanding 5
see also graphics

diameter 74
division

Chinn’s method 26–8
fractions 42–3

doing 3
Dotty Arrays 16

E
equality sign 54
equations, solving 54
equivalences, fractions, percentages and decimals 51–2
expressions see algebraic expressions

F
Factorising 16
finger patterns, to represent numbers 10
folding number 34

INDEX
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Following Routes 69
formative assessment 7
formulas, models for 65–7
four rules for fractions 36

adding 40
diagrammatic approach 39–40
dividing 42
multiplying 41

fractions 36–45
calculating with 39–43
clock face 43–5
converting into percentages 49–50
equivalences with decimals and percentages 51–2
linking angles to 70
n nths make a whole 37–9
and proportion 48
symbols and images 36–7

G
Generalised Expressions for Series 56–7
graphics

adding fractions 40
data handling 78–9, 80, 82–3
dividing fractions 42
multiplying fractions 41
questions presented with 38
see also diagrams; maps; patterns; scatter graphs

Greek, in mathematics 62
grids

angles in 71–2
hundred-unit 49–51
for multiplication 18
for understanding number 13

Growing Angles 70

H
hands

for multiplication 20
using to understand number 10

Handy Multiplication 20
hearing-impaired pupil 63
hexagons, distance around 73–4
hundred-unit squares 49–51

K
kinaesthetic learning 2–3
kinaesthetic thinkers 5–6, 7, 84

L
learning, assessment 6–7
learning differences/difficulties 1, 84
learning styles 2–3

identifying different 5–6
links, making 7, 51–2, 70
long multiplication 19–23

M
making links 7, 51–2, 70
Making Links 52
maps

as mental pictures 3–4
to understand proportion 49

Maps and Scale 49

mathematical language 62–3, 64, 74
mathematical proof 39
mathematical thinkers 25
Mathematics test question 21, 22, 38
mean 81–2
measures see shape, space and measures
median 81–2
mental calculation, area model 23–5
mental pictures see pictures in the mind
Metric Measures 63
Modelling Decimal Numbers 32
Modelling Place Value 33
Modelling Whole Numbers 31
models

for formulas 65–7
for multiplication and division 15–28
purpose of 4
see also area model; balancing model; sliding model;

VAK model
movement, to represent place value 32
multi-digit multiplication 21–3
multiplication

algebraic expressions 58–61
arrays 15–17
fractions 41
multi-digit 19–23
up to ten by ten 17–19

Multiplying by Five 17

N
n nths make a whole one 37–9
n nths make a Whole One 38
non-numerical data 80
non-verbal reasoning 6
number, concept of 9–14
number line 4
Numbers and their Complements 13

O
obtuse 70
opposite angles 71, 72

P
parallelograms, model for 65–6
patterns

algebraic expressions 55, 56–8
representing numbers 10, 12

percentages 49–51
equivalences with fractions and decimals 51–2
pie charts 83

perimeter, area and 63–4
pi 72–4
pictures in the mind 3–4

see also seeing at a glance
pie charts 82–3
place value 29–35

decimal 31–2
using symbols to represent 32–5
whole number 29–31

Place Value Charts 34
Place Value and Position 34
polyominos 63
Practising the Multiplication Tables 19

INDEX

101
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print-based curriculum 1–2
procedures 65
proportion 48–9
360 Protractor and Compass 71
protractors 71
Pupil Numbers 35

R
radius 74
ratios, picturing 46–7, 48
rectangles

formula for 65
in multiplication 18, 22, 24, 25, 58–60
picturing ratios 47

reflex 70
repeated subtraction 26–8
rote learning 3
routines, for multiplication 20

S
sample sizes, data handling 82–3
scale

to understand proportion 49
understanding place value 29

scatter graphs 64, 79
Scattered Pupils 79
See and Say 11
seeing 3
seeing at a glance

more than ten 11–13
up to four by four 15–17
up to ten 9–11
up to ten by ten 17–18

seeing data 77–9
series, generalised expressions for 55–8
shape, space and measures 62–7

models for formulas 65–7
vocabulary 62–3

signs, for mathematical terms 63, 64
Signs for Education – Mathematics 64
Similar Shapes 47
similar shapes 46–7
single-digit multiplication 17–19
Slavonic abacus

in multiplication 17, 18–19
understanding number 11–13

sliding model, place value 34–5
sorting diagrams 80
Sorting Pupils 80
space see shape, space and measures
spatial ability 1, 5, 6
spatial thinkers 84
square tiles, area and perimeter 63
sticks, area and perimeter 63
Stripping Edges 25
subitising 9–10
subtraction 4
symbols 2

in algebra 53
fractions 36–7
to represent place value 32–5
using 5

T
three quarters, representation 37
trapezium, model for 66–7

U
understanding, in mathematics 5

V
VAK model 2–3
Venn diagrams 78, 80
verbal ability 6
visual images 3–4

see also pictures in the mind
visual learning 3
visual thinkers 5–6, 7, 84
vocabulary 62–3, 64, 74
Vocabulary: Area and Perimeter 64

W
whole number place value 29–31
Writing Simple Algebraic Expressions 55

X
x, in algebra 53

Z
‘zooming in’ 49

INDEX
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