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D e d i c a t i o n  

This book is dedicated to the scientific spirit and accom- 
plishments of Maurycy Pius Rudzki, Chair of Geophysics at 
the Jagiellonian University, where, in 1895, the first Ins t i tu te  
of Geophysics was created. 

In order to interpret the wealth of detail contained in the seis- 
mographic record of a distant earthquake, we must know the 
path or trajectory of each ray that leaves the focus or origin in 
any given direction. An indirect solution of this problem was at- 
tempted by severn earlier investigators, praminent among whom 
were Rudzki and Benndorf. 

James B. Macelwane (1936) Introduction to theoretical seismol- 
ogy: Geodynamics 

Seismological studies appear to have stimulated Rudzki to make 
the first quantitative calculations on elastic waves. 

Michael J.P. Musgrave (1970) Crystal acoustics: Introduction 
to the study of elastic waves and vibrations in crystals 

In the first decade of the [twentieth] century M.P. Rudzki in 
Cracow began to investigate the consequences of anisotropy in 
the earth for seismic waves. As far as I can make out, he was 
the first to determine the wave surface for elastic waves in an 
anisotropic solid. 

Klaus Helbig (199~) Foundations of anisotropy for exploration 
seismics 
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Preface  

I1 ne suffit pas  d 'observer ,  il faut  se servir  de ses observa t ions ,  
et p o u r  cela il fau t  g~n6raliser.  [ . . .  ] Le savant  doi t  o rdonner ;  
on f a r  la science avec des faits c o m m e  une  m a i s o n  avec des 
pierres;  ma i s  une  a c c u m u l a t i o n  de faits n ' e s t  pas  plus  une  
science q u ' u n  tas  de pierres  n ' es t  une  maison .  ~ 

Henri Poincar~ (1902) La Science et l'Hypoth~se 

Theoretical  formulations of applied seismology are subs tant ia ted  by ob- 
servable phenomena.  Reciprocally, our perception and unders tanding of 
these phenomena  necessitate rigorous descriptions of physical behaviours. 
This book emphasizes the interdependence of mathemat ica l  formulation and 
physical meaning in the description of seismic phenomena.  The purpose of 
this book is to use aspects of continuum mechanics, wave theory and ray the- 
ory to explain phenomena  resulting from the propagat ion of seismic waves. 

The book is divided into three main parts: Elastic continua, Waves and 
rays and Variational formulation of rays. There is also a fourth part ,  which 
consists of Appendices. In Part I, we use cont inuum mechanics to describe 
the mater ial  through which seismic waves propagate,  and to formulate a 
system of equations to s tudy the behaviour of such a material .  In Part II, 
we use these equations to identify the types of body waves propagat ing in 
elastic continua as well as to express their velocities and displacements in 
terms of the propert ies of these continua. To solve the equations of motion 
in anisotropic inhomogeneous continua, we use the high-frequency approxi- 
mat ion and, hence, establish the concept of a ray. In Part III, we show that ,  
in elastic continua, a ray is t an tamoun t  to a t ra jectory along which a seismic 
signal propagates  in accordance with the variational principle of s ta t ionary 

~It is not enough to observe. One must use these observations, and for this purpose 
one must generalize. [...] The scientist must organize [knowledge]; science is composed of 
facts as a house is composed of bricks; but an accumulation of facts is no more a science 
than a pile of bricks is a house. 

xi 



xii 

traveltime. Consequently, many seismic problems in elastic continua can 
be conveniently formulated and solved using the calculus of variations. In 
Part IV, we describe two mathematical  concepts that  are used in the book, 
namely, homogeneity of a function and Legendre's transformation. This part  
also contains a List of symbols. 

The book contains an Index that  focuses on technical terms. The pur- 
pose of this index is to contribute to the coherence of the book and to 
facilitate its use as a study manual and a reference text. Numerous terms 
are grouped to indicate the relations among their meanings and nomencla- 
tures. Some references to selected pages are marked in bold font. These 
pages contain a defining statement of a given term. 

This book is intended for senior undergraduate and graduate students 
as well as scientists interested in quantitative seismology. We assume that  
the reader is familiar with linear algebra, differential and integral calculus, 
vector algebra and vector calculus, tensor analysis, as well as ordinary and 
partial differential equations. The chapters of this book are intended to 
be studied in sequence. In that  manner, the entire book can be used as a 
manual for a single course. If the variational formulation of ray theory is 
not to be included in such a course, the entire Part III can be omitted. 

Each part  begins with an Introduction, which situates the topics dis- 
cussed therein in the overall context of the book as well as in a broader 
scientific context. Each chapter begins with Preliminary remarks, which 
state the motivation for the specific concepts discussed therein, outline the 
structure of the chapter and provide links to other chapters in the book. 
Each chapter ends with Closing remarks, which specify the limitations of the 
concepts discussed and direct the reader to related chapters. Each chapter 
is followed by Exercises and their solutions, some of which are referred to 
in the main text. Reciprocally, the footnotes attached to these exercises 
refer the reader to the sections in the main text, where a given exercise is 
mentioned. Also, throughout the book, footnotes refer the reader to specific 

sources included in the Bibliography. 
"Seismic waves and rays in elastic media" strives to respect the scientific 

spirit of Rudzki, described in the following statement 2 of Marian Smolu- 
chowski, Rudzki 's colleague and friend. 

Tematyka geofizyczna musiala ne.cid Rudzkiego, tak wielkiego, 
fantastycznego milo~nika przyrody, z drugiej za~ strony ta wla~nie 

2Smoluchowski, M., (1916) Maurycy Rudzki jako geofizyk / Maurycy Rudzki as a 
geophysicist: Kosmos, 41, 105- 119 



xiii 

nauka odpowiadata najwybitniejszej wta~ciwo~ci umystu Rudzkiego, 
jego da~eniu do matematycznej ~cisto~ci w rozumowaniu. 3 

St. John's, Newfoundland 
Spring 2003 

3The subject of geophysics must have attracted Rudzki, a great lover of nature. Also, 
this very science accommodated the most outstanding quality of Rudzki's mind, his striv- 
ing for mathematical rigour in reasoning. 
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I n t r o d u c t i o n  to  Par t  I 

One conceives the  causes of all na tura l  effects in te rms of 
mechanical  motion.  This, in my opinion, we must  neces- 
sarily do, or else renounce all hopes of ever comprehending  
anyth ing  in Physics. 4 

Christian Huygens (1690) Treatise on light: In which are ez- 
plained the causes of that which occurs in reflection and refrac- 
tion 

Our focus in this book is the description of seismic phenomena in elastic 
media. 

The physical basis of seismic wave propagation lies in the interaction 
of grains within the material through which deformations propagate. It 
is difficult to individually describe all these interactions among the grains. 
However, since our experimental data are the result of a large number of 
such interactions, we can consider these interactions as an ensemble and 
describe seismic wave propagation through a granular material in terms of 
wave propagation through a medium that is continuous. We refer to such a 
medium as a continuum. 

Consequently, in this book, we follow the concepts of continuum me- 
chanics where any material is described by a continuum. A continuum is 
formulated mathematically in terms of continuous functions representing the 
average properties of many microscopic objects forming the actual material. 
In this context, all the associated quantities become scalar, vector or tensor 
fields, and the formulated problems are governed by differential equations. 

Using the methods of continuum mechanics, we adhere to the following 
statement of Kennett from his book "The seismic wavefields". 

4Readers interested in the modern view of this statement, in the context of analytical 
mechanics, might refer to Born, M., and Wolf, E., (1999) Principles of optics (Tth edition): 
Cambridge University Press, p. xxix. 



We adopt a viewpoint in which the details of the microscopic 
structure of the medium through which seismic waves propagate 
is ignored. The material is supposed to comprise a continuum of 
which every subdivision possesses the macroscopic properties. 

At the beginning of Part  I, we formulate the methods for describing 
deformations of continua and we introduce the concept of strain. This is 
followed by a description of forces acting within the continuum and the 
introduction of the concept of stress. We also derive the fundamental equa- 
tions, namely, the equation of continuity and the equations of motion, which 
result from the conservation of mass and the balance of linear momentum, 
respectively. 

To supplement these equations and, hence, to formulate a determined 
system that governs the behaviour of a continuum, we consider a particular 
class of continua, which is general enough to be of significance in applied 
seismology. Our attention focuses on elastic continua. In general, a contin- 
uum is characterized by its deformation in response to applied loads. In this 
book, we assume that this response can be adequately described by linear 
stress-strain equations. Also, we assume that all the energy expended on 
deformation is transformed into potential energy, which is stored in the de- 
formed continuum. Consequently, upon the removal of the load, the stored 
energy allows this continuum to return to its undeformed state. 

The original formulation of the theory of continuum mechanics can be 
dated to the second half of the eighteenth century and is associated with the 
work of Leonhard Euler. At the beginning of the nineteenth century, further 
development was achieved by Augustin-Louis Cauchy and George Green, 
as well as several other European scientists. The modern development of 
the theory of continuum mechanics is mainly associated with the work of 
American scientists, in particular, the work of Walter Noll, Ronald Rivlin 
and Clifford Truesdell, in the second half of the twentieth century. 

We should also note that a too literal interpretation of the concept of 
continuum can lead to inaccurate conclusions. This can be illustrated by an 
example given by SchrSdinger in his book entitled "Nature and the Greeks". 

Let a cone be cut in two by a plane parallel to its base; are the two 
circles, produced by the cut on the two parts equal or unequal? 
If unequal, then, since this would hold for any such a cut, the 
ascending part of the cone's surface would not be smooth but 
covered with indentations; if you say equal, then for the same 
reason, would it not mean that all these parallel sections are 
equal and thus the cone is a cylinder? 



Also, in view of the abstract nature of continuum mechanics, we must 
carefully consider the definition of exactness of a solution. While exact 
mathematical solutions to the equations formulated in continuum mechanics 
exist, the equations themselves are not exact representations of nature since 
they rely on abstract formulations. Hardy expresses a similar thought in his 
book entitled "A mathematician's apology". 

It is quite common for a physicist to claim that he has found 
a 'mathematical proof' that the physical universe must behave 
in a particular way. All such claims, if interpreted literally, are 
strictly nonsense. It cannot be possible to prove mathematically 
that there will be an eclipse tomorrow, because eclipses, and 
other physical phenomena, do not form part of the abstract world 
of mathematics. 

Nevertheless, the notion of continuum, as it pertains to the theory of 
elasticity, is particularly useful for seismological purposes because it permits 
convenient mathematical analysis that gives rise to scientific theory validated 
by experimental data. 



This Page Intentionally Left Blank



Chapter 1 

D e f o r m a t i o n s  

. . .  au  lieu de consid~rer la masse  donn~e c o m m e  un  as- 
semblage  d ' u n e  infinit~ de points  contigus,  il faudra ,  su ivant  
l 'espr i t  du  calcul infini tesimal,  la consid~rer p lu t6 t  comme  
compos~e d '~l~ments  inf in iment  pet i t s ,  qui soient du  m~me 
ordre  de d imens ion  que la masse  enti~re; ~ 

Joseph-Louis Lagrange (1788) M~canique Analytique 

Preliminary remarks 

We begin our s tudy of seismic wave propagation by considering the materi- 
als through which these waves propagate. Physical materials are composed 
of atoms and, hence, the fundamental  t rea tment  of this propagation would 
require the study of interactions among the atoms. At present, such an 
approach is impractical and, perhaps, impossible with the available math-  
ematical tools. Consequently, we seek a more convenient approach. An 
alternative approach is offered by continuum mechanics, which allows us 
to obtain results consistent with observable phenomena without dealing di- 
rectly with the discrete properties of the materials through which seismic 
waves propagate. 

As all mathemat ical  physics, continuum mechanics utilizes abstract  con- 
cepts to model physical reality. In a seismological context, the Ear th  is re- 
garded as a continuum that  t ransmits  mechanical disturbances. The notion 

1... instead of considering a given mass as an assembly of an infinity of neighbouring 
points, one shall - following the spirit of calculus - consider rather the mass as composed 
of infinitely small elements, which would be of the same dimension as the entire body; 



Chapter 1. Deformations 

of continuum allows us to describe the deformations and forces experienced 
by a deformable body in terms of stresses and strains within a continuum. 

We begin this chapter with an explanation of the notion of continuum 
followed by a description of deformations within it. In particular, we derive 
the strain tensor, which allows us to describe both a relative change in 
volume and a change in shape within the continuum. 

1.1 N o t i o n  of  c o n t i n u u m  

In continuum mechanics, we choose to disregard the atomic structure of 
mat te r  and the explicit interactions among particles. The notion of contin- 
uum is justified by the assumption that  a material is composed of sufficiently 
closely spaced particles, so that  its descriptive functions can be considered 
to be continuous. In other words, the infinitesimal elements of the material  
are assumed to possess the same physical properties as the properties ob- 
served in macroscopic studies. Although the microscopic structure of real 
materials is not consistent with the concept of continuum, this idealization 
provides a useful platform for mathematical  analysis, which in turn  permits 
us to model physical reality using abstract concepts. 2 

The concept of continuum allows us to consider materials in such a way 
that  their descriptive functions are continuous and differentiable. In par- 
ticular, we can define stress at a given point, thereby enabling us to apply 
calculus to the study of forces within a continuum. This definition and the 
subsequent application of calculus is associated with the work of Augustin- 
Louis Cauchy in the first half of the nineteenth century. Instead of studying 
atomic forces among individual particles, he introduced the notions of stress 
and strain in a continuum, which resulted in the equations associated with 
the theory of elasticity. 

Using a continuum-mechanics approach to describe seismic wave prop- 
agation raises some concerns. In continuum mechanics, the behaviour of 
a mult i tude of grains in a portion of a material is discussed by studying 
the behaviour of the whole ensemble. Consequently, information relating to 
the grains themselves is lost in the averaging process. In other words, the 
application of continuum mechanics raises the question whether the loss of 

2Readers interested in rigorous mathematical foundations of elasticity might refer to 
Marsden, J.E., and Hughes, T.J.R., (1983/1994) Mathematical foundations of elasticity: 
Dover. For general aspects of continuum-mechanics formulations, readers might refer to 
Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice- 
Hall. 



1.2. Material and spatial descriptions 

information about  the granular structures of the material  allows us to prop- 
erly represent the macroscopic behaviour of tha t  material .  To answer this 
question, we state  tha t  our ability to formulate a coherent theory to accu- 
rately describe and predict observable seismic phenomena is a key criterion 
to justify our usage of the notion of continuum. 

1.2 Material and spatial descriptions 

1.2.1 Fundamental  concepts 

While using the concept of continuum, which does not involve any discrete 
particles, we must  carefully consider methods tha t  allow us to describe the 
displacement of mater ial  points within the continuum, where we define a 
material  point as an infinitesimal element of volume tha t  possesses the same 
physical properties as the properties observed in macroscopic studies. In the 
context of cont inuum mechanics, this element of volume is sufficiently large 
tha t  it contains enough discrete particles of ma t t e r  to allow us to establish 
a concept of continuum, while it is sufficiently small to be perceived as a 
mathemat ica l  point. 

In cont inuum mechanics, we can describe such a displacement in at least 
two ways, namely, by studying material  and spatial descriptions. 3 We can 
observe the displacement either by following a given material  point in 
other words, following an infinitesimal element of the continuum, which is 
analogous to following a particle in particle mechanics or by studying 
the flow of the cont inuum across a fixed position, which does not have an 
analogue in particle mechanics. The first approach is called the mater ial  
description of the motion while the second one is called the spatial descrip- 
tion of the motion. These approaches are also known as the Lagrangian 
description and the Eulerian description, respectively. 4 

In global geodynamics,  the fundamental  laws tha t  govern deformations 
of the Ear th  necessitate the distinction between the equations derived using 
the material  and the spatial formulations. However, in applied seismology, 
we can often accurately analyze observable phenomena while ignoring the 
distinction between the material  and the spatial descriptions. 

3 Material and spatial descriptions correspond to the referential and spatial descriptions 
of Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice- 
Hall, p. 138, where the relative description is also discussed. 

4 Readers interested in detailed descriptions of these approaches and their consequences 
might refer to Malvern, L.E., (1969) Introduction to the mechanics of a continuous 
medium: Prentice-Hail, pp. 138 - 145. 
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To gain insight into the meaning of the material and spatial descrip- 
tions, consider a moving continuum and let the observer focus attention on 
a given material point within the continuum. Suppose the position of a 
material point at initial time to is given by vector X. Although position 
vector X is not a material point, we will refer to a given material point as 
"material point X", which is a concise way of referring to a material point 
that  at time to occupied position X, as shown in Remark 1.1, which follows 
Exercise 1.1. At a later time t, the position vector of the material point X 
is given by x. Mapping x (X, t) gives position, x, of material point X at 
time t. This is the material description of the motion, where the value of 
the independent variable, X, identifies the material point. We assume that,  
for a given time t, this mapping is one-to-one and is continuous, as well as 
possessing the continuous inverse. Also, we have to assume that  this map- 
ping and its inverse have continuous partial derivatives to whatever order is 
required. Since we assume that  the transition of the material point from the 
initial position to the present one occurs in a smooth fashion, vector x is a 
continuous function of time and, by symmetry, its inverse is also continuous. 
This inverse can be written as X (x, t), which fixes our attention on a given 
region in space and takes position, x, and time, t, as independent variables. 

To define the material and spatial descriptions, consider an orthonormal 
coordinate system, where 

X i  =- X i  ( X I , X 2 , X 3 ,  t) , i E {1,2,3},  

and 
Xi = Xi  (xl, x2, x3, t) ,  i C {1, 2, 3}, 

with the components xi and Xi being the spatial and material coordinates, 
respectively. If the arguments of a given function are given in terms of the 
xi, we are dealing with a spatial description, while, if they are given in terms 
of the Xi,  we are dealing with a material description. 

In general, a physical quantity that  characterizes a continuum can be 
described by a function f (x, t), which is a spatial description of this quantity, 
or by a function F (X, t), which is a material description of this quantity. 
The material and spatial descriptions are consistent with one another. The 
relation between f and F is given by f Ix (X, t ) ,  t] - F (X, t), or by f (x, t) - 

F IX (x,t),t]. 

1.2 .2  M a t e r i a l  t i m e  d e r i v a t i v e  

In view of the previous section, we see that  either the material or the spatial 
description can be used to describe the temporal variation of a given physical 
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quantity. Let us consider time derivatives in the context of either description. 
The material description consists of fixing our attention on a given ma- 

terial point X and observing the variation of the quantity F with time. The 
time derivative associated with this viewpoint can be written as 

d F  dF  (X, t )  

dt dt x 

which implies that  X is kept constant when we take the derivative of F (X, t) 
with respect to time, t. Symbol Ix means that  the function is evaluated at 
X. 

The spatial description consists of fixing our attention on a given spatial 
point x and observing the variation of the quantity f with time. The time 
derivative associated with this viewpoint can be written as 

Of = 0 f  (x, t)[  

Ot Ot Ix" 
In the context of temporal variations, the material and spatial descrip- 

tions are related by the chain rule of differentiation. Considering a three- 
dimensional continuum, we can write 

dF Of Of dxl Of dx2 Of dx3 
dt = 0--7 + OXl dt f Ox2 dt ~ OX 3 dt 

Of Of Of Of 
= ot  + - Xl vl + + 

Denoting v - [Vl, v2, v3], where v is the velocity vector, and invoking the 
gradient operator, we obtain 

d--7 = cgt + ( v . V )  f -  ~ - -~+v-V f ,  (1.1) 

where the material and spatial coordinates are related by 

x = x (X, t ) .  (1.2) 

The term in parentheses on the right-hand side of expression (1.1) is the 
material time-derivative operator. The material time derivative is a rate of 
change associated with particular elements of the continuum and measured 
by an observer travelling with its flow. In other words, the material time 
derivative is the time derivative with material coordinates held constant. 
The first term of (O/Ot + v .  V) describes the rate of change at the location 
x, while the second term describes the rate of change associated with the 
motion of material points. In general, the material-derivative operator can 
be applied to a scalar, to a vector, or to a tensor function of position and 
time coordinates. 
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1 .2 .3  C o n d i t i o n s  o f  l i n e a r i z e d  t h e o r y  

In general, equations governing wave phenomena in elastic media are nonlin- 
ear. However, seismic experiments indicate that  important aspects of wave 
propagation can be adequately described by linear equations, which greatly 
simplify mathematical formulations. The process of going from nonlinear 
equations to linear ones is called the linearization process and the resulting 
theory is the linearized theory. This linearization is achieved by the fact 
that,  under certain assumptions that appear to be satisfied for many seis- 
mological studies, the material and spatial descriptions are equivalent to one 
another. 

The linearization allows us to formulate mathematical statements of seis- 
mic wave phenomena in a form that is simpler than it would be otherwise 
possible. In this section, we briefly discuss the conditions that  allow us to 
use linearization. A more detailed description of the linearization process is 
beyond the scope of this book. 5 

In applied seismology, we often assume that  the displacements of mater- 
ial elements resulting from the propagation of seismic waves can be consid- 
ered as infinitesimal. Such an assumption is used in this entire book. As 
a consequence of this assumption and in view of the material time deriv- 
ative, discussed in Section 1.2.2, we can conclude that, while considering 
displacements, it is unnecessary to distinguish between the material and 
spatial descriptions. 

To arrive at this conclusion, let us consider the notion of displacement 
using both the material and spatial descriptions. Displacement is the differ- 
ence between the final position and the initial position. Using the material 
description, we can write the displacement vector as 

u ( x , t )  = x ( x ,  t)  - x ,  (1.3) 

while using the spatial description, we note that  the displacement vector is 

u ( x , t )  = x - x (x ,  t ) .  (1.4) 

Note that  at the initial time, x = X. 

S Readers interested in a thorough analysis of physical quantities in the material and 
spatial descriptions, and the subsequent linearization might refer to Achenbach, J.D., 
(1973) Wave propagation in elastic solids: North Holland, pp. 11 - 21 and 46 - 47, to 
Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice- 
Hall, pp. 4 9 7 -  565, and to Marsden, J.E., and Hughes, T.J.R., (1983/1994) Mathematical  
foundations of elasticity: Dover, pp. 9 - 10 and 226 - 246. 
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Since the same quantity is given by expressions (1.3) and (1.4), we can 

write 
u ( x , t )  - u (x , t ) ,  (1.5) 

where the material and spatial coordinates are related by equation (1.2). 
We can develop each component of U (X,t) into Taylor's series about x 

to obtain 

u~ ( x , t )  = u~ ( x , t ) l x = x  

+ ( X - x ) .  [ou~(x,t)[ 
0X1 X=x' 

ov~ ( x , t )  

0x2 
ou~ ( x , t )  

X=x' OX3 x-x] +.,.~ 

where i C { 1, 2, 3}. Assuming that  the displacement is infinitesimal, namely, 
X - x is vanishingly small, we can consider only the first term of the series. 
Thus, we can write 

U (X,t) ~ U (x,t).  (1.6) 

Hence, expression (1.3) can be written as 

u (x,t)  ~ x ( x ,  t) - x .  (1.7) 

Since in expression (1.7), U is a function of x, we rewrite the displacement 
as a function of x to get 

u (x,t)  ~ x - x (x, t ) .  (1.8) 

Comparing expressions (1.4) and (1.8), we see that  

u (x,t)  ~ u (x , t ) .  

Thus, in view of expression (1.6), we conclude that  
placements we can write 

for infinitesimal dis- 

U (X,t) ~ u (x,t).  (1.9) 

To gain insight into the meaning of this result, we examine equations 
(1.5) and (1.9). Equation (1.5) states that U = u, with x related to X 
by equation (1.2). Equation (1.9) states that U ~ u, where we can simply 
replace x by X, without invoking equation (1.2). This approximation is 
illustrated in Exercise 1.2. 

Now, let us consider the velocity using both the material and spatial 
descriptions. To do so, let the physical quantity considered in the material 
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time derivative be given by displacement. In such a case, expression (1.1) 
becomes 

dU Ou 
= + (v .  v ) u .  

dt Ot 

If both the gradient of the displacement u and the velocity v are infinitesi- 
mal, we can ignore the second term on the right-hand side to obtain 

dU Ou 

dt ~ Ot" 

Also, let us consider the acceleration using both the material and spatial 
descriptions. To do so, let the physical quantity considered in the material 
time derivative be given by velocity. In such a case, expression (1.1) becomes 

d2U 020 0U 
dt 2 = Ot 2 + (v.  V) c~t" 

If both the gradient of Ou/Ot and the velocity v are infinitesimal, we can 
ignore the second term on the right-hand side to obtain 

d2U 02u 
dt 2 Ot z �9 

This property of the time derivative of displacement, which results from 
the linearized theory, is used, for instance, in the derivation of equations of 
motion (2.34). 

Thus, we can conclude that, under the assumption of infinitesimal dis- 
placements of a given element of the continuum, we do not need to distin- 
guish between either the material and spatial coordinates or the material and 
spatial descriptions of displacements. In other words, X ~ x and U ~ u. 
Furthermore, if we also assume that the velocities of these displacements 
are infinitesimal, that the gradients of these displacements are infinitesi- 
mal, and that the gradients of these velocities are also infinitesimal, there is 
no need to distinguish between the material and spatial descriptions while 
studying velocities and accelerations. In other words, d U / d t  ~ Ou/Ot  and 
d2U/dt  2 ~ 02u /Ot  2, respectively. 

Note that the assumptions about the properties of the displacements, 
gradients of displacements, velocities and gradients of velocities are inde- 
pendent of each other. They result from the physical context in which we 
consider a given mathematical formulation. For instance, in the context of 
applied seismology, we assume that the displacement amplitude of a mate- 
rial point is small compared to the wavelength. Also, we assume that the 
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velocity of this displacement is small compared to the wave propagation 
velocity. 6 

Following our decision to make no distinction between the material  and 
spatial descriptions, we follow the customary notation to describe the co- 
ordinates as well as the displacements of a given element of the continuum 
using lower-case letters. Also, to avoid any confusion, we note tha t  the ve- 
locities denoted by v and V, in Parts  II and III of the book, refer to the phase 
velocity and the ray velocity, respectively. They are not directly associated 
with the velocities of displacements of a given element of the continuum, 
which we discuss herein. 

1.3 S tra in  

I n t r o d u c t o r y  c o m m e n t s  

7Seismic waves consist of the propagation of deformations through a mate- 
rial. To s tudy these waves, we wish to describe the associated deformations 
of the continuum in the context of infinitesimal displacements. 

Deformation of a continuum is a change of positions of material  points 
within it relative to each other. If such a change occurs, a continuum is said 
to be strained. This strain is accompanied by stress. The produced stress 
resists deformation and a t tempts  to restore the continuum to its unstrained 
state. The resistance of a continuum to the deformation and the continuum's 
tendency to restore itself to its undeformed state account for the propagation 
of seismic waves. 

The relation between stress and strain is one of mutual  dependence and 
is an intrinsic concept of elasticity theory. In this theory, applied forces 
are formulated in terms of a stress tensor, discussed in Chapter  2, while the 
associated deformations are formulated in terms of a strain tensor, discussed 
below. 

1 .3 .1  D e r i v a t i o n  o f  s t r a i n  t e n s o r  

In this section we show that the strain tensor relates the states of strain 
prior to and after the deformation. We also show that the strain tensor is a 

6Readers interested in details of this linearization might refer to Achenbach, J.D., 
(1973) Wave propagation in elastic solids: North Holland, pp. 17- 21. 

7Readers interested in a thorough description of strain and deformation might refer to 
Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice- 
Hall, Chapter 4: Strain and Deformation. 
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second-rank tensor, s 
To derive the strain tensor in a three-dimensional continuum, consider 

two infinitesimally close material points with the coordinates given by Ix, y, z] 
and Ix + dx, y + dy, z + dz]. The square of the distance between these points 
is given by 

(ds) 2 - ( d x )  2 + (dy) 2 + (dz) 2 . (1.10) 

Let the continuum be subjected to deformation. After the deformation, 
which is described by displacement vector 

u = (x, z ) ,  y, z ) ,  (x, y, z)] ,  

the coordinates of the first point are given by 

[x + uxl~,y,z, Y + Uylx,y,z , z + Uz[x,y,z] , (1.11) 

while the coordinates of the second point are given by 

Ix + dx + ?-tx l x +dx ,y+dy ,z  +dz 

y + dy + Uyi~+dx,y+dy,z+dz, (1.12) 

+ dz + UZ[x+dx,y+dy,z+dz] 
"1 

z 

where the arguments in the subscripts are the values at which the com- 
ponents of function u are evaluated. Subtracting the components given in 
expression (1.11) from the corresponding components given in expression 
(1.12), we obtain the difference between the corresponding coordinates of 
the two points, namely, 

dx Ux [x+dx,y+dy,z+dz + 

dy + Uylx+dx,y+dy,z+d z 
~ x  [ x,y,z 

uyl~,y,z , (1.13) 

 zlx, ,z] . dz + Uz]x+dx,y+dy,z+dz 

In view of infinitesimal displacements, the components of u that are evalu- 
ated at (x + dx, y + dy, z + dz) can be approximated by the first two terms 
of Taylor's series about (x, y, z), namely, 

(9?s x (~Ux Ou~ dx + -~y dy § ~ dz, 

SBoth terms "rank" and "order" are commonly  used to describe the  number  of indices 
of a tensor.  In this book, we use the former te rm since it does not appear  in any other  
context,  while the lat ter  term is used in the context  of differential equations.  Note tha t  
a l though the term "rank" also has a specific meaning in matr ix  algebra, we do not use it 
in such a context  in this book. 
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Uylx+dz,y+dy,z+d z ~ Uy]x,y,z 

and 

~Uy OUy 
d y +  

(~Uy 
d x +  -~y 

x,y,z x~y~z x~y~z 
dz 

Uzlx+dx,y+dy,z+dz ~ UZlx,y,z 
~Uz ~Uz 

dy + --~-- z 
C~U z 

d x +  -~y 
x,y,z x,y,z x,y,z 

dz. 

Inserting these Taylor's series terms into expression (1.13) and simplifying, 
we obtain the approximation for the difference of the corresponding coordi- 
nates of the two points after the deformation, namely, 

[ ! ~ O u z d x + -~y d y + -~z dx + ~ x,y,z x,y,z 

] Ouyl Ouy OUy dx + dy + 
dy + ~ x,y,z ~ x,y,z 

OUz OUz OUz dx + ~ dy + -~z 
dz + ~ x,y,z x,y,z 

dz~ 
x,y,z 

dz, 
x,y~z 

x,y,z dz] . 

Hence, the square of the distance between the two points after the deforma- 
tion can be approximated by 

(d~) 2 
cOuz 

..~ dx + --~- z 

Ouy 
+ dy + --~- x 

COUz 
+ dz + --~- x 

C~U x 
dy + --~-~- z 

(~Ux d x +  -~y 
x,y,z x,y,z x,y,z 

~Uy 
d x +  -~y 

(OUy 
dY + --OT z 

x,y,z x,y,z x,y,z 

C~U z 
d x +  (~Uz d y +  

x,y,z x,y,z x,y,z 

2 dz) 
2 

dz 

Squaring the parentheses on the right-hand side and in view of infinites- 
imal gradients of the displacement neglecting the terms that contain the 
products of two derivatives, we obtain 

(dg) 2 ~ (dx) 2 + (dy) 2 + (dz) 2 

Oux 

Oux 

+ ~ x,y,z 

x,y,z (dx '~+ -~Y x,y,z 
(OUz (@)2 + 

~Ux dxdy + 
(~Uy 

dxdz + 
x~y,z x,y~z 

OUy 

x,y,z 

~UZ dydz + 
x,y,z x,yTz 

OUZ dxdz + -~y 

(dz) 2 
x,y~z 

dxdy 

dydz) 

(1.14) 
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which is the expression for the square of the distance between the two points 
after the deformation. 

Using expressions (1.10) and (1.14), we obtain the difference in the square 
of the distance between the two points tha t  results from the deformation, 
namely, 

(dg) 2 

+ 

cgux 
- (ds) 2 ~ 2 

( Ou~ Ouy + 

(dx) 2 
x~y~z 

x~Y~Z I 

~Uy 

Our dxdy + 

+ -5-2z 

(~U z (dy) 2 + 
x,y~z x~y~z 

x~y~z 

x,y,z 

(~Uz 

~UZ 

x,y~z 

x~Y,Z I 

(dz) 2 

dydz 

dxdz] . 

Lett ing xl - x, x2 - y and x3 - z, we can can concisely write this expression 
as  

(dg) 2 - (ds) 2 
33( 

i~l OUx~ 
�9 j = l  

(~Ux 3 

+ Oxi Xl ~X2 ~X3 Xl ~X2 ~X3 
dxidxj, 

The left-hand side is a scalar while dxi and dxj are components of a vector. 
The term in parentheses on the r ight-hand side is a component of a second- 
rank tensor, as shown in Exercise 1.4. 

In elasticity theory, the term in parentheses is used in the definition of 
the strain tensor for infinitesimal displacements, namely, 

l (Oui Ouj) 
cij := ~ \Oxj +-~xi ' i , j  E {1,2 ,3} ,  (1.15) 

9where ui - ux~, uj - uxj and the partial derivatives are evaluated at 
X --  [Xl, X2, X3]. 10 

Thus, if we suppose that  a continuum is deformed in such a way tha t  a 
material  point originally located at x is displaced by vector u (x), then, the 
strain tensor is defined by expression (1.15). Considering infinitesimal dis- 
placements in a three-dimensional continuum, the components of this tensor 
allow us to describe the deformation associated with any such a displace- 

ment. 
def 

9In this book, symbol := denotes definition. Equivalently, we could write it as = .  
1~ interested in formulation of the strain tensor leading to its form that is valid 

for curvilinear coordinates might refer to Synge, J.L., and Schild, A., (1949/1978) Tensor 
calculus" Dover, pp. 202- 205. 
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In view of its definition, the strain tensor is symmetric, namely, cij = 
~ji. Consequently, in a three-dimensional continuum, there are only six 
independent components. Also, in view of its definition, the strain tensor is 
dimensionless. 

Note the following analogy between vector calculus and tensor calculus. 
The gradient operator applied to the scalar field f (Xl,X2, X3) results in a 
vector field described by three components (Of/Oxz, Of/Ox2, Of/Ox3). As 
shown in the derivation of expression (1.15), the gradient operator applied to 
the vector field u - [Ul, u2, u3] results in a second-rank tensor field described 
by nine components of the form Oui/Oxj, where i, j E {1, 2, 3}. 

1.3.2 P h y s i c a l  m e a n i n g  o f  s t r a i n  t e n s o r  

I n t r o d u c t o r y  c o m m e n t s  

The strain tensor describes two types of deformation. Firstly, the sides of a 
volume element within a continuum can change in length. This can result 
in a change of volume without, necessarily, a change in shape. Components 
of the strain tensor, which we use to describe such deformations, are dimen- 
sionless quantities given by a change in length per unit length. Secondly, 
the sides of an element within a continuum can change orientation with re- 
spect to each other. This results in a change of shape without, necessarily, 
a change in volume. Components of the corresponding strain tensor are 
measured in radians and describe the change in angles before and after the 
deformation. Thus, the strain tensor describes relative linear displacement 
and relative angular displacement. 

Re la t ive  change  in l eng th  

To illustrate a length change expressed by a strain tensor, we revisit the 
derivation shown in Section 1.3.1 and consider the one-dimensional case. 

Let x - [Xl ,  O, O] and x +  dx - Ix1 + dxl, O, O] be two close points on 
the x 1-axis prior to deformation. During deformation, these points may be 
removed from the x 1-axis, however, their coordinates along this axis after 
the deformation are 

xl - x l  + ullx~,0,0, (1.16) 

and 

21 + d21 = xl + dxl + Ullx~+dz~,0,0 �9 (1.17) 
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The distance between their components along the x 1-axis after the deforma- 
tion is given by the difference between expressions (1.16) and (1.17), namely, 

d 2 1 -  dxl + Ullxl+dxl,O,O- Ullxl,O,O �9 (1.18) 

Taylor's series of the middle term on the right-hand side can be written as 

t t l  [xl+dXl,0,O "-- UlI~,0,0 + 
1 c32ul 

dxl + 
Xl,0,0 2 I~X 2 xl,0,0 

(dx l )2  + . . . .  

Using the approximation consisting of the first two terms, we can write 
expression (1.18) as 

GgUl 

Xl,0,0 
dxl, 

which can be restated as 

Ou, ) 
d:~l ~ 1 + ~ dxl. 

Hence, in view of definition (1.15), we can write the distance between the 
two points after deformation as 

d~l ~ (1 + Cll) dzl, (1.19) 

where dxl is the distance between these two points prior to deformation. 
Thus, Cll is & relative elongation or contraction along the Xl-axis. Sire- 

ilarly, Ou2/Ox2 = c22 and Ou3/Ox3 = c33 correspond to relative elongations 
or contractions along the x2-axis and the x3-axis, respectively. 

To pictorially see the meaning of eii, where i E {1, 2, 3}, consider Figure 
1.1 with axes defined in terms of the material coordinates that  correspond 
to the configuration of the element of the continuum before deformation. 
The relative elongation along the Xl-axis can be written as 

A N  1 -}- AUl Alt l  
= 1 + ~ .  (1.20) 

AX1 z~X1 

Considering infinitesimal gradients of the displacement, discussed in Section 
1 9 2 nncl in viow c~f F,,zorei.~o 1 5 wo. can restate expression (1.20) as 

0Ul 
1 + ~ .  (1.21) 

0xl 
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Figure 1.1- Uniaxial extension in the Xl-axis direction. 

Expression (1.21) is a relative change in length due to deformation. Now, 
recall equation (1.19), which we can restate as 

1 + s (1.22) 
dxl 

to describe a relative change in length due to deformation. Hence, examining 
expressions (1.21) and (1.22), we conclude that ell - OUl/OXl, &s expected. 

Rela t ive  change in volume 

Having formulated the relative change in length, we can express a relative 
change in volume. 

Consider a rectangular box with edge lengths Axl, Ax2, and Ax3, along 
the Xl-axis, the x2-axis and the x3-axis, respectively. Its volume is 

V -  A X l A X 2 A X 3 .  (1.23) 

After the deformation, following expression (1.19), the edge lengths become 
(1 + s AXl ,  (1 + e22) Ax2, and (1 + e33) Ax3, respectively, and, the vol- 
ume becomes 

l )  - (1 + C l l ) ( 1  -Jr- s + e33) V. 

Note that to express V, we assume that after the deformation, the orig- 
inal rectangular box remains rectangular. 
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Assuming small deformations and, consequently, retaining only first- 
order strain-component terms resulting from the triple product, the volume 
of the deformed rectangular box can be written as 

V ~ (1 + s -~ g22 -}- E33) V. (1.24) 

Thus, using expressions (1.23) and (1.24), we can state the relative change 
in volume as 

I?-V 
gll  -}- g22 -}- g33 :-- ~. (1.25) 

V 

We refer to p as dilatation. 
Using vector calculus, we can conveniently state the relative change in 

volume in terms of the displacement vector, u. In view of definition (1.15), 
expression (1.25) can be stated as divergence, since we can write 

0Ul (~U2 0U3 
( f l -  (0Xl -~- ~X2 -~- 0X3 ---- ~7.  U. (1.26) 

The dilatation will appear in stress-strain equations (5.65), and, ex- 
pressed in terms of divergence, it will appear again in wave equations for 
P waves, given in expression (6.12). Since dilatation is associated with a 
change in volume, P waves can be viewed as the propagation of local com- 
pression within the continuum. 

Note that,  in terms of tensor algebra, expression (1.25) is the trace of 
the strain tensor, tr (sij), namely, the sum of the diagonal terms. The 
trace of a second-rank tensor is a scalar; hence, it is invariant under the 
coordinate transformations, as proven in Exercise 1.6. Thus, as expected, 
the description of the change in volume is independent of the choice of the 
coordinate system. Relative change in volume, in the context of material 
properties, is shown in Exercise 5.8. 

C h a n g e  in s h a p e  

The strain tensor also describes deformations leading to a change in shape. 
To gain geometrical insight, consider Figure 1.2 with axes defined in terms 
of the material coordinates that  correspond to the configuration of the el- 
ement of the continuum before deformation. A rectangular element of the 
continuum is deformed into a parallelogram. In other words, the original 
right angle is reduced to angle a. We can write this reduction as 

7I" 

2 
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Figure 1.2: Relative change in angles. 

where/31 and ~2 are the angles measured with respect to the Xl-axis and the 
X2-axis, respectively. Assuming that angles t31 and ~2 are small and mea- 
sured in radians, we can approximate them by the corresponding tangents. 
Hence, examining Figure 1.2, we can write 

Au2 Aul 
fll -+-f12 '~' AX----~ -~- A---~2" (1.27) 

Considering infinitesimal displacements, discussed in Section 1.2.3, and in 
view of Exercise 1.5, we can write equation (1.27) as 

0U2 0Ul  = 2C21 -- 2912 (1.28) ~ + 92 ~ ~ + Ox--~ 

where we assume the equivalence of Xi and xi. In other words, a function 
of coordinates that is evaluated at a point corresponding to the original 
configuration is approximately equal to this function evaluated at a point 
corresponding to the final position. 11 

Examining Figure 1.2, we see that equation (1.28) implies that the orig- 
inal segments are deviated by small angles ~1 and ~2 that can be stated 

~Readers  interested in more details associated with the strain tensor in the context of 
the material and the spatial coordinates might refer to Malvern, L.E., (1969) Introduction 
to the mechanics of a continuous medium: Prentice-Hall, pp. 120 - 135. 
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as Ou2/Oxl and Oul/Ox2, respectively. Consequently, the initial right angle 
between segments, coinciding with the two axes, is changed by the sum of 
these two angles. 12 

1.4 R o t a t i o n  t e n s o r  a n d  r o t a t i o n  v e c t o r  

In Section 1.3.2, we defined dilatation, ~a, which allows us to describe a rel- 
ative change in volume using the divergence operator and the displacement 
vector, as shown in expression (1.26). In this section, we will associate a 
change in shape with the displacement vector by using the curl operator. 

Let us define a tensor given by 

l ( Oui cOuj ) 
~ij := ~ Oxj Oxi ' i , j  c {1,2,3}.  (1.29) 

In view of definition (1.29), ~11 -- ~22 -- ~33 -- 0, and t e n s o r  ~ij has only three 
independent components, namely, ~23 = -~32, ~13 = --~31 and ~12 = -~21- 

Thus, ~ij is an antisymmetric tensor. We refer to ~ij as the rotation tensor. 
As discussed in Section 1.3.2 and illustrated in Figure 1.2, the quantities 
Oui/Oxj, where i r j ,  are tantamount to the small deviation angles. Follow- 
ing the properties of the curl operator, we can associate tensor (1.29) with 
a vector given by 

= V x u ,  ( 1 . 3 0 )  

as shown in Exercise 1.7. We refer to �9 as the rotation vector. 13 
Rotation vector (1.30) will be used in formulating the wave equation 

involving S waves, as shown in expression (6.16). In other words, S waves 
can be viewed as the propagation of local rotation within the continuum. 

Note that we can use tensor calculus to relate the components of the 
strain tensor, the components of the rotation tensor and the components of 
the gradient of the displacement vector. Using expressions (1.15) and (1.29), 
we can write the partial derivative of a component of displacement as 

oqui 
Oxj = cij + ~ij, i , j  c {1,2,3}. (1.31) 

~2Readers interested in a geometrical interpretation of the strain-tensor components 
might refer to Fung, Y.C., (1977) A first course in continuum mechanics: Prentice-Hall, 
Inc., pp. 129 -  130. 

~3Readers interested in a relation between the rotation tensor and rotation vector might 
also refer to Fung, Y.C., (1977) A first course in continuum mechanics: Prentice-Hall, Inc., 
pp. 130-  132. 
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Equation (1.31) corresponds to the fact that any second-rank tensor can be 
written as a sum of symmetric and antisymmetric tensors. 

Closing remarks 

Formulations of continuum mechanics allow us to describe deformation in 
a three-dimensional continuum. In subsequent chapters, these formulations 
will allow us to study and describe phenomena associated with wave propa- 
gation. In this study, we will use the linearized theory of elasticity. Although 
linearization results in a loss of subtle details, the agreement between the 
theory and experiments is satisfactory for our purposes. 

0 
Exercises 

Exerc i se  1.1 14 Given a material description of motion, 

I Xl - -  X l e  t -+- X3 (e t - 1) 
x (X, t) - x2 - X2 + X3 (e t - e - t )  , (1.32) 

x 3 - - X  3 

verify that the transformation between the material, X ,  and spatial, x,  co- 
ordinates exists, and find the spatial description of this motion. 15 

Solu t ion  1.1 The transformation between the material and spatial coordi- 
nates exists if and only if  the Jacobian, which is given by 

J := det 

does not vanish. 

" C~Xl 0 X l  (~Xl  " 

(~X1 0 X  2 (~X 3 
Ox2 Ox2 Ox2 

(~X1 OX2 OX3 
OX3 (~X3 6~X3 

. OXl OX2 OX 3 _ 

Using equations (1.32), we obtain 

J - d e t  0 1 c t - c - t  c t ' 0 .  
7 -  

0 0 1 
14 See also Section 1.2.1. 

15In this book, e (') and exp (.) are used as synonymous  nota t ions .  

(1.33) 
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Thus, the transformation exists. Since, in this exercise, mapping x - 
x (X, t) is linear, we can write it using matrix  notation x -  A X .  We can 
explicitly write, 

iXll i 1 llXl 1 x2 = 0 1 e t - e - t  X2 

X3 0 0 1 X3 

where A is the transformation matrix. Since det A - J ~ O, transformation 
matr ix  A has an inverse. Thus, the spatial description of motion,  namely, 
X - X (x, t), is X = A - i x .  In other words, 

IXll ~ e t/1 e /1 Ixll 
X2 = 0 1 e - t  ( 1 -  e 2t) x2 �9 

X3 0 0 1 x3 

R e m a r k  1.1 Note that at t -  O, A -  A -~ - I; hence, X (0) - x(O).  In 
other words, at the initial time, both material and spatial descriptions of 
motion coincide. At  a later time, the material point that occupied position 
X at t ime t - O, occupies position x.  

E x e r c i s e  1.2 16 Consider 

X 
F (X) -- a sin -b-' (1.34) 

where a and b are constants. Let the change of variables be given by X - 
x -  u (x).  Show that if  both a and u (x) are infinitesimal while b is finite, 

we obtain 
F ( X )  = F ( x ) .  

S o l u t i o n  1.2 Considering the given change of variables, we can write ex- 

pression (1.3~) as 

x - ~ ( z )  
F (X (x)) - a s in  

b 
x ~(x) 

= a  s i n ~ c o s ~ -  sin u (bX) x) COS ~- . 

Since u (x) is an infinitesimal quantity and b is f inite 

16See also Section 1.2.3. 

u(x) 
lim cos 

,lb--,O b 
= 1 .  
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Also, assuming that u (x) /b is expressed in radians, 

sin ,~ 
b b 

Thus, we can write 

F (X  (x)) ~ a ( sin xb u(X) c ~  

x 
~ o  = a sin ~ - a cos b 

Again, since both a and u (x) are infinitesimal, we ignore their product to 
obtain 

X 
F (X (x)) ~ a sin ~ - F (x) ,  

as required. 

R e m a r k  1.2 The result of Exercise 1.2, as well as the equivalence of the 
material and spatial coordinates for the infinitesimal displacements, is quite 
intuitive. In other words, considering the change of variables given by X = 
x -  u (x), we get X ..~ x, for infinitesimal values of u (x). 

E x e r c i s e  1.3 A bar of length 1 would have an elongation ul due to strain 
r that is, Ul = ell. The same bar would have another elongation u2 due to 
strain ~2, that is, u2 = c21. Show that considering only linear terms, under 
the assumption of small strains, the total elongation due to both strains is 
equal to the sum of both elongations. 

S o l u t i o n  1.3 Assume that r is applied first. This results in the elongation, 

Ul  = e l l .  

Hence, the new length of the bar is 

1 + Ul = 1 -I- Cl l  = 1 (1 + ~1). 

Subsequently, applying strain, e2, we obtain the final elongation, 

u f  - Ul + c2l (1 + C1) --  Ul + C21 -t- C1C2/ --  Ul + U2 -1-- C1~2/.  

Assuming that the value of the product, clc21, is small compared with the 
values of both C l l  and c21 in other words, both C1 and c2 are much smaller 
than unity ~ we obtain 

uf  ,.~ Ul + u2. 
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R e m a r k  1.3 The same result is obtained if the order is reversed, or if C1 

and c2 are applied simultaneously. This is the illustration of the fact that the 
principle of superposition is applicable to all linear systems a commonly 
used property in mathematical physics. 

Exercise  1.4 17 Using definition (1.15) and considering orthonormal coor- 
dinate systems, show that strain, cij, which is given in terms of first partial 
derivatives of a vector, is a second-rank tensor. 

N o t a t i o n  1.1 The repeated-index summation notation is used in this solu- 
tion. Any  term in which an index appears twice stands for the sum of all 
such terms as the index assumes all the values between 1 and 3. 

Solut ion  1.4 Following definition (1.15), consider O~t~/O2j,where ~t~ are 
the components of the displacement vector, u, in the transformed coordinates 
2j. The transformation rule of the coordinate points is given by 

2j - ajzxz, j E {1, 2, 3}, (1.35) 

where the entries of matrix a are the projections between the transformed 
and original axes. Matrix a is an orthogonal matrix; in other words, its 
inverse is equal to its transpose. Hence, 

x i - aly2Cz, j E {1, 2, 3}. 

Consequently, we obtain 

Oxj _ (1 36) 
Oxl -- al j .  

Since u is a vector, its components transform according to the rule 

s - aikuk, i C { 1, 2, 3}. 

Thus, we can write 

02z 

(OUk 
= aik 02 l '  i, 1 C {1,2,3}, 

which can be restated as 

O~i OUk Oxj 
CO~l = aik Oxj OXl ' 

17See also Sections 1.3.1, 5.1.1 and 5.2.2. 

i,1 e {1,2,3}. 
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Hence, in view of equation (1.36), we can write 

O~i Ouk 
O2z = aikaZj Oxj' i, 1 E { 1, 2, 3}, (1.37) 

which is a transformation rule for the second-rank tensors. Consequently, 
since the sum of second-rank tensors is a second-rank tensor, an entity given 
by eij "- (Oui/Oxj + Ouj/Oxi) /2 is a second-rank tensor. 

E x e r c i s e  1.5 is Considering the one-dimensional case and assuming infini- 
tesimal displacement gradients, in view of expressions (1.3) and (1.4), show 
that 

Ou OU 
- -  ~ ~ ( 1 3 s )  
Ox OX 

S o l u t i o n  1.5 Consider the one-dimensional case of expressions (1.3) and 
(1.~), namely 

I u (x, t) - x (x,  t) - x 

~(x,t) - x -X(~ , t )  
Taking partial derivatives with respect to the first arguments, we obtain 

OU 

OX 

Ou 

Ox 

Ox 
- 1 

OX 

O X  
= 1  

Ox 

(1.39) 

Since x (X, t) and X (x, t) are inverses of one another, we use the properties 
of the derivative of an inverse to obtain 

Ox 

OX 

1 

OX" 

Ox 

Hence, we can write expression (1.39) as 

lSSee also Section 1.3.2. 

OU 

OX 

Ou 

Ox 

1 
1 

OX 

Ox 

OX 
:I 

9x 
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Solving both equations for OX/Ox, we obtain 

OX 

Ox OU 
+ 1 

OX 

OX Ou 
= 1  

Ox Ox 

Equating the right-hand sides and solving for Ou/Ox, we get 

OU 
Ou OX 
oX = OU " (1.40) 

+ 1  
OX 

Examining equation (1.~0), we notice that for the infinitesimal displacement 
gradients, namely, OU/OX < <  1, we can write Ou/Ox ~ OU/OX, which is 
expression (1.38), as required. 

E x e r c i s e  1.6 19 Prove the following theorem. 

T h e o r e m  1.1 The sum of diagonal elements of a second-rank tensor is 
a scalar. Hence, it is invariant under transformations of the coordinate 
system. 

S o l u t i o n  1 . 6  . 

Proof .  By definition, the components of the second-rank tensor elm 

transform to the components gik, which are expressed in another coordinate 
system, according to the rule 

3 3 

gik - ~ E ailakmelm, i, k E {1, 2, 3}, 
l=1 m = l  

where a is an orthogonal transformation matrix. Setting k - i, we obtain 
the sum of the components along the main diagonal, namely, 

3 3 3 3 

i=1 i=1 l=1 r n = l  

19 See also Sect ion 1.3.2. 

ailaimClm. 
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Hence, by orthogonali ty of a, we have 

3 

i=1 
a i l a i m  - -  ~lm , c {1,2,3}. 

Thus, we can write 

3 3 3 3 

i= l  /=1 m = l  m = l  

Since both i and m are the summation indices, we are allowed to write 

3 3 

j = l  j = l  

e j j  . 

This means tha t  the sum of the diagonal elements of a second-rank tensor 
is a scalar. This implies that  the value of the sum of the diagonal elements 

is invariant under t ransformations of the coordinate system. �9 

R e m a r k  1.4 Following Exercise 1.~, we can see that dilatation, ~, defined 
by expression (1.26) is the sum of diagonal elements of the second-rank ten- 
sot, namely, the trace of the strain tensor, cij "- (Oui/Oxj + Ouj/Oxi) /2. 
Consequently, as shown in Exercise 1.6, we can prove that dilatation is a 
scalar quantity. This is expected because of the physical meaning of dilata- 
tion. In other words, the change of volume must be independent of the 
coordinate system. 

E x e r c i s e  1.7 2~ view of the properties of vector operators, show that the 
components of the second-rank tensor, given by expression (1.29), namely, 

l ( Oui Ouy ) 
~ij "-- "~ OXj  OXi ' i, j E {1, 2, 3}, 

are associated with rotation vector (1.30). 

S o l u t i o n  1.7 Consider the displacement vector u - [ u l ,  u2, u3]. 
write its curl as 

We can 

e2 + e3 ,  V • u - -  \Ox2 Ox3 el + \Ox3 Oxl Oxl Ox2 

2~ also Section 1.4. 
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where ei denotes a unit vector along the xi-axis. Following expression (1.29), 
we can rewrite the curl as 

V X U = [2~32, 2~13, 2~21] �9 

Thus, ~ij can be viewed as the components of the vector that results from the 
rotation of u~2. Denoting �9 = [2~32, 2~13, 2~21], we obtain definition (1.30). 

R e m a r k  1 .5  The association between the components of the second-rank 
tensor ~ij and the components of vector �9 is due to the antisymmetry of 
this tensor that results in only three independent components. 



Chapter 2 

Forces and balance principles 

It is as necessary to science as to pure mathematics that the 
fundamental principles should be clearly stated and that the 
conclusions shall follow from them. But in science it is also 
necessary that the principles taken as fundamental should 
be as closely related to observation as possible. 

Harold Yeffreys and Bertha Yeffreys (19~6) Methods of mathe- 
matical physics 

Preliminary remarks 

In the context of continuum mechanics, seismic waves are deformations that  
propagate in a continuum. These deformations are associated with forces. In 
order to describe the propagation of deformations, we now seek to formulate 
the equations that relate these deformations to forces acting within the 
continuum. 

We begin this chapter with the study of the conservation of mass, which 
is a fundamental balance principle of continuum mechanics and which is 
associated with the motion of mass within the continuum. Using the con- 
servation of mass, we derive the equation of continuity. Then we formulate 
the balance of linear momentum. Subsequently, in order to take into ac- 
count the forces acting within the continuum, we formulate the stress ten- 
sor. Using the balance of linear momentum and the concept of stress, we 
derive Cauchy's equations of motion. To obtain all fundamental equations 
that relate the unknowns that appear in the equation of continuity and in 
Cauchy's equations of motion, we also invoke the balance of angular mo- 
mentum. These three balance principles lead to a system of equations that  

33 
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is associated with the propagation of deformations in an elastic continuum. 

2 .1  C o n s e r v a t i o n  o f  m a s s  

I n t r o d u c t o r y  c o m m e n t s  

A fundamental principle in which our description of continuum mechanics 
must be rooted is the conservation of mass. We use this principle to derive 
an equation that relates mass density, p, and displacement vector, u. 

Note that, in general, conservation principles are special cases of the 
corresponding balance principles. Herein, discussing the balance of mass, 
we wish to emphasize that we do not consider production or destruction 
of mass and, hence, the total amount of mass is conserved. Discussing 
the balance of linear momentum and the balance of angular momentum in 
Sections 2.4 and 2.7, respectively, we wish to emphasize that for a given 
portion of continuum the total amount of these momenta changes and 
these changes are balanced by forces acting within the continuum. 

2.1.1 I n t e g r a l  e q u a t i o n  

The amount of mass, m, occupying a fixed volume, V, at an instant of time 
is given by 

p ~ f .  

(t) - / / / p  (x, t) dV, (2.1) 7n 
J , J  j 

V 

where p denotes mass density. 
The rate of change of mass contained in this volume is given by the 

differentiation of equation (2.1) with respect to time, namely, 

d d f f f  d---~m (t) - --~ 
V 

p (x, t) dV. (2.2) 

Furthermore, for an arbitrary fixed volume V, we can rewrite expression 
(2.2) 

d f f f  Op (x, t) 
d--Tin (t) - JJJ at dV. (2.3) 

v 

We can also express d m / d t  in a different way. Since, in classical physics, 
there is no production or destruction of mass, the rate of change of mass 
contained in a fixed volume is only a function of the mass flowing through 



2.1. Conservation of mass 35 

this volume. In other words, the rate of change of mass contained in vol- 
ume V is equal to the amount of mass that passes through the surface, S, 
bounding this volume. This can be written as 

d // 
(t) - - p (x,  t) v .  n d S ,  

S 

(2.4) 

where v represents the velocity of a portion of mass that passes through 
this surface, and where n denotes an outward normal vector to this surface. 
Herein, we assume the element dS to be sufficiently small that it might be 
considered as a plane and to have the same mass flow across all its points. 

Expressions (2.3) and (2.4) describe the same quantity. To equate them, 
we express the right-hand side of equation (2.4) as a volume integral. Follow- 
ing the divergence t h e o r e m -  where the surface integral of vector p (x, t) v (x) 
over a closed surface equals the volume integral of the divergence of that  vec- 
tor integrated over the volume enclosed by this surface we obtain 

d 
-d~m (t) - - V .  (pv) dV. 

V 

(2.5) 

Now, equating expressions (2.3) and (2.5), we obtain 

f / f O p  -~ dV - - / / /  
v v 

V.  (pv) d r ,  

where the negative sign results from the fact that  the vector normal to 
the surface points away from the volume V. Combining the two volume 
integrals, we can write 

V 

d V - O ,  (2.6) 

which states the conservation of mass for a fixed volume V. 
Note that in this derivation of equation (2.6), the change in the amount of 

mass in a volume at any instant is balanced by the mass flowing through the 
surface that encloses this volume. Consequently, considering a given volume, 
one could refer to equation (2.6) as a balance-of-mass equation rather than a 
conservation-of-mass equation. However, as stated above, we choose to use 
only the latter term. Our choice is also justified by the fact that discussing 
the balance of linear momentum and the balance of angular momentum 
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in Sections 2.4 and 2.7, respectively, we consider a moving volume that  
consistently contains the same portion of the continuum, as discussed in 
Section 2.2; in such a case, there is no mass flowing through the surface that  
encloses this moving volume. 

2 .1 .2  E q u a t i o n  o f  continuity 

The equation of continuity is a differential equation expressing the conser- 
vation of mass within the continuum. To derive the equation of continuity, 
consider integral equation (2.6). For this equation to be true for an arbitrary 
fixed volume, the integrand must be identically zero. Thus, we require 

Op 
0-7 + v .  (pv)  - 0. (2.7) 

Note that  if there were a point where the integrand were nonzero, we 
could consider a sufficiently small volume around that point. This would 
result in a nonzero value of the integral, as illustrated in Exercise 2.1. 

Since v = a u / a t ,  where u denotes the displacement vector, we can write 
equation (2.7) as 

0-7 + v .  - 0. (2.8) 

This is the equation of continuity. The equation of continuity equates the 
rate of change of the amount of material inside a closed surface to the net 
rate at which the material flows through this surface. 

2.2 T ime  derivative of vo lume  integral 

To derive the remaining two balance principles, namely, the balance of linear 
momentum and the balance of angular momentum, we use the concept of 
the time derivative of a moving-volume integral, which is associated with the 
conservation of mass. For this purpose, let us consider a moving volume that 
consistently contains the same portion of the continuum. In other words, 
there is no mass transport through the surface encompassing this volume. 
In such a case, the portion of the continuum possessing a given velocity 
and acceleration is identifiable. Hence, such a description lends itself to a 
convenient extension of particle mechanics and, therefore, allows us to use 

Newton's laws of motion. 
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To consider the temporal variation of a physical quantity enclosed in a 
moving volume, we must consider the time derivative of 

I (x, t ) -  fff 
v(t) 

p(x,t)A(x,t)dV, 

where p is mass density, A is a scalar, vector or tensor, while V (t) is a 
volume that  varies with time but always contains the same portion of the 
continuum. This derivative can be formulated in the following way. 

Consider 

d / f /  / f f  O / /  a -~ pAdV - -~ (pA) dV + pA ~ vjnjdS, 
V(t) V(t) S(t) j= l  

where A describes a physical quantity of interest. The left-hand side is the 
rate of change of the total amount of A within the moving volume, the first 
integral on the right-hand side is the change of A associated with this volume 
while the second integral on the right-hand side is the change associated with 
the surface enclosing this volume. Using the divergence theorem, we obtain 

d--t pAdV - ~-~ (p,A) dV 

v(t) v(t) 
§ f f L O (pAvj ) d V. 

v(t) j=l Oxj 

Differentiating and rearranging, we get 

d i l l  / / /  I IOA ~ OAI lop ]1 di p A d V - p --~ + v J -~x j + A - ~ - + V . ( p v )  dV. 
V(t) V(t) j= l  

We note that  the term in brackets vanishes due to equation of continuity 
(2.7). Thus, we can write 

d / f  / / / /  IOA ~ OA I d---t p A d V - p -~ + . v j -~z j 
v(t) v(t) 

dV, 

which can be restated as 

d 0 
--~ / ] f  pAdV - / f  f p (-~ + v. V) AdV. v(t) v(t) 

(2.9) 
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In view of expression (1.1), we note that the operator in parentheses in 
expression (2.9) is the material time-derivative operator. Hence, we obtain 
the desired result, namely, 

dt p (x, t) .4 (x, t) dV - p (x, t) dAdt(X, t) dV. 

v(t) v(t) 

(2.10) 

Note that, in the case of moving volume, the time derivative and the 
volume integral do not commute, while, as shown in equations (2.2) and 
(2.3), they do commute for a fixed volume. 

2.3 Stress  

2.3.1 Stress  as descr ip t ion  of  surface  forces 

We wish to analyze the internal forces acting among the adjacent material 
elements within the continuum. For this purpose, we introduce the concept 
of stress. 

The presence of stress, as described below, sets continuum mechanics 
apart from particle mechanics. Stress, as a mathematical entity, was intro- 
duced by Cauchy in 1827 to express the interaction of a material with the 
surrounding material in terms of surface forces. 1 

When a material is subjected to loads, internal forces are induced within 
it. Deformation of this material is a function of the distribution of these 
forces. In a continuum, stress is associated with internal surface forces that 
an element of the continuum exerts on another element of the continuum 
across an imaginary surface that separates them. Stress is a system of sur- 
face forces producing strain within a continuum. Owing to the mutual de- 
pendence of stress and strain, strains cannot be produced without inducing 
stresses, and stresses cannot be induced without producing, or tending to 
produce, strains. This interrelation between stress and strain is an intrinsic 
property of the elasticity theory. 

2.3.2 T r a c t i o n  

As a result of forces being transmitted within the continuum, the portion of 
the continuum within an arbitrary volume enclosed by an imaginary surface 
interacts with the portion of the continuum on the other side of this surface. 

l Interested readers might refer to Cauchy, A. L., (1827) De la pression ou tension dans 
un corps solide: Ex. de Math, 2, pp. 42- 56. 
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Let A F  be the force exerted on the surface element A S  by the continuum 
on either side of this surface. The average force per unit area can be writ ten 
in terms of the ratio 

A F  
W = AS" (2.11) 

Cauchy's stress principle the fundamental  principle of continuum me- 
chanics asserts tha t  as AS ~ 0, ratio (2.11) tends to a finite limit. 2 The 
resulting vector is called the traction and is given by 

A F  dF 
T (n) -- lim = (2 12) 

zxs-~0 A S  d S '  

where the superscript n refers to the surface element, AS, upon which the 
traction is acting and which is defined by its unit normal, n. Thus, traction 
is a vector tha t  describes the contact force with which the elements at each 
side of an internal surface within the continuum act upon each other. 

Note tha t  since the value of traction is finite while the element of the 
surface area becomes infinitesimal, we can describe a distribution of forces 
at every point within the continuum. Also note tha t  the traction is explicitly 
dependent on the particular choice of the surface element, as indicated by 
the unit vector, n, and, consequently, we can describe a distribution of forces 
associated with any given direction. 

2.4 B a l a n c e  o f  l inear  m o m e n t u m  

In general, the forces acting within a continuum are classified as either sur- 
face forces or body forces according to their mode of application. Surface 
forces are t ransmi t ted  by direct mechanical contacts across imaginary sur- 
faces separating given portions of the continuum. Body forces, such as 
gravitational force, are associated with action at a distance. 

Consider a portion of a continuum contained in volume V and subjected 
to time-varying and space-varying forces. The surface forces are given as 
the traction vector shown in expression (2.12), namely, 

dF 
T =  

d S '  

and the body forces are given by 

f - f (x, t ) .  

2Interested readers might refer to Malvern, L.E., (1969) Introduction to the mechanics 
of a continuous medium: Prentice-Hall, p. 70. 
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Consequently, the total force is 

J J j j t l  

S V 

where S is the surface containing volume V. 
Note that T and f have units of force per area and force per volume, 

respectively. 
To study the effect of this force, we choose to consider a moving vol- 

ume that  consistently contains the same portion of the continuum. Hence, 
invoking Newton's second law of motion, we can write 

d///du // /// 
d--~ P-d--t- GV - W GS + f dV, (2.14) 

v(t) s(t) v(t) 

which is an integral equation that states balance of linear momentum and 
where the displacement, 

u = [~  (x, t), ~2 (x, t), ~3 (x, t)], (2.15) 

is a function of both space and time. Invoking expression (2.10) and letting 
.4 = du /d t ,  we can restate the balance of linear momentum as 

j//d u // /// 
p - - ~ d V  = W GS + f GV. (2.16) 

v(t) s(t) v(t) 

Note that  d2/dt 2 refers to the material time-derivative operator, which 
is shown in expression (1.1). 

Integral equation (2.16) states that  the rate of change of linear momen- 
turn of an element within the continuum is equal to the sum of the forces 
acting upon this element. This statement is analogous to Newton's second 
law of motion in particle mechanics. 

In Section 2.5.2, we use the balance of linear momentum to formulate the 
stress tensor. In Section 2.6, following the formulation of the stress tensor, 
we use equation (2.16) to derive Cauchy's equations of motion. 

2 . 5  S t r e s s  t e n s o r  

2 .5 .1  T r a c t i o n  o n  c o o r d i n a t e  p l a n e s  

We wish to describe the state of stress at a given point in a continuum. At 
an arbitrary point within a continuum, Cauchy's stress principle associates 
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a traction and a unit normal of a surface element on which this vector is 
acting. 

Consider a fixed coordinate system with the orthonormal vectors given 
by el,  e2 and e3. The traction acting on the i th coordinate plane is repre- 
sented by a vector, which can be written as 

T(ei) 
- -  T~ei)el + T(ei)e2 + 7(3 el)e3, 

where T} e~) are the components of this vector along the xj-axis. The three 
J 

t ractions associated with the three mutually orthogonal planes can be ex- 
plicitly writ ten as three vectors given by 

I T(el) I z~el)Z(el)Z(3 el) I el 1 
T (e2) -- T} e2) T (e2) T (e2) e2 . (2.17) 

T (e3) T}e3) T2 (e3) T3 (e3) e3 
Considering the traction components shown in the 3 x 3 matrix, we see 
that  the subscript refers to the component of a given traction, while the 
superscript identifies the plane on which this traction is acting. For instance, 

r(el)  is the x2-component of a traction acting on the plane normal to the 
Xl-axis. 

For convenience, we write the square matrix in equations (2.17) as 

I Oll o12 o13 1 
0 - -  o21 022 023 �9 (2.18) 

(731 ~ ~33 

By examining expressions (2.17) and (2.18), we immediately see that  a~j 
represents the j t h  component of the surface force acting on the surface 
whose normal is parallel to the xi-axis. This index convention, which allows 
us to describe the direction of the force and the orientation of the surface 
on which it is acting, is also illustrated in Figure 2.1. 3 

We also wish to distinguish between tension and compression for the 
traction components normal to a given face, as well as denote the direction 

3This index convention is consistent with Malvern, L.E., (1969) Introduction to the 
mechanics of a continuous medium: Prentice-Hall, p. 80, and with Aki, K., and Richards, 
P.G., (2002) Quantitative seismology (2nd edition): University Science Books, pp. 17- 
18. 

One can also use the opposite convention; for instance, Kolsky, H., (1953/1963) Stress 
waves in solids: Dover, p. 5, and Sheriff, R.E., and Geldart, L.P., (1982) Exploration 
Seismology: Cambridge University Press, Vol. I, p. 33. 
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X 1 

X 3 

033 

032 

o,, X2 

Figure 2.1: The index convention for the aij components, aij represents the 
j t h  component of the surface force acting on the surface whose normal is 
parallel to the xi-axis. All components shown herein are positive. 

of the traction components tangential to a given face. For this purpose, we 
adopt the following sign convention. On a surface whose outward normal 
points in the positive direction of the corresponding coordinate axis, all 
traction components that act in the positive direction of a given axis are 
positive. On a surface whose outward normal points in the negative direction 
of the corresponding coordinate axis, all traction components that  act in the 
negative direction of a given axis are positive. This convention applies to 
both the normal and the tangential components. Examining Figure 2.1, 
we see that  all the traction components on each of the six faces illustrated 
therein are positive. In the context of the normal components, our sign 
convention implies that  tension is positive while compression is negative. 4 

Note that,  if we wished, we could reverse our sign convention without 
affecting Newton's third law. In other words, 

T (-n) = - T  (n) (2.19) 

4This sign convention is consistent with Aki, K. and Richards, P.G., (2002) Quantita- 
tive seismology (2nd edition): University Science Books, p. 15. 
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is always true. 
As formulated herein, the entries of matrix (2.18) determine the stress 

state within a continuum at a given point with respect to the coordinate 
planes. As shown in Section 2.5.2, these entries can also be used to describe 
the stress state with respect to an arbitrary plane within the continuum. 

2 .5 .2  T r a c t i o n  o n  a r b i t r a r y  p l a n e s  

To study forces within the continuum, we wish to describe them with respect 
to a plane of arbitrary orientation. For this purpose, consider an element of 
a continuum in the form of a tetrahedron. Let the tetrahedron be spanned 
by four points O (0, 0, 0), A (a, 0, 0), B (0, b, 0) and C (0, 0, c), as shown in 
Figure 2.2. Thus, the four faces of the tetrahedron consist of the oblique 
face, namely, A B C ,  and of three orthogonal faces, namely, OAB,  O B C  and 
OAC. 

We seek to determine the force AF  acting on the oblique face whose area 
is AS and whose unit normal is n. 

The key statement of this derivation relies on the balance of linear mo- 
mentum, discussed in Section 2.4, and the fact that  the tetrahedron is sub- 
jected to both surface and body forces. In view of equation (2.16), for a 
finite-size tetrahedron, we can write 

dre (2.20) A F  + AF  (el) + AF (e2) + AF  (es) + f A V -  f iAV dt ' 

where A F  is the surface force acting on the oblique face, A F  (e~) is the surface 
force acting on the orthogonal face normal to the xi-axis, and f refers to the 
body force acting on the tetrahedron with volume A V and mass density ft. 
Thus, the left-hand side of equation (2.20) gives the sum of forces, while 
the right-hand side gives the rate of change of linear momentum with 
denoting velocity. The bars above a given symbol denote the average value 
of the corresponding quantity for this finite-size tetrahedron. 

In view of expression (2.11), we can write 

A F  - r~(n) A S .  (2.21) 

Using expressions (2.19) and (2.21), we can rewrite equation (2.20) as 

r r ( n ) t ~ -  rr(ei)AS1 - ri~(e2)AS2 - rr(e3)AS 3 -~- - fAg  -- f iAV drr 
d t '  (2.22) 

where AS is the area of the oblique face and AS/ i s  the area of an orthogonal 
face normal to the xi-axis. In equation (2.22), T(') is a resultant traction 
that corresponds to a given face. 
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X 3 

C~ x _ ~( ' , )~  

~(~:) ~ x 2 
- A S :  

~ x ~ T  (~)AS 3 

X 1 

Figure 2.2: Tetrahedron used in the formulation of the stress tensor. This 
construction is also called Cauchy's tetrahedron. 

Note that the orthogonal faces have unit outward normals parallel and 
opposite in sign to the unit vectors of the coordinate axes, el .  Hence, in view 
of Newton's third law, we introduced the negative signs in the summation. 

The surface forces, which are used in equation (2.22), are illustrated in 
Figure 2.2. 

To study equation (2.22), we wish to geometrically relate the surface 
areas of the tetrahedron, AS and AS/, where i E {1,2, 3}, and its volume, 
V. 

The areas of the orthogonal faces are 

ASi  = n i A S ,  i E {1, 2,3}, (2.23) 

where ni is the component of the unit vector, n, that is normal to the oblique 
face. Using expression (2.23), we can rewrite equation (2.22) as 

- d V  
T(n) A S -  T ( e * ) n l A S -  T(e2)n2AS-  T(e3)n3AS -+- fAV - t )AV-~ .  (2.24) 

Now, we wish to relate the volume, AV, to the area of the oblique face, 
AS. Considering the oblique face as the base of the tetrahedron, we can 
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state its volume as 
h 

ZXV- gAS,  (2.25) 

where h is the height of the tetrahedron. Hence, using expression (2.25), we 
can rewrite equation (2.24) as 

i 

T ( n ) A S -  l ' ( e ~ ) n l A S -  1"(e2)n2AS- ~'(e3)n3AS + ~ A S  

Dividing both sides of equation (2.26) by AS, we obtain 

fh 
@ ( n )  _ ~i,(el)rtl _ ~i,(e2)n2 _ ,~(e3)n3 _~_ ~ _ 

_ AS d~ 
dt" 

(2.26) 

~h d~ 
3 dt" (2.27) 

To describe the state of stress at a point within the continuum, we let 
h --~ 0 in such a way that  the areas of all faces simultaneously approach 
zero, the orientation of the height, h, does not change, and the origin of the 
coordinate system does not move. In other words, the finite-size tetrahedron 
reduces to an infinitesimal tetrahedron at point O (0, 0, 0). Thus, we obtain 

(2.28) T(n) _ T(e~)nl + w(e2)n2 -Jr- T(e3)rt3" 

Note that  in equation (2.28), the tractions no longer correspond to the 
average values but to the local values at point O (0, 0, 0). This also implies 
that equation (2.28) is valid for any coordinate system. 

Equation (2.28) can be viewed as an equilibrium equation of an infinites- 
imal element within the continuum. Note, however, that  the derivation of 
this equation stems from the balance of linear momentum without a priori 
assuming such an equilibrium. 5 

Expressing the orthogonal-face tractions in terms of their components, 
equation (2.28) can be explicitly written as 

T~ el) T~ e2) T~ e3) 

T ( n ) -  T2 (el) nl -t- T2 (e2) n2-[- T2 (e3) 

T3 (el) T3 (e2) T3 (e3) 

r}el) r~e2) z}e3) I nl 1 
-- T2(e 1 ) T 2  (e2) T2 (e3) Tt 2 . 

T3 (el) T3 (e,) T3 (e3) Tt, 

n3 

(2.29) 

5Readers interested in the theorem relating the stress tensor and the balance of linear 
momentum might refer to Marsden, J.E., and Hughes, T.J.R., (1983/1994) Mathematical 
foundations of elasticity: Dover, pp. 132 - 135. 
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Equation (2.29) states that, at a given point, we can determine traction T(~) 
that  acts on an arbitrary plane through that  point, provided we know the 
tractions at this point that act on the three mutually orthogonal planes. 

Examining expressions (2.17) and (2.29), we conclude that  

W (n) - (TTn, (2.30) 

where a is given in expression (2.18). In the context of an arbitrary plane, 
we see that  the entries of matrix a are the components of a second-rank 
tensor. The fact that a is a second-rank tensor is shown in Exercise 2.3. 

Tensor crij is called the stress tensor. This tensor is also known as 
Cauchy's stress tensor. The stress tensor allows us to determine the stress 
state associated with an infinitesimal plane of arbitrary orientation. The 
stress tensor takes into account both the direction of the traction and the 
orientation of the surface upon which the traction is acting. 

In view of expression (2.18), we can rewrite equation (2.30) as 

T (n) = i ll  311 inll O"12 022 O'32 rt2 

013 o23 (733 n3 

which can be concisely stated as 

3 

T/(n) --- ~ ffji~tj, i E { 1, 2, 3}. (2.31) 
j = l  

Expression (2.31) is an important statement of elasticity theory in the 
context of continuum mechanics. It relates the components of forces acting 
within the continuum to the orientation of the plane upon which the forces 
are acting. In other words, two vectorial properties, namely, traction, T (n), 
and surface-normal vector, n, are uniquely related by the stress tensor, aij. 
The derivation performed in this section shows that  in order to describe a 
traction related to an arbitrary plane, it is enough to consider tractions on 
three planes with linearly independent normals. 6 

6 Readers interested in formulation of the stress tensor as a generalization of the concept 
of hydrostatic pressure might refer to Synge, J.L., and Schild, A., (1949/1978) Tensor 
calculus: Dover, pp. 2 0 5 -  208. 
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2.6 Cauchy's equations of motion 

2.6 .1  G e n e r a l  formulation 

In order to formulate the equations of motion, we consider the balance of 
linear momentum and the concept of the stress tensor. 

In view of expression (2.31), we can write the balance of linear momen- 
turn, stated in equation (2.16), in terms of components, as 

f f f  d~"~ f f  ~ .IS/ P dr2 dY - ~ ~j~.j d~ + 
y(t) s(t) j=l y(t) 

f i d V ,  i e {1,2,3}.  

In this integral equation, we wish to express all integrals as volume in- 
tegrals. Hence, invoking the divergence theorem, we can write 

p dt 2 d V  - ax j  dV  + fi d r ,  

y(t) v(t) j=l y(t) 

i e { 1 , 2 , 3 } .  

Using the linearity of the integral operator, we can rewrite this equation as 

j=l ~Xj ~- fi - P  dt 2 d V - 0 ,  i e {1,2,3},  (2.32) 

which states the balance of linear momentum, as long as the portion of the 
continuum contained in volume V (t) remains the same. 

To derive Cauchy's equations of motion, consider equation (2.32). For 
this integral equation to be satisfied for an arbitrary volume that  contains 
the same portion of the continuum, the integrand must be identically zero. 
Thus, we require 

3 0 -  i d2ui 
- x -  + f~ - ~ dt 2 
I-J 2 j=l  

i e {1, 2, 3}. (2.33) 

In view of equation (2.16), d2/dt  2 refers to the material time-derivative 
operator. However, in this book, as discussed in Section 1.2.3, we use the 
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linearized formulation and we can rewrite equations (2.33) as ~ 

30Crj  i 02Ui 
j~lOxj + f i - p  , i E  {1,2,3}. (2.34) Ot 2 

These are Cauchy's equations of motion. As shown in Exercise 2.4, the SI 
units of Cauchy's equations of motion are N/m3. 8 

Cauchy's equations of motion relate two vectorial quantities, namely, 
the surface force which corresponds to the summation term defining the 
divergence of tensor crji and the body force, to the acceleration vector. 
In other words, Cauchy's equations of motion state that the acceleration of 
an element within a continuum results from the application of surface and 
body forces. 

If the acceleration term vanishes in equations of motion (2.34), we obtain 
the equations of static equilibrium, 

3 O0.j i 
j~lOxy + fi - 0, i c {1, 2, 3}. (2.35) 

These equations describe the equilibrium state of an element of the contin- 
uum arising from the application of forces whose resultant is zero. Equations 
(2.35) are used to illustrate the symmetry of the stress tensor, as shown in 
Exercise 2.5. Equations (2.35) are also valid for rectilinear, constant-velocity 
motion. 

Consider a system composed of equation of continuity (2.8) and Cauchy's 
equations of motion (2.34) in a three-dimensional continuum. This system 
contains four equations and sixteen unknowns, namely, mass density, p, 
stress-tensor components, 011, 012, 013, 0"21, cr22~ (723~ cr31~ (~32~ ~33~ body- 
force components, fl,  f2, f3, and displacement-vector components, ul, u2, 

U3. 
Note that if we consider conservative systems, the three body-force 

components are derived from a single scalar function. In other words, 
f = v u  (x ) .  

In our subsequent studies, we will reduce the discrepancy between the 
number of equations and the number of unknowns. In Section 2.7, we will 

7Readers interested in this approximation might refer to Grant, F.S., and West, G.F., 
(1965) Interpretation theory in applied geophysics: McGraw-Hill Inc., pp. 2 8 -  29, and to 
Graft, K.F., (1975/1991) Wave motion in elastic solids: Dover, pp. 586-  587. 

8Readers interested in formulation of Cauchy's equations of motion as a generalization 
of equations of motion for a perfect fluid might refer to Synge, J.L., and Schild, A., 
(1949/1978) Tensor calculus: Dover, p. 208. 
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show that the stress tensor is symmetric, which results in only six indepen- 
dent stress-tensor components. Also, we will not consider the body force, 

f = []'1, f2, f3]. 
Where we consider an infinitesimal element of the continuum, as we do in 

Part I, the body force is irrelevant. We can see this in view of the tetrahedron 
argument, discussed in Section 2.5.2, in particular, by examining the step 
between equations (2.27)and (2.28). 

Where we study waves and rays, as we do in Part II and Part III, we 
invoke Cauchy's equations of motion (2.34), which, in general, contain both 
surface forces and body forces. However, if we consider sufficiently high 
frequencies, which is the case in applied seismology, the effects of the body 
forces are negligible as compared to the effects of the surface forces. In other 
words, the effects of gravitation are negligible as compared to the effects of 
elasticity. 9 

2 .6 .2  E x a m p l e :  S u r f a c e - f o r c e s  f o r m u l a t i o n  

To gain insight into the equations of motion without body forces, we rederive 
equations (2.34) without using the divergence theorem, which relates surface 
and volume integrals. 

Consider the force acting in the positive direction of the x 1-axis on each 
coordinate plane. In view of definition (2.12), we can write the force acting 
along the x 1-axis as 

T~ el) dx2dx3 + T~ e2) dxldx3 + T~ e3) dxldx2, (2.36) 

where e/ denotes the unit normal to the coordinate plane on which T~ e/) 
is acting, and dxjdxk is the surface area of this planar element. Following 
expression (2.18), expression (2.36) can be rewritten as 

all  dx2dx3 + a21 dxldx3 + O"31 dxldx2. (2.37) 

Now, consider a small rectaJ gular box subjected to stresses. Let the 
rectangular box be spanned by d~1, dx2 and dx3, with its sides being parallel 
to the orthonormal coordinate ~oXeS. 

Consider the force acting in the positive direction of the x 1-axis on each 
face of the rectangular box. The resultant force along the x l-axis is a sum 
of forces acting on the three sets of the parallel faces of the rectangular 

9Readers interested in the effect of gravity on seismic wave propagation might refer to 
Udfas, A., (1999) Principles of seismology: Cambridge University Press, pp. 39- 40. 
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x 3 

-~dx2dx3 ((~,~ + ~ dx~)dx~dx~ 

, ,~,,,. X 1 

Figure 2.3: Two forces acting along the xl-axis on faces that are parallel to 
it. 

box. Within each set, the two parallel faces are separated by a distance 
dxi. By convention, stated in Section 2.5.1, a stress component is positive 
if it acts in the positive direction of the coordinate axis and on the plane 
whose outward normal points in the positive coordinate direction. For each 
set of the two parallel faces of the aforementioned rectangular box, one face 
exhibits an outward normal that points in the positive coordinate direction 
while the other face exhibits an outward normal that points in the negative 
coordinate direction. Thus, in view of expression (2.37), we can write the 
resultant force along the x 1-axis as 

[( 0 11 ) 1 dF1 - -  (711 + 0Xl dxl dx2dx3 + (--all  dx2dx3) 

+ 021 -t- 'OX2 dx2 dx 1 dxa + (-o21 dxl dx3) 

+ o31 + c9x3 dxa dxldx2 + (-or31 dxldx2) 

(2.as) 

which, for a given direction, contains all six separate forces acting on all the 
faces of the rectangular box. The expressions in brackets correspond to the 
sum of the two forces along the x 1-axis acting on faces orthogonal to the 
x 1-axis, the x2-axis, and the x3-axis, respectively. In other words, the first 
bracket denotes a sum of the two forces acting along the x 1-axis on the faces 
normal to it, as shown in Figure 2.3, while the second and the third brackets 
denote the sums of forces acting along the x 1-axis on the faces parallel to it. 

Note that, in view of terms ail + (Oail/Oxi) dxi, expression (2.38) is a 
first-order approximation. This approximation is consistent with our study 
in the context of linearized theory. 
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Expression (2.38) immediately simplifies to 

0Crll 0o21 0(731 ) 
d F 1 -  Oxl zr- ~X2 + OX3 dxldx2dx3. (2.39) 

Invoking Newton's second law of motion in the form given by 

d2ul 
dF1 - p dxl dx2dx3 dt 2 , 

where p is the mass density of the small rectangular box and u l is the 
displacement in the xl-direction, we can write expression (2.39) as 

d2ul 0(711 0(721 0Cr31 
P = O.l + 0 . ;  + 0.---7 (2.40) 

Analogously, for the displacement-vector component along the x2-axis and 
the displacement-vector component along the x3-axis, we can write 

and 

0a22 0a32 d2u2 - 0crl"--'~2-~- 0x2 -~- ~ (2.41) 
P dt 2 - OqXl oqx3 

d2tt3 c9a1__.__~3 _ 0(723 0(733 (2.42) 
P dt  2 = (~Xl ~- 0x2  -~- c~x----~' 

respectively. 
In view of linearization discussed in Section 1.2.3, total derivatives with 

respect to time are equivalent to partial derivatives. Consequently, expres- 
sions (2.40), (2.41) and (2.42) are equivalent to Cauchy's equations of motion 
(2.34) with no body forces. 

2.7 Balance of angular m o m e n t u m  

I n t r o d u c t o r y  c o m m e n t s  

Motion within a continuum must also obey the balance of angular momen- 
tum. In deriving the differential equation to express the balance of angular 
momentum, we use the conservation of mass by invoking time derivative 
of volume integral and the balance of linear momentum. Hence, the con- 
straints imposed by the balance of angular momentum do not add another 
independent differential equation. They do, however, reduce the number of 
unknowns, as shown below. 
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2 .7 .1  I n t e g r a l  e q u a t i o n  

The balance of angular momentum can be stated as 

d///(du) // /// 
d-- t  x x p - ~  d V -  ( x x T )  d S +  

v(t) s(t) v(t) 

(x x f) dV, (2.43) 

w.here V (t) is a volume that  moves while always containing the same por- 
tion of the continuum and S (t) is the surface containing this volume. The 
integrand on the left-hand side is the angular momentum, namely, the vec- 
tor product of the distance between a reference point and the element of the 
continuum with the linear-momentum density pdu/d t .  The first integrand 
on the right-hand side is the vector product of this distance and force per 
unit area associated with this element, while the second integrand on the 
right-hand side is the vector product of that  distance and force per unit 
volume associated with this element. 

2 .7 .2  S y m m e t r y  o f  s t r e s s  t e n s o r  

Since our formulation must obey the conservation of mass and the balance 
of linear momentum as well as the balance of angular momentum, we obtain 
an important  consequence of these laws the stress tensor is symmetric. 

T h e o r e m  2.1 Consider a linearized formulation in a three-dimensional con- 
tinuum. Let the principles of the conservation of mass and the balance of 
linear momentum hold. The balance of angular momentum holds if and only 

if 
O ' i j  - -  O ' j i  , 

where i, j E {1, 2, 3}. In other words, the stress tensor is symmetric. 

N o t a t i o n  2.1 The repeated-index summation notation is used in this proof. 
Any  term in which an index appears twice stands for the sum of all such 
terms as the index assumes all the values between 1 and 3. 

Proo f .  We can rewrite expression (2.43) as 

d 

v(t) s(t) 

(x • T) d S + / / / ( x  
t /  t /  t /  

v(t) 

• f) dV. (2.44) 
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Invoking the time derivative of a moving-volume integral, given by expres- 
sion (2.10)and letting A -  xxdu/d t ,  we can restate expression (2.44) as 

I f / ( d 2 u )  / /  f / f  p X X - d ~  d V -  ( x x T )  d S +  ( x x f )  dV. (2.45) 

v(t) s(t) v(t) 

In view of the linearized formulation discussed in Section 1.2.3, we can 
rewrite the balance of angular momentum, given in expression (2.45), as 

// /// p x x - ~  d V -  ( x x T )  d S +  ( x x f )  dV. (2.46) 

v(t) s(t) v(t) 

Using the stress tensor, invoking the divergence theorem, and in view of 
the validity of expression (2.46) for an arbitrary integration volume that 
consistently contains the same portion of the continuum, we obtain the 
differential equation given by 

(0 u) p x x - ~  - V . ( x x a ) + x x f .  (2.47) 

Consider the first term on the right-hand side in equation (2.47). The ex- 
pression in parentheses is a second-rank tensor whose ilth component can 
be written as 

(x x a)i 1 --eijkXjakl, i, 1 E {1, 2, 3}, 

where eijk is the permutation symbol. Taking the ith component of the 
divergence and using the product rule, we obtain 

0 
[ v .  (x x ~)]~ = Ox~ (~jkxj~k~) 

= (x x V. a)i + eijkbjlcrkl, i E {1, 2, 3}. (2.48) 

Substituting expression (2.48)into equation (2.47), we obtain 

( 02u)  - - ( x x V . a ) i + e i j k @ a k l + ( x x f ) i  , iE {1,2,3}. p x X-O-~ i 

Using the linearity of the cross-product operator, we can write 

x • kPVV _ I  x t,P~/~ ~ f)~] • - v .  - , 

(2.49) 

= c~jk6j~ak~, i C {1, 2, 3} .  



54 Chapter 2. Forces and balance principles 

Invoking Cauchy's equations of motion (2.34), which can be written as 

(~2U 
p - ~ - V . a - f - -  0, 

the term in brackets in equation (2.49) vanishes. This implies 

eijkSjZcrkl = 0, i E {1, 2, 3}. 

Using the properties of Kronecker's delta, we can rewrite this equation as 

~ i j k t T k j  - -  O, i E  {1,2,3}, 

which, in view of the properties of the permutation symbol, represents the 
equation given by 

Crjk  - -  Crk j  , 

as required. B 

R e m a r k  2.1 ~ i j k ~ j k  - -  0 is a summation of terms for a given i. 
stance, for i = 1, the summation can be written as 

For in- 

3 3 

= 0 .  
j = l  k = l  

By the properties of the permutation symbol, eijk, only two terms are nonzero; 
they are a23 and a32. Also by the properties of the permutation symbol, these 
terms exhibit opposite signs. Thus we obtain 

(723 - -  (732 - -  0 .  

Thus, in view of the balance of angular momentum, we see that the 
stress tensor is symmetric. Hence, the stress tensor has only six independent 
components and, in view of Section 2.5.2, these components are sufficient to 
determine the state of stress at any given point within a continuum. 

Consequently, considering the system of fundamental equations and not 
including the body forces, we have four equations and ten unknowns. 

2.8 Fundamental equations 

The conservation of mass, the balance of linear momentum and the balance 
of angular momentum are the only three fundamental principles that relate 
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the unknowns in our system. No other balance principles furnish us with 
additional constraints. For instance, the balance of energy, which deals with 
thermodynamic processes, does not add another fundamental equation or 
reduce the number of unknowns since we assume that the heat generated by 
the deformation is negligible and does not affect the process of deformation. 
The balance of energy does, however, play a key role in the formulation of 
the constitutive equations, which are discussed in Chapters 3 and 4. 

Let us summarize the fundamental equations that describe the motion 

within a continuum. 
In view of the symmetry of the stress tensor, the system of equations 

formed by expressions (2.8), (2.40), (2.41) and (2.42) consists of four equa- 
tions, namely, the equation of continuity, 

3 0 // O~Ui ) Op ~~ 
o - 7  - o, 

and Cauchy's equations of motion with no body forces, 

V 0 ( ~ i j  02Ui i c  {1 2 3} 
/ ~ x -  = p o t  2 '  ' ' ' t-] 3 j=l 

(2.50) 

where aij : r , with i , j  c 
written as 

Explicitly, these equations can be 

O p ~- 0 [" O u l ) ~0 [~ p __~_O u 2 ) + 0 [" cO u 3 ~ 
o-7- t,P-  + -o ,  (2.51) 

and 
(90"12 0a13 OO2Ul oa~---A~ + ~ p = o (2.52) 

OXl OX2 OX3 O t  2 ' 

0a23 02u2 (90"1.._._.22 _ 0(722 jr p -- 0 (2.53) 
OXl ~ OX2 OX3 O t  2 - -  ' 

0(723 0(733 02U3 0(713 P- _4 fl -- O. (2.54) 
i)X----~- Ox2 Ox3 cot 2 -- 

The resulting system of four equations contains ten unknowns, namely, 
fl, Ul, u2, u3, ~11, (712, o13, (722, (723 and a33. This system of equations is 
underdetermined; there are not enough equations to uniquely determine the 
behaviour of the continuum. To render the system determined, we turn to 
constitutive equations, discussed in Chapter 3. 
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Closing remarks 

In Chapter 3, in order to complete the system of equations, we associate 
Cauchy's equations of motion and the equation of continuity with the con- 
stitutive equations describing the relation between stress and strain in an 
elastic continuum. These constitutive equations also allow us to associate 
the fundamental equations with the specific properties of elastic materi- 
als. Notably, the wave equation and the eikonal equation, used extensively 
throughout the book, are rooted in Cauchy's equations of motion and the 
constitutive equations for elastic continua. 

0 
Exercises 

Exerc ise  2.1 1~ physical laws discussed in this book are stated as the 
vanishing of a definite integral which is tantamount to the vanishing of the 
integrand. Justify this equivalence using a one-dimensional case. 

Solut ion 2.1 Consider an integral equation given by 

B 

/ 
A 

f (x) dx - O. 

Let f (x) be a continuous function in the interval [A, B] and let f (xo) ~ O, 
for xo C [A, B]. Because of the continuity, f (x) ~ 0 in the neighbourhood of 
xo, and, hence, the integral taken over this neighbourhood does not vanish. 
Since we require f A f  (x) dx - 0 for arbitrary limits of integration, we must 
require that f (x) - O, for all x C [A, B]. 

Exerc i se  2.2 Using expressions (2.17) and (2.29), obtain the components 
of the traction vector acting on the plane whose normal is parallel to the 
x 1-axis. Compare the results to expression (2.30). 

Solut ion 2.2 Following expression (2.17), we can immediately write the 
components of the traction vectors acting on the plane whose normal is par- 

[7'1(el) T~ el) T3(el)]. In view of definition (2.18), we allel to the x 1-axis as , , 

~~ also Section 2.1.1. 
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can rewrite these components a s  [Crll , cr12, cr13 ]. Using equation (2.29), the 
traction vector acting on the plane whose unit normal is parallel to the x 1- 

axis is given by 

ill ,1' T2 (el) T2 (e2) T2 (e3) 0 -- T2 (el) �9 
T3(e 1 ) T 3  (e2) T3 (e3) 0 T3 (el) 

In view of definition (2.18), we can rewrite these components as 

I (711 1 0"12 
(713 

as expected from the property stated in expression (2.30). 

Exerc i se  2.3 11 Using the stress tensor, prove the particular case of the 
following theorem. 

T h e o r e m  2.2 I f  an ruth-rank tensor is linearly related to an nth-rank ten- 
sot through a quantity that possesses n + m indices, then this quantity is an 
(n + re)rank tensor. 

Solu t ion  2.3 Consider the stress tensor that relates two vectors, namely, 
the traction and the unit normal vector. Thus, two first-rank tensors are 
linearly related by a second-rank tensor. 

N o t a t i o n  2.2 The repeated-index summation notation is used in this proof. 
Any term in which an index appears twice stands for the sum of all such 
terms as the index assumes all the values between 1 and 3. 

Proof .  The relationship between the components of the traction, T, in 
two coordinate systems can be stated as 

~'i - aikTk, i E {1,2,3},  

where aij are the entries of the transformation matrix. Also, the components 
of the traction, T, are related to the components of the normal vector, n, 
by the quantity a, as 

Tk = okjrtj,  k, C {1, 2, 3} .  

11See also Sections 2.5.2 and 5.2.1. 
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Combining both expressions, we can write 

T i  - a i k o k j n j  i e {1 ,2 ,3} .  

Since n is a vector, it obeys the inverse transformation laws, namely, 

n j  - -  a m j r t m ,  j c {1,2,3}.  

Thus, we can write 

T i  - a i k O ' k j a m j r t m  ~ i e (1,2,3} 

Since the relationship between the components of the traction, T, and the 
components of the normal vector, n, are valid for all coordinate systems, we 
can formally write 

Subtracting the two equations for T/* from one another, we obtain 

( a i k o k j a m j  - -  ~ i m )  ~ tm  - -  O, i c {1,2,3}.  

Since the result must hold for any orientation of the vector n, as required 
by the physical argument discussed in this chapter, we get 

a i k O k j a m j  - -  O'im - -  O, i , m  c {1,2,3},  

and we can restate it as 

^ 

O' im - -  a i k a m j O k j  e (1, 2, 3}. (2.55) 

The last expression shows that  a obeys standard transformation rules for a 
second-rank tensor. Consequently, a, which linearly relates two vectors, is 
a second-rank tensor, m 

R e m a r k  2.2 The quotient rule, stated in this theorem, is also exemplified by 
the stress-strain equations (3.1), where two second-rank tensors are linearly 
related by a fourth-rank elasticity tensor, namely, 

oij - cijkl~kl, i, j E { 1, 2, 3}, 

with skl denoting the strain tensor, and where the repeated index assumes 
all the values between 1 and 3. 
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X2 A 

Ax2 

AF21 

2 

y 

Axl Xl 

Figure 2.4" An xlx2-cross-section of a rectangular box, Ax lAx2Ax3 ,  with 
the moment-producing forces, F12 and F21. The directions of the two forces 
are perpendicular to one another while their magnitudes are equal. 

Exe rc i s e  2.4 12Find the physical SI units of equations of motion (2.3~). 
Show that these units are consistent for all terms involved. 

S o l u t i o n  2 .4  

3 0(7i j 02Ui 
" x -  + s -- p Ot 2 qJ ~ j = l  

i e {1,2,3} 

Following the definition of stress as force per unit area, the units of stress 
tensor are [N/m2]. Consequently, the units of the first term of the left- 
hand side are [N/m3]. In view of fi being the components of force per unit 
volume, the units are also IN~m3]. On the right-hand side, the units of mass 

2 density are [kg/m3], while the units of acceleration are [m/s ], resulting in 
[kg/ (m282)]. Since [N] = [kgm/s2], the units of the right-hand side are 
also [N/m3], as expected. Thus, the physical units of equations (2.3~) are 

Exerc i se  2.5 13 Using Figure 2.~, prove the following theorem. 

T h e o r e m  2.3 The stress tensor is symmetric, namely, crij - crji, where 
i,j e {1,2,3}. 

12See also Section 2.6.1. 
13See also Section 2.7.2. 
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S o l u t i o n  2 . 5  . 

P r o o f .  Consider a rectangular box that  is an element within a contin- 
uum. Let the volume of this box, whose edges are parallel to the coordinate 
axes, be 

A V  = AXlAX2AX3. 

We require that  this element of volume does not rotate within the continuum. 
This requirement implies that  the sum of moments acting on this box must 
be zero. The sum of moments about the x3-axis is zero if 

AF12 AXl = AF21Az2. (2.56) 

Using formulations of traction and the stress-tensor components,  we can 
write Crlj - :  AFly /AS1 .  Thus, we have 

AF12 -- cr12AS1 = cr12Ax2Axa, (2.57) 

and 

AF21 = ( 7 2 1 A ~ 2  = 0 2 1 A x 1 A x 3 .  (2.58) 

Inserting expressions (2.57) and (2.58) into equation (2.56), we obtain 

o'12/Xxl /Xx2Ax3 = o'21/kXl /kX2/kx3, 

which implies 

0 - 1 2  - -  (721  . 

Hence, together with the equality of the sum of moments about  the x 1-axis 
and the x2-axis, we can write 

aij = crji, i, j C {1, 2, 3}, 

as required, m 
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Stress-strain equations 

. . .  there is a conjecture tha t  two sets of small motions may 
be superimposed without  interfering with each other in a 
nonlinear fashion. Another  conjecture is tha t  the seismic 
motions set up by some physical source should be uniquely 
determined by the combined properties of tha t  source and 
of the medium of wave propagation. These conjectures, and 
many others tha t  are generally assumed by seismologists to 
be true, are properties of infinitesimal motion in classical 
cont inuum mechanics for an elastic medium with a linear 
stress-strain relation; 

Keiiti Aki and Paul G. Richards (1980) Quantitative seismology: 
Theory and methods 

Preliminary remarks 

The equations resulting from the fundamental principles discussed in Chap- 
ter 2 are valid for any continuum irrespective of its constitution. In other 
words, they do not explicitly account for distinctive properties of a particular 
material. Also, these equations constitute a system of differential equations 
that contains more unknowns than equations. 

In order to consider the properties of a particular material and to formu- 
late a determined system of equations that describes the propagation of de- 
formations within that material, we turn our attention to empirical relations 
that can be expressed as constitutive equations. These equations are based 
on experimental observations of actual materials. An elastic continuum is 
defined by the constitutive equations that, in accordance with experimental 

61 
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observations, state that for elastic materials, forces are linearly related to 
small deformations. 

We begin this chapter with the formulation of linear stress-strain equa- 
tions, which underlie the theory of elasticity used in this book. We then 
express these equations in both tensorial and matrix forms. 

3.1 Formulation of stress-strain equations 

Introductory comments 

Perhaps the best-known constitutive equation is based on Hooke's law of 
elasticity discovered by Robert Hooke in the middle of the seventeenth cen- 
tury. This law furnishes us with the physical justification for the mathemat-  
ical theory of linear elasticity. 

lit tensio sic vis ~ "as the extension, so the force" is a famous statement 
from Hooke's work of 1676. He described it in more detail by writing that 

the power of any spring is in the same proportion with the tension 
thereof: that  is, if one power stretch or bend it in one space, 
two will bend in two, three will bend in three, and so forward. 
And this is the rule or law of Nature, upon which all manner of 
restituent or springing motion doth proceed. 

In an earlier paper, "De potentia restitutiva", Hooke published the re- 
sults of his experiments with elastic materials and stated that 

it is very evident that the rule or law of Nature in every springing 
body is, that  the force or power thereof to restore itself to its 
natural position is always proportional to the distance or space 
it is removed therefrom . . . .  

In the modern terminology of continuum mechanics and in view of Chap- 
ters 1 and 2, the linearity of Hooke's law can be stated in the following 

manner. 

At any point of a continuum, each component of the stress tensor 
is a linear function of all the components of the strain tensor. 

This statement is used to formulate stress-strain equations, which are 
introduced in this chapter. The restoring force is discussed in Chapter  4. 
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3 .1 .1  T e n s o r i a l  f o r m  

At a given point x of the continuum, Hooke's law, expressing each stress- 
tensor component, oij, as a linear combination of all the strain-tensor com- 
ponents, gkZ, can be written for a three-dimensional continuum as 

3 3 

aij--~~-~cijkZekZ, i , j  E {1,2,3},  (3.1) 
k---1 /---1 

where Cijkl are the components of a tensor, known as the elasticity ten- 
sor. 1 Since the units of the stress-tensor components are N / m  2, and the 
strain-tensor components are dimensionless, the units of the elasticity-tensor 
components are N / m  2. 

Note that  Cijkl relates two second-rank tensors. Hence, in view of tensor 
algebra, the elasticity tensor must be a fourth-rank tensor. Consequently, 
in a three-dimensional continuum, it has 34 - 81 components. 

In this book, we study continua that are described by stress-strain equa- 
tions (3.1). 2 To understand the description of a continuum that  is provided 
by Cijkl, consider these stress-strain equations. In view of Chapters 1 and 
2, tensors aij and ~kZ are direction-dependent. Hence, the values of cijkz 
are intrinsically direction-dependent. Consequently, at a given point x of a 
continuum, these values determine the anisotropic properties of the contin- 
uum at this point. Furthermore, if the values of Cijkl depend on position 
x, the continuum is inhomogeneous. This is explicitly used in stress-strain 
equations (7.2). 

Note the following distinction between the continuum model and real 
materials. While studying anisotropy and inhomogeneity in real materials, 
we observe that  anisotropy is rooted in the inhomogeneity of the mater- 
ial. Intrinsically, anisotropy results from the inhomogeneity exhibited by an 
atomic structure or crystal lattice. In a seismological context, anisotropy 
results from the arrangement of grains or layers in the materials through 
which seismic waves propagate. Hence, physically, at some scale, anisotropy 
is linked to inhomogeneity. In the mathematical context of continuum me- 
chanics, however, anisotropy and inhomogeneity are two distinct properties. 

~Elasticity tensor is also commonly referred to as the stiffness tensor. Our nomen- 
clature is consistent with Marsden, J.E., and Hughes, T.J.R., (1983/1994) Mathematical 
foundations of elasticity: Dover, pp. 9 - 10, and with Marsden, J.E., and Ratiu, T.S., 
(1999) Introduction to mechanics and symmetry: A basic exposition of classical mechan- 
ical systems (2nd edition): Springer-Verlag, p. 113. 

2Readers interested in detailed formulations of elasticity, hyperelasticity, linear elas- 
ticity, etc., might refer to Marsden, J.E., and Hughes, T.J.R., (1983/1994) Mathematical 
foundations of elasticity: Dover. 
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3 .1 .2  M a t r i x  f o r m  

I n t r o d u c t o r y  c o m m e n t s  

Due to the symmetries of the stress and strain tensors, constitutive equations 
(3.1) can be conveniently written in a matrix form containing six indepen- 
dent equations. This form, which allows us to express elasticity tensor (3.1) 
as an elasticity matrix, is often used in this book. 

Note that, although, in some particular cases, the components of a tensor 
can be written as the entries of a matrix, the matrices and the tensors are 
distinct mathematical entities. 

S t r e s s - t e n s o r  a n d  s t r a i n - t e n s o r  s y m m e t r i e s  

At every point of a continuum, as shown in Section 2.7, in view of the balance 
of angular momentum, the stress tensor is symmetric, namely, aij = crji. 
Also, the strain tensor is symmetric, namely, ckL = elk, by its definition 
(1.15). Consider stress-strain equations (3.1), which describe the states of 
stress and strain at a given point. 

Consider the symmetry of the stress tensor. In view of this symmetry, 
we can write stress-strain equations (3.1) as 

3 3 3 3 

~ ~ ~ -  ~ - ~ / -  F~ ~ ~ ~ ,  
k = l  l=1  k = l  /=1  

i , j e  {1,2,3}.  (3.2) 

In other words, each double-summation term gives the same value of the 
stress-tensor component at the given point. 

Subtracting the first double-summation term from the second one, we 
can write 

3 3 3 3 3 3 

~ ~ ~ ~  - E ~ ~ ~  - ~ E ( ~  - ~ )  ~ - 0, 
k = l  /=1  k = l  /=1  k = l  /=1  

where i, j c {1, 2, 3}. Thus, for this equation to be satisfied for all strain- 
tensor components, we require 

C i j k l  - C j i k l ,  i , j , k ,  1C {1,2,3}. (3.3) 

Hence, due to the symmetry of the stress tensor, the elasticity tensor is 
invariant under permutations in the first pair of subscripts. 
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Consider the symmetry of the strain tensor. The order of k and 1 has no 
effect on stress-strain equations (3.1) since they are the summation indices. 
Hence, we can write 

3 3 3 3 

Z ~ CijklCkl- ~ Z CijlkClk' 
k = l  /=1 k = l  /=1 

i , j  E {1,2,3}.  

In view of the symmetry of the strain tensor, we can rewrite it as 

3 3 

~-~ Z CijlkCkl~ 
k = l  /=1 

3 3 

Z ~--~ eijklCkl - 
k = l  /=1 

which, we can also state as 

3 3 3 3 3 3 

k = l  1=1 k = l  I=1 k = l  I=1 

i , j  e {1,2,3},  

where i, j c {1, 2, 3}. For this equation to be satisfied for all strain-tensor 
components, we require 

cijkl -- Cijlk, i, j, k, 1 C {1, 2, 3}. (3.4) 

Hence, due to the symmetry of the strain tensor, the elasticity tensor is 
invariant under permutations in the second pair of subscripts. 

E l a s t i c i t y  m a t r i x  

In view of equalities (3.3) and (3.4), the number of independent components 
of the elasticity tensor is thirty-six. These components can be written as 
entries Cmn of a 6 x 6 elasticity matrix, which relates the six independent 
stress-tensor components to the six independent strain-tensor components. 
To construct this matrix, in view of symmetries (3.3) and (3.4), it is enough 
to consider the pairs of (i, j )  and (k, l) for i _< j and k _< l, respectively. 

Consider such pairs (i, j) ,  where i, j C {1, 2, 3}. Let us arrange them in 
the order given by 

(i, I), (2, 2), (3,3), (2, 3), (I, 3), (I, 2). 

Now, we can replace each pair by a single number m that  gives the position 
of the pair in this list; thus, m C {1 , . . . ,  6}. In other words, we make the 
following replacement (i, j )  ~ m: 

(1, 1) ---+ 1, (2, 2) --~ 2, (3, 3) --+ 3, 

(2, 3) ~ 4, (1, 3) ~ 5, (1, 2) ~ 6. 
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We can concisely write this replacement as 

m -  i if i - j  i 2 J E {1 3}. (3.5) 
m - 9 - ( i + j )  if i T ~ j  ' ' ' ' 

Considering the analogous pairs (k, 1), where k, 1 e { 1, 2, 3}, we see that 
identical replacements can be made. Consequently, we can replace C i j k l  , 

where i, j, k, 1 E { 1, 2, 3}, by Cmn, where m, n E {1 , . . . ,  6}. 
Thus, equations (3.1) can be restated as 

[ -  - _ 

(711 
io22 
i ~33 _ 

O23 

(713 
(712 

Cl l  C12 C13 C14 C15 C16 
C21 C22 C2a C24 C25 C26 
Ca1 Ca2 6'33 Can Ca5 Ca6 
C4~ C42 C4a C44 C45 C46 
Cs~ C52 Csa C54 C55 C56 
C6, C62 C63 C64 C65 C66 

Cll 

C22 

C33 

2C23 
-)6"13 
~z12 

(3.6) 

Note that  the factors of 2 result from the fact that  for a given k 7~ l, the 
corresponding strain-tensor component appears twice in the summation on 
the right-hand side of equations (3.1) as ekl and as elk. Also note that, 
due to the symmetry of the stress tensor, it is sufficient to consider only six 
among the original nine equations stated in expression (3.1). 

We could also replace the pairs of subscripts for ~kl and crij by single 
subscripts. However, we keep the original notation of these components in 
order that  their physical meaning remains apparent, as discussed in Sections 
1.3.2 and 2.5.1, respectively. 

In concise notation, we write stress-strain equations (3.6) as 

c r -  Ce__, (3.7) 

where cr and e__ are six-entry, single-column matrices, composed of the stress- 
tensor and the strain-tensor components, respectively, while C is a 6 x 6 
matrix. 

3.2  D e t e r m i n e d  s y s t e m  

Stress-strain equations furnish us with six additional equations and no new 
unknowns for the system discussed in Chapter 2. The system is no longer 
underdetermined. 

Note that  the strain-tensor components, in accordance with definition 
(1.15), may be expressed in terms of the displacement-vector components, 
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ui, where i C {1,2,3}, which are the unknowns used in the equations of 
motion and the equation of continuity, as illustrated in Exercise 3.1. Thus, 
in a three-dimensional continuum, we have a system of ten equations for 
ten unknowns. These equations are the equation of continuity, given by 
expression (2.51), the three equations of motion, given by expressions (2.52), 
(2.53) and (2.54), and six constitutive equations. 

Note that the consistency of this system requires the linearized theory 
that allows us to ignore the fact that, in principle, equations of motion 
(2.34) refer to the spatial coordinates while definition (1.15), which is used 
in formulating stress-strain equations, refers to the material coordinates. In 
other words, we ignore the distinction between the spatial and the material 
coordinates and use the equations of motion and the stress-strain equations 
in the same system of equations. 

Closing remarks 

We use constitutive equations, namely, stress-strain equations (3.1) or, equiv- 
alently, equations (3.6) to obtain a determined system of equations that 
describes the propagation of deformations in elastic continua. For many 
seismological studies, the linear equations relating the stress-tensor compo- 
nents and the strain-tensor components agree, within sufficient accuracy, 
with experimental observations involving small deformations. 

Stress-strain equations (3.1) or (3.6) link the fundamental principles with 
the properties of a particular elastic material. Notably, this link allows us to 
investigate Cauchy's equations of motion in the context of elastic materials, 
which leads to the wave equation and the eikonal equation, discussed in 
Chapters 6 and 7, respectively. 

Stress-strain equations (3.1) or (3.6) describe the continuum whose de- 
formations are linearly related to loads. For this continuum to represent an 
elastic material, we require the existence of the restoring force that allows, 
upon the removal of the load, the return to the undeformed state. In Chap- 
ter 4, we investigate the effects of this requirement upon parameters cijkz 
and Cran. 

0 
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E x e r c i s e s  

E x e r c i s e  3.1 3Consider  a one-dimensional homogeneous continuum. Us- 
ing stress-strain equations (3.6), equation of continuity (2.8) and Cauchy's 
equations of motion (2.3~) with no body force, write the resulting system of 
two differential equations. 

S o l u t i o n  3.1 Following equations (3.6) and considering a one-dimensional 
continuum that coincides with the x 1-axis, we can write 

c711 - CllCll~ 

which, in view of definition (1.15) can be written as 

0/s (x, t) (3.8) 
aii -- Cli OXl ' 

where, due to the homogeneity of the continuum, Cll i8 a constant. The cor- 
responding equation of continuity, whose general form is given by expression 
(2.8), is 

Op (x, t) 0 [ Oui (x, t) ] 
at + ~ p (x, t) at -- O, (3.9) 

and Cauchy's equation of motion, whose general form is given by expression 

0(711 02/s (x, t) (3.10) 
= ( x ,  t )  O t  2 . 

Inserting expression (3.8) into equation (3.10), differentiating and rearrang- 
ing, we obtain 

(~2u 1 (x, t) /9 (x, t) 02/s (x, t) 
= (3.11) 

(~x 2 Cl l  0t 2 " 

Equations (3.9) and (3.11) constitute the required system of two differential 
equations in two unknowns, namely, ui (x , t )  and p(x, t) ,  whose variables 
are x and t. 

R e m a r k  3.1 If the mass-density function, p (x, t), is given by a constant, 
equation (3.11) is a one-dimensional wave equation, discussed in Chapter 6. 

3See also Sections 3.2 and 4.4.2. 
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S tra in  e n e r g y  

Ce qui fait la beaut6 d 'une oeuvre d 'ar t ,  ce n 'est  pas la 
simplicit~ de ses parties, c'est plut6t  une sorte d 'harmonie  
globale qui donne g~ l 'ensemble un aspect d 'unit6 et d 'homo- 
g6n~it~ malgr6 la complication parfois tr~s grande des d~- 
tails. [.. .  ] La beaut6 des theories scientifiques nous para~t 
essentiellement de la m~me nature: elle s ' impose quand, 
dominant  sans cesse les raisonnements et les calculs, se re- 
trouve par tou t  une m~me idle centrale qui unifie et vivifie 
tout  le corps de la doctrine. 1 

Louis de Broglie (19~1) Continue et discontinue en physique mo- 
derne 

Preliminary remarks 

When a material undergoes a deformation, energy is expended to deform it. 
In view of balance of energy, the energy expended must be converted into 
another form of energy. Elasticity of an actual material results from the fact 
that a large part of the expended energy associated with the deformation 
is converted to potential energy stored within the deformed material. For 
elastic continua, we assume that all the expended energy is stored within 
the strained continuum. We refer to this energy as strain energy. 

~What makes the beauty of a work of art is not the simplicity of its parts, it is rather 
a kind of global harmony which gives to the whole an aspect of unity and homogeneity in 
spite of, at times, very large complications of details. [...] The beauty of scientific theories 
is of the same nature: this beauty is striking when, constantly dominating the reasoning 
and the calculations, one finds everywhere the same central idea which unifies and inspires 
the entire body of the formulation. 

69 
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It is important to emphasize that the existence of strain energy, which 
allows the strained continuum to regain its initial state upon the removal of 
the load, is the defining property of an elastic continuum. The mathematical 
expression of this physical entity is the strain-energy function. 

We begin this chapter with the derivation of the strain-energy function. 
Subsequently, in view of this function, we obtain another symmetry of cijm, 
beyond the ones shown in Chapter 3. Then we derive the physical constraints 
on cijkl, which arise from the strain-energy function. This chapter concludes 
with the system of equations describing the behaviour of elastic continua. 

4.1 Strain-energy function 

For elastic continua, we assume that all the expended energy is stored in 
the strained continuum as a potential energy. In other words, we are deal- 
ing with a conservative system. We wish to formulate the corresponding 
potential-energy function. 

To motivate our formulation, consider a force, F, acting on a conservative 
system to increase the potential energy, U (x), of this system. We can write 
the components of such a force as aU/Oxi -- Fi, where i c {1, 2, 3}. By 
analogy, let us postulate 

OW(~) 
O~ij = aij, i, j E {1, 2, 3}, (4.1) 

where in the context of elasticity theory W is the potential-energy 
function of a conservative system. In other words, we postulate that the 
stress tensor is derived from this scalar function. To obtain the explicit 
expression for W, we use stress-strain equations (3.1) to write expression 
(4.1) as 

3 3 

OW (c) = ~ E cijktCkt, i, j C {1, 2, 3}. (4.2) 
Oeij k = l  /=1 

Integrating both sides of equations (4.2) with respect to eij, w e  obtain 

3 3 3 3 
1 

i=1 j = l  k = l  /=1 

(4.3) 

where we set the integration constant to zero. The vanishing of this constant 
results from the convention that, for unstrained continua, W - 0. 
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W in expression (4.3) is the strain-energy function. It is the desired 
potential-energy function tha t  corresponds to elastic continua subjected to 
infinitesimal strains. 2 

Note tha t  W has the units of energy per volume. 
Examining expression (4.3), we recognize tha t  strain energy is given by 

a homogeneous function of degree 2 in the strain-tensor components. 3 The 
fact tha t  the strain-energy function is homogeneous of degree 2 in the cij, 
follows from Definition A. 1, which is discussed in Appendix A. This property 
of the strain-energy function is illustrated in Exercise 4.2. As shown in this 
exercise, expression (4.3) can be viewed as a second-degree polynomial in the 
strain-tensor components where both the constant term and the linear term 
vanish. A mathemat ical  application of the homogeneity of W is illustrated 
in Exercise 4.3. 

4.2 Strain-energy function and elasticity-tensor 
symmetry 

4.2.1 F u n d a m e n t a l  cons idera t ions  

The existence of the strain-energy function, which defines an elastic contin- 
uum, implies the invariance of the elasticity tensor, cijkl, under permutat ions 
of pairs of subscripts i j  and kl. This can be derived in the following manner.  

Let us return to equations (4.2). Differentiating both sides of these 
equations with respect to ~kl, we obtain 

02w (c) 
O C k l O g i j  --- Ci jk l '  i, j, k, 1 c {1, 2, 3}. (4.4) 

Now, let us invoke the equality of mixed partial derivatives, which states 
that ,  if W is a well-behaved function, the order of differentiation is inter- 
changeable. 4 In view of expression (4.4), this implies tha t  

2Readers interested in a general formulation for finite strains might refer to Malvern, 
L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice-Hall., pp. 
282- 285. 

3Both terms "degree" and "order" are commonly used to describe the homogeneity of a 
function. In this book, we use the former term since it refers to the value of the exponent 
and, hence, is consistent with other uses of this term, such as "degree of a polynomial". 

4The equality of mixed partial derivatives is often used in this book. We can state it 
by the following theorem. 

Theorem 4.1 Let f -- f (x,y). Assume that the partial derivatives Of/Ox, Of/Oy, 
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Ci j k l  - -  C k l i j ,  i, j, k, 1 E {1, 2, 3}. (4.5) 

Hence, we conclude that the elasticity tensor is invariant under permutations 
of pairs of subscripts ij and kl. 

5 We can also justify symmetry Ci j k l  - -  Ck l i j  in the following manner. 
Recalling that  crij and eij are associated with force and displacement, re- 
spectively, we can write the element of work as 

3 3 

i=1 j = l  

In view of the balance of energy, the element of work equals the total 
differential of W, namely, 

3 3 

dW - ~ E aij dsij. (4.6) 
i=1 j = l  

Note that  the requirement for the element of work to be a total differen- 
tial results from the fact that the value of work must be independent of the 
integration path. The physical justification for this is that  the work cannot 
depend on the path of deformations, but only on the difference between the 
initial and final states. Otherwise, we could deform the material following 
one path and let it return to its initial state along a different path. If the 
amount of energy were not the same for all paths, we could create or destroy 
energy by this process. 

Invoking stress-strain equations (3.1), we can rewrite expression (4.6) as 

3 3 3 3 

dW - E E E 
i=1 j = l  k=l /=1 

02 f /OxOy and 02 f /OyOx exist and are continuous. Then 

02 f Oaf 
OxOy- OyOx" 

(4.7) 

Readers interested in the proof of this theorem might refer to Lang, S., (1973) Calculus 
of several variables: Addison-Wesley Publishing Co., pp. 1 1 0 -  111, or to Stewart, J., 
(1995), Multivariable calculus (3rd edition): Brooks/Cole Publishing Co., p. A2. 

5Readers interested in this formulation might also refer to Ting, T.C.T., (1996) 
Anisotropic elasticity: Theory and applications: Oxford University Press, p. 33. 
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Since this has to be a total differential, we require that 6 

0 3 3 0 3 3 

k=l l=1 k=l l=1 
CstklCkl~ i , j ,s ,  t e {1,2,3},  

which gives 

Cij st - -  Cstij i , j ,s ,  t e {1,2,3}. 

Upon renaming the indices, we can write 

CijkZ - Cklij, i , j ,k ,  1C {1,2,3},  (4.8) 

which are equations (4.5). Hence, we rederived equations (4.5). 
Also, in view of conditions (4.8), we can integrate both sides of equation 

(4.7) to obtain 
3 3 3 3 1 

W - -~ E ~ ~ E cijktekleij, (4.9) 
i=1 j=l k=l /=1 

which is expression (4.3), as expected. 

4.2.2 Stress-strain equat ions  

Since every elastic continuum must obey equations (4.1), conditions (4.5) 
provide constraints on the components of the fourth-rank tensor in stress- 
strain equations (3.1). 

As shown in Sections 3.1.1 and 3.1.2, we can express stress-strain equa- 
tions in either the tensorial or matrix form. Recalling expression (3.5), the 
equality Cijkl - -  Cklij implies C m n  - -  C n m  since switching ij with kl is tan- 
tamount to switching m with n. In other words, the elasticity matrix is 
symmetric, namely, 

C .__ 

- C l l  C12 C13 C14 C15 C16- 
C12 C22 C23 C24 C25 C26 
C13 C23 C33 C34 C35 C36 
C14 C24 C34 C44 C45 C46 
C15 C25 C35 C45 C55 C56 
C16 C26 C36 C46 C56 C66 

(4.10) 

6Readers interested in this requirement might refer to Courant, R., and John, F., 
(1974/1989) Introduction to calculus and analysis: Springer-Verlag, Vol. II, p. 84, or to 
Zill, D.G., and Cullen, M.R., (1997) Differential equations with boundary-value problems 
(4th edition): Brooks/Cole Publishing Company, p. 39. 
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Thus, we see that the existence of the strain-energy function reduces the 
number of independent entries of C from thirty-six, used in equations (3.6), 
to twenty-one, stated in matrix (4.10). 

In view of conditions (4.5) and resulting matrix (4.10), stress-strain equa- 
tions (3.6) become 

(9"11 
0"22 
0"33 
0"23 
0"13 
0"12 

Cll C12 C13 C14 C15 C16- 
C12 C22 C23 C24 C25 C26 
C13 C23 C33 C34 C35 C36 
C14 C24 C34 C44 C45 C46 
C15 C25 C35 C45 C55 C56 

C26 C36 C46 C56 C66 

Cll 
C22 
C33 
-)s 
)'s 
-)s 

(4.11) 

Equations (4.11) are the matrix form of the stress-strain equations for a gen- 
eral elastic continuum that obeys Hooke's law. The twenty-one independent 
entries of the symmetric matrix that relates the stress-tensor components 
to the strain-tensor components are the elasticity parameters, which to- 
gether with mass density fully describe a given elastic continuum. 

4 .2 .3  C o o r d i n a t e  transformations 

The strain energy, W, is a scalar quantity and, hence, its value is invariant 
under coordinate transformations. To achieve this invariance, in general, 
the values of the parameters Cijkl or Cmn depend on the orientation of the 
coordinate system. In other words, the values of these parameters ensure 
that W is invariant Under coordinate transformations. Hence, for an elastic 
continuum, expression (4.9) that contains a given set of elasticity parameters 
holds only for one orientation of the coordinate system. 7 If, for a particular 
continuum, expression (4.9) with a given set of elasticity parameters holds 
for several orientations of the coordinate system, this continuum possesses 
particular symmetries, which lead to further simplifications of matrix (4.10). 
Such symmetries are discussed in Chapter 5. 

4.3 S tab i l i t y  c o n d i t i o n s  

4.3.1 Physical justification 

Strain-energy function, W, given in expression (4.3), is formulated in terms 
of parameters cijkl, where i , j ,  k, 1 C {1, 2, 3}. This function provides the sole 

7Interested readers might refer to Malvern, L.E., (1969) Introduction to the mechanics 
of a continuous medium: Prentice-Hall, p. 285. 
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fundamental constraints on these parameters. These constraints are called 
stability conditions since they constitute a mathematical statement of the 
fact that it is necessary to expend energy in order to deform a material. In 
other words, if energy is not expended, the material remains stable in its 
undeformed state. 

In general, energy is a positive quantity. By convention, the strain energy 
of an undeformed continuum is zero. Thus, the strain-energy function must 
be a positive quantity that vanishes only in the undeformed state, s 

4 .3 .2  M a t h e m a t i c a l  f o r m u l a t i o n  

Mathematically, the stability conditions are equivalent to the positive-definit- 
eness of the elasticity matrix. This can be derived in the following manner. 

In view of expression (4.3) and by equivalence of stress-strain equations 
(3.1) and (3.6), we can write the strain-energy function as 

1 ( C e )  �9 e ,  ( 4 . 1 2 )  _ _ 

where C is matrix (4.10), and e_ is the strain matrix, shown explicitly in 
equation (3.6). In view of Section 4.3.1, we require that 

(C~)-~ > 0, (4.13) 

where the equality sign corresponds to the case where ~ - 0. Expression 
(4.13) states the positive-definiteness of matrix C. In other words, matrix 
C is positive-definite if and only if (CE) �9 ~ > 0, for all _c, such that ~ ~ O. 

4 .3 .3  C o n s t r a i n t s  o n  e l a s t i c i t y  p a r a m e t e r s  

To formulate the conditions of positive-definiteness of the elasticity matrix, 
we can use either of the following theorems of linear algebra. 9 

S Readers interested in a more detailed description might refer to Musgrave, M.J.P., 
(1990) On the constraints of positive-definite strain energy in anisotropic media: 
Q.J.Mech.appl.Math., 43, Part 4, 605 -  621. 

9Readers interested in proofs of Theorem 4.2 and Theorem 4.3 might refer to Ayres, 
F., (1962) Matrices: Schaum's Outlines, McGraw-Hill, Inc., p. 142, and to Morse P.M., 
and Feshbach H., (1953) Methods of theoretical physics: McGraw-Hill, Inc., pp. 7 7 1  - 

774, respectively. 
Note that ~ in view of the fact that every symmetric matrix can be diagonalized 

Theorem 4.3 follows from Theorem 4.2. 
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T h e o r e m  4.2 A real symmetric matrix is positive-definite if and only if the 
determinants of all its leading principal minors, including the determinant 
of the matrix itself, are positive. 

T h e o r e m  4.3 A real symmetric matrix is positive-definite if and only if all 
its eigenvalues are positive. 

1~ matrix (4.10) is symmetric, the stability conditions can be con- 
veniently formulated based on Theorems 4.2 and 4.3, as shown in Exercises 
5.3 and 5.12, respectively. Among these conditions, we find that 

Cram>O, m E  {1 , . . . , 6} ,  (4.14) 

which implies that all the main-diagonal entries of the elasticity matrix must 
be positive, as shown in Exercise 4.5. 

Stability conditions cannot be violated. However, as shown in Exercise 
5.12, interesting and, perhaps, nonintuitive results are allowable within the 
stability conditions. 

4.4 Sys tem of equations for elastic continua 

4 .4 .1  E l a s t i c  c o n t i n u a  

In order to state a complete system of equations describing behaviour of our 
continua, we note that linearly elastic continua are defined by stress-strain 
equations (3.1), namely, 

3 3 

aij - ~ E cijk~CkZ, i , j  E {1, 2, 3}, (4.15) 
k=l /=1 

where, in view of equations (3.3), (3.4) and (4.5), we require 

cijkz - cjikz - cijlk -- ckuj, i, j, k, 1 C {1, 2, 3}. (4.16) 

We recall that symmetries (4.16) result from definition (1.15), which 
implies akl = elk, as well as from the balance of angular momentum, stated 
in expression (2.43), namely, 

d ; j J "  ( d u )  f f  f f f  - -  xxP-d--t- d V -  ( x x T )  d S +  ( x x f )  dV 
dt 

y(t) s(t) y(t) 
1~ interested in the expressions for the stability conditions for particular continua 

may derive them from the corresponding stiffness matrices, shown in Chapter 5, or refer 
to Fedorov, F.I., (1968) Theory of elastic waves in crystals: Plenum Press, New York, p. 
16 and p. 33. 
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which implies Crij  - -  Cr j i .  Symmetries (4.16) also result from the existence of 
the strain-energy function that is given by expression (4.3), namely, 

3 3 3 3 
1 

w - 

i=1 j = l  k = l  /=1 

(4.17) 

and must satisfy equation (4.1), namely, 

ow( ) 
Ogij 

= crij, i, j e {1, 2, 3}. (4.18) 

As expected, this formulation is consistent with the following statement 
from the classic book of Augustus Edward Hugh Love (1892) "A treatise on 
the mathematical theory of elasticity". 

When a body is slightly strained by gradual application of a load, 
and the temperature remains constant, the stress components 
are linear functions of the strain components [equations (4.15)], 
and they are also partial differential coefficients of a function W 
of the strain components [equations (4.18)]. The strain-energy 
function, W, is therefore a homogeneous quadratic function of 
the strain components [equations (4.17)]. 

4.4.2 Governing equations 

We can now show that the behaviour of the continuum discussed in this 
book is governed by a system of ten equations and ten unknowns. The 
unknowns of this system are p, u~, u2, u3, a11, a~2, (713, (722, a23, (733, while 
a given continuum is defined in terms of twenty-one elasticity parameters, 
Cmn = Cnm, where m,  n C {1, . . . ,6}.  

Note that four among ten equations result from the fundamental princi- 
ples, which are given by the conservation of mass, stated in equation (2.6), 
namely, 

] + V . ( p v )  d V - 0 ,  

V 

and the balance of linear momentum, stated in equation (2.16), namely, 

///d2u // /// 
p - ~ d V  - T d S  + f dV.  

v(o s(t) v(o 
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The remaining six equations are constitutive equations, which provide a 
phenomenological description of actual materials. 

Explicitly, we can write this system as 

- 

02 0 0 0 
~O~--~lt 1 -- ~I-Xl ~711 -~- ~X2(712 -}- -X---Crl3ux 3 

02 0 0 0 
p- u2 - 0-12 +  -zz c 22 + w--o2aoza 

0 2 0 O O 
flO-t -~lt3 -- ~1Xl (713 -1- ~X2 O'23 nl- "K---Cr33OX3 

(711 = Cl1s -}- C12e22 + C13a33 + 2C14e23 -t- 2C15e13 -t- 2C16e12 
(722 -- 612s -~-622e22 -t-623s -~- 2624e23 -t- 2625e13 + 2626e12 
a33 = C13cll + C23e22 + C33e33 + 2C34e23 + 2C35e13 + 2C36e12 
a23 = C14ell + C24e22 + C34c33 + 2C44e23 + 2C45e13 + 2C46e12 
Crla = C15ell + C25e22 + C35ca3 + 2C45e2a + 2C55ela + 2C56e12 
a12 = C16ell + C26e22 + C36caa + 2C46e2a + 2C56ela + 2C66e12 

( 4 . 1 9 )  

where, by definition (1.15), eij = (Oui/Oxj + Ouj/Oxi)/2. The first equation 
is equation of continuity (2.51), which results from the conservation of mass. 
The following three equations are Cauchy's equations of motion (2.52), (2.53) 
and (2.54), which result from the balance of linear momentum. The last 
six equations are stress-strain equations (4.11), which contain the elasticity 
parameters that describe a given continuum. 

Note that, invoking system (4.19) to study actual materials, we can 
consider directly only Cmn and p as properties of a continuum that represents 
a given material. Indirectly, the values of Cmn and p can indicate other 
properties, such as layering and fractures. 

In a properly chosen coordinate system, which we will discuss in Section 
5.6.2, different materials exhibit different values of the elasticity parameters. 
These values are determined experimentally and characterize a given mate- 
rial. Often, the goal of our seismological studies is to determine the values 
of the elasticity parameters and mass density of the subsurface based on the 
theoretical formulation and the experimental data. 

Note that  the last six equations of system (4.19) can be substituted into 
the second, the third and the fourth equations to obtain a system of four 
partial differential equations for four unknowns, namely, p(x,  t), Ul (x, t), 
u2 (x,t),  u3 (x,t) in the position variables, x = [xl,x2,x3], and the time 
variable, t. For a one-dimensional case, a system of partial differential equa- 
tions is exemplified in Exercise 3.1. Also, this substitution of stress-strain 
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equations into Cauchy's  equations of motion is used extensively in Chapters  
6 and 7 to formulate equations of motions specifically for elastic continua. 

Closing remarks 

For linearly elastic continua, stress is a linear function of strain, which de- 
pends on twenty-one elasticity parameters ,  as shown in expressions (4.11). 
Furthermore,  these elastic continua possess strain energy, which is expressed 
as a quadrat ic  function of strain, shown in expression (4.3). Thus, for in- 
stance, doubling the strain within the cont inuum doubles the stress within 
it, while it quadruples the energy stored within. 

In our studies, we assume tha t  the elasticity parameters  have no tem- 
perature  dependence, which is t an tamoun t  to our assuming in formulating 
system (4.19) tha t  the process of deformation is isothermal.  In other words, 
this process occurs at  a constant  temperature .  Due to low thermal  con- 
ductivi ty of most  subsurface materials,  we could argue tha t  seismic wave 
propagat ion is be t ter  approximated by an adiabatic process, where no heat 
enters or leaves the element of volume. However, we choose the simplicity of 
the isothermal approach since the difference in experimental  determinat ion 
of elasticity parameters  between the isothermal and adiabat ic  approaches is 
only of the order of one percent. 11 

Our formulation of elasticity parameters  is rooted in the mathemat ica l  
concept of a continuum. The cont inuum formulation of these parameters  
is also consistent with tha t  of condensed-matter  physics where, according 
to common physical knowledge, materials are composed of nuclei and elec- 
trons. Physically, the elasticity parameters  are functions of the interactions 
among the nuclei and electrons within a material .  They can be calculated 
by considering the total  energy associated with the changes of volume and 
shape, which result from forces acting on every atom. 12 

A given elastic cont inuum can possess part icular  symmetries,  which fur- 
ther reduce the number  of independent  elasticity parameters  required to 

11 Interested readers might refer to Brekhovskikh, L.M., and Goncharov, V., (1982/1994) 
Mechanics of continua and wave dynamics: Springer-Verlag., pp. 45 - 47, to Fung, Y.C., 
(1977) A first course in continuum mechanics: Prentice-Hall, Inc., pp. 169- 170, to Grant, 
F.S., and West, G.F., (1965) Interpretation theory in applied geophysics: McGraw-Hill 
Book Co., pp. 30-  31, and to Timoshenko, S.P., and Goodier, J.N., (1934/1987) Theory 
of elasticity: McGraw-Hill Publishing Company, p. 244. 

~2Readers interested in certain relationships between the continuum formulations and 
the atomic scale associated with the study of condensed-matter physics might refer to Aoki, 
H., Syono, Y., and gemley, R.J., (editors), (2000) Physics meets mineralogy: Condensed- 
matter physics in geosciences: Cambridge University Press. 
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describe it. Such symmetr ies  are discussed in Chap te r  5. 

@ 

Exercises  

E x e r c i s e  4.1 Using the one-dimensional case illustrated by a spring con- 
stant, k, show that for, elastic continua, strain energy is equal to the area 
below the graph of F -  kx. 

S o l u t i o n  4.1 Following the definition of work and energy in a conservative 
system, we can write 

W - / F .  dx, 

where F denotes force and dx denotes an element of displacement. The one- 
dimensional stress-strain equation can be written as F = kx,  where k is an 
elasticity parameter, commonly known as the spring constant. Thus, 

Ax 
W -  kx dx - -~ k ( Ax )  , 

o 

where x = 0 corresponds to the unstrained state while x = A x  corresponds 
to the strained state. This is equal to the triangular area below the straight 
line, kx,  spanned between x = 0 and x = Ax .  

N o t a t i o n  4.1 In Exercise ~.2, for convenience, we denote the strain-tensor 
components using single subscripts. 

E x e r c i s e  4 .2  13 Consider the strain-energy function to be a second-degree 

polynomial given by 

6 1 6 6 

W - -  CO --t- E Cncn + -~ E ~ CnmcnCm, (4.20) 
n = l  n = l  m = l  

where cl is an entry of matrix ~_, given in equation (3.6). Show explicitly 
that the first two terms vanish and, hence, W is homogeneous of degree 2 in 
the strain-tensor components. Note that since tensor cij is symmetric, we 
only need one index, i -  1, 2 , . . . ,  6, to represent all components. 

la See also Section 4.1. 
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Solution 4.2 Expression (4.20) can be explicitly written as 

W = Co 

q- CIs ~- C2~2 -~- C3~3 -~- C4~4 -q- C5~5 -q- C6s 

1 (C~1  ~ + C 2 ~ 1  + C31~3al -~- C41s q- C51~5~1 -+- C61~6~1 

+ C12ala2 -]- C22~ 2 + C32a3~2 -q- C42a4~2 -+- C52a5a2 -+- C62a6s 

q- C13a1~3 q- C23~2~3 -+- C33~ q- C43ana3 q- C35a5a3 q- C6396~3 

q- C14~1a4 q- C24a2~4 + C34~3~4 -~- C44s -+- C54~5~4 q- C64a6~4 

~- C15~1a5 q- C25~2~5 q- C35~3~5 -~- C45~4~5 -~- C55~52 q- C65a6a5 

q- C16s -~- C26~2s -~- C36~3~6 q- C46s -~- C56~5s -a t. C66~2) �9 

We assume that W vanishes for  the unstrained state. Thus, ~ = ~2 = ~ 3  = 

~ 4  - -  ~ 5  - -  ~ 6  - -  O ,  implies W = O; consequently, Co = O. Also, following 
expression (~.1) we require that am = OW/Oam. Consider, for  instance, 
m = 5; we can specifically write 

OW 
~ 5 -  0~ 

1 
: C5 + ~[(C15 + C51)~1 + (C25 + C52)c2 + (C35 -~- C53)g3 

q- (C45 q- C54) s + 2C55~5 q- (C56 q- C65)~6]. 

N o  s t r a i n  implies n o  s t r e s s  and, hence, C1 - -  C2 : C3 - -  C4 = C5 = C6 = 0 '; 

or5 = O. Thus, it follows that C5 = O. Analogously, considering al ,  or2, or3, 
( r  4 and or6, we obtain C1 = C2 = C3 = C4 = C6 = O. Thus, 

1 
W (Cm) -- ~(Cll  C2 q- C21c2c1 -~- C31c3c1 -~- C41c4c1 -~- C51c5c1 -~- C61c6c1 

+ C12c1c2 + C22c 2 + C32c3c2 -]-- C42c4c2 -~- C52c5c2 + C62c6c2 

+ C13clC3 + C23c2c3 + C33E~ + C43~4c3 + C35c5c3 + C63c6c3 

+ C14clc4 + C24c2c4 + C34c3c4 + C44c~ + C54c5c4 + C64~6e4 

+ C15clc5 + C25c2c5 -~ C35c3c5 + C45c4c5 + C55c~ + C65c6c5 

+ C ~ ~  + C ~ s ~ - r  C ~ ~  + C 4 ~ ~  + C ~ ~  + C ~ ) ,  

which is a homogeneous funct ion of degree 2 in the Cm, as required. 

Remark  4.1 Examining expression (~.21), we observe that 

w (C m) --  

(4.21) 
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where c is a real number. Hence, in view of Definition A.1 stated in Appen- 
dix A, W is homogeneous of degree 2 in the Cm. 

E x e r c i s e  4.3 14 Using the property of the strain-energy function, W,  stated 
in expression (~.1), and in view of W being homogeneous of degree 2 in the 
cij , show that 

3 3 
1 

W - 5 ~ E crijeij. (4.22) 
i=1 j = l  

S o l u t i o n  4.3 Since W is homogeneous of degree 2 in the cij, by Theorem 
A.1 stated in Appendix A, we can write 

~ 3 0 W  
~-~ ~c i j  eij  -- 2 W .  
j = l  

In view of expression (~.1), we can rewrite the above expression as 

3 3 

i=1 j = l  

which immediately yields expression (~.22), as required. 

Exerc i s e  4.4 Assuming that c i j kz -  ckaj, derive expression (~.1), namely, 

OW 
Oeij = crij , i, j E {1, 2, 3}, 

directly from expression (~.22). 

S o l u t i o n  4.4 Differentiating expression (~.22) with respect to a particular 
strain-tensor component Ckl, and recalling that stress is a function of strain, 

OW 

Oekz 

we obtain 

1 3 3 (0~j 0~j) 
i=1 j = l  

1 3 3 ~0a~j ~k~jl) 

i=1 j = l  

k,l e {1,2,3}. 

14 See also Section 4.1. 
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Using stress-strain equations (3.1), and recalling that Ci jk l  a r e  independent 
of strain, we can write 

O(Tij  
O e k l  - -  Cijkl, i, j ,  k, 1 C {1, 2, 3}.  

Consequently, using the fact that Ci jk l  - -  Cklij , we obtain 

OW 

Oekl 

3 3 
1 

i=1 j= l  

1/5  t 
i=1 j=l i=1 j--1 

k, l C ( 1 , 2 , 3 } .  

Again, in view of equations (3.1) and (~.5) as well as using the properties 
of Kronecker's delta, we obtain 

OW 1 
CgekZ = 2 (akl + akl) -- akt, k, l E {1, 2, 3},  

where, in view of the arbitrariness of the subscript symbol, we obtain expres- 
sion (~.1), as required. 

E x e r c i s e  4 .5  15 Using expression (~.12), justify that the main-diagonal en- 
tries of the elasticity matrix must be always positive. 

S o l u t i o n  4 .5  Consider expression (~.12). In view of equations (~.11), we 
can write 

1 W--~ 

" Cll C12 C13 C14 C15 C16 " 
Ci2 C= C23 C24 C25 C26 
C~3 C23 C33 C34 C35 C36 
C14 C24 C34 C44 C45 C46 
C~5 C25 Ca5 C4~ C55 C56 
C~6 C26 Ca6 C4~ C5~ C6~ 

s | 

C22 I E'33 
~'23 
-)r t 
~e12 

7 s 
s 
C33 

; ~c1: 

Let the strain matrix, e__, have only one nonzero entry. For instance, we can 

~SSee also Section 4.3.3. 
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write 

1 W--~ 

-Cl l  C12 C13 C14 C15 C16- 
C12 C22 C23 C24 C25 C26 
C~3 C23 C33 C34 C35 C36 
C14 C24 C34 C44 C45 C46 
C~5 C25 C35 C45 C55 C56 
C16 C26 C36 C46 C56 C66 

0 -  0 -  
0 0 
0 . 0 
1 1 
0 0 
0 0 

__ 21 [C14, C24, C34, C44, C45, C46]" [0, 0, 0, 1, 0, 0] T -  ~C44.1 

Similarly, for all other single, nonzero entries, W = Cii/2. Hence, the 
positive value of the strain-energy function for all possible nonzero strains 
requires Cii > O. 



Chapter 5 

Material symmetry 

Symmet ry  is a vast  subject ,  significant in ar t  and nature .  
Mathemat i c s  lies at its root, and it would be ha rd  to find 
a be t t e r  one on which to demons t ra te  the working of the 
ma themat i ca l  intellect. 

Hermann Weyl (1952) Symmetry 

Preliminary remarks 

Materials can possess certain symmetries. In the context of our studies, 
this means that  we can measure a property of a material in several different 
orientations of the coordinate system and obtain the same result each time. 
In other words, we are unable to detect the transformations of the refer- 
ence coordinate system by mechanical experiments. This invariance to the 
orientation of the coordinate system is called material symmetry. In a prop- 
erly chosen coordinate system, the form of the elasticity matrix allows us to 
recognize the symmetry of this continuum. This symmetry is indicative of 
the properties exhibited by the material represented by this continuum. 

We begin this chapter with the formulation of transformations of the co- 
ordinate system and the effect of these transformations on the stress-strain 
equations. Then we formulate the condition that  allows us to obtain the 
elasticity matrix of a continuum that is invariant under a given transfor- 
mation of coordinates. We complete this chapter by studying several such 
continua. 

85 
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5.1 Orthogonal transformations 

5.1.1 Transformat ion  matr ix  

To study material symmetries, we wish to use transformation of an ortho- 
normal coordinate system in the XlX2X3-space. A change of an orthonormal 
coordinate system in our three-dimensional space is given by 

= Ax, (5.1) 

where x - [Xl ,  x 2 ,  X3] T and ~ = [21,22, :~3] T a r e  the original and transformed 
coordinate systems, respectively, and A is the transformation matrix. Equa- 
tion (5.1) is the matrix form of equations (1.35), shown in Exercise 1.4. 

We are interested specifically in distance-preserving transformations, 
namely, rotations and reflections. In other words, these transformations 
allow us to change the orientation of the continuum without deforming it. 
Such transformations are represented by orthogonal matrices, that is, by 

I All A12 A13 1 
A -  A21 A22 A2a (5.2) 

A31 A32 A33 

square matrices given by 

that satisfy the orthogonality condition, namely, AA T -- I, which is equiv- 
alent to A T = A -1. 

Note that the determinants of these transformation matrices are the 
Jacobians of the coordinate transformations. This is illustrated in Exercise 
5.1. 

5.1.2 S y m m e t r y  g r o u p  

Expressing the elasticity matrix of a given continuum in a conveniently cho- 
sen orthonormal coordinate system allows us to recognize the material sym- 
metries of that continuum, as discussed in Sections 5 . 5 -  5.10. In other 
words, we can recognize the transformations that belong to the symmetry 
group of that continuum, which can be stated by the following definition. 

Defini t ion 5.1 The set of all orthogonal transformations given by matrices 
A to which the elastic properties of a given continuum are invariant is called 
the symmetry group of that continuum. 
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If the elastic properties are invariant under orthogonal transformations given 
by matrices A1 and A2, they are also invariant to product A IA2. Further- 
more, if these properties are invariant to A, they are also invariant to A -1. 
This is the reason for our invoking the notion of a group in Definition 5.1.1 

5.2 Transformat ion  of coordinates  

Introductory  c o m m e n t s  

Recall that  the properties of our continuum are formulated in terms of the 
stress-strain equations. To investigate the material symmetries of a given 
continuum, we study the stress-strain equations in the context of the or- 
thogonal transformations of the orthonormal coordinate system. 

5.2.1 Transformat ion  of  s tress- tensor  c o m p o n e n t s  

The components of the stress tensor expressed as a 3 x 3 matrix transfor .m 
according to 

5 -  A a A  T, (5.3) 

where A stands for matrix (5.2) and the accent symbolizes the transformed 
entity. This is the matrix form of transformation (2.55), which is proven in 
Exercise 2.3. 

Following matrix (2.18), the stress-tensor components are given by a 
square matrix 

I (711 012 (713 1 
(712 cr22 a23 , (5.4) 
(713 (723 (733 

which, in view of Theorem 2.1, is symmetric. 
Note that  since a second-rank tensor has two indices, it is convenient to 

write it as a matrix, even though, tensors and matrices are distinct mathe- 
matical entities. Herein, we use the fact that  under the orthogonal transfor- 
mations, the entries of a matrix behave like the components of a second-rank 
tensor. 

Recall that  stress-strain equations (4.11) involve stress-tensor compo- 
nents as a single-column matrix, or, namely, 

G_q. -- [(711 , (722, (733, (723, (713,(712] T �9 (5.5) 

I Readers interested in physical aspects of the group theory, which is the study of invari- 
ants and symmetries, might refer to Arfken, G.B, and Weber, H.J., (2001) Mathematical 
methods for physicists (5th edition): Harcourt/Academic Press, pp. 237- 301. 
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We wish to obtain a transformation equation for cr that  is equivalent to 
equation (5.3). Transformation (5.3) is linear; hence, it can be rewritten as 
a multiplication of a_ by a matrix. In other words, we can write 

5 - A (7, (5.6) 

where A is a 6 x 6 transformation matrix. To find the entries of A, we 
substitute the elements of the standard basis of the space of symmetric 3 x 3 

2 matrices for a. 
Consider the first element of the basis, namely, 

- -  Ell ,  

where Eij denotes the matrix with unity in the position (i, j )  and with zeros 
elsewhere. Thus, in this case, 

I 1 0 0 1 
0 0 0 . (5 .7)  

0 0 0 

Using Kronecker's delta, we can write the entries of matrix (5.7) as 

(Tij -- 5il ~j 1, i, j e {1,2,3}.  

Then using equation (5.3), the entries of 5 can be computed as 

3 3 3 3 

O'kl - E ~ Aki~ -- E ~ Akit~ilt~jlAlj 
i=1 j= l  i=1 j= l  

= AklAll ,  k,l  E {1, 2,3}. 

In view of expression (5.5), taking (k, l) - (1, 1), (2, 2), (3, 3), (2, 3), (1, 3) 
and (1, 2), we obtain 

A l l A l l  " 
A21A21 
A31A31 ~--- 

- A21A31 
AliA31 
AliA21 

2Readers interested in the underlying aspects of linear algebra might refer to Anton, 
H., (1973) Elementary linear algebra: John Wiley f~ Sons, pp. 237-  238, and to Ayres, 
F., (1962) Matrices: Schaum's Outlines, McGraw-Hill, p. 88 and p. 94. 
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Since, herein, 
- [1, 0, 0, 0, 0, 0l , 

in view of equation (5.6), ~_ is the first column of A. Analogously, we can 
compute the second and the third columns of A by considering a - E22 and 
a - E33, respectively. 

To find the fourth column of A, we use 

a -- E23 + E32. 

Thus, in this case, I0001 
a -  0 0 1 . 

0 1 0 

Using Kronecker's delta, we can write the entries of matrix (5.8), as 

aij - ~i2~y3 + 5i35j2, i, j E {1, 2, 3}. 

Then, using equation (5.3), the entries of 5 can be computed as 

3 3 3 3 3 3 

i=1 j = l  i=1 j = l  i=1 j = l  

= A~2A~3 + A~3A~, k, 1 ~ {1, 2, 3}. 

( 5 . s )  

- 2A12A13 " 
2A22A23 
2A32A33 ^ 

O ' ~  
- -  A22 A33 +A23 A32 ' 

A12 A33 -~-A13A32 
A~2A23 +A13A22 

which is the fourth column of A. Analogously, we can compute the fifth and 
the sixth columns of A by considering a - E13 + E31 and a - E12 + E21, 
respectively. 

Now, putt ing together the six columns of A, we obtain 

A - (5 .9 )  

AliA11 A12A12 A13A13 2A12A13 2AliA13 2AliA12 
A21 A21 A22A22 A23 A23 2A22 A23 2A21 A23 2A21 A22 
A31A31 A32A32 A33Aa3 2Aa2A33 2A31A33 2AalA32 
A21A31 A22A32 A23A33 A22A33+A23A32 A21A33+A23A3~ A21A32+A22A3~ 
AliA31 A12A32 A13A33 A12A~3+A13A32 AllAa3+AlaA31 AllA32+A12A31 
AliA21 A12A22 A13A23 A12A23+A13A22 AllA23+AlaA21 AllA22+A12A21 

In view of expression (5.5), taking (k, l) - (1, 1), (2, 2), (3, 3), (2, 3), (1, 3) 
and (1, 2), we obtain 
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which is the desired transformation matrix for the stress-tensor components 
given by matrix (5.5). Thus, given transformation matrix (5.2), whose en- 
tries are Aij, we can immediately write the corresponding A using matrix 
(5.9). Matrix (5.9) was also formulated by Bond (1943). 

5 .2 .2  T r a n s f o r m a t i o n  o f  s t r a i n - t e n s o r  c o m p o n e n t s  

The components of the strain-tensor expressed as a 3 • 3 matrix transform 
according to 

g -  AcA T, (5.10) 

where A stands for matrix (5.2) and the accent symbolizes the transformed 
entity. Equation (5.10) is the matrix form of equation (1.37), which is shown 
in Exercise 1.4. 

In equation (5.10), the strain-tensor components are considered as a 
square matrix 

I ~11 g12 g'13 1 g ~ g12 C22 g'21 
~13 C21 g33 

whose symmetry results from definition (1.15). 
We -wish to rewrite the strain-tensor components as a single-column ma- 

trix in a manner similar to that  shown in Section 5.2.1. As shown in stress- 
strain equations (4.11), the single column matrix, _r is formulated with 
factors of 2, namely, 

-- [g11, g22, g33, 2923, 2913,2912] T �9 (5.11) 

Hence, the corresponding transformation matrix differs from expression (5.6). 
To account for the factors of 2, we can write 

_g = FA__.F -1 e__, (5.12) 

where A__ is matrix (5.9) and 

F 

1 0 0 0 0 0 "  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 2 0 O  
0 0 O O 2 O  
0 0 0 0 0 2  
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Thus, the transformation matrix for the strain-tensor components, given by 
matrix (5.11), can be explicitly written as 

MA -- FA__F -1 = (5.13) 

AliA11 A12A12 A13A13 A12A13 AliA13 AliA12 
A21 A21 A22A22 A23 A23 A22A23 A21 A23 A21 A22 
A31 A31 A32 A32 A33 A33 A32 Aa3 A31 A33 A31 As2 
2A21A31 2A22A32 2A23A33 A22A33 +A23A32 A21A33-l--A23A31 A21A32 -4-A22A31 
2ALIA31 2AI2A32 2A13A33 AI2A33+A13A32 AIIA33+AI3A31 A11A32+A12A31 
2ALIA21 2AI2A22 2A13A23 AI2A23+AI3A22 AIIA23+AI3A21 AIIA22+AI2A21 

and expression (5.12) can be restated as 

g = MAe__. (5.14) 

Consequently, given transformation matrix (5.2), whose entries are Aij, we 
can immediately write the corresponding MA using matrix (5.13). 

5 .2 .3  S t r e s s - s t r a i n  e q u a t i o n s  in t r a n s f o r m e d  c o o r d i n a t e s  

Now, having formulated _~ and _g, which are given by expressions (5.6) and 
(5.14), respectively, we can formally write the stress-strain equations in 
transformed coordinates as 

Explicitly, we can write these equations as 

I 0"11 " 
^ 

O'22 
^ 

p 033 
^ 

O'23 
^ 

0"13 
^ 

. 0 1 2  _ 

" Cll C12 C13 C14 C15 C16 " 
C12 C22 C23 C24 C25 C26 
C13 C23 C33 C34 C35 C36 
C14 C24 C34 C44 C45 C46 
C15 C25 C35 C45 C55 C56 
C16 C26 C36 C46 C56 C66 

^ 

s 
^ 

s 
^ 

~33 
~)g23 
~)g13 
.~g12 

(5.15) 

where, as discussed in Chapter 4, the elasticity matrix is symmetric due to 
the strain-energy function. 

Recall that a continuum is formulated in terms of the stress-strain equa- 
tions. Consequently, an examination of equations (4.11) and (5.15) leads to 
the following definition. 

Def in i t ion  5.2 The elastic properties of a continuum are invariant under 
an orthogonal transformation if C - C, in other words, if the transformed 
elasticity matrix is identical to the original elasticity matrix. 

Thus, material symmetry is exhibited by a change of the reference coordinate 
system that is undetectable by any mechanical experiment. 
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5.3 C o n d i t i o n  for m a t e r i a l  s y m m e t r y  

In view of Definition 5.2, the invariance to an orthogonal transformation 
imposes certain conditions on the elasticity matrix. For the transformed 
and the original matrices to be identical to one another, they must possess 
a particular form. Herein, we study a method where, given an orthogonal 
transformation, we can find the elasticity matrix that  is invariant under this 
transformation and, hence, describe the material symmetry exhibited by a 
particular continuum. This method is stated in the following theorem. 

T h e o r e m  5.1 The elastic properties of a continuum are invariant under 
an orthogonal transformation, given by matrix A,  if and only if 

C - M T c  MA, (5.16) 

where C is the elasticity matrix and MA is matrix (5.13). 

Proof .  Consider stress-strain equations (3.7), namely, 

a _ -  C_e, (5.17) 

which are expressed in terms of the original coordinate system. In the trans- 
formed coordinate system, these equations are written as 

^ 

_5 - C_g. (5.18) 

Substituting expressions (5 .6 )and  (5.14)into Consider equation (5.18). 
equation (5.18), we obtain 

A a  - (~ MA r 

Multiplying both sides by A -1, we get 

- A-1  (~ MAr 

According to Lemma 5.1 shown below, A -1 - M T. Hence, we can write 

_~ - M~(~ MAe_. (5.19) 

Examining equations (5.17) and (5.19), we conclude that  they both hold for 
any _c, if and only if 

C - MA, 
which is the relation between C and (~ under transformation matrix A. In 
view of Definition 5.2, invariance with respect to A means that  

C - M T c  MA, 

which is expression (5.16), as required. �9 
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L e m m a  5.1 Let A__ be given by matrix (5.9) and MA be given by matrix 
(5.13). It follows that t -1 - MTA. 

Proof .  Recall that  A is an orthogonal matrix. Let R - A x  be the 
transformed coordinate system. Consider expression crx, which, in view of 
expression (5.3), can be stated in the ~-coordinates as (AaAT):~. Thus, in 
terms of the ~-coordinates, the stress-tensor components become 

5 -  AcrA T. (5.20) 

Let us calculate A -1 .  Since A is an orthogonal matrix, namely, A T - A -1  

we can rewrite equation (5.20) as 

a -  ATsA.  (5.21) 

Thus, in a manner analogous to that used to obtain expression (5.6), we can 
rewrite expression (5.21) in the desired notation, as 

- A T ~, (5.22) 

where A T is constructed as matrix (5.9), but with the entries A T - Aji of 

A T used in place of the entries Aij of A. Note that the order of operations 
matters; namely, A T :fi A T. Comparing expression (5.6) with expression 
(5.22), we see that  A T - A -1. Hence, we can write the inverse of matrix 
A explicitly, as 

A - 1  z 

AliA11 
A12A12 
A13A13 
Al~.A13 
AliA13 
A11A1~. 

(5.23) 
A21A21 AalA31 2A21A31 2A11A31 2AliA21 
A22A22 A32A32 2A22A32 2A12A32 2A12A22 
A23A23 A33A33 2A23A33 2A13A33 2A13A23 
A22A2a A32A33 A22A33+A32A2a A~2Aa3+A23A31 A2~A32+A22A31 
A2~A23 A31A33 A21A33+A31A23 A1~A33+A31A13 AllA23+A21A13 
A21A22 A31A32 A21A32+A31A22 A11A32+A31A12 A11A22+A21A12 

Comparing the entries of matrices (5.23) and (5.13), we notice that  the 
former one is equal to the transpose of the latter, as required, m 

Expression (5.16) is a concise statement of conditions that  the entries 
of the elasticity matrix must obey in order for the continuum described 
by stress-strain equations (4.11) to be invariant under an orthogonal trans- 
formation. Given transformation (5.2), expression (5.16)is convenient to 
apply since it contains twenty-one linear equations for Cmn. Furthermore, 
considering transformations (5.40) and (5.26), matrix MA is significantly 
simplified, since A13 = A23 = A31 = A32 = 0, while A33 = +1. 
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5.4 Point symmetry 

Let us illustrate condition (5.16) by describing the material symmetry that 
is valid for all continua described by stress-strain equations (4.11). In the 
following theorem, we show that at every point, an elastic continuum is 
invariant under the reflection through the origin of the coordinate system 
located at this point. Such a reflection is described by the transformation 
matrix given by 

~ ~ 
n - I ' - -  0 -1 0 - - - I .  (5.24) 

0 0 - 1  

T h e o r e m  5.2 At every point, a continuum given by stress-strain equations 
(~.11) is invariant under the reflection about the origin of a coordinate sys- 
tern that is located at that point. 

Proof .  Consider transformation matrix (5.24). Matrix (5.13) becomes 

1 
0 
0 

M A _ I  = 
0 
0 
0 

Hence, condition (5.16) becomes 

0 0 0 0  
1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  
0 0 0 0  

C - I TC I, 

. .  

0 
0 

---I. 
0 
0 
1 

which is identically satisfied for any C. �9 
This means that the symmetry group of every continuum contains A- I .  

5.5 Generally anisotropic continuum 

A generally anisotropic continuum is the most general continuum describ- 
able by stress-strain equations (4.11). The elasticity matrix of a generally 
anisotropic continuum is given 

" Cll 
C12 
C13 

CGEN -- C14 

C15 
C16 

by 

C12 C13 C14 C15 C16 
C22 C23 C24 C25 C26 
C23 C33 C34 C35 C36 
C24 C34 C44 C45 C46 
C25 C35 C45 C55 C56 
C26 C36 C46 C56 C66 

(5.25) 
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The only symmetry exhibited by a generally anisotropic continuum is point 
symmetry. Hence, a generally anisotropic continuum is described by an 
elasticity matrix that contains twenty-one independent entries. 

5.6 M o n o c l i n i c  c o n t i n u u m  

5.6.1 E l a s t i c i t y  m a t r i x  

A continuum whose symmetry group contains a reflection about a plane 
through the origin is said to be monoclinic. For convenience, let us choose 
the coordinate system such that this reflection takes place about the x lx2- 

plane, which means, along the x3-axis. 
Consider the orthogonal transformation that is represented by matrix 

(5.2) in the form given by 

I cos O sin O 0 1  
A = - sin O cos @ 0 . (5.26) 

0 0 -1  

Matrix (5.26), whose determinant is equal to negative unity, corresponds to 
the composition of two transformations, namely, rotation by angle O about 
the x3-axis and reflection about the x lx2-plane. To consider the reflection 
alone, we let @ = 0 to obtain 

I 1 0  0 1  A 3 -  0 1  0 . (5.27) 
0 0  -1  

Following expression (5.13), the corresponding matrix MA is 

MA3 

1 0 0 0  0 0 "  
0 1 0 0  0 0  
0 0 1 0  0 0  
0 0 0 - 1 0 0  
0 0 0 0 - 1 0  
0 0 0 0  0 1  

Theorem 5.1 requires that the elasticity matrix satisfies condition (5.16). 
This condition requires that 

T C - MA3 C MA3, 
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which we can explicitly write as 

C l l  C12 C13 C14 C15 616 
C12 ~ 2  ~ 3  ~ 4  ~ 5  ~ 6  
C13 ~ 3  ~ 3  ~ 4  ~ 5  ~ 6  
C14 ~ 4  ~ 4  ~ 4  ~ 5  ~ 6  
C15 ~ 5  ~ 5  ~ 5  ~ 5  ~ 6  
C16 ~ 6  ~ 6  ~ 6  ~ 6  ~ 6  

- Cll C12 C13 -C14 -C15 C16- 
C12 ~ 2  ~ 3  - ~ 4  - -~5  ~ 6  
C13 ~ 3  ~ 3  --~4 --~5 ~ 6  

-C14 - ~ 4  - ~ 4  ~ 4  ~ 5  - ~ 6  

C16 ~6 ~6 -~6 -~6 ~6 

The equality of these two matrices implies that 

C14 -= C15 -- C24 = C25 -- C34 -- C35 -- C46 -- C56 -- O. (5.2s) 

Thus, the elasticity matrix of a continuum that possesses a reflection 
symmetry along the x3-axis is 

CMONOx3 = 

" C l l  C12 C13 0 0 C16 - 

C12 C22 C2a 0 0 C26 
C13 C23 C33 0 0 C36 

0 0 0 C44 C45 0 
0 0 0 645 655 0 

C16 C26 C36 0 0 C66 

(5.29) 

Hence, a monoclinic continuum is described by an elasticity matrix that 
contains thirteen independent entries. 

5 . 6 . 2  N a t u r a l  c o o r d i n a t e  s y s t e m  

In general, in an arbitrary coordinate system, all the entries of an elasticity 
matrix are nonzero. A natural coordinate system is a particular system 
within which an elasticity matrix has the fewest possible number of nonzero 

independent entries. 
For any continuum, there exists at least three natural coordinate sys- 

tems. 3 Hence, in principle, we could also rotate our orthonormal coordinate 

aInterested readers might refer to Fedorov, F.I., (1968) Theory of elastic waves in 
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system so as to find a natural coordinate system for a generally anisotropic 
continuum, discussed above in Section 5.5. This, however, is not a simple 
task. Yet, in a natural coordinate system, a generally anisotropic continuum 
can be described by eighteen independent elasticity parameters and three 
Euler's angles that specify the orientation of this system. 

A monoclinic continuum can be conveniently used to illustrate the con- 
cept of a natural coordinate system. The coordinate system that is used to 
formulate matrix (5.29) has the x3-axis coinciding with the normal to the 
symmetry plane of the continuum. In other words, the xix2-plane coincides 
with the symmetry plane. The rotation of the coordinate system about 
the x3-axis allows us to further reduce the number of elasticity parameters 
needed to describe a monoclinic continuum. An appropriate rotation re- 
duces matrix (5.29) to a new matrix that contains only twelve parameters. 
This orientation of the coordinate system is a natural coordinate system for 
a monoclinic continuum. 

Rotation of the coordinate axes about the x3-axis by angle O, where the 
angle is given by 

2C45 
tan (2(9) - C44 - C55' (5.30) 

leads to a new set of elasticity parameters,  which we denote by Cmn" 4 In 
the new set, 045 vanishes and elasticity matr ix  (5.29) is reduced to 

CMONO -- 

- Cll C12 C13 0 0 C16 
512 522 523 0 0 526 
513 523 533 0 0 536 

0 0 0 C44 0 0 
0 0 0 0 055 0 

516 526 536 0 0 566 

(5.31) 

crystals: Plenum Press, New York, p. 25 and pp. 110-  111, to Helbig, K., (1994) 
Foundations of anisotropy for exploration seismics: Pergamon, pp. 163 - 170, to Lanczos, 
C., (1949/1986) The variational principles of mechanics: Dover, p. 373, to Schouten, 
J.A. (1951/1989) Tensor analysis for physicists: Dover, p. 162., and to Winterstein, D.F., 
(1990) Velocity anisotropy terminology for geophysicists: Geophysics, 55, 1070- 1088. 

4Readers interested in the formulation of expression (5.30), in the context presented 
herein, might refer to Helbig, K., (1994) Foundations of anisotropy for exploration seismics: 
Pergamon, pp. 82 - 83, 94-  95 and 110- 116. 

Hence, in a natural  coordinate system, a monoclinic cont inuum is described 
by twelve independent  elasticity parameters  and the angle 8 tha t  describes 

the orientation of the coordinate system and corresponds to Euler 's  angle. 
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Note that expression (5.30) can be verified by diagonalizing a submatrix, 
namely, 

[ C44 0 ] _ [ cosO sinO ] [ C44 C45 ] [ cosO -sinO ] 
0 (~55 - sin @ cos @ C45 C55 sin O cos @ " 

(5.32) 
We note that considering matrices (5.29) and (5.31), Cmn # Cmn, where 

m, n C {1 , . . . ,  6}. In other words, the rotation about the x3-axis by the angle 
(5.30) results in a new elasticity matrix to describe the same continuum. 

In the context of ray theory, natural coordinate systems are associated 
with pure-mode directions, as discussed in Section 10.2.1. In Section 10.2.1, 
expression (5.30) is obtained by considering the displacement directions of 
the three types of waves that propagate along the x3-axis in a monoclinic 
continuum. 

The orthotropic, tetragonal, transversely isotropic, and isotropic con- 
tinua, discussed in Sections 5 . 7 -  5.10 are all, ab initio, considered in their 
natural coordinate systems. Notably, for an isotropic continuum, all ortho- 
normal coordinate systems are natural, while for orthotropic, tetragonal and 
transversely isotropic continua, we can obtain a natural coordinate system 
by setting the axes of the coordinate system to coincide with the symmetry 
axes. This is not the case for generally anisotropic and monoclinic continua, 
where the orientation of a natural coordinate system is more dimcult to find. 

5.7 Orthotropic continuum 

An orthotropic continuum is a continuum that possesses three orthogonal 
symmetry planes. For convenience, let us choose the coordinate system 
such that the symmetry planes coincide with the coordinate planes. This 
is a natural coordinate system for an orthotropic continuum. Hence, the 
transformation matrices are given by 

I - 1  0 0 1 A 1 -  0 1 0 , (5.33) 
0 0 1 

I I 0 0 1 A 2 -  0 - 1  0 , (5.34) 
0 0 1 

and A3, given by matrix (5.27), which correspond to the reflections along 
the x 1-axis, the x2-axis and the x3-axis, respectively. 
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In view of the properties of the symmetry group, the elasticity matrix 
of an orthotropic continuum can be obtained using any two of the three 
symmetry planes. This is shown by the following theorem. 

T h e o r e m  5.3 If  a continuum given by stress-strain equations (~.11) is in- 
variant under the reflection about two orthogonal planes, it must also be 
invariant under the reflection about the third orthogonal plane. 

Proof .  Consider a continuum that is invariant under the reflections 
along the x 1-axis and along the x3-axis. The corresponding orthogonal 
transformations are given by matrices (5.33) and (5.27), respectively. Also, 
following Theorem 5.2, all continua possess point symmetry. In other words, 
they are invariant under the transformation given by matrix (5.24). Since 
all these transformations belong to the symmetry group of an orthotropic 
continuum, their products also belong to this group. Consider 

(A1) (A3)(A-I )  = I 1 
1 0 0 
0 - 1  0 
0 0 1 

which we recognize to be matrix (5.34) corresponding to the reflections along 
the x2-axis. Thus, in view of point symmetry, invariance to the reflections 
about two orthogonal planes also implies invariance to the reflection about 
the third orthogonal plane. �9 

Therefore, to obtain the elasticity matrix of an orthotropic continuum, 
let us use matrices (5.27) and (5.34). Matrix (5.27) is also used in Section 
5.6 where we obtain the relations given in expression (5.28), namely, 

C14  : C15  : C24  - -  C25 - -  C34  - -  C35  : C46  - -  C56  - -  0. (5.35) 

Using matrix (5.34), condition (5.16) becomes 

C - M~2 CMA2. (5.36) 

Hence, using matrix (5.13), we obtain 

MA2 

1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 - 1 0 0  
0 0 0 0 1 0  
0 0 0 0 0 - 1  

(5.37) 
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Inserting matrix (5.37)into equation (5.36), we get 

C16 - C26 - C36 - C45 - O. (5.38) 

Thus, combining relations (5.35) and (5.38), we can write the elasticity 
matrix for an orthotropic continuum as 

CORTHOxl x 2 x 3  " - -  

" Cll  C12 C13 0 0 0 
C12 C22 6'23 0 0 0 
C~3 6'23 C33 0 0 0 

0 0 0 C44 0 0 
0 0 0 0 6'55 0 
0 0 0 0 0 C66 

(5 .39)  

Hence, in a natural coordinate system, an orthotropic continuum is described 
by nine independent elasticity parameters. 

5 . 8  T e t r a g o n a l  c o n t i n u u m  

A tetragonal continuum is a continuum whose symmetry group contains a 
four-fold rotation and a reflection through the plane that contains the axis 
of rotation. For convenience, let us choose the coordinate system such that 
the x3-axis is the axis of rotation, while the reflection is along the x2-axis. 
This is a natural coordinate system for a tetragonal continuum. 

Consider the orthogonal transformation that is represented by matrix 
(5.2) in the form given by 

I 1 
cosO sinO 0 

A o -  - s in@ cos@ 0 . (5.40) 
0 0 1 

Matrix (5.40), whose determinant is equal to unity, corresponds to rotation 
by angle O about the x3-axis. 

The transformation matrices of a tetragonal continuum are given by 

I 0 1 0 1 A = / 2 -  -1  0 0 , (5.41) 
0 0 1 

which is matrix (5.40) with @ - 7r/2, and by matrix (5.34). These matrices 
correspond to the rotation about the x3-axis and to the reflections along the 
x2-axis, respectively. 
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Matrix (5.34) also belongs to the symmetry group of an orthotropic 
continuum discussed in Section 5.7 where we obtained the relations given in 
expression (5.38), namely, 

C16 --- C26 = C36 -- C45 ~-~ O. (5.42) 

These relations also apply to a tetragonal continuum. The additional re- 
lations result from matrix (5.41). Using matrix (5.41), condition (5.16) 
becomes 

C - M T CMA~/2 ATr/2 

and results in relations given by 

C22 -- Cl l ,  C23 -- C13, C55 -- C44. (5.43) 

Combining relations (5.42) and (5.43), we obtain the elasticity matrix of 
a tetragonal continuum, namely, 

- Cll 
C12 

C13 
CTETaA -- 0 

0 
0 

C12 613 0 0 0 - 

611 C13 0 0 0 

C13 C33 0 0 0 

0 0 C44 0 0 
0 0 0 C44 0 
0 0 0 0 C66 

(5.44) 

Thus, in a natural coordinate system, only six independent elasticity para- 
meters are needed to describe a tetragonal continuum. 

Note that,  as expected, matrix (5.44) is a special case of matrix (5.39) 
with additional relations given by expression (5.43). 

5.9 Transversely isotropic continuum 

5.9 .1  E l a s t i c i t y  m a t r i x  

Now we will consider a particularly interesting case. Suppose that  a con- 
tinuum is invariant with respect to a single rotation given by matrix (5.40) 
where O is smaller than 7r/2. Let us consider, for example, O = 27r/5, and, 
hence, assume that  the symmetry group contains 

- 27r 27r 
cos --5- sin --5- 0 

A2~/5 - 27r 27r 
- s i n  --~ cos --~ 0 (5.45) 

0 0 1 
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Following condition (5.16), the elasticity matrix, C, satisfies the equation 
given by 

C - M T CMA2./5 (5.46) A2~r/5 

The entries of matrix MA2~/5 are more complicated than the entries of the 
transformation matrices used in the previous sections, but equation (5.46) 
can still be solved directly to give relations among the entries of C. The 
solution to condition (5.46) is the matrix given by 

CTRANS = 

Cl l  C12 C13 0 0 0 

C12 Cl l  C13 0 0 0 

C13 C13 C33 0 0 0 

0 0 0 C44 0 0 
0 0 0 0 C44 0 

C l l  - C12 
0 0 0 0 0 

2 

(5.47) 

Thus, the requirements that the symmetry group contains A2./5 results in a 
continuum that is described by only five independent elasticity parameters. 

5.9.2  R o t a t i o n  invariance  

A particularly important property of matrix (5.47) is the fact that  for any 
angle 0,  this matrix, without any further simplification, satisfies the equa- 
tion given by 

C - M ~ e  CMAe,  (5.48) 

where Ao is given by matrix (5.40). This property of matrix (5.47) can 
be directly verified by substituting MAe, without specifying the value of 
(~, and CTRANS into the right-hand side of equation (5.48). The resulting 
expression reduces to CTRANS. Therefore, the invariance of CTRANS to the 
five-fold rotation about a given axis implies invariance to the rotation by 
any angle about this axis. As stated in Theorem 5.4, below, there is nothing 
special about 27r/5; we could choose any angle smaller than ~/2 to obtain 
the same elasticity matrix. 

To prove Theorem 5.4 below, and to see the reason behind it, consider 
the fact that the material symmetry of a continuum is equivalent to the 
symmetry of the strain-energy function, W (s), as discussed in Section 4.2.3. 5 

~Readers interested in the treatment of symmetries that is based on the strain-energy 
function might refer to Carcione, J.M., (2001) Wave fields in real media: wave propagation 
in anisotropic, anelastic and porous media: Pergamon, pp. 2 -  3, to Epstein, M., and 
Slawinski, M.A., (1998) On some aspects of the continuum-mechanics context. Revue de 
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Since strain energy is a scalar, its value must be the same for all orientations 
of the coordinate system. In view of expression (4.3), namely, 

3 3 3 3 
1 

W (~) - -~ ~ ~ E E CijklSijSkl, (5.49) 
i=1 j=l k=l /=1 

this is, in general, achieved by the values of the components of cijkt, which 
are different for different orientations of the coordinate system in such a 
way that  the value of W remains the same. If a continuum exhibits a given 
material  symmetry,  the same values of the components of cijkz give the same 
value of W for more than one orientation of the coordinate system. 

We wish to express the effect of an orthogonal transformation, A, on the 
strain-energy function. Since the value of strain energy must be the same 
for the original and the transformed coordinate systems, we can write 

- w ( 5 . 5 0 )  

where the transformed strain-tensor components are given by expression 
(5.10), namely, 

-- Aa A T, (5.51) 

which, for brevity, we denote by A o s, with o standing for the orthogonal- 
transformation operator. 

Note that  equation (5.50) is always satisfied. Consequently, this equation 
provides no information about the material symmetry of the continuum. 
The material  symmetry  requires that  the strain-energy function be invariant 
under A, namely, 

w = w 

which we can write as W (s) = W (A o c). In other words, material  sym- 
metry requires tha t  the strain-energy function be the same for both s and 
g. 

Herein, we are interested in rotations of the coordinate system; hence, we 
consider transformation Ao,  which is given by expression (5.40). In view of 
expressions (5.40) and (5.51), g can be regarded as a quadratic trigonometric 
polynomial in O. Hence, W (Ao o s) is a quartic trigonometric polynomial 
in @.6 

l'Institut Fran~ais du P~trole, 53, No. 5, pp. 673 - 674, to  Lanczos, C., (1949/1986) The 
variational principles of mechanics: Dover, pp. 373 - 374, and to Macelwane, J.B., and 
Sohon, F.W., (1936) Introduction to theoretical seismology, Part I: Geodynamics: John 
Wiley and Sons, Inc., pp. 77- 78. 

6Readers interested in trigonometric polynomials might refer to Courant, R., and 
Hilbert, D., (1924/1989) Methods of mathematical physics: John Wiley & Sons, Vol. 
I,p. 69-70. 
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Now, let the material symmetry be the invariance under rotation by 
(9 - 27r/n, where n >_ 5. Hence, consider the strain-energy function that  is 
invariant under such rotation. Since the symmetries of a continuum form a 
group, we conclude that  W (c) is also invariant under rotations by 2m~r/n, 
where m c {0, 1 , . . . ,  n -  1}. In other words, the symmetry group contains 
rotations given by 

A2mrr/n = 

2mTr 
cos ~ sin 

rt 

2m7r 
- sin ~ cos 

n 

0 

So, we can write 

2mTr 
0 

n 

2mTr 
0 

n 

0 1 

n > 5  
mE{0, 1 , . . . , n - i }  " 

(5.52) 

W (c) - W (A2mTr/n o c ) ,  
n > 5  
m E { 0 , 1 , . . . , n -  1} ' 

(5.53) 

which implies that  

n - 1  

W (r - nl R w (A2mTr/n o c ) ,  n >_ 5. ( 5 . 5 4 )  
m=0 

In other words, since equation (5.53) holds for any allowable value of m, the 
sum on the right-hand side of equation (5.54) is composed of the identical 
values of W. 

Note that  for any W (c), not necessarily invariant under transformations 
(5.52), the right-hand side of equation (5.54) is called the symmetrization 
of W with respect to the group of these transformations. Hence, equation 
(5.54) means that  if W (c) is invariant under rotations (5.52), it is equal to 
its symmetrization with respect to these rotations. 

Now we can introduce the key statement that  explains why an elasticity 
matrix invariant to a five-fold rotation about a given axis is necessarily 
invariant to any rotation about this axis. Since W (As  o e) is a quartic 
trigonometric polynomial, it follows that,  for n > 5, we can apply Lemma 
5.2, below, and rewrite the right-hand side of equation (5.54) as 

271 n--1 

1 R W ( A 2 m T r / n ~ 1 6 2  - 1 / 
m=O 0 

W (Ao o r dO, n > 5, 
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which leads to 
271" 1/ 

W (s) - ~ W (Ao 

0 
os)dO. (5.55) 

Equations (5.55) states that  W (s) is equal to its symmetrization over all 
possible rotations. This implies that  W (c) is invariant under all rotations. 
Hence, we conclude with the following theorem. 

T h e o r e m  5.4 If  W (s) is invariant under rotations by angle 2~/n  about a 
given axis, where n >_ 5, it is invariant under any rotation about this axis. 

To complete the proof of this theorem, consider the following lemma. 

L e m m a  5.2 If  f is a trigonometric polynomial of at most degree n -  1, then 

271" 

- m ~ o f  - f (@) d@ ~ ~ �9 
0 

(5.56) 

Proof .  Consider a basis of the space of trigonometric polynomials of at 
most degree n -  1, given by 

f~ (O) - e ~ ~  r E { - ( n - 1 ) , . . . , n - 1 } .  

In view of linearity, to prove equation (5.56) for f ,  it suffices to prove it for 
f~, where r E { - ( n -  1 ) , . . . , n -  1}. Set 

Z -  e n r e { - - ( ~ -  ~ ) , . . .  ,T~-  1}. (5.57) 

Then, we can write 

n-1 1 n-l~ (2mTr) 1 ~ - ~ z m  

n f~ n n ' 
- -  m--0 

r E { - ( n - 1 ) , . . . , n - 1 } .  (5 .5s)  

Examining expression (5.57) for the case of r - 0, we note that  z - 1 and, 
thus, the right-hand side of expression (5.58) is equal to 1. Now, for r ~ 0, 
z ~ 1 and we can write the right-hand side of expression (5.58) as 

1 n--1 

n 
m-O 

l z n - 1  
z ~ = - ~ .  ( 5 . 5 9 )  

n z - 1  
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Examining expression (5.57), we also note that  z n - 1 and, thus, the right- 
hand side of expression (5.59) is equal to 0. To summarize, we can write the 
left-hand side of equation (5.56) as 

1Efrn-1 (2mTr)  { 0 if r 5 r  
, 

n n 1 if r - - 0  
m = 0  

(5.60) 

Performing the integration on the right-hand side of equation (5.56), we 
obtain 

27r 

l f e i r  @ { 0  if rT~0 (561) 
d O -  1 if r - 0  " 

0 
. _ ~  

Thus, for r E { - ( n  - 1 ) , . . .  ,n  - 1}, expressions (5.60) and (5.61) are equal 
to one another and, hence, equation (5.56) is valid for polynomials of at most 
degree n -  1, as required. ! 

Note that  in the proof of Theorem 5.4 we used the fact that  W (e) is a 
quadratic polynomial in the strain-tensor components and, hence, W (Ao o c) 
is a quartic trigonometric polynomial in (9. This corresponds to the fact that  
Theorem 5.4 is associated with cijkl, which is a fourth-rank tensor. This 
theorem can be extended to the higher-rank tensors if they are subject to 
similar transformations. In general, such a rotation invariance was given by 
Herman (1945) and is shown in Exercise 5.4. 

Since the symmetry of W (c) is tantamount to the symmetry of a con- 
tinuum, we conclude that a continuum described by matrix (5.47) is trans- 
versely isotropic. 

5.10 Isotropic  c o n t i n u u m  

5.10.1 Elasticity matrix 

A continuum whose symmetry group contains all orthogonal transformations 
is said to be isotropic. For an isotropic continuum, all coordinate systems are 
natural coordinate systems and, hence, no particular orientation is required. 

Since the symmetry group of an isotropic continuum contains all orthog- 
onal transformations, it must contain all rotations about the x3-axis. Thus, 
the elasticity matrix of an isotropic continuum has, at least, the simplicity 
of the form shown in matrix (5.47). Consider also the invariance to the 
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transformation that  exchanges the x l and x 3 coordinates, namely, 

I0011 Azlxa - 0 1 0 . 
1 0 0 

Following condition (5.16), we obtain the equation given by 

C - M ~  1~3 CMA~I~3' 

which imposes the additional relations, namely, 

Cl l  --~ C33, C12 = C13, C44 --~ C66. 

Incorporating these relations into matrix (5.47), we obtain 

CISO -- 

C l l  Cll - 2C44 Cll - 2C44 0 0 0 
Cl l  - 2C44 Cll Cll - 2C44 0 0 0 
C l l  - 2C44 C 1 1  - 2C44 C11 0 0 0 

0 0 0 C44 0 0 
0 0 0 0 C44 0 
0 0 0 0 0 C44 

(5 62) 
Hence, the elasticity matrix of an isotropic continuum contains only two 
independent elasticity parameters, namely, Cll and C44. Furthermore, as 
shown in Exercise 5.5, the elasticity matrix of an isotropic continuum is 
symmetric without invoking the existence of the strain-energy function. 

5 .10 .2  L a m ~ ' s  p a r a m e t e r s  

The two independent elasticity parameters that  describe an isotropic con- 
tinuum are often expressed as 

{ ~ "-- Cl l  - 2C44 (5.63) 
# :-- C44 

The two parameters, A and #, are called Lam~'s parameters. Their physical 
meaning is described in Section 5.10.4. 

Using the definition of Lam~'s parameters (5.63), we can rewrite matrix 
(5.62) as 

CLAMI ~ --- 

A+2# A A 0 0 0 " 
A A+2# A 0 0 0 
A A A+2# 0 0 0 
0 0 0 # 0 0 
0 0 0 O t t O  
0 0 0 0 0 # .  

(5.64) 
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5 . 1 0 . 3  T e n s o r i a l  f o r m u l a t i o n  

Using matrix (5.64) and in view of equations (3.1), we can write the stress- 
strain equations for an isotropic continuum as 

3 

crij - A(Sij ~-~ekk + 2peij, i , j  e {1,2 ,3) .  (5.65) 
k = l  

This formulation is used to derive the wave equation in Chapter 6. 
Since, in equations (3.1), the elasticity tensor, cijkt, is a fourth-rank 

tensor, the number of elasticity parameters for an isotropic continuum can 
also be derived directly from the mathematical properties of a fourth-rank 
tensor and the concept of an isotropic tensor. 

Note that  an isotropic tensor is a tensor whose components are the same 
in all coordinate systems. 

The general form of an isotropic fourth-rank tensor is 

ai jk l  : /~(~ij(~kl + ~ ik t~ j l  -4- I](~il(~jk , i, j, k, 1 C { 1, 2, 3}, (5.66) 

where A, ~ and ~ are constants. In other words, an isotropic fourth-rank 
tensor is stated in terms of three constants that  do not depend on the choice 
of the coordinate system. In elasticity theory, since the strain tensor is 
symmetric, the most general isotropic elasticity tensor is given by expression 
(5.65), which contains only two constants, A and #, where, as shown in 
Exercise 5.6, # := (~ + r/)/2. 

By examining stress-strain equations (5.65) in the context of tensor 
analysis, we can see that they correspond to the isotropic formulation since 
they retain the same form for all orthogonal transformations. To gain in- 
sight into this statement, we rewrite these equations using definition (1.15) 
a s  

3 0 u k  ( OUi OUj ) 
O'i j -- /~ (~ i j E ~X k '}- # ~X j "-~ ~X i ' i, j e {1, 2, 3}. (5.67) 

k = l  

Equations (5.67) are invariant under the coordinate transformations. We 
immediately see that  the summation term is V . u ,  which being a scalar 

is invariant under all coordinate transformations. Using transformation 
rules for the components of a second-rank tensor, we can also show that,  
upon the coordinate transformation, the term in parentheses retains the 
same form. Since both the summation term and the term in parentheses 
are invariant under the coordinate transformations, stress-strain equations 
(5.65) correspond to isotropic continua. 
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5 . 1 0 . 4  P h y s i c a l  m e a n i n g  o f  L a m ~ s  p a r a m e t e r s  

We can obtain the physical meaning of Lam~'s parameters,  ~ and #, by 
examining stress-strain equations (5.65). 

Lam6's parameter  p is a measure of rigidity. We can see that  by setting 
- 0 and considering sij with i ~ j .  Thus, we can write expressions (5.65) 

as  
i # j  

aij - 2#~ij, i, j C {1, 2, 3} ' 

which, using definition (1.15), we can rewrite as 

aij - p \Oxy + ~ ' i, j e {1,2,3} " 

In view of Section 1.3.2, we see that  # is a coefficient that  relates stress to 
a change in shape. Thus, Lam6's parameter  # describes the rigidity of the 
continuum. 

The physical meaning of Lam6's parameter  ~ is less immediate. If we let 
# vanish and consider cij with i -  j ,  equations (5.65) become 

3 
i - j  

lim criy - )~ ~ gkk -- )~ (Cl l  -~- C22 -+- C33) --  ) ~ ,  i, j C { 1, 2, 3} ' 
it--,0+ k----1 

(5.6s) 
where ~ is the dilatation defined in expression (1.26). Examination of ex- 
pression (5.68), which can be viewed as corresponding to a fluid, shows that  
Lam~'s parameter  A is akin to the compressibility, ~. Note however that ,  
in view of the positive-definiteness of elasticity matrix (5.64), as required 
by the stability conditions for an elastic solid, discussed in Section 4.3, we 
require p > 0. Hence, we treat  the vanishing of p as a limit. 

To study a proper solid, we consider a finite value of #. We still consider 
cij with i = j and we further assume C l l  : C 2 2  - -  C33. For convenience, let 
cii -- g/3, where i C {1,2,3}. Thus, we can write stress-strain equations 
(5.65) as 

2 ( 2 ) ~  i - j  . (5.69) 
aij - , k g + - ~ # g -  ~ +-~# e, i, j e {1,2,3} 

In view of expression (1.25) and letting AV "-  V -  V, we can write 

AV 
~" ~ ~ o  

V 
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Also, Crii is equal to - P ,  where P denotes the difference in hydrostatic 
pressure. In other words, P is a pressure difference between the pressure 
associated with the deformation and the pressure at the undeformed state. 
Thus, we can write expression (5.69) as 

2 ) zxv (5.7o) -P= a+5" -V- 

To gain insight into the physical meaning of A, we use the concept of 
compressibility, n, that is defined as the relative decrease of volume produced 
by unit pressure, namely, 

1 A V  
"= P - 7 - "  (5.71) 

Using expression (5.70), we can rewrite the compressibility as 

Solving for A, we obtain 
1 2 

A=  
3 #. 

Thus, in the case of vanishing rigidity, # --, 0 +, Lam~'s parameter A is the 
reciprocal of the compressibility, while, in general, A has a more complicated 
physical significance given in terms of both the rigidity and compressibility. 

Closing remarks 

In this chapter, by studying the elasticity matrix, we investigated the sym- 
metries of the elasticity tensor that correspond to generally anisotropic, 
monoclinic, orthotropic, tetragonal, transversely isotropic and isotropic con- 
tinua. By further investigating transformation properties of the elasticity 
tensor, we could also show that the only two remaining cases are the trigonal 
and cubic continua, which are described by six and three independent elastic- 
ity parameters, respectively. However, these two continua do not commonly 
appear in seismological studies. 

Note that both the trigonal and tetragonal continua are described by the 
same number of independent elasticity parameters. However, the elasticity 
matrix of a trigonal continuum is different than the elasticity matrix of 
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a tetragonal continuum. In the former case, the matrix contains eighteen 
nonzero entries, while, in the latter case, it contains twelve nonzero entries. 7 

Studying the symmetries of a continuum provides us with information 
about the material that  it represents. For instance, by analyzing seismic 
data, we can infer im%rmation about layering and fractures. Also, know- 
ing the smallest number of independent elasticity parameters that  is re- 
quired to describe a given continuum provides us with a convenient way 
to study seismic-wave propagation in specific materials. For instance, ex- 
plicit expressions for wave velocities in a generally anisotropic continuum 
are complicated. However, if we know that a given material can be ade- 
quately described by a continuum that possesses particular symmetries, we 
reduce the complication of these expressions. Explicit expressions for wave 
velocities in a transversely isotropic continuum are derived in Chapter 10. 

Note that  the nomenclature commonly used to describe the material 
symmetries originates in crystallography. Herein, however, we are studying 
symmetries of continua. Consequently, intuitive and heuristic descriptions 
associated with crystal lattices are not appropriate in the context of elastic 
continua. 

0 
E x e r c i s e s  

E x e r c i s e  5.1 SShow that the Jacobian that is associated with matrix (5.~0) 
is equal to unity. 

So lu t ion  5.1 
ordinates as 

Using matrix (5.40), we can write the transformation of co- 

I 11 I sin  011Xll a~2 - - s i n O  cosO 0 x2 
:~3 0 0 1 X3 

(5.72) 

where x and fr are the original and the transformed coordinates, respectively. 

7Readers interested in a complete classification of symmetries for the elasticity ten- 
sor might refer to Ting, T.C.T., (1996) Anisotropic elasticity: Theory and applications: 
Oxford University Press, pp. 40 -  51. 

SSee also Section 5.1.1. 
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The Jacobian is given by 

J "-  det 

- 0:~1 0:~1 0 X l  " 

0xl 0x2 0x3 
22 022 0~2 

Oxl O x2 O x3 
0:~3 OX3 OX3 

. OXl  OX2 OX3 . 

(5.73) 

Thus, examining equations (5. 72) and (5. 73), we see that the determinant 
of matrix (5.~0) is the Jacobian. Hence, we immediately obtain 

J -  det 

as required. 

cos 0 sin O 0 ] 

J - s i n O  cosO 0 
0 0 1 

- - c o s  2 0 + s i n  2 e -  1, 

Exe rc i se  5.2 Consider a continuum whose symmetry group contains the 
reflection about the x2x3-plane. This reflection implies that C12 - - - - ~ 1 2  and 
C13 - -  --C13, a8 well as (Y12 - -  - - (712 and (713 - -&13. Using stress-strain 
equations (~. 11), show that 

C15 - C16 - C25 - C26 - C35 - C36 - C45 - C46 - O, 

and state the resulting elasticity matrix CMONOxl. 

So lu t ion  5.2 Consider the stress-tensor components oh2 and ~12. 

stress-strain equations (~.11), we can write 
Using 

0"12 -- C16Cll + C26c22 -~- C36c33 + 2C46c23 -+- 2C56c13 -+- 2C66c12, (5.74) 

and 

0"12 -- C16~11 + C26c22 -4- C36c33 + 2C46c23 + 2C56c13 + 2C66c12. 

The second equation can be expressed in terms of the original strain compo- 
nents as 

~12 -- C16Cll + C26c22 -Jr- C36c33 + 2C46c23 - 2C56c13 - 2C66c12. 

In view of relations a12 - -612, and the equality of the stress-strain equa- 
tions required in view of the assumed symmetry, we obtain 

0"12 -- --~12 -- -C16Cl l  - C 2 6 c 2 2  - C 3 6 c 3 3  - 2C46c23 + 2C56c13 + 2C66c12. 
(5.75) 
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Equality between (5. 74) and (5. 75) requires 

C16 ~-- C26 = C36 ~-- C46 ~- O. 

Similarly, for (713 ------~13, w e  require 

C15 --~ C25 = C35 = C45 -- 0. 

Thus, we obtain 

CMONOxi 

"Cii C12 C13 C14 0 0 
C12 C22 C23 C24 0 0 
C13 C23 C33 C34 0 0 
C14 C24 C34 C44 0 0 

0 0 0 0 C55 C56 
0 0 0 0 C56 C66 

(5.76) 

as required. 

Exercise 5.3 9Find the stability conditions for a transversely isotropic con- 
tinuum described by matrix (5.47). 

Solution 5.3 In view of Section 4.3, the stability conditions require that 
matrix (5.47) be positive-definite. Recalling equations (~.14), we obtain 

Cll > O, (5.77) 

and 

c33 > o, (5.78) 

C44 > O, (5.79) 

Cll > C12. (5.80) 

We notice that matrix (5.~ 7) is a direct sum of two submatrices given by 

and 

C l =  
I Cll C12 C13 1 

~12 Cll C13 , 
C13 C13 C33 

C2 -- 

~44 
0 

0 

0 0 
C44 0 

Cll -- C12 
0 

2 
9See also Section 4.3.3. 
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Conditions (5. 79) and (5.80) ensure that matrix C2 is positive-definite. In 
view of condition (5.77), the remaining conditions for the positive-definiteness 
of matrix C1 are 

[Cll  C12 ] > 0, (5.81) det C12 Cll 

and 

I Cll C12 C13 1 
det C12 Vii C13 > 0. (5.82) 

C13 C13 C33 
The condition resulting from determinant (5.81) is 

Cll > ]C12[, (5.83) 

while the condition resulting from determinant (5.82) is 

C33 (Cll - C12) (Cll -~- C12) > 2C123 (Cll - C12). 

In view of expression (5.80), we can rewrite the latter condition as 

C33 (Cll -['- C12) > 2C23 �9 (5.84) 

Also, in view of condition (5. 78), we have Cll + C12 > O. Consequently, 
condition (5.83)follows from conditions (5.78) and (5.8~). Thus, all the 
stability conditions for a transversely isotropic continuum are given by ex- 
pressions (5. 77), (5. 78), (5. 79), (5.80) and (5.8~). 

R e m a r k  5.1 Note that if matrix C1 is positive-definite, we also have 

Cll C13 ] 
det Ci3 C33 > 0, (5.85) 

which we can write as 
CllC33 > c~1~. (5.s6) 

Herein, we will show that condition (5.86) is a consequence of condition 
(5.84). Let us rewrite condition (5.84) as 

C33 (C~ + C12) - 2C~3 > o, 

which we restate as 
a + b > O ,  

where 
a " -  C~iC33  - C~3, 
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and 
b "-  612633 - 623. 

Using this notation, we can write condition (5.86) as a > O. To show that 
condition (5.86) is a consequence of condition (5.8~), we first show that 
a > b, which is equivalent to showing that 

CllC33 > C12C33. (5.87) 

Inequality (5.87) is true due to conditions (5.78) and (5.80). Hence, since 
a + b > 0 and a -  b > 0, by summation we get 2a > 0, which immediately 
implies that a > O, as required. 

Exerc i s e  5.4 10 Using the formula for the change of coordinates for the com- 
ponents o / a  tensor as well as Lemma 5.3 below, show that if a tensor of 
rank n, given by Til...i~, is invariant under the (n + 1)-fold rotation about a 
given axis, it is invariant under any rotation about this axis. 

L e m m a  5.3 Let P (e)  be a trigonometric polynomial of at most degree n. 
I f  P (0)  has a period of 27r/ (n + 1), then P (0) =_ const. 

Proof .  Consider a basis of the space of trigonometric polynomials of at 
most degree n, given by 

( 0 )  - e 

We can uniquely write 

e { - n , . . . ,  (5.88) 

n 

P (O) - ~ c~f~ (O), (5.89) 

where ar  are complex numbers. In view of expressions (5.88) and (5.89), we 
can write 

( n 
n + l  n + i  

r = - n  r = - n  
(5.90) 

Since P (O) has a period of 2 ~ / ( n  + 1), examining equations (,5.89) and 
(5.90), we obtain 

OLr -- OLr eir2~r/(n+l), r C { - - n , . . . ,  n } .  

Observing that  e i~2~/(n+l) ~- 1 for all r C { - n , . . . ,  n}, except r - 0, we 
conclude that  a~ = 0, except, possibly, a0. Hence, P (O) is constant. I 

1~ also Section 5.9.2. 
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Solu t ion  5.4 Consider transformation matrix (5.~0), namely, 

n I 1 
cos (9 sin (9 0 

- s i n O  cos@ 0 
0 0 1 

(5.91) 

The transformed tensor components are given by 

3 3 

r i l . . . i n  -~- ~ - ~  . . . ~ T j l . . . j n A i l j l  . . . A i n j n ,  
j l  =1 j n = l  

i l , . . . , i n  C {1,2,3}. 

In view of matrix (5.91), we see that Ti~...i~ = ~. . . i~ ((~) is a trigonometric 
polynomial in 0 of at most degree n. Since tensor Ti~...in is invariant under 
the rotation by the angle 2~/ (n + 1), polynomial Ti~...i~ (0)  has a period of 
27r/ (n + 1). Since Ti~...i~ ((9) is at most of degree n, it follows from Lemma 
5.3 that this trigonometric polynomial is constant. This means that Ti~...i~ 
is invariant under any rotation, as required. 

Exerc ise  5.5 11Show that for an isotropic continuum the elasticity matrix 
is symmetric without invoking the strain-energy function. 

N o t a t i o n  5.1 The repeated-index summation notation is used in this solu- 
tion. Any  term in which an index appears twice stands for the sum of all 
such terms as the index assumes all the values between 1 and 3. 

Solu t ion  5.5 In view of Section ~.2, to show the symmetry of the elasticity 
matrix, Cmn = C~m, it suffices to show that 

C i j k l  - -  C k l i j  , i, j, k, 1 C 

Recall stress-strain equations (3.1), namely, 

{1,2,3}. 

(Tij - -  CijkICkl, i , j  E {1, 2, 3}, 

as well as a particular case of these equations that corresponds to isotropic 
continua and is given by equations (5.65), namely, 

~ i j  ~- / ~ i j C k k  ~- 2 p C i j ,  i, j E {1,2,3) ,  

where ~ and # are Lam~'s parameters. 
can write 

Hence, for isotropic continua, we 

CijkICkl -- ( / ~ i j C k k  + 2 # c i j )  --  O, 

11 See also Section 5.10.1. 

i , j  E (1 ,2 ,3}.  
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Using the properties of Kronecker's delta and the summat ion  convention, we 
can write, c k k -  ~klCkZ, and ~ i j -  5ik~jlCkZ, where i , j  E {1, 2, 3}. Thus, 

CijklCkl - (ASijCkk Jr- 2#Cij) -- [Cijkl - (ASijSkl + 2#SikSjl)] Ckl 

= 0 ,  i , j  E {1 ,2 ,3} .  

Since c kl is arbitrary, the expression in brackets must  vanish. 
require that 

Hence, we 

Cijkl -- ,~SijSkl Jr_ 2#Sik(Sjl , i , j , k ,  l E {1 ,2 ,3} .  

By the commutat ivi ty  of Kronecker's delta, 5ijSkz - 5 k l S i j ,  while by its sym- 
metry, 5 i kS j z -  5kiSlj. Consequently, we can write 

c~ykz - AS~ySkZ + 2#5~kSyl 

-- /~SklSij + 2[-t~kiSlj -- Cklij, i , j , k ,  I E {1 ,2 ,3} ,  

as required. 

E x e r c i s e  5.6 12 Using Lemma 5.~, prove Theorem 5.5, stated below. 

N o t a t i o n  5.2 Repeated-index summat ion  is used in this exercise. Any  term 
in which an index appears twice stands for  the sum of all such terms as the 
index assumes all the values between 1 and 3. 

L e m m a  5.4 13 The general isotropic fourth-rank tensor is 

aijkl -- ASijSkl -~- ~SikSjl + ~75ilSjk, i , j , k ,  l E { 1 , 2 , 3 } .  (5.92) 

T h e o r e m  5 . 5  Given the symmetry  of the strain tensor, defined in expres- 
sion (1.15), the stress-strain equations for  a three-dimensional isotropic con- 
t inuum are given by expression (5.65), namely, 

oij - /~(~ijCkk + 2t-tcij, i, j E {1 ,2 ,3} ,  

where 2# - ~ + ~7. 

S o l u t i o n  5 . 6  . 

12See also Section 5.10.3. 
13Readers interested in a proof of Lemma 5.4 might refer to Matthews, P.C., (1998) 

Vector calculus: Springer, pp. 124- 125. 
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Proof .  Consider stress-strain equations (3.1), namely 

aij - -  Cijklekl, i, j E {1, 2, 3}. 

Inserting expression (5.92) for cijkt, and using the properties of Kronecker's 
delta, in view of Lemma 5.4, we can write 

mj - (;~5~jSkl + ~5~kSjl + V5~lSyk)ekl 

= ASijekk + ~eij + rleji, i, j E {1, 2, 3}. 

Since, by its definition, the strain tensor, ckl, is symmetric, we can write 

Crij - -  ~ S i j e k k  -t- (~  Jr- ? 7 ) e i j ,  i , j  e {1,2,3},  

and, hence, there are only two independent constants in the stress-strain 
equations for an isotropic continuum. Since the constants are arbitrary, we 
can set 2# - ~ + 77, and write 

Oij  - -  )~Si jCkk  + 2 # C i j ,  i , j  e {1,2,3},  

as required. �9 

R e m a r k  5.2 While studying isotropic materials it is common to express 
the two elasticity parameters, shown in matrices (5.62) and (5.6~), in terms 
of other parameters that possess an immediate physical meaning. Exercises 
5. 7 -  5.12 discuss such expressions. 

R e m a r k  5.3 The relations among Poisson's ratio, 
Lam~'s parameters are given by 

and 

Young 's modulus and 

E 
- 2 (1 + ( 5 . 9 4 )  

E xe rc i s e  5.7 Consider an isotropic continuum. Defining Poisson's ratio as 

e ~  cvv (5.95) 
Czz  Czz  

where we subject the continuum to a uniaxial stress along the z-axis so that 
a x z  - -  a y y  - -  a x y  - -  Cryz - -  a z x  - -  O, s h o w  that Poisson's ratio is given by 

A 
u = (5.96) 

where )~ and # are Lam~'s parameters. 

Ey 
= ( 5 . 9 3 )  

(I + v)(l - 2u)' 
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S o l u t i o n  5.7 Following stress-strain equations (5.65), which describe isotropic 
continua, we can write 

a ~  - ~ ( c ~  + c~y + C~z) + 2 p e ~  - (~ + 2~) c ~  + ~eyy + ~ C z z  - o .  

Dividing both sides by Czz, we obtain 

Cxx ~yy 
(A + 2#) + A + A - O. 

Czz Czz 

Using the definition of Poisson's ratio, we can rewrite the above expression 
a8 

- (~ + 2 ~ ) .  - ~ .  + ~ - - 2  (~ + ~ ) .  + ~ - o. 

Hence, solving for u, we get 

which is expression (5.96), as required. 

E x e r c i s e  5.8 14Consider an isotropic continuum under a uniaxial stress 
that leads to small deformations. Using expression (5.96), show that no 
change in volume implies no resistance to change in shape, as stated by 
# - 0 .  

S o l u t i o n  5.8 Consider a rectangular box with initial dimensions x l, x2, 
and x3. Its volume is V -  X lX2X3. Let the dimensions after deformation be 
Xl + Ax l ,  x2 + Ax2, and x3 + Ax3, where, after the deformation, the original 
rectangular box remains rectangular. Thus, the volume after deformation is 

9 -- (Xl ~- A X l ) ( X 2  -n t- A X 2 ) ( X  3 -[- AX3) 

xlx2x3 + x2x3Axl  + xlx3Ax2 + XlX2AX3, (5.97) 

where the approximation stems from the assumption of small deformations 
and, consequently, from neglecting the second-order and the third-order terms 
involving Axi ,  where i c {1, 2, 3}. No change in volume implies 

V - V - O .  

Using expression (5.97), we can write 

V - V - x 2 x 3 A x l  q- X lX3/kx2  + X lX2AX3  - O. 

a4 See also Section 1.3.2. 
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Dividing both sides by V - XlX2X3, we get 

-- V A x  I A x 2  A x 3  
= ~ - F  + 

V Xl x2 x3 
= 0 .  

In view of expression (1.25) and denoting s "-- A X l / X l ,  C22 "-- AX2/X2,  
~33 "-  A x 3 / x 3 ,  we obtain 

9 - v  
V 

6"11 Jr- E22 -}- E33 I O. 

Dividing both sides by C33 and invoking the definition of Poisson's ratio, 
given in expression (5.95), we can write 

s s -~- 
C33 s 

+ 1 - - ~ -  ~ + 1 - O, 

which implies that the corresponding Poisson's ratio is ~ - 1/2. 
expression (5.96), we obtain 

Using 

1 -  2~ 
# -  ~ A - O ,  

2v 

as required. 

Exerc i se  5.9 Using equations (5.65), show that in an isotropic continuum, 
the strain-tensor components, cij, can be expressed in terms of the stress- 
tensor components, a~j, as 

3 l + v  v 
cij = E aij -- gSi j  E a k k ,  i , j C  {1,2,3},  (5.98) 

k = l  

where v is Poisson's ratio and E is Young's modulus. 

So lu t ion  5.9 Using expressions (5.93) and (5.9~), we can write stress- 
strain equations (5.65) as 

3 
Ev E 

oij = (1 + v)(1 - 2v)5ij ~ Ckk + 1 + ~' 
k = l  

cij, i , j  e {1,2,3}.  

Solving for  cij , we obtain 

3 
l Jr- 12 11 5ij ~ C kk, 

cij = E aij -- 1 - 2~ 
k = l  

i , j  e {1,2,3}.  (5.99) 
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Now, we seek to express strains ~ 3 _  -1 Ckk in terms of stresses. In view of 
Kronecker's delta and stress-strain equations (5.65), we can write all stress- 
tensor components for which 5ij Y~3= 1 ckk does not vanish. They are 

3 

Gii -- A ~ Ckk + 2pCii, i C {1, 2, 3}. 
k=l  

Writing these three equations explicitly, we get 

3 
0"11 -- A ~ Ckk + 2 p C l l  

k=l  
3 

( 7 2 2 -  A ~ ekk + 2#e22 
k=l  

3 
G33 - -  A ~ ekk Jr-2pe33 

k=l 

Summing these three equations, we obtain 

3 

0"11 -Jr- 022 ~1- 0-33 -- 3A ~ Ckk + 2p (s Jr- s _qL s 

k=l  
3 3 3 

k=l  k=l  k=l  

Expressing the left-hand side as a summation, we can write the sought ex- 
pression 

3 

3 E ~  
k=l  

Ckk -- 3A + 2# 
k=l  

Using expression (5.100), we can write expression (5.99) as 

(5.100) 

3 
1 + Y 5ij c, kk, 

cij = E Gij - (1-2u) (3A+2p)  k=l i , j E  {1,2,3}. (5.101) 

Consider the term in parentheses that contains A and ft. 
(5.93) and (5.9~), we can write this term as 

Using expressions 

Eu E E 
3 A + 2 # - 3  f = 

(1 + u ) ( 1  - 2u) 1 + u 1 - 2u 
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Hence, expression (5.101) becomes 

3 l + u  u 

k = l  

Okk ~ i, j e {1,2,3}, 

which is expression (5.98), as required. 

Exercise  5.10 Using expression (4.22), show that for isotropic continua 
the strain-energy function can be expressed in terms of the strain-tensor 
components as 

/~ 3 3 3 3 

w - -~ ~ E ~ . ~  + ~ ~ ~ ~ , ~ ,  
i=1 j = l  i=1 j = l  

where ,~ and # are LamO 's parameters. 

(5.102) 

Solut ion  5.10 Recall expression (~. 22), namely, 

3 3 
1 

W -- -~ ~ ~ a i j s  
i=1 j = l  

(5.103) 

Also, recall that for an isotropic continuum the stress-strain equations are 
given by expression (5.65), namely, 

3 

aij - )~Sij ~ ekk + 2#eij, i, j E { 1, 2, 3}. (5.104) 
k = l  

Inserting expression (5.t04) into expression (5.103), we obtain 

13 3[( ) 1 
w - 5 E ~ ae,j ~ ~ + 2#~,~ ~ . 

i=1 j = l  k - 1  

The properties of Kronecker's delta imply that 

,~ 3 3 3 3 

i=1 j = l  i=1 j = l  

which is expression (5.102), as required. 
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E x e r c i s e  5.11 Using expression (~.22), show that, for isotropic continua, 
the strain-energy function can be expressed in terms of the stress-tensor com- 
ponents as 

11 33 33 1 
W -- 2E (1 + u) ~ ~ aijaij - u ~ ~ aiiajj , (5.105) 

i=1 j=l  i=1 j=l  

where ,X and # are Lamd's parameters, u is Poisson's ratio, and E is Young's 
modulus. 

S o l u t i o n  5.11 Recall expression (~.22), namely, 

1 3 3 
w - ~ ~ ~ ~,j~,j. 

i=1 j = l  
(5.106) 

Also, recall expression (5.98), namely, 

3 l +u  u 
eij = E aij -- gSiJ E Gkk, i , j e  {1 ,2 ,3} ,  (5.107) 

k=l 

where u and E are Poisson's ratio and Young's modulus, respectively. 
serting expression (5.107) into expression (5.106), we obtain 

n -  

13 3 [ (  w-~~~ ,,,~ 
i=1 j=l  E ~'J - g ~ y ~ k k  . 

k=l 

The properties of Kronecker's delta, 5ij, imply 

W -  1 
2E 

I 3 3 3 3 1 (1 + u) ~ ~ o,j  a i j  - u ~ ~ o,, o j j  
i= l  j=l  i=1 j=l  

which is expression (5.105), as required. 

E x e r c i s e  5.12 15 Consider elasticity matrix (5.6~). Find the range of values 
for Lam~'s parameters that is required by the stability conditions. Express 
this range in terms of Poisson's ratio. Provide a physical interpretation of 
this result. 

1~ See also Section 4.3.3. 
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S o l u t i o n  5.12 Stability conditions require the elasticity matrix to be positive- 
definite. Matrix (5.6~) is symmetric. As stated in Theorem ~.3, for the 
positive-definiteness we require all eigenvalues to be positive. Consider the 
two submatrices, namely, 

1 A A + 2# A and 0 # 0 . 
A A A + 2 #  0 0 It 

We obtain the eigenvalues, Ai, by solving 

II I I 11 
A + 2 #  A A 1 0 0 

det A A + 2~ A - A 0 1 0 - 0, 
A A A + 2 #  0 0 1 

and /IlO01 I1 001/ det # 0 1 0 - A  0 1 0 - 0 .  
0 0 1 0 0 1 

The eigenvalues are A1,2 = 2#, A3 = 3A + 2#, and A4,5,6 = #. Positiveness 
2 Recalling expression of the eigenvalues means that it > 0 and A > -5#" 

(5.96), we obtain the range of physically acceptable values of Poisson's ratio, 
namely, 

Physically, for a cylindrical sample and in view of ~, := - e ~ / e z z ,  the neg- 
ative value of Poisson's ratio implies that the diminishing of the length of 
the cylinder along the z-axis is accompanied by the shortening of the radius 
along the x-axis. For most solids, we would expect a more limited range, 
namely, ~ E [0, �89 where the diminishing of the length is accompanied by 
the extension of the radius. 
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I n t r o d u c t i o n  to  Par t  II 

The solution of the equation of motion for an elastic medium 
results in the existence of elastic waves in its interior. The 
wave phenomenon is a way of transporting energy without 
t ransport  of matter.  The propagation of energy is, then, a 
very important  aspect of wave propagation. 

Agustin Udias (1999) Principles of seismology 

In Part I, we derived Cauchy's equations of motion, the equation of 
continuity, and formulated the stress-strain equations for elastic continua. 
These equations form a determined system, which allows us to describe the 
behaviour of such continua. 

In Part II, we combine Cauchy's equations of motion with the stress- 
strain equations to formulate the equations of motion in elastic continua. In 
the particular case of isotropic homogeneous continua, these equations are 
wave equations, which possess analytical solutions. However, in anisotropic 
inhomogeneous continua, we are unable to formulate equations of motion 
that possess analytical solutions. Hence, we choose to study these equa- 
tions in terms of the high-frequency approximation, which results in ray 
theory. This approach allows us to study rays, wavefronts, traveltimes and 
amplitudes of signals that propagate within such a continuum. Although 
the resulting expressions are exact only for the case of an infinitely high fre- 
quency of a signal, the experimental results agree well with the theoretical 
predictions, provided that the properties of the continuum do not change 
significantly within the wavelength of the signal. 

Ray methods form an important theoretical platform for seismological 
studies. They allow us to formulate problems in the context of such mathe- 
matical tools as differential geometry and the calculus of variations. While 
referring to the ray solution in their volumes on "Quantitative seismology: 
Theory and methods", Aki and Richards state that 
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[it] provides the basis for routine interpretation of most seismic 
body waves, and it always provides a guide to more sophisticated 
methods, should they be necessary. 

However, in view of this being an approximate solution, we must be 
aware of its limitations. Grant and West, in their book on "Interpretation 
theory in applied geophysics", state that 

it is often surprising to observe how uncritically their [ray meth- 
ods] validity in seismological problems is accepted. 

Rays, as a scientific entity, can be traced to the work of Willebrord 
Snell who, at the turn of the sixteenth and seventeenth century, formulated 
the law of refraction. The mathematical underpinnings of ray theory were 
established by William Rowan Hamilton in the first half of the nineteenth 
century. The formulation of rays in terms of asymptotic series, which is the 
platform for our studies, is associated with the work of Carl Runge, Arnold 
Sommerfeld and Peter Debye, at the beginning of twentieth century, as well 
as Vasiliy M. Babich and Joseph B. Keller in the middle of the twentieth 
century. Further work, specifically in the context of seismic rays, was done 
by Vlastislav (~erven~. 



Chapter 6 

Equations of motion: 
Isotropic homogeneous 
continua 

From the study of nature there arose that class of partial 
differential equations that is at the present time the most 
thoroughly investigated and probably the most important 
in the general structure of human knowledge, namely, the 
equations of mathematical physics. 
Sergei L. Sobolev and Olga A. Ladyzenskaya (1969) Partial dif- 
ferential equations in Mathematics (editors: Aleksandrov, et al.) 

Preliminary remarks 

Having formulated system (4.19) a system of equations to describe the 
behaviour of an elastic continuum we wish to write Cauchy's equations 
of motion explicitly in the context of the stress-strain equations for such a 
continuum. This way, we commence our study of wave phenomena in an 
elastic continuum. 

We begin by choosing the simplest type of elastic continuum, namely an 
isotropic homogeneous one, and, hence, we derive the corresponding equa- 
tions of motion, which lead to the wave equations. In the process of for- 
mulating these equations, we learn about the existence of the two types of 
waves that can propagate in isotropic continua. Furthermore, we obtain the 
expressions for the speed of these waves as functions of the properties of the 
continuum. 
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We begin this chapter by combining Cauchy's equations of motion (2.50) 
with constitutive equations (5.65). This formulation results in the deriva- 
tion of the wave equations. To gain insight into these equations, we study 
them in the context of plane waves and displacement potentials. We also 
investigate the solutions of the wave equations. We conclude this chapter 
with examples of extensions of the standard form of the wave equation that 
take into account aspects of anisotropy and of inhomogeneity. 

6.1 Wave equations 

6.1.1 Equat ion of mot ion 

To derive the wave equation, assume that a given three-dimensional con- 
tinuum is isotropic and homogeneous. Thus, we consider the corresponding 
stress-strain equations given by expression (5.65), namely, 

3 

aij - A6ij E e k k  + 2#eij, i , j  E {1,2,3}, (6.1) 
k = l  

where ~ and # are constants. We also consider Cauchy's equations of motion 
(2.50), namely, 

30aij 02Ui 
j~l OX j = p , i e {1, 2, 3}, (6.2) Ot 2 

which do not contain body forces. 
We wish to combine stress-strain equations (6.1) with equations of mo- 

tion (6.2) to get the equations of motion in an isotropic homogeneous con- 
tinuum. In other words, we substitute expression (6.1) into equations (6.2) 
to obtain 

0 2 U i 3 0 (  3 ) 
P = Z + (6.3) 

j=~ k=l 

) j~l Os ,~ Os = 5ijAY~. Oxj t-zp-~x j , i E  {1,2,3}. 
�9 k = l  

Now, we wish to express the right-hand side of equations (6.3) in terms 
of the displacement vector, u. Invoking the definition of the strain tensor, 
given in expression (1.15), we can rewrite equations (6.3) as 

j--1 k = l  
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Using the property of Kronecker's delta, we obtain 

02it i 3 0 (OUk) 3 0 (Olti 
P 

k=l j= l  
+ Oxi,] ' i C {1,2,3}. 

Using the linearity of the differential 
tions as 

operators, we can rewrite these equa- 

3 02 3 02Ui Uj 
~  ~ ~ +" ~ Ox--Tj + ~ ~ OxjOx~ fl Ot 2 -- "~ ~ OXiOXj 

j= l  j= l  j--1 
i C {1, 2,3}, 

where, in the first summation, for the summation indices, we let k = j. 
Using the equality of mixed partial derivatives, we obtain 

02Ui 
P ot2 

3 02 Uj ~ 02 Ui 
= (~ + ~) ~ Ox~Oxj + ~ 

j= l  j= l  

= (~ +") b-s ~ + ~  
j--1 j= l  ~Z22" 

ui, i e  {1,2,3}. (6.4) 

We can use vector calculus to concisely state equations (6.4). Consider 
the right-hand side of these equations. The first summation term is the 
divergence of u, namely, V.u ,  while the second summation term is Laplace's 
operator, namely, V 2. Consequently, we can rewrite equations (6.4) as 

02ui 0 
p Ot 2 = ()~ + p ) - ~ x i V . u +  #V2ui ,  i e {1,2,3}. (6.5) 

We can explicitly write the three equations stated in expression (6.5) as 

o2iu, 1 
U3 

o ( v .  u) " 
OXl 

o (v. u) 
OX2 

o ( v .  u) 
OX3 

+ # V  2 I~ 
U2 �9 

U3 

Noticing that the first matrix on the right-hand side involves the gradient 
operator, we can concisely state the three equations shown in expression 
(6.5) ~s 

02u 
p c9t2 - (A + # ) V  (V. u ) +  #V2u. (6.6) 
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This is the equation of motion that  applies to isotropic homogeneous con- 
tinua. 

We wish to write equation (6.6) in a form that  allows us to express it 
in terms of the dilatation and the rotation vector, in accordance with their 
definitions stated in Chapter 1. Using the vector identity given by 

V 2 a -  V (V.  a) - V x (V x a) ,  (6.7) 

and letting a = u, we can rewrite equation (6.6) as 

02u 
p Ot 2 - (A + 2p)V ( V - u )  - #V x (27 x u) .  (6.8) 

Equation (6.8) contains information about the deformations expressed in 
terms of the divergence and the curl operators. Recalling the definitions 
of the dilatation and the rotation vector, given by expressions (1.26) and 
(1.30), respectively, we can immediately write 

02u 
p 0t 2 - (A + 2 # ) V ~ -  pV x ~ .  (6.9) 

Equation (6.9) describes the propagation of the deformations in terms of 
both dilatation and the rotation vector in an isotropic homogeneous contin- 
uum. It describes the propagation related to both the change in volume and 
the change in shape. The divergence operator is associated with the change 
of volume while the curl operator is associated with the change in shape. 

Note that  V2u behaves as a vector only with respect to the change of 
orthonormal coordinates. Consequently, equation (6.6) is valid only for such 
coordinates. Equation (6.8), however, is valid for curvilinear coordinates. 

6 .1 .2  W a v e  e q u a t i o n  for  P w a v e s  

To gain insight into the types of waves that  propagate in an isotropic ho- 
mogeneous continuum, we wish to split equation (6.9) into its parts, which 
are associated with the dilatation and with the rotation vector. 

In view of vector-calculus identities, we take the divergence of equation 
(6.9). Since in a homogeneous continuum A and # are constants, we can 
write [0 u] 

V . p o t  2 - (A + 2p) V .  V ~ -  p V .  V x ~ .  (6.10) 

The factor of # vanishes, since V .  V x ~ = 0. Also, considering the factor 
of A + 2# and invoking the definition of Laplace's operator, we can write 

[0 o 0 ] [0  0 0] 
V" V~-- ~ l '  OX2' OX3 " OXl' OX2' OX3 ~ -  v2~" 



6.1. Wave equations 133 

Consequently, equation (6.10) becomes 

[O 
 u] 

V .  p Ot 2 j - (A + 2#)V2~. (6.11) 

Let us consider the left-hand side of equation (6.11). In a homogeneous 
continuum, the mass density, p, is a constant. Hence in view on the 
linearity of the differential operators we can take p outside of such oper- 
ators. Also in view of the the equality of mixed partial derivatives we 
can interchange time and space derivatives. Thus, we obtain 

02  - + v 2 

P O t  2 99, 

where, on the left-hand side, we again use definition (1.26). Rearranging, 
we obtain 

1 02qp (6.12) 
V 2~ - ~ Ot 2 �9 

p 

Equation (6.12) is the wave equation for P waves, where the wave func- 
tion is given by dilatation, p (x, t) = V . u ,  with u = u (x, t). As shown in 
Section 6.4, 

V " ~  

is the propagation speed. In view of Section 5.10, the presence of both 
Lam6's parameters in expression (6.13) suggests that P waves subject the 
continuum to both a change in volume and a change in shape. 

In view of definition (1.26), P waves are sometimes referred to as dilata- 
tional waves. Also, since the dilatation, ~, is the relative change in volume, 
they are sometimes referred to as pressure waves. Furthermore, since the 
speed of P waves is always greater than the speed of S waves, which are 
discussed below, in earthquake observations, P waves are sometimes referred 
to as primary waves. 

6 .1 .3  W a v e  e q u a t i o n  for  S w a v e s  

To obtain the wave equation for S waves, we take the curl of equation (6.9) 
and get [0 u] 

V x p o t  2 - (A + 2#) V x V ~ -  # V  x V x ~ .  (6.14) 

Following vector-calculus identities, the curl of the gradient vanishes and, 
hence, the first term on the right-hand side disappears. Recalling definition 
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(1.30) and considering the constancy of the mass density, p -  in view of the 
linearity of the differential operators as well as the equality of mixed partial 
derivatives we obtain 

02~ 
p Ot 2 = - , u V •  I V •  (6.15) 

Invoking vector-calculus identity (6.7) and letting a = ~ ,  we can write 
equation (6.15) as 

02~ 
P Or2 = - ,  [v  ( v  

In view of definition (1.30) and the vanishing of the divergence of a curl, the 
first term in brackets disappears. Hence, we obtain 

1 02~ 
V 2 ~ - - E  Ot----T' (6.16) 

P 

where the wave function is given by the rotation vector, ~ (x, t) = V • u, 
with u = u (x, t). As shown in Section 6.4, 

v "-  V/-~p (6.17) 

is the propagation speed. In view of Section 5.10, the presence of the single 
Lam~'s parameter, namely, #, in expression (6.17), suggests that S waves 
subject the continuum to a change in shape. Also, due to the vanishing of 
rigidity in fluids, we can conclude that  the propagation of S waves is limited 
to solids. 

In view of definition (1.30), S waves are sometimes referred to as rota- 
tional waves. Since the rotation vector is given by �9 = V • u, we conclude 
that  V .  �9 = 0. If the divergence of a vector field vanishes, this vector 
field is volume-preserving; hence, S waves are sometimes referred to as the 
equivoluminal waves. In English, the justification for the letter S is due to 
the fact that  these waves are often referred to as shear waves. Also, due 
to the fact that the speed of S waves is always smaller than the speed of 
P waves, in earthquake observations, S waves are sometimes referred to as 
secondary waves. 

6 . 2  P l a n e  w a v e s  

In general, equations (6.4) are complicated partial differential equations. 
This shows that even in isotropic homogeneous continua, the description 
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of wave phenomena constitutes a serious mathematical problem. We can 
simplify these equations by introducing certain abstract mathematical  enti- 
ties that  allow us to describe particular aspects of wave phenomena. While 
studying wave propagation in homogeneous media, we can consider plane 
waves, namely, waves whose displacements are functions of a single direction 
of propagation. Notably, in Chapter 11, we will use plane waves to study re- 
flection and transmission of waves at an interface separating two anisotropic 
homogeneous halfspaces. 

Herein, to gain insight into equations (6.12) and (6.16), we will study 
these equations in the context of plane waves. In view of expression (2.15), 
let the displacement be given by 

U -- [Ul (Xl, t) ,  It 2 (Xl, t) ,  it 3 (Xl, t)]. 

In other words, let the plane waves propagate along the x 1-axis. Since all 
the partial derivatives of u with respect to x2 and x3 vanish, equations (6.4) 
become 

02ltl "-- (A @ 2#) 02ul 
P Ot 2 Ox~'  

and 

02u2 02u2 
P Ot 2 = i  t 0x21 , 

02U3 02U3 
P Ot 2 = Ox21. 

After algebraic manipulations, we can write 

GO21tl 1 02Ul 
= (6.18) 

Ox21  +2t, Ot 2 '  
P 

and 

Consider equation (6.18). 
becomes 

02U2 1 02U2 
= (6.19) 

Ox 2 ~ Ot 2 '  
P 

O92U3 1 02u3 
= (6.20) 

Ox21 Ot 2" P 

Recall expression (1.26), which in this case 

OUl 
- -  . ( 6 . 2 1 )  

0Xl 
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Taking the derivative of equation (6.18) with respect to Xl, we obtain 

03Ul 

ox l 
1 03Ul 

A+2/~ 0Xl 0t 2" 
P 

(6.22) 

Using expression (6.21)in equation (6.22), we obtain 

02qD 1 02~p 
Ox~ "x+2t~ Ot 2' 

P 
(6.23) 

which is a one-dimensional form of equation (6.12). Examining equations 
(6.21) and (6.23), we recognize that the displacement and the direction of 
propagation are parallel to one another, which is the key property of P waves 
in isotropic continua. This property is also shown in Exercise 10.4. 

Now, consider equations (6.19) and (6.20). Recall expression (1.30), 
which in this case becomes 

Ou3 0u2] T 
, . ( 6 . 2 4 )  

~ - -  O, OZl OZl 

Taking the derivative of equations (6.20) and (6.19) with respect to Xl, and 
writing them as a vector, we obtain 

0 

03U3 

03U2 
oz3 

_ 1 

7 

0 

03U3 

OXl Ot 2 

03U2 

OXl Ot 2 

Using the equality of mixed partial derivatives and expression (6.24), we 
obtain 

02~  10q2~I / 
= (6.25) 

a Ot2' 
P 

which is a one-dimensional form of equation (6.16). Examining equations 
(6.24) and (6.25), we recognize that  the displacements and the direction of 
propagation are orthogonal to each other, which is the key property of S 
waves in isotropic continua. This property is also shown in Exercise 10.6. 

Plane waves are an approximation that  allows us to study, in homoge- 
neous media, a wavefield that  results from a distant source. For close sources, 
we can construct a wavefield as a superposition of plane waves. In such an 
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approach, there is a constructive interference in the regions where the plane 
waves coincide and a destructive interference outside of these regions. 

While studying inhomogeneous media, the behaviour of seismic waves 
cannot be conveniently described using plane waves and their superposi- 
tion. For such studies, we will introduce in Section 6.6.3 another abstract 
mathematical entity a seismic ray, which belongs to the realm of asymp- 
totic methods and provides us with a different perspective to study seismic 
wavefields. 

6 . 3  D i s p l a c e m e n t  p o t e n t i a l s  

6 .3 .1  H e l m h o l t z ' s  d e c o m p o s i t i o n  

In Sections 6.1.2 and 6.1.3, we derived the wave equations for P and S 
waves, respectively. We can also obtain equations that correspond to P and 
S waves by following ttelmholtz's method of separating a vector function 
into its scalar and vector potentials. 1 

A differentiable function u (x, t) can be decomposed into 

u (x, t) = v p  + v • s,  (6.26) 

where 7 ) and S = [$1, $2, $3] are the scalar and vector potentials, respec- 
tively. In the context of our study, expression (6.26) means that  - -  upon the 
passage of a wave the displacement of an element of the continuum can 
be written in terms of a scalar potential function, 7 ), and a vector potential 
function, S. 

Expression (6.26) can be explicitly written as 

OP 
Ul (X, t) -- OXl 

OP 
u2 (x, t )  - Ox2 

OP 
ua (x, t )  - O z 3  

OSa 0S2 
Ox2 Ox3' 
OS, OSs 
OX3 OXl ' 
0S2 OS1 
Ox 1 Ox2 

which constitute three equations for four unknowns, namely, 7 ), $1, $2 and 
5'3. In this formulation, to obtain a determined system of equations, we also 
require 

V .  S = 0. (6.27) 

~Readers interested in Helmholtz's theorem might refer to Arfken, G.B, and Weber, 
H.J., (2001) Mathematical methods for physicists (5th edition): Harcourt/Academic Press, 
pp. 9 6 -  101. 
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To justify equation (6.27), consider two vector identities. The first iden- 
tity, namely, 

V 2 A - V ( V - A ) - V • 2 1 5  

was introduced in expression (6.7), while the second identi ty is 

v .  ( v  • A)  = o, 

where A (x) is a vector function. Let w = V2A, 7 ) = V - A  and S = - V  x A. 
We can rewrite these two vector identities as 

w =  V T ) + V  x S, 

and 
V - S = 0 ,  

which are expressions (6.26) and (6.27), respectively, with w - u. We can 
always set V .  S = 0 since S is arbi t rary  up to a gradient V f ,  where f (x) is 
an arb i t ra ry  function. To see that ,  let 

S - S + Vf .  (6.28) 

Taking the curl of both sides of equation (6.28), using the linearity of the 
differential operator  and the vanishing of the curl of a gradient,  we obtain 

V x S - V x (S + V f)  - V x S. 

In other words, the same u is obtained using either S or S + V f .  Now, let 
us take the divergence of both sides of equation (6.28). We obtain 

V .  S - V. (S + V f  (x)) - V .  S + V2f.  (6.29) 

Examining equation (6.29), we see tha t  we can always choose an arb i t ra ry  
function f (x) such tha t  V2f  - - V - S ,  which results in V .  S - 0. Thus, 
if both  7 ) and S are derived from a common vector function, A (x), we can 
write a determined system of equations consisting of equations (6.26) and 
(6.27). 

6.3.2 Equation of motion 

To implement  displacement potentials in the equations of motion,  we wish 
to write these equations in terms of u given by expression (6.26). 
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Inserting expression (6.26) into equation (6.6), we can write 

0 2 (v7~ + v x s)  = (~ + #) v [ v .  ( v p  + v • s)] + # v  ~ ( v p  + v • s)  
P Ot 2 

Using the vanishing of the divergence of a curl and the definition of Laplace's 
operator, we obtain 

0 2 ( v p  + v x s)  
P Ot 2 = (~ + ~ ) v  ( v .  v~,)  + , v  ~ ( v ~  + v • s)  

= (~ + , ) v  ( v ~ )  + , v  ~ (v~,  + v • s ) .  

Using the linearity of the differential operators and the fact that in a homo- 
geneous continuum p, ~ and p are constants, as well as using the equality 
of mixed partial derivatives, we can rewrite this equation as 

( o ~ )  / o~s) 
v p ot~ + v • ~,P--5~ - v [(~ + , ) v ~ ]  + v ( , v ~ )  + v • ( , v ~ s )  

= v [(~ + 2 , ) v ~ ]  + v • ( , v ~ s ) .  

Rearranging, we obtain 

V ( ~ + 2 ~ ) V 2 P - P 0 t  2 
02S] 

+ V x  # V 2 S - P 0 t  2 - 0 ,  (6.30) 

which is a form of the equation of motion in terms of the scalar and vector 
potentials. 

6 .3 .3  P a n d  S w a v e s  

We wish to study the relation of the scalar and vector potential to the two 
types of waves that  propagate in an isotropic homogeneous continuum. 

As in Section 6.1.2, let us take the divergence of equation (6.30). Using 
the vanishing of the divergence of a curl and the definition of Laplace's 
operator, we obtain 

02p] 
V 2 ( A + 2 # ) V 2 P - ;  Ot 2 - 0 .  (6.31) 

Using the linearity of the differential operator and the equality of mixed 
partial derivatives, where (V 2) (o~/Ot 2) - (02lOt 2) (V2), we can rewrite 
equation (6.31) as 

(~ + 2,)v ~ (v~) - p 0~ ( v ~ )  
Ot 2 

= o. (6.32) 
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To relate expression (6.26) to the dilatation, ~, let us take the divergence 
of expression (6.26). Using the vanishing of the divergence of a curl and 
recalling definition (1.26) as well as the definition of Laplace's operator, we 
obtain 

�9 -- V.  u -  V.  V7 ) - V27 ). (6.33) 

In other words, the dilatation is equal to the Laplacian of the scalar poten- 
tial. Using expression (6.33), we can rewrite equation (6.32) as 

1 0299 
V 2 ~ -  ~+2~ Ot 2, 

P 

(6.34) 

which is equation (6.12). Thus, we conclude that the Laplacian of the scalar 
potential, 7 ), satisfies the wave equation for P waves. 

As in Section 6.1.3, let us take the curl of equation (6.30). Using the 
vanishing of the curl of a gradient, we get 

02 s ) 
V x V x  # V 2 S - P 0 t  2 = 0 .  

Following identity (6.7) and letting a denote the term in parentheses, we 
can rewrite this equation as 

V 
02S 02S 

Using the linearity of the differential operators and the equality of mixed 
partial derivatives, we can rewrite the left-hand side of this equation to 
obtain 

[ 02 (V" S) 1 - V 2 (  02S)  (6.35) V 2(v.s)-p #V2S-P0t 2 . 

In view of equation (6.27), equation (6.35) becomes 

02 S ) 
V 2 # V 2 S - p  Ot 2 - 0 .  (6.36) 

Using the linearity of the differential operator, V 2, and the equality of mixed 
partial derivatives, we can write equation (6.36) as 

02 (V2S) = O. (6.37) (v2s) - P o t 2  
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To relate expression (6.26) to the rotat ion vector, ~ ,  let us take the curl of 
expression (6.26). Using the vanishing of the curl of a gradient and recalling 
definition (1.30), we obtain 

~ ' - V x u - V x V x S .  

Recalling identi ty (6.7) and letting a -  S, we get 

- V • ( V  • S )  - V ( V .  S )  - V 2 S .  

In view of equation (6.27), we obtain 

- _V2S.  (6.38) 

In other words, the rotat ion vector is equal to negative of the Laplacian of 
the vector potential.  Using expression (6.38), we can rewrite equation (6.37) 
as 

1 0 2 ~  
V 2 ~ -  e Ot 2 '  (6.39) 

P 

which is equation (6.16). Thus, we conclude tha t  under condition (6.27) the 
Laplacian of the vector potential,  S, satisfies the wave equation for S waves. 

6 . 4  S o l u t i o n s  o f  o n e - d i m e n s i o n a l  w a v e  e q u a t i o n  

To gain further insights into the physical meaning of equations (6.12) and 
(6.16), we s tudy the solution of their generic form, where we do not specify 
if the wave function corresponds to P waves or to S waves. 2 Consider the 
initial-value problem given by 

02u (x, t) 1 a2u (x, t) 

0x 2 v 2 /)t 2 = 0, (6.40) 

where u - u (x, t) is the wave function and v is a constant.  Let the initial 
conditions be s ta ted by 

( x ,  t)I =o - (x) 
Ou(x, t )  " (6.41) 

0t t-0 - 
2Applying Newton's second law of motion, we can derive equation (6.40) for either 

longitudinal waves or transverse waves, which correspond to P waves or S waves, respec- 
tively. Readers interested in such a derivation of the one-dimensional wave equation might 
refer to Hanna, J.R., (1982) Fourier series and integrals of boundary value problems: John 
Wiley and Sons, pp. 109- 111 and pp. 121 - 122. 
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The  following me thod  of solving the wave equat ion  was in t roduced  in 

1746 by d 'Alember t  and fur ther  e labora ted  upon by Euler,  wi th  i m p o r t a n t  

cont r ibut ions  from Daniel Bernoulli  and Lagrange.  3 It is based on the  fol- 

lowing two lemmas.  

L e m m a  6.1 Equation 

is equivalent to 

02u 1 02u 
OX 2 V 2 0 t  2 

= 0 ,  

OyOz 
= 0 ,  

where the new coordinates are 

y - x + v t  
(6.42) 

z - x - v t  " 

Details  of the  derivation of L e m m a  6.1 are shown in Exercise 6.1. 

The  form 02u (y, z ) / O y O z  - 0 is a normal  form of the  hyperbol ic  differ- 

ential  equat ion,  where y and z are referred to as the na tu ra l  coordinates ,  

and the s t ra ight  lines, y - x + vt  and z - x - vt, in the  x t -p lane  are known 

as the characterist ics .  4 

L e m m a  6.2 For equation 

02 (y,z) 
OyOz 

= 0 ,  

the only f o r m  of the solution is 

u (y, z) - f (y) + g ( z ) ,  (6.43) 

where f and g are arbitrary funct ions.  

3 Readers interested in the history of deriving the wave equation including disagreements 
among d'Alembert, Euler, Bernoulli and Lagrange in accommodating the initial conditions 
might refer to Kline, M., (1972) Mathematical thought from ancient to modern times: 
Oxford University Press, Vol. II, pp. 503- 514. 

4 Readers interested in normal forms of the hyperbolic equations and its association with 
characteristics might refer to Morse P.M., and Feshbach H., (1953) Methods of theoretical 
physics: McGraw-Hill, Inc., Part I, pp. 682- 683. 

Readers interested in the characteristics and their significance in wave theory might 
refer to Musgrave, M.J.P., (1970) Crystal acoustics: Introduction to the study of elastic 
waves and vibrations in crystals: Holden-Day, pp. 68 - 76. 
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Details of the derivation of Lemma 6.2 are shown in Exercise 6.2. 
Combining Lemma 6.1 and Lemma 6.2, we can state the following corol- 

lary. 

Coro l la ry  6.1 Following Lemma 6.1 and Lemma 6.2, and using coordi- 
nates (6.42), we can write the solution of equation (6.40) as 

u (x, t) = f (x + vt) + g (x - v t ) ,  (6.44) 

where f and g are arbitrary functions. 

Solution (6.44) allows arbitrary functions f and g. Further constraints 
must be imposed on functions f and g if we wish to obtain a particular 
solution. 

Herein, we wish to obtain a particular form of solution (6.44) that satis- 
fies the constraints provided by initial conditions (6.41). Inserting expression 
(6.44) into system of equations (6.41), we can write 

f (x) + g (x) - ~ (x) 
~ f '  (x) - ~g' (x) - V (x) 

where, in view of t = 0, f '  (x) - d f  (x) / dx and g' (x) - d g  (x) / dx. This 
system of equations can be solved explicitly for f (x) and g (x). Integrating 
both sides of the second equation of this system, we obtain 

f (x) + g (x) - 7 (x) 

X 

1 f ~] (() d(  f (x) - g (x) - v ~o 

Adding the two equations together, we get 

I / 1 1 1 
f ( x ) - ~  7 ( x ) + -  U ( ( ) d (  

V 

xo 

(6.45) 

while subtracting the second equation from the first one gives us 

I / 1 1 1 
g (z)  - ~ ~ (x) - v ~ (~) d (  

xo 

(6.46) 
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Inserting expressions (6.45) and (6.46) into solution (6.44), we obtain 

1 I - 

x+vt 1 1/ 
+ vt)  + ~/(x - vt)  + - ~l (()  d (  v 

x--vt 
(6.47) 

where we use the fact that reversing the limits of integration changes the 
sign of the integral. 

Expression (6.47) is the solution of the original initial-value problem 
given by equations (6.40) and (6.41). Viewing x as the position variable and 
t as the time variable, solution (6.47) corresponds to the propagation of the 
shape given by function ~/in a one-dimensional x-space. 

To illustrate the process of propagation, consider expression (6.47) and 
let the x-axis be horizontal. At a time t = 0, 7 = 7 (x). At a later time, 
7 = ~/(x 4- vt) .  This means that -~ has moved along the x-axis by a distance 
vt.  This motion is both to the left and right of the original point x. Since 
t stands for time, the constant v in equation (6.40) stands for the speed of 
propagation. This illustration is the reason why the equations of the form 
V2V2U -- 02u /Ot  2 are called wave equations. 

6.5 R e d u c e d  wave  e q u a t i o n  

Since the wave equation is a partial differential equation, to solve it we 
often assume a trial solution. For instance, while studying three-dimensional 
continua, it is common to assume a harmonic plane-wave solution, which we 
use in Section 6.6.3. However, we might also require a more complicated 
position dependence of the solution. 

To illustrate a formulation that  allows us to study such a position de- 
pendence, we consider equation (6.40), namely, 

(x, t) (x, t) = 0. 
Ox 2 v 2 Ot 2 

If we assume an oscillatory motion, we can write a trial solution that  is given 
by 

u (x, t) = 5 (x)exp ( - i w t ) ,  (6.48) 

where w stands for the angular frequency. 5 Thus, it is assumed that  the time 
dependence of the displacement function u (x, t) is satisfied by exp ( - i w t )  - 
cos (wt) - / s i n  (wt). In other words, while studying the position dependence 

5In this book, exp (.) and e (') are used as synonymous  nota t ions .  
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of the solution of the wave equation, we assume that  this solution is sinu- 
soidal in time. 

Inserting solution (6.48) into equation (6.40), as shown in Exercise 6.3, 
we obtain 

d2~ (x) + ~ (x) - 0, (6.49) 
dx 2 v 

which is referred to as the reduced wave equation. 
Considering a three-dimensional continuum 1 we can write trial solution 

(6.48) as 
u (x, t) = ~ (x) exp (-last),  

where x = [Xl, x2, x3]. In view of equation (6.49), we can write 

o~ + o~ + Ox~ + 7  ~(x)-0, 

which, using Laplace's operator, we can concisely state as 

v2~ (x) + ~ (x) - 0. (6.50) 

Thus, following the assumption of oscillatory motion, the wave equation, 
which belongs to the class of hyperbolic partial differential equations, is 
transformed into equation (6.50), which belongs to the class of elliptic partial 
differential equations. Since for elliptical partial differential equations there 
is no time dependence, equation (6.50) allows us study complicated position 
dependences without dealing with the time dependence. 

6.6 E x t e n s i o n s  of  wave  e q u a t i o n  

I n t r o d u c t o r y  c o m m e n t s  

In Chapter 7, we will derive equations of motion in anisotropic inhomoge- 
neous continua. This is accomplished by combining Cauchy's equations of 
motion with stress-strain equati,,ns for generally anisotropic continua and 
allowing the elasticity paramet( rs to be functions of position. The funda- 
mental derivation shown in Chapter 7 lies at the root of ray theory, which 
is subsequently studied in this book. 

There are, however, certain cases where the standard wave equation, 
which is derived for isotropic homogeneous continua, can be extended to 
account for anisotropy and for inhomogeneity. An investigation of such 
cases is undertaken in this section. 
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6 .6 .1  S t a n d a r d  w a v e  e q u a t i o n  

In multidimensional continua, wave equation (6.40), may be written as 

1 02u (x, t) 
v2u(x't) v2 ot2 =0, (6.51) 

which is a partial differential equation with constant coefficients, where, as 
shown in Section 6.4, constant v is the magnitude of the velocity of the 
solution. In equation (6.51), x are the position coordinates. Hence, this 
equation describes wave propagation in continua characterized by constant 
speed at all positions x and in all directions determined by the coordinates. 
Consequently, this wave equation is valid for isotropic homogeneous con- 
tinua. 

We wish to extend equation (6.51) to the anisotropic case. In certain 
cases, by transforming the coordinates, we can formulate a wave equation 
that  in homogeneous continua associates different velocities with different 
directions. An example of such an extension, which results in a wave equa- 
tion for elliptical velocity dependence, is illustrated in Section 6.6.2. 

We also wish to extend equation (6.51) to the inhomogeneous case. By 
considering the position dependence v - v (x) and assuming that  function 
v (x) varies slowly with x, we can use an approximation that  allows us to 
describe wave propagation in weakly inhomogeneous continua. This exten- 
sion of equation (6.51) to account for weak inhomogeneity is illustrated in 
Section 6.6.3 and belongs to the high-frequency approximation. 

6 .6 .2  W a v e  e q u a t i o n  a n d  e l l i p t i c a l  v e l o c i t y  d e p e n d e n c e  

W a v e  e q u a t i o n  

To study an extension of the wave equation to anisotropic cases, consider 
equation (6.51). For convenience, let v be equal to unity. Hence, we can 
write 

02u (x, t) (6.52) V2u(x,t)- Ot 2 

Consider a two-dimensional continuum that  is contained in the xz-plane. 
For x = [x, z], equation (6.52) can be explicitly written as 

0 ~  (x, ~, t) 0 ~  (x, z, t) 0 ~  (x, z, t) 
Ox 2 + Oz 2 = Ot 2 . (6.53) 

Let the linear transformation of the position coordinates be such that  

(x z)  (0 4) ~ ( x , z , t )  - u  , , t  , 
Vx Vz 
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where vz and Vz are constants. Using the chain rule, as shown in Exercise 
6.4, we can write equation (6.53) as 

o ~  (x, z, t) o2~ (~, z, t) 02~ (~, z, t) 2 (6.55) 
v~ Ox 2 + Vz ~ = Ot 2 �9 

Thus, function d is the solution of equation (6.55). 
To illustrate the meaning of constants vx and Vz, consider transformation 

(6.54) and let 

- , t  . -  ~ ( ~ , ~ , t ) .  
U ~ V z  

If point (~, ;) is moving in the ~;-plane at the unit speed, namely, 

d v/~2 + ~ ~ _ 1 
dt 

the solutions u (~, ~, t), at different times t, are concentric circles. It follows 
that, in the xz-plane, 

d--t + v--~ - 1, 

and, hence, the solutions d (x, z, t), at different times t, are ellipses. 
Equation (6.55) is the wave equation that describes the wavefront prop- 

agation in a two-dimensional homogeneous continuum where the wave is 
subjected to an elliptical velocity dependence with direction. The semiaxes 
of the elliptical wavefronts coincide with the coordinate axes and the mag- 
nitudes of the wavefront velocities along these axes are given by vz and Vz, 

respectively. 

P h a s e  veloci ty  

Knowing that vx and Vz are the magnitudes of the wavefront velocities along 
the x-axis and the z-axis, respectively, we wisl~ to find the expression for the 
wavefront velocity in an arbitrary direction. Since the wavefronts are loci of 
constant phase, the wavefront velocity is referred to as phase velocity. 

To solve equation (6.55), consider the trial solution given by 

(x, z, t) = ~xp [i~ ( ;~x  + p~z - t)] ,  (6.56) 

where the right-hand side is called the phase factor. Hence, assuming mono- 
chromatic waves, where a given value of w is constant, loci of constant phase 
are given by the constancy of the term in parentheses. Thus, wavefronts at 
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time t are straight lines p z x  + pzZ = t, where Pz and Pz are the components 
of vector p that  is normal to the a given wavefront. Since x and z have units 
of distance while t is time, it follows that  the units of the components of p 
are the units of slowness. In other words, p is the phase-slowness vector, 
which describes the slowness with which the wavefront propagates. The en- 
velope of all straight lines p z x  + pzZ = t at time t is an elliptical wavefront. 
Hence, p describes the slowness with which the line tangent to the elliptical 
wavefront propagates. 

To examine trial solution (6.56), we substi tute it into wave equation 
(6.55). We obtain 

2 2 2  2 2 2  
(xp  + Z p z  - + pz + - 

= w 2 exp [iw (xkx  + zkz  - t)]. 

Dividing by w 2 and by the exponential term, we can write this equation as 

2 2  2 2  
v~p~ + Vzp z - 1, (6.57) 

where v~ and Vz are the magnitude of the phase velocity along the horizontal 
and vertical axes, respectively, while Pz and Pz are the components of p at 
a given point on the wavefront. 

To state expression (6.57) as a function of the orientation of the wave- 
front, we can express the phase-slowness vector as 

P = [Pz, Pz] = [P (zg) sin O, p (0) cos ~)1, (6.58) 

where p (tg) stands for the magnitude of the phase-slowness vector in a given 
direction 0, which is measured between the wavefront normal and the z-axis, 
and is referred to as the phase angle. Using expression (6.58), we can rewrite 
expression (6.57) as 

2 O) - -  1. [p (0)]2 @2 sin 2 t9 + v z cos 2 (6.59) 

Since the magnitude of phase slowness is the reciprocal of the magnitude 
of phase velocity, expression (6.59) can be restated as 

v (tg) p (tg) = 2 sin 2 t9 + Vz 2 cos 2 tg. (6.60) 

Expression (6.60) gives the magnitude of phase velocity as a function of 
phase angle for the case of elliptical velocity dependence. As shown in 
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Exercise 10.8, S H  waves in transversely isotropic continua are characterized 
by elliptical velocity dependence. 

Thus, by a linear transformation of the coordinate axes, we obtained an 
exact formulation of a wave equation for the elliptical velocity dependence. 
A more sophisticated manipulation of coordinates might allow us to consider 
wave equations to study complicated anisotropic behaviours in homogeneous 
continua. In this book, however, we will not pursue this approach. Rather, 
in Chapter 7, we will formulate an approximation to the wave equation that  
is valid for generally anisotropic continua. 

6 .6 .3  W a v e  e q u a t i o n  a n d  w e a k  i n h o m o g e n e i t y  

W e a k - i n h o m o g e n e i t y  f o r m u l a t i o n  

To study an extension of the wave equation to the inhomogeneous case, 
consider equation (6.51), namely, 

1 02u (x, t) 
V2u (x, t) v2 Ot 2 = 0, (6.61) 

which is valid for homogeneous continua with v being a constant denoting 
the speed of propagation. In order to extend this equation to inhomogeneous 
continua, we wish to express v as a function of the position coordinates, x. 
Consequently, we wish to consider the equation given by 

1 (x,t) 
V2u (x, t) - [v (x)] 2 Ot 2 = 0. (6.62) 

Since equation (6.62) is a differential equation, it corresponds to local 
properties of the continuum and can be locally solved for a given x. We can 
also obtain an approximate global solution to equation (6.62) if we assume 
that  function v (x) varies slowly, which means that  the inhomogeneity of a 
continuum is weak. In the seismological context, weak inhomogeneity means 
that  the changes of properties within a single wavelength are negligible. 

To formulate a trial solution of equation (6.62), consider the fact that  
we can write a trial solution of equation (6.61) as 

u (x, t) = A exp [iw (p .  x - t)], (6.63) 

where A is the amplitude of the displacement. As stated in Section 6.6.2, 
exp [.] is the phase factor, which is constant for a wavefront at time t. In 
three-dimensional continua, trial solution (6.63) is called the plane-wave 
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solution since, for a given time t, p .  x = t is a plane that  corresponds to a 
moving wavefront. Vector p is normal to this plane and, as shown in Section 
6.6.2, p is the phase-slowness vector. 

If the properties of a three-dimensional continuum vary with position, 
a planar wavefront is distorted during propagation through this continuum. 
Consequently, a trial solution of equation (6.62) must account for these 
changes of shape of the wavefront, which also cause changes of amplitude 
along the wavefront. Using a form analogous to expression (6.63), we can 
write 

u (x, t) = A (x)exp {ia; [r (x) - t]}, (6.64) 

where A (x) denotes the amplitude of the displacement - -  which is allowed to 
vary along the wavefront and ~ (x) ~ referred to as the eikonal function 

accounts for the distortions in the shape of the wavefront. Herein, both 
A (x / and ~ (x) are smooth scalar functions of position coordinates. 

Note that  expression (6.64) is a zeroth-order term of the asymptotic 
series given by 6 

N Un (X) 
U (x, t )  -,~ y ~  (i~d)n exp {iod [r (x)  -- t ]} ,  

n--0 

where A (x) - u0 (x). 7 Hence, the following results belong to the realm of 
asymptotic methods, which play an important role in seismology. In this 
book, however, we do not explicitly discuss ray theory in the context of 
asymptotic methods. 

Examining the phase factor of trial solution (6.64) in the context of 
solutions (6.56) and (6.63), we see that  equation r (x) = t represents the 
moving wavefront. In other words, the level sets of function r (x) are the 

6Readers interested in the motivation for choosing this form of the trial solution might 
refer to Babich, V.M., and Buldyrev, V.S., (1991) Short-wavelength diffraction theory: 
Asymptotic methods: Springer-Verlag, pp. 1 0 -  13, to Bleistein, N., Cohen, J.K., and 
Stockwell, J.W., (2001) Mathematics of multidimensional seismic imaging, migration, and 
inversion: Springer-Verlag, pp. 4 3 6 -  437, and to Kennett, B.L.N., (2001) The seismic 
wavefield, Vol. I: Introduction and theoretical development: Cambridge University Press, 
pp. 153-  154 and 166-  167. 

7For a description of the nature of asymptotic expansions, as well as the ways of 
obtaining them by the method of steepest descent and the method of stationary phase, 
readers might refer to Jeffreys, H., and Jeffreys, B., (1946/1999) Methods of Mathematical 
Physics: Cambridge University Press, pp. 498 - 507. 

For a discussion on an application of asymptotic series to ray theory, readers might refer 
to Kravtsov, Y.A., and Orlov, Y.I., (1990) Geometrical optics of inhomogeneous media: 
Springer-Verlag, pp. 7 -  9. 
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wavefronts. Since p is normal to the wavefront, using properties of the 
gradient, we obtain an important expression, namely, 

p -  V~,. (6.65) 

In other words, the phase-slowness vector is the gradient of the eikonal 

function. 
Now we insert trial solution (6.64) into equation (6.62). Considering 

the X l component of Laplace's operator and substituting the corresponding 
form of trial solution (6.64), we obtain 

0 2 

Ox21 ~ A  ( x l ) e x p  {iw [r (Xl) - t]} - exp {i~d [~ (Xl) - t]} 

02A [ OA 0~2 
+ iw 2 0x l Ox l 

o~ or } 
_ ~ 2  A Ox l OX l " 

+'"  Ox~ ] 

Considering the second derivative with respect to time and substituting the 
same form of the trial solution, we get 

0 2 

Ot 2 
A (xl)exp {iw [r (Xl) - t]} - -Aw 2 exp {iw [r (xl) - t]}. 

Consequently, given the fact that the exponential term is never zero, the 
corresponding form of equation (6.62) becomes 

( ) [ 02A 1 0~2 0~2 + iw 2 0 A  O~b ~- A - 0 (6.66) 
Ox-----y + A~2 v 2 Ox l Ox l Ox l Ox l Ox 2 J ' 

which is a complex-valued function of real variables. 
The vanishing of expression (6.66), where both A and r are assumed to 

be real, implies the vanishing of both real and imaginary parts. Assuming 
~: 0, we obtain a system of two equations, 

02A ( 1 
Ox 2 + Aw 2 v2 

OA or + 
2 0X l Ox l " ~ Ox~ 

oO o~, ) 
0Xl 0Xl 

= 0  

= 0  

(6.67) 
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Considering three-dimensional continua, and following the definitions of 
the gradient operator and Laplace's operator, we can write system (6.67) as 

I 1 ] V2A + Aw2 v 2 (x) (Vr 

2VA. Vr  + AV2~ = 0 

= 0  
(6.68) 

where (Vr 2 " -  (01~/0Zl) 2 n t- (01~/0X2) 2 + (01~ /0X3)  2. System (6.68) corre- 
sponds to equation (6.62), in the context of trial solution (6.64). 

System (6.68) is not simpler than equation (6.62). However, further 
analysis of the first equation of this system leads to a simplification and 
results in the eikonal equation. The second equation of system (6.68) is 
called the transport equation. 

Eikonal equation 

Considering the first equation of system (6.68) and assuming that  both w 
and A are nonzero, we can write it as 

V2A [ 1 1 
Aw---- ~ + ( r e )  2 - 0. (6.69) v2 (x) 

If we assume the inhomogeneity of the continuum to be weak, this assump- 
tion is tantamount  to viewing the wavelength as being short and, hence, the 
frequency as being high. In the limit, we let w ~ ec, and equation (6.69) 
becomes 

[re(x)]2 = 1 v 2 (x)" (6.70) 

In view of expression (6.65), we can write equation (6.70) as 

p 2 _  1 (6.71) 
~2 (x)' 

where p2 _ p . p .  Equation (6.71) is the eikonal equation for isotropic 
weakly inhomogeneous continua. It can be viewed as an approximation to 
wave equation (6.62). 

In Chapter 7, we will derive the eikonal equation for anisotropic inho- 
mogeneous continua. However, since, in general, the eikonal equation is 
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based on the high-frequency approximation, this equation is always limited 
to weak inhomogeneity. 8 

Recall that  equation (6.62) does not explicitly refer to either P or S 
waves. Consequently, equation (6.71) does not explicitly correspond to either 
wave. However, in view of expression (6.13) and (6.17), if v (x ) i s  a smooth 
function given by 

_ . / ~ ( x )  + 2V(x)  
/ 

(x) (6.72) ?J 
V p(x)  ' 

equation (6.71) can be viewed as corresponding to P waves, and if v (x) is 
a smooth function given by 

v (x) - / v  #p(x)'(x) (6.73) 

equation (6.71) can be viewed as corresponding to S waves. In general, 
for inhomogeneous continua, equations (6.4) cannot be split into two wave 
equations analogous to equations (6.12) and (6.16). In other words, the di- 
latational and rotational waves are coupled due to the inhomogeneity of the 
medium, as illustrated in Exercise 6.7. However, assuming 8umciently high 
frequency, there are two distinct wavefront8 that  propagate in an inhomo- 
geneous continuum with speeds given by expressions (6.72) and (6.73). 

The eikonal equation is a nonlinear partial differential equation. Specif- 
ically, it i8 a first-order and second-degree partial differential equation. In 
other words, the derivatives are of the first order, while the degree of the ex- 
ponent is equal to 2. In general, the solution of the eikonal equation requires 
numerical methods. If the velocity function, v, is constant, the solution of 
the eikonal equation is also the 8olution of the corresponding wave equation, 
as shown in Exercises 6.5 and 7.1. Otherwise, in the cases where v - v (x), 
the solution of the eikonal equation is not, in general, the solution of the 
wave equation, and equation (6.62) is only an approximation of the wave 
equation. 

8Readers interested in high-frequency approximation might refer to Bleistein, N., Co- 
hen, J.K., and Stockwell, J.W., (2001) Mathematics of multidimensional seismic imaging, 
migration, and inversion: Springer-Verlag, pp. 5 - 7. Therein, the authors state that 

"high frequency" does not refer to absolute values of the frequency content 
of the waves. What must be considered is the relationship between the 
wavelengths [... ] and the natural length scales of the medium. 
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T r a n s p o r t  e q u a t i o n  

The second equation of system (6.68), namely, 

2VA.  V r  + AV2r - 0, (6.74) 

is the transport  equation. For a given eikonal function, r the transport  
equation describes the amplitude along the wavefront. 

V e r t i c a l l y  i n h o m o g e n e o u s  c o n t i n u a  

In seismology, we are often interested in studying layered media where the 
properties vary along only one axis. 

Consider a three-dimensional continuum, x = [z, y, z], and assume that  
its properties vary slowly along the z-axis, while remaining the same along 
the other two axes. It can be shown that,  if v (x) = v (z) varies slowly, 
equation (6.62) is approximately satisfied by the displacements associated 
with the SH waves for all directions of propagation. For the case of P 
and SV waves, equation (6.62) provides a good approximation only for the 
displacements of waves propagating near the direction of the z-axis. 9 

Note, however, that eikonal equation (6.70), which is derived from equa- 
tion (6.62), provides within the conditions of this derivation a good 
approximation for signal trajectories in all directions of propagation. 

Closing remarks 

In this chapter, to study wave phenomena, we formulated wave equations. 
These equations are formulated as special cases of Cauchy's equations of mo- 
tion for isotropic homogeneous continua. From these equations, we identify 
two distinct types of waves, namely P and S waves, which propagate with 
two distinct speeds. In Chapter 7, we will formulate Cauchy's equations of 
motion in the context of anisotropic inhomogeneous continua. Therein, we 
show the existence of three types of waves. 

All waves discussed in this book propagate within the body of a con- 
tinuum. Consequently, they correspond to the so-called body waves, as 
opposed to the surface and interface waves, which we do not discuss. 

The derivation of the wave equation shown in this chapter is rooted in the 
balance of linear momentum. This derivation formulates wave propagation 

9Readers interested in wave propagation in slowly varying vertically nonuniform con- 
tinua might refer to Krebes, E.S., (1987) Seismic theory and methods (Lecture notes): 
The University of Calgary, pp. 5-9- 5-12. 
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as a result of a continuum conserving the linear momentum within itself. 
The wave equation can also be derived by invoking other physical principles. 
For instance, in Chapter 13, its derivation is based on Hamilton's principle, 
which formulates wave propagation as a result of a continuum restoring itself 
to the state of equilibrium through the process governed by the principle of 
stationary action. 

The study of solutions for the wave equation motivated several recent de- 
velopments in mathematics. As a result of these developments, the theory of 
generalized functions ~ in particular, the theory of distributions extends 
the solutions for the wave equation to include nondifferentiable functions. 
Also, studies of wave propagation in elastic media have played an important 
role in the theory of integral equations. 1~ 

0 
Exerc ises  

Exerc ise  6.1 Show the details of the derivation of Lemma 6.1. 

Solut ion  6.1 For the first term of the wave equation, consider 

Ou Ou Oy Ou O z 

Ox = + Oz O x  

Since, following expression (6.~2), Oy/Ox = Oz/Ox = 1, we obtain 

Ou Ou Ou 
- - -  t �9 

Ox Oy Oz 
1~ readers might refer to Aleksandrov, A.D., Kolmogorov, A.N., Lavrentev, 

M.A., (editors), (1969/1999)Mathematics: Its content, methods and meaning: Dover, Vol. 
II, pp. 4 8 -  54 and Vol. III, pp. 245-  250, to Bleistein, N., Cohen, J.K., and Stockwell, 
J.W., (2001) Mathematics of multidimensional seismic imaging, migration, and inversion: 
Springer-Verlag, pp. 389 - 408, and to Demidov, A.S., (2001) Generalized functions in 
mathematical physics: Main ideas and concepts: Nova Science Publishers, Inc., pp. 41 - 
53. 



156 Chapter 6. Equations of motion: Isotropic homogeneous continua 

Consequently, 

02U 
Ox 2 = Ox N + b - ; z  o(o  o(o  o )oz 

= o~ N +-5-iz -5;x + N N +-5;z Ox 
Oeu Oeu 02u 02u 

= Oy 2 t OyOz + OzOy + Oz ---~ 
02U 02U 02U 

= ~ + 2 + 
Oy 2 OzOy Oz 2' 

(6.75) 

where, again, we use the equality given by Oy/Ox - Oz/Ox - 1, and the 
equality of mixed partial derivatives. Similarly, for the second term of the 
wave equation, consider 

Ou Ou Oy Ou Oz 
0--[= Oy Ot ~ O zOt  

Ou Ou 
- V-~y - V O z.  

Consequently, 

0211, 
Ot 2 

_ o v N - v  + v N - v  
N N ~  N N ~  

Oy 2 OyOz OzOy t- ~ 

_ v2 ( 02u 2 02u 02u)  
- Oy 2 OzOy + ~z 2 " 

(6.76) 

where the equality of mixed partial derivatives is used. Inserting expressions 
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(6. 75) and (6. 76) into equation (6.~0), we obtain 

02u 1 02u 

Ox 2 v 20 t  2 

= 4 ~  

02u 02u 02u 
Oy2 + 2 0-~y ~ Oz 2 

02u _ 02u 02u 
Oy2 + 2 0-~y ~ Oz 2 

02u 

OyOz 

=0, 

02 02u 02u)  
1 v2 u 2 + 

~ oy~ OzOv 
02u 02u 02u 

~ 2 ~  
Oy 2 OzOy Oz 2 

where the equality of mixed partial derivatives is used. Hence, we conclude 
that 

02u 
--0~ 

OyOz 

as required. 

Exercise 6.2 Show the details of the derivation of Lemma 6.2. 

Solution 6.2 Considering the equality of mixed partial derivatives, we can 
write 

0 (v,~) 

--'0. 

Consequently, for the second partial derivative to vanish, we require that 

Ou (y, z) J 
Oz - G ( z ) ,  

on the left-hand side, and 

[ o~ (y, ~)1 - F (v) , 
Oy 

on the right-hand side. In other words, we require that G be a function of z 
only, while F be a function of y only. Hence, integrating, we obtain 

f 
(y, z) - / F (y) dy U 

= f (v) + a (z), 
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where a (z) is the integration constant with respect to dy, and 

f 
(y, z) - ] G (z) dz U 

= g (z) + b (y), 

where b (y) is the integration constant with respect to dz. In view of the 
arbitrariness of the integration constants, we can denote a (z) - g (z) and 
b (y) - f (y). Thus, we obtain 

u (y, z) - f (y) + g (z) ,  

as required. 

E x e r c i s e  6.3 Consider wave equation (6.~0). Using solution (6.~8), obtain 
equation (6.~9). 

S o l u t i o n  6.3 In view of solution (6.~8), namely, u (x, t) - ~t (x) exp ( - iwt) ,  
consider the position derivatives, namely, 

o2~ (x, t) o ~  (x) 
Ox 2 Ox 2 

~ e x p ( - i w t ) ,  (6.77) 

and the time derivatives, namely, 

0 ~  (x, t) 
Ot 2 = _~2 ~ (x) ~xp ( -  i~t).  (6.78) 

Substituting expressions (6. 77) and (6. 78)into equation (6.~0), and dividing 
by the exponential factor, we obtain a function of a single variable, 

d2~ (x) + d (x) - 0 
dx 2 v 

which is equation (6.~9), as required. 

E x e r c i s e  6.4 Consider equation (6.53). In view of transformation (6.5~), 
let 

(x, z, t) - ~ (~, ~, t ) ,  (6.79) 

where ~ "- x /vx  and ~ "- Z/Vz. Using the chain rule, show that equation 
(6.53) is equivalent to equation (6.55). 
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S o l u t i o n  6 .4  Taking the derivative of both sides of equation (6.79) with 
respect to x, we obtain 

O(t (x, z, t) Ou O~ 1 0 u  (~, q, t) 
Ox O~ Ox v~ O~ 

and 
02(t (x, z, t) 1 02u (~, ~, t) 

02x v~ 02~ 
(6.80) 

Similarly, taking the derivative of both sides of equation (6.79) with respect 
to z, we obtain 

02(t (x, z, t) 1 02u (~, q, t) 
= - -  , (6.81) 

02z V2z 02~ 

while, taking the derivative of both sides of equation (6.79) with respect to 
t, we get 

02~ (x, z, t) 02u (~, ~, t) 
= (6.82) 

02t 02t �9 

We can always write equation (6.53) as 

o2~ (~, ~, t) O2u (~, ~, t) o2~ (~, ~, t) 
O~ 2 + Oq 2 = Ot 2 , (6.83) 

where ~ and ~ are the variables of differentiation. Substituting expressions 
from equations (6.80), (6.81) and (6.82) into (6.83), we obtain equation 
(6.55), as required. 

E x e r c i s e  6 .5  11 Consider a three-dimensional scalar wave equation given by 

02u 02u 02u 1 02u 

- ox l + = ot ' 

where v is the velocity of propagation and t is time. Let the plane-wave 
solution be u (x, t) = f (r/), where ~1 = nix1 + n2x2 + n3x3 - vt, with ni being 
the components of the unit vector that is normal to the wavefront. Show 
that the plane-wave solution of the wave equation is also a solution of its 
characteristic equation, given by 

+ ~ + ~ --~-5 - ~  " (6.84) 

11 See also Section 6.6.3 and Exercise 7.1. 
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So lu t ion  6.5 Considering the plane-wave solution, we obtain 

Ou Of O~ Of 
Ozi = OV Oxi = 0--~ hi' 

and 
Ou Of Or] Of 
Ot OV Ot OV 

~ ~ V ~  

Substituting Ou/Ox~ and Ou/Ot into equation (6.8~), we can write 

2 Of n2 2 Of n3 2 1 Of 

which yields 
O f )  

+ + - 

This equality is justified since for the unit vector, n, we have n 2 +n 2 +n~ - 1. 

Exerc i se  6.6 In view of Section 6.5, considering the reduced form of equa- 
tion (6.62) in a single spatial dimension and using the trial solution given 
by u (x) - A (x)exp [iwr (x)], obtain set (6.67). 

So lu t ion  6.6 Considering a single spatial dimension, the reduced form of 
equation (6.62) is 

co d2u (x) + u (x) - O. 
d z  2 v (x) 

Inserting a one-dimensional form of the given trial solution into this equa- 
tion, performing the differentiation and dividing both sides of the resulting 
equation by the exponential term, we obtain 

dx - - - -g+A~2 v 2 d x d x  + i ~  2 d x d x  ~ A d x  2] - 0 ,  

which is analogous to equation (6.66) and, hence, leads to set (6.67), as 
required. 

Exerc i se  6.7 12 Using stress-strain equations (6.1) and Cauchy's equations 
of motion (6.2), obtain equations of motion for an isotropic inhomogeneous 
continuum. Discuss these equations in the context of equations (6.~). 

12See also Sections 6.1.1 and 6.6.3. 
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Solution 6.7 Considering an inhomogeneous continuum, where Lam~'s pa- 
rameters are functions of position, and in view of definition (1.15), we can 
write equations (6.1) as 

k=l 
+ ~ , i, j C {1,2,3}, (6.85) 

which are stress-strain equations for an isotropic inhomogeneous continuum. 
Considering an inhomogeneous continuum, where mass density is a function 
of position, we can write equations (6.2) as 

02Ui 3 O0ij , 
p(x) Ot 2 = ~ Oxj i e {1, 2,3}, (6.86) 

j=l 

which are equations of motion for an isotropic inhomogeneous continuum. 
Using equations (6.85), we can write equations (6.86) as 

/9 (X) Oqt2 = j~~. ~jXj )~ (X)(~ij k=lE ~Xk ~- # (X) ~jXj -~- ~X/ 

= ~ ~ a (x)~j ~ Ox~j + ~ "(x) \ Oxj + Ox~ ] ' 
j=l k=l = 

where i c {1, 2, 3}. Using the property of Kronecker's delta, we obtain 

/9(X) 0t 2 -- OX i ,~(X) k=l ~ OXkJ -~- '= ~Xj #(x)  k0XJ -~- O X i /  ' 

where i E {1, 2, 3}. Letting k = j for the summation index, we can write 

~ I 1 o~ - Ox~ ~(x)~~j + .(x) + j=i . ~Xj ~jXj -~X/ 

wherei E {1,2,3}. 
operators, we obtain 

Using the product rule and the linearity of differential 

02U i 
p (x) Or2 

OxiOA L OuJ ~ + )~ O--~-- L OuJ 
j=l Oxi Oxj j--1 

�9 j=l 

0 0 u j )  
Oxj Oxi 
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where i E {1, 2, 3}. Differentiating and using the equality of mixed partial 
derivatives, we obtain 

02Ui 
p (x) or2 

0)~ ~ OUj 3 02uj 
j=l j=l 

3 Op ( OUi OUj 
j= l  

+ It .  Ox 2 + OxiOxj 

where i c {1, 2, 3}. Simplifying and rearranging, we get 

O2U i 
p (x) or2 

= 

j = l  j= l  

0)~ ~ OUj 3 O# ( OUi 
j= l  j = l  

 uj) + ~ , (6.87) 

where i C {1, 2, 3}. These are equations of motion for an isotropic inhomo- 
geneous continuum. 13 
Examining equations (6.87), we notice that if  p, A and # are constants 
as is the case for homogeneous continua equations (6.87) reduce to equa- 
tions (6.~), as expected. Also we notice that invoking definitions (1.26) and 
(1.30) as well as identity (6.7) we can express the displacement vector, u, 
in the first three terms on the right-hand side, using the dilatation, ~, and 
the rotation vector, ~ .  Investigating the last term on the right-hand side, 
however, it can be shown that we cannot express the displacement vector on 
the right-hand side of equations (6.86) using only ~ and ~ .  Consequently, 
we cannot split equations (6.87) into two parts that are associated with the 
dilatation alone and with the rotation vector alone, respectively, as we did 
in Sections 6.1.2 and 6.1.3 in the case of isotropic homogeneous continua. 
In other words, the dilatational and rotational waves are coupled due to the 
inhomogeneity of the continuum. 

13Readers interested in a solution to these equations might refer to Karal, F.C., and 
Keller, J.B., (1959) Elastic wave propagation in homogeneous and inhomogeneous media: 
J. Acoust. Soc. Am., 31 (6), 694- 705. 



Chapter 7 

Equations of motion: 
Anisotropic inhomogeneous 
continua 

... an exact solution to a problem in wave phenomena is 
not an end in itself. Rather, it is the asymptotic solution 
that provides means of interpretation and a basis for under- 
standing. The exact solution, then, only provides a point of 
departure for obtaining a meaningful solution. 

Norman Bleistein (198~ ) Mathematical methods for wave phe- 
nomena 

Preliminary remarks 

In Chapter 6, to study wave phenomena in an isotropic homogeneous contin- 
uum, we obtained the equations of motion by invoking Cauchy's equations 
of motion and using stress-strain equations that correspond to such a con- 
tinuum. In this chapter, we will study wave phenomena in an anisotropic 
inhomogeneous continuum by following a strategy analogous to that used 
in Chapter 6. In this study, we learn about the existence of three types of 
waves that can propagate in anisotropic continua. 

We begin this chapter with the derivation of the equations of motion 
in an anisotropic inhomogeneous continuum. We obtain these equations by 
combining Cauchy's equations of motion with the stress-strain equations for 
an anisotropic inhomogeneous continuum. To solve the resulting equations, 
we use a trial solution. Subsequently, we derive the eikonal equation for 

163 
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anisotropic inhomogeneous continua, which is the fundamental equation of 
ray theory, to be studied in the subsequent chapters of Part H and Part III. 

7.1 Formulation of equations 

In Chapter 6, the wave equation is derived by considering Cauchy's equa- 
tions of motion (2.50) and expressing the stress-tensor components therein 
in terms of stress-strain equations (5.65), which describe an isotropic ho- 
mogeneous continuum. In the present chapter, we will derive the equa- 
tions of motion for an anisotropic inhomogeneous continuum by consider- 
ing Cauchy's equations of motion (2.50) and expressing the stress-tensor 
components therein in terms of the stress-strain equations that describe an 
anisotropic inhomogeneous continuum. 

In view of equations of motion (2.50), consider equations 

3 
c02 ui Ooij , 

p(x) ot~ = } ~  Oxj i c {1,2,a}. (7.1) 
j = l  

Note that in equations (7.1), due to the inhomogeneity of the continuum, 
mass density, p (x), is a function of position. Also note that, in general, 
displacement vector, u = [Ul, u2, u3], and stress-tensor components, crij, are 
also functions of position. However, for clarity of notation, we explicitly 
state the x-dependence only for the mass density, p, and for the elasticity 
tensor, cijkz, which describe a given anisotropic inhomogeneous continuum. 

The stress-strain equations that account for the anisotropy as well as the 
inhomogeneity of the continuum are expressed by writing equations (3.1) 
with the elasticity tensor being functions of position, namely, 

3 3 

aij - ~ ~ cijkl (x) cal, i, j C (1, 2, 3).  (7.2) 
k = l  l=1 

Using definition (1.15), we can rewrite stress-strain equations (7.2) as 

1 a 3 (0~k 0~z) 
- 5 (x) + 

k = l  l=1 

, i , j E  { 1 , 2 , 3 } .  (7.3) 

We wish to combine the equations of motion and the stress-strain equa- 
tions to obtain the equations of motion in an anisotropic inhomogeneous 
continuum. Inserting stress-strain equations (7.3) into equations of motion 
(7.1), we obtain 
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02ui a 0 
p(x) ot~ =~-~ 

j = l  
E E ~ ( x )  ~ + ~  
k=l  l=1 

! 3  3 3 (OUk 

d=l k=l Z=l Oxd \ Oxl 

0u,) 
+ ~-;x~ 

+ 5 ~ ~ ~ ~J~' (x) OxbOw, + OxjOx~ 
j = l  k= l  l=1 

(7.4) 

where i c {1, 2, 3}. Equations (7.4) are equations of motion in anisotropic 
inhomogeneous continua. For isotropic continua, these equations reduce 
to equations (6.87), and for isotropic homogeneous continua, they further 
reduce to equations (6.4). Equations (7.4) are complicated differential equa- 
tions and, in general, we are unable to find their solutions analytically. 

7.2 Formula t ion  of  so lut ions  

To investigate equations (7.4), let us consider the trial solution that is a 
function of position, x, and time, t, given by 

u (x, t) = A (x) f (~),  (7.5) 

where A is a vector function of position, x, and f is a scalar function whose 
argument is given by 

r /=  v0 [~ (x) - t], (7.6) 

with v0 being a constant with units of velocity. Function r : R 3 -~ R, shown 
in expression (7.6), is referred to as the eikonal function. 

To see the physical meaning of this trial solution, consider function f (~) 
in the context of trial solutions (6.56), (6.63) and (6.64). We see that f 
corresponds to the phase factor. Since along the level sets of ~ (x), function 
f is constant, these level sets correspond to wavefronts. In other words, 

(x) = t describes a moving wavefront. Function f gives the waveform 
as a function of time with A being the spatially variable amplitude of this 
waveform. 

Inserting trial solution (7.5) into equations (7.4), while using the sym- 
metries of the elasticity tensor, cijkl, and the equality of mixed partial deriv- 
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atives, we obtain 

d2f 
p (x)vgAi (x) d~ 2 

~ ~ { [Oc~j~!x)OA~ 
= ~ Z E  fL Oxj o~, 

j = l  k=l  /=1 

d f Ocijkz (x) Az 
+ vo--~ Oxj Oxk 

OAz 0r OAk 0r 
+ ciykl(x) Oxj Oxk ~ Oxl Oxj 

d2f [cijkz (x) Ak 0r Or ~v~~ ox~ox-~]} 

02Ak ] 
~- Cijkl (x )  OxjOxl 

~- A10xjOxk 

where i E { 1, 2, 3}. Rearranging and using the product rule in the coefficient 
of df /du,  we get 

~ ~ ~{ [0~(x,o~ 0~  1 
0 - ~ ~ ~ f Oxj OXl ~- Cijkl (X) OXjOXl (7.7) 

j--1 k=l  /=1 

+ ~o~ ~ ~j~ (x)A~~x ~ + ~j~ (x) Ox~ Oxj 

d 2 f [  /)~ 0 r  } d2f 
+ v~-d~2 cijkz (x) Ak----Oxj Ox, - ~ p (x) Aiv~, 

where i c {1, 2, 3}. 
Concisely, equation (7.7) can be written as 

a (x) f + b (x) f '  + c (x) f"  = 0, 

where f '  "- df/d~7 and f"  "- d2f/dr] 2. For equation (7.7) to be satisfied 
for an arbitrary f, each of the coefficients a (x), b (x) and c (x) must 
vanish. 1 

Note that, in view of trial solution (7.5), we require the arbitrariness of 
f in order to allow any function to describe the waveform. 

Assuming v0 r 0, we obtain three systems of equations, namely, 

3 3 3 ~ ~ ~ (o~ ~x~ o~ ~ ~ ~x~ o~ ), o, ~.~ 
�9 k=l Z=l Oxj Oxz OxjOxl 

1Readers interested in an analogous formulation of the three vanishing terms of equa- 
tion (7.7) might refer to (~erven3~, V., (2001) Seismic ray theory: Cambridge University 
Press, p. 55, pp. 57 - 58 and pp. 62 - 63. 
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and 

3 3 3 

c~kz (x)Az~x k 
�9 k = l  / = 1  

OAk 0r ] 
+ Cijkl (X) OXl OXj = 0 ,  (7.9) 

3 a 3 0~ 0r 
~ ~ ~ (x)A~--  p (x)A~ - o, 

j = l  k= l  /=1 OXj OXl 
(7.10) 

where i e {1, 2, 3}, which correspond to a (x), b (x) and c (x), respectively. 
Equations (7.8), (7.9) and (7.10) constitute a system of equations for ~ (x) 
and A (x). 

7.3 Eikonal  equat ion 

In order to obtain ~ (x), we turn our attention to equations (7.10), from 
which we can factor out the components of vector A (x). Hence, we can 
write 

~ ~j~ (x) Oxj Ox, 
k=l  /=1 

p (x) 5ik / Ak (x) = O, 

In view of expression (6.65), let us denote 

i E {1,2,3}.  

(7.11) 

k=l  l= l  

Ak (x) = 0, i ~ {1, 2, 3}. (7.13) 

where p is the phase-slowness vector, which describes the slowness of the 
propagation of the wavefront. 

Note that  the meaning of p can be seen by examining expression (7.6) 
and considering a three-dimensional continuum. Therein, ~ is a function 
relating position variables, xl, x2 and x3, to the traveltime, t. Thus, since 

has units of time, pj := 0r has units of slowness and the level sets of 
(x) can be viewed as wavefronts at a given time t. Consequently, in view of 

properties of the gradient operator, p = Vr  (x) is a vector whose direction 
corresponds to the wavefront normal and whose magnitude corresponds to 
the wavefront slowness. 

In view of notation (7.12), we can write equations (7.11) as 

0r 
PJ "= Oxj j e {1 2,3} (7.12) 
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Equations (7.13) are referred to as Christoffel's equations. 
In Chapter 10, we discuss equations (7.13) in the context of the particular 

symmetries of continua, which were introduced in Chapter 5. Therein, we 
also show that the eigenvalues resulting from these equations are associated 
with the velocity of the wavefront while the corresponding eigenvectors are 
the displacement directions. Herein, we study the general form of equations 
(7.~a). 

We know from linear algebra that equations (7.13) have nontrivial solu- 
tions if and only if 

1 det cijkl (x)PjPl -- P (x) 5ik -- 0, i, k C {1, 2, 3}. (7.14) 
/=1 

Assuming that p2 7L 0, we can write determinant (7.14) as 

I3 3 1 PjPl p(x)  sik - 0 ,  i, k E  {1 2,3} (p2)3 det ~ ~ cijkl (x) p2 p2 , " 
j = l  /=1 

(7.15) 
Note that p2 = 0 would mean that the slowness of the propagation of 

the wavefront is zero. This would imply the velocity to be infinite, which is 
a nonphysical situation. Also, in view of determinant (7.14), p2 _ 0 would 
result in det [p (x)5ik] = 0, which would imply p ( x ) =  0. 

Expression (7.15) is a polynomial of degree 3 in p2, where the coeffi- 
cients depend on the direction of the phase-slowness vector, p. Any such 
polynomial can be factored out as 

1 1 1 
v ,x ,l 0 

where 1/v~ are the roots of polynomial (7.15). 
The conditions imposed on the Cijkl by the stability conditions dis- 

cussed in Section 4.3 imply that the three roots of polynomial (7.15) are 
real and positive. These properties are further discussed in Section 10.1. 
The existence of three roots implies the existence of three types of waves, 
which can propagate in anisotropic continua. 

Now, let us consider a given root of equation (7.16). Each root is the 
eikonal equation for a given type of wave, namely, 

p: = 1 i e {1, 2, 3} .  (7.17) 
2 (x ,p ) '  v i 
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Let us examine the meaning of this equation. 2 
Since p2 _ p . p  is the squared magnitude of the slowness vector, which 

is normal to the wavefront, then in view of the wavefronts being the 
loci of constant phase v is the function describing phase velocity. This 
velocity is a function of position, x, and the direction of p. Hence, equation 
(7.17) applies to anisotropic inhomogeneous continua and can be viewed as 
an extension of equation (6.71), which is valid for isotropic inhomogeneous 
continua. 

Considering two adjacent wavefronts, we can view equation (7.17) as an 
infinitesimal formulation of Huygens' principle. 3 

Note that  function v is homogeneous of degree 0 in the pi. In other 
words, the orientation of a wavefront is described by the direction of p and 
is independent of the length of p. Hence, in equation (7.17) we could also 
write vi = vi (x, n), where n is a unit vector in the direction of p. Notably, 
we will use this notation in Chapter 10. 

Furthermore, as shown explicitly in Chapter 10, the phase-velocity func- 
tion can be expressed in terms of the properties of the continuum, namely, 
its mass density and elasticity parameters. Thus, the eikonal equation re- 
lates the magnitude of the slowness with which the wavefront propagates to 
the properties of the continuum through which it propagates. 

In the mathematical  context, the eikonal equation is a differential equa- 
tion. Recalling expressions (7.12), we can rewrite equation (7.17) as 

(x) ]2  = 1 
v 2 (x, p)" (7.18) 

In general, the eikonal equation is a nonlinear, first-order, partial differential 
equation in x to be solved for the eikonal function, r (x). It belongs to the 
Hamilton-Jacobi class of differential equations. 4 

Equation (7.9) is the transport equation. This transport equation pos- 
sesses a vectorial form that  is valid for anisotropic inhomogeneous continua. 

2Readers interested in the mathematical formulation of the conditions under which 
the eikonal equation provides a good approximation to the wave equation might refer to 
Officer, C.B., (1974) Introduction to theoretical geophysics: Springer-Verlag, pp. 2 0 4 -  
205. 

3 Readers interested in a formulation relating the eikonal equation to Huygens' principle 
might refer to Arnold, V.I., (1989) Mathematical methods of classical mechanics (2nd 
edition): Springer-Verlag, pp. 248-  252, and to Lanczos, C., (1949/1986) The variational 
principles in mechanics: Dover, pp. 269 -  270. 

4Readers interested in a mathematical study of the eikonal and transport equations 
might refer to Taylor, M.E., (1996) Partial differential equations; Basic theory: Springer- 
Verlag, pp. 79 - 84 and pp. 440 - 447. 
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It is analogous to the scalar transport equation (6.74), which is valid for 
isotropic inhomogeneous continua. 

Closing remarks 

In this chapter, while seeking to study the propagation of waves in anisotropic 
inhomogeneous continua, we follow a strategy analogous to that  used in 
Chapter 6. However, having obtained the equations of motion, we find that  
we are unable to investigate them analytically. Thus, we utilize a trial so- 
lution that  leads us to the eikonal equation, which relates the slowness of 
propagation of the wavefront to the properties of the continuum through 
which it propagates. In Chapter 8, we will continue our study of wave 
propagation in anisotropic inhomogeneous continua by solving the eikonal 
equation. 

Note that  equations (7.8), (7.9) and (7.10) constitute an overdetermined 
system that  results from inserting trial solution (7.5) into equations (7.4). 
Since the system is overdetermined, we can obtain a unique solution without 
using all the equations that compose this system. If we obtain functions 

(x) and A (x) from equations (7.9) and (7.10), we can investigate how 
well these functions accommodate equations (7.4) by studying their effect 
on equation (7.8). 

0 
Exercises 

Exerc i se  7.1 In view of Exercise 6.5, consider a more general form of the 
solution that is given by u (x,t) - f (r/), where W - v0 [~ (x) - t]. Show that 
the necessary condition for characteristic equation (6.8~) to be satisfied is 
the eikonal equation, given by 

(Vr = 1 
V 2"  

So lut ion  7.1 
obtain 

Considering the argument of f given by 7 / -  v0 [r (x) - t], we 

Ou Of Ozl Of O~ 
i c { 1 , 2 , a } ,  

Oxi = Oxi = vo Orl Oxi '  
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and 
Ou Of 0~7 Of 
o t  = o~ a t  - - V ~  o~ " 

Substituting Ou/Ox~ and Ou/Ot into characteristic equation (6.84), we can 
write 

( O f O ~ P )  2 
vo 0~7 0xl  + VOO~Ox2 + VOOvOxa - - j  - - ~ v o  , 

which yields 

§ ( ) - ( - )  
~ v " 

Since, in general, vo ~ 0 and O f /O~] r O, we can write 

~ 1  + ~-;~ + J~-~ - v ~ '  

which is the required eikonal equation. 

R e m a r k  7.1 I f  v is constant, Exercise 9'.1 is reduced to Exercise 6.5. 
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Chapter 8 

Hamilton's  ray equations 

It is a common physical knowledge tha t  wavefields, ra ther  
than  rays, are physical reality. None the less, the t radi t ions 
to endow rays with certain physical properties, t raced back 
to Descartes times, have been deeply rooted in natura l  sci- 
ences. Rays are discussed as if they were real objects. 

Yuri A. Kravtsov and Yuri L Orlov (1999) Caustics, catastro- 
phes and wavefields 

Preliminary remarks 

In Chapter 7, we obtained the eikonal equation that gives us the magnitude 
of phase slowness as a function of the properties of an anisotropic inhomoge- 
neous continuum through which the wavefront propagates. In this chapter, 
we will focus our attention on the solution of the eikonal equation. 

We begin this chapter by using the method of characteristics to solve 
the eikonal equation, which is a first-order nonlinear partial differential 
equation. The solution leads to a system of ordinary first-order differen- 
tial equations that describe the curves that form the solution surface in 
the xp-space. 1 These are the characteristic equations. Parametrizing the 
characteristic equations in terms of time, we obtain Hamilton's ray equa- 
tions, whose solutions give the trajectory of a signal propagating through 
an anisotropic inhomogeneous continuum. Hamilton's ray equations, which 
are the key equations of ray theory. 

~In classical mechanics, the xp-space corresponds to the momentum phase space. In 
this book, however, to avoid the confusion with the term "phase" that we use in the 
specific context of wave phenomena, we do not use this nomenclature. 

173 



174 Chapter 8. Hamilton's ray equations 

Readers who are not familiar with Euler's homogeneous-function theo- 
rem might find it useful to study this chapter together with Appendix A. 

8.1 M e t h o d  of  character i s t i c s  

8 . 1 . 1  L e v e l - s e t  f u n c t i o n s  

The eikonal equation is a first-order nonlinear partial differential equation. 
It is possible to transform this equation into a system of first-order ordinary 
differential equations by using the method of characteristics. Then, the 
solutions of the ordinary differential equations are given as the characteristic 
curves, which compose the solution surface of the original partial differential 
equation. 

Consider eikonal equation (7.17), namely, 

p2__ 1 
v 2 (x, p ) '  (8.1) 

where, p2 _ p . p ,  and, in view of definition (7.12), 

i e {1,2,3}.  (8.2) Pi " Oxi 

We wish to solve this equation for p (x). 
The solution of the eikonal equation is a surface in the xp-space. We 

have a choice of several implicit descriptions of this surface as level sets of 
function F (x, p). The two obvious choices for function F are 

and 

F (x p) - p2 _ 1 (8.3) 
' v 2 (x ,  p )  ' 

F (x, p) - p2v2 (x, p) .  (8.4) 

This way, in view of eikonal equation (8.1), the surfaces are the level sets of 
functions (8.3) or (8.4), given by 

F (x, p) = 0, (8.5) 

and 
F ( x , p ) =  1, 

respectively. Since each formulation has different advantages, 
in various sections of this book. 

(8.6) 

both are used 
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8.1.2 Characteristic equations 

2We seek to construct a solution p = p (x) such that  equation (8.5) or equa- 
tion (8.6) is satisfied. 3 In both cases, since F (x, p (x)) is constant, it follows 
that  d F  = 0, where F is treated as a function of x only. We can state the 
differential of F as 

3 (0/7, 3 3 
d F  [x, p (x)] - ~ ~ x / d x i  + E ~ OF Opj dxi - O. 

i=1 i=1 j=l Opj cOxi 

Using definition (8.2), we can express it in terms of the eikonal function, ~, 
as 

3 OF ~ 3 OF 0 01~ dxi-O. 
d F  Ix, p (x)] - E ~ x / d x i  + i l  ~ Opj cOxi cOxj 

i = 1  " j--1 

Since dxi ~ 0 and using the equality of mixed partial derivatives, for each 
i, we can write 

OF 3 OF cO 0r _0,  i E {1,2,3},  
+ opj Oxj 

j = l  

which are second-order partial differential equations. Again, using definition 
(8.2), we can rewrite these equations as 

OF ~ O F O p i  = 0 ,  i E  {1,2,3}.  (8.7) 
+ opj Oxj 

For each i E { 1, 2, 3}, we wish to find curves [x (s), pi (s)] in the solution 
surface Pi = Pi (x). This way we get a parametrization of the solution surface 
by these curves, which are commonly referred to as characteristics. For this 
purpose, we use geometrical properties of vectors tangent and normal to the 
solution surface. 

2Characteristic equations discussed in this chapter are different mathematical entities 
than the equations discussed in Exercises 6.5 and 7.1, which bear the same name. 

3Readers interested in the method of characteristics for solving first-order partial dif- 
ferential equations might refer to Bleistein, N., (1984) Mathematical methods for wave 
phenomena: Academic Press, pp. 1 - 27, to Courant, R., and Hilbert, D., (1989) Methods 
of mathematical physics: John Wiley & Sons., Vol. II, Chapter II, to McOwen, R.C., 
(1996) Partial differential equations: Methods and applications: Prentice-Hall, Inc., pp. 
29 - 38, and to Spivak, M., (1970/1999) A comprehensive introduction to differential 
geometry: Publish or Perish, Inc., pp. 3 -  28. 
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Let us consider a given i E {1, 2, 3}. The corresponding equation among 
equations (8.7) can be written as a scalar product of two vectors given by 

Opl' Op2' 01)3' Oxi " O X l '  OX2'  0X3'--1 - 0 .  (8.8) 

Following the properties of the scalar product,  we conclude that  these two 
vectors are orthogonal to one another in the four-dimensional XlX2X3pi- 
space. 

Also for a given i E {1, 2, 3} the solution surface p~ = p~ (x) can 
be writ ten as a zero-level surface of function 

(8.9) 

Furthermore for a given i C {1, 2, 3} we can obtain vector ni normal 
to the solution surface Pi = Pi (x) as the gradient of function gi, namely, 

Ogi Ogi Ogi Ogi 1 
n i = V g i -  Oxl' Ox2' Ox3' Opi " (8.10) 

Inserting gi (x, pi), given in expression (8.9), into expression (8.10), we can 
write 

n i  --  
0 (p~ (x) - p~) 0 (p~ (x) - p~) 0 (p~ (x) - p~) 0 (p~ (x) - p~)] 

Oxl ' Ox2 ' Ox3 ' Opi J ' 

to obtain 
Opi Opi Opi -1] . (8.11) 

ni - OXl ' OX2 ' OZ3 ' 

Examining equations (8.8) and (8.11), we realize tha t  

n i l  [ - -  
OF OF OF OF] 
Opl' Op2' Op3' OXi J " 

Thus, for a given i C {1, 2, 3}, vector [0f/~pl, 0F/~p2,  ~F/~p3,-OF/Oxi] 
is tangent  to the solution surface Pi = Pi (x). We denote this vector by ti. 
This way, for a given i E { 1, 2, 3}, we obtain vectors tangent  to the solution 

surface. 
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To obtain curve Ix1 (8), x2 (8), x3 (8), Pi (8)], which is in the solution sur- 
face and whose tangent vector is ti, we solve equations 

dxl (s) OF 

d8 : ~ 0pl 

dx2 (s) OF 

ds = ( Op2 

dx3 (s) OF 

ds 0193 

= _ r  OF 

, ds Oxi 

which we can concisely write as 

dxj  (s) OF 

ds = ~ Op---~ 

dpi (s) OF 

ds = - (  Oxi 

j C  {1,2 ,3} ,  (8.12) 

, i ,  j e  {1,2,3}, 

which, in view of i and j being the summation indices, we can restate as 

dxi OF 

ds  = r Opi 

_ OF  

ds - - (  Oxi 

i c {1,2 ,3}.  (8.13) 

dxj  OF 

ds = ~-~pj 

dp~ _ g F  

ds - -(c-~xi 

where ( is a scaling factor and s is the parameter along the curve. The 
choice of ~ determines the parametrization, which we will use in Section 8.2. 

Such curves are the characteristics of eikonal equation (8.1). We note 
that the solutions of system (8.12) depend on the initial conditions, which 

0 and pi (0) - p0 where i , j  c {1 2 3}. The initial we can write as xj  (0) - xj  , , , 

point must lie in the solution surface; hence, pO _ pi (x 0) for i E {1, 2, 3}. 
Since this derivation, which is shown for a given i, must hold for each 

i E {1, 2, 3}, we can write equations (8.12) as 
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Hence, three second-order partial differential equations (8.7) become six 
first-order ordinary differential equations (8.13). These are the characteristic 
equations, which compose the solution surface of the eikonal equation. 

Note that F is constant along x~ (s),p~ (s) independently of parameter 
s. To see it, consider 

3 ( O F d x i  OFdpi )  dF (x, P) 
= - ~ Oxi as Opi as ' ds i=1 

which, in view of equations (8.13), we can rewrite as 

dF(x,p)- 3 (  OF OF OF OF ) 

d s - i~l. ~ O x i O p i ~ O p--7 O x---Ti 
= 0 ,  

as required. 

8 .1 .3  C o n s i s t e n c y  o f  f o r m u l a t i o n  

As stated in Section 8.1.1, there are two obvious forms of function F. Func- 
tions (8.3) and (8.4) differ in certain aspects, such as their homogeneity 
with respect to the variables Pi. However, as stated by the following lemma, 
they both result in the same characteristic equations and, hence, the same 
characteristic curves. 

L e m m a  8.1 Both formulations of the function given by expressions (8.3) 
and (8.~) result in the same characteristic curves. 

Proof .  Consider characteristic equations (8.13), namely, 

dxi (OF 
ds = ~ Opi 

dp~ _ OF 
as -~  oXi 

i C {1,2, 3}. 

Letting F - p2v 2 (x, p) and setting ( - 1, we note that equations (8.13) 
become 

dXids - 2 (  piv2-[-p2v Ov 

dpi Ov 
ds = -2p2V oxi 

{1,2,a} 



8.2. Time parametrization of characteristic equations 179 

We let F -  p2_  1/v 2 (x, p) and equations (8.13) become 

(,ov) dx i  = 2~ Pi-~ 
ds v a OPi 

dp~ = - 2 ~  1 0 v  
ds v 30xi 

i c {1 ,2 ,a} .  

Equating the second equations of each set, we can write 

Ov 10v 
p2 V-~xi - ~ v a Oxi ' i E {1,2,3}. 

Solving for ~, we obtain 

Ov 
p2v 

Oxi _ p2 v4 ' iE  {1,2,3}. 
~= 1 O r  

v a Oxi 

Substituting ~ - p2v4 into the first equation of the second set, we obtain 

dxi=2p2v4 ( 1 0 v )  ( 2 0 v )  
d s P i -~- v- ~ O p---7 - 2 p i p 2 v 4 Jr-p v --~p i , i e {1, 2, 3}, 

which is equivalent to the first equation of the first set along p2v2 -- 1. m 
Thus, following equations (8.13), both expressions (8.5) and (8.6), yield 

the same characteristic curves, given that ~ = v 2 and ~ = 1, respectively. 

8.2 Time parametrization of characteristic 
equations 

8.2 .1  G e n e r a l  f o r m u l a t i o n  

Different choices of ~ result in different parametrization of the solution curves 
for the characteristic equations. For seismological studies, it is often conve- 
nient to parametrize characteristic equations (8.13) in terms of time. Since, 
in view of trial solution (7.5), the values of ~b (x) are expressed in terms of 
time, the differential of the eikonal function can be written as 

de  (x) = dt, 
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where t denotes time. Differentiating with respect to s, we obtain 

de  (x) dt 

ds ds 

This equation governs the propagation of ~ (x) along the characteristic 
curves. The physical interpretation of parameter s depends on the choice of 
scaling factor C in system (8.13). If the parameter s is to be equivalent to 
time, t, we require that 

d~p (x) = 1. 
ds 

We can restate the above condition as 

d e ( x )  _ 3 0 r  
ds --~Oxi ds =1" (8.14) 

Using definition (8.2), we rewrite condition (8.14) as 

3 dx i  
d~ (x) = ~-~.Pi - 1 (8.15) 

ds T ' 
i = 1  

which is a condition for the time parametrization of characteristic equations 
(S.la). 

8.2.2 Equations with variable scaling factor 

In order to obtain the time parametrization of system (8.13) in the context 
of function (8.3), we can write dxi/ds- ~OF/Opi, where F -  p2_ 1/v 2, as 

10v)  
dz~ _ 2~ p~ + - - ~  , i c { 1 , 2 , 3 } .  
d s  v 3 0 p i  

In view of condition (8.15), we require that 

( )(130 ) 3 dxi ~i 10v -2~ p2+ ~Pi  
i = 1  "= i = 1  

- 1 .  

Since v is homogeneous of degree 0 in the pi, the summation on the right- 
hand side vanishes by Theorem A.1. Thus, we obtain 

3 dxi 
i--1 
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and solving for 4, we immediately get ~ -  1/(2p2). 
Consequently, given function (8.3), the system of characteristic equations 

(8.13) that is parametrized in terms of time becomes 

i ) i -  

1 OF 
2p 20pi 

1 OF 
2p 20xi 

i C {1, 2, 3}, (8.16) 

where ici :=dxi/dt and {9i :=dpi/dt. Equations (8.16) are characteristic 
equations (8.13) whose scaling factor is a function of the Pi. In view of 
eikonal equation (8.1), we can also state this scaling factor as v 2 (x, p ) /2 .  

An implication of this parametrization is shown in Exercise 8.4. An 
implication of another parametrization of characteristic equations (8.13) in 
the context of function (8.3) is shown in Exercise 8.3. 

8 .2 .3  E q u a t i o n s  w i t h  c o n s t a n t  s c a l i n g  f a c t o r  

In order to obtain the time parametrization of system (8.13) in the context 
of function (8.4), we can write dxi/ds - ~OF/Opi, where F = pZv2, as 

dxi _ 2~ (piv2 _b p2 0v ) 
- , i e { 1 , 2 , 3 }  

ds Opi 

In view of condition (8.15), we require 

3dxi 3i~~( Or) p2v2 Ov 
i = 1  " i = 1  

--1.  

Following the eikonal equation, the first product in parentheses on the right- 
hand side is equal to unity. Since v is homogeneous of degree 0 in the pi, 
the summation on the right-hand side vanishes by Theorem A.1. Thus, we 
obtain 

3 
dxi 

i=1  

and solving for ~, we immediately get ~ = 1/2. 
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Consequently, given function (8.4), system (8.13) is  parametrized in 
terms of time if 

1 OF 

1 OF 
20Xi 

i e {1,2,3},  (8.17) 

where xi :=dx~/dt and fgi :=dp~/dt. Equations (8.17) are characteristic 
equations (8.13) whose scaling factor is the constant equal to 1/2. 

In view of functions (8.3) and (8.4), the corresponding scaling factors, 
( - v2/2 and ( - 1/2, are consistent with one another. This can be seen by 
examining the proof of Lemma 8.1. 

8 .2 .4  F o r m u l a t i o n  o f  H a m i l t o n ' s  r a y  e q u a t i o n s  

We now examine systems (8.16) and (8.17), and choose to proceed with the 
latter one since, therein, ( is given by a constant. This constant can be 
brought inside the differential operator and we can write system (8.17) as 

~ - Opi 

p i -  Oxi 

i e {1,2,3}.  (8.18) 

Defining 7-{ "-  F/2, where 7-{ is referred to as the ray-theory Hamiltonian 4, 
we can write equations (8.18) as 

O~ 

07-{ 
i b i -  

Oxi 

i e {1, 2, 3}.  (s.19) 

Equations (8.19) constitute a system of first-order ordinary differential equa- 
tions in t for x (t) and p (t). These equations are Hamilton's ray equations. 

41n this book we use two distinct Hamiltonians denoted by 7-/and H. Consequently, 
in the text, we avoid a generic reference to "the Hamiltonian", unless it is clear from the 
context which one of the two is considered. 
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System (8.19) governs the signal trajectories in the xp-space spanned by the 
position vectors, x, and the phase-slowness vectors, p. 

The first set of equations of system (8.19) corresponds to the components 
of vectors tangent to the so-called base characteristic curves, namely, x (t). 
These curves belong to the physical x-space. They are trajectories along 
which signals propagate in the physical space and, in the context of ray 
theory, they are rays. 

The second set of equations of system (8.19) describes the rate of change 
of the phase slowness. If ~ is not explicitly a function of a given xi, we obtain 
i5i = 0, which implies that pi is constant along the ray. Hence, in such a case, 
Pi is a conserved quantity, known as the ray parameter, which is discussed in 
Chapter 14. Physically, this means that v (x, p) is not explicitly a function 
of xi and, hence, the continuum is homogeneous along that component. 

Note that, in the context of Legendre's transformation, discussed in Ap- 
pendix B, the first set of equations can be viewed as a definition of a variable, 
while the essence of the physical formulation is contained in the second set 
of equations. 

The ray-theory Hamiltonian, T/, resulting from function (8.4), can be 
explicitly stated as 

122 T / -  ~p v (x, p) .  (8.20) 

It is a dimensionless quantity, unlike the classical-mechanics Hamiltonian, 
discussed in Chapter 13, which has units of energy. In view of eikonal 
equation (7.17), which states that p2v2 - 1, and expression (8.20), we require 
that ~ (x, p) = 1/2, along a ray. 

8.3 Example: Ray equations in isotropic 
inhomogeneous continua 

8.3.1  P a r a m e t r i c  f o r m  

System (8.19) allows us to study ray theory in the context of anisotropic 
inhomogeneous continua. To gain familiarity with such a system, consider 
a formulation for isotropic inhomogeneous continua, where eikonal equation 
(8.1) reduces to 

p 2 =  1 
v 2 (x) '  (8.21) 

which is eikonal equation (6.70). 
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To study ray equations in isotropic inhomogeneous continua, let us choose 
function (8.3), which becomes 

F (x) - p2 _ 1 (8.22) 
v~ (x)" 

Using system (8.13), we can write the corresponding characteristic equations 
a s  

dxi 
ds = 2~pi 

dpi = - 2 ~  1 0 v  
ds v 30xi 

i e {1, 2, 3}. (8.23) 

Also, let us choose scaling factor C so that s is the arclength parameter. As 
shown in Exercise 8.2, we obtain the arclength parametrization of system 
(8.23) by letting ~ = v/2. Furthermore, as shown in Exercise 8.3, system 
(8.23) can be restated as a single expression 

[ dx] d 1 _ Vv(x) 
~2 ( x ) '  

(8.24) 

where x = Ix l, x2, x3]. 
Equation (8.24) relates the properties of the continuum, which are given 

by the phase-velocity function v (x), to the ray x (s), which is described by 
arclength parameter s. 

8 .3.2 E x p l i c i t  f o r m  

Consider a three-dimensional isotropic inhomogeneous continuum where x = 
[x, y,z]. Expression (8.24) can be explicitly written as three parametric 
equations for x (s), y (s) and z (s), namely, 

d (  1 d x ) _  
ds v (x) ds 

ds v (x) ds 
d (  1 d z ) _  

vfx)  

1 Ov (x) 
v 2 (x) Ox 

1 Ov (x) 
v 2 (x )  Oy 

1 Ov (x) 
v 2 (x) Oz 

(s .25) 

where s is the arclength parameter along the ray. Consequently, all three 

equations are related by as - i (dx )2  + (dy)2 + (dz) 2, where x, y and z 
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are the orthonormal coordinates. Consequently, as shown in Exercise 8.6, 
instead of using the parametric form, under certain conditions related to the 
behaviour of the curve x (s), we can write equations (8.25) as two equations 
for x (z) and y (z), namely, 

dx  

d 1 d--z 
dz v (x) @ ) 2  

+ ~ + l  

1 
~2 (x) (X) 0X 2 (dzy)2 + +1,  (8.26) 

and 

dy 
d 1 d---~ 

dz v (x) i ( d x ) 2  
+ dy 2 

+ 1  

~2(x) oy ~ + ~ +1, (s.27) 

which form a system of explicit equations for isotropic inhomogeneous con- 
tinua. 

If the continuum exhibits only vertical inhomogeneity, v = v (z), the 
right-hand sides of equations (8.26) and (8.27) vanish and, for the resulting 
equations, we can obtain an analytical solution, as shown in Exercise 8.7. If, 
however, the properties of the medium vary along the x-axis and the y-axis, 
we must often resort to numerical methods to obtain a solution. 5 

C l o s i n g  r e m a r k s  

By solving the eikonal equation using the method of characteristics, we ob- 
tain Hamilton's ray equations whose solutions give rays. Hamilton's ray 

5Readers interested in numerical techniques to solve these differential equations might 
refer to Cerven2~, V., and Ravindra, R., (1971) Theory of seismic head waves: University 
of Toronto Press, pp. 25- 26. 
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equations are rooted in the high-frequency approximation and the trial so- 
lutions discussed in Chapters 6 and 7, and the resulting rays are given by 
the function x = x (t). We can study the entire ray theory in the context of 
Hamilton's ray equations, which is the most rigorous method for studying 
seismic rays, traveltimes, wavefronts and amplitudes. 

In Chapter 9, however, we will explore another formulation of rays us- 
ing an approach that transforms Hamilton's six first-order equations into 
Lagrange's three second-order equations. Also, this Lagrangian formulation 
coincides with the variational approach to the study of ray theory, which we 
will discuss in Part  III. By investigating both of these approaches, we gain 
additional physical insight into ray theory, as well as additional knowledge 
of useful mathematical tools. 

In general, ray theory is related to the Wentzel-Kramers-Brillouin-Jeffreys 
(WKBJ) method for solving differential equations. The WKBJ  method is 
also used in other physical theories, for instance, in quantum mechanics. 6 
Ray theory is an approximation of wave theory as classical mechanics is an 
approximation of quantum mechanics. The high-frequency approximation 
is analogous to assuming the action, discussed in Section 13.2.1, to be intl- 
nitely divisible, as is the case in classical mechanics. This is not the case in 
quantum mechanics due to the existence of Planck's constant, which is the 
fundamental unit, or quantum, of action. 7 

0 
Exerc i ses  

E x e r c i s e  8.1 Consider a three-dimensional isotropic inhomogeneous con- 
tinuum. Using Hamilton's ray equations (8.19), show that, in isotropic con- 
tinua, rays are orthogonal to wavefronts. 

S o l u t i o n  8.1 Following expression (8.20), we can explicitly write Hamil- 
tonian TI (x, p), in a three-dimensional isotropic inhomogeneous continuum, 

6Readers interested in the WKBJ method might refer to Aki, K. and Richards, P.G., 
(2002) Quantitative seismology (2nd edition): University Science Books, pp. 434 - 437, 
(Box 9.6), and to Woodhouse, N.M.J., (1992) Geometric quantization (2nd edition): Ox- 
ford Science Publications, pp. 197- 201 and pp. 236- 249. 

7 Readers interested in the association of the geometrical optics and quantum mechanics 
might refer to Goldstein, H., (1950/1980) Classical mechanics: Addison-Wesley Publishing 
Co., pp. 484 - 492. 
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a s  

1 2 2  1 
(x, p) - ~P v (x) - ~ [Pl, P2, P3]" [Pl, P2, P3] V2 (Xl, X2, X3). (8.28) 

The corresponding Hamilton's ray equations (8.19) are 

" ",~1 - -  P l  v 2  

2 it2 - p2v 

:~3 - -  P 3  v 2  

Ov (8.29) 
~91 - -  -p2V Ox l " 

Ov 
[92 - -p2v Ox2 

Ov 
P3 = -P  2v Ox3 

Recalling definition (7.12), we can write the first three equations of system 
(8.29) as 

- [ (8.30) 
' ' 0 X l '  0X2' 0X3 " 

The left-hand side of equation (8.30) is a vector tangent to the curve x (t), 
while the right-hand side is the gradient of function ~2 (x), scaled by v 2. For 
a given point of the continuum, we can write equation (8.30) as 

--- V2 ( ~ r  t [Xl ~X2 ~X3 ~X3 " 

This means that vector t, which is tangent to curve x (t), is parallel to the 
gradient of the eikonal function, V~2 (x). Since curve x (t) corresponds to 
the ray and the level sets of the eikonal function correspond to the wave- 
fronts, by the properties of the gradient operator, the rays in an isotropic 
inhomogeneous continuum are orthogonal to the wavefronts. 

R e m a r k  8.1 Characteristic equations (8.13) can be parametrized by choos- 
ing various expressions for scaling factor ~. Two typical examples are shown 
in Exercises 8.3 and 8.~, below. In both cases, we invoke function (8.3) and 
consider isotropic inhomogeneous continua. Hence, characteristic equations 
(8.13) become equations (8.23). 

Exerc i se  8.2 8Show that the arclength parametrization of system (8.23) 
requires ~ - v / 2 . 

8See also Section 8.3.1. 
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Solution 8.2 In general, if x = x (s), using definition (8.2), we can write 

d e ( x )  _ 3 cgCdxi 3 dxi 
ds - i~[ Oxi ds - ~-~.Pi d----~' 

"= i = 1  

which, in view of characteristic equations (8.23), we can rewrite as 

3 

de (x) = ~ 2@iPi, 
ds 

i = 1  

which we can immediately restate as 

de(x)  
ds 

= 2@ 2. (s.31) 

If  s is the arclength parameter, then 

ds - ~/(dx) 2 + (@)2 + (dz) 

and, hence, (dz)  
d--~= - ~  + ~-~ + ~ , (8.32) 

where t stands for traveltime. Combining expressions (8.31) and (8.32), we 
obtain 

dr = d r  d s = 2 @ 2 1 ( d X ) 2 d s  d--~ -dT + (@)2d_~ + (dZ)2d_~ (s.a3) 

In view of condition (8.1~) and since the square root gives the magnitude of 
velocity, we can rewrite equation (8.33) as 

1 - 2@2v. 

Solving for ~, where 
get 

in view of equation (8.21) 

1 v v 

= 2p2v = 2p2v2 = ~, 

w e  u s e  p 2 v 2  - -  1, w e  

as required. 
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Exerc i se  8.3 9Letting ~ - v/2,  show that characteristic equations (8.23) 
can be reduced to equation (8.2~), namely, 

d [ 1 d x ] _  Vv(x)  
v(x)  

Solu t ion  8.3 I f  ~ -  v/2,  characteristic equations (8.23) become 

dxi 
ds 

dp~ 

ds 

= vpi 

1 0 v  
v 20xi  

i E {1,2,3}.  

The first equation of this system can be rewritten as 

1 dxi 
P i - - - -  iC  {1 2 3}. 

v d s '  ' ' 

Hence, the second equation can be stated as 

d p i _  d ( l d z i ) _  1 0 v  
ds - d---s v ds ] v 20x i '  i E {1,2,3}.  

Thus, the system of characteristic equations can be written as a single ex- 
pression d( dx) 

v(x)  ' 
wheFe x -  [Xl,X2,X3], which is equation (8.2~), as required. 

Exerc i se  S.4 10 Letting ~ - v 2/2, show that characteristic equations (8.23) 
can be written as a system of equations given by 

~ci -- v2pi 

0 
ibi - In v 

Oxi 

i~  {1,e,3}. 

So lu t ion  8.4 As shown in Section 8.2, using function (8.3) and letting ~ - 
v2/2 results in the time parametrization of characteristic equations (8.13). 

9See also Section 8.3.1. 
1~ also Section 8.2.2 and Exercise 13.3. 
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Hence, characteristic equations (8.23) can be written as 

~9i'-- 

dx i  _ v2pi  
dt 

dpi 1 0 v  

dt - v Oxi 

i e {1 ,2 ,3} .  

Following the chain rule, we can restate the second equation of this system 
to obtain 

5ci -- v2pi 

0 , i e {1, 2 , 3 } ,  

[9i - - Ox---~ in v 

as required. 

R e m a r k  8 . 2  Lemma 8.1 shows that both functions (8.3) and (8.~) yield 
the same characteristics. Thus, in a seismological context, both functions 
result in the same rays. In view of Exercise 8.~, Exercise 8.5 illustrates this 
property for isotropic inhomogeneous continua. 

E x e r c i s e  8 . 5  11 Using characteristic equations (8.17) and considering func- 
tions (8.~), show that, for isotropic inhomogeneous continua, we obtain the 
system of equations 

:~i -- v2pi  

o , i e ( 1 , 2 , 3 } .  

i5i - - - -  In v 
Oxi 

S o l u t i o n  8 . 5  Considering functions (8.4) for isotropic inhomogeneous con- 
tinua, characteristic equations (8.17), which are parametrized in terms of 
time, become 

~ci -- v2pi  

[9i - -p2v  

Since p 2 v 2 -  1, we can write 

Xi -- v2pi  

# i -  1 0 v  
v Oxi 

11 See also Exercise 13.3. 

OV 

OXi 

0 
= - - - l n v  

Oxi 

i e {1 ,2 ,3} .  

i E  
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which is also the solution of Exercise 8.~. 

Exercise 8.6 Formally, show the steps leading from set (8.25) to equations 
(8.26) and (8.27). 

Solut ion 8.6 The first two equations can be written as 

d ( 1 d x ) _  10v(x) 
as v(x) ds v 2(x) Ox ' 

which leads to 

d (  1 d y ) _  1 0v(x) 
ds v(x) ds v 2(x) Oy 

dsd  ( 1 d x d s d z ) _  1 Ov(x) ds 
dzds v(x) dsdzas v 2(x) Ox dz'  

dsd  ( 1 d y d s d z ) _ _  1 Ov(x) ds 
dzds v(x) dsdzds v 2(x) Oy dz'  

where we multiplied both sides of the equations by ds/dz,  and we multiplied 
the factors inside the parentheses by unity in the form (ds/dz) (dz/ds).  The 
two equations can be immediately restated as 

__6 ( 1 d x d z ) _  1 0 v ( x ) d s  
dz v(x) dzds v 2(x) Ox dz '  

(8.34) 
d ( 1 d y d z ) _  1 0 v ( x ) d s  

~zz v(x) dzds v 2(x) ay d--~ 

We assume the invertibilty of function z - z (s), which allows us to write 
s - s (z). Furthermore, we assume that the behaviour of the space curve 
[x (s), y (s),z (s)] allows us to express it as [x (z) , y (z)]. Consequently, 
from formal operations, we get 

ds _ ds (x (z), y (z), z) ~/[dx (z)] 2 + [dy (z)] 2 
dz dz dz 

+ [dz (z)] 2 
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Thus, since ds/dz  = 1/ (dz /ds) ,  equations (8.3~) can be stated as 

dx 
d 1 -~z 

and 

1 0 v ( x ) i ( d x ) 2  ( d y )  
~2(x)  Ox ~z + 

2 

+1 ,  

dy 
d 1 ~zz 

V 

which as required are equations (8.26) and (8.27), respectively. 

+1,  

Exercise 8.7 Solve ray equations (8.26) and (8.27) for a vertically inho- 
mogeneous continuum, where v = v (z). 

Solut ion 8.7 Since v = v (z), the right-hand sides of equations (8.26) and 
(8.27) vanish. Consequently, we obtain 

d 1 
dz v (z) 

d 1 
dz v(z) 

d~ 
dz 

dy 
dz 

+1  

= o, (s.35) 

=0 .  

Since the velocity gradient is present only along the z-axis, the ray is con- 
tained in a single vertical plane. Thus, with no loss of generality, we can 
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assume that a given ray is contained in the xz-plane and, hence, consider 
only equation (8.35). In view of the vanishing of the total derivative, equa- 
tion (8.35) can be restated as 

dx 
1 d---~ = p, (8.36) 

v ( z ) ~ ( d x )  2 
-~z +1 

where p is a constant. Equation (8.36), can be rewritten as 

dx _ p2v2 dx ~ + 1 .  

Solving for dx /dz ,  we obtain 

dx pv 

dz v/1 _ p2v2' 

and, hence we can state the solution as 

(8.37) 

Z 

f pv(~) x (~) - v/1 - p=v~ (~) 
Z0 

d~, 

where ~ is the integration variable. This is a standard expression for a 
ray in vertically inhomogeneous continua, where, as shown in Exercise 8.8, 
p - sin O/v (z). 

E x e r c i s e  8.8 Consider equation (8.36). Show that p - sin O/v (z). 

S o l u t i o n  8.8 Since d x / d z -  tan  0, following standard trigonometric iden- 
tities, we can write equation (8.36) as 

dx sin 0 
1 d z  1 tan 0 cos 0 sin 0 

~ .  ~ o 

p_v(z)~(dx)2_~z + 1  - v ( z )  x / t a n 2 0 + l  v(z)secO v(z)  

E x e r c i s e  8.9 Consider a one-dimensional homogeneous continuum. Show 
that solution x (t) of Hamilton's ray equations (8.19) corresponds to coordi- 
nates (6.~2), which can be written as 

x ( t )  - xo  + v t .  
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S o l u t i o n  8 .9  For a one-dimensional case, letting x l - x and Pl - p, we 
can write Hamilton's ray equations (8.19) as 

~ v  
:~ - -  p v  2 + p2V-~p 

Ov 
- -p2V x 

To study solution x (t), we consider the first equation. In elasticity theory, 
a one-dimensional continuum must  be isotropic, hence, Ov/Op - O. Thus, 
we obtain 

5c - -  p v  2 . 

Since, in the one-dimensional case, p is the magnitude of the phase-slowness 
vector, we can write 

- 1p2v2" 
P 

In view of eikonal equation (7.17) and since v - i l /p,  we can write 

d x  
. . . .  i v .  

dt 

Solving for  dx,  we obtain 
dx - •  

Integrating both sides, we obtain 

x (t) - xo i vt, 

as required and where xo is the integration constant. 

E x e r c i s e  8.10 Following ray equation (8.2~), show that rays are straight 
lines in homogeneous continua. 

S o l u t i o n  8.10 For homogeneous continua, v is constant and, hence, the 
right-hand side of ray equation (8.2~) vanishes. Thus, we obtain 

- o .  

The vanishing of the total derivative implies that the term in parentheses 
can be written as 

I dx 
= C ~  

v ds 
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where C denotes a constant vector. Rearranging and integrating gives 

x - a s + b ,  

which is an equation of a straight line, where a " -  Cv .  
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Chapter 9 

Lagrange's ray equations 

The ancient Greeks had a hard time defining objects like 
"curves" and "surfaces" in a general way since their algebra 
was not well developed and always remained on a rather  
modest  level. In fact, some historians think tha t  the final 
s tagnat ion of Greek mathematics  was caused by the Greeks' 
failure to develop algebra and to apply it to geometry. 

Stephan Hildebrandt and Anthony Tromba (1996) The parsimo- 
nious universe 

Preliminary remarks 

In Chapter 8, we obtained Hamilton's ray equations, which allow us to 
study seismic signals in an anisotropic inhomogeneous continuum. In a 
three-dimensional continuum, Hamilton's equations constitute a system of 
six ordinary first-order differential equations, which are expressed in terms 
of Hamiltonian ~ and exist in the xp-space. This system can be also ex- 
pressed as a system consisting of three ordinary second-order differential 
equations, which are expressed in terms of Lagrangian s where function 

(x,• is Legendre's transformation of function 7-/(x, p). These second- 
order differential equations are Lagrange's ray equations, which exist in the 
x• 1 

We begin this chapter by transforming Hamilton's ray equations into 
Lagrange's ray equations. Subsequently, we relate the orientations and mag- 

In classical mechanics, the x• corresponds to the velocity phase space. In this 
book, however, to avoid the confusion with the term "phase" that we use in the specific 
context of wave phenomena, we do not use this nomenclature. 

197 
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nitudes of vectors p and • which result in expressions relating phase and 
ray angles as well as phase and ray velocities. 

Readers who are not familiar with Legendre's transformation might find 
it useful to study this chapter together with Appendix B. 

9.1 Transformation of Hamil ton's  ray equat ions  

9.1.1  Formulation of L a g r a n g e ~ s  r a y  equations 

To obtain Lagrange's ray equations, consider Hamilton's ray equations (8.19), 
namely, 

0H 
2i - Opi 

0~t 
iS i -  

OXi 

i e {1, 2, 3}. (9.1) 

System (9.1) is composed of six first-order ordinary differential equations in 
t to be solved for x (t) and p (t). Legendre's transformation, discussed in 
Appendix B, allows us to express this system as three second-order ordinary 
differential equations in t to be solved for x (t). 

In view of expression (B.13) in Appendix B, consider a function given 
by 

3 

(x, ~) - ~ pj (x, ~)~j  - ~ (x, p (x, ~)) ,  (9.2) 
j = l  

where s is referred to as the ray-theory Lagrangian 2 
given H, and pj (x, • is a solution of 

corresponding to a 

kj = 0 ~  (x, p) 
Opj ' j e {1,2,3}, (9.3) 

which is equation (B.12). Hence, in view of Appendix B, s is Legendre's 
transformation of T/. Now, we wish to rewrite Hamilton's ray equations 
(9.1) in terms of Lagrangian (9.2). 

2In this book we use four distinct Lagrangians, which are denoted b y / : ,  9 v, L and F. 
Consequently, in the text, we avoid a generic reference to "the Lagrang ian ' ,  unless it is 
clear from the context which one among the four is considered. 
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Using expression (9.2), consider its derivative with respect to the first 
and second arguments, namely, xi and xi, where i E {1, 2, 3}. We obtain 

Oxi = Oxi pj (x, • - 7-I (x, p (x, • 

3 3 (X ~:))Opj (X, X) = ~ Opj (x, • 0U (x, p (x, • _ E 0U (x, p , 
j= l  OXi Xj -- OXi j= l  cOpj Oxi 

(9.4) 

and 

OC(x,~) o I~ "1 oe~ = o~ ~ pj (x, ~)~j - n (x, p (x, ~)) 
j= l  

3 0 p j ( x , x )  3 
= ~ O--~i xJ + Pi (x, • - E O~ (x,o~i p (x, • Opjoxi(X, • 

/=1 j= l  " ~  
(9.5) 

respectively. 
Using Hamilton's ray equations (9.1), we can restate expressions (9.4) 

and (9.5) as 

0/2 (X, ~:) 3 3 5-" Opj (x, ~) Opj (x, ~) 
Oxi Oxi Oxi / _M 

j= l  j= l  

and 

i e {1,2,3}, 

(9.6) 

0 ~  (X, X) 3 3 
' 02i ' iE {1,2,3}, 

j=l j=l 
(9.7) 

respectively. 
Examining expressions (9.6) and (9.7), we see that Os = igi and 

Os = Pi. Hence, we conclude that 

0s (x, • d ( 0 s 1 7 7  
Oxi = d-t O~i ' i C {1, 2, 3}, 

which we can rewrite as 

0s d 0s 
Oxi dt OXi 

= 0 ,  i~ {1,2,3}, (9.8) 
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where s is given in expression (9.2). 
Note that  when we introduce s (x,• in expression (9.2), • denotes a 

new variable, which, a priori, has no association with x. If we consider the 
solution of system (9.1), which is given by ( x ( t ) , p ( t ) ) ,  then, in view of 
p (t) = p (x (t),  • (t)), we also have the corresponding solution (x (t), • (t)). 
By examining equation (9.3) together with the first equation of system (9.1), 
we see that  dx (t)~dr = • (t). Consequently, at the end, our initial abuse of 
notation does no harm and, rather, might be viewed as insightful. In other 
word, depending on the context, • can be viewed as an independent variable 
or as a function of t. 

Equations (9.8) constitute a system of three second-order ordinary differ- 
ential equations in t to be solved for x (t), which is the curve corresponding 
to the ray. We refer to equations of this form as Lagrange's ray equations. 

In view of this derivation, system (9.8) is equivalent to system (9.1). 
Herein, we have obtained Lagrange's ray equations from Hamilton's ray 
equations. The duality of Legendre's transformation is such that  we can also 
obtain Hamilton's ray equations from Lagrange's ray equations, as shown in 
Exercise 9.2 and in Appendix B. This leads to the following proposition. 

P r o p o s i t i o n  9.1 Rays, parametrized by time, can be obtained either by 
solving Hamilton's ray equations (9.1) or by solving Lagrange's ray equa- 
tions (9.8). 

We note that,  in view of Legendre's transformation, the derivation of 
Lagrange's ray equations requires regularity of Hamiltonian ~ ,  namely, 

act OpiOpj r O, i, j c {1,2,3},  

which is a necessary condition for Legendre's transformation to be a local 
diffeomorphism. This limitation is discussed in Section 13.1. 

9 .1 .2  B e l t r a m i ' s  i d e n t i t y  

For our subsequent work, we notice that  we can write all the equations of 
system (9.8) as a single equation, namely, 

0-Y + - 
i=1  

Equation (9.9)is also valid for an n-dimensional case, where i C {1 , . . . ,  n}. 
The verification of this expression, for the two-dimensional case, is shown in 
Exercise 9.1. 
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We refer to equation (9.9) as Beltrami's identity, since this expression 
was formulated in 1868 by Eugenio Beltrami. Beltrami's identity plays an 
important role in our raytracing methods, as illustrated in Section 12.3 
and in Chapter 14. This importance results from the fact that if s does 
not explicitly depend on t, the first term on the left-hand side in equation 
(9.9) vanishes and, hence, the term in parentheses is equal to a constant. 
Furthermore, if Z; is homogeneous in the 2i, the Lagrangian is conserved 
along the solution, x (t), as shown in Exercise 13.2. 

9.2 R e l a t i o n  b e t w e e n  p and  • 

9.2.1 P h a s e  a n d  r a y  v e l o c i t i e s  

General  f o r m u l a t i o n  

We wish to study the relation between the orientations and the magnitudes 
of vectors p and • Mathematically, the components of these vectors are 
the variables used in Legendre's transformation. Physically, p is the vector 
normal to the wavefront and • is the vector tangent to the ray. 

Consider a given point x of the continuum and, therein, the directional 
dependence of 7-f. The first set of equations of system (9.1) is 

07-/ 
' ~  ~ ~ �9 5ci= Opi i e {1 2 3} (9.10) 

Inserting expression (8.20), namely, 

1 2 2 T / - ~ p  v (x ,p) ,  

into equations (9.10) and using the equality resulting from the eikonal equa- 
tion, namely, p2v2 = 1, we obtain 

I Ov 
~ci -- piv 2 + - ~ ,  i C {1, 2, 3}, (9.11) 

v 0pi 

where the phase-velocity function, v, is a function of the orientation of vector 
p. 

Vector • is tangent to the ray x (t). Since, at a given point, this vector 
corresponds to the velocity of the signal along the ray at that point, we refer 
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to it as ray velocity. 3 We wish to find the magnitude of this vector, which 
can be written as 

I 3 3 
i=1 j = l  

(9.12) 

where 5ij is Kronecker's delta. Using expression (9.11), we can write each 
term of the double summation in radicand (9.12) as 

(~)2 (p v2 i c9~/) 2 
- -  i + -  

v 

= (pi)2 V 4 + 2 p i v - -  + 
Opi - ~ - ~ i P i  

i C {1,2,3}. 

Performing the summation of the three terms, we obtain 

(Pi ) 2 V 4 jr_ 2piv - ._~ 
i=1 cOPi 

_ ~4 (;~)~ + 2~ ~ p ~  op~ 
i=1 

1 

+~=1 
= ~ ~ (p~)~ + ~ 

i=1 i=1 

where, since v is homogeneous of degree 0 in the pi, the summation of 
Pi (Ov/Opi) vanishes due to Theorem A.1. 

Thus, in view of equality p2v2 = 1, we can write expression (9.12) as 

i 1 v -  v2 + ~7 (Vpv) 2, 

where VpV denotes the gradient of the phase-velocity function, v, with re- 
spect to the components of the phase-slowness vector, p. Using the chain 

a In seismology, this quantity is often referred to as the group velocity. Our nomencla- 
ture is consistent with Synge, J.L., (1937/1962) Geometrical optics: An introduction to 
Hamilton's methods: Cambridge University Press, p. 12, and with Born, M., and Wolf, E., 
(1999) Principles of optics (7th edition): Cambridge University Press, p. 792 - 795. Also, 
our nomenclature appears in Winterstein, D.F., (1990) Velocity anisotropy terminology 
for geophysicists: Geophysics, 55, 1070- 1088, and in Helbig, K., (1994) Foundations of 
anisotropy for exploration seismics: Pergamon, p. 12. 
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rule, we can rewrite this expression as 

V = ~ v 2 + [ V p ( l n l ) ]  

Following the properties of logarithms, we obtain 

V - V/v2-} - [Vp (ln v)] 2. (9 3) 

Expression (9.13) gives the magnitude of the signal velocity along the 
ray x (t). In expression (9.13), the magnitude of the ray velocity, V, is given 
in terms of the magnitude of the phase velocity, v, as a function of the 
orientation of the wavefront, given by the wavefront-normal vector, p. 

T w o - d i m e n s i o n a l  case 

To illustrate expression (9.13), consider a two-dimensional continuum that 
is contained in the X lX3-plane. At a given point of the continuum, we can 
express the orientation of the wavefront-normal vector, p = [Pl, P3], in terms 
of a single angle. This is the phase angle, which, in this two-dimensional 
continuum, is given by 

~) - arctan P_~I. (9.14) 
P3 

Hence, using expression (9.13), the magnitude of the ray velocity can be 
expressed in terms of the phase velocity and the phase angle. 

Herein, using expression (9.13), we can write 

V_ /v2+(Olnv 2 ..... Opl ) +(01nv0p3) 
We wish to express differential operators O/Opi in terms of the phase angle. 
Using the chain rule, we can write 

0 00 0 (9 arctan P._! 
_ _ P3  0 _ P3  0 0 ( 9 . 1 6 )  

Opl -- Opl OO -- Opl ~ )  -- p2 + p] O0 -- p3v20~)'  

where p2 + p2 = p 2 _  1/v 2. Similarly, we obtain 

aP3 --Ply2 " (9.17) 
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Thus, expression (9.15) can be written as 

V - ~v2 + (p3 v2 O ln v ) 2 + -PlY 2 01n v ) 2 0 t 9  

-- @ 2  + (P~ + P~ ) V4 ( O ln v ) 2 _ 2 + p2v4 ( 0 1 n v )  2 0 0  

-- i [ v  (0)]2 + [v (~9)]2 (O 10-~(z9)) 2. 

Following the chain rule, we obtain 

V (0) - [v (0)] 2 + O0 ' (9.18) 

which gives the magnitude of the ray velocity in terms of the phase velocity 
as a function of the phase angle. 

Since, as shown in Chapter 7, phase velocity is a function of the prop- 
erties of the continuum namely, its mass density and the elasticity para- 
meters - -  expression (9.18) gives the magnitude of the ray velocity in terms 
of these properties and as a function of the phase angle. 

9 .2 .2  P h a s e  a n d  r a y  a n g l e s  

To illustrate the relation between the orientations of vectors p and • con- 
sider a two-dimensional continuum that is contained in the x lx3-plane. 
Therein, the phase angle is given by expression (9.14). Analogously, we can 
express the orientation of the vector tangent to the ray, namely, • = Ix1,  x3]  , 

in terms of a single angle. This is the ray angle, which, in this two- 
dimensional continuum, is given by 

0 = a r c t an - - .  (9.19) 
23 

Using expression (9.11), we can write 

xi -- PiV 2 + - - -  
10v 
v Opi ' 

Hence, expression (9.19) becomes 

t a n O  - -  

Pl v2 -[- - 

p3 v2 - -[ -___ 

i E  {1,3}. (9.20) 

1 0 v  
v Opl 
10v" 
v Op3 
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We wish to express the differential operators  O/Opi in terms of the phase 

ang]e. Recaning expression (9.16) and (9.17), we obta in  

Ov 1 0 v  
p l y  2 --k p3v- -~  Pl --b P3-~v DO 

t an  0 - Ov = 10v"  
P3 v 2 - P lv  ~ P3 - Pl -v ~00 

Recalling expression (9.14), we divide both  the numera to r  and the denomi- 

na tor  by P3, to obta in  

Pl 1 Ov 
I 

t an  0 - P3 v Ov q 
Pl 1 0 v  

1 
P3 v O0 

1 cgv 
tant9 + - ~  

v O0 
tan  t90v " 

v O0 

(9.21) 

Expression (9.21) relates the phase and the ray angles. 
Note that, in view of standard formulations in polar coordinates, expres- 

sion (9.21) gives the angle 0 that corresponds to the vector normal to the 
curve I/v (~). We refer to this curve as the phase-slowness curve. 4 Fur- 
thermore, as shown in Exercise 9.3, ~ corresponds to the vector normal to 
the curve V (0). This curve is denoted as the ray-velocity curve. Hence, 
the phase-slowness curve is the polar reciprocal of the ray-velocity curve. In 
general, the phase-slowness and ray-velocity surfaces are polar reciprocals 
of one another. 5 

The possibility of solving expression (9.21) explicitly for v~ depends on 
function v. To understand this statement, consider the following descrip- 
tion. The explicit solution of expression (9.21) for ~ requires that we can 
solve expression (9.20) for the Pi in terms of the xi. Since expression (9.20) 
is derived from expression (B.12), we require the solvability of the latter ex- 
pression for the Pi in terms of the xi. It can be shown that expression (9.21) 
can be explicitly solved for t9 if and only if function v is quadratic in the 
Pi. In a seismological context, this implies an elliptical velocity dependence. 
Consequently, an explicit ray-velocity expression V - V (0), where 0 is the 

4Interested readers might refer to Anton, H., (1984) Calculus with analytic geometry: 
John Wiley & Sons, pp. 730- 731. 

~Interested readers might refer to Arnold, V.I., (1989) Mathematical methods of clas- 
sical mechanics (2nd edition): Springer-Verlag, pp. 248 - 252, where the relation between 
the direction normal to the wavefront and the ray direction is formulated in terms of 
Huygens' principle, as well as to Born, M., and Wolf, E., (1999) Principles of optics (Tth 
edition): Cambridge University Press, pp. 803- 805, and to Helbig, K., (1994) Founda- 
tions of anisotropy for exploration seismics: Pergamon, pp. 21 - 29, where the geometrical 
properties of the physical concepts are formulated. 
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ray angle, is possible only for elliptical velocity dependence. This expression 
is illustrated in Exercise 9.8. 

9 . 2 . 3  G e o m e t r i c a l  i l l u s t r a t i o n  

In general, at a given point, the direction of a wavefront normal and the 
direction of a ray are different. Also, considering two wavefronts separated 
by a given time interval, the magnitudes of phase and ray velocities differ 
due to the fact that  the distance along the wavefront normal is different 
than the distance along the ray over the same time interval. 

As shown in Exercise 9.7, the relationship between the magnitudes of 
the ray velocity, V = 1• and phase velocity, v = 1/[Pl, is given by 

v 
V = (9.22) 

n . t  ~ 

where n and t are unit vectors normal to the wavefront and tangent to the 
ray, respectively. 

Note that,  in view of vector algebra, expression (9.22) shows that  the 
phase-velocity vector is the projection of the ray-velocity vector onto the 
wavefront normal. 6 This means that, in general, the magnitude of ray ve- 
locity is always greater than, or equal to, the magnitude of the corresponding 
phase velocity. 

Using the definition of the scalar product and the fact that  In] = It[ = 1, 
we can rewrite expression (9.22) as 

v 
V = . (9.23) 

cos (0 - O) 

Expression (9.23) conveniently involves all four entities discussed in this 
chapter, namely, ray velocity, V, phase velocity, v, ray angle, 0, and phase 

angle, ~. 

C l o s i n g  r e m a r k s  

To describe rays in anisotropic inhomogeneous continua, we can use either 
Hamilton's ray equations or Lagrange's ray equations. These equations con- 

6Readers interested in this formulation might refer to Auld, B.A., (1973) Acoustic fields 
and waves in solids: John Wiley and Sons, Vol. I, p. 222 and p. 227, to Born, M., and 
Wolf, E., (1999) Principles of optics (Tth edition): Cambridge University Press, p. 794, 
and to Epstein, M., and Sniatycki, J. (1992) Fermat's principle in elastodynamics" Journal 
of Elasticity, 27, 45- 56. 
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stitute dual descriptions of the same theory. Hamilton's ray equations are di- 
rectly rooted in fundamental physical principles, while Lagrange's ray equa- 
tions are based on the same principles via Legendre's transformation, which 
links the two systems. Thus, Lagrange's ray equations are subject to the 
singularities of this transformation. 

Lagrange's formulation belongs to the realm of variational methods and, 
hence, allows us to introduce the tools of the calculus of variations, which 
are the subject of Part III. 

E x e r c i s e s  

Exercise  9.1 7 Considering a two-dimensional continuum, verify that, given 
Lagrangian s that satisfies Lagrange's ray equations (9.8), Beltrami's iden- 
tity (9.9) is also satisfied. 

Solut ion 9.1 For a two-dimensional continuum, let x "-  xl  and z "-  x2. 
Then, we can write s = s (x, z, 2, ~, t). Consequently, Beltrami's identity 
(9.9) can be written as 

0s  d ( 0 s  0s  ) 
0--T + ~ 20-~" + i - ~  - s - 0. (9.24) 

Differentiating the left-hand side of equation (9.24), we obtain 

0s  d OF_. 0s  0s  d x-~x + 
O----t + -~ 5C-~x + ~-~z - s - --~ + ~ ~ ~ dt 

= o t  

O L  .. O L  
- 

0 

which agrees with the right-hand side, as required. Note that the vanishing 
of the left-hand side results from the fact that each expression in brackets 

See also Section 14.5 
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corresponds to a ray equation from system (9.8), namely, 

Ox dt ~ - 0 

Oz dt -~z - 0  

Exercise 9.2 Assuming that Hamiltonian 7{ and Lagrangian s do not ex- 
plicitly depend on t, following expression (9.2) and using equations (9.8), 
derive Hamilton's ray equations (8.19). 

S o l u t i o n  9.2 Consider ~ (x, p) and s (x, 2). 
the differential of TI becomes 

Following expression (9.2), 

d ~ =  
3 3 3 C~_, 3 0 s  

~~__~ dp~ + ~. p~d~- ~~_1 ~d~ - ~~__~ ~d~. 

In view of expression (B. 7), we can write Pi = 0s Hence, the second 
and last summations on the right-hand side cancel one another, and we 
obtain 

3 3 (~s 

d~  - ~ ~dp~ - Z ~ d x ~  (9.25) 
~)xi 

i=1  i=1  

Also, the differential of 7-l, can be formally written as 

3 0 J ' ~  3 0~'~ 
dT~- ~ .  ~p/dpi + ~i=1 ~ dxi. (9.26) 

Equating the corresponding terms of expression (9.25) and its formal state- 
ment (9.26), we can write 

07~ 
2i - Opi 

0 s  

Oxi 

07t 
OXi 

i e (1 ,2 ,3} .  

Invoking Lagrange's ray equation (9.8) and recalling expression (B.7), we 
can write 

0s  dp~_  0s  
u i~'x- dt - O x i  i5i-0, iE {1,2,3}. 
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Hence, we obtain 

Thus, we can write 

0s  
[9i - Oxi' i E {1, 2, 3}.  

OH 
i e i -  Oxi 

07~ i b i -  
OXi 

i E {1 ,2 ,3} ,  

which are Hamilton's ray equations (8.19), as required. 

E x e r c i s e  9.3 Sin view of the polar reciprocity of the phase-slowness curve 
and the ray-velocity curve, derive the equation that, while analogous to ex- 
pression (9.21), relates phase angle to both ray velocities and ray angles, 
namely, 

t a n ~ )  -- 

tan 0 

S o l u t i o n  9.3 Phase angle is given by 

1 0 V  

v (0) 0o 
t a n 0 0 V  " 

v (o) oo 

tan 0 - P_2 
P3 

where, following Legendre's transformation, Pi is the phase-slowness compo- 
nent given by 

0s 

P~-  o~i' 
and s is the ray-theory Lagrangian. Considering a two-dimensional medium 
and following the definition of the Lagrangian, we can write 

= ~ + ~ 
[v (o)] ~' 

where 0 = a r c t a n  (:~1/:~3). Cons' der differential operator O/Oiei. To express 
the differential operator in tetras of the ray angle, we can write 

SSee also Section 11.1.2 

21 1 
0 arctan ~ 

x3 0 x3 0 23 0 
0X]. 00 /X-i N~ 2 00 Y 2 00 '  

1 +  

0 00 0 

~? 1 (~X I (~ 
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and 

cO arctan - -  
0 00 0 23 0 

6023 023 6")0 023 O0 
gg~ 0 Xl 0 

1 + ( 2 ~ )  200 V200 

Consider the expression for the phase-slowness components and for the ray- 
theory Lagrangian. Using the quotient rule, we can write 

OV OV 
221 - 2 V ~  012 2:Cl V 2 - 2 (221 @ 2~) V 03~1 (~Xl 

P l -  021 V 4 V 2 ' 

where we used the fact that the expression in parentheses is equal to the 
square of the magnitude of the ray velocity, namely, V 2. Using, for 0/021, 
the differential operator derived above, we obtain 

230V 
V 00 

pl - 2 V2 . 

Similarly, we get 
~10V  
V O0 

p3 - 2 V2 . 

Thus, 

23 OV kl 1 OV 1 OV 
tan  ~) -- P__~I _ 21 V O0 _ 23 V O0 = tan 0 V O0 (9.27) 

- -  X l o q V  - -  ~c l t a n  0 0 V  ' 

P3 k,3 +--~ O---O 1~ 5c--3 0 V 1~ V O0 

V O0 

as required, which shows that 1/v (0) and V (0) are polar reciprocals of one 
another. 

R e m a r k  9.1 Expression (9.2?) requires a closed form expression for the 
ray velocity as a function of the ray angle, V (0). Such an expression can 
be formulated only for elliptical velocity dependence. In such a case the 
ray-velocity curve is an ellipse. 

E x e r c i s e  9.4 Using expressions (9.21) and (9.27) and following standard 
trigonometric identities, show that 

0 0 
0~ in v - ~ in V .  
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S o l u t i o n  9 . 4  Note that expression (9.21) can be written as 

0 
t a n  ~ + ~ In v 

t a n  0 _ u ~  = 

1 - t a n  O ~  In v 

tan   tan [ rc, an ( 0 In 

1_ tai  tan [arctan ( 
v)l 

which, following trigonometric identities, we can write as 

O - O + a r c t a n ( ~ l n v )  . (9.28)  

Similarly, expression (9.27) can be written as 

(o) 
~ - 0 - a r c t a n  ~-~ In V . (9 .29)  

Solving expression (9.29) for 0 and equating it to expression (9.28), we ob- 

tain 0 0 
0 0  In v - ~ In V,  

as required. 

E x e r c i s e  9 . 5  Derive expression (9.21) using level-set function (8.4) and 
characteristic equations (8.13). 

S o l u t i o n  9 . 5  In view of expression (9.19), the ray angle can be stated as 

dxl 

t a n  0 - d s  (9 .30)  
dx3 ' 

d s  

where s defines the parametrization of the ray x (s), and dxi/ds are the 
components of the vector tangent to the ray. Since expression (9.30) is 
given as a ratio, the actual parametrization has no effect on the ray angle. 
Consider a given point in an anisotropic continuum and the level-set function 
given by expression (8.~), namely, 

F (p )  - p2v2 (p )  - 1. (9.31)  

At a given point, expression (9.31) is not a function of x, and, hence, 
O F / O x i -  O. Thus, characteristic equations (8.13), are reduced to 

dxi OF ( Ov ) 
'ds = r  = 2r piv 2 + p2v~p/ , i e  { 1 , 2 } .  

 lnv)] 
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Following expression (9.30), we can write the ray angle as 

2~ lV2 + p2v 

t a n  0 - = 

( 0 1 9 3 0 v )  2( p3v 2 + p 2 v ~ -  

Ov 
Pl V2 + p2v ~ -  

up1 
OV " 

p3 v2 + p 2 v - -  
op3 

(9.32) 

We wish to express the quantities on the right-hand side of expression (9.32) 
in terms of the phase angle, ~). Recalling expression (9.14), we can write the 
differential operator in the numerator as 

0 a r c t a n  P--!z 
0 O0 0 p3 0 

Opl Opi Or9 Opl Ov9 
1 

P3 0 P3 0 
_ _  _ _  . 

Similarly, we obtain the differential operator in the denominator, which is 

0 pl 0 
OP3 p2 0~9" 

Using these differential operators in expression (9.32), we can rewrite it as 

t a n  0 - -  

Ov 10v  
pi v 2 + p3v-~o pz + p 3 - - -  

v 0~) 
Ov - 1 Or" 

p3v 2 - plv--~-~ p3 - p l - - - v  O0 

Again, recalling expression (9.14), we divide both the numerator and the 
denominator by p3 to obtain 

Pl  1 0 v  

t a n  0 - P3 v 0 0  
Pl 1 Ov 

1 
P3 v OO 

10v  
t a n ~  + - - -  

v 0 0  
t a n  ~) Ov' 

v O0 

which is expression (9.21), as required. 

E x e r c i s e  9 . 6  Derive expression (9.21) using level-set function (8.3) and 
characteristic equations (8.13). 
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S o l u t i o n  9.6 Recall expression (9.30). Consider a given point in an anisotropic 
continuum and the level-set function that is given by expression (8.3), namely, 

F (p)  - p :  1 v2 (p) = O. (9.33) 

At a given point, expression (9.33) is not a function of x, and, hence, 
O F / O x i -  O. Thus, characteristic equations (8.13), are reduced to 

= ~ ~ p / =  24 , i E  {1 ,2} .  

Following expression (9.30), we can write the ray angle as 

1 0 v  

PI -} V3 OPl (9.34) 
tan  0 - 1 0 v  " 

p3 + --~ Op----~ 

We wish to express the quantities on the right-hand side of expression (9.3~) 
in terms of the phase angle, O. In view of expression (9.1~), we consider 
the differential operator in the numerator, namely, 

0 arctan Pl  
0 O0 0 P3 0 

Op~ Opl O0 - Op~ O0 
1 

p3 

l + ( p ~ )  

0 P3 0 
- -  o 

Considering the phase-slowness vector given by p - ~Pl,P3], we can write 
p2 _ p . p .  Hence, the differential operator becomes 

0 P3 0 
Opl p2 00" 

Similarly, we obtain the differential operator in the denominator, which is 

(:9 Pl 0 

Op3 p2 00" 

Using these differential operators in expression (9.34), we can rewrite it as 

1 P30v 
Pl V 3 p2 O0 

tan 0 -- 
1 Pl Ov" 

P3 v 3 p2 O0 
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Following eikonal equation (9'.17), we can state p2v2 - 1, and, hence, we 
can write 

Pa Ov 
Pl + - - -  

t a n  0 - v Ov ~ 
Pl Ov " 

P3 v O~ 
Again, recalling expression (9.1~) and dividing both numerator and dehorn- 
inator by P3, we obtain 

1 Ov 1 Ov (tg) 
p l  ~ t a n  t9 + : 

t a n O  -- P3 v Oa _-- v (~) 0~) 
P_A 1 t a n  ~ Ov (~) 
P30v  1 

I ~ (a) aa 
v O~ 

which is expression (9.21), as required. 

E x e r c i s e  9 . 7  Using expressions (9.18) and (9.21), derive expression (9.22). 

S o l u t i o n  9 . 7  Using algebraic manipulation, we can write expression (9.21), 
namely, 

10v  
t a n ~  + - -  

t a n  0 = v 0~) 
t a n  ~ Ov' 

1 
v Or9 

a 8  
Ov t a n  0 - t a n  

0~) = v I + t a n  0 t a n  ~" 

Recognizing the trigonometric identity, we can rewrite it as 

Ov 
0 ~  - v t a n  (0 - ~)). 

Consider expression (9.18). In view of expression (9.35), we can write 

(9.35) 

Ov 2 
v -  2 +  b- ~ 

= V/V 2 + v 2 t an  2 (0 - ~) 

= v ~ / 1  + t a n  2 (0 - ~)). 

Using trigonometric identities, we obtain 

V 
V =  

cos (0 - a ) '  
(9.36) 
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which, notably, is expression (9.23). The argument of the cosine function is 
the angle between the ray-velocity vector, V,  and the phase-velocity vector, 
v. As defined in expression (9.22), let t be the unit vector tangent to the 
ray, and n be the unit vector normal to the wavefront. Hence, 0 -  ~) is the 
angle between n and t. Thus, we can immediately rewrite expression (9.36) 
a s  

v 
V =  

n . t '  

which is expression (9.22), as required. 

E x e r c i s e  9 .8  Derive a particular case of expression (9.21) that corresponds 
to the elliptical velocity dependence. 

S o l u t i o n  9 .8  Inserting expression (6.60) into expression (9.18), we can 
write the magnitude of the ray-velocity vector as 

/ v  4 t an  2 ~) + v 4 

V (~)) - V~2z 2 tan2 ~ + Vz 2 
(9.37) 

This is the magnitude of ray velocity in terms of the phase velocity as a 
function of the phase angle for the case of elliptical velocity dependence. 
Also, inserting expression (6.60) into expression (9.21), we obtain 

t an  0 - vx t an  ~), (9.38) 

which is the relation between the phase angle and the ray angle for elliptical 
velocity dependence. Expression (9.38) is analogous to expression (10.~7), 
which corresponds to SH  waves in transversely isotropic continua. Inserting 
expression (9.38) into expression (9.37), we can write the magnitude of the 
ray-velocity vector in terms of ray-related quantities, namely, 

t an  2 0 + 1 
V ( O ) - V z  / ~ T \ 2  , (9.39) 

t an  2 0 + 1 

where Vx and Vz are the magnitudes of the ray-velocity vector along the x- 
axis and z-axis, respectively. Herein, we use the fact that, along the axes of 
the ellipse, the magnitudes of the phase velocity and the ray velocity coincide. 
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Chapter 10 

Christoffel's equations 

Mathemat ica l  applications to physics occur in at least two 
aspects. Mathemat ics  is of course the principal tool for solv- 
ing technical analytical problems, but  increasingly it is also 
a principal guide in our understanding of the basic s t ructure  
and concepts involved. 

Theodore Frankel (1997) The geometry of physics 

Preliminary remarks 

In Chapter 7, where we studied the equations of motion in anisotropic con- 
tinua, we noted that waves propagate therein with three distinct phase ve- 
locities. Throughout Chapters 7 -  9, we denoted each of these velocities 
by v = v (x, p), which is a function of both position and direction. Such 
a formulation allowed us to derive general forms of the equations govern- 
ing ray theory in anisotropic inhomogeneous continua, namely, the eikonal 
equation, Hamilton's ray equations and Lagrange's ray equations. In this 
chapter, we wish to derive explicit expressions for these three velocities in 
terms of the properties of a given continuum, namely, its mass density and 
elasticity parameters. 

We begin this chapter by writing Christoffel's equations, derived in 
Chapter 7, explicitly in terms of mass density and elasticity parameters. 
Based on the solvability of these equations, we are then able to formulate 
the expressions for the three wave velocities, as well as for the associated 
displacement directions. Using these expressions, we study two specific cases 

the three waves that propagate along the symmetry axis in a monoclinic 
continuum and the three waves that propagate in an arbitrary direction in a 

217 
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transversely isotropic continuum. The chapter concludes with a discussion 
of the three corresponding phase-slowness surfaces and their intersections. 

10 .1  E x p l i c i t  f o r m  o f  C h r i s t o f f e l ' s  e q u a t i o n s  

We wish to study Christoffel's equations, shown in expression (7.13), namely, 

~ ~j~ (x)pjp~ - p (x) ~ A~ (x) - o, 
k=l /=1 

i E  {1,2,3}, (10.1) 

in the context of a specific continuum. In other words, we wish to rewrite 
equations (10.1) in a way that allows us to conveniently insert the elasticity 
parameters of a continuum exhibiting a particular symmetry, as discussed 
in Chapter 5. 

Expressing the phase slowness as the reciprocal of the phase velocity, 
namely, 

p 2 =  1 v-~, (10.2) 

2 2 p2. and letting n i - P i / p 2  w h e r e  - p-p, be the squared components of the 
unit vector normal to the wavefront, we can rewrite equations (I0.I) as 

/ p~ ~ ~ ~,~ ( x ) ~ j ~ -  p ( x ) v ~  A~ (x) - 0, 
k=l /=1 

We can state equations (10.3) in matrix notation as 

i C {1,2,3}. 

(10.3) 

p2 IF (x, n) - p (x) v2I] A (x) - 0, (10.4) 

where 

r (x, n) - 

- 3 3 3 3 

E E Cull (x)njnl  E E cU2I (x)njnl  
j= l  l=l j = l l = l  

3 3 3 3 
E E C2jll ( x ) n j n l  ~ E c2j21 ( x ) n j n l  
j= l  l=l j= l /=1  

3 3 3 3 
E E C3jll (X)?zjnl E E C3j21 ( X ) n j n  l 

. j = l / = 1  j = l / = 1  

3 3 
~ cU31 (x)njnz 

j--1/=1 
3 3 

E E ~3z (x)~jnz 

3 3 
2 C3j3l (X)~jrt l  

j=l z=l 
(~0.5) 
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1Using formula (3.5), we can s tate  the entries of ma t r ix  F (x, n) in te rms  of 
the elasticity pa ramete r s  Cm~ (x), to obtain  

Vii - Clln21 + C66n 2 + C55n~ + 2 (C16n1/z2 -+- C56n2r~3 -+- C15nln3) ,  

r22 - c66~ + c22~ + c44~ + 2 (c26~,~2 + c24~2~3 + c46~1~3), 

r33 - C55n~ + C44 n2 -t- C33ft~ + 2 (C45nln2 + C347$2~3 -~- C35nln3) , 

F12 -- F21 

-- C16 n2 ~- C26 n2 -}- C45 n2 

+ (612 + C66) nln2 + ((725 + C46) n2n3 + (614 + C56) n ln3 ,  

F13 - -  F 3 1  

- + + 

n t- (C14 -Jr- C56)n ln2  + (C36 -~- C45)rt2rt3 + (C13 -~- C55)nlrt3 , 

F23 -- F32 

= + + 

-~" (C25 + 6 4 6 ) n l n 2  + ((723 + C44)n2n3 + (636 + C 4 5 ) n l n 3 ,  

(10.6) 

where, for convenience of notat ion,  we do not explicitly write Frs (x, n) 
and Cmn (x). Thus,  using the elasticity matr ices  formulated  in Chap te r  
5, expressions (10.6) allow us to s ta te  Christoffel 's equat ions for a given 

1Note that it is also common to divide the elasticity parameters by mass density and, 
hence, to write Christoffel's equations (10.1) as 

k=l j=l ~=1 p(x) pjpt - 6ik Ak (x) = 0, i G {1,2,3}, 

where, as we see in view of Exercise 2.4, the cijkl/p have units of velocity squared. The 
corresponding solvability condition can be written as 

de t [F ik(x ,p ) -e ik ]=0 ,  i, k e  {1,2,3}, 

where the entries of matrix F(x, p) are 

3 3 
Fik(X, p):-- ~ E cijkz (x) .= ~=1 p(x) PJPt' i,k e {1,2,3}. 

Each of the three eigenvalues of r(x,  p), namely, a~(x, p), where i �9 {1,2,3}, results in 
an eikonal equation, which we can write as 

G i ( x , p ) = l ,  i e  {1,2,3}, 

and which is equivalent to equation (7.17). 
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continuum. Hence, we can conveniently study behaviour of the continuum 
in terms of its properties, namely, its mass density and elasticity parameters. 

In general, F is a symmetric matrix due to the symmetry of the elasticity 
tensor, cijkl, discussed in Section 4.2. Consequently, in view of equations 
(10.4), which constitute a homogeneous system of three linear equations, we 
can invoke the following theorems of linear algebra. 2 

T h e o r e m  10.1 Since F is symmetric, the corresponding eigenvalues are 
real. 

T h e o r e m  10.2 Since F is symmetric, the corresponding eigenvectors are 
orthogonal to each other. 

Furthermore, a homogeneous system of linear equations has either only 
the trivial solution, namely, A = 0, or infinitely many solutions in addition 
to the trivial solution. A necessary and sufficient condition for a system of 
n homogeneous equations in n unknowns to have nontrivial solutions is the 
vanishing of the determinant of the coefficient matrix. 

We wish to examine the solvability of system (10.4). Since, for physically 
meaningful solutions, we require p2 7~ 0, as discussed in Section 7.3, system 
(10.4) can be written as 

[r (x, n) - p (x) v2I] A (x)  - 0. 

Hence, we can write the solvability condition of system (10.7) as 

det 

(10.7) 

I 
F11 (x, n) - p (x) v 2 F12 (x, n) F13 (x, n) -] 

(x, r22 (x, n) - p (x) (x, J - o. 
F13 (x, n) F23 (x, n) F33 (x, n) - p (x) v 2 

(10.8) 
In view of Theorem 10.1, the determinantal equation, stated in expres- 

sion (10.8), has three real roots the eigenvalues pv~, where i - 1,2,3. 
Furthermore, in view of Theorem 10.2, the three corresponding eigenvectors 
are orthogonal to each other. 

To recognize the physical meaning of the eigenvalues and eigenvectors 
of system (10.7), consider trial solution (7.5), which leads to Christoffel's 
equations and can be written as 

u (x, t) - A (x)  f {v0 [~ (x)  - t ] } .  (10.9) 

2For proofs of Theorem 10.1 and Theorem 10.2, interested readers might refer to Anton, 
H., (1973) Elementary linear algebra: John Wiley & Sons, p. 289 and p. 399, and pp. 
286- 287, respectively. 
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Examining expression (10.9) and in view of definition (7.12), namely, pj "- 
Or and expression (10.2), we see that  the three eigenvalues correspond 
to three distinct phase velocities, which are measured normal to the wave- 
front of a given wave. In view of Theorem 10.1, these velocities are real. 

Also, as stated in trial solution (7.5), A (x) is the displacement vector. 
Hence, each eigenvector corresponds to the displacements of the continuum 
associated with the propagation of a given wave. In view of Theorem 10.2, 
each wave exhibits the displacement vector that  is orthogonal to the dis- 
placement vectors of the other two waves. 

For seismological studies, the three displacement vectors are orthogonal 
to each other at a given point, if all three corresponding wavefronts exhibit 
the same direction. If we place a receiver in an inhomogeneous continuum at 
a certain distance from the source where, in general, the three wavefront 
normals do not coincide the three recorded displacement directions are 
not orthogonal to each other since each displacement vector corresponds to a 
wavefront that  exhibits a different orientation than the two other wavefronts. 

Examining matrix (10.5), we can also conclude that, for a given wave in 
a continuum defined by stress-strain equations (7.2), the magnitude of the 
phase velocity, at a given point, depends only on the elasticity parameters 
and mass density at that  point and is a function of the direction of propa- 
gation. Hence, given the properties of the continuum, at each point, we can 
uniquely determine the magnitude of phase velocity for every direction. 

The corresponding displacement direction depends on the same quanti- 
ties and can be also uniquely determined at a given point of an anisotropic 
continuum. This is not the case in isotropic continua, where the displace- 
ment direction of S waves, although contained in the plane orthogonal to 
the phase-slowness vector, p, cannot be uniquely determined, as shown in 
Exercise 10.1. 

For the remainder of this chapter, we focus our attention on a given point 
of the continuum. Hence, for convenience of notation, we write p (x) - p 

and Cmn (x) - Cmn. 

10.2 Christoffel's equations and anisotropic con- 
t inua 

Introductory comments 

We wish to study equation (10.8), which provides us with the phase velocities 
of the three waves within an anisotropic continuum, as well as examine 
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the eigenvectors of the corresponding matrix r ,  which are the displacement 
vectors. 

Explicit expressions for these velocities in a generally anisotropic contin- 
uum can be obtained by inserting entries (10.6) into equation (10.8). Thus, 
we obtain three phase velocities, which are functions of both the properties 
of the continuum ~ given by its mass density, p, and the elasticity para- 
meters, Cmn - -  and the orientation of the wavefront given by its unit 
normal, n. Once the phase velocities are obtained, we can find the displace- 
ment directions that correspond to each of the three waves by using system 

Note that in the formulation discussed in Chapters 1 and 2, we assumed 
the displacements of material point8 associated with the propagation of the 
wave8 to be infinitesimal. This is justified by the fact that these displace- 
ments are many orders of magnitude smaller than the size of the continuum 
under investigation, as well as, several orders of magnitude smaller than 
the wavelength of a given wave. Nevertheless, seismic receivers measure the 
direction and the amplitude of these displacements, thereby providing us 
with important information for our study of the properties of the materials 
through which waves propagate. These measurements are discussed in this 
chapter and in Chapter 11, respectively. 

To illustrate explicit expressions for phase velocities and displacement 
directions, we consider two particular cases. In the case of a monoclinic 
continuum, we investigate velocities and displacements for the three waves 
that are associated with the propagation along the symmetry axis. Notably, 
this formulation also allows us to illustrate the condition of the natural 
coordinate system, discussed in Section 5.1. In the case of a transversely 
isotropic continuum, we investigate velocities and displacements for the three 
waves for an arbitrary direction of propagation. Notably, this formulation 
allows us to show that, in general, for anisotropic continua, the displacement 
direction is neither parallel nor orthogonal to the direction of propagation, 
as is the case for isotropic continua. 

10.2 .1  M o n o c l i n i c  c o n t i n u a  

Chr i s to f fe l ' s  equa t ions  a long s y m m e t r y  axis 

Consider a monoclinic continuum and let the x3-axis coincide with the nor- 
mal to the symmetry plane. In other words, let the x3-axis be the symmetry 
axis. Such a continuum is described by elasticity matrix (5.29). 

Consider a propagation along the xa-axis. Hence, nl = n2 = 0, and the 
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unit vector normal to the wavefront is n -  [0, 0, 11. Following entries (10.6) 
and in view of elasticity matrix (5.29), we note that system (10.7) becomes 

645 644 -- pv 2 0 A2 - 0 . 
0 0 C33 - PV 2 A3 0 

(10.10) 

System (10.10) can be rewritten as 

and 

[ cs -pv c45 ]-[0] 
C45 644-pv2 ] [ A1 0 A2 

(10.11) 

[C33 - pv 2] A3 - O. (10.12) 

The displacement vectors associated with equations (10.11) are contained 
in the xlx2-plane. The displacement vector associated with equation (10.12) 
coincides with the x3-axis. Hence, the displacement directions associated 
with equations (10.11) are orthogonal to the direction of propagation, while 
the displacement direction associated with equation (10.12) is parallel to 
the direction of propagation. We refer to the waves whose displacement 
directions are either orthogonal or parallel to the direction of propagation 
as the pure-mode waves, and denote them by S or P, respectively. 

Note that this monoclinic example illustrates the fact that, along the 
symmetry axes, all waves propagate as pure-mode waves. 

P h a s e  veloci t ies  a long s y m m e t r y  axis 

In order to obtain the phase velocity along the symmetry axis, consider 
equations (10.11). The solvability condition is 

d e t [ C 5 5 - p v 2  C45 ] - 0 .  
C45 C44 - pv 2 

Thus, we obtain the determinantal equation, namely, 

p2 (V2) 2 _ [(C44 -~- C55)p] (V 2) -- (C425 - C44C55) - 0, 

and, hence, the velocities of the S waves are 

I( C44 -t- C55) -~- v/(C44 - C55) 2 -t- 4C425 
vs~ - 2p , (10.13) 
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and 

v S 2  - -  

(C44 -t- C55) - i ( C 4 4  - C55) 2 -~- 4C~5 
2p 

Also, consider equation (10.12). A nontrivial solution requires tha t  A3 7 ~ 
0. Thus, the velocity of the P wave is 

D i s p l a c e m e n t  d i r e c t i o n s  a l o n g  s y m m e t r y  ax i s  

In view of equation (10.12), the P-wave displacement vector is parallel to 
the xa-axis. Considering a three dimensional continuum, we can write this 
displacement vector as 

IAll I~ A p  - A2 - a 0 , 
A3 1 

where a is a nonzero constant. 
Now, we wish to find the orientations of the displacement vectors of the 

S waves. In view of equations (10.11), these vectors are contained in the 
xxx2-plane. Inserting eigenvalue (10.13) into equations (10.11), we obtain I 5c44   44c5  2 4  2 IIA1] [o] 

645 644-655-v/(C44-C55 )2nt-4625 A2 0 " 
2 

(10.14) 
In view of a three-dimensional continuum, we can write the nontrivial solu- 
tion of system (10.14) as the displacement vector given by 

I A1 I C55 -- C44 n t- v / (C44 - C55)2 + 46,25 
As~ - A2 - b 2C45 , (10.15) 

A3 1 
0 

where b is a nonzero constant.  Hence, the angle tha t  this vector makes with 

a coordinate axis in the x lx2-plane is 

t a n  (9 - A1 _-- C55 - C44 -~- v/(C44 - C55) 2 Jr- 46'25 . (10.16) 

A2 2C45 
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We can also find, in an analogous manner, the displacement vector that 
corresponds to the other S wave. It is given by 

- 1  

As2 - A2 - c 
A3 2C45 

0 

2+4C42 5 

where c is a nonzero constant. 
We recognize that eigenvectors Ap, As~ and As2are linearly indepen- 

dent. Thus, as expected, by Theorem 10.2, the three displacement directions 
are orthogonal to each other, since 

A p - A S l  - A p .  As2 = As~ �9 As2 = 0. 

Furthermore, in this particular case of the waves propagating along the 
symmetry axis, the displacement vectors are either parallel or orthogonal to 
the wavefront normal, n. 

In general, in anisotropic continua, the wavefront normal, n, is nei- 
ther parallel nor orthogonal to the displacement vector. However, in any 
anisotropic continuum, there exist at least three directions of propagation 
where the wavefront normal is either parallel or orthogonal to the displace- 
ment direction. 3 Such directions are called the pure-mode directions. As 
illustrated herein, symmetry axes are pure-mode directions. 

N a t u r a l  c o o r d i n a t e  s y s t e m s  

In Section 5.6.2, we use the natural coordinate system to describe a mono- 
clinic continuum using the smallest number of nonzero elasticity parameters. 
The relation between the natural coordinate system and pure-mode direc- 
tions is stated by the following proposition. 

P r o p o s i t i o n  10.1 Given a propagation along a pure-mode direction, the 
coordinate system whose axes coincide with the displacement directions of 
the three waves is a natural coordinate system. 

To elucidate Proposition 10.1, consider expression (10.16). Invoking the 
trigonometric identity given by 

2tan O 
t a n  ( 2 0 )  - 1 - t a n  2 0 '  

3Readers interested in further description and additional references might refer to Hel- 
big, K., (1994) Foundations of anisotropy for exploration seismics: Pergamon, p. 166. 
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we can restate expression (10.16) as 

2C45 
tan (20)  -- C44 - C55 (10.17) 

Expression (10.17) is precisely expression (5.30), which allows us to ex- 
press elasticity matrix (5.29) in a natural coordinate system to obtain matrix 
(5.31). To further illustrate this result, we notice that,  using elasticity ma- 
trix (5.31), equations (10.10) become 

0 0 

0 C44 - fl v2 0 J[ J [ J A 2  - 0 , (10.18) 
0 0 C33 - Pv 2 A3 0 

where all three displacement directions are along the axes of the natural 
coordinate system, as expected. 

Square submatrix 

[ C 5 5 - p v  2 0 ] 
0 C44 - P v2 ' 

in equation (10.18), is the diagonal form of the square matrix shown in 
equation (10.11). In terms of a natural coordinate system, such a diagonal- 
ization is also obtained using equation (5.32), which in the present case, we 
can write as 

[ C55 - P v2 
0 

0 i [ coso sinO] 
C44 - P v2 - sin l~ cos O 

C45 C44 - /gv  2 
cosO - s i n O  | 
sin O cos O J ' 

where C44 and C55 are entries of matrix (5.29), while C44 and C55 are entries 
of matrix (5.31). 

Also, examining systems (10.10) and (10.18), we see that  the third equa- 
tion remains unchanged; hence, C33 - C33. This results from the fact that  to 
obtain a natural coordinate system, the original coordinate system is rotated 
by angle (9 about the x3-axis, whose orientation remains unchanged. 

10 .2 .2  T r a n s v e r s e l y  i s o t r o p i c  c o n t i n u a  

Chr i s to f fe l ' s  e q u a t i o n s  

In seismological studies, transverse isotropy plays an important  role. For 
instance, transverse isotropy can be conveniently used to describe layered 
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media. 
Consider a transversely isotropic continuum and let the x3-axis coincide 

with the normal to the plane of transverse isotropy. In other words, let the 
x3-axis be the rotation-symmetry axis. Such a continuum is described by 
elasticity matrix (5.47). For notational convenience, letting 

C l l  -- C12 
= C66, (10.19) 

in matrix (5.47), we can write the entries of matrix F, given by expressions 
(IO.6), a s  

Vii - n21Cll + n~C66 + n~C4a, 

F22 -- 11,12 C66 -+- r~2 2 Cl l  -+- n~ C44, 
2 - + + 

F12 - F21 - nln2 (Cll - C66), 

F13 - F31 - nln3 (C13 + C44), 

F23 - F32 - n2n3 (C13 + C44). 

(10.20) 

Note that, in view of expression (10.19), C12 = C l l -  2C66. Thus, we 
could also write F12 = F21 = nln2 (C12 + C66), which is consistent with the 
pattern of the last two lines of set (10.20). However, in this chapter, we 
choose to describe a transversely isotropic continuum using Cll, C13, C33, 
C44 and C66. 

Thus, Christoffel's equations for a transversely isotropic continuum are 
given by system (10.7) with entries (10.20). Note that, in view of transverse 
isotropy, with no loss of generality, we can set either n l = 0 or n2 = 0. 

P h a s e  ve loci t ies  in t r a n s v e r s e - i s o t r o p y  p lane  

In this section, we wish to obtain three distinct phase-velocity expressions 
for the pure-mode waves in a transversely isotropic continuum in order to 
conveniently identify the general expressions, which are derived in the follow- 
ing section. All waves that propagate along the rotation-symmetry axis, as 
well as the waves that  propagate within the plane of transverse isotropy, are 
pure-mode waves. However, along the rotation-symmetry axis, the displace- 
ment directions of the S waves are subject to the same elastic properties, 
and, hence, their phase-velocity expressions are not distinct. Consequently, 
to obtain three distinct velocities, we consider the propagation in the plane 
of transverse isotropy, where n3 = 0. 
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Furthermore, in view of transverse isotropy, we can consider the propa- 
gation in any direction in this plane. We choose the propagation along the 
x 1-axis and, hence, we set n2 - 0 .  Consequently, n 2 - 1. Thus, entries 
(10.20) become Fll = Cll, F22 = C66, F33 = C44 and F12 = F13 = F23 = 0. 
Hence, for the propagation along the xl-axis, system (10.7) becomes 

o o li ll Iol 
0 666 -- pV 2 0 A2 - 0 . (10.21) 
0 0 C44 - pv 2 A3 0 

By examining system (10.21), we recognize that  all equations are inde- 
pendent of each other and, as expected, all three waves propagate as pure- 
mode waves. To consider a P wave propagating along the Xl-axis, we set the 
displacement amplitude along the x 1-axis to unity. Hence, the correspond- 
ing vector is A p  --  [1, 0, 0] T. This immediately results in the expression for 
the P-wave velocity along the x 1-axis, namely, 

Vp -- i i  /C1---~1 . (10.22) 

t 

V P 

To consider an S wave propagating along the x 1-axis, we set to unity 
the displacement amplitude along the axis orthogonal to the x 1-axis and 
contained in the XlX2-plane. We view the XlX2-plane as a horizontal plane 
and, therefore, we refer to this wave as an S H  wave. Hence, the correspond- 
ing vector is ASH -- [0, 1, 0] T. This immediately results in the expression 
for the SH-wave velocity along the x 1-axis, namely, 

VSH-i~C~ 6 . (10.23) 

To consider the other S wave propagating along the x 1-axis, we set to unity 
the displacement amplitude along the axis orthogonal to the XlX2-plane. 
We refer to this wave as an S V  wave. Hence, the corresponding vector is 
A s v  - [0, 0, 1] T. This immediately results in the expression for the SV-wave 
velocity along the x 1-axis, namely, 

VSV---t--~'C; 4 �9 (10.24) 

Expressions (10.22), (10.23) and (10.24) are distinct from each other. 
Hence, we can use these expressions to identify general expressions for wave 
velocities, which are derived below. 
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P h a s e  ve loc i t ies  in a r b i t r a r y  d i r ec t ions  

We wish to obtain general phase-velocity expressions for the three waves 
propagating in arbitrary directions. Using entries (10.20), we can write 
expression (10.8) as 

det [r - pv2I] -- [C66 ( n2 -~- n 2) -}- C44 n2 - t 9722] 

+ - + 

--F C33C44rt 4 - C44 (n 2 -+-n 2) 19v 2 - C33n2pv  2 - C44n3flv2 2 

--F C l l  (n 2 Jr- n22) [C44 (/7,2 --F n 2) -+- C33rt 2 -- flV 2] --F p2v4}. 

Examining the above expression and using the properties of the components 
of the unit vector, namely, n 2 + n 2 - 1 - n32, we can write this determinant 
as a function of a single component, namely, n3. 

Rearranging the determinantal expression, we can write it as a product 
of the quadratic expression in v multiplied by the biquadratic expression in 
v, namely, 

det IF - pv2I] - [C66 (1 - n~) + C44 n2 - pv 2] (10.25) 

{ [C33C44 n4 - [2C13C44 - Cl lC33 -}- C123] n32 (1 - n~) 

+ C l l  C44 (1 - n 2) 2] 

--F [(Cll  -- C33)n~ -- (Cl l  -F C44)] ]9v 2 -F f12V4} �9 

Note that  determinant (10.25) is independent of nl and n2. It depends 
only on n3, namely, the orientation of the wavefront normal, n, with re- 
spect to the x3-axis, which is the rotation-symmetry axis. The absence 
of nl and n2 illustrates the fact that  to study the properties of a trans- 
versely isotropic continuum, we can use an arbitrary plane that  contains the 
rotation-symmetry axis. 

Following equation (10.8) and, hence, setting expression (10.25) to zero, 
we immediately obtain the equation to be solved for the three velocities. 

Solving the quadratic equation, shown in brackets in expression (10.25), 
and considering only the positive root, we obtain 

(n) - i 
C66 (1 -- n 2) + C44n~ 

(10.26) 

Setting n3 = 0 and comparing to expressions (10.22), (10.23) and (10.24), we 
recognize expression (10.26) as corresponding to expression (10.23). Thus, 
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we denote it as 

VSH (n) -- 
C66 ( 1 - n  2) +C44 n2 

(10.27) 

Solving the biquadratic equation, shown in braces in expression (10.25), 
we obtain two solutions. Again, setting n3 = 0, we recognize them as 
corresponding to expressions (10.22) and (10.24). We denote them as Vqp 
and VqSV, respectively. Following algebraic simplifications and considering 
only the positive roots, we can write these two solutions as 

( n )  -  (C33 - C l l ) ~  2 -~-Cll n L C44 -Jr- 
2p 

and / 
VqSy (n) - ~/(C33 

where the discriminant, A, is 

Cl l )  Tt~ zr- Cl l  -a t. C44 - 
2p 

(10.28) 

(10.29) 

A -- [(Cll  - C33)n 2 - Cl l  - C44] 2 

- 4 [C33C44n~ - [2C13C44 - CllC33 + C123] n~ (1 - n 2) 

-t-CllC44 ( 1 -  ~])2] , 

Note that since the n3 component can be written as 

n3 = cos ~, (10.30) 

where ~ is the phase angle, velocity expressions, (10.27), (10.28) and (10.29), 
can be immediately stated in terms of the phase angle. 

D i s p l a c e m e n t  d i r ec t ions  

To find the displacement directions of waves propagating in a transversely 
isotropic continuum, we consider, with no loss of generality, any plane that 
contains the rotation-symmetry axis. Letting this plane coincide with the 
XlX3-plane, we set n2 = 0, and, hence, using entries (10.20), we can write 
the coefficient matrix of system (10.7) as 

I n2Cl l  -1- n2C44 --/9V 2 0 Ttl~3 (613 _t._ C44) ] 
0 n21C66 + n2C44 - f l v  2 0 ] . 

n ln3  (C13 -4- C44) 0 n21C44 Jr- n2C33 - pv 2 
( l o . 3 1 )  
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Considering equations (10.7) and in view of the coefficient matrix (10.31), 
we see that  the second equation is not coupled with the remaining two. 
Hence, we can rewrite system (10.7) as 

[n2C66 + n~644  - pV 2 (n)] A2 - 0, (10.a2) 

and 

[n 1Cll+n  44  v2,n,  1o3'C13+ 4' ][A1] [0] 
nln3 (C13 -~- C44) n2C44 + n~C33 - pv 2 (n) A3 0 " 

(10.33) 
Note the decoupling of a 3 • 3 matrix into a 1 • 1 matrix and a 2 • 2 matrix, 

where, the former corresponds to the SH waves while the latter corresponds 
to the qP and the qSV waves. This decoupling of mathematical entities 
has a physical reason. The displacement vector associated with equation 
(10.32) is parallel to the x2-axis, while the displacement vectors associated 
with equations (10.33) are contained in the XlX3-plane. Since the two sets 
of displacement vectors are orthogonal to one another and, hence, do not 
share any components, they do not affect one another. 

Let us investigate the displacement vector associated with equation (10.32). 
The trivial solution is A2 = 0. To find a nontrivial solution, we consider 
a nonzero vector. This displacement vector, A = [0, A2, 0], is parallel to 
the x2-axis and, hence, it is orthogonal to the propagation plane. Such a 
displacement must result from the propagation of a pure SH wave. 

We can verify that  expression (10.27), which can be written as 

P@H (n) -- n2C66 + n23C44, (10.34) 

corresponds to the SH wave. Inserting expression (10.34) into equation 
(10.32), we notice that  the term in brackets vanishes, as expected. In accor- 
dance with the theory of linear equations, this also means that  any value of 
A2 satisfies equation (10.32). In other words, this equation constrains the 
orientation, but not the magnitude, of the displacement vector. 

Now, we focus our attention on the displacement vectors associated with 
the remaining two equations, which are stated in system (10.33) and cor- 
respond to the qP and qSV waves. The trivial solution is A1 = A3 = 0. 
To find a nontrivial solution, we consider a nonzero displacement vector, 
A = [A1,0, A3], which is contained in the XlX3-plane. 

System (10.33) allows us to show that, in general, in anisotropic continua, 
the displacement direction is neither parallel nor orthogonal to the direction 
of propagation. To do so, we find the angle that the displacement vector 
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makes with the x3-axis. This angle is given by 

A1 
r - arctan A3" (10.35) 

Using the second equation of system (10.33), we obtain 

A1 pv 2 ( n )  --  n 2 C 4 4  --  7 t2C33 

A--3 = nln3 (C13 + C44) " (10.36) 

Note that  the same value of the displacement angle is obtained if we use 
the first equation of system (10.33), as illustrated in Exercise 10.5. 

Since n 2 - n21 + n] - 1 and n3 is given by expression (10.30), we can 
write expression (10.35) as 

pv 2 (0) --  6 4 4  sin 2 ~) --  6 3 3  c o s  2 7) 

r  arctan (C13 + C44) sin t9 cos t9 ' (10.37) 

where v (0) is given by expressions (10.28) or (10.29), together with expres- 
sion (10.30), for the qP or qSV waves, respectively. In other words, if we 
wish to find the displacement direction associated with the qP wave, we 
insert expressions (10.28) and (10.30) into expression (10.37). If we wish 
to find the displacement direction associated with the qSV wave, we insert 
expressions (10.29)and (10.30)into expression (10.37). 

Examining expression (10.37), we see that, in general, r and 0 are neither 
equal to one another nor differ by precisely 7r/2; this is shown in Figure 10.1. 
Hence, in general, in anisotropic continua, waves do not propagate as pure- 
mode waves. However, in many geological materials, the angle between r 
and 0 is not much different from 0 or ~r/2; this is the reason for our referring 
to these waves as quasiP or quasiS, respectively. 

Note that, as expected from the theory of linear equations, in spite of 
having determined the orientation of the displacement vector, we still have 
infinitely many nontrivial solutions given by A1 = s and A3 = ms, where s 
is a nonzero parameter and m is the right-hand side of equation (10.36). In 
other words, we find the orientation but not the magnitude of the displace- 
ment vectors. 

10.3 Phase - s lowness  surfaces 

I n t r o d u c t o r y  c o m m e n t s  

Let us consider a point within a continuum and the phase-slowness vectors 
emanating, in every direction, from this point. The phase-slowness surface 
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is a surface that contains the endpoints of these phase-slowness vectors. In 
general, in view of three distinct velocities, there are three distinct sheets of 
the phase-slowness surface. 

Phase-slowness surfaces are used in formulating and applying seismic 
theory associated with anisotropic continua, as shown in Chapter 11. They 
possess important topological properties. For the elasticity parameters used 
to describe geological materials, the two outer sheets of the phase-slowness 
surface intersect. In other words, the magnitudes of the phase velocity of 
the two slower waves coincide for certain propagation directions. 

10.3 .1  C o n v e x i t y  of  i n n e r m o s t  s h e e t  

In general, in elastic continua, the phase-slowness surface which, for the 
transversely isotropic case, results from the bicubic equation, given by ex- 
pression (10.25) is of degree 6. Consequently, any straight line can in- 
tersect the surface at, at most, six points. Since the line intersecting the 
innermost sheet of the phase-slowness surface must intersect the two outer 
sheets twice, the innermost sheet can be intersected at, at most, two points. 
This results in the following theorem. 4 

T h e o r e m  10.3 In elastic continua, the innermost sheet of the phase-slowness 
surface is convex. 

In other words, the phase-slowness surface of the wave exhibiting the greatest 
velocity cannot have any inflection points. 

10 .3 .2  I n t e r s e c t i o n  p o i n t s  

In general, $1 and $2 waves are the two slower waves. As stated above, 
along certain directions, the velocities of these waves must be the same. We 
wish to find these directions for the S waves propagating in transversely 
isotropic continua, namely, the intersections of the S H  and qSV phase- 
slowness surfaces. 

In a transversely isotropic continuum, discussed herein, we consider a 
cross-section of the phase-slowness surface in the x lx3-plane. In view of 
phase-velocity expressions (10.27), (10.28) and (10.29), and using expression 
(10.30), the corresponding phase-slowness curves can be generated as a polar 
plot with the radius given by the reciprocal of the phase-velocity magnitude. 

4Interested readers might refer to Musgrave, M.J.P., (1970) Crystal acoustics: Intro- 
duction to the study of elastic waves and vibrations in crystals: Holden-Day, pp. 91 - 
92. 
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Note that the intersection points of the phase-slowness curves in the 
X lX3-plane correspond to intersection lines of the phase-slowness surfaces in 
the XlX2X3-space. In view of the rotation symmetry about the x3-axis, these 
lines are circles that are parallel to the X lX2-plane. 

Consider determinant (10.25). In view of the fact that the quadratic 
expression in v 2 contains SH waves while the biquadratic expression in v 2 
contains qSV waves, at the intersection points the solution of the quadratic 
equation must satisfy the biquadratic equation for values of n3 E [-1, 1]. 
Thus, inserting v 2 given by expression (10.27) into the biquadratic 
part of equation (10.25) shown in braces and simplifying, we obtain 

(n  2 -- 1) {(C66 - C l l ) ( C 4 4  - C66) 

-n t- [(C13 n t- C44) 2 -  ( C l l -  C 6 6 ) ( C 3 3 -  2C44 -1- C66)] n~}  

which is an expression of the form 

= 0 ,  

(ha 2 - 1) (A + Bn~) - O, ( o.38) 

where 

and 

A :=  (C66 -- C l l ) ( C 4 4  - C66),  

B " -  (C13 + C44) 2 - (C l l  - C66) (C33 - 2C44 q- C66).  

Hence, immediate solutions of equation (10.38) are given by 

n3 = -t-l~ 

which correspond to the propagation along the rotation-symmetry axis. Set- 
ting n3 = -t-1 in expressions (10.27) and (10.29), we can verify that these 
are the velocities of SH and qSV waves that are equal to one another. This 
equality is consistent with the physical consequences of transverse isotropy, 
where, for the propagation along the rotation-symmetry axis, all displace- 
ments orthogonal to this axis are subject to the same elastic properties. 

The remaining solutions of equation (10.38) depend on the values of A 
and B, namely, on the properties of a given continuum given by its elasticity 
parameters, Cmn. In general, we get four distinct cases, namely, 

�9 if B = 0, and A -r 0, there are no additional solutions and the mag- 
nitudes of the velocity coincide only for the propagation along the 
rotation-symmetry axis. 
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�9 if B r O, and A/B > O, there are no additional solutions and the 
magnitudes of the velocity coincide only for the propagation along the 
rotation-symmetry axis. Also, except at those two points, the qSV- 
wave velocity is greater than the SH-wave velocity. 

�9 if B =/= O, and A/B <_ O, there is an additional solution given by 

n3 -- • ( C l l  - C66) (C44  - C66) 

(C13 -~- C44) 2 - ( C l l  - C66) (C33  - 2C44 -~- C66) 
(10.39) 

�9 if A = B = 0, all values of n3 are the solutions and, hence, the 
magnitudes of the SH-wave and the qSV-wave velocities coincide for 
all directions. This is the case for isotropic continua. 

In a seismological context, expression (10.39) is of particular interest, be- 
cause, in connection with expression (10.30), it gives the value of the phase 
angle at which the intersection points occur, as shown in Exercise 10.2. 
The equality of the two shear-wave phase velocities results from the equal- 
ity of two eigenvalues. Consequently, the two corresponding eigenvectors, 
and, hence, the displacement-vector directions, are not uniquely determined. 
This is also the case for S waves in isotropic continua, as stated in Remark 
10.1, which follows Exercise 10.1. 

Closing remarks 

Explicit velocity and displacement-angle expressions allow us to study wave 
phenomena in the context of specific materials. In particular, these ex- 
pressions can be used in formulating inverse problems where the elasticity 
parameters are calculated based on the traveltime and displacement-angle 
information, which are obtained from experimental measurements. 

Studying anisotropic materials, we need to consider three types of angles, 
namely, the phase angles, discussed in Chapters 6 and 7, the ray angles, in- 
troduced in Chapter 9, as well as the displacement angles, discussed herein. 
As illustrated in Exercise I0.II, all three angles are related by analytical 
expressions. However, each angle plays a distinct role in theoretical formu- 
lations and the analysis of experimental measurements. 

0 
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Exerc i ses  

E x e r c i s e  10 .1  5Formulate and solve equation (10.8) for isotropic continua. 

S o l u t i o n  10 .1  Since isotropy implies directional invariance, with no loss of 
generality, consider propagation along the x3-axis and, hence, let nl  = n2 = 
0 and n3 = 1. Considering elasticity matrix (5.6~) and following entries 
(10.6), we can write equation (10.8) as 

to obtain 

I # -  pv 2 0 0 -1 
det  0 # - pv 2 0 - O, (10.40) 

0 0 A + 2 # -  pv 2 

(pv 2 _ p)2 [pv2 _ (A + 2#)] - 0. (10.41) 

Hence, the solutions are Vl - v2 - V/p/p  and v3 - V/(A + 2 # ) / p ,  as ex- 
pected in view of equations (6.17) and (6.13), respectively. 

R e m a r k  10 .1  The first two solutions in Exercise 10.1 correspond to the 
S waves since we can write the corresponding displacement directions as 
vectors A - [1, 0, 0] T and A - [0, 1, 0] T, which are orthogonal to the direc- 
tion of propagation, n -  [0, 0, 1] T. The third solution corresponds to the P 
waves since we can write the corresponding displacement direction as vector 
A - [0, 0, 1] T, which is parallel to the direction of propagation. In view of 
the double root in equation (10.~1), there are only two eigenspaces associ- 
ated with matrix F for an isotropic case, unlike for the anisotropic case, 
where there are three eigenspaces. Exercise 10.1 shows that in isotropic con- 
tinua the displacement directions of S waves are contained in the plane that 
is orthogonal to the direction of propagation. However, these displacement 
directions cannot be determined uniquely, as is the case for anisotropic con- 
tinua. 

E x e r c i s e  10 .2  Given the values of the elasticity parameters of the Green- 
river shale 6, namely, 

5 See also Section 10.3.2 

C l l  - 3.13 x 1 0 1 ~  2 
C13 - 0.34 x 1 0 1 ~  2 
C 3 3 -  2.25 x 101~ 2 
C 4 4 -  0.65 x l O l ~  2 
C66 - 0.88 x 101~ 2 

(10.42) 

~These values are stated by Thomsen, L., (1986) Weak elastic anisotropy: Geophysics, 
51, 1954 - 1966. 
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and using expression (10.30) and (10.39), find the intersection points for 
the SH and qSV waves. 

S o l u t i o n  1 0 . 2  Invoking expression (10.30) and (10.39), we obtain 

/ 
-- &rccos ~ /  

I 

66 o . 

( C l l  - C 6 6 ) ( C 4 4  - C 6 6 )  

(C13 -+- C44) 2 - ( C l l  - C 6 6 ) ( C 3 3  - 2C44 -a t. C66) 

E x e r c i s e  1 0 . 3  In view of Section 10.3.2, show that for isotropic continua, 
SH-wave velocity and SV-wave velocity coincide for all directions. 

S o l u t i o n  1 0 . 3  As shown in elasticity matrix (5.64), for an isotropic con- 
tinuum, we have 

C l l  -- C22 - C33 - A -t- 2# ,  

C13 -- A, 

C44 - C66 - # ,  

where A and # are Lamd's parameters. Thus, 

A - ( C l l  - C 6 6 ) ( C 4 4  - C 6 6 )  - ()~ -[- ~ ) ( #  - #)  

- -0~  

and 

- -  (C13 %- C44) 2 - -  ( C l l  - -  C 6 6 )  ( C 3 3  - -  2 C 4 4  -a t. C 6 6 )  - ()~ -[- # ) 2  

- ~ 0 .  

_ + 

As stated in Section 10.3.2, if A -  B -  O, the phase-slowness curves coin- 
cide for all directions. 

E x e r c i s e  1 0 . 4  Using expression (10.37), namely, 

f ly 2 (~)) -- C44 s in  2 0 - C33 cos 2 
r - a r c t a n  

(C13 -~- C44) s in ~ cos 0 ' 
(10 .43)  

show that, for P waves in isotropic continua, the phase angle, O, and the 
displacement angle, r coincide. 
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S o l u t i o n  1 0 . 4  Considering the elasticity matrix for an isotropic contin- 
uum, namely, matrix (5.62), we see that 

C13 - C l l  - 2C44, 

and 
C l l  - C3a. 

Considering elasticity matrix (5.6~) and expression (6.13), we can express 
the velocity of a P wave in an isotropic continuum as 

Hence, expression (10.~3) can be rewritten as 

r = arctan 
C l l  - C44 sin 2 t9 - C l l  cos  2 

( C l l  - C44) sin ~ cos v~ 

Rearranging and using standard trigonometric identities, we obtain 

r  arctan 
(C11 - C44 ) sin2 v~ 

( C l l  - C44) sin ~ cos 
= a r c t a n  ( t a n  v~). 

Hence, r - ~9, as required and as expected from our discussion in Section 
6.2. 

E x e r c i s e  1 0 . 5  Expression (10.~3) is obtained using the second equation of 
system (10.33). Verify that using the first equation of this system to obtain 
A1/A3, we get the same result as shown in Exercise 10.~. 

S o l u t i o n  1 0 . 5  Using the first equation of system (10.33), we can write ex- 
pression (10.35) as 

A 1 (C13 + C44) sin 0 cos t~ 
r - a r c t a n  ~33 - a r c t a n  . (10.44) 

pV 2 (~)  -- C l l  sin 2 0 - C44 cos 2 t9 

In view of the isotropic-case expressions, stated in Exercise 10.~, we can 
rewrite expression (10 .~)  as 

r  arctan 
( C l l  -- C44) sin 0 cos t9 

C l l  - C l l  sin 2 ~9 - C44 cos  2 
= a r c t a n  ( t a n  0 ) .  

Hence, r - ~), as required. 
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E x e r c i s e  10 .6  Using expression (10.43), show that, for S waves in isotropic 
continua, the phase angle, ~), and the displacement angle, r differ by 7r/2, 
which implies that the propagation and displacement directions are orthogo- 
hal to one another. 

S o l u t i o n  10 .6  Considering the elasticity matrix for an isotropic contin- 
uum, namely, matrix (5.62), we see that 

C13 -- Cll  - 2C44, 

and 
Cl l  = C33. 

Considering elasticity matrix (5.6~) and expression (6.17), we can express 
the velocity of an S wave in an isotropic continuum as 

V S  __ ~C44/9 

Hence, in a manner analogous to the one used to obtain the solution of 
Exercise 10.~, expression (10.~3) becomes 

r = a r c t an  ( - c o t  tO) = - a r c t an  (cot v~). 

Using properties of the inverse trigonometric functions, we can rewrite this 
expression as 

7r 7r 

r - a r c t an  ( tan  d) 2 = tO 2 '  

as required and as expected from our discussion in Section 6.2. 

E x e r c i s e  1 0 . 7  Using determinant (10.25) obtain expressions (10.22), (10.23) 
and (10.2~). 

S o l u t i o n  1 0 . 7  Consider the determinantal expression (10.25), namely, 

det  [r - p (x)v2I] -- [C66 (1 - n 2) + C44n~ - pv 2] 

{[C33C44n~ - [2C13C44 - Cl1633 -Jr- C23] rt~ (1 -- n~) 

-I--Cll C44 (1 - 1l, 2) 2] 

--l-- [ (C l l  - C33)n~ - ( C l l  --t-- C441] pv  2 -Jr- p2v4}  �9 
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To consider propagation in the plane of transverse isotropy, we let n3 = 0 
to obtain 

det [F - p (x)v2I]  - (666 - pv 2) [p2V4 - -  ( V i i  n t- 6 4 4 ) p v  2 n t- Cl1644 ]  �9 

(10.45) 
Setting expression (10.~5) to zero, we obtain expressions (10.22), (10.23) 
and (10.2~), as required. 

E x e r c i s e  10.8  7Show that S H  waves in transversely isotropic continua ex- 
hibit elliptical velocity dependence. 

S o l u t i o n  10 .8  Consider expression (10.27). Recalling expression (10.30) 
and using trigonometric identities, we can write 

V S H  (/)) -- ~ sin 2 ~ ~ cos 2 v~. 
P 

Setting ~) - O, we get VSH (0) - v / C 4 4 / P ,  w h i l e  setting ~ - 7r/2, we get 
VSH (~ /2)  -- v/C66/p, which can be denoted as Vz and vz, respectively. Thus, 
we can write 

VSH (~) -- ~/v 2 sin 2 9 + Vz 2 cos 2 0, 

which is expression (6.60), giving the magnitude of phase velocity for the 
case of elliptical velocity dependence. 

E x e r c i s e  10 .9  Formulate Hamiltonian ?t that corresponds to S H  waves in 
a transversely isotropic continuum. 

S o l u t i o n  10 .9  In view of expression (8.20) and considering a given point 
of the continuum, we can write the corresponding ray-theory Hamiltonian as 

1 2v 2 
(P) - ~p (P)-  

Considering the SH-wave velocity given by expression (10.27), namely, 

C66 (1 - n~) + C44n~  
V~ (n ) H 

P 

2 2 2 --Pi /P a n d n  2 - 1 - n  2 we can write and since n i 

6~-~ + C44~-~ _ 1 C66P21 + C44P 2 
V~H (P) - p - p---{ p " 

7See also Section 6.6.2 
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Hence, we can write 

1 C66P 2 + C44p 2 ( 1 0 . 4 6 )  
7-/SH (P )  --  ~ P �9 

E x e r c i s e  1 0 . 1 0  Using Legendre's transformation and expression (10.46), 
find the corresponding relation between the phase and the ray angles for S H  
waves in a transversely isotropic continuum. 

S o l u t i o n  1 0 . 1 0  As shown in expression (9.30), the ray angle is given by 

t a n  0 - 

dxl 
d s  
dx3 
d s  

Using time parametrization, we can immediately restate this expression as 

tan 0 - 

dxl 
d t  _ X l  

d x 3  - x3 

d t  

where t denotes time. In view of transformation (B.12), we can write 

07-t 
Xi--  Opi" 

Thus, using expression (10.46), we obtain 

1 0 C66p21 -F C44P~ C66 
~1-- 20p1 p P 

Pl~ 

and 
1 0 C66p21 -+- C44p 2 C44 

P3. 
- 2 0p3 p p 

Hence, we can write 
:~1 C66 Pl 

t a n  d - - -  - 
X3 C44 P3 

Recalling expression (9.1~), we can restate the above expression in terms of 
the phase angle, as 

C66 
tan 0 - ~444 tan O. (10.47) 
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Figure 10.1" Solution of Exercise 10.11. The ray angle (dashed line) and the 
displacement angle (dotted line) are plotted as functions of the phase angle. 
The units of both axes are displayed in radians. 

R e m a r k  10.2 Expression (10.~7) allows us to explicitly express the phase 
angle as a function of the ray angle and vice versa, in terms of the properties 
of the continuum given by its elasticity parameters. An explicit, closed-form 
expression of the phase angle in terms of the ray angle is possible only for 
elliptical velocity dependence. 

E x e r c i s e  10.11 Using expression (10.37), namely, 

r - arctan pv2 (a) - C44 sin 2 a - (733 cos 2 v~, (10.48) 
(C13 + C44) sin ~9 cos v ~ 

and expression (9.21), which can be rewritten as 

1 (a) 
tan~ + 

0 - arctan v (v ~) 0a  (10.49) 
t a n ~ 0 v 0 ) )  ' 

1- 
v (a) oa 

as well as the elasticity parameters of the Green-river shale, shown in ex- 
pressions (10.42), and its mass density, given by p -  2310 kg/m 3, plot the 
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displacement angles, r and the ray angle, 0, as a function of the phase 
angle, tg, for qP waves. 

S o l u t i o n  1 0 . 1 1  Inserting phase-velocity expression (10.28) and expression 
(10.30), into expressions (10.~8) and (10.~9), we generate the plot of the 
displacement and the ray angles, respectively. This plot is shown in Figure 
10.1. 

R e m a r k  1 0 . 3  Figure 10.1 shows that, in general, the phase angles, the ray 
angles, and the displacement angles are distinct. For qP waves, the three 
angles coincide along the pure-mode directions, where qP waves are reduced 
to P waves. As illustrated using the elasticity parameters of the Green-river 
shale, the pure-mode directions occur at ~) = 0 and t9 = 7r/2, as well as 
in view of expressions (10.~8) and (10.~9) at the phase angle satisfying 
equation 

flV2p ( a )  - -  C44 sin 2 t9 - C33 cos 2 a 

(C13 -Jr- C44 ) sin v~ cos v~ 

tan~ q 
1 (a) 

t a n  ~) Ov (tg) 
v (a) aa  

Examining Figure 10.1, we see that the values of the displacement angle are 
closer to the values of the ray angle than to the values of the phase angle. 8 

s Readers interested in relations among the phase angle, the ray angle and the displace- 
ment angle might also refer to Tsvankin, I., (2001) Seismic signatures and analysis of 
reflection data in anisotropic media: Pergamon, pp. 3 4 -  36. 
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Chapter 11 

Re f l ec t ion  and t r a n s m i s s i o n  

A "perfect" scientific theory may be described as one which 
proceeds logically from a few simple hypotheses to conclu- 
sions which are in complete agreement with observation, to 
within the limits of accuracy of observation. [... ] As accu- 
racy of observation increases, a theory ceases to be perfect. 

John Lighton Synge (1939') Geometrical optics: An introduction 
to Hamilton's method 

Preliminary remarks 

Discussing ray theory in Chapter 7, we assumed the smoothness of func- 
tions describing mass density and elasticity parameters. Hence, the velocity 
function was smooth with respect to both position and direction. In other 
words, we assumed that the continuum was not separated by interfaces. 

Certain seismic techniques do not require any a priori treatment of inter- 
faces and, hence, smooth velocity functions suiTice. For instance, for imaging 
seismic data, we might only need a background velocity field, which can be 
given by a smooth function. Other seismological studies, however, require 
an explicit treatment of interfaces. In particular, we need to consider inter- 
faces to study the phenomena of reflection and transmission. To study these 
phenomena, we invoke the principles of the continuity of phase, the equality 
of the sum of displacements and the equality of the traction components 
across the interface. 

We begin this chapter with the derivation of relations among the inci- 
dence, reflection, and transmission angles for interfaces between two aniso- 
tropic continua. A specific case of elliptical velocity dependence is used to 

245 
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illustrate the general formulation. Then, we consider the amplitudes of the 
reflected and transmitted signals as functions of the angle of incidence. For 
a mathematical convenience, the explicit expressions are derived only for 
the case of S H  waves in transversely isotropic continua. 

1 1 . 1  Angles at interface 

11.1 .1  P h a s e  a n g l e s  

Consider a three-dimensional continuum that is composed of parallel homo- 
geneous layers of finite thickness. Let each layer be parallel to the Z lX2- 
plane. We choose to view the XlX2X3-coordinate system in such a way that 
we refer to the x3-axis as the vertical axis. In other words, herein, we study 
phenomena associated with horizontal layers. 

Recall Hamilton's ray equations (8.19), namely, 

d:i-- 

i b i -  

opi 

cgxi 

i C {1, 2,3}, (11.1) 

where Hamiltonian 7-I is given by expression (8.20), namely, 

1 2 2 - 7p (x, p). (ll.2) 

Examining equations (11.1) and expression (11.2), in view of the horizontal 
layering, where the elastic properties remain unchanged along the Xl-axis 
and the x2-axis, we see that 

dpi _ O~ 
f ) i -  dt - Ox~ = 0 '  i ~  {1,2}. 

Consequently, pl and P2 are constant for a given solution curve x (t). In 
other words, the phase-slowness vector components that are parallel to the 
interfaces are conserved across these interfaces. We refer to this property as 
the continuity of phase. 

The continuity of phase can be justified by a physical argument. The 
continuity of phase is tantamount to the continuity of wavefronts, which 
are the loci of constant phase. Equality of Pi, where i E {1, 2}, across the 
interface implies that although the orientation of vector p might change, its 
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horizontal components must remain the same. In other words, the wave- 
fronts are continuous across the interface. We can see this requirement as 
resulting from Huygens' principle and from the associated causality. 

Let us consider propagation in the x lx3-plane. In other words, let p = 
[Pl, 0,p3]. We can write the horizontal component of the phase-slowness 
vector as 

- Ipl nl, 

where IPl is the magnitude of the phase-slowness vector and nl is the hor- 
izontal component of the unit vector normal to the wavefront. Recalling 
expression (10.30) and using the fact that, in the xlx3-plane, nl - v/l - n32, 
we obtain 

- I p l  sin vg, 

where ~) is the phase angle, which is measured between the wavefront normal  
and the vertical axis. 

Since pl is conserved across the interfaces separat ing homogeneous hor- 
izontal layers, we denote this constant by p. Now, since the magni tudes  of 
phase slowness and phase velocity are the reciprocals of one another,  we can 
write conserved quant i ty  p as 

sin v~ 
P - v (v~)' (11.3) 

where v (~)) gives the magni tude  of phase velocity as a function of the phase 
angle. 

Expression (11.3) is a general s ta tement  of Snell's law in the context of 
phase angle and phase velocity. It is valid across interfaces between generally 
anisotropic continua. Since p is a conserved quant i ty  for a given solution 
curve x (t), which corresponds to a ray, we refer to p as ray parameter .  
We will discuss it further, in the context of Hamil ton 's  and Lagrange's  ray 
equations, in Section 14.6. 

The continuity of the horizontal phase-slowness components  provides us 
with a convenient formulation to relate the angles of incidence, reflection 
and transmission. I 

1 1 . 1 . 2  R a y  a n g l e s  

We wish to use the continuity of the phase-slowness components  to derive 
the relation between the ray angles across the interface. 

~Readers interested in a geometrical formulation of the relation among the incidence, 
reflection and transmission angles might refer to Auld, B.A., (1973) Acoustic fields and 
waves in solids: John Wiley and Sons, Vol. II, pp. 1 - 14. 
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Using Legendre's transformation, an analytic relation between the phase 
angles and the ray angles was derived in Section 9.2.2 and given by expres- 
sion (9.21). This expression also states the polar reciprocity between the 
phase-slowness curve and the ray-velocity curve, which is explicitly shown 
in Exercise 9.3, and means that, at a given point of the phase-slowness curve, 
the corresponding ray direction is always normal to the phase-slowness curve. 
Herein, we will use this geometrical property to formulate expressions re- 
lating incidence, reflection and transmission ray angles across an interface 
between two anisotropic continua. 

Note that, while expression (11.3)is generally true for 0 C (-Tr, 7r), 
obtaining analytical expressions in terms of ray angles and ray velocities is 
not always possible. If we wish to obtain such expressions, we must restrict 
our studies to particular symmetries or use convenient approximations. 2 
This is a consequence of restrictions imposed by Legendre's transformation. 
Nevertheless, the geometrical construction relating the phase and ray angles, 
which results from polar reciprocity, is possible at any given point of the 
phase-slowness surface of a generally anisotropic continuum. 

In the following section, we consider a particular symmetry due to ellip- 
tical velocity dependence. Therein, we derive analytical expressions between 
the ray angles of incidence and transmission. 

11 .1 .3  E x a m p l e :  E l l i p t i c a l  v e l o c i t y  d e p e n d e n c e  

Phase - s lowness  curves  

Consider a two-dimensional continuum that is contained in the xz-plane. 
Let this continuum consist of two halfspaces, and let the interface coincide 
with the x-axis. 

We wish to characterize each layer by the phase-slowness curve, which 
is expressed in terms of the horizontal and vertical velocities. 

The two phase-slowness curves can be stated as 

f (p~, pz) - ( l v x p z )  2 + ( l V z p z )  2 - 1 
g (Pz,Pz) -- (2vzPz) 2 + (2VzPz) 2 -- 1 ' (11.4) 

for the medium of incidence and transmission, respectively, where v~ and Vz 
specify the horizontal and vertical phase velocities, respectively. 

2Readers interested in formulations using expressions based on the weak-anisotropy 
approximation might refer to Slawinski, M.A., Slawinski, R.A, Brown, R.J., and Parkin, 
J.M., (2000), A generalized form of Snell's law in anisotropic media. Geophysics, 65, No. 
2, 632 - 637. 
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Note that either expression of set (11.4) is the equation of an ellipse in 
the pxpz-plane, given by 

pz 2 = 1 ,  m C  {1,2}, 

where m = 1 corresponds to the medium of incidence, while m = 2 corre- 
sponds to the medium of transmission. 

C o n s e r v e d  q u a n t i t y  in t e r m s  of phase  angles  a n d  phase  veloci t ies  

Since the continuum is homogeneous along the x-axis, we wish to obtain the 
quantity that  is conserved across the interface in terms of the horizontal and 
vertical velocities. 

In view of expression (11.3), we can write 

sin 0 sin t9 m 
P - P x -  --  2 ' m C  { 1 , 2 } ,  ( 1 1 . 5 )  

v (t g) V/m v 2 sin 2 tgm + mVz cos 2 ~m 

where, in view of elliptical velocity dependence, v (0) is given by expression 
(6.60). 

C o n s e r v e d  q u a n t i t y  in t e r m s  of ray  angles  and  ray  veloci t ies  

We wish to express conserved quantity (11.5) in terms of the ray angle and 
the ray velocity. 

In view of the symmetry of the ellipse, the values of the horizontal phase 
velocity and vertical phase velocity are equal to the corresponding values of 
the ray velocities, namely, vz = Vz and Vz = Vz. Hence, set (11.4) can be 
restated as 

f (Px ,  P z )  - -  (1VxPx) 2 -Jr- (1Vzpz) 2 - 1 

g ( P z , P z ) -  (2VxPz) 2 + (2Vzpz) 2 - 1 " (11.6) 

To find the angle of a normal to a phase-slowness curve, we can consider 
the phase-slowness curves as the level curves of functions f and g, and use 
the fact that  the ray directions are normal to the phase-slowness curves. 
In view of the properties of the gradient operator and using, for instance, 
function f,  we can write the unit vector normal to the phase-slowness curve 
as Vpf /[~7pf l ,  where Vp is the gradient operator given by [O/Opz, O/Opz]. 
Now, using the scalar product, we obtain the angle between the vector nor- 
mal to the phase-slowness surface and the vertical axis. This angle, which 
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is the ray angle, is given by 

COS O1 - -  ez �9 
o[ 

Vpf Op~ 
[Vpf[ [Vpf[ 

evaluated at (pz, Pz), where ez is the unit vector along the vertical axis. 
Thus, using expressions for f and g stated in set (11.6), we get the corre- 
sponding expression for a ray angle in elliptical velocity dependence, namely, 

cos0,~ = mVz2Pz , m E {1,2}. (11.7) 

+ ( V pz) 

To invoke the conserved quantity, p - pz, we would like to explicitly 
solve equations (11.7) for Px. 

Using expressions of set (11.6), we can write 

i l - ( r n V x p z )  2 
Pz - m E {1 2} (11.8) 

m V Z ~ ~ 

and, hence, inserting expressions (11.8) into equations (11.7), we get 

m V z i l - - ( m V x p x )  2 
COS0m . . . . . . . . . . . .  , rn C {1,2}. (11.9) 

i m  4 2 [1 V p +mv} 2] 
Solving equations (11.9) for px, we obtain 

p2 : ,~V~ sin2 0m 
mV 2 (mVz 2 sin 20m +m V 2 cos 20m)' m E {1, 2}. 

Simplifying, we can write 

p~__ 1 
- m C  {1,2}. 

mvz cot 20 +1 

Consequently, the conserved quantity, p - p x ,  can be written as 

i p- -  , m E  {1,2}, 

mVz . ~  cot 20m + I 

(11.10) 
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which is conserved quantity (11.5) stated in terms of ray angles and ray 
velocities. 

Note that  we can write expression (11.5) as 

1 
m e {1 2} (11.11) 

mVz cot 20m + 1 mVx \mVx 

which allows us to see the similarity of form between expressions (11.5) and 
(11.10). Notice, however, that  in expression (11.10), we have Vz/Vz, while, 
in expression (11.11), we have Vz/vz. 

In general, as shown in Exercise 11.1, expressions (11.5) and (11.10) are 
equivalent to one another. For the isotropic case, as shown in Exercise 11.2, 
expressions (11.5)and (11.10) become identical. 

Following expression (11.10) and in view of set (11.6), we can write 

[(1Vx~ 2 ] [(2Vx~2 1 1V: ~k~z] c~ 01 + 1 -- 2V 2 ~ z / /  cot 2 02 + 1 , (11.12) 

where the subscripts 1 and 2 correspond to the medium of incidence and 
transmission, respectively. Equation (11.12) can be viewed as a statement 
of Snell's law for elliptical velocity dependence, expressed in terms of ray 
angles and ray velocities. 

11.2 A m p l i t u d e s  at interface 

11 .2 .1  K i n e m a t i c  a n d  d y n a m i c  b o u n d a r y  c o n d i t i o n s  

I n t r o d u c t o r y  c o m m e n t s  

In Section 11.1, we related the directions of waves across the interface. For 
this purpose, we used the continuity of phase. Herein, we will relate the 
amplitudes of waves across the interface. For this purpose, we will use 
the equality of the sum of displacements and the equality of the traction 
components across the interface, which we refer to as the kinematic and the 
dynamic boundary conditions, respectively. 

In general, when a wave encounters an interface, it generates both re- 
fleeted and transmitted waves. In this process, the energy of the incident 
wave is partially reflected and partially transmitted. The fractions of the 
incident-wave energy that  are reflected and transmitted are functions of the 
direction of the incident wave and the material properties on either side of 
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the interface. Since energy carried by a wave is directly proportional to the 
square of the amplitude of the displacement, which can be measured by a 
seismic receiver, we discuss reflection and transmission amplitudes. 

The formulation presented in this section deals specifically with ampli- 
tudes of plane S H  waves in the context of a plane interface between two 
transversely isotropic continua whose rotation-symmetry axes are normal to 
the interface. Also, these two continua are assumed to be in a welded con- 
tact, which implies that they cannot slip with respect to one another. S H  
waves are used because their elliptical velocity dependence lends itself to a 
convenient illustration of the physical concepts involved. 

D i s p l a c e m e n t  vec to r s  

In a three-dimensional, transversely isotropic continuum, where the rotation- 
symmetry axis is assumed to coincide with the x3-axis, we consider an S H  
wave whose phase-slowness vector, p, is contained in the Xlx3-plane. Hence, 
this S H  wave exhibits a displacement in the x2-direction only, and, conse- 
quently, we can write its displacement vector as 

u = [0, u2, 0] .  (11 .13)  

Considering the oscillatory nature of waves and in view of expression (6.63), 
we can write the nonzero component of displacement as 

u2 = A exp [ice (p .  x - t)], (11.14) 

where A denotes the amplitude of the displacement and exp [.] is the phase 
factor. 

K i n e m a t i c  b o u n d a r y  cond i t i ons  

Our kinematic boundary conditions require the equality of the sum of dis- 
placements on either side of the interface. This equality has the following 
physical meanings. The equality of displacements parallel to the interface 
implies that  the materials cannot slip with respect to one another. The 
equality of the displacement normal to the interface implies that  the ma- 
terials cannot separate from one another or penetrate one another. These 
equalities are tantamount to the assumption of a welded contact. 

In view of expression (11.14) and setting the amplitude of the incident 
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signal to unity, we can write the kinematic boundary condition as 

io I I! l 1 exp [iw ( p / . x - t ) ]  + 
0 

exp [iw ( p ~ . x  - t)] 

1 exp [iw ( p t - x - t ) ] ,  

where i, r and t, as superscripts or subscripts, refer to the incident, re- 
flected and t ransmit ted  waves, respectively. We can immediately rewrite 
this kinematic boundary condition as 

exp [i~o (p i .  x - t)] + A~ exp [ia; (p~. x - t)] - At exp [ico (p t .  x - t ) ] .  
(11.15) 

D y n a m i c  b o u n d a r y  c o n d i t i o n s  

The dynamic boundary conditions require the equality of the traction com- 
ponents across the interface. 

Note tha t  the inequality of the traction components would imply a finite 
net force acting on a massless element of the interface. This would lead, in 
view of Newton's  second law of motion, to a physically inacceptable concept 
of an infinite acceleration. 

Recalling the traction, given by expression (2.31), and the symmetry  of 
the stress tensor, s tated in Theorem 2.1, we can write 

3 

Ti -- ~-~ ~ijTtj, i C { 1 , 2 , 3 } ,  
j - 1  

where n is the unit vector normal to the surface upon which the traction is 
acting. Considering an interface coinciding with an x lx2-plane, where the 
interface normal is n - [0, 0, I], we see that that the traction components 
that contain nl and n2 vanish identically. Consequently, their equality is 
trivially satisfied. Now, we can write the equality of the nonzero components 
of traction as 

cr13n3 
cr/3n 3 II  -- 023 n3 
0-3/3n3 crIIn 33 3 
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where the superscript I indicates the medium of incidence and reflection, 
while the superscript II indicates the medium of transmission. This equa- 
tion immediately implies the equality of the stress-tensor components, namely, 

IlI" (7/3 (713 
I I  0-/3 -- 0-23 
I I  

(7/3 (733 

o (11.16) 

To study the amplitudes of reflected and transmitted waves in terms 
of the properties of the continua on either side of the interface, we wish 
to rewrite conditions (11.16) in terms of elasticity parameters and mass 
density. Recalling definition (1.15) and considering stress-strain equations 
(4.11) with the elasticity matrix for a transversely isotropic continuum, given 
by matrix (5.47), we can write 

0ul 
- 

Ou2 
0"23 -- C44 ~3x3 

and 

 u3) 
0u3 ) 

(~U3 
(733 - -  C33~3x3 �9 

(11.17) 

In view of displacement vector (11.13), the only nonzero stress-tensor com- 
ponent is given by expression (11.17), which we can rewrite as 

~ (11.18) (723 -- C44~x3.  

All other components vanish identically and, thus, their equalities are triv- 
ially satisfied. Hence, dynamic boundary conditions (11.16) are reduced 
to 

I I  (7/3 - -  (723" (11.19) 

Considering the displacement-vector components for the incident, re- 
flected and transmitted waves and in view of expression (11.18), we can 
write boundary condition (11.19) as 

( Oui2 0u~ ) Out2 (11.20) 
C I 4  -~X 3 -i- -~X 3 --  C4I I4 c~x 3 " 

Note that the left-hand side of equation (11.20) contains the contri- 
butions to stress-tensor component (713 of both the incident and reflected 
waves. 
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Invoking expression (11.14), we can write equation (11.20)as 

C4z4 (a~p~ exp [ico ( p i . x -  t)] + cop~aA~ exp [iw ( p ~ . x -  t)]) 
t f ~ I I  [icd ( p t ' x -  = aJP3 c,:14 At exp t) ] .  (11.21) 

Thus, equations (11.15) and (11.21) are the kinematic and dynamic 
boundary conditions, respectively, for S H  waves propagating across the in- 
terface separating two transversely isotropic continua in welded contact. 
These equations form a system of equations to be solved for the reflection 
and transmission amplitudes. 

Note that mass density is implicitly present in condition (11.21) since it 
is contained in expressions for the phase-slowness vectors. 

11 .2 .2  R e f l e c t i o n  a n d  t r a n s m i s s i o n  a m p l i t u d e s  

De r iva t i on  of express ions  

We wish to obtain the values of the reflection amplitude, A~, and the trans- 
mission amplitude, At. Thus, we need to solve the system composed of 
equations (11.15) and (11.21). Since these equations relate to a point on 
the interface, in view of the previous assumptions, we can make certain 
simplifications without further affecting the generality of the formulation. 

Since we are considering the interface that coincides with the X lX2-plane, 
we set x3 = 0. In view of the transversely isotropic continuum with the 
x3-axis corresponding to the rotation-symmetry axis and our choice of the 
propagation in the X lX3-plane, the corresponding phase-slowness vector is 
p = ~Vl, 0, P3]. Furthermore, the homogeneity of the continuum along the 
x 1-axis and the x2-axis allows us to conveniently choose any incidence point 
on the interface; hence, we choose (0, 0, 0). Also, at the instant of incidence, 
the incident, reflected and transmitted waves are considered at the boundary 
at the same time t. Moreover, considering monochromatic waves, the value 
of frequency, co, is the same for the incident, reflected and transmitted waves. 
Thus, equations (11.15) and (11.21)simplify to 

1 + Ar = At, (11.22) 

and 
+ r C , 2 1 4 P 3 2 i t  ' (11.23) 

respectively. 
We can further simplify condition (11.23). In view of the phase-slowness 

curve being symmetric about the x3-axis, the equality of the Pl components 
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for the incident and reflected waves implies that  p~ - -p~. In other words, 
the vertical components of the phase-slowness vectors for the incident and 
reflected waves exhibit the same magnitudes and opposite directions. 

Hence, dynamic boundary condition (11.23) becomes 

I i C44P3 (1 At) - ~ U  t - -  t~  ?i4 P a  A t . (11.24) 

Now, it is convenient to explicitly include mass density in condition 
(11.24). Since p3 is a vertical component of the phase-slowness vector, re- 
calling expression (10.27), we can write 

6,414 cos 0i (I - At) - C4 u cos ~)t At. 
i C~6sin2Oi+CI4c~ ~ C6/~ sin2 tgt P2-I- C4/4/c~ ~gt 

(11.25) 
Equations (11.22) and (11.25) form a system of two equations to be 

solved for the two unknowns, namely, the reflection and transmission am- 
plitudes. These solutions are 

x/-fii-C414 cos Oi 

A r ( v~ ) - v/C/6sin2t9i + C I4 c ~ s 2 0 i v/C6 H sin 2 ~)t + C4 H cos 2 ~t 

v:fiiC4X4 cos Oi 

/C/6 sin 2 tO i + C/4 cos 2 v~i 
+ 

0, 

C6 I sin 2 tot + C4~ cos 2 t~t 6 

, (11.26) 

and 

x/~C414 cos Oi 

? C~6 sin 20i + CI4 cos 20i 

At (0) - x/~C~4 COS ~9 i x /~C4 H cos Ot . (11.27) 

/C616 sin 2 0i + C4/4 cos 2 0i 

+ 
/C6~ sin 2 0t + C4 H cos 2 0t 

Expressions (11.26) and (11.27) give the reflection amplitude and the 
transmission amplitude, respectively, for SH waves in transversely isotropic 
continua with the rotation-symmetry axes normal to the interface. The 
reflection and transmission amplitudes depend on the values of the elasticity 
parameters and mass density on either side of the interface, and are functions 
of the phase angles of incidence and transmission. 



11.2. Ampli tudes at interface 257 

Interpretation of expressions 

Examining expressions (11.26) and (11.27), we learn about the behaviour 
of the seismic signal in the context of its being transmitted through, or 
reflected from, the interface. 

Depending on the values of elasticity parameters, mass densities and the 
incidence angle, the value of expression (11.26) can be either positive or 
negative. The positive sign implies that  the direction of the displacement 
vectors for both the incident wave and the reflected wave is the same. The 
negative sign implies the reversal of the direction of the displacement vector. 
Also, while the amplitude of the incident wave is set to unity, the amplitude 
of the transmitted wave can be greater than unity. This is in agreement 
with balance of energy, as shown in Exercise 11.5. 

If the values of elasticity parameters and mass densities are such that  
the magnitude of the velocity that is parallel to the interface is greater in 
the medium of transmission than in the medium of incidence, by examining 
expression (11.5), we conclude that  once ~i is large enough, sin ~t is greater 

than unity and, consequently, cos~)t - V / 1 -  sin 2 ~)t is purely imaginary. 
Furthermore, examining expressions (11.26) and (11.27), we conclude that,  
in such a case, A~ and At are complex numbers. 

Let us consider the transmitted wave. Returning to expression (11.14), 
we can write it as 

ut2 -- At exp [iw (Iptl cos0tz + [pt I sin ~)tx - t ) ]  

= At exp [iw (IptlilcosOtl z + [pt I sin tgtx - t)] 

- A exp Ip l Icos  l z) xp [i (Ip l sin tgtx - t ) ] .  

(11.28) 

Expression (11.28) describes a wave that propagates in the positive x-direction 
and decays exponentially in the positive z-direction. Such a wave is called 
evanescent. In such a case there is no energy transmitted across the inter- 
face. Also, in such a case, the corresponding magnitude of Ar is equal to 
unity, as shown in Exercise 11.6. 

Since for evanescent waves there is no energy transmitted across the 
interface, let us focus our attention on the reflected wave. For evanescent 
waves, Ar is a complex number that  we can write as 

Ar (~)) = IAr] exp ( ix) ,  (11.29) 

where IA~I is the magnitude and x is the angle in the complex plane. In view 
of expressions (11.14) and (11.29), as well as using the fact that  I A r l -  1, 
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we can write the nonzero component of displacement of the reflected wave 
as 

u~ = exp (i~)exp [iw (p.  x - t)] = exp {i [>r + w ( p . x  - t)]}, (11.30) 

where exp {-} is the phase factor. Consequently, examining expression (11.30) 
and following the sign convention used for the phase factor in expression 
(11.14), we see that if ;4 > 0, the reflected wave is phase-delayed relative to 
the incident wave. This is the consequence of the fact that positive ;4 re- 
sults in the phase factor being evaluated at an earlier time. In other words, 
exp [i ( ;4-a; t )]  lags exp (-iaJt) in time. Similarly, if ~ < 0, the reflected 
wave is phase-advanced. 3 

Expres s ions  in t e r m s  of inc idence  phase  angle  

As shown in Section 11.1, the incidence and transmission angles can be ex- 
pressed in terms of one another. Consequently, we wish to state expressions 
(11.26) and (11.27) in terms of the phase angle of incidence only. 

Recall conserved quantity (11.3). Let the phase velocity be given by 
expression (10.27), and the phase angle be stated by expression (10.30). 
Thus, we can write 

sin tgi sin 0t 

~ C/6 sin 20i + C/4 cos 2 ~)i ~/C6/~ 

pl 

sin 2 tgt + C4/4 / cos 2 tgt 

P2 

(11.31) 

Solving equation (11.31) for the angle of transmission, yields 

~ Pl C / / s  in2 tgi 
0t - arcsin [ ~  (C6/6 - C/4) - /91  (C6/~ - c4H)] sin 2 ~)i + p2CI4" 

(11.32) 

Hence, by inserting expression (11.32) into expressions (11.26) and (11.27), 
we can state the latter expressions in terms of the phase angle of incidence 
only. 

Expres s ions  in t e r m s  of incidence ray  angle  

It is often convenient to state expressions (11.26) and (11.27) in terms of the 
ray angle of incidence, rather than the phase angle of incidence. Following 

aReaders interested in phase shifts might refer to Aki, K., and Richards, P.G., (2002) 
Quantitative seismology (2nd edition): University Science Books, pp. 149-  157. 
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equation (10.47), we can express the phase angle in terms of the ray angle 

as 
~/C4/4 ) 0 i -  arctan \ ~  tan0i �9 (11.33) 

Consequently, by inserting expression (11.33) into expression (11.32), 
and inserting the resulting expression into expressions (11.26) and (11.27), 
we can state the latter expressions in terms of the ray angle of incidence 
only. 

Closing remarks 

The reflection-angle and transmission-angle expressions derived in this chap- 
ter result from the continuity of phase across the interface. Analogous ex- 
pressions, resulting from the conserved quantity associated with Fermat's 
principle of stationary traveltime, are discussed in Chapter 14. 

Herein, the reflection-amplitude and transmission-amplitude expressions 
are derived for S H  waves in transversely isotropic continua. This formu- 
lation provides a convenient illustration of the derivation process resulting 
from the boundary conditions that imply the equality of the sum of displace- 
ments and the equality of the traction components across the interface. Such 
a formulation can also be used in more general cases. 

Note, however, that the illustration using S H  waves does not address 
the fact that, in general, in anisotropic continua, displacement direction 
is neither parallel nor orthogonal to the wavefront normal, as discussed in 
Section 10.2.2. This property would introduce additional complications that 
are not addressed in this chapter. 

Our formulation of the reflection and transmission amplitudes is based 
on the plane-wave assumption. Considering a point source, the plane-wave 
assumption provides a good approximation to a general formulation for dis- 
taut sources. Moreover, other wavefront shapes can be considered as a com- 
position of plane waves. In other words, any wavefront can be decomposed 
into plane waves. 4 

If we wish to derive a more general formulation, numerous assumptions 
must be investigated. For instance, considering ray methods in transversely 
isotropic continua, S H  waves are decoupled from the qP and qSV  waves. In 

4 Readers interested in evaluation of the applicability of the plane-wave assumption and 
its extensions might refer to Grant, F.S., and West, G.F., (1965) Interpretation theory in 
applied geophysics: McGraw-Hill Book Co., Chapter 6. 
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general ,  in con t inua  exhib i t ing  different symmet r i e s ,  all th ree  waves are cou- 

pled. Also, for the  interface considered in th is  chapte r ,  the  two t r ansve r se ly  

isot ropic  con t inua  are or iented in such a way t h a t  the i r  r o t a t i o n - s y m m e t r y  

axes are no rma l  to the  interface.  F u r t h e r m o r e ,  the  b o u n d a r y  condi t ions  

used in this  chap te r  are based on the  a s s u m p t i o n  of the  welded con tac t  at  

the  interface.  M a n y  of the  above concerns  are addressed  in the  exis t ing 
l i t e ra ture .  5 

E x e r c i s e s  

E x e r c i s e  11 .1  6 Show that expressions (11.5) and (11.10) are equivalent to 
one another. 

S o l u t i o n  11 .1  Consider expression (11.10). In view of the symmetry  of an 
ellipse, we know that Vx = vx and Vz = Vz. Hence, we can write 

p 
Vx 

v~ ~ cot 2 0 + 1 
Vz 

Recalling expression (9.38), we express the ray angle in terms of the phase 

5Readers interested in the formulation of reflection and transmission coefficients for P, 
SV and SH waves at different boundary conditions might refer to Aki, K. and Richards, 
P.G., (2002) Quantitative seismology (2rid edition): University Science Books, pp. 128-  
149, and to (~erven:~, V., (2001) Seismic ray theory: Cambridge University Press, pp. 477- 
505. The former reference also contains a convenient weak-inhomogeneity approximation. 

Readers interested in a formulation involving qP and qSV waves in transversely isotropic 
continua might refer to Mavko, G., Mukerji, T., and Dvorkin, J., (1998) The rock physics 
handbook: Cambridge University Press, pp 6 5 -  70. 

Readers interested in a formulation of reflection and transmission coefficients in anelas- 
tic continua might refer to Le, L.H.T., Krebes, E.S., and Quiroga-Goode, G.E., (1994) 
Synthetic seismograms for SH waves in anelastic transversely isotropic media: Geophys. 
J. Int, 116, 598-  604. 

Readers interested in a formulation accounting for phenomena resulting from slip inter- 
faces, including interfaces between two identical continua, might refer to Schoenberg, M., 
(1980) Elastic wave behaviour across linear slip interfaces: J. Acoust. Soc. Am., 68 (5), 
1516- 1521. 

6 Also see Section 14.6 
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angle to obtain 

p __ 

Vx 
Vz 

1 { [(Vx)2 ]}+1 
tan 2 arctan -- tan 0 

Vz 

Using trigonometric identities, we get 

1 1 

P - v x  (~zz) 2 v x  41 + 1 - V/V2c~ 

(V~z) tan2 t0 

Multiplying both numerator and denominator by sin 0, we obtain 

p p 
sin 

V/Vz 2 cos 2 0 + v 2 sin 2 0 

In view of expression (6.60), we can immediately write 

p m 
sin 0 

which is expression (1 1.5), as required. 

Exercise  11.2 Show that in isotropic continua, expressions (11.5) and (11.10) 
are identical to one another. 

Solut ion 11.2 Consider expression (11.10). 
V ~ -  Vz. Hence, we can write 

p 
Vv/cot 2 0 + 1 

In isotropic continua, V "= 

For isotropic continua, the magnitudes of the phase and ray velocities co- 
incide, namely, V -  v. Also, the phase and ray angles coincide, namely, 
0 -  t~. Thus, invoking trigonometric identities, we obtain 

sin 0 p - -  - 

V 

which is the isotropic form of expression (11.5), as required. 
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Exerc ise  11.3 Following expression (11.26), state the expressions for the 
reflection and transmission amplitudes for isotropic continua in terms of 
mass density, p, and velocity, v. 

Solu t ion  11.3 In view of matrices (5.62) and (5.6~), we let p :=  C44 = C66 
and write 

A~ (~) - v/Pl/ t l  COS vgi -- v/P2#2 cos t9 t 

v/P1#1 cos t9 i -[- V/P2~2 COS Ot '  

and 
At (v~) -- 2x /P l# l  cos Oi 

v/P1#1 COS Oi + vfP2#2 cos t0 t ' 

for the reflection and transmission amplitudes, respectively. In view of v = 
v /p /p ,  we can restate these expressions as 

At(O)  = 

and 

COS Oi -- P2 COS Ot 

p l I I t  ~ I#'~22 cos Oi + P2 cos Ot 

fllVl cos Oi -- 192V2 COS ~)t 

Pl Vl cos Oi + p2v2 cos t9 t ' 

At (0) = 

2pl #~p~ cos Oi 

pl cos Oi + p2 cos ~)t 

2plY1 cos l~ i 

plVl cos ~)i At- p2v2 cos Or" 

Followin9 Snell's law, namely, ~)t = arcsin[(v2/vl)sinOi], we can express 
both A~ and At in terms of the angle of incidence, Oi. 

Exerc ise  11.4 Using expressions (11.26) and (11.27), state the expressions 
for the reflection and transmission amplitudes for normal incidence in terms 
of mass density, p, and velocity, VSH (0). 

Solu t ion  11.4 Consider expressions (11.26) and (11.27). 
Ot = O, we obtain 

I p l C I 4 - ~ f l 2 C 4  H 
A,.(O) - 

i f l lCI4 -Jc- r 4 

and 

(0 )  = 
2 V//91C4/4 

I p l  CI4 -Jr- V//92C4/4/' 

Letting Oi = 
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for the reflection and transmission amplitudes, respectively. In view of ex- 
pressions (10.27) and (10.30), we obtain v " -  VSH (0) -- v/C44/P and, hence, 
we can restate the above expressions as 

J- i  
A~ (0) - pl p2 __ p l  Vl -- p2v2 , (11.34) 

pl ICI4 fl21C4II4,02 fllVl --]- fl2v2 

and 2p1  
At (0) - Pl _ - 2p lVl  , (11.35) 

i II fllVl -+- f12V2 
fie C4/4 + P 2 / C 4 4  fll 

where Vl - V S H  (0)  in the medium of incidence and v2 - V S H  (0)  i n  the 
medium of transmission. 

Exercise 11.5 Consider expression 

1 
(~) - -~pvw2A 2, (11.36) 

where (~) is the average energy density carried by the wave and w is its 
angular frequency. Using the expressions for the normal-incidence reflection 
and transmission amplitudes, derived in Exercise 11.~, show that the energy 
is conserved. 

Solution 11.5 The balance of energy states that the energy carried by the 
incident wave must  be equal to the sum of the energies carried by the reflected 
and transmitted waves, namely, 

= + 

Considering monochromatic waves and normalizing incident-wave amplitude 
to unity, in accordance with expression (11.36), we obtain 

1 1 2 1 A2 -~plVl -- -~fllVlAr + -~p2v2 t, 

which can be rewritten as 

1 -- A 2 + p2v2 A 2. (11.37) 
plVl 
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Inserting expressions (11.3~) and (11.35) into expression (11.37), we get 

1 ( ) _ + p2v2 2plvl 

plVl + p2v2 plvl plVl + p2v2 

Pl Vl - p2v212 ~ ~ + 

plVl -~ p2v2 
4plvlP2V2 

(plVl + p2v2) 2 = 1, 

as required. 

E x e r c i s e  11.6 7Show that if sin~t  > 1, the magnitude of Ar is equal to 
unity. 

S o l u t i o n  11.6 I f  sin~)t > 1, then cos v~t is a pure imaginary number. In 
that case, expression (11.26) is of the form 

a - bi 
Ar - 

a+b i "  

The magnitude is given by 

IA I- v/A~A~, 

where 

is the complex conjugate. Therefore, 

a + b i  

a - bi 

l a -  bi a + bi 
[A~ [ - a + bi a - bi 

= 1 ,  

as required. 

7See also Section 11.2.2 
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I n t r o d u c t i o n  to  P a r t  III  

What  you do is to invent various curves, and calculate on 
each curve a certain quantity. If you calculate this quanti ty 
for one route, and then for another, you will get a different 
number for each route. There is one route which gives the 
least possible number, however, and that  is the route that  
the particle in nature actually takes. We are now describ- 
ing the actual motion by saying something about the whole 
curve. We have lost the idea of causality, that  the particle 
feels the pull and moves in accordance with it. Instead of 
that ,  in some grand fashion it smells all the curves, all the 
possibilities, and decides which one to take by choosing that  
for which our quanti ty is least, s 

Richard Feynman (1967) The Character of Physical Law 

The fundamental formulation of ray theory was presented in Part II. This 
theory is based on the high-frequency approximation to Cauchy's equations 
of motion in anisotropic inhomogeneous continua and results in Hamilton's 
ray equations. Also, in Part II, we used Legendre's transformation of Hamil- 
ton's ray equations to obtain Lagrange's ray equations. Thus, within the 
limitations of this transformation, we have two equivalent forms of the ray 
equations. 

In Part III, we will study ray theory in the context of Lagrange's ray 
equations. We will show that they are the stationarity conditions of the 
calculus of variations. Hence, we will show that rays, wavefronts and trav- 
eltimes can be studied by invoking the concept of stationary traveltime. 

We will use the calculus of variations in search of the stationarity condi- 
tion for a definite integral that describes the traveltime of the signal between 

s Readers interested in the philosophical aspects of this statement, in the context of ana- 
lyrical mechanics, might refer to Toretti, R., (1999) The philosophy of physics: Cambridge 
University Press, p. 92. 
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a source and a receiver. Since, in the variational approach to ray theory, 
either time or distance constitutes the single variable, the stat ionari ty con- 
ditions are a system of ordinary differential equations. Consequently, the 
variational formulation is an elegant method to describe rays, wavefronts 
and traveltimes. Also, an intuitive concept of stat ionarity is a fruitful start- 
ing point for many investigations. 

The first scientific statement of a variational principle was formulated 
in optics by Pierre de Fermat in 1657. 9 In its original formulation, this 
principle was referred to as the principle of least time. Following Fermat 's  
principle, the principle of least action in mechanics was proposed in the first 
half of the eighteenth century by Pierre-Louis Moreau de Maupertuis  and, 
then, rigorously stated by William Rowan Hamilton in 1835. l~ 

The theory of the calculus of variations originated with the s ta tement  
of Johannes Bernoulli, who, in 1696, posed the problem to determine the 
shape of a wire along which a bead might slide in the shortest possible time. 
While this problem might have initially appeared quite particular, it led to 
an important  general theory. In 1900, David Hilbert delivered a talk on 
"Mathematical  Problems" during which he made the following statement.  

The mathematicians of past centuries were accustomed to de- 
vote themselves to the solution of difficult individual problems 
with passionate zeal. They knew the value of difficult problems. 
I remind you only of the 'problem of the line of quickest de- 
scent', proposed by Johannes Bernoulli. [. . .] It is an error to 
believe that  rigour in the proof is the enemy of simplicity. On 
the contrary, we find it confirmed by numerous examples that  
the rigorous method is at the same time simpler and the more 
easily comprehended. [...] the most striking example of my 
statement  is the calculus of variations. 

9Interested readers might refer to Born, M., and Wolf, E., (1999) Principles of optics 
(7th edition): Cambridge University Press, p. xxvi. 

1~ interested in formal relations between the classical-mechanics principle of 
stationary action and the ray-theory principle of stationary traveltime as well as their 
relation to quantuum mechanics might refer to Goldstein, H., (1950/1980) Classical me- 
chanics: Addison-Wesley Publishing Co., pp. 365 - 371 and pp. 484 - 492. 



Chapter 12 

Euler's equations 

For since the shape of the whole universe is most perfect 
and, in fact, designed by the wisest creator, nothing at all 
takes place in the universe in which a rule of max imum or 
min imum does not appear. 

Leonhard Euler ( 1 7 ~  ) Methodus inveniendi lineas curvas max- 
imi minimive proprietate gaudentes, sive solutio problematis iso- 
perimetrici latissimo sensu accepti I 

Preliminary remarks 

In Chapter 9, we derived Lagrange's ray equations. These equations are 
variational equations and, hence, allow us to consider ray theory in the 
context of the calculus of variations. 

We begin this chapter with a brief discussion of stationarity of a definite 
integral and the derivation of the stationarity condition of the calculus of 
variations, namely, Euler's equation. This is followed by formulations of the 
generalized and special forms of Euler's equations, which are again used in 
Chapters 13 and 14. We conclude this chapter by relating Euler's equations 
to Lagrange's ray equations. 

This chapter is intended to give a brief introduction to the calculus of 
variations for readers who are not familiar with this subject. Otherwise, it 
can be omitted without affecting the study of subsequent chapters. 

~Method of finding curved lines enjoying the maximum and minimum property; or the 
solution of the isoperimetric problem understood in the broadest sense 
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12.1 Mathematical  background 

The calculus of variations is the study of methods to obtain stationary values 
of definite integrals. These values depend on functions that  compose a given 
integrand. In other words, the domain of a definite integral is a set of 
functions. An integral operates on a set of functions and we seek a particular 
function that  gives a stationary value of this integral. Analogously, in 
differential calculus, a function operates on a set of points and we seek a 
particular point that  gives a stationary value of this function. 

In differential calculus, the condition for stationarity of a function is the 
vanishing of its first derivative. We wish to formulate an analogous condition 
for stationarity of a definite integral. 2 

Herein, we focus our study on two-dimensional problems that  are con- 
tained in the xz-plane. In this study, we require stationary values of an 
integral expressed as 

b 

a 

F (z (x), z' (x) ; x) dx. (12.1) 

Thus, we seek function z (x) that makes integral (12.1)stationary. Assuming 
that z (x) is continuous and smooth, we can view it as a curve in the xz -  
plane. 

Integrand F contains three arguments, namely, z (x), z' (x) - d z / d x  
and x. In formulating the condition of stationarity, we consider these three 
arguments as independent. 

Note that  to avoid any confusion, we could choose to write 

F (z (x), z' (x) ; x) - F ([~, ~2, ~3). (12.2) 

However, we will not introduce these additional symbols. 
We need, however, a new operator symbol. In the search for stationarity, 

Lagrange introduced a special symbol denoted by 5, which refers to the 
variations of curve z (x). In other words, among all the variations of z (x) 
between the fixed end-points a and b, we search for a curve that  renders the 
value of a given integral stationary. This curve is a solution of the variational 
problem. Hence, the problem of looking for such a curve is symbolically 
stated as (5 f :  F d x  - O. 

2Readers interested in a definition of stationarity of a definite integral might refer to 
Arnold, V.I., (1989) Mathematical methods of classical mechanics (2nd edition): Springer- 
Verlag, p. 57. 
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Note  the  d i s t inc t ion  be tween  the  var ia t iona l  and  differential  opera to rs .  

Symbol  5z (x) refers to a var ia t ion  from curve to curve for a given x, whereas  

symbol  dz (x) refers to a differential  change along a given curve for a change 
3 in x. 

Note  t ha t ,  in this  chap te r  and  in C h a p t e r  14, we res t r ic t  our  s t u d y  to 

curves in the  form z = z (x), r a t he r  t h a n  in the  p a r a m e t r i c  form, x (t), used 

to formulate Hamilton's and Lagrange's ray equations in Chapters 8 and 9, 
respectively. 4 

The condition of stationarity of integral (12.1) was derived by Euler in 
1744. 5 This condition is discussed in the next section. 

12.2 Formulat ion of Euler s equat ion  

In this  section, we derive the  s t a t i ona r i t y  condi t ion  for in tegral  (12.1). In 

o ther  words,  a m o n g  all cont inuous ly  differentiable funct ions  z (x) t h a t  sat isfy 

the  b o u n d a r y  condi t ions  at  z (a) and  z (b), we es tabl i sh  the  condi t ion  to 

choose a funct ion t h a t  renders  integral  (12.1) s ta t ionary .  This  s t a t i o n a r i t y  

condi t ion  is s t a t ed  by the  following theorem.  

T h e o r e m  12 .1  Function z (x) with the continuous first derivative on in- 
terval [a, b] yields a stationary value of integral (12.1), namely, 

b 

• - / r (z (x) 
a 

, z' (x);x)  (12.3) 

in the class of functions with boundary conditions z (a) = Z a  and z (b) = Zb, 
if equation 

Oz dx ~ - 0 .  (12.4) 

3Readers interested in the 6 operator might refer to Lanczos, C., (1949/1986) The 
variational principles of mechanics: Dover, pp. 38 - 40, and to Ewing, M.G., (1969/1985) 
Calculus of variations with applications: Dover, pp. 86 - 88. 

4Readers interested in the relation between the explicit and parametic formulations 
of the Euler equations might refer to Ewing, M.G., (1969/1985) Calculus of variations 
with applications: Dover, pp. 140- 141, to Gelfand, I.M., and Fomin, S.V., (1963/2000) 
Calculus of variations: Dover, pp 38 - 42, to Sagan, H., (1969/1992) Introduction to the 
calculus of variations: Dover, pp. 197 - 202, or to Weinstock, R., (1952/1974) Calculus 
of variations with applications to physics and engineering: Dover, pp. 34 - 36. 

5It is also common to refer to this equation as the Euler-Lagrange equation. Readers 
interested in the history of this equation might refer to Marsden, J.E., and Ratiu, T.S., 
(1999) Introduction to mechanics and symmetry: A basic exposition of classical mechanical 
systems (2nd edition): Springer-Verlag, pp. 231 - 234. 
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is satisfied. 6 

A x  - (b - a) /n .  
be wri t ten  as 

We refer to equation (12.4) as Euler 's equation. Euler 's  equation (12.4) 
is a second-order ordinary differential equation. 7 

To see the connection between integral (12.3) and its s ta t ionar i ty  con- 
dition, given by Euler 's equation (12.4), consider the following heuristic 
argument .  

Replace the integral by a finite sum of subdivisions given by x0, Xl , . . . ,  
Xn-1,  Xn, where the interval of integration [a,b] is [xo, Xn]. The subdi- 
visions are assumed to be equally spaced and we denote this spacing by 

A discrete expression approximat ing integral (12.3) can 

where 

Sn 
n-1 

! 
F (Zi+l, zi+ 1;xi+l)  Ax,  

i=0 

! zi+ 1 -- zi 
zi+l "= Ax " (12.5) 

Here Sn is viewed as a function of the n -  1 variables, z l , . . . ,  Zn-1. 
Note tha t  z0 and Zn are not included as variables because they are fixed 

by the boundary  conditions, namely, z0 - z~ and Zn - Zb. 
To find the s ta t ionary value of Sn, we find the s ta t ionary points for n -  1 

variables. This is equivalent to sett ing to zero all part ial  derivatives of Sn 
with respect to zi. In other words, the s ta t ionar i ty  condition is 

= 0 ,  i e  { 1 , . . . , n - 1 } .  (12.6) 
/)zi 

In view of expression (12.5), in the sum Sn, for any given i E ( 1 , . . . ,  n -  1), 
there are only two consecutive terms tha t  explicitly contain a given z/, 

namely, 
I. 

F (zi Z i , x i )  Ax=~- r (Zi+l ! , , z i+l;x i+l  ) A x .  (12.7) 

6Readers interested in a rigorous proof of Theorem 12.1 might refer to Arnold, V.I., 
(1989) Mathematical methods of classical mechanics (2nd edition)" Springer-Verlag, pp. 
57-  58. 

7Readers interested in a thorough study of Euler's equations might refer to Courant, 
R., and Hilbert, D., (1924/1989) Methods of mathematical physics: John Wiley & Sons, 
Vol. I, pp. 183 - 206, and to Morse P.M., and Feshbach H., (1953) Methods of theoretical 
physics: McGraw-Hill, Inc., Part I, pp. 276- 280. 
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Applying stationarity condition (12.6), we take the derivative of expres- 
sion (12.7) with respect to zi and obtain 

OF , .  OF 
-5; (z~, z~, x~) + 72, (z~ , zi; z~) A x  

OziJ 

OF 
~ Zi+l + ~ (z~+, ;x~+~) o4+,/1/Xx - o, (12.8) 

cgzi J 

w h e r e i E  { 1 , . . . , n - 1 } .  
Note that  an analogous approach can be followed by viewing Sn as a 

function of xi and, hence, by setting all partial derivatives with respect to 
xi to zero. As shown in Exercise 12.2, by following this approach, we obtain 
Beltrami's identity (12.10). 

In view of equation (12.8) and recalling expression (12.5), we have 

Oz~ O zi - z i -1  1 

Ozi Ozi Ax  Ax '  

and 
0Z~+1 0 Zi+l -- Zi 1 

Ozi Ozi Ax  Ax  

Hence, equation (12.8) becomes 

OF ,~  (zi 
, OF , .  

, z~; x~) + ~ (z~, z~, 
1] ~) Z~ f~  

-- ' Z i + l ; X i + l )  --~X i x  ~ (~+1 ' - 0 ,  

where i c {1 , . . . ,  n -  1}. This equation can be rearranged to give 

r ,. _ / (zi+ OF (z/, z/, x/) 1 OF , OF , ] 
,, Z~+l;X~+,) - 72,  (~,  ~; x~) - 0 ,  (12.9) 

w h e r e i C  { 1 , . . . , n - 1 } .  
We now assume that as Ax -~ 0 and xi ---+ x E [a, b], zi approaches z (x) 

and z ~ -  ( z i -  zi-1) l a x  approaches z' (x). Then, equation (12.9) becomes 

d [OF (z(x) 
OFoz (z (x) , z' (x) ;x) - ~xx ~ z  ~ , ~' (x); x)] - o, 

which is Euler's equation (12.4), as required. 
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12.3 Beltrami's  identity 

A convenient form of Euler's equation (12.4) is Beltrami's identity, discussed 
in Section 9.1.2. In the two-dimensional case, where we look for the z (x) 
that  is a solution of Euler's equation (12.4), Beltrami's identity is equivalent 
to that  equation. Hence, we can write 

OF d ( 0 F )  OF d (z, OF ) 
Oz dx ~ - 0 -  0---~ + -~z ~ - F . (12.10) 

In general, Beltrami's identity is not equivalent to the corresponding Euler's 
equations or Lagrange's ray equations. In Chapter 9, for instance, a single 
expression of Beltrami's identity (9.9) refers to three equations of system 
(9.8) and, hence, by itself, cannot give a unique solution of system (9.8). 
A verification of Beltrami's identity (12.10) and its derivation are shown in 
Exercises 12.1 and 12.2, respectively. 

Beltrami's identity is particularly useful when the integrand does not 
explicitly depend on x, namely, F = F ( z , # ) .  In such a case, the first 
term on the right-hand side of equation (12.10) vanishes. Important  conse- 
quences of this simplification are discussed in Chapter 14 in the context of 
ray parameters. 

12.4 Generalizations of Euler's equation 

Introductory comments 

Integral (12.1) depends on a single variable, x, on a single function, z (x), 
and on its first derivative, z ~ (x). In mathematical considerations of physi- 
cally motivated problems, a given integral whose stationary value we seek 
can also depend on several variables, on several functions and on higher- 
order derivatives. Such formulations result in stationarity conditions that  
are second-order partial differential equations, systems of second-order ordi- 
nary differential equations and higher-order ordinary differential equations, 
respectively. 

Although a given problem can depend on all of the above quantities, 
each of the three cases is described separately below. 

12.4.1 Case of several variables 

Let us consider an integral that  contains a single function of several variables. 
To begin, we consider an integral whose integrand contains a function of two 
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variables, namely, 

I _ _  

by bx 

/ /  
a v ax  

F (z (x, y), zx, Zy; x, y ) dx dy, 

where zx "- Oz/Ox and Zy "- cOz/Oy. Thus, within given constraints on a 
boundary, we look for a smooth surface, z (x, y), that  renders I stationary. 
In this case, Euler's equation becomes 

Oz ~x ~ + -~y - 0 ,  (12.11) 

which is a second-order partial differential equation. The generalization for 
n variables follows the same pattern, thereby giving 

Oz E ~ Ozx~ - 0 '  (12.12) 
i = 1  

where z -  z ( x l , . . . ,  Xn) and zx~ "- Oz/Oxi, with i E { 1 , . . . ,  n}. 
Problems involving multiple integrals were considered by Lagrange in his 

papers dating from 1760 - 1762. A physical example of a double integral is 
discussed in Section 13.2.3. 

12 .4 .2  C a s e  o f  s e v e r a l  f u n c t i o n s  

Let us consider an integral that  contains several single-variable functions 
and their first derivatives. To begin, we consider an integral whose integrand 
contains two functions, namely, 

b 

a 

F (y (~), y' (~ ) , z  (~), z' (x); x) ax. 

Thus, we look for smooth curves y (x) and z (x) that  render I stationary, 
subject to constraints 

y (a) - al 

z (a) - a2 
y (b) - bl 

z (b) - b2 

(12.13) 
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where ai and bi are constants. In this case, Euler's equations become a 
system of second-order ordinary differential equations 

The generalization for n functions follows the same pattern there.,y giving 
a system of n equations, 

(12.14) 

where ci = ci (x) and <: = dci (x) /dx. 

12.4.3 Higher-order derivatives 

Let us consider an integral whose integrand contains higher-order deriva- 
tives of a single-variable function. To begin, we consider an integral whose 
integrand contains both the first and second derivatives, namely, 

I = F (z(x), z'(z), 2'' (x) ; X )  dz. j 
Thus, we look for a smooth curve z (x) that renders I stationary, subject to 
constraints 

z (u )  = a1 

z' ( u )  = u2 

z ( b )  = bl ' 
( 12.15) i Z' ( b )  = b2 

where ui and bi are constants. In this case, Euler's equation becomes 

d F  d d F  
a z  dx dz' 
- - - (-) + g (E) = 0. 

This is a fourth-order ordinary differential equation. The generalization for 
nth-order derivatives follows the same pattern to yield 

which is an ordinary differential equation of order 2n. 
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12.5 Special cases of Euler's equation 

I n t r o d u c t o r y  c o m m e n t s  

There are cases where, due to the explicit absence of certain arguments or 
to the particular form of integral (12.1), Euler's equation (12.4) becomes a 
simpler equation. 

Note that  in evaluating partial derivatives, only explicit appearances of 
the variable of differentiation are taken into account. For instance, if we dif- 
ferentiate F (z (x)) with respect to z, namely, OF/Oz, no allowance is made 
for the fact that  a change in x also results in a change of z. Following expres- 
sion (12.2), we could choose to write such a differentiation as OF (~1)/0~1 
and, thus, at the expense of introducing an additional symbol, avoid any 
confusion. 

12.5 .1  I n d e p e n d e n c e  o f  z 

Let us consider an integrand that is explicitly independent of z, namely, 
F -  F (z'; x). We see that  Euler's equation (12.4) is reduced to 

d--~ ~ - 0 .  

The vanishing of the total derivative implies that  

OF 
-- C1, (12.16) 

cgz ~ 

where C1 denotes a constant. Thus, z (x) is obtained as a solution of first- 
order ordinary differential equation (12.16). 

12 .5 .2  I n d e p e n d e n c e  o f  x a n d  z 

Let us consider an integrand that  is explicitly independent of both x and z. 
In other words, it is only dependent on z ~, namely, F - F (g).  Since z ~ is 
the only variable, we can immediately rewrite equation (12.16) as 

d F  (z') 

d g  
-~C1. (12.17) 

Denoting d F  ( z ' ) / dz '  as f (z'), we can write equation (12.17) as 

f (z ' )  - e l .  
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Assuming that df /dz '  ~ 0, we can consider inverse function f-1. Thus, we 
can write 

z ' -  f-1 (C1). 

Recalling that  z ' -  dz/dx and denoting f-~ (C1) - 6'2, we can write 

dz 
= C2. (12.18) 

dx 

This is a first-order ordinary differential equation, whose solution, 

z = C2x  + C3, 

is obtained directly by integration. 
Thus, finding the curve which gives a stationary value of fb F (z')dx 

consists of writing the equation of a straight line passing through points 
[a, z (a)] and [b, z (b)]. 

In a seismological context, this implies that in homogeneous continua, 
whether the continua be isotropic or anisotropic, if the properties do not 
depend on position, rays are straight. 

12 .5 .3  I n d e p e n d e n c e  o f  x 

Let us consider an integrand that is explicitly independent of x, namely, 
F -  F (z, z'). Using Beltrami's identity (12.10), we obtain 

- 0 .  ) 
The vanishing of the total derivative implies that 

z, OF - F - C, (12.19) 

where C denotes a constant. Thus, z (x) is obtained as a solution of first- 
order ordinary differential equation (12.19). 

In a seismological context, the case where the traveltime integral is inde- 
pendent of x implies that the continuum is homogeneous along the x-axis 
a case commonly encountered in layered media. In such media, the constant 
in expression (12.19) is a ray parameter, discussed in Chapter 14. 
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12 .5 .4  T o t a l  d e r i v a t i v e  

Let integrand F (x, z, z') be a total derivative of function f (x, z) with respect 
to x, namely, 

F (z, z'; x) - d f  (x, z) Of Of z'. 
~x = ~xx ~- ~ (12.20) 

Consider the left-hand side of Euler's equation (12.4). Inserting function 
(12.20), we obtain 

OF d ['OF 
Oz dx - OxOz+-5 z 2z -5;z 

02f ~_ 02f , ( 02f 02f ) 
= OxO----;- - O x O z  + 

= 0 .  

Thus, equation (12.4) is identically satisfied. Consequently, if F is a total 
derivative, Euler's equation (12.4) is satisfied by any z (x). In other words, 
if a variational problem involves the integral of a total differential, namely, 

b 

a 

df(x,z) -0 ,  

the value of the integral is independent of the integration path and depends 
only on the limits of integration. 

Note that, considering a fixed-ends variational problem, we can add to 
the integrand a term that is a total derivative without changing the solution 
of Euler's equations, as shown in Exercise 12.3. s Considering such cases, 
we note that, although a solution curve is not affected by this addition, the 
value of the integral is changed. For instance, identical rays can result in 
distinct traveltimes, depending on the properties of the continuum. 

12.5 .5  F u n c t i o n  of  x a n d  z 

Eu le r ' s  e q u a t i o n  

In physically motivated problems, we often encounter an integral given by 
f :  h (x)ds, which is an integral of function h, whose value depends on posi- 
tion x along the arclength element ds. Such an integral represents a certain 
quantity measured along a trajectory that connects points a and b. 

s In electromagnetic theory, this property is associated with the gauge invariance. Inter- 
ested readers might refer to Morse P.M., and Feshbach H., (1953) Methods of theoretical 
physics: McGraw-Hill, Inc., pp. 210-212. 
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Considering the two-dimensional case and assuming that the trajectory 
can be expressed as z - z (x), we can write such an integral as 

dz 2 

f h(x,z) 1 + 
ax  

dx. (12.21) 

Thus, Euler's equation (12.4) becomes 

o[ j r )] 
Oz h (x, z) l + (z') 2 - - -  ~ ~ h(x,z)  l + ( z ' )  2 - 0 ,  

where z ~ - dz/dx. Performing partial derivatives, we obtain 

Oh (x, z) V/ d 
Oz 1 + (z') 2 dx I z' 1 h (x, z) 1 1  + (z') 2 

- 0 .  

Then, by the product rule, we get 

Oh (x, z ) 1 1  + (z,) 2 _ 
Oz 

Idh(x,z) z' z' 1 
dx v/l + (z,)2 dx V/1 + (z,)2 

Letting h "-  h (x, z) and using the quotient and chain rules, we obtain 

- 0 .  

Oh / 2 ~/I + (z') 
Oz 

- N + N z '  

z t  z tt 

z, z,,~/1 + (z,)~ - z ' ( 1  + (z,)~ 
+h 

i l  + (z,)2 1 + (z') 2 

An algebraic simplification leads to 

0 h v / l + ( z ' ) 2  oxOh / z' 
Oz ~/1 + (z') 

Oh (z') 2 
2 O z  ( 1  + (z') 2 

Z/t 

3 [1 +/z,/2] 
Rearranging the common factor, we obtain 

1 [oh 
( 1  + (z') 2 ~z  

Oh 2 
+ 72 (~') 

Ohz, Oh -~(z') 2 z,, ] 
I + (z') 2 

- 0 .  

= 0 .  

- 0 .  
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The cancellation of identical terms results in 

Zl I ] 1 Oh O h z ~ -  h 

V/1 + (z,)2 az Ox 1 + (z') 2 
- 0 .  

Since the factor in front of the brackets is never zero, Euler's equation be- 
comes 

d2z 
Oh Oh dz dx 2 

h = o. (12.22)  
Oz Oxdx  1 +  ~xx(dZ) 2 

To study equation (12.22) in the context of ray theory, let function 
h (x, z) describe slowness in an isotropic inhomogeneous continuum. Hence, 
letting the velocity function be v (x, z) = 1/h (x, z) and rearranging equation 
(12.22), we obtain 

v dx---- ~ Ox -~x + -~z -~x Ox dx t- -~z - 0, (12.23) 

where we assume v (x, z) ~: 0. In such a case, integral (12.21), which can be 
rewritten as 

b/  i l  + (Z')2 

v ( x , z )  dx, (12.24) 
a ~  

represents the traveltime between two points. Thus, a solution of equation 
(12.23) is a ray, z (x), satisfying Fermat's principle of stationary traveltime. 

If v (x, z) is given by a constant, integral (12.24) is explicitly independent 
of x and z, and it corresponds to the case discussed in Section 12.5.2. In 
such a case, equation (12.23) reduces to d2z /dx  2 - 0, whose solutions are 
z - C2x + C3, where C2 and C3 are constants that depend on the limits of 
integration in integral (12.24). 

G e o m e t r i c a l  i n t e r p r e t a t i o n  and  physica l  m e a n i n g  

Integral (12.21) has a simple geometrical interpretation. Let function h 
be a smooth and continuous function whose values are positive. Consider 
an orthonormal coordinate system, where h (x, z) can be represented as a 
surface above the xz-plane. Let z (x) be a smooth and continuous curve in 
the xz-plane that connects points a and b. Integral (12.21) is the surface area 
of a strip that is orthogonal to the xz-plane and whose edges are given by 
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z (x) and the corresponding values of h (x, z). This strip can be viewed as a 
fence that follows curve z (x), and whose height, at any point, is determined 
by function h (x, z). 

A solution of equation (12.22), namely, z = z (x), is the curve along 
which the area of the corresponding strip is stationary. Herein, given the 
geometry of the variational problem, the area of the strip that results from 
equation (12.22) is minimum, as illustrated in Exercise 12.4. 

Traveltime is the product of slowness and distance travelled. If function 
h represents the slowness in an isotropic inhomogeneous continuum, the 
area of the strip represents the traveltime between the two points, which are 
given by the limits of integration. Hence, a solution of equation (12.23) is a 
trajectory along which the traveltime is stationary. 

12.6 First integrals 

Special cases of Euler's equation, which result from the absence of partic- 
ular arguments in the integrand function, are called first integrals. This 
name originates in the period of mathematical history when many differen- 
tial equations were solved by integration. The description shown in Section 
12.5.2, where the integrand is explicitly independent of both x and z, exem- 
plifies such an approach. 

The term "first integral" implies that the order of the differential equa- 
tion has been reduced by one, which is equivalent to the integration process. 
Formally, the meaning of first integral is described in the following definition. 

Def in i t ion  12.1 I f  an nth-order differential equation 

f (X, Z, Z I, . .. , Z (n)) - -0 ,  (12.25) 

can be transformed to the equivalent form 

d ( ) 
~x9 x, z , z~ , . . . , z  (~-1) - 0, 

we see that 

where C is a constant. 
(12.25). 

g (x ,  z, zl, . . . , Z (n - l ) )  - C, (12.26) 

Expression (12.26) is a "first integral" of equation 
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Note that  the fact that  the integrand of a variational problem does not 
explicitly depend on a particular argument is equivalent to saying that  this 
problem is invariant with respect to that  argument. This invariance and the 
associated first integral are contained in Noether's theorem, published in 
G6ttingen in 1918 in her paper entitled "Invariante Variationsprobleme". 9 

In the context of ray theory, we use the property that  a first integral of a 
differential equation is a function that  has a constant value along a solution 
curve. This constant is a ray parameter, which is discussed in Chapter 14. 

12.7 Lagrange's ray equations as Euler's equations 

To use the calculus of variations in the study of ray theory, we wish to show 
that  Lagrange's ray equations (9.8) belong to the realm of Euler's equations. 
The parametric form of Euler's equation (12.4) corresponds to a system of 
two Euler's equations, namely, 

OG d ( 0 G )  
Ox dt -~z - 0 

OG d ( 0 G )  
Oz dt -~z - 0 

(12.27) 

where G - a (x, z, ~,/~) with 2 ' -  dx/d t  and ~ "-  dz/dt .  A solution of sys- 
tem (12.27)is a curve in the xz-plane given by Ix ( t ) , z  (t)] that  corresponds 
to variational problem 

o 

/ Gdt - O. 

To see the relation between G and F,  which is stated in integral (12.1), we 
can write dt - dx / k  and z' "- dz/dx.  Hence, G (x, z, ~, ~) - F (z, 2/~, x) ~. 

This parametric formulation allows us to use Euler's equations for an n- 
dimensional space. In general, we can write a system of n Euler's equations, 
namely, 

cOG d OG 
= 0 ,  i e  { 1 , . . . , n ) ,  (12.28) 

Oxi dt Oici 
9Readers interested in rigorous derivations and proofs might refer to Gelfand, I.M., 

and Fomin, S.V., (1963/2000) Calculus of variations: Dover, pp. 79 - 83 and pp. 176 - 
179, and to Goldstein, H., (1950/1980) Classical mechanics: Addison-Wesley Publishing 
Co., pp. 5 8 8 -  596. 

Readers interested in variational aspects of Noether's theorem might refer to Lanczos, 
C., (1949/1986) The variational principles of mechanics: Dover, pp. 401 - 405. 
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whose solution is a curve in the x-space given by x (t). Examining systems 
(9.8) and (12.28), we conclude that  Lagrange's ray equations (9.8) possess 
the form of Euler's equations (12.28). 

The fact that  Euler's and Lagrange's equations have equivalent forms is 
the reason why equations of the form (9.8) and (12.28) are often referred 
to as the Euler-Lagrange equations. In this book, we use the term Euler's 
equations to refer to the mathematical  condition of stat ionari ty while we 
reserve the term Lagrange's equations to refer to those among Euler's equa- 
tions tha t  are endowed with physical meaning associated with ray theory or 
classical mechanics. 

Closing remarks 

The fact that  Lagrange's ray equations are also Euler's equations implies 
tha t  rays can be obtained as solutions of a variational problem. This fact 
allows us to use the tools of the calculus of variations in our investigations 
of ray theory. 

In the calculus of variations, a stat ionary curve is given by Euler 's equa- 
tion. The conditions to specify that  this curve results in a minimum or a 
maximum value of a given integral are dimcult to formulate mathematical ly  
and are not addressed in this book. 1~ Yet, in physically motivated problems 
the minimum or maximum nature of the stat ionary curve is often obvious 
from the physical context. 

In Chapter 13, we will study Fermat 's  variational principle of stat ionary 
traveltime. We will show that  the search for a ray is equivalent to the search 
for a curve along which the traveltime is stationary. In Chapter  14, we will 
show that  first integrals, which correspond to conserved quantities along 
these rays, can be used in raytracing techniques. 

0 
Exercises 

E x e r c i s e  12.1 In view of Euler's equation (12.~), verify Beltrami's identity 

1~ interested in geodesic fields and its implication to minima and maxima might 
refer to Kreyszig, E., (1959/1991) Differential geometry: Dover, pp. 162 - 168. 
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S o l u t i o n  12.1 Consider F - F (x,z,z') and Beltrami's identity (12.10). 
We can write 

OF d (z, OF ) OF (x, z, z') d (z, OF (x, z, z') ) dF (x, z, z') 
o-5 + ~ ~ - F - ~x  + ~ -S g - -d Zi 

OF z,,OF z ,d  (OF)  (OF OFz, OF ) 
= o ~  + ~z , +  ~ 7z, - 7x+-b-;z + T z  'z'' 

z '  d - z / _ ~ ( O F  
-O-gz ' ) O F z ' 

_ [OF - d (0 )1 
dx ~ ' 

where the terms in brackets is Euler's equation (12.~). Thus, 

OF d ( ~ OF ) 
o--~+~ z ~ - F  - 0 ,  

as required. 

E x e r c i s e  12.2 Following the argument used to justify Theorem 12.1, derive 
the explicit form of Beltrami's identity (12.10). 

S o l u t i o n  12.2 To obtain Beltrami's identity, consider term (12.7), namely, 

! ! 
F (Zi, Z i ;X i )Ax  ~- F (Zi+l,Zi+l;Xi+l)Ax,  

where i C {1 , . . . ,  n -  1}. Differentiating with respect to x, we obtain 

[or  , OF , Oz;] (z~, z~; x~) + ~ (~, z~; x~) ~ j  ~ + r (z~, z~; x~) O~Xox~ [ 

OF t A x  -}- f (Zi+l Zi+l; Xi + -]-~z / (Zi+l zi+l;Xi+l ) Oz~+l t 1) O f x  
OXi ' Oxi 

(12.29) 

Recalling expression (12.5) and the appropriate expression for Ax, we can 
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write 

o4 
OXi 

a ( Z i - - Z i _ l )  __ __ Z i - - Z i - 1  

Oxi  Xi - X i -1  (Xi - X i - 1 ) 2  

Zi ~ Z i -  1 

( ~ x )  2 

OAx , .  0 
OXi (z i '  Zi, Xi) -- ~X  i (Xi -- X i - x )  -- 1, 

! 
OZi+ 1 0 

Oxi - O~i 
Zi+ l -- Zi ) __ Zi+ l -- Zi 

Xi+l  -- Xi (Xi+I -- Xi) 2 

zi + 1 - -  zi 
(Ax) 2 

OAx 

cgxi 
, 0 

(Z i+ l ,Z i+ l ;  Xi+I) -- ~X/ (Xi+I -- Xi) --  --1.  

Hence, expression (12.29) becomes 

OF OF zi - zi-1] Ax  + F (zi, z i, xi) . I I I .  (z~, z~; x~) - ~ (z~, z~; x~) (~x)  ~ 

OF 
-~- ~ (Zi+l Z ! "Xi+I) Zi+l -- Zi i+1; Xi+I) , i+1, ~)'~x" 2 A x  - F ( z i+ l ,  z' 

As in stationarity condition (12.6), we have a system of n -  1 equations, 
namely, 

a ~  

OXi 
= 0  

! 
:- F (Zi Zi; Xi) F (Zi+l / - -  ~ Z i +  1 ; Xi+I) 

OF i 
OZ ! (Zi Zi;Xi  ) Z i -  Zi-1 

Ax  
OF 

-+- ~ (Zi+l 
! Zi+l; Xi+I) Zi+l Zi 

Ax  

where i C 

O F  i. + ~ (z~, ~, x~)ax, 

{1, . . . ,  n -  1}. Dividing both sides of each equation by Ax  and 
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using the appropriate definition of Ax,  we can write 

! I 
F - F 

0 -  Ax 

! . OF (Zi+l zi+ 1, Xi+l) Zi+l zi 
+ Oz ~ ' Ax  

Ax  

O f  I. z i -  z i -1  
Oz'  ( z i  ' z i  , z i  ) A z  

OF ! 
+ ~ (zi, zi; x i ) ,  

where i E {1,..., n -  1}. Letting Ax  ~ O, we see that zi approaches z (x) 
so that z ~ -  ( z i -  zi-1) lax approaches z' (x). Recognizing in the resulting 
statement the definitions of the derivatives, we obtain a single equation 

dF d ( 0 F )  OF 
0=  dx+d-'xx 0zTz~Z' +0---~" 

Rearranging and using the linearity of the differential operator, we get 

Ox ~ - ~ x  z'  - 
~ -  ~ P -0 ,  

which is Beltrami's identity (12.10), as required. 

Exercise 12.3 11Prove the following lemma. 

Notation 12.1 To state Lemma 12.1, below, we use the parametric form of 
the variational problems, rather than the explicit form used in this chapter. 

Lemma 12.1 Both variational problems 

and 

/ F (x, • - 0, (12.30) 

I n 1 5 / cF (x, • + E fJ (x)2j dt - 0, (12.31) 
j=l 

have the same function x (t) that renders the corresponding integrals sta- 
tionary, if fi (x) are the components of a gradient of a function and c is a 
nonzero constant. 

11See also Section 12.5.4 



288 Chapter 12. Euler's equations 

Solut ion 12.3 We show two different proofs of Lemma 12.1. Proof A in- 
vokes the properties of a variational fixed-ends problem, while Proof B utilizes 
standard properties of differential calculus in the context of Euler's equations. 

P r o o f  A. To prove that x (t) is the same for variational problems (12.30) 
and (12.31), we reduce problem (12.31) to problem (12.30). Consider the 
integral of variational problem (12.31). In view of the linearity of the integral 
operator, we can write 

I n  ,li I n f c F ( x , •  (x) d t - c  F ( x , •  ~ f j ( x )  2jdt 
j= l  j = l  

n 

- c  f F ( x , •  f ~ f j ( x ) d x j .  
j = l  

Consider the integral that involves the summation. Since the f6 (x) are the 
components of Vg, for some function g (x), we can restate this integral as 

i E f6 ( x ) d x j -  S Og (x)dxj. 
j= l  j= l  OXj 

(12.32) 

Since integral (12.32) is the integral of total differential 

09(x) Og (x)dxl + + dxn - dg (x) 
OXl "'" OXn ' 

the value of integral (12.32) is independent of the integration path. Hence, 
term ~ fj (x)2j has no effect on the choice of function x (t). Recalling that 
c r 0, we have reduced variational problem (12.31) to variational problem 
(12.30) and, hence, the proof is complete. �9 

P r o o f  B. Consider variational problem (12.30). The corresponding 
Euler's equations are 

OF d ( 0 ~ / ) - 0  i E {1 .. .  n}. (12.33) 
Oxi dt ' ' ' 

Now, consider variational problem (12.31). The corresponding Euler's equa- 
tions are 

[ . ] [ . I 0 cF+ E f j ( x )  icJ 0 cF+ E f j ( x ) ~ J  
j=~ d j=l 

Oxi dt Oici 
-o, 
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which we can write as 

c Oxi dt ~ + Oxi dt 02i - O, 

(12.34) 
where i c {1 , . . . ,  n}. To prove that solution x (t) is the same for equations 
(12.33) and (12.34), we prove that  these two systems of equations are equiv- 
alent to one another. Recalling that  c r 0, to prove that  equations (12.33) 
and (12.34) are equivalent, we need to show that 

--1 __ d =1 

Oxi dt OJci 
i e  { 1 , . . . , n } .  (12.35) 

Consider the left-hand side of equation (12.35). Using the linearity of the 
differential operator, we can write 

Oxi 

n 

= ~ ofj (x)~j, 
j = l  OXi 

i e { 1 , . . . , n } .  (12.36) 

Consider the right-hand side of equation (12.35). Using the linearity of the 
differential operator and taking into account the fact that  the only term of 

fj  (x)2 j  that  is dependent on ~ is the term where j = i, we obtain 

d 

dt 

n 

df~ (x) = ~ Ok (x) ~ ,  i e {1, . . . ,  ~}. 
dt Oxj 

j = l  

(12.37) 
Examining the coefficients of 2j in expressions (12.36) and (12.37), we see 
that  we need to show the equality given by 

0fj (x) 0f~ (x) 
Oxi Oxj ' 

i, j e ( 1 , . . . , n } .  (12.38) 
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Recall that If1 ( x ) , . . . ,  fn (x)] are the components of V g, for some function 
g (x), namely, [Og/Oxl, . . . ,  Og/OXn]. Thus, we can write the left-hand side 
of equation (12.38) as 

ofj (x) 
Oxi 

0 lOg(x)]- 02g (x) 
Ox~ Oxj Ox~Ox~ ' 

i, j E { 1 , . . . , n } .  

Analogously, we can write the right-hand side of equation (12.38) as 

Ok (x) 
OXj 

0 lOg(x) 1 _o~g(x) 
OXj OXi OXjOXi ' 

i, j e { 1 , . . . , n } .  

Hence, due to the equality of mixed partial de r iva t ives -  which we can write 
a S  0 2 g / O x i O x j  - -  02g/cgxjOxi the proof is complete. �9 

Exerc ise  12.4 Consider a variational problem given by integral (12.21). 
Let f (x, z) = 1, and let the endpoints be (0, 0) and (1, 1). Find function z (x) 
that renders this integral stationary and calculate the value of the integral 
along this function. Choose another function that connects the endpoints 
and show that the resulting value of the integral is greater than the one 
corresponding to the extremizing function. In view of Section 12.5.5, provide 
a geometrical illustration. 

Solu t ion  12.4 The variational problem in question is 

1~: / ) 
dz 2 

+ ~ 
0 

d~ - o. (12.a9) 

Since integral (12.39) depends only on z ~, in view of Section 12.5.2, the 
extremizing function is a straight line given by z (x) - x. Inserting z - x 
into integral (12.39), we obtain the distance along the extremizing function, 
namely, 

1 

/ v/ 2 d x = V/'2 , 

0 

as also expected from Pythagoras' theorem. Now, let us calculate the distance 
along another curve, for instance, z ( x ) -  x 2. Integral (12.39) becomes 

1 1 ] j  j ] l+(2X)  2 d x - ~  2x l + ( 2 x ) 2 + A r c s i n h ( 2 x )  o 

0 
1.48, 



Exercises 291 

which is greater than x/~, as expected. 
In view of Section 12.5.5, integral (12.39) is the surface area of a strip whose 
width is equal to unity, due to f (x, z) = 1, and whose length corresponds to 
the curve z (x), between x = 0 and x = 1. Since the width of the strip is 
constant, the least surface area corresponds to the shortest curve connecting 
the two points. Hence, the extremizing function is z (x) = x, which is a 
straight line. 

E x e r c i s e  12.5 Express Euler's equation (12.~) as the corresponding Hamil- 
ton's equations in dz/ dx and dp/ dx. 

S o l u t i o n  12.5 Consider integrand (12.1), namely, F (z ,z ' ;x) .  In view of 
Legendre's transformation, discussed in Appendix B, let the variable of trans- 
formation be denoted by 

OF 
P "- Oz" (12.40) 

and the new function be 

H (z, p; x) - pz' - F (z, z'; x ) ,  (12.41) 

which is the Hamiltonian corresponding to F. Hence, by the duality of Legen- 
dre's transformation, we can write 

, OH 
z = Op" (12.42) 

Invoking Euler's equation (12.~) and in view of expression (12.~0), we can 
write 

O F _  d ( O F ) _ d p _ p , . o z  -d--x ~zTz ~ dx (12.43) 

Hence, using expression (12.~1) to express function F in terms of function 
H, we obtain 

OH p , _  o r  _ _ 0__ [ p z ' - H  (z,p; x)] - . (12.44) 
8z Oz Oz 

Thus, using equations (12.~2) and (12.~) ,  we can write a system of first- 
order ordinary differential equations in dz/dx and dp/dx, namely, 

zl _ OH 

, (12.45) 
p, _ OH 

Oz 

which are the required Hamilton's equations. 
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Exerc i se  12.6 In view of Exercise 12.5, prove the following theorem. 

T h e o r e m  12.2 For an integral given by expression (12.1), namely, 

b 

/ 
a 

F [ z  (x ) ,z '  (x);x] dx, 

if F does not explicitly depend on x, the corresponding Hamiltonian, H, is 
the first integral of equation (12.~). 

S o l u t i o n  1 2 . 6  . 

Proof .  We can formally write 

dH (p, z; x) OH dp OH dz OH 
dx = 019 dx ~ Oz dx ~ Ox" (12.46) 

Invoking equations (12.45), the first two terms on the right-hand side of 
equation (12.46) vanish and, hence, this equation is reduced to 

dH (p, z; x) OH 

dx Ox 

In view of expression (12.41), H does not depend on x explicitly if and only 
if F does not depend on x explicitly. In such a case, we obtain 

dH 
--0~ 

dx 

and, hence, H is constant. Using expressions (12.40) and (12.41), we can 
write 

O F z ~ -  F - C, 
H - pz ~ - F = Oz-- 7 

where C denotes a constant. This is the first integral of equation (12.4), 
given by expression (12.19). n 
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Fermat principle 

There is hardly any other branch of mathematical sciences 
in which abstract mathematical speculations and concrete 
physical evidence go so beautifully together and complement 
each other so perfectly. [... ] In spite of all differences in 
the interpretation, the variational principles of mechanics 
continue to hold their ground in the description of all the 
phenomena of nature. 

Cornelius Lanczos (19~9) The variational principles of mechan- 
ics 

Preliminary remarks 

In Chapter 9, we derived Lagrange's ray equations, which, as shown in 
Chapter 12, are the stationarity conditions for a definite integral. In this 
chapter, we will show that this definite integral corresponds to the traveltime 
of a signal between two points in an anisotropic inhomogeneous continuum. 
Consequently, we can study ray theory in terms of Fermat's variational 
principle of stationary traveltime. 

In general, physical applications of the calculus of variations are based 
on the fact that the behaviours of physical systems appear to coincide with 
the extremals of certain integrals. For instance, while in ray theory this 
integral corresponds to the traveltime, in classical mechanics this integral is 
given in terms of the kinetic and potential energies. 

We begin this chapter with the statement of Fermat's principle as a the- 
orem dealing with rays. Proof of this theorem is rooted in Hamilton's ray 
equations, where the mathematical concept of a ray originates. Hence, we 

293 
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investigate several properties of the ray-theory Hamiltonian and the result- 
ing Lagrangian and, using these properties, obtain a proof of this theorem. 
We also discuss another variational principle that is pertinent to our studies, 
namely, Hamilton's principle. 

13.1 Formulation of Fermat's principle 

Notat ion 13.1 In this section, to show the generality of the formulation, 
all expressions are derived for an n-dimensional space. 

13.1.1 S t a t e m e n t  of  Fermat ' s  pr inc iple  

In 1657, Pierre de Fermat formulated his variational principle for the prop- 
agation of light. He stated that light travels along a curve that renders the 
traveltime minimum. In modern notation, a generic form of this principle, 
to which we refer as the principle of stationary traveltime, can be restated 
by the following theorem. 

Theorem 13.1 1 Rays are the solutions of the variational problem 

B ,/ 
A 

ds 

V(x,.) = 0 ,  (13.1) 

where ds is an arclength element and V(x, n) is the ray velocity in direction 
n - dx /ds  at point x. A and B are the fixed endpoints of this variational 
problem. 

Note that, in expression (13.1) and throughout Section 13.1, n denotes 
a vector tangent to the ray and not a vector normal to the wavefront, as is 
the case in other sections of this book. 

13.1.2 P r o p e r t i e s  of  H a m i l t o n i a n  7-/ 

In order to prove Theorem 13.1, we must show that the solution of variational 
problem (13.1) is equivalent to the solution of Hamilton's ray equations 

~The proof of the theorem shown in this section is based on BSna, A., and Slawinski, 
M.A., (2003) Fermat's principle for seismic rays in elastic continua: Journal of Applied 
Geophysics. 
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(8.19), namely, 
07-t 

ici = Opi 

07-/ 
i b i -  

OXi 

iC  { 1 , . . . , n } .  

Let us investigate the properties of the Hamiltonian that is given 
sion (8.20), namely, 

1_ 2v 2 (x ,p ) ,  (x, p)  = 

(13.2) 

by expres- 

and which, in view of v being homogeneous of degree 0 in the Pi, can also 
be stated as 

7{ (x, p) - ~p x,7-27 , (13.3) 

where IPl is the magnitude of the phase-slowness vector. 
By examining expression (13.3), we note the following properties of this 

Hamiltonian. 7-I is homogeneous of degree 2 in the Pi. Also, since 7-I does not 
explicitly depend on time, its value is conserved along the ray. The latter 
property can be stated by the following lemma. 

L e m m a  13.1 Hamiltonian 7-t (x,p),  given by expression (13.3), 
served along the ray. 

is con- 

Proof .  Using system (13.2) and the fact that 7-t does not explicitly 
depend on time, we can write 

dT-t 
dt 

n 07-/. n 0 H .  07~ 
= E - - x i  + E ~---pi + 

i = 1 0 x i  i=1 Pi Ot 
n n 

= - + e,p  - o 

i=1 i=1 

m 

Moreover, the value of the Hamiltonian, which is conserved along the 
ray, is equal to 1/2. This results from the fact that the eikonal equation, 
which is shown in equation (7.17), must be satisfied along the rays. Hence, 
in view of this equation, which states that p2v2 - 1, and expression (8.20), 
we require that 

1 
7-/(x, p) - ~ (13.4) 

along a ray. 
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13.1 .3  V a r i a t i o n a l  e q u i v a l e n t  o f  H a m i l t o n ' s  r a y  e q u a t i o n s  

To show that rays obtained from Hamilton's ray equations (13.2) are solu- 
tions of variational problem (13.1), we express these equations in the context 
of the calculus of variations. As stated in Section 12.7, Lagrange's ray equa- 
tions (9.8), namely, 

0s d 0s 
= 0, i e {1, , ~ } ,  ( la.5) 

Oxi dt O~ci 

possess the form of Euler's equations. Consequently, in view of Chapter 12, 
we can state the following proposition. 

P r o p o s i t i o n  13.1 Rays are the solutions of the variational problem 

/ f_.dt - O, (13.6) 

where the ray-theory Lagrangian s is given by expression (9.2), namely 

n 

z; (x,~) - }-~.pj (x,• 2j - 7t (x, p) .  (13.7) 
j = l  

13.1.4 Properties of Lagrangian Z; 

To examine variational formulations (13.1) and (13.6), we must study the 
properties of Lagrangian s given by expression (13.7), in terms of the cor- 
responding Hamiltonian, ~ .  We begin by stating the following lemma. 

L e m m a  13.2 If ~ (x, p) is homogeneous of degree 2 in the pi, then 

L; (x, ~ (x, p)) -- 7-{ (x, p) ,  

where, by Legendre's transformation, ic i -  O~/Opi. 

Proof .  Consider Lagrangian 

n 

i=1  

In view of Legendre's transformation, we can write 

L (x ( t ) , ~  (x (t),  p (t))) - ~ ;~p, 
i=1  



13.1. F o r m u l a t i o n  o f  F e r m a t ' s  pr inc ip le  297 

If 7-I is homogeneous of degree 2 in the Pi, 
pendix A, we obtain 

by Theorem A.1, stated in Ap- 

s (x (t), • (x (t), p (t))) - 27-I - 7-I - H, 

which completes the proof. �9 
In view of the conserved value of Hamiltonian 7-l, as shown in Lemma 

13.1, and following expression (13.4), we obtain the following corollary of 
Lemma 13.2. 

C o r o l l a r y  13.1 Along  each ray, Lagrangian  s is equal to 1/2. 

In view of 7-{ being homogeneous of degree 2 in the Pi, the analogous 
property of s is shown in the following lemma. 

L e m m a  13.3 I f  H a m i l t o n i a n  7-I (x, p) is homogeneous  o f  degree 2 in the Pi, 

then  Lagrangian  s (x, • is homogeneous  o f  degree 2 in the ki .  

Proof .  By Lemma 13.2, T/(x, p) - s (x , •  (x, p)), where • and p are 
related by Legendre's transformation 5ci - OTl/Opi.  Let p '  " -  ap, where a 
is a constant. The corresponding Hamilton's equations are 

., 07{ (x, p') 0T / (x ,ap)  i e {1 . . .  n } .  
x {  = Op~ = 0 ( a p { )  ' ' ' 

By the homogeneity of 7-/and the property of the differential operator, we 
can write 

a2 0 ~  (x, p) a2 07/(x,  p) 

c3~(x,ap) _ Opi _ Opi i C {1 . . . , n } .  
x~ -- O (api) -- O (api) -- a ' ' 

0p~ 

Hence, 

., 0~ / (x ,p )  i c  { 1 , . . . , n } ,  
x i - a Opi 

which, in view of Hamilton's ray equations, given 
stated as 

by system (13.2), can be 

"' iC  {1, n} X i - -  axi~ . . .~  �9 

Consequently, we can write 

L - L (x ,  
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which, by Lemma 13.2, yields 

s (x, a• - s (x, • - ~ (x, p') = ~ (x,ap) - a2~ (x, p) - a2s (x, •  

where the expression in the middle results from the homogeneity of H. This 
means that Lagrangian s (x, • is homogeneous of degree 2 in the 2i. m 

Lemma 13.3 implies that variational problem (13.6) has a fixed parame- 
trization since s is homogeneous of degree 2 in the ki. For a variational 
problem to be independent of parametrization, the integrand must be ho- 
mogeneous of degree 1 in the xi, as shown in Exercise 13.1. 

Note that, as shown in Section 8.2, the solutions of Hamilton's ray equa- 
tions (13.2) are parametrized by time; hence, the solutions of system (13.5) 
are also parametrized by time. Also note that, in view of the homogeneity 
of the Lagrangian and its not being explicitly dependent on t, Beltrami's 
identity together with Euler's homogeneous-function theorem imply that s 
is conserved along any ray, as shown in Exercise 13.2. As expected, this 
result is consistent with Corollary 13.1. 

13 .1 .5  P a r a m e t e r - i n d e p e n d e n t  L a g r a n g e ' s  r a y  e q u a t i o n s  

Parametrization independence is necessary to state Fermat's principle since 
its generic form, shown in expression (13.1), is parametrization indepen- 
dent. This results from the fact that the integrand in expression (13.1) is 
homogeneous of degree 1 in the xi. 

Let us consider a Lagrangian given by 

7 -  (13.s) 

where s is given by (13.7). Note that, following Definition A.1, stated in 
Appendix A, $" is absolute-value homogeneous of degree 1 in the 2i. Under 
certain conditions, which are satisfied in our case, the solutions of Lagrange's 
ray equations (13.5) are also the solutions of the equations given by 

0~ d ( 0 ~ / ) _  0 i C { 1 . .  n}. (13.9) 
Oxi dt ' ' ' '  

This is stated by the following lemma. 

L e m m a  13.4 A solution of equations (13.5) that satisfies the condition 
given in Corollary 13.1, where s is given by expression (13.7), is also a 
solution of equations (13. 9), where ~ - vf2-Z. 
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Proof .  Inserting s - .T'2/2 into equations (13.5), we obtain 

0 ~2 d 1 ~ ~ / ( ~ ) ]  
0~ ( V ) - N  

OY: d ~-~zi 
- ~ Oxi  dt 
_ y : [ O ~  d ( O~ 

Oxi dt \ 

= 0 ,  i e  { 1 , . . . , n } .  

d3 c 0~" 

dt OJci 

Since/2 - 1/2 along a ray, as shown in Corollary 13.1, then ~ - 1 and, 
hence, dYZ/dt - 0 along the solutions of equations (13.5). Thus, equations 
(13.5) become equations (13.9), as required. �9 
Consequently, equations (13.9) can also be viewed as Lagrange's ray equa- 
tions. 

If we can show that  
7 - -  I~1 (13.1o) 

v 

where l• - ds/dt  and * / !~r  n, then we prove Theorem 13.1, since the 
right-hand side of equation (13.10) is the integrand of equation (13.1). 

13 .1 .6  R a y  v e l o c i t y  

In order to show that  the right-hand side of equation (13.10) is the integrand 
of equation (13.1), we must formulate ray velocity in a variational context. 
Since, as shown in Lemma 13.3, Lagrangian s is homogenous of degree 2 in 
the 2i, we can write 

(x,,)  - L (x, I~t n) - I• 2 Z; (x, n), 

where n -  •177 is a unit vector tangent to the ray. Since, as stated in 
Corollary 13.1, the value of Lagrangian s along a ray is 1/2, we can write 

1 
= 1• 2/2 (x, n) .  

Since this expression is valid along any ray, the ray velocity V, given by [xl, 
can be expressed as 

1 
v (x , . )  -- I~l - v / 2 ~  (x , . ) '  (1a.~1) 

which is consistent with expression (9.12). 
Now, we are ready to complete the proof of Theorem 13.1. 
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13.1 .7  P r o o f  of  F e r m a t ' s  p r i n c i p l e  

Proof .  By Lemma 13.4, rays are the solutions of Euler's equations stated in 
system (13.9). Consequently, rays are the solutions of variational problem 

5 . f  9~dt - O. (13.12) 

In view of expression (13.8), we can restate this variational problem as 

8 / 9 ~  (x, •  

Since, as stated in Lemma 13.3, s is homogeneous of degree 2 in the 2i, we 
can write 

/ 9  ~(x,•  d t - 5 / 1 2  ]•163 d t - 5 . / I •  V/2s ( x , n ) d t - O .  

In view of expressions (13.11) and since I• dt = ds, we conclude that 

5 ~ ( x , •  V(x ,n )  =0" 

Hence, the solutions of Hamilton's ray equations that correspond to rays are 
the solutions of variational problem (13.1). �9 

Theorem 13.1 states that seismic rays in anisotropic inhomogeneous con- 
tinua obey Fermat's principle of stationary traveltime. Since our proof relies 
on Legendre's transformation, discussed in Appendix B, it is valid only if 
the Hamiltonian, ~ ,  is regular, namely, 

det OpiOpj J r O, i, j ~ {1,. . . ,  n} . 

In other words, we are unable to prove Theorem 13.1 at the inflection points 
of the phase-slowness surface. As stated in Theorem 10.3, for an elastic 
continuum defined by constitutive equations (3.1), the innermost phase- 
slowness surface is always convex and, hence, the Hamiltonian associated 
with the fastest wave is always regular. For the slower waves, however, 
there are points where the Hamiltonian is irregular. This does not mean 
that Fermat's principle does not hold in general; however, the proof of The- 
orem 13.1 in the context of a phase-velocity function giving an irregular 
Hamiltonian remains an open problem. 

Heuristically, the principle of stationary traveltime can be justified by 
the fact that among all signals of finite duration, the signals arriving at 
the receiver at the same instant constructively interfere and, consequently, 
contribute to the recorded observation, while the contribution of a multitude 
of signals arriving at different times is negligible. 
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13.2 Illustration of Hamilton's principle 

Introductory c o m m e n t s  

Born and Wolf, in their classic book entitled "Principles of optics", make 
the following statement. 

Variational considerations are of considerable importance as they 
often reveal analogies between different branches of physics. In 
particular there is a close analogy between geometrical optics 
and the mechanics of a moving particle; this was brought out 
very clearly by the celebrated investigations of Sir W.R. Hamil- 
ton, whose approach became of great value in modern physics, 
especially in applications to de Broglie's wave mechanics. 

In this book, we focus on the variational formulation of geometrical op- 
tics without explicitly studying the analogies among different branches of 
physics. In this section, however, we will illustrate the analogy with clas- 
sical mechanics by deriving the wave equation using Hamilton's variational 
principle. 

13.2.1  Action 

Fermat's principle, discussed in Section 13.1, plays an important role in 
ray theory. Another variational principle, which is pertinent to wave phe- 
nomena in elastic continua, is that of Hamilton. As stated by Arnold, in 
"Mathematical methods of classical mechanics", 

the fundamental notions of classical mechanics arose by the trans- 
forming of several very simple and natural notions of geometrical 
optics, guided by a particular variational principle ~ that of Fer- 
mat, into general variational principles. 

In this section, we will illustrate Hamilton's principle in a simple context 
where the resulting Lagrange's equations of motion can be viewed as a re- 
statement of Newton's second law of motion. Consequently, using the partic- 
ular case of Hamilton's variational principle, we derive the one-dimensional 
wave equation, which corresponds to homogeneous continua. 

While Newton proposed to measure motion by the rate of change of 
momentum, Leibniz suggested another quantity, the vis viva 2. In the stan- 

2 living force. Readers interested in the origin of this entity might refer to Toretti, R., 
(1999) The philosophy of physics: Cambridge University Press, pp. 33- 36. 
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dard formulation of classical mechanics, vis viva can be viewed as twice the 
kinetic energy. Vis viva underlies the concept of action. 

The commonly accepted definition of action is 

t2 

A .= f L dt, 
t l  

where L is the classical-mechanics Lagrangian that is defined by 

(13.13) 

L := T -  U, (13.14) 

with T and U denoting the kinetic energy and the potential energy, respec- 
tively. 

In classical mechanics, the principle of least action was proposed by de 
Maupertuis who, in 1744 in a document appropriately entitled Accord des 
diff~rentes lois de la nature qui avait jusqu'ici paru incompatibles 3, stated 
that 

l'action est proportionnelle au produit de la masse par la vitesse 
et par l'espace. Maintenant, voici ce principe si digne de l'I~tre 
supreme: Lorsqu'il arrive quelque changement dans la Nature, 
la quantit6 d'action employee pour ce changement est toujours 
la plus petite qu'il soit possible. 4 

However, careful analysis of the variational methods led to the formula- 
tion of the principle of stationary action rather than the principle of least 
action. The stationary-action principle was rigorously stated by Hamilton 
who wrote that 

although the law of least action has thus attained a rank among 
the highest theorems of physics, yet its pretensions to a cosmo- 
logical necessity, on the grounds of economy in the universe, are 
now generally rejected. And the rejection appears just, for this, 
among other reasons, that the quantity pretended to be econo- 
mized is in fact often lavishly expended. 

3Agreement of various laws of nature which until now appeared incompatible 
4Action is proportional to the product of mass, velocity, and displacement. Conse- 

quently, the principle so worthy of the Supreme Being: When there is a change in Nature, 
the value of action used for this change is the smallest possible. 
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In other words, action may be either a minimum or maximum. As a result, in 
classical mechanics, the principle of stationary action proposed by Hamilton 
states that 

if the positions of a conservative system are given at two in- 
stants, t l and t2, the value of the time integral of Lagrangian L 
is stationary for the path actually described by this system, as 
compared to any other path that connects the two positions and 
obeys the constraints of the system. 

In other words, in view of definition (13.13), finding a stationary value of 
action is equivalent to variational problem 

t2 

5 A - S  f 

tl 

Ldt  = 0. (13.15) 

From the variational principle of action, it is possible to derive many 
equations of mathematical physics. In particular, a variational derivation 
of the wave equation is shown in Section 13.2.3. In the context of this 
illustration, the potential energy is assumed to be a function of position 
alone, while the kinetic energy is assumed to be a function of velocity alone. 
In other words, for this illustration of Hamilton's principle, we confine our 
interests to homogeneous continua. 

13 .2 .2  L a g r a n g e ~ s  e q u a t i o n s  o f  m o t i o n  

In this section, we introduce Lagrange's equations of motion using the con- 
cepts of particle mechanics in order to familiarize the reader with this classi- 
cal formulation. In the context of seismic wave propagation, the reader can 
omit this section and proceed directly to Section 13.2.3. 

Considering Hamilton's principle, stated in equation (13.15), and in view 
of the stationarity conditions, discussed in Chapter 12, the motion of a 
particle must satisfy Euler's equations. The parametric form of Euler's 
equations can be written as 

Oxi dt - O, i E {1, 2, 3}, (13.16) 

where t denotes time, xi is the position coordinate and, hence, xi is a compo- 
nent of the velocity vector tangent to the trajectory of this particle. Equa- 
tions (13.16) are Lagrange's equations of motion. In the context of this 
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section, since the kinetic energy does not depend on position, Lagrange's 
equations of motion (13.16) are just a restatement of Newton's second law 
of motion. To justify this equivalence, consider the following description. 

Considering the first term of Lagrange's equations of motion (13.16) and 
recalling that T is assumed to be a function of velocity alone, we obtain 

0 L  0 IT - U (x)] OU 
Oxi Oxi cgxi - F i  i C {1 2 3} 

which is the expression for a component of force in a conservative field. 
Considering the expression in parentheses in the second term of Lagrange's 
equations of motion (13.16) and recalling that U is assumed to be a function 
of position alone, we obtain 

o IT(SO - v (x)] oT  
Oic~ Oici Oici Pi, i E { 1 2 3 } (13.17) 

which is the expression for a component of momentum. 
Since the first term of equations (13.16) is the component of force, while 

the second term is the rate of change of the corresponding component of mo- 
mentum, Lagrange's equations of motion (13.16) are equivalent to Newton's 
second law of motion, namely, 

dpi 
Fi dt =0 '  i C {1,2,3}. 

Also, as shown in Exercises 13.6 and 13.7, we can derive Hamilton's equa- 
tions of motion from Newton's laws of motion. 

Lagrange's equations of motion (13.16) apply to discrete systems, where 
the Lagrangian depends on the position of each particle. However, as shown 
in the following section, we can use the principle of stationary action in the 
context of continua, where the motion is defined by coordinates that are 
functions of both time and position variables. 5 

13 .2 .3  W a v e  e q u a t i o n  

C o n t i n u o u s  sys t ems  and  Lag rang i an  dens i ty  

A seismological application of stationary-action principle (13.15) and, con- 
sequently, of Lagrange's equations of motion for elastic continua, is exem- 

5Readers interested in the energy propagation in the seismological context of the con- 
tinuum using the Lagrange equations of motion and the generalized coordinates, might 
refer to Udfas, A., (1999) Principles of seismology: Cambridge University Press, pp. 36 - 
38. 
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plified by the derivation of the wave equation. 6 The coordinates of a three- 
dimensional continuous system are given by three position variables, x l, x2, 
x3, and the time variable, t. Consequently, the displacement is given as a 
function of four independent variables, namely, u = u (Xl, x2, x3, t). Hence, 
for a three-dimensional continuum, Lagrangian L is associated with an ele- 
ment of volume and is given by 

L - - / / / s  dx2 dx3, (13.18) 

where s is the Lagrangian density 

Ou Ou ) 
2 . -  2. u, Oxi' ot ' x i ' t  , i -  {1,2,3}.  

V a r i a t i o n a l  d e r i v a t i o n  of  wave  e q u a t i o n s  

Consider oscillations of a finite-length string with fixed ends. Let the string 
itself be massless, have a length l, and contain n equal masses, mi, spaced 
at equal intervals, Ax. Let the longitudinal displacements of masses be 
uo,. . . ,Un+l,  with u0 - Un+I = 0 being the boundary conditions corre- 
sponding to fixed ends. Assume the force, F, required to stretch a length 
Ax of the string by amount u, to be 

k 
F -  ~xx u, (13.19) 

where k denotes a constant. 
Note that the term k / A x  has the units of [N/m] and expression (13.19) 

can be viewed as a one-dimensional statement of Hooke's law. 
The potential energy, U, is associated with the elasticity of the string 

and is given by the strain-energy function, discussed in Chapter 4. The 
potential energy of a segment of the string is 

1 k (Au) 2 
d U -  2 A x  

where Au - u i -  ui-1. Summi,~g all the segments, the potential energy 
along the entire string containirg n discrete mass points is 

1 ~-~ (ui - ui-1)2 
U - ~ k ~ Ax " (13.20) 

i=1 
6 Readers interested in further descriptions of the Lagrangian formulation for continuous 

systems might refer to Goldstein, H., (1950/1980) Classical mechanics: Addison-Wesley 
Publishing Co., pp. 548- 555. 
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The kinetic energy, T, for the entire string containing n discrete mass 
points, each of which has a mass m, is 

T - lm f i  [ Ou (~t*' t) ] 2 . 
i = 1  

(13.21) 

If n --~ oe and Ax --~ 0 in such a way tha t  (n + 1) Ax - l, the potential  
energy, U, can be wri t ten as 

- -  ( X  i - -  Xi__ 1 ) .  
2 i = 1  Xi  --  X i - 1  

Thus,  in the limit, the term in brackets represents a part ial  derivative with 
respect to x, while the summat ion  results in integration. Hence, we can 
write 

1 

g - -~k Oz dz .  (13.22) 
0 

Similarly, for the kinetic energy, rearranging and using the limit, we can 
write 

l 

T = 2 Ax ~ Ot A x -  -~p Ot dx, (13.23) 
"~ 0 

where p " -  lim m/Ax, is the mass density of the one-dimensional contin- 
Ax---~0 

u u m .  

Since the kinetic energy, given in expression (13.23), is not a function 
of position, we can invoke the classical-mechanics Lagrangian,  given by ex- 
pression (13.14). Thus, using expressions (13.22) and (13.23), we can write 

L (x ,  t)  - T - U (x)  

l l 

= -2 P Ot d x  - -~ k Ox d x  

0 0 

- /l { p [ Ou (x' t) ] ~ - -2k [ Ou (x' t ) ] 2 dx. 

0 

(13.24) 



13.2. Illustration of Hamilton's principle 307 

Since we are presently dealing with a one-dimensional continuum, consider- 
ing expression (13.18), we can write 

l 

L = i s dx, (13.25) 

0 

where, in view of integral (13.24), s is the Lagrangian density given by 

2_.,- 7 ~ -~.  ~ . (13.26) 

To invoke a variational formulation, in view of expression (13.25) and 
following equation (13.15), we can write 

t t 1 

'1  d':'SI 
0 0 0 

dx dt - 0. 

Thus, we seek the stationary value of a definite integral that depends on two 
variables. In view of the corresponding Euler's equation, namely, equation 
(12.11), we can write the stationarity condition as 

Ou -~ ~ +-~x ~ - 0 ,  (13.27) 

where ut := Ou/Ot and u~ := Ou/Ox. 
Equation (13.27) is Lagrange's equation of motion for a one-dimensional 

continuum. 
Inserting the Lagrangian density, stated in expression (13.26), into equa- 

tion (13.27) and considering p and k as constants, we obtain 

[o t 0x)] 02u _ 02u 
- + k = =  

ox ~ 
- 0 .  

Rearranging, we can write 

02u 1 02u 
OX 2 k O t  2 '  

P 

which is a one-dimensional wave equation for longitudinal waves in elastic 
continua, where v/-ff/p denotes the speed of propagation with the units of 
speed resulting from [ k ] -  [kgm/s 2] and [P ] -  [kg/m]. 
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Note that the solution of the one-dimensional wave equation is surface 
u (x, t) in the xt-space that renders f f  s stationary. This illus- 
trates the fact that a solution of Euler's equation involving two variables is 
a surface, as stated in Section 12.4.1. 

The variational approach to the one-dimensional wave equation for trans- 
verse waves is shown in Exercise 13.9. 

Closing remarks 

As shown in this chapter, rays ~ originally formulated in terms of Hamil- 
ton's ray equations (8.19) coincide with the curves exhibiting stationary 
traveltime. This property allows us to invoke Fermat's principle and, hence, 
to study ray theory using the tools of the calculus of variations. In Chapter 
14, we will use the stationarity of traveltime to study raytracing techniques. 

Variational formulations are equivalent to Hamilton's ray equations pro- 
vided we can, using Legendre's transformation, write a given ray-theory 
Hamiltonian as the corresponding ray-theory Lagrangian. This requirement 
is satisfied for all convex phase-slowness surfaces. As stated in Theorem 10.3, 
the phase-slowness surface of the fastest wave is convex. Consequently, we 
can always use Fermat's principle to study the qP wave. When dealing with 
the qS wave, we must be aware of the inflection points of its phase-slowness 
surface. The study of such points belongs to the realm of singularity theory, 
which is not considered in this book. 7 

0 
Exercises 

Exerc i s e  13.1 Consider a traveltime integral in an anisotropic inhomoge- 
neous continuum, namely, 

b 

-- / 9 ~ (x, K)dr. (13.28) 

a 

7Interested readers might refer to Hanyga, A., and Slawinski, M.A., (2001) Caustics in 
qSV rayfields of transversely isotropic and vertically inhomogeneous media: Anisotropy 
2000: Fractures, converted waves, and case studies: SEG (Special Issue), 409 - 418. 
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Show that if jz (x, • is homogeneous of degree 1 in • the integral is inde- 
pendent of parametrization. 

S o l u t i o n  13.1 Let s = f (t) be an arbitrary parametrization. Hence, 

d f  
d ~ -  - ~ d t - .  ]dr ,  

and 
_ d s  

dt" 

Consider ~ (x, • where 
dx ds 
ds d t '  

which, in view of expression (13.29), can be written as 

(13.29) 

_ dx  d f  _ .  x ' j .  
ds dt 

For the value of the integral (13.28) to be independent of parametrization, 
we require 

9 r (x, ~ )d t  - 9 r (x, x ' ) d s .  (13.30) 

Consider the left-hand side of equation (13.30). Since • - x ' ]  and dt - 
d s / f ,  we can write it as 

( x']) d~ f ( x , ~ ) d t -  f x, 7 

If 5 is homogeneous of degree 1 in • following Definition A.1, stated in 
Appendix A, we obtain 

~: (x, ~ , )dt-  ] 7  (x, x') _d* _ 7 (x, x')d~, 
f 

which is equation (13. 30), as required. 

R e m a r k  13.1 Exercise 13.1 shows that the general statement of Fermat's 
principle, namely, 5 f ~ (x, • dt - 0, is independent of parametrization. 
Th~ ~ th~ ca~ ~ c ~  ~: (x, ~)dt = d , / V  ~ homog~n~o~ of d~g~  ~ ~n ~. 
Note that ds is homogeneous of degree 1 in • while V is homogeneous of 
degree 0 in • 
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Exercise 13.2 Sin view of Lemma 13.3, use Beltrami's identity (9.9), namely, 

~ -  +d-tO/: d i=1  :gi~/ - -s  =0,  (13.31) 

to show that Lagrangian s is conserved along the ray. 

Solution 13.2 Since s given by expression (13. 7), does not explicitly de- 
pend on t, equation (13.31) becomes d ( ~ i n i  2iOs - s  - O, which 
implies that ~ i n l  2 i O s  s - C, where C denotes a constant. Since, 
by Lemma 13.3, s is homogeneous of degree 2 in the 2i, in view of Theorem 
A.1, we obtain 2 s  s = C. Thus, Lagrangian s is equal to a constant and, 
hence, it is conserved along the ray. 

Exercise 13.3 Consider the system of six characteristic equations for an 
isotropic inhomogeneous continuum, derived in Exercises 8.~ and 8.5, namely, 

dxi 
a t  = v2p  

dpi = O ln v 

dt Oxi 

i e {1, 2, 3}. (13.32) 

Express system (13.32) as three second-order equations. 

Solution 13.3 Solving the first equation of system (13.32)for the compo- 
nents of the phase-slowness vector, we get 

1 dxi 
i e {1 ,2 ,3} .  Pi - V2 (x) d t '  

Differentiating with respect to t, we can write 

dpi d [ 1 dxi] 
at =d---t v 2(x) dt ' i c  {1,2,3}, 

which we can equate to the second equation of set (13.32) to obtain 

Olnv d [ 1 dxi] 
Ox--'-~- + -~ v 2 (x) at - O, i c {1, 2, 3}, (13.33) 

as required. 

s See also Section 9.1.2 
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Exercise  13.4 Consider the traveltime integral in an isotropic inhomoge- 
neous continuum. Show that equations (13.33) are equivalent to a parametric 
form of Euler's equations. 

Solut ion 13.4 Let the integrand of the traveItime integral in an isotropic 
inhomogeneous continuum be written as 

J '-3: �9 - " 

_ V i = 1  
f ( x , ~ ; t )  - V ( X )  ...... ' 

where • ~ dx/dt.  We invoke equations (13.9), namely, 

Oxi dt ~ / /  = O, i e {1,2,3}, (13.34) 

which are a parametric form of Euler's equations. Considering integrand 
and the first term of equations (13.34), we obtain 

OJ z _  1 OV (x) E k i 2 i '  i c  {1,2,3}. 
Oxi - - V 2 (x------) Oxi i=l 

Using the fact that t denotes time, and, hence, as shown in expression (9.12), 

i . . . . . . . . . . . .  

3 

~ , ~  =: v ( x ) ,  
i=1  

(13.35) 

where V is the magnitude of ray velocity, we can write 

o ~  1 av  (x)  
Oxi V(x) Oxi i e  {1 23}  

Using the chain rule, we can rewrite this expression as 

OF 0 
= - In V (x), i e {1, 2, 3}. (13.36) 

Ox~ Oxi 

Considering integrand Jr and the second term of equations (13.3~), we obtain 

= ..... / ,  i e  {~ 2 , 3 }  
a~i v (x) 3 ' ' ' 

2~2~ 
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which, using expression (13.35), we can write as 

OJ: 1 dxi 
O~i V 2 (x) dt ' 

i E  {1,2 ,3} .  (13.37) 

Consequently, using expressions (13.36) and (13.37), we can write Euler's 
equations (13.3~) as 

OlnV d I 1 dxi 1 
Ox------~ + -~ V 2 (x----) dt - 0, i e {1, 2, 3}. (13.38) 

Since in isotropic continua, phase and ray velocities coincide, namely, V -- 
v, equations (13.38) are equivalent to equations (13.33), as required. 

R e m a r k  13.2 Exercises 13.3 and 13.~ show that the characteristic equa- 
tions that are the solutions of the eikonal equation in isotropic inhomoge- 
neous continua are tantamount to Euler's equations that provide the station- 
arity condition for the traveltime of the signal in such continua. In other 
words, these exercises verify Fermat's principle in isotropic inhomogeneous 
continua. 9 

E x e r c i s e  13.5 Recall the classical-mechanics Lagrangian given in expres- 
sion (13.1~), namely, 

L : = T - U ,  

where T and U are the kinetic and potential energies. 
mechanics Hamiltonian be 

H . - T + U .  

(13.39) 

Let the classical- 

(13.40) 

Using the standard expression for kinetic energy and letting Pi be a compo- 
nent of linear momentum, verify Legendre's transformation between L and 
H. 

S o l u t i o n  13.5 In view of Legendre's transformation, discussed in Appendix 
B, we can write 

n 

H -- ~ Pi:~i -- L,  
i=1 

9Readers interested in a formulation linking rays and Fermat's principle in isotropic 
inhomogeneous continua might also refer to Elmore, W.C., and Heald, M.A., (1969/1985) 
Physics of waves: Dover, pp. 320 - 322. 
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where pi - mvi,  with vi being a component of velocity given by vi - d x i / d t  - 
2i. Hence, we can write 

n 

�9 2 L -  mv 2 - L, (13.41) ]I-]I - m ~-~ x i - 
i=1  

where v stands for the magnitude of velocity. Recalling definitions (13.39) 
and (13.~0), we can write expression (13.~1) as 

T + U - m v  2 - ( T -  U ) ,  

where T and U are the kinetic and potential energies, respectively. Simpli- 
fying, we obtain 

1 2 
T -  ~mv , 

which is the standard expression for kinetic energy. 

Exercise 13.6 Given Newton's second law of motion, stated as a single 
second-order ordinary differential equation, namely, 

d2xi OU (x) 
mdt----- V = -  Oxi i e  {1 2 3} (13.42) 

where U (x) denotes the scalar potential, write the corresponding two first- 
order ordinary differential equations in t to be solved for the xi and the Pi, 
where pi is a component of the linear momentum.  

Solut ion 13.6 We can denote the components of the momen tum vector as 

dxi 
Pi "-  m d--T' i e {1, 2, 3}. (13.43) 

Differentiating both sides of equations (13.~3) with respect to t, we obtain 

dpi d2xi 
= m ~  iC {1,2,3}, 

dt dt 2 '  

which are equations (13.~2). Hence, Newton's second law of 
written as a set of two first-order differential equations, 

motion can be 

dxi _ 

dt 

d p i =  

dt 

Pi 
m 

OU 

OXi 

i C {1,2,3}. (13.44) 
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E x e r c i s e  13 .7  a0 Using expression (13.~0), show that equations (13.~4), ob- 
tained in Exercise 13.6, correspond to Hamilton's equations of motion that 
are given by 

d = o H  

dt Opi 
, i c { 1 , 2 , a }  

dpi = oH 
dt Oxi 

S o l u t i o n  13 .7  Consider expression (13.~0). Using the standard expression 
for the kinetic energy, as well as the definition of linear momentum, we can 
write this expression as 

H - T + U = ~ m  -~ +U-TmP~+U, ic {1,2,3}. (13.45) 

Differentiating equations (13.45) with respect to both the Pi and the xi, we 
obtain 

OH _ p~ 

, i e { 1 , 2 , a } .  
OH _ OU 

Oxi Oxi 

Using Newton's second law of motion, which is stated in expression (13.~) ,  
we obtain 

dxi _ OH 

- O p t  

, i e { 1 , 2 , a } ,  
dp...~ = O]I-1! 

dt Oxi 

which are Hamilton's equations of motion, as required. 

E x e r c i s e  13 .8  Considering a free-falling body in the vacuum, show that 
Hamilton's principle is consistent with Newton's concept of acceleration due 
to gravity. 

S o l u t i o n  13 .8  Let T = my2~2 and U = mgz, where m is mass, v is veloc- 
ity, g is acceleration due to gravity and z denotes height. Since v = dz/dt ,  
we can write the classical_mechanics Lagrangian as 

L -  T -  U = -~m - m g z .  

lo See also Section 13.2.2 
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Consider the action integral 

tl 

A = / L d t .  
to 

Hamilton's principle implies 

tl tl 

to to 

dt = 0, 

where ~ "= dz /d t  . Invoking Euler's equation, which corresponds to La- 
grange's equations of motion (13.16), we obtain 

OIL d(69L)  
Oz dt ~z  

d ( m 2 ) = - m g - m S = O ,  = - m g -  -~ 

which can be written as 
d2z (t) 

dt 2 
--- ~g~ 

where g is the free-fall acceleration, as required. 

Exerc i se  13.9 Following Section 13.2.3, 
equation for transverse waves. 

derive a one-dimensional wave 

Solution 13.9 Let the transverse displacements of masses be uo , . . . ,  Un+l, 
with uo = Un+l = O, which are boundary conditions corresponding to fixed 
ends. The potential energy, U, is associated with the tension, #, of the 
string. The potential energy per segment is 

dU =-/.t [i(~x)2-~-(ul ~ U i ' l )  2 - / k x ] ,  (13.46) 

where the term in parentheses constitutes the extension of the segment Ax,  
which is the difference between its original length, Ax,  and its strained 

I " " - ~ 

length, ~/(Ax)2-~ - (ui ui_ 1) 2~. We can rewrite expression (13.~6) as 

Ui -- Ui-1 -- 1 d U -  # A x  1 + 
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Expanding the square root as a power series gives us 

d U -  # A x  [1 ( u i -- u i -1) A x - "81 l u i - u i -1) 4 l a x  -P " " 

Assuming that the term in parentheses is much smaller than unity, which 
implies that the transverse displacement is much smaller than the length of 
a segment, we obtain 

# l  ui-ui-1 ) 
d U ,.~ ~ A x  A x  

Thus, the potential energy for the entire string is 

U "~-' 1# ~ l ui - ui-1 l a x  
i--1 

2 
Ax. 

Letting n > oc and A x  > 0 in such a way that n A x  - l, where 1 is the 
length of the string, and noticing that the term in parentheses represents a 
partial derivative with respect to x, we can write 

1 
U = ~ #  Ax.  

i=1  

Thus, in the limit, we obtain 

1 

U -  7#  L Ox dx. 
o 

The kinetic energy is given by expression (13.23), namely, 

l 

Ot dx . 
0 

Thus, using L, given in expression (13.1~), we can write 

L - T - U -  
o 57- - 7  

dx. 
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Invoking Hamilton's principle, stated in expression (13.15), we obtain 

t t l 

i 5 L d t - 5  --~ - 7  -~x 

o o 0 

d x d t  = O. 

Using the corresponding Euler's equation (12.11), we get 

02u 
Ox 2 

1 (92u 
Ot 2 . (13.47) 

Equation (13.~7) is a one-dimensional wave equation for transverse waves 
where the transverse displacement, u, is assumed to be much smaller than 
the length of the string, I. 
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Chapter 14 

Ray parameters 

En g~n@al la conservation des forces vives donne toujours 
une int~grale premi@e des diff@entes ~quations diff6rentielles 
de chaque proble?me; ce qui est d 'une grande utilit6 dans 
plusieurs occasions. 1 

Joseph-Louis Lagrange (1788) M~canique Analytique 

Preliminary remarks 

In the context of ray theory, the trajectories of seismic signals as well as 
their traveltimes can be obtained by solving Hamilton's ray equations or 
Lagrange's ray equations, discussed in Chapters 8 and 9, respectively. In 
certain cases, particular properties of the continuum result in simplifications 
of these equations, thereby allowing us to obtain their solutions more easily, 
as well as to gain further insight into these solutions. 

In Chapter 13, we showed that rays are the solutions of the variational 
problem of stationary traveltime and, hence, they are the solutions of the 
corresponding Euler's equations. For the continua that exhibit particular 
homogeneities, Euler's equations can be simplified by obtaining the corre- 
sponding first integrals, which were introduced in Section 12.6. First inte- 
grals are the conserved quantities. In ray theory, these quantities, which are 
constant along a given ray, are called ray parameters. 

We begin this chapter, in which we study only two-dimensional continua, 
with the formulation of the ray parameter for an anisotropic continuum that 

~In general, the conservation of living forces yields always a first integral of various 
differential equations of each problem; this is of great utility on numerous occasions. 

319 
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is homogeneous along one axis. By integrating the ray-parameter expression, 
we obtain the expression for the ray. Also, using the ray parameter, we 
obtain the expression for the traveltime. Then we briefly discuss a case 
in which ray equations do not possess corresponding ray parameters. We 
conclude this chapter by discussing the conserved quantities in the context 
of Hamilton's ray equations. 

14.1 Traveltime integrals 

Let us consider a two-dimensional continuum that  is contained in the xz- 
plane. The traveltime between two points A and B within this continuum 
can be stated as 

B 
1 1  + (z') 2 

B 

( 7 - - /  ~(ZlZlZTi d x - / F  dz, (14.1) 
A A 

where z ~ := dz/dx. Since dz/dx = cot 0, where 0 is the ray angle, we see 
that  the ray velocity, V, is a function of position, (x, z), and direction, z ~. 
In other words, integral (14.1) allows us to study traveltimes in anisotropic 
inhomogeneous continua. 

Also, let us view the z-axis and the z-axis as the horizontal and vertical 
axes, respectively, where the vertical axis corresponds to depth within a 
geological model. 

In view of Fermat's principle, discussed in Chapter 13, rays correspond 
to curves along which the traveltime is stationary. Since integral (14.1) is 
of the type given by integral (12.1), in general, we can obtain such a curve 
using Euler's equation (12.4). Consequently, F is a ray-theory Lagrangian. 

As discussed in Section 12.5, a particular form of the integral, whose 
stationary value we seek, may result in simplifications of Euler's equation. 
Herein, we wish to study special cases of traveltime integral (14.1) that  are 
pertinent to seismic investigations. 

14.2 Ray parameters as first integrals 

2In this section, we will study horizontally layered media. In such a case, 
where the ray velocity, V, may vary with depth, z, and direction, z ~, travel- 

2This section is based on Slawinski, M.A., and Webster, P.S., (1999) On generalized 
ray parameters for vertically inhomogeneous and anisotropie media, Canadian Journal of 
Exploration Geophysics, 35, No. 1/2, 28- 31. 
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time integral (14.1) becomes 

B V/1 + (z,) 2 ] 
( ~ - /  V ( z , z ' )  d x -  

A A 

F ( z , z ' )  dx .  (14.2) 

Since traveltime integral (14.2) does not exhibit an explicit dependence 
on x, to obtain the ray, we use Beltrami's identity (12.10), namely, 

OF 

Ox 

which immediately leads to 

~ + d-/x z' - ~zTz , F - 0 ,  

z ,OF 
~zTz , - F - C, (14.3) 

where C is a constant. Expression (14.3) is first integral (12.19) and C is a 
conserved quantity along the ray. 

We wish to study this conserved quantity. Inserting integrand F, given 
in integral (14.2), into expression (14.3), we obtain 

Il l +  (z')2 

0 v (z, z') 
z' - / v l  + (z')2 - - - V ' z ' v l  / + (z')2 _ 1 - - c ,  

Oz' V (z z') V 2 ~/  ' V 1 + (z') 2 
y 

(14.4) 
where, for convenience, we denote V "-  V (z, z') and V '  " -  OV/Oz ' .  The 
chain rule implies - V ' / V  2 - (9 [1 IV  (z, z ')] /Oz'  and, hence, we get 

(9 z,V/1 + (z,) 2 V i l  + (z') 2 Oz' - = C. (14.5) 

Expression (14.5) is a first integral of Euler's equation (12.4) for traveltime 
integral (14.2). 

In order to express the first integral in terms of the ray angle, we use 
z'  - d z / d x  - cot 0, where 0 is the ray angle measured from the z-axis. Also, 
the differential operator in expression (14.5) can be restated as 0 / 0 z '  = 

( 0 0 / 0 z ' )  0 / 0 0 .  Hence, using trigonometric identities, we obtain another 
form of expression (14.5) given by 

011] sinO 
p - cos V (z, 0) + V (z, 0)' (14.6) 
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where p = - C  and where V and 0 denote ray velocity and ray angle, re- 
spectively. Since p is conserved along a given ray, z (x), we refer to this 
conserved quantity as ray parameter. Expression (14.6) is the ray parame- 
ter for anisotropic vertically inhomogeneous continua. 

For expression (14.6) to be valid, the ray velocity may vary along the 
z-axis but not along the x-axis. The directional dependence of velocity, 
however, need not exhibit any particular symmetry. In other words, the 
angular velocity dependence is arbitrary. 

Note that in the context of elasticity theory, the availability of exact and 
explicit ray-velocity expressions V (0) is limited due to the requirements of 
Legendre's transformation. An explicit, closed-form expression for V (0) is 
only possible for the case of elliptical velocity dependence. 

14.3 Example: Ellipticity and linearity 

Introductory comments 

In this section, we study a particular case of wave propagation that is as- 
sociated with both an elliptical velocity dependence with direction and a 
linear velocity dependence with depth. This assumption allows us to obtain 
analytic expressions for rays and traveltimes. 

Since Euler's equation (12.4), or its Beltrami's identity (12.10), is a 
second-order ordinary differential equation, in view of Definition 12.1, first 
integral (14.5) and ray parameter (14.6) are first-order ordinary differential 
equations. If the integration of the ray parameter is possible, this integra- 
tion results in a solution of Euler's equation and its Beltrami's identity, 
which can be given by z (x) or x (z). In other words, the expressions for 
ray velocity, V, that result in integrable expression (14.6) allow us to obtain 
rays by integration. 3 Ray velocity that results in a conveniently integrable 
ray parameter is provided by the case of elliptical velocity dependence with 
direction and linear velocity dependence with depth. 

3For certain cases with applications to continua exhibiting folded layers, readers might 
refer to Epstein, M., and Slawinski, M.A., (1999) On rays and ray parameters in inhomo- 
geneous isotropic media. Canadian Journal of Exploration Geophysics. 35, No. 1/2, 7 -  
19. 
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14.3.1 Rays 

Derivat ion 

To obtain an analytic expression for a ray, we wish to use an exact ray- 
velocity expression to be inserted into expression (14.6). For this purpose, 
we consider expression (9.39), namely, 

, , 

0' I14 I 

which gives the magni tude of the ray velocity as a function of the ray an- 
gle for the case of elliptical velocity dependence. For convenience, let the 
measure of ellipticity be given by 

x - v~ - v?  ( 1 4 . s )  
2V2 ' 

where V~ and Vz stand for the magnitude of the horizontal and the vertical 
ray velocities, respectively. 

Using X, we can write expression (14.7) as 

~/ l + 2 X  
V ( 0 ) - Y ~  1 5 ~ c o s  2 0  

Let us assume tha t  the ray velocity varies along the z-axis in such a 
way tha t  X remains constant. This implies tha t  the ratio of magnitudes of 
horizontal and vertical ray velocities remains constant. In such a case, we 
can write 

i 1 + 21 
v (0, ~) - Vz (z) 1 + 21 cos2 0 (14.9) 

Furthermore,  we assume that  the magnitude of the ray velocity increases 
linearly along the z-axis. 4 In such a case, we can write expression (14.9) as 

(0, z ) -  (a + b~)V/i ~ + 2~ (14 10) V 
+ 2)/cos 2 0' 

4 Readers interested in a seismological formulation of linearly increasing velocity might 
refer to Epstein, M., and Slawinski, M.A., (1999) On raytracing in constant velocity- 
gradient media: Geometrical approach, Canadian Journal of Exploration Geophysics. 35, 
No. 1/2, 1 - 6, and to Slawinski, R.A., and Slawinski, M.A., (1999) On raytracing in 
constant velocity-gradient media: Calculus approach, Canadian Journal of Exploration 
Geophysics. 35, No. 1/2, 24-  27. 
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where a and b are positive constants. 
Inserting expression (14.10)into expression (14.6), we obtain 

0 1 sin 0 
P COS 

ON (a+bz) l + 2 x c o s  20 (a+bz) l + 2 x c o s  20 

1 (cos 5-~Ov/ l+2xc~176 s20) (a + bz) v/1 + 2X 0 
sin 0 

= . (14.11) 
(a + bz)v/1 + 2XV/1 + 2X cos 20 

To obtain an expression for a ray, we wish to state ray parameter (14.11) 
in terms of position variables x and z. Dividing both the numerator and the 
denominator by sin0, we rewrite expression (14.11) as 

1 
P -  ~/ 2 x + l "  

(a + bz) v/l + 2x 1+  tan20 

Squaring both sides and rearranging, we obtain 

1 1 - p2 (a + bz) 2 (1 + 2X) 
tan 2 0 = p2 (a + bz) 2 (1 + 2X)  2 " (14.12) 

Since 1/ tan 2 0 - (dz/dz) 2, we have a first-order ordinary differential equa- 
tion, which is a special case of first integral (12.19). We can write equation 
(14.12) as 

dz 
dz 

which can be restated as 

V/1 _ p2 (a + bz) 2 (1 + 2X) 

p (a + b z ) ( l +  2X) 
(14.13) 

dx - p (a + bz) (1 + 2X) dz. (14.14) 
V/1 _ p2 (a + bz) 2 (1 + 2X) 

To integrate equation (14.14), we set the initial conditions in such a way 
that z (0) - 0. In other words, the source is located at the origin of the 
coordinate system. Hence, integrating both sides, namely, 

X Z 

/ d~ - / p(a + b()(1 + 2X) 

0 0 V / 1 - p 2 ( a + b ( )  2(1+2X) 
dr 
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where ~ and ( are the integration variables, we obtain 

1 [V/I p2a2 i l  p2 x - ~--~ - ( 1 + 2 ) / ) -  - ( a+ bz) 2 (I + 2X)], (14.15) 

which is the ray given by x (z). 

Interpretation 

To obtain a geometrical interpretation of equation (14.15), we rearrange it 
and write 

( V / 1 -  p2a2 (1 + 2X))2 ( ) 
x - -  a 2 

pb z + ~  
+ 

2 I 2 -- 1. (14.16) 

This is the equation of an ellipse whose axes are parallel to the axes of the 
coordinate system with the origin of this system located at the source. The 
centre of the ellipse is located at 

V/1 - p2a2 (1 + 2)i) - b ]  
pb 

(14.17) 

In a seismological context, where the vertical z-axis points downwards, the 
centre of the ellipse is located on the horizontal line positioned -a /b  units 
above the x-axis. Ellipse (14.16) passes through the origin, as can be verified 
by setting z = 0 in equation (14.15). The portion of the ellipse that is below 
the x-axis corresponds to the ray. 

The greater the distance between the source and the centre of the ellipse, 
the smaller the curvature of the ray. For constant-velocity fields, where 
b = 0, the centre of the ellipse is located infinitely far from the source. 
Consequently, the ray is a straight line. For a signal propagating along the 
z-axis, 0 = 0 and, following expression (14.11), p = 0. Hence, in view of 
expression (14.17), the x-coordinate of the centre of the ellipse is located 
infinitely far from the source. Consequently, the ray is a vertical straight 
line. For the isotropic case, where ) / =  0, equation (14.16) reduces to the 
expression for a circle. Consequently the rays are circular arcs. 
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14 .3 .2  T r a v e l t i m e s  

We can also use ray parameter (14.6) to obtain the traveltime along the 
corresponding ray. For this purpose, we wish to rewrite integral (14.2) to 
include the ray parameter for a given source-receiver pair. 

Integral (14.2) can be viewed as f ds/V, where ds is the arclength ele- 
ment along the ray. In the xz-plane, the arclength element can be written 
as ds = dz/cos 0, where 0 is the ray angle. Hence, traveltime integral (14.2) 
between the source at (0, 0) and the receiver at (X, Z) is 

z 

0 

dz 

V (z, 0) cos 0' 
(14.18) 

where V (z, 0) is given by expression (14.10). Hence, we can explicitly write 

z 

0 -  f dz ~/ 1 + 2X " (14.19) 

o (a + bz) 1 + 2X cos 2 0 cos 0 

To integrate, we must express cos 0 in terms of constants, a, b, X, P, and 
integration variable z. Using expression (14.11) and trigonometric identities, 
we obtain 

c o s 0 - ~ /  1-  p2 (a + bz) 2(1+2X) (14.20) 
V 1 + 2XP 2 (a + bz) 2 (1 + 2X)" 

Inserting expression (14.20) into integral (14.19), after algebraic manipula- 
tion, we obtain 

z 

0 

dz 

(a + bz) i l  - p2 (a + bZ) 2 (1 + 2X) 
(14.21) 

Integrating between z - 0 and z - Z, while treating p as a constant, we 
obtain the expression for the value of the traveltime, namely, 

C-~InlIa+bZl+v/l-p2a2(l+2x) 1 
a 1 + V/1 - p2 (a + vz)  2 (1 + 2~) 

(14.22) 

Note that  we can treat p as a constant since, for a given source-receiver 
pair in a laterally homogeneous continuum, p is a conserved quantity along 
the ray. 
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To find the expression for p that corresponds to the source at (0, 0) and 
the receiver at (X, Z), we can write expression (14.15) as 

1 [V/1 p2a2 i l  p 2 bZ)2(l  ] (1423) X - ~ - ~  - ( 1 + 2 X ) -  - ( a +  +2X) �9 �9 

Solving expression (14.23) for p, we obtain 

2X 
p = . . . . . . . . . . . . . .  (14.24) 

v/IX 2 + (1 + 2X)Z 21 [(2a + bZ) 2 (1 + 2X) + b2X 21 

Thus, studying the properties of the continuum in terms of a, b and 
X, we can use expression (14.22), with p given by expression (14.24), to 
obtain the traveltime between the source and the receiver. These expressions 
can be conveniently used for inverse problems that are based on traveltime 
measurements. 

14 .3 .3  I s o t r o p i c  e x t e n s i o n  

As shown in Section 6.6.2, by using a linear transformation of coordinates, we 
can treat elliptical velocity dependence as an isotropic case. Consequently, 
we can also obtain expressions (14.22) and (14.24) by the following method. 

Consider an elliptical velocity dependence with magnitudes of the hori- 
zontal and vertical velocities given by 

vx - av/1 + 2X, (14.25) 

where X is given by expression (14.8), and 

(14.26) Vz - a, 

respectively. 
Note that, since vz and Vz are the magnitudes of velocities along the 

symmetry axes, expressions (14.25) and (14.26) are the same for both phase 
and ray velocities. 

The wavefronts resulting from a point source are ellipses with axes tvx 
and tVz, where t is the traveltime. We can write such a wavefront as 

x 2 z 2 
= 1 ,  

which, using expressions (14.25) and (14.26), we can rewrite as 

x 2 
+ z 2 - t 2a 2. (14.27) 

l + 2 X  
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Since vx and Vz are the magnitudes of velocities along the x-axis and the 
z-axis, respectively, we can scale the z-axis by a factor of x/1 + 2X to obtain 
circular wavefronts, which correspond to an isotropic case. In other words, 
we transform the xz-plane into the x(-plane, where 

- zv/1 + 2X. (14.28) 

Thus, in view of expression (14.28), we let z = ~/x/1 + 2)/to write expression 
(14.27) as 

x 2 + ~2 _ t 2a2, 

where 

- av/1 + 2)i (14.29) 

is the velocity in the x~-plane. Let us also assume that  the magnitude of 
velocity increases linearly along the ~-axis, namely, v (~) = a + b~. 

Note that  the units of b are [l/s]. Consequently, its value does not 
depend on the scaling of position coordinates. 

Dealing with an isotropic case in the x~-plane, we can derive the trav- 
eltime expression between the source at (0, 0) and the receiver at (X, ~), to 
obtain 5 

1 a + bE 1 + v/1 - p 2 a 2  
(~ - ~ in , (14.30) 

1 + - p2 (a + 

where 
2X 

p - . (14.31) 

i ( X 2 +  ,=2)[(2a + b,=,)2 + b2X21 

Substituting expression (14.29) into expressions (14.30) and (14.31), as well 
as in view of expression (14.28) letting E = Zx/1 + 2X, we obtain 
expressions (14.22) and (14.24), as expected. 

1 4 . 4  R a y s  in  i s o t r o p i c  c o n t i n u a  

In Sections 14.2 and 14.3, we studied ray equations in two-dimensional 
anisotropic continua and obtained analytical expressions for rays and trav- 
eltimes. The availability of analytical expressions resulted from the assump- 
tion of homogeneity along the x-axis and, hence, from the existence of a first 

5Readers interested in details of this derivation might refer to Slotnick, M.M., (1959) 
Lessons in seismic computing: Society of Exploration Geophysicists, Lesson 37. 
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integral. In this section, to emphasize the convenience of first integrals, we 
look briefly at ray equations in a two-dimensional isotropic continuum that  
is contained in the xz-plane. The traveltime between two points A and B 
within this continuum can be stated as 

V/1 + (z') 2 

0 -  v(z,z) 
A 

dx. (14.32) 

Since the continuum is isotropic, V is not a function of z ~. However, the 
integrand is an explicit function of x, z and z ~, and, hence, the corresponding 
Euler's equation does not have a first integral. 

In view of the stationarity of traveltime and Section 12.5.5, the corre- 
sponding ray equation, which results from Euler's equation (12.4), is given 
by equation (12.23), namely, 

d2z O V ( d z )  3 0 V ( d z )  2 0 V d z  OV 
Vdx----- ~ Ox ~ + ~z ~ Ox dx t Oz -- O, (14.33) 

where, due to the isotropy of the continuum, phase and ray velocities coin- 
cide, namely, v -- V. Equation (14.33) is a nonlinear ordinary differential 
equation, which requires numerical methods to obtain rays and correspond- 
ing traveltimes. 

14.5 Lagrange's ray equations in xz-plane 

In this chapter, as well as in Chapter 12, Euler's equations and Lagrange's 
ray equations are formulated in the context of explicit functions. Such a 
formulation is convenient for many raytracing applications. It rules out, 
however, complicated rays that  are given by multiple-valued functions. To 
generalize the formulation so as to allow such rays, we can formulate our 
problem in a parametric form. 

Consider traveltime integral (14.1). An analogous parametric represen- 
tation can be given in terms of x (t), z (t), ~ := dx/dt and ~? := dz/dt. 
Then, the traveltime integral is 

Y = V(x,z, ic, i) dt "- YZdt, (14.34) 

where 9 c is a two-dimensional form of expression (13.10). 
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In view of the principle of stationary traveltime, we can use Lagrange's 
ray equations (13.9). In the two-dimensional case, discussed herein, these 
equations constitute the system 

Ox dt ~ = 0 

Oz dt -~z - 0 

(14.35) 

where $" denotes the integrand of the traveltime integral. 
Also, the equations of system (14.35) are related by Beltrami's identity, 

namely, 
05" d ( 05" .0~" ) 
0-'7 + ~ 2 - ~ -  + z - ~  - $- - 0. (14.36) 

The justification for this form of Beltrami's identity is shown in Exercise 
9.1. 

In view of Theorem A.1, stated in Appendix A, $" cannot depend ex- 
plicitly on parameter t. Mathematically, we can justify this corollary in the 
following way. 

Since ray-velocity function, V, is homogeneous of degree 0 in the vari- 
ables 2 and 2 and v/~ 2 +22 is absolute-value homogeneous of degree 1 in 
the same variables, the integrand of the traveltime integral is absolute-value 
homogeneous of degree 1 in these variables. Thus, since ~" is absolute-value 
homogeneous of degree 1, it follows from Theorem A.1 that 

.05" 05- (14.37) : r -  + . 

Consequently, the term in parentheses of Beltrami's identity (14.36) vanishes 
and equation (14.36) implies that ~ cannot depend explicitly on t, and, 
hence, V does not explicitly depend on t, which justifies our corollary. 

Physically, this independence means that the ray-velocity function does 
not change with time. In other words, the properties of the continuum are 
time-invariant. 

Also, the parametric formulation of the traveltime integral conveniently 
allows us to obtain ray parameters. Consider system (14.35). If ~ is not 
explicitly dependent on x, the first equation becomes c99v/0~ = p, where p is 
a conserved quantity. This conserved quantity is equivalent to ray-parameter 
expression (14.6), as shown in Exercise 14.3. 
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14.6 Conserved quantities and Hamilton's ray 
equations 

In this chapter, we study the conserved quantities along the ray in the 
context of the calculus of variations. In other words, we study these quan- 
tities using the Lagrangian formulation of the ray theory. In view of the 
fact that  we can study ray theory in terms of both the Hamiltonian and 
Lagrangian formulations, let us briefly look at the conserved quantities in 
terms of Hamilton's ray equations (8.19), namely, 

0~ 
xi = op i 

0 ~  
ibi= Oxi 

i E {1,2,3}. 

1 2 2  7 - t = ~ p v  (x ,p) .  

We see that Tt does not explicitly depend on the xi if and only if function v 
does not depend on the xi coordinate. Since phase velocity, v, is a function 
of the properties of the continuum, we conclude that 7-/does not depend on 
the xi if and only if the continuum is homogeneous along the xi-axis. 

Also, in view of Lagrange's ray equations (9.8), namely, 

Oxi dt ~ = 0 '  i c  {1,2,3}, (14.38) 

if s does not explicitly depend on the xi, the equation of system (14.38) 
that corresponds to the given subscript i is reduced to 

d-t = 0, (14.39) 

which implies that  the term in parentheses of expression (14.39) is constant. 
In view of Legendre's transformation, following expressions (B.7), shown in 
Appendix B, we can write 

0s 
P~ = 0ki '  (14.40) 

Examining the second equation, we see that if 7-I does not explicitly 
depend on the xi, the corresponding pi is constant along solution curve 
x (t), since dpi/dt = 0. To elucidate the consequences of this statement, 
recall expression (8.20), namely, 
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where p = Pi is the conserved quantity along the solution curve x (t). 
Expressions given by dp~/dt = 0 and d(0s = 0, formulated in 

terms of Hamilton's and Lagrange's ray equations, respectively, result from 
the homogeneity of the continuum along the xi-axis. These are different 
formulations of the same conserved quantity. Fundamentally, this quantity 
results from Noether's theorem, which relates the conserved quantities to 
the symmetries. 

The fact that the same ray parameter can be obtained from both Hamil- 
ton's ray equations and Lagrange's ray equations allows us to use both phase 
velocities, v, and ray velocities, V, as well as phase angles, tg, and ray angles, 
0, to study rayfields in the context of conserved quantities. For instance, 
considering anisotropic vertically inhomogeneous continua, we can write 

sinv~ 0 [ 1 ] sin0 
v (z, ~) - cos O N V (~, 0) + V (z, 0) '  

where the relation between the magnitudes of phase and ray velocities is 
given by expressions (9.18), while the relation between the phase and ray 
angles is given by expression (9.21). An example illustrating this equivalence 
is shown in Exercise 11.1. 

Closing remarks 

In this chapter, we used ray parameters, which are first integrals of ray 
equations, to obtain expressions for rays and traveltimes. In a general inho- 
mogeneous continuum, there are no ray parameters since the integrand of 
the traveltime integral is an explicit function of all the coordinates. In other 
words, the inhomogeneity of the continuum does not possess any conve- 
nient symmetry that would allow us to formulate expressions for conserved 
quantities. In such cases, we can still solve Hamilton's or Lagrange's ray 
equations to obtain rays, even though these equations may be analytically 
and numerically involved. 

C) 
Exercises 

Exercise  14.1 Using polar coordinates, formulate the conserved quantity 
for radially inhomogeneous continua, where the traveltime integral is given 
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by 
b i 7.'+1.'1' 

v ( . )  
d~. 

Explain the physical context of the conserved quantity. 

S o l u t i o n  14 .1  Consider Beltrami's identity given by expression 

0 ~ + ~  ~' _ = ~rTr / F O, 

where F denotes the integrand of the traveltime integral and r ~ " -d r /d~ .  
Due to the explicit absence of the latitude angle, ~, we obtain 

r ~OF 7r' - F - C ,  

where C is a constant. 
obtain 

Thus, performing the partial differentiation, we 

C __ 
r 2 

y (~) 2 + (~,)~ 

which is the expression for the conserved quantity. The conserved quantity 
results from the traveltime integral's invariance to the latitude angle. In 
other words, the velocity field consists of concentric circles. 

R e m a r k  14 .1  Noticing that 

@2 + (r,)2 
= sin O, 

where 0 is the ray angle measured between the ray and the radial direction, 
we can write 

r sin 0 
C : V ( r ) '  (14.41) 

which is a standard form of the ray parameter for radially inhomogeneous 
continua. 6 Note that ray parameter (1~.~1) has different units than ray 
parameter (1~.6). 

~Readers interested in traveltime expressions for rays whose ray parameter is given by 
expression (14.41) might refer to Kennett, B.L.N., (2001) The seismic wavefield, Vol. I: 
Introduction and theoretical development" Cambridge University Press, pp. 171 - 174. 
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Exercise 14.2 Given expression (1~.11), determine how the value of the 
anisotropy parameter X affects the maximum depth of a ray. 

Solution 14.2 Solving equation (1~.11) for z, we obtain 

1 (  sin0 ............. pa ) .  
z - - ~  v/I:4-2XV/2Xcos 20+1  

Consequently, the maximum depth is given by setting 0 = 7r/2 to obtain 

1(1 ) 
Zmax -- 13--b v/1 :~2X - pa . (14.42) 

To state expression (1~.~2) in terms of the initial ray angle, we set z = 0 
and let the corresponding 0 := 0o, in expression (1~.11). Hence, expression 
(1~. 11) becomes 

sin 00 
P : ax/1:9'2~:V/2xcos20o + i" (14.43) 

Inserting expression (1~.43) into expression (14.42), we obtain 

a ( 2 clros2,0 1) 
Zmax "- ~ sin Oo 

which gives the maximum depth for a given initial angle. This expression 
shows that for X c (-0.5, 0), the maximum depth reached is less than that for 
the isotropic case, X = O. Conversely, for X c (0, c~), the maximum depth 
reached is greater than that for the isotropic case, X = O. In other words, 
negative values of parameter X increase the curvature of the ray while positive 
values decrease it. 

Remark 14.2 In most seismological studies of sedimentary layers, X is pos- 
itive. Hence, as shown in Exercise 1~.2, the presence of anisotropy in a 
vertically inhomogeneous medium tends to straighten the rays and, hence, 
increase the maximum depth they reach. 

Exercise 14.3 Show that the parametric form of the ray parameter, given 
by p = 0:7z/02 and discussed in Section 1~.5, is equivalent to ray parameter 
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S o l u t i o n  14.3 Using the first equation of system (14.35) and considering 
the case where the argument x is not explicitly present in the integrand, we 
obtain a conserved quantity 

02: 
P -  0~" (14.44) 

In view of jr given in expression (1~.3~), we obtain 

P - V x/~ 2 + ~72 + Vf~2 + 0-~ " (14.45) 

In order to state expression (1~.~5) in terms of the ray angle, O, we can 
write the differential operator as 

0 O0 0 O~ 0 O0 0 
o~ = o~ N + o~ o~ = o~ oo 

1 0 
02 00" 
O0 

Since 5: = ~?tan 0, we obtain 

0 1 0 cos 2 0 09 
- - - -  ~ ~ o 

0~ ~ 00 ~ 00 2 
cos 2 0 

Thus, returning to expression (1~.~5), we can write 

sin0 ~:2CO820 0 ( V )  
P = - V -  + v / i 2 +  z 00 

sinO 0 ( 1 )  
= V + v/tan2 0 + 1 cos 2 0~--~ 

_ s i n O  0 ( 1 )  
- V + c o s 0 ~  V ' 

which is identical to expression (1~.6), as required. 

E x e r c i s e  14.4 In view of Lemma 12.1, show that if V (z, 0) = A ( z ) B  (0), 
where B (0) = 1 / (1  + C cos 0), then the ray in an anisotropic inhomogeneous 
continuum, V (z, 0) is the same as the ray in an isotropic inhomogeneous 
continuum, A(z) .  

S o l u t i o n  14.4 To express B (0), where 0 is measured from the z-axis, in 
terms ofz ' ,  we invoke trigonometric identity cos0 - cot 0/v/1 + cot 2 0. Not- 

ing that cot 0 - dz/dx  "-  z', we obtain cos 0 - z ' /~/1 + (z') 2. Consequently, 
i 

1 
B (z') - z '  ' 

1 + C  
/1 + (z') 2 
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and, 

v (z, ~ , ) -  A (~)~ (~,)-  

Consider traveltime integral 

A(z)  

1+C Z / 

V/1 + (z') 2 

(14.46) 

X/~l+(z') 2 "/ 
C -  V(z , z ' )  d x -  

X l  X l  

Upon algebraic manipulations, we obtain 

V/1 + (z') 

A(z)  

I+C 
Z I 

V/1 + (z') 2 

dx. 

0 _  f i + (z,). + cz, 
A (z) dx - F dx. 

X l  X l  

To find the ray, we invoke Euler's equation (12.~) to obtain 

OF 
Oz 

d(..) 
dx ~zTz ~ 

OA 

dx I1 / z' v/i + (z') 2 +ell o 
(14.47) 

Considering only factors which contain C, gives us 

OA OA 

_Cz  ~ Oz Oz + Cz' A2 =0. 

Thus, Euler's equation is independent of C. In view of expression (14.46), 
the ray resulting from equation (14.47) is the same for both V (z,z') and 
A(z). 
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I n t r o d u c t i o n  to  Part  IV  

Physics is the science upon which all other sciences rest, 
since it a t tempts  to explain the nature of the universe of 
things. [... ] Mathematics is a language, which enables us 
to express certain kinds of ideas (e.g., order, patterns) much 
more precisely than whatever everyday language we speak. 
[... ] Mathematical  physics can therefore be regarded as the 
'dialect' of mathematics spoken by physicists when they wish 
to express and use the 'laws' or theories of physics clearly 
and unambiguously. 

Michael G. Rochester (1997) Lecture notes on mathematical physics 

In the presentation of this book, we assume that the reader is famil- 
iar with several mathematical subjects typically taught in undergraduate 
studies in the faculty of science. These subjects consist of linear algebra, 
differential and integral calculus, vector and tensor calculus, as well as or- 
dinary and partial differential equations. Another subject that plays an 
important role in this book ~ but is not commonly included in an under- 
graduate curriculum consists of the calculus of variations. Chapter 12 is 
devoted to the aspects of this subject that are pertinent to this book. 

In Part IV, we describe two additional mathematical concepts that are 
used in the book and with which the reader might not be familiar, namely, 
Euler's homogeneous-function theorem and Legendre's transformations. No- 
tably, in the context of this book, the applications of these two concepts are 
often associated with one another. In view of Euler's theorem, different 
degrees of homogeneity exhibited by several functions formulated in this 
book give us insight into their physical meanings and allow us to manipu- 
late them. Legendre's transformation is the tool that allows us to transform 
Hamilton's ray equations into Lagrange's ray equations. Consequently, this 
transformation links the concepts discussed in Part H with those discussed 
in Part III. 

339 



340 

Throughout the book, the meaning of a given symbol used in an equa- 
tion is stated in the proximity of the pertinent equation to avoid ambiguity 
among several meanings that can be associated with the same symbol. To 
facilitate clarity, certain symbols are uniquely associated with a particu- 
lar mathematical or physical meaning. These symbols, together with their 
meanings, are listed in List of symbols. 



Appendix A 

Euler's 
homogeneous-  funct ion 
theorem 

Mathematicians can pursue many conflicting directions to 
derive new results. In the absence of internal criteria that  
favour or justify one direction rather than another, a choice 
must be based on external considerations. Of these, cer- 
tainly the most important  is the traditional and still most 
justifiable reason for the creation and development of math- 
ematics, its value to the sciences. 

Morris Kline (1980) Mathematics: The loss of certainty 

Preliminary remarks 

In this book, seismological quantities are expressed in terms of mathematical 
entities. In accordance with physical principles, we require that these entities 
possess certain mathematical properties. Using these properties, we can 
study these mathematical formulations to obtain further insight into their 
physical meaning. The homogeneity of a function and Euler's homogeneous- 
function theorem are of particular use in our work. 

We begin this appendix by stating the definition of a homogeneous func- 
tion. Then, we state and prove Euler's homogeneous-function theorem. 
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A . 1  H o m o g e n e o u s  f u n c t i o n s  

Several functions that play an important role in this book are homogeneous. 
Notably, the Hamiltonian, stated in expression (8.20), namely, 

1 2v 2 (x,p) ,  (A.1) (x, p) - ~p 

where p2 - p . p ,  is homogeneous of degree 2 in p. To see this property, 
consider Definition A.1. 

Definit ion A.1  A real function f (X l , . . . ,  Xn) i8 homogeneous of degree r 
in the variables x l , . . . ,  Xn if 

f ( c x l , . . . ,  CXn) = c~f (Xl , . . - ,  Xn), 

for every real number c. If  f (cxi) = Ic] ~ f (xi), where i e {1, . . . ,  n}, we say 
that f is absolute-value homogeneous of degree r in the xi. 

R e m a r k  A.1 Both terms "degree" and "order" are commonly used to de- 
scribe the homogeneity of a function. In this book, we use the former term 
since it refers to the value of the exponent and, hence, is consistent with 
other uses of this term, such as "degree of a polynomial". 

Now, consider the fact that v is the phase-velocity function that depends 
on position x and direction, which is given by the vector normal to the 
wavefront, namely, p. Since the orientation of the wavefront, indicated by 
p, does not depend on the magnitude of p, we can rewrite expression (A.1) 
as 

(x, p) - ~F x , ~  , 

where p/[p[ is a unit vector normal to the wavefront. Hence, we see that v 
is homogeneous of degree 0 in p. In other words, we can multiply p by any 
number and v remains unchanged. In view of Definition A.1, we can write 

cp 

This immediately implies that function (A.2) is homogeneous of degree 2 in 
p, since 

1 ( c p ) 1 2 2  ( cp ) 
n (x,~p) - ~ [(~p) (cp)] v ~ x,F~- ~ = ~ p v  ~ x,l-~p I 

C2 V 2 //X~ p _~_p2 ~ ~-~) -- c2T/(x, p). (A.3) 
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We can also illustrate Definition A.I by the following straightforward 
example. 

E x a m p l e  A.1 Consider the funct ion 

f (Xl, X2, X3) -- X l X 2 X 3  -~- X l  x 2  n t- X 2 X ~ .  (A.4) 

Let 

f (cx, cx 2, cx 3 ) - cx 1 cx 2 cx 3 + cx 1 ( CX 2 ) 2 -4-" CX 2 ( CX 3 ) 2 

= (XlX X  + XlX  + x xl) 

= d/(~1,  ~2, x3). 

Thus, in view of Definition A.1, f is homogeneous of degree 3 in the xi. 

Homogeneity of a function allows us to use Euler's homogeneous-function 
theorem, stated in Theorem A.1. This theorem plays an important role in 
the formulations described in this book. It allows us to simplify numerous 
expressions and gain insight into their physical meaning. 

A . 2  H o m o g e n e o u s - f u n c t i o n  t h e o r e m  

1Euler's homogeneous-function theorem can be stated in the following way. 

T h e o r e m  A.1 I f  funct ion f ( X l , . . . ,  Xn)  i8 homogeneous of degree r in 
X l ~ �9 �9 �9 ~ X n  ~ then 

~"~~n Of  (x , . . ,  xn) xi r f  (Xl,.. . ,  Xn).  

i=1 

(A.5) 

Proof .  In view of Definition A.1, we can write 

f ( cx l , . . . ,  CXn) --- a~f ( x l , . . . ,  Xn). (A.6) 

Differentiating both sides of equation (A.6) with respect to c, we obtain 

n 
0 (~xi) 

fi  (CXl . . .  CXn) = r c ' - l  f (Xl, .  . . Xn) (A.7) 
i = l  

l Interested readers might refer to Olmsted, J.M.H., (1961) Advanced calculus: 
Prentice-Hall, Inc., p. 272. 
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where f /denotes  the derivative of function f with respect to its ith argument. 
To obtain the expression stated in Theorem A.1, we consider a particular 
case where c -  1. Letting c -  1, we can rewrite equation (A.7) as 

n O f ( x  

i=1 
1 , . . . ,  Xn) Xi -- ?~ f (Xl , . . . ,  Xn) , (A.8) 

which is equation (A.5), as required. �9 
To illustrate Theorem A.1, we can study function (A.4), as shown in the 

following example. 

E x a m p l e  A.2 Using function (A.4), namely, 

f (xl, x2, x3) - xlx2x3 + Xl x2 + x2 x2, 

we can write the left-hand side of equation (A.5) as 

3 Of 
~ X i  -- (X2X3 + X 2) Xl + (XlX3 + 2XlX2 n t- X~)X2 + (XlX2 -I- 2X2X3)X3 
Oxi i=1 

-- 3 (XlX2X3 -~ Xl  x2 q- X2 x2)  

- 3f  (Xl, X2, X3). (A.9) 

Expression (A.9) is the right-hand side of equation (A.5) for a function that 
is homogeneous of degree 3 in the xi, as expected from Theorem A. 1. 

Equation (A.5) is often invoked in this book. For instance, in the proof 
of Lemma 13.2 - -  knowing that  7-t is homogeneous of degree 2 in p, as shown 
in expression (A.3) we can write 

n 0 ~  

i=1 

which allows us to complete that proof. 
The following example illustrates equation (A.5) in the context of physics. 

E x a m p l e  A.3 Following the standard classical-mechanics formulation, let 
the kinetic energy be 

1 
T (v) - - x m v  2, 

z~ 
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where m and v denote mass and velocity, respectively. In view of Defini t ion 

A.1, T is homogeneous of degree 2 in v since 

1 c 2 
T ( c v ) -  [ m  (cv) 2 - -~-mv 2 - c2T (v), 

where c denotes a constant. Thus, following Theorem A.1,  we can write 

OT 
Ov v - 2T. 

We can directly verify this result, namely, 

Ov v -  2 
v = rnv 2 = 2T. 

Closing remarks 

Note that a multivariable function can be homogeneous in a particular set of 
variables. In this book, ~-{ (x, p), given in expression (8.20), is homogeneous 
of degree 2 in p. 12 (x, ~), given in expression (9.2), is homogeneous of degree 
2 in ~. 9 c (x, • given in expression (13.8), is absolute-value homogeneous of 
degree i in • None of these functions is homogeneous in x. The properties 
of homogeneity of these functions allow us to prove Theorem 13.1, which is 
the statement of Fermat 's  principle. 

Certain functions used in our studies exhibit no homogeneity. For in- 
stance, traveltime integrand F (z, z'), given in expression (14.2), is not ho- 
mogeneous in either variable. 

Euler's homogeneous-function theorem is explicitly used in Chapters 8, 
9 and 13. 
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Appendix B 

L e g e n d r e '  s t r a n s f o r m a t  ion 

To penetrate into symplectic geometry while bypassing the 
long historical route, it is simplest to use the axiomatic 
method, which has, as Bertrand Russell observed, many ad- 
vantages, similar to the advantages of stealing over honest 
work. 

Vladimir Igorevitch Arnold (1992) Catastrophe theory 

Preliminary remarks 

Legendre's transformation is a transformation in which we replace a function 
by a new function that depends on partial derivatives of the original func- 
tion with respect to original independent variables. In the context of this 
book, we replace the ray-theory Hamiltonian, T/(x, p), by the ray-theory La- 
grangian, s (x, • which depends on the d:i = O~/Opi, where i E {1, 2, 3}. 

We begin this appendix with the derivation of Legendre's transforma- 
tion in a geometrical context, where we consider functions of single variables. 
Then we proceed to multivariable functions and formulate Legendre's trans- 
formation between Tt (x, p) and s (x, ~r We conclude by using Legendre's 
transformations of these functions to derive the corresponding ray equations. 
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B.1 Geometr i ca l  contex t  

B . I . 1  S u r f a c e  and its tangent  planes 

1Legendre's t ransformation can be i l lustrated in a geometrical context.  Let 
an n-dimensional surface in the (n + 1)-dimensional space be given by equa- 
tion 

y - f ( X l , . . . ,  Xn). (B.1) 

Consider the set of all possible n-dimensional planes tha t  are tangent  to this 
surface. The envelope of these planes is the original surface. We wish to 
derive the equation tha t  describes these tangent  planes. 

A general form of the equation of an n-dimensional plane is y = u l x l  + 

�9 . .  + U n X n -  v ,  where u l , . . . ,  U n  and v are real numbers  tha t  define the 
plane uniquely and, hence, can be viewed as coordinates of the plane. The 
t ransformat ion from the equation of a surface, given by equat ion (B.1), to 
the equation tha t  describes all of its tangent  planes, given by 

v - -  g ( U l ,  . . . , l t n )  , 

is Legendre's  t ransformation.  
Note tha t  Legendre's t ransformation is possible if the surface is differ- 

entiable and if there are no tangent  planes to this surface tha t  are parallel 
to each other. Otherwise, for the same set (U l , . . . ,Un) ,  we have different 
values of v. In other words, v is not a single-valued function of ( U l , . . . ,  u~). 

B.1.2 Single-variable case 

To illustrate the geometrical context, consider a smooth curve in the x y -  

plane. We can describe this curve as a set of points in the plane, where the y- 
coordinate is determined by the function of one variable, namely, y = f (x). 
Also, this curve can be regarded as the envelope of its tangent  lines. We 
wish to derive equation v = g (u) tha t  describes all the lines y = u x  - v ,  in 
the xy-plane, tha t  are tangent  to the original curve. 

The line y = u x  - v is tangent  to the curve y = f (x), at some point x, 
if and only if the line passes through the point (x, f (x)) and has the same 
slope as the curve at this point. In other words, 

v = u x  - f ( x ) ,  (B.2) 

1 Readers interested in the geometrical motivation of the Legendre transformation might 
refer to Courant, R., and Hilbert, D., (1924/1989) Methods of mathematical physics: John 
Wiley & Sons., Vol. II, pp. 32 - 39. 
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and 
d f  (B.3) 

U ~  d x  ~ 

respectively. 
To complete the derivation of function g (u), we would like to express 

x in terms of u. This is not always possible since we might not be able to 
uniquely solve equation (B.3) for x. Our ability to express x in terms of u 
depends on the form of function f (x). 

Assuming tha t  we can obtain x = x (u), the set of all tangent  lines is 
described by v = g  (u) where 

g (u) - ux (u) - f (x (u)).  (B.4) 

Thus, g (u) is Legendre's t ransformation of f (x). This construction is illus- 
t rated by the following example. 

Example B.1 Let  f (x) - x 2. 
write 

U u 

Then, following equation (B.3), we can 

df 
= 2 x .  

dx  
Hence, we obtain 

U 
X ~ ~ o  

2 

Consequently, in view of equation (B.~), we get 

u 2 ( u ) 2  u 2 

g (u) - ux  (u) - f (x (u)) - 2 -2 = T 

Therefore, v -  u2/4 is Legendre's transformation of y -  x 2. 

We can also view Legendre's t ransformation in a different way. Consider 
a curve y = f (x) and a straight line y = ux, where u is a real number. For a 
given x-coordinate, we can view h (x) = ux - f (x) as the distance between 
a point on the curve and a point on the straight line. We wish to find point 
x (u) that  maximizes tha t  distance. Therefore, we set 

which gives 

dh d f  
~ = u  =0~ 
dx dx 

df 
~ �9 

dx 

If we can solve this equation for x, namely, x - x (u), then g (u) - h (x (u)) 
is Legendre's t ransformation of f (x). 
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B.2 Dual i ty  of transformation 

Legendre's transformation is often referred to as a dual transformation since 
if transformation of f leads to g, then, transformation of g must lead to f.2 
We can illustrate this property by inverting the transformation shown in 
Example B.1. 

E x a m p l e  B.2 Let g (u) - u 2 / 4 .  Consider a new function given by 

f ( x )  - - g 

u 2 
-- uX 

4 '  
(B.5) 

where the new independent variable is 

dg u 
X ~ ~ ~ ~ o  

du 2 

In view of the new independent variable, we can uniquely express u in terms 
of x, namely, u -  2x. Hence, we can write function (t3.5) as 

f (x) -- 2x 2 (2x) 2 = x 2 
4 

as expected from Example B.1. 
tion of v - u 2/4. 

Therefore, y = x 2 is Legendre's transforma- 

B.3 Transformation between s and 7/ 

N o t a t i o n  B.1 In this appendix, to familiarize the reader with the fact that 
the phase slowness is a covector, p, while the ray velocity is a vector, • 
following the standard convention, their components appear as subscripts 
and superscripts, respectively. This distinction is not used in the text of the 

book. 

N o t a t i o n  B.2 In this appendix, to show the generality of the formulation, 
all expressions are derived for an n-dimensional space. 

R e m a r k  B.1 Throughout this book, we formulate our expressions in terms 
of orthonormal coordinates. The distinction between vectors and covectors 
becomes important if curvilinear coordinates are used. 

2For a proof of this duality, readers might refer to Arnold, V.I., (1989) Mathematical  
methods of classical mechanics (2nd edition)" Springer-Verlag, p. 63. 
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3In the context of this book, Legendre's transformation relates the ray- 
theory Lagrangian, s to the ray-theory Hamiltonian, 7/. The transforma- 
tion between functions s (x, .) and 7-{ (x, .) is analogous to the transforma- 
tion between functions f (.) and g (.), discussed above, where,  stands for 
the variables of transformation. Note that x, while specifying the point in 
the continuum where the transformation is performed, plays no role in this 
transformation. At a given point x, • and p are the active variables of 
transformation. 

Let/2 = Z; (x, • In view of expression (B.4), consider a new function 
given by 

n 

7-/(x, p) - y ~  jcipi - s (x, • (B.6) 
i=1 

where, in view of expression (B.3), the new variables are 

0 s  
i e  {1 , . . . , n} .  (B.7) Pi -- COjc i , 

Following expression (B.6), we can write the differential of 7-/(x, p) as 

d ~ =  
n n ( 0 s 1 6 3  

+ - + 

= i~~ p i d x i  + 2 idp i  - -~ z idx  - -~zidjci . (B.8) 

In view of expression (B.7), the first and the last term in expression (B.8) 
cancel one another. Thus, we obtain 

n 0 s  dxi)  (B.9) 

Also, we can formally write the differential of 7-/(x, p) as 

n(o  ) 
d ~  - E -O-~zi dx i  + -~pi dpi ' (B.10) 

i=1 

which is a statement of the chain rule. 

a Readers interested in an insightful description of Legendre's transformation, including 
the duality of the transformation and the application of the transformation to s and 7-/, 
might refer to Lanczos, C., (1949/1986) The variational principles in mechanics: Dover, 
pp. 161-  172. 
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Equating the right-hand sides of equations (B.9) and (B.10), we can 
write 

~ci dpi - -~zi dx  i - ~ ~z-Tz/dxi+ -~pi dPi �9 
�9 i - - 1  

(B.11) 

By examining equation (B. 11), we conclude that 

ki _ O?-I 
- O p i '  i e  {1,...,n}. (B.12) 

Examining expressions (B.7) and (B.12), we recognize the duality of these 
expressions. Thus, we can write the counterpart of expression (B.6), namely, 

n 

(x, ~) - ~ ~% - ~ (x, p),  (B.la) 
i = 1  

where the active variables are given by expression (B.12). 

B . 4  Transformation and ray equations 

Knowing that ~ (x, p) is Legendre's transformation of/2 (x,~), and vice- 
versa, we wish to consider the effect of this transformation on the corre- 
sponding ray equations. Herein, in view of the duality of the transforma- 
tion, we derive Hamilton's ray equations from Lagrange's ray equations. 
This process is the inverse of the transformation used in Chapter 9. 

Recall Lagrange's ray equations (9.8), which, in general, can be written 
&s 

Of_. d 0 s  
= i E { 1 , . . . , n } .  (B.14) 

Ox i d t  0 2  i ' 

By examining equation (B. 11), we conclude that 

0 s  (x, • 0H (x, p) 
OX i OX i ' 

i E  { 1 , . . . , n } ,  (B.15) 

where relations between • and p are given by expressions (B.7) and (B.12). 
Hence, using expressions (B.7) and (B.15), we can write equation (B.14) as 

O ~  dpi 
= i ~  ( 1 , . . . , ~ } ,  

Ox i dt ' 

which can be immediately restated as 

0H 
/~i -  0x i, 

iE  { 1 , . . . , ~ } .  (B.16) 
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Thus, we conclude that  using the new function, given in expression 
(B.6), and the new variables, given in expression (B.7), we obtain expression 
(B.12), while, invoking Lagrange's ray equations (9.8), we obtain expression 
(B.16). We notice that the system composed of equations (B.12) and (B.16) 
are Hamilton's ray equations (8.19), namely, 

,2 i = O ~  
Opi 

0 ~  
i i- Ox i 

i C { 1 , . . . , n } .  (B.17) 

Hence, Legendre's transformation of/2, which leads to ~ ,  allows us to 
derive Hamilton's ray equations from Lagrange's ray equations. In view of 
this derivation, we recognize that the first equation of system (B.17) is the 
definition of a variable for Legendre's transformation, while the second equa- 
tion is endowed with the physical content since it results from Lagrange's 
ray equations. 

Closing remarks 

In the context of our work, the fundamental physical principles are directly 
contained in Hamilton's ray equations, which originate in Cauchy's equations 
of motion. The fundamental justification of Lagrange's ray equations relies 
on Legendre's transformations and, hence, it is subject to the singularities 
of this transformation. 4 Furthermore, if we wish to express the governing 
equations explicitly in terms of Lagrangian s we need to solve equations 
(B.12) for the pi, in a closed form, which is not always possible. 

In the context of elastic continua, the desired transformation is possible 
for any convex phase-slowness surface. Furthermore, if ~ is a quadratic 
function in the Pi in other words, the phase-slowness surface is elliptical 
- -  we can always obtain explicit, closed-form expressions for the ray velocity 
and the ray angle. 

Legendre's transformation links the concepts of Part  H with those of 
Part  I I I  in this book, and is explicitly used in Chapters 9 and 13. 

4In general, depending on the context, we can view either the Hamiltonian or the 
Lagrangian formulation as being more fundamental. Readers interested in this question 
might refer to Marsden, J.E., and Ratiu, T.S., (1999) Introduction to mechanics and 
symmetry: A basic exposition of classical mechanical systems (2nd edition): Springer- 
Verlag, pp. 1 - 6. 
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Appendix C 

List of symbols 

Our symbolic mechanism is eminently useful and powerful, 
but  the danger is ever-present tha t  we become drowned in 
a language which has its well-defined grammat ica l  rules but  
evidently loses all content and becomes a nebulous sham. 

Cornelius Lanczos (1961) Linear differential operators 

R e m a r k  C.1 Symbols listed herein correspond to the given meaning through- 
out the entire book. 

C.1 Mathematical  relations and operations 

= equality 
approximation 

-- identity 
�9 = definition 

asymptotic relation 
o orthogonal-transformation operator 
�9 scalar product 
x vector product 
V gradient 
V. divergence 
V x curl 
d total derivative 
0 partial derivative 
5 variation 
5ij Kronecker's delta 
eijk permutation 
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E 

O 
Y 
R 
R~ 

ei 

f ()1~ 

"belongs to a set" 
"maps to" or "tends to" 
coordinate-rotation angle 
Jacobian 
real numbers 
n-dimensional space of real numbers 
unit vector along the xi-axis 
function f (-) evaluated at �9 = a 
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C.2 P h y s i c a l  quant i t i e s  

C.2 .1  G r e e k  l e t t e r s  

s 

# 

(Tij 

~2 

strain tensor 
see expression (1.15) 
phase angle 
see expressions (10.30)and (9.14) 
ray angle 
see expressions (9.30) and (9.21) 
compressibility 
see expressions (5.71) 
Lam6's parameter 
see expressions (5.63) 
Lam6's parameter, also known as rigidity modulus 
see expressions (5.63) 
Poisson's ratio 
s~ ~xpr~s~ons (5.95)~.d (5.96) 
rotation tensor 
see expression (1.29) 
rotation vector 
see expression (1.30) 
mass density 
see expression (2.1) 
stress tensor 
see expression (2.18) and Figure 2.1 
dilatation 
see expression (1.26) 
displacement angle 
see expression (10.35) 
angular frequency 
see expression (6.48) 
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C.2 .2  

Cijkl 

Cm ?z 

E 

F 

H 

s 

L 

W 

Appendix C. List of symbols 

R o m a n  l e t t e r s  

elasticity tensor 
see expression (3.1) 
elasticity-matrix entries, also known as elasticity parameters 
see expression (4.11) 
Young's modulus 
see Remark 5.3 
ray-theory Lagrangian, 
absolute-value homogeneous of degree 1 in the xi 
see expression (13.8) 
ray-theory Lagrangian, inhomogeneous 
see integral (14.2) 
ray-theory Hamiltonian, homogeneous of degree 2 in the pi 
see expression (8.20) 
classical-mechanics Hamiltonian 
see Exercise 13.5 
ray-theory Lagrangian, homogeneous of degree 2 in the xi 
see expression (9.2) 
classical-mechanics Lagrangian 
see expression (13.14) 
strain energy 
see expressions (4.3) and (4.1) 
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geneous-function theorem 
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traveltime integral, 330 

action, see also Hamilton's princi- 
ple 

at a distance, 39 
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quantuum mechanics, 186 
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adiabatic process, 79 
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displacement, 149, 150, 228 
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257, 259, 262, 263 
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transport equation, 154 
wavefront, 165, 186 

angle 
deformation, 19, 22-24 
displacement, 231, 232, 235, 

243, 357 
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235,243, 246-248, 332,357 

elliptical velocity dependence, 
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intersection point, 235 
isotropy, 237, 239, 261 
ray parameter, 332 
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phase-delay, 258 
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ray, 198, 204-206, 209-213, 215, 
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elliptical velocity dependence, 
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ray parameter, 321,322,332, 
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natural coordinate system, 
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transmission, 245, 247, 259 
elliptical velocity dependence, 

258 
angular frequency, 144, 263, 357 
ansatz, see trial solution 
antisymmetry 

rotation tensor, 24, 32 
tensor, 25 

arclength 
element, 279, 294, 326 
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asymptotic 
method, 137, 150 
relation, 355 
series, 128, 150 
solution, 163 

atomic structure, 8, 63 

Babich, Vasiliy M. (1930-), 128 
balance principle, 33, 36, 55 
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conservation principle, 34 
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mass, 4, 33-36, 51, 52, 54, 77, 
78, see also conservation 
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trigonometric polynomial, 105, 
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Beltrami's identity, 201,274 

Euler's equation, 274, 278, 284, 
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Lagrangian 9 r, 330 
Lagrangian s 201, 207, 298, 

310 
ray parameter, 321,322, 333 

Beltrami, Eugenio (1835-1900), 201 
Benndorf, Hans (1870-1953), vii 
Bernoulli, Daniel (1700-1782), 142 
Bernoulli, Johannes (1667-1748), 
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body force, 39, 48, 49, 51, 54, 55 

Cauchy's equations of motion, 
48, 49, 68, 130 

conservation of linear momen- 
tum, 39 

conservative system, 48 
stress tensor, 43 

Cauchy's tetrahedron, 43 
surface force, 39, 49 

body wave, see wave 
boundary conditions, 271,272, 305, 
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dynamic, 251-255, 259, 260 
kinematic, 251,252, 255, 259, 

260 

calculus of variations, xii, 127, 207, 
268, 339 

conserved quantity, 331 
Lagrange's ray equations, 296 
physical application, 293 
ray theory, 269, 283, 284, 308 
stationarity condition, 267, 269 

definite integral, 270 
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Cauchy's equations of motion, see 
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of motion, Lagrange's equa- 
tions of motion a n d  New- 
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balance of angular momentum, 

54 
balance of linear momentum, 

33, 47, 78, 79, 127 
body force, 48, 49, 51 
conservation of linear momen- 

tum, 40, 47 
constitutive equations, 130 
elastic continuum, 129 
Hamilton's ray equations, 267, 

353 
one-dimensional continuum, 68 
SI  units, 48 
stress-strain equations, 56, 127 

anisotropic inhomogeneous con- 
tinuum, 145, 154, 163, 164 

isotropic homogeneous con- 
tinuum, 130, 154, 163, 164 

isotropic inhomogeneous con- 
tinuum, 160, 162 

surface force, 48 
three-dimensional continuum, 

55 
unknowns, 33, 48 
wave equation, 56, 67 

Cauchy's stress principle, 39, 40 
Cauchy's stress tensor, 46, see also 

stress tensor 
Cauchy's tetrahedron, 44, see also 

tetrahedron 
Cauchy, Augustin-Louis (1789-1857), 

4, 8, 38 
causality, 247, 267 
(~erven2, Vlastislav (1932 - ), 128 
characteristic equation 

eikonal equation, 170, 171 
plane wave, 159 

characteristics 
curve, 142, 174, 175, 177-180, 

190 
base, 183 

equations, 173, 175, 178-181, 
184, 187, 189, 190, 211- 
213, 310, 312 

method, 173, 174 
Christoffel's equations, 168, 217- 

222, 226, 227 
classical mechanics, 301,302 

action, 186, 293 
geometrical optics, 301 
Lagrange's equations, 284 
least action, 302 
ray theory, 186 
stationary action, 303 
wave equation, 301 

complex 
conjugate 

reflection, 264 
function 

eikonal and transport equa- 
tions, 151 

number 
evanescent wave, 257 
reflection and transmission, 

257 
transverse isotropy, 115 

plane 
phase shift, 257 

compressibility, 109, 110, 357 
compression, 22, 41, 42, see also 

tension 
condensed-matter physics, 79 
conservation of mass, see also bal- 

ance principle 
balance of mass, 35 
balance principles, 33, 54, 77 
equation of continuity, 4, 33- 

36, 78 
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symmetry of stress tensor, 52 
conservation principle 

balance principle, 34 
conservative system, 48, 70, 70, 

80, 303 
conserved quantity, 183, 247, 249- 

251, 258, 259, 321, 326, 
330, 332, 333, 335 

constant phase 
phase velocity, 169 
wavefront, 147, 246 

constitutive equations, see also Hooke's 
law and stress-strain equa- 
tions 

balance of energy, 55 
elastic continuum, 55, 56, 300 
elastic material, 56 
empirical relation, 61 
Hooke's law, 62 
isotropic homogeneous contin- 

uum, 130 
matrix form, 64 
phenomenology, 78 
stress-strain equations, 67 

constructive interference, 137, 300 
continuity, see also equality 

function, 56 
phase, 245, 246, 251,259 

wavefront, 246 
phase slowness, 247 

continuity equation, see equation 
of continuity 

continuum mechanics, 3, 401 
anisotropy/inhomogeneity, 63 
atomic structure, 8 
balance principle, 33, 34 
Cauchy's stress principle, 39 
deformation, 25, 33 
displacement, 9 
exact solution, 5 

granular structure, 8 
history, 4 
Hooke's law, 62 
particle mechanics, 38 
physical reality, 7 
seismology, xi, 3, 61 
stress tensor, 46 

coordinate plane 
orthotropic continuum, 98 
traction, 40, 41, 43, 49 

coordinate system, see also mate- 
rial coordinates and spa- 
tial coordinates 

characteristics, 142 
curvilinear, 350 

Laplacian, 132 
strain tensor, 18 

elasticity parameter, 78 
natural, 98 

definition, 96 
generally anisotropic contin- 

uum, 96, 97 
isotropic continuum, 106 
monoclinic continuum, 96, 97, 

222, 225, 226 
orthotropic continuum, 98, 

100 
pure-mode direction, 98 
tetragonal continuum, 100, 

101 
orientation 

Euler's angle, 97 
strain energy, 103 

orthonormal, 28, 41, 87, 96, 
98, 350 

calculus of variations, 281 
Jacobian, 10 
Laplacian, 132 
raytracing, 324, 325 

point symmetry, 94 
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polar, 205, 332 
reference 

material symmetry, 91 
symmetry axes, 98 
tetrahedron, 45 
transformation, 22, 28, 30, 31, 

57, 58, 86, 95, 327 
isotropic continuum, 108 
isotropic tensor, 108 
Jacobian, 86, 111 
material symmetry, 85, 86, 

92, 93 
orthogonal, 86 
strain energy, 74 
transverse isotropy, 115 

coupling, see also decoupling 
wave, 260 

covector, 350 
crystal lattice, 63, 111 
crystallography, 111 
cubic continuum, 110 
curl, 132, 133, 138-141,355 

displacement potential, 138, 140, 
141 

rotation, 24, 31, 32 
S wave, 133, 134 
shape change, 132 

d'Alembert, Jean Le Rond (1717- 
 783), 142 

Debye, Peter (1884-1966), 128 
decoupling, see also coupling 

wave, 259 
diffeomorphism 

Legendre's transformation, 200 
differential equation, xii, 68, 339 

balance of angular momentum, 
51, 53 

balance principles, 61, 78 
continuum mechanics, 3 

mathematical physics, 129 
method of characteristics, 173, 

174 
ordinary 

Beltrami's identity, 322 
calculus of variations, 268 
characteristic equations, 174, 

178 
Euler's equation, 272, 274, 

276-278, 329 
first integral, 282, 283 
Hamilton's equations, 291, 313 
Hamilton's ray equations, 182, 

197, 198 
Lagrange's ray equations, 197, 

198, 200 
Newton's second law, 313 
ray parameter, 322, 324 

partial, 175, 178 
anisotropic inhomogeneous con- 

tinuum, 165 
Cauchy's equations of mo- 

tion, 48 
eikonal equation, 153, 169, 

174 
equation of continuity, 36 
Euler's equation, 274, 275 
system, 78 
wave equation, 134, 142,144- 

146, 149 
WKBJ method, 186 

dilatation, 22, 132, 357 
definition, 22 
displacement potential, 140 
equations of motion, 132, 162 
Lam6's parameters, 109 
P wave, 132, 133 
scalar, 31 
trace, 31 

dilatational wave, see wave 
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displacement, xi, 15, 221,222 
amplitude, 14 
direction 

measurement, 222 
gradient, 14, 17, 24, 29, 30 
infinitesimal, 12-15, 27, 222 
Lagrange's density, 305 
longitudinal, 305 
material point, 9, 14, 222 
P wave, 154 
potential, 130, 137, 138, see 

also scalar potential and 
vector potential 

reduced wave equation, 144 
SH wave, 154 
SV  wave, 154 
strain tensor, 18-20 
transverse, 315-317 
vector, 16, 24, 48, 162, 164, 

221-225, 231,234 
conservation of linear momen- 

tum, 40 
conservation of mass, 34, 36 
coordinate transformation, 28 
curl, 23, 24, 31 
direction, 98, 168, 217, 221- 

227, 230-232, 235, 236, 239, 
259 

divergence, 22 
equations of motion, 51,130 
interface, 245,251,252, 254, 

257-259 
plane wave, 135, 136 
qP wave, 231 
qSV wave, 231 
SH wave, 231 
strain energy, 72, 80 
strain tensor, 66 

velocity, 15 
distribution theory, 155 

divergence, 35, 53, 131, 132, 134, 
139, 140, 355 

dilatation, 22, 24, 140 
displacement potential, 138, 139 
P wave, 132 
stress tensor, 48 
volume change, 132 

divergence theorem 
balance of angular momentum, 

53 
balance of linear momentum, 

47 
conservation of mass, 35 
time derivative of volume in- 

tegral, 37 

eigenspace 
anisotropic continuum, 236 
isotropic continuum, 236 

eigenvalue 
phase velocity, 168, 220, 221, 

224, 235 
solvability condition, 219 
stability conditions, 76, 124 

eigenvector 
displacement, 168, 220-222,225, 

235 
eikonal equation, 152, 168, 219 

anisotropic inhomogeneous con- 
tinuum, 152, 163, 167, 169- 
171, 173, 174, 181, 183, 
201, 214, 217, 295 

Cauchy's equations of motion, 
56, 67 

characteristics, 177 
isotropic homogeneous contin- 

uum, 194 
isotropic inhomogeneous con- 

tinuum, 153, 154, 183, 312 
scaling factor, 181 
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solution surface, 178 
wave equation, 152, 153 

eikonal function, 150, 151,154, 165, 
169, 175, 179, 187 

elastic continuum, xi, xii, 34, 70, 
see also elastic material 

constitutive equations, 56, 61 
crystal lattice, 111 
elasticity parameters, 79 
equations of motion, 127, 129 
Hooke's law, 74 
Legendre's transformation, 353 
linear, 76, 79 
phase-slowness surface, 233,300 
point symmetry, 94 
seismology, 4 
strain energy, 69-71, 73, 74, 

79, 80 
stress-strain equations, 67, 127 
variational principle, 301,304, 

307 
wave phenomena, 129 

elastic material, 56, 62, 67, 69, see 

also elastic continuum 
elastic medium, xii, 3, 61,127, 155, 

401 
elastic wave, see wave 
elasticity constant, see elasticity pa- 

rameter 
elasticity matrix, see also elastic- 

ity tensor 
arbitrary coordinate system, 96 
Christoffel's equations 

isotropic continuum, 236 
monoclinic continuum, 222, 

223, 226 
transversely isotropic contin- 

uum, 227 
displacement direction 

isotropic continuum, 238, 239 

monoclinic continuum, 225, 
226 

transversely isotropic contin- 
uum, 230 

elasticity tensor, 64 
formulation, 65, 66 
interface, 254 
material symmetry, 85, 86, 91- 

93 
generally anisotropic contin- 

uum, 94, 95 
isotropic continuum, 106, 107 
monoclinic continuum, 95- 

98, 112 
orthotropic continuum, 99, 

100 
tetragonal continuum, 101, 

110 
transversely isotropic contin- 

uum, 101, 102, 104 
trigonal continuum, 110 

natural coordinate system, 96 
phase-slowness curve, 237 
positive definite 

isotropic continuum, 109, 123, 
124 

stability conditions, 75, 76, 
83 

symmetry, 110 
isotropic continuum, 116 
strain energy, 73, 91 

elasticity parameter, 74, 358 
anisotropic continuum 

Christoffel's equations, 218- 
220 

phase velocity, 217, 221,222 
ray velocity, 204 

anisotropic inhomogeneous con- 
tinuum, 145 

eikonal equation, 169 
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condensed-matter physics, 79 
elastic continuum, 77-79 

elastic material, 78 
Green-river shale, 236, 242,243 
Hooke's law, 74 
interface, 245, 254, 256, 257 
material symmetry, 79, 110, 111 

cubic continuum, 110 
isotropic continuum, 107, 108, 

118 
orthotropic continuum, 100 
tetragonal continuum, 101 
transversely isotropic contin- 

uum, 102 
trigonal continuum, 110 

natural coordinate system, 97, 
225 

normalized, 219 
phase-slowness curve, 234 
phase-slowness surface, 233 
spring constant, 80 
stability conditions, 75 
strain energy, 74 
temperature dependence, 79 
traveltime, 235 

elasticity tensor, 358, see also elas- 
ticity matrix 

anisotropic inhomogeneous con- 
tinuum, 164 

Christoffel's equations, 220 
components, 63 

independence, 65 
units, 63 

elasticity matrix, 64 
equations of motion 

anisotropic inhomogeneous con- 
tinuum, 165 

isotropic continuum, 108 
rank, 58, 63, 108 
symmetry, 64, 65, 110 

strain energy, 71, 72 
elasticity theory 

elastic continuum, 5, 77 
elasticity tensor 

isotropic continuum, 108 
Hamilton's ray equations, 194 
linearity, 25, 62 
ray velocity, 322 
strain tensor, 18 
stress tensor, 46 
stress-strain equations, 62 
stress/strain, 8, 15, 38 

elliptical velocity dependence 
interface 

amplitude, 252 
angle, 245, 248-251 

isotropy, 327 
phase-slowness surface, 353 
ray angle, 210, 215, 242 
ray parameter, 322 
ray velocity, 205,206, 215,322, 

323 
transversely isotropic contin- 

uum, 149, 240 
phase velocity, 240 

traveltime, 322 
wave equation, 146, 147 

phase velocity, 148 
ellipticity, 322, 323, see also ellip- 

tical velocity dependence 
energy, 4, 55, 69, 72, 75, 79, 80, 

183 
evanescent wave, 257 
incident wave, 251, 252, 257, 

263 
kinetic, 302-304, 306,312-314, 

316, 344 
potential, 4, 69-71, 302, 303, 

305, 306, 315, 316 
strain, 69-71, 74, 75, 77, 79, 
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80, 82, 84, 91, 102-104, 
107, 116, 122, 123, 305, 
358 

envelope 
plane-wave solution 

elliptical velocity dependence, 
148 

tangent lines, 348 
tangent planes, 348 

equality, see also continuity 
displacement, 245, 251, 252, 

259 
mixed partial derivatives 

displacement potential, 139, 
140 

eikonal equation, 166, 175 
equations of motion, 162 
Euler's equation, 290 
strain energy, 71 
theorem, 71 
wave equation, 131,133, 134, 

136, 156, 157 
phase slowness, 246, 255 
stress tensor, 254 
traction, 245, 251,253, 259 

equation of continuity 
balance principles, 4, 33, 78 
constitutive equations, 56, 67, 

68 
derivation, 36 
elastic continuum, 127 
material time derivative, 37 
unknowns, 33, 48, 55, 67 

equivoluminal wave, see wave 
Euler's angle, 97 
Euler's equation, 269, 272, 283, 

288, 312, 320, 329, 336 
Beltrami's identity, 274, 284, 

285 
first integral, 282, 319, 329 

formulation, 271-273 
generalizations, 274-276 
Hamilton's equations, 291 
Lagrange's equations of motion, 

303, 315 
Lagrange's ray equations, 283, 

284, 296, 300 
parametric form, 283,311,312 
ray parameter, 321,322 
special cases, 277, 279-281,320 
wave equation, 307, 308, 317 

Euler's homogeneous-function the- 
orem, 341, 343, 345, see 

also absolute-value homo- 
geneous function and  ho- 
mogeneous function 

characteristic equations, 180, 
181 

example, 344 
Fermat's principle, 297, 298 
Hamilton's ray equations, 174 
kinetic energy, 345 
Legendre's transformation, 339 
proof, 343 
ray-theory Lagrangian 9 r, 330 
ray-theory Lagrangian s 310 
strain energy, 82 

Euler, Leonhard (1707-1783), 4, 142, 
271 

Euler-Lagrange equation, 271,284, 
see also Euler's equation, 
Lagrange's equations of mo- 
tion and Lagrange's ray equa- 
tions 

Eulerian description, 9, see also 

spatial description 

Fermat's principle, 301, see also 

variational principles 
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calculus of variations, 281,308, 
312 

interface, 259 
proof, 293, 294, 300 

limitations, 300, 308 
parameter independence, 298, 

309, 345 
statement, 294 

ray parameter, 320 
ray theory, 284 
variational principles, 268, 301 

Fermat, Pierre de (1601-1665), 268, 
294 

first integral, 282-284, 292, 319- 
322, 324, 329, 332 

fluid, 48, 109, 134 
forces vives, 319, see also vis viva 

Gauss's divergence theorem, see di- 
vergence theorem 

generalized functions, 155 
generally anisotropic continuum, 94, 

95, 97, 110, 111, 145, 149 
elasticity matrix, 94 
natural coordinate system, 97, 

98 
phase velocity, 222 
point symmetry, 95 
ray angle, 248 
Shell's law, 247 

geometrical optics, 301 
gradient, 131, 133, 138, 140, 141, 

151, 187, 249, 355 
calculus of variations, 287 
characteristic equations, 176 
displacement, 14, 29, 30 
displacement potential, 138 
displacement vector, 24 
eikonal function, 151,152,167, 

187 

material time derivative, 11 
phase-velocity function, 202 
scalar field, 19 
vector field, 19 
velocity, 14, 192 

grains, 3, 8, 63 
gravitation, 49 
gravitational force, 39 
gravity, 49, 314 
Green, George (1793-1841), 4 
Green-river shale 

elasticity parameters, 236 
pure-mode direction, 243 
ray and displacement angles, 

242 
group angle, see angle 
group velocity, see ray velocity 

halfspace 
anisotropic homogeneous con- 

tinuum, 135 
elliptical velocity dependence, 

248 
Hamilton's equations 

Euler's equation, 291 
Hamilton's equations of motion, 304, 

314 
Hamilton's principle, 155,294, 301, 

303, 303, 314, 315, 317, 
see also action a n d  varia- 
tional principles 

Hamilton's ray equations, see also 

Hamilton's equations, Hamil- 
ton's equations of motion 
a n d  Lagrange's ray equa- 
tions 

anisotropic inhomogeneous con- 
tinuum, 173, 197, 207, 217, 
271 
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conserved quantity, 246,247, 
320, 331,332 

Fermat's principle, 293, 294, 
296-298, 300, 308 

ray, 200, 206, 332 
eikonal equation, 173 
high frequency, 185 
isotropic homogeneous contin- 

uum, 193, 194 
isotropic inhomogeneous con- 

tinuum, 186, 187 
Legendre's transformation, 198- 

200, 208, 209, 267, 339, 
352, 353 

method of characteristics, 182 
ray theory, 186, 267, 319 

Hamilton, William Rowan (1805- 
1865), 128, 268 

Hamilton-Jacobi equation, 169 
Hamiltonian, 291,292 

classical-mechanics, 183, 313, 
314, 358 

definition, 312 
ray-theory, 182, 186, 197, 200, 

208, 240,246,294-297, 300, 
308, 342, 347, 351, 358 

definition, 183 
Helmholtz's decomposition, 137 
hexagonal continuum, see trans- 

versely isotropic continuum 
high frequency 

approximation, 146, 186 
anisotropic inhomogeneous con- 

tinuum, xi 
Cauchy's equations of too- 

tion, 267 
eikonal equation, 153 
equations of motion, 127 

inhomogeneous continuum 
wave equation, 153 

signal, 127 
homogeneous continuum 

anisotropic continuum, 149 
differential equations, 68 
displacement potential, 139 
elliptical velocity dependence, 

147 
equations of motion, 129, 130, 

132-134, 139, 162, 165 
Hamilton's ray equations, 193 
layered, 246, 247, 278,320,326, 

331 
plane wave, 135, 136 
rays, 194, 278 
stress-strain equations, 164 
wave equation, 127, 145, 146, 

149, 154, 163, 301,303 
extension, 146 

homogeneous equation 
Christoffel's equations, 220 

nontrivial solution, 220 
homogeneous function, see also ab- 

solute-value homogeneous 
function and Euler's homo- 
geneous-function theorem 

arclength element, 309, 330 
definition, 341,342 
example, 343 
kinetic energy, 345 
multivariable function, 345 
parameter independence, 298 
phase velocity, 169, 180, 181, 

202, 295, 342 
ray velocity, 309, 330 
ray-theory Lagrangian jr, 298, 

309, 330, 345 
ray-theory Lagrangian s 201, 

297-300, 310, 345, 358 
ray-theory Hamiltonian, 295- 

297, 342, 344, 345, 358 
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strain energy, 71, 77, 80-82 
traveltime integral, 330 

homogeneous-function theorem, see 

Euler's homogeneous-fun- 
ction theorem 

Hooke's law, 62, 74, 305, see also 

constitutive equations a n d  

stress-strain equations 
constitutive equations, 62 
linearity, 63 

Hooke, Robert (1635-1703), 62 
Huygens' principle, 169, 247 
hydrostatic pressure, 46, 110 

incident wave, see wave 
initial condition 

characteristic equations, 177 
ray, 324 
wave equation, 141, 143 

integral equation 
balance of angular momentum, 

52 
balance of linear momentum, 

47 
conservation of linear momen- 

tum, 40 
conservation of mass, 34, 36 
vanishing of integrand, 56 
wave propagation, 155 

interface, 135, 245, 248 
amplitude, 252 
boundary conditions, 251-256, 

259, 260 
conserved quantity, 246, 249 
energy, 251 
energy transmission, 257 
halfspace, 248 
Snell's law, 247 
wave, 154 
wavefront, 246, 247 

welded contact, 252 
interface wave, see wave 
inverse 

derivative, 29 
function, 278 
Legendre's transformation, 352 
mapping, 10 
matrix, 93 
problem, 235, 327 
transformation, 26, 58 
transpose, 28 
trigonometric function, 239 

isothermal process, 79 
isotropic continuum, 98, 106, 110 

characteristic equations, 187, 
190, 194, 310 

Christoffel's equation, 236 
displacement, 221, 222, 236- 

239 
displacement potential, 139 
eikonal equation, 152, 169 
elasticity matrix, 116 

elasticity parameters, 107 
Lam6's parameters, 107 

elasticity tensor, 108 
equations of motion, 127, 129, 

130, 132, 154, 162, 163, 
165 

Euler's equation, 278,281,282, 
311,312 

Fermat's principle, 312 
interface, 251, 262 
intersection point, 235, 237 
Lam~'s parameters, 107, 118 
natural coordinate system, 98, 

106 
orthogonal transformation, 106 
Poisson's ratio, 118, 119 
ray, 325, 328, 329, 334, 335 
ray equations, 183-187' 
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ray parameter, 261 
rigidity modulus, 119 
strain energy, 122, 123 
stress-strain equations, 108, 117, 

118, 164 
transport equation, 170 
wave equation, 130, 132, 134, 

136 
extension, 145, 146 

Young's modulus, 120 
isotropic tensor 

definition, 108 
isotropic continuum, 108, 117 

Jacobian, 25, 86, 111, 112, 112, 
356 

Keller, Joseph B. (1923-), 128 
kinetic energy, see energy 
Kronecker's delta, 54, 83, 88, 89, 

117, 118, 121-123,131,161, 
202, 355 

Lagrange's equations of motion, 301, 
303, 304, 315 

Lagrange's ray equations 
anisotropic inhomogeneous con- 

tinuum, 206, 207, 217, 271 
Fermat's principle, 293, 296, 

298, 299, 319 
ray, 200, 332 
singularity, 207 
two-dimensional continuum, 

329, 330 
Beltrami's identity, 200, 207, 

274 
conserved quantity, 247, 331, 

332 
Euler's equation, 269, 283, 284 
Euler-Lagrange equation, 284 

Legendre's transformation, 198, 
200, 208, 267, 339, 352, 
353 

ray theory, 197, 267 
Lagrange, Joseph-Louis (1736-1813), 

142, 270, 275 
Lagrangian, ix 

classical-mechanics, 303, 304, 
312-314, 358 

continuous system, 305,306, 
316 

definition, 302 
ray-theory, 308 

Fermat's principle, 294 
ray-theory 9 c, 299, 308, 309, 

311, 312, 358 
definition, 298 
Fermat's principle, 300 

ray-theory F, 358 
definition, 320 

ray-theory /2, 197, 198, 201, 
207-210, 296, 299,310,347, 
351,353, 358 

definition, 198 
properties, 296-298 

Lagrangian density, 304, 305, 307 
Lagrangian description, 9, see also 

material description 
Lam6's parameters, 107, 109, 110, 

116, 118, 122, 123, 133, 
134, 161,237, 357 

layered medium, 154, 227, 278,320 
Legendre's transformation, xii, 353 

classical mechanics, 312 
conserved quantity, 331 
duality, 200, 291 
elliptical velocity dependence, 

248 
Euler's equation, 291 
Euler's homogeneous-function 
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theorem, 339 
Fermat's principle, 296, 297, 

308 
regularity, 300 

formulation 
definition, 347 
duality, 350 
geometrical context, 348 
limitations, 348 
ray theory, 351-353 
single variable, 349 
singularity, 353 

Hamilton's ray equations, 183 
Lagrange's ray equations, 198, 

207, 267, 339 
ray angle, 209, 241,248 
ray velocity 

elliptical velocity dependence, 
322 

ray-theory Lagrangian/2, 197, 
198 

ray-theory Hamiltonian 
regularity, 200 

transformation variable, 201 
level curve 

phase slowness, 249 
level set 

characteristic equations, 174, 
176, 211-213 

eikonal function, 150, 165, 187 
wavefront, 165, 167 

linear momentum 
balance, see  balance principle 
Hamilton's equations of motion, 

313, 314 
Legendre's transformation, 312 
rate of change, 40, 43 

linear stress-strain relation, 61, see  

a lso  constitutive equations, 
Hooke's law a n d  stress-strain 

equations 
linear velocity dependence, 322,323, 

328 
linear-momentum density, 52 
linearity 

differential operator 
balance of angular momen- 

tum, 53 
Beltrami's identity, 287 
displacement potential, 138- 

140 
equations of motion, 161 
Euler's equation, 289 
wave equation, 131,133, 134 

integral operator 
balance of linear momentum, 

47 
calculus of variations, 288 

linearized theory, 12-15 
balance of angular momentum, 

52, 53 
Cauchy's equations of motion, 

48, 50, 51, 67 
elasticity, 25 

longitudinal direction, see pure-mode 
direction 

longitudinal wave, see  wave 

mass, see a lso  balance principle 
density, 48, 357 

Cauchy's equations of mo- 
tion, 51 

Cauchy's tetrahedron, 43 
Christoffel's equations, 217, 

220-222 
conservation of mass, 34 
elastic continuum, 74, 78 
Green-river shale, 242 
inhomogeneous continuum, 161, 

164 
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interface, 254-256, 262 
material time derivative, 37 
normalization, 219 
one-dimensional continuum, 

306 
phase velocity, 169, 217 
ray theory, 245 
ray velocity, 204 
units, 59 
wave equation, 133, 134 

material coordinates, 10, 11, 20, 
22, 25, 67 

material description, 9-12, 25, 26 
definition, 9~ 10 

material point, 9-11, 14-16, 18, 26, 
222 

definition, 9 
material symmetry, 85-87, 91, 92, 

94, 102-104, 111, see  also 

point symmetry, generally 
aniso-tropic continuum, mon- 
oclinic continuum, orthotropic 
continuum, tetragonal con- 
tinuum, tranversely isotropic 
continuum a n d  isotropic con- 
tinuum 

definition, 85 
elasticity matrix, 91 
strain energy, 103 

material time derivative, 10-12, 14 
operator, 11, 38, 40, 47 

Maupertuis, Pierre-Louis Moreau 
de ( 1601-1665), 268, 302 

momentum phase space, see  xp- 
space 

monoclinic continuum, 95,110,217, 
222 

displacement, 222 
elasticity matrix, 96 
natural coordinate system, 97, 

98, 225 
phase velocity, 223 
pure-mode direction, 98 

natural coordinate system, see  co- 
ordinate system 

Newton's law of motion, 36, 304 
second, 40, 51, 141, 253, 301, 

304, 313, 314 
third, 42, 44 

Noether's theorem, 283, 332, see 

a lso  conserved quantity, first 
integral a n d  ray parame- 
ter 

Noll, Walter (1925-), 4 

orthogonal matrix, 28, 86, 93 
orthorhombic continuum, see  ortho- 

tropic continuum 
orthotropic continuum, 98-101,110 

elasticity matrix, 100 
oscillatory motion, 144, 145 
Ostrogradsky theorem, see  diver- 

gence theorem 

P wave, see wave 
particle, 8, 9, 267, 301, 303, 304 
particle mechanics, 9, 36, 38, 40, 

303 
permutation symbol, 53, 54, 355 
phase advance, 258 
phase delay, 258 
phase factor 

interface 
evanescent wave, 258 
phase shift, 258 
plane wave, 252 
sign convention, 258 

trial solution 
anisotropic inhomogeneous con- 

tinuum, 165 
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elliptical velocity dependence, 
147 

isotropic inhomogeneous con- 
tinuum, 150 

plane wave, 149 
phase shift, 258 
phase slowness, see  a lso  phase-slow- 

ness 
covector, 350 
magnitude 

Christoffel's equations, 218 
eikonal equation, 173 
elliptical velocity dependence, 

148 
Shell's law, 247 

rate of change 
Hamilton's ray equations, 183 

phase space 
momentum, see  xp-space 
velocity, see x• 

phase velocity, 15, 147 
eikonal equation, 169 
elliptical velocity dependence, 

215 
wave equation, 147, 148 

expression 
monoclinic continuum, 223, 

224 
transversely isotropic contin- 

uum, 228-230 
Hamilton's ray equations 

ray parameter, 331 
magnitude, 203, 204, 206, 218, 

221,233 
elliptical velocity dependence, 

240 
interface, 247, 249, 258 

phase-slowness, see  also  phase slow- 
ness 

curve, 205 

interface, 248, 249, 255 
intersections, 233, 234, 237 
polar reciprocity, 205, 209 

surface, 218, 232 
bicubic equation, 233 
Fermat's principle, 300, 308 
interface, 248, 249 
intersections, 233 
Legendre's transformation, 353 
polar reciprocity, 205 
properties, 233 
sheets, 233 

vector, 150, 213 
direction, 168, 221 
eikonal function, 151 
elliptical velocity dependence, 

148 
gradient, 202 
interface, 246, 247, 252, 255, 

256 
isotropic inhomogeneous con- 

tinuum, 310 
Legendre's transformation, 209, 

210 
magnitude, 194, 247 
surface, 232, 233 
wave equation, 148 
wavefront, 167 
xp-space, 183 

Planck's constant, 186 
plane wave, see  wave 
point symmetry, 94, 95, 99 
polar reciprocal, 205, 210 
potential energy, see energy 
pressure, see also hydrostatic pres- 

sure 
pressure wave, 8ge wave 
primary wave, see  wave 
pure-mode direction, 98, 225,225, 

243 
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q P  wave, see wave 
q S  wave, see wave 
q S V  wave, see wave 
quantum mechanics, 186 
quantuum mechanics, 186 

ray angle, see angle 
ray equation, see Hamilton's ray 

equations and Lagrange's 
ray equations 

ray parameter, 319, 320, see also 

conserved quantity and first 
integral 

Beltrami's identity, 274 
first integral, 283, 319, 332 

elliptical velocity dependence, 
322 

generally inhomogeneous con- 
tinuum, 332 

Hamilton's ray equations, 183, 
247 

integration, 322 
Lagrange's ray equations, 330, 

334 
lateral symmetry, 278 

anisotropic continuum, 320, 
322 

elliptical velocity dependence, 
322 

ray, 324 
ray equations, 332 
spherical symmetry, 333 
traveltime, 326 

ray theory, xi, xii, 127, 128, 145, 
401 

asymptotic methods, 150 
calculus of variations, 268, 269, 

281,283, 284 
eikonal equation, 164 
Fermat's principle, 293, 308 

first integral, 283 
Hamilton's ray equations, 173, 

183, 186, 217, 267, 319 
interface, 245 
Lagrange's ray equations, 186, 

267, 284, 319 
natural coordinate system 

pure-mode direction, 98 
ray, 183 
ray parameter, 319, 331 
variational principles, 293, 301 
wave theory, 186 
WKBJ method, 186 

ray velocity, 15, 198, 201,202,206 
conserved quantity, 249, 251 
curve 

elliptical velocity dependence, 
210 

polar reciprocity, 205, 209, 
210, 248 

two-dimensional continuum, 
205 

expression, 248 
elliptical velocity dependence, 

205, 210, 215, 323, 353 
linear velocity dependence, 

323 
function 

homogeneity, 330 
time invariance, 330 

magnitude, 202, 203, 206 
Fermat's principle, 294, 299 
isotropic continuum, 261,329 
isotropic inhomogeneous con- 

tinuum, 311,312 
two-dimensional continuum, 

203, 204 
phase velocity, 332 
ray parameter, 332 

elliptical velocity dependence, 
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322 
two-dimensional continuum, 

322 
surface, 205 
traveltime integral 

two-dimensional continuum, 
320 

vector, 206, 215, 350 
magnitude, 215 

rayfield, 332 
raytracing, 201,284, 308, 329, 401 
receiver, see  a l so  source 

constructive interference, 300 
displacement vector, 221,222, 

252 
ray parameter, 326, 327 
traveltime, 268, 326-328 

reflected wave, see  wave 
reflection angle, see angle 
rigidity, 109, 109, 110, 134, 357 
Rivlin, Ronald (1915-), 4 
rotation 

tensor, 24, 357 
antisymmetry, 24 

vector, 24, 357 
curl, 31, 32 
displacement potential, 141 
equations of motion, 132, 162 
S wave, 134 

rotational wave, see  wave 
Rudzki, Maurycy Pius (1862-1916), 

vii, xii, xiii 
Runge, Carl (1856-1927), 128 

S wave, see wave 
scalar potential, see  a lso  vector po- 

tential 
classical mechanics, 313 
displacement, 137, 139, 140 

scaling factor 

characteristic equations, 177, 
180-182, 184, 187 

secondary wave, see  wave 
S H  wave, see  wave 
shear wave, see  wave 
singularity, see  a lso  caustic 

Legendre's transformation, 207, 
308, 353 

Snell's law, see  a l so  reflection an- 
gle a n d  transmission an- 
gle 

elliptical velocity dependence, 
251 

generally anisotropic continuum, 
247 

isotropic continuum, 262 
Snell, Willebrord Van Roijen (1591- 

1626), 128 
solid, 109, 124, 134 
solution surface, 173-178 
solvability condition, 219, 220, 223 
Sommerfeld, Arnold (1868-1951), 

128 
source, see  a lso  receiver 

coordinate system, 324 
displacement vector, 221 
elliptical velocity dependence, 

325 
plane wave, 136, 259 
ray parameter, 326, 327 
traveltime, 268, 326-328 

spatial coordinates, 10, 11, 13, 14, 
25, 27, 67 

spatial description, 9-15, 25, 26 
definition, 9 

stability conditions, 74-76 
elasticity matrix, 75, 76, 109 

isotropic continuum, 123, 124 
transversely isotropic contin- 

uum, 113, 114 
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elasticity tensor, 168 
stationarity, s e e  calculus of varia- 

tions a n d  variational prin- 
ciples 

stiffness matrix, s ee  elasticity ma- 
trix 

stiffness tensor, s e e  elasticity ten- 
sor 

strain energy, s ee  energy 
strain tensor, 18, 357 

components 
column matrix, 66 
displacement vector, 66 
elasticity tensor, 64, 65 
independence, 65 
isotropic continuum, 120, 122 
square matrix, 90 
strain energy, 71, 80, 82, 106 
stress-strain equations, 63, 66, 

67, 74 
transformation, 90, 91, 103 

definition 
infinitesimal displacement, 18 

deformation, 8, 15 
derivation, 15-19 
equations of motion 

anisotropic inhomogeneous con- 
tinuum, 164 

isotropic homogeneous con- 
tinuum, 130 

Hooke's law, 62 
physical meaning, 19 

components, 19 
deformation, 19 
length change, 19 
shape change, 22 
volume change, 22 

rank, 15, 58 
rotation tensor, 24 
symmetry, 19 

constitutive equations, 64 
elasticity tensor, 65 
stress-strain equations, 64, 65, 

108, 117, 118 
trace, 22, 31 
units, 19, 63 

stress tensor, 46, 357 
Cauchy's equations of motion, 

47 
components, 48, 60 

anisotropic inhomogeneous con- 
tinuum, 164 

column matrix, 66 
Hooke's law, 63 
independence, 49, 54 
interface, 254 
isotropic continuum, 120, 121, 

123 
square matrix, 87 
stress-strain equations, 64- 

67, 74 
transformation, 87, 90, 93, 

112 
conservation of linear momen- 

tum, 40 
derivation, 40-46 
equations of equilibrium, 48 
equations of motion 

anisotropic inhomogeneous con- 
tinuum, 164 

isotropic homogeneous con- 
tinuum, 130 

force, 15, 33 
Hooke's law, 62 
rank, 57 
strain energy, 70 
symmetry, 55, 59 

balance of angular momen- 
turn, 52-54 

constitutive equations, 64 
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elasticity tensor, 64 
interface, 253 
stress-strain equations, 64 

traction 
direction, 46 
orientation, 46 

units, 59, 63 
stress vector, see traction 
stress-strain equations, see also con- 

stitutive equations and  Hooke's 
law 

Cauchy's equations of motion, 
68, 78, 127, 145, 163 

Christoffel's equations, 221 
constitutive equations, 67 
dilatation, 22 
displacement vector, 66 
elastic continuum, 76, 78, 87, 

127 
elastic material, 67 
equations of motion 

anisotropic inhomogeneous con- 
tinuum, 164 

isotropic homogeneous con- 
tinuum, 130 

isotropic inhomogeneous con- 
tinuum, 160 

formulation, 62-66 
matrix form, 64-66 
tensorial form, 63 

generally anisotropic continuum, 
94 

Hooke's law, 62 
infinitesimal displacement, 67 
interface, 254 
isotropic continuum, 108, 116- 

118 
Lam@'s parameters, 109, 121 
Poisson's ratio, 119 
strain energy, 122 

Young's modulus, 120 
linearity, 4, 67 
monoclinic continuum, 112 
orthotropic continuum, 99 
quotient rule, 58 
strain energy, 72-75, 83 

spring constant, 80 
transformation, 85, 87, 90-92 

invariance, 93 
point symmetry, 94 

surface force, 38, 39 
body force, 39, 49 
Cauchy's equations of motion, 

48, 49 
stress, 38 
stress tensor, 41, 43 

Cauchy's tetrahedron, 44 
traction, 39 

surface wave, see wave 
symmetrization, 104, 105 
symmetry, 10, 79, 80, 85, 86, 110- 

112, 117, 218, 248, 260, 
see also antisymmetry, ma- 
terial symmetry and  sym- 
metrization 

angular velocity dependence, 
322 

axis 
five-fold, 102, 104 
four-fold, 100 
monoclinic continuum, 217, 

222-225 
tetragonal continuum, 100 
transversely isotropic contin- 

uum, 227, 229, 230, 234, 
235, 252, 255, 256, 260 

Christoffel's equations, 220 
conserved quantity, 332 
coordinate transformation 

strain energy, 74 



394 I N D E X  

elasticity matrix, 107, 116 
stability condition, 76, 124 
strain energy, 73, 74, 91 

elasticity tensor, 76, 77, 165, 
220 

strain energy, 70-72 
stress-strain equations, 64, 65 

elliptical velocity dependence, 
248, 249, 260 

group, 86, 94, 95, 99-102, 104, 
106, 112 

matrix, 88 
plane, 97 

monoclinic continuum, 97, 222 
orthotropic continuum, 98, 

99 
tetragonal continuum, 100 

reflection, 96, 112 
rotation 

transversely isotropic contin- 
uum, 234 

strain energy, 102, 106 
strain tensor, 19, 64, 80, 90, 

108, 117, 118 
stress-strain equations, 65 

stress tensor, 48, 49, 52, 54, 
55, 59, 64, 87, 253 

stress-strain equations, 64, 66 
tensor, 25 

tangent space, s ee  x• 
Taylor's series 

displacement, 13, 16, 17, 20 
tension, 41, 42, 62, 315, s e e  a l s o  

compression 
tetragonal continuum, 98, 100, 101, 

110, 111 
elasticity matrix, 101 

tetrahedron, 43-45, 49 
total differential 

calculus of variations, 279, 288 
strain energy, 72, 73 

traction, 38-41, 43, 45, 46, 56-58, 
60, 245, 251,253, 259 

Cauchy's stress principle, 39 
definition, 39 
surface force, 39 

transformation, s e e  a l s o  Legendre's 
transformation 

coordinate, 22, 30, 74 
material symmetry, 85 
material/spatial, 25 

matrix, 26, 28-30, 57 
isotropic continuum, 106, 107 
Jacobian, 26, 111 
orthotropic continuum, 98, 

99 
point symmetry, 94 
strain energy, 103, 104 
tetragonal continuum, 100 
transversely isotropic contin- 

uum, 102, 116 
orthogonal, 86, 87, 95, 100 

elasticity matrix, 91-93 
orthonormal coordinate sys- 

tern, 86, 87 
strain tensor, 90, 91 
stress tensor, 87, 88, 90 

stress tensor, 58 
transmission angle, s e e  angle 
transmitted wave, s e e  wave 
transport equation 

anisotropic inhomogeneous con- 
tinuum, 169 

isotropic inhomogeneous con- 
tinuum, 154, 170 

transverse wave, s e e  wave 
transversely isotropic continuum, 

98, 101,110, 111,218, 222, 
226, 246 
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Christoffel's equations, 227 
displacement, 227, 230 
phase velocity, 229 

elasticity matrix, 102 
elasticity parameters 

Cll, C12 and C66,227 
elliptical velocity dependence 

phase velocity, 149 
ray velocity, 215 

interface, 252, 259, 260 
amplitude, 255, 256 
boundary conditions, 252,254, 

255 
phase-slowness curve 

intersection point, 233 
phase-slowness surface, 233 
rotation invariance, 106 
S H  wave, 240 

phase angle, 241 
ray angle, 241 
ray-theory Hamiltonian, 240 

stability conditions, 113, 114 
traveltime 

eikonal equation, 186 
eikonal function, 167 
equation 

isotropic inhomogeneous con- 
tinuum, 328, 329 

expression 
elliptical velocity dependence, 

326-328 
ray parameter, 332 

integral, 267, 281, 308 
conserved quantity, 319 
elliptical velocity dependence, 

326 
Fermat's principle, 293 
first integral, 321,322 
invariance, 336 

isotropic inhomogeneous con- 
tinuum, 311 

lateral homogeneity, 278, 321 
parametric form, 330 
polar coordinates, 332, 333 
ray parameter, 320 
total derivative, 279 
two-dimensional continuum, 

320, 329, 330 
variational principle, 293 

inverse problem, 235 
inversion, 401 
ray parameter, 326 
ray theory, 127 
variational principle, 267, 268 
wavefront 

elliptical velocity dependence, 
327 

trial solution 
anisotropic inhomogeneous con- 

tinuum, 163, 165, 166, 170 
equations of motion, 170 

Christoffel's equations, 220 
displacement vector, 221 
eikonal function, 150, 165, 179 
elliptical velocity dependence, 

147, 148 
high frequency, 186 
plane wave, 149 
reduced wave equation, 144, 145, 

160 
wave equation, 144, 149 
weak inhomogeneity, 149-151 

trigonal continuum, 110 
trigonometric polynomial, 103-106, 

115, 116 
Truesdell, Clifford (1919-2000), 4 

variational principles, see also ac- 
tion, Fermat's principle and 
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Hamilton's principle 
least traveltime, 268 
stationary traveltime, xii, 259, 

281, 284, 293, 294, 300, 
308, 319, 330 

vector potential, see also scalar po- 
tential 

displacement, 13?, 139, 141 
vis viva, 301, 302, see also forces 

vives 
volume-preserving vector field, 134 

wavs 

body, xi, 154, 401 
dilatational, 133, 153, 162 
elastic, vii, 401 
equivoluminal, 134 
evanescent, 257 
incident, 251,253 

amplitude, 257 
boundary condition, 254-256 
displacement direction, 257 
energy, 251,263 
phase, 258 

interface, 154 
longitudinal, 141,307 
monochromatic 

interface, 255, 263 
trial solution, 147 

P, 22, 132, 133, 141, 154 
displacement direction, 223, 

224, 236, 237 
displacement potential, 13?, 

139, 140 
eikonal equation, 153 
plane, 136 
speed, 133, 134 
transversely isotropic contin- 

uum, 228, 243 
velocity, 224, 228, 238 

plane, 130, 134-137, 149, 159, 
160 

pressure, 133 
primary, 133 
pure-mode, 223, 227, 228, 232, 

243 
qP 

displacement direction, 243 
Fermat's principle, 308 
transversely isotropic contin- 

uum, 231, 232, 259 
qS 

Fermat's principle, 308 
qSV 

transversely isotropic contin- 
uum, 231, 232, 234, 23?, 
259 

velocity, 234, 235 
reflected, 253 

amplitude, 254 
boundary condition, 254-256 
displacement direction, 257 
energy, 263 
evanescent wave, 257 
phase, 258 

rotational, 134, 153, 162 
S, 24, 133, 134, 141, 154 

displacement direction, 221, 
223-225, 236, 239 

displacement potential, 13?, 
139, 141 

eikonal equation, 153 
plane, 136 
rigidity, 134 
speed, 133, 134 
transversely isotropic contin- 

uum, 227, 228, 233 
velocity, 223, 239 

$1,223, 233 
$2, 224, 233 
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secondary, 134 
seismic, vii, xi, xii, 3, 4, 7, 8 

body, 128 
continuum mechanics, 33 
infintesimal displacement, 12 
isotropic continuum, 129 

SH 
amplitude, 252, 256, 259 
elliptical velocity dependence, 

240, 252 
interface, 252 
transversely isotropic contin- 

uum, 149, 228, 231, 234, 
237, 240, 241,246, 259 

velocity, 228, 234, 235, 237, 
240 

vertical inhomogeneity, 154 
shear, 134, 235 
surface, 154 
SV, 154 

transversely isotropic contin- 
uum, 228 

velocity, 228, 237 
transmitted, 251,253 

amplitude, 254, 257 
boundary condition, 254, 255 
displacement, 257 
energy, 263 

transverse, 141,308, 315, 317 
wave equation 

approximation 
generally anisotropic contin- 

uum, 149 
balance of linear momentum, 

154 
Cauchy's equations of motion, 

56, 67, 68 
isotropic homogeneous con- 

tinuum, 127, 154, 164 
displacement potential, 137 

P wave, 140 
S wave, 141 

elliptical velocity dependence, 
146 

extension, 145, 146 
elliptical velocity dependence, 

147-149 
generally anisotropic contin- 

uum, 149 
weak inhomogeneity, 149, 153 

Hamilton's principle, 155,301, 
303, 305 

P wave, 307, 308 
S wave, 308, 315, 317 

P wave, 22, 24, 133, 153 
reduced, 144, 145, 158 
S wave, 133, 153 
solution 

d'Alembert, 141, 142, 144, 
155, 156 

plane wave, 159 
theory of distributions, 155 

stress-strain equations, 108, 129, 
130 

wave function 
generic, 141 
P wave, 133 
S wave, 134 

wave mechanics, 301 
wave theory, xi 

ray theory, 186 
wavefield, 3, 173 

plane wave, 136, 137 
waveform 

trial solution, 165, 166 
wavefront 

anisotropic inhomogeneous con- 
tinuum, 159 

amplitude, 150, 154 
constant phase, 169 
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displacement vector, 221 
eigenvalue, 168 
eikonal equation, 169, 170, 

173 
eikonal function, 165, 167 
orientation, 169, 222, 223, 

225, 229, 342 
phase slowness, 167, 168 
phase velocity, 203, 221 
phase-slowness vector, 167, 

169, 201, 203, 206, 215, 
218, 342 

ray theory, 186 
shape, 150 

elliptical velocity dependence, 
147, 327 

orientation, 148 
phase slowness, 148 
phase velocity, 147 

interface, 246, 247, 259 
isotropic homogeneous contin- 

uum 
plane, 150 

isotropic inhomogeneous con- 
tinuum, 186, 187 

eikonal function, 150, 151 
planar, 150 
shape, 150 

ray theory, 127, 267, 268 
wavelength 

displacement, 14, 222 
ray theory, 127 
short, 152 
weak inhomogeneity, 149 

weak inhomogeneity, 146, 149 
eikonal equation, 153 
frequency, 152 
wavelength, 149 

welded contact, 252,255, 260 
WKBJ method, 186 

xp-space, 173, 174, 183, 197 
x• 197 
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