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Preface

Our motivation for writing this book is twofold: First, the theory of waves
propagating in randomly layered media has been studied extensively during
the last thirty years but the results are scattered in many different papers.
This theory is now in a mature state, especially in the very interesting regime
of separation of scales as introduced by G. Papanicolaou and his coauthors
and described in [8], which is a building block for this book. Second, we were
motivated by the time-reversal experiments of M. Fink and his group in Paris.
They were done with ultrasonic waves and have attracted considerable atten-
tion because of the surprising effects of enhanced spatial focusing and time
compression in random media. An exposition of this work and its applica-
tions is presented in [56]. Time reversal experiments were also carried out
with sonar arrays in shallow water by W. Kuperman [113] and his group in
San Diego. The enhanced spatial focusing and time compression of signals in
time reversal in random media have many diverse applications in detection
and in focused energy delivery on small targets as, for example, in the de-
struction of kidney stones. Enhanced spatial focusing is also useful in sonar
and wireless communications for reducing interference. Time reversal ideas
have played an important role in the development of new methods for array
imaging in random media as presented in [19]. A quantitative mathematical
analysis is crucial in the understanding of these phenomena and for the devel-
opment of new applications. In a series of recent papers by the authors and
their coauthors, starting with [40] in the one-dimensional case and [16] in the
multidimensional case, a complete analysis of time reversal in random media
has been proposed in the two extreme cases of strongly scattering layered
media, and weak fluctuations in the parabolic approximation regime. These
results are important in the understanding of the intermediate situations and
will contribute to future applications of time reversal.

Wave propagation in three-dimensional random media has been stud-
ied mostly by perturbation techniques when the random inhomogeneities
are small. The main results are that the amplitude of the mean waves de-
creases with distance traveled, because coherent wave energy is converted into
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incoherent fluctuations, while the mean energy propagates diffusively or by ra-
diative transport. These phenomena are analyzed extensively from a physical
and engineering point of view in the book of Ishimaru [90]. It was first noted
by Anderson [5] that for electronic waves in strongly disordered materials
there is wave localization. This means that wave energy does not propagate,
because the random inhomogeneities trap it in finite regions. What is different
and special in one-dimensional random media is that wave localization always
occurs, even when the inhomogeneities are weak. This means that there is
never a diffusive or transport regime in one-dimensional random media. This
was first proved by Goldsheid, Molchanov, and Pastur in [79]. It is therefore
natural that the analysis of waves in one-dimensional or strongly anisotropic
layered media presented in this book should rely on methods and techniques
that are different from those used in general, multidimensional random media.

The content of this book is multidisciplinary and presents many new phys-
ically interesting results about waves propagating in randomly layered media
as well as applications in time reversal. It uses mathematical tools from prob-
ability and stochastic processes, partial differential equations, and asymptotic
analysis, combined with the physics of wave propagation and modeling of
time-reversal experiments. It addresses an interdisciplinary audience of stu-
dents and researchers interested in the intriguing phenomena related to waves
propagating in random media. We have tried to gradually bring together ideas
and tools from all these areas so that no special background is required. The
book can also be used as a textbook for advanced topics courses in which
random media and related homogenization, averaging, and diffusion approxi-
mation methods are involved. The analytical results discussed here are proved
in detail, but we have chosen to present them with a series of explanatory and
motivating steps instead of a “theorem-proof” format. Most of the results in
the book are illustrated with numerical simulations that are carefully cali-
brated to be in the regimes of the corresponding asymptotic analysis. At the
end of each chapter we give references and additional comments related to the
various results that are presented.
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1

Introduction and Overview of the Book

We begin by describing the organization of the book as shown in the diagram
in Figure 1.1.

The basic theory of wave propagation in one-dimensional random media
is contained in Chapters 2–9. Background for waves in deterministic, layered
media is given in Chapters 2 and 3. In Chapters 4 and 5 we introduce the
modeling of random media and describe in detail the scaling regimes that we
consider in this book. In Chapter 6 we give a self-contained presentation of
the asymptotic theory of random differential equations in a form that can be
applied directly to the analysis of waves in random media in the following
chapters. The asymptotic theory of reflection and transmission of waves in
one-dimensional random media is presented in Chapters 7–9. Monochromatic
reflection and transmission is analyzed in Chapter 7, which contains the well-
known results of exponential decay of transmitted energy as the size of the
random medium increases. In Chapter 8 we analyze the propagation of wave
fronts and in Chapter 9 we characterize the statistical properties of wave
fluctuations in the time domain.

The theory of time reversal in one-dimensional random media, both for
reflected and for transmitted waves, along with applications to detection and
communications, is presented in Chapters 10–13.

The extension of the theory of Chapters 8 and 9 to wave propagation
in three-dimensional randomly layered media is given in Chapter 14. Time
reversal in such media is analyzed in Chapter 15, where we derive analyt-
ical formulas that characterize the enhanced spatial focusing. An applica-
tion to echo-mode energy refocusing on a passive scatterer is presented in
Chapter 16.

Chapters 17–19 contain special topics and various generalizations to other
asymptotic regimes and other types of waves. In Chapter 20 we analyze in
detail wave propagation in randomly perturbed waveguides. This chapter is
self-contained and could be read right after Chapter 6.

We now describe in more detail the contents of the chapters.
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Fig. 1.1. Interdependence of the chapters.

Basic facts about wave propagation in homogeneous media are pre-
sented in Chapter 2.

In Chapter 3 we consider one-dimensional piecewise constant layered
media, and we introduce the usual formulation of reflection and transmission
in terms of products of matrices.

Starting with Chapter 4 we consider randomly layered media. We
introduce the linear system of acoustic equations for waves propagating in
one dimension, and then carefully describe the sequence of transformations
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that will be carried out throughout the rest of the book. We pay particular
attention to boundary conditions and their interpretation, and to the reflected
and transmitted waves in both the frequency and time domains. The concepts
of random media and correlation lengths are introduced in this chapter. Our
point of view is that randomness is closely associated with small-scale inhomo-
geneities leading naturally to the regime of homogenization and the notion of
effective medium. This is done with an application of the law of large numbers,
in the context of differential equations with random coefficients. This regime
corresponds to waves propagating over distances of a few wavelengths, which
are, however, much larger than the correlation length of the inhomogeneities.

We go a step further in Chapter 5 by considering waves propagating over
distances much larger than wavelengths. The fluctuations due to the multi-
ple scattering by the random inhomogeneities accumulate and create “noisy”
reflected and transmitted waves. We introduce important scaling regimes in
which diffusion approximations are valid, leading to differential equations
with random coefficients that are white noise. Even though the equations are
linear, the probability distribution of the “noisy” wave field is a highly non-
linear function of the distribution of the random coefficients that model the
random inhomogeneities. For a given frequency the random differential equa-
tions that enter are finite-dimensional, but in the time domain the problems
become infinite-dimensional. Asymptotic approximations greatly simplify the
analysis in the scaling regimes, and enable us to obtain useful information
about the statistics of the reflected and transmitted waves.

In Chapter 6 we present concepts and results about stochastic pro-
cesses needed in the modeling of one-dimensional wave propagation and its
asymptotic analysis. It is important to note that distance along the one-
dimensional direction of propagation plays the role of the usual time param-
eter for these stochastic processes. The physical time is transformed by going
into the frequency domain. In this chapter we present briefly the elements of
the theory of Markov processes used for modeling randomly layered media
and for describing the limit processes arising in the regime of diffusion ap-
proximations. A summary of the stochastic calculus is given at the end of
the chapter, including Itô’s formula, stochastic differential equations, the link
with parabolic partial differential equations through the Feynman–Kac for-
mula, and applications to the study of Lyapunov exponents of linear random
differential equations.

A detailed analysis of the reflection and transmission of monochromatic
waves in a one-dimensional random medium is given in Chapter 7. In one-
dimensional random media all the wave energy is eventually converted into
fluctuations, giving rise to the phenomenon of wave localization. This means
that the energy is trapped by the random medium. It is entirely reflected back
in the case of a random half-space. We show that the exponential decay of
the transmitted energy through a random slab of random medium is closely
related to the stability of the random harmonic oscillator, studied in this
chapter. We also compute the moments of the transmitted energy, quantifying
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the exponential decay, as well as the almost-sure exponential decay that is
related to the usual localization theory.

In Chapter 8 we study the transmitted wave front in one-dimensional
random media, in the regimes of the diffusion approximation introduced in
the previous chapters. A pulse is sent from one end of a one-dimensional ran-
dom medium and it is observed at the other end (see Figure 1.2). When the
pulse exits the slab it looks like a smeared and faded version of the original
one, followed by a noisy, incoherent coda. It is quite remarkable that in these
asymptotic regimes, the front of the transmitted pulse has a simple descrip-
tion: (i) its deterministic shape is given by the convolution of the original pulse
with a deterministic kernel that depends only on the second-order statistics
of the random medium, and (ii) the transmitted wave front is centered at a
random arrival time whose probability distribution is explicitly given in terms
of a single Brownian motion. In this chapter we also describe the wave front
reflected from a strong interface in a random medium.
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Fig. 1.2. Propagation of a pulse through a slab of random medium (0, L). A right-
going wave is incoming from the left. Snapshots of the wave profile (here the pressure)
at different times are plotted from bottom to top. The reflected and transmitted
signals at the last time of the numerical simulation are plotted at the top.
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In Chapter 9 we characterize the statistics of the reflected and trans-
mitted waves, including the coda, in both the frequency and time domains
(see the wave signals plotted at the top of Figure 1.2). This is done by a
careful asymptotic analysis of the moments of the reflection and transmission
coefficients. They satisfy a system of differential equations with random coef-
ficients and are scaled so that the diffusion approximation can be applied. The
limiting moments are obtained as solutions of systems of transport equations,
which play a central role in the analysis of time reversal with incoherent waves,
discussed in the following chapters. The solutions of these deterministic trans-
port equations admit a probabilistic representation in terms of jump Markov
processes, which is particularly convenient for Monte Carlo simulations and,
in some cases, for deriving explicit formulas.

In Chapter 10 we analyze time reversal in reflection where the in-
coherent reflected waves are recorded and sent time-reversed back into the
medium. We show that stable refocusing takes place at the original source
point. This is observed in physical experiments and illustrated in numerical
simulations in Figures 1.3 and 1.4. Time-reversal refocusing can be used to
estimate power spectral densities of reflected waves. They contain information
about the medium. In this chapter we also compare, with a detailed analy-
sis of signal-to-noise ratios, the spectral estimation method using time
reversal with a direct estimation of cross-correlations of the reflected signal.

In Chapter 11 we present two applications of time reversal to detection.
In the first application, we use time reversal to detect the presence of a weak
reflector buried in the many random layers. In this case the refocusing ker-
nel of the time-reversal process has a jump that is related to the depth and
strength of the reflector, and we exploit this to identify the reflector. In the
second application, we introduce absorption in the one-dimensional model
and show that refocusing still takes place after time reversal. We apply this to
the detection and characterization of a dissipative region embedded in the
random medium. In the presence of a dissipative region the refocusing kernel
is modified and has a jump in its derivative. The time of this jump is related
to the depth of the dissipative region, and its amplitude to the strength of
absorption.

In Chapter 12 we study time reversal of waves in randomly layered media
described in the previous chapters. In this chapter we analyze time reversal
in transmission, which means that a pulse is emitted at one end of a random
slab, recorded at a time-reversal mirror at the other end, and then sent back.
The wave refocuses at the original source point and the quality of the refo-
cusing depends on how much of the transmitted wave has been recorded. In
particular, it is shown that recording some part of the incoherent coda wave
improves refocusing.

Applications to communications are presented in Chapter 13, where we
analyze signal-to-interference ratios with and without using time reversal
for communications through a one-dimensional random channel.
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Fig. 1.3. We use the same random medium as in Figure 1.2 and send back, to the
right, the time-reversed reflected signal (the one plotted at the top left corner of
Figure 1.2). Snapshots of the wave profile (here the pressure) at different times are
plotted from bottom to top. The refocused pulse is seen emerging from the random
medium at the top.

Starting with Chapter 14 we analyze waves propagating in a randomly
layered three-dimensional medium. By taking Fourier transforms with re-
spect to time and along the layers, the problem can be formulated as infinitely
many one-dimensional problems. We model a physical source located at the
surface of the random medium. Using a stationary phase analysis, we show
that in the regime of diffusion approximations, and because of the separation
of scales as in previous chapters, the stable wave front can again be described
with an explicit formula that we derive.

Time reversal of waves propagating in three-dimensional randomly lay-
ered media is discussed in Chapter 15, where we consider a time-reversal
mirror that records the signals generated by a source embedded in the ran-
dom layers. We show that the time-reversed waves refocus around the original
source point. We give a detailed analytical description of the refocused pulse
in time and space. We compare this refocusing with diffraction-limited re-
focusing in homogeneous media and show that there is superresolution from
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Fig. 1.4. We plot the refocused pulses generated by 10 independent simulations of
time reversal (we follow the same procedure as in Figures 1.2–1.3, and we magnify
the refocused pulse seen at the top line of Figure 1.3). The initial pulse is the
second derivative of a Gaussian. We see here the remarkable statistical stability of
the refocused pulse. Its shape and center do not depend on the realization of the
medium, in contrast to the small-amplitude random wave fluctuations before and
after the refocusing time.

multipathing. This means that the focusing is much tighter, as well as stable,
in the random medium.

In Chapter 16 we present an application of time reversal in three-
dimensional randomly layered media to echo-mode energy refocusing on
a passive scatterer. This means that when the reflected signals received at
the time-reversal mirror from a scatterer in a randomly layered medium are
time-reversed and suitably reemitted, they tend to focus on the scatterer.

In Chapter 17 we present an extension of the theory of wave propagation
and time reversal to more general randomly layered media. We analyze
models in which the effective parameters of the random medium do not match
those of the adjacent homogeneous medium. We also analyze the case in which
the effective parameters of the random medium vary smoothly at the macro-
scopic scale. The case in which both the bulk modulus and the density of the
medium are randomly fluctuating is analyzed in Section 17.3.

Chapter 18 is devoted to several extensions and generalizations including
the following ones.

- We reconsider the analysis for a different regime of scale separation, in
which the amplitude of the fluctuations of the medium parameters is small
and the typical wavelength is comparable to the small correlation length
of the random medium.

- We extend the analysis to dispersive or weakly nonlinear random
media. In the dispersive case, time reversal succeeds in recompressing the
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dispersive oscillatory tail as well as the incoherent part of the waves. We
analyze the combined effect of randomness and weak nonlinearity on the
front of a propagating pulse. We show that randomness helps in preventing
shock formation, so that time reversal in transmission can be done for
longer propagation distances.

- We study the effect of changes in the medium parameters before and
after time reversal. Although refocusing is affected by these changes, we
still have partial refocusing. We also quantify the partial loss of statistical
stability.

In Chapter 19 we discuss the robustness of wave localization in a ran-
domly layered medium when there is also nonlinearity, in the context of the
nonlinear Schrödinger (NLS) equation. Using a perturbed inverse scattering
transform, we show in this chapter that a soliton can overcome the exponen-
tial decay experienced by linear waves propagating through a slab in random
medium.

Wave propagation in waveguides is analyzed in Chapter 20. We consider
the case in which the waveguide supports a finite number of propagating
modes and the random fluctuations of the medium are three-dimensional. We
analyze only transmitted waves through a randomly perturbed waveguide,
in the forward-scattering approximation, and the space-time refocusing of
these waves after time reversal. We show that stable refocusing does occur,
especially when the number of modes is large. This chapter may be considered
as a link with the theory of wave propagation in three-dimensional random
media.
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Waves in Homogeneous Media

In this chapter we present some basic aspects of acoustic wave propagation
in a homogeneous medium with uniform properties. Solutions of the wave
equation can be written explicitly in the form of integrals of elementary wave
solutions. A time-dependent solution can be represented as a superposition
of Fourier modes that are the solutions of the time-harmonic wave equation.
In space, a general solution can be represented as a superposition of plane
or spherical waves. We focus our attention on a representation in terms of
time-dependent or time-harmonic plane waves since this formulation turns
out to be particularly convenient in three-dimensional layered media that are
considered in the following chapters.

2.1 Acoustic Wave Equations

The purpose of the first two sections, 2.1.1 and 2.1.2, is to briefly show how
the acoustic wave equations can be obtained from the linearization of the
conservation laws of fluid dynamics. The following sections consider these
equations in a homogeneous medium.

2.1.1 Conservation Equations in Fluid Dynamics

The state of a fluid is characterized by macroscopic quantities such as the
density ρ, the three-dimensional fluid velocity U, the pressure P , and the
temperature T . These quantities are functions of time t and space r and
their evolution equations can be deduced from first principles, such as the
conservation of mass, momentum, and energy. The conservation laws of mass
and momentum have the form

∂ρ

∂t
+∇ · (ρU) = 0 , (2.1)

∂ρU

∂t
+∇ · (ρU⊗U) +∇P = F . (2.2)
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Here U⊗U is the matrix (UiUj)i,j=1,2,3 and F(t, r) is an external force acting
on the fluid. It can be an extended force, such as gravity, or a localized one.
The energy-conservation equation is given in Appendix 2.3.2. It will be used
in Section 2.1.8.

The system (2.1–2.2) is complemented by an equation of state that gives
the pressure as a function of the density and the temperature. It can be
determined by thermodynamic considerations, or estimated from experimental
data. When the flow is isentropic, the pressure is a function of the density only,
P = P (ρ). The flow is isentropic if it is adiabatic, that is, no heat is transferred
to or from the fluid, and reversible, that is, the flow conditions can return to
their original values.

2.1.2 Linearization

The acoustic wave equations are obtained by linearizing the fluid dynamics
equations for small disturbances around a fluid at rest. We denote by p0 and
ρ0 the unperturbed pressure and density, with the unperturbed velocity equal
to 0, and we consider small perturbations of the pressure, density, and velocity

P = p0 + p , ρ = ρ0 (1 + s) , U = u , (2.3)

where p0 = P (ρ0) and s is sometimes refereed to as the condensation. The
bulk modulus of the fluid is defined in terms of the equation of state by

K0 = ρ0

(
∂P

∂ρ

)
(ρ0) . (2.4)

The linearization of the equation of state P = P (ρ) by (2.3) gives

p = K0s . (2.5)

By linearizing the mass and momentum conservation equations (2.1–2.2) we
obtain the acoustic wave equations

1

K0

∂p

∂t
+∇ · u = 0 , (2.6)

ρ0
∂u

∂t
+∇p = F . (2.7)

These equations describe the evolution of the acoustic pressure p and velocity
u in the fluid, with an external force F. By taking the time derivative of (2.6)
and using (2.7) we get the standard wave equation for the pressure

1

c2
0

∂2p

∂t2
−∆p = −∇ · F , (2.8)

where c0 is the speed of sound defined by
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c0 =

√
K0

ρ0
. (2.9)

If the fluid is at rest at time 0, that is, u(t = 0, r) = 0, and if the external
force comes from a potential ψ, that is, F = −∇ψ, then integration of the
momentum conservation equation (2.7) gives

u(t, r) = −∇
∫ t

0

(p + ψ)(s, r)

ρ0
ds .

This shows that the acoustic velocity field u is the gradient of a scalar field φ

u = ∇φ .

Substituting into equation (2.7), we find that the velocity potential φ also
satisfies the wave equation

1

c2
0

∂2φ

∂t2
−∆φ =

−1

K0

∂ψ

∂t
. (2.10)

The velocity potential is unique only up to a function that depends only on
time, and it has been chosen in a particular way here.

2.1.3 Hyperbolicity

By introducing the four-dimensional vector

w =

[
p
u

]
,

we can write the acoustic wave equations (2.6–2.7) as

M
∂w

∂t
+

3∑

j=1

Dj
∂w

∂xj
=

[
0
F

]
,

where M is the 4× 4 diagonal matrix with entries (K−1
0 , ρ0I), and the 4× 4

symmetric matrices Dj are defined by

D1 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , D2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , D3 =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ .

The matrix M−1D(k) =
∑3

j=1 M−1Djkj is diagonalizable for any k ∈ R3,
with eigenvalues 0, 0, −c0|k|, and c0|k|, where c0 is the speed of sound defined
by (2.9). This means that the acoustic wave equations (2.6–2.7) form a sym-
metric hyperbolic system. However, we will not use the general theory here.
We will rather give a self-contained analysis of the acoustic wave equations in
homogeneous media.
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2.1.4 The One-Dimensional Wave Equation

In this section we study briefly the one-dimensional wave equation. It plays an
important role in layered media and in the analysis of the three-dimensional
wave equation. We consider the partial differential equation

1

c2
0

∂2p̃

∂t2
− ∂2p̃

∂z2
= 0 , (t, z) ∈ (0,∞)× R , (2.11)

with smooth initial conditions p̃(t = 0, z) = p̃0(z) and ∂tp̃(t = 0, z) = p̃1(z).
By the change of variables α = z − c0t, β = z + c0t it can be written in the
form

∂2p̃

∂α∂β
= 0 ,

whose general solution is the sum f(α) + g(β) with arbitrary functions f and
g. Therefore, the solution p̃ has the form

p̃(t, z) = f(z − c0t) + g(z + c0t) .

The identification of the functions f and g is obtained by inspection from the
initial conditions, which gives the d’Alembert formula

p̃(t, z) =
1

2
[p̃0(z + c0t) + p̃0(z − c0t)] +

1

2c0

∫ z+c0t

z−c0t

p̃1(z
′)dz′ . (2.12)

This representation shows that:

- The initial conditions split into two parts, one moving to the right with
velocity c0 and the other one moving to the left with velocity −c0. This
can clearly be seen in Figure 2.1.

- The regularity of the solution is determined by the regularity of the initial
conditions. If p̃0 ∈ Ck(R) and p̃1 ∈ Ck−1(R), k ≥ 2, then u ∈ Ck([0,∞)×R),
but it is not smoother in general. This is typical for hyperbolic equations.

- The solution at time t and point z depends only on the initial data in the
interval [z − c0t, z + c0t]. The finite speed of propagation, giving a finite
range of influence, is also typical of hyperbolic equations.

Below we will need a representation formula for the solution of the partial
differential equation

1

c2
0

∂2p̃

∂t2
− ∂2p̃

∂z2
= 0 , (t, z) ∈ (0,∞)2 , (2.13)

with the boundary condition p̃(t, z = 0) = 0 and the initial conditions p̃(t =
0, z) = p̃0(z) and ∂tp̃(t = 0, z) = p̃1(z). To solve it, we apply the method of
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Fig. 2.1. Waves generated by the initial conditions p̃(t = 0, z) = p̃0(z), ∂tp̃(t =
0, z) = p̃1(z) in a one-dimensional homogeneous medium with a constant speed of
sound c0 = 1. In picture (a), we choose p̃0(z) = exp(−z2) and p̃1(z) = 0. In picture
(b), we choose p̃0(z) = 0 and p̃1(z) = exp(−z2). The spatial profiles of the field
p̃(t, z) are plotted at different times.

images, which here means extending the solution and the initial conditions to
all of R by odd reflection. More precisely, for (t, z) ∈ [0,∞)× R we define

p̌(t, z) =

{
p̃(t, z) if z ≥ 0,
−p̃(t,−z) if z ≤ 0,

p̌j(z) =

{
p̃j(z) if z ≥ 0,
−p̃j(−z) if z ≤ 0,

j = 0, 1 ,

(2.14)
so that (2.13) becomes

1

c2
0

∂2p̌

∂t2
− ∂2p̌

∂z2
= 0 , (t, z) ∈ (0,∞)× R ,

with the initial conditions p̌(t = 0, z) = p̌0(z) and ∂tp̌(t = 0, z) = p̌1(z). By
d’Alembert’s formula (2.12) we get for (t, z) ∈ [0,∞)× R,

p̌(t, z) =
1

2
[p̌0(z + c0t) + p̌0(z − c0t)] +

1

2c0

∫ z+c0t

z−c0t

p̌1(z
′)dz′ .

Using the definitions (2.14), we obtain the following expression for the solution
p̃(t, z) for (t, z) ∈ [0,∞)2:
If z ≥ c0t ≥ 0, then

p̃(t, z) =
1

2
[p̃0(c0t + z) + p̃0(z − c0t)] +

1

2c0

∫ z+c0t

z−c0t

p̃1(z
′)dz′ . (2.15)

If 0 ≤ z ≤ c0t, then

p̃(t, z) =
1

2
[p̃0(c0t + z)− p̃0(c0t− z)] +

1

2c0

∫ c0t+z

c0t−z

p̃1(z
′)dz′ . (2.16)
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This formula shows that the initial conditions split into two parts, one moving
to the right with velocity c0 and the other one moving to the left with velocity
−c0. The second part then reflects off the point z = 0, and subsequently prop-
agates to the right with velocity c0. This means that the Dirichlet boundary
condition p̃(t, z = 0) = 0 corresponds to reflection with reflection coefficient
equal to −1. This reflection can be seen in Figure 2.2.
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Fig. 2.2. Waves generated by the initial conditions p̃(t = 0, z) = p̃0(z), ∂tp̃(t =
0, z) = p̃1(z) in a one-dimensional homogeneous medium with a constant speed of
sound c0 = 1 and a Dirichlet boundary condition p̃(t, z = 0) = 0. In picture (a) we
choose p̃0(z) = exp(−z2) and p̃1(z) = 0. In picture (b) we choose p̃0(z) = 0 and
p̃1(z) = exp(−z2). The spatial profiles of the field p̃(t, z) are plotted at different
times.

2.1.5 Solution of the Three-Dimensional Wave Equation by
Spherical Means

In this section we obtain an integral representation of the solution of the wave
equation

1

c2
0

∂2p

∂t2
−∆p = 0 , (t, r) ∈ (0,∞)× R

3 , (2.17)

with initial conditions p(t = 0, r) = p0(r) and ∂tp(t = 0, r) = p1(r). We
reduce the three-dimensional wave equation to a one-dimensional problem
using spherical means. Let us assume that p ∈ C2([0,∞) × R3) is a solution.
We define the normalized average p̃ of p over the sphere ∂B(r, s) centered at
r and with radius s > 0 by

p̃(t, r, s) =
1

4πs

∫

∂B(r,s)

p(t, r′)dσ(r′) .

Note that the area of ∂B(r, s) is 4πs2 and consequently
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lim
s→0

p̃(t, r, s) = 0 , lim
s→0

p̃(t, r, s)

s
= p(t, r) . (2.18)

The change of variable r′ 	→ r + sr′ gives

p̃(t, r, s) =
s

4π

∫

∂B(0,1)

p(t, r + sr′)dσ(r′) .

By differentiating in s, we then obtain

∂

∂s

[
p̃(t, r, s)

s

]
=

1

4π

∫

∂B(0,1)

r′ · ∇p(t, r + sr′)dσ(r′)

=
1

4πs2

∫

∂B(r,s)

r′ − r

s
· ∇p(t, r′)dσ(r′) .

Since r′−r
s is the unit outward normal to the ball B(r, s) we can apply the

Gauss–Green theorem (see Appendix 2.3.1), which gives

∂

∂s

[
p̃(t, r, s)

s

]
=

1

4πs2

∫

B(r,s)

∆p(t, r′)dr′ =
1

4πc2
0s

2

∫

B(r,s)

∂2p

∂t2
(t, r′)dr′ .

Next, we multiply by s2 and differentiate with respect to s:

∂

∂s

{
s2 ∂

∂s

[
p̃(t, r, s)

s

]}
=

1

4πc2
0

∂

∂s

[∫

B(r,s)

∂2p

∂t2
(t, r′)dr′

]

=
1

4πc2
0

lim
δs→0

1

δs

[∫

B(r,s+δs)\B(r,s)

∂2p

∂t2
(t, r′)dr′

]
.

By the continuity of ∂2
t p we find that

∂

∂s

{
s2 ∂

∂s

[
p̃(t, r, s)

s

]}
=

1

4πc2
0

∫

∂B(r,s)

∂2p

∂t2
(t, r′)dσ(r′) =

s

c2
0

∂2p̃(t, r, s)

∂t2
.

Since
∂

∂s

{
s2 ∂

∂s

[
p̃

s

]}
= s

∂2p̃

∂s2
,

we see that p̃(t, r, s) is a solution of the one-dimensional wave equation as a
function of (t, s),

1

c2
0

∂2p̃(t, r, s)

∂t2
− ∂2p̃(t, r, s)

∂s2
= 0 , (t, s) ∈ (0,∞)2 .

It also satisfies the boundary condition p̃(t, r, s = 0) = 0 and the initial
conditions p̃(t = 0, r, s) = p̃0(r, s) and ∂tp̃(t = 0, r, s) = p̃1(r, s). Here r is a
frozen parameter and p̃j , j = 0, 1, are defined as the normalized averages over
the sphere ∂B(r, s) of pj , j = 0, 1:
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p̃j(r, s) =
1

4πs

∫

∂B(r,s)

pj(r
′)dσ(r′) . (2.19)

By (2.16), if 0 ≤ s ≤ c0t, then p̃ has the form

p̃(t, r, s) =
1

2
[p̃0 (r, c0t + s)− p̃0 (r, c0t− s)] +

1

2c0

∫ c0t+s

c0t−s

p̃1(r, s
′)ds′ .

Using (2.18) and (2.19) we finally get the representation

p(t, r) =
∂p̃0

∂s
(r, c0t) +

1

c0
p̃1 (r, c0t)

=
∂

∂t

[
1

4πc2
0t

∫

∂B(r,c0t)

p0(r
′)dσ(r′)

]
+

1

4πc2
0t

∫

∂B(r,c0t)

p1(r
′)dσ(r′) . (2.20)

This is known as Kirchhoff’s representation formula. There is an equivalent
form obtained by computing the time derivative

∂

∂t

[
1

4πc2
0t

∫

∂B(r,c0t)

p0(r
′)dσ(r′)

]

=
∂

∂t

[
t

4π

∫

∂B(0,1)

p0(r + c0tr
′)dσ(r′)

]

=
1

4π

∫

∂B(0,1)

[p0(r + c0tr
′) + c0tr

′ · ∇p0(r + c0tr
′)] dσ(r′)

=
1

4πc2
0t

2

∫

∂B(r,c0t)

[p0(r
′) + (r′ − r) · ∇p0(r

′)] dσ(r′) . (2.21)

Kirchhoff’s formula shows that the solution of the three-dimensional wave
equation at a point r and at time t depends only on the initial data on the
sphere ∂B(r, c0t). We will use this property of the wave equation in the context
of acoustic waves in Section 2.1.7.

As an example we consider the initial data p0(r) = exp(−|r|2/r2
0) and

p1(r) = 0. The solution is a spherical wave since it depends only on |r| and
has the form

p(t, r) = exp

(
−c2

0t
2 + |r|2
r2
0

)[
cosh

(
2c0t|r|

r2
0

)
− c0t

|r| sinh

(
2c0t|r|

r2
0

)]
.

As seen in Figure 2.3, the initial conditions localized at 0 give rise to a wave
that propagates with speed c0. Its amplitude decays as 1/|r| and it takes
an asymptotic form. For times associated with travel distances that are long
compared to the support of the initial data, the field takes the asymptotic
form

p(t, r)
c0t≫r0∼ r0

2|r|
|r| − c0t

r0
exp

[
− (|r| − c0t)

2

r2
0

]
.
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We can also consider the case in which the initial data are p0(r) = 0 and
p1(r) = (1/t0) exp(−|r|2/r2

0). The solution is then given by

p(t, r) =
r2
0

2c0t0|r|
exp

(
−c2

0t
2 + |r|2
r2
0

)
sinh

(
2c0t|r|

r2
0

)
,

and it is plotted in Figure 2.3. Its asymptotic form is

p(t, r)
c0t≫r0∼ r2

0

4c0t0|r|
exp

[
− (|r| − c0t)

2

r2
0

]
.

Fig. 2.3. Wave generated by the initial conditions p0(r) = exp(−|r|2/r2
0) and

p1(r) = 0 in a three-dimensional homogeneous medium. Here c0 = 1 and r0 = 1.
The spatial profiles of the field p(t, r = (x, y, z)) in the plane (x, y) (i.e., z = 0) are
plotted at different times.

2.1.6 The Three-Dimensional Wave Equation With Source

In this section we obtain an integral representation for the solution of the
wave equation
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Fig. 2.4. Wave generated by the initial conditions p0(r) = 0 and p1(r) =
(1/t0) exp(−|r|2/r2

0) in a three-dimensional homogeneous medium. Here c0 = 1,
r0 = 1, and t0 = 1.

1

c2
0

∂2p

∂t2
−∆p = f , (t, r) ∈ (0,∞)× R

3 , (2.22)

with zero initial conditions, p(t = 0, r) = 0 and ∂tp(t = 0, r) = 0, and with a
source term f(t, r). The wave equation with source (2.22) can be reduced to a
family of wave equations without source but with nonzero initial conditions.
This reduction is known as Duhamel’s principle. The solution p is given by
the formula

p(t, r) =

∫ t

0

p̃(t, r, s) ds , (2.23)

where p̃(t, r, s), for any fixed s ≥ 0, is a solution of

1

c2
0

∂2p̃

∂t2
−∆p̃ = 0 , (t, r) ∈ (s,∞)× R

3 ,

with the initial conditions p̃(t = s, r, s) = 0 and ∂tp̃(t = s, r, s) = c2
0f(s, r).

The function p defined by (2.23) satisfies

∂p

∂t
(t, r) = p̃(t, r, t) +

∫ t

0

∂p̃

∂t
(t, r, s)ds =

∫ t

0

∂p̃

∂t
(t, r, s) ds ,
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and

∂2p

∂t2
(t, r) =

∂p̃

∂t
(t, r, t) +

∫ t

0

∂2p̃

∂t2
(t, r, s) ds = c2

0f(t, r) + c2
0

∫ t

0

∆p̃(t, r, s) ds

= c2
0f(t, r) + c2

0∆p(t, r) .

This shows that p satisfies the wave equation with source (2.22). It is straight-
forward to check that it also satisfies the zero initial conditions. This verifies
Duhamel’s principle. Using the representation (2.20) for p̃ in (2.23), we get

p(t, r) =

∫ t

0

1

4π(t− s)

∫

∂B(r,c0(t−s))

f(s, r′)dσ(r′) ds

=

∫

B(r,c0t)

1

4π|r− r′|f
(

t− |r− r′|
c0

, r′
)

dr′ , (2.24)

where B(r, c0t) is the ball centered at r and with radius c0t. This representa-
tion is known as the retarded potential representation.

2.1.7 Green’s Function for the Acoustic Wave Equations

Using the results for the three-dimensional wave equation presented in the
two previous sections, it is possible to obtain integral representations for the
solution (p,u) of the acoustic wave equations (2.6–2.7).

Let us assume that the fluid is initially at rest, that is, u(t = 0, r) = 0
and p(t = 0, r) = 0, and that F = −∇ψ with ψ ∈ C4([0,∞)× R3). By (2.24),
there is a unique solution (u, p) in C2([0,∞)×R3) that has the form u = ∇φ
with

φ(t, r) = K
(−1

K0

∂ψ

∂t

)
(t, r) , p(t, r) = K (∆ψ) (t, r) . (2.25)

Here the operator K is defined by

K (f) (t, r) =

∫

B(r,c0t)

1

4π|r− r′|f
(

t− |r− r′|
c0

, r′
)

dr′ . (2.26)

This formula can be written in convolution form as

K(f)(t, r) =

∫ ∫
f(t′, r′)G(t− t′, r− r′) dt′ dr′ ,

where G is the Green function

G(t, r) =
1

4π|r|δ
( |r|

c0
− t

)
. (2.27)

It is the fundamental solution of the wave equation in [0,∞)×R3, that is, it
solves the equation
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1

c2
0

∂2G

∂t2
−∆G = δ(t)δ(r) , (t, r) ∈ (0,∞)× R

3 ,

with zero initial conditions. Here δ is the Dirac distribution. The Green func-
tion is the response of the system to a point source at position 0 that emits
an impulse at time zero. From the form of the Green function we see that
the response is a spherical wave, centered at 0, that propagates outward with
time. In order for the wave to reach position r at time t it must have been
emitted from the source at 0 at the time t− |r|/c0.

Let us consider the case in which there is no source inside the medium but
the fluid is not initially at rest. Using (2.6), (2.7), (2.20), and (2.21) we find
that the solution without sources and with nonzero initial conditions can be
written as follows: If u(t = 0, r) = u0(r) and p(t = 0, r) = p0(r), and F = 0,
with u0 and p0 ∈ C2(R), then

p(t, r) =
∂

∂t

[
1

4πc2
0t

∫

∂B(r,c0t)

p0(r
′)dσ(r′)

]

− K0

4πc2
0t

∫

∂B(r,c0t)

∇ · u0(r
′) dσ(r′)

=
1

4πc2
0t

2

∫

∂B(r,c0t)

[p0(r
′) + (r′ − r) · ∇p0(r

′)−K0t∇ · u0(r
′)] dσ(r′) ,

u(t, r) =
∂

∂t

[
1

4πc2
0t

∫

∂B(r,c0t)

u0(r
′) dσ(r′)

]

− 1

4πρ0c2
0t

∫

∂B(r,c0t)

∇p0(r
′) dσ(r′)

=
1

4πc2
0t

2

∫

∂B(r,c0t)

[
u0(r

′) + [(r′ − r) · ∇]u0(r
′)− t

ρ0
∇p0(r

′)

]
dσ(r′) .

These formulas can be written in terms of the Green function (2.27) as

p(t, r) =
∂

∂t

[
c2
0

∫

R3

p0(r
′)G(t, r− r′) dr′

]

−c2
0K0

∫

R3

∇ · u0(r
′)G(t, r − r′) dr′ , (2.28)

u(t, r) =
∂

∂t

[
c2
0

∫

R3

u0(r
′)G(t, r − r′) dr′

]

− c2
0

ρ0

∫

R3

∇p0(r
′)G(t, r − r′) dr′ . (2.29)

This shows that the solution at a given time t and point r depends only
on the initial data on the sphere of radius c0t. It does not depend on data
in the interior of this sphere. The interior of the sphere is a lacuna for the
solution. This phenomenon is called Huygens’s principle. It is true for waves
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propagating in odd dimensions, except for one dimension. The d’Alembert
formula (2.12) shows that the solution of the one-dimensional wave equation
depends on the initial data inside the “sphere.” Huygens’s principle is not
satisfied in even dimensions.

By superposition, it is also possible to write the solution in the general
case in which the fluid is not initially at rest and there is a source inside the
medium.

2.1.8 Energy Density and Energy Flux

The wave energy density is defined by

e(t, r) =
ρ0

2
|u(t, r)|2 +

1

2K0
p2(t, r) . (2.30)

The time partial derivative of this quantity is obtained from (2.6–2.7):

∂e

∂t
= −u · ∇p− p∇ · u + F · u = −∇ · (pu) + F · u . (2.31)

The wave energy in a domain V enclosed by a smooth surface ∂V satisfies the
identity

d

dt

(∫

V

e(t, r)dr

)
=

∫

V

−∇ · (pu) + F · u dr

= −
∫

∂V

pu · n dσ(r) +

∫

V

F · u dr ,

where n is the outward unit normal to V . Here we have used the Gauss–Green
theorem. This identity shows that the energy flux is

m(t, r) = pu(t, r) . (2.32)

It is also possible to get this energy equation from the linearization of the full
energy conservation equation for fluid flows (see Appendix 2.3.2).

If the fluid is initially at rest with a source term F that is compactly
supported in time and space, then the total wave energy

E(t) =

∫

R3

e(t, r) dr

satisfies
dE
dt

=

∫

R3

F · u(t, r) dr .

This identity shows that the energy is constant when there is no source in the
medium.
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2.2 Wave Decompositions in Three-Dimensional Media

2.2.1 Time Harmonic Waves

In this section we introduce wave field decompositions that can be used to re-
duce various wave propagation problems into simpler ones. We consider waves
propagating in three spatial dimensions and in a homogeneous medium. The
governing equations are the acoustic wave equations (2.6–2.7) with constant
bulk modulus K0 and density ρ0. The source is modeled by the forcing term
F(t, r), which we assume is smooth and compactly supported in space and
time. The pressure p solves the scalar wave equation

1

c2
0

∂2p

∂t2
−∆p = −∇ ·F(t, r) , (2.33)

with c0 =
√

K0/ρ0 the speed of sound in the homogeneous medium. Using
the Green function in (2.27) we find that the pressure field can be expressed
as

p(t, r) = −
∫ ∇ ·F(t− |r− r′|/c0, r

′)

4π|r− r′| dr′ , (2.34)

and that p(·, r) is compactly supported in time.
We are interested in harmonic or monochromatic waves corresponding to

excitation at a particular frequency. By the Fourier transform in time we can
write

p̂(ω, r) =

∫
eiωtp(t, r)dt ,

p(t, r) =
1

2π

∫
e−iωtp̂(ω, r)dω ,

so that the pressure field p is a superposition of wave components with time
dependence exp(−iωt), which are called monochromatic waves. The harmonic
component

e−iωtp̂(ω, r)

results from harmonic forcing at the angular frequency ω. From (2.33) we find
that p̂ solves the Helmholtz equation with source term

k2p̂ + ∆p̂ = ∇ · F̂(ω, r) ,

where the wave number k is defined by k = ω/c0. It follows from the repre-
sentation (2.34) that we can associate the harmonic Green function

Ĝ(ω, r) =
eiω|r|/c0

4π|r| (2.35)

with the three-dimensional Helmhotz equation. It is the Fourier transform of
the time-dependent Green function (2.27) and it solves
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k2Ĝ + ∆Ĝ = −δ(r) .

The sign in the phase of the exponential in (2.35) means that wave energy
propagates away from the source as time increases. This is a form of causality.
The function Ĝ is the outgoing free-space Green function of the Helmholtz
equation.

We can now write

p̂(ω, r) = −
∫
∇ · F̂(ω, r′)Ĝ(ω, r− r′) dr′ .

For the monochromatic spatial point source

−∇ · F̂(ω, r) = δ(r− rs)f̂(ω) ,

where rs is the source location, we find that

p̂(ω, r) = f̂(ω)
eiω|r−rs|/c0

4π|r− rs|
. (2.36)

The corresponding progressing harmonic pressure field

p(t, r) = exp(−iωt)p̂(ω, r)

is a wave of decaying amplitude, temporal frequency ω, and wavelength λ =
2π/k, propagating away from the source with speed c0. It follows from (2.36)
that

lim
|r|→∞

|r|
(

∂

∂|r| − i
ω

c0

)
p̂(ω, r) = 0 ,

uniformly in all directions r̂ = r/|r|. This property is the Sommerfeld’s radia-
tion condition. It holds also for a source that is compactly supported in space.
The pressure field behaves like an outgoing spherical wave far away from the
source region. In homogeneous media, Sommerfeld’s radiation condition is a
consequence of the explicit form (2.35) of the Green function.

2.2.2 Plane Waves

We consider next the case in which the pressure has the form

p(t, r) = f(t, r · q) ,

for q ∈ R3 a fixed vector and f differentiable. That is, the pressure field
is a plane wave, because it is constant in planes perpendicular to q, and it
propagates in the direction q. In the absence of a source we find from (2.33)
that f = f(t, r) solves the one-dimensional wave equation



24 2 Waves in Homogeneous Media

1

c2
0

∂2f

∂t2
− q2 ∂2f

∂r2
= 0 , (2.37)

for q = |q|. By d’Alembert’s formula the general solution is

f(t, r) = f1

(
t− r

qc0

)
+ f2

(
t +

r

qc0

)
, (2.38)

with f1 and f2 arbitrary functions. We then see that

p(t, r) = f1

(
t− r · q

qc0

)
+ f2

(
t +

r · q
qc0

)

is the general form of a plane wave pressure field. The corresponding harmonic
plane waves take the form

p̂(ω, r)e−iωt = f̂1(ω)e−iω(t−r·q/(qc0)) + f̂2(ω)e−iω(t+r·q/(qc0)) .

They are characterized by the complex amplitudes f̂1 and f̂2, their direc-
tion of propagation ±q, their speed c0, their angular frequency ω, and their
wavelength λ = 2πc0/ω = 2π/k.

2.2.3 Spherical Waves

We consider now waves of the form

p(t, r) = f(t, |r|) ,

and with f again differentiable. This pressure field is a spherical wave centered
at the origin. Writing the Laplacian in spherical coordinates, we find that the
equation satisfied by f = f(t, r) is

1

c2
0

∂2f

∂t2
− 1

r

∂2(rf)

∂r2
= 0 ,

which we rewrite as

1

c2
0

∂2(rf)

∂t2
− ∂2(rf)

∂r2
= 0 .

This is the one-dimensional wave equation in r ∈ [0,∞), with the Dirich-
let boundary condition rf(t, r) |r=0= 0. It then follows from the analysis of
Section 2.1.4 that f has the form

rf(t, r) = f1

(
t− r

c0

)
+ f2

(
t +

r

c0

)
,

with f1 and f2 arbitrary odd functions, and
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p(t, r) =
1

|r|f1

(
t− |r|

c0

)
+

1

|r|f2

(
t +
|r|
c0

)
. (2.39)

The pressure component f1 corresponds to a spherical wave emanating from
the origin, and the component f2 to a spherical wave converging toward the
origin, both of them propagating with speed c0. In (2.36) we considered a
harmonic point source that gives rise to a diverging spherical wave of the
form given by the f1 term. It follows from (2.39) that a spherical harmonic
wave diverging from rs has in general the form (2.36).

2.2.4 Weyl’s Representation of Spherical Waves

In later chapters we consider a three-dimensional point source located above
a layered medium. We give here a decomposition into plane waves of the
spherical-wave field from a point source, when the parameterization is in
terms of a horizontal slowness vector. Such decompositions are used frequently
throughout the book.

Consider the outgoing free-space Green function Ĝ, that is the solution
of the Helmholtz equation corresponding to radiation from a point source. It
solves the equation

k2Ĝ + ∆Ĝ = −δ(r) , (2.40)

along with Sommerfeld’s radiation condition. We then decompose the three-
dimensional space coordinate r into the vertical component z and two-
dimensional horizontal components x. In layered media considered in the fol-
lowing chapters the vertical direction is in the direction of the layering so that
the medium parameters are independent of the horizontal space coordinates.
This motivates transforming (2.40) in the horizontal directions. We define

Ǧ(ω, κ, z) =

∫
Ĝ(ω, r)e−iωκ·xdx .

We shall see that the use of this particular Fourier transform with dual space
variable ωκ is convenient, since it leads to expressions that are plane waves.
The harmonic Green function can be recovered by the inverse transform

Ĝ(ω,x, z) =
1

4π2

∫
Ǧ(ω, κ, z)eiωκ·xω2dκ .

From (2.40) we find that Ǧ solves

ω2(c−2
0 − |κ|2)Ǧ +

∂2Ǧ

∂z2
= −δ(z) , (2.41)

which is the Helmholtz equation for the free-space Green function in one
dimension.
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Let us first consider the case |κ|c0 < 1. The general solution of

q2ǧ +
∂2ǧ

∂z2
= 0

is
ǧ(z) = g1e

−iqz + g2e
iqz .

By (2.41) the harmonic Green function must be of this form in, respectively,
the upper half-plane z > 0 and the lower half-plane z < 0:

Ǧ(ω, κ, z) =

{
g1e

−iω
√

c−2
0 −|κ|2z + g2e

iω
√

c−2
0 −|κ|2z for z > 0 ,

g3e
−iω
√

c−2
0 −|κ|2z + g4e

iω
√

c−2
0 −|κ|2z for z < 0 .

The radiation condition enforces g1 = 0 and g4 = 0. Moreover, the Green
function must satisfy the jump condition

∂Ǧ

∂z
(z = 0+)− ∂Ǧ

∂z
(z = 0−) = −1 .

This condition is obtained by integrating (2.41) between 0+ and 0−. Integrat-
ing one more time, we obtain the continuity condition

Ǧ(z = 0+)− Ǧ(z = 0−) = 0 .

From these two conditions we conclude that Ǧ is given by

Ǧ(ω, κ, z) =
ieiω
√

c−2
0 −|κ|2|z|

2ω
√

c−2
0 − |κ|2

, (2.42)

for z = 0.
The same analysis in the case |κ|c0 > 1 gives

Ǧ(ω, κ, z) =
e−|ω|

√
|κ|2−c−2

0 |z|

2|ω|
√
|κ|2 − c−2

0

. (2.43)

Note the exponential decay away from the point source, so that Sommerfeld’s
radiation condition is satisfied. These exponentially damped modes are called
evanescent modes. The case c0|κ| = 1 corresponds to plane waves traveling
in the horizontal direction with speed c0. For c0|κ| < 1 we have plane waves
traveling obliquely relative to the horizontal direction, while for c0|κ| > 1 we
have exponentially damped or evanescent modes due to the finite speed of
propagation.

To obtain the Weyl representation, we inverse-transform in the lateral
dimensions:
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Ĝ(ω,x, z) =
iω

8π2

∫

c0|κ|<1

eiω(x·κ+
√

c−2
0 −|κ|2|z|)

√
c−2
0 − |κ|2

dκ

+
|ω|
8π2

∫

c0|κ|>1

eiωx·κ−|ω|
√

|κ|2−c−2
0 |z|

√
|κ|2 − c−2

0

dκ

=
iω

8π2

∫

c0|κ|<1

eiωS(κ,x,z)

√
c−2
0 − |κ|2

dκ

+
|ω|
8π2

∫

c0|κ|>1

eiωx·κ−|ω|
√

|κ|2−c−2
0 |z|

√
|κ|2 − c−2

0

dκ . (2.44)

Here κ is the two-dimensional slowness vector and we have introduced the
travel time

S(κ,x, z) = x · κ +

√
c−2
0 − |κ|2|z| .

It follows from this representation that the modes parameterized by (ω, κ),
with c0|κ| < 1, correspond to plane waves with frequency ω and three-
dimensional wave vector

k = ω

(
κ,±

√
c−2
0 − |κ|2

)

in the upper and lower z half-planes, respectively. Thus, the plane-wave mode

eiωS(κ,x,z)

propagates in the direction

(
κ,

√
c−2
0 − |κ|2

)
for z > 0 and in the direction

(
κ,−

√
c−2
0 − |κ|2

)
for z < 0.

2.2.5 The Acoustic Wave Generated by a Point Source

Let us return to the velocity field u and pressure field p in a homogeneous
medium with constant K0 and ρ0 when there is a point source. The governing
equations are

ρ0
∂u

∂t
+∇p = f(t)δ(r)e , (2.45)

1

K0

∂p

∂t
+∇ · u = 0 , (2.46)

with e ∈ R3 being a source directivity vector. It is again convenient to
carry out a specific joint Fourier transform in time and space. This decom-
poses the three-dimensional problem into plane-wave modes that satisfy one-
dimensional problems. The transformed quantities are
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û(ω, κ, z) =

∫ ∫
eiω(t−κ·x)u(t,x, z) dt dx ,

p̂(ω, κ, z) =

∫ ∫
eiω(t−κ·x)p(t,x, z) dt dx ,

where κ again is the two-dimensional slowness vector. The inverse transform
is given by

p(t,x, z) =
1

(2π)3

∫ ∫
e−iω(t−κ·x)p̂(ω, κ, z)ω2 dω dκ ,

u(t,x, z) =
1

(2π)3

∫ ∫
e−iω(t−κ·x)û(ω, κ, z)ω2 dω dκ .

We denote by v the horizontal components of the velocity field and by u its
vertical component, with v̂, û being the corresponding Fourier transformed
quantities. The Fourier transformed acoustic equations (2.45) are then

−iωρ0v̂ + iωκp̂ = δ(z)f̂(ω)e⊥ ,

−iωρ0û +
∂p̂

∂z
= δ(z)f̂(ω)e� ,

− iω

K0
p̂ + iωκ · v̂ +

∂û

∂z
= 0 ,

using the notation e = (e⊥, e�). By eliminating v̂ we deduce that (û, p̂) satisfies
the following system:

−iωρ0û +
∂p̂

∂z
= δ(z)f̂(ω)e� ,

−iω
1

K0
(1− |κ|2c2

0)p̂ +
∂û

∂z
= δ(z)f̂(ω)

κ · e⊥
ρ0

.

We have thus reduced the three-dimensional acoustic equations to a family of
one-dimensional mode problems. The density and bulk modulus of the reduced
modal problem are ρ0 and

K(κ) =
K0

1− |κ|2c2
0

,

respectively. We further eliminate û to obtain

ω2(c−2
0 − |κ|2)p̂ +

∂2p̂

∂z2
= f̂(ω)e ·

(
iωκ,

∂

∂z

)
δ(z) .

The field p̂ can be expressed in terms of the fundamental solution Ǧ of the
one-dimensional wave equation (2.41):

p̂(ω, κ, z) = −f̂(ω)e ·
(

iωκ,
∂

∂z

)
Ǧ(ω, κ, z) .
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Using (2.42) and (2.43) we find for z = 0 the explicit formula

p̂(ω, κ, z) =
1

2
f̂(ω)e ·

⎛
⎝ κ√

c−2
0 − |κ|2

, sgn(z)

⎞
⎠ eiω

√
c−2
0 −|κ|2|z| ,

if c0|κ| < 1 and

p̂(ω, κ, z) =
1

2
f̂(ω)e ·

⎛
⎝−i sgn(ω)

κ√
|κ|2 − c−2

0

, sgn(z)

⎞
⎠ e−|ω|

√
|κ|2−c−2

0 |z| ,

if c0|κ| > 1. Taking the inverse transform gives the representation

p(t, r) =
1

16π3

∫ ∫

c0|κ|<1

e−iω(t−S(κ,x,z))f̂(ω)

×e ·

⎛
⎝ κ√

c−2
0 − |κ|2

, sgn(z)

⎞
⎠ω2 dω dκ

+
1

16π3

∫ ∫

c0|κ|>1

e−iω(t−κ·x)−|ω|
√

c−2
0 −|κ|2|z|f̂(ω)

×e ·

⎛
⎝−i sgn(ω)

κ√
|κ|2 − c−2

0

, sgn(z)

⎞
⎠ω2 dω dκ .

After integrating in ω and suppressing the evanescent modes, which is valid
when |z| is much larger than the typical wavelength of the source, we have

p(t, r) ∼ − 1

8π2

∫

c0|κ|<1

f ′′(t− S(κ,x, z))

⎛
⎝ e⊥ · κ√

c−2
0 − |κ|2

+ sgn(z)e�

⎞
⎠ dκ .

The velocity field can be recovered from the relations

û =
1

iωρ0

∂p̂

∂z
, v̂ =

κ

ρ0
p̂ ,

for z = 0.
The horizontal Fourier transform can also be carried out when the medium

is layered to obtain a reduction to one-dimensional mode problems. In subse-
quent chapters we use such reductions of three-dimensional layered problems
to simplify the analysis.

2.3 Appendix

2.3.1 Gauss–Green Theorem

The Gauss–Green theorem is a basic identity that is used in this chapter. Let
V be a bounded open subset of Rn whose boundary ∂V is C1. Let f ∈ C1(V ),
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where V = V ∪ ∂V is the closure of V . Then∫

V

∇f(r)dr =

∫

∂V

f(r)n(r)dσ(r) ,

where n(r) is the outward unit normal to ∂V at r ∈ ∂V .

2.3.2 Energy Conservation Equation

In this section we show that the energy density and flux described in Section
2.1.8 for the acoustic wave equations can also be obtained from the lineariza-
tion of the energy-conservation equation for fluid dynamics.

The energy-conservation equation for a fluid in the absence of viscosity,
heat conduction, and relaxation effects is

∂

∂t

(
1

2
ρ|U|2 + ρe

)
+∇ ·

[(
1

2
ρ|U|2 + ρe + P

)
U

]
= F ·U . (2.47)

Here e is the internal energy, which is a function of P and ρ. The conservation
laws of mass, momentum, and energy in the form (2.1), (2.2), and (2.47) are
the Euler equations. From thermodynamic arguments we have that

de + P (ρ)d

(
1

ρ

)
= 0

if the flow is isentropic. This implies that e is a function of ρ with

de

dρ
=

P (ρ)

ρ2
.

By considering small perturbations around a fluid at rest, of the form (2.3),
we can expand to second order,

ρe(ρ) = ρ0e(ρ0) + [ρ0e(ρ0) + P (ρ0)]s +
ρ0

2

dP

dρ
(ρ0)s

2 + · · ·

= ρ0e(ρ0) +
ρ0e(ρ0) + P0

K0
p +

1

2K0
p2 + · · · ,

where we have used the definition (2.4) of K0 and the linearized equation of
state (2.5). The linearization of the energy-conservation equation (2.47) gives
to first order

∂

∂t

(
ρ0e(ρ0) + P0

K0
p

)
+∇ · [(ρ0e(ρ0) + P0)u] = 0 ,

which is the linearized mass-conservation equation (2.6).
At second order we obtain

∂

∂t

(
ρ0

2
|u|2 +

1

2K0
p2

)
+∇ · (pu) = F · u ,

which is the energy-conservation relation for the acoustic wave equations dis-
cussed in Section 2.1.8.
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Notes

The results presented in this chapter are in the context of the acoustic wave
equations but they can be extended to any physical system that can be reduced
to the wave equation. This is the case in acoustics, in elasticity [167], and in
electromagnetics, in homogeneous media [20]. The basic existence, uniqueness,
and regularity results for solutions of the homogeneous three-dimensional wave
equation can be found in the book by Evans [51]. A detailed analysis of the
wave equation in Rn or in bounded domains can be found in [43], where
different types of initial and boundary conditions are addressed and numerical
schemes are discussed. For an introduction to nonlinear and dispersive waves
we refer to the book by Whitham [167].





3

Waves in Layered Media

Throughout the book we use a number of essential transformations of the
wave equation that are specific to layered media. In this chapter we consider
the particular case in which the parameters of the medium vary in a piecewise-
constant manner; in other words, we consider a stack of layers made of homo-
geneous media. We study the propagation of a normally incident plane wave,
which enables us to reduce the problem to the one-dimensional acoustic wave
equations. We will see that the problem can be recast as a product of matri-
ces corresponding to the scattering of the wave by the successive interfaces
between the layers. This is a classical setup for waves propagating in this par-
ticular type of layered media, and it is extremely useful for direct numerical
simulations.

3.1 Reduction to a One-Dimensional System

The equations for the three-dimensional velocity u and pressure p are

ρ
∂u

∂t
+∇p = 0 , (3.1)

1

K

∂p

∂t
+∇ · u = 0 , (3.2)

where ρ is the density of the medium and K the bulk modulus of the medium.
As seen in the previous chapter, these two equations correspond respectively
to conservation of momentum and mass. The density and bulk modulus are
assumed to be spatially varying along the z-coordinate. The restriction to a
medium whose variations occur only in one direction is central in this book,
and it is consistent with a range of applications, in geophysics for instance. If
the initial conditions correspond to a plane wave that is normally incident to
the layered medium, then the solution of the equations remains independent
of the transverse variables, and the transverse velocity is zero. The system
can then be reduced to the one-dimensional wave equations. Note that more
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general initial conditions, corresponding in particular to point sources, require
a more general three-dimensional framework, and these problems will be fully
addressed in Chapter 14. We will see there that it is always possible to decom-
pose the wave solution into plane waves and to reduce the three-dimensional
problem to an infinite set of one-dimensional problems. In this chapter we
focus our attention to the one-dimensional case. However, the treatment ap-
plies in general to the plane-wave modes, which follows from other initial
conditions.

In a one-dimensional medium the equations for the velocity u and pressure
p are

ρ(z)
∂u(t, z)

∂t
+

∂p(t, z)

∂z
= 0 , (3.3)

1

K(z)

∂p(t, z)

∂t
+

∂u(t, z)

∂z
= 0 ,

with ρ being the density and K the bulk modulus of the medium, which are
both functions of the spatial coordinate z. We write this system of equations
in matrix form:

∂

∂z

[
p(t, z)
u(t, z)

]
= −

[
0 ρ(z)

K(z)−1 0

]
∂

∂t

[
p(t, z)
u(t, z)

]
.

A diagonalization of the 2× 2 matrix gives
[

0 ρ(z)
K(z)−1 0

]
= M(z)−1

[
c(z)−1 0

0 −c(z)−1

]
M(z) ,

where

M(z) =

[
ζ(z)−1/2 ζ(z)1/2

−ζ(z)−1/2 ζ(z)1/2

]
, M(z)−1 =

1

2

[
ζ(z)1/2 −ζ(z)1/2

ζ(z)−1/2 ζ(z)−1/2

]
,

with c(z) =
√

K(z)/ρ(z) and ζ(z) =
√

K(z)ρ(z) being respectively the local
speed of sound and impedance. The system can then be written as

∂

∂z

[
p(t, z)
u(t, z)

]
= − 1

c(z)
M(z)−1

[
1 0
0 −1

]
M(z)

∂

∂t

[
p(t, z)
u(t, z)

]
.

In this representation the material parameters ρ and K may vary with respect
to the space coordinate z. In the next section we consider the special case
with constant coefficients when this decomposition can be used to decouple
the wave into right- and left-going modes.

3.2 Right- and Left-Going Waves

We consider the special case with a homogeneous medium in which the
coefficients ρ and K are constant. Consequently the speed of sound c and the
impedance ζ are constant, and the system can be written:
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∂

∂z

(
M

[
p(t, z)
u(t, z)

])
= −1

c

[
1 0
0 −1

]
∂

∂t

(
M

[
p(t, z)
u(t, z)

])
.

Then, if we define

[
A(t, z)
B(t, z)

]
= M

[
p(t, z)
u(t, z)

]
=

[
ζ−1/2p(t, z) + ζ1/2u(t, z)

−ζ−1/2p(t, z) + ζ1/2u(t, z)

]
, (3.4)

it follows that

∂

∂z

[
A(t, z)
B(t, z)

]
= −1

c

[
1 0
0 −1

]
∂

∂t

[
A(t, z)
B(t, z)

]
. (3.5)

The equations for A and B decouple,

∂A(t, z)

∂z
+

1

c

∂A(t, z)

∂t
= 0 ,

∂B(t, z)

∂z
− 1

c

∂B(t, z)

∂t
= 0 ,

and the waves can be written A(t, z) = a(t− z/c) and B(t, z) = b(t + z/c) for
some wave-shape functions a and b. Thus, in the constant medium case we
have decomposed the wave into the right- and left-going waves A and B,
which do not interact.

To fully specify the problem we have to prescribe initial conditions, for
instance the velocity and pressure profiles at time t = 0:

u(t = 0, z) = u0(z) , p(t = 0, z) = p0(z) .

We then translate these initial conditions for u and p into initial conditions
for the modes A and B:

A0(−z) := A(t = 0, z) = ζ−1/2p0(z) + ζ1/2u0(z) ,

B0(z) := B(t = 0, z) = −ζ−1/2p0(z) + ζ1/2u0(z) ,

which gives the expressions for the modes

A(t, z) = A0(ct− z) , B(t, z) = B0(ct + z) ,

and finally the expressions for the wave

p(t, z) = ζ1/2 A(t, z)−B(t, z)

2
,

u(t, z) = ζ−1/2 A(t, z) + B(t, z)

2
.

The initial conditions determine the mode decomposition and can be chosen
to generate a pure right-going wave (if p0 ≡ ζu0) or a pure left-going wave (if
p0 ≡ −ζu0).
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A more physical way to generate a wave is to assume that the wave vanishes
as t→ −∞ and to introduce a source term in the acoustic wave equations:

ρ
∂u(t, z)

∂t
+

∂p(t, z)

∂z
= F (t, z) ,

K−1 ∂p(t, z)

∂t
+

∂u(t, z)

∂z
= 0 .

By assuming a point source F (t, z) = ζ1/2f(t)δ(z), the system for A and B
becomes

∂A(t, z)

∂z
+

1

c

∂A(t, z)

∂t
= δ(z)f(t) ,

∂B(t, z)

∂z
− 1

c

∂B(t, z)

∂t
= −δ(z)f(t) ,

whose solutions are

A(t, z) =

{
f(t− z/c) if z > 0 ,
0 if z < 0 ,

B(t, z) =

{
0 if z > 0 ,
f(t + z/c) if z < 0 .

As a result, the velocity and pressure fields are

u(t, z) =
ζ−1/2

2

{
f(t− z/c) if z > 0 ,
f(t + z/c) if z < 0 .

p(t, z) =
ζ1/2

2

{
f(t− z/c) if z > 0 ,
−f(t + z/c) if z < 0 .

This means that the source term generates two waves with equal energy that
propagate to the right and to the left (see Figure 3.1).

3.3 Scattering by a Single Interface

In this section we consider the case in which two homogeneous half-spaces are
separated by an interface at z = 0:

ρ(z) =

{
ρ0 if z < 0 ,
ρ1 if z > 0 ,

K(z) =

{
K0 if z < 0 ,
K1 if z > 0 .

This section presents a new point of view on this simple scattering problem
already discussed in Chapter 2. By diagonalizing the acoustic wave equations
in the two half-spaces, we find that the waves can be decomposed into right-
and left-going modes in each half-space. However, due to the mismatch of the
medium parameters, the definition of the modes in terms of the pressure and
velocity fields is not the same in the two half-spaces. As a result, a pure right-
going wave incoming from the left half-space and impinging on the interface
cannot be simply transmitted as a pure right-going wave propagating in the
right half-space, because this would violate the continuity of the pressure and
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Fig. 3.1. Waves generated by a point source F (t, z) = f(t)δ(z) in a homogeneous
medium. Here f(t) = exp(−t2), K = ρ = 1. The spatial profiles of the velocity field
(a) and of the pressure field (b) are plotted at times t = −2, t = −1, t = 0, t = 1,
. . ., t = 6.

velocity fields. The goal of this section is to analyze the scattering problem in
terms of right- and left-going modes.

We introduce the local velocities cj =
√

Kj/ρj and impedances ζj =√
Kjρj and the right- and left-going modes defined by

z < 0 :

{
A0(t, z) = ζ

−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

B0(t, z) = −ζ
−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

(3.6)

z > 0 :

{
A1(t, z) = ζ

−1/2
1 p(t, z) + ζ

1/2
1 u(t, z) ,

B1(t, z) = −ζ
−1/2
1 p(t, z) + ζ

1/2
1 u(t, z) .

(3.7)

For j = 0, 1, the pairs (Aj , Bj) satisfy the following system in their respec-
tive half-spaces:

∂

∂z

[
Aj

Bj

]
=

1

cj

[
−1 0
0 1

]
∂

∂t

[
Aj

Bj

]
, (3.8)

which means that Aj(t, z) is a function of t − z/cj only, and Bj(t, z) is a
function of t + z/cj only.

We assume that a right-going wave with the time profile f is incoming from
the left and is partly reflected by the interface. We also assume a radiation
condition in the right half-space so that no wave is coming from the right.
Assume that f is compactly supported in (0,∞). We next introduce two ways
to define proper boundary conditions:

(I) We can consider an initial value problem with initial conditions given
at some time t0 < 0 by
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u(t = t0, z) =
1

2ζ
1/2
0

f

(
t0 −

z

c0

)
, p(t = t0, z) =

ζ
1/2
0

2
f

(
t0 −

z

c0

)
. (3.9)

As shown in the previous section, these initial conditions generate a pure right-
going wave whose support at time t = t0 is in the interval z ∈ (−∞, c0t0),
which lies in the left half-space.

�
0 z

Medium 0

�

A1(t, L)

�
B0(t, 0)

�
A0(t, 0)

Medium 1

Fig. 3.2. Scattering of a pulse by an interface.

(II) We can consider a point source located at some point z0 < 0 and
generating a forcing term of the form

F (t, z) = ζ
1/2
0 f(t− z0/c0)δ(z − z0) . (3.10)

As seen in the previous section, this point source generates two waves. The left-
going wave is propagating into the negative z-direction and will never interact
with the interface, so we will ignore it. The right-going wave first propagates in
the homogeneous left half-space and it eventually interacts with the interface
z = 0.

In terms of the right- and left-going waves, these two formulations give the
same descriptions. We have A0(t, z) = f(t− z/c0) for z < 0, and B1(t, z) = 0
for z > 0, and consequently, at the interface z = 0,

A0(t, 0) = f (t) , B1(t, 0) = 0 . (3.11)

Note that the delays introduced in the initial conditions (3.9) and in the
forcing term (3.10) have been chosen so that the boundary conditions (3.11)
have a very simple form.

The pairs (A0, B0) and (A1, B1) are coupled by the jump conditions at
z = 0 corresponding to the continuity of the velocity and pressure
fields:

u(t, 0) = ζ
−1/2
0

(
A0(t, 0) + B0(t, 0)

2

)
= ζ

−1/2
1

(
A1(t, 0) + B1(t, 0)

2

)
,

p(t, 0) = ζ
1/2
0

(
A0(t, 0)−B0(t, 0)

2

)
= ζ

1/2
1

(
A1(t, 0)−B1(t, 0)

2

)
,
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which gives
[

A1(t, 0)
B1(t, 0)

]
= J

[
A0(t, 0)
B0(t, 0)

]
, J =

[
r(+) r(−)

r(−) r(+)

]
, (3.12)

with r(±) = 1
2

(√
ζ1/ζ0 ±

√
ζ0/ζ1

)
. Note that (r(+))2 − (r(−))2 = 1. The

matrix J can be interpreted as a propagator, since it “propagates” the right-
and left-going modes from the left side of the interface to the right side. Such
a propagator matrix will be called an interface propagator in the following.

Taking into account the boundary conditions (3.11) yields
[

A1(t, 0)
0

]
= J

[
f(t)

B0(t, 0)

]
,

and solving this equation gives

B0(t, 0) = Rf(t), A1(t, 0) = T f(t) ,

where R and T are the reflection and transmission coefficients of the
interface:

R = −r(−)

r(+)
=

ζ0 − ζ1

ζ0 + ζ1
, T =

1

r(+)
=

2
√

ζ0ζ1

ζ0 + ζ1
.

These coefficients satisfy the energy-conservation relation

R2 + T 2 = 1 ,

meaning that the sum of the energies of the reflected and transmitted waves
is equal to the energy of the incoming wave. Finally, the complete solution for
z < 0 in terms of the right- and left-going modes is

A0(t, z) = f(t− z/c0) , B0(t, z) = Rf(t + z/c0) ,

and for z > 0,

A1(t, z) = T f(t− z/c1) , B1(t, z) = 0 .

Using (3.6–3.7) we can then obtain the pressure and velocity fields (see Figure
3.3). Note that the reflection coefficient is nonzero as soon as there is an
impedance mismatch between the two half-spaces. Consequently, the interface
between two different media generates no reflections if the impedances are
equal, even though the speeds of sound may differ in the two media.

3.4 Single-Layer Case

3.4.1 Mathematical Setup

We consider in this section the case of a homogeneous slab with thickness L
embedded between two homogeneous half-spaces:
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Fig. 3.3. Scattering of a pulse by an interface separating two homogeneous half-
spaces (c0, ζ0, z < 0) and (c1, ζ1, z > 0). Here the incoming right-going wave has a
Gaussian profile, c0 = ζ0 = 1, and c1 = ζ1 = 2. The spatial profiles of the velocity
field (a) and of the pressure field (b) are plotted at times t = −4, t = −3,. . ., t = 6.

ρ(z) =

⎧
⎨
⎩

ρ0 if z < 0 ,
ρ1 if z ∈ [0, L] ,
ρ2 if z > L ,

K(z) =

⎧
⎨
⎩

K0 if z < 0 ,
K1 if z ∈ [0, L] .
K2 if z > L .

We introduce the local velocities cj =
√

Kj/ρj and impedances ζj =
√

Kjρj

and the local right- and left-going modes defined by

Aj(t, z) = ζ
−1/2
j p(t, z)+ ζ

1/2
j u(t, z) , Bj(t, z) = −ζ

−1/2
j p(t, z)+ ζ

1/2
j u(t, z) ,

with j = 0 for z < 0, j = 1 for z ∈ [0, L], and j = 2 for z > L. The boundary
conditions correspond to an impinging pulse at the interface z = 0 and a
radiation condition at z = L2:

A0(t, 0) = f (t) , B2(t, L) = 0 .

The propagation equations (3.8) in each homoegeneous region show that
Aj is a function of t − z/cj only and Bj is a function of t + z/cj only. The
waves inside the slab [0, L] are therefore of the form

A1(t, z) = a1

(
t− z

c1

)
, B1(t, z) = b1

(
t +

z

c1

)
,

while the reflected wave for z < 0 is of the form

B0(t, z) = b0

(
t +

z

c0

)
,

and the transmitted wave for z > L is of the form
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Fig. 3.4. Scattering of a pulse by a single layer.

A2(t, z) = a2

(
t− z − L

c2

)
.

We want to identify the functions b0 and a2, which give the shapes of the
reflected and transmitted waves.

3.4.2 Reflection and Transmission Coefficient for a Single Layer

The unknown functions b0 and a2 can be obtained from the continuity condi-
tions for the velocity and pressure at the two interfaces. At z = 0 we have

[
A1(t, 0)
B1(t, 0)

]
= J0

[
A0(t, 0)
B0(t, 0)

]
, J0 =

[
r
(+)
0 r

(−)
0

r
(−)
0 r

(+)
0

]
,

with r
(±)
0 = 1

2

(√
ζ1/ζ0 ±

√
ζ0/ζ1

)
. Similarly, at z = L,

[
A2(t, L)
B2(t, L)

]
= J1

[
A1(t, L)
B1(t, L)

]
, J1 =

[
r
(+)
1 r

(−)
1

r
(−)
1 r

(+)
1

]
,

with r
(±)
1 = 1

2

(√
ζ2/ζ1 ±

√
ζ1/ζ2

)
. We can write these relations in terms of

the functions aj, bj as

[
a1(t)
b1(t)

]
= J0

[
f(t)
b0(t)

]
,

[
a2(t)

0

]
= J1

[
a1(t− L/c1)
b1(t + L/c1)

]
,

which can be solved to get the reflected and transmitted waves. The situation
is more complicated than in the case of a single interface, because of the time
delays ±L/c1. A convenient and general way to handle these delays is by
going to the frequency domain, so that the time shifts are replaced by phase
factors. The Fourier transforms of the modes are defined by

âj(ω) =

∫
aj(t)e

iωtdt , b̂j(ω) =

∫
aj(t)e

iωtdt .
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They satisfy the interface conditions

[
â1(ω)

b̂1(ω)

]
= J0

[
f̂(ω)

b̂0(ω)

]
,

[
â2(ω)

0

]
= J1

[
â1(ω)ei ωL

c1

b̂1(ω)e−i ωL
c1

]
, (3.13)

where we have used the simple identity

∫
a1(t− L/c1)e

iωtdt =

∫
a1(s)e

iω
(

s+ L
c1

)

ds = â1(ω)ei ωL
c1 .

Introducing the frequency-dependent matrix

Ĵ1(ω) =

[
r
(+)
1 e

i ωL
c1 r

(−)
1 e

−i ωL
c1

r
(−)
1 e

i ωL
c1 r

(+)
1 e

−i ωL
c1

]
,

the second equation of (3.13) can be rewritten as

[
â2(ω)

0

]
= Ĵ1(ω)

[
â1(ω)

b̂1(ω)

]
. (3.14)

The symplectic matrix Ĵ1(ω) is a propagator in the frequency domain. It
propagates the right- and left-going modes from the right side of the interface
0 to the right side of the interface 1, and it depends on the layer thickness
L. Finally, combining the first equation of (3.13) and (3.14), we obtain the
relation [

â2(ω)
0

]
= K̂0(ω)

[
f̂(ω)

b̂0(ω)

]
, (3.15)

where the frequency-dependent symplectic matrix

K̂0(ω) = Ĵ1(ω)J0 =

[
Û(ω) V̂ (ω)

V̂ (ω) Û(ω)

]

is the overall propagator of the slab. Equation (3.15) shows that K̂0(ω) prop-
agates the right- and left-going modes from the left side of the interface 0 to
the right side of the interface 1. We find explicitly

Û(ω) = r
(+)
0 r

(+)
1 e

i ωL
c1 + r

(−)
0 r

(−)
1 e

−i ωL
c1 ,

V̂ (ω) = r
(+)
0 r

(−)
1 ei ωL

c1 + r
(−)
0 r

(+)
1 e−i ωL

c1 .

By solving equation (3.15), whose unknowns are â2(ω) and b̂0(ω), and using

the expressions of r
(±)
j , we obtain

b̂0(ω) = R̂(ω)f̂(ω) , â2(ω) = T̂ (ω)f̂(ω) ,

where the frequency-dependent reflection and transmission coefficients are
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R̂(ω) = − V̂ (ω)

Û(ω)
=

R1e
2i ωL

c1 + R0

1 + R0R1e
2i ωL

c1

, (3.16)

T̂ (ω) =
1

Û(ω)
=

T0T1e
i ωL

c1

1 + R0R1e
2i ωL

c1

, (3.17)

using that |Û(ω)|2 − |V̂ (ω)|2 = 1. Here R0 = ζ0−ζ1

ζ0+ζ1
, R1 = ζ1−ζ2

ζ1+ζ2
, T0 = 2

√
ζ0ζ1

ζ0+ζ1
,

and T1 = 2
√

ζ1ζ2

ζ1+ζ2
are the reflection and transmission coefficients of the two

interfaces. The reflection and transmission coefficients of the layer satisfy the
energy conservation relation |R̂(ω)|2 + |T̂ (ω)|2 = 1 for all ω, which means
that the individual energies of the frequency components of the incoming
pulse are preserved by the scattering process. The main qualitative difference
between the scattering by a single interface and the scattering by a single
layer is that the reflection and transmission coefficients in the layer case are
frequency-dependent. This frequency dependence originates from interference
effects between the waves that are scattered back and forth by the two in-
terfaces of the layer. Constructive interferences, destructive interferences, and
resonances can build a complicated picture, as we will see below.

3.4.3 Frequency-Dependent Reflectivity and Antireflection Layer

As an application let us consider a layer embedded between two homogeneous
half-spaces that have the same material properties, i.e., the situation in which
ρ2 = ρ0 and K2 = K0. We then have R1 = −R0 and T1 = T0, which implies
that the global reflectivity of the layer can be written as

|R̂(ω)|2 = 1− 1 + R4
0 − 2R2

0

1 + R4
0 − 2R2

0 cos(2ωL
c1

)
.

The reflectivity is periodic with respect to the angular frequency ω with the
period ωc = πc1/L. As a function of the angular frequency the reflectivity
goes from the minimal value

|R̂|2min = 0 for ω = kωc, k ∈ Z ,

to the maximal value

|R̂|2max = 1−
(

1−R2
0

1 + R2
0

)2

for ω =

(
k +

1

2

)
ωc, k ∈ Z .

This shows that for any value of the reflection coefficient R0 of a single in-
terface, there exist frequencies that are fully transmitted by the layer. If we
consider the case of strong scattering T 2

0 ≪ 1, then the transmitted frequency
bands have a width of the order of ωcT

2
0 around the fully transmitted fre-

quencies kωc. Outside of these bands the typical reflectivity is large, of order
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Fig. 3.5. Reflectivity |R̂(ω)|2 versus frequency for a single layer with R0 = −R1 =
0.1 (a) and R0 = −R1 = 0.9 (b). The period is ωc = πc1/L.

1 − T 4
0 /4. The plot of the reflectivity versus frequency clearly exhibits this

phenomenon (Figure 3.5).
The total transmission phenomenon is also encountered in situations in

which the two half-spaces are different. Indeed, if we now assume that the
two homogeneous half spaces have different impendances ζ0 = ζ2, then it is
possible to choose the thickness L and the impedance ζ1 of the layer so that
a given frequency ω will be fully transmitted from one half-space to the other
one, which would not be the case in absence of such a layer. From the analysis
of the reflectivity function

|R̂(ω)|2 = 1− 1−R2
0 −R2

1 + R2
0R

2
1

1 + 2R0R1 cos(2ωL
c1

) + R2
0R

2
1

,

one can show that a necessary and sufficient condition for |R̂(ω)|2 to be zero
is that R2

0 + R2
1 = −2R0R1 cos(2ωL/c1). In the case ζ0 = ζ2 this in turn

enforces one to choose the impedance of the layer to be ζ1 =
√

ζ0ζ2 (so that
R0 = R1) and the thickness L to be chosen so that ωL/(πc1) is half an integer
(so that cos(2ωL/c1) = −1). Usually the thickness is chosen to be equal to a
quarter of the wavelength, meaning ωL/(πc1) = 1/2. The insertion of such an
“antireflection” layer is often used in optics in order to transmit a laser beam
from air to glass, for instance, or in echographic imaging in order to transmit
an ultrasound beam from a transducer to a human body with the minimum
loss of energy from the beam at the interface.

3.4.4 Scattering by a Single Layer in the Time Domain

In the time domain, we can write the reflected wave in the form

b0(t) = R ∗ f(t) ,
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where R is the inverse Fourier transform of R̂. If we exclude the degenerate
situations in which the impedances can be 0 or +∞, then |Rj | < 1 and we
can expand the denominator of (3.16) as an infinite series

R̂(ω) = R0 +
∞∑

n=1

[
(−1)nRn+1

0 Rn
1 + (−1)n−1Rn−1

0 Rn
1

]
e2in ωL

c1 .

Using T 2
0 + R2

0 = 1, this sum can also be written as

R̂(ω) = R0 +

∞∑

n=1

(−1)n−1Rn−1
0 T 2

0 Rn
1 e

2in ωL
c1 ,

so that in the time domain,

R(t) = R0δ(t) +

∞∑

n=1

(−1)n−1Rn−1
0 T 2

0 Rn
1 δ

(
t− 2n

L

c1

)
, (3.18)

which is the reflected impulse response of the layer from the left side. It gives
the train of impulses reflected by the layer when an impulse incoming from
the left impinges on the layer at time 0. Each term of the expansion can be
intuitively interpreted and associated with a particular scattering sequence
(see Figures 3.6 and 3.7):

- The first term R0δ(t) corresponds to the reflection of the incident pulse
by the interface z = 0.

- The term n = 1 corresponds to a transmission through the interface z = 0,
a reflection by the interface z = L, and a transmission though the interface
z = 0. The round trip takes the time 2L/c1.

- The general term n corresponds to a transmission through the interface
z = 0, a sequence of n − 1 reflections by the interface z = L followed by
reflections by the interface z = 0, and finally a reflection by the interface
z = L and a transmission through the interface z = 0. The n round trips
take time 2nL/c1.

In the case of a layer embedded between two half-spaces with the same
properties, the expression (3.18) simplifies to

R(t) = R0δ(t) −
∞∑

n=1

R2n−1
0 T 2

0 δ

(
t− 2n

L

c1

)
.

This decomposition of the reflection process can be used to explain the ex-
istence of reflectionless scattering at some particular frequencies as discussed
in the previous paragraph. If the input wave is of the form eikωct, with
ωc = πc1/L and k ∈ Z, then the n-times multiplyreflected wave components
exit the layer with a phase that is exactly shifted by an integer multiple of 2π
with respect to the phase of the primary scattered wave R0e

ikωct, and these
multiplyreflected waves fully cancel the primary component:
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Fig. 3.6. Sketch of scattering sequences.

R ∗ eikωct =

[
R0 −

∞∑

n=1

R2n−1
0 T 2

0

]
eikωct = 0 .

As a result, no wave is reflected at all, and by conservation of energy the
wave is fully transmitted. Another way to understand this phenomenon in-
volves analyzing the successive waves arriving at the interface z = L. These
waves have the same phase and therefore they interfere constructively, which
enhances the transmittivity of the layer to the point where it becomes equal
to 1.
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Fig. 3.7. Scattering of a pulse by a layer with parameters (c1, ζ1) separating two
homogeneous half-spaces with the same parameters (c0, ζ0). Here the incoming right-
going wave has a Gaussian profile, c0 = ζ0 = 1, c1 = ζ1 = 2, and the thickness of
the layer is 10. The spatial profiles of the velocity field (a) and of the pressure field
(b) are plotted at times t = −4, t = −3,. . ., t = 12. One can observe the first two
terms (n = 0 and n = 1) of the reflected-impulse response of the layer.
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3.4.5 Propagator and Scattering Matrices

We end this section by introducing a new object that characterizes the scat-
tering process. We have seen that the overall propagator K̂0(ω) transforms

the pair of modes (â0, b̂0) at the left side of the slab [0, L] into the pair of

modes (â2, b̂2) at the right side of the slab [0, L]:

[
â2(ω)

b̂2(ω)

]
= K̂0(ω)

[
â0(ω)

b̂0(ω)

]
.

This matrix is symplectic, of the form

K̂0(ω) =

[
Û(ω) V̂ (ω)

V̂ (ω) Û(ω)

]
,

with |Û(ω)|2 − |V̂ (ω)|2 = 1. Note that the moduli of Û and V̂ can take ar-
bitrarily large values for general medium parameter variations, and this may
in numerical simulations lead to some instabilities. There exists an alterna-
tive and equivalent way to characterize the scattering process through the
scattering matrix Ŝ0(ω) satisfying

[
â2(ω)

b̂0(ω)

]
= Ŝ0(ω)

[
â0(ω)

b̂2(ω)

]
.

This matrix transports what is coming into the slab, namely the right-going
mode â0 at 0 and the left-going mode b̂2 at L, into what is going out of the
slab, the left-going mode b̂0 at 0 and the right-going mode â2 at L. We have
computed the first column of the scattering matrix in this section, and the
computation of the second column can be carried out in a similar way. We
then obtain that the scattering matrix is of the form

Ŝ0(ω) =

(
T̂ (ω) R̃(ω)

R̂(ω) T̂ (ω)

)
,

where the entries of Ŝ0(ω) and K̂0(ω) are related to each other through the
relations

R̂(ω) = − V̂ (ω)

Û(ω)
, T̂ (ω) =

1

Û(ω)
, R̃(ω) =

V̂ (ω)

Û(ω)
.

Here T̂ is the transmission coefficient and R̂ the reflection coefficient for a wave
incoming from the left, whereas the adjoint reflection coefficient corresponding
to waves incoming from the right is denoted by R̃. The scattering picture is
illustrated in Figure 3.8 and Figure 3.9. Using |Û(ω)|2 − |V̂ (ω)|2 = 1, it is

easy to check that Ŝ0(ω)
−1

= Ŝ0(ω)
T

, meaning that the scattering matrix is
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unitary. We also have the energy-conservation relation |R̂(ω)|2 + |T̂ (ω)|2 = 1,
which ensures the boundedness of the reflection and transmission coefficients
and enhanced stability in the numerical simulations when one computes the
coefficients of the scattering matrix (compared to those of the propagator
matrix).

�0 L z
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�1

�T̂

Medium 0 Medium 1 Medium 2

Fig. 3.8. Reflection and transmission coefficients of a layer.
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�R̃

� 1

� T̂

Medium 0 Medium 1 Medium 2

Fig. 3.9. Adjoint reflection and transmission coefficients of a layer.

3.5 Multilayer Piecewise-Constant Media

3.5.1 Propagation Equations

Let us consider a heterogeneous slab consisting of a stack of N layers. The
medium is homogeneous inside each layer. The jth layer corresponds to the
interval [Lj−1, Lj) with L0 = 0:

ρ(z) =

⎧
⎨
⎩

ρ0 if z < 0 ,
ρj if z ∈ [Lj−1, Lj), j = 1, . . . , N ,
ρN+1 if z > LN ,

(3.19)

K(z) =

⎧
⎨
⎩

K0 if z < 0 ,
Kj if z ∈ [Lj−1, Lj), j = 1, . . . , N ,
KN+1 if z > LN .

(3.20)

We introduce the local velocities cj =
√

Kj/ρj and impedances ζj =
√

Kjρj ,
and the local modes defined by
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{
A0(t, z) = ζ

−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

B0(t, z) = −ζ
−1/2
0 p(t, z) + ζ

1/2
0 u(t, z) ,

z < 0 ,

{
Aj(t, z) = ζ

−1/2
j p(t, z) + ζ

1/2
j u(t, z) ,

Bj(t, z) = −ζ
−1/2
j p(t, z) + ζ

1/2
j u(t, z) ,

z ∈ (Lj−1, Lj), j = 1, . . . , N ,

{
AN+1(t, z) = ζ

−1/2
N+1 p(t, z) + ζ

1/2
N+1u(t, z) ,

BN+1(t, z) = −ζ
−1/2
N+1 p(t, z) + ζ

1/2
N+1u(t, z) ,

z > LN .

In this section we analyze the wave propagation by studying the modes defined
in terms of the local impedance and speed of sound. This is convenient because
the wave equations for the modes (Aj , Bj) become very simple in each layer,
as in the case of homogeneous medium addressed in Section 3.2:

∂

∂z

[
Aj

Bj

]
= − 1

cj

[
1 0
0 −1

]
∂

∂t

[
Aj

Bj

]
. (3.21)

These equations can be readily integrated, and as a consequence the problem
can be reduced to a product of matrices (one for each interface), as explained
below.

The Boundary Conditions

The boundary conditions correspond to an impinging pulse at the interface
z = 0 and a radiation condition at z = LN :

A0(t, 0) = f (t) , BN+1(t, LN) = 0 .

�0 L1 L2 LN z

�

AN+1(t, L)

�

B0(t, 0)

�

A0(t, 0)

Medium 0 Multilayer slab Medium N + 1

Fig. 3.10. Scattering of a pulse by a multilayer slab (with N = 3 layers).

The propagation equations in the two half-spaces dictates the form of the
reflected wave for z < 0,

B0(t, z) = b0

(
t +

z

c0

)
,
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and the form of the transmitted wave for z > LN ,

AN+1(t, z) = aN+1

(
t− z − LN

cN

)
.

We want to express the functions b0 and aN+1 in terms of the medium’s
properties and the incoming waves. We have to study the propagation of the
modes inside the medium (0, LN).

Propagator Formulation

Inside the layer (Lj−1, Lj), j = 1, . . . , N , the pair (Aj , Bj) satisfies the system
(3.21), which shows that Aj is a function of t− z/cj only and Bj is a function
of t + z/cj only. Thus there exist functions aj(t) and bj(t) such that for
j = 1, . . . , N and Lj−1 ≤ z ≤ Lj ,

Aj(t, z) = aj(t− (z − Lj−1)/cj) , Bj(t, z) = bj(t + (z − Lj−1)/cj) .

These are the right- and left-going modes moving with the local speed observed
in the frame centered at the beginning of the local layer. The equations (3.8)
are complemented by the jump conditions at the interfaces z = Lj , j =
0, . . . , N , corresponding to the continuity of the velocity and pressure fields.
Using the interface propagators gives

[
Aj+1

Bj+1

]
(t, Lj) = Jj

[
Aj

Bj

]
(t, Lj) , Jj =

[
r
(+)
j r

(−)
j

r
(−)
j r

(+)
j

]
,

with

r
(±)
j =

1

2

(√
ζj+1/ζj ±

√
ζj/ζj+1

)
. (3.22)

In terms of the functions aj and bj , the jump conditions have the form

[
a1(t)
b1(t)

]
= J0

[
f(t)
b0(t)

]
,

[
aj+1(t)
bj+1(t)

]
= Jj

[
aj(t− (Lj − Lj−1)/cj)
bj(t + (Lj − Lj−1)/cj)

]
, j = 1, . . . , N − 1,

[
aN+1(t)

0

]
= JN

[
aN (t− (LN − LN−1)/cN )
bN (t + (LN − LN−1)/cN )

]
,

where we have taken into account the boundary conditions at z = 0 and
z = LN .

As in the single-layer case, it is convenient to go to the Fourier domain
to handle the delays (Lj − Lj−1)/cj . Introducing the frequency dependent
matrices
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Ĵj(ω) =

⎡
⎣ r

(+)
j e

i
ω(Lj−Lj−1)

cj r
(−)
j e

−i
ω(Lj−Lj−1)

cj

r
(−)
j e

i
ω(Lj−Lj−1)

cj r
(+)
j e

−i
ω(Lj−Lj−1)

cj

⎤
⎦ , j = 0, . . . , N , (3.23)

where we have used the convention L−1 = 0, we can now concatenate the
jump conditions and write

[
âN+1(ω)

0

]
= ĴN (ω) · · · Ĵ1(ω)Ĵ0(ω)

[
f̂(ω)

b̂0(ω)

]
. (3.24)

The solution of the scattering problem involves the computation of the prod-
uct of matrices ĴN (ω) · · · Ĵ0(ω), and then the inversion of (3.24) to get the

unknowns âN+1(ω) (transmitted wave) and b̂0(ω) (reflected wave).

3.5.2 Reflected and Transmitted Waves

The Frequency-Dependent Reflection and Transmission
Coefficients

We discuss here the computation of the product in (3.24). First, we define the
family of 2× 2 frequency-dependent matrices

K̂j(ω) = ĴN (ω) · · · Ĵj(ω) , j = 0, . . . , N ,

with the convention that K̂N+1(ω) = I, where I is the 2× 2 identity matrix.

The matrix K̂j(ω) is the overall propagator for the successive layers j, . . . , N :

[
âN+1(ω)

b̂N+1(ω) = 0

]
= K̂j(ω)

[
âj(ω)

b̂j(ω)

]
.

Using the relation
K̂j(ω) = K̂j+1(ω)Ĵj(ω)

and the expression (3.23) for Ĵj(ω), we can then show recursively that the

matrix K̂j is of the form

K̂j(ω) =

[
Ûj(ω) V̂j(ω)

V̂j(ω) Ûj(ω)

]
, j = 0, . . . , N ,

where the coefficients (Ûj(ω), V̂j(ω))j=0,...,N+1 satisfy the backward recursive
linear system of equations

Ûj(ω) =
[
r
(+)
j Ûj+1(ω) + r

(−)
j V̂j+1(ω)

]
e

i
ω(Lj−Lj−1)

cj , (3.25)

V̂j(ω) =
[
r
(+)
j V̂j+1(ω) + r

(−)
j Ûj+1(ω)

]
e

i
ω(Lj−Lj−1)

cj , (3.26)
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starting from ÛN+1(ω) = 1 and V̂N+1(ω) = 0, and where r
(±)
j are given by

(3.22). Note that these coefficients satisfy the conservation relation |Ûj(ω)|2−
|V̂j(ω)|2 = 1, which shows that K̂j(ω) is symplectic. From the identity

[
âN+1(ω)

0

]
=

[
Û0(ω) V̂0(ω)

V̂0(ω) Û0(ω)

][
f̂(ω)

b̂0(ω)

]
,

we finally get

b̂0(ω) = R̂0(ω)f̂(ω) , âN+1(ω) = T̂0(ω)f̂(ω) ,

where the reflection and transmission coefficients of the multilayer slab are

R̂0(ω) = − V̂0(ω)

Û0(ω)
, T̂0(ω) =

1

Û0(ω)
.

The system (3.25–3.26) allows us to get the reflection and transmission
coefficients, but it turns out that the sequence (Ûj , V̂j) required to com-

pute (R̂0(ω), T̂0(ω)) can take large values within the conservation relation
|Ûj(ω)|2 − |V̂j(ω)|2 = 1. This is an important numerical issue, and there is
another way to compute the reflection and transmission coefficients, which we
introduce now.

Linear Fractional Relations for the Local Reflection Coefficients

We introduce the local reflection and transmission coefficients

R̂j(ω) = − V̂j(ω)

Ûj(ω)
, T̂j(ω) =

1

Ûj(ω)
, j = 0, . . . , N + 1 .

Then we can write a nonlinear recursive relation satisfied by R̂j(ω) from the

linear recursive relation satisfied by (Ûj , V̂j):

R̂j(ω) =
R̂j+1(ω) + Rj

1 + R̂j+1(ω)Rj

e
2i

ω(Lj−Lj−1)

cj , j = 0, . . . , N . (3.27)

Here Rj =
ζj−ζj+1

ζj+ζj+1
is the reflection coefficient of the interface z = Lj. The

“final” condition for this recursive system is given at j = N + 1 by

R̂N+1(ω) = 0 . (3.28)

Equations (3.27–3.28) form a backward system that has to be solved recur-
sively from j = N to j = 0. This closed-form recursive system allows us to
compute directly the reflection coefficient R̂0(ω). Recall that R̂j(ω) always
belongs to the unit complex disk, so that no large values can be encountered
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along the recursive computation. This is in contrast to the linear system (3.25–
3.26), where the pairs (Ûj(ω), V̂j(ω)) can take very large values. This remark
turns out to be very important from the numerical point of view developed
below.

Note also that each step in the recurrence (3.27) consists in applying a
fractional linear transform to R̂j+1 in order to get R̂j . Since the set of frac-
tional linear transforms forms a group under function composition, the rela-
tion between any pair of local reflection coefficients R̂j and R̂j′ is a fractional
linear transform. The four coefficients of these transforms can be computed
recursively by (3.27). This remark allows the quick computation of the global
reflection coefficient when two or several stacks of layers are merged.

Similarly, we can get the transmission coefficient T̂0(ω) from the backward
recursive relation

T̂j(ω) =
TjT̂j+1(ω)

1 + R̂j+1(ω)Rj

e
i

ω(Lj−Lj−1)

cj , j = 0, . . . , N, (3.29)

starting from T̂N+1(ω) = 1. Here Tj =
2
√

ζjζj+1

ζj+ζj+1
is the transmission coefficient

of the interface z = Lj .

Representations of the Reflected and Transmitted Waves in the
Time Domain

Taking an inverse Fourier transform yields the integral representation of the
reflected wave in the time domain

B(t, 0) = b0(t) =
1

2π

∫
R̂0(ω)f̂(ω)e−iωtdω ,

that is,
b0(t) = R ∗ f(t) ,

where R is the inverse Fourier transform of R̂. Using equation (3.27), we find
that R̂ can be expanded as a series of the form

R̂(ω) =
N∑

j=1

∞∑

kj=0

αk1,...,kn exp

⎛
⎝2iω

N∑

j=1

kj
Lj − Lj−1

cj

⎞
⎠ ,

where αk1,...,kn is a coefficient that depends only on R0, . . . , RN (for instance,
α0,0,...,0 = R0). As a result, in the time domain,

R(t) =

N∑

j=1

∞∑

kj=0

αk1,...,knδ

⎛
⎝t− 2

N∑

j=1

kj
Lj − Lj−1

cj

⎞
⎠ .

Each term of this series can be associated with a scattering sequence involving
reflections and transmissions by the different interfaces and that determines
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the value of the coefficients αk1,...,kn . In this interpretation the time delay is
simply the sum of travel times from an interface to another corresponding to
the particular scattering sequence.

�0 L1 L2 LN z

�

� ���
����

����
����

����
���

Medium 0 Multilayer slab Medium N + 1

Fig. 3.11. A particular scattering sequence inside the multilayer slab.

In the same way, the transmitted wave can be represented by

AN+1(LN , t) = aN+1(t) =
1

2π

∫
T̂0(ω)f̂(ω)e−iωtdω ,

that is,
aN+1(t) = T ∗ f(t) ,

where T is the inverse Fourier transform of T̂ . Expanding T̂ yields that T is
of the form

T (t) =

N∑

j=1

∞∑

kj=0

βk1,...,knδ

⎛
⎝t− 2

N∑

j=1

kj
Lj − Lj−1

cj
−

N∑

j=1

Lj − Lj−1

cj

⎞
⎠ ,

where βk1,...,kn is a coefficient that depends only on R0, . . . , RN (for instance,

β0,0,...,0 = T0T1 · · ·TN =
√

1−R2
0

√
1−R2

1 · · ·
√

1−R2
N ). Note that the first

impulse of the transmitted impulse reponse T exits the layer at time t =∑N
j=1

Lj−Lj−1

cj
, which corresponds to the total travel time through the slab.

This first impulse describes the ballistic wave, that is to say the wave that
has not been reflected at all, and its amplitude is

∏N
j=0 Tj.

3.5.3 Reflectivity Pattern and Bragg Mirror for Periodic Layers

Let us consider a very particular case, in which the multilayer slab consists
of a stack of alternating layers of two different materials a and b with two
different impedances ζa = ζb, with two thicknesses chosen so that the travel
times through the layers are equal La/ca = Lb/cb ≡ τ :
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ζ(z) =

{
ζb if z ∈ [L2j , L2j+1) , j = 0, . . . , N − 1 ,
ζa otherwise,

c(z) =

{
cb if z ∈ [L2j, L2j+1) , j = 0, . . . , N − 1 ,
ca otherwise,

where L2j = j(La + Lb) and L2j+1 = L2j + Lb (see Figure 3.12).

Material

�L5L4L3L2L1L0
z

ba ba ba a

� Lb
�� La

�
���������������� ���������������� ����������������

Fig. 3.12. N = 3-period Bragg mirror.

The periodic variation of the slab on a length scale comparable to the
wavelength has a dramatic effect. In particular, there exist some frequency
bands that are almost completely reflected. These bands are centered at the
frequencies ωk = (k + 1

2 )π
τ . The recursive relation (3.27) takes the form

R̂2j−2(ωk) = − R̂2j−1(ωk) + R

1 + R̂2j−1(ωk)R
, R̂2j−1(ωk) = − R̂2j(ωk)−R

1− R̂2j(ωk)R
,

starting from R̂2N (ωk) = 0. Here R = ζa−ζb

ζa+ζb
. Grouping these relations by

pairs yields

R̂2j−2(ωk) =
α + R̂2j(ωk)

1 + αR̂2j(ωk)
,

where α = −2R
1+R2 =

ζ2
b−ζ2

a

ζ2
a+ζ2

b
. Taking into account the initial condition R̂2N (ωk) =

0, we obtain recursively that the local reflection coefficient is

R̂2j(ωk) =
1− ( ζa

ζb
)2(N−j)

1 + ( ζa

ζb
)2(N−j)

.

Finally, we get that the reflectivities of the frequencies ωk are

∣∣∣∣R̂
(

(k +
1

2
)ω0

)∣∣∣∣
2

=

(
1− ( ζa

ζb
)2N

1 + ( ζa

ζb
)2N

)2

,

where N is the number of pairs of alternating layers. This shows that the
reflectivity goes to one at an exponential rate as the number of layers in-
creases. This phenomenon is referred to as Bragg resonance, which explains
that a very high reflectivity can be achieved for some particular frequencies
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Fig. 3.13. Reflectivity |R̂(ω)|2 versus frequency for a N-period Bragg mirror with
N = 3 (a), N = 10 (b). The two materials have impedances ζa = 0.9 and ζb = 1.1 and
the travel time through each layer is 1. The reflected frequencies are ωk = (2k+1)π.

as a result of the periodicity of the structure, even for very small impedance
contrast. The contrast between the two impedances controls the widths of the
reflected frequency bands. The smaller the contrast, the narrower the reflected
bands. Outside the reflected bands, the reflectivity is small, on the order of
the reflectivity of one single interface. In conclusion, in the case of a periodic
multilayer slab with many layers and small impedance contrasts, waves are
either completely reflected back if their frequencies fulfill the Bragg resonance
conditions, or waves are completely transmitted (see Figure 3.13).
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Fig. 3.14. Reflectivity versus frequency for a multilayer slab. We have perturbed
the N = 3 (a) and N = 10 (b) Bragg mirror described in Figure 3.13 by changing
randomly the thicknesses of the layers.
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In the general framework of a multilayer slab, with different contrast
impedances and layer thicknesses, the reflectivity ω 	→ |R̂(ω)|2 becomes a
very complicated function as the number of layers N increases. As shown in
Figure 3.14, the reflectivity as a function of the frequency has many local
maxima and minima. Although the overall picture seems unpredictable, we
will see in the next chapters that it is possible to describe the behavior of
the reflectivity as the number of layers goes to infinity through an asympotic
analysis based on limit theorems for stochastic processes.

3.5.4 Goupillaud Medium

A multilayer medium where layers have equal travel times is called a Goupil-
laud medium. This model is famous because it allows for an exact discretiza-
tion of the pulse propagation in the time domain, as we show below. It is
therefore often used in numerical simulations.

A Goupillaud medium consists of a stack of N layers of the type (3.19–
3.20), where the local velocities and thicknesses of the layers are such that

Lj − Lj−1

cj
≡ τ ∀j = 1, . . . , N ,

where τ is the travel time from one interface to another one. We aim at
studying the impulse response of the medium, that is, how a right-going Dirac
pulse incoming from the left half-space is transformed as it propagates into
the multilayer slab. We are particularly interested in the reflected pulse at
z = 0 (the reflected impulse response) and the transmitted pulse at z = LN

(the transmitted impulse response). The impulse response is the analogy of
the Green’s function. The reflected (respectively transmitted) pulse when an
arbitrary input pulse is considered is simply the convolution of the input pulse
shape with the reflected (respectively transmitted) impulse response.

We assume that the slab is probed with a right-going propagating impulse:

A(t, z) = δ(z − t/c0) , B(t = 0, z) = 0 , for t < 0 .

At time 0 the first scattering occurs as the impulse arrives at the interface
z = 0. Just after t = 0 we have one reflected pulse and one transmitted pulse

A(t = 0+, z) = T0δ(z) , B(t = 0+, z) = R0δ(z) ,

where the support of the right-going impulse A is just to the right of the
interface z = 0, and the support of the left-going impulse A is just to the left
of the interface z = 0 (see top of Figure 3.15). Multiple-wave scattering leads
to a set of right- and left-going impulses. The scattering events occur only at
times that are multiples of τ due to the fact that the travel times from one
interface to another are constant. If we observe the wave at times kτ+, k ∈ N,
then these impulses are located at the interfaces, more precisely just to the
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right of the interfaces for the right-going impulses and just to the left for the
left-going impulses (see Figure 3.15). There are other impulse components
that have exited the slab, but they no longer interact with the slab, since
they propagate with constant speed, so they can be ignored. The right- and
left-going waves inside the slab are of the form

A(t = kτ+, z) =
N∑

j=0

Ak
j δ(z − Lj) , B(t = kτ+, z) =

N∑

j=0

Bk
j δ(z − Lj) ,

with k being the time index and j the interface index of the impulse amplitudes
Ak

j and Bk
j . The initial conditions at time 0+ give

A0
j = T0δj0 , B0

j = R0δj0 , (3.30)

where δjk is the Kronecker symbol: δjk = 1 if j = k and 0 if j = k.

Time 0+
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�L5L4L3L2L10 z

��
A2

0B2
0

��
A2

2B2
2

Time 3τ+

�L5L4L3L2L10 z

��
A3

1B3
1

��
A3

3B3
3

Time 4τ+

�L5L4L3L2L10 z

��
A4

0B4
0

��
A4

2B4
2

��
A4

4B4
4

Fig. 3.15. Discretization of the scattering process in a Goupillaud medium. The
nonzero impulse amplitudes are depicted for the times indices k = 0, 1, 2, 3, 4.

In this modeling, (Bk
0 )k∈N is the set of amplitudes of the reflected wave;

that is, the reflected impulse response is
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R(t) =
∞∑

k=0

Bk
0 δ(t− kτ) .

Similarly, the transmitted impulse response is

T (t) =

∞∑

k=0

Ak
Nδ(t− kτ) .

From the interface conditions at z = L0, . . . , LN we obtain the matrix relations
[

Ak+1
j

Bk+1
j

]
=

[
Tj −Rj

Rj Tj

] [
Ak

j−1

Bk
j+1

]
, for j = 0, . . . , N , (3.31)

with the radiation conditions Ak
−1 = 0 and Bk

N+1 = 0. This system com-
plemented with the initial conditions (3.30) allows us to compute recursively
with respect to the time index k the right and left impulse amplitudes.

The initial conditions and the unit speed of propagation enforce that Ak
j =

Bk
j = 0 for all j > k. This can be proved recursively with respect to k from

(3.31) and is a manifestation of the hyperbolicity of the system. After a time
kτ , the wave has probed only the first k layers of the medium. This remark
allows us to push the analysis forward by showing that the system (3.30–3.31)
can be reduced to a triangular system. This is especially relevant for important
applications, such as in geophysics, where the multilayer slab consists of a very
large number N of layers or even an infinite number of layers; that is, the
heterogeneous slab is a heterogeneous half-space. Note that the N -layer case
and the infinite-layer case are strictly identical as long as the time interval for
the computation is smaller than Nτ , according to the above remark.

We first note that j = k is the position of the front impulse at time index
k. Introducing the impulse amplitudes at distance l from the front,

Ãk
l = Ak

k−l , B̃k
l = Bk

k−l ,

we can write a triangular system for 0 ≤ l ≤ k + 1,
[

Ãk+1
l

B̃k+1
l

]
=

[
Tk+1−l −Rk+1−l

Rk+1−l Tk+1−l

] [
Ãk

l

B̃k
l−2

]
,

with the initial conditions

Ã0
l = T0δl0 , B̃0

l = R0δl0 ,

at k = 0 and the convention B̃k
−2 = B̃k

−1 = 0, Ãk
k+1 = 0. Note that only

the amplitudes Ãk
l and B̃k

l with even indices l are nonzero. Substituting the
second equation into the first one, we get the equivalent system

Ãk+1
2l =

1

Tk+1−2l
Ãk

2l −
Rk+1−2l

Tk+1−2l
B̃k+1

2l ,

B̃k+1
2l = Rk+1−2lÃ

k
2l + Tk+1−2lB̃

k
2(l−1) .
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Introducing the normalized amplitudes 0 ≤ 2l ≤ k,

ak
l =

(
k−2l∏

m=0

Tm

)
Ãk

2l , bk
l =

(
k−2l−1∏

m=0

Tm

)
B̃k

2l ,

with the convention T−1 = 1, we get the normalized equations

ak+1
l = ak

l −Rk+1−2lb
k+1
l ,

bk+1
l = bk

l−1 + Rk+1−2la
k
l .

By successive substitution of the second equation into the first one, it is pos-
sible to eliminate the variable b to get a closed system for a:

ak+1 = ak + Pkak , (3.32)

where ak
l = ak+l

l and the matrix Pk is lower triangular with

Pk
l,m = −Rk−l+1Rk−m+1 for l ≥ m .

This triangular system can be easily integrated with the initial condition
a0

l = T 2
0 δl0, and this gives the principle of a simple and efficient way to

simulate wave propagation in Goupillaud layered media in the time domain.
Equation (3.32) shows how a right-going wave changes as it propagates into
the heterogeneous slab. Note that the relevant information about the medium
for the analysis of the propagation is the product of two reflection coefficients.
This remark shows that if the medium is described in terms of random coef-
ficients, the statistics of the random propagating wave will be determined by
the statistics of the products of reflection coefficients.

Notes

The various transforms carried out in this chapter on the wave equations are
classical in the theory of hyperbolic systems. Our presentation is self-contained
in the case of the one-dimensional acoustic equations. For a general introduc-
tion to wave propagation phenomena we refer to the book by Whitham (1974)
[167], and for the particular case of deterministic layered media to the book by
Brekhovskikh (1980) [24]. Efficient numerical schemes for wave propagating
in multilayer media are proposed and discuseed in [8].
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Effective Properties of Randomly Layered
Media

In this chapter we study pulses traveling through finely layered media. We
first consider in Section 4.1 the particular case of piecewise-constant media as
introduced in the previous chapter. Using the formulation in terms of matrix
products, we show with two examples, periodic and random, that the trans-
mitted and reflected waves converge when the size of the layers goes to zero
and their number tends to infinity. In fact, homogenization takes place and
in the limit the pulse “sees” an effective homogeneous medium. The material
properties of this effective medium are computed from the material properties
of the heterogeneous medium through an averaging procedure. We then in-
troduce in Section 4.2 more general models of finely layered media, for which
the material parameters can vary continuously and/or with jumps. In Section
4.3 we present an alternative approach to the description of the propagating
modes, based on differential equations, where a suitable reference medium is
used. It requires the following sequence of transformations, some of which have
already been introduced in the previous chapter, now discussed in Sections
4.3–4.4:

• Decomposition into right- and left-going waves.
• Specification of boundary conditions and identification of the quanti-

ties of interest.
• Centering along the characteristics of the wave equations in a reference

medium.
• Performing Fourier transform in time, that is, passing to the frequency

domain.
• Converting a boundary value problem into an initial value problem using

a propagator matrix.

This approach will be the one exploited further in the rest of the book. We
then show in Section 4.5 that in the case of random media, the homogenization
problem is reduced to the averaging of random differential equations. The
averaging procedure derives from three important concepts:
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• Stochastic modeling: description of the fluctuations in the medium pa-
rameters, the density, and the bulk modulus, in terms of ergodic random
processes.

• Scale separation: exploiting the assumption that the typical wavelength
of the incoming wave is much longer than the typical scale of variation of
the medium parameters.

• Homogenization: use of the law of large numbers or the ergodic theorem
for ordinary differential equations with random coefficients.

In this chapter and in the rest of the book we are mainly concerned with waves
propagating in randomly layered media, so we present here homogenization
in this particular case. However, this theory applies to more general multi-
dimensional random media.

4.1 Finely Layered Piecewise-Constant Media

In this section we consider the case of a pulse traveling across many small
layers. We use the propagator formulation introduced in the previous chapter
in Section 3.5.1. A pulse, whose Fourier transform is assumed to be compactly
supported in [−ω0, ω0], is incoming from the left homogeneous half-space and
is impinging onto a multilayer slab [0, L]. We assume that the multilayer slab
is formed by 2N layers made of two materials whose densities (respectively
bulk moduli) are denoted by ρa and ρb (respectively Ka and Kb):

(ρ, K)(z) =

⎧
⎪⎪⎨
⎪⎪⎩

(ρe, Ke) if z < L0 = 0 ,
(ρa, Ka) if z ∈ [L2j, L2j+1), j = 0, . . . , N − 1 ,
(ρb, Kb) if z ∈ [L2j+1, L2j+2), j = 0, . . . , N − 1 ,
(ρe′ , Ke′) if z > L = L2N+1 .

(4.1)

The thickness of the jth layer will be denoted by ∆j = Lj − Lj−1, j =
1, . . . , 2N + 1 . The homogeneous half-spaces z < 0 (respectively z > L) have
material properties identified by the index e (respectively e′). The scattering
problem (3.24) for the transmitted wave a2N+1, the reflected wave b0, and the
incoming wave f can be written in the Fourier domain in the form

[
â2N+1(ω)

0

]
= K̂2N+1(ω)

[
f̂(ω)

b̂0(ω)

]
, (4.2)

K̂2N+1(ω) = Ĵ2N+1(ω)
(
Ĵ2N (ω)Ĵ2N−1(ω)

)
· · ·

· · ·
(
Ĵ2(ω)Ĵ1(ω)

)
Ĵea(ω) , (4.3)

where straightforward computations give the following:

• Ĵea corresponds to the interface between the left homogeneous medium
and the first layer that is of type a:
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Ĵea(ω) =

[
r
(+)
ea r

(−)
ea

r
(−)
ea r

(+)
ea

]
, (4.4)

with r
(±)
ea = 1

2

(√
ζa/ζe ±

√
ζe/ζa

)
.

• Ĵ2N+1 corresponds to the interface with the right homogeneous medium:

Ĵ2N+1(ω) =

[
r
(+)
ae′ ei

ω∆2N+1
ca r

(−)
ae′ e−i

ω∆2N+1
ca

r
(−)
ae′ ei

ω∆2N+1
ca r

(+)
ae′ e−i

ω∆2N+1
ca

]
, (4.5)

with r
(±)
ae′ = 1

2

(
1
√

ζe′/ζa ±
√

ζa/ζe′

)
.

• Ĵ
(2)
j (ω) := Ĵ2j(ω)Ĵ2j−1(ω) corresponds to the propagation over the two

successive layers [L2j−2, L2j−1]∪ [L2j−1, L2j ], and these composite propa-
gators have elements

Ĵ
(2)
j (1, 1) = r(+)2e

iω
(

∆2j−1
ca

+
∆2j
cb

)

− r(−)2e
iω

(
∆2j−1

ca
−∆2j

cb

)

, (4.6)

Ĵ
(2)
j (1, 2) = r(+)r(−)

(
e

iω
(
−∆2j−1

ca
+

∆2j
cb

)

− e
iω

(
−∆2j−1

ca
−∆2j

cb

))
, (4.7)

Ĵ
(2)
j (2, 1) = Ĵ

(2)
j (1, 2) , (4.8)

Ĵ
(2)
j (2, 2) = Ĵ

(2)
j (1, 1) , (4.9)

with r(±) = 1
2

(√
ζb/ζa ±

√
ζa/ζb

)
.

4.1.1 Periodic Case

We assume in this subsection that the layers have the same size: ∆j ≡ ∆.
Moreover, the thickness ∆ is small, so that the total thickness L = (2N +1)∆

of the heterogeneous slab is of order one. In this case, the matrix Ĵ
(2)
j is

independent of the layer index j, and the matrix Ĵ2N+1(ω) does not depend
on N , but both depend on the layer thickness ∆:

Ĵ
(2)
j (ω) ≡ Ĵ(2)(ω, ∆) , j = 1, . . . , N ,

Ĵ2N+1(ω) = Ĵae′ (ω, ∆) .

The propagator K̂2N+1 is given by

K̂2N+1(ω) = Ĵae′ (ω, ∆)
(
Ĵ(2)(ω, ∆)

)N

Ĵea(ω) .

The matrix Ĵea(ω) defined by (4.4) does not depend on ∆, and

Ĵae′(ω, ∆)
∆→0−→ Ĵae′ :=

[
r
(+)
ae′ r

(−)
ae′

r
(−)
ae′ r

(+)
ae′

]
,
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where the convergence is uniform for ω in the support [−ω0, ω0] of the pulse f̂ .

We now study the convergence of
(
Ĵ(2)(ω, ∆)

)N

as ∆ goes to zero, with

N = (L−∆)/(2∆), and L > 0 fixed. Note that N goes to infinity as ∆ goes
to zero.

Remark 4.1. In the very particular case with no impedance contrast, ζa = ζb,
we have r(+) = 1 and r(−) = 0, and the matrix Ĵ(2)(ω, ∆) is diagonal. As a
result,

(
Ĵ(2)(ω, ∆)

)N

=

[
ei 2ω∆N

c̄ 0

0 e−i 2ω∆N
c̄

]
∆→0−→

[
ei ωL

c̄ 0

0 e−i ωL
c̄

]
,

where the effective velocity c̄ is the harmonic average of the individual
velocities:

1

c̄
=

1

2

(
1

ca
+

1

cb

)
. (4.10)

In the general case, ζa = ζb, we can expand the matrix Ĵ(2)(ω, ∆) to second
order in ∆,

Ĵ(2)(ω, ∆) = I + i(ω∆)Ĵ
(2)
1 + O(∆2) , (4.11)

where

Ĵ
(2)
1 (1, 1) = r(+)2

(
1

ca
+

1

cb

)
− r(−)2

(
1

ca
− 1

cb

)
, (4.12)

Ĵ
(2)
1 (1, 2) = 2r(+)r(−) 1

cb
, (4.13)

Ĵ
(2)
1 (2, 1) = −Ĵ

(2)
1 (1, 2) , (4.14)

Ĵ
(2)
1 (2, 2) = −Ĵ

(2)
1 (1, 1) . (4.15)

Therefore we deduce the limit

(
Ĵ(2)(ω, ∆)

)N ∆→0−→ exp

(
iω

L

2
Ĵ

(2)
1

)
.

The matrix Ĵ
(2)
1 can be written in the diagonal form

Ĵ
(2)
1 = 2M−1

[
c̄−1 0
0 −c̄−1

]
M ,

where

M =

[
ζ̄−1/2 ζ̄1/2

−ζ̄−1/2 ζ̄1/2

]
.

The effective impedance and velocity are c̄ =
√

K̄/ρ̄ and ζ̄ =
√

K̄ρ̄, with the
effective density and bulk modulus defined by
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ρ̄ =
1

2
(ρa + ρb) ,

1

K̄
=

1

2

(
1

Ka
+

1

Kb

)
. (4.16)

The overall propagator as ∆→ 0 takes the limit form

K̂2N+1(ω)
∆→0−→ Ĵae′M−1

[
ei ωL

c̄ 0

0 e−i ωL
c̄

]
MĴea .

After some calculations, we see that

Ĵae′M−1 =

[
r
(+)
he′ r

(−)
he′

r
(−)
he′ r

(+)
he′

]
,

where r
(±)
he′ are the reflection coefficients of the interface between the homog-

enized slab characterized by the parameters c̄ and ζ̄ and the right homoge-

neous half-space. They are given by r
(±)
he′ = 1

2

(√
ζe′/ζ̄ ±

√
ζ̄/ζe′

)
. Similarly,

MĴea =

[
r
(+)
eh r

(−)
eh

r
(−)
eh r

(+)
eh

]
,

where r
(±)
eh = 1

2

(√
ζ̄/ζe ±

√
ζe/ζ̄

)
are the reflection coefficients of the in-

terface between the left homogeneous half-space and the homogenized slab.
Note that the reflection coefficients in the limit ∆→ 0 do not depend on the
choice of the type of the first and last thin layers, but only on the contrast
impedances between the homogeneous half-spaces and the homogenized slab.

In conclusion, the heterogeneous slab [0, L] in the limit ∆ → 0 behaves
like a homogeneous slab characterized by the parameters ζ̄ and c̄ embedded
between the two homogeneous half-spaces z < 0 and z > L. The values of the
effective parameters ρ̄ and K̄ do not depend on the frequency ω. We note also
that the parameters of the homogenized slab do not depend on those of the
homogeneous half-spaces surrounding it, which means that homogenization
is a local averaging process. The numerical experiment shown in Figure 4.1
illustrates homogenization in the case that the two half-spaces have material
parameters that coincide with the limit effective parameters of the heteroge-
neous slab, so that in the limit, the pulse travels without perturbation as in
an infinite homogeneous medium.

4.1.2 Random Case

We now look at a randomized version of the previous periodic case. We illus-
trate the role of randomness with a very particular example at this point. A
more complete analysis will be presented later in this chapter.

We still consider the setup (4.1) describing a concatenation of small layers
of two alternating materials. We assume here that the layer sizes ∆j , j =
1, . . . , 2N + 1, are given by
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Fig. 4.1. Transmission of a pulse though a piecewise-constant periodic medium
occupying the slab [0, L] with L = 4. The medium is described by (4.1) with
ρe = ρa = ρb = ρe′ = 1, Ke = Ke′ = 1, and 1/Ka = 0.2, 1/Kb = 1.8, so that
K̄ = 1 (matched medium). The initial pulse is the second derivative of a Gaussian,
with Fourier transform f̂(ω) = ω2 exp(−ω2/5). The (root-mean squared) time pulse
width is Trms =

√
7/15 ∼ 0.68. We plot the pressure field. In the left picture (re-

spectively right picture), the size of the layers is ∆ = 0.4 (respectively ∆ = 0.08). In
the left picture, a significant backscattering can be observed, and the transmitted
pulse is distorted. In the right picture, the backscattered wave is negligible, and the
transmitted pulse is very close to the incoming pulse.

∆j = δUj , (4.17)

where the Uj’s are independent and identically distributed random variables
with the common distribution being uniform over [1/2, 3/2], and δ > 0 is a
small parameter. This particular choice is not essential in the analysis. Note
that in this case the layer size is bounded and bounded away from zero, and
its average is equal to δ.

We consider δ as a small parameter and take the number of layers 2N + 1
of order δ−1. This is achieved by setting L′/δ = 2N + 1 with a fixed L′ > 0
and restricting δ to values such that L′/δ is an odd integer. Note that the size

L of the random slab is the random variable L =
∑2N+1

j=1 ∆j with expected
value

E[L] = (2N + 1)δ = L′

and variance

E
[
(L− E[L])2

]
= (2N + 1)

δ2

12
=

δL′

12

δ→0−→ 0 .

In other words, L converges to L′ in quadratic mean, and thus in probability.
The propagator K̂2N+1(ω) defined by (4.3) can now be written as the

product of random matrices
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K̂2N+1(ω) = Ĵ2N+1(ω)
(
Ĵ

(2)
N (ω) · · · Ĵ(2)

1 (ω)
)

Ĵea(ω) ,

where the matrices Ĵ2N+1(ω), Ĵea(ω), and Ĵ
(2)
j (ω), j = 1, . . . , N are given by

(4.4–4.9) As in the periodic case, the first and last matrices in the product
converge almost surely in the limit ∆ → 0, so the problem is reduced to the

study of the convergence of the product of the matrices Ĵ
(2)
j (ω).

In the very particular case in which there is no contrast of impedance,

ζa = ζb, the matrices Ĵ
(2)
j (ω) are diagonal and the product is given by

Ĵ
(2)
N (ω) · · · Ĵ(2)

1 (ω) =

[
eiωSN (δ) 0

0 e−iωSN (δ)

]
,

with

SN(δ) = δ

N∑

j=1

(
U2j−1

ca
+

U2j

cb

)
.

Using δ = L′/(2N + 1), an application of the strong law of large numbers
shows the almost sure convergence

SN (δ)
N→∞−→ L′

c̄
, with

1

c̄
=

1

2

(
1

ca
+

1

cb

)
.

The conclusion is as in the periodic case without impedance contrast.
In the case with contrast of impedance ζa = ζb, the expansion (4.11) is

still valid and takes the form

Ĵ
(2)
j (ω, ∆) = I + i(ωδ)Ĵ

(2)
j,1 + O(δ2) , (4.18)

where

Ĵ
(2)
j,1 (1, 1) = r(+)2

(
U2j−1

ca
+

U2j

cb

)
− r(−)2

(
U2j−1

ca
− U2j

cb

)
,

Ĵ
(2)
j,1 (1, 2) = 2r(+)r(−) U2j

cb
,

Ĵ
(2)
j,1 (2, 1) = −Ĵ

(2)
j,1(1, 2) ,

Ĵ
(2)
j,1 (2, 2) = −Ĵ

(2)
j,1(1, 1) .

It is important to underline that an individual propagator matrix Ĵj cannot

be put in the form I + δĴj,1 + O(δ2), because of the contrast of impedance
appearing in r(+) and r(−), as in the periodic case. However, the model with
two alternate materials allows us to obtain this form by pairing the propaga-
tors. Once we have this expansion, a combinatorics argument shows that with
δ = L′/(2N + 1),

∥∥∥∥∥∥

j=1∏

j=N

(
I + i(ωδ)Ĵ

(2)
j,1

)
− exp

⎛
⎝iωδ

N∑

j=1

Ĵ
(2)
j,1

⎞
⎠

∥∥∥∥∥∥
N→∞−→ 0 .



68 4 Effective Properties of Randomly Layered Media

We do not go into the technical details of this estimate since a different ap-
proach will be proposed and discussed in the rest of the book, starting with
the next section. An application of the law of large numbers then gives

δ

N∑

j=1

Ĵ
(2)
j,1

N→∞−→ L′

2
E[Ĵ

(2)
j,1 ] =

L′

2
Ĵ

(2)
1 ,

where Ĵ
(2)
1 is defined by (4.12–4.15). This establishes the convergence of the

product of propagators

Ĵ
(2)
N (ω) · · · Ĵ(2)

1 (ω)
N→∞−→ exp

(
iω

L′

2
Ĵ

(2)
1

)
.

The rest of the argument is the same as in the periodic case.
In Figure 4.2 we present numerical evidence for the homogenization limit

in a random medium. The situation is the same as in Figure 4.1, where all
layers have the same size equal to 0.4 (left picture) or 0.08 (right picture), but
in Figure 4.2 the layers have random sizes with means 0.4 and 0.08.

4.1.3 Conclusion

The method used so far to describe the transmission problem through a slab
of a finely layered medium has been to solve locally the wave equation and to
apply the interface conditions. This has naturally led to a formulation of the
propagation problem in terms of a product of many matrices scaled so that
the limit corresponds to a homogeneous effective medium. The two particular
examples (periodic and random) we have addressed are relatively simple, and
the analysis can be extended to more general media, for example to the case
in which the impedances are independent and identically distributed random
variables. Note, however, that in this case the expansion (4.18) is not valid, so
the analysis is necessarily more involved. Moreover, random matrix formula-
tion is well adapted to the case of piecewise-constant media. In the rest of the
book we propose a different approach based on the analysis of the asymptotic
behavior of differential equations. We will be mostly interested in the random
case, in which these differential equations have random coefficients. In the
following section we introduce this method in the regime of homogenization
where the pulse travels through many inhomogeneities.

4.2 Random Media Varying on a Fine Scale

We extend the modeling of the layered medium from the piecewise-constant
case addressed in the previous sections to the general situation in which the
density and bulk modulus are spatially varying in a continuous way and/or
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Fig. 4.2. Transmission of a pulse though a piecewise-constant random medium
occupying the slab [0, L] with L = 4. The medium is described by (4.1) with
ρe = ρa = ρb = ρe′ = 1, Ke = Ke′ = 1, and 1/Ka = 0.2, 1/Kb = 1.8, so that
K̄ = 1 (matched medium). The initial pulse is the second derivative of a Gaussian
pulse function with width Trms =

√
7/15 ≈ 0.68. The sizes of the layers ∆j are

random and as described by (4.17). The ∆j ’s are independent and identically dis-
tributed random variables with uniform distribution over [0.2, 0.6] with mean δ = 0.4
(left picture), and uniform distribution over [0.04, 0.12] with mean δ = 0.08 (right
picture). Homogenization is seen clearly, although the convergence (as the size of
the layers goes to zero) is not as rapid as in the periodic case (compare the reflected
signals in the two right pictures of Figures 4.1–4.2). If we compare the simulations in
the periodic and in the random cases, we see that fluctuations behind the main pulse
are more important in the random case than in the periodic case, where they are
practically nonexistent for δ = 0.08. This is one of our motivations for introducing,
as we do in the next sections, a different approach to the asymptotic analysis that
is more suitable for long-distance propagation in random media.

with jumps. This can serve as a model for waves propagating through sed-
imentary layers of the earth’s crust. In this case the layers are formed by
a deposition process that results in a thin horizontally layered structure. We
consider the idealized situation in which the parameters vary only with depth,
and moreover, we make the important assumption that the variations are on a
relatively fine scale. We assume that the scale of variation is small compared
to the distance traveled by the pulse, as well as compared to the wavelength
of the pulse. One may then expect that the waves are not strongly affected
by the impedance in any particular layer. When a pulse propagates through
such fine layers, the interaction with each layer is small, and propagation is
not much affected. The pulse therefore travels as if the medium were homo-
geneous with the layers replaced by “averaged” ones. In general, we refer to
this homogeneous medium as the homogenized medium. It is also referred
to as an effective, average, or equivalent medium.
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How can we characterize this equivalent medium? We start by writing the
medium parameters in the form

ρ = ρ(z/l) , K = K(z/l) , (4.19)

with l a parameter that can be viewed as the layer size. Thus, ρ(z) is the
variable density when observed through a magnifying glass with magnification
factor 1/l. We then observe the fluctuations on their natural or intrinsic scale
of variation. Typically, we will model ρ(z) as a stationary random process.
We discuss this modeling in more detail in Section 4.5. We consider a model
as shown in Figure 4.3:

ρ =

⎧
⎨
⎩

ρ0 if z < 0 ,
ρl(z) := ρ(z/l) if z ∈ [0, L] ,
ρ1 if z > L ,

(4.20)

K =

⎧
⎨
⎩

K0 if z < 0 ,
Kl(z) := K(z/l) if z ∈ [0, L] ,
K1 if z > L .

(4.21)

In later chapters we will also consider wave propagation in three-dimensional
layered media. An example is shown schematically in Figure 4.4. where a
point source emits a spherical pulse that is incident on a heterogeneous, lay-
ered section. Before addressing the limit problem l→ 0, we introduce several
important transformations of the wave equations.

z = Lz = 0

Fig. 4.3. Schematic of a heterogeneous slab embedded between two homogeneous
half-spaces, with a pulse incident from the left.

4.3 Boundary Conditions and Equations for Right- and
Left-Going Modes

As shown before, in Section 3.2, in each homogeneous half-space the wave can
be decomposed into a right-going wave Aj and a left-going wave Bj (j = 0
for the left half-space and j = 1 for the right half-space):

u(t, z) = ζ
−1/2
0

A0(t, z) + B0(t, z)

2
, p(t, z) = ζ

1/2
0

A0(t, z)−B0(t, z)

2
, z < 0 ,

u(t, z) = ζ
−1/2
1

A1(t, z) + B1(t, z)

2
, p(t, z) = ζ

1/2
1

A1(t, z)−B1(t, z)

2
, z > L,
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Fig. 4.4. A sperical wave from a point source is incident on a layered medium that
varies on a fine scale.

where the impendance is ζj =
√

Kjρj . The right- and left-going modes travel

with speed c0 =
√

K0/ρ0 in the half-space z < 0 and with speed c1 =
√

K1/ρ1

in the half-space z > L. This means that Aj is a function only of t − z/cj,
and Bj is a function only of t + z/cj.

A right-going acoustic pulse incident from the left half-space enters the
slab and no waves enter from the right. This is expressed by

A0(t, z) = f

(
t− z

c0

)
for z < 0 , (4.22)

B1(t, z) = 0 for z > L .

The pulse shape function f(t) is assumed to be smooth and with bounded
support. The width of the pulse is an important time scale. For homogeniza-
tion, this pulse width should be long compared to the time it takes to pass
over an inhomogeneity, but it should not be short compared to the time it
takes to traverse the slab. Propagation phenomena when the pulse width is
short compared to the travel time of the slab cannot be described with homog-
enization or effective medium theory. They require more-elaborate statistical
theories, discussed in subsequent chapters.

Next we decompose the wave inside the heterogeneous slab. There are two
possibilities. We can either consider the right- and left-going waves defined
in terms of the local impedances and moving with the local speed, or we can
consider the right- and left-going waves defined in terms of reference values for
the impedance and speed. This leads to two formulations that are essentially
equivalent. However, depending on the situation, one approach can turn out
to be more suitable than the other one for the asymptotic analysis. We present
these two approaches in the next two subsections.
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4.3.1 Modes Along Local Characteristics

We consider the right- and left-going waves defined in terms of the local
impedances and moving with the local speed. They are given by

[
A(t, z)
B(t, z)

]
=

[
ζ
−1/2
l (z)p(t, z) + ζ

1/2
l (z)u(t, z)

−ζ
−1/2
l (z)p(t, z) + ζ

1/2
l (z)u(t, z)

]
, (4.23)

where ζl(z) = ζ(z/l), with ζ(z) =
√

K(z)ρ(z). We first invert (4.23):

p(t, z) =
ζ
1/2
l (z)

2
(A(t, z)−B(t, z)) , u(t, z) =

1

2ζ
1/2
l (z)

(A(t, z) + B(t, z)) .

Susbtituting these expressions into the wave equations gives a coupled system
of two partial differential equations for the modes A and B. Let us assume
first that the impedance function ζ(z) is differentiable. We compute the partial
derivative of A:

∂A

∂z
=

1

ζ
1/2
l (z)

∂p

∂z
+ ζ

1/2
l (z)

∂u

∂z
− ζ′l(z)

2ζ
3/2
l (z)

p +
ζ′l(z)

2ζ
1/2
l (z)

u

= − ρl(z)

ζ
1/2
l (z)

∂u

∂t
− ζ

1/2
l (z)

Kl(z)

∂p

∂t
+

ζ′l(z)

2ζl(z)

(
−ζ

−1/2
l (z)p + ζ

1/2
l (z)u

)

=
1

cl(z)

∂

∂t

(
−ζ

1/2
l (z)u− ζ

−1/2
l (z)p

)
+

ζ′l(z)

2ζl(z)

(
−ζ

−1/2
l (z)p + ζ

1/2
l (z)u

)

= − 1

cl(z)

∂A

∂t
+

ζ′l(z)

2ζl(z)
B .

Here ζ′l stands for the z-derivative of ζl, and we have used the relation cl(z) =

c(z/l) with c(z) =
√

K(z)/ρ(z). A similar computation for ∂B/∂z leads to
the system

∂

∂z

[
A
B

]
= − 1

c(z/l)

[
1 0
0 −1

]
∂

∂t

[
A
B

]
+

1

l

ζ′(z/l)

2ζ(z/l)

[
0 1
1 0

] [
A
B

]
. (4.24)

These are the linear equations that describe the propagation and coupling of
the right- and left-going waves in the heterogeneous slab. The first term of the
right-hand side describes the propagation of the modes with the local speed
of sound c(z/l). The second term of the right-hand side describes the coupling
between the two modes due to the impendance variations ζ(z/l).

This method can be applied when the parameters ρ and K are piecewise-
differentiable with discontinuities at isolated interfaces 0 = z0 < z1 < · · · <
zN−1 < zN = L, j = 1, . . . , N . In this case, the modes satisfy (4.24) in
each interval z ∈ (zj , zj+1), j = 0, . . . , N − 1. At each interface z = zj,
the continuity conditions for the pressure and velocity fields become interface
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relations for the modes A and B, which are similar to those of a single interface
(3.12): [

A
B

]
(t, z+

j ) = Jj

[
A
B

]
(t, z−j ), Jj =

[
r
(+)
j r

(−)
j

r
(−)
j r

(+)
j

]
. (4.25)

Here r
(±)
j = 1

2

(√
ζl(z

+
j )/ζl(z

−
j )±

√
ζl(z

−
j )/ζl(z

+
j )

)
. The partial differential

equations (4.24) for z ∈ (zj , zj+1), the interface relations (4.25) at z = zj, and
the two interface relations at z = 0 and z = L form a system that uniquely
defines the modes A and B.

This formulation of scattering by a slab has been developed in the partic-
ular case of a piecewise-constant medium in Section 3.5, and the asymptotic
limit l→ 0 has been studied for two particular examples in Section 4.1. More
generally, this approach is appropriate when the fluctuations of the local speed
are on a scale that is long compared to the pulse width times a characteristic
propagation speed. In the frequency domain this is the setup for applications
of the Wentzel–Kramer–Brillouin (WKB) method. However, in the regimes
for random media analyzed in the following sections and chapters, the fluctu-
ations of the local speed of sound are strong and rapid relative to the pulse
width times a characteristic propagation speed. They cannot be captured by
the WKB method. That is why another approach is necessary. We introduce
it in the next subsection.

4.3.2 Modes Along Constant Characteristics

Another way to decompose the field inside the slab is to introduce the right-
and left-going waves for constant values for the impedance and speed of sound.
We shall see in the next section that there is a convenient choice for these two
parameters, but in the present section we carry out the analysis with general,
unspecified values ζ̄ and c̄. Accordingly, we make the ansatz

[
A(t, z)
B(t, z)

]
=

[
ζ̄−1/2p(t, z) + ζ̄1/2u(t, z)
−ζ̄−1/2p(t, z) + ζ̄1/2u(t, z)

]
. (4.26)

In order to derive equations for A and B we invert (4.26):

p =
ζ̄1/2

2
(A−B) , u =

1

2ζ̄1/2
(A + B) .

Computing ∂A/∂z gives

∂A

∂z
=

1

ζ̄1/2

∂p

∂z
+ ζ̄1/2 ∂u

∂z

=
1

ζ̄1/2

(
−ρl(z)

∂u

∂t

)
+ ζ̄1/2

(
− 1

Kl(z)

∂p

∂t

)
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= −ρl(z)

2ζ̄

∂(A + B)

∂t
− ζ̄

2Kl(z)

∂(A−B)

∂t

= −1

c̄

(
∆

(+)
l (z)

∂A

∂t
+ ∆

(−)
l (z)

∂B

∂t

)
,

where we have introduced the notation

∆
(±)
l (z) = ∆(±)(z/l) , ∆(±)(z) =

1

2

(
ρ(z)

ρ̄
± K̄

K(z)

)
. (4.27)

The constant parameters ρ̄ and K̄ are defined through the relations ζ̄ =
√

K̄ρ̄

and c̄ =
√

K̄/ρ̄. A similar computation for ∂B/∂z leads to the system

∂

∂z

[
A
B

]
= −1

c̄

[
∆(+)(z/l) ∆(−)(z/l)
−∆(−)(z/l) −∆(+)(z/l)

]
∂

∂t

[
A
B

]
. (4.28)

These are the linear equations that describe the propagation and coupling
of the right- and left-going waves in the heterogeneous slab. This system is
a generalization of (3.5) to the case of arbitrary density and bulk modulus.
Indeed, if the slab has constant parameters ρ(z) ≡ ρ̄ and K(z) ≡ K̄, then we
recover the decoupled system (3.5). It is important to underline here that the
right-hand side of (4.28) does not have a term of order 1/l, in contrast to the
right-hand side of the system (4.24). This is one of our motivations for the
introduction and the use of this second approach.

The relations (4.22) and the continuity of the velocity and pressure fields
at the interfaces give boundary conditions prescribed at the endpoints of the
heterogeneous slab for the modes A and B. More precisely, at z = 0 we have

[
A(t, 0)
B(t, 0)

]
= J0

[
A0(t, 0)
B0(t, 0)

]
, J0 =

[
r
(+)
0 r

(−)
0

r
(−)
0 r

(+)
0

]
,

with r
(±)
0 = 1

2

(√
ζ̄/ζ0 ±

√
ζ0/ζ̄

)
. Similarly, at z = L,

[
A1(t, L)
B1(t, L)

]
= J1

[
A(t, L)
B(t, L)

]
, J1 =

[
r
(+)
1 r

(−)
1

r
(−)
1 r

(+)
1

]
,

with r
(±)
1 = 1

2

(√
ζ1/ζ̄ ±

√
ζ̄/ζ1

)
. Using the boundary conditions (4.22) we

get [
A(t, 0)
B(t, 0)

]
= J0

[
f(ω0t)
B0(t, 0)

]
,

[
A1(t, L)

0

]
= J1

[
A(t, L)
B(t, L)

]
.

By eliminating B0(t, 0) and A1(t, L) we obtain the boundary conditions for
the modes A and B:

r
(+)
0 A(t, 0)− r

(−)
0 B(t, 0) = f(t) , r

(−)
1 A(t, L) + r

(+)
1 B(t, L) = 0 .
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In terms of the interface reflection and transmission coefficients

Rj = −
r
(−)
j

r
(+)
j

, Tj =
1

r
(+)
j

, j = 0, 1 ,

these boundary conditions read

A(t, 0) + R0B(t, 0) = T0f(t) , T1A(t, L)−B(t, L) = 0 . (4.29)

As we will see, the system (4.28) along with the boundary conditions (4.29)
is sufficient to determine the modes A and B. Once the modes A and B are
known, it is straightforward to extract the quantities of interest that are the
unknown scattered waves:

• Transmitted wave, given by A1(t, L), the part of the wave escaping to
the right:

A1(t, L) = T1A(t, L) .

• Reflected wave, given by B0(t, 0), the wave scattered back by the het-
erogeneities in the slab:

B0(t, 0) = T0B(t, 0) + R0f(t) .

Note that knowing A1(t, L) for all times gives us the right propagating wave for
z > L, since the medium is constant. Therefore A1(t, z) = A1(t−(z−L)/c1, L).
Similarly, we have B0(t, z) = B0(t + z/c0, 0) for all z < 0. One of the main
objectives of this book is to analyze and describe these quantities in various
asymptotic regimes and for various geometries.

4.4 Centering the Modes and Propagator Equations

4.4.1 Characteristic Lines

In the homogenized medium, as seen in the two examples given in Section 4.1,
we expect that the right- and left-going waves are unchanged when we observe
them in frames that move with the effective wave speeds ±c̄. We denote by
(a, b) the waves in these moving frames, so that

a(s, z) = A(s + z/c̄, z) , b(s, z) = B(s− z/c̄, z) , (4.30)

where t = s± z/c̄ are the two families of characteristic lines parameterized
by s. We similarly define

a1(s, L) = A1(s + L/c̄, L) , b0(s, 0) = B0(s, 0) . (4.31)
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Note that a, b depend only on s if the medium is homogeneous with constant
speed and impedance c̄ and ζ̄, since in these coordinates the waves are cen-
tered. In the heterogeneous medium, scattering will couple the two waves.
The governing equations for a and b given in (4.30) are nonlocal in time be-
cause of the shifts in the time variable. Rather than writing and analyzing
these nonlocal equations we go into the Fourier domain, where these shifts
are converted into phase factors.

4.4.2 Modes in the Fourier Domain

Since the medium is time-independent and our problem is linear, we can use
the Fourier transform with respect to the time variable by defining

â(ω, z) =

∫
eiωsa(s, z) ds , b̂(ω, z) =

∫
eiωsb(s, z) ds .

We can introduce similarly the Fourier transforms b̂0(ω, 0) and â1(ω, L) of
b0(t, 0) and a1(t, L). The frequency ω becomes a parameter. The only variable
with respect to which we take derivatives is the space variable z. In other
words, the partial differential equations in (t, z) have been transformed into an
infinite family of ordinary differential equations parameterized by ω. Therefore
we use the symbol d/dz instead of ∂/∂z. We compute

dâ

dz
=

∫
eiωs ∂

∂z
A(s + z/c̄, z) ds

=

∫
eiωs

(
1

c̄

∂A

∂s
(s + z/c̄, z) +

∂A

∂z
(s + z/c̄, z)

)
ds .

Using the first equation in (4.28) we express ∂A/∂z with time-differentiated
terms, which gives a multiplicative factor −iω in the frequency domain:

dâ

dz
= − iω

c̄

∫
eiωs

(
a(s, z)−∆

(+)
l a(s, z)−∆

(−)
l b(s + 2z/c̄, z)

)
ds

= − iω

c̄

(
(1−∆

(+)
l )â(ω, z)−∆

(−)
l e−2iωz/c̄ b̂(ω, z)

)
.

Note that a phase appears in the last term because of the centering change
of coordinates. Combined with a similar computation for the derivative of b̂
we obtain the following system of ordinary differential equations for (â, b̂),

d

dz

[
â

b̂

]
=

iω

c̄

[
(∆

(+)
l − 1) ∆

(−)
l e−2iωz/c̄

−∆
(−)
l e+2iωz/c̄ (1−∆

(+)
l )

][
â

b̂

]
, 0 < z < L , (4.32)

with boundary conditions obtained by Fourier transforming (4.29):

â(ω, 0) + R0b̂(ω, 0) = T0f̂ (ω) , R1e
2i ωL

c̄ â(ω, L)− b̂(ω, L) = 0 , (4.33)
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where

f̂(ω) =

∫
f(s)eiωs ds .

Our problem now is to solve the system (4.32) with the boundary conditions
(4.33). The problem (4.32–4.33) is a two-point boundary value problem and
is not, at first, well suited for the asymptotic analysis that we develop. We
now describe how the quantities of interest can be obtained from the solution
of initial value problems in z.

4.4.3 Propagator

One way to transform the above two-point boundary value problem into an
initial value problem is to introduce for each frequency ω the propagator
Pω. It is defined as the fundamental solution of the system (4.32), that is, the
2× 2 complex matrix function satisfying

d

dz
Pω(0, z) = Hω(z, z/l)Pω(0, z) , Pω(0, 0) = I , (4.34)

where we have denoted the identity matrix by I and we have introduced

Hω(z, z′) =
iω

c̄

[
(∆(+)(z′)− 1) ∆(−)(z′)e−2iωz/c̄

−∆(−)(z′)e+2iωz/c̄ (1 −∆(+)(z′))

]
. (4.35)

The matrix Pω(0, z) “propagates” the wave components from z = 0 to
any other location z > 0, since the linearity of (4.32) implies that

[
â(ω, z)

b̂(ω, z)

]
= Pω(0, z)

[
â(ω, 0)

b̂(ω, 0)

]
, (4.36)

for any z ∈ [0, L].
Note that the matrix Hω depends on both the “fast variable” z′ = z/l

and the “slow” space variable z. We have carefully articulated this variation
on different scales, since this will be essential in our asymptotic analysis.

Applying the Jacobi’s formula for the derivative of a determinant,

d det(Pω)

dz
= Tr

(
Adj(Pω)

dPω

dz

)
,

where Adj(Pω) is the adjugate of Pω, which satisfies PωAdj(Pω) = det(Pω)I,
and using (4.34) we get

d det(Pω)

dz
= Tr (Adj(Pω)HωPω) = Tr (HωPωAdj(Pω)) ,

where we use Tr(MN) = Tr(NM). Using the above relation between Pω and
Adj(Pω) we have
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d det(Pω)

dz
= Tr (Hω) det(Pω) .

Observe that the trace of the matrix Hω is zero. Thus the determinant of Pω

is constant in z. The initial condition being the identity then gives

det(Pω) = 1 .

If (αω, βω)T satisfies (4.32) with initial condition (1, 0), then a simple com-
putation shows that (βω, αω)T satisfies the same equation with initial condi-
tion (0, 1)T , which gives two linearly independent solutions. We deduce that
the propagator Pω has the representation

Pω =

[
αω βω

βω αω

]
, (4.37)

with
|αω|2 − |βω|2 = 1 .

The propagator and the boundary conditions (4.33) contain together all
the information necessary to analyze the quantities of interest in the scattering
problem. We first note that

Pω(0, L)

[
â(ω, 0)

b̂(ω, 0)

]
=

[
â(ω, L)

b̂(ω, L)

]
.

Using the representation (4.37) we get

â(ω, L) = αω â(ω, 0) + βω b̂(ω, 0) ,

b̂(ω, L) = βωâ(ω, 0) + αω b̂(ω, 0) ,

where we write αω = αω(0, L) and βω = βω(0, L) for simplicity. Substituting
these relations into the second equation of (4.33) and solving the 2× 2 linear
system that results together with the first equation of (4.33), we find the
expressions for the modes

b̂(ω, 0) =
T0

[
βω(0, L)−R1e

2i ωL
c̄ αω

]

(R0βω − αω)−R1e2i ωL
c̄ (R0αω − βω)

f̂(ω) ,

â(ω, L) =
−T0

(R0βω − αω)−R1e2i ωL
c̄ (R0αω − βω)

f̂(ω) .

Accordingly, the transmitted wave is given by

â1(ω, L) =
−T0T1

(R0βω − αω)−R1e2i ωL
c̄ (R0αω − βω)

f̂(ω) , (4.38)

and the reflected wave is given by
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b̂0(ω, 0) =
(βω −R0αω)−R1e

2i ωL
c̄ (αω −R0βω)

(R0βω − αω)−R1e2i ωL
c̄ (R0αω − βω)

f̂(ω) . (4.39)

These representations of the exiting waves are useful, but there is an alterna-
tive way to get closed-form expressions for the same quantities that will be
very convenient for the analysis in the next chapters, and which we discuss
next.

4.4.4 The Riccati Equation for the Local Reflection Coefficient

Let us consider the reflection coefficient for a slab occupying the interval (z, L],
with 0 ≤ z ≤ L, with waves incident from a homogeneous medium on the left.
We call this the local reflection coefficient, and it is defined by

R̂(ω, z) =
b̂(ω, z)

â(ω, z)
.

Note that the coefficients â(ω, z) and b̂(ω, z) are global quantities associated
with the full random medium between 0 and L. However, their ratio can be
expressed as the local reflection coefficient R̂(ω, z), which depends only on
the section between z and L. This is a consequence of the geometry of the
experiment, where the source is outside the random medium between 0 and
L, on the negative z-axis. The fact that we terminate the random medium
at z = L enables us to identify a terminal condition for the local reflection
condition at z = L. From the boundary condition (4.33) at z = L, we have

R̂(ω, L) = R1e
2i ωL

c̄ . (4.40)

Differentiating the ratio R̂ = b̂/â with respect to z and using (4.32) we see that
the local reflection coefficient satisfies the Riccati equation for z ∈ [0, L]:

dR̂

dz
=

iω

c̄

[
−∆

(−)
l (z)e2i ωz

c̄ + 2(1−∆
(+)
l (z))R̂ −∆

(−)
l (z)e−2i ωz

c̄ R̂2
]

. (4.41)

Taking into account the boundary condition (4.33) at z = 0, we get

b̂(ω, 0) =
T0R̂(ω, 0)

1 + R0R̂(ω, 0)
f̂(ω) ,

and the reflected wave is

b̂0(ω, 0) = R̂(ω)f̂(ω) ,

where R̂ is the reflection coefficient of the heterogeneous slab

R̂(ω) =
R0 + R̂(ω, 0)

1 + R0R̂(ω, 0)
, (4.42)
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and R0 is the interface reflection coefficient at z = 0. The Riccati equation
(4.41) is a nonlinear terminal value problem for the local reflection coefficient.
It is an alternative way to obtain the reflection coefficient for the slab, which
replaces the linear two-point boundary value problem (4.32–4.33). It is a con-
tinuous analogue of the recursive linear fractional transformations (3.27) that
were obtained for a piecewise-constant medium, without a special centering as
is the case in (4.41). Note also that it is a backward Riccati equation that must
be solved from z = L to z = 0, starting from the terminal condition (4.40)
at z = L. For a random heterogeneous slab this is problematic, because the
application of standard stochastic analysis tools deals with forward random
equations. One easy way to deal with this issue is to consider reflection from
waves incident from the right of a slab occupying the interval [−L, 0]. The
local reflection coefficient for the interval [−L, z), with −L ≤ z ≤ 0, satisfies
a forward Riccati equation with initial condition at z = −L. We will use this
setup in Chapter 9.

The reflected wave is given in terms of the local reflection coefficient that
solves (4.40–4.41). A nonlinear terminal value problem can also be obtained
for the local transmission coefficient, from which the transmitted wave is de-
termined. The local transmission coefficient is defined by

T̂ (ω, z) =
T1â(ω, L)

â(ω, z)
, 0 ≤ z ≤ L .

It satisfies the equation

dT̂

dz
=

iω

c̄
T̂

[
(1 −∆

(+)
l (z))−∆

(−)
l (z)e−2i ωz

c̄ R̂
]

(4.43)

for z ∈ [0, L], with terminal condition

T̂ (ω, L) = T1 . (4.44)

Taking into account the interface condition (4.33) at z = 0, we get

â(ω, L) =
T0T

−1
1 T̂ (ω, 0)

1 + R0R̂(ω, 0)
f̂(ω) .

The transmitted wave is therefore

â1(ω, L) = T̂ (ω)f̂(ω) ,

where T̂ is the transmission coefficient of the heterogeneous slab

T̂ (ω) =
T0T̂ (ω, 0)

1 + R0R̂(ω, 0)
. (4.45)

Here T0 and R0 are the interface transmission and reflection coefficients at
z = 0.
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By differentiating |R̂|2+ |T̂ |2 with respect to z and using (4.41) and (4.43),
we find that it is independent of z. From the terminal conditions at z = L it
follows that it is equal to one. This identity is preserved by the linear fractional
transformations (4.42) and (4.45), and we obtain

|R̂(ω)|2 + |T̂ (ω)|2 = 1 . (4.46)

This is the energy flux conservation relation expressing the equality of the
energy entering the slab with the energy exiting the slab. In particular, this
implies that the complex-valued reflection and transmission coefficients, R̂(ω)
and T̂ (ω), are uniformly bounded in absolute value by one.

4.4.5 Reflection and Transmission in the Time Domain

We return to the time domain with an inverse Fourier transform. We have the
following integral representations.

• The transmitted wave:

A1(t, L) = a1(t− L/c̄, L) =
1

2π

∫
e−iω(t−L/c̄)T̂ (ω)f̂(ω) dω

=
1

2π

∫
e−iω(t−L/c̄)

(
T0T̂ (ω, 0)

1 + R0R̂(ω, 0)

)
f̂(ω) dω . (4.47)

• The reflected wave:

B0(t, 0) = b0(t, 0) =
1

2π

∫
e−iωtR̂(ω)f̂(ω) dω

=
1

2π

∫
e−iωt

(
R0 + R̂(ω, 0)

1 + R0R̂(ω, 0)

)
f̂(ω) dω . (4.48)

In Section 4.5 we analyze the asymptotic behavior of the propagator ma-
trices, from which we get the asymptotic behavior of the quantities of interest
using (4.47) and (4.48). This is done in the regime in which the layer size l is
small.

4.4.6 Matched Medium

When the two homogeneous half-spaces have the same material properties
ρ0 = ρ1 and K0 = K1, it is natural to choose K̄ = K0 and ρ̄ = ρ0, so that
R0 = R1 = 0 and T0 = T1 = 1. The reflection and transmission coefficients of
the heterogeneous slab are then given by

R̂(ω) = R̂(ω, 0) = −βω

αω
, T̂ (ω) = T̂ (ω, 0) =

1

αω
.
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They are also solutions of the Riccati equations (4.41)–(4.43) with the follow-
ing terminal conditions at z = L: R̂(ω, L) = 0 and T̂ (ω, L) = 1.

The local reflection coefficient R̂(ω, z) characterizes reflection into the left
half space from the random slab (z, L) at a fixed frequency ω. The transmission
coefficient T̂ (ω, z) characterizes transmission by the slab (z, L) into the right
half-space.

The transmitted and reflected waves (4.38) and (4.39) in the frequency
domain are

â1(ω, L) = â(ω, L) = T̂ (ω)f̂(ω) , b̂0(ω, 0) = b̂(ω, 0) = R̂(ω)f̂(ω) .

In the time domain they are

A1(t, L) = a1(t− L/c̄, L) =
1

2π

∫
e−iω(t−L/c̄)T̂ (ω, 0)f̂(ω) dω ,

B0(t, 0) = b0(t, 0) =
1

2π

∫
e−iωtR̂(ω, 0)f̂(ω) dω .

4.5 Homogenization and the Law of Large Numbers

4.5.1 A Simple Discrete Random Medium

We illustrate in a simple setting the concept of homogenization from the
point of view of differential equations and its connection to the law of large
numbers. We first assume that the local propagation speed c varies with z but
the impedance is constant. We choose the value ζ̄ to be equal to this constant.
We consider a more general case in the next section. With these assumptions
we have

ρ(z)

ρ̄
=

K̄

K(z)
=

c̄

c(z)
,

and equation (4.34) for the propagator becomes

d

dz
Pω(0, z) = iω

(
1

c(z/l)
− 1

c̄

)[
1 0
0 −1

]
Pω(0, z) .

This equation is diagonal and can be integrated by exponentiation:

Pω(0, z) =

[
exp (iωSl(z)) 0

0 exp (−iωSl(z))

]
, (4.49)

Sl(z) =

∫ z

0

(
1

c(y/l)
− 1

c̄

)
dy . (4.50)

To determine the effective medium that emerges in the limit of fine layering
l→ 0, we see from (4.50) that we need to study the behavior of

∫ z

0
c−1(y/l)dy
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as l → 0. Homogenization can be illustrated using the simple model in which
the medium is made up of independent and identically distributed layers of
equal width l → 0. The medium is defined by one sequence of independent
and identically distributed positive random variables Cn that are bounded
and bounded away from zero. Figure 4.5 is a schematic of the random layering
in the slab. In this model, at a given location z ∈ [0, L] in the slab, the local
speed of propagation is given by

c(z/l) = C[z/l] ,

where [x] denotes the integer part of x. Since [z/l] → ∞ as l → 0, we can
apply the law of large numbers to obtain

∫ z

0

c−1(y/l)dy = l

∫ z/l

0

c−1(ỹ) dỹ

= l [z/l]︸ ︷︷ ︸
↓
z

× 1

[z/l]

⎛
⎝

[z/l]−1∑

j=0

1

Cj

⎞
⎠

︸ ︷︷ ︸
a.s. ↓

E

[
1

C1

]

+ l (z/l− [z/l])
1

C[z/l]︸ ︷︷ ︸
↓
0

l→0−→ zE

[
1

C1

]
. (4.51)

The convergence is in the almost sure sense, for almost all realizations of the
medium, or with probability one with respect to the randomness. Note that
the frequency ω does not appear in (4.51), so the set of probability one on
which the convergence holds is independent of ω. A more general version of
this result is presented in Section 4.5.2.

z = Lz = 0 l

C0

C1

C2

Fig. 4.5. A piecewise-constant heterogeneous slab is embedded in a homogeneous
medium. The width of each small section is l. The propagation speed in the nth
section is Cn where (Cn) is a sequence of independent and identically distributed
random variables. The impedance is the same for all sections.

In this setting, homogenization in the frequency domain means that we
should choose c̄ such that in the limit that l → 0 the propagator Pω(0, z)
becomes the identity for all z. Using (4.49–4.50), we see that we must have

c̄ =

(
E

[
1

C1

])−1

.
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Thus, the harmonic mean of local propagation speeds is the homogenized or
effective propagation speed. This effective propagation speed is frequency
independent in this example, and therefore it is also the effective propagation
speed in the time domain. We can also consider homogenization in dispersive
systems, as is done in Chapter 18.

In the limit l → 0, the propagator Pω(0, L) becomes the identity, which
means that αω → 1 and βω → 0. Substituting into (4.38–4.39) we get the
transmitted and reflected waves in the Fourier domain:

â1(ω, L) =
T0T1

1 + R0R1e2i ωL
c̄

f̂(ω) ,

b̂0(ω, 0) =
R0 + R1e

2i ωL
c̄

1 + R0R1e2i ωL
c̄

f̂(ω) .

These coincide with the expressions (3.16) for the transmitted and reflected
waves from a homogeneous layer embedded between two homogeneous half-
spaces.

By Fourier transforming (4.31), we get the time domain limit l → 0 of the
transmitted and reflected waves:

lim
l→0

A1(t, L) =
1

2π

∫
e−iω(t−L/c̄) T0T1

1 + R0R1e2i ωL
c̄

f̂(ω) dω , (4.52)

lim
l→0

B(t, 0) =
1

2π

∫
e−iωt R0 + R1e

2i ωL
c̄

1 + R0R1e2i ωL
c̄

f̂(ω) dω . (4.53)

Here we can take the limit l → 0 inside the integral, since all quantities
are bounded. The pulse function f(t) is assumed to be a smooth function of

compact support and so f̂ is integrable. We also have |R0R1| ≤ 1. If |R0R1| <
1, then the integrands in (4.52–4.53) are bounded. If |R0R1| = 1 then T0T1 =
0, and the transmitted wave is zero, while the reflected wave is sgn(R0)f(t),
as expected.

For a matched medium the heterogeneous slab is embedded between two
homogeneous half-spaces with the same properties as the effective medium
(ρ0, K0) = (ρ1, K1) = (ρ̄, K̄). This implies that R0 = R1 = 0 and T0 = T1 = 1,
and the transmitted and reflected waves are given by

lim
l→0

A1(t, L) = f

(
t− L

c̄

)
, lim

l→0
B(t, 0) = 0 .

This is what happens in a homogeneous medium. The pulse is propagating
to the right with constant speed c̄ and there is no wave scattered back to the
left.

The homogenized medium emerges as a consequence of the law of large
numbers. Many independent small scattering events associated with thin lay-
ers are averaged. In homogenization the random matrix Hω in (4.35) is re-
placed by its average. This averaging makes the effective speed of propagation
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equal to the harmonic mean of the local propagation speeds. The averaged
matrix Hω vanishes since the correct centering gives pure shift and no inter-
action of the right- and left-traveling waves.

4.5.2 Random Differential Equations

What is important in the analysis of the previous section is the existence of
the limit

lim
l→0

1

z

∫ z

0

1

c(y/l)
dy =

1

c̄
.

This limit is well defined for a wide class of heterogeneous media. It is well
defined for deterministic periodic media with small period l, as it is for me-
dia modeled with ergodic stochastic processes. We introduce below a general
class of differential equations with random coefficients for which averaging
or homogenization can be carried out. We then apply the general averaging
theorem to the propagator equation (4.34).

Equation (4.34) for the propagator Pω is a prototype of differential equa-
tions with random coefficients. It has the general form

dX

dz
= F (z, Y (z/l), X(z)) , (4.54)

where:

• The variable z is one-dimensional, and in many applications of random dif-
ferential equations this is a continuous time variable. The d-dimensional
vector function F defines a random dynamical system with rapidly fluctu-
ating coefficients represented by the process Y (z/l), with l a small param-
eter. The trajectory of a random system along with that of the averaged
system is shown in Figure 4.6. The closeness of the two trajectories is a
manifestation of the averaging theorem.

• The solution X(z) is the d-dimensional state vector of the system under
study.

• The process Y (z) is the driving random process, which takes values in
an auxiliary space S. This process fluctuates on the fine scale z/l. We
assume that it is ergodic. In the wave homogenization example discussed
above, the process Y is defined by the piecewise-constant medium param-
eters (ρ, K), which are modeled as independent and identically distributed
random variables.

• The function F (X, Y ) is a d-dimensional smooth function that is at most
linearly growing in X , so that existence and uniqueness properties hold
for equation (4.54).

• We will be interested in initial value problems with X(0) = x0 given.
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Fig. 4.6. The trajectory of a two-dimensional random differential equation and that
of the averaged differential equation. The right-hand side of the random differential
equation is F1(z, Y (z/l), X(z)) = (1 + Y1(z/l)) X1(z)/5 and F2(z, Y (z/l), X(z)) =
(1+Y2(z/l)). The initial condition is X(0) = (1, 0). The driving term Y is piecewise-
constant and in each section, Y1 and Y2 are independent random variables, uniformly
distributed in the interval (−1.5, 1.5). In the top plot l = 1/20, in the bottom
l = 1/1000. The first component X1 is the radius and the second component X2

the angle. The dashed lines show X(z) for one realization of the random medium
Y . The solid lines are the trajectories of the averaged equations.

In the equation (4.34) for the propagator, the dimension d is 8, since the
propagator is a complex 2 × 2 matrix where each entry is decomposed into
its real and imaginary parts. In this case the equation is linear in the state X
and the function F is periodic in its first argument z due to the form of the
phases in Hω defined in (4.35). As already noted, the driving process is

Y (z/l) = (ρ(z/l), K(z/l)) .

It takes its values in a compact subspace S of (0,∞)× (0,∞).
We consider the limit of l small and this corresponds to averaging the

equation (4.54) with respect to the driving randomness Y . We now state a
basic form of the averaging theorem for systems of random differential
equations.

Theorem 4.2. Under the ergodicity assumption for Y , the solution X of the
random differential equation (4.54) converges almost surely to X̄ given by

dX̄

dz
= F̄ (z, X̄) with X̄(0) = x0 , (4.55)

and where

F̄ (z, x) = lim
Z→∞

1

Z

∫ Z

0

F (z, Y (y), x) dy = E[F (z, Y, x)] . (4.56)
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It is important here to note that the expectation is taken when the argu-
ments z and x are frozen (or fixed with respect to the randomness) and we
average with respect to the invariant or “steady-state” distribution of Y .

We outline next the intuitive ideas of the proof of this result. A general
proof, using perturbed test functions or correctors, is introduced in Chapter 6.
Here we give an elementary direct proof. We consider the difference between
the exact solution X(z) and its small l limit X̄(z). From the differential equa-
tions satisfied by X and X̄ we have

X(z)− X̄(z) =

∫ z

0

F (y, Y (y/l), X(y))dy −
∫ z

0

F̄ (z, X̄(y))dy

=

∫ z

0

(
F (y, Y (y/l), X(y))− F (y, Y (y/l), X̄(y))

)
dy + g(z) ,

where

g(z) :=

∫ z

0

F (y, Y (y/l), X̄(y))− F̄ (y, X̄(y))dy .

Taking the modulus and assuming that F is globally Lipschitz with respect
to the X-variable. we have

|X(z)− X̄(z)| ≤
∫ z

0

∣∣F (y, Y (y/l), X(y))− F (y, Y (y/l), X̄(y))
∣∣ dy + |g(z)|

≤ C

∫ z

0

|X(y)− X̄(y)|dy + |g(z)| .

We note that if

lim
l→0
|g(z)| = lim

l→0

∣∣∣∣
∫ z

0

{
F (y, Y (y/l), X̄(y))− F̄ (y, X̄(y))

}
dy

∣∣∣∣ = 0 , (4.57)

then Gronwall’s lemma allows us to conclude that the difference X(z)− X̄(z)
becomes small in the limit of l small, or

lim
l→0

X(z) = X̄(z) .

The convergence of an integral of the type (4.57) was carried out in the special
case of a discrete driving process Y in Section 4.5.1. It is proven in general
by discretizing the integral and applying the law of large numbers, hypothesis
(4.56), on subintervals.

The Gronwall inequality in its simplest form is as follows. If Z(t) satisfies
for A and B positive constants the integral inequality

Z(t) ≤ A + B

∫ t

0

Z(s)ds , t ≥ 0,

then
Z(t) ≤ AeBt , t ≥ 0 .
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4.5.3 The Effective Medium

We return to the form (4.34) without assuming that the impedance is constant
and we use the averaging Theorem 4.2, introduced in the previous section, to
find the effective medium parameters in the general case. The complex matrix-
valued random dynamical system (4.34) for the propagator Pω ∈ C2×2, with
∆(±) given by (4.27), has the form

dPω

dz
= F (z, Y (z/l),Pω(z)) , (4.58)

where

F (z, Y (z/l),Pω(z)) (4.59)

=
iω

c̄

⎡
⎣
(

Y1(z/l)+Y2(z/l)
2

)
− 1

(
Y1(z/l)−Y2(z/l)

2

)
e−2iωz/c̄

−
(

Y1(z/l)−Y2(z/l)
2

)
e+2iωz/c̄ 1−

(
Y1(z/l)−Y2(z/l)

2

)
⎤
⎦Pω(z) ,

and

Y1(z/l) =
ρ(z/l)

ρ̄
, Y2(z/l) =

K̄

K(z/l)
.

The effective medium approximation is now obtained by choosing ρ̄ and K̄
such that the “effective propagator” P̄ω, that is, the limit for the propagator
when l → 0 according to the averaging theorem, becomes the identity for any
z:

dP̄ω

dz
= 0 .

This gives

1

2

(
E[ρ]

ρ̄
+ K̄E

[
1

K

])
= 1 ,

1

2

(
E[ρ]

ρ̄
− K̄E

[
1

K

])
= 0 .

Thus, the homogenized or effective medium is given by

ρ̄ = E[ρ] ,
1

K̄
= E

[
1

K

]
. (4.60)

The effective parameters are here frequency-independent and therefore it
follows that they are also the effective parameters in the time domain. In the
homogenization limit, the transmitted and reflected waves are given by (4.52)
and (4.53), respectively, with the effective wave speed

c̄ =
√

K̄/ρ̄ . (4.61)

The effective wave speed is obtained by averaging the density and the recip-
rocal of the bulk modulus.
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Example 4.3. Bubbles in water. This is not a typical one-dimensional random
medium, but since homogenization is valid for general three-dimensional ran-
dom media, the results that we get from the above elementary theory are
physically correct. Air and water have the following density and bulk modu-
lus:

ρa = 1.2 103 g/m3, Ka = 1.4 108 g/s2/m, ca = 340 m/s.
ρw = 1.0 106 g/m3, Kw = 2.0 1018 g/s2/m, cw = 1425 m/s.

If we consider a pulse whose bandwidth is in the range 10 Hz–30 kHz,
then the wavelengths lie in the range 1 cm–100 m. Air bubbles in water are
typically much smaller, so the effective-medium theory can be applied. Let us
denote by φ the volume fraction of air in the mixture. The averaged density
and bulk modulus are then

ρ̄ = E[ρ] = φρa + (1 − φ)ρw =

{
9.9 105 g/m3 if φ = 1% ,
9 105 g/m3 if φ = 10% ,

K̄ =
(
E[K−1]

)−1
=

(
φ

Ka
+

1− φ

Kw

)−1

=

{
1.4 1010 g/s2/m if φ = 1% ,
1.4 109 g/s2/m if φ = 10% .

Accordingly, c̄ = 120 m/s if φ = 1% and c̄ = 37 m/s if φ = 10%.

This important and physically relevant example shows that the average
velocity may be much smaller than the minimum of the component veloci-
ties of the medium. However, it cannot happen in such a configuration that
the velocity is larger than the maximum (or the essential supremum) of the
component velocities. Indeed, by the Cauchy–Schwarz inequality,

E[c−1] = E

[
K−1/2ρ1/2

]
≤ E[K−1]1/2

E[ρ]1/2 = c̄−1 .

Thus c̄ ≤ E[c−1]−1 ≤ ‖c‖∞.

Notes

The theory and the results presented in this book rely heavily on modeling
and analysis with separation of scales, which has been developed in the past
thirty-five years. The main probabilistic tool for the homogenization theory
of the equations considered in this book is the law of large numbers or, more
generally, the ergodic theorem. We introduce this basic result in Section 4.5.
We refer to the book of Breiman [23] for a more complete introduction to
probabilistic tools at the level used in this chapter. In Section 4.5.2 we re-
formulate homogenization as an averaging theorem for random differential
equations. Such averaging theorems were first given by Khasminskii [97]. A
review of different averaging techniques can be found in the book by Holmes
[89]. Multi-dimensional homogenization theory for periodic media is exten-
sively treated by Milton [122] and Bensoussan–Lions–Papanicolaou [13]. A
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review of results on homogenization for random media is presented in [130].
Acoustic waves in bubbly liquids were analyzed in [34]. Electromagnetic waves
in composite materials are discussed in [159].



5

Scaling Limits

In the previous chapter we considered a pulse propagating in a one-dimensional
randomly layered medium in the homogenization or effective-medium regime.
In this regime the typical wavelength of the propagating pulse λ0 is compara-
ble to the propagation distance L, while the size l of the layers is small. The
typical wavelength is taken to be the pulse width times a reference propaga-
tion speed. In this homogenization regime, propagation in a random medium is
asymptotically equivalent to propagation in a homogeneous effective medium
obtained by averaging the density and the reciprocal of the bulk modulus. In
many applications the propagation distance is large compared with the size
of the pulse, and wave fluctuations build up behind it as it travels deep into
the random medium. In order to model this regime, we take the propagation
distance L to be large compared to the typical wavelength λ0, and the typical
layer size l small compared to λ0,

l≪ λ0 ≪ L , (5.1)

as illustrated in Figure 5.1.
We refer to this scaling as the high-frequency white-noise regime. It is a par-

ticularly interesting one because it is a high-frequency regime with respect to
the large-scale variations of the medium, L/λ0 ≫ 1, but it is a low-frequency
regime with respect to the small-scale random fluctuations, l/λ0 ≪ 1. As a
result, the effect of the random fluctuations takes a canonical form, the white-
noise limit, which is independent of the small-scale details. The high-frequency
white-noise regime is one of the scaling regimes that have remarkably com-
plete asymptotic theory, as we will see in the following chapters, but other
interesting regimes can also be analyzed. In this chapter we introduce the dif-
ferent scales that are relevant to wave propagation in a random medium and
we identify several interesting scaling regimes. The identification of scaling
regimes provides small dimensionless parameters that quantify the separation
of scales that are exploited by the asymptotic theory.
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L

l

λ0

Fig. 5.1. This figure illustrates the high-frequency white-noise scaling regime. This
is a regime in which the typical wavelength is much smaller than the propagation
distance, that is, λ0 ≪ L, and in which the medium fluctuations are on a fine scale,
l ≪ λ0. This scaling is typical of the applications that we have in mind in this book.

5.1 Identification of the Scaling Regimes

We consider again the acoustic wave equations

ρ(z)
∂u

∂t
+

∂p

∂z
= F (t, z) , (5.2)

1

K(z)

∂p

∂t
+

∂u

∂z
= 0 , (5.3)

with a source term on the right side of the linearized momentum equation
(5.2). We consider first the modeling of the random medium through the
density ρ and the bulk modulus K.

5.1.1 Modeling of the Medium Fluctuations

For simplicity we assume that there are no random fluctuations in the density,
that is, ρ(z) = ρ̄, a constant for all z. This is not essential for the analysis of
propagation in one-dimensional random media, but it greatly simplifies the
analysis of wave propagation in three-dimensional randomly layered media,
presented in Chapter 14. We consider media with randomly varying density
in Chapter 17.

As we saw in Chapter 4, it is the reciprocal of the bulk modulus that
is averaged over distances of propagation comparable with the width of the
pulse. It is therefore natural to model the fluctuations in the form

1

K(z)
=

{ 1
K

(1 + νK(z)) for z ∈ [0, L] ,
1
K

for z ∈ (−∞, 0) ∪ (L,∞) ,
(5.4)

ρ(z) = ρ̄ for all z ,

where ρ̄ and K̄ are given positive constants. The relative fluctuations in the
reciprocal of the bulk modulus are modeled by the zero-mean stationary ran-
dom process νK defined on (−∞,∞). In the language of the previous chapter,
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the effective bulk modulus is K̄. Note that we consider here matched ho-
mogeneous media on either side of the random slab, which means that the
properties of the two homogeneous half-spaces are the same as those of the
homogenized slab. This matched-medium assumption simplifies the analysis.
We consider in detail nonmatched media in Chapter 17.

We introduce the standard deviation σK and the correlation length
lK of the dimensionless fluctuations:

σ2
K = E[νK(z0)

2] , σ2
K lK =

∫ ∞

−∞
E[νK(z0)νK(z0 + z)]dz . (5.5)

These quantities do not depend on z0, since the fluctuation process νK is sta-
tistically stationary. Both are nonnegative, because the first one is a variance
and the second one is the integral of the autocorrelation function proportional
to the power spectral density of the stationary process νK at 0 frequency,
which is nonnegative by the Wiener–Khintchine theorem. A general form of
this positivity is presented in Chapter 6.

We now write the random process νK in scaled form

νK(z) = σν(z/l) , (5.6)

where σ and l are two positive parameters and ν is a dimensionless station-
ary, zero-mean random function of a dimensionless argument. Using (5.5) we
obtain the identities

σ2
K = σ2

E[ν(z0)
2] ,

σ2
K lK = σ2l

∫ ∞

−∞
E[ν(z0)ν(z0 + z)]dz ,

and we assume that E[ν(z0)
2] and

∫ ∞
−∞ E[ν(z0)ν(z0 + z)]dz remain of order

one in the various scaling regimes that we consider. We do not assume that
E[ν(z0)

2] and
∫∞
−∞ E[ν(z0)ν(z0 + z)]dz are equal to one, as seems natural

at first, because we wish to consider applications in which the normalized
fluctuation process ν is not globally stationary but only piecewise stationary or
slowly varying. The first example of such a situation is in Chapter 8. From now
on we use σ and l as the reference scales for the strength and the correlation
length of the random fluctuations in the medium.

We also assume that σ|ν(z)| ≤ C for some positive constant C such that
C < 1. This ensures that the bulk modulus remains bounded and bounded
away from zero. We shall further assume ergodicity and mixing conditions
for the process ν, as discussed in detail in Chapter 6. For a specific example we
may take ν(z) a piecewise-constant stationary process taking values that are
independent and identically distributed random variables as in Section 4.5.1.
Writing the fluctuations as σν(z/l) corresponds to having layers of typical size
l, with typical impendance and velocity contrast of order σ.
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5.1.2 Modeling of the Source Term

We consider a point source located in the homogeneous left half-space at some
position z0 < 0:

F (t, z) = ζ̄1/2g(t)δ(z − z0) .

Such a source generates a wave that propagates to the left and never interacts
with the random medium and a wave that propagates to the right. This wave
interacts with the random slab. It has the form

A(t, z) = g

(
t− z − z0

c̄

)
, z < 0 .

Note that the factor ζ̄1/2 has been included in the expression for the source
F , so that the right-going mode is equal to g. We define the pulse width T0

by

T 2
0 =

∫∞
−∞(t− T̄ )2g2(t)dt

∫∞
−∞ g2(t)dt

, where T̄ =

∫ ∞
−∞ tg2(t)dt
∫ ∞
−∞ g2(t)dt

,

which is the root mean square (rms) of the pulse g. We define the typical fre-
quency, or more accurately the typical angular frequency, ω0, of the incoming
wave by

ω0 =
2π

T0
.

The corresponding typical wavelength is λ0 = 2πc̄/ω0.
With these definitions we can write the source term and the corresponding

incoming wave in the form

F (t, z) = ζ̄1/2f (ω0t) δ(z − z0) , (5.7)

A(t, z) = f (ω0(t− (z − z0)/c̄)) , (5.8)

where f is the normalized pulse shape function, whose rms pulse width is
one. Note that since the wave equation is linear, the order of magnitude of
the pulse amplitude plays no role.

In our dimensional analysis we assume that the input pulse is characterized
by a single, typical frequency ω0, which is defined in terms of the rms pulse
width. In many applications, as in communications discussed in Chapter 13,
there are two frequencies that are naturally associated with a pulse. One is
the bandwidth, which is the inverse of the pulse duration, and the other is
the carrier frequency, around which the spectral energy is concentrated.
If we consider a pulse of the form g(t) = cos(ωHFt) exp(−t2/T 2

0 ), then the
bandwidth is 1/T0, while the carrier frequency is ωHF. In communications
applications, we often have ωHFT0 ≫ 1. In the main applications considered
in this book, in geophysics, or ultrasound remote sensing, the carrier frequency
and the bandwidth are of the same order. That is why we introduce only one
quantity in the scaling theory, and call it the typical frequency.
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5.1.3 The Dimensionless Wave Equations

We now put the wave equations in dimensionless form using the dimensionless
space and time variables

z̃ =
z

L0
, t̃ =

c0t

L0
. (5.9)

Here L0 is a typical propagation distance and c0 is a reference speed of prop-
agation. A natural choice for the reference speed is the effective propagation
speed c̄, given by (4.61), but we will consider in the next chapters situations
in which the half-spaces and the random slab have different speeds of sound,
so it is preferable to do the dimensional analysis with a reference speed c0. We
introduce similarly a reference impedance ζ0, so that the normalized pressure
and velocity fields have the form

p̃(t̃, z̃) = ζ
−1/2
0 p

(
t̃
L0

c0
, z̃L0

)
, ũ(t̃, z̃) = ζ

1/2
0 u

(
t̃
L0

c0
, z̃L0

)
,

and the normalized source and fluctuations terms are given by

F̃ (t̃, z̃) = ζ
−1/2
0 F

(
t̃
L0

c0
, z̃L0

)
, ν̃(z̃) = ν(z̃L0) .

In these dimensionless and normalized quantities, the wave equations (5.2–5.3)
are given by

˜̄ρ
∂ũ

∂t̃
+

∂p̃

∂z̃
= F̃ (t̃, z̃) , (5.10)

1
˜̄K

(
1 + σν̃

(
z̃
L0

l

))
∂p̃

∂t̃
+

∂ũ

∂z̃
= 0 , (5.11)

where we have introduced ˜̄ρ = c0(ρ̄/ζ0) and ˜̄K = (K̄/ζ0)/c0. Using (5.7) and
the identity δ(az) = a−1δ(z) for a > 0 gives

F̃ (t̃, z̃) = ˜̄ζ
1/2

f

(
t̃
ω0L0

c0

)
δ(z̃ − z̃0) ,

for the source in terms of the dimensionless parameters

˜̄ζ =

√
˜̄K ˜̄ρ = ζ̄/ζ0 , ˜̄c =

√
˜̄K/˜̄ρ =

√
K̄/ρ̄/c0 , z̃0 = z0/L0 .

We see that only three independent dimensionless groups of parameters
appear: the amplitude parameter σ, and the two scaling groups L0/l
and ω0L0/c0. We define two dimensionless parameters ε and θ by

L0

l
=

1

ε2
,

ω0L0

c0
=

θ

ε
. (5.12)
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The important ratio θ/ε is the propagation distance measured in units of the
wavelength. These relations can be inverted so that ε and θ are given by

ε =

√
l

L0
, θ =

ω0

c0

√
lL0 .

From now on, we drop the tildes and write the scaled and dimensionless wave
equations in the form

ρ̄
∂uε

∂t
+

∂pε

∂z
= ζ̄1/2f

(
θt

ε

)
δ(z − z0) , (5.13)

1

K̄

(
1 + σν

( z

ε2

)) ∂pε

∂t
+

∂uε

∂z
= 0 . (5.14)

5.1.4 Scaling Limits

We introduce the wave number k0 = ω0/c0 and express ε and θ in terms of
k0L0 and k0l:

k0L0 =
ω0L0

c0
=

θ

ε
,

k0l =
ω0l

c0
=

ω0L0

c0

l

L0
= θε .

The orders of magnitude of these two parameters have the following physical
interpretation.

(1) If k0L0 is large, then we are in a high-frequency regime, since the wave-
length is much smaller than the propagation distance.

(2) If k0l is small, then we are in a white-noise regime, because the scale of
the inhomogeneities is smaller than the wavelength.

From the two dimensionless parameters k0l and k0L0 and the amplitude
parameter σ we can define a third scaling parameter that turns out to be very
important in the asymptotic theory. It is the ratio of the propagation distance
to the localization length, which is defined by

L0

Lloc
= σ2(k0l)(k0L0) = σ2θ2 .

The localization length Lloc = 1/(σ2k2
0l) is discussed in detail in Chapter

7. The ratio L0/Lloc plays an essential role in wave propagation in one-
dimensional random media, because when it is comparable to one, multiple
scattering leads to significant energy transfer between right- and left-going
modes.

In the regime in which the three parameters k0l, k0L, and σ are all of order
one, the wave field will interact with the details of the particular realization



5.1 Identification of the Scaling Regimes 97

of the random medium. Such a regime is not of theoretical interest, because
one of the main reasons for modeling complicated wave propagation problems
with random media is the possible existence and identification of regimes
in which the details of the medium fluctuations are captured in a canonical
way. Moreover, it is in regimes in which numerical simulations become very
cumbersome that the asymptotic analysis is interesting and useful. In certain
scaling regimes we will find that a surprisingly simple description of the wave
field and its statistics emerges. The detailed analysis of these regimes is the
focus of this book. This simplified description arises often in regimes in which
the wave field interacts strongly with the randomness.

We describe next some relevant scaling regimes. Note first that σ ≫ 1
leads to a negative index of refraction, which is an unphysical regime, and so
we will not discuss it further.

1. Effective medium or homogenization regime:

k0l≪ 1 , k0L0 ∼ 1 , σ ≪ 1 or σ ∼ 1 .

This is a low-frequency regime, since the propagation distance is on the
order of the wavelength. It is a white-noise regime in the sense that the
correlation length of the medium is much smaller than the wavelength. In
this regime the wave propagation is described by a deterministic effective
wave equation, random scattering is weak, and there is no backscattering
since L0/Lloc ≪ 1 in this case.
In terms of θ, ε, and σ this regime corresponds to

ε≪ 1 , θ ∼ ε , σ ≪ 1 or σ ∼ 1 . (5.15)

2. Weakly heterogeneous regime:

k0l ∼ 1 , k0L0 ≫ 1 , σ ≪ 1 .

In this high-frequency regime, the coupling between the wave and the
medium is weak because the strength of the fluctuations σ is small. As
a result, the propagation distance must be large enough for the wave to
experience significant scattering. The regime in which σ is small and k0L0

is large, so that σ2k0L0 ∼ 1, is of particular interest because L0/Lloc ∼ 1.
This means that mode coupling and backscattering are of order one.
In terms of θ, ε, and σ this regime corresponds to

ε≪ 1 , σ ∼ ε , θ ∼ ε−1 . (5.16)

3. Strongly heterogeneous white-noise regime:

k0l≪ 1 , k0L0 ≫ 1 , σ ∼ 1 .

In this high-frequency regime the coupling between the wave and the
medium might be expected to be strong because the strength of the fluc-
tuations σ is of order one. However, since the wavelength is much larger
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than the scale of variations of the medium, the wave cannot probe the
small scales efficiently. The fluctuations of the medium tend to be aver-
aged by the low sensitivity of the wave at these scales. As a result, a long
propagation distance is necessary to build up sufficient backscattering.
The interesting regime is that in which k0l is small and k0L0 is large, so
that k0lk0L0 ∼ 1. We then have L0/Lloc ∼ 1.
In terms of θ, ε, and σ this regime corresponds to

ε≪ 1 , σ ∼ 1 , θ ∼ 1 . (5.17)

We already examined the effective medium or homogenization regime
(5.15) in Chapter 4. We have seen that the key issue is the computation of the
effective medium parameters, and we have shown how simple limit theorems
such as the strong law of large numbers can help us to obtain closed-form
formulas for the effective parameters. The relative simplicity of homogeniza-
tion in one-dimensional random media is understandable because so much of
it can also be carried out in several dimensions.

In the following chapters we address the last two regimes, (5.16) and (5.17),
with special emphasis on the strongly heterogeneous white-noise regime,
(5.17), which is the one that is encountered in geophysical applications. Typ-
ical scaling parameters in exploration seismology [168] can be taken to be as
follows: the probing wavelength λ0 ≈ 150 m, which is small compared with the
penetration depth L0 ≈ 10–15 km, but large compared with the correlation
length that is estimated in the range l ≈ 2–3 m. The weakly heterogeneous
regime (5.16) is considered in Chapter 18.

The asymptotic analysis of the two regimes (5.16) and (5.17) is mathemat-
ically very similar. However, there are some important differences that should
be kept in mind in using one or the other regime in applications. In the weakly
heterogeneous regime (5.16), correlation lengths of the medium fluctuations
are comparable to typical wavelengths, and so the asymptotic theory depends
on the specific autocorrelation function of these fluctuations. In the strongly
heterogeneous white-noise regime (5.17), typical wavelengths are much larger
than correlation lengths, and so the asymptotic theory is not sensitive to the
detailed structure of the autocorrelation of the fluctuations.

5.1.5 Right- and Left-Going Waves

The transformations and integral representations of the reflected and trans-
mitted waves presented in this subsection hold for any values of the parameters
ε, θ, and σ. However, the choice of these transformations is motivated by the
intent to analyze the scaling regimes in which ε ≪ 1, θ ≫ 1 or θ ∼ 1, and
σ ≪ 1 or σ ∼ 1. We consider again the decomposition of the wave field (pε, uε)
into right-going and left-going waves. This is done with the transformation
(3.4):

Aε =
pε

ζ̄1/2
+ ζ̄1/2uε, Bε = − pε

ζ̄1/2
+ ζ̄1/2uε ,
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where ζ̄ =
√

K̄ρ̄ is the constant impedance outside of the random medium
and the effective impedance inside the medium. The constant background
speed is c̄ =

√
K̄/ρ̄. Our boundary conditions are again those for an incident

wave from the right,

Aε(t, z) = f

(
θ

ε

(
t− z

c̄

))
, z < 0 ,

and the radiation condition Bε(t, z) = 0 in the right half-space z > L. The
equations for Aε and Bε are given by (4.28) with the previous boundary con-
ditions. The main difference with Chapter 4 is that the width of the incoming
pulse is now small, of order ε/θ. It is natural to look at the quantities of in-
terest, transmitted and reflected waves, on the same time scale as that of the
incoming pulse. This is done by looking at the waves along the characteristics
on a time scale of order ε/θ:

aε(s, z) = Aε
(ε

θ
s +

z

c̄
, z

)
, (5.18)

bε(s, z) = Bε
(ε

θ
s− z

c̄
, z

)
.

We now have (ε/θ)s instead of s in (4.30).
We next take the Fourier transform with respect to the time variable s:

âε(ω, z) =

∫
eiωsaε(s, z) ds ,

b̂ε(ω, z) =

∫
eiωsbε(s, z) ds .

The main difference with the Fourier transform in Section 4.4.2 is that now it
is with respect to the short time scale s, rather than the original time scale.
This scaling resolves short time scales and takes us into a high-frequency
regime when ε/θ is small, as is seen by writing

ωs =

(
ω

ε/θ

)
((ε/θ)s) . (5.19)

It is convenient also to write the velocity and pressure in terms of the right-
and left-going waves in the Fourier domain, since shifts in the time variable
become multiplication by phase factors,

p̂ε(ω, z) =

√
ζ̄

2

(
âε(ω, z)eiθωz/(εc̄) − b̂ε(ω, z)e−iθωz/(εc̄)

)
, (5.20)

ûε(ω, z) =
1

2
√

ζ̄

(
âε(ω, z)eiθωz/(εc̄) + b̂ε(ω, z)e−iθωz/(εc̄)

)
. (5.21)

Equation (4.32) now becomes
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d

dz

[
âε

b̂ε

]
=

iθω

εc̄

[
(∆(+) − 1) ∆(−) e−2iθωz/(εc̄)

−∆(−) e+2iθωz/(εc̄) (1−∆(+))

] [
âε

b̂ε

]
. (5.22)

Using (5.4) we see that the quantities ∆(±) in (4.27) become

∆± =
1

2

{
1± (1 + σν(z/ε2))

}
. (5.23)

Substituting these quantities into (5.22) gives the new ordinary differential
equations for the centered and transformed waves

d

dz

[
âε

b̂ε

]
=

iθωσ

2c̄ε
ν
( z

ε2

) [
1 −e−2iθωz/(εc̄)

e+2iθωz/(εc̄) −1

] [
âε

b̂ε

]
. (5.24)

The boundary conditions are

âε(ω, 0) =

∫
eiωsAε

(ε

θ
s, 0

)
ds =

∫
eiωsf(s) ds = f̂(ω) , (5.25)

b̂ε(ω, L) = 0 . (5.26)

In the deterministic case (ν = 0) the right-hand side in (5.24) vanishes.
This corresponds to a constant medium and perfect transport of the right-
and left-going wave components. In the random case the wave components
couple because of the scattering from the fine-scale fluctuations in the ran-
dom medium. The rate of change of the wave amplitudes is now random,
of order ε−1, and varies on the fine scale ε2. It is the off-diagonal terms in
(5.24) that couple right- and left-going waves, and they contain a phase factor
that oscillates rapidly when θ/ε is large. This is important in the asymptotic
analysis.

5.1.6 Propagator and Reflection and Transmission Coefficients

As in Section 4.4.3 we introduce the propagator matrix in order to convert the
boundary value problem (5.24) for the wave amplitudes into an initial value
problem. The propagator is defined by (4.36) and satisfies the matrix system

d

dz
Pε

ω(0, z) =
θσ

ε
Hω

(
θz

ε
, ν

( z

ε2

))
Pε

ω(0, z) , (5.27)

with initial condition Pε
ω(0, 0) = I. The right side depends on the fast variable

θz/ε through the phases and also on the fast variable z/ε2 through the random
fluctuation process ν,

Hω(z, ν) =
iω

2c̄
ν

[
1 −e−2iωz/c̄

e+2iωz/c̄ −1

]
. (5.28)

We can again express the propagator in the form
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Pε
ω(0, L) =

[
αε

ω(0, L) βε
ω(0, L)

βε
ω(0, L) αε

ω(0, L)

]
,

with |αε
ω|2 − |βε

ω|2 = 1. Using this notation for the components of the propa-
gator we find the following integral representation for the transmitted and
reflected waves.

• The transmitted wave has the form

Aε(t, L) = aε (θ(t− L/c̄)/ε, L) =
1

2π

∫
e−iθω(t−L/c̄)/εâε(ω, L) dω

=
1

2π

∫
e−iθω(t−L/c̄)/ε

(
1

αε
ω(0, L)

)
f̂(ω) dω . (5.29)

The width of the incident pulse is of order ε/θ, and t = z/c̄ is the travel
time from the origin to location z in the effective homogeneous medium.
Therefore we should observe the wave in a time window of the form

t =
L

c̄
+

ε

θ
s .

In this time window the transmitted wave has the form

Aε

(
L

c̄
+

ε

θ
s, L

)
= aε (s, L)

=
1

2π

∫
e−iωs

(
1

αε
ω(0, L)

)
f̂(ω) dω . (5.30)

Note that the fast phase in the integral has been removed. This is impor-
tant for the asymptotic analysis.

• The reflected wave has the form

Bε(t, 0) = bε

(
θ

ε
t, 0

)
=

1

2π

∫
e−iθωt/εb̂ε(ω, 0) dω

=
1

2π

∫
e−iθωt/ε

(
−βε

ω(0, L)

αε
ω(0, L)

)
f̂(ω) dω . (5.31)

There is no natural travel time associated with the reflected wave as there is
for the transmitted wave. This is consistent with the fact that in the effective-
medium approximation there is no reflected wave, since we assume that there
is no mismatch at z = 0 and z = L.

The main objective now is to analyze the asymptotic behavior of the prop-
agator matrix Pε

ω and to use it for the asymptotic analysis of the transmitted
and reflected waves. From (5.30) and (5.31) we see that we must analyze the
transmission and reflection coefficients in the frequency domain, which we now
define.
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• The transmission coefficient is

T ε
ω(0, L) =

1

αε
ω(0, L)

. (5.32)

• The reflection coefficient is

Rε
ω(0, L) = −βε

ω(0, L)

αε
ω(0, L)

. (5.33)

5.2 Diffusion Scaling

In order to focus on the probabilistic part of the asymptotic analysis of (5.27)
we consider the following simple example of a scalar random equation,

dXε(z)

dz
=

θσ

ε
ν
( z

ε2

)
with Xε(0) = 0 ,

where the right side does not depend on Xε(z). As in Section 4.5.1, we consider
this equation with a discrete random process ν,

ν(z/ε2) = ν[z/ε2] .

Here {νn} is a sequence of independent and identically distributed random
variables, with zero mean (E[νn] = 0), variance one (E[ν2

n] = 1). We also
assume that they are bounded (|νn| < C, for some positive constant C). The
solution Xε(z) is the integral

Xε(z) =
θσ

ε

∫ z

0

ν
( y

ε2

)
dy = θσε

∫ z/ε2

0

ν(y′) dy′ = θσε

[z/ε2]−1∑

n=0

νn ,

where we assume for simplicity that z is an integer multiple of ε2, for otherwise
there is an additional O(ε) term. This is a sum of many independent and
identically distributed centered random variables scaled by the (small) pa-
rameter θε. The scaling that is appropriate for the central limit theorem
is obtained by calculating the variance

E[Xε(L)2] = σ2θ2ε2
E

⎡
⎢⎣

⎛
⎝

[L/ε2]−1∑

n=0

νn

⎞
⎠

2
⎤
⎥⎦

= σ2θ2ε2

⎛
⎝

[L/ε2]−1∑

n=0

[L/ε2]−1∑

m=0

E[νnνm]

⎞
⎠

= σ2θ2ε2

⎛
⎝

[L/ε2]−1∑

n=0

E[ν2
n]

⎞
⎠

= σ2θ2LE[ν2
n] = σ2θ2L . (5.34)
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Therefore, the variance of Xε(z) has nontrivial limit if σθ is of order one, since
L is a dimensionless order-one variable. This is indeed the case in the weakly
heterogeneous regime, where σ ∼ ε and θ ∼ ε−1, and also in the strongly
heterogeneous white-noise regime where σ ∼ 1 and θ ∼ 1. In the following
sections we consider only the strongly heterogeneous white-noise regime.
In this regime, ε is the only small parameter, and all other quantities are of
order 1. In the next section we discuss the limit of Xε(z) as a family of random
variables indexed by z ≥ 0.

5.2.1 White-Noise Regime and Brownian Motion

We assume in this section that σ = 1 and θ = 1 and we consider the process

Xε(z) = ε

∫ z/ε2

0

ν(y) dy . (5.35)

This is a family of random variables indexed by z ≥ 0 and is an exam-
ple of a stochastic process, with z playing here the role of what is usu-
ally a time variable. The assumption that the random medium is layered
or one-dimensional is essential at this point because we can fully exploit
the stochastic calculus associated with time-indexed stochastic processes.
A key fact in stochastic calculus is that Xε(z) converges in distribution to the
Brownian motion. In order to keep the discussion at a simple and intuitive
level we will also assume here that the medium is discrete and defined by the
independent and identically distributed sequence (νn).

We want to characterize this family of random variables in the small-ε
limit. We look first at the increment of the process over the interval (z1, z2),

Xε(z2)−Xε(z1) = ε

[z2/ε2]∑

n=[z1/ε2]

νn +O(ε) .

The O(ε) term is due to the fact that the zi’s may not be integer multiples of
ε2, but this does not affect the limit. The main term is a sum of centered and
normalized independent and identically distributed random variables with the
scaling of the central limit theorem. This means that the increment converges
in distribution to a centered Gaussian random variable with variance equal
to (z2− z1), the length of the increment. A computation similar to the one in
(5.34) shows that

lim
ε→0

E
[
(Xε(z2)−Xε(z1))

2
]

= (z2 − z1)E[ν2
n] = z2 − z1 .

Let 0 < z1 < z2 < z3 < · · · < zk and consider the increments over the disjoint
intervals (zi, zi+1) for 1 ≤ i ≤ k − 1. Since these increments involve sums of
disjoint sets of νn’s, up to an O(ε) term they are independent, and this prop-
erty carries over to any limit process. Thus, a limit process X(z) has centered
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independent Gaussian increments with variance equal to the length of the z-
increment. The family of random increments is the white-noise process. The
limit process, X(z), is continuous in z and has continuous trajectories. This is
shown by proving a tightness property on the set of continuous trajectories,
which in our case is a generalization of the computation (5.34) to the fourth
moments

lim
ε→0

E

[
(Xε(z2)−Xε(z1))

4
]

= 3E
[
ν2

n

]2
(z2 − z1)

2 = 3(z2 − z1)
2 .

The Kolmogorov criterion for tightness can now be applied, giving convergence
to Brownian motion.

We summarize the properties of the limit process, the Brownian motion
X(z):

• The trajectories (z 	→ X(z)) are continuous and X(0) = 0.
• The process X(z) has independent increments.
• The increment X(z2)−X(z1) is aN (0, z2−z1)-distributed random variable

(i.e., Gaussian with mean zero and variance z2 − z1).

The process X(z) is called a standard Brownian motion. It is the simplest
example of a diffusion process, a process that behaves in a “diffusive” way,
since E[X(z)2] = z. This is in contrast to a “ballistic” behavior, where the
mean square displacement is proportional to z2.

5.2.2 Diffusion Approximation

We consider the strongly heterogeneous white-noise regime, that is, the regime
in which ε≪ 1 while all other quantities are of order 1. Our main objective is
to characterize the asymptotic behavior of the transmitted and reflected waves
given by the integral representations (5.30) and (5.31). These expressions in-
volve functionals of the propagator matrix Pε

ω(0, L) through the transmission
and reflection coefficients given in (5.32) and (5.33). We will now character-
ize their asymptotic behavior in the diffusion limit introduced above. The
equation for the propagator is

d

dz
Pε

ω(0, z) =
iθωσ

2c̄ε
ν
( z

ε2

) [
1 −e−2iθωz/(c̄ε)

e+2iθωz/(c̄ε) −1

]
Pε

ω(0, z) , (5.36)

with initial condition Pε
ω(0, 0) = I. By considering separately the real and

imaginary parts of this system in vector form we find that it is a particular
example of an equation of the general type

dXε

dz
=

1

ε
F

(z

ε
, Y

( z

ε2

)
, Xε(z)

)
. (5.37)

Here
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• The solution Xε is a d-dimensional real vector with initial condition
Xε(0) = x0.

• The random process Y is stationary with good ergodic properties (dis-
cussed later).

• The function F (z, y, x) is a smooth d-dimensional function at most linearly
growing in x and has the important centering property

E[F (z, Y (z0), x)] = 0 , (5.38)

where z and x are fixed and the expectation is taken with respect to the law
of the stationary process Y . The argument z0 in the centering condition
is arbitrary, since the process Y is assumed to be statistically stationary.

• The driving process Y (z/ε2) varies on the fine scale ε2.

Equation (5.37) is similar to equation (4.54) (with l = ε) analyzed in the
homogenization regime. The main difference is that F is now scaled by the
large parameter 1/ε and we require F to be centered (5.38). The scaling and
centering imply that the solution will exhibit diffusive stochastic behavior, in
contrast to the deterministic ballistic behavior in the homogenization scaling.
This is illustrated in Figures 4.6 (ballistic case) and Figure 5.2 (diffusive case).
We note that if in (4.54), F is centered, then the homogenized solution is
constant. However, for large z, that is, z → z/ε, we have exactly the diffusive
behavior exhibited by the solution of (5.37).
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Fig. 5.2. Illustration of diffusive behavior. The coordinates of the trajectory shown
are two independent Brownian motions, with time being the path parameter. The
mean square displacement is proportional to the time.

The diffusion approximation theorem for (5.37) states that the pro-
cess Xε(z) converges in distribution to a diffusion process X(z). We discussed
a particular simple example with convergence to Brownian motion in the pre-
vious section. The intuitive idea behind the diffusion approximation is that
(5.37) has the scaling of the central limit theorem,

Xε(z)− x0 = ε

∫ z/ε2

0

F (εy, Y (y), Xε(ε2y) dy .
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This is the integrated form of (5.37) with a change of integration variable so
as to make it similar to (5.35). The characterization of the limit process for
the random differential equation (5.37) is naturally more complicated than the
simple example (5.35). It is presented in detail in Chapter 6 after we introduce
the necessary background and tools from stochastic calculus. We end this
chapter with a discussion of the meaning of convergence in distribution
and the consequences it has for the transmitted and reflected waves.

Convergence in distribution is also referred to as weak convergence or
convergence in law. If the process Xε(z) is weakly convergent to X(z) then
in particular, its finite-dimensional distributions are convergent. This means
that for every 0 ≤ z1 < z2 < · · · < zk and any continuous bounded function
φ we have

lim
ε→0

E[φ(Xε(z1), . . . , X
ε(zk))] = E[φ(X(z1), . . . , X(zk))] .

If the processes Xε have moments, which is the case for the transmission and
reflection coefficients, the function φ can be unbounded and we therefore have
convergence of moments.

5.2.3 Finite-Dimensional Distributions of the Transmitted Wave

We show briefly how the diffusion approximation can be used to give a prob-
abilistic description of the transmitted wave. A detailed analysis of this is
presented in Chapter 8.

In the strongly heterogeneous white-noise regime, the integral representa-
tion (5.30) is

aε(s, L) =
1

2π

∫
e−iωsT ε

ω(0, L)f̂(ω) dω . (5.39)

The transmission coefficient T ε
ω(0, L) = 1/αε

ω(0, L) is a functional of the prop-
agator matrix Pε

ω , which we will show converges to a diffusion process. From
the energy conservation relation (4.46) it follows that its modulus is bounded
by one, which implies that the transmitted wave is also bounded indepen-
dently of ε by (1/2π)

∫
|f̂(ω)|dω. We see from (5.39) that the probability

distribution of the wave in time depends on the joint distribution of the
transmission coefficients at different frequencies. The joint moments of the
transmission coefficient at different frequencies characterize the moments of
the wave in time. From the joint moments we can determine finite-dimensional
distributions, since the transmitted waves are bounded random variables. For
0 ≤ s1 < · · · < sk we compute the joint moments of orders m1, . . . , mk:

E [(aε(s1, L)m1 · · · aε(sk, L)mk)]

= E

[
1

(2π)m

k∏

h=1

(∫
e−iωshT ε

ω(0, L)f̂(ω) dω

)mh
]

,
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where m =
∑k

h=1 mh. This expression can be rewritten as a multiple integral
with respect to the frequencies ωj,h for 1 ≤ h ≤ k and 1 ≤ j ≤ mh:

E [(aε(s1, L)m1 · · ·aε(sk, L)mk)]

=
1

(2π)m

∫
e−i

∑
h,j shωj,h

∏

h,j

f̂(ωj,h)E

⎡
⎣∏

h,j

T ε
ωj,h

(0, L)

⎤
⎦∏

h,j

dωj,h .

Here the sum and the products are taken over all frequencies. Therefore, in
order to characterize the finite-dimensional distributions of the transmitted
wave we need to know the joint moments of the transmission coefficients for
a finite number of different frequencies, which we relabel as ω1, . . . , ωm. This
means that if we know the limits of moments of transmission coefficients

lim
ε→0

E

⎡
⎣

m∏

j=1

T ε
ωj

(0, L)

⎤
⎦ , (5.40)

then we can characterize all the finite-dimensional distributions of the trans-
mitted wave in the time domain.

The diffusion approximation will be the main tool for the computation
of these moments. In the following chapter we analyze in detail the diffusion
approximation for random differential equations in a general framework, along
with the associated stochastic calculus. The detailed discussion of applications
to reflection and transmission of waves starts in Chapter 8. We show there
that we can identify the moments (5.40) from the asymptotic distribution of
the joint propagator matrix Pε

(ω1,...,ωm)(0, L), associated with the frequencies

(ω1, . . . , ωm).

Notes

In this chapter we introduced characteristic parameters for the waves in ran-
domly layered media, and we have put the wave equations in dimension-
less form. We identified different scaling regimes in which multiple scatter-
ing is significant. We have also shown how the asymptotic analysis of wave
propagation in these regimes reduces to the study of diffusion approxima-
tions for random ordinary differential equations. Limit theorems for ran-
dom differential equations were first given by Khasminskii in 1966 [98]. The
first application of such limit theorems to monochromatic waves in random
media is due to Papanicolaou in 1971 [129]. The theory of waves in ran-
domly layered media with the systematic use of diffusion approximations has
been developed in the series of articles by Papanicolaou and his coauthors
[8, 31, 32, 33, 104, 107, 132, 133, 152, 153, 169, 170]. In the physical literature,
waves in randomly layered media were analyzed in [81, 82, 85, 154, 155, 156]
and by Klyatskin [101], whose book contains many more references.
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Asymptotics for Random Ordinary Differential
Equations

In this chapter we give a self-contained presentation of the asymptotic analysis
of random differential equations in the form that they have in models of wave
propagation in randomly layered media. The chapter serves three purposes:

• It provides an introduction to Markovian models of random media.
• It gives a full treatment of the theory of diffusion approximations for ran-

dom differential equations in a form that can be readily used for the asymp-
totic analysis of reflected and transmitted waves in randomly layered me-
dia.

• It gives an introduction to stochastic calculus as needed for computations
in the asymptotic analysis of wave reflection and transmission.

We will carry out the asymptotic analysis of random differential equations
of the form (5.37), where the process Xε satisfies

dXε

dz
=

1

ε
F

(
Xε(z), Y

( z

ε2

)
,
z

ε

)
, z > 0, Xε(0) = x0 , (6.1)

with ε > 0 a small parameter. The process Xε is d-dimensional. The function
F (x, y, τ) is smooth and at most linearly growing in x and it is uniformly
bounded in τ and y. We also assume that F is centered with respect to the
driving random process Y (z),

E[F (x, Y (z0), τ)] = 0 , (6.2)

for all x and τ , and the argument z0 plays no role in this condition since Y (z)
is assumed statistically stationary. Although the asymptotic theory for Xε

can be carried out in great generality, we will assume in this book that the
driving process Y (z) is an ergodic Markovian process. This means that the
randomly layered media that we consider here are Markovian.

We outline first, in the next section, some general notions on Markov
processes and illustrate them with the standard Brownian motion W (z), in-
troduced in Section 5.2.1. We then give examples of Markovian models for
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the driving process Y (z) in Section 6.2. The diffusion approximation theo-
rems are stated and proved in Sections 6.3 through 6.5, and an introduction
to stochastic calculus is given in Section 6.6.

References to general, more detailed treatments of limit theorems for ran-
dom differential equations are give in the notes at the end of this chapter.

6.1 Markov Processes

The driving process Y (z) is assumed to be Markovian, taking values in a
state space S. The Markov property is defined by the condition that the σ-
algebras (or information) generated by the two families of random variables
{Y (s), s ≥ z} and {Y (s), s ≤ z} are independent given the value of Y (z), for
any z. When z is thought of as a time variable we say that “the future is
independent of the past knowing the present.” In the context of waves, z is
a one-dimensional space variable and the Markov property means that “the
right is independent from the left knowing the value at the boundary.”

6.1.1 Semigroups

For bounded real-valued functions φ defined on S we consider the family of
operators (Ps) defined by the expectations

(Psφ)(x) = E[φ(Y (z + s))|Y (z) = x] , (6.3)

where we have assumed that the Markovian process Y is homogeneous in
the sense that the expectation in (6.3) depends on the interval (z, z + s) only
through its length s. The Markov property of Y implies that the family of
operators (Ps)s≥0 is a semigroup:

Ps+h = PsPh ,

with P0 = I. As an example we consider the standard Brownian motion W (z)
defined in Section 5.2.1. It is a homogeneous Markov process, a property that
comes from the independence of its increments:

E[φ(W (z + s))|W (z′), z′ ≤ z] = E[φ(W (z + s)−W (z) + W (z))|W (z′), z′ ≤ z]

= E[φ(W (z + s)−W (z) + W (z))|W (z)]

= (Psφ)(W (z)) .

Here the notation

E[X |W (z′), z′ ≤ z]

means conditional expectation of X given W (z′) for z′ ∈ [0, z], and we used
the independence of the increment W (z+s)−W (z) from {W (z′), z′ ≤ z}, also
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generated by increments on the left of z. The Brownian semigroup (Psφ)(x)
is computed using the Gaussian property of the increments

(Psφ)(x) =

∫
φ(x + w)

1√
2πs

e−
w2

2s dw =

∫
φ(w)

1√
2πs

e−
(w−x)2

2s dw. (6.4)

6.1.2 Infinitesimal Generators

Semigroups have symbolically the form of exponentials of operators

Ps = esL .

The operator L is called the infinitesimal generator. It is defined by

L =
dPs

ds

∣∣∣∣
s=0

,

when the derivative on the right exists. It satisfies

dPs

ds
= LPs = PsL , (6.5)

or more precisely,

dPsφ(x)

ds
= lim

h↓0

Ps+hφ(x) − Psφ(x)

h
= lim

h↓0

Ph(Psφ)(x) − (Psφ)(x)

h

= Ps lim
h↓0

Phφ(x) − φ(x)

h
= PsLφ(x) .

These limits are considered for bounded functions φ for which they are well
defined, that is, for functions φ in the domain of the infinitesimal generator
L. For the Brownian semigroup, we deduce from (6.4) that

Lφ(x) = lim
h↓0

1

h

∫
(φ(w) − φ(x))

1√
2πh

e−
(w−x)2

2h dw =
1

2
φ′′(x) ,

which is obtained with a Taylor expansion of φ around x when it is twice dif-
ferentiable. More generally, in the multidimensional case, a Brownian motion
is a vector with components that are independent one-dimensional Brownian
motions, and its infinitesimal generator is the second-order partial differential
operator 1

2∆, the Laplace operator.

6.1.3 Martingales and Martingale Problems

Let Y be a homogeneous Markovian process with infinitesimal generator L.
For functions φ in the domain of L (which are bounded) we define the process

M(z) = φ(Y (z))− φ(Y (0))−
∫ z

0

Lφ(Y (s)) ds . (6.6)
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It satisfies the martingale property

E[M(z + h)|Y (z′), z′ ≤ z] = M(z) , (6.7)

for all z and h ≥ 0. This is seen from the following calculation:

E[M(z + h)|Y (z′), z′ ≤ z]

= E

[
M(z) + φ(Y (z + h))− φ(Y (z))−

∫ z+h

z

Lφ(Y (s)) ds|Y (z′), z′ ≤ z

]

= M(z) + Phφ(Y (z))− φ(Y (z))−
∫ h

0

d

ds
Psφ(Y (z)) ds

= M(z) ,

where we have used the identity

Phφ(x) − φ(x) −
∫ h

0

d

ds
Psφ(x) ds = 0 ,

which is simply the fundamental theorem of calculus. We have also used z-
homogeneity, the Markov property, and the differentiation property (6.5). The
martingale property implies in particular that E[M(z)] is constant, equal to
zero here since M(0) = 0; but in fact, this is not enough to ensure the mar-
tingale property (6.7).

Conversely, if under a probability measure P, M(z) defined by (6.6) is
a martingale for a collection of test functions φ that is large enough, then P

characterizes uniquely the probability distribution of a Markov process Y with
infinitesimal generator L. This is known as the theory of martingale prob-
lems, for which we refer to [163]. Martingale formulations are particularly
convenient for showing convergence in distribution in the diffusion approxi-
mation that we are considering here, as we will see in Section 6.3.

The square of a continuous martingale is not a martingale (we limit here
the discussion to continuous martingales), but it can be made into one by sub-
tracting an appropriate integral term, which is called its quadratic variation.
We use the notation 〈M, M〉 (z) and we have that M2(z) − 〈M, M〉 (z) is a
martingale, so that

E[〈M, M〉 (z + h)− 〈M, M〉 (z)|Fz] = E[M2(z + h)−M2(z)|Fz],

where Fz is the σ-algebra (or information) generated by {Y (z′), z′ ≤ z}. If
φ, Lφ, and Lφ2 are bounded functions, then the quadratic variation of M(z)
has the form

〈M, M〉 (z) =

∫ z

0

Lφ2(Y (s))− 2φ(Y (s))Lφ(Y (s)) ds . (6.8)

The derivation of (6.8) is given in Appendix 6.9.1.
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Finally, we note that (6.6) can be easily generalized by adding explicit
dependence on z for the function φ. If the bounded function φ(z, x) is smooth
in z and in the domain of L with respect to x, then the following process M
is a martingale:

M(z) = φ(z, Y (z))− φ(0, Y (0))−
∫ z

0

(
∂

∂z
+ L

)
φ(s, Y (s)) ds . (6.9)

6.1.4 Kolmogorov Backward and Forward Equations

Consider the backward equation

∂u

∂z
+ Lu = 0 , (6.10)

u(Z, x) = U(x) ,

solved for z < Z with the terminal condition at z = Z given by the function
U(x), which we assume to be bounded. The solution u(z, x) has the proba-
bilistic representation

u(z, x) = E[U(Y (Z))|Y (z) = x] , (6.11)

where Y is the Markov process with infinitesimal generator L. This can be
easily understood by using (6.9) with φ = u, assuming that u is sufficiently
smooth, and noticing that

M(z) = u(z, Y (z))− u(0, Y (0)) ,

since with this choice of φ, the integral in (6.9) is equal to zero. The martingale
property of M between z and Z implies that

E[M(Z)|Y (z′), z′ ≤ z] = M(z) ,

or equivalently

E[u(Z, Y (Z))|Y (z′), z′ ≤ z] = u(z, Y (z)) .

We deduce the representation (6.11) using the terminal condition

u(Z, Y (Z)) = U(Y (Z))

and the Markov property of Y .
Let us now consider the probability distribution p(z, dx) of the process

Y (z) with an initial value Y (0) distributed according to the given distribution
p(0, dx) = p0(dx). That is, p(z, dx), for z ≥ 0, are probability distributions on
the state space S on which the process Y takes its values, such that for every
bounded function φ defined on S,



114 6 Asymptotics for Random Ordinary Differential Equations

E[φ(Y (z))] =

∫

S

φ(x) p(z, dx) .

When the state space S is a finite or countable set, then p(z, dx) is a vec-
tor with finite or countably many components p(z, i) = P(Y (z) = Si) with
p(0, i) = p0(i) = P(Y (0) = Si). In a Euclidean space S = Rn we assume that
p(z, dx) = p(z, x) dx, that is, we assume that the distribution of Y (z) has a
density. We derive the forward Kolmogorov equation in the Euclidean case
and then give it also for a finite or countable state space.

The backward representation (6.11) integrated with respect to p(z, x) gives

∫

S

u(z, x)p(z, x) dx =

∫

S

E[u(Z, Y (Z))|Y (z) = x]p(z, x) dx

= E[u(Z, Y (Z)]

=

∫

S

u(Z, x)p(Z, x) dx ,

which shows that the quantity
∫

S
u(z, x)p(z, x) dx is independent of z. Differ-

entiating it with respect to z, using equation (6.10) satisfied by u, and using
the adjoint operator L⋆ (defined by

∫
φLψdx =

∫
ψL⋆φdx) gives

0 =

∫

S

∂u

∂z
(z, x)p(z, x) dx +

∫

S

u(z, x)
∂p

∂z
(z, x) dx

= −
∫

S

(Lu)(z, x)p(z, x) dx +

∫

S

u(z, x)
∂p

∂z
(z, x) dx

= −
∫

S

u(z, x)L⋆p(z, x) dx +

∫

S

u(z, x)
∂p

∂z
(z, x) dx

=

∫

S

u(z, x)

(
∂p

∂z
− L⋆p(z, x)

)
dx .

At z = Z we get

∫

S

U(x)

(
∂p

∂z
− L⋆p(Z, x)

)
dx = 0 ,

which holds for all bounded functions U . Consequently,
∂p

∂z
− L⋆p(Z, x) = 0

at any Z > 0, which means that the probability density p(z, x) is solution of
the forward equation

∂p

∂z
= L⋆p , (6.12)

p(0, x) = p0(x) .

In the case of a d-dimensional standard Brownian motion, starting from the
origin, p solves the heat equation
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∂p

∂z
=

1

2
∆p ,

with the initial condition p0 = δ0, a Dirac delta function at the origin.
When the state space S = {Si, i = 1, 2, . . .} is finite or countable, then the

infinitesimal generator is a matrix Lij . It is defined by

Lij = lim
h→0

P(Y (h) = Si|Y (0) = Sj)− δij

h
.

The forward Kolmogorov equation for p(z, i) = P(Y (z) = Si) is a system of
ordinary differential equations

dp(z, i)

dz
=

∑

j

L⋆
ijp(z, j) , i = 1, 2, 3, . . . ,

with the initial condition p(0, i) = p0(i). Here L⋆
ij is the adjoint of the matrix

Lij .
In the Euclidean case, the existence of an invariant probability density

means that p(z, x) does not depend on z and consequently satisfies

L⋆p = 0 . (6.13)

In the finite or countable case the invariant probability p(i) satisfies the matrix
equation ∑

j

L⋆
ijp(j) = 0 , i = 1, 2, 3, . . . .

In the next section we will see three examples with three types of infinites-
imal generators: matrix, integral, and differential operators.

6.1.5 Ergodicity

The ergodic theorem states that under suitable hypotheses on a process X(z),
the z-average of a function of X tends to its ensemble average as Z →∞:

1

Z

∫ Z

0

φ(X(z)) dz
Z→∞−→ E[φ(X(0))] P a.s.

The mathematical formulation of hypotheses for the validity of the ergodic
theorem is quite cumbersome in a general framework. In the case of a Markov
process, under the assumption that the process can visit any neighborhood
of the state space S with positive probability, in a finite time and from any
starting point (irreducibility), then the existence of an invariant probability
distribution ensures that the process is ergodic.

The d-dimensional Brownian motion has an invariant distribution that
is the uniform distribution over Rd. The total mass of this distribution is
+∞, so that it cannot be normalized to a probability distribution, and so
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the Brownian motion is not ergodic. However, the three models that we shall
present in the next section have invariant probability distributions and they
are ergodic.

Ergodicity is related to properties of the null spaces of L and its adjoint
L⋆. Recall that the functions in the domain of the infinitesimal generator L
are bounded. If the process is irreducible, then ergodicity is equivalent to the
infinitesimal generator having a null space reduced to the constant functions.
In this case, the Markov process has a unique invariant probability distri-
bution p, which belongs to the null space of the adjoint of the infinitesimal
generator, and the distribution of Y (z) converges to p as z →∞ for any initial
distribution for Y (0). We refer to [112] for the ergodic properties of Markov
processes.

6.2 Markovian Models of Random Media

In this section we present examples of three types of Markovian models for
the driving process Y .

• The first model is for a composite material with two components that
alternate. The layer sizes are chosen randomly and independently, so that
the resulting two-valued process is Markovian. Its infinitesimal generator
is a 2 × 2 matrix. This model can be generalized easily to a Markovian
model of a composite with any finite number of components.

• The second example is a pure jump Markov process, which can take a
continuum of values. Its infinitesimal generator is an integral operator.

• The third example is an ergodic diffusion process, the Ornstein–Uhlenbeck
process, whose infinitesimal generator is a differential operator.

In each of the three models we look carefully at their ergodic properties and
their invariant distributions. We do not assume that these processes are cen-
tered, since the centering condition (6.2) applies to a function F (x, Y (z0), τ)
of this process.

6.2.1 Two-Component Composite Media

Our first example is a process Y (z) taking alternately the values y1 and y2

representing two different materials. In this case the real-valued bounded func-
tions φ defined on S = {y1, y2} are simply two-dimensional real vectors with
components φi = φ(yi) for i = 1, 2. The semigroup (Ps) is a family of 2 × 2
matrices acting on φ, which are given, according to (6.3), by

Ps =

[
P[Y (z + s) = y1|Y (z) = y1] P[Y (z + s) = y2|Y (z) = y1]
P[Y (z + s) = y1|Y (z) = y2] P[Y (z + s) = y2|Y (z) = y2]

]
.

The construction of this Markov process is as follows. In a small interval of
medium of length ∆z, the process switches to the other material with prob-
ability proportional to ∆z, say λ∆z, and remains the same with probability
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1− λ∆z. We assume that λ is a positive constant, which means that Y (z) is
homogeneous and symmetric in the two materials. With this description the
semigroup has the form

P∆z =

[
1− λ∆z λ∆z

λ∆z 1− λ∆z

]
+ o(∆z) ,

and the infinitesimal generator is obtained by subtracting the identity matrix,
dividing by ∆z, and taking a limit as ∆z ↓ 0:

L = λ

[
−1 1
1 −1

]
.

The trajectories of this process can be constructed as follows. We introduce
the increasing sequence 0 = Z0 < Z1 < Z2 < · · · < Zn < · · · of successive
random transition points where the medium switches from one material to
the other. In this model the layer sizes

(Z1, Z2 − Z1, . . . , Zn − Zn−1, . . .)

form a sequence of independent random variables with the common expo-
nential distribution with parameter λ, that is,

P[Zn − Zn−1 ≤ z] = 1− e−λz ,

for any n ≥ 1. Equivalently, the sequence (Zn) forms a Poisson process
with intensity λ. The number of jumps in an interval (z1, z2] is distributed
according to the Poisson distribution with parameter λ(z2 − z1),

P [k jumps in (z1, z2]] = e−λ(z2−z1)
[λ(z2 − z1)]

k

k!
,

and the numbers of random jumps over disjoint intervals are independent
random variables. Exponential distributions are naturally associated with the
Markov property because of their memoryless property. We refer to [54] for
a full treatment of this subject.

The parameter λ is here simply a scaling factor, with 1/λ the average size
of a layer. In the asymptotic analysis the driving process is assumed to be
normalized and dimensionless. This is done by taking λ = 1 here. We note,
however, that for the rescaled process Y (z/ε2) the mean distance between
transitions is ε2, which is equivalent to setting λ = ε−2. We consider now
the normalized process Y (z) with dimensionless argument and λ = 1. Its
infinitesimal generator is

L =

[
−1 1
1 −1

]
. (6.14)

The infinitesimal generator of the rescaled process Y (z/ε2) is simply (1/ε2)L,
as can be seen from the general computation
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lim
h→0

E[φ(Y (h/ε2))|Y (0) = y]− φ(y)

h
=

1

ε2
lim

h′→0

E[φ(Y (h′))|Y (0) = y]− φ(y)

h′

=
1

ε2
Lφ(y) ,

where the rescaling corresponds to speeding up the transitions of the process
Y . Realizations of this two-state random medium are shown in Figure 6.1 for
two values for ε.
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Fig. 6.1. Two realizations of the two-state random medium with ε2 = 0.1 (left
picture) and ε2 = 0.01 (right picture). Here y1 = −1 and y2 = 1.

The invariant distribution of the two-state Markov process is obtained
easily by solving equation (6.13), which is now

L⋆p =

[
−1 1
1 −1

] [
p1

p2

]
= 0 .

Here p = (p1, p2) is a probability on S = {y1, y2}. The unique solution is
the uniform distribution (1/2, 1/2) on S, which is intuitively clear from the
description of the process. As discussed in Section 6.1.5, the process is ergodic,
and moreover, the distribution of Y (z) converges exponentially fast to the
uniform distribution as z →∞.

6.2.2 Multicomponent Composite Media

This example is a generalization of the previous one to a continuous state
space S from a two-state space S. In each z interval the process Y (z) takes
values that are chosen randomly over an interval [y1, y2] with a probability
density μ(y). The layer widths are independent normalized exponential ran-
dom variables with mean one, as in the previous section. Equivalently, the
interfaces between layers are distributed according to a Poisson process with
intensity normalized to one. This means that
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E[φ(Y (z))|Y (0) = y] = φ(y)P[no jump on [0, z]]

+

(∫
φ(x)μ(x) dx

)
P[at least one jump in [0, z]]

= e−zφ(y) + (1− e−z)

(∫
φ(x)μ(x) dx

)
.

Subtracting φ(y), dividing by z, and taking a limit as z ↓ 0, we deduce that
the infinitesimal generator is given by the following integral operator L:

Lφ(y) =

∫
(φ(x) − φ(y)) μ(x) dx ,

where we have used the fact that the integral of μ(x) is one, since it is a
probability density. Scaling the process Y , that is, replacing it by Y (z/ε2),
will again have the effect of multiplying L by the scaling factor 1/ε2.

To compute the adjoint of L we note that for any probability density p(y),

∫
p(y)Lφ(y) dy =

∫ ∫
p(y) (φ(x) − φ(y)) μ(x) dx dy

=

∫
φ(x)μ(x) dx −

∫
p(y)φ(y) dy

=

∫
φ(x) (μ(x) − p(x)) dx

=

∫
φ(x)L⋆p(x) dx ,

which identifies the adjoint operator

L⋆p = μ− p .

The unique solution of equation (6.13) for the invariant distribution is simply
p = μ. This is intuitively clear since in this model we distribute Y according to
μ and independently layer by layer. Realizations of such a medium are shown
in Figure 6.2. This model is similar to the one used in Chapter 4, where the
random coefficients are distributed randomly and independently layer by layer
but the size of the layers is constant. The model considered in Chapter 4 is,
however, not Markovian. This is easily seen by noting that the information in
(Y (z′), z′ ≤ z) contains the present value Y (z) but also the position of z within
the layer relative to the jump on the left. This in turn fixes the position of the
jump on the right since the layers have constant width. By considering jointly
the process Y (z) and the position within a layer τ(z), we obtain the process
(Y (z), τ(z)), which is Markovian on S × [0, 1). Although this Markov process
is not irreducible and memorizes its initial conditions, the general methods
of Markov processes that we need can be applied. In particular, the invariant
distribution is obtained as the product of the distribution of the parameter
over S by the uniform distribution over [0, 1). This example is important for
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the applications in this book because it shows that Markovian models are not
as special as they might appear at first.

Many non-Markovian models of random media can be made Markov-
ian by enlarging the state space of the driving process.
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Fig. 6.2. Two realizations of a multicomponent process with ε2 = 0.1 (left picture)
and ε2 = 0.01 (right picture). Here the invariant distribution is the uniform one over
[−1, 1].

6.2.3 A Continuous Random Medium

The third example is different from the other two because the process Y (z)
varies continuously with z. One-dimensional media with continuously varying
parameters are also layered media even though there are no sharp interfaces
separating in them. Wave propagation in such media is analyzed in the same
way as in piecewise-constant ones. In particular, the asymptotic analysis can
be used with or without sharp interfaces in the random medium because of
the scaling regime that we are considering here.

The simplest example of a continuous Markovian and ergodic process Y (z)
for modeling the properties of the medium is the Ornstein–Uhlenbeck process.
It is constructed by adding white noise to a damped scalar equation

dY (z) = −Y (z) dz +
√

2 dW (z) , z > 0 , (6.15)

with Y (0) given. Here the level of the white noise dW has been normalized to√
2 and the damping rate to one, so that the invariant density of the process

is a standard Gaussian, as is shown below. Equation (6.15) is an example
of a stochastic differential equation, which will be discussed in greater
detail in Section 6.6.3. However, we do not need the full theory of stochastic



6.2 Markovian Models of Random Media 121

differential equations for this example. We can use the usual variation of
constants method for linear differential equations to obtain the process

Y (z) = Y (0)e−z +
√

2e−z

∫ z

0

es dW (s) . (6.16)

The integral of the deterministic function ez with respect to the Brownian
motion W , known as a Wiener integral, can be defined by integration by
parts, ∫ z

0

es dW (s) = ezW (z)−
∫ z

0

W (s)es ds ,

where the integral on the right-hand side is a usual integral of continuous
functions. This integral can also be looked at as a random variable obtained
as a limit in the mean-square sense (in L2) of the centered Gaussian random
variables

n−1∑

j=0

ezj (W (zj+1)−W (zj)) ,

where zj = (j/n)z. This implies that the limiting integral is Gaussian, cen-
tered, and has a variance given by

E

[(∫ z

0

es dW (s)

)2
]

= lim
n→∞

n−1∑

j=0

e2zj (zj+1 − zj) =

∫ z

0

e2s ds ,

where we have used the independence of increments of the Brownian motion
W and the variance E[(W (zj+1)−W (zj))

2] = zj+1 − zj .
For a given initial state Y (0), the continuous process (6.16) is Gaussian

with mean Y (0)e−z and variance 1−e−2z. Therefore its long-time distribution,
as z → ∞, is the standard Gaussian distribution N (0, 1). This is also its
invariant distribution, since if Y (0) is N (0, 1)-distributed and independent of
W , then we get from the sum of the Gaussian random variables in (6.16) that
Y (z) is also N (0, 1)-distributed for all z > 0.

We obtain from (6.16) that

Y (z + h) = Y (z)e−h +
√

2e−(z+h)

∫ z+h

z

es dW (s) ,

from which we infer the Markov property of the process Y , since Y (z + h) is
a function of the present value Y (z) and the increments of W in the “future”
[z, z + h]. The semigroup of the Ornstein–Uhlenbeck process is given by

Pzφ(x) = E[φ(Y (z))|Y (0) = x] =

∫
φ(y)

1√
2π(1− e−2z)

e
− (y−xe−z)2

2(1−e−2z) dy ,

and its infinitesimal generator is obtained by taking the derivative of the
semigroup at z = 0 leading to
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L = −y
∂

∂y
+

∂2

∂y2
,

which is a partial differential operator. The adjoint operator L⋆ is defined by

∫
ψ(y)Lφ(y) dy =

∫
φ(y)L⋆ψ(y) dy .

Integration by parts gives

L⋆ψ =
∂

∂y
(yψ) +

∂2ψ

∂y2
.

It is easily seen that L⋆N = 0, where N (y) = e−y2/2/
√

2π is the standard
Gaussian density. As in the other models, in the asymptotic analysis we speed
up the process Y by replacing it with Y (z/ε2). Its infinitesimal generator is
(1/ε2)L, and its invariant density is the standard Gaussian.
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Fig. 6.3. Two realizations of the rescaled Ornstein–Uhlenbeck process Y (z/ε2) with
ε2 = 0.1 (left picture) and ε2 = 0.01 (right picture).

6.3 Diffusion Approximation Without Fast Oscillation

We have just discussed in detail the Markovian models for the random pro-
cesses driving the ordinary differential equations (6.1) that we want to analyze.
Now we return to this problem, and we consider first the simple case in which
there is no fast oscillation in the equation for Xε, that is,

dXε

dz
=

1

ε
F (Xε(z), Y ε(z)) + G (Xε(z), Y ε(z)) , (6.17)
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where we have used the notation Y ε(z) = Y (z/ε2). There is no explicit peri-
odic dependence of F and G on z as in (6.1), and that is what we mean by no
fast oscillation. The state space for Xε is Rd, and Y is a Markov process with
state space S. The functions F (x, y) and G(x, y) are defined on Rd × S and
take values in Rd. We assume that F and G are smooth and at most linearly
growing in x. We also assume that F is centered, that is,

E[F (x, Y (z))] = 0 , (6.18)

for every x, where the expectation is taken with respect to the invariant
distribution of Y . In many applications the function F is of the form F (x, y) =
F̃ (x, y)− E[F̃ (x, Y (z))], which ensures the important centering condition.

We want to analyze the asymptotic behavior of the process Xε(z) as ε→ 0
in the sense of convergence of distributions, and in particular, to characterize
its limit process X(z). We will use for this purpose the perturbed-test-function
method, which identifies the generator of the limit process. We have to use a
family of perturbed or modified test functions that provide correctors for the
rapid fluctuations.

6.3.1 Markov Property

We note first that the process Xε is not Markovian by itself. This is because
the driving process Y ε(z) is also needed to determine the increments dXε.
Because of the assumed Markov property of Y ε, it is therefore clear that the
pair (Xε, Y ε) is Markovian.

Consider a test function φ(x, y) on Rd × S that is smooth in x and in the
domain of the infinitesimal generator LY of the Markov process Y in the y
variable. For ε > 0 fixed we then have

E [φ(Xε(h), Y ε(h)) | Xε(0) = x, Y ε(0) = y]− φ(x, y)

h

= E

[
φ(Xε(h), Y ε(h))− φ(x, Y ε(h))

h
| Xε(0) = x, Y ε(0) = y

]

+
E [φ(x, Y ε(h)) | Y ε(0) = y]− φ(x, y)

h

= E

[(
Xε(h)− x

h

)
∇xφ(x, Y ε(h)) | Xε(0) = x, Y ε(0) = y

]

+
E [φ(x, Y ε(h)) | Y ε(0) = y]− φ(x, y)

h
+O(h) ,

where we have expanded the smooth function φ in the variable x. Taking a
limit as h ↓ 0 we obtain the infinitesimal generator of the Markovian pair
(Xε, Y ε), which we denote by Lε:

Lεφ(x, y) =
1

ε2
LY φ(x, y) +

1

ε
F (x, y) · ∇xφ(x, y) + G(x, y) · ∇xφ(x) . (6.19)
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Here we have used the differential equation (6.17) for Xε, the assumed right
continuity of Y ε, the definition of the infinitesimal generatorLY of the Markov
process Y , and the definition of the scaled process Y ε(z) = Y (z/ε2).

6.3.2 Perturbed Test Functions

Since we want to get the asymptotic behavior of the process Xε, it is natural
to consider test functions that depend only on the variable x. Applying the
infinitesimal generator Lε, given by (6.19), to such test functions gives

Lεφ(x) =
1

ε
F (x, y) · ∇xφ(x) + G(x, y) · ∇xφ(x) , (6.20)

since φ(x) is a constant in the y variable and L1 = 0 for any infinitesimal
generator, so that LY φ(x) = 0. The fact that L1 = 0 is a direct consequence
of Ps1 = 1 for general semigroups defined by (6.3). With this choice of test
functions the quantity Lεφ(x) in (6.20) contains diverging terms in ε. However,
they can be canceled approximately by correcting the test function φ(x) by
adding a small term of the form εφ1(x, y). To see this, we write

Lε (φ + εφ1) (x, y) =
1

ε
{F (x, y) · ∇xφ(x) + LY φ1(x, y)}

+G(x, y) · ∇xφ(x) + F (x, y) · ∇xφ1(x, y) + O(ε) ,(6.21)

from which we see that we should choose the correction φ1 so that the di-
verging term in 1/ε vanishes. In order to accomplish this we must solve the
equation for φ1:

LY φ1 + F · ∇xφ = 0 . (6.22)

For each fixed x ∈ Rd this is a Poisson equation with respect to LY and
the variable y. This important equation is discussed in the next section. The
centering condition (6.18),

E[F (x, Y (z)) · ∇xφ(x)] = E[F (x, Y (z))] · ∇xφ(x) = 0 ,

is an essential part of the solvability theory for (6.22).

6.3.3 The Poisson Equation and the Fredholm Alternative

We assume from now on that Y is an ergodic Markov process and that its
infinitesimal generator satisfies the Fredholm alternative, which we will intro-
duce and discuss in this section. The models presented in Section 6.2 belong
to this class.

We want to find a solvability condition on the function f(y) for the Poisson
equation

LY u(y) = f(y) , (6.23)
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and characterize its solutions u(y). We note first that for any function v(y) in
the domain of the generator,

E[LY v(Y (z))] = 0 ,

where the expectation is with respect to the invariant distribution of Y . This
is just the weak form of the equation L⋆

Y p = 0 for the invariant distribution.
When S is a subset of Rn and p has a density, then we have

E[LY v(Y (z))] =

∫

S

p(y)LY v(y) dy =

∫

S

v(y)L⋆
Y p(y) dy = 0 ,

for all test functions v(y) in the domain of LY . We conclude that if the Poisson
equation has a solution u(y), then the inhomogeneous term f(y) must have
mean zero with respect to the invariant distribution

E[f(Y (z))] = 0 .

In the Euclidean case this has the form
∫

S

f(y)p(y) dy = 0 .

This means that the centering condition on f is a necessary condition for
the solvability of the Poisson equation. However, the existence of a unique
invariant probability distribution for Y and the centering condition for f are
not sufficient for the Poisson equation to have a solution. If it has a solution
u(y), then it is clearly not unique, since u(y) + C is also a solution for any
constant C.

The infinitesimal generator LY is not invertible, since it has the nontrivial
function u(y) = 1 in its null space, that is, LY 1 = 0. The Markov process Y is
ergodic, so that the null space of LY is reduced to the constant functions, as
explained in Section 6.1.5. Moreover, the one-dimensional space Null1 spanned
by the invariant probability distribution p is contained in the null space of L⋆

Y .
The Fredholm alternative is the statement that the Poisson equation (6.23)
admits a solution if f satisfies the orthogonality condition f ⊥ Null1, which
is here the centering condition on f , that is, E[f(Y (0)] = 0. In this case, a
particular solution of the Poisson equation LY u = f is given by

u0(y) = −
∫ ∞

0

Psf(y) ds , (6.24)

assuming that the integral exists, since we have formally

LY u0(y) = −
∫ ∞

0

LY esLY f(y) ds

= −
[
esLY f(y)

]∞
0

= f(y)− E[f(Y (0))] = f(y) .
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Another bounded solution u1 of the Poisson equation is such that the dif-
ference ũ1 = u1 − u0 belongs to the null space of the infinitesimal generator
LY . However, Null(LY ) is generated by 1, so ũ1 is a constant. The particular
solution (6.24) satisfies E[u0(Y (0))] = 0, since E[f(Y (s))] = 0, so that u0 is
the unique solution with zero mean of the Poisson equation.

The question that needs to be addressed now is under what conditions on
the state space S and on the Markov process Y , beyond ergodicity, does the
Fredholm alternative hold for the generator LY ? This is a difficult question
that does not have a general or a simple answer. It depends, for example, on
what class of solutions to the Poisson equation we wish to consider for a given
class of centered inhomogeneous terms f . We will discuss here two particular
cases in which a complete analysis can be given in an elementary way.

The first case is that in which the space S is a finite set and the transition
probabilities of the Markov process Y are positive. In this case the infinitesimal
generator is a matrix, the Poisson equation is a linear system of equations,
and the Fredholm alternative is the well-known one from linear algebra. This
finite dimensional case extends easily to generators that are integral operators
on a compact set, like the one we considered in Section 6.2.2.

The second case is that of an ergodic diffusion process in a compact sub-
manifold of a Euclidean space without a boundary, such as the sphere or
the torus, in which case the infinitesimal generator is an elliptic second-order
partial differential operator. If it is a uniformly elliptic operator, then the
Fredholm alternative holds for any function f that is bounded and centered
and with a solution to the Poisson equation that is also bounded. This follows
from the basic theory of second-order elliptic partial differential equations.
Brownian motion with reflection in a bounded region of Rn is not in this class
but does have the Fredholm alternative property. Its infinitesimal generator is
the Laplacian with Neumann boundary conditions. The Ornstein–Uhlenbeck
process of Section 6.2.3 does not fall in this class either, since its state space
is not compact. However, the simple form of its generator allows for a full
treatment of the validity of the Fredholm alternative.

6.3.4 Limiting Infinitesimal Generator

After this discussion on the Fredholm alternative we now return to the analysis
of the limiting problem. The process (Xε, Y ε) is Markov with generator Lε

given by (6.19). This implies that for any smooth and bounded test function
φ, as above, the process

φ(Xε(z), Y ε(z))−
∫ z

0

Lεφ(Xε(u), Y ε(u)) du

is a martingale. Convergence in distribution of Xε is obtained by showing
that the martingale problem associated with Lε converges to the martingale
problem associated with the limiting generator L. It is based on the perturbed-
test-function method.
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Step 1. Perturbed-test-function method.
For any smooth test function φ and any ε > 0 there exists a test function

φε and a generator L such that

sup
x∈K,y∈S

|φε(x, y)−φ(x)| ε→0−→ 0 , sup
x∈K,y∈S

|Lεφε(x, y)−Lφ(x)| ε→0−→ 0 , (6.25)

for any compact subset K of Rd.
We look for a perturbed test function φε of the form

φε(x, y) = φ(x) + εφ1(x, y) + ε2φ2(x, y) . (6.26)

Applying Lε to this φε we get

Lεφε =
1

ε
(LY φ1(x, y) + F (x, y) · ∇xφ(x))

+ (LY φ2(x, y) + F (x, y) · ∇xφ1(x, y) + G(x, y) · ∇xφ(x))

+O(ε) . (6.27)

We define the first corrector φ1 to cancel the ε−1 term (6.27). This gives a
Poisson equation for φ1 as a function of y ∈ S with x ∈ Rd a parameter:

LY φ1(x, y) + F (x, y) · ∇xφ(x) = 0 .

Since F (x, y) is centered by hypothesis (6.18) and we assume that the Fred-
holm alternative holds for LY , the Poisson equation has a solution bounded
in y and smooth in x. It has the representation (6.24), which is here

φ1(x, y) =

∫ ∞

0

E[F (x, Y (z)) · ∇xφ(x) | Y (0) = y] dz .

In all examples considered here, the convergence of the integral is actually
exponential.

We cannot define the second corrector φ2 by canceling the order-one terms
in (6.27) because that would require solving a Poisson equation with an inho-
mogeneous term that is not centered. To center this term we subtract its mean
relative to the invariant distribution of Y . This gives the Poisson equation

LY φ2(x, y) + F (x, y) · ∇xφ1(x, y) + G(x, y) · ∇xφ(x)

− E[F (x, Y (0)) · ∇xφ1(x, Y (0)) + G(x, Y (0)) · ∇xφ(x)] = 0 .

As with the Poisson equation for φ1, this equation has a solution that is
bounded in y and smooth in x. It therefore follows that

Lεφε = E[F (x, Y (0)) · ∇xφ1(x, Y (0))] + E[G(x, Y (0)) · ∇xφ(x)] + O(ε) .

Both parts of (6.25) will now be satisfied if we define the limit generator L by
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Lφ(x) =

∫ ∞

0

E [F (x, Y (0)) · ∇x (F (x, Y (z)) · ∇xφ(x))] dz

+E[G(x, Y (0)) · ∇xφ(x)] , (6.28)

where the expectation is relative to the invariant distribution of Y .
The limit operator (6.28) is a second-order elliptic partial differential op-

erator, a diffusion operator of the form

L =
1

2

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑

i=1

bi(x)
∂

∂xi
,

with

aij(x) = 2

∫ ∞

0

E [Fi(x, Y (0))Fj(x, Y (z))] dz (6.29)

and

bi(x) =

d∑

j=1

∫ ∞

0

E

[
Fj(x, Y (0))

∂Fi

∂xj
(x, Y (z))

]
dz + E[Gi(x, Y (0))] . (6.30)

The ellipticity is seen by noting that only the symmetric part of the diffusion
coefficients {aij(x)} enters into the operator. The symmetric part of these
coefficients can be written in the form, also denoted by aij(x),

aij(x) =

∫ ∞

−∞
E [Fi(x, Y (0))Fj(x, Y (z))] dz .

The ellipticity condition is

d∑

i,j=1

aij(x)ξiξj ≥ 0 ,

for any vector ξ = (ξ1, . . . , ξd). Using the symmetric form of the aij in this
ellipticity condition, we have

d∑

i,j=1

aij(x)ξiξj =

∫ ∞

−∞
E [Yξ,x(0)Yξ,x(z)]dz ≥ 0 ,

where we have introduced the zero-mean stationary process Yξ,x(z) = ξ ·
F (x, Y (z)) with x ∈ Rd and ξ ∈ Rd fixed. The positivity condition follows
by noting that the right side is the integral of the autocorrelation function of
Yξ,x, which equals the power spectral density of Yξ,x,

∫ ∞

−∞
eikz

E [Yξ,x(0)Yξ,x(z)] dz ,
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at zero frequency, k = 0. It is therefore nonnegative by Bochner’s theorem.
We discuss this further in Section 6.3.6.
Step 2. Convergence of martingale problems. The martingale property (6.6)
of the process (Xε, Y ε) applied to the perturbed test function φε, (6.26), that
we have just constructed gives

E

[
φε(Xε(z′), Y ε(z′))− φε(Xε(z), Y ε(z))

−
∫ z′

z

Lεφε(Xε(s), Y ε(s)) ds
∣∣∣ (Xε(z′′), Y ε(z′′)), z′′ ≤ z

]
= 0 ,

for all 0 ≤ z ≤ z′. Since we are interested only in the limit of the process Xε,
we use this identity only with conditioning with respect to Xε. The properties
of conditional expectations allow us to write the reduced martingale property
in the form

E

[(
φε(Xε(z′), Y ε(z′))− φε(Xε(z), Y ε(z))

−
∫ z′

z

Lεφε(Xε(s), Y ε(s)) ds
)

h1(X
ε(z1)) · · ·hm(Xε(zm))

]
= 0 ,

for any bounded and continuous functions h1, h2, . . . , hm and 0 ≤ z1 < z2 <
· · · < zm ≤ z ≤ z′. Using the approximation properties of φε and Lεφε given
by (6.25), we have

E

[(
φ(Xε(z′))− φ(Xε(z))

−
∫ z′

z

Lφ(Xε(s)) ds
)

h1(X
ε(z1)) · · ·hm(Xε(zm))

]
= O(ε), (6.31)

with many terms incorporated in the O(ε) term on the right. If the right
side F (x, y) in the differential equation (6.17) is bounded along with its x
derivatives, then the correctors φ1 and φ2 will also be bounded along with their
x derivatives. In this case the O(ε) estimate on the right side is elementary and
(6.25) holds with K = Rd. When F (x, y) has at most linear growth in x and
is smooth, then similar properties hold for the correctors, and ε-independent
moment estimates are needed for Xε to get the O(ε) estimate. We refer to
the specialized literature for this in the notes at the end of the chapter.

The next step is to pass to the limit ε→ 0 in (6.31). Only the probability
distribution of Xε depends on ε on the left in (6.31). The functional of the
trajectory of the process whose expectation is taken on the left is fixed and
independent of ε. If we know that the distribution of Xε is convergent, or that
it has a convergent subsequence, then we can pass to the limit in (6.31) and
obtain

E

[(
φ(X(z′))−φ(X(z))−

∫ z′

z

Lφ(X(s)) ds
)

h1(X(z1)) · · ·hm(X(zm))
]

= 0 ,
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for any bounded and continuous test functions h1, h2, . . . , hm and any 0 ≤
z1 < z2 < · · · < zm ≤ z ≤ z′. The expectation here is with respect to any
limit distribution for Xε. By the properties of conditional expectation, this
implies that the functional of the trajectory

φ(X(z))− φ(X(0))−
∫ z

0

Lφ(X(s)) ds, z ≥ 0 , (6.32)

is a martingale for any limit distribution of Xε and for any smooth and
bounded test function φ(x). If for the limit diffusion generator (6.28) the
distribution for which this functional is a martingale is unique, then we know
that the distribution of Xε must converge weakly to this distribution. This is
the general way in which the process Xε defined by (6.17) is shown to converge
to the diffusion process whose generator L is given by (6.28).

There are two items that need to be addressed in order to complete the
above step-by-step asymptotic analysis of Xε(z). The first is showing that
the probability distributions of Xε(z) have convergent subsequences, and the
second is showing that the martingale problem for the limit generatorL defines
the distribution of a limit process X(z) uniquely. We address the existence of
convergent subsequences for Xε in the next section.

The uniqueness of the probability distribution of the process for which
(6.32) is a martingale for any test function φ(x), with the generator L given
by (6.28), depends on the properties of this elliptic operator. If the diffusion
and drift coefficients given by (6.29) and (6.30) are smooth and bounded,
then this martingale problem has a unique solution. Uniform ellipticity is not
necessary. If the diffusion coefficients (6.29) grow at most quadratically in x
and are smooth, and the drift coefficients (6.30) grow at most linearly in x
and are smooth, then again the martingale problem defines the distribution
uniquely.

We summarize the convergence analysis of this section in the following
theorem.

Theorem 6.1. Let Xε(z) for z ≥ 0 be the process in Rd defined by the random
differential equation

dXε

dz
(z) =

1

ε
F

(
Xε(z), Y

( z

ε2

))
+ G

(
Xε(z), Y

( z

ε2

))
,

starting from Xε(0) = x0 ∈ Rd. Assume that Y (z) is a z-homogeneous Markov
ergodic process on a state space S with generator LY satisfying the Fredholm
alternative, and the Rd-valued function F satisfies the centering condition
E[F (x, Y (0))] = 0, where E[·] denotes expectation with respect to the invariant
probability distribution of Y (z). Assume also that F (x, y) and G(x, y) are at
most linearly growing and smooth in x. Then the random processes Xε(z)
converge in distribution to the Markov diffusion process X(z) with generator
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Lφ(x) =

∫ ∞

0

E [F (x, Y (0)) · ∇x (F (x, Y (z)) · ∇xφ(x))] dz

+E [G(x, Y (0)) · ∇xφ(x)] . (6.33)

The infinitesimal generator L has the form

L =
1

2

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑

i=1

bi(x)
∂

∂xi
,

with

aij(x) = 2

∫ ∞

0

E [Fi(x, Y (0))Fj(x, Y (z))] dz ,

bi(x) =

d∑

j=1

∫ ∞

0

E

[
Fj(x, Y (0))

∂Fi

∂xj
(x, Y (z))

]
dz + E[Gi(x, Y (0))] .

The symmetric part of aij(x) is nonnegative definite, as is shown in the dis-
cussion following (6.29) and (6.30).

Theorem 6.1 can be readily extended to include a small perturbation on
the right side of the random differential equation. We assume that the process
Xε in Rd is defined as the solution of the random differential equation

dXε

dz
(z) =

1

ε
F

(
Xε(z), Y

( z

ε2

))
+G

(
Xε(z), Y

( z

ε2

))
+Rε

(
Xε(z), Y

( z

ε2

))
,

where the differentiable in x vector function Rε(x, y) satisfies

sup
x∈K,y∈S

|Rε(x, y)| ε→0−→ 0 ,

for any compact set K ⊂ Rd. Then the random processes Xε converge in
distribution to the diffusion process with the same generator (6.33). This can
be established by applying the perturbed-test-function method with the same
family of perturbed test functions as in the case Rε = 0. This is because they
satisfy the key properties (6.25) even in the presence of Rε.

6.3.5 Relative Compactness of the Laws of the Processes

In this section we introduce and discuss a method that can be used to
obtain the relative compactness, or tightness, of the laws of the processes
{Xε(z), 0 ≤ z ≤ Z}, ε > 0, and therefore the existence of convergent sub-
sequences. A sufficient condition for the existence of convergent subsequences
of the distributions of (Xε)ε>0, in the space C of continuous paths, is the
Kolmogorov moment estimate

|E[|Xε(z)−Xε(z′)|4] ≤ C(z − z′)2 , (6.34)
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for all 0 ≤ z′ ≤ z ≤ Z, and with C a constant independent of ε. We do not, in
fact, have an estimate of this form for the family of processes (Xε)ε>0, but we
do have it for a family of processes (X̃ε)ε>0, defined below, which is uniformly
close to (Xε)ε>0, in probability

lim sup
ε→0

P

(
sup

0≤z≤Z
|Xε(z)− X̃ε(z)| > δ

)
= 0 , (6.35)

for all δ > 0. This is enough for the existence of convergent subsequences for
the laws of Xε.

We obtain moment estimates uniform in ε using the perturbed-test-
function method. Using vector notation, let φ(x) = x and let the associated
perturbed test function φε(x, y) = x + εφ1(x, y), where φ1(x, y) is a solu-
tion of the Poisson equation (6.22): LY φ1(x, y) = −F (x, y). In this equation,
the coordinate vector x plays the role of a frozen parameter, and φ1 inherits
the boundedness and smoothness properties of F with respect to x. If F is
bounded, then the function φ1 is bounded. If F has linear growth in x, then
φ1 also has linear growth. We assume in the following that F has bounded
x-derivatives and linear growth in x, uniformly in y.

In order to check the Kolmogorov criterion (6.34), we first need estimates
uniform in ε for moments of Xε(z). They can be obtained using perturbed
test functions φε of the above form φε(x, y) = x + εφ1(x, y) and with the
vector-valued martingale M ε defined by

M ε(z) = φε(Xε(z), Y ε(z))− φε(x0, Y
ε(0))−

∫ z

0

Lεφε(Xε(s), Y ε(s)) ds .

We can now represent Xε(z) in the form

Xε(z) = x0 − ε(φ1(X
ε(z), Y ε(z))− φ1(x0, Y

ε(0)))

+

∫ z

0

Lεφε(Xε(s), Y ε(s)) ds + M ε(z) .

Here x0 is the starting point Xε(0) = x0. The functions φ1(x, y) and
Lεφε(x, y) = F · ∇xφ1(x, y) have linear growths in x uniformly in y. We
have therefore the inequality, in 0 ≤ z ≤ Z,

|Xε(z)| ≤ |x0|+εc1(1+|Xε(z)|+|x0|)+c2

∫ z

0

(1+|Xε(s)|) ds+ sup
0≤s≤Z

|M ε(s)| .

Here c1 and c2 are constants independent of ε. We can rewrite this in the form

(1− c1ε)|Xε(z)| ≤ cZ

(
1 + |x0|+ sup

0≤s≤Z
|M ε(s)|

)
+ c2

∫ z

0

|Xε(s)| ds ,

where cZ is a constant depending on Z but not on ε. For ε < 1/(2c1) we can
apply Gronwall’s lemma to obtain
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sup
z∈[0,Z]

|Xε(z)| ≤ CZ

[
1 + |x0|+ sup

z∈[0,Z]

|M ε(z)|
]

, (6.36)

where CZ is another constant that depends on Z but not on ε. As we saw in
Section 6.1.3, the quadratic variation of the martingale M ε is given by

〈M ε, M ε〉 (z) =

∫ z

0

(Lεφε2 − 2φεLεφε)(Xε(s), Y ε(s)) ds .

Using the expressions φε(x, y) = x + εφ1(x, y) and Lε = 1
ε2LY + 1

εF · ∇x, we
can verify that

Lεφε2 − 2φεLεφε = LY φ2
1 − 2φ1LY φ1 ,

which shows that this term is independent of ε and has quadratic growth in x.
Using Doob’s inequality, which holds for any zero-mean martingale, we have
for any p ≥ 2,

E

[
sup

z∈[0,Z]

|M ε(z)|p
]
≤ cpE

[
〈M ε, M ε〉 (Z)p/2

]
≤ Cp

∫ Z

0

1 + E [|Xε(z)|p] dz .

Substituting into the pth power of (6.36) and using once again Gronwall’s
lemma, we obtain the ε-independent moment estimate

E

[
sup

z∈[0,Z]

|Xε(z)|p
]
≤ Cp,Z(1 + |x0|p) . (6.37)

Let the process X̃ε(z) be defined by

X̃ε(z) = x0 +

∫ z

0

Lεφε(Xε(s), Y ε(s)) ds + M ε(z) . (6.38)

Then
Xε(z)− X̃ε(z) = −ε(φ1(X

ε(z), Y ε(z))− φ1(x0, Y
ε(0))) .

We deduce from the ε-independent moment estimate (6.37) and the linear
growth of φ1(x, y) in x, uniformly in y, that

E

[
sup

0≤z≤Z
|Xε(z)− X̃ε(z)|

]
≤ Cε ,

where C is a constant that depends on Z but not on ε. This implies the
uniform-in-probability closeness (6.35) of the two processes Xε and X̃ε. So
it is enough to show the validity of the Kolmogorov condition (6.34) for the
process X̃ε.

We now consider the increments of X̃ε, and from (6.38) we have
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X̃ε(z)− X̃ε(z′) =

∫ z

z′
Lεφε(Xε(s), Y ε(s)) ds + M ε(z)−M ε(z′) . (6.39)

We estimate the fourth moment of this increment in the following way. The
fourth power of the first term on the right of (6.39) can be bounded by C1(1+
sup0≤z′′≤Z |Xε(z′′)|4)(z − z′)4, where C1 is a constant. In view of (6.37), the
expectation of 1+sup0≤z′′≤Z |Xε(z′′)|4 is bounded uniformly in ε. The second
term on the right in (6.39) is a martingale, and its quadratic variation can be
bounded by C2(1+sup0≤z′′≤Z |Xε(z′′)|2), where C2 is a constant independent
of ε. Using Doob’s inequality we have

E
[
|M ε(z)−M ε(z′)|4

]
≤ c4E[(〈M ε, M ε〉 (z)−〈M ε, M ε〉 (z′))2] ≤ C4(z− z′)2.

This shows that the Kolmogorov criterion (6.34) is fulfilled for (X̃ε)ε>0, and
in view of its uniform proximity (6.34) to (Xε)ε>0 in probability, the laws of
the processes (Xε)ε>0 have weakly convergent subsequences in C.

6.3.6 The Multiplicative-Noise Case

We give now a simple example to illustrate the asymptotic analysis of the
previous sections. We consider a special F (x, y) in which the noise is multi-
plicative,

F (x, y) = F1(x)F2(y) .

Here F1 is a bounded smooth function from Rd to itself and F2(y) is a scalar
function on S that is centered with respect to the invariant distribution of
Y (z),

E[F2(Y (0))] = 0.

The limiting infinitesimal generator given in (6.33) becomes

Lφ(x) =

∫ ∞

0

E [F (x, Y (0)) · ∇x (F (x, Y (z)) · ∇xφ(x))] dz

=
γ

2
F1(x) · ∇x (F1(x) · ∇xφ(x)) ,

where the parameter γ is the integrated autocorrelation of the stationary
process F2(Y (z)). It is given by

γ = 2

∫ ∞

0

E [F2(Y (0))F2(Y (z))] dz = 2

∫ ∞

0

E [ν(0)ν(z)] dz , (6.40)

where we have used the notation F (Y (z)) = ν(z). The parameter γ is non-
negative. This follows from the general considerations of Section 6.3.4. It can
also be shown by noting that it is the limit of the variance of
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1√
L

∫ L

0

ν(z) dz .

More generally, we have, for any real k,

0 ≤ 1

L
E

⎡
⎣
∣∣∣∣∣

∫ L

0

ν(z)eikz dz

∣∣∣∣∣

2
⎤
⎦ =

1

L

∫ L

0

∫ L

0

E [ν(z1)ν(z2)] e
ik(z1−z2) dz1 dz2

=
2

L

∫ L

0

∫ z1

0

E [ν(z1 − z2)ν(0)] cos(k(z1 − z2)) dz2 dz1

=
2

L

∫ L

0

∫ z1

0

E [ν(z)ν(0)] cos(kz) dz dz1

=
2

L

∫ L

0

E [ν(z)ν(0)] cos(kz)

(∫ L

z

dz1

)
dz

= 2

∫ L

0

E [ν(z)ν(0)] cos(kz) dz − 2

L

∫ L

0

zE [ν(z)ν(0)] cos(kz) dz

→ 2

∫ ∞

0

E [ν(z)ν(0)] cos(kz) dz as L→∞ ,

assuming exponential decay of the autocorrelation function (for instance).
This calculation shows that the Fourier transform of the autocorrelation func-
tion of the stationary process ν is proportional to the power spectral density
of the process and is nonnegative. In particular, the integrated autocorrelation
γ is the Fourier transform of the autocorrelation function at 0 frequency and
is consequently nonnegative.

6.4 The Averaging and Fluctuation Theorems

The perturbed-test-function method can be used for many types of limit the-
orems. In this section we will use it for the averaging Theorem 4.2 that we
discussed in Section 4.5.2. We will then use it again to analyze the fluctuations
about the deterministic limit process.

6.4.1 Averaging

We consider the random differential equation

dXε

dz
= F

(
Xε(z), Y

( z

ε2

))
, Xε(0) = x0 ,

where now we do not assume that F (x, y) is centered and, for simplicity, we
assume that F does not depend on z explicitly as it does in Section 4.5.2. We
denote the mean of F with respect to the invariant distribution of Y (z) by
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F̄ (x) = E[F (x, Y (0))] .

The joint process (Xε(·), Y (·/ε2)) is Markovian with generator

Lε =
1

ε2
LY + F (x, y) · ∇x .

Let φ(x) be a test function and define the perturbed test function φε(x, y) =
φ(x) + ε2φ1(x, y), where the corrector φ1 solves the Poisson equation

LY φ1(x, y) + F (x, y) · ∇xφ(x) − F̄ (x) · ∇xφ(x) = 0 .

We see as before that Lεφε(x, y) = F̄ (x) · ∇xφ(x) + O(ε2). Therefore the
processes Xε(z) converge to the solution of the martingale problem associated
with the generator Lφ(x) = F̄ (x) · ∇xφ(x). The solution is the deterministic
process X̄(z) defined as the solution of the ordinary differential equation

dX̄

dz
= F̄ (X̄(z)) , X̄(0) = x0 . (6.41)

Convergence in distribution to a deterministic limit process implies in general
convergence in probability. Therefore we have the following theorem.

Theorem 6.2. Let Xε(z) be the process defined by the random ordinary dif-
ferential equation

dXε

dz
= F

(
Xε(z), Y

( z

ε2

))
, Xε(0) = x0 ,

where ∇xF (x, y) is bounded in x and y. Let F̄ (x) = E[F (x, Y (0))], where the
expectation is with respect to the invariant law of the Markov process Y (z),
which satisfies the hypotheses of Theorem 6.1. Let X̄(z) be the solution of the
ordinary equation (6.41). Then

P

(
sup

z∈[0,Z]

|Xε(z)− X̄(z)| > δ

)
ε→0−→ 0 ,

for all δ > 0.

In view of this it is natural to consider the behavior of the fluctuations
about X̄(z), as we do in the next section.

6.4.2 Fluctuation Theory

We will consider the behavior of the fluctuation process Xε(z) − X̄(z) as
ε→ 0. It is of order ε, so anticipating this we introduce the rescaled fluctuation
process defined by

Uε(z) =
Xε(z)− X̄(z)

ε
. (6.42)



6.4 The Averaging and Fluctuation Theorems 137

It is the solution of the random differential equation

dUε

dz
(z) =

1

ε

[
F

(
X̄(z) + εUε(z), Y

( z

ε2

))
− F̄ (X̄(z))

]
, (6.43)

starting from Uε(0) = 0. We want to find the limit in distribution of the
process Uε(z) as ε→ 0.

We first compute the form of the limit process by a simple formal expansion
in ε and then apply Theorem 6.1 to justify it. Expanding the right side of
(6.43), we obtain

dUε

dz
(z) =

1

ε

[
F

(
X̄(z), Y

( z

ε2

))
− F̄ (X̄(z))

]

+∇xF
(
X̄(z), Y

( z

ε2

))
Uε(z) + O(ε) .

We neglect the O(ε) term and consider the integral form of this differential
equation linear in Uε:

Uε(z) = V ε(z) +

∫ z

0

∇xF
(
X̄(s), Y

( s

ε2

))
Uε(s)ds . (6.44)

Here we have defined

V ε(z) =
1

ε

∫ z

0

F (c)
(
X̄(s), Y

( s

ε2

))
ds , with F (c)(x, y) = F (x, y)− F̄ (x) .

The vector function F (c)(x, y) satisfies the centering condition

E[F (c)(x, Y (0))] = 0

for all x. Therefore, the limiting distribution of the process V ε is given by a
slight variant of Theorem 6.1, which is extended to include a slow variation
through X̄(z) in F (c). We see that the processes V ε converge in distribution
to a diffusion process whose infinitesimal generator is inhomogeneous in z,

Lz =
1

2

d∑

i,j=1

aij(X̄(z))
∂2

∂vi∂vj
,

where a(x) = (aij(x))i,j=1,...,d is the nonnegative definite diffusion matrix

aij(x) =

∫ ∞

−∞
E[F

(c)
i (x, Y (0))F

(c)
j (x, Y (s))] ds . (6.45)

If we denote by σ(x) = (σij(x))i,j=1,...,d a symmetric square root of the matrix
a(x), then we can identify the limit V of V ε as

V (z) =

∫ z

0

σ(X̄(s)) dW (s) ,
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and in coordinate form

Vi(z) =

d∑

j=1

∫ z

0

σij(X̄(s)) dWj(s) ,

where W = (Wj)j=1,...,d and the Wj ’s are independent standard Brownian
motions.

If we can apply the averaging theorem of the previous section to the second
term on the right in (6.44), then we get the following effective equation for
the limit U of Uε:

U(z) = V (z) +

∫ z

0

∇xF̄ (X̄(s))U(s) ds .

The solution can be written in the form

U(z) =

∫ z

0

P(s, z) dV (s) =

∫ z

0

P(s, z)σ(X̄(s)) dW (s) , (6.46)

where we have introduced the propagator or fundamental solution P of the
linear variational equation of the deterministic system (6.41):

dP

dz
(z0, z) = ∇xF̄ (X̄(z))P(z0, z) , z ≥ z0 , (6.47)

starting from P(z0, z = z0) = I. The limit process U is therefore a zero-mean
Gaussian process with autocorrelation function

E[U(z′)UT (z)] =

∫ min(z,z′)

0

P(s, z′)a(X̄(s))PT (s, z) ds , (6.48)

for all z, z′ ≥ 0.
We now give a proof of this fluctuation theorem using Theorem 6.1. We

first introduce the R2d-valued process

Ũε(z) =

[
X̄(z)
Uε(z)

]
.

We have included the deterministic trajectory X̄(z) in this joint process so as
to have z-homogeneous equations. Using (6.41) and (6.43), the process Ũε(z)
is a solution of the random differential equation

dŨε

dz
(z) =

1

ε
F̃

(
Ũε(z), Y

( z

ε2

))
+ G̃

(
Ũε(z), Y

( z

ε2

))
+ R̃ε

(
Ũε(z), Y

( z

ε2

))
.

Here
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F̃ (ũ, y) =

[
0

F (x̄, y)− F̄ (x̄)

]
,

G̃ (ũ, y) =

[
F̄ (x̄)

∇xF (x̄, y)u

]
,

R̃ε (ũ, y) =

[
0

1
εF (x̄ + εu, y)− 1

εF (x̄, y)−∇xF (x̄, y)u

]
,

where

ũ =

[
x̄
u

]
.

We note that R̃ε(ũ, y) is of order ε uniformly in y and for ũ in compact
subsets. Furthermore, the function F̃ (ũ, y) satisfies the centering condition
E[F̃ (ũ, Y (0))] = 0 for all ũ. Therefore, by applying Theorem 6.1, we conclude
that the processes Ũε converge in distribution to a diffusion process whose
infinitesimal generator is

L =

∫ ∞

0

E

[
F̃ (ũ, Y (0)) · ∇ũ

(
F̃ (ũ, Y (z)) · ∇ũ

)]
dz + E

[
G̃(ũ, Y (0)) · ∇ũ

]

=
1

2

d∑

i,j=1

aij(x̄)
∂2

∂ui∂uj
+

d∑

i=1

F̄i(x̄)
∂

∂x̄i
+

d∑

i,j=1

∂F̄i

∂x̄j
(x̄)uj

∂

∂ui
, (6.49)

with the diffusion matrix given by (6.45). The symmetric square root of the
nonnegative definite matrix (aij(x̄)) is denoted by σij(x̄)).

The process Ũ(z) = (X̄(z), U(z))T , with U being the process defined
by (6.46), can now be identified as a diffusion with the generator (6.49).
This shows that the limit process of Ũε(z) = (X̄(z), Uε(z))T is Ũ(z) =
(X̄(z), U(z))T , where U is the Gaussian process defined by (6.46). Its integral
representation in terms of the propagator P is

U(z) =

∫ z

0

P(s, z)σ(X̄(s)) dW (s) . (6.50)

We summarize the results in the following theorem.

Theorem 6.3. Let Xε(z) and X̄(z) be defined as in Theorem 6.2. Let the
fluctuation process Uε(z) be defined by (6.42). In addition to the hypotheses
of Theorem 6.2 we assume that the second derivatives in x of F (x, y) are uni-
formly bounded in x and y. Then the processes Uε(z) converge in distribution
as ε→ 0 to the mean-zero Gaussian process U(z) given by (6.50) and whose
covariance is given by (6.48).

6.5 Diffusion Approximation with Fast Oscillations

6.5.1 Semifast Oscillations

In applications to waves in randomly layered media in the strongly heteroge-
neous white-noise regime (5.17), the random differential equations that come
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up have the form (5.37) for Xε, which is written again below, (6.51). The right
side of this differential equation has a rapidly varying argument, z/ε, along
with the random driving term Y (z/ε2). A diffusion approximation can be ob-
tained in this more general framework by extending the analysis of Section
6.3. The result is summarized in the following theorem.

Theorem 6.4. Let the process Xε(z) be defined by the system of random or-
dinary differential equations

dXε

dz
(z) =

1

ε
F

(
Xε(z), Y

( z

ε2

)
,
z

ε

)
+ G

(
Xε(z), Y

( z

ε2

)
,
z

ε

)
, (6.51)

starting from Xε(0) = x0 ∈ Rd. We assume the same hypotheses as in The-
orem 6.1. We also assume that F (x, y, τ) and G(x, y, τ) are periodic in the
variable τ with period Z0 and F (x, y, τ) satisfies the centering condition

E[F (x, Y (0), τ)] = 0 ,

for all x and τ . Then the random processes Xε(z) converge in distribution to
the diffusion Markov process X(z) with generator

Lφ(x) =
1

Z0

∫ Z0

0

∫ ∞

0

E [F (x, Y (0), τ) · ∇x (F (x, Y (z), τ) · ∇xφ(x))] dz dτ

+
1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ . (6.52)

This limit generator is simply the average over the periodic argument τ of
the generators of Theorem 6.1 with fixed τ . In fact, this theorem holds also
when the dependence of F (x, y, τ) on τ is more general than periodic such
as quasiperiodic or almost periodic. In this case the generator of the limit
process has the form

Lφ(x) =

lim
Z0→∞

1

Z0

∫ Z0

0

∫ ∞

0

E [F (x, Y (0), τ) · ∇x (F (x, Y (z), τ) · ∇xφ(x))] dz dτ

+ lim
Z0→∞

1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ .

This generalization of the periodic case is discussed at the end of this section.
The proof of Theorem 6.4 is similar to that of Theorem 6.1. We need only
explain how to construct perturbed test functions in this case.

It is convenient to introduce the linear motion on the torus [0, Z0] de-
fined by τ(z) := z mod Z0. The joint process (Xε(z), Y (z/ε2), τ(z/ε)) on the
state space Rd × S × [0, Z0] is now a z-homogeneous Markov process with
infinitesimal generator

Lε =
1

ε2
LY +

1

ε
F (x, y, τ) · ∇x +

1

ε

∂

∂τ
+ G(x, y, τ) · ∇x .
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The reason we introduced the motion on the torus τ(z) is to make the new
joint process z-homogeneous. As a result the formalism of generators used in
Theorem 6.1 can be carried over with minor adjustments. The main step that
requires adjustment here is the construction of the perturbed test functions.

Let φ(x) be a smooth test function and as with (6.26) we look for a per-
turbed test function of the form

φε(x, y, τ) = φ(x) + εφ1(x, y, τ) + ε2φ2(x, y, τ) .

As in Section 6.3 we apply Lε to φε and get

Lεφε =
1

ε

[
LY φ1 + F (x, y, τ) · ∇xφ(x)

]
+

[
LY φ2 + F (x, y, τ) · ∇xφ1(x, y, τ)

+G(x, y, τ) · ∇xφ(x) +
∂φ1

∂τ
(x, y, τ)

]
+ O(ε) . (6.53)

We choose the first corrector φ1 in order to cancel the O(ε−1) terms. This
means that φ1 must satisfy the Poisson equation

LY φ1 + F (x, y, τ) · ∇xφ(x) = 0 .

Since F satisfies the centering condition and LY the Fredholm alternative, this
equation has a solution. We write it as φ1(x, y, τ) = φ11(x, y, τ) + φ12(x, τ),
where φ11 is the same as before,

φ11(x, y, τ) =

∫ ∞

0

E[F (x, Y (z), τ) · ∇xφ(x)|Y (0) = y] dz ,

while φ12 does not depend on y, so that LY φ12 = 0. It will be determined so
that the limit generator is independent of τ .

We determine the second corrector φ2 so that after centering, the O(1)
terms (6.53) cancel,

LY φ2(x, y, τ) + φ3(x, y, τ)− E[φ3(x, Y (0), τ)] = 0 ,

where we have defined

φ3(x, y, τ) = F (x, y, τ) · ∇xφ1(x, y, τ) +
∂φ1

∂τ
(x, y, τ) + G(x, y, τ) · ∇xφ(x) .

With this determination of the correctors, (6.53) has the form

Lεφε = E[φ3(x, Y (0), τ)] + O(ε)

= E[F (x, Y (0), τ) · ∇xφ11(x, Y (0), τ)] +
∂φ12

∂τ
(x, τ)

+E[G(x, Y (0), τ) · ∇xφ(x)] + O(ε) , (6.54)

where we use the decomposition φ1(x, y, τ) = φ11(x, y, τ) + φ12(x, τ).
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We now determine the y-independent part of φ1, which is φ12, so that the
right side of (6.54) is independent of τ . In order that it also be a bounded
function of τ we have to write it as the integral over τ of a function that has
mean zero in τ . This gives

φ12(x, τ) = −
∫ τ

0

E[F (x, Y (0), s) · ∇xφ11(x, Y (0), s)]

+E[G(x, Y (0), s) · ∇xφ(x)] − Lφ(x) ds ,

where

Lφ(x) =
1

Z0

∫ Z0

0

E [F (x, Y (0), τ) · ∇xφ11(x, Y (0), τ)] dτ

+
1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ

=
1

Z0

∫ Z0

0

∫ ∞

0

E [F (x, Y (0), τ) · ∇x (F (x, Y (z), τ) · ∇xφ(x))] dz dτ

+
1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ . (6.55)

We therefore have
Lεφε(x, y, τ) = Lφ(x) + O(ε) .

With the perturbed test functions determined as we have just done, and with
the limit generator defined by (6.55), the rest of the proof of Theorem 6.4 is
similar to that of Theorem 6.1.

The extension to an F (x, y, τ) with almost-periodic dependence in τ does
not require any changes in the construction of the perturbed test functions.
However, the corrector φ12(x, τ) is not bounded in τ , but its growth is sublin-
ear, so that εφ12(x, z/ε)→ 0 as ε→ 0, and this is enough for the convergence
proof.

6.5.2 Fast Oscillations

The random ordinary differential equations that come up in the study of
waves in randomly layered media in the weakly heterogeneous regime (5.16)
have the form (6.56) below. The right side of the differential equation (6.56)
has a rapidly varying argument, z/ε2. This rapid variation in z is on the same
scale as that of the driving process Y . We analyze wave propagation in the
weakly heterogeneous regime, in one-dimensional random media in the next
two chapters, in three-dimensional randomly layered media in Chapter 18,
and in random waveguides in Chapter 20. Theorems 6.1 and 6.4 extend to
random differential equations with such fast oscillations. The results of the
asymptotic analysis are summarized in the following theorem.
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Theorem 6.5. Let the process Xε(z) be defined by the system of random or-
dinary differential equations

dXε

dz
(z) =

1

ε
F

(
Xε(z), Y

( z

ε2

)
,

z

ε2

)
+ G

(
Xε(z), Y

( z

ε2

)
,

z

ε2

)
, (6.56)

starting from Xε(0) = x0 ∈ Rd. We assume the same hypotheses as in The-
orem 6.1. We assume also that F (x, y, τ) and G(x, y, τ) are periodic with
respect to τ with period Z0 and that F satisfies the centering condition

∫ Z0

0

E [F (x, Y (0), τ)] dτ = 0 ,

for all x. Then the random processes Xε(z) converge in distribution to the
diffusion Markov process X(z) with generator

Lφ(x) =
1

Z0

∫ Z0

0

∫ ∞

0

E [F (x, Y (0), τ) · ∇x (F (x, Y (z), τ + z) · ∇xφ(x))] dz dτ

+
1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ . (6.57)

This theorem can be extended to functions F (x, y, τ) that are quasiperiodic
or almost periodic in τ . The generator of the limit process has then the form

Lφ(x) =

lim
Z0→∞

1

Z0

∫ Z0

0

∫ ∞

0

E [F (x, Y (0), τ) · ∇x (F (x, Y (z), τ + z) · ∇xφ(x))] dz dτ

+ lim
Z0→∞

1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ .

However, as we will see at the end of this section, the centering condition must
be uniform in both x and τ ,

E[F (x, Y (0), τ)] = 0 . (6.58)

For the proof of Theorem 6.5 it is enough to give the detailed construction
of the perturbed test functions. The rest is similar to the proof of Theo-
rem 6.1. To be able to deal with z-homogeneous Markov processes and gen-
erators we consider, as in Theorem 6.4, the enlarged joint Markov process
(Xε(z), Y (z/ε2), τ(z/ε2)) whose infinitesimal generator is

Lε =
1

ε2

(
LY +

∂

∂τ

)
+

1

ε
F (x, y, τ) · ∇x + G(x, y, τ) · ∇x .

The process (Y (z), τ(z)) is Markov with infinitesimal generator Q = LY + ∂
∂τ

in the state space S×[0, Z0]. It has an invariant probability distribution that is
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the product of the invariant distribution of Y times the uniform distribution in
[0, Z0]. The joint driving process (Y, τ) is ergodic and Q satisfies the Fredholm
alternative if LY does.

Let φ(x) be a smooth test function and look for the perturbed test func-
tions in the form

φε(x, y, τ) = φ(x) + εφ1(x, y, τ) + ε2φ2(x, y, τ) .

Applying Lε to φε we get

Lεφε =
1

ε
[Qφ1 + F (x, y, τ) · ∇xφ(x)]

+ [Qφ2 + F (x, y, τ) · ∇xφ1(x, y, τ) + G(x, y, τ) · ∇xφ(x)] + O(ε) .

As before, we determine the first corrector φ1 so that the O(ε−1) terms vanish.
This gives the Poisson equation

Qφ1(x, y, τ) + F (x, y, τ) · ∇xφ(x) = 0 ,

whose solution is well defined because the inhomogeneous term satisfies the
centering condition with respect to the invariant distribution for Q, and it
has the Fredholm alternative. The zero-mean solution of this Poisson equation
admits the integral representation

φ1(x, y, τ) =

∫ ∞

0

E [F (x, Y (z), τ + z) · ∇xφ(x) | Y (0) = y]dz . (6.59)

Here we have used the fact that the two parts of Q = LY + ∂
∂τ commute, so

that the semigroups for Y and τ act independently.
The second corrector is determined by the condition that the O(1) terms

in Lεφε vanish after centering. This gives the Poisson equation

Qφ2(x, y, τ) + F (x, y, τ) · ∇xφ1(x, y, τ) + G(x, y, τ) · ∇xφ(x)− Lφ(x) = 0 ,

where

Lφ(x) =
1

Z0

∫ Z0

0

E [F (x, Y (0), τ) · ∇xφ1(x, Y (0), τ)] dτ

+
1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ

=
1

Z0

∫ Z0

0

∫ ∞

0

E [F (x, Y (0), τ) · ∇x (F (x, Y (z), τ + z) · ∇xφ(x))] dz dτ

+
1

Z0

∫ Z0

0

E [G(x, Y (0), τ) · ∇xφ(x)] dτ .

The solution φ2 of this Poisson equation is well defined since the inhomo-
geneous term is centered and Q has the Fredholm alternative property. We
therefore have that



6.6 Stochastic Calculus 145

Lεφε = Lφ + O(ε) ,

and the proof is completed as in Theorem 6.1.
The main change that occurs when F (x, y, τ) is almost periodic in τ is

that the generator Q of the joint driving process (Y (z), τ(z)) does not satisfy
the Fredholm alternative. However, the generator LY of Y (z) satisfies the
Fredholm alternative, and the stronger centering condition (6.58) allows the
first corrector φ1 to be well defined by the integral representation (6.59). As in
the almost-periodic extension of Theorem 6.4, the second corrector need only
have sublinear growth in τ so that ε2φ2(x, y, z/ε2)→ 0 as ε→ 0 uniformly in
y ∈ S on bounded sets in x ∈ Rd.

6.6 Stochastic Calculus

A diffusion Markov process in Rd is defined by its infinitesimal generator,
which is a second-order partial differential operator

L =
1

2

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑

i=1

bi(x)
∂

∂xi
. (6.60)

If the coefficients of the generator are smooth and if f(x) is a bounded smooth
function, then

u(z, x) = Ez,x[f(X(Z))] = E[f(X(Z))|X(z) = x] (6.61)

satisfies the backward Kolmogorov equation

∂u

∂z
+ Lu = 0 , z < Z , (6.62)

with terminal condition u(Z, x) = f(x). When the diffusion process X(z) is
well defined and f(x) is any bounded function, then the probabilistic repre-
sentation (6.61) makes sense even though it may not be a classical solution of
the backward Kolmogorov equation (6.62).

Starting from the generator L, that is, from the diffusion and drift co-
efficients, aij(x) and bi(x), there are many ways in which to construct the
diffusion process X(z). If the diffusion and drift coefficients are continuous
and bounded and there is strong ellipticity

d∑

i,j=1

aij(x)ξiξj ≥ δ

d∑

i=1

ξ2
i , x, ξ ∈ R

d , (6.63)

for some δ > 0, then the martingale problem (6.6) determines the probability
distribution of the diffusion process. In the martingale problem the distribu-
tion of the process in the space of continuous paths is uniquely determined
when for any smooth and bounded function φ(x),
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Mφ(z) = φ(X(z))− φ(x) −
∫ z

0

Lφ(X(s)) ds (6.64)

is a martingale. As we saw in Section 6.3, this is a particularly convenient
characterization of diffusion processes for limit theorems. It is mostly the
formalism of the martingale problem that is convenient in the asymptotic
analysis, for we do not use the deeper unique characterization of the limit
with minimal regularity, which is the main part of this theory. If the diffusion
and drift coefficients have additional regularity properties then the transition
probabilities of the process, and its semigroup (6.3), can be constructed from
solutions of the Kolmogorov equation (6.62) using results from the theory of
partial differential equations. From the semigroup the full distribution of the
diffusion process in the space of continuous paths can be constructed using
the Markov property.

When the drift coefficients bi(x) are smooth and the diffusion coefficients
aij(x) are smooth and elliptic,

d∑

i,j=1

aij(x)ξiξj ≥ 0 , x, ξ ∈ R
d , (6.65)

then the diffusion process can be constructed as a functional of the paths
of Brownian motion by solving Itô stochastic differential equations. This is
particularly useful for Monte Carlo simulations. It helps in some calculations
in waves in layered media, and it often gives a quick and efficient way to get
the asymptotic behavior in complicated situations, but it is not an essential
tool for the analysis. The Itô theory of stochastic differential equations for
diffusions can be thought of as a generalization of Langevin equations in which
the diffusion coefficients aij(x) do not depend on x. Itô stochastic differential
equations appear very rarely in the physics literature.

The motivation for using stochastic differential equations to characterize
diffusions with smooth coefficients is as follows. In the smooth case (6.65) the
diffusion coefficients can be factored,

aij(x) =

d∑

k=1

σik(x)σjk(x) , (6.66)

and the matrix σij(x) is itself smooth but may be degenerate. We can then
try to construct X(z) by solving the differential equation

dXi(z) = bi(X(z)) dz +

d∑

j=1

σij(X(z)) dWj(z) , i = 1, . . . , d , (6.67)

where W1(z), W2(z), . . . , Wd(z) are independent standard Brownian motions
and Xi(0) = xi, i = 1, 2, . . . , d. The intuitive meaning of this equation is that
the increments of the path of the diffusion process Xi(z + ∆z)−Xi(z) given
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X(z) are approximately Gaussian random variables with mean bi(X(z))∆z
and covariance aij(X(z))∆z. We write this equation with differentials, rather
than derivatives, because Brownian motion is not differentiable. The difficulty
in constructing the diffusion as a functional of Brownian motion using (6.67)
is that the paths of Brownian motion are continuous but not differentiable,
and therefore the paths of any solution X(z) of (6.67) are expected to be
continuous but not differentiable. This means that in the integral form of the
stochastic differential equation

Xi(z) = Xi(0) +

∫ z

0

bi(X(s)) ds +

∫ z

0

d∑

j=1

σij(X(s)) dWj(s) , (6.68)

the integral with respect to Brownian motion is not well defined by the usual
integration theories. This is because neither the integrand nor the integrator in
the Brownian integral is differentiable. A suitable definition of this integral,
the stochastic integral, is not just a mathematical technicality but rather
an essential part of dealing with the Markov property of diffusions, which
instantaneously lose memory of the past. For Langevin equations the σij are
constants and the Brownian integral is elementary, for it is itself another
nonstandard Brownian motion.

In this section we review briefly the basic facts from stochastic calculus,
namely, Brownian stochastic integrals, Itô’s formula, stochastic differential
equations for diffusions, and connections with partial differential equations.

We then use the stochastic calculus to identify the limit diffusion pro-
cesses of random differential equations as solutions of stochastic differential
equations. This is particularly useful when the random differential equations
are linear systems, which is the case for the propagator matrices in randomly
layered media.

6.6.1 Stochastic Integrals

Our goal in this subsection is to define the stochastic integral with respect
to the standard Brownian motion process W (z), z ≥ 0. The Itô stochastic
integral can be defined for integrands f(z, W ) that are nonanticipating func-
tionals of Brownian motion. Let us denote by (Fz) the filtration generated by
Brownian motion W , that is, Fz is the σ-algebra (or information) generated
by {W (s), 0 ≤ s ≤ z}. If for any z, f(z, W ) is a functional that depends
only on Fz, then it is called an adapted function or functional. We first define
the stochastic integral for elementary nonanticipating functionals of Brownian
motion and then in the general case with a limiting process.

An elementary nonanticipating functional of Brownian motion on [0, 1] is
defined by

f(z, W ) =

n−1∑

k=0

αk(W )1[zk,zk+1)(z) ,
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where the αk(W ) depend only on Fzk
for 0 ≤ k ≤ n− 1 and have finite

variance, and 0 = z0 < z1 < · · · < zn = 1. The integral Mf(z) =∫ z

0 f(s, W ) dW (s) is defined by

Mf(z) =

n−1∑

k=0

αk(W )(W (z ∧ zk+1)−W (z ∧ zk)) , (6.69)

where a∧b = min{a, b}. The random process Mf (z) is a zero-mean continuous,
square-integrable martingale

E [Mf (z′)|Fz] = Mf(z) , z′ ≥ z , (6.70)

whose increments have conditional variance

E
[
(Mf (z′)−Mf(z))2|Fz

]
= E

[∫ z′

z

f2(s, W ) ds|Fz

]
. (6.71)

We extend this definition to all square-integrable nonanticipating functionals

f such that E[
∫ 1

0 f2(s, W ) ds] < ∞ by approximating them with elementary
ones in L2. The martingale property and the Itô isometry (6.71) are preserved
in this extension.

What is different and peculiar to the theory of the stochastic integral is
that in the definition (6.69), the increments of the Brownian motion point for-
ward. This is why the stochastic integral is a martingale and the Itô isometry
holds. The definition of the integral is sensitive to the position of the Brown-
ian increment relative to the position at which the integrand is evaluated. If,
for example, the integrand is evaluated at the midpoint of the Brownian in-
crement, then the resulting integral is different from the Itô integral, and it is
called the Stratonovich integral. The Itô integral is the right one for develop-
ing a theory of stochastic differential equations of the form (6.67) because we
want the diffusion Markov process X(z) to have L in (6.60) as generator. For
this to be the case, the stochastic integral must have the martingale property
(6.70) and the Itô isometry property (6.71).

To see that stochastic integrals do not behave like ordinary integrals we
consider the case f(z, W ) = W (z). By direct calculation from the definition
we show that ∫ z

0

W (s) dW (s) =
1

2
W 2(z)− z

2
. (6.72)

Indeed, this is the integral of the functional f(s, W ) = W (s). We consider
only the case z = 1. Setting zk = k/n, the sequence of functions fn(s, W ) =∑n−1

k=0 W (zk)1[zk,zk+1)(s) approximates f in L2:

E

[∫ 1

0

|f(s, W )− fn(s, W )|2 ds

]
=

n∑

k=0

∫ zk+1

zk

E[(W (s) −W (zk))2] ds

=

n−1∑

k=0

∫ zk+1

zk

(s− zk) ds =

n−1∑

k=0

1

2n2
=

1

2n
,
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which goes to 0 as n→∞. The integral of fn up to 1 is given by (6.69):

Mfn(1) =

n−1∑

k=0

W (zk)(W (zk+1)−W (zk)).

Using the fact that

W 2(1) =

n−1∑

k=0

(
W (zk+1)

2 −W (zk)2
)

=
n−1∑

k=0

(W (zk+1)−W (zk))(W (zk+1) + W (zk)) ,

we obtain the difference

Mfn(1)− 1

2
W 2(1)

=

n−1∑

k=0

(W (zk+1)−W (zk))

(
W (zk)− 1

2
(W (zk+1) + W (zk))

)

= −1

2

n−1∑

k=0

(W (zk+1)−W (zk))2 .

Therefore we get the first moment

E

[
Mfn(1)− 1

2
W 2(1)

]
= −1

2

n−1∑

k=0

1

n
= −1

2
,

and the second moment

E

[(
Mfn(1)− 1

2
W 2(1)

)2
]

=
1

4

n−1∑

k �=l=0

1

n2
+

1

4

n−1∑

k=0

3

n2
=

1

4
+

2

n
,

where we have used the fact that E[(W (zk+1) − W (zk))2] = 1/n and
E[(W (zk+1)−W (zk))4] = 3/n2. Finally, we deduce

E

[(
Mfn(1)−

(
1

2
W 2(1)− 1

2

))2
]

=
2

n
,

which goes to 0 as n→∞, which shows that Mfn(1) converges to 1
2W 2(1)− 1

2
in L2 as n→∞. This is the desired result (6.72) at z = 1. The derivation for
general z follows the same lines.

A similar computation with the Stratonovich integral shows that
∫ z

0

W (s) ◦ dW (s) =
1

2
W 2(z) ,

which is what ordinary integration gives. However, the Stratonovich integral is
not a martingale and does not satisfy the Itô isometry. Stratonovich integrals
will be discussed further in Section 6.7.2.
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6.6.2 Itô’s Formula

If the Brownian motion were differentiable and φ(z, x) is a smooth function
then ψ(z) = φ(z, W (z)) would be differentiable and ψ′(z) = φz(z, W (z)) +
φx(z, W (z))W ′(z), which is the chain rule. But the Brownian motion is not
differentiable, and this formula is not correct. Itô’s formula provides a gen-
eral way to extend the chain rule to functions of Brownian motion and
of stochastic integrals. In the example just considered, Itô’s formula gives
dψ(z) = φz(z, W (z)) dz + φx(z, W (z)) dW (z) + 1

2φxx(z, W (z)) dz, which is
written in terms of differentials, since Brownian motion is not differentiable.
The unexpected, at first, new term in this formula is the one with the second
x derivative. We will explain briefly how this formula arises and discuss its
generalizations.

The reason why Itô’s formula has an extra term is that while Brownian
motion does not have finite variation, for otherwise it would be differentiable
with probability one, it does have finite quadratic variation,

inf
P

∑

k

(W (zk+1)−W (zk))2 = z , (6.73)

where the infimum is taken over all finite partitions P of the interval [0, z]. We
write this in compact notation as (dW (z))2 = dz. Variations of order higher
than two vanish for Brownian motion. If for a fixed partition we write

ψ(z)− ψ(0) =
∑

k

[ψ(zk+1)− ψ(zk)] ,

with ψ(z) = φ(z, W (z)), use a two-term Taylor expansion on each subinterval
[zk, zk+1], and use the quadratic variation property of Brownian motion, we
get Itô’s formula in integral form:

φ(z, W (z)) = φ(0, 0) +

∫ z

0

∂φ

∂z
(s, W (s)) ds +

∫ z

0

∂φ

∂x
(s, W (s)) dW (s)

+
1

2

∫ z

0

∂2φ

∂x2
(s, W (s)) ds . (6.74)

As an example consider φ(z, x) = x2. Itô’s formula gives

W (z)2 = 2

∫ z

0

W (s) dW (s) + z ,

which agrees with the direct calculation of the quadratic stochastic integral
(6.72).

Itô’s formula can be generalized to functions of Brownian stochastic in-
tegrals, not only of Brownian motion. We consider the R-valued stochastic
integral

X(z) = X(0) +

∫ z

0

f(s, W ) dW (s) +

∫ z

0

g(s, W ) ds ,
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where f and g are nonanticipating square-integrable and integrable function-
als, respectively. We call this a stochastic integral, even though it also contains
an ordinary integral, because Itô’s formula applied to such processes is also a
stochastic integral of this form. We have just given in (6.74) Itô’s formula for
φ(z, X(z)) for the case g = 0 and f = 1. Its generalization is

φ(z, X(z)) = φ(0, X(0)) +

∫ z

0

∂φ

∂z
(s, X(s)) ds +

∫ z

0

∂φ

∂x
(s, X(s)) dX(s)

+
1

2

∫ z

0

∂2φ

∂x2
(s, X(s)) d 〈X, X〉 (s) , (6.75)

where

dX(z) = f(z, W ) dW (z) + g(z, W ) dz and d 〈X, X〉 (z) = f2(z, W ) dz .

The increasing process

〈X, X〉 (z) =

∫ z

0

f2(s, W ) ds

is the quadratic variation of the stochastic integral X(z), defined in the same
way as for Brownian motion (6.73):

〈X, X〉 (z) = inf
P

∑

k

(X(zk+1)−X(zk))2 .

It is characterized by the fact that

X2(z)− 〈X, X〉 (z)

is a martingale, which also follows from the Itô isometry (6.71). For Brownian
motion, f = 1, g = 0, we have 〈W, W 〉 (z) = z.

Next we compute the multidimensional version of Itô’s formula for the
stochastic integrals of the form

Xi(z) = Xi(0) +

∫ z

0

n∑

j=1

Fij(s, W ) dWj(s) +

∫ z

0

Gi(s, W ) ds , i = 1, . . . , d ,

where W1(z), . . . , Wn(z) are n independent standard Brownian motions. Here
(Fij(s, W ))i=1,...,d,j=1,...,n is an adapted (nonanticipating) random d× n ma-
trix that is square-integrable, and (Gi(s, W ))i=1,...,d is an adapted random Rd

vector that is integrable. Let φ : R × Rd → R be a smooth function. Then
Itô’s formula is given by

φ(z, X(z)) = φ(0, X(0)) +

∫ z

0

∂φ

∂z
(s, X(s)) ds +

d∑

i=1

∫ z

0

∂φ

∂xi
(s, X(s)) dXi(s)

+
1

2

d∑

i,j=1

∫ z

0

∂2φ

∂xi∂xj
(s, X(s)) d 〈Xi, Xj〉 (s) , (6.76)
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where

dXi(z) =

n∑

j=1

Fij(z, W ) dWj(z) + Gi(z, W ) dz

and

d 〈Xi, Xj〉 (z) =
n∑

k=1

Fik(z, W )Fjk(z, W ) dz .

This last expression is the cross quadratic variation of the stochastic integrals
Xi(z) and Xj(z):

〈Xi, Xj〉 (z) = inf
P

∑

k

(Xi(zk+1)−Xi(zk))(Xj(zk+1)−Xj(zk)) .

6.6.3 Stochastic Differential Equations

With stochastic integrals well defined and with Itô’s formula as an analytical
tool, we can consider the solution of stochastic differential equations of the
form (6.67).

We will use vector notation. Let W (z) be the standard n-dimensional
Brownian motion. Let b : Rd × R → Rd and σ : Rd × R → Rd×n be smooth
vector and matrix functions, respectively. We say that the random process
X(z) is a solution of the stochastic differential equation (SDE)

dX(z) = σ(z, X(z)) dW (z) + b(z, X(z)) dz

if X(z) is Fz-adapted and if

X(z) = X(0) +

∫ z

0

σ(s, X(s)) dW (s) +

∫ z

0

b(s, X(s)) ds . (6.77)

The main result is that there exists a unique solution with continuous paths
if b and σ are uniformly Lipschitz in x and grow at most linearly in x. The
proof is an extension of the Picard iteration method for ordinary differential
equations and uses the Kolmogorov inequality for martingales. The process
X(z) has finite moments of all orders on any finite z interval and starting
from any point in Rd (see for instance [128]).

The Markov property of the solution process X(z) follows from the initial
value structure of the defining equation (6.77), from the independent incre-
ments property of Brownian motion, and from the definition of the stochastic
integral. The solution X(z′) at any z′ > z is a functional of Brownian motion
increments in [z, z′] and of X(z). It does not depend on the past given X(z).
A Markov process with continuous paths is a diffusion process. Its generator
is given in the next section.

We give two basic examples.
Example 1. Let λ ∈ R and consider the SDE



6.6 Stochastic Calculus 153

dX(z) = λX(z) dW (z) , X(0) = 1 .

Then the unique solution is the exponential martingale

X(z) = exp

(
λW (z)− λ2

2
z

)
.

This can be seen by applying Itô’s formula to φ(z, W (z)) with φ(z, x) =
exp(λx− λ2z/2).
Example 2. The solution of the SDE

dX(z) = −X(z) dz +
√

2 dW (z)

is the Ornstein–Uhlenbeck process introduced in Section 6.2.3.

6.6.4 Diffusions and Partial Differential Equations

In the z-homogeneous case the smooth matrix field σ : Rd → Rd×n and the
vector field b : Rd → Rd do not depend on z. The SDE for the Rd-valued
diffusion process X(z) is

dX(z) = σ(X(z)) dW (z) + b(X(z)) dz . (6.78)

Let φ : Rd → R be a smooth and bounded function. Using Itô’s formula we
get that

φ(X(z)) = φ(X(0)) +

∫ z

0

Lφ(X(s)) ds +

∫ z

0

∇xφ(X(s)) · σ(X(s)) dW (s) ,

where L is the diffusion operator

L =
1

2

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑

i=1

bi(x)
∂

∂xi
, (6.79)

with

aij(x) =

n∑

k=1

σik(x)σjk(x) . (6.80)

The diffusion operator L is the generator of the diffusion process X(z). This
can be seen by letting u(z, Z, x) be the solution of the partial differential
equation

∂u

∂z
+ Lu = 0 , z < Z , (6.81)

with terminal condition u(z = Z, Z, x) = φ(x). If the solution of this equation
is smooth, then we can apply Itô’s formula to u(z, Z, X(z)) and conclude that
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u(Z, Z, X(Z))− u(0, Z, X(0)) =

∫ Z

0

∇xu(s, Z, X(s)) · σ(X(s)) dW (s) .

Under the present conditions the integrand of the stochastic integral is square-
integrable, and so the mean of the stochastic integral is zero. Taking into
account the terminal condition for u we have the probabilistic representation

u(0, Z, x) = E0,x[φ(X(Z))] = E[φ(X(Z))|X(0) = x] .

We conclude from this representation that L is the generator of the z-
homogeneous diffusion process X(z) and that (6.81) is its backward Kol-
mogorov equation.

Itô’s formula shows also that the distribution of X(z) is the solution of
the martingale problem associated with the generator L, that is,

φ(X(z))− φ(X(0))−
∫ z

0

Lφ(X(s)) ds

is a martingale for any test function φ(x).
Clearly the study of diffusion processes is intimately connected with

parabolic differential equations, even if in principle everything can be ob-
tained from the SDE (6.78). The distribution of the process X(z) can be
obtained with partial differential equations methods. Let us assume that the
diffusion coefficients aij are twice differentiable with bounded derivatives, the
bi’s are continuously differentiable with bounded derivatives, and a satisfies
the strong ellipticity condition (6.63). Then there exists a unique Green’s
function p(z, x, y) from R+×Rd×Rd to R such that p(0, x, y) = δ(x−y) and:

1. p(z, x, y) > 0 ∀z > 0, x, y ∈ Rd,
2. p is continuous on R+∗ × Rd × Rd, p is C2 in x and y, and C1 in z,
3. as a function of z and x, p satisfies the partial differential equation (PDE)

∂p

∂z
= Lp ,

4. as a function of z and y, p satisfies the PDE

∂p

∂z
= L⋆p ,

where L⋆ is the adjoint operator

L⋆p = −
d∑

i=1

∂

∂yi
(bi(y)p) +

d∑

i,j=1

∂2

∂yi∂yj
(aij(y)p) .

The Green’s function p(z, x, y) is consequently the density of the kernel of
the semigroup Pz of the Markov process with the generator L:

(Pzφ)(x) =

∫
φ(y)p(z, x, y) dy.
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6.6.5 Feynman–Kac Representation Formula

Itô’s formula can be used to obtain a probabilistic representation for the so-
lution u(z, Z, x) of partial differential equations of the form

∂u

∂z
+ Lu− V u = 0 , z < Z , (6.82)

u(z = Z, Z, x) = φ(x) , (6.83)

where in addition to the operator L defined in (6.79), V = V (z, x) is a bounded
function, a potential term in the equation; φ(x) is a smooth function in the
terminal condition at z = Z; and the equation is to be solved for z < Z. This
situation is a generalization of the backward Kolmogorov equation (6.81).

We consider the diffusion Markov process X(z) that solves the SDE (6.78)
and has infinitesimal generator L. We now apply Itô’s formula to M(z) defined
by

M(z) = u(z, Z, X(z))e−
∫

z
0

V (s,X(s)) ds .

The dz part of dM(z) in Itô’s formula is given by

(
∂u

∂z
+ Lu − V u

)
(z, Z, X(z))e−

∫
z
0

V (s,X(s)) ds dz ,

and it is zero because u satisfies the partial differential equation (6.82). The
martingale property of M(z) between z and Z gives E (M(Z) | Fz) = M(z),
which can be written as

u(z, Z, X(z)) = E

[
e−

∫
Z
z

V (s,X(s)) dsφ(X(Z)) | Fz

]
,

where we have used u(Z, Z, X(Z)) = φ(X(Z)) from the terminal condition
(6.83) and the fact that exp

(
−

∫ z

0
V (s, X(s)) ds

)
is Fz-adapted. From the

Markov property of X(z) we obtain the Feynman–Kac representation formula

u(z, Z, x) = E

[
e−

∫
Z
z

V (s,X(s)) dsφ(X(Z)) | X(z) = x
]
. (6.84)

Thus, the solution u of the PDE (6.82) has a representation as an expec-
tation of a functional of the path of the process X(z). This representation
formula remains valid in the z-inhomogeneous case in which the coefficients
of the diffusion X(z) depend also on z, and the operator L depends also on
z through b(z, x) and σ(z, x). In the homogeneous case with a potential inde-
pendent of z, that is, V (z, x) = V (x), the change of variable Z − z = z′ and
with v defined by v(z′, x) = u(Z − z′, x), we have that it satisfies

∂v

∂z′
= Lv − V (x)v , (6.85)

with the initial condition v(0, x) = φ(x). The form of the probabilistic repre-
sentation for v is now
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v(z′, x) = E

[
e−

∫
Z
Z−z′ V (X(s)) dsφ(X(Z)) | X(Z − z′) = x

]

= E

[
e−

∫
z′
0

V (X(s)) dsφ(X(z′)) | X(0) = x
]

,

where we have used the homogeneity in z of the diffusion Markov process
X(z).

6.7 Limits of Random Equations and Stochastic
Equations

We now consider the random differential equations of Section 6.3 and their
diffusion limits from the viewpoint of stochastic calculus. The random differ-
ential equations have the form

dXε(z)

dz
=

1

ε
F (Xε(z), Y ε(z)) + G (Xε(z), Y ε(z)) , (6.86)

or those with fast oscillations (6.51) and (6.56). The limit generator for (6.86)
is given by

Lφ(x) =

∫ ∞

0

E [F (x, Y (0)) · ∇x (F (x, Y (z)) · ∇xφ(x))] dz

+E[G(x, Y (0)) · ∇xφ(x)] (6.87)

as in Theorem 6.1. For the equations with fast oscillations the limit generators
are given by (6.52) and (6.57) or their analogues in the almost-periodic case
stated just below these expressions.

Next we introduce a special class of random differential equations, with or
without fast oscillations, for which the limit process has a simple characteri-
zation by a stochastic differential equation.

6.7.1 Itô Form of the Limit Process

In all of the applications that we present in this book the random differential
equations that we encounter have a right-hand side of the form

F (x, y, τ) =

n∑

p=1

F (p)(x)g(p)(y, τ) , (6.88)

where F (p)(x) are smooth vector fields in Rd and g(p)(y, τ) are real-valued
scalar functions of y ∈ S and τ ∈ R, and periodic or almost periodic in τ . We
assume that the centering condition

E[g(p)(Y (0), τ)] = 0 (6.89)
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holds for all τ ∈ R and p = 1, 2, . . . , n. In applying the limit Theorem 6.1,
where g(p)(y, τ) is independent of τ , we have the correlation integrals

Cpq = 2

∫ ∞

0

E

[
g(p)(Y (0))g(q)(Y (z))

]
dz , (6.90)

p, q = 1, . . . , n. In applying the limit Theorem 6.4 we have the correlation
integrals

Cpq = 2 lim
Z0→∞

1

Z0

∫ Z0

0

∫ ∞

0

E

[
g(p)(Y (0), τ)g(q)(Y (z), τ)

]
dz dτ , (6.91)

p, q = 1, . . . , n, and for the case of Theorem 6.5 the correlation integrals

Cpq = 2 lim
Z0→∞

1

Z0

∫ Z0

0

∫ ∞

0

E

[
g(p)(Y (0), τ)g(q)(Y (z), τ + z)

]
dz dτ , (6.92)

p, q = 1, . . . , n. The constant n×n matrix C = (Cpq)p,q=1,...,n is not symmetric
in general. However, its symmetric part C(S) = 1

2 (C+CT ) is nonnegative, as
was shown in Section 6.3.4.

With these definitions the limit generator has, in all cases, the form

Lφ(x) =
1

2

n∑

p,q=1

CpqF
(p)(x) · ∇x

[
F (q)(x) · ∇xφ(x)

]
+ Ḡ(x) · ∇xφ(x) , (6.93)

where Ḡ(x) = limZ0→∞
1

Z0

∫ Z0

0 E[G(x, Y (0), τ)] dτ . We define by σ̃ the sym-

metric square root of C(S) = σ̃
2 and define further

σil(x) =

n∑

p=1

σ̃lpF
(p)
i (x) (6.94)

and

bi(x) =
1

2

n∑

p,q=1

d∑

j=1

CpqF
(p)
j (x)

∂F
(q)
i (x)

∂xj
+ Ḡi(x) . (6.95)

Then the limit process X(z) is identified with the solution of the Itô stochastic
differential equation

dXi(z) =

n∑

l=1

σil(X(z)) dWl(z) + bi(X(z)) dz , i = 1, 2, . . . , d , (6.96)

with Xi(0) = xi, and W1(z), . . . , Wn(z) independent standard Brownian mo-
tions. We note that with the definitions (6.94) and (6.95) the drift coefficients
are also given by

bi(x) =
1

2

n∑

l=1

d∑

j=1

σjl(x)
∂σil(x)

∂xj
+ b

(A)
i (x) + Ḡi(x) , (6.97)
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where

b
(A)
i (x) =

1

2

n∑

p,q=1

d∑

j=1

C(A)
pq F

(p)
j (x)

∂F
(q)
i (x)

∂xj
, (6.98)

and C(A) = 1
2 (C−CT ) is the antisymmetric part of the matrix C.

Stochastic differential equations in which the drift coefficients bi(x) are
related to the σil(x) by the relation (6.97) are special because they have a
simpler form when written as Stratonovich stochastic differential equations

dXi(z) =

n∑

l=1

σip(X(z))◦dWl(z)+(b
(A)
i (X(z))+Ḡi(X(z))) dz , i = 1, 2, . . . , d .

(6.99)
Here the Brownian stochastic integral

∫ z

0

σil(X(s)) ◦ dWl(s)

is not the Itô integral of Section 6.6.1 but the Stratonovich integral, which is
denoted by the circle. We note that in many of the applications that follow

the matrix C is symmetric, and therefore b
(A)
i (x) = 0.

We discuss the relation between Itô and Stratonovich stochastic integrals
and stochastic differential equations in the next section.

6.7.2 Stratonovich Stochastic Integrals

Let X(z) be the solution of the Itô stochastic differential equation (6.96) and
let φ(x) be a smooth and bounded function on Rd. We saw in Section 6.6.1
that Itô stochastic integrals have the Brownian increments pointing forward,

∫ z

0

φ(X(s)) dWp(s) ≈
∑

k

φ(X(zk))(Wp(zk+1)−Wp(zk)) ,

where 0 = z0 < z1 < · · · < zN = z. The Stratonovich stochastic integral is
defined with the midpoint rule

∫ z

0

φ(X(s)) ◦ dWp(s) ≈
∑

k

φ(X(zk)) + φ(X(zk+1))

2
(Wp(zk+1)−Wp(zk)) .

By adding and subtracting φ(X(zk)) in this expression the Stratonovich inte-
gral can be written as an Itô integral and a correction

∫ z

0

φ(X(s)) ◦ dWp(s) ≈
∫ z

0

φ(X(s)) dWp(s)

+
1

2

∑

k

(φ(X(zk+1))− φ(X(zk)))(Wp(zk+1)−Wp(zk)) .
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We can use Itô’s formula to write the φ increments as

φ(X(zk+1))− φ(X(zk))

=

∫ zk+1

zk

⎛
⎝

d∑

i=1

bi(X(s))
∂φ

∂xi
(X(s)) +

1

2

d∑

i,j=1

aij(X(s))
∂2φ

∂xi∂xj
(X(s))

⎞
⎠ ds

+

n∑

q=1

∫ zk+1

zk

d∑

j=1

σjq(X(s))
∂φ

∂xj
(X(s)) dWq(s) .

We use this expression to calculate the form of the correction term on the
right side of the relation between the Stratonovich and the Itô integrals. As
in the calculation of quadratic variations of stochastic integrals, the ds part
of the φ increments does not contribute, and we get

∫ z

0

φ(X(s)) ◦ dWp(s) =

∫ z

0

φ(X(s)) dWp(s)

+
1

2

d∑

j=1

∫ z

0

σjp(X(s))
∂φ

∂xj
(X(s)) ds . (6.100)

Note that the expectation of the Stratonovich integral is not zero as it is for
the Itô integral. It is equal to the expectation of the ordinary integral on the
right.

When we use this equality for
∫ z

0 σip(X(s)) ◦ dWp(s) we get

∫ z

0

σip(X(s)) ◦ dWp(s) =

∫ z

0

σip(X(s)) dWp(s)

+

∫ z

0

1

2

d∑

j=1

σjp(X(s))
∂σip

∂xj
(X(s)) ds .

This is the relation that we used in the previous section to write the Itô
stochastic differential equation (6.96) is the Stratonovich form (6.99).

We can use the relation (6.100) between the Stratonovich and the Itô
integrals to rewrite Itô’s formula (6.76). Taking into account the explicit de-
pendence of φ on z we have

φ(z, X(z)) = φ(0, X(0))

+

∫ z

0

(
∂φ

∂z
(s, X(s)) +

d∑

i=1

∂φ

∂xi
(s, X(s))Ḡi(X(s))

)
ds

+

d∑

i=1

n∑

p=1

∫ z

0

∂φ

∂xi
(s, X(s))σip(X(s)) ◦ dWp(s) , (6.101)

which looks superficially like the ordinary chain rule of calculus.
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What is interesting about Stratonovich integrals here is that they appear
naturally in the limit theorems for random differential equations. It is the
form (6.93) of the limit generator as a sum of squares of vector fields that
gives it.

6.7.3 Limits of Random Matrix Equations

Motivated by the random differential equations (5.27), (5.28) for the 2 × 2
propagator matrices Pε

ω(0, z) to which the limit theorems can be applied, we
will now write the limit generators in a form that exhibits some important
properties of the limit diffusion process. We are dealing with linear random
matrix equations, and the property of the limit process that we want to iden-
tify is a form of space-time homogeneity of its increments.

The general form of the matrix equations is

dPε(z)

dz
=

1

ε
F (Pε(z), Y ε(z)) , (6.102)

or those with fast oscillations (6.51) and (6.56). Here Pε is a d × d matrix,
and the matrix-valued function F has the form

F(P, y, τ) =

n∑

p=1

g(p)(y, τ)hpP , (6.103)

where the hp are given constant d×d matrices. We assume for simplicity that
the order-one term G in (6.86) is zero. As in Section 6.7.1 we assume that the
scalar functions g(p)(y, τ) satisfy the centering condition (6.89) and that the
integrated correlations Cpq, p, q = 1, . . . , n are defined by (6.90), (6.91), and
(6.92) depending on which limit theorem is appropriate. The generator of the
limit matrix-valued diffusion is given by

Lφ(P) =
1

2

n∑

p,q=1

CpqDpDqφ(P) . (6.104)

Here the first-order partial differential operators Dp are defined by

Dpφ(P) = hpP · ∇Pφ(P) = lim
δ→0

1

δ

(
φ(eδhpP)− φ(P)

)
, (6.105)

where P ·Q =
∑

i,j PijQij . They do not commute with each other but satisfy
the same commutation relations that the matrices hp do. As we noted in Sec-
tion 6.7.1, the matrix C is not symmetric in general. However, its symmetric
part C(S) is nonnegative definite.

As in Section 6.7.1, we introduce the symmetric square root σ̃ of the
symmetric part C(S) of the matrix C. We then define the d × d matrices
h̃l =

∑n
p=1 σ̃lphp. The Stratonovich form of the matrix-valued stochastic dif-

ferential equation for the limit diffusion process P(z) is given by
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dP(z) =
n∑

l=1

h̃lP(z) ◦ dWl(z) +
1

2

n∑

p,q=1

C(A)
pq hqhpP(z) dz , (6.106)

where Wl(z), l = 1, . . . , n are independent standard Brownian motions and
P(0) = P0. We denote by C(A) the antisymmetric part of the matrix C. If the
initial matrix P0 is nonsingular, then the diffusion process P(z) is nonsingular
for any z ≥ 0 because by the Liouville identity and the Itô–Stratonovich
formula we have that

d detP(z) = Tr

[
n∑

l=1

h̃l ◦ dWl(z) +
1

2

n∑

p,q=1

C(A)
pq hqhp dz

]
detP(z) ,

with detP(0) = detP0.
The differential operators Dp have the property that they commute with

right-multiplicative translations TQφ(P) = φ(PQ). That is, TQDp = DpTQ.
This property is inherited by the generator L, and it implies that the matrix
diffusion process P(z) has homogeneous in z independent multiplicative incre-
ments. This means that for any 0 < z1 < z2 the distribution of P(z2)P

−1(z1)
starting from P0 at z = 0 is the same as the distribution of P(z2−z1) starting
from I at z = 0 and it is independent of {Wp(z), z ≤ z1, p = 1, . . . , n}. In
particular, the distribution of P(z2)P

−1(z1) does not depend on the initial
matrix P0, which is the spatial homogeneity property that we mentioned in
the beginning of this subsection.

To prove this property we note that E0,PQ[φ(P(z))] = E0,P[φ(P(z)Q)],
because both sides satisfy the backward Kolmogorov equation and the gener-
ator commutes with right translations. Here E0,P[·] is conditional expectation
for the diffusion P(z) starting at z = 0 from P. We now have that for any
bounded random variable gz1 that depends on {Wp(z), z ≤ z1, p = 1, . . . , n}

E0,P0 [φ(P(z2)P
−1(z1))gz1 ] = E0,P0 [Ez1,P(z1)[φ(P(z2)P

−1(z1))]gz1 ]

= E0,P0 [Ez1,I[φ(P(z2))]gz1 ]

= E0,I[φ(P(z2 − z1))]E0,P0 [gz1] .

This proves the space-time homogeneity and the independence of the multi-
plicative increments of the matrix diffusion process P(z).

6.8 Lyapunov Exponent for Linear Random Differential
Equations

All the limit theorems that we have given are for processes Xε(z) that are
defined by random differential equations over a finite interval 0 ≤ z ≤ Z, as ε
tends to zero. This includes the averaging Theorem 6.2, the fluctuation The-
orem 6.3, and the diffusion approximation Theorems 6.1, 6.4, and 6.5. Under
what circumstances is the large-z behavior of the limit process characteristic
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of the behavior of the original process Xε(z) for fixed but small ε as z tends
to infinity? The answer is that only under rather special circumstances is the
behavior of Xε(z) for ε fixed and z large reflected by the large z behavior
of the limit process. In this section we consider an important special config-
uration in which this is the case. More precisely, we study the exponential
behavior of solutions of some linear systems of random differential equations
for which the large-z and the small-ε limits can be interchanged.

6.8.1 Lyapunov Exponent of the Random Differential Equation

We consider the linear systems of random differential equations of the form

dXε

dz
(z) =

1

ε
ΩXε(z) +

1

ε
g
(
Y

( z

ε2

))
hXε(z) , Xε(0) = x0 . (6.107)

In this and the next section we will assume that the following hypotheses hold:

• The driving process Y (z) is Markovian as in Theorem 6.1.
• The real-valued function g(y) is bounded and the centering condition

E[g(Y (0))] = 0 holds.
• Ω and h are d × d constant matrices. The matrix Ω is skew symmetric,

Ω = −ΩT , and it has no invariant vectors. The matrix Ω generates a flow
eΩz on the sphere Sd−1 such that for j = 1, 2, 3,

lim
Z→∞

1

Z

∫ Z

0

φj(e
Ωzx̂) dz is independent of x̂ ∈ Sd−1, (6.108)

where φ1(x̂) = (hx̂,hx̂), φ2(x̂) = (h2x̂, x̂), and φ3(x̂) = (hx̂, x̂)2.

We will show in Lemma 6.6 that the limits (6.108) always exist, but are not
independent of x̂ in general. Given Ω and h we assume that the limit is
independent of x̂ for the three polynomial functions φj(x̂), j = 1, 2, 3, shown
below (6.108). This hypothesis is satisfied for the random harmonic oscillator
that we consider in Chapter 7.

We are interested in the large-z behavior of the process Xε(z) as charac-
terized by the Lyapunov exponent

Γ ε = lim sup
z→∞

1

z
ln |Xε(z)| . (6.109)

We introduce polar coordinates for the solution Xε(z) ∈ Rd,

Xε(z) = eRε(z)X̂ε(z) , (6.110)

where

Rε(z) = log |Xε(z)| ∈ R and X̂ε(z) = e−Rε(z)Xε(z) ∈ S
d−1 . (6.111)

We have
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dX̂ε

dz
(z) =

1

ε
ΩX̂ε(z) +

1

ε
g
(
Y

( z

ε2

))
h⊥(X̂ε(z)) , X̂ε(0) = x̂0 , (6.112)

and
dRε

dz
(z) =

1

ε
q
(
Y

( z

ε2

)
, X̂ε(z)

)
, Rε(0) = log |x0| . (6.113)

Here we have used the fact that (Ωx̂, x̂) = 0 for all x̂ ∈ Sd−1. The real-valued
function q(y, x̂) and the vector-valued function h⊥(x̂) are defined by

q(y, x̂) = g(y)(x̂,hx̂) , h⊥(x̂) = hx̂− (x̂,hx̂)x̂ . (6.114)

The joint process (Y
(

z
ε2

)
, X̂ε(z)) is Markovian with state space S×Sd−1 and

its infinitesimal generator is given by

Lε =
1

ε2
LY +

1

ε

[
Ωx̂ + g(y)h⊥(x̂)

]
· ∇x̂ . (6.115)

We will assume that there is an ε0 > 0 such that for all 0 < ε ≤ ε0 the
joint process (Y

(
z
ε2

)
, X̂ε(z)) is ergodic, which means that there is a unique

invariant probability law pε on the state space S×Sd−1 such that for any test
function φ(y, x̂), ∫

S×Sd−1

[Lεφ(y, x̂)] pε(dy, dx̂) = 0 , (6.116)

which has the form
∫

S×Sd−1

(
LY + ε

[
Ωx̂ + g(y)h⊥(x̂)

]
· ∇x̂

)
φ(y, x̂) pε(dy, dx̂) = 0 . (6.117)

The Lyapunov exponent Γ ε, defined by (6.109), is the limit as z tends to
infinity of Rε(z)/z,

Γ ε = lim
z→∞

1

z
Rε(z) = lim

z→∞
1

z

[
log |x0|+

∫ z

0

1

ε
q
(
Y

( s

ε2

)
, X̂ε(s)

)
ds

]
,

(6.118)
so that under the assumed ergodicity of the joint process (Y

(
z
ε2

)
, X̂ε(z)), Γ ε

is given by

Γ ε =
1

ε

∫

S×Sd−1

q(y, x̂) pε(dy, dx̂) . (6.119)

We will now use a variant of the perturbed-test-function method to show
that indeed the limit of Γ ε exists as ε tends to zero, and we will calculate the
limit Lyapunov exponent explicitly.

Suppose that we can construct a perturbed test function qε,λ(y, x̂) =
qλ
0 (y, x̂)+εqλ

1 (y, x̂), with qλ
0 (y, x̂) and qλ

1 (y, x̂) determined as solutions of Pois-
son equations. The parameter λ > 0 is introduced in order to regularize the
solution of a Poisson equation below, and we will let λ → 0 at the end. The
perturbed test function will be constructed such that
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ε2Lεqε,λ = q − εΓ + ελqλ
00 + O(ε2) . (6.120)

Here q(y, x̂) is given by (6.114), and Γ is a constant to be determined, as is the
function qλ

00(x̂). The error term is O(ε2) for each λ > 0. Then using (6.116)
we have

0 =

∫

S×Sd−1

εLε(qλ
0 (y, x̂) + εqλ

1 (y, x̂)) pε(dy, dx̂)

=
1

ε

∫

S×Sd−1

q(y, x̂)pε(dy, dx̂)− Γ

∫

S×Sd−1

pε(dy, dx̂)

+

∫

S×Sd−1

λqλ
00(x̂) pε(dy, dx̂) + O(ε)

= Γ ε − Γ +

∫

S×Sd−1

λqλ
00(x̂) pε(dy, dx̂) + O(ε) . (6.121)

This proves that

lim sup
ε→0

|Γ ε − Γ | ≤ sup
x̂∈Sd−1

|λqλ
00(x̂)| . (6.122)

It remains therefore to show that the perturbed test function qε,λ can be
constructed with the desired properties and that

lim
λ→0

sup
x̂∈Sd−1

|λqλ
00(x̂)| = 0 . (6.123)

Expanding the left side of (6.120) in ε and equating to zero coefficients of
ε leads first to the following Poisson equation for qλ

0 :

LY qλ
0 = q . (6.124)

Since E[g(Y (0))] = 0 we have that E[q(Y (0), x̂)] = 0 for all x̂, so the Poisson
equation for qλ

0 can be solved, and its solution has the form

qλ
0 (y, x̂) = χ(y)(x̂,hx̂) + qλ

00(x̂) . (6.125)

Here χ(y) is the zero-mean solution for LY χ = g, and qλ
00(x̂) is a function

that depends only on x̂ and that will be determined from the second Poisson
equation, which has the form

LY qλ
1 (y, x̂) = −Γ − L1q

λ
0 (y, x̂) + λqλ

00(x̂) . (6.126)

Here L1 is given by

L1 =
[
Ωx̂ + g(y)h⊥(x̂)

]
· ∇x̂ . (6.127)

Note than in (6.126) we have added on the right side the term λqλ
00(x̂), which

makes the perturbed test functions qλ
0 and qλ

1 depend on λ. The solvability
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condition for this equation is that the right side should have zero mean with
respect to the invariant probability distribution of the random process Y (z),
which means that we should have

−Γ − E
[
L1q

λ
0 (Y (0), x̂)

]
+ λqλ

00(x̂) = 0 ,

which reduces to

(−λ + Ωx̂ · ∇x̂) qλ
00(x̂) = −Γ +

γ

2
h⊥(x̂) · ∇x̂(x̂,hx̂) , (6.128)

for all x̂ ∈ Sd−1. Here

γ = −2E[χ(Y (0))g(Y (0))] = 2

∫ ∞

0

E[g(Y (z))g(Y (0))] dz . (6.129)

We define Γ so that the mean with respect to the uniform measure over the
sphere of the right side of (6.128) is zero:

Γ =
γ

2

∫

Sd−1

h⊥(x̂) · ∇x̂(x̂,hx̂) dx̂, . (6.130)

Equation (6.128) has the form of a regularized Poisson equation

(−λ + Ωx̂ · ∇x̂) qλ
00(x̂) = φ(x̂)

for the generator Ωx̂ · ∇x̂ and for the function

φ(x̂) = −Γ +
γ

2
h⊥(x̂) · ∇x̂(x̂,hx̂) ,

with the mean of φ equal to zero,
∫

Sd−1 φ(x̂) dx̂ = 0. Note that φ(x̂) is a

polynomial in x̂, and by substituting the expression for h⊥ we can write it in
the form

φ(x̂) = −Γ +
γ

2

[
(hx̂,hx̂) + (h2x̂, x̂)− 2(hx̂, x̂)2

]
, (6.131)

which shows that φ is a linear combination of the functions φj , j = 1, 2, 3,
in the hypothesis (6.108). The regularized Poisson equation (6.128) has a
solution if λ is positive, and its properties are summarized in Lemma 6.7. We
first establish the existence of Cesaro limits for the flow eΩz.

Lemma 6.6. Let φ be a polynomial defined on Sd−1. Then there exists a poly-
nomial φ0 such that

lim
Z→∞

sup
x̂∈Sd−1

∣∣∣∣∣
1

Z

∫ Z

0

φ(eΩz x̂) dz − φ0(x̂)

∣∣∣∣∣ = 0 .

The function φ0 is the Ω-average of φ and it has the same average over the
sphere as φ, ∫

Sd−1

φ0(x̂) dx̂ =

∫

Sd−1

φ(x̂) dx̂ .
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Proof. The flow eΩz has no invariant vectors. Therefore the dimension d is
even, the eigenvalues of Ω form a set of the form {±iωj, j = 1, . . . , d/2}, where
ωj > 0, and there exists an orthonormal basis such that the matrices Ω and
eΩz have the form

Ω =

⎡
⎢⎢⎢⎢⎢⎣

(
0 ω1

−ω1 0

)
0

. . .

0

(
0 ωd/2

−ωd/2 0

)

⎤
⎥⎥⎥⎥⎥⎦

,

eΩz =

⎡
⎢⎢⎢⎢⎢⎣

(
cos(ω1z) sin(ω1z)
− sin(ω1z) cos(ω1z)

)
0

. . .

0

(
cos(ωd/2z) sin(ωd/2z)
− sin(ωd/2z) cos(ωd/2z)

)

⎤
⎥⎥⎥⎥⎥⎦

.

The function φ(x̂) is assumed to be a polynomial of degree n, so that φ(eΩz x̂)
can be expanded as

φ(eΩz x̂) = φ0(x̂) +
∑

ω∈O
φ(c)

ω (x̂) cos(ωz) + φ(s)
ω (x̂) sin(ωz) ,

where O is the finite set of nonzero sums and differences of up to n frequencies

ωj, j = 1, . . . , d/2. The functions φ0, φ
(c)
ω , and φ

(s)
ω are polynomials, which

implies that they are smooth and bounded on Sd−1. For any x̂ ∈ Sd−1, we
have

1

Z

∫ Z

0

φ(eΩz x̂) dz = φ0(x̂) +
∑

ω∈O
φ(c)

ω (x̂)
sin(ωZ)

ωZ
+ φ(s)

ω (x̂)
1− cos(ωZ)

ωZ
,

so that

lim
Z→∞

sup
x̂∈Sd−1

∣∣∣∣∣
1

Z

∫ Z

0

φ(eΩz x̂) dz − φ0(x̂)

∣∣∣∣∣ = 0 .

Finally, the matrix eΩz is orthogonal, which means that the flow eΩz preserves
the uniform measure over the sphere Sd−1. Therefore

∫

Sd−1

φ(x̂) dx̂ =

∫

Sd−1

1

Z

∫ Z

0

φ(eΩz x̂) dz dx̂ =

∫

Sd−1

φ0(x̂) dx̂ ,

which completes the proof of the lemma. �

In the next lemma we consider the behavior of solutions of the Poisson
equation (6.128).
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Lemma 6.7. Let φ be a bounded function defined on Sd−1. For any λ > 0 let
the function ξλ(x̂) be defined by

ξλ(x̂) = −
∫ ∞

0

φ(eΩsx̂)e−λs ds . (6.132)

Then ξλ(x̂) is the unique bounded solution of the equation

(−λ + Ωx̂ · ∇x̂)ξλ = φ . (6.133)

Moreover, if φ is a polynomial whose Ω-average is zero, that is, the asserted
Cesaro limits satisfy

φ0(x̂) ≡ 0 , ∀x̂ ∈ S
d−1 , (6.134)

then λξλ tends to zero uniformly as λ→ 0:

lim sup
λ→0

sup
x̂∈Sd−1

|λξλ(x̂)| = 0 . (6.135)

Proof. For λ > 0 the function ξλ is well defined, since |φ(eΩsx̂)e−λs| ≤
e−λs‖φ‖∞, where ‖ · ‖ stands for the supremum norm over Sd−1. Further-
more, we have the identity

∂

∂s

(
φ(eΩsx̂)e−λs

)
= −λφ(eΩsx̂)e−λs + (∇x̂φ)(eΩsx̂) · (eΩsΩx̂)e−λs

= −λ
[
φ(eΩsx̂)e−λs

]
+ Ωx̂ · ∇x̂

[
φ(eΩsx̂)e−λs

]
.

By integrating this equality from s = 0 to s = ∞ we see that ξλ satisfies
(6.133),

−φ(x̂) = λξλ(x)−Ωx̂ · ∇x̂ξλ(x̂) ,

which proves the first part of the lemma. For the second part of the lemma, we
assume that the condition (6.134) holds for φ. By Lemma 6.6, for any δ > 0
there exists Zδ such that

sup
x̂∈Sd−1

∣∣∣∣∣
1

Zδ

∫ Zδ

0

φ(eΩsx̂) ds

∣∣∣∣∣ ≤ δ . (6.136)

Let us write

ξλ(x̂) = −
∞∑

k=0

∫ (k+1)Zδ

kZδ

φ(eΩsx̂)e−λs ds ,

and define

ξ
(k)
λ (x̂) = −

∫ (k+1)Zδ

kZδ

φ(eΩsx̂) ds e−λkZδ .

We then have the estimate
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∥∥∥∥∥ξλ −
∞∑

k=0

ξ
(k)
λ

∥∥∥∥∥
∞

≤
∞∑

k=0

‖φ‖∞e−λkZδ

∫ Zδ

0

1− e−λsds

≤ ‖φ‖∞
λ

λZδ − 1 + e−λZδ

1− e−λZδ
,

and by (6.136),
∥∥∥∥∥

∞∑

k=0

ξ
(k)
λ

∥∥∥∥∥
∞

≤
∞∑

k=0

e−λkZδ sup
x̂∈Sd−1

∣∣∣∣∣

∫ Zδ

0

φ(eΩsx̂) ds

∣∣∣∣∣ ≤
δZδ

1− e−λZδ
.

As a consequence,
lim sup

λ→0
sup

x̂∈Sd−1

|λξλ(x̂)| ≤ δ .

Taking the limit δ → 0 gives the desired result. �

With the definition (6.130) of Γ and with the hypothesis (6.108), the
function φ defined by (6.131) has a zero Ω-average. Therefore, Lemma 6.7 can
be applied to the solution qλ

00 of the regularized Poisson equation (6.128), and
we can take the limit λ → 0 in (6.122) and use (6.123) to obtain the desired
result limε→0 Γ ε = Γ . We summarize this result in the following theorem.

Theorem 6.8. Assume that for fixed ε > 0 the joint Markov process
(
Y

( z

ε2

)
, X̂ε(z)

)

with generator (6.115) is ergodic on S × Sd−1. We also assume the set of hy-
potheses stated below (6.107). Then the Lyapunov exponent limit (6.109) exists
and is deterministic and independent of x0, for any fixed ε > 0. Moreover,
the limit of the Lyapunov exponent for small ε exists,

lim
ε→0

Γ ε = Γ , (6.137)

and Γ is given by (6.130), which has also the form

Γ =
γ

2

∫

Sd−1

[(hx̂,hx̂) + (h2x̂, x̂)− 2(hx̂, x̂)2] dx̂ . (6.138)

The constant γ is nonnegative and is given by

γ =

∫ ∞

−∞
E[g(Y (0))g(Y (z))] dz . (6.139)

In the next section we will show that if we first take the diffusion limit
ε→ 0 and then calculate the Lyapunov exponent of the limit diffusion process,
we get the same result as in (6.138). This implies that as far as the rate of
growth or decay of solutions of the random linear system (6.107) is concerned,
the limits ε→ 0 and z →∞ can be interchanged.
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6.8.2 Lyapunov Exponent of the Limit Diffusion

We cannot get a diffusion limit for the process Xε because it has a large
deterministic drift of order 1/ε. We therefore remove this drift by introducing

the process X̃ε in Rd defined by

X̃ε(z) = e−Ω z
ε Xε(z) .

We have |Xε(z)| = |X̃ε(z)|, and the process X̃ε(z) satisfies the random dif-
ferential equation

dX̃ε

dz
(z) =

1

ε
F̃

(
X̃ε(z), Y

( z

ε2

)
,
z

ε

)
, (6.140)

where the function F̃ (x̃, y, τ) has the form

F̃ (x̃, y, τ) = g(y)e−ΩτheΩτ x̃ .

We can write this as

F̃ (x̃, y, τ) =

d∑

i,j=1

g(ij)(y, τ)h(ij)x̃ ,

where the real-valued functions g(ij) and the constant matrices h(ij) are given
by

h
(ij)
kl = δikδjl , g(ij)(y, τ) = g(y)(e−ΩτheΩτ )ij .

The random differential equation is of the form (6.88), and the diffusion ap-
proximation theorem 6.4 can be applied if the following limits exist and are
independent of z0:

Cij,i′j′ = 2 lim
Z→∞

1

Z

∫ z0+Z

z0

∫ ∞

0

E

[
g(ij)(Y (0), τ)g(i′j′)(Y (z), τ)

]
dz dτ

= γ lim
Z→∞

1

Z

∫ z0+Z

z0

(e−ΩτheΩτ )ij(e
−ΩτheΩτ )i′j′ dτ .

Here γ is defined by (6.139). By Lemma 6.6, these limits exist and the limit
process is a diffusion with infinitesimal generator

L =
1

2

d∑

i,j,i′,j′=1

Cij,i′j′h
(ij)x̃ · ∇x̃[h(i′j′)x̃ · ∇x̃]

=
1

2

d∑

i,j,i′,j′=1

Cij,i′j′ x̃j
∂

∂x̃i

[
x̃j′

∂

∂x̃i′

]

=
1

2

d∑

i,i′=1

Cii′ (x̃)
∂2

∂x̃i∂x̃i′
+

1

2

d∑

i′=1

Di′(x̃)
∂

∂x̃i′
,
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where

Cii′ (x̃) =

d∑

j,j′=1

Cij,i′j′ x̃j x̃j′

= γ lim
Z→∞

1

Z

∫ Z

0

(e−ΩτheΩτ x̃)i(e
−ΩτheΩτ x̃)i′ dτ ,

Di′(x̃) =
d∑

i,j=1

Cij,i′ix̃j

= γ lim
Z→∞

1

Z

∫ Z

0

(e−Ωτh2eΩτ x̃)i′ dτ .

We introduce polar coordinates for the limit diffusion X̃(z) ∈ Rd,

X̃(z) = eR(z)X̌(z) , (6.141)

where

R(z) = log |X̃(z)| ∈ R and X̌(z) = e−R(z)X̃(z) ∈ S
d−1 . (6.142)

The joint process (R(z), X̌(z)) in R × Sd−1 is also a diffusion. Using Itô’s
formula we can find its infinitesimal generator, which has the form

L =
1

2
a(R)(R, x̌)

∂2

∂R2
+

1

2
b(R)(R, x̌)

∂

∂R

+
1

2

d∑

i,j=1

aij(R, x̌)
∂2

∂x̌i∂x̌j
+

1

2

d∑

i=1

bi(R, x̌)
∂

∂x̌i
.

Here

a(R)(R, x̌) =

d∑

i,i′=1

Cii′ (x̌)x̌ix̌j ,

b(R)(R, x̌) =

d∑

i=1

Cii(x̌) +

d∑

i=1

Di(x̌)x̌i − 2

d∑

ii′=1

Cii′ (x̌)x̌ix̌j ,

and aij and bi are given by similar expressions. From these expressions we
see that the diffusion and drift coefficients of the limit process R(z) do not
depend on R. The following computations show that they do not depend on
x̌ either:

d∑

i,i′=1

Cii′ (x̌)x̌ix̌i′ = γ lim
Z→∞

1

Z

∫ Z

0

(x̌, e−ΩτheΩτ x̌)2 dτ

= γ lim
Z→∞

1

Z

∫ Z

0

(eΩτ x̌,heΩτ x̌)2 dτ

= γ

∫

Sd−1

(x̂,hx̂)2 dx̌ .



6.8 Lyapunov Exponent for Linear Random Differential Equations 171

Here we have used the fact that eΩτ is orthogonal, so that (eΩτ x̌, eΩτ y̌) =
(x̌, y̌), and we have applied Lemma 6.6 with the hypothesis (6.108) in order
to get the expression of the limit in terms of the mean over the sphere. We
have similarly

d∑

i=1

Di(x̌)x̌i = γ lim
Z→∞

1

Z

∫ Z

0

(x̌, e−Ωτh2eΩτ x̌) dτ

= γ lim
Z→∞

1

Z

∫ Z

0

(eΩτ x̌,h2eΩτ x̌) dτ

= γ

∫

Sd−1

(x̂,h2x̂) dx̂ ,

d∑

i=1

Cii(x̌) = γ lim
Z→∞

1

Z

∫ Z

0

(e−ΩτheΩτ x̌, e−ΩτheΩτ x̌) dτ

= γ lim
Z→∞

1

Z

∫ Z

0

(heΩτ x̌,heΩτ x̌) dτ

= γ

∫

Sd−1

(hx̂,hx̂) dx̂ .

This means that the limit process R(z) is a Gaussian process with constant
diffusion and drift:

R(z) =
√

γa(r)W (z) +
γ

2
b(r)z , (6.143)

where

a(r) =

∫

Sd−1

(hx̂, x̂)2 dx̂ ,

b(r) =

∫

Sd−1

[(hx̂,hx̂) + (h2x̂, x̂)− 2(hx̂, x̂)2] dx̂ .

The Lyapunov exponent of the limit diffusion is

lim
z→∞

1

z
R(z) =

γ

2
b(r) = Γ ,

where Γ is again given by (6.138).
We summarize the results of this section in the following theorem.

Theorem 6.9. Under the hypotheses of Theorem 6.8 the processes log |Xε(z)|
converge in distribution as ε → 0 to the Gaussian process R(z) given by
(6.143) and

lim
z→∞

1

z
R(z) = Γ ,

where Γ is the limit of the Lyapunov exponent (6.138).
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We have thus shown that if we first take the diffusion limit ε → 0 and
then calculate the Lyapunov exponent of the limit diffusion process we get
the same result as in (6.138). Therefore, under the hypotheses of Theorems
6.8 and 6.9, the rate of growth or decay of solutions of the random linear
system (6.107) is the same regardless of the order in which the limits ε → 0
and z →∞ are taken.

We note here that the ergodicity hypothesis of the process (Y
(

z
ε2

)
, X̂ε(z))

is not used in Theorem 6.9.
The expression (6.138) can be used to determine the sign of the Lyapunov

exponent in some special cases. If, for example, h is skew symmetric, then

Γ =
γ

2

∫

Sd−1

[(hx̂,hx̂)− (hx̂,hx̂)] dx̂ = 0 .

If h is symmetric then

Γ = γ

∫

Sd−1

[(hx̂,hx̂)− (hx̂, x̂)2] dx̂ ,

which is nonnegative by Cauchy–Schwarz inequality

(hx̂, x̂)2 ≤ (hx̂,hx̂)(x̂, x̂) = (hx̂,hx̂) .

We note that in the symmetric case the only way that we can have Γ = 0
(assuming that γ > 0) is if hx̂ is proportional to x̂ for all x̂. This means that
if h is symmetric and not proportional to the identity matrix, and if γ > 0,
then Γ is positive.

6.9 Appendix

6.9.1 Quadratic Variation of a Continuous Martingale

The quadratic variation of the continuous martingale M(z) given by (6.6) has
the form (6.8):

〈M, M〉 (z) =

∫ z

0

Lφ2(Y (s))− 2φ(Y (s))Lφ(Y (s)) ds .

This is seen by the following calculations. We first note that by the martingale
property of M , we have E[M(z + h)M(z)|Fz] = M(z)2 and therefore

E[M(z + h)2 −M(z)2|Fz] = E[(M(z + h)−M(z))2|Fz] .

The square increment of M(z) can be written as

(M(z + h)−M(z))2 =

(
φ(Y (z + h))− φ(Y (z))−

∫ z+h

z

Lφ(Y (s)) ds

)2

.
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Neglecting the integral term in this equation is possible under the assumption
that φ and Lφ are bounded. Let ∆φ = φ(Y (z + h)) − φ(Y (z)) and J =∫ z+h

z Lφ(Y (s)) ds. We want to estimate (∆φ−J)2−∆φ2 when h is small. We
know that J = O(h). We have then that |(∆φ− J)2 −∆φ2| ≤ 2|∆φ||J |+ J2.
But 2|∆φ||J |+J2 ≤ δ∆φ2 +(1+ δ−1)J2. Choosing δ =

√
h gives the estimate

(M(z + h)−M(z))
2

= (φ(Y (z + h))− φ(Y (z)))2(1 + O(h1/2)) + O(h3/2) ,

where the O(·) are deterministic. Continuing with the above calculation we
have

(φ(Y (z + h))− φ(Y (z)))2

= φ2(Y (z + h))− φ2(Y (z))− 2φ(Y (z))(φ(Y (z + h))− φ(Y (z)))

= M2(z + h)−M2(z) +

∫ z+h

z

Lφ2(Y (s)) ds

−2φ(Y (z))

(
M(z + h)−M(z) +

∫ z+h

z

Lφ(Y (s)) ds

)
,

where M2(z) is the martingale of the form (6.6) with φ replaced by φ2. Using
the martingale property for M and M2 we obtain that

E[(φ(Y (z + h))− φ(Y (z)))2|Fz]

= E[

∫ z+h

z

Lφ2(Y (s)) ds− 2φ(Y (z))

∫ z+h

z

Lφ(Y (s)) ds|Fz ]

=

∫ h

0

PsLφ2(Y (z))− 2φ(Y (z))PsLφ(Y (z)) ds

= [Lφ2(Y (z))− 2φ(Y (z))Lφ(Y (z))]h + o(h) .

Here we have used the Markov property for Y (z) and the continuity of the
associated semigroup. This shows that

E[〈M, M〉 (z+h)−〈M, M〉 (z)|Fz] = [Lφ2(Y (z))−2φ(Y (z))Lφ(Y (z))]h+o(h) ,

from which the integral form of 〈M, M〉 (z) is obtained by summing over small
increments in z.

Notes

In this chapter we present a self-contained summary of the basic tools of
the theory of stochastic processes needed for modeling randomly layered me-
dia and for carrying out asymptotic analysis in various scaling limits. For an
introduction to Markov processes we refer to the book by Breiman [23]. An
advanced treatment of the theory of Markov processes, associated semigroups,
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and limit theorems is in the book by Ethier and Kurtz [50]. The martingale
approach to diffusions and limit theorems is in the book of Stroock and Varad-
han [163]. An introduction to stochastic calculus with Brownian motions can
be found in the book by Oksendal [128] and a more advanced treatment in
the book by Karatzas and Shreve [92]. The first diffusion-approximation re-
sults for random differential equations were given by Khasminskii in 1966
[97, 98]. The martingale approach to limit theorems for random differential
equations was presented by Papanicolaou–Stroock–Varadhan in 1976 [135]
and in Blankenship–Papanicolaou [14], including the perturbed-test-function
method that is used extensively in this chapter. Similar methods are used
in homogenization [13] and in stochastic stability and control [114]. We also
refer to a recent series of papers by Pardoux and Veretennikov [138] for an ex-
tended treatment of Poisson equations and diffusion approximation. We have
only considered Markovian models of random equations here for simplicity.
The results, however, can be extended to a large class of mixing processes
as is done in [96] and in the books by Ethier–Kurtz [50] and by Kushner
[114]. Finally, the theory of random dynamical systems, including Lyapunov
exponents and the multiplicative ergodic theory, is presented in the book by
Arnold [6]. The two theorems in this area in Section 6.8 are motivated by
applications to wave localization and the random harmonic oscillator that are
discussed in the next chapter. These theorems are presented here for the first
time.



7

Transmission of Energy Through a Slab
of Random Medium

In this chapter we consider the simplest problem of wave propagation in one-
dimensional random media, which is the reflection and tranmission of wave
energy by a slab. We focus on the exponential decay of the transmission coef-
ficient as the size of the random slab goes to infinity. This exponential decay
is characteristic of wave propagation in one-dimensional random media and
holds regardless of the strength of the fluctuations in the medium properties.
It is not true in three-dimensional isotropic random media unless the fluctu-
ations are strong enough. It is a manifestation of the phenomenon of wave
localization where wave energy does not propagate and is localized in space
because of strong interference induced by the random medium.

We will use the limit theorems of the previous chapter to analyze quanti-
tatively the reflection and transmission of energy by one-dimensional random
media in the two scaling regimes of Chapter 5. They are the weakly heteroge-
neous regime (5.16), which is the one most often considered in the literature,
and the strongly heterogeneous white-noise regime (5.17). We calculate in this
chapter the exponential decay rate of transmitted energy by a slab of random
medium.

We consider monochromatic waves in the weakly heterogeneous regime
in Section 7.1 and study the exponential decay of the power transmission
coefficient as a function of the size of the random medium. We show that
the exponential decay rate defines the localization length (7.42) of the ran-
dom medium in the asymptotic regime. By studying carefully the statistics
of the power transmission coefficient we also show that its expected value is
different from its most probable value (Propositions 7.3–7.4). We study the
transmission of pulses and their energy decay in Section 7.2. We show that
the transmitted energy of the pulse is a self-averaging quantity and analyze
its decay rate (Proposition 7.5). Self-averaging means that the transmitted
energy tends to its mean value in the asymptotic regime. We study in Section
7.3 the exponential decay of the power transmission coefficient before going
into the asymptotic regime. This defines a localization length that converges
to that of the asymptotic regime (Proposition 7.6). All the analysis is carried
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out in the weakly heterogeneous regime. In Section 7.4 we show that it can be
extended to the strongly heterogeneous white-noise regime (Proposition 7.7).

7.1 Transmission of Monochromatic Waves

We consider the acoustic wave equations in one dimension (3.3) with a slab
of random medium in (0, L) and surrounded by a homogeneous medium. We
assume matched medium boundary conditions at both ends of the slab, that
is, the parameters of the homogeneous half-spaces are equal to the effective
parameters of the random slab. We consider a right-going monochromatic
wave incident from the homogeneous left half-space. We will analyze first
reflection and transmission by the random slab in the weakly heterogeneous
regime (5.16) introduced in Chapter 5. In this regime the correlation length of
the fluctuations in the medium properties is of order ε2, as is the wavelength.
They are both much smaller than the size of the slab, which is of order 1. The
typical amplitude of the fluctuations of the medium is small, of order ε in this
regime. We assume that the medium parameters have the form

1

K(z)
=

⎧
⎪⎨
⎪⎩

1

K

(
1 + εν

( z

ε2

))
for z ∈ [0, L] ,

1

K
for z ∈ (−∞, 0) ∪ (L,∞) ,

ρ(z) = ρ̄ for all z ,

where ν is a zero-mean, stationary random process satisfying strong decorre-
lation conditions. As in Chapter 6, we assume that the fluctuations have the
form ν(z) = g(Y (z)), where Y is a homogeneous in z Markov process with
values in a compact space. We assume that it is strongly ergodic, satisfying
the Fredholm alternative for solutions of the Poisson equation as in Section
6.3.3. The function g is a bounded real-valued function satisfying the centering
condition E[g(Y (0))] = 0. In the weakly heterogeneous scaling regime (5.16)
the frequency of the monochromatic waves is ω/ε2.

�
0 L z

�

T ε
ω(0, L)ei[ωz/(c̄ε2)−ωt/ε2]

�

Rε
ω(0, L)e−i[ωz/(c̄ε2)+ωt/ε2]

�

ei[ωz/(c̄ε2)−ωt/ε2]

Random slab

Fig. 7.1. Reflection and transmission of monochromatic waves.

We denote by ûε and p̂ε the time-harmonic complex velocity and pressure
fields
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[
uε(t, z)
pε(t, z)

]
= exp

(
− iωt

ε2

)[
ûε(z)
p̂ε(z)

]
,

which satisfy the system of random ordinary differential equations

− iωρ̄

ε2
ûε +

dp̂ε

dz
= 0 , (7.1)

− iω

K̄ε2

(
1 + εν

( z

ε2

))
p̂ε +

dûε

dz
= 0 . (7.2)

As in Section 5.1.5, we introduce the right-going and left-going modes

âε(ω, z) =
(
ζ̄1/2ûε(z) + ζ̄−1/2p̂ε(z)

)
e

−iωz

c̄ε2 ,

b̂ε(ω, z) =
(
ζ̄1/2ûε(z)− ζ̄−1/2p̂ε(z)

)
e

iωz
c̄ε2 ,

where the effective impedance and velocity are ζ̄ =
√

K̄ρ̄ and c̄ =
√

K̄/ρ̄.
The modes satisfy the differential equations

d

dz

[
âε

b̂ε

]
=

1

ε
Hω

( z

ε2
, ν

( z

ε2

))[
âε

b̂ε

]
, (7.3)

Hω(z, ν) =
iω

2c̄
ν

[
1 −e−2iωz/c̄

e2iωz/c̄ −1

]
,

which are the same as (5.27) with σ = ε and θ = ε−1 for the propagator Pε
ω

that we will introduce in the next section. The mode amplitudes satisfy the
boundary conditions corresponding to a unit right-going monochromatic wave
incident from the left at z = 0 and no wave incident from the right at z = L

âε(ω, 0) = 1 , b̂ε(ω, L) = 0 . (7.4)

The reflection and transmission coefficients are given by

Rε
ω(0, L) = b̂ε(ω, 0) , T ε

ω(0, L) = âε(ω, L) , (7.5)

see Figure 7.1. We will analyze the transmission coefficient in the limit ε→ 0
as a stochastic process in L for fixed frequency ω. We will study the joint
statistics for two distinct ω in Section 7.2.3.

7.1.1 The Diffusion Limit for the Propagator

We first transform the boundary value problem (7.3–7.4) into an initial value
problem. This step is similar to the analysis carried out in Section 5.1.6 (with
σ = ε and θ = ε−1). We introduce the propagator Pε

ω(0, z), i.e., the funda-
mental matrix solution of the linear system of random differential equations
(7.3) with the initial condition Pε

ω(0, z = 0) = I. From symmetries in (7.3),
as discussed in Section 4.4.3, Pε

ω has the form
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Pε
ω(0, z) =

[
αε

ω(0, z) βε
ω(0, z)

βε
ω(0, z) αε

ω(0, z)

]
, (7.6)

where (αε
ω, βε

ω)T is the solution of (7.3) with initial conditions

αε
ω(0, z = 0) = 1 , βε

ω(0, z = 0) = 0 . (7.7)

The modes âε and b̂ε can be expressed in terms of the propagator as

[
âε(ω, z)

b̂ε(ω, z)

]
= Pε

ω(0, z)

[
âε(ω, 0)

b̂ε(ω, 0)

]
. (7.8)

From (7.8) when applied at z = L and from the boundary conditions (7.4) we
deduce that

Rε
ω(0, L) = −βε

ω(0, L)

αε
ω(0, L)

, T ε
ω(0, L) =

1

αε
ω(0, L)

. (7.9)

Since the trace of Hω in (7.3) is zero, we see as in Section 4.4.3 that

det(Pε
ω(0, L)) = |αε

ω(0, L)|2 − |βε
ω(0, L)|2 = 1 . (7.10)

From this and (7.9) we obtain the following energy conservation law for re-
flection and transmission:

|Rε
ω(0, L)|2 + |T ε

ω(0, L)|2 = 1 . (7.11)

The meaning of this conservation law is that the input wave of unit energy
splits into a reflected wave and a transmitted wave without any losses. The
power transmission coefficient, |T ε

ω(0, L)|2, gives the proportion of energy that
is transmitted through the slab. It is equal to 1/|αε

ω(0, L)|2.
We now apply the diffusion-approximation Theorem 6.56 in its linear ver-

sion, described in Section 6.7.3, to obtain the asymptotic distribution of the
propagator Pε

ω. This asymptotic distribution will then be used to find the
asymptotic distribution of the transmission coefficient T ε

ω using (7.9). We first
rewrite the equation for the propagator in the expanded form

d

dz
Pε

ω(0, z) =
iω

2εc̄
ν
( z

ε2

)[
1 0
0 −1

]
Pε

ω(0, z)

− ω

2c̄ε
ν
( z

ε2

)
sin

(
2ωz

c̄ε2

)[
0 1
1 0

]
Pε

ω(0, z)

− iω

2c̄ε
ν
( z

ε2

)
cos

(
2ωz

c̄ε2

)[
0 1
−1 0

]
Pε

ω(0, z) . (7.12)

This matrix-valued ordinary differential equation is of the form (6.102) with
fast phase

d

dz
Pε

ω(0, z) =
1

ε
F

(
Pε

ω(0, z), ν
( z

ε2

)
,

z

ε2

)
.



7.1 Transmission of Monochromatic Waves 179

The decomposition (6.103) of the matrix field F is here given by

F(P, ν, τ) =
ω

2c̄

2∑

p=0

g(p)(ν, τ)hpP ,

where

h0 = iσ3 , h1 = −σ1 , h2 = σ2 ,

with σ1, σ2, and σ3 the Pauli spin matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (7.13)

The real-valued functions g(p) are given by

g(0)(ν, τ) = ν , g(1)(ν, τ) = ν sin

(
2ωz

c̄

)
, g(2)(ν, τ) = ν cos

(
2ωz

c̄

)
.

The correlation matrix C = (Cpq)p,q=0,1,2, defined by (6.92), can be computed
explicitly in terms of the covariance of ν. Let us calculate its first two entries:

C00 = 2

∫ ∞

0

E[ν(0)ν(z)] dz ,

C11 = 2
1

2π

∫ 2π

0

∫ ∞

0

E[ν(0)ν(z)] dz sin(x) sin

(
x +

2ωz

c̄

)
dx

=
1

π

∫ 2π

0

sin2(x) dx

∫ ∞

0

E[ν(0)ν(z)] cos

(
2ωz

c̄

)
dz

+
1

π

∫ 2π

0

sin(x) cos(x) dx

∫ ∞

0

E[ν(0)ν(z)] sin

(
2ωz

c̄

)
dz

=

∫ ∞

0

E[ν(0)ν(z)] cos

(
2ωz

c̄

)
dz .

The other entries of the matrix C in (6.92) can be calculated in a similar way,
and we have

C =

⎡
⎣

γ(0) 0 0
0 1

2γ(ω) − 1
2γ(s)(ω)

0 1
2γ(s)(ω) 1

2γ(ω)

⎤
⎦ ,

with

γ(ω) = 2

∫ ∞

0

E [ν(0)ν(z)] cos

(
2ωz

c̄

)
dz , (7.14)

γ(s)(ω) = 2

∫ ∞

0

E [ν(0)ν(z)] sin

(
2ωz

c̄

)
dz . (7.15)
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The parameter γ(ω) is a nonnegative real number because it is proportional
to the power spectral density of the stationary random process ν, as shown
in Section 6.3.6. The symmetric and antisymmetric parts of C are given by

C(S) =

⎡
⎣

γ(0) 0 0
0 1

2γ(ω) 0
0 0 1

2γ(ω)

⎤
⎦ , C(A) =

⎡
⎣

0 0 0
0 0 − 1

2γ(s)(ω)

0 1
2γ(s)(ω) 0

⎤
⎦ .

The symmetric part is a diagonal matrix, whose square root is also diagonal.
From the general results obtained in Section 6.7.3, we know that Pε

ω(0, z)
converges in distribution to Pω(0, z), which is the solution of the Stratonovich
stochastic differential equation (6.106),

dPω(0, z) =

√
γ(0)ω

2c̄
h0Pω(0, z) ◦ dW0(z) +

√
γ(ω)ω

2
√

2c̄
h1Pω(0, z) ◦ dW1(z)

+

√
γ(ω)ω

2
√

2c̄
h2Pω(0, z) ◦ dW̃1(z)− γ(s)(ω)ω2

8c̄2
h0Pω(0, z) dz ,

where W0, W1, and W̃1 are independent standard Brownian motions, and we
have used the fact that h2h1 = h0. At z = 0, we have Pω(0, z = 0) = I. Using
the explicit form of the matrices hj , j = 0, 1, 2, the limit propagator matrix
is a linear diffusion process solution of the Stratonovich stochastic differential
equation

dPω(0, z) =
iω

√
γ(0)

2c̄

[
1 0
0 −1

]
Pω(0, z) ◦ dW0(z)

−ω
√

γ(ω)

2
√

2c̄

[
0 1
1 0

]
Pω(0, z) ◦ dW1(z)

− iω
√

γ(ω)

2
√

2c̄

[
0 1
−1 0

]
Pω(0, z) ◦ dW̃1(z)

− iω2γ(s)(ω)

8c̄2

[
1 0
0 −1

]
Pω(0, z) dz . (7.16)

We can transform these stochastic differential equations into their Itô form
by replacing in (7.16) the Stratonovich integrals by Itô integrals, and using
(6.100) to compute the modified drift given by:

− iω2γ(s)(ω)

8c̄2

[
1 0
0 −1

]
Pω(0, z) dz − ω2[γ(0)− γ(ω)]

8c̄2
Pω(0, z) dz . (7.17)

7.1.2 Polar Coordinates for the Propagator

By the symmetry of (7.16), the propagator matrix has the form
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Pω(0, z) =

[
αω(0, z) βω(0, z)

βω(0, z) αω(0, z)

]
,

which preserves in the limit ε→ 0 the form (7.6). The pair (αω, βω) satisfies
the system of stochastic differential equations

dαω =
ω

2c̄

(
i
√

γ(0)αω ◦ dW0(z)−
√

γ(ω)√
2

βω ◦ (dW1(z) + idW̃1(z))

)

− iω2γ(s)(ω)

8c̄2
αω dz ,

dβω =
ω

2c̄

(
−i

√
γ(0)βω ◦ dW0(z)−

√
γ(ω)√

2
αω ◦ (dW1(z)− idW̃1(z))

)

+
iω2γ(s)(ω)

8c̄2
βω dz ,

starting from αω(0, z = 0) = 1 and βω(0, z = 0) = 0. All matrices that appear
in the right side of (7.16) have trace zero, so that the determinant of Pω(0, z)
is a conserved quantity. Therefore, the pair (αω , βω) satisfies the conservation
of energy relation |αω |2 − |βω|2 = 1 and can be parameterized as follows:

αω(0, z) = cosh

(
θω(z)

2

)
eiφω(z) , (7.18)

βω(0, z) = sinh

(
θω(z)

2

)
ei(ψω(z)+φω(z)) , (7.19)

with θω(z) ∈ [0,∞), ψω(z), φω(z) ∈ R. Since we are in the Stratonovich frame-
work, we find by the standard chain rule of differentiation that the process
(θω, ψω, φω) satisfies the system of Stratonovich stochastic differential equa-
tions given by

dφω = −ω
√

γ(ω)

2
√

2c̄
tanh

(
θω

2

)(
sin(ψω) ◦ dW1(z) + cos(ψω) ◦ dW̃1(z)

)

+
ω
√

γ(0)

2c̄
dW0(z)− ω2γ(s)(ω)

8c̄2
dz , (7.20)

dψω =
ω
√

γ(ω)√
2c̄ tanh(θω)

(
sin(ψω) ◦ dW1(z) + cos(ψω) ◦ dW̃1(z)

)

−ω
√

γ(0)

c̄
dW0(z) +

ω2γ(s)(ω)

4c̄2
dz , (7.21)

dθω =
ω
√

γ(ω)√
2c̄

(
− cos(ψω) ◦ dW1(z) + sin(ψω) ◦ dW̃1(z)

)
. (7.22)

We next transform these stochastic differential equations into their Itô
form. We use (6.100) and we compute the Itô–Stratonovich corrections. As a
result, the Itô form of (7.20–7.22) is
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dφω = −ω
√

γ(ω)

2
√

2c̄
tanh

(
θω

2

)(
sin(ψω) dW1(z) + cos(ψω) dW̃1(z)

)

+
ω
√

γ(0)

2c̄
dW0(z)− ω2γ(s)(ω)

8c̄2
dz , (7.23)

dψω =
ω
√

γ(ω)√
2c̄ tanh(θω)

(
sin(ψω) dW1(z) + cos(ψω) dW̃1(z)

)

−ω
√

γ(0)

c̄
dW0(z) +

ω2γ(s)(ω)

4c̄2
dz , (7.24)

dθω =
ω
√

γ(ω)√
2c̄

(
− cos(ψω) dW1(z) + sin(ψω) dW̃1(z)

)

+
ω2γ(ω)

4c̄2 tanh(θω)
dz . (7.25)

If we introduce a new pair of processes (W ∗
1 , W̃ ∗

1 ) by the orthogonal transfor-
mation [

W ∗
1 (z)

W̃ ∗
1 (z)

]
=

∫ z

0

[
sin(ψω) cos(ψω)
− cos(ψω) sin(ψω)

]
d

[
W1(z)

W̃1(z)

]
,

then these transformed processes are again independent standard Brownian
motions. Therefore the stochastic processes (θω, ψω , φω) can be written as the
solution of the Itô stochastic differential equations

dφω = −ω
√

γ(ω)

2
√

2c̄
tanh

(
θω

2

)
dW ∗

1 (z) +
ω
√

γ(0)

2c̄
dW0(z)

−ω2γ(s)(ω)

8c̄2
dz , (7.26)

dψω =
ω
√

γ(ω)√
2c̄ tanh(θω)

dW ∗
1 (z)− ω

√
γ(0)

c̄
dW0(z) +

ω2γ(s)(ω)

4c̄2
dz , (7.27)

dθω =
ω
√

γ(ω)√
2c̄

dW̃ ∗
1 (z) +

ω2γ(ω)

4c̄2 tanh(θω)
dz , (7.28)

with the initial conditions θω(0) = 0, ψω(0) = 0, φω(0) = 0. Note that the
problem (7.26–7.28) is well posed because the transformations (7.18–7.19) and
the choice of the specific branch θω(z) ∈ [0,∞) define uniquely the process
(θω, ψω, φω).

The generator of the Markov process (θω, ψω, φω) is

L =
γ(ω)ω2

16c̄2

[
tanh2

(
θω

2

)
∂2

∂φ2
ω

+ 2

(
1 + tanh2

(
θω

2

))
∂2

∂φω∂ψω

]

+
γ(ω)ω2

4c̄2

[
∂2

∂θ2
ω

+
1

tanh(θω)

∂

∂θω
+

1

tanh2(θω)

∂2

∂ψ2
ω

]

+
γ(0)ω2

2c̄2

[
∂2

∂ψ2
ω

+
1

4

∂2

∂φ2
ω

]
+

γ(s)(ω)ω2

4c̄2

[
∂

∂ψω
− 1

2

∂

∂φω

]
. (7.29)
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The process (θω , ψω) is Markov by itself with generator

L =
γ(ω)ω2

4c̄2

[
∂2

∂θ2
ω

+
1

tanh(θω)

∂

∂θω
+

1

tanh2(θω)

∂2

∂ψ2
ω

]

+
γ(0)ω2

2c̄2

∂2

∂ψ2
ω

+
γ(s)(ω)ω2

4c̄2

∂

∂ψω
. (7.30)

The part of this generator in the square brackets is the Laplace–Beltrami
operator on the hyperbolic disk, which is the space (θ, ψ) ∈ [0,∞) × [0, 2π)
with the Riemannian metric

ds2 = dθ2 + sinh2 θ dψ2 .

We note in particular that the process (θω, ψω) is not quite a Brownian motion
on the hyperbolic disk. However, the radial process θω is by itself a diffusion
Markov process with infinitesimal generator

Lrad =
γ(ω)ω2

4c̄2

[
∂2

∂θ2
ω

+
1

tanh(θω)

∂

∂θω

]
, (7.31)

which is the radial part of the Laplace–Beltrami operator on the hyperbolic
disk.

7.1.3 Martingale Representation of the Transmission Coefficient

From (7.9) and (7.18) we see that the transmission coefficient T ε
ω(0, L) con-

verges in distribution as ε→ 0 to a limit Tω(0, L) that has the form

Tω(0, L) =
eiφω(L)

cosh
(

θω(L)
2

) . (7.32)

Using the stochastic differential equations (7.26–7.28) and Itô’s formula, we
will show that the transmission coefficient Tω(0, L) has the following martin-
gale representation.

Proposition 7.1. The transmission coefficient Tω(0, L) has the representa-
tion

Tω(0, L) = Mω(0, L)T̃ω(0, L) , (7.33)

where

T̃ω(0, L) = exp

[
i

√
γ(0)ω

2c̄
W0(L)− i

γ(s)(ω)ω2

8c̄2
L− γ(ω)ω2

8c̄2
L

]
, (7.34)

and Mω(0, L) is the complex martingale

Mω(0, L) = exp

[
−

√
γ(ω)ω

2
√

2c̄

∫ L

0

tanh

(
θω(z)

2

)(
dW̃ ∗

1 (z) + idW ∗
1 (z)

)]
,

(7.35)
whose mean is one.
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We will use this representation in the next chapter, where we study the
propagation of pulse fronts.

From (7.32) the power transmission coefficient |T ε
ω(0, L)|2 converges in

distribution as ε→ 0 to

|Tω(0, L)|2 =
1

cosh2
(

θω(L)
2

) . (7.36)

From the representation (7.33) of Tω(0, L), we obtain the following stochastic
integral representation for the power transmission coefficient:

|Tω(0, L)|2 = exp

[
−

√
γ(ω)ω√

2c̄

∫ L

0

tanh

(
θω(z)

2

)
dW̃ ∗

1 −
γ(ω)ω2

4c̄2
L

]
. (7.37)

We will use (7.37) in the next section and in Section 7.1.6.
To show that the transmission coefficient has the martingale representation

(7.33), we note the following. First, from (7.26) we deduce that

exp(iφω(L)) = exp

[
−i

√
γ(ω)ω

2
√

2c̄

∫ L

0

tanh

(
θω(z)

2

)
dW ∗

1 (z)

+i
ω
√

γ(0)

2c̄
W0(L)− i

γ(s)(ω)ω2

8c̄2
L

]
. (7.38)

Second, from (7.28) we write the Stratonovich differential equation

d
1

cosh
(

θω(z)
2

) = −1

2

tanh
(

θω(z)
2

)

cosh
(

θω(z)
2

) ◦
[√

γ(ω)ω√
2c̄

dW̃ ∗
1 (z) +

γ(ω)ω2

2c̄2 tanh(θω(z))
dz

]
,

which we can integrate to obtain

1

cosh
(

θω(L)
2

) = exp

[
−

√
γ(ω)ω

2
√

2c̄

∫ L

0

tanh

(
θω(z)

2

)
◦ dW̃ ∗

1 (z)

−γ(ω)ω2

4c̄2

∫ L

0

tanh
(

θω(z)
2

)

tanh(θω(z))
dz

⎤
⎦ .

Writing the stochastic integral on the right side in Itô form and using the
formula tanh(s/2)/ tanh(s) = (1/2)(1+ tanh2(s/2)) for the drift term, we get

1

cosh
(

θω(L)
2

) = exp

[
−

√
γ(ω)ω

2
√

2c̄

∫ L

0

tanh

(
θω(z)

2

)
dW̃ ∗

1 (z)− γ(ω)ω2

8c̄2
L

]
.

Multiplying this identity by (7.38) gives (7.33).
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7.1.4 The Localization Length Lloc(ω)

We have just established that the power transmission coefficient |T ε
ω(0, L)|2

converges in distribution to τω(L) = cosh−2(θω(L)/2), which is a diffusion
Markov process. By (7.31) the infinitesimal generator of τω(L) is

Lω =
γ(ω)ω2

4c̄2

[
τ2
ω(1− τω)

∂2

∂τ2
ω

− τ2
ω

∂

∂τω

]
. (7.39)

From now on we assume that

γ(ω) > 0 , (7.40)

which means that the power spectral density (7.14) of the fluctuation process
ν is not zero at the frequencies of interest.

As we shall see in the next section, we can compute all moments of the limit
power transmission coefficient τω by solving the diffusion equation associated
with the infinitesimal generator Lω. In this section we prove the following
proposition.

Proposition 7.2. The logarithm of the power transmission coefficient con-
verges with probability one as L→∞:

lim
L→∞

1

L
ln [τω(L)] = − 1

Lloc(ω)
, (7.41)

where

Lloc(ω) =
4c̄2

γ(ω)ω2
. (7.42)

This result follows from

θω(L)

L

L→∞−→ 1

Lloc(ω)
, (7.43)

with probability one, which we show below. From (7.43) we have

lim
L→∞

1

L
ln [τω(L)] = lim

L→∞

1

L
ln

[
cosh−2

(
θω(L)

2

)]

= − lim
L→∞

1

L
θω(L) = − 1

Lloc(ω)
,

with probability one, which is (7.41).
From the representation (7.37) and (7.41) we have, with probability one,

the asymptotic equivalence in the sense of logarithms

τω(L) ∼ exp

(
− L

Lloc(ω)
−

√
2√

Lloc(ω)
W̃ ∗

1 (L)

)
, (7.44)
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as L → ∞. Since W̃ ∗
1 (L)/L tends to zero with probability one as L → ∞,

the frequency-dependent length Lloc(ω) characterizes the exponential decay
of the power transmission coefficient, at frequency ω, in the weak fluctuations
regime as ε→ 0.

From (7.44) we note that the fluctuations of the log power transmission
coefficient can be characterized in the limit L→∞. We have that

√
L

[
1

L
ln τω(L)− 1

Lloc(ω)

]

converges in distribution as L→∞ to a Gaussian random variable with mean
zero and variance 2/Lloc(ω).

We call Lloc(ω), defined by (7.42), the localization length of the random
medium, and we will use this notation frequently throughout the book. In
this section, we have shown that Lloc characterizes the exponential decay rate
(as L→∞) of the limit in distribution (as ε→ 0) of the power transmission
coefficient. In Section 7.3, we will show that the power transmission coefficient
for fixed ε > 0 has exponential decay characterized by some ε-dependent
localization length Lε

loc, and that Lε
loc has the limit Lloc given by (7.42) as

ε→ 0.
By wave localization we mean in this book exponential decay of the

power transmission coefficient as a function of the size of the random medium.
It is a special property of randomly layered media that the decay rate is expo-
nential regardless of the strength of the fluctuations of the random medium. It
is also known, as we comment in the notes, that the spectrum of the reduced
wave equation in a random medium is pure point with exponentially decaying
eigenfunctions.

To prove (7.43) we first note that the process θω takes values in (0,∞),
and so tanh(θω(z)) ≤ 1, which implies that

1

tanh(θω(z))
≥ 1 ,

for all z > 0. From the integral representation of θω,

θω(L) =
1

Lloc(ω)

∫ L

0

1

tanh(θω(s))
ds +

√
2√

Lloc(ω)
W̃ ∗

1 (L) , (7.45)

we obtain therefore the inequality

θω(L) ≥ L

Lloc(ω)
+

√
2√

Lloc(ω)
W̃ ∗

1 (L) .

This shows that

lim inf
L→∞

θω(L)

L
≥ 1

Lloc(ω)
, (7.46)
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with probability one, since W̃ ∗
1 (L)/L → 0 as L → ∞ with probability one.

Since γ(ω) > 0, we have lim infL→∞ θω(L) =∞ with probability one, and

lim sup
L→∞

θω(L)

L
≤ 1

Lloc(ω)
(7.47)

with probability one. From (7.46) and (7.47) we deduce (7.43).

7.1.5 Mean and Fluctuations of the Power Transmission
Coefficient

In the previous section we have shown that the power transmission coefficient
converges to a diffusion Markov process with the infinitesimal generator (7.39).
This result is summarized in the following proposition.

Proposition 7.3. The power transmission coefficient |T ε
ω(0, L)|2 converges in

distribution as a continuous process in L to the Markov process τω(L) whose
infinitesimal generator is

Lω =
1

Lloc(ω)

[
τ2
ω(1− τω)

∂2

∂τ2
ω

− τ2
ω

∂

∂τω

]
. (7.48)

Here the localization length Lloc(ω) is defined by (7.42). The generator (7.48)
characterizes the statistical distribution of the process τω(L), and in particular
its moments E[τω(L)n], n ∈ N. It is clear from the form of the generator
(7.48) that the moments of τω(L) are functions of L/Lloc(ω) only. We compute
these moments in Appendix 7.6, where we show that they have the integral
representations

E[τω(L)n] = ξn

(
L

Lloc(ω)

)
. (7.49)

Here the functions ξn(l) are defined by

ξn(l) = exp

(
− l

4

)∫ ∞

0

e−μ2l 2πμ sinh(πμ)

cosh2(πμ)
K(n)(μ) dμ , (7.50)

where K(1)(μ) = 1 and, for n ≥ 2,

K(n)(μ) =

n−1∏

j=1

1

j2

[
μ2 + (j − 1

2
)2

]
.

We state in particular the limiting form of the mean power transmission co-
efficient in the following proposition.

Proposition 7.4. The mean power transmission coefficient E[|T ε
ω(0, L)|2] con-

verges as ε→ 0,
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lim
ε→0

E[|T ε
ω(0, L)|2] = E[τω(L)] = ξ1

(
L

Lloc(ω)

)
, (7.51)

where ξ1(l) is given by

ξ1(l) = exp

(
− l

4

)∫ ∞

0

e−μ2l 2πμ sinh(μπ)

cosh2(μπ)
dμ . (7.52)

The exponential decay rate of the mean power transmission coefficient is

lim
L→∞

1

L
ln (E[τω(L)]) = − 1

4Lloc(ω)
. (7.53)

The meaning of (7.53) is that for L ≫ Lloc(ω), the expectation of τω(L)
is given by

E[τω(L)] ∼ exp

(
− L

4Lloc(ω)

)
.

The asymptotic representation (7.53) is obtained with the Laplace asymptotic
approximation method, which gives for l≫ 1,

ξ1(l) ∼ 2π2 exp

(
− l

4

)∫ ∞

0

e−μ2lμ2 dμ =
π5/2

2l3/2
exp

(
− l

4

)
. (7.54)

More generally, we have for l ≫ 1,

ξn(l) ∼ 2π2K(n)(0) exp

(
− l

4

)∫ ∞

0

e−μ2lμ2 dμ =
π5/2K(n)(0)

2l3/2
exp

(
− l

4

)
,

where K(n)(0) =
∏n−1

j=1 (1− 1
2j )2. This shows that for any n ≥ 1,

lim
L→∞

1

L
ln (E[τω(L)n]) = − 1

4Lloc(ω)
, (7.55)

which means that the exponential decay rate of the limiting moments of
the power transmission coefficient is the same for all n ≥ 1 and is given
by 1/(4Lloc(ω)). We plot in Figure 7.2 the mean power transmission coeffi-
cient and its standard deviation as a function of L/Lloc(ω). Note that the
relative standard deviation plotted in picture (b) of Figure 7.2 tends to in-
finity as L/Lloc(ω)→ ∞, which shows that the power transmission is a very
fluctuating process.

7.1.6 The Strongly Fluctuating Character of the Power
Transmission Coefficient

Comparing (7.53) with (7.41), we see that the exponential behavior of the
mean power transmission coefficient ∼ exp[−L/(4Lloc(ω))] is different from
its typical behavior ∼ exp[−L/Lloc(ω)]. This is also seen in the exponential
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Fig. 7.2. Plots of the behavior of the power transmission coefficient as a function
of L/Lloc(ω). The mean and the standard deviation of the limit power transmission
coefficient τω(0) are plotted in picture (a). They decay exponentially with L/Lloc(ω)
with rates 1/(4Lloc(ω)) and 1/(8Lloc(ω)), respectively. Picture (b) is a plot of the
relative fluctuations of the power transmission coefficient, which grow exponentially
with rate 1/(8Lloc(ω)).

growth of the normalized standard deviation of the power transmission coef-
ficient plotted in Figure 7.2b.

This is a common phenomenon for strongly fluctuating random processes.
We now give some heuristic arguments to complete the discussion. To analyze
it, we use the representation of the limit power transmission coefficient

τω(L) =
1

cosh2
(

θω(L)
2

) (7.56)

in terms of the process θω(L), which is the solution of the stochastic differential
equation (7.28). The integral representation (7.45) of this process gives for
L≫ Lloc(ω),

θω(L) ∼
√

2√
Lloc

W̃ ∗
1 (L) +

L

Lloc
.

This asymptotic representation is an extension of the analysis leading to (7.43).
Since L≫ Lloc(ω), with high probability we know that W̃ ∗

1 (L) is of order
√

L,
which is negligible compared to L, so that cosh2(θω(L)/2) ∼ exp (L/Lloc). By
(7.56) this implies that τω(L) ∼ exp (−L/Lloc) with high probability. This is
the observable exponential decay of the power transmission coefficient, with
decay rate equal to the reciprocal of the localization length Lloc given by
(7.80).

If, however, the realization of the Brownian motion W̃ ∗
1 is such that the

event
Eω,L :=

{√
2/LlocW̃

∗
1 (L) < −L/Lloc

}
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occurs, then θω is at most of order one, and so τω is of order one. These
estimates should be understood as exponential estimates. The event Eω,L is

rare. Indeed, since W̃ ∗
1 (L) has the same distribution as

√
LW̃ ∗

1 (1), we have
that

P(Eω,L) = P

(
W̃ ∗

1 (1) < −
√

L/(2Lloc)
)
∼ exp(−L/(4Lloc)).

This means that we observe no exponential decay of the power transmission
coefficient in the case that the event Eω,L occurs, corresponding to a very
small set of realizations of the random medium. However this small set effec-
tively determines the large-L behaviors of the moments of the transmission
coefficient. We note, for example, that

E[τω(L)] = E[τω(L)1Eω,L ] + E[τω(L)1Ec
ω,L

]

L≫1∼ 1× P(Eω,L) + exp(−L/Lloc)P(Ec
ω,L)

∼ exp(−L/(4Lloc)) + exp(−L/Lloc)

∼ exp(−L/(4Lloc)) ,

from which we recover the result (7.53). For the nth moment we have

E[τω(L)n] = E[τω(L)n1Eω,L ] + E[τω(L)n1Ec
ω,L

]

L≫1∼ 1× P(Eω,L) + exp(−nL/Lloc)P(Ec
ω,L)

∼ exp(−L/(4Lloc)) + exp(−nL/Lloc)

∼ exp(−L/(4Lloc)) ,

from which we recover (7.55). Thus the large-L behavior of the moments of
the power transmission coefficient is determined by exceptional realizations
of the random medium. What is called the localization length is Lloc(ω),
given by (7.42), which is what is observed for a typical realization of the
random medium. We will see in the next section that this is true only for
monochromatic waves. The reason for the difference between monochromatic
and pulsed waves is that the rare event Eω,L depends on the frequency ω, and
with a continuum of frequencies in the pulse case it is likely that these events
occur for some frequencies with high probability.

7.2 Exponential Decay of the Transmitted Energy
for a Pulse

7.2.1 Transmission of a Pulse Through a Slab of Random Medium

We consider a right-going pulse incoming from the left homogeneous half-space

Aε(t, z) =
1

2π

∫
f̂ε(ω) exp

(
i
ωz

c̄
− iωt

)
dω , z ≤ 0 , (7.57)
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where f̂ε is a function whose effective bandwidth is of order ε−2, so that

f̂ε(ω) = εf̂(ε2ω)⇐⇒ fε(t) =
1

ε
f

(
t

ε2

)
,

where f̂(ω) is a rapidly decaying function. The pulse width is of order ε−2

and the pulse amplitude has been normalized so that the pulse energy is of

�
0 L z

�

Aε(t, L)

�

Bε(t, 0)

�

Aε(t, 0)

Random slab

Fig. 7.3. Transmission of a pulse.

order one:

Einc :=

∫
|Aε(t, 0)|2 dt =

1

2π

∫
|f̂ε(ω)|2 dω =

1

2π

∫
|f̂(ω)|2 dω .

The total field in the region z ≤ 0 is the superposition of the incoming wave
Aε and the reflected wave

Bε(t, z) =
1

2πε

∫
f̂(ω)Rε

ω(0, L) exp

(
−i

ωz

c̄ε2
− i

ωt

ε2

)
dω , z ≤ 0, (7.58)

where Rε
ω(0, L) is the reflection coefficient for the frequency ω/ε2. The field

in the region z ≥ L is only the transmitted right-going wave

Aε(t, z) =
1

2πε

∫
f̂(ω)T ε

ω(0, L) exp

(
i
ωz

c̄ε2
− i

ωt

ε2

)
dω , z ≥ L, (7.59)

where T ε
ω(0, L) is the transmission coefficient for the frequency ω/ε2. The total

transmitted energy is therefore

T ε(L) :=

∫
|Aε(t, L)|2 dt =

1

2π

∫
|f̂(ω)|2|T ε

ω(0, L)|2 dω , (7.60)

by the Parseval identity.

7.2.2 Self-Averaging Property of the Transmitted Energy

In this section we show that the random variable T ε(L) converges in proba-
bility to its limit expectation.
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Proposition 7.5. The total transmitted pulse energy T ε(L), given by (7.60),
converges in probability to the deterministic quantity

T (L) =
1

2π

∫
|f̂(ω)|2ξ1

(
L

Lloc(ω)

)
dω , (7.61)

where ξ1 (l) is given by (7.52).

This result shows that the total transmitted energy is a self-averaging
quantity, in other words, in the limit ε→ 0, it depends only on the statistics
of the medium parameters and not on the particular realization. This is in
dramatic contrast to the strongly fluctuating character of the single-frequency
power transmission coefficient |T ε

ω(0, L)|2. It is a consequence of the rapid
decorrelation in frequency of the power transmission coefficient, as we will
now explain.

We will prove this self-averaging property by showing that the limit of
the expected value of T ε(L)2 as ε → 0 equals the square of the limit of the
expected value of T ε(L). This implies that the fluctuations of T ε(L) converge
to zero as ε→ 0.

By linearity, the first moment of T ε(L) has the integral representation

E [T ε(L)] =
1

2π

∫
|f̂(ω)|2E

[
|T ε

ω(0, L)|2
]
dω . (7.62)

Therefore, by Proposition 7.4 we have that

E [T ε(L)]
ε→0−→ T (L) ,

where T (L) is given by (7.61).
The second moment of T ε(L) has the integral representation

E
[
T ε(L)2

]
=

1

4π2

∫ ∫
|f̂(ω)|2|f̂(ω′)|2E

[
|T ε

ω(0, L)|2|T ε
ω′(0, L)|2

]
dω dω′ .

(7.63)
It is therefore necessary to study the limit as ε → 0 of the two-frequency
process (|T ε

ω(0, L)|2, |T ε
ω′(0, L)|2) for ω = ω′. We show in the next section that

|T ε
ω(0, L)|2 and |T ε

ω′(0, L)|2 are asymptotically uncorrelated for any ω = ω′,
so that

E
[
T ε(L)2

] ε→0−→ 1

4π2

∫ ∫
|f̂(ω)|2|f̂(ω′)|2ξ1

(
L

Lloc(ω)

)
ξ1

(
L

Lloc(ω′)

)
dω dω′

=

(
1

2π

∫
|f̂(ω)|2ξ1

(
L

Lloc(ω)

)
dω

)2

= T (L)2 .

Therefore T ε(L) converges to T (L) in mean square:
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E

[
(T ε(L)− T (L))

2
]

= E
[
T ε(L)2

]
− 2E [T ε(L)] T (L) + T (L)2

ε→0−→ 0 .

By the Chebyshev inequality this implies convergence in probability. For any
δ > 0,

P (|T ε(L)− T (L)| > δ) ≤
E

[
(T ε(L)− T (L))

2
]

δ2

ε→0−→ 0 ,

which completes the proof of Proposition 7.5.

7.2.3 The Diffusion Limit for the Two-Frequency Propagator

In this section we show that the power transmission coefficients at two distinct
frequencies are asymptotically independent in the limit ε→ 0. To do this we
fix two frequencies ω1 = ω2 and apply the diffusion approximation theorem
6.56 to obtain the limit distribution of the two-frequency propagator. This
limit distribution will then be used to show the asymptotic independence of
the pair of power transmission coefficients (|T ε

ω1
(0, L)|2, |T ε

ω2
(0, L)|2), using

(7.9).
We introduce the 4× 4 two-frequency propagator matrix

Pε
2(0, z) =

[
Pε

ω1
(0, z) 0
0 Pε

ω2
(0, z)

]
,

where 0 is the 2 × 2 zero matrix. From the equations (7.12) satisfied by the
two propagators Pε

ωj
, the random differential equation satisfied by Pε

2 is of
the form (6.102) with fast phase

d

dz
Pε

2(0, z) =
1

ε
F

(
Pε

2(0, z), ν
( z

ε2

)
,

z

ε2

)
.

Here the decomposition (6.103) of the matrix field F is

F(P2, ν, τ) =
1

2c̄

4∑

p=0

g(p)(ν, τ)Ω2h
(p)P2 ,

where the constant 4× 4 matrices Ω2 and h(p), p = 0, ..., 4 are given by

Ω2 =

[
ω1I 0
0 ω2I

]
, h(0) = i

[
σ3 0
0 σ3

]
, h(1) = −

[
σ1 0
0 0

]
,

h(2) =

[
σ2 0
0 0

]
, h(3) = −

[
0 0
0 σ1

]
, h(4) =

[
0 0
0 σ2

]
,

with I the 2 × 2 identity matrix and σ1, σ2, and σ3 the Pauli spin matrices
(7.13). The real-valued functions g(p), p = 0, . . . , 4 are given by
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g(0)(ν, τ) = ν ,

g(1)(ν, τ) = ν sin

(
2ω1z

c̄

)
, g(2)(ν, τ) = ν cos

(
2ω1z

c̄

)
,

g(3)(ν, τ) = ν sin

(
2ω2z

c̄

)
, g(4)(ν, τ) = ν cos

(
2ω2z

c̄

)
.

The correlation matrix C = (Cpq)p,q=0,...,4 defined by (6.92) has here the form

C =

⎡
⎢⎢⎢⎢⎣

γ(0) 0 0 0 0

0 1
2γ(ω1) − 1

2γ(s)(ω1) 0 0

0 1
2γ(s)(ω1)

1
2γ(ω1) 0 0

0 0 0 1
2γ(ω2) − 1

2γ(s)(ω2)

0 0 0 1
2γ(s)(ω2)

1
2γ(ω2)

⎤
⎥⎥⎥⎥⎦

,

with γ(ω) and γ(s)(ω) given by (7.14–7.15). From the general results obtained
in Section 6.7.3, we get that Pε

2(0, z) converges in distribution to P2(0, z),
which is the solution of the linear Stratonovich stochastic differential equation

dP2(0, z) =

√
γ(0)

2c̄
Ω2h

(0)P2(0, z) ◦ dW0(z)

+

√
γ(ω1)ω1

2
√

2c̄
h(1)P2(0, z) ◦ dW1(z) +

√
γ(ω1)ω1

2
√

2c̄
h(2)P2(0, z) ◦ dW̃1(z)

+

√
γ(ω2)ω2

2
√

2c̄
h(3)P2(0, z) ◦ dW2(z) +

√
γ(ω2)ω2

2
√

2c̄
h(4)P2(0, z) ◦ dW̃2(z)

−γ(s)(ω1)ω
2
1

8c̄2
h(2)h(1)P2(0, z) dz − γ(s)(ω2)ω

2
2

8c̄2
h(4)h(3)P2(0, z) dz , (7.64)

where W0, W1, W̃1, W2, W̃2 are five independent standard Brownian motions.
The matrix P2 is made up of two 2 × 2 diagonal subblocks and zeros

elsewhere, and we denote the diagonal 2 × 2 blocks by Pω1 and Pω2 . The
matrix Pωj is the limit (in distribution) of the propagator Pε

ωj
, for j = 1, 2.

We can rewrite the stochastic differential equation (7.64) for the individual
propagators:

dPωj (0, z) =
iωj

√
γ(0)

2c̄

[
1 0
0 −1

]
Pωj (0, z) ◦ dW0(z)

−ωj

√
γ(ωj)

2
√

2c̄

[
0 1
1 0

]
Pωj (0, z) ◦ dWj(z)

− iωj

√
γ(ωj)

2
√

2c̄

[
0 1
−1 0

]
Pωj (0, z) ◦ dW̃j(z)

−
iω2

jγ
(s)(ωj)

8c̄2

[
1 0
0 −1

]
Pωj (0, z) dz , (7.65)
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for j = 1, 2. We note here that the two limit propagators Pω1 and Pω2 sat-
isfy dynamically distinct stochastic differential equations, which, however, are
not statistically independent, because they both involve the same Brownian
motion W0.

By the symmetry property of (7.65), the propagator matrices have the
form

Pωj (0, z) =

[
αωj (0, z) βωj (0, z)

βωj(0, z) αωj (0, z)

]
,

where the pairs (αωj , βωj) satisfy the system of stochastic differential equa-
tions

dαωj =
ωj

2c̄

(
i
√

γ(0)αωj ◦ dW0(z)−
√

γ(ωj)√
2

βωj ◦ (dWj(z) + idW̃j(z))

)

− iωj
2γ(s)(ωj)

8c̄2
αωj dz ,

dβωj =
ωj

2c̄

(
−i

√
γ(0)βωj ◦ dW0(z)−

√
γ(ωj)√

2
αωj ◦ (dWj(z)− idW̃j(z))

)

+
iωj

2γ(s)(ωj)

8c̄2
βωj dz ,

starting from αωj (0, z = 0) = 1 and βωj (0, z = 0) = 0, for j = 1, 2. We
proceed as in Section 7.1.1 to parameterize the pairs (αωj , βωj ), j = 1, 2, by

αωj (0, z) = cosh

(
θωj (z)

2

)
eiφωj

(z) ,

βωj(0, z) = sinh

(
θωj (z)

2

)
ei(ψωj

(z)+φωj
(z)) .

The two processes W̃ ∗
1 and W̃ ∗

2 defined by

W̃ ∗
j (z) =

∫ z

0

− cos(ψωj ) dWj(s) + sin(ψωj ) dW̃j(s)

are independent standard Brownian motions. This is because they are orthog-
onal transformations of Brownian stochastic integrals with nonanticipating
arguments. It can also be seen by direct computation of the cross-quadratic
variation. As a consequence, the processes θωj , j = 1, 2, satisfy the decoupled
and statistically independent one-dimensional stochastic differential equations

dθωj =
ωj

√
γ(ωj)√
2c̄

dW̃ ∗
j (z) +

ωj
2γ(ωj)

4c̄2 tanh(θωj )
dz , (7.66)

with the initial condition θωj (0) = 0. Since the power transmission coeffi-
cients are given by |T ε

ωj
(0, L)|2 = 1/|αε

ωj
(0, L)|2, we conclude that the pair

(|T ε
ω1

(0, L)|2, |T ε
ω2

(0, L)|2) converges in distribution to (τω1(L), τω2(L)), where
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τωj (L) = cosh−2

(
θωj (L)

2

)
.

The two processes τω1(L) and τω2(L) are therefore two independent Markov
processes whose infinitesimal generators are respectively Lω1 and Lω2 defined
by (7.48).

This result is sufficient for showing the statistical stability of the transmit-
ted pulse energy in Proposition 7.5. In the following chapters we will see that
the two-frequency autocorrelation function of the transmission coefficient is a
key quantity that deserves a thorough study. We will see that it is only when
ω1 − ω2 is of order ε2 that |T ε

ω1
(0, L)|2 and |T ε

ω2
(0, L)|2 are correlated. In the

strongly heterogeneous white-noise regime (5.17) this is true when ω1 − ω2 is
of order ε. We study in detail these correlated processes in Chapter 9, where
we present a deeper analysis of pulse propagation in random media.

7.3 Wave Localization in the Weakly Heterogeneous
Regime

In this section we study the decay of the power transmission coefficient
|T ε

ω(0, L)|2 for fixed ε as L → ∞. Subsequently we consider the limit ε → 0.
The analysis can be divided into two parts. First, we show that |T ε

ω(0, L)|2
decays exponentially with the size L of the slab of the random medium and
that the decay rate is the reciprocal of the localization length Lε

loc(ω). The
reciprocal of the localization length is equal to the Lyapunov exponent of an
associated random harmonic oscillator problem. Second the Lyapunov expo-
nent of this random harmonic oscillator is computed in the asymptotic limit
ε → 0. We show that the limit of Lε

loc(ω) as ε → 0 equals the localization
length Lloc(ω) given by (7.42) in Section 7.1.4. From the results of this section
we conclude that wave localization in the sense of exponential decay of the
power transmission coefficient does not occur only in the diffusion limit ε→ 0.
There is no explicit formula for the localization length Lε

loc(ω) for ε > 0. It
can be shown only that its limit as ε→ 0 is Lloc(ω) given by (7.42). We also
conclude that the limits L→∞ and ε→ 0 can be interchanged as far as the
exponential decay rate of the power transmission coefficient is concerned.

7.3.1 Determination of the Power Transmission Coefficient from a
Random Harmonic Oscillator

We first describe how the wave propagation problem is related to a ran-
dom harmonic oscillator. Using the components of the propagator matrix
Pε

ω(0, z) in (7.6), we define the process

vε
ω(z) := αε

ω(0, z)eiωz/(c̄ε2) − βε
ω(0, z)e−iωz/(c̄ε2) . (7.67)
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Differentiating with respect to z and using the fact that (αε
ω, βε

ω) satisfy (7.3),
we get

dvε
ω

dz
=

iω

c̄ε2

(
αε

ω(0, z)eiωz/(c̄ε2) + βε
ω(0, z)e−iωz/(c̄ε2)

)
. (7.68)

Differentiating once again we see that vε
ω(z) satisfies the random harmonic

oscillator equation

d2vε
ω

dz2
+

ω2

c̄2ε4

(
1 + εν

( z

ε2

))
vε

ω = 0 . (7.69)

From (7.7), the initial conditions for vε
ω are

vε
ω(0) = 1 ,

dvε
ω

dz
(0) =

iω

c̄ε2
. (7.70)

Let us introduce the energy of the oscillator

rε
ω(z) :=

1

2

(
|vε

ω(z)|2 +
c̄2ε4

ω2

∣∣∣∣
dvε

ω

dz
(z)

∣∣∣∣
2
)

.

From (7.67) and (7.68) we see that

rε
ω(z) = |αε

ω(0, z)|2 + |βε
ω(0, z)|2 .

Using the relation (7.10), |αε
ω|2 − |βε

ω|2 = 1, this can also be written as

rε
ω(z) = 2|αε

ω(0, z)|2 − 1 ,

and therefore, by (7.9), we get the following relation between rε
ω and T ε

ω,

rε
ω(z) = 2|T ε

ω(0, z)|−2 − 1 , (7.71)

or equivalently, at z = L,

|T ε
ω(0, L)|2 =

2

1 + rε
ω(L)

. (7.72)

We have expressed the power transmission coefficient in terms of the en-
ergy of the random harmonic oscillator (7.69) with initial conditions (7.70).
The asymptotic analysis of the oscillator problem as ε → 0 is very singular
compared to that for (αε

ω, βε
ω). This is because the fast phases in (7.67) and

(7.68) are present in the oscillator, but they are not present in the equations
(7.3) for (αε

ω , βε
ω). Therefore the limit ε→ 0 is more conveniently analyzed in

the (αε
ω, βε

ω) formulation as we have done in the previous sections. Neverthe-
less, from (7.72) we see that the asymptotic distribution of rε

ω(L) as ε→ 0 is
known and equals that of cosh(θω(L)), which is characterized by the stochastic
differential equation (7.28).

If we want to analyze the limit behavior as L→∞ of the power transmis-
sion coefficient |T ε

ω(0, L)|2 for ε > 0 fixed, then it is more convenient to use the
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oscillator formulation. We can deduce this limit behavior of |T ε
ω(0, L)|2 from

that of the energy rε
ω(L) of the random harmonic oscillator, since they are re-

lated by (7.72). This is because we can use the theory of Lyapunov exponents
of linear random differential equations presented in Section 6.8.

We analyze the random harmonic oscillator in Section 7.5. The behavior of
its Lyapunov exponent for small ε is given in Proposition 7.9 of that section.
We show that the limit

lim
z→∞

1

z
ln[rε

ω(z)]

exists with probability one and that it is equal to a deterministic quantity γε
ω

that is twice the Lyapunov exponent of the oscillator. We show also that this
coefficient has the limit

lim
ε→0

γε
ω =

γ(ω)ω2

4c̄2
, γ(ω) =

∫ ∞

−∞
E[ν(0)ν(z)] cos

(
2ωz

c̄

)
dz . (7.73)

The parameter γ(ω) is the same as (7.14), which is assumed, in (7.40), to be
positive. Therefore, for ε small enough, γε

ω > 0. From (7.72) we deduce the
existence with probability one of the limit

lim
L→∞

1

L
ln[|T ε

ω(0, L)|2] = − lim
L→∞

1

L
ln[rε

ω(L)] = −γε
ω .

Let

Lε
loc(ω) =

1

γε
ω

. (7.74)

We summarize these results in the following proposition.

Proposition 7.6. For ε small enough and fixed, there exists a finite localiza-
tion length Lε

loc(ω), given by (7.74), such that with probability one,

lim
L→∞

1

L
ln[|T ε

ω(0, L)|2] = − 1

Lε
loc(ω)

. (7.75)

The localization length Lε
loc(ω) has the limit

lim
ε→0

Lε
loc(ω) = Lloc(ω) , (7.76)

where Lloc(ω) is given by (7.42) and recalled in (7.73).

7.3.2 Comparisons of Decay Rates

The main point of the analysis presented in the previous section is that we get
the same result for the exponential decay of the power transmission coefficient
by taking first the limit L → ∞, and then ε → 0 (Proposition 7.6), and by
taking first the limit ε → 0, and then L → ∞ (equation (7.41). This is a
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special case of the general result about Lyapunov exponents of linear random
differential equations presented in Section 6.8.

We can also compare the exponential decay rate of the transmitted pulse
energy with the almost-sure decay rate of the power transmission coefficient
of a monochromatic wave, in the limit ε → 0. They behave differently as
functions of the size L of the random medium. Both decay exponentially, but
the transmitted pulse energy has a much slower decay rate. Consider first the
case in which the incoming pulse is narrowband, that is to say, the spectrum
f̂ is concentrated around the carrier wave number ω0/ε2 with a bandwidth
that is small compared to 1/ε2, but large compared to 1 (in dimensionless
variables). It follows from (7.61) and (7.54) that T (L) decays exponentially
as L→∞:

1

L
ln[T (L)]

L≫1∼ − 1

4Lloc(ω0)
, with

1

Lloc(ω0)
=

γ(ω0)ω
2
0

4c̄2
. (7.77)

Thus, the decay rate of the transmitted pulse energy with carrier frequency
ω0/ε2 equals that of the mean power transmission coefficient at frequency
ω0/ε2 (see (7.53)). This is because the transmitted pulse energy is self-
averaging. The decay rate of the monochromatic power transmission coef-
ficient is four times that of the one for the pulse. For broadband pulses, that
is, with bandwidth an interval of the form [ω0/ε2, ω1/ε2], the decay rate of
the transmitted pulse energy is

1

L
ln[T (L)]

L≫1∼ − 1

4Lloc(ω∗)
,

where ω∗ is the frequency in the interval [ω0, ω1] for which the localization
length is maximal. Usually, the lowest frequency ω0 has the maximal local-
ization length. This can be seen from expression (7.42), which shows that
Lloc(ω) ∼ 4c̄2/[γω2] if the power spectral density of the random medium is
flat over the bandwidth.

7.4 Wave Localization in the Strongly Heterogeneous
White-Noise Regime

In this section we revisit the results obtained in this chapter in the strongly
heterogeneous white-noise regime (5.17) introduced in Chapter 5, that is to say
we consider the regime in which the fluctuations of the medium are strong∼ 1,
the correlation length of the medium ∼ ε2 is much smaller than the wavelength
∼ ε, which is much smaller than the size of the slab ∼ 1. Accordingly, we
assume that the fluctuations of the medium are given by

1

K(z)
=

⎧
⎪⎨
⎪⎩

1

K

(
1 + ν

( z

ε2

))
for z ∈ [0, L] ,

1

K
for z ∈ (−∞, 0) ∪ (L,∞) ,

ρ(z) = ρ̄ for all z ,
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and we parameterize the frequency of the incoming right-going monochromatic
wave by ω/ε. Under these conditions, the exponential decay of the transmis-
sion coefficient is related to the Lyapunov exponent of the random harmonic
oscillator:

d2vε
ω

dz2
+

ω2

c̄2ε2

(
1 + ν

( z

ε2

))
vε

ω = 0 . (7.78)

The analysis of this equation goes along the same lines as in the weak fluctu-
ations regime and is presented in Section 7.5. The results are summarized in
Proposition 7.8. Using this proposition, we have the following result.

Proposition 7.7. For ε small enough and fixed, there exists a finite localiza-
tion length Lε

loc(ω) such that with probability one,

lim
L→∞

1

L
ln[|T ε

ω(0, L)|2] = − 1

Lε
loc(ω)

. (7.79)

The localization length Lε
loc(ω) has the limit

lim
ε→0

Lε
loc(ω) = Lloc(ω) , (7.80)

where

Lloc(ω) =
4c̄2

γω2
, γ = γ(0) =

∫ ∞

−∞
E[ν(0)ν(z)] dz . (7.81)

This result is simply the low-frequency limit of Proposition 7.6, where γ(ω) is
replaced by its limit γ = γ(0). All the results stated in the previous sections
can be extended to the strongly heterogeneous white-noise regime by sub-
stituting for Lloc(ω) the low-frequency limit (7.81). In the analysis we apply
the diffusion-approximation Theorem 6.4 instead of Theorem 6.5, which we
used in the weakly heterogeneous regime. As a consequence, the statements
of Propositions 7.3 and 7.4 hold in the strongly heterogeneous white-noise
regime with the localization length defined by (7.81).

Figure 7.4a shows the almost-sure convergence of the logarithm of the
power transmission coefficient as L → ∞. In the numerical simulations, the
random medium is a concatenation of thin layers with constant density and
alternating bulk modulus values κK = 1/(1 ± σK), with σK = 0.8. The ef-
fective density, bulk modulus, and speed of sound are all equal to one. The
thicknesses of the layers are independent and identically distributed random
variables with exponential distribution of mean lc = 0.02. The integrated
autocorrelation is γ = σ2

K lc = 0.0128. The frequency ω is equal to 5, for
which the localization length Lloc(ω) equals 12.5. In dimensional variables,
the localization length is

[Lloc(ω0)]dim =
4c̄2

σ2
K lKω2

0

, (7.82)

where σK and lK are defined by (5.5). It increases as the frequency decreases,
which means that high-frequency waves do not penetrate as deeply into the
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medium as the low-frequency ones. The frequency above which waves cannot
be transmitted through a slab of size L0 depends on the statistical properties
of the medium and is obtained from (7.82):

[ωK ]dim =
2c̄√

σ2
K lKL0

. (7.83)
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Fig. 7.4. Plot (a): The logarithm of the power transmission coefficient divided
by the propagation distance L plotted as a function of L. The thin dotted lines
correspond to 10 different realizations of the random medium. The thick dashed line
is the theoretical limit −1/Lloc(ω). We can see clearly the almost-sure convergence
to the asymptotic limit. Plot (b): the power transmission coefficient as a function of
propagation distance. The thin dotted lines correspond to 50 different realizations of
the random medium. The dashed line very near the solid line at the top corresponds
to the power transmission coefficient averaged over 5×104 realizations. We see clearly
that the behavior of the average power transmission coefficient is very different from
its typical behavior. The thick solid line at the top comes from formula (7.52) for
the mean power transmission coefficient. The thick dashed line below it comes from
the asymptotic formula exp[−L/Lloc(ω)].

7.5 The Random Harmonic Oscillator

In this section we analyze the Lyapunov exponent of the random harmonic
oscillator. It is needed in Sections 7.3 and 7.4 of this chapter, where we have
related the localization length of monochromatic waves to the Lyapunov ex-
ponent of the random harmonic oscillator. The presentation of this section
is self-contained. However, it is a special case of the problem considered in
Section 6.8. We addressed there a general multidimensional random linear
system, which required some general conditions ensuring the validity of the
results. In the case of the random harmonic oscillator that we consider here,



202 7 Transmission of Energy Through a Slab of Random Medium

each step in the analysis can be carried out without using the general theory
as detailed in this section.

7.5.1 The Lyapunov Exponent of the Random Harmonic Oscillator

Since ε > 0 is fixed throughout the analysis in this section, for simplicity we
set it equal to one.

The random harmonic oscillator process is the solution of the random
second-order, linear ordinary differential equation

d2v

dz2
+ (1 + ν (z)) v = 0 , (7.84)

with prescribed initial conditions for v and dv
dz at z = 0. We assume that the

process ν(z) has the form
ν(z) = g(Y (z)) ,

where Y (z) is an ergodic Markov process on a compact state space S, following
the theory presented in Chapter 6. The infinitesimal generator of Y (z) is
denoted by LY and its unique invariant probability measure is denoted by
p̄(dy). The function g(y) is real-valued and bounded in absolute value by a
constant less than 1. This assumption is needed so that 1+ ν(z) is positive in
the oscillator equation (7.84). We also assume that ν(z) has mean zero,

E[ν(z)] = E[g(Y (z))] =

∫

S

g(y) p̄(dy) = 0 .

Here E denotes the expectation with respect to the invariant distribution of
Y (z).

The Lyapunov exponent is defined by

Γ = lim
z→∞

1

z
ln[R(z)] , R(z) =

√
v(z)2 +

dv

dz
(z)2 , (7.85)

when the limit exists. It is the exponential growth rate of the square root of the
energy of the oscillator. We show below that the limit exists with probability
one and is given by (7.90). The positivity of Γ is addressed in the next two
sections.

We introduce polar coordinates (R(z), ψ(z)) by

v(z) = R(z) cos(ψ(z)) and
dv

dz
(z) = R(z) sin(ψ(z)) ,

in terms of which the harmonic oscillator equation (7.84) has the form

R(z) = R(0) exp

(∫ z

0

q(ψ(s), Y (s)) ds

)
, (7.86)

dψ

dz
(z) = F (ψ(z), Y (z)) . (7.87)
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The functions q and F are given by

q(ψ, y) = −g(y) sin(ψ) cos(ψ) ,

F (ψ, y) = −1− g(y) cos2(ψ) .

From (7.87) and the analysis of Section 6.3 (with ε = 1), we see that (ψ, Y )
is a Markov process on the compact state space S1× S, where S1 denotes the
unit circle. Its infinitesimal generator is given by

L = LY + F (ψ, y)
∂

∂ψ
. (7.88)

Because of the assumption that g is bounded by a constant less than 1, the
function F is strictly negative. This implies that the Markov process (ψ, Y ) is
ergodic and its invariant probability distribution has the form p(ψ, y)dψp̄(dy),
where p is the solution of

L⋆p = 0 . (7.89)

The adjoint L⋆ of the infinitesimal generator L was introduced in Section 6.1.4
and is given here by

L⋆p(ψ, y) = L⋆
Y p(ψ, y)− ∂

∂ψ
(F (ψ, y)p(ψ, y)) .

From the ergodicity of (ψ, Y ) and (7.86), we conclude that with probability
one,

lim
z→∞

1

z
ln[R(z)] = lim

z→∞
1

z

[
ln(R0) +

∫ z

0

q(ψ(s), Y (s)) ds

]
= Γ ,

where the Lyapunov exponent Γ is the deterministic quantity given by

Γ =

∫

S1×S

q(ψ, y)p(ψ, y) dψ p̄(dy) . (7.90)

We will next analyze the Lyapunov exponent in two different asymptotic
regimes.

7.5.2 Expansion of the Lyapunov Exponent in the Strongly
Heterogeneous Regime

We will first show how the theory of Section 6.8 can be used, and then derive
an approximate formula for the Lyapunov exponent by direct calculation.

The scaled random harmonic oscillator in the strongly heterogeneous
white-noise regime has the form

d2vε
ω

dz2
+

ω2

c̄2ε2

(
1 + ν

( z

ε2

))
vε

ω = 0 . (7.91)
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As shown in the previous subsection, the limit

lim
z→∞

1

z
log

√

|vε
ω(z)|2 +

∣∣∣∣
dvε

ω

dz
(z)

∣∣∣∣
2

(7.92)

exists with probability one and is deterministic. It is the Lyapunov exponent
Γ ε, which is also equal to

Γ ε =
1

2
lim

z→∞
1

z
log rε

ω(z) ,

where rε
ω is the energy of the oscillator

rε
ω(z) =

1

2

(
|vε

ω(z)|2 +
c̄2ε2

ω2

∣∣∣∣
dvε

ω

dz
(z)

∣∣∣∣
2
)

.

This problem can be put in the form of the general linear system of random
differential equations discussed in Section 6.8.

The random harmonic oscillator can be written in system form as

dXε

dz
(z) =

1

ε
ΩXε(z) +

1

ε
g
(
Y

( z

ε2

))
hXε(z) ,

where the vector Xε(z) is defined by

Xε(z) =

[
vε

ω(z)
εc̄
ω

dvε
ω

dz (z)

]
.

The matrices Ω and h are given by

Ω =
ω

c̄

[
0 1
−1 0

]
, h =

ω

c̄

[
0 0
−1 0

]
.

In this formulation, the Lyapunov exponent Γ ε, defined by (7.92), is equal to
the Lyapunov exponent of Xε defined by

Γ ε = lim
z→∞

1

z
log |Xε(z)| ,

where | · | is the Euclidean norm.
We now verify that the hypotheses stated below (6.107) are satisfied. Here

the flow generated by Ω is simply the rotation

eΩz =

[
cos(ωz

c̄ ) sin(ωz
c̄ )

− sin(ωz
c̄ ) cos(ωz

c̄ )

]
.

The functions φ1(x̂) = (hx̂,hx̂) = (ω2/c̄2)x̂2
1, φ2(x̂) = (h2x̂, x̂) = 0, and

φ3(x̂) = (hx̂, x̂)2 = (ω2/c̄2)x̂2
1x̂

2
2 have Ω-averages given by



7.5 The Random Harmonic Oscillator 205

lim
Z→∞

1

Z

∫ Z

0

φ1(e
Ωzx̂) dz =

ω2

c̄2
lim

Z→∞

1

Z

∫ Z

0

(
x̂1 cos(

ωz

c̄
) + x̂2 sin(

ωz

c̄
)
)2

dz

=
ω2

2c̄2
x̂2

1 +
ω2

2c̄2
x̂2

2 =
ω2

2c̄2
,

lim
Z→∞

1

Z

∫ Z

0

φ2(e
Ωzx̂) dz = 0 ,

lim
Z→∞

1

Z

∫ Z

0

φ3(e
Ωzx̂) dz =

ω2

c̄2
lim

Z→∞

1

Z

∫ Z

0

(
x̂1 cos(

ωz

c̄
) + x̂2 sin(

ωz

c̄
)
)2

×
(
x̂1 sin(

ωz

c̄
) + x̂2 cos(

ωz

c̄
)
)2

dz

=
ω2

8c̄2
x̂4

1 +
ω2

4c̄2
x̂2

1x̂
2
2 +

ω2

8c̄2
x̂2

2

=
ω2

8c̄2
(x̂2

1 + x̂2
2)

2 =
ω2

8c̄2
.

These Ω-averages are independent of x̂ ∈ S1, as required by the theory of
Section 6.8. Theorem 6.8 can now be used to show that the limit as ε→ 0 of
the Lyapunov exponent exists,

lim
ε→0

Γ ε = Γ , (7.93)

and is given by (6.138), that is, Γ = ω2γ/(8c̄2), where γ is defined by (6.139).
We now derive this result by a simple formal expansion. We introduce the

polar coordinates (Rε, ψε) for the scaled harmonic oscillator (7.91), which, as
in (7.86–7.87), satisfy

Rε(z) = Rε(0) exp

[
1

ε

∫ z

0

q
(
ψε(s), Y

( s

ε2

))
ds

]
, (7.94)

dψε

dz
(z) =

1

ε
F

(
ψε(z), Y

( z

ε2

))
. (7.95)

The functions q and F are given here by

q(ψ, y) = −ω

c̄
g(y) sin(ψ) cos(ψ) ,

F (ψ, y) = −ω

c̄

(
1 + g(y) cos2(ψ)

)
,

and the Lyapunov exponent Γ ε is given by

Γ ε =
1

ε

∫

S1×S

q(ψ, y)pε(ψ, y) dψ p̄(dy) ,

where pε is the solution of
Lε⋆pε = 0 . (7.96)

The generator Lε of the Markov process (ψε(z), Y ( z
ε2 )) is given by
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Lε =
1

ε2
LY +

1

ε
L1 with L1 = F (ψ, y)

∂

∂ψ
.

We will assume for simplicity that LY is self-adjoint and derive an expansion
of the Lyapunov exponent Γ ε in powers of ε. In this section we assume that
the invariant probability density pε can be expanded in powers of ε,

pε = p0 + εp1 + ε2p2 + · · · .

Substituting this expansion into (7.96) and collecting the terms with the same
powers in ε, we get for p0, p1, and p2 the following hierarchy of Poisson
equations:

LY p0 = 0 , (7.97)

LY p1 = −L⋆
1p0 , (7.98)

LY p2 = −L⋆
1p1 , (7.99)

where we have used the fact that L⋆
Y = LY . The adjoint of L1 is given by

L⋆
1p = −∂ψ(Fp). Once the expansion of pε has been determined, it can be

used in (7.90) to obtain an expansion for Γ ε:

Γ ε =
1

ε

∫

S1×S

(qp0 + εqp1) (ψ, y) dψ p̄(dy) + O(ε) . (7.100)

From (7.97), p0 satisfies LY p0 = 0. Therefore we can choose p0 to be indepen-
dent of y, so that p0 = p0(ψ). For p1, (7.98) gives LY p1 = −L⋆

1p0 = ∂ψ(Fp0):

LY p1 = −ω

c̄

{
∂ψ[p0(ψ)] + g(y)∂ψ[cos2(ψ)p0(ψ)]

}
. (7.101)

This is an equation in which ψ plays the role of a frozen parameter. By the
assumed Fredholm alternative, the solvability condition of the Poisson equa-
tion requires that the right-hand side of (7.101) have mean zero with respect
to the invariant probability distribution p̄(dy) of LY . Since g(Y (z)) has zero
mean, the mean of the right-hand side is −(ω/c̄)∂ψ[p0(ψ)], and consequently
p0 is constant, independent of both ψ and y. Since pε is a probability density,
its integral with respect to dψ p̄(dy) over S1 × S is equal to one. Therefore

p0 ≡
1

2π
,

and pj, j ≥ 1, have integrals equal to zero. As a result the first term in the
expansion (7.100) of the Lyapunov exponent vanishes:

Γ ε =
1

ε

∫

S1×S

qp0(ψ, y0) dψ p̄(dy0) + O(1)

= − ω

4πc̄

(∫

S1

sin(2ψ) dψ

)(∫

S

g(y) p̄(dy)

)
+ O(1)

= O(1) .
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The Poisson equation (7.101) for p1 reduces to

LY p1 =
ω

2πc̄
g(y) sin(2ψ) .

Since we must choose the solution whose integral with respect to dψ p̄(dy) is
equal to zero, we get

p1(ψ, y0) = − ω

2πc̄
sin(2ψ)

∫ ∞

0

E[g(Y (z))|Y (0) = y0] dz .

Therefore, the expansion of the Lyapunov exponent becomes

Γ ε =

∫

S1×S

qp1(ψ, y0) dψ p̄(dy0) + O(ε)

=
ω2

4πc̄2

(∫

S1

sin2(2ψ) dψ

)(∫ ∞

0

∫

S

g(y0)E[g(Y (z)) | Y (0) = y0] p̄(dy0) dz

)

+O(ε)

=
ω2

4c̄2

∫ ∞

0

E[g(Y (0))g(Y (z))] dz + O(ε) .

This shows that the Lyapunov exponent is given by

Γ ε =
γω2

8c̄2
+ O(ε) ,

where

γ =

∫ ∞

−∞
E[ν(0)ν(z)] dz . (7.102)

This agrees, of course, with the result (7.93) that we obtained with the general
theory of Section 6.8.

We summarize the results of this section in the following proposition.

Proposition 7.8. Let vε
ω be the solution of the random harmonic oscillator

equation (7.91). Its Lyapunov exponent defined by (7.92) is positive for ε small
enough, and has the limit

lim
ε→0

Γ ε =
γω2

8c̄2
,

where γ is given by (7.102).

This result is used in Section 7.4 to obtain the limit (7.80) of the localiza-
tion length of monochromatic waves in the strongly heterogeneous white-noise
regime.
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7.5.3 Expansion of the Lyapunov Exponent in the Weakly
Heterogeneous Regime

In this section we extend the analysis of the previous section to the weakly
heterogeneous regime. In this regime, the scaled random harmonic oscillator
equation has the form

d2vε
ω

dz2
+

ω2

c̄2ε4

(
1 + εν

( z

ε2

))
vε

ω = 0 . (7.103)

We will carry out only the formal expansion of the previous section. The
general theory of Section 6.8 applies here too, when suitably extended. We
will not consider it in detail in this section.

We obtain the expansion of the Lyapunov exponent Γ ε from its definition
(7.92), which in this scaling has the form

Γ ε =
1

ε2

∫

S1×S

q(ψ, y)pε(ψ, y) dψ p̄(dy) . (7.104)

The invariant probability density pε is the solution of (7.96), and the generator
Lε has the form

Lε =
1

ε2
L0 +

1

ε
L1 ,

where

L0 = LY −
ω

c̄

∂

∂ψ
, L1 = −ω

c̄
g(y) cos2(ψ)

∂

∂ψ
.

As in the previous section, we expand the invariant probability density pε =
p0 + εp1 + ε2p2 + · · ·, and find that p0, p1, and p2 satisfy the hierarchy of
Poisson equations

L⋆
0p0 = 0 , (7.105)

L⋆
0p1 = −L⋆

1p0 , (7.106)

L⋆
0p2 = −L⋆

1p1 . (7.107)

The adjoint of L0 is explicitly given by L⋆
0 = LY +(ω/c̄)∂ψ , where we assume,

as in the formal expansion in the previous section, that LY is self-adjoint. As
in the strong-fluctuations regime, we choose p0 to be equal to (2π)−1. For p1,
(7.106) gives

(
LY +

ω

c̄
∂ψ

)
p1 = −L⋆

1p0 = −ω

c̄
g(y)∂ψ(cos2(ψ)p0) =

ω

2πc̄
g(y) sin(2ψ) .

The right-hand side has zero mean with respect to the invariant probability
p0 p̄(dy) dψ of L⋆

0, and so the Poisson equation admits a solution p1 that has
zero mean

p1(ψ, y0) = − ω

2πc̄

∫ ∞

0

E[g(Y (z))|Y (0) = y0] sin

(
2ψ +

2ωz

c̄

)
dz .
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Substituting the expansion of pε into (7.104), we get for the Lyapunov expo-
nent

Γ ε =

∫

S1×S

qp1(ψ, y0) dψ p̄(dy0) + O(ε3)

=
ω2

4πc̄2

∫

S1

sin(2ψ)

∫ ∞

0

E[g(Y (0))g(Y (z))] sin

(
2ψ +

2ωz

c̄

)
dz dψ + O(ε)

=
ω2

4c̄2

∫ ∞

0

cos

(
2ωz

c̄

)
E[g(Y (0))g(Y (z))]dz + O(ε)

=
γ(ω)ω2

8c̄2
+ O(ε) . (7.108)

Here

γ(ω) =

∫ ∞

−∞
cos

(
2ωz

c̄

)
E[ν(0)ν(z)]dz . (7.109)

Without having provided all the mathematical details for the results of
this section, we nevertheless state them in the following proposition.

Proposition 7.9. Let vε
ω be the solution of the random harmonic oscillator

equation (7.103). Its Lyapunov exponent defined by (7.92) is positive for ε
small enough, and has the limit

lim
ε→0

Γ ε =
γ(ω)ω2

8c̄2
,

where γ(ω) is given by (7.109).

This result is used in Section 7.3 to derive the expansion (7.76) of the local-
ization length of monochromatic waves in the weakly heterogeneous regime.

7.6 Appendix. Statistics of the Power Transmission
Coefficient

In this section we derive explicit formulas for the moments of the Markov
process τω(L) using the infinitesimal generator given by (7.48). The initial
condition for the power transmission coefficient is τω(L = 0) = 1.

7.6.1 The Probability Density of the Power Transmission
Coefficient

The computations of the probability density of τω(L) are carried out using the
Mehler–Fock transform. It is convenient to introduce the auxiliary process

ηω =
2− τω

τω
,
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which is a Markov process taking values in [1,∞). Its infinitesimal generator
is given by

L =
1

Lloc
(η2 − 1)

∂2

∂η2
+

2

Lloc
η

∂

∂η
=

1

Lloc

∂

∂η
(η2 − 1)

∂

∂η
. (7.110)

We omit the ω-dependence of Lloc for simplicity in this appendix. The in-
finitesimal generator of ηω is self-adjoint, so the Fokker–Planck equation for
the probability density is

∂p

∂L
(L, η) =

1

Lloc

∂

∂η

[
(η2 − 1)

∂p

∂η
(L, η)

]
, η > 1 ,

starting from p(L = 0, η) = δ(η − 1).
We denote by P−1/2+iμ(η), η ≥ 1, μ ≥ 0, the Legendre function of the first

kind, which is the solution of

d

dη
(η2 − 1)

d

dη
P−1/2+iμ(η) = −

(
μ2 +

1

4

)
P−1/2+iμ(η) , (7.111)

starting from P−1/2+iμ(1) = 1. It has the integral representation

P−1/2+iμ(η) =

√
2

π
cosh(πμ)

∫ ∞

0

cos(μτ)√
cosh τ + η

dτ . (7.112)

The Mehler–Fock transform of an integrable function f defined on (1,∞) is
the function f̌ defined on (0,∞) given by

f̌(μ) =

∫ ∞

1

f(η)P−1/2+iμ(η) dη .

Its inverse transform is

f(η) =

∫ ∞

0

f̌(μ)μ tanh(μπ)P−1/2+iμ(η) dμ .

We apply the Mehler–Fock transform to the probability density p(L, η):

p̌(L, μ) =

∫ ∞

1

p(L, η)P−1/2+iμ(η) dη .

Differentiating with respect to L gives

∂p̌

∂L
(L, μ) =

1

Lloc

∫ ∞

1

∂

∂η

[
(η2 − 1)

∂p

∂η
(L, η)

]
P−1/2+iμ(η) dη .

Integrating twice by parts, we obtain

∂p̌

∂L
(L, μ) =

1

Lloc

∫ ∞

1

p(L, η)
∂

∂η

[
(η2 − 1)

∂P−1/2+iμ

∂η
(η)

]
dη .
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Using the differential equation (7.111) satisfied by the Legendre function, we
see that the Mehler–Fock transform of p satisfies the ordinary differential
equation

∂p̌

∂L
(L, μ) = − 1

Lloc

(
μ2 +

1

4

)
p̌(L, μ) ,

starting from p̌(L = 0, μ) = 1. Its solution is

p̌(L, μ) = exp

[
−

(
μ2 +

1

4

)
L

Lloc

]
.

By applying the inverse Mehler–Fock transform we get an integral represen-
tation of the probability density of ηω(L):

p(L, η) =

∫ ∞

0

μ tanh(μπ)P−1/2+iμ(η) exp

[
−

(
μ2 +

1

4

)
L

Lloc

]
dμ . (7.113)

The probability density of the power transmission coefficient τω(L) is therefore

p(L, τ) =
τ2

2

∫ ∞

0

μ tanh(μπ)P−1/2+iμ

(
2

τ
− 1

)
exp

[
−

(
μ2 +

1

4

)
L

Lloc

]
dμ .

7.6.2 Moments of the Power Transmission Coefficient

The moments of the power transmission coefficient τω(L) are given by

E [τω(L)n] =

∫ ∞

1

(
2

1 + η

)n

p(L, η) dη .

Using the integral representation (7.113) and introducing

J (n)(μ) = 2n

∫ ∞

1

P−1/2+iμ(η)

(1 + η)n
dη ,

we have

E [τω(L)n] =

∫ ∞

0

μ tanh(πμ)J (n)(μ) exp

[
−

(
μ2 +

1

4

)
L

Lloc

]
dμ . (7.114)

We now derive explicit formulas for the functions J (n)(μ).
We first consider J (1)(μ). Using the explicit expression (7.112) of the Leg-

endre function, we have

J (1)(μ) =
2
√

2

π
cosh(μπ)

∫ ∞

0

cos(μτ)

[∫ ∞

1

dη

(1 + η)
√

cosh(τ) + η

]
dτ .

The integral within the square brackets can be computed using the change of
variables u =

√
cosh(τ) + η/

√
cosh(τ) − 1, which gives
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J (1)(μ) =
2 cosh(μπ)

π

∫ ∞

0

τ cos(μτ)

sinh(τ/2)
dτ =

cosh(μπ)

π

∫ ∞

−∞

τ cos(μτ)

sinh(τ/2)
dτ .

The integral on the right is computed by contour integration as shown in
Figure 7.5. Note the presence of the pole at z = iπ. The result of the integra-
tion is

J (1)(μ) =
2π

cosh(πμ)
. (7.115)

� �
�

��

	 �
0

2iπ

iπ

∞−∞

Fig. 7.5. Contour used for the integration of J(1)(µ) in the complex plane.

We next consider J (n)(μ), n ≥ 2. Using the differential equation (7.111)
satisfied by the Legendre function, we can write

J (n)(μ) = − 1

μ2 + 1/4

∫ ∞

1

2n

(1 + η)n

d

dη

[
(η2 − 1)

dP−1/2+iμ

dη
(η)

]
dη .

We then integrate twice by parts, and we get

J (n)(μ) =
1

μ2 + 1/4

∫ ∞

1

[
2nn(1− n)

(1 + η)n
+

2n+1n2

(1 + η)n+1

]
P−1/2+iμ(η) dη

=
n(1− n)

μ2 + 1/4
J (n)(μ) +

n2

μ2 + 1/4
J (n+1)(μ) .

This establishes a recurrence relation for the functions J (n)(μ):

J (n+1)(μ) =
1

n2

[
μ2 + (n− 1

2
)2

]
J (n)(μ) .

Using (7.115) we see that

J (n)(μ) =
2π

cosh(πμ)
K(n)(μ) ,

where

K(n)(μ) =
n−1∏

j=1

1

j2

[
μ2 +

(
j − 1

2

)2
]

, K(1)(μ) = 1 .

Substituting this into (7.114), we get

E [τω(L)n] = exp

(
− L

4Lloc

)∫ ∞

0

e−μ2L/Lloc
2πμ sinh(πμ)

cosh2(πμ)
K(n)(μ) dμ .

(7.116)
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Notes

The presentation of power transmission through a slab of random medium
in Section 7.1, using the limit theorems of Chapter 6, follows the treatment
in [104]. A more physical approach to this problem is given in Klyatskin’s
book [101].

The self-averaging property presented in Section 7.2 does not seem to be
well known. The analytical reason for the phenomenon is the decorrelation
of the power transmission coefficients at distinct frequencies, which is well
known [32].

The treatment of wave localization in Section 7.3 is limited to the anal-
ysis of the exponential decay of the power transmission coefficient. The phe-
nomenon of wave localization was discovered in 1958 by Anderson [5] in
connection with electron waves in semiconductors. The mathematical theory
was developed only twenty years later, starting with the paper of Goldsheid–
Molchanov–Pastur [79]. Since that paper there has been a great deal of re-
search published on the subject, in particular in the one-dimensional case, for
which the theory of products of random matrices is available. We cite here
some books that also contain additional references: Carmona–Lacroix [36],
Pastur–Figotin [140], and the review papers by Van Tiggelen, Lacroix, and
Klein in the proceedings [58].

The strongly heterogeneous white-noise regime addressed in Section 7.4
was considered for the first time in [32] and in more detail in [8].

The analysis of the Lyapunov exponent of the random harmonic oscillator
is presented in detail in Arnold’s book [6]. The positivity of the Lyapunov ex-
ponent for a general class of random media is shown in [111]. The ε-expansion
of the Lyapunov exponent follows that in [7] and is a special case of the one
presented in Section 6.8.

A general reference for the Mehler–Fock transform used to obtain the
integral formulas in the appendix is [49].
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Wave-Front Propagation

In Chapter 4 we discussed the homogenization regime in which we can replace
the medium parameters by their (deterministic) homogenized or averaged
values. This enormously simplifies the analysis of wave propagation. When
the homogenized parameters are constant, as in the uniform-background case
treated in Chapter 4, the transmitted wave is simply the incident wave shifted
in time. There are no reflections in the homogenized medium, and the trans-
mitted wave arrives at the end of the slab at time L/c̄. In this chapter, as in
Chapter 7, we consider the weakly heterogeneous regime (5.16) and the strongly
heterogeneous white-noise regime (5.17) when the wave travels a distance that
is large relative to its wavelength. These are two regimes in which random ef-
fects build up and affect the wave. We have seen in Chapter 7 that the total
transmitted energy of a pulse decays exponentially with the width of the slab,
and is a self-averaging quantity. In this chapter, we analyze the transmitted
wave front. The main results are stated in Propositions 8.1 and 8.3 for the
two asymptotic regimes, the weakly and the strongly heterogeneous regimes.
The effect of the random medium on the wave front can be described as fol-
lows: When we observe the wave front at its random arrival time it can be
expressed as a convolution of the transmitted front in the effective medium
with a deterministic smoothing kernel that depends on the statistics of the
medium fluctuations and the observation and source points.

In this chapter we start by analyzing the pulse spreading of the front in
the weakly heterogeneous regime in Section 8.1. The main analytical tool is a
functional averaging theorem whose proof is given in the appendix. In Section
8.2 we derive the pulse-spreading formula in the strongly heterogeneous white-
noise regime using moments and the diffusion approximation results presented
in Chapter 6, applied in the frequency domain. We then study the energy of the
transmitted front and compare it with the total transmitted energy analyzed
in Chapter 7. We also explain how the correct travel time for the front is
related to the random medium, and present some numerical simulations. In
Section 8.3 we discuss the problem of reflection of the front by an interface.
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The analysis of the one-dimensional wave front presented in this chapter
is generalized to three-dimensional randomly layered media in Chapter 14.

8.1 The Transmitted Wave Front in the Weakly
Heterogeneous Regime

We consider the acoustic wave equations in the weakly heterogeneous regime
(5.16), introduced in Section 5.1. We assume that a point source located at
z0 < 0 emits a short pulse at time z0/c̄. We showed in Chapter 5 that the
dimensionless acoustic equations have the form (5.13–5.14)

ρ(z)
∂u

∂t
+

∂p

∂z
= ζ̄1/2f

(
t− z0/c̄

ε2

)
δ(z − z0) , (8.1)

1

K(z)

∂p

∂t
+

∂u

∂z
= 0 , (8.2)

with the medium parameters in the weakly heterogeneous regime given by

1

K(z)
=

{ 1
K

(
1 + εν(z/ε2)

)
for z ∈ [0, L],

1
K

for z ∈ (−∞, 0) ∪ (L,∞),

ρ(z) = ρ̄ for all z .

Here, the effective impedance and speed of sound are ζ̄ =
√

K̄ρ̄ and c̄ =√
K̄/ρ̄, respectively. The pulse emitted at z0 < 0 at time z0/c̄ impinges on the

random medium in [0, L] at time 0. We assume, as in the previous chapter, that
the fluctuation process ν(z) = g(Y (z)) is a bounded function of an ergodic
Markov process Y (z) on a compact state space S. It has zero mean E[ν(z)] = 0.
These are the general hypotheses needed for applying the limit theorems of
Chapter 6. As in the previous chapter we match the background medium
outside of the slab with the homogenized parameters (ρ̄, K̄) inside, and assume
that ρ is constant. Generalizations to varying unmatched backgrounds and
fluctuating density are treated in Chapter 17.

In this section, we give an analytical description of the transmitted pulse
front in the weakly heterogeneous regime. We use a formulation similar to
those found in the physical literature as well as in several mathematical pa-
pers. It is a natural time-domain approach that does not use the Fourier
representation of the waves. The essential probabilistic step involves a rela-
tively simple functional averaging theorem (Proposition 8.2). In order to use
this averaging theorem we need to assume, however, that the first and sec-
ond derivatives of the fluctuation process ν(z) are uniformly bounded. We
shall see in Section 8.2 that the approach based on diffusion approximation
in the frequency domain does not require smoothness properties and can also
be applied in the strongly heterogeneous white-noise regime. There does not
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appear to be a simple averaging argument that can be used to analyze front
propagation in the strongly heterogeneous white-noise regime.

We consider the right- and left-going waves defined in terms of the local
impedances and moving with the local sound speed, as defined in (4.23):

[
Aε(t, z)
Bε(t, z)

]
=

[
ζε−1/2(z)p(t, z) + ζε1/2(z)u(t, z)

−ζε−1/2(z)p(t, z) + ζε1/2(z)u(t, z)

]
. (8.3)

The local impedance is

ζε(z) =
√

K(z)ρ(z) =
ζ̄√

1 + εν(z/ε2)
, with ζ̄ =

√
K̄ρ̄ .

The mode amplitudes satisfy (4.24), which now takes the form

∂

∂z

[
Aε

Bε

]
= − 1

cε(z)

[
1 0
0 −1

]
∂

∂t

[
Aε

Bε

]
+

ζε′(z)

2ζε(z)

[
0 1
1 0

] [
Aε

Bε

]
. (8.4)

Here ζε′ is the z-derivative of ζε and

ζε′(z)

ζε(z)
= − 1

2ε

ν′(z/ε2)

1 + εν(z/ε2)
.

The local sound speed is

cε(z) =
√

K(z)/ρ(z) =
c̄√

1 + εν(z/ε2)
, with c̄ =

√
K̄/ρ̄. (8.5)

This system is completed with an initial condition corresponding to a right-
going wave that is incoming from the homogeneous half-space z < 0 and is
impinging on the random medium in [0, L],

Aε(t, z) = f

(
t− z

ε2

)
, Bε(t, z) = 0, t < 0 .

The pulse function f is compactly supported in the interval (−T0, T0). Equa-
tion (8.4) clearly exhibits the two relevant propagation mechanisms. The first
term on the right describes transport along the random characteristics with
the local sound speed cε(z). The second term on the right describes coupling
between the right- and left-going modes, which is proportional to the deriva-
tive ζε′ of the impedance.

8.1.1 Stabilization of the Transmitted Wave Front

We now state the main result that characterizes the wave front transmitted
through the random medium.
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Proposition 8.1. The wave front observed in the frame moving with the
sound speed c̄ of the effective medium,

Aε
(z

c̄
+ ε2s, z

)
, z > 0 ,

converges in distribution as ε→ 0 to

a(s, z) = a0

(
s−

√
γ(0)

2c̄
W0(z), z

)
. (8.6)

Here W0(z) is a standard Brownian motion and a0 is the deterministic pulse
profile given by

a0(s, z) =
1

2π

∫
exp

(
−iωs− γ(ω)ω2

8c̄2
z − i

γ(s)(ω)ω2

8c̄2
z

)
f̂(ω)dω , (8.7)

with f̂(ω) the Fourier transform of the initial pulse and

γ(ω) = 2

∫ ∞

0

E[ν(0)ν(z)] cos

(
2ωz

c̄

)
dz ,

γ(s)(ω) = 2

∫ ∞

0

E[ν(0)ν(z)] sin

(
2ωz

c̄

)
dz .

We see from this proposition that the frequency-dependent decay rate of
the wave front in (8.7) is equal to one-half the reciprocal of the localization
length of the power transmission coefficient analyzed in Section 7.1.4 (equation
(7.42)):

γ(ω)ω2

8c̄2
=

1

2Lloc(ω)
. (8.8)

This is always nonnegative because γ(ω) is the power spectral density of the
stationary fluctuations ν(z) of the random medium. The factor one-half in
(8.8) can be explained by the fact that the localization length is the recip-
rocal of the decay rate of the power transmission coefficient, which is the
squared modulus in the Fourier domain. It is, however, not immediate that
the decay rate for the transmitted wave front is exactly equal to one-half of
the localization length as in (8.8) because this is the asymptotic decay rate
of the mean-power transmission for large z, as we saw in Section 7.1.4. The
decay rate of the wave front in (8.7) is valid for any z. The explanation for this
interesting phenomenon is clear from the martingale representation (7.33) of
the limit transmission coefficient Tω(0, L), as we now show.

By (5.30) (with σ = ε and θ = 1/ε in the weakly heterogeneous regime) the
wave front observed at the end of the random medium in an ε2-neighborhood
of the arrival time L/c̄ of the effective medium has the Fourier representation

Aε

(
L

c̄
+ ε2s, L

)
=

1

2π

∫
f̂(ω)T ε

ω(0, L)e−iωsdω .
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By (8.6) and (8.7) the limit wave front can be written as

a(s, L) =
1

2π

∫
f̂(ω)T̃ω(0, L)e−iωsdω ,

where T̃ω(0, L) is the multiplicative factor (7.34) in the martingale representa-
tion (7.33), Tω(0, L) = T̃ω(0, L)Mω(0, L), of the limit transmission coefficient

T̃ω(0, L) = exp

[
i

√
γ(0)

2c̄
W0(L)− γ(ω)ω2

8c̄2
L− i

γ(s)(ω)ω2

8c̄2
L

]
.

The fact that the martingale part does not appear in the limit wave front
(8.6) is the essential mathematical content of Proposition 8.1. The reason for
this is that (a) for each ω the factor T̃ω(0, L) and the martingale Mω(0, L)
are independent and (b) for distinct ω1 and ω2 the martingales Mω1(0, L) and
Mω2(0, L) are independent, so they average out in the ω-integration. These
facts will be used in Section 8.2 to prove the analogue of Proposition 8.1 in
the strongly heterogeneous white-noise regime. As we have already noted, the
proof of Proposition 8.1 that we give here is based on an averaging theorem
for integral equations in the time domain.

The second term exp[−iγ(s)(ω)ω2z/(8c̄2)] in (8.7) is a frequency-dependent
phase modulation and γ(s)(ω) is conjugate to γ(ω), which is a factor in the
decay rate. This shows that the transmitted wave front propagates in a dis-
persive effective medium with frequency-dependent wave number, given by

k(ω) =
ω

c̄
− ε2 γ(s)(ω)ω2

8c̄2
,

up to higher-order terms.
Proposition 8.1 shows that the transmitted wave front in the random

medium is modified in two ways compared to propagation in a homogeneous
one. First, its arrival time at the end of the slab z = L has a small random
component of order ε2. Second, if we observe the wave front near its random
arrival time, then we see a pulse profile that, to leading order, is determinis-
tic and is the original pulse shape convolved with a deterministic kernel that
depends on the second-order statistics of the medium through the autocor-
relation function of ν. From the integral equation formulation of the wave
front problem that we derive next and is given by (8.18), we can see that
only second-order scattering events enter into the asymptotic analysis. This
explains why only second-order statistics of the fluctuations are involved.

We can interpret the presence of the random shift in (8.6) by analyzing
the asymptotic behavior of the random travel time defined by

τε
0 (z) =

z

c̄
+

ε

2c̄

∫ z

0

ν
( y

ε2

)
dy . (8.9)

We note that τε
0 (z) given by (8.9) is not the travel time along the random

characteristics of (8.4), which by (8.5) is given by
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τε(z) =

∫ z

0

1

cε(y)
dy =

z

c̄
+

ε

2c̄

∫ z

0

ν
( y

ε2

)
dy − ε2

8c̄

∫ z

0

ν2
( y

ε2

)
dy + O(ε3) ,

(8.10)
corresponding to the first arrival time to depth z for a point source at the
surface. The ε2 term in (8.10) is not present in (8.9). It is one of the re-
sults of Proposition 8.1 that the travel time of the wave front has the form
(8.9). It implies that the stable wave front arrives after τε(z), with the delay
ε2E[ν(0)2]z/(8c̄).

By the central limit theorem applied to the fluctuation process ν(z) we
have that as ε→ 0,

1

ε2

(
τε
0 (z)− z

c̄

)
=

1

2εc̄

∫ z

0

ν
( y

ε2

)
dy

converges in distribution to

√
γ(0)

2c̄
W0(z) , (8.11)

where W0(z) is a standard Brownian motion. This characterizes the weak
limit of the fluctuations in the arrival time of the stable wave front around
the deterministic arrival time associated with the homogenized medium.

If we compute the expectation of the pulse front a(s, z) in (8.6) then we
obtain the coherent or mean wave front

E[a(s, z)] =
1

2π

∫
exp

(
−iωs− [γ(0) + γ(ω)]ω2

8c̄2
z − i

γ(s)(ω)ω2

8c̄2
z

)
f̂(ω)dω .

Thus, the decay rate of the coherent wave is

[γ(0) + γ(ω)]ω2

8c̄2
, (8.12)

which is larger than the decay rate (8.8) for the randomly centered wave front.
This is discussed further in the strongly heterogeneous white-noise regime in
Proposition 8.3, where it can be related to the rate of spreading of the pulse
by (8.46).

8.1.2 The Integral Equation for the Transmitted Field

In this section we will transform the initial value problem (8.4) into an integral
equation for the transmitted field using travel time coordinates.

We carry out a series of transformations to rewrite the evolution equations
for the mode amplitudes in centered coordinates along the characteristic of the
right-going mode. This gives a lower-triangular system that can be analyzed
more easily. In a second step we apply the averaging theorem to this system
in order to get an asymptotic description of the front of the advancing pulse.
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We introduce the characteristic random travel time (8.10) and consider
the new reference frame

(z, t) 	→ (τ, s) , with τ = τε(z) and s =
t− τε(z)

ε2
, (8.13)

which moves with the right-going mode Aε and is adjusted to be on the
time scale of the incident pulse. In this new reference frame the equations for
(Aε, Bε) have the form

∂

∂τ

[
Aε

Bε

]
=

1

ε2

[
0 0
0 2

]
∂

∂s

[
Aε

Bε

]
− 1

4ε
M ε

(
zε(τ)

ε2

)[
0 1
1 0

] [
Aε

Bε

]
, (8.14)

where

M ε(z) = c̄
ν′(z)

(1 + εν(z))3/2
,

and zε(τ) is the inverse function of the travel time τε(z). This is a lower-
triangular system that we can integrate. More precisely, the equation for Aε

can be integrated for τ > 0:

Aε(s, τ) = − 1

4ε

∫ τ

0

M ε

(
zε(y)

ε2

)
Bε(s, y)dy + f(s). (8.15)

For τ ≤ 0, we simply have Aε(s, τ) = f(s). The integrated form of the equation
for Bε is

Bε(s, τ) = −ε2

2

∫ s

−∞
Sε

B

(
u, τ +

ε2

2
(s− u)

)
du , (8.16)

where

Sε
B(s, τ) = − 1

4ε
M ε

(
zε(τ)

ε2

)
Aε(s, τ) . (8.17)

The integral in (8.16) is over the infinite range (−∞, s). However, the
initial conditions restrict Aε and Bε to be zero for s < −T0 and τ = 0. From
equations (8.14) we then see that Aε and Bε are zero for s < −T0 for any
τ ≥ 0. Thus the integral with respect to u in (8.16) is effectively limited to
the range (−T0, s). If we now substitute the integral representation (8.16) for
Bε into the one (8.15) for Aε we obtain

Aε(s, τ) = f(s)− 1

32

∫ τ

0

M ε

(
zε(y)

ε2

)

×
∫ s

−T0

M ε

(
zε(y + ε2(s− u)/2)

ε2

)
Aε

(
u, y + ε2 s− u

2

)
du dy . (8.18)

This is the closed integral equation for the advancing front of the transmitted
wave. We will apply the averaging theorem to a somewhat simplified version
of this equation.
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8.1.3 Asymptotic Analysis of the Transmitted Wave Front

We first transform the integral equation (8.18) into a form that is asymp-
totically equivalent to it as ε → 0 and that allows direct application of the
averaging theorem.

From (8.18) we get the inequality

sup
τ∈[0,τε(L)]

|Aε(s, τ)| ≤ |f(s)|+ M2τε(L)

32

∫ s

−T0

sup
τ∈[0,τε(L)]

|Aε (u, τ) |du ,

where M = c̄‖ν′‖∞/(1 − ‖ν‖∞)3/2 is an upper bound for M ε valid for any
ε < 1. We also have τε(L) ≤ L/[c̄(1 − ‖ν‖∞)]. Using Gronwall’s lemma we
then obtain for any ε < 1 and T > 0 the estimate

sup
τ∈[0,τε(L)],s≤T

|Aε(s, τ)| ≤ eM2L(T+T0)‖f‖∞ .

Here M2 = M2/[32c̄(1 − ‖ν‖∞)]. Substituting this estimate into (8.16) and
(8.15), we get the further estimates

sup
τ∈[0,τε(L)],s≤T

|Bε(s, τ)| ≤ εKT,L , sup
τ∈[0,τε(L)],s≤T

∣∣∣∣
∂Aε

∂τ
(s, τ)

∣∣∣∣ ≤ KT,L ,

where KT,L is a constant that depends only on T and L. From the estimate
for ∂τAε, we see that we can replace the last term of the integral in (8.18) by
Aε(u, y), with an error of order ε2. After the change of variable x = zε(y) we
obtain the integral equation

Aε(s, τ) = f(s)− 1

32

∫ zε(τ)

0

M ε
( x

ε2

) 1

cε(x)

×
∫ s

−T0

M ε

(
zε(τε(x) + ε2(s− u)/2)

ε2

)
Aε (u, τε(x)) du dx . (8.19)

We assume here that the second derivative of ν is bounded. Then we have

M ε

(
zε(τε(x) + ε2(s− u)/2)

ε2

)
= M ε

(
x

ε2
+ c̄

s− u

2

)
+ O(ε2)

= c̄ν′
(

x

ε2
+ c̄

s− u

2

)
+ O(ε) .

We also have that

cε(x) = c̄ + O(ε) , zε(τ) = c̄τ + O(ε) , τε(x) = x/c̄ + O(ε) ,

uniformly in x ∈ [0, L] and τ ∈ [0, L/[c̄(1 − ‖ν‖∞)]]. Using once again the
uniform bound on ∂τAε, we see that

Aε(u, τε(x)) = Aε(u, x/c̄) + O(ε) ,
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which allows us to simplify the integral equation (8.19) for Aε,

Aε(s, τ) = f(s)− c̄

32

∫ c̄τ

0

ν′
( x

ε2

)∫ s

−T0

ν′
(

x

ε2
+ c̄

s− u

2

)
Aε

(
u,

x

c̄

)
du dx ,

where we have neglected terms of order ε. With the change of variable x = c̄y,
this integral equation can also be written as

Aε(s, τ) = f(s)− c̄2

32

∫ τ

0

ν′
(
c̄

y

ε2

)∫ s

−T0

ν′
(

c̄
y

ε2
+ c̄

s− u

2

)
Aε (u, y) du dy ,

or, in a functional form,

Aε(·, τ) = f(·) +

∫ τ

0

F
( y

ε2

)
Aε(·, y)dy , (8.20)

where F (y) is the random linear operator acting on functions A(·) with sup-
port in (−T0,∞), defined by

[F (y)A](s) = − c̄2

32
ν′(c̄y)

∫ s

−T0

ν′
(

c̄y + c̄
s− u

2

)
A(u)du . (8.21)

Using the ergodic properties of ν, the following averaging theorem holds.

Proposition 8.2. The solution Aε(·, τ) of the integral equation (8.20) con-
verges, as a process in the space of continuous functions, in probability as
ε→ 0 to the solution of the averaged integral equation

Ã(·, τ) = f(·) +

∫ τ

0

F̃ Ã(·, y)dy , (8.22)

where F̃ = E[F (y)], that is,

[F̃A](s) = − c̄2

32

∫ s

−T0

E

[
ν′(c̄y)ν′

(
c̄y + c̄

s− u

2

)]
A(u)du . (8.23)

The proof of this averaging theorem is given in Appendix 8.4. If we denote by
φ1 the autocorrelation function of the stationary random process ν′,

φ1(x) = E[ν′(z)ν′(z + x)] ,

then the operator F̃ acting on functions A(·) with support in (−T0,∞) has
the form

F̃A(s) = − c̄2

32

∫ s

−T0

φ1

( c̄

2
(s− u)

)
A(u)du = − c̄2

32

∫ T0+s

0

φ1

( c̄

2
u
)

A(s−u)du .

This operator can also be written as a convolution independently of the point
−T0 defining the left end of support of A:
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F̃A(s) = − c̄2

32

∫ ∞

0

φ1

( c̄

2
u
)

A(s− u)du .

In the Fourier domain the convolution operator F̃ is the multiplication oper-
ator ∫ ∞

−∞
F̃A(s)eiωsds = − c̄

16
b1

(
2ω

c̄

)∫ ∞

−∞
A(s)eiωsds , (8.24)

where

b1(k) =

∫ ∞

0

φ1(x)eikxdx . (8.25)

We will now rewrite b1 in terms of the autocorrelation function of the
stationary random process ν. Let φ0 be the autocorrelation function of ν,

φ0(x) = E[ν(z)ν(z + x)] , (8.26)

and let

b0(k) =

∫ ∞

0

φ0(x)eikxdx . (8.27)

First we note that ∂2
xφ0(x) = E[ν(z)ν′′(z + x)]. We also note that φ0 is in-

dependent of z, by stationarity, so that 0 = ∂z∂xφ0(x) = E[ν(z)ν′′(z + x)] +
E[ν′(z)ν′(z + x)]. As a result we have the identity

φ1(x) = −φ′′
0(x) . (8.28)

By integration by parts we get

b1(k) = −
∫ ∞

0

φ′′
0 (x)eikxdx = −

[
φ′

0(x)eikx
]∞
0

+ ik

∫ ∞

0

φ′
0(x)eikxdz .

Since φ0 is even and differentiable we have φ′
0(0) = 0, and the first term on

the right side vanishes. Integrating by parts once again we obtain

b1(k) = ik
[
φ0(x)eikx

]∞
0

+ k2

∫ ∞

0

φ0(x)eikxdx ,

which can be written as

b1(k) = −ikφ0(0) + k2b0(k) . (8.29)

Using (8.29) in (8.24) the linear operator F̃ is therefore given by

∫ ∞

−∞
F̃A(s)eiωsds =

[
iω

8
φ0(0)− ω2

4c̄
b0

(
2ω

c̄

)]∫ ∞

−∞
A(s)eiωsds . (8.30)

We have shown that the pulse front converges to a deterministic profile
when it is observed in the frame moving to the right with the random local
sound speed cε(z).
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If we observe the wave front in the deterministic frame moving with the
average speed c̄, then we have to account for the small random difference
between z/c̄ and the random characteristic travel time τε(z) given by (8.10).
The rescaled travel time correction is

1

ε2

(
τε (z)− z

c̄

)
=

1

2εc̄

∫ z

0

ν
( x

ε2

)
dx− 1

8c̄

∫ z

0

ν
( x

ε2

)2

dx + O(ε) . (8.31)

By the central limit theorem applied to the fluctuation process ν(z) and the
ergodic theorem to ν2(z), we have that as ε→ 0,

1

ε2

(
τε (z)− z

c̄

)

converges in distribution to

1√
2c̄

√
b0(0)W0(z)− 1

8c̄
φ0(0)z , (8.32)

where W0(z) is a standard Brownian motion. The deterministic correction
−φ0(0)z/(8c̄) cancels with the first term on the right in (8.30), when written
in the time domain and used in (8.22). That is why the travel time fluctuation
of the wave front is simply the Brownian motion part of (8.32) in the limit
ε→ 0. This completes the proof of Proposition 8.1.

8.2 The Transmitted Wave Front in the Strongly
Heterogeneous Regime

We consider now the acoustic wave equations in the strongly heterogeneous
white-noise regime (5.17) introduced in Section 5.1. As shown in Chapter 5,
the dimensionless acoustic equations have the form (5.13–5.14),

ρ(z)
∂u

∂t
+

∂p

∂z
= ζ̄1/2f

(
t− z0/c̄

ε

)
δ(z − z0) , (8.33)

1

K(z)

∂p

∂t
+

∂u

∂z
= 0 , (8.34)

with the medium parameters in the strongly heterogeneous regime given by

1

K(z)
=

{ 1
K

(
1 + ν(z/ε2)

)
for z ∈ [0, L],

1
K

for z ∈ (−∞, 0) ∪ (L,∞),

ρ(z) = ρ̄ for all z .

Note that now the pulse width is of order ε and the medium fluctuations are
of order one. The fluctuation process ν(z) satisfies the general hypotheses of
Chapter 6, as stated in the beginning of Section 8.1.
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8.2.1 Asymptotic Representation of the Transmitted Wave Front

We will analyze front propagation in the strongly heterogeneous white-noise
regime using the Fourier representation of the wave front. From Section 5.1.6,
it has the form (5.30) (with σ = 1 and θ = 1),

Aε(L/c̄ + εs, L) = aε(s, L) =
1

2π

∫
e−iωsT ε

ω(0, L)f̂(ω) dω, (8.35)

where s is scaled time relative to the arrival time L/c̄ in the effective medium.
The transmission coefficient

T ε
ω(0, L) =

1

αε
ω(0, L)

(8.36)

is expressed in terms of the propagator Pε
ω(0, z), which has the form

Pε
ω(0, L) =

[
αε

ω(0, L) βε
ω(0, L)

βε
ω(0, L) αε

ω(0, L)

]
.

It satisfies the random ordinary differential equations (5.27), introduced in
Section 5.1.6,

d

dz
Pε

ω(0, z) =
1

ε
Hω

(z

ε
, ν

( z

ε2

))
Pε

ω(0, z), (8.37)

with the initial condition Pε
ω(0, 0) = I. The 2×2 complex matrix Hω is defined

by

Hω(z, ν) =
iω

2c̄
ν

[
1 −e−2iωz/c̄

e2iωz/c̄ −1

]
.

As ordinary differential equations, the systems (8.37) are dynamically decou-
pled for different frequencies ω but they are stochastically coupled through the
common fluctuation process ν. Since E[ν(z)] = 0, the matrix Hω is centered:

E[Hω(τ, ν(z))] = 0.

This is the setup for the limit theorems in Section 6.7.3, which we use in this
section to obtain the following result.

Proposition 8.3. The wave front observed at the right end of the random
medium in an ε-neighborhood of the arrival time L/c̄ in the effective medium,

Aε

(
L

c̄
+ εs, L

)
,

converges in distribution as ε→ 0 to
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a(s, L) = a0

(
s−
√

γ

2c̄
W0(L), L

)
. (8.38)

Here W0(z) is a standard Brownian motion and a0 is the deterministic pulse
profile given by

a0(s, L) =
1

2π

∫
exp

(
−iωs− γω2L

8c̄2

)
f̂(ω)dω , (8.39)

with f̂(ω) the Fourier transform of the initial pulse and

γ =

∫ ∞

−∞
E[ν(0)ν(z)]dz .

Comparing this proposition with Proposition 8.1 we see that the results are
the same if we set ω = 0 in γ(ω) and γ(s)(ω) in (8.7), in which case γ(0) = γ
and γ(s)(0) = 0. This is consistent with the two scaling limits that are involved.
In the weakly heterogeneous regime (5.16) wavelengths are comparable to the
correlation length, and this is the reason why γ(ω) and γ(s)(ω) enter into the
pulse front characterization (8.7). In the strongly heterogeneous white-noise
regime (5.17), wavelengths are long compared to the correlation length, and
so γ(ω) and γ(s)(ω) are evaluated at ω = 0.

Proposition 8.3 shows that the frequency-dependent decay rate is

γω2

8c̄2
=

1

2Lloc(ω)
, (8.40)

where Lloc(ω) is the localization length (7.81). Using (8.39) we can write (8.38)
as a convolution in the time domain,

a(s, L) =
1

2π

∫
e−iωse

(
iω

√
γ

2c̄ W0(L)−ω2 γ

8c̄2
L
) ∫

eiωuf(u)du dω

=

∫
f(u)

1

2π

∫
e
−iω

(
s−

√
γ

2c̄ W0(L)−u
)

e−ω2 γ

8c̄2
Ldω du

=

∫
f(u)

{
1

2π

∫
e−iω(s−ΘL−u)e−

ω2D2
L

2 dω

}
du

=

∫
f(u)

⎧
⎪⎨
⎪⎩

e
− (s−ΘL−u)2

2D2
L

√
2πD2

L

⎫
⎪⎬
⎪⎭

du , (8.41)

where we have defined

D2
L =

γ

4c̄2
L , (8.42)

ΘL =

√
γ

2c̄
W0(L) . (8.43)
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Here we have also used the inverse Fourier transform for the characteristic
function of the centered Gaussian density

1

2π

∫
e−iωse−

ω2D2
L

2 dω =
1√

2πD2
L

e
− s2

2D2
L = NDL(s). (8.44)

The front a(s, L) is simply the convolution of the initial pulse shape with this
density evaluated at the randomly shifted time s−ΘL,

a(s, L) = [f ⋆NDL ] (s−ΘL) , (8.45)

where ⋆ denotes convolution.
As we have seen in Proposition 8.1, in connection with (8.10), the random

shift ΘL is the limit of the travel time fluctuation. This is discussed in more
detail in Section 8.2.7. If we compute the expectation of the pulse front in
(8.45) then we obtain the coherent or mean wave front

E[a(s, L)] = [f ⋆N2DL ] (s) . (8.46)

It is a pulse that is centered at the arrival time L/c̄ in the effective medium.
Its profile is the convolution of the original pulse with a Gaussian density
whose variance 2D2

L is twice that of the stable front profile in (8.45). This
factor two is due to the combination of the spreading of the stable front in
(8.45) and averaging over the random fluctuations in the arrival time. Note
that the doubling of the spreading factor follows from (8.12) when we replace
γ(ω) by γ(0) = γ.

The discussion presented in Section 5.2.3 shows that the finite dimensional
time distributions of the process aε(s, L) are characterized by the moments in
(5.40),

lim
ε→0

E

⎡
⎣

m∏

j=1

T ε
ωj

(0, L)

⎤
⎦ , (8.47)

with ωj = ωk for j = k. We note here the special form of the products in these
moments. They are linear in each T ε

ωj
(0, L) and not all possible moments are

needed.
Our objective is to describe the limiting distribution of the transmitted

front aε(s, L) with the following strategy. First, we characterize the limit of the
specific moments in (8.47). Second, we identify a simple process a(s, L) that
has the same specific moments in the limit ε → 0. This allows us to con-
clude that aε(s, L) converges to a(s, L) in distribution. For the identification
of a(s, L) we use the martingale representation, (7.33). This representation is
given in the weak fluctuation regime. However, setting γ(s)(ω) = γ(s)(0) = 0
and γ(ω) = γ(0) = γ in (7.34) and (7.35) gives also the representation in the
strongly heterogeneous white-noise regime.
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In order to describe jointly the transmission coefficients occurring in the
moments (8.47), we consider the system of equations (8.37) that describes the
propagators for the finite set of frequencies (ω1, . . . , ωm). This will be carried
out in Section 8.2.4 after a discussion of the transmitted energy in Section
8.2.2 and the presentation of some numerical simulations in Section 8.2.3.

8.2.2 The Energy of the Transmitted Wave

We will discuss the transmission of energy only in the strongly heterogeneous
white-noise regime. The same analysis can be applied in the weakly heteroge-
neous regime using the results of Proposition 8.1.

The energy of the transmitted wave front is nonrandom in the limit ε→ 0
and is given by

Estab(L) =

∫
|f ⋆NDL(s)|2ds.

By the Parseval identity and (8.39) it also has the form

Estab(L) =
1

2π

∫
|f̂ω)|2 exp

(
− L

Lloc(ω)

)
dω. (8.48)

The wave front energy exiting the medium at z = L is strictly less than∫
|f(s)|2ds. We may ask, does a part of the missing energy exit the medium

in a stable way somewhere else or at a different time? In other words, what
is the limit in distribution of Aε(L/c̄ + t0 + εs, L) for t0 = 0 (energy exiting
at z = L) or Bε(t0 + εs, 0) (energy reflected at z = 0)? An analysis similar
to that for Proposition 8.3 shows that these two processes (in s) vanish as ε
goes to 0 due to the fast phase e−iωt0/ε in their integral representations

Aε(L/c̄ + t0 + εs, L) =
1

2π

∫
e−iωse−iωt0/εT ε

ω(0, L)f̂(ω) dω,

Bε(t0 + εs, 0) =
1

2π

∫
e−iωse−iωt0/εRε

ω(0, L)f̂(ω) dω.

This implies that there is no other stable energy, in the ε-limit, exiting the
slab [0, L].

There is no absorption in the medium, so that the energy of the impinging
pulse is conserved. This means that part of the incoming energy is transformed
into small incoherent fluctuations. As we shall see in Chapter 9, the incoherent
waves have small amplitude, of order

√
ε, but large support, of order one, so

that they are not captured by the analysis of this chapter.
Using the results of Section 7.2.2, we can now describe the energy con-

tent of the transmitted wave when the input pulse is narrowband with carrier
frequency ω0. It consists of a stable part, described by the wave front the-
ory of this chapter, whose energy decays quickly as exp[−L/Lloc(ω0)]. There
is also an incoherent part in the transmitted wave whose energy decays as
exp[−L/(4Lloc(ω0))], as seen in Section 7.2. Thus the incoherent wave contains
most of the energy of the total transmitted wave in the regime L ≥ Lloc(ω0).
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8.2.3 Numerical Illustration of Pulse Spreading

In this section we present numerical results that illustrate the transmitted
wave front theory. The numerical setup is that described at the end of Section
7.4. We give it again for completeness. The random medium is a concatena-
tion of thin layers with constant density and alternating bulk modulus with
values κK = 1/(1± σK), with σK = 0.8. The effective density, bulk modulus,
and speed of sound are all equal to one. The thicknesses of the layers are inde-
pendent and identically distributed random variables with exponential distri-
bution with mean lc = 0.02. The integrated covariance is γ = σ2

K lc = 0.0128.
The total thickness of the random slab is L = 120, so that the variance D2

L

is equal to 0.384. The incoming pulse is the second derivative of a Gaussian,
with Fourier transform f̂(ω) = ω2 exp(−ω2/5). The pulse width is 4.7 and the
carrier (angular) frequency is 2.9.

In Figure 8.1a we compare the transmitted signals recorded at z = L in the
absence of randomness and the signals obtained with 10 different realizations
of the random medium. The transmitted signals in the random cases contain
a short stable front and a small-amplitude long coda, that is, incoherent wave
fluctuations. We can first check the pulse front stabilization qualitatively since
the shapes of the recorded signals are obviously deterministic, while the coda
is changing when the medium changes. We can also observe a (positive or
negative) time delay around the expected arrival time t = 120 that depends
on the realization of the random medium. We can also verify the pulse front
stabilization quantitatively. In Figure 8.1b we take the signal corresponding
to the homogeneous case, convolve it with the deterministic kernel (8.45)
with ΘL = 0, and compare the convolved signal with the transmitted signals
time-shifted to allow for better comparison. In Figure 8.1c we plot the mean
transmitted pulse obtained by averaging of the numerical signals, and compare
it with the theoretical expectation (8.46). As pointed out above, we can see
the increased spreading due to the averaging over the random time delay. The
agreement between the theoretical predictions and the numerical simulations
is excellent.

8.2.4 The Diffusion Limit for the Multifrequency Propagators

We now come back to the derivation of Proposition 8.3. We will use the dif-
fusion approximations in the form of Section 6.7.3 to analyze the propagators
jointly at several different frequencies. We first write the propagator equations
for each frequency,

d

dz
Pε

ωj
(0, z) =

iωj

2c̄ε
ν
( z

ε2

)[
1 0
0 −1

]
Pε

ωj
(0, z)

− ωj

2c̄ε
ν
( z

ε2

)
sin

(
2ωjz

c̄ε

)[
0 1
1 0

]
Pε

ωj
(0, z)

− iωj

2c̄ε
ν
( z

ε2

)
cos

(
2ωjz

c̄ε

)[
0 1
−1 0

]
Pε

ωj
(0, z) , (8.49)
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Fig. 8.1. Transmitted signals. Plot (a): comparison between the signal obtained
with a homogeneous medium (thick dashed line) and the signals obtained from sim-
ulations with 10 different realizations of the random medium. Plot (b): Comparison
between the theoretical stable pulse front obtained by the pulse front stabilization
theory (thick dashed line) and the signals obtained from simulations (and time-
shifted to remove the random time shifts). Plot (c): Comparison between the theo-
retical expected pulse (thick dashed line) and the mean transmitted signals obtained
by averaging over 100 simulations.

for j = 1, . . . , m. Introducing the 2m× 2m multifrequency propagator matrix

Pε
m(0, z) =

⎡
⎢⎢⎣

Pε
ω1

(0, z) · · · 0
·
·

0 · · · Pε
ωm

(0, z)

⎤
⎥⎥⎦ ,

the system (8.49) is of the form (6.102),

d

dz
Pε

m(0, z) =
1

ε
F

(
Pε

m(0, z), ν
( z

ε2

)
,
z

ε

)
.

The decomposition (6.103) of the matrix field F is
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F(Pm, ν, τ) =
1

2c̄

2m∑

p=0

g(p)(ν, τ)Ωmh(p)Pm ,

where the constant 2m× 2m matrices Ωm and h(p), p = 0, . . . , 2m are given
by

Ωm =

⎡
⎢⎢⎣

ω1I · · · 0
·
·

0 · · · ωmI

⎤
⎥⎥⎦ , h(0) = i

⎡
⎢⎢⎣

σ3 · · · 0
·
·

0 · · · σ3

⎤
⎥⎥⎦ ,

h(2j−1) = −

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0
...

...
σ1

...
...

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, h(2j) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0
...

...
σ2

...
...

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, j = 1, . . . , m,

with 0 and I the 2×2 zero and identity matrices, and σ1, σ2, and σ3 the Pauli
spin matrices (7.13). That is, the matrix h(2j−1) has zero entries except for

the two entries h
(2j−1)
2j−1,2j = h

(2j−1)
2j,2j−1 = −1. The matrix h(2j) has zero entries

except for the two entries h
(2j)
2j−1,2j = −i and h

(2j)
2j,2j−1 = i. The real-valued

functions g(p), p = 0, . . . , 2m, are given by

g(0)(ν, τ) = ν ,

g(2j−1)(ν, τ) = ν sin

(
2ωjz

c̄

)
, j = 1, . . . , m ,

g(2j)(ν, τ) = ν cos

(
2ωjz

c̄

)
, j = 1, . . . , m .

The correlation matrix C = (Cpq)p,q,=0,...,2m defined by (6.91) can be
computed in terms of the integrated covariance of ν. It is diagonal here because
of the orthogonality of cos(2ωjz/c̄) and sin(2ωjz/c̄),

Cpq = lim
Z0→∞

1

Z0

∫ Z0

0

∫ ∞

0

E[g(p)(ν(0), τ)g(q)(ν(z), τ)]dz dτ =
1

2
γpδpq ,

with

γ0 = γ =

∫ ∞

−∞
E [ν(0)ν(z)] dz, γp =

γ

2
, p = 1, . . . , 2m .

Therefore, the multifrequency propagator Pε
m(0, z) converges in distribution

to Pm(0, z), which is the solution of the Stratonovich stochastic differential
equations
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dPm =

√
γ

2c̄
Ωmh(0)Pm ◦ dW0(z) +

√
γ

2
√

2c̄

m∑

j=1

Ωmh(2j−1)Pm ◦ dWj(z)

+

√
γ

2
√

2c̄

m∑

j=1

Ωmh(2j)Pm ◦ dW̃j(z) . (8.50)

Here W0, Wj , and W̃j , j = 1, . . . , m, are 2m+1 independent standard Brown-
ian motions. The matrix Pm is made up of 2×2 diagonal subblocks and zeros
elsewhere, and we denote the jth diagonal 2 × 2 block by Pωj . The matrix
Pωj is the limit (in distribution) of the propagator Pε

ωj
. We can rewrite the

stochastic differential equation (8.50) for the individual propagators and in
Itô’s form

dPωj (0, z) =
iωj
√

γ

2c̄

[
1 0
0 −1

]
Pωj (0, z)dW0(z)

−ωj
√

γ

2
√

2c̄

[
0 1
1 0

]
Pωj (0, z)dWj(z)

− iωj
√

γ

2
√

2c̄

[
0 1
−1 0

]
Pωj (0, z)dW̃j(z) , (8.51)

for all j = 1, . . . , m. Note here the remarkable cancellation of Itô’s corrections.
This is consistent with the analogous calculation in the weakly heterogeneous
regime in Section 7.1.1, where by setting γ(ω)→ γ and γ(s)(ω)→ 0 in (7.17)
we obtain (8.51).

8.2.5 Martingale Representation of the Multifrequency
Transmission Coefficient

This section follows closely the lines of the analysis of Sections 7.1.2 and
7.1.3, which addressed the weakly heterogeneous regime. We will show that
the transmission coefficients have martingale representations similar to (7.33),
and that the martingale parts are independent for different frequencies.

By the symmetry of (8.51), the propagator matrices have the form

Pωj (0, z) =

[
αωj (0, z) βωj (0, z)

βωj (0, z) αωj (0, z)

]
.

The pairs (αωj , βωj ), j = 1, . . . , m, satisfy the conservation of energy relation
|αωj |2 − |βωj |2 = 1 and can be parameterized in polar coordinates as follows:

αωj (0, z) = cosh

(
θωj (z)

2

)
eiφωj

(z), (8.52)

βωj (0, z) = sinh

(
θωj (z)

2

)
ei(ψωj

(z)+φωj
(z)). (8.53)



234 8 Wave-Front Propagation

If we introduce the new pairs of processes (W ∗
j , W̃ ∗

j ) by the orthogonal
transformation

[
W ∗

j (z)

W̃ ∗
j (z)

]
=

∫ z

0

[
sin(ψωj ) cos(ψωj )
− cos(ψωj ) sin(ψωj )

]
d

[
Wj(z)

W̃j(z)

]
,

then W0, W ∗
j , W̃ ∗

j , j = 1, . . . , m, are 2m + 1 independent standard Brownian
motions. The stochastic processes (θωj , ψωj , φωj ) can then be written as in
(7.26–7.28), as solutions of the Itô stochastic differential equations

dφωj = −ωj
√

γ

2
√

2c̄
tanh(

θωj

2
)dW ∗

j (z) +
ωj
√

γ

2c̄
dW0(z) , (8.54)

dψωj =
ωj
√

γ√
2c̄ tanh(θωj )

dW ∗
j (z)− ωj

√
γ

c̄
dW0(z) , (8.55)

dθωj =
ωj
√

γ√
2c̄

dW̃ ∗
j (z) +

ωj
2γ

4c̄2 tanh(θωj )
dz , (8.56)

with the initial conditions θωj (0) = 0, ψωj (0) = 0, φωj (0) = 0.
Using the same arguments as in Section 7.1.3, we see that the random

vector (T ε
ω1

(0, L), . . . , T ε
ωm

(0, L)) converges in distribution as ε → 0 to the
limit (Tω1(0, L), . . . , Tωm(0, L)), where the limit transmission coefficients have
the martingale representations

Tωj (0, L) = Mωj(0, L)T̃ωj(0, L) , j = 1, . . . , m . (8.57)

Here

T̃ωj (0, L) = exp

[
i

√
γωj

2c̄
W0(L)−

γω2
j

8c̄2
L

]
, (8.58)

and Mωj (0, L) is the complex martingale

Mωj (0, L) = exp

[
−
√

γωj

2
√

2c̄

∫ L

0

tanh

(
θωj (z)

2

)(
dW̃ ∗

j (z) + idW ∗
j (z)

)]
.

(8.59)
By (8.56) the process θωj is the solution of a stochastic differential equa-

tion driven by the Brownian motion W̃ ∗
j . Therefore, the martingale Mωj (0, L)

depends only on the pair of Brownian motions (W ∗
j , W̃ ∗

j ). This shows that

these martingales are independent of each other, and independent of T̃ωj (0, L),
which is a function of the Brownian motion W0 only.

8.2.6 Identification of the Limit Wave Front

The transmitted front was shown in Section 5.2.3 to be characterized by the
specific moments
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lim
ε→0

E

⎡
⎣

m∏

j=1

T ε
ωj

(0, L)

⎤
⎦ = E

⎡
⎣

m∏

j=1

Tωj(0, L)

⎤
⎦ ,

where Tωj has the martingale representation (8.57). The key facts about this
representation are that

• the multiplicative factor T̃ωj(0, L) and the martingale Mωj (0, L) are inde-
pendent

• the martingales Mωj (0, L) and Mωk
(0, L) are independent for j = k.

It follows now that

E

⎡
⎣

m∏

j=1

Tωj (0, L)

⎤
⎦ = E

⎡
⎣

m∏

j=1

T̃ωj (0, L)Mωj(0, L)

⎤
⎦

= E

⎡
⎣

m∏

j=1

T̃ωj (0, L)

⎤
⎦E

⎡
⎣

m∏

j=1

Mωj(0, L)

⎤
⎦

= E

⎡
⎣

m∏

j=1

T̃ωj (0, L)

⎤
⎦ .

The expression for the wave front in (8.35) is

Aε(L/c̄ + εs, L) = aε(s, L) =
1

2π

∫
e−iωsT ε

ω(0, L)f̂(ω) dω.

We have shown that as a process with respect to the time variable s, aε(s, L)
converges in distribution to the process

a(s, L) =
1

2π

∫
e−iωsT̃ω(0, L)f̂(ω) dω ,

where T̃ω is the multiplicative factor (8.58) in the martingale representation
(8.57),

T̃ω(0, L) = exp

(
iω

√
γ

2c̄
W0(L)− ω2 γ

8c̄2
L

)
. (8.60)

Therefore the limit wave front is given by

a(s, L) =
1

2π

∫
e−iωsT̃ω(0, L)f̂(ω)dω

=
1

2π

∫
e−iωse

(
iω

√
γ

2c̄ W0(L)−ω2 γL

8c̄2

)

f̂(ω)dω

=
1

2π

∫
e
−iω

(
s−

√
γ

2c̄ W0(L)
)

e−ω2 γL

8c̄2 f̂(ω)dω .

This is the result stated in Proposition 8.3.
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We have characterized the limiting pulse front a(s, L) through its finite-
dimensional time distributions as explained in Section 5.2.3. In fact, this limit
is also in the sense of convergence in distribution for continuous processes. For
this we need an estimate on the modulus of continuity

M ε(δ) = sup
|s2−s1|≤δ

|aε(s1, L)− aε(s2, L)| .

From the integral representation (8.35) of the transmitted wave front aε and
the uniform bound

|T ε
ω(0, L)| ≤ 1 ,

which follows from the conservation of energy relation (7.11), the modulus of
continuity M ε(δ) is uniformly bounded in ε by the deterministic quantity

M ε(δ) ≤ 1

2π

∫
sup

|s2−s1|≤δ

∣∣∣1− eiω(s2−s1)
∣∣∣
∣∣∣f̂(ω)

∣∣∣ dω.

When f̂(ω) is rapidly decaying at infinity, then

M ε(δ) ≤ δ
1

2π

∫
|ω|

∣∣∣f̂(ω)
∣∣∣ dω .

Relative compactness, or tightness, of the probability laws follows by taking
the limit δ → 0. This property is important if, for instance, we want to study
the convergence of the maximum value of the wave front over a given time
window. The proof of Proposition 8.3 is complete.

8.2.7 Asymptotic Analysis of Travel Times

The random shift ΘL in (8.45) is a random travel time correction. If we
observe the transmitted signal at its random arrival time, then we will actu-
ally see a deterministic pulse shape in the asymptotic limit ε→ 0. This shape
differs from the shape in a homogeneous medium because of the convolution
with the Gaussian kernel NDL in (8.45). However, the shape does not depend
on the particular realization of the random medium. The result (8.45) char-
acterizes the transmitted pulse in distribution but does not describe how the
travel time correction is related to the realization of the random medium. In
order to understand this relation in more detail we observe the transmitted
pulse at the random time

τε
0 (L) = L/c̄ + εΘε

L , (8.61)

where the fluctuation Θε
L is defined by

Θε
L =

1

2c̄ε

∫ L

0

ν
( z

ε2

)
dz . (8.62)
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This travel time τε
0 (L) is different from that along the local characteristics

given by

τε(L) =

∫ L

0

1

cε(z)
dz , with cε(z) =

c̄√
1 + ν(z/ε2)

.

The calculations of this section show that the appropriate arrival time in the
strongly heterogeneous white-noise regime is (8.61).

The transmitted wave observed around the corrected arrival time is given
by

aε
c(s, L) := A(L/c̄ + ε(Θε

L + s), L) =
1

2π

∫
e−iωsT ε

ω(0, L)e−iωΘε
L f̂(ω)dω .

(8.63)
Generalizing the method of identification of the limiting distribution used in
the previous section, we see that we need to compute the limit of the corrected
specific moments

E

[
T ε

ω1
(0, L) · · ·T ε

ωm
(0, L)e−i(

∑m
j=1 ωj)Θε

L

]
, (8.64)

for any finite set of distinct frequencies ω1, . . . , ωm. From this expression it
is clear that we need to keep track of the joint distribution of the multi-
frequency propagator (Pε

ω1
(0, z), . . . ,Pε

ωm
(0, z)) and the process Θε

z. This is
achieved by a straightforward generalization of the derivation given in Section
8.2.4. We see that (Pε

ω1
(0, z), . . . ,Pε

ωm
(0, z), Θε

z) converges in distribution to
(Pω1(0, z), . . . ,Pωm(0, z), Θz), where the Pωj ’s satisfy the stochastic differen-
tial equations (8.51) and Θz is given by

Θz =

√
γ

2c̄
W0(z) ,

where indeed W0 is the common Brownian motion driving the equations (8.51)
for the propagators.

For the corrected specific moments (8.64) we have the convergence

lim
ε→0

E

⎡
⎣

m∏

j=1

T ε
ωj

(0, L)e−i(
∑m

j=1 ωj)Θε
L

⎤
⎦ = E

⎡
⎣

m∏

j=1

Tωj (0, L)e−i(
∑m

j=1 ωj)
√

γ

2c̄ W0(L)

⎤
⎦

= E

⎡
⎣

m∏

j=1

T̃ωj (0, L)e−i(
∑m

j=1 ωj)
√

γ

2c̄ W0(L)

⎤
⎦ .

The last equality follows from the martingale representation (8.57) and its
properties discussed in Section 8.2.5. We see from (8.58) that

T̃ωj(0, L)e−iωj

√
γ

2c̄ W0(L) = e−
γω2

j

8c̄2
L ,
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and therefore

ac(s, L) =
1

2π

∫
e−iωse−

γω2
j

8c̄2
Lf̂(ω)dω = [f ⋆NDL ](s) ,

where DL is given by (8.42). Thus, the transmitted wave front observed around
its arrival time τε(L) is asymptotically deterministic.

8.3 The Reflected Front in Presence of an Interface

In this section we analyze the reflected front when there is a discontinuity in
the parameters of the background medium in the strongly heterogeneous case.
In a homogeneous medium the resulting interface produces a reflected wave
that is simply given as the incident pulse multiplied by the interface reflection
coefficient and centered according to the two-way travel time to the interface.
In the random case we show that a generalized pulse front theory can be used
where the reflected wave is the convolution of the wave in the deterministic
case with a kernel that depends on the medium statistics. This problem will
be considered again in Section 11.1 when there is no impedance contrast and
therefore no coherent reflected front. The case of smoothly varying background
parameters is studied in Chapter 17.

8.3.1 Integral Representation of the Reflected Pulse

We have seen in Section 8.2.2 that no coherent energy part can be observed
in the reflected wave. This is so because the background medium does not
induce any coherent reflection. The incoherent reflected waves will be studied
in detail in Chapter 9. We address in this section a case in which an interface
is embedded into the random medium as sketched in Figure 8.2.

L0 = 0 L2

z� � � �� � � �
�
�

�
�

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�
�

�
� �

L1

�f(t)

Fig. 8.2. We consider reflection and transmission of a pulse incoming from the left
homogeneous half-space and impinging on two heteregeneous slabs with different
background and statistical parameters.

We suppose that the distribution of the bulk modulus is not stationary
but has a discontinuity at some location L1,
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1

K(z)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
K̄1

for z ∈ (−∞, L0),
1

K̄1

(
1 + ν1(z/ε2)

)
for z ∈ [L0, L1),

1
K̄2

(
1 + ν2(z/ε2)

)
for z ∈ [L1, L2),

1
K̄2

for z ∈ [L2,∞),

ρ(z) = ρ̄ for all z ,

where L0 = 0. Our setup includes the general case K̄1 = K̄2 of a jump
in the effective coefficients, as well as the particular case K̄1 = K̄2, where
there is only a change in the statistics of the fluctuations. Here ν1 and ν2 are
two independent zero-mean random processes. To simplify the presentation,
we have assumed matched medium boundary conditions at both ends of the
random medium. We consider an impinging pulse from the left.

In the absence of randomness, ν1 = ν2 = 0, a part of the wave is
reflected by the interface. The analysis carried out in Chapter 3 shows that
the reflection coefficient of the interface is

RI =
ζ̄1 − ζ̄2

ζ̄1 + ζ̄2
, (8.65)

where ζ̄j =
√

K̄j ρ̄, j = 1, 2, are the impedances of the two homogeneous
media separated by the interface at z = L1.

To analyze the effect of random fluctuations of the medium on the reflec-
tion by the interface, we introduce the local effective speeds c̄j =

√
K̄j/ρ̄ and

the right- and left-going modes defined by
{

Aj(t, z) = ζ̄
−1/2
j p(t, z) + ζ̄

1/2
j u(t, z),

Bj(t, z) = −ζ̄
−1/2
j p(t, z) + ζ̄

1/2
j u(t, z),

for Lj−1 ≤ z ≤ Lj .

The boundary conditions correspond to an impinging pulse at the interface
z = 0 and a radiation condition at z = L2:

A1(t, 0) = f

(
t

ε

)
, B2(t, L2) = 0.

For j = 1, 2, inside the medium (Lj−1, Lj) the pair (Aj , Bj) satisfies the
system

∂

∂z

[
Aj

Bj

]
=

1

2c̄j

[
−2− νj(z/ε2) νj(z/ε2)
−νj(z/ε2) 2 + νj(z/ε2)

]
∂

∂t

[
Aj

Bj

]
.

For j = 1 and j = 2, the two systems are coupled by the jump conditions at
z = L1 corresponding to the continuity of the velocity and pressure fields

u(t, L1) = ζ̄
−1/2
1

(
A1(t, L1) + B1(t, L1)

2

)
= ζ̄

−1/2
1

(
A2(t, L1) + B2(t, L1)

2

)
,

p(t, L1) = ζ̄
1/2
1

(
A1(t, L1)−B1(t, L1)

2

)
= ζ̄

1/2
2

(
A2(t, L1)−B2(t, L1)

2

)
.
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This gives the interface conditions

[
A2

B2

]
(t, L1) = J

[
A1

B1

]
(t, L1), J =

[
r(+) r(−)

r(−) r(+)

]
,

where

r(±) =
1

2

(√
ζ̄2/ζ̄1 ±

√
ζ̄1/ζ̄2

)
. (8.66)

For j = 1, 2 and Lj−1 ≤ z ≤ Lj we define the centered waves by

aε
j(s, z) = Aj(εs + (z − Lj−1)/c̄j, z),

bε
j(s, z) = Bj(εs− (z − Lj−1)/c̄j , z).

These are the right- and left-going modes, respectively, in the frames moving
with the local effective speed, centered at the beginning of the slabs (L0 = 0
for j = 1 and L1 for j = 2), and observed on the scale ε of the incoming pulse.

�
L0 = 0 L2

z

L1

�
b1(0)

�a1(0) = f �
0 = b2(L2)

�
a2(L2)�

b1(L
−

1 )

�
a1(L

−

1 )
�

a2(L
+
1 )

�
b2(L

+
1 )

Fig. 8.3. Boundary conditions for the modes in presence of an interface.

In the frequency domain, the mode amplitudes obey the systems

d

dz

[
âε

j

b̂ε
j

]
=

1

ε
Hω,j

(
z − Lj−1

ε
, νj

( z

ε2

))[
âε

j

b̂ε
j

]
, Lj−1 ≤ z ≤ Lj,

where

Hω,j(z, ν) =
iω

2c̄j
ν

[
1 −e−2iωz/c̄j

e2iωz/c̄j −1

]
.

The associated propagators satisfy the random differential equations

d

dz
Pε

ω,j(Lj−1, z) =
1

ε
Hω,j

(
z − Lj−1

ε
, νj

( z

ε2

))
Pε

ω,j(Lj−1, z),

on Lj−1 ≤ z ≤ Lj, with initial conditions Pε
ω,j(Lj−1, Lj−1) = I. Using the

propagators we have

[
âε

j

b̂ε
j

]
(ω, Lj) = Pε

ω,j(Lj−1, Lj)

[
âε

j

b̂ε
j

]
(ω, Lj−1), j = 1, 2.
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We also have the boundary and jump conditions

âε
1(ω, 0) = f̂(ω), b̂ε

2(ω, L2) = 0,

[
âε
2

b̂ε
2

]
(ω, L1) = Jε

ω

[
âε
1

b̂ε
1

]
(ω, L1),

where the jump matrix Jε
ω takes into account the fact that the time origins

of aε
1 and bε

1 are shifted with respect to those of aε
2 and bε

2:

Jε
ω =

[
r(+)eiωL1/(c̄1ε) r(−)e−iωL1/(c̄1ε)

r(−)eiωL1/(c̄1ε) r(+)e−iωL1/(c̄1ε)

]
.

This can be checked with the following computation:

âε
2(ω, L1) =

∫
eiωsaε

2(s, L1)ds

=

∫
eiωsA2(εs, L1)ds

=

∫
eiωs

(
r(+)A1(εs, L1) + r(−)B1(εs, L1)

)
ds

= r(+)

∫
eiωsaε

1

(
s− L1

εc̄1
, L1

)
ds + r(−)

∫
eiωsbε

1

(
s +

L1

εc̄1
, L1

)
ds

= r(+)eiωL1/(c̄1ε)âε
1(ω, L1) + r(−)e−iωL1/(c̄1ε)b̂ε

1(ω, L1),

and a similar computation for b̂ε
2(ω, L1).

From all these relations, we get
[

âε
2(ω, L2)

0

]
= Pε

ω,2(L1, L2)J
ε
ωPε

ω,1(0, L1)

[
f̂(ω)

b̂ε
1(ω, 0)

]
.

Inverting this relation yields an expression for the left-going mode,

b̂ε
1(ω, 0) = −r(+)ηε

ω + r(−)κε
ω

r(+)η̃ε
ω + r(−)κ̃ε

ω

f̂(ω), (8.67)

where

ηε
ω = αε

ω,1(0, L1)β
ε
ω,2(L1, L2)e

iωL1/(c̄1ε) + βε
ω,1(0, L1)αε

ω,2(L1, L2)e
−iωL1/(c̄1ε),

κε
ω = βε

ω,1(0, L1)β
ε
ω,2(L1, L2)e

−iωL1/(c̄1ε) + αε
ω,1(0, L1)αε

ω,2(L1, L2)e
iωL1/(c̄1ε),

η̃ε
ω = αε

ω,1(0, L1)β
ε
ω,2(L1, L2)e

−iωL1/(c̄1ε) + βε
ω,1(0, L1)αε

ω,2(L1, L2)e
iωL1/(c̄1ε),

κ̃ε
ω = βε

ω,1(0, L1)β
ε
ω,2(L1, L2)e

iωL1/(c̄1ε) + αε
ω,1(0, L1)αε

ω,2(L1, L2)e
−iωL1/(c̄1ε).

The integral representation of the reflected wave around time t0 on the ε-scale
is

B1(t0 + εs, 0) =
1

2π

∫
e−iω(s+

t0
ε )b̂ε

1(ω, 0)dω , (8.68)

with b̂ε
1(ω, 0) given by (8.67).
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Fig. 8.4. Reflection and transmission coefficients.

8.3.2 The Limit for the Reflected Front

There are several ways in which to simplify the expression (8.67) for b̂ε
1. One of

them is to use the reflection and transmission coefficients of the two random
slabs. Let us define, for j = 1, 2, the transmission and reflection coefficients
T ε

ω,j and Rε
ω,j for the slab [Lj−1, Lj] as illustrated in Figure 8.4. In terms of

αε
ω,j and βε

ω,j they are given by

Rε
ω,j = −

βε
ω,j(Lj−1, Lj)

αε
ω,j(Lj−1, Lj)

, T ε
ω,j =

1

αε
ω,j(Lj−1, Lj)

.

We also introduce R̃ε
ω,1 and T̃ ε

ω,1, the reflection and transmission coefficients
for a left-going incident wave coming from the right onto the medium 1 as
illustrated in Figure 8.5. These adjoint coefficients are given in terms of αε

ω,1

and βε
ω,1 by

R̃ε
ω,1 = e

2iωL1
c̄1ε

βε
ω,1(0, L1)

αε
ω,1(0, L1)

, T̃ ε
ω,1 = e

2iωL1
c̄1ε

1

αε
ω,1(0, L1)

.

The left-going mode amplitude b̂ε
1 given by (8.67) can be rewritten in terms

of these reflection and transmission coefficients and their adjoints. Since the
reflection coefficients are less than one, we can expand these expressions to
obtain the series

b̂ε
1(ω, 0) =

(
Rε

ω,1 +
T ε

ω,1

T̃ ε
ω,1

Rε
ω,2

) ∞∑

m=0

(Rε
ω,2R̃

ε
ω,1)

mf̂(ω) + (T ε
ω,1)

2[1− (Rε
ω,2)

2]

×e
2iωL1

c̄1ε

∞∑

n=0

(
−r(−)

r(+)

)n+1

(R̃ε
ω,1 −Rε

ω,2)
n

[ ∞∑

m=0

(Rε
ω,2R̃

ε
ω,1)

m

]n

f̂(ω).
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�
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� T̃1
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�R̃1

Fig. 8.5. Adjoint reflection and transmission coefficients.

The situation is now similar to the one encountered in Section 8.2.4. The
reflected front is characterized by the moments of b̂ε

1,

E

⎡
⎣

m∏

j=1

b̂ε
1(ωj , 0)

⎤
⎦ ,

for m distinct frequencies (ωj)1≤j≤m. These moments involve sums of expec-
tations of products of reflection and transmission coefficients. These expecta-
tions can be factored because the coefficients associated with the medium 1
are asymptotically independent from the coefficients associated to the medium
2. It follows from our analysis in Chapter 9 that an expectation involving a
product of reflection and transmission coefficients vanishes as ε → 0 as soon
as the product contains reflection coefficients. Only one term in the series
expansion of b̂ε

1 does not involve a reflection coefficient, and it is proportional
to (T ε

ω,1)
2(0, L1). As a result, the problem is reduced to the identification of

the limits of the moments

E

⎡
⎣

m∏

j=1

(T ε
ω1,1)

2(0, L1)

⎤
⎦ ,

for m distinct frequencies (ωj)1≤j≤m. This can be done in the same way as in
Section 8.2.6. We need only to observe that the limit transmission coefficients
T 2

ωj,1(0, L1) have the martingale representation

T 2
ωj,1(0, L1) = M2

ωj,1(0, L1)T̃
2
ωj,1(0, L1) ,

which is the square of (8.57). This is because M2
ωj,1(0, L1), the square of

(8.59), is also a complex martingale. The moments of the phase-compensated
coefficient

b̃ε
1(ω) = b̂ε

1(ω, 0)e
−2iωL1

c̄1ε ,

at different frequencies converge, and the limits are given by

lim
ε→0

E

⎡
⎣

m∏

j=1

b̃ε
1(ωj)

⎤
⎦ =

(
−r(−)

r(+)

)m

E

⎡
⎣

m∏

j=1

T̃ 2
ωj ,1(0, L1)

⎤
⎦

m∏

j=1

f̂(ωj),
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where T̃ω,1(0, L1) is the same process as (8.58), encountered in the study of
the stable transmitted front in Section 8.2.5:

T̃ω,1(0, L1) = exp

(
iω

√
γ1

2c̄1
W0(L1)− ω2 γ1

8c̄2
1

L1

)
.

Substituting into the integral representation (8.68) for the reflected wave,
this shows that the stable reflected pulse can be observed around the time
t0 = 2L1/c̄1 and has the form

B1(2L1/c̄1 + εs, 0)
ε→0−→ b(s) :=

(
−r(−)

r(+)

)
1

2π

∫
e−iωsT̃ 2

ω,1(0, L1)f̂(ω)dω,

where we assume that there is impedance contrast, that is, r(−) = 0 in (8.66).
At any other observation times t0 = 2L1/c̄1 the reflected wave vanishes in the
limit ε → 0 because of the remaining rapid phase in the integral represen-
tation. This implies in particular that, even with random inhomogeneities in
the medium, the arrival time of the stable reflection can be used to identify
the depth of the jump in the background parameters with a precision of order
ε, which is due to the random time shift.

The limiting stable reflected front has the form

b(s) = RIf ⋆ND2L1
(s− 2ΘL1), (8.69)

where Dz and Θz are defined as in (8.43) and (8.42),

D2
z =

γ1z

4c̄2
1

, Θz =

√
γ1

2c̄1
W0(z), γ1 =

∫ ∞

−∞
E[ν1(0)ν1(z)]dz,

and ND is the centered Gaussian density with variance D2. The reflection
coefficient

RI =

(
−r(−)

r(+)

)
=

ζ̄1 − ζ̄2

ζ̄1 + ζ̄2

is the one introduced in (8.65). It is the one corresponding to the case in which
the interface separates two homogeneous media with impedances ζ̄1 and ζ̄2.
The reflected pulse front has a deterministic shape imposed by the convolution
with the Gaussian kernel ND2L1

, and it is random only through the random
time shift 2ΘL1 .

The result that we obtain in the random case is not surprising once the
behavior of a transmitted pulse front is understood. Indeed the reflected front
does a round trip in the random medium in order to go from the surface
z = 0 to the interface z = L1 and back. The deterministic spreading thus
corresponds to a travel distance of 2L1, and the random time shift is simply
twice the one-way shift because the wave travels in the same medium.

Finally, we note that a stable transmitted pulse can be observed at the
end of the slab (z = L2) around the time t1 = L1/c̄1 + (L2 − L1)/c̄2. The
limiting form of this stable transmitted front is
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A(t1 + εs, L2)
ε→0−→ TIf ⋆ND(s−Θ), (8.70)

where the width of the convolution kernel is

D2 =
γ1L1

4c̄2
1

+
γ2(L2 − L1)

4c̄2
2

,

and the random time delay is given by

Θ =

√
γ1

2c̄1
W0(L1) +

√
γ2

2c̄2
(W0(L2)−W0(L1)).

The transmission coefficient

TI =
2
√

ζ̄1ζ̄2

ζ̄1 + ζ̄2

is the one for the interface between two homogeneous media.

8.4 Appendix. Proof of the Averaging Theorem

In this Appendix we give a proof of Proposition 8.2. We fix T > 0 and prove
the convergence in the space of continuous functions over [−T0, T ] with the
supremum norm ‖ · ‖∞. We first list some properties of the operators F and
F̃ defined by (8.21) and (8.23), respectively, in the following two lemmas.

Lemma 8.4. Let A(s) be a deterministic continuous function. Then

E

[∥∥∥∥∥
1

Z

∫ Z

0

[F (y)A]dy − F̃A]

∥∥∥∥∥
∞

]
Z→∞−→ 0 .

Proof. Let us define

∆Z(s) :=
1

Z

∫ Z

0

[F (y)A](s)dy − F̃A(s)

= − c̄2

32

∫ s

−T0

[
1

Z

∫ Z

0

ν′(c̄y)ν′
(

c̄y + c̄
s− u

2

)

−E

[
ν′(c̄y)ν′

(
c̄y + c̄

s− u

2

)]
dy

]
A(u)du .

By the ergodic theorem, for any s, u ∈ [−T0, T ],

E

[∣∣∣∣∣
1

Z

∫ Z

0

ν′(c̄y)ν′
(

c̄y + c̄
s− u

2

)
− E

[
ν′(c̄y)ν′

(
c̄y + c̄

s− u

2

)]
dy

∣∣∣∣∣

]
Z→∞−→ 0 .

Therefore, by the dominated convergence theorem, for any s ∈ [−T0, T ],
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E [|∆Z(s)|] Z→∞−→ 0 .

It remains to control the modulus of continuity to get a uniform in s estimate.
From the uniform boundedness of the process ν′, we have

sup
|s1−s2|≤δ

|∆Z(s1)−∆Z(s2)| ≤
c̄2‖ν′‖2∞

16
sup

|s1−s2|≤δ

|A(s1)−A(s2)| .

Therefore, setting sk = −T0 + k(T + T0)/N , k = 0, . . . , N , we have

E [‖∆Z‖∞] ≤
N∑

k=0

E [|∆Z(sk)|] + c̄2‖ν′‖2∞
16

sup
|s1−s2|≤(T+T0)/N

|A(s1)−A(s2)| .

Taking first the limit Z → ∞ and then N → ∞ gives the result from the
uniform continuity of A over the compact interval [−T0, T ].

Lemma 8.5. (1) For any y, the operators F (y) and F̃ are uniformly Lipschitz
with a nonrandom Lipschitz constant c:

‖F (y)A− F (y)B‖∞ ≤ c‖A−B‖∞ , ‖F̃A− F̃B‖∞ ≤ c‖A−B‖∞ .

(2) There exists C > 0 such that

sup
y∈R

‖F (y)A‖∞ + ‖F̃A‖∞ ≤ C‖A‖∞ .

Proof. The first part of the lemma follows from the uniform in s estimate

|[F (y)A](s) − [F (y)B](s)| ≤ c̄2‖ν′‖2∞
16

‖A−B‖∞ ,

which also holds true for F̃ . The second part follows directly from the bound-
edness of the process ν′.

We can now give the proof of Proposition 8.2. It is enough to prove con-
vergence in the mean of the supremum norm of the difference between Aε and
Ã, because this implies convergence in probability. From the integral equation
formulations

Aε(s, τ) = f(s)+

∫ τ

0

F
( y

ε2

)
Aε(s, y)dy , Ã(s, τ) = f(s)+

∫ τ

0

F̃ Ã(s, y)dy ,

the difference between Aε and Ã satisfies

Aε(s, τ) − Ã(s, τ) =

∫ τ

0

(
F

( y

ε2

)
Aε(s, y)− F

( y

ε2

)
Ã(s, y)

)
dy + gε(s, τ) ,

where gε(s, τ) :=
∫ τ

0 F ( y
ε2 )Ã(s, y)− F̃ Ã(s, y)dy. Taking the supremum norm,

we obtain
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‖Aε(·, τ) − Ã(·, τ)‖∞ ≤
∫ τ

0

∥∥∥F
( y

ε2

)
Aε(·, y)− F

( y

ε2

)
Ã(·, y)

∥∥∥
∞

dy

+‖gε(·, τ)‖∞
≤ c

∫ τ

0

‖Aε(·, y)− Ã(·, y)‖∞dy + ‖gε(·, τ)‖∞ .

Taking the expectation and applying Gronwall’s lemma, we obtain for any
arbitrary τ0 > 0,

sup
τ∈[0,τ0]

E

[
‖Aε(·, τ)− Ã(·, τ)‖∞

]
≤ ecτ0 sup

τ∈[0,τ0]

E[‖gε(·, τ)‖∞] .

It remains to show that the last term goes to 0 as ε→ 0. Let δ > 0:

gε(s, τ) =

[τ/δ]−1∑

k=0

∫ (k+1)δ

kδ

(
F

( y

ε2

)
Ã(s, y)− F̃ Ã(s, y)

)
dy

+

∫ τ

δ[τ/δ]

(
F

( y

ε2

)
Ã(s, y)− F̃ Ã(s, y)

)
dy .

Set Mτ0 = supτ∈[0,τ0] ‖Ã(·, τ)‖∞. From Lemma 8.5, the last term of the right-
hand side is bounded by CMτ0δ. Furthermore, F is Lipschitz, so that

∥∥∥F
( y

ε2

)
Ã(·, y)− F

( y

ε2

)
Ã(·, kδ)

∥∥∥
∞
≤ c

∥∥∥Ã(·, y)− Ã(·, kδ)
∥∥∥
∞

≤ cCMτ0|y − kδ| .

Similarly we have

∥∥∥F̃ Ã(·, y)− F̃ Ã(·, kδ)
∥∥∥
∞
≤ cCMτ0 |y − kδ| .

Therefore

‖gε(·, τ)‖∞ ≤

∥∥∥∥∥∥

[τ/δ]−1∑

k=0

∫ (k+1)δ

kδ

(
F

( y

ε2

)
Ã(·, kδ)− F̃ Ã(·, kδ)

)
dy

∥∥∥∥∥∥
∞

+2cCMτ0

[τ/δ]−1∑

k=0

∫ (k+1)δ

kδ

(y − kδ)dy + 2cCMτ0δ

≤ ε2

[τ/δ]−1∑

k=0

∥∥∥∥∥

∫ (k+1)δ/ε2

kδ/ε2

(
F (y)Ã(·, kδ)− F̃ Ã(·, kδ)

)
dy

∥∥∥∥∥
∞

+cCMτ0(τ + 2)δ .

Taking the expectation and the supremum over τ ∈ [0, τ0], we get



248 8 Wave-Front Propagation

sup
τ∈[0,τ0]

E[‖gε(·, τ)‖∞]

≤ δ

[τ0/δ]−1∑

k=0

E

[∥∥∥∥∥
ε2

δ

∫ (k+1)δ/ε2

kδ/ε2

(
F (y)Ã(·, kδ)− F̃ Ã(·, kδ)

)
dy

∥∥∥∥∥
∞

]

+cCMτ0(τ0 + 2)δ .

Taking the limit ε→ 0, we obtain from Lemma 8.4

lim sup
ε→0

sup
τ∈[0,τ0]

E[‖gε(·, τ)‖∞] ≤ cCMτ0(τ0 + 2)δ .

Letting δ → 0 completes the proof.

Notes

The stabilization of the wave front in randomly layered media was first noted
by O’Doherty and Anstey in a geophysical context [126]. A time-domain
integral equation approach to pulse stabilization is given in [28, 33]. The
frequency-domain approach presented here in Proposition 8.3 follows [39]. The
use of the martingale representation for the transmission coefficient is new.
An approach using the Riccati equation of Chapter 9 is in [117]. The analysis
of wave front reflection from an interface in Section 8.3 is new. Generalizations
to three-dimensional randomly layered media are presented in Chapter 14.



9

Statistics of Incoherent Waves

This chapter is a self-contained statistical analysis of the time- and frequency-
domain properties of the incoherent waves scattered by a randomly layered
medium. We have shown in Chapter 8 that the energy of the transmitted
wave front decays exponentially with the size of the random medium, which
implies that the incoherent waves carry most of the energy. The analysis of
the incoherent waves is therefore important in many applications, especially
in time reversal, as we will see in the next chapters. We have also seen in
Chapter 7 that the total transmitted energy decays exponentially with the
size of the random medium, but that the decay rate is slower than that of
the wave front. We will therefore focus attention on the incoherent reflected
waves in a homogeneous effective medium. In the last section of this chapter
we extend the analysis to the incoherent transmitted waves.

In Proposition 9.1 the limit of the frequency autocorrelation function of the
reflection coefficient is described in terms of a system of transport equations.
General moments of the reflection coefficient are computed in Proposition
9.2. The limit of the frequency autocorrelation function of the transmission
coefficient is given in Proposition 9.4. Finally, in Propositions 9.3–9.5, we show
that asymptotically both the reflected and the transmitted incoherent waves
have Gaussian statistics, which means that their probability distributions are
completely characterized by the time autocorrelation function.

9.1 The Reflected Wave

9.1.1 Reformulation of the Reflection and Transmission Problem

From the results of Chapter 7 (equations (7.9) and (7.18–7.19)), the limit
reflection coefficient at frequency ω is given by

Rω(0, L) = − tanh

(
θω(L)

2

)
ei(ψω(L)+2φω(L)) ,



250 9 Statistics of Incoherent Waves

where (θω, ψω, φω) satisfies the system of stochastic differential equations
(7.26–7.28). As we have seen in Chapter 7, this representation is appropri-
ate to study the single-frequency moments of the reflection coefficient. For
the multifrequency analysis that we carry out in this chapter it turns out
that it is more convenient to use directly the Riccati equation satisfied by the
reflection coefficient. This requires a reformulation of the scattering problem
as shown in Figure 9.1. The incident wave comes from the right, and the re-
flected wave exits into the homogeneous half-space on the right also. In the
next section we derive a closed random differential equation for the reflection
coefficient Rε

ω(−L, z) for z going from −L to 0.

�
−L 0 z

�

Bε(t,−L)
�

Bε(t, 0)

�

Aε(t, 0)
Random slab

Fig. 9.1. The new scattering problem.

The asymptotic analysis of incoherent reflected waves will be carried out
in the strongly heterogeneous white-noise regime (5.17) described in Chapter
5. The scaled acoustic equations (5.13–5.14) with θ = 1 and σ = 1 and an
incident wave from the right are

ρ(z)
∂uε

∂t
+

∂pε

∂z
= 0 , (9.1)

1

K(z)

∂pε

∂t
+

∂uε

∂z
= 0 . (9.2)

We assume that the medium parameters are

1

K(z)
=

{ 1
K

(
1 + ν(z/ε2)

)
for z ∈ [−L, 0],

1
K

for z ∈ (−∞,−L) ∪ (0,∞),

ρ(z) = ρ̄ for all z,

and an incoming left-going wave impinges on the interface z = 0. Since we are
in the strongly heterogeneous white-noise regime, the pulse width is of order
ε, and its amplitude is scaled so that it has energy of order one. It is given by

1√
ε
f

(
t

ε

)
,

where f is square-integrable, so that
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∫ ∞

−∞

[
1√
ε
f

(
t

ε

)]2

dt =

∫ ∞

−∞
f(u)2du <∞.

As in previous chapters, we introduce the right- and left-going modes

Aε(t, z) = ζ̄1/2uε(t, z) + ζ̄−1/2pε(t, z),

Bε(t, z) = ζ̄1/2uε(t, z)− ζ̄−1/2pε(t, z),

where the effective impedance is ζ̄ =
√

K̄ρ̄. We consider these modes in
coordinates moving with the effective speed c̄ and on the time scale of the
incoming pulse,

aε(s, z) = Aε(εs + z/c̄, z),

bε(s, z) = Bε(εs− z/c̄, z) .

Here the effective speed is c̄ =
√

K̄/ρ̄. In the Fourier domain the modes satisfy
the differential equations

d

dz

[
âε

b̂ε

]
=

1

ε
Hω

(z

ε
, ν

( z

ε2

))[
âε

b̂ε

]
, (9.3)

Hω(z, ν) =
iω

2c̄
ν

[
1 −e−2iωz/c̄

e2iωz/c̄ −1

]
.

The modes also satisfy boundary conditions corresponding to a left-going wave
impinging at z = 0 and the radiation condition at z = −L,

b̂ε(ω, 0) =
1√
ε
f̂(ω), âε(ω,−L) = 0. (9.4)

We first transform the boundary value problem (9.3–9.4) into an initial
value problem. This step is similar to the analysis carried out in Section 5.1.
We introduce the propagator Pε

ω(−L, z), that is, the fundamental solution
matrix of the linear system of differential equations (9.3) with initial condition
Pε

ω(−L, z = −L) = I. From symmetries in (9.3), Pε
ω is of the form

Pε
ω(−L, z) =

[
αε

ω(−L, z) βε
ω(−L, z)

βε
ω(−L, z) αε

ω(−L, z)

]
, (9.5)

where (αε
ω, βε

ω)T is a solution of (9.3) with the initial conditions

αε
ω(−L, z = −L) = 1, βε

ω(−L, z = −L) = 0. (9.6)

The modes âε and b̂ε can be expressed in terms of the propagator as

[
âε(ω, z)

b̂ε(ω, z)

]
= Pε

ω(−L, z)

[
âε(ω,−L)

b̂ε(ω,−L)

]
. (9.7)
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We can now define the transmission and reflection coefficients T ε
ω(−L, z) and

Rε
ω(−L, z), respectively, for a slab [−L, z] by (see Figure 9.2)

Pε
ω(−L, z)

[
0

T ε
ω(−L, z)

]
=

[
Rε

ω(−L, z)
1

]
. (9.8)

In terms of the propagator entries they are given by

Rε
ω(−L, z) =

βε
ω(−L, z)

αε
ω(−L, z)

, T ε
ω(−L, z) =

1

αε
ω(−L, z)

. (9.9)

By (9.4) and (9.7) applied at z = 0, the reflected and transmitted mode ampli-
tudes can be expressed in terms of the reflection and transmission coefficients
as

âε(ω, 0) =
1√
ε
f̂(ω)Rε

ω(−L, 0) , b̂ε(ω,−L) =
1√
ε
f̂(ω)T ε

ω(−L, 0) .

�
−L 0z

�T
ε
ω(−L, z)

�0 � 1

�Rε
ω(−L, z)

Fig. 9.2. Reflection and transmission coefficients.

9.1.2 The Riccati Equation for the Reflection Coefficient

We want to derive a closed equation for the reflection coefficient. By differen-
tiating Rε

ω(−L, z) and T ε
ω(−L, z) with respect to z, we have

dRε
ω

dz
=

1

αε
ω

dβε
ω

dz
− βε

ω

(αε
ω)2

dαε
ω

dz
,

dT ε
ω

dz
= − 1

(αε
ω)2

dαε
ω

dz
.

From the equations (9.3) satisfied by (αε
ω , βε

ω), we get

dRε
ω

dz
= − iω

2c̄ε
ν
( z

ε2

)(
e−2iωz/(c̄ε) − 2Rε

ω + (Rε
ω)2e2iωz/(c̄ε)

)
, (9.10)

dT ε
ω

dz
=

iω

2c̄ε
ν
( z

ε2

)(
1−Rε

ωe2iωz/(c̄ε)
)

T ε
ω . (9.11)
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The initial conditions for these nonlinear differential equations are

Rε
ω(−L, z = −L) = 0, T ε

ω(−L, z = −L) = 1,

at z = −L. This is because the medium is homogeneous for z < −L, and left-
going waves simply travels at constant speed to the left. Equation (9.10) is
the Riccati equation for the reflection coefficient, and (9.11) is the associated
linear equation for the transmission coefficient, which depends on the reflection
coeffcient.

9.1.3 Representation of the Reflected Field

The reflected wave at z = 0 admits the following representation in terms of
the reflection coefficient:

Aε(t, 0) = aε

(
t

ε
, 0

)

=
1

2π

∫
âε(ω, 0)e−i ωt

ε dω

=
1

2π
√

ε

∫
Rε

ω(−L, 0)f̂(ω)e−i ωt
ε dω. (9.12)

The statistical description of the reflected wave is thus closely related to the
joint statistical distribution of the reflection coefficient at different frequencies.
In this chapter we will focus attention on:

1. The mean amplitude E[Aε(t, 0)], which describes the coherent reflected
wave.

2. The mean intensity E[Aε(t, 0)2], which describes the energy distribution
of the reflected wave in the time domain.

3. The correlation function cε
t (s) = E[Aε(t + εs, 0)Aε(t, 0)], which describes

the time fluctuations in a time window of size of the order of ε.

We will also give the complete statistical distribution of the reflected wave.
These results will be derived from the integral representation (9.12).

The mean amplitude is

E[Aε(t, 0)] =
1

2π
√

ε

∫
E[Rε

ω(−L, 0)]f̂(ω)e−i ωt
ε dω. (9.13)

Higher-order moments of the reflected wave involve an expansion in multiple
integrals and moments of products of reflection coefficients. Let us consider
the second moment, that is, the mean intensity. Since Aε(t, 0) is real-valued,

Aε(t, 0)2 = Aε(t, 0)Aε(t, 0)

=
1

4π2ε

(∫
Rε

ω1
(−L, 0)f̂(ω1)e

− iω1t
ε dω1

)(∫
Rε

ω2
(−L, 0)f̂(ω2)e

iω2t
ε dω2

)

=
1

4π2ε

∫ ∫
Rε

ω1
(−L, 0)Rε

ω2
(−L, 0)f̂(ω1)f̂(ω2)e

i
(ω2−ω1)t

ε dω1 dω2.



254 9 Statistics of Incoherent Waves

By taking the expectation we obtain an expression of the mean intensity in
terms of the frequency autocorrelation function of the reflection coefficient:

E[Aε(t, 0)2] =
1

4π2ε

∫ ∫
E

[
Rε

ω1
(−L, 0)Rε

ω2
(−L, 0)

]

×f̂(ω1)f̂(ω2)e
i
(ω2−ω1)t

ε dω1 dω2.

The presence of the fast phase (ω2 − ω1)t/ε suggests the change of variables

ω1 = ω + εh/2 , ω2 = ω − εh/2 ,

which leads to the representation

E[Aε(t, 0)2] =
1

4π2

∫ ∫
E

[
Rε

ω+εh/2(−L, 0)Rε
ω−εh/2(−L, 0)

]

×f̂(ω + εh/2)f̂(ω − εh/2)e−ihtdω dh. (9.14)

This shows that the correlation between the reflection coefficients at two
nearby frequencies plays an important role. Note in particular that for ε small,

E[Aε(t, 0)2] ∼ 1

4π2

∫ ∫
E

[
Rε

ω+εh/2(−L, 0)Rε
ω−εh/2(−L, 0)

]
e−ihtdh

×|f̂(ω)|2dω.

We shall thus carry out in the next section a careful analysis of the distribution
of the reflection coefficient at two nearby frequencies in the asymptotic limit
ε→ 0.

9.2 Statistics of the Reflected Wave in the Frequency
Domain

9.2.1 Moments of the Reflection Coefficient

We aim at computing the moments of the reflection coefficient. In view of
(9.13) and (9.14), we are particularly interested in the first and second mo-
ments. However, the Riccati equation (9.10) satisfied by the reflection co-
efficient is nonlinear. As a result, we need to introduce a complete family
of moments in order to get a closed system of equations. We introduce for
p, q ∈ N,

Uε
p,q(ω, h, z) =

(
Rε

ω+εh/2(−L, z)
)p (

Rε
ω−εh/2(−L, z)

)q

. (9.15)

The moments of interest to us are the first moment

E [Rε
ω(−L, 0)] = E

[
Uε

1,0(ω, 0, 0)
]

(9.16)
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and the two-frequency autocorrelation function

E

[
Rε

ω+εh/2(−L, z)Rε
ω−εh/2(−L, z)

]
= E

[
Uε

1,1(ω, h, z)
]
. (9.17)

Using the Riccati equation (9.10) satisfied by Rε
ω, we see that the family

(Uε
p,q)p,q∈N satisfies

∂Uε
p,q

∂z
=

iω

c̄
νε(p− q)Uε

p,q +
iω

2c̄
νεe

2iωz
c̄ε

(
qe−

ihz
c̄ Uε

p,q−1 − pe
ihz

c̄ Uε
p+1,q

)

+
iω

2c̄
νεe−

2iωz
c̄ε

(
qe

ihz
c̄ Uε

p,q+1 − pe
−ihz

c̄ Uε
p−1,q

)
, −L ≤ z ≤ 0 ,

starting from
Uε

p,q(ω, h, z = −L) = 10(p)10(q) .

Here 10(p) = 1 if p = 0 and is 0 otherwise, and we have set

νε(z) =
1

ε
ν
( z

ε2

)
.

The system of random ordinary differential equations for Uε
p,q has a form

that is almost suitable for the application of the limit theorems of Chapter 6.
One major problem is that we need an infinite-dimensional version of these
theorems. This requires a weak formulation and the introduction of an appro-
priate space of test functions. We refer to [137] for the details, and here we
simply apply the result as if it were in a finite-dimensional context. Another
problem is the presence of slow components of the form exp(±ihz/c̄). We first
remove these terms by taking a shifted and scaled Fourier transform with
respect to h:

V ε
p,q(ω, τ, z) =

1

2π

∫
e−ih(τ−(p+q)z/c̄)Uε

p,q(ω, h, z)dh. (9.18)

The system of equations satisfied by (V ε
p,q)p,q∈N is

∂V ε
p,q

∂z
= −p + q

c̄

∂V ε
p,q

∂τ
+

iω

c̄
νε(p− q)V ε

p,q +
iω

2c̄
νεe

2iωz
c̄ε

(
qV ε

p,q−1 − pV ε
p+1,q

)

+
iω

2c̄
νεe−

2iωz
c̄ε

(
qV ε

p,q+1 − pV ε
p−1,q

)
, (9.19)

starting from
V ε

p,q(ω, τ, z = −L) = δ(τ)10(p)10(q) .

We now apply the limit theorem of Section 6.7.3. This establishes that the
process (V ε

p,q)p,q∈N converges in distribution as ε → 0 to a diffusion process
(Vp,q)p,q∈N. The limit diffusion process is identified as the solution of the Itô
stochastic differential equation
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dVp,q = −q + p

c̄

∂Vp,q

∂τ
dz +

i
√

γω

c̄
(p− q)Vp,qdW0(z)

+
i
√

γω

2
√

2c̄
(qVp,q−1 − pVp+1,q + qVp,q+1 − pVp−1,q) dW1(z)

+

√
γω

2
√

2c̄
(qVp,q−1 − pVp+1,q − qVp,q+1 + pVp−1,q) dW2(z)

+
γω2

4c̄2

[
pq(Vp+1,q+1 + Vp−1,q−1 − 2Vp,q)− 3(p− q)2Vp,q

]
dz, (9.20)

where Wj , j = 0, 1, 2, are three independent Brownian motions and γ is the
integrated covariance of the process ν. The form of these stochastic differen-
tial equations (9.20) can be derived from (9.19) by replacing the integrals of
νε(z), νε(z) cos(2ωz/(c̄ε)) and νε(z) sin(2ωz/(c̄ε)) by the three independent
Brownian motions

√
γW0,

√
γ/2W1, and

√
γ/2W2. The last line in (9.20) is

the Itô-Stratonovich correction (6.100).
Taking the expectation of the stochastic differential equation (9.20) yields

a closed system satisfied by the moments

∂E[Vp,q]

∂z
= −q + p

c̄

∂E[Vp,q ]

∂τ
− 3γω2

4c̄2
(p− q)2E[Vp,q ]

+
γω2

4c̄2
pq (E[Vp+1,q+1] + E[Vp−1,q−1]− 2E[Vp,q]) .

We now proceed with the computation of the moments.
Consider first the family of moments fp(ω, τ, z) = E[Vp+1,p(ω, τ, z)], p ∈ N.

It satisfies the closed system

∂fp

∂z
= −2p + 1

c̄

∂fp

∂τ
+

γω2

4c̄2
[p(p + 1)(fp+1 + fp−1 − 2fp)− 3fp] ,

starting from fp(ω, τ, z = −L) = 0. This is a linear system of transport
equations starting from a zero initial condition. As a result, the solution is
fp ≡ 0 for all p. From f0 = 0 we see therefore that E[V ε

1,0(ω, τ, 0)] converges
to zero as ε → 0, so that E[Uε

1,0(ω, h, 0)] also converges to zero as ε → 0.
Note that the last implication is rigorous in the weak formulation described
in [137]. As a consequence, the first moment (9.16) converges to zero:

E[Rε
ω(−L, 0)]

ε→0−→ 0. (9.21)

This result can be generalized as follows. For a fixed positive integer n0,
consider the family of moments fp(ω, τ, z) = E[Vp+n0,p(ω, τ, z)], p ∈ N. Pro-
ceeding as above, the family of functions (fp(ω, τ, z))p∈N is a solution of a
system of transport equations with zero initial conditions. Thus fp ≡ 0, and
consequently

E[Uε
p,q(ω, h, 0)]

ε→0−→ 0, (9.22)

for p = q.
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Consider now the diagonal family of moments gp(ω, τ, z) = E[Vp,p(ω, τ, z)],
p ∈ N. It satisfies the closed system

∂gp

∂z
= −2p

c̄

∂gp

∂τ
+

γω2

4c̄2
p2(gp+1 + gp−1 − 2gp),

starting from gp(ω, τ, z = −L) = δ(τ)10(p). This is a linear system of
transport equations that admits a nontrivial solution. We have thus iden-
tified the limits of the expectations E[V ε

p,p(ω, τ, z)], p ∈ N. They converge to
Wp(ω, τ,−L, z), which obey the closed system of transport equations

∂Wp

∂z
+

2p

c̄

∂Wp

∂τ
= (LωW)p , z ≥ −L , τ ∈ R , p ∈ N , (9.23)

(Lωφ)p =
1

Lloc(ω)
p2 (φp+1 + φp−1 − 2φp) , (9.24)

starting from
Wp(ω, τ,−L, z = −L) = δ(τ)10(p) .

Here Lloc(ω) is the localization length defined by (7.81),

Lloc(ω) =
4c̄2

γω2
.

Using (9.17) and (9.18), we get the limit of the autocorrelation function of
the reflection coefficient

E

[
Rε

ω+εh/2(−L, 0)Rε
ω−εh/2(−L, 0)

]
= E [Uε

11(ω, h, 0)]

=

∫
E [V ε

11(ω, τ, 0)] eihτdτ

ε→0−→
∫
W1(ω, τ,−L, 0)eihτdτ. (9.25)

More generally, we get

E[Uε
p,p(ω, h, 0)]

ε→0−→
∫
Wp(ω, τ,−L, 0)eihτdτ. (9.26)

We can summarize the results of this section in the following proposition.

Proposition 9.1. The expectation of the product of two reflection coefficients
at two nearby frequencies,

E

[(
Rε

ω+εh/2(−L, 0)
)p (

Rε
ω−εh/2(−L, 0)

)q]
,

has the following limit as ε→ 0:
(1) If p = q, then it converges to 0.
(2) If p = q, then it converges to



258 9 Statistics of Incoherent Waves

∫
Wp(ω, τ,−L, 0)eihτdτ,

where Wp(ω, τ,−L, z) is the solution of the system of transport equations
(9.23).

The solutionWp(ω, τ,−L, 0) of the transport equation can be written as a
scaled function of two variables as follows. We introduce the canonical system
of transport equations for W̃p(τ̃ , z̃),

∂W̃p

∂z̃
+ 2p

∂W̃p

∂τ̃
= (L̃W̃)p , z̃ ≥ 0 , τ̃ ∈ R , p ∈ N , (9.27)

W̃p(τ̃ , z̃ = 0) = δ(τ̃ )10(p) , (9.28)

where L̃ is given by

(L̃φ)p = p2 (φp+1 + φp−1 − 2φp) . (9.29)

We have that

Wp(ω, τ,−L, 0) =
c̄

Lloc(ω)
W̃p

(
c̄τ

Lloc(ω)
,

L

Lloc(ω)

)
. (9.30)

Note that we have shifted the z-coordinate to start at z̃ = 0 and that the
ω-dependence of Wp(ω, τ,−L, 0) comes entirely from Lloc(ω). This reduction
in the number of variables is important for numerical simulations.

9.2.2 Probabilistic Representation of the Transport Equations

In this section we give a probabilistic representation of the solution to the
transport equations (9.23) in terms of a jump Markov process. This repre-
sentation is helpful because it leads to explicit solutions in some particular
cases, and in the general case it provides an efficient Monte Carlo method for
numerical simulations.

We introduce the jump Markov process (Nz)z≥−L with state space N and
infinitesimal generator Lω given by (9.24). The construction of the jump pro-
cess is as follows. When it reaches the state n > 0, a random clock with ex-
ponential distribution and parameter 2n2/Lloc(ω) starts running. When the
clock strikes, the process jumps to n + 1 or n− 1 with probability 1/2. Zero
is an absorbing state. Define the process

∂Tz

∂z
= −2

c̄
Nz,

with T−L = τ . The pair (Nz , Tz)z≥−L is Markovian with generator

Lω −
2n

c̄

∂

∂τ
.
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The probabilistic representation of the solution of the Kolmogorov equation

∂u

∂z
=

(
Lω −

2n

c̄

∂

∂τ

)
u, z > −L, u(n, τ, z = −L) = u0(n, τ), (9.31)

is

u(n, τ, z) = E [u0 (Nz, Tz) | N−L = n, T−L = τ ]

= E

[
u0

(
Nz, τ −

2

c̄

∫ z

−L

Nz′dz′
)
| N−L = n

]
. (9.32)

The solution of the transport equations (9.23) is exactly of the form (9.31),
so we can use the probabilistic representation in terms of the jump Markov
process (Nz)z≥−L. Taking u0(n, τ) = 10(n)δ(τ), we obtain u(p, τ, 0) =
Wp(ω, τ,−L, 0), which gives

∫ τ1

τ0

Wp(ω, τ,−L, 0)dτ = P

(
N0 = 0 ,

2

c̄

∫ 0

−L

Nz′dz′ ∈ [τ0, τ1] | N−L = p

)
,

(9.33)
after integrating in τ between τ0 and τ1.

From this probabilistic representation of the solution Wp of the system of
transport equations (9.23), we deduce the following hyperbolicity property. If
τ1 < 2L/c̄ , then the only paths that can contribute to the probability (9.33)
should satisfy

2

c̄

∫ 0

−L

Nzdz ≤ τ1 <
2

c̄
L,

and thus Nz, which takes only integer values, has to vanish before reaching
0. We recall that zero is an absorbing state, so that the process stays at zero
afterwards. As a result, Wp(ω, τ,−L, 0) does not depend on the value of L
for L ≥ c̄τ/2. This result, derived from the probabilistic representation of the
transport equations, is consistent with the hyperbolic nature of the acoustic
wave equations in the homogenized medium with finite speed of propagation
c̄.

We plot in Figure 9.3 the function τ 	→ W1(ω, τ,−L, 0) for different values
of L. We use a Monte Carlo method to compute W1 from its probabilistic
representation (9.33). In the next section we will see that in the limit L→∞,
W1 has a simple explicit form.

We can give another application of the probabilistic representation (9.33).
If we take h = 0 in (9.25), then we obtain

E
[
|Rε

ω |2(−L, 0)
] ε→0−→

∫
W1(ω, τ,−L, 0)dτ.

We thus have a simple probabilistic representation of the limit of the mean-
square reflection coefficient
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Fig. 9.3. Plots of profiles of the function τ �→ W1(ω, τ,−L, 0) for different values
of the width of the slab L. Here c̄ = 1, Lloc(ω) = 2. We see that the profiles for two
different values L0 < L1 are identical for τ smaller than 2L0. Plot (b) shows the
function τ �→ W1(ω, τ,−L, 0)/W∞

1 (ω, τ, 0), where W∞

1 (ω, τ, 0) is the solution (9.41)
for a random half-space L → ∞.

E
[
|Rε

ω|2(−L, 0)
] ε→0−→ P(N0 = 0 | N−L = 1).

This could be used to deduce an explicit integral representation of this limiting
moment, in an alternative way to the one used in Section 7.6. Using the
analogue of Proposition 7.4 in the strongly heterogeneous white-noise regime
(which affects only the definition of Lloc(ω)) we have that

lim
ε→0

E
[
|Rε

ω|2(−L, 0)
]

=

∫
W1(ω, τ,−L, 0)dτ = 1− ξ1

(
L

Lloc(ω)

)
, (9.34)

where ξ1 is given by (7.52). We know that

lim
L→∞

lim
ε→0

E
[
|Rε

ω |2(−L, 0)
]

= 1 ,

which means total reflection by the random half-space, and implies

lim
L→∞

∫
W1(ω, τ,−L, 0)dτ = 1 . (9.35)

Finally, we give an alternative representation of the solution Wp of the
transport equations (9.23), which will be used in the next section to derive
the asymptoic behavior of Wp as L → ∞. It is based on a probabilistic
representation of the solution to the canonical transport equations (9.27) in
terms of the canonical jump Markov process (Ñz̃)z̃≥0 with state space N and

infinitesimal generator L̃ given by (9.29). The construction of the jump process
(Ñz̃)z̃≥0 is as follows. When the jump process reaches the state n > 0, a
random clock with exponential distribution and parameter 2n2 starts running.
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When the clock strikes, the process jumps to n + 1 or n− 1 with probability
1/2, with zero an absorbing state. The solution of the canonical transport
equations (9.27) has the probabilistic representation

∫ τ̃1

τ̃0

W̃p(τ̃ , L̃)dτ̃ = P

(
ÑL̃ = 0 , 2

∫ L̃

0

Ñz̃′dz̃′ ∈ [τ̃0, τ̃1] | Ñ0 = p

)
. (9.36)

Using (9.30), the solution Wp(ω, τ,−L, 0) of the original scaled system of
transport equations (9.23), has the representation

∫ τ1

τ0

Wp(ω, τ,−L, 0)dτ

= P

(
ÑL/Lloc(ω) = 0 ,

2Lloc(ω)

c̄

∫ L/Lloc(ω)

0

Ñz′dz′ ∈ [τ0, τ1] | Ñ0 = p

)
.(9.37)

This shows that a single jump process (namely, (Ñz̃)z̃≥0 starting from Ñ0 = 1)
is sufficient to compute the function W1(ω, τ,−L, 0) for all ω and τ . This
provides the basis for a very efficient Monte Carlo integration method for
computing the function W1.

9.2.3 Explicit Solution for a Random Half-Space

In the limit L → ∞, in which the random slab occupies the full half-space
z ≤ 0, we can compute explicitly the solution of the transport equations (9.23).
For this we use the probabilistic representation (9.37) of the solution in terms
of the canonical jump Markov process. The jump Markov process (Ñz̃)z̃≥0

behaves like a symmetric random walk on the set of positive integers. It is
a well-known result from probability theory that it will eventually reach the
state 0, and since 0 is an absorbing state, Ñz̃ = 0 for z̃ large enough. Therefore,
the random variable

T̃∞ = 2

∫ ∞

0

Ñz̃dz̃

is well defined. As a result,

∫ τ̃1

τ̃0

W̃p(τ̃ , L̃)dτ̃
L̃→∞−→ P

(
T̃∞ ∈ [τ̃0, τ̃1] | Ñ0 = p

)
, p ≥ 0 .

The probability density function P∞
p of the random variable T̃∞ (with the

initial condition Ñ0 = p) satisfies the system of differential equations

dP∞
p

dτ̃
=

p

2

(
P∞

p+1 − 2P∞
p + P∞

p−1

)
, p ≥ 1 ,

with P∞
0 (τ̃ ) = δ(τ̃ ), and P∞

p does not have a Dirac mass at τ̃ = 0 if p ≥ 1.

This system is obtained by setting ∂W̃p/∂z̃ = 0 in (9.27), since the limiting
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distribution does not depend on z̃. It is convenient to consider the associated
cumulative distribution function

H∞
p (τ̃ ) =

∫ τ̃

−∞
P∞

p (τ̃ ′)dτ̃ ′, p ≥ 0 ,

so that the family (H∞
p )p∈N satisfies the same system as (P∞

p )p∈N, but with
H∞

0 (τ) = 1[0,∞)(τ) and H∞
p (τ) = 0 if τ ≤ 0 and p ≥ 1. By a direct verifica-

tion, we find that the solution is given by

H∞
p (τ̃ ) =

(
τ̃

2 + τ̃

)p

1[0,∞)(τ̃ ), p ≥ 0 .

Therefore the solution for the canonical system of transport equations (9.27)
has the limit

lim
L̃→∞

W̃p(τ̃ , L̃) = P∞
p (τ̃ ) , P∞

p (τ̃ ) =
∂

∂τ̃

[(
τ̃

2 + τ̃

)p

1[0,∞)(τ̃ )

]
. (9.38)

For p = 0, we have P∞
0 (τ̃ ) = δ(τ̃ ), and for p ≥ 1,

P∞
p (τ̃ ) =

2pτ̃p−1

(2 + τ̃)p+1
1[0,∞)(τ̃ ) . (9.39)

From (9.30) the solution for the system of transport equations (9.23) has the
limit, as L→∞,

lim
L→∞

Wp(ω, τ,−L, 0) =
c̄

Lloc(ω)
P∞

p

(
c̄τ

Lloc(ω)

)
. (9.40)

In particular, the function W1 that appears in the limit expression (9.25)
of the autocorrelation function of the reflection coefficient has the limit, as
L→∞,

lim
L→∞

W1(ω, τ,−L, 0) =W∞
1 (ω, τ, 0) =

2c̄/Lloc(ω)

(2 + c̄τ/Lloc(ω))2
1[0,∞)(τ) . (9.41)

By integrating the right-hand side in (9.41) with respect to τ , we recover the
result (9.35), which implies total reflection by the random half-space.

9.2.4 Multifrequency Moments

In Section 9.2.1 we give a complete description of the moments of the reflection
coefficient at two nearby frequencies. This is sufficient for the computation of
the time correlation function of the reflected signal, but we need to gener-
alize it to an arbitrary number of frequencies in order to get the complete
statistical distribution of the reflected signal. Let us choose n distinct fre-
quencies (ωj)1≤j≤n and n frequency shifts (hj)1≤j≤n. For (pj , qj)1≤j≤n ∈ N2n

we introduce the generalized product of reflection coefficients



9.2 Statistics of the Reflected Wave in the Frequency Domain 263

Ũε
p̃,q̃(ω̃, h̃, z) =

n∏

j=1

(
Rε

ωj+εhj/2(−L, z)
)pj

(
Rε

ωj−εhj/2(−L, z)
)qj

, (9.42)

where we use the multi-index notation

ω̃ = (ωj)1≤j≤n , h̃ = (hj)1≤j≤n , (p̃, q̃) = (pj , qj)1≤j≤n .

From the Riccati equation (9.10) we can write the system of differential equa-

tions satisfied by Ũε,

∂Ũε
p̃,q̃

∂z
=

n∑

j=1

iωj

c̄
νε(pj − qj)Ũ

ε
p̃,q̃

+
n∑

j=1

iωj

2c̄
νεe

2iωjz

c̄ε

(
qje

− ihj z

c̄ Ũε
p̃,q̃−ẽj

− pje
ihjz

c̄ Ũε
p̃+ẽj ,q̃

)

+

n∑

j=1

iωj

2c̄
νεe−

2iωjz

c̄ε

(
qje

ihjz

c̄ Ũε
p̃,q̃+ẽj

− pje
− ihj z

c̄ Ũε
p̃−ẽj ,q̃

)
,

starting from

Ũε
p̃,q̃(ω̃, h̃, z = −L) =

n∏

j=1

10(pj)10(qj).

We have denoted by ẽj the vector (0, . . . , 0, 1, 0, . . . , 0) whose entries are all 0’s
except the jth entry, which is equal to 1. We apply an n-dimensional Fourier
transform with respect to h̃,

Ṽ ε
p̃,q̃(ω̃, τ̃ , z) =

1

(2π)n

∫
e−ih̃·(τ̃−(p̃+q̃)z/c̄)Ũε

p̃,q̃(ω̃, h̃, z)dh̃, (9.43)

where τ̃ is a multi-index notation for (τj)1≤j≤n, to obtain

∂Ṽ ε
p̃,q̃

∂z
= −

n∑

j=1

pj + qj

c̄

∂Ṽ ε
p̃,q̃

∂τj
+

n∑

j=1

iωj

c̄
νε(pj − qj)Ṽ

ε
p̃,q̃

+

n∑

j=1

iωj

2c̄
νεe

2iωjz

c̄ε

(
qj Ṽ

ε
p̃,q̃−ẽj

− pj Ṽ
ε
p̃+ẽj ,q̃

)

+

n∑

j=1

iωj

2c̄
νεe−

2iωjz

c̄ε

(
qj Ṽ

ε
p̃,q̃+ẽj

− pj Ṽ
ε
p̃−ẽj ,q̃

)
, (9.44)

starting from

Ṽ ε
p̃,q̃(ω̃, τ̃ , z = −L) =

n∏

j=1

δ(τj)10(pj)10(qj).
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By applying the diffusion approximation as in Section 9.2.1, we find that
Ṽ ε

p,q(ω̃, τ̃ , z) converges to the random process Ṽp̃,q̃(ω̃, τ̃ , z), the solution of the
Itô stochastic differential equations

dṼp̃,q̃ = −
n∑

j=1

pj + qj

c̄

∂Ṽp̃,q̃

∂τj
dz +

n∑

j=1

i
√

γωj

c̄
(pj − qj)Ṽp̃,q̃dW0(z)

+

n∑

j=1

i
√

γωj

2
√

2c̄

(
qj Ṽp̃,q̃−ẽj − pj Ṽp̃+ẽj ,q̃ + qj Ṽp̃,q̃+ẽj − pjṼp̃−ẽj ,q̃

)
dW1,j(z)

+

n∑

j=1

i
√

γωj

2
√

2c̄

(
qj Ṽp̃,q̃−ẽj − pj Ṽp̃+ẽj ,q̃ − qj Ṽp̃,q̃+ẽj + pjṼp̃−ẽj ,q̃

)
dW2,j(z)

+

n∑

j=1

γω2
j

4c̄2
pjqj

(
Ṽp̃+ẽj ,q̃+ẽj + Ṽp̃−ẽj ,q̃−ẽj − 2Ṽp̃,q̃

)
dz

− γ

4c̄2

⎡
⎢⎣

n∑

j=1

ω2
j (pj − qj)

2 + 2

⎛
⎝

n∑

j=1

ωj(pj − qj)

⎞
⎠

2
⎤
⎥⎦ Ṽp̃,q̃dz, (9.45)

where W0, W1,j , and W2,j , j = 1, . . . , n, are 2n + 1 independent Brownian
motions. The initial condition at z = −L is

Ṽp̃,q̃(ω̃, τ̃ , z = −L) =

n∏

j=1

δ(τj)10(pj)10(qj).

This result can be obtained by inspection from (9.44) by replacing the integrals
of νε(z), νε(z) cos(2ωjz/(c̄ε)), and νε(z) sin(2ωjz/(c̄ε)), j = 1, . . . , n, by the
independent Brownian motions W0, W1,j , and W2,j , j = 1, . . . , n. The last
two lines in (9.45) are the Itô–Stratonovich corrections (6.100).

We can thus write the following closed-form system for the moments:

dE[Ṽp̃,q̃]

dz
= −

n∑

j=1

pj + qj

c̄

∂E[Ṽp̃,q̃]

∂τj

+

n∑

j=1

γω2
j

4c̄2
pjqj

(
E[Ṽp̃+ẽj ,q̃+ẽj ] + E[Ṽp̃−ẽj ,q̃−ẽj ]− 2E[Ṽp̃,q̃]

)

− γ

4c̄2

⎡
⎢⎣

n∑

j=1

ω2
j (pj − qj)

2 + 2

⎛
⎝

n∑

j=1

ωj(pj − qj)

⎞
⎠

2
⎤
⎥⎦E[Ṽp̃,q̃]. (9.46)

This system has special structure. For a fixed integer n0, the subfamily of

moments
{

E[Ṽp̃,q̃], (p̃, q̃) ∈ N2n,
∑n

j=1 |pj − qj | = n0

}
satisfies a closed subsys-

tem of transport equations. The main difference between these sub-systems is
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that for n0 = 0, the initial conditions for the subfamily are not zero, while for
n0 = 0, the initial condition is zero. As a result, the solution of the subsystem
is zero for all n0 = 0. This implies the following.

First, if p̃ = q̃, that is if there is a j ∈ {1, . . . , n} such that pj = qj , then the
generalized moment of the product of reflection coefficients (9.42) converges
to 0,

E

[
Ũε

p̃,q̃(ω̃, h̃, z)
]

ε→0−→ 0 , (9.47)

and second, if p̃ = q̃, that is, if pj = qj for all j, then the moment of the

process Ṽ ε
p̃,p̃ defined by (9.43) converges to

W̃p̃(ω̃, τ̃ ,−L, z) =

n∏

j=1

Wpj (ωj , τj ,−L, z). (9.48)

Here Wp is the solution of the system of transport equations (9.23). As a
result,

E

[
Ũε

p̃,p̃(ω̃, h̃, 0)
]

ε→0−→
∫

eih̃·τ̃W̃p̃(ω̃, τ̃ ,−L, 0)dτ̃

=

n∏

j=1

∫
eihjτjWpj (ωj, τj ,−L, 0)dτj. (9.49)

From (9.47) and (9.49) we have the following proposition.

Proposition 9.2. The expectation of the product of 2n reflection coefficients

E

⎡
⎣

n∏

j=1

Rε
ωj+εhj/2(−L, 0)Rε

ωj−εhj/2(−L, 0)

⎤
⎦ ,

where n is a positive integer, (ωj)1≤j≤n ∈ Rn are all distinct, and (hj)1≤j≤n ∈
Rn, converges as ε→ 0 to the limit

n∏

j=1

∫
eihjτjW1(ωj , τj ,−L, 0)dτj,

where W1 is the solution of the system of transport equations (9.23).
If there is one or several unmatched frequencies in the product of reflection

coefficients, then the limit of the moment is zero.

We note that in the limit ε → 0, the processes (Rε
ω , Rε

ω′) are not inde-
pendent when ω = ω′. They share the randomness of the common Brownian
motion W0 in (9.45). However, they behave as if they were independent as far
as moments of (9.42) are concerned, because from (9.22) and (9.47), and from
(9.26) and (9.49), we see by direct computation that for any (pj , qj)1≤j≤n,
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lim
ε→0

E

⎡
⎣

n∏

j=1

Uε
pj ,qj

(ωj , hj , 0)

⎤
⎦ =

n∏

j=1

lim
ε→0

E

[
Uε

pj ,qj
(ωj , hj , 0)

]
.

In particular, choosing pj = 1, qj = 0, and hj = 0, we see that for any set of
distinct frequencies (ωj)j=1,...,n,

lim
ε→0

E

⎡
⎣

n∏

j=1

Rε
ωj

(−L, 0)

⎤
⎦ = 0 . (9.50)

9.3 Statistics of the Reflected Wave in the Time Domain

9.3.1 Mean Amplitude

By (9.13) the mean amplitude of the reflected wave is

E[Aε(t, 0)] =
1

2π
√

ε

∫
E[Rε

ω(−L, 0)]f̂(ω)e−i ωt
ε dω. (9.51)

In Chapter 8 we have studied this quantity for an incident pulse with a fixed
amplitude, that is, without the factor 1/

√
ε. In that case, it is sufficient to use

(9.21), E[Rε
ω(−L, 0)] → 0 as ε → 0, to obtain the convergence of the mean

amplitude to zero. We know from the asymptotic analysis of Chapter 6 that
E[Rε

ω(−L, 0)] converges to 0 with an error of order ε, which neutralizes the
singular factor 1/

√
ε, and thus we get the expected result

E[Aε(t, 0)]
ε→0−→ 0. (9.52)

9.3.2 Mean Intensity

We consider the representation (9.14) of the mean intensity:

E[Aε(t, 0)2] =
1

4π2

∫ ∫
E[Uε

11(ω, h, 0)]f̂(ω + εh/2)f̂(ω − εh/2)e−ihtdω dh.

From (9.25) we know the limit of the expectation that appears in this integral,
so that we can write

E[Aε(t, 0)2]
ε→0−→ I(t),

with

I(t) =
1

4π2

∫ ∫ ∫
W1(ω, τ,−L, 0)|f̂(ω)|2eih(τ−t)dh dτ dω

=
1

4π2

∫ ∫
W1(ω, τ,−L, 0)|f̂(ω)|22πδ(τ − t)dτ dω

=
1

2π

∫
W1(ω, t,−L, 0)|f̂(ω)|2dω. (9.53)
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In Figure 9.4 we show simulations of the reflected signal amplitude and
intensity in the numerical setup described in Section 8.2.3. The slow power
law decay of the mean reflected intensity is indicative of intense delay spread
in the reflected signal, due to random scattering.

Integrating (9.53) with respect to t we obtain the total reflected energy.
Using (9.34), we have the explicit expression

∫
I(t)dt =

1

2π

∫ [
1− ξ1

(
L

Lloc(ω)

)]
|f̂(ω)|2dω,

where ξ1 is given by (7.52).
For L large enough, the reflected intensity at a given time t does not depend

on L. This is a simple consequence of the hyperbolicity of the acoustic wave
equation with a bounded speed of propagation. This has also been pointed out
in Section 9.2.2, where we have shown with the probabilistic representation
of W1(ω, τ,−L, 0) that it does not depend on L for L ≥ c̄τ/2. In particular,
the transmitted intensity (9.53) does not depend on L for L large enough,
and therefore it is equal to its limit as L → ∞. In the case of the random
half-space analyzed in Section 9.2.3 we have the explicit formula (9.41) for
W1, leading to

I∞(t) =
1

2π

∫
2c̄/Lloc(ω)

(2 + c̄t/Lloc(ω))2
|f̂(ω)|2dω.

As noted in Section 9.2.3, the total reflected energy equals the total incident
energy, ∫

I∞(t)dt =
1

2π

∫
|f̂(ω)|2dω =

∫
f(t)2dt ,

which confirms that the wave has been completely reflected by the random
medium, as predicted by the localization theory in Chapter 7.

When the incident signal is a narrowband pulse with carrier frequency ω0

and energy E0 =
∫

f(t)2dt, the mean reflected intensity is approximately

I∞(t) =
2E0c̄/Lloc(ω0)

(2 + c̄t/Lloc(ω0))2
=

E0/t0
(1 + t/t0)2

, (9.54)

where t0 = 2Lloc(ω0)/c̄. This slow power law decay as t−2 is typical of one-
dimensional random media that produce reflections that continue for a long
time. Half the reflected energy is captured in the time interval [0, t0]. The
rough picture is that the wave penetrates into the medium up to the distance
Lloc(ω0), and then it is scattered back, which takes 2Lloc(ω0)/c̄ time.

9.3.3 Autocorrelation and Time-Domain Localization

We now consider the local time autocorrelation function of the reflected signal
at a fixed time t with lag εs, on the scale of the incident pulse, which is defined
by
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Fig. 9.4. Plot (a): Reflected signal for one realization of the random medium. Plot
(b): Reflected intensity for one realization of the random medium (dotted line), mean
intensity averaged over 103 realizations (thin solid line), and theoretical expected
reflected intensity (thick solid line) given by (9.53). The numerical setup described
in Section 8.2.3 is used.

cε
t (s) = E[Aε(t, 0)Aε(t + εs, 0)].

Using the integral representation (9.12), we have

cε
t (s) =

1

4π2

∫ ∫
E[Uε

11(ω, h, 0)]f̂(ω + εh/2)f̂(ω − εh/2)e−iht+iωs+iεhsdω dh.

Taking the limit ε → 0, using the finite energy of the pulse and Proposition
9.1, we have that

cε
t (s)

ε→0−→ ct(s),

where ct is given by

ct(s) =
1

4π2

∫ ∫ ∫
W1(ω, τ,−L, 0)|f̂(ω)|2eih(τ−t)eiωsdτ dω dh

=
1

2π

∫
W1(ω, t,−L, 0)|f̂(ω)|2eiωsdω. (9.55)

We see therefore that the local power spectral density of the reflected wave
around time t is W1(ω, t,−L, 0)|f̂(ω)|2.

In the case of a random half-space, W1 is given by (9.41), and so

W∞
1 (ω, t, 0) =

2c̄/Lloc(ω)

(2 + c̄t/Lloc(ω))2
1[0,∞)(t) .

For a fixed time t the maximum of this quantity over ω is attained at ω∗(t),
where

t =
2c̄

Lloc(ω∗(t))
, (9.56)
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or

ω∗(t) =

√
2c̄t

γ
.

We interpret this as follows. Assuming that |f̂(ω)| is flat over its bandwidth,
then the maximum of the local power spectral density of the reflected signal
at time t is at ω∗(t), which is defined by (9.56). This is the frequency for
which waves travel to a distance equal to the localization length Lloc(ω

∗) and
back. This provides a time-domain interpretation of the localization length as
the distance from which the most scattered energy is carried by the reflected
waves.

9.3.4 Gaussian Statistics

The goal of this section is to show that the sequence of processes

(Aε(t + εs))−∞<s<∞,

with t fixed, converges as ε→ 0 in distribution to a Gaussian process. We will
prove this by showing that for any smooth test function g(s), the sequence of
random variables

Aε
t,g =

∫
Aε(t + εs)g(s)ds

converges in distribution to a Gaussian random variable as ε → 0. This will
be done by computing the limiting moments of Aε

t,g.
We first substitute the integral representation of A(t+εs) in the definition

of Aε
t,g

Aε
t,g =

1

2π
√

ε

∫ ∫
Rε

ω(−L, 0)f̂(ω)g(s)e−iωse−i ωt
ε ds dω

=
1

2π
√

ε

∫
Rε

ω(−L, 0)F̂ (ω)e−i ωt
ε dω,

with the notation
F̂ (ω) = f̂(ω)ĝ(ω) .

The functions f and g are real-valued, so that F̂ (−ω) = F̂ (ω). From the
Riccati equation (9.10), we also have Rε

−ω = Rε
ω. As a consequence we can

write

Aε
t,g =

1

2π
√

ε

(∫ 0

−∞
Rε

ω(−L, 0)F̂ (ω)e−i ωt
ε dω +

∫ ∞

0

Rε
ω(−L, 0)F̂ (ω)e−i ωt

ε dω

)

=
1

2π
√

ε

(∫ ∞

0

Rε
−ω(−L, 0)F̂ (−ω)ei ωt

ε dω +

∫ ∞

0

Rε
ω(−L, 0)F̂ (ω)e−i ωt

ε dω

)

=
1

2π
√

ε

(∫ ∞

0

Rε
ω(−L, 0)F̂ (ω)ei ωt

ε dω +

∫ ∞

0

Rε
ω(−L, 0)F̂ (ω)e−i ωt

ε dω

)
.
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We use this decomposition because it involves in a symmetric way the reflec-
tion coefficient and its complex conjugate. As a result, the nth moment can
be expanded as

E
[
(Aε

t,g)
n
]

=

n∑

p=0

(
n
p

)
M ε

p,n−p, (9.57)

where

M ε
p,q =

1

(2π)p+qε(p+q)/2

∫

ωj>0

∫

ω′
k>0

p∏

j=1

F̂ (ωj)

q∏

k=1

F̂ (ω′
k)ei t

ε (
∑

k ω′
k−

∑
j ωj)

×E

⎡
⎣

p∏

j=1

Rε
ωj

(−L, 0)

q∏

k=1

Rε
ω′

k
(−L, 0)

⎤
⎦

p∏

j=1

dωj

q∏

k=1

dω′
k. (9.58)

We now compute the limit of M ε
p,q as ε→ 0.

First we consider the case p = q. From (9.47) we know that the limit of the
generalized moment that appears in the expression of M ε

p,q is zero. However,
this argument is not sufficient because of the presence of the singular factor
1/ε(p+q)/2. With a corrector argument similar to those used in Chapter 6, but
more involved, we get the convergence of the mean amplitude to zero. We
refer to [32] for a detailed analysis. The result is that if p = q,

M ε
p,q

ε→0−→ 0. (9.59)

We now address the case p = q. The integrand in (9.58) is symmetric with
respect to the two sets of frequencies (ωj)1≤j≤p, (ω′

k)1≤k≤p, so we can write

M ε
p,p =

p!2

(2π)2pεp

∫

0<ω1<···<ωp

∫

0<ω′
1<···<ω′

p

p∏

j=1

F̂ (ωj)F̂ (ω′
j)e

i t
ε

∑
j(ω′

j−ωj)

×E

⎡
⎣

p∏

j=1

Rε
ωj

(−L, 0)Rε
ω′

j
(−L, 0)

⎤
⎦

p∏

j=1

dωj dω′
j .

The limit of the expectation is nonzero only if ω′
j is close to ωj , as shown by

(9.47). By applying the change of variables ω′
j = ωj − εhj, we have

M ε
p,p =

p!2

(2π)2p

∫

0<ω1<···<ωp

∫

h1,...,hp

p∏

j=1

F̂ (ωj)F̂ (ωj − εhj)e
−it

∑
j hj

×E

⎡
⎣

p∏

j=1

Rε
ωj

(−L, 0)Rε
ωj−εhj

(−L, 0)

⎤
⎦

p∏

j=1

dωj dhj .

We shift the variables ωj to identify the generalized moment of the reflection
coefficient studied in Section 9.2.4,
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M ε
p,p =

p!2

(2π)2p

∫

0<ω1<···<ωp

∫

h1,...,hp

p∏

j=1

F̂ (ωj + εhj/2)F̂ (ωj − εhj/2)e−it
∑

j hj

×E

⎡
⎣

p∏

j=1

Rε
ωj+εhj/2(−L, 0)Rε

ωj−εhj/2(−L, 0)

⎤
⎦

p∏

j=1

dωj dhj .

We can now take the limit ε→ 0 and use (9.49):

M ε
p,p

ε→0−→ p!2

(2π)2p

∫

0<ω1<···<ωp

∫

h1,···,hp

p∏

j=1

|F̂ (ωj)|2e−it
∑

j hj

×
p∏

j=1

[∫
W1(ωj , τj ,−L, 0)eihjτj dτj

] p∏

j=1

dωj dhj .

The multiple integral is symmetric with respect to the set of frequencies
(ωj)1≤j≤p, so we can write

M ε
p,p

ε→0−→ p!

(2π)2p

∫

ω1>0,...,ωp>0

∫

h1,...,hp

∫

τ1,...,τp

p∏

j=1

|F̂ (ωj)|2e−it
∑

j hj

×W1(ωj , τj ,−L, 0)eihjτjdτj dωj dhj ,

which can be factored as

M ε
p,p

ε→0−→ p!

2p
(μt,g)

p, (9.60)

where

μt,g =
1

2π2

∫

ω>0

∫ ∫
|F̂ (ω)|2W1(ω, τ,−L, 0)eih(τ−t)dh dτ dω

=
1

π

∫

ω>0

|F̂ (ω)|2W1(ω, t,−L, 0)dω

=
1

2π

∫
|F̂ (ω)|2W1(ω, t,−L, 0)dω. (9.61)

Substituting (9.59) and (9.60) into the expression (9.57), we have that for any
integer p,

E
[
(Aε

t,g)
2p+1

] ε→0−→ 0, (9.62)

E
[
(Aε

t,g)
2p

] ε→0−→
(

2p
p

)
p!

2p
(μt,g)

p. (9.63)

These are the moments of a zero-mean Gaussian random variable with vari-
ance μt,g. Thus, Aε

t,g converges in distribution to this random variable. This
is true for any test function g. As a result, (Aε(t + εs))∞<s<∞ converges for
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each t fixed to a Gaussian process (At(s))−∞<s<∞ that has mean zero and
autocorrelation function

ct(s) = E[At(s
′)At(s

′ + s)]

=
1

2π

∫
W1(ω, t,−L, 0)|f̂(ω)|2eiωsdω. (9.64)

Note that for each t the limiting process is stationary, since the autocorre-
lation function does not depend on s′. We state this result in the following
proposition.

Proposition 9.3. The reflected wave around some time t, on the scale ε,

Aε(t + εs, 0),

converges as ε→ 0 as a process in s to (At(s))−∞<s<∞, which is a stationary
Gaussian process with mean zero and autocorrelation function

E[At(s
′)At(s

′ + s)] =
1

2π

∫
W1(ω, t,−L, 0)|f̂(ω)|2eiωsdω .

Here W1 is the solution of the system of transport equations (9.23).

9.4 The Transmitted Wave

As with the reflected signal (9.12), the integral expression of the transmitted
wave involves the transmission coefficient T ε

ω(−L, 0):

Bε(t,−L) = b

(
t− L/c̄

ε
,−L

)

=
1

2π

∫
b̂ε(ω,−L)e−iω t−L/c̄

ε dω

=
1

2π
√

ε

∫
T ε

ω(−L, 0)f̂(ω)e−iω t−L/c̄
ε dω. (9.65)

The statistical distribution of the transmitted wave can therefore be obtained
from the joint distribution of the transmission coefficients at several frequen-
cies.

9.4.1 Autocorrelation Function of the Transmission Coefficient

We study here the autocorrelation function of the transmission coefficient at
two nearby frequencies. The strategy follows the same lines as in Section 9.2.1.
We first define a new family of processes indexed by p, q ∈ N,

U (T ),ε
p,q (ω, h, z) = Uε

p,q(ω, h, z)T ε
ω+εh/2(−L, z)T ε

ω−εh/2(−L, z), (9.66)
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where Uε
p,q is the product of reflection coefficients defined by (9.15). Using

the Riccati equation (9.10) and the differential equation (9.11) satisfied by

the transmission coefficient, we see that the family (U
(T ),ε
p,q )p,q∈N satisfies the

closed system

∂U
(T ),ε
p,q

∂z
=

iω

c̄
νε(p− q)U (T ),ε

p,q +
iω

2c̄
νεe

2iωz
c̄ε

(
qe−

ihz
c̄ U

(T ),ε
p,q−1 − (p + 1)e

ihz
c̄ U

(T ),ε
p+1,q

)

+
iω

2c̄
νεe−

2iωz
ε

(
(q + 1)e

ihz
c̄ U

(T ),ε
p,q+1 − pe

−ihz
c̄ U

(T ),ε
p−1,q

)
,

starting from
U (T ),ε

p,q (ω, h, z = −L) = 10(p)10(q).

Taking a shifted and scaled Fourier transform with respect to h,

V (T ),ε
p,q (ω, τ, z) =

1

2π

∫
e−ih(τ−(p+q)z/c̄)U (T ),ε

n,p (ω, h, z)dh,

we get

∂V
(T ),ε
p,q

∂z
= −p + q

c̄

∂V
(T ),ε
p,q

∂τ
+

iω

c̄
νε(p− q)V (T ),ε

p,q

+
iω

2c̄
νεe

2iωz
c̄ε

(
qV

(T ),ε
p,q−1 − (p + 1)V

(T ),ε
p+1,q

)

+
iω

2c̄
νεe−

2iωz
ε

(
(q + 1)V

(T ),ε
p,q+1 − pV

(T ),ε
p−1,q

)
,

starting from
V (T ),ε

p,q (ω, τ, z = −L) = δ(τ)10(p)10(q).

As in Section 9.2.1, we can use the limit theorem of Section 6.7.3 to show that

the process (V
(T ),ε
p,q )p,q∈N converges as ε→ 0 to a diffusion process. In partic-

ular, the expectations E[V
(T ),ε
p,p (ω, τ, z)], p ∈ N, converge toW(T )

p (ω, τ,−L, z),
p ∈ N, which obey the closed system of transport equations

∂W(T )
p

∂z
+

2p

c̄

∂W(T )
p

∂τ
= (L(T )

ω W(T ))p , z ≥ −L , (9.67)

starting from
W(T )

p (ω, τ,−L, z = −L) = δ(τ)10(p) .

The operator L(T )
ω is defined by

(L(T )
ω φ)p =

1

Lloc(ω)

(
(p + 1)2φp+1 + p2φp−1 − ((p + 1)2 + p2)φp

)
, (9.68)

with Lloc(ω) given by (7.81).
By taking an inverse Fourier transform with respect to τ , we get the limit

of the autocorrelation function of the transmission coefficient as stated in the
following proposition.
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Proposition 9.4. The expectation of the product of two transmission coeffi-
cients at two nearby frequencies has a limit as ε→ 0:

E

[
T ε

ω+εh/2(−L, 0)T ε
ω−εh/2(−L, 0)

]
ε→0−→

∫
W(T )

0 (ω, τ,−L, 0)eihτdτ, (9.69)

where W(T )
0 is the solution of the system of transport equations (9.67).

Note that τ 	→ W(T )
p (ω, τ,−L, 0) is characterized by only two parameters:

the travel time Lloc(ω)/c̄ and the ratio L/Lloc(ω). Indeed, if we introduce the

solutions W̃(T )
p (τ̃ , z̃) of the canonical system of transport equations

∂W̃(T )
p

∂z̃
+ 2p

∂W̃(T )
p

∂τ̃
= (L̃(T )W̃)p , z̃ ≥ 0 , (9.70)

(L̃(T )φ̃)p = (p + 1)2φ̃p+1 + p2φ̃p−1 − (p2 + (p + 1)2)φ̃p , (9.71)

starting from
W̃(T )

p (τ̃ , z̃ = 0) = δ(τ̃ )10(p) ,

then we simply have

W(T )
p (ω, τ,−L, 0) =

c̄

Lloc(ω)
W̃(T )

p

(
c̄τ

Lloc(ω)
,

L

Lloc(ω)

)
.

9.4.2 Probabilistic Representation of the Transport Equations

We can interpret the system of transport equations (9.67) in terms of a jump

Markov process as in Section 9.2.2. Let us introduce the process (N
(T )
z )z≥−L

with state space N and infinitesimal generator L(T )
ω defined by (9.68). The

explicit description of the jump process is as follows. When the jump process
reaches the state n ∈ N, a random clock with exponential distribution and
parameter [n2 + (n + 1)2]/Lloc(ω) starts running. When the clock strikes, the
process jumps to n + 1 with probability (n + 1)2/[n2 + (n + 1)2] and to n− 1

with probability n2/[n2+(n+1)2]. There is no absorbing state. Note that L(T )
ω

is the adjoint of the generator Lω of the process (Nz)z≥−L given by (9.24) in
Section 9.2.2: ∑

p

φp(L(T )
ω ψ)p =

∑

p

(Lωφ)pψp.

By comparing the corresponding Kolmogorov equations, we see that the dis-

tribution of (N
(T )
z )z≥−L is that of the time-reversed process of (Nz)z≥−L

(which has nothing to do with time reversal!). Proceeding as in Section 9.2.2,
we obtain the probabilistic representation

∫ τ1

τ0

W(T )
0 (ω, dτ,−L, 0) = P

(
2

c̄

∫ 0

−L

N (T )
z dz ∈ [τ0, τ1] , N

(T )
0 = 0 | N (T )

−L = 0

)
.

(9.72)
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Note that the Markov process is nonnegative-valued, which means that W(T )
0

must vanish for negative τ . Two types of paths of the Markov process con-
tribute to the probability (9.72): those that stay at state zero during the
interval z ∈ [−L, 0], and those that have at least one jump.
(1) The contribution of the paths of the first kind is singular and gives rise to
a Dirac mass at τ = 0 with the probability

pω,d = P

(
N (T )

z = 0 ∀z ∈ [−L, 0] | N (T )
−L = 0

)

= P

(
no jump before 0 | N (T )

−L = 0
)

.

The first time when the process jumps has an exponential distribution with
parameter 1/Lloc(ω), so that

pω,d = exp

(
− L

Lloc(ω)

)
.

(2) The contribution of the paths of the second kind is continuous. This result
is obtained by conditioning the right-hand side of (9.72) over the first jump

time ZJ
1 of the process (N

(T )
z )z≥−L:

∫ τ1

0

W(T )
0 (ω, dτ,−L, 0) =

∫ ∞

−L

Q(dz1) =

∫ ∞

0

Q(dz1) +

∫ 0

−L

Q(dz1),

with

Q(dz1)

= P

(
2

c̄

∫ 0

−L

N (T )
z dz ∈ [0, τ1] , ZJ

1 ∈ [z1, z1 + dz1) , N
(T )
0 = 0 | N (T )

−L = 0

)
.

The first term of the right-hand side is the contribution of the paths of the
first kind (i.e., the first jump occurs after 0):

∫ ∞

0

Q(dz1) = pω,d.

If z1 ∈ (−L, 0), then we can apply the Markov property:

Q(dz1) = q(z1, τ1)P
(
ZJ

1 ∈ [z1, z1 + dz1) | N (T )
−L = 0

)
,

q(z1, τ1) = P

(
2

c̄

∫ 0

z1

N (T )
z dz ∈ [0, τ1] , N

(T )
0 = 0 | N (T )

z1
= 1

)
.

The random variable ZJ
1 has an exponential distribution with parameter

1/Lloc(ω), so that

Q(dz1) = q(z1, τ1)
1

Lloc(ω)
e
− L+z1

Lloc(ω) dz1 .
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By the homogeneity of the random process N (T ), we can write

q(z1, τ1) = P

(
2

c̄

∫ −z1−L

−L

N (T )
z dz ∈ [0, τ1] , N

(T )
−z1−L = 0 | N (T )

−L = 1

)

=

∫ τ1

0

W(T )
1 (ω, dτ,−L,−z1 − L).

As a consequence,W(T )
0 is not a density with respect the Lebesgue measure

over R+. It consists of the sum of a Dirac mass at 0 and a density:

W(T )
0 (ω, dτ,−L, 0) = pω,dδ(dτ) +W(T )

0,c (ω, dτ,−L, 0). (9.73)

The absolutely continuous part is given by

W(T )
0,c (ω, dτ,−L, 0)

=
1

Lloc(ω)

∫ 0

−L

W(T )
1 (ω, dτ,−L,−z1 − L)e

− L+z1
Lloc(ω) dz1. (9.74)

It does not seem possible to derive a closed-form expression for the density

W(T )
0,c . We can either derive expansions, or perform numerical simulations

based on Monte Carlo simulations of the random jump process (N
(T )
z )−L≤z≤0.

• We can expandW(T )
0,c for small τ . Indeed, if c̄τ/Lloc(ω)≪ 1, then only the

paths that jump very quickly from 1 to 0, and then stay at 0, contribute

to the value of W(T )
1 :

W(T )
1 (ω, dτ,−L,−z1 − L)

= P

(
2

c̄

∫ −L−z1

−L

N (T )
z dz ∈ [τ, τ + dτ ] , N

(T )
−z1−L = 0 | N (T )

−L = 1

)

∼ P
(
ZJ

1 ∈ [−L + c̄τ/2,−L + c̄(τ + dτ)/2) ,

first jump to 0, stay at 0 | N (T )
−L = 1

)

=
5

Lloc(ω)
exp

(
− 5c̄τ

2Lloc(ω)

)
c̄dτ

2
× 1

5
× exp

(
2z1 + c̄τ

2Lloc(ω)
)

)

=
c̄

2Lloc(ω)
exp

(
z1 − 2c̄τ

Lloc(ω)

)
dτ,

so that

W(T )
0,c (ω, dτ,−L, 0)

c̄τ≪Lloc(ω)∼ c̄L

2Lloc(ω)2
exp

(
− L

Lloc(ω)

)
dτ . (9.75)

• We can expand W(T )
0,c for small L. Indeed, if L/Lloc(ω) ≪ 1 (in practice,

≤ 1/2), then only the paths that jump very quickly from 1 to 0, and then

stay at 0, contribute to the valueW(T )
1 . Using the same method as above,
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W(T )
0,c (ω, dτ,−L, 0)

L≪Lloc(ω)∼ c̄

2Lloc(ω)2

(
L− c̄τ

2

)
exp

(
−L + 2c̄τ

Lloc(ω)

)
1(0,2L/c̄)(τ)dτ . (9.76)

• We can perform Monte Carlo simulations to compute the density of the ab-

solutely continuous measureW(T )
0,c (ω, dτ,−L, 0). We plot in Figure 9.5 the

densities τ 	→ W(T )
0,c (ω, dτ,−L, 0) for different values of the ratio L/Lloc(ω).
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Fig. 9.5. Profiles of the function τ �→ W(T )
0,c (ω, τ, 0), which is the density of the

absolutely continuous part of the solution W(T )
0 (ω, dτ,−L, 0) of the system of trans-

port equations (9.67), for different values for the width of the slab L. Here c̄ = 1,
Lloc(ω) = 2.

9.4.3 Statistics of the Transmitted Wave in the Time Domain

We consider the transmitted signal in a time window of size ε centered at time
t:

Bε(t + εs,−L) =
1

2π
√

ε

∫
T ε

ω(−L, 0)f̂(ω)e−i ω(t−L/c̄)
ε e−iωsdω. (9.77)

If t = L/c̄, then we know that the transmitted wave contains a coherent part.
In our framework, the amplitude of this coherent part is of order 1/

√
ε, and

the shape of this coherent wave has been extensively studied in Chapter 8. If
t = L/c̄, then there is no coherent wave in the observed signal.

We can consider the mean intensity of the transmitted wave E[B(t,−L)2].
Using the integral representation (9.77),

E[Bε(t,−L)2] =
1

4π2

∫ ∫
E

[
U

(T ),ε
00 (ω, h, 0)

]

×f̂(ω + εh/2)f̂(ω − εh/2)e−ih(t−L/c̄)dω dh,
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and taking the limit ε→ 0 yields

E[Bε(t,−L)2]
ε→0−→ I(T )(t), (9.78)

with

I(T )(t) =
1

2π

∫
W(T )

0 (ω, t− L/c̄,−L, 0)|f̂(ω)|2dω. (9.79)

We can discuss the qualitative properties of the mean transmitted intensity

by considering the form (9.73) of W(T )
0 :

1. W(T )
0 (ω, τ,−L, 0) is zero for negative τ . This shows that the mean trans-

mitted intensity is zero for t < L/c̄. Recall that L/c̄ is the arrival time of
the stable wave front at the output interface, so this proves that there is
no incoherent wave ahead of the stable wave front.

2. W(T )
0 (ω, τ,−L, 0) possesses a Dirac mass at τ = 0. This shows that an

impulse of transmitted energy is going out of the random slab at time
L/c̄. The energy of the impulse is

Ecoh := lim
δ→0

∫ L/c̄+δ

L/c̄−δ

I(T )(t)dt

=
1

2π

∫
pω,d|f̂(ω)|2dω

=
1

2π

∫
exp

(
− L

Lloc(ω)

)
|f̂(ω)|2dω. (9.80)

This energy impulse actually corresponds to the transmission of the stable
wave front, which is consistent with the expression (8.48) of the energy of
the stable wave front.

3. W(T )
0 (ω, τ,−L, 0) is positive-valued for τ > 0. This shows that we can

observe the transmission of incoherent waves following the wave front.
The energy of the transmitted incoherent wave fluctuations is

Einc := lim
δ→0

∫ ∞

L/c̄+δ

I(T )(t)dt

=
1

2π

∫ ∫
W0,c(ω, t,−L, 0)dt|f̂(ω)|2dω

=
1

2π

∫ [
ξ1

(
L

Lloc(ω)

)
− exp

(
− L

Lloc(ω)

)]
|f̂(ω)|2dω , (9.81)

where ξ1 is defined by (7.52). The last identity comes from the fact that the
total transmitted energy is known (Proposition 7.5) as well as the energy
of the transmitted wave front. As shown by Figure 9.6, for L/Lloc(ω) >
2.04, the energy of the transmitted incoherent wave fluctuations is larger
than the energy of the wave front. These incoherent waves require a more
detailed analysis.
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Fig. 9.6. Transmitted energy density at frequency ω as a function of L/Lloc(ω).
The solid line stands for the total transmitted energy, the dashed line for the energy
of the transmitted stable wave front, and the dot-dashed line for the incoherent
transmitted energy.

Let us consider a time t > L/c̄. We would like to study the process (B(t+
εs,−L))−∞<s<∞. We first consider the time-correlation function

c
(T ),ε
t (s) = E[Bε(t,−L)Bε(t + εs,−L)].

Using the integral representation (9.77), we have

c
(T ),ε
t (s) =

1

4π2

∫ ∫
E

[
U

(T ),ε
00 (ω, h, 0)

]

×f̂(ω + εh/2)f̂(ω − εh/2)e−ih(t−L/c̄)+iωs+iεhsdω dh.

Taking the limit ε→ 0 yields

c
(T ),ε
t (s)

ε→0−→ c
(T )
t (s), (9.82)

with

c
(T )
t (s) =

1

2π

∫
W(T )

0 (ω, t− L/c̄,−L, 0)|f̂(ω)|2eiωsdω. (9.83)

Computing higher-order moments as in Section 9.3.4, we eventually get the
following proposition.

Proposition 9.5. The transmitted wave fluctuations have Gaussian statistics
in the limit ε → 0. More precisely, for any t > L/c̄, the process (Bε(t +
εs,−L))−∞<s<∞ converges to a zero-mean stationary Gaussian process with

the autocorrelation function c
(T )
t given by (9.83).
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Notes

The statistics of the incoherent waves presented here in a self-contained way
have been derived in the series of papers [8, 9, 31, 32, 33, 104, 107, 133, 137,
152, 153, 170, 169]. The analysis of the transmission coefficient is new. The
connection between the transport equations used in this chapter and the polar
coordinates used in Chapter 7 is provided by a duality introduced in [137].



10

Time Reversal in Reflection and Spectral
Estimation

In this chapter we introduce the concept of time reversal of waves. We first
consider the case of time reversal in reflection, in which a source emits a pulse
at one end of a one-dimensional slab, and a time-reversal mirror placed at
the same location records the reflected signal. The mirror then reemits a part
of the recorded signal trace in the reverse direction of time, so that what is
recorded last is sent first (last-in-first-out at the mirror). This is in contrast
to a standard mirror, which corresponds to first-in-first-out. This basic time
reversal setup is illustrated in Figure 10.3. The remarkable properties of time
reversal in random media are (i) the refocusing (or recompression) of the
wave field at a given deterministic time (Section 10.1.2) (ii) the statistical
stability of the refocused pulse (Section 10.1.3). We will see that the degree
or quality of refocusing and stability depends on how much of the reflected
signal is recorded.

In this chapter we consider the case in which the background medium
is constant with matching conditions at the ends of the random slab. The
reflected wave has no coherent part, as described in Chapter 8. It is illustrated
in Figure 10.1. The precise description of the statistics of the reflected wave
is given in Section 9.3.4. Here we perform time reversal, and we show that,
surprisingly, refocusing takes place as seen in Figure 10.2. The refocused pulse
is statistically stable, that is, it is independent of the particular realization of
the medium, and can be written as a convolution of the initial pulse with a
refocusing kernel as shown in (10.6). This kernel is a smoothed version of the
local covariance of the reflected signal, and it can be computed explicitly in
the uniform-background case.

In more general cases in which the background parameters are variable,
refocusing still takes place and the refocusing kernels contain information
on the background parameters. This can, in fact, be exploited to estimate
these background parameters. In Chapter 11 we will give applications to the
detection and imaging of weak reflectors (jump in speed with no contrast of
impedance) or dissipative regions. In Chapter 17 we will look at the inverse
problem in the case that the background parameters are slowly varying. In
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all these problems it is imprortant to obtain precise estimates of the local
covariance of the reflected signal. In Section 10.2 we compare the estimates
obtained using time reversal with those using cross-correlations of the reflected
signal. We show that in the presence of measurement noise, the time-reversal
method can improve the signal-to-noise ratios of these estimates. Finally, in
Section 10.3 we propose a method for adapting the wavelength of the pulse
for probing a particular depth in the medium.
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Incoming Pulse

Random Medium
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Fig. 10.1. Propagation of a pulse through a slab of random medium (0, L). A right-
going wave is incoming from the left. The pulse shape is the second derivative of
a Gaussian. Snapshots of the wave profile (here the pressure) at increasing times
are plotted from bottom to top. The reflected and transmitted signals at the ter-
minal time of the numerical simulation are plotted at the top. The numerical setup
described in Section 8.2.3 is used. The bottom line is a realization of the random
medium (here the bulk modulus), but it is not the one used in the simulations (it
takes only two values, which would give a black band in the plot).
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Fig. 10.2. We use the same random medium as in Figure 10.1 and send back the
time-reversed reflected signal. Snapshots of the wave profile (here the pressure) at
increasing times are plotted from bottom to top. We can see the refocused pulse that
emerges from the random medium. In this time-reversal experiment we have recorded
the signal up to time 130 shown in Figure 10.1, and we observe the refocusing at the
surface at the exact time 130. After the refocusing time, the refocused pulse keeps
traveling to the left.

10.1 Time Reversal in Reflection

10.1.1 Time-Reversal Setup

We again consider a random slab (−L, 0) embedded in a homogeneous medium
with no background discontinuities. In the strongly heterogeneous white-noise
regime, a pulse of the form f(t/ε) incoming from the right homogeneous half-
space is scattered by the random slab. We have seen in (9.12) that the reflected
wave Aε(t, 0) has the form:

Aε(t, 0) =
1

2π

∫
Rε

ω(−L, 0)f̂(ω)e−
iωt

ε dω, (10.1)

where Rε
ω(−L, 0) is the reflection coefficient defined by (9.9). The first step in

the time-reversal consists in recording the reflected signal at z = 0. It turns
out that as ε → 0, the interesting asymptotic regime arises when we record
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Bε(t,−L)

�

yε(t) Aε(t, 0)

�

f(t/ε)

Random slab

(a) A left-going pulse f(t/ε) is on impinging the random slab (−L, 0) and
it generates a reflected signal Aε(t, 0). The time-reversal-mirror (TRM),
used in a passive mode, records a segment yε(t) of the reflected signal.

�
−L 0 z

�

�

Aε
new(t, 0)

�
yε(t1 − t)

Random slab

(b) The TRM is used as an active device that sends back in the medium
the signal yε(t1 − t). We observe the new reflected signal Aε

new(t, 0).

Fig. 10.3. Setup for a time reversal in reflection (TRR) experiment.

the signal up to a large time of order one, which we denote by t1 (with t1 > 0).
A segment of the recorded signal with support of order one is clipped using a
cutoff function G(t). We denote the recorded part of the wave by yε so that

yε(t) = Aε(t, 0)G(t).

We then time-reverse this segment of signal about t1 and send it back into
the same medium as shown in Figure 10.3. This means that we have a new
scattering problem defined by the same acoustic equations, but with the new
incoming signal

fε
new(t) = yε(t1 − t) = Aε(t1 − t, L)G(t1 − t),

which corresponds to a left-going wave incoming from the right homogeneous
half-space. Since we are dealing with real-valued signals, we can write

Aε(t, 0) = Aε(t, 0) =
1

2π

∫
Rε

ω(−L, 0) f̂(ω)e
iωt

ε dω ,

so that the scaled Fourier transform of the new incoming signal has the form
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f̂ε
new(ω) =

∫
e

iωt
ε Aε(t1 − t, 0)G(t1 − t) dt

= ε

∫
eiωsAε(t1 − εs, 0)G(t1 − εs) ds

= ε

∫
eiωs

{
1

2π

∫
e−iω′s Rε

ω′(−L, 0) f̂(ω′)e
iω′t1

ε dω′
}

G(t1 − εs) ds

=
ε

2π

∫
Rε

ω′(−L, 0) f̂(ω′)

{∫
ei(ω′−ω)(−s) G(t1 − εs) ds

}
e

iω′t1
ε dω′

=
1

2π

∫
Rε

ω′(−L, 0) f̂(ω′) Ĝ

(
ω − ω′

ε

)
e

iωt1
ε dω′ .

The new incoming signal is scattered by the random slab and gives rise to
a reflected wave Aε

new(t, 0) at z = 0 and a transmitted wave Bε
new(t,−L)

at z = −L. The reflected signal observed in the time domain around the
observation time tobs on the scale ε is given by

Sε
L(tobs + εs) := Aε

new(tobs + εs, 0) =
1

2πε

∫
e−iω(s+

tobs
ε )Rε

ω(−L, 0)f̂ε
new(ω) dω .

Substituting the expression of f̂ε
new into this equation gives the integral rep-

resentation of the reflected signal

Sε
L(tobs + εs) =

1

(2π)2ε

∫ ∫
e−iω1sei

ω1(t1−tobs)

ε f̂(ω2) Ĝ

(
ω1 − ω2

ε

)

×Rε
ω2

(−L, 0)Rε
ω1

(−L, 0) dω1 dω2 .

Motivated by the scaled argument in Ĝ we use the change of variables ω1 =
ω + εh/2, ω2 = ω − εh/2 and get

Sε
L(tobs + εs) =

1

(2π)2

∫ ∫
e−iωsei

ω(t1−tobs)

ε eih(t1−tobs)/2−iεhs/2f̂(ω − εh/2)

×Ĝ (h)Rε
ω−εh/2(−L, 0)Rε

ω+εh/2(−L, 0) dh dω . (10.2)

We will analyze the behavior of this reflected signal in the limit ε→ 0.

10.1.2 Time-Reversal Refocusing

We first observe that the signal (10.2), recorded at z = 0, vanishes in the limit
ε → 0 if the time of observation tobs is not the time of recording t1. Indeed,
the rapid phase exp(iω(t1 − tobs)/ε) averages out the integral except when
tobs = t1. This means that

refocusing can be observed only at the time tobs = t1.

In other words, an observer located at z = 0 detects no coherent signal at any
time different from t1. The observed small incoherent wave fluctuations vanish
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in the limit ε→ 0. This is what is called time-reversal refocusing, and the
precise description of the refocused pulse observed at time t1 is carried out in
the next section. The refocused pulse at time tobs = t1 has the form

Sε
L(t1 + εs) =

1

(2π)2

∫ ∫
e−iωs−iεhs/2f̂(ω − εh/2) Ĝ (h)

×Rε
ω+εh/2(−L, 0)Rε

ω−εh/2(−L, 0)dh dω . (10.3)

Note that the product of reflection coefficients that appears in this integral
has been analyzed extensively in Chapter 9.

10.1.3 The Limiting Refocused Pulse

The uniform boundedness of the reflection coefficient, which follows from the
conservation of energy as given in (7.11), implies that the finite-dimensional
distributions of the process Sε

L(t1 + ε·) will be characterized by the moments

E[Sε
L(t1 + εs1)

p1 · · ·Sε
L(t1 + εsk)pk ] (10.4)

for all real number in the range s1 < · · · < sk and all integer p1, . . . , pk.

First Moment

We start by considering the first moment. Using the representation (10.3), the
expected value of Sε

L(t1 + εs) is

E[Sε
L(t1 + εs)] =

1

(2π)2

∫ ∫
e−iωse−iεhs/2f̂(ω − εh/2) Ĝ(h)

×E

[
Rε

ω+εh/2(−L, 0)Rε
ω−εh/2(−L, 0)

]
dh dω .

Taking the limit ε→ 0 and applying Proposition 9.1 gives

E[Sε
L(t1 + εs)]

ε→0−→ 1

(2π)2

∫ ∫
e−iωsf̂(ω)Ĝ(h)

[∫
eihτW1(ω, τ,−L, 0) dτ

]
dh dω

=
1

(2π)2

∫ ∫
e−iωsf̂(ω)

[∫
Ĝ(h)eihτdh

]
W1(ω, τ,−L, 0)dτ dω

=
1

2π

∫ ∫
e−iωsf̂(ω)G(τ)W1(ω, τ,−L, 0) dτ dω ,

where the quantityW1(ω, τ,−L, 0) is obtained by solving the system of trans-
port equations (9.23). We have also used the fact that G is real-valued.
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Higher Order Moments

Let us now consider the general moments (10.4). Using the representation
(10.3) for each factor Sε

L(t1 + εsj), these moments can be written as multiple

integrals over p =
∑k

j=1 pj frequencies:

E

⎡
⎣

k∏

j=1

Sε
L(t1 + εsj)

pj

⎤
⎦

=
1

(2π)2p

∫
· · ·

∫ ∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

f̂(ωj,l)e
−iωj,lsj e−iεhj,lsj/2Ĝ(hj,l)

× E

⎡
⎢⎢⎣

∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

Rε
ωj,l+εhj,l/2(−L, 0)Rε

ωj,l−εhj,l/2(−L, 0)

⎤
⎥⎥⎦

∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

dωj,l dhj,l .

The important quantity is the expectation of the product of reflection coeffi-
cients, whose limit as ε → 0 is given by Proposition 9.2. As a result, taking
the limit ε→ 0 gives

E

⎡
⎣

k∏

j=1

Sε
L(t1 + εsj)

pj

⎤
⎦ ε→0−→ 1

(2π)p

∫
· · ·

∫ ∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

W1(ωj,l, τj,l,−L, 0)

∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

f̂(ωj,l)e
−iωj,lsj G(τj,l) dωj,l dτj,l

=
∏

1≤j≤k

(
1

2π

∫
W1(ω, τ,−L, 0)f̂(ω)e−iωsj G(τ)dω dτ

)pj

.

This shows that the expectation of a product of terms SL
ε (t1 + εs) converges

to the product of the limits of the expectations:

lim
ε→0

E

⎡
⎣

k∏

j=1

Sε
L(t1 + εsj)

pj

⎤
⎦ =

k∏

j=1

lim
ε→0

E [Sε
L(t1 + εsj)

pj ] .

This result is in dramatic contrast to the statistical description of the reflected
wave before time reversal in terms of a Gaussian process (see Proposition
9.3). We have therefore shown that the finite-dimensional distributions of
(SL

ε (t1 + εs))s∈(−∞,∞) converge to those of the deterministic function

1

2π

∫
W1(ω, τ,−L, 0)f̂(ω)e−iωsG(τ) dω dτ .
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Tightness

We have characterized the limiting refocused pulse in terms of its finite-
dimensional time distributions. In fact, a tightness argument shows that this
limit holds in the sense of the convergence in distribution for continuous pro-
cesses. This is done by showing that the sequence of processes Sε

L(t1 + ε·),
ε > 0, is precompact in the space of continuous functions (see [114]). On
the one hand, the conservation of energy relation yields that |Rε

ω| ≤ 1 and
Sε

L(t1 + εs) is uniformly bounded by

|Sε
L(t1 + εs)| ≤ 1

(2π)2

∫
|f̂(ω)| dω ×

∫
|Ĝ(h)| dh . (10.5)

On the other hand, the modulus of continuity

M ε(δ) = sup
|s1−s2|≤δ

|Sε
L(t1 + εs1)− Sε

L(t1 + εs2)|

is bounded by

M ε(δ) ≤ 1

(2π)2

∫
sup

|s1−s2|≤δ

|1− exp(iω(s1 − s2))||f̂ (ω)|dω ×
∫
|Ĝ(h)| dh ,

which goes to zero as δ goes to zero uniformly with respect to ε. As a result, the
refocused pulse ((Sε

L(t1 + εs))−∞<s<∞)ε>0 is a tight (i.e., weakly compact)
family in the space of continuous trajectories equipped with the supremum
norm.

Convergence of the Refocused Pulse

We have just shown the tightness of the process (Sε
L(t1 + εs))s∈(−∞,∞) as well

as the convergence of its finite-dimensional distributions. Accordingly, we have
shown that this process converges in probability as ε→ 0 to the deterministic
function

SL(s) =
1

2π

∫
ΛL

TRR(ω, τ)f̂ (ω)e−iωsG(τ) dω dτ ,

where ΛL
TRR(ω, τ) = W1(ω, τ,−L, 0) is given by (9.23) and TRR stands for

“time reversal in reflection.” We summarize this result in the following propo-
sition.

Proposition 10.1. The refocused signal (Sε
L(t1 + εs))s∈(−∞,∞) converges in

probability as ε→ 0 to the deterministic pulse shape

SL(s) = (f(− ·) ⋆ KTRR(·)) (s), (10.6)

where the Fourier transform of the refocusing kernel KTRR is given by
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K̂TRR(ω) =

∫
G(τ)ΛL

TRR(ω, τ) dτ , (10.7)

and the refocusing density ΛL
TRR(ω, τ) = W1(ω, τ,−L, 0) is given by the sys-

tem (9.23).

If the medium is homogeneous, that is, γ = 0, then the refocusing kernel
is zero. Indeed, in this case nothing is recorded by the TRM, since the initial
pulse simply travels to the left without scattering. If the medium is random,
γ > 0, then we get the striking result that we observe a refocused pulse whose
shape does not depend on the particular realization of the medium, but only
on its statistical distribution through the parameter γ. This is the statistical
stability property of the refocused pulse due to the self-averaging property.
This remarkable property is clearly seen in numerical simulations, as shown
in Figure 10.4. In the next paragraph we examine a particular case in which
an explicit formula can be derived for the refocusing kernel.
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Fig. 10.4. We plot the refocused pulses generated by 10 independent numerical
simulations of time reversal (we follow the same procedure as in Figures 10.1-10.2).
The initial pulse is the second derivative of a Gaussian (with maximum normalized
to one). As predicted by the theory, the refocused pulse does not depend on the
realization of the medium, in contrast to the small-amplitude random wave fluctu-
ations before and after the refocusing time. The refocused pulse shape is a filtered
version of the initial pulse shape as described by (10.6) (thick dashed line).

The Refocusing Kernel for a Half-Space

We consider the case of a random half-space, that is, L→ ∞. We have com-
puted explicitly the solution for the system of transport equations in this case
(see (9.40)). We thus get a closed-form expression for the refocusing local
spectral density Λ∞

TRR in this case
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Λ∞
TRR(ω, τ) =

8γω2/c̄

(8 + γω2τ/c̄)
2 =

2c̄τ/Lloc(ω)

(2 + c̄τ/Lloc(ω))
2 , (10.8)

where Lloc = 4c̄2/(γω2) is the localization length defined by (7.81). If we also
assume that G(t) = 1[0,t1](t), then by computing the integral in (10.7) we find
that the refocusing kernel is

K̂TRR(ω) =
γω2t1/c̄

8 + γω2t1/c̄
=

c̄t1/Lloc(ω)

2 + c̄t1/Lloc(ω)
.

Note that if we assume that we record everything at the mirror (t1 =∞ and
G ≡ 1), then K̂TRR(ω) = 1. This is of course expected: the pulse has been
completely scattered back by the random half-space due to localization, as
seen in Chapter 7. We have sent back everything that has been recorded, so
we get a perfect refocusing as a result of the time-reversibility of the wave
equation.

If t1 < ∞, then the kernel K̂TRR has the form of a high-pass filter with
cutoff frequency

ω2
c =

8c̄

γt1
.

Frequencies above ωc are recovered in the refocused pulse but frequencies be-
low ωc are lost. The reason is that even though the medium is completely
reflecting because of the localization effect, time does play a role. High fre-
quencies have a very short localization length, given by Lloc(ω) = 4c̄2/(γω2),
as shown in Chapter 7, so that they are scattered back very quickly by the
medium. Low frequencies have a large localization length, so they can pene-
trate deep into the medium, and it takes more time for them to be reflected.
We saw in Section 9.3.2 that they spend an average time on the order of
2Lloc(ω)/c̄ in the medium. As a result, if this time is larger than t1, then they
are not recorded by the TRM during the recording time window. The relation
2Lloc(ω)/c̄ ≤ t1 gives the bandwidth of the refocusing kernel |ω| ≤ ωc.

Numerical Experiments

We consider the situation described in Figure 10.1. We record the reflected
signal plotted at the top of the figure, time reverse it, and send it back into the
same medium. Figure 10.2 shows the dynamics of this new wave. A refocused
pulse can be seen to emerge from the random slab at the predicted time. The
shape of this pulse results from the convolution of the original pulse shape
with the refocusing kernel, which acts as a high-pass filter. The statistical
stability of the refocused pulse derived in this section is illustrated in the
numerical experiments shown in Figure 10.4.

10.1.4 Time-Reversal Mirror Versus Standard Mirror

We comment further on the role played by reversing time before sending back
the recorded wave into the medium. If a standard mirror is used, then the
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recorded wave is simply reflected, and the integral representation (10.3) of the
reflected signal observed at tobs = t1 has the form

S̃ε
L(t1 + εs) =

1

(2π)2

∫ ∫
e−iωs−iεhs/2f̂(ω − εh/2) Ĝ (h)

×Rε
ω+εh/2(−L, 0)Rε

ω−εh/2(−L, 0)dh dω .

The main difference compared with (10.3) is the presence of the product of
two reflection coefficients without conjugation. The integral representation of

the second moment E

[
|S̃ε

L(t1 + εs)|2
]

involves the following expectation of

the product of four reflection coefficients:

E

[
Rε

ω+εh/2(−L, 0)Rε
ω−εh/2(−L, 0)Rε

ω′+εh′/2(−L, 0) Rε
ω′−εh′/2(−L, 0)

]
.

Using (9.47) this expectation goes to zero as soon as ω = ω′. Substituting this
result into the integral representation of the second moment of S̃ε

L and using
the dominated convergence theorem, we obtain

E

[
|S̃ε

L(t1 + εs)|2
]

ε→0−→ 0 ,

which proves that there is indeed no refocusing with a standard mirror.

10.2 Time Reversal Versus Cross Correlations

In this section we shall discuss the advantage of using a time-reversal method
for probing the medium. In the context of a homogeneous background, the in-
formation about the medium is contained in the function Λ(ω, t) =W1(ω, t, 0).
We shall see in Section 17.2 that this still holds when the medium has also a
slowly varying background.

As shown in Section 9.3.3, in the regime in which the input pulse is of the
form f(t/ε)/

√
ε, the function Λ(ω, t) is proportional to the local power spectral

density of the reflected wave around time t. The power spectral density is given
explicitly by Λ(ω, t)|f̂(ω)|2.

As shown in this chapter, in the regime in which the input pulse is of
the form f(t/ε), the function Λ(ω, t) is proportional to the refocusing density
of the refocused pulse after a time-reversal operation. More precisely, the

refocused pulse shape is the Fourier transform of [
∫

Λ(ω, t)G(t)dt]f̂ (ω) with
G being the time-reversal cutoff function.

Thus, the reflected wave and the refocused pulse contain information about
the density Λ. But this information is not encoded in the same way, and
the purpose of this section is to show that when time reversal is physically
feasible, then it is easier and more efficient to extract the information from the
refocused pulse than from the reflected signal. Before discussing this important
issue, we comment on the statistics of the reflected wave.
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10.2.1 The Empirical Correlation Function

We consider the strongly heterogeneous white-noise regime and we assume
that an incoming pulse of the form f(t/ε) is impinging on the random slab.
The reflected signal is recorded at the surface and is denoted by Aε(t). In
this section we compute the statistical distribution of the empirical correla-
tion function of the reflected signal Aε(t) in the limit ε → 0. This empirical
correlation function is defined as the time average

Cε
t0,t1(s) =

∫ t1

t0

Aε(t + εs)Aε(t) dt . (10.9)

The first moment of the correlation function is given by

E[Cε
t0,t1(s)] =

∫ t1

t0

cε
t (s) dt ,

where the time correlation function cε
t (s) = E[Aε(t)Aε(t + εs)] has been an-

alyzed in Section 9.3.3 in the regime in which the input pulse is of the form
f(t/ε)/

√
ε. Indeed, it is necessary to send a pulse with an energy of order

one in order to get an incoherent reflected wave with an amplitude of order
one. In that scaling, we have shown in Section 9.3.3 that the time correlation
function converges as ε→ 0 to

ct(s) =
1

2π

∫
Λ(ω, t)|f̂(ω)|2eiωsdω .

Using this result and the linearity of the acoustic wave equations, we therefore
obtain that in the present scaling (an input pulse of the form f(t/ε)), we have
cε
t/ε→ ct as ε→ 0. Note that it is necessary to amplify the recorded reflected

signal by a factor 1/
√

ε to get a limit of order one. Thus, we get the limit of
the first moment of Cε

t0,t1(s):

lim
ε→0

1

ε
E[Cε

t0,t1(s)] =

∫ t1

t0

ct(s) dt . (10.10)

We now consider the second moment of Cε
t0,t1 :

E[Cε
t0,t1(s)

2] =

∫ t1

t0

∫ t1

t0

E [Aε(t + εs)Aε(t)Aε(t′ + εs)Aε(t′)] dt′ dt .

By the result in Section 9.3.4, the processes Aε(t+ ε·)/√ε and Aε(t′ + ε·)/√ε
become independent as ε→ 0 as soon as t = t′. As a consequence,

1

ε2
E [Aε(t + εs)Aε(t)Aε(t′ + εs)Aε(t′)]

ε→0−→ ct(s)ct′(s) ,

which in turn implies
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lim
ε→0

1

ε2
E[Cε

t0,t1(s)
2] =

∫ t1

t0

∫ t1

t0

ct(s)ct′(s)dt′dt =

(∫ t1

t0

ct(s) dt

)2

=

(
lim
ε→0

1

ε
E[Cε

t0,t1(s)]

)2

,

and establishes the convergence in probability of ε−1Cε
t0,t1 to its limiting ex-

pectation (10.10).

10.2.2 Measuring the Spectral Density

We first consider the situation in which time reversal can be done physically.
A short pulse is sent into the medium, with a typical wavelength that is
large compared to the inhomogeneities of the medium, but small compared
to the depth we wish to probe. We record the reflected signal Aε(t), and
we then perform a series of time-reversal experiments. Let ∆t denote a time
increment on the macrosopic order-one scale. For a fixed integer n we send
back the truncated time-reversed signal G[n∆t,(n+1)∆t](−t)Aε(−t). This gives
rise to a refocused signal, which we denote by Sε

n(t). The theory developed
in this chapter shows that, if the scales are well separated, then the Fourier
transform Ŝε

n(ω) of Sε
n(t) can be approximated by

Ŝε
n(ω) ∼ f̂(ω)

∫ (n+1)∆t

n∆t

Λ(ω, τ) dτ .

By repeating the experiment for n = 0, . . . , N − 1, we obtain an estimate
of the refocusing density Λ(ω, τ) with a time resolution of ∆t over the time
window [0, N∆t] and the frequency window corresponding to the support of

the spectrum of f̂ . This method gives a robust and stable estimate of the
refocusing density by a series of measures performed with a single realization
of the medium.

If time reversal cannot be done physically, then an alternative method is
to estimating Λ directly from the reflected signal Aε(t). We choose some ∆t,
and for a fixed integer n we compute the empirical correlation function

Cε
n(s) =

∫ (n+1)∆t

n∆t

Aε(t)Aε(t + s) dt .

The result presented in the previous section shows that, if the scales are well
separated, then the Fourier transform Ĉε

n(ω) of Cε
n(s) is close to

Ĉε
n(ω) ∼ ε|f̂(ω)|2

∫ (n+1)∆t

n∆t

Λ(ω, τ) dτ .

By repeating the experiment for n = 0, . . . , N − 1, we obtain an estimate of
the spectral density Λ(ω, τ) with a time resolution of ∆t.
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Therefore, it seems that we can extract the spectral density Λ without
doing time reversal. However, there is an important difference between the two
methods. As shown in the previous section, we need to amplify the recorded
signal by a large factor when using the reflected signal, while the refocused
pulse has the same amplitude as the input pulse. Accordingly, if we take into
account additive external noise and/or the minimal detection level of our
recording system, the amplification process is likely to lead to a very poor
signal-to-noise ratio (SNR) of the empirical correlation function.

In fact, in the case of the reflected signal, the information about the spec-
tral density is distributed over a large time window, and we have to process
a signal of small amplitude over this large time window to extract the in-
formation. In contrast, in the case of the time-reversed refocused pulse, the
information about the spectral density is contained in a very small time win-
dow (with a width comparable to the original pulse width) and it appears
in the form of a large-amplitude signal (i.e., with the same amplitude as the
original pulse). Time reversal compresses the information available in the re-
flected wave, and this recompression is performed by the medium itself, so
it does not induce any error. In the next section, we propose a quantitative
analysis that confirms the qualitative picture described in this section.

10.2.3 Signal-to-Noise Ratio Comparison

In this section we compute and compare the signal-to-noise ratios for the time-
reversal method and the correlation method for estimating the power spectral
density Λ.

Spectral SNR Using Time Reversal

We assume that time reversal can be done physically, meaning that we can
implement the time-reversal steps involving measurement, time reversal, and
reemission. We consider the procedure for determining the power spectral den-
sity from the refocused signal that we have described in the previous section.
We probe the medium with a short pulse of the form f(t/ε) and denote by
Aε(t, 0) the reflected signal at the surface. We assume that the measurement
of the reflected signal is not perfect and we model the recorded signal with an
additive noise component as

yε(t) =

[
Aε(t, 0) +

σ

εp/2
η

(
t

εp

)]
G(t) ,

where η is a centered stationary random process satisfying strong mixing con-
ditions. We may consider, for instance, a Gaussian process with an integrable
autocorrelation function. The scale εp characterizes the correlation length of
the additive noise and we assume that it is smaller than the typical wavelength
of the pulse, that is, p > 1.
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Note that the process 1
εp/2 η

(
t

εp

)
behaves like a white noise in the limit

ε → 0. The parameter σ characterizes the amplitude of the additive white
noise.

The cutoff function G has its support included in [0, t1]. The new incoming
signal that is sent back into the medium is fε

new(t) = yε(t1− t). This generates
a new reflected signal, and according to the theory developed in this chapter,
we know that refocusing occurs around time t1. The refocused signal is

Sε,σ
L (t1 + εs) = Sε

L(t1 + εs) +
σ

εp/2
Sε

L,1(t1 + εs) +
σ

εp/2
Sε

L,2(t1 + εs) , (10.11)

where Sε
L is the refocused signal (10.3) in absence of additive external noise,

Sε
L,1 is the reflected signal corresponding to the noise η,

Sε
L,1(t1 + εs) =

1

2πε

∫
Rε

ω(−L, 0)η̂ε(ω)e−
iωt1

ε −iωs dω ,

η̂ε(ω) =

∫
G(t1 − t)η

(
t1 − t

εp

)
e

iωt
ε dt =

∫
G(t)η

(
t

εp

)
e−

iω(t−t1)
ε dt ,

and Sε
L,2 corresponds to a new additive noise in the measurement of the refo-

cused pulse:

Sε
L,2(t) = η′

(
t

εp

)
.

Here we assume that η and η′ are independent and identically distributed.
We want to process the observed refocused signal in order to recover the

power spectral density Λ. According to the previous section, we compute the
Fourier transform of the noisy refocused signal. In fact, we restrict the integral
to some interval (−T, T ). Otherwise, we integrate not only the refocused pulse,
but the whole incoherent wave. Therefore, we define

Ŝε,σ
L (ω) =

∫ T

−T

Sε,σ
L (t1 + εs)eiωs ds . (10.12)

This spectral quantity can be written as a sum of three terms by (10.11). We
know that the first term,

Ŝε
L(ω) =

∫ T

−T

Sε
L(t1 + εs)eiωs ds ,

has a well-defined limit as ε→ 0:

Ŝε
L(ω)

ε→0−→ ŜL(ω) =

∫ T

−T

SL(s)eiωsds ,

where SL is the deterministic function given by (10.6). Thus we obtain
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ŜL(ω) =
T

π

∫
K̂(ω′)f̂(ω′)sinc[T (ω − ω′)] dω′ , (10.13)

where K̂(ω) =
∫

G(τ)Λ(ω, τ)dτ and the sinc function is defined by

sinc(x) =
sin(x)

x
. (10.14)

For T large enough, the limit ŜL(ω) is equal to f̂(ω)
∫

G(τ)Λ(ω, τ) dτ . In fact,
using the perturbed-test-function method, we can show that the mean-square
error

E

[
|Ŝε

L(ω)− ŜL(ω)|2
]

is of order ε. Therefore, in the absence of additive external noise σ = 0, we
can recover the density Λ. In the presence of noise σ > 0, the contributions
of the last two components in (10.11) should be estimated in order to ensure
that the experimental measure gives the expected result.

• Influence of the noise η. We compute

Ŝε
L,1(ω) :=

∫ T

−T

Sε
L,1(t1 + εs)eiωs ds

=
1

2πε

∫
Rε

ω′(−L, 0)η̂ε(ω′)e−
iω′t1

ε

∫ T

−T

ei(ω−ω′)s ds dω′

=
T

πε

∫
Rε

ω′(−L, 0)sinc[T (ω − ω′)]

∫
G(t)η

(
t

εp

)
e−

iω′t
ε dt dω′ .

This quantity has mean zero, and its variance is

E

[
|Ŝε

L,1(ω)|2
]

=
T 2

π2ε2

∫
dω1

∫
dω2

∫
dt1

∫
dt2 E[Rε

ω1
(−L, 0)Rε

ω2
(−L, 0)]

×sinc[T (ω − ω1)]sinc[T (ω − ω2)]G(t1)G(t2)φ

(
t1 − t2

εp

)
e

iω2t2
ε − iω1t1

ε ,

where
φ(t) = E[η(t′)η(t + t′)] .

By the change of variables ω1 = ω0 +εh/2, ω2 = ω0−εh/2, t1 = t+εpu/2,
t2 = t− εpu/2, we obtain

E

[
|Ŝε

L,1(ω)|2
]

=
T 2εp−1

π2

∫
dω

∫
dh

∫
dt

∫
duE[Rε

ω0+εh/2(−L, 0)Rε
ω0−εh/2(−L, 0)]

× sinc[T (ω − ω0 − εh/2)]sinc[T (ω − ω0 + εh/2)]

× G(t + εpu/2)G(t− εpu/2)φ(u)e−iht−iω0uεp−1

.
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Taking the limit ε→ 0 yields

1

εp−1
E

[
|Ŝε

L,1(ω)|2
]

(10.15)

ε→0−→ T 2

π2

(∫
G(t)2e−ihtUω0,hsinc2[T (ω − ω0)] dt dh dω0

)(∫
φ(u)du

)

where Uω0,h is the limit as ε → 0 of E[Rε
ω0+εh/2(−L, 0)Rε

ω0−εh/2(−L, 0)],

which is given by (9.25):

Uω0,h =

∫
Λ(ω0, τ)eihτ dτ .

By substituting this expression in (10.15) and integrating with respect to
h, we obtain

1

εp−1
E

[
|Ŝε

L,1(ω)|2
]

ε→0−→ 2T 2

π

(∫
G(t)2Λ(ω0, t)sinc2[T (ω − ω0)] dt dω0

)(∫
φ(u) du

)
.

• Influence of the noise η′. We consider the term

Ŝε
L,2(ω) :=

∫ T

−T

Sε
L,2(t1 + εs)eiωs ds

=

∫ T

−T

η′
(

t1
εp

+
s

εp−1

)
eiωs ds ,

whose expectation is zero, and we compute its variance:

E

[
|Ŝε

L,2(ω)|2
]

=

∫ T

−T

∫ T

−T

φ

(
s1 − s2

εp−1

)
ds1 ds2.

The limit is easily obtained:

1

εp−1
E

[
|Ŝε

L,2(ω)|2
]

ε→0−→ 2T

∫
φ(u) du .

• Conclusion. The signal-to-noise ratio (SNR) of the spectral estimation
using time reversal is defined by

SNRTR =
|Ŝσ

L(ω)|2
E[|Ŝε,σ

L (ω)− Ŝσ
L(ω)|2]

,

where Ŝε,σ
L (ω) is the measured noisy quantity given by (10.12) and ŜL(ω)

is the spectral quantity (10.13) that we want to estimate. By collecting the
previous estimates we obtain the order of magnitude of the denominator,
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E[|Ŝε,σ
L (ω)− Ŝσ

L(ω)|2] ∼ ε +
σ2

εp
× εp−1 +

σ2

εp
× εp−1 ∼ ε +

σ2

ε
,

with p > 1. As a result, the SNR of the spectral estimation using time
reversal has the order of magnitude

SNRTR ∼ min

(
1

ε
,

ε

σ2

)
. (10.16)

Spectral SNR Using the Reflected Signal

We consider in this section the efficiency of the estimation of the power
spectral density Λ using the method based on computing the cross-
correlation of the noisy reflected signal. We consider as above that the
measurement of the reflected signal is not perfect and we model these
imperfections by an additive noise with short correlation length εp with
p > 1. Thus, the reflected signal has the form

yε(t) = Aε(t, 0) +
σ

εp/2
η

(
t

εp

)
.

Therefore, the scaled empirical correlation function is given by

Cε,σ
t0,t1(s) =

1

ε

∫ t1

t0

yε(t)yε(t + εs)dt (10.17)

=
1

ε
Cε

t0,t1(s) +
σ

εp/2+1
Cε,1

t0,t1(s) +
σ

εp/2+1
Cε,2

t0,t1(s) +
σ2

εp+1
Cε,3

t0,t1(s) ,

where Cε
t0,t1(s) is the noiseless empirical correlation function given by

(10.9), and

Cε,1
t0,t1(s) =

∫ t1

t0

Aε(t)η

(
t + εs

εp

)
dt ,

Cε,2
t0,t1(s) =

∫ t1

t0

Aε(t + εs)η

(
t

εp

)
dt ,

Cε,3
t0,t1(s) =

∫ t1

t0

η

(
t

εp

)
η

(
t + εs

εp

)
dt .

We wish to process the observed correlation function in order to recover the
power spectral density Λ. According to the previous section, we compute
the Fourier transform of the noisy empirical correlation function Cε,σ

t0,t1 .
Actually, we restrict the integral to some interval (−T, T ) and define

Ĉε,σ
t0,t1(ω) =

∫ T

−T

Cε,σ
t0,t1(s)e

iωsds . (10.18)



10.2 Time Reversal Versus Cross Correlations 299

This spectral quantity can be written as the sum of four terms by (10.17).
We first consider the contribution of the noiseless empirical correlation
function:

Ĉε
t0,t1(ω) =

∫ T

−T

Cε
t0,t1(s)e

iωsds .

We have

1

ε
Ĉε

t0,t1(ω)
ε→0−→ Ĉt0,t1(ω) =

∫ t1

t0

∫ T

−T

ct(s)e
iωs ds dt ,

where ct(s) is the limit of E[Aε(t, 0)Aε(t + εs)]/ε given by (9.64). Thus

Ĉt0,t1(ω) =
T

π

∫ t1

t0

∫
Λ(ω′, t)|f̂(ω′)|2sinc[T (ω − ω′)] dω′ dt , (10.19)

which is equal to |f̂(ω)|2
∫ t1

t0
Λ(ω, t) dt for T large enough. Using the

perturbed-test-function method we find that

E

[∣∣∣∣
1

ε
Ĉε

t0,t1(ω)− Ĉt0,t1(ω)

∣∣∣∣
2
]

is of order ε.
• Influence of the noise term Cε,1

t0,t1 . The quantity

Ĉε,1
t0,t1(ω) =

∫ T

−T

Cε,1
t0,t1(s)e

iωs ds

=

∫ t1

t0

∫ T

−T

Aε(t)η

(
t + εs

εp

)
eiωs ds dt ,

has mean zero and variance

E

[
|Ĉε,1

t0,t1(ω)|2
]

=

∫ t1

t0

∫ t1

t0

∫ T

−T

∫ T

−T

E[Aε(t)Aε(t′)]φ

(
t− t′ + ε(s− s′)

εp

)

× eiω(s−s′) ds ds′ dt dt′ .

We perform the change of variables (s, s′, t′) 	→ (u, v, w) with u = s − s′,
v = (s + s′)/2, and w = (t − t′)/ε, and we integrate with respect to v to
obtain

E

[
|Ĉε,1

t0,t1(ω)|2
]

= ε

∫ t1

t0

∫ (t1−t)/ε

(t0−t)/ε

E[Aε(t)Aε(t + εw)]

×
∫ 2T

−2T

(2T − |u|)φ
(

u− w

εp−1

)
eiωu dw du dt .

By the change of variables (u, w) 	→ (v, s) with v = (u − θ)/εp−1 and
s = w, we get
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E

[
|Ĉε,1

t0,t1(ω)|2
]

= εp

∫ t1

t0

∫ (t1−t)/ε

(t0−t)/ε

E[Aε(t)Aε(t + εs)]eiωs

×
∫ (2T−s)/εp−1

(−2T−s)/εp−1

(2T − |s + εp−1v|)φ(v)eiωεp−1v dv ds dt .

As ε→ 0, the integral with respect to v converges to (2T − |s|)
∫

φ(v)dv if
|s| < 2T , and to zero otherwise. We also know that E[Aε(t)Aε(t + εs)]/ε
converges to ct(s). We therefore get the limit

c
1

εp+1
E

[
|Ĉε,1

t0,t1(ω)|2
]

ε→0−→ 2T

[∫ t1

t0

∫ 2T

−2T

ct(s)e
iωs

(
1− |s|

2T

)
ds dt

](∫
φ(v)dv

)
.

In the large-T limit the above right-hand side is asymptotically equivalent
to

2T

(∫ t1

t0

Λ(ω, t)|f̂(ω)|2dt

)(∫
φ(v)dv

)
.

• Influence of the noisy term Cε,2
t0,t1 . The computation is similar to the one

for Cε,1
t0,t1 , and it gives a term of the same order in ε.

• Influence of the noisy term Cε,3
t0,t1 . We consider the random variable

Ĉε,3
t0,t1(ω) :=

∫ T

−T

Cε,3
t0,t1(s)e

iωsds

=

∫ t1

t0

∫ T

−T

η

(
t

εp

)
η

(
t + εs

εp

)
eiωs ds dt .

Its expectation is given by

E

[
Ĉε,3

t0,t1(ω)
]

=

∫ t1

t0

∫ T

−T

φ
( s

εp−1

)
eiωs ds dt .

Taking the limit ε→ 0 we obtain

1

εp−1
E

[
Ĉε,3

t0,t1(ω)
]

ε→0−→ (t1 − t0)

∫
φ(u) du . (10.20)

The second moment of Ĉε,3
t0,t1(ω) has the form

E

[
|Ĉε,3

t0,t1(ω)|2
]

=

∫ t1

t0

∫ t1

t0

∫ T

−T

∫ T

−T

eiω(s−s′)

×E

[
η

(
t

εp

)
η

(
t + εs

εp

)
η

(
t′

εp

)
η

(
t′ + εs′

εp

)]
ds ds′ dt dt′ .
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Assuming that the process η is Gaussian, the fourth-order moment can
be written as a sum of products of second moments and we get that the
second moment of Ĉε,3

t0,t1(ω) is given by

E

[
|Ĉε,3

t0,t1(ω)|2
]

=

∫ t1

t0

∫ t1

t0

∫ T

−T

∫ T

−T

[
φ

(
t− t′ − εs′

εp

)
φ

(
t− t′ + εs

εp

)

+ φ

(
t− t′

εp

)
φ

(
t− t′ + ε(s− s′)

εp

)
+ φ

( s

εp−1

)
φ

(
s′

εp−1

)]

× eiω(s−s′) ds ds′ dt dt′ .

Among the three terms in the brackets the third one dominates, and we
get the limit

1

ε2p−2
E

[
|Ĉε,3

t0,t1(ω)|2
]

ε→0−→ (t1 − t0)
2

(∫
φ(u)du

)2

.

This shows that ε1−pĈε,3
t0,t1(ω) converges to the positive deterministic quan-

tity (10.20) as ε → 0. This term is therefore responsible for a bias in the
spectral estimation.

• Conclusion. The signal-to-noise ratio (SNR) of the spectral estimation
using the reflected signal to compute the cross-correlation is defined by

SNRCor =
|Ĉt0,t1(ω)|2

E[|Ĉε,σ
t0,t1(ω)− Ĉt0,t1(ω)|2]

,

where Ĉε,σ
t0,t1(ω) is the measured noisy quantity given by (10.18) and

Ĉt0,t1(ω) is the spectral quantity (10.19) that we want to estimate. By
collecting the previous estimates we obtain the order of magnitude

E[|Ĉε,σ
t0,t1(ω)− Ĉt0,t1(ω)|2] ∼ ε +

σ2

εp+2
× εp+1 +

σ2

εp+2
× εp+1 +

σ2

εp+1
× εp−1

∼ ε +
σ2

ε
+

σ2

ε2
∼ ε +

σ2

ε2
.

As a result, the SNR of the spectral estimation using cross-correlation has
the order of magnitude

SNRCor ∼ min

(
1

ε
,
ε2

σ2

)
. (10.21)

Discussion

• If σ ≤ ε3/2, then the dominant terms in the SNRs for the time-reversal
method (10.16) and for the cross-correlation method (10.21) are the first
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ones, which are of order ε−1. As a result, the SNRs of the two methods
are equivalent and given by

SNRTR ∼ SNRCor ∼
1

ε
.

Note that in this regime the SNRs are very high, and therefore the additive
external noise plays no significant role.

• If ε3/2 < σ < ε, then the dominant term in the SNR for the cross-
correlation method (10.21) is the second one, while the dominant term
in the SNR for the time-reversal method (10.16) is the first one. Thus, the
SNRs of the two methods are different, and the SNR of the time-reversal
method is higher:

SNRTR ∼
1

ε
∼ σ2

ε3
× ε2

σ2
∼ σ2

ε3
× SNRCor .

Note that in this regime, the SNRs are high, but the SNR of the time-
reversal method is higher.

• If ε ≤ σ, then the dominant terms in the SNRs for the cross-correlation
method (10.21) and for the time-reversal method (10.16) are the second
ones. Thus, the SNRs of the two methods are different, and the SNR of
the time-reversal method is higher:

SNRTR ∼
ε

σ2
∼ 1

ε
× ε2

σ2
∼ 1

ε
× SNRCor .

Note that in this regime, the SNR of the cross-correlation method is small,
while the SNR of the time-reversal method is still high as long as σ > ε1/2.
For instance, in the critical case in which σ ∼ ε, then SNRCor ∼ 1, while
the SNR for the time-reversal method is of order ε−1/2, which is much
larger than one. Surprisingly in this case the correlation method fails, while
the time-reversal method enables us to estimate the local power spectral
density Λ.

Therefore, we can conclude that as long as the correlation method gives
accurate results, it is not crucial to use a time-reversal method, since the two
methods have then the same SNR. However, when the correlation method fails
(SNRCor ≤ 1), then it turns out that the time reversal-method gives much
better results independently of the value of p (in the range p > 1). Table 10.1
gives the comparative values of the SNRs for the two methods at different
values for the noise amplitude σ.

10.3 Calibrating the Initial Pulse

There is one more issue that we now discuss. In most of the book we consider
the strongly heterogeneous white-noise regime in which the correlation length
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σ SNRTR SNRCor
ε2 ε−1 ε−1

ε3/2 ε−1 ε−1

ε ε−1 1

ε1/2 1 ε2

1 ε1 ε4

Table 10.1. Order of magnitudes of the SNRs for different values of the noise
amplitude σ. Note that SNRCor ∼ 1, corresponding to σ ∼ ε, is the critical case
where the correlation method starts failing, while the time-reversal method is still
performing with a high SNR.

of the medium is much smaller than the wavelength, which is much smaller
than the size of the slab. The size L of the slab, or in the context of imaging
the depth one wishes to probe, and the correlation length of the medium l are
fixed, in the sense that they are determined by the medium, even if we do not
know the correlation length exactly. The regime we consider is based on the
separation of these two scales l ≪ L, and on the use of a pulse whose typical
wavelength λ is in between these scales. The question of how one “tunes” λ
in the case that one does not know l exactly is an important question.

A first method is based on the following observations. First, note that,
in our framework, the correlation length of the medium is defined by the
parameter γ. If we send a narrowband pulse with carrier frequency ω0, then
the mean fraction of reflected intensity at time t by a random half-space
follows from (9.54) and is given by the local power spectral density

Jω0(t) =
8γω2

0/c̄

(8 + γω2
0t/c̄)2

=
2c̄t/Lloc(ω)

(2 + c̄t/Lloc(ω))
2 .

For a fixed time t, this function gives a maximum for the frequency ω0 =
2
√

2
√

c̄/
√

γt. As discussed in Section 9.3.2, this frequency corresponds to a
localization length that is of order c̄t/2. Furthermore, the time-averaged re-
flected intensity

Iε =

∫ t+∆t

t−∆t

Aε(t′)2dt′ ,

is a self-averaging quantity, as shown in Section 10.2.1, so that it attains its
maximum at ω0.

These arguments suggest a method to tune the carrier frequency of a
pulse to probe a given depth L0. It consists in emitting a series of pulses
with different carrier frequencies (ωj)j=1,...,N and with energies (Ej)j=1,...,N ,
and to compute for each incoming pulse the relative time averaged reflected
intensity of the corresponding reflected wave Aε

j :

Iε
j =

1

Ej

∫ t0+∆t

t0−∆t

Aε
j(t)

2 dt ,
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with t0 = 2L0/c̄. The maximum of the values Iε
j corresponds to the frequency

ωj whose localization length is the closest to L0, which means that this pulse
penetrates to this depth and is then scattered back.

The method we have just described is sufficient to calibrate a pulse, since
we wish to find only an order of magnitude, and not a precise value. In the
presence of measurement noise, a time-reversal method may be desirable in
order to reduce the SNR as seen in the previous section. This method would
consist in emitting a series of pulses at different carrier frequencies, and then
performing time reversal on each reflected signal. We would then find the
pulse maximizing the refocused energy.

Notes

The reflected signal and its spectral content have been studied in the regime
of separation of scales in [8], [9], [31], [32], [33]. Refocusing and self-averaging
for time reversal in reflection in the one-dimensional case was derived in 1997
by Clouet and Fouque in the article [40]. An iterative time-reversal method to
estimate higher moments is also presented in that reference. A generalization
to the weakly heterogeneous regime is given in [158]. Numerical experiments
similar to those presented in Section 10.1.3 were first carried out in collabo-
ration with André Nachbin [65, 59]. The discussion on the advantage of using
time reversal over a direct processing of the reflected signal is presented in
Section 10.2 for the first time.
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Applications to Detection

In this chapter we discuss how the tools that we have developed for describing
the local power spectrum of the reflected signal can be used to detect changes
in the medium that do not create coherent or stable reflected pulses. In Section
8.3 we have characterized the wave front reflections generated by a strong
interface corresponding to a discontinuity in the average impedance ζ̄. Here
we consider three cases in which the average impedance remains constant, so
that no reflected coherent wave front is created.

In the first case, in Section 11.1, we consider a discontinuity in the back-
ground velocity c̄. The detection problem consists in identifying both the
depth and the strength of the interface or weak reflector.

In the second case, Section 11.2, we show that a similar analysis enables
us to detect an interface when the parameter γ, depending on the statistical
properties of the medium, is changing while the background medium (ζ̄ , c̄) is
unchanged.

In the third case, after having introduced dissipation in the model in
Section 11.3, we analyze in Section 11.4 a medium that has an embedded
layer that has an anomalously large dissipation. Our main objective is to
identify the location of the layer, and we discuss in particular the situation in
which the layer is very thin, in which case the detection formulas simplify.

In all three cases, the approach we use to identify the interfaces consists in
scrutinizing the form of the local power spectrum or covariance of the reflec-
tions. The local power spectrum has a discontinuity at a time corresponding
to the two-way travel time to the depth of the interface, and this fact can be
used for detection. Using the local spectral density of the reflections to solve
the inverse problem of recovering the slowly varying background parameters is
carried out in [8] and [133] and is briefly presented at the end of Section 17.2.3.
Here we use the time-reversal procedure to identify the spectrum through
its relation to the shape of the refocused pulse. As discussed in the previ-
ous chapter, this approach may be advantageous when there is measurement
noise.
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11.1 Detection of a Weak Reflector

We consider time reversal in reflection (TRR) as shown in Figure 10.3, where
the random slab is made up of two different media as in Figure 11.1 and
described below:

−L 0

z�
−L1

� f( t
ε
)medium 2medium 1

Fig. 11.1. A pulse is incoming from the right homogeneous half-space and impinges
on a stack of two heteregeneous slabs with different averaged parameters but the
same impedance.

1

K(z)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
K̄1

for z ∈ (−∞,−L) ,
1

K̄1

(
1 + ν(z/ε2)

)
for z ∈ [−L,−L1) ,

1
K̄2

(
1 + ν(z/ε2)

)
for z ∈ [−L1, 0) ,

1
K̄2

for z ∈ [0,∞) ,

ρ(z) =

{
ρ̄1 for z ∈ (−∞,−L1) ,
ρ̄2 for z ∈ [−L1,∞) .

The reflection coefficient of the interface z = −L1 is given by

RI =
ζ̄2 − ζ̄1

ζ̄1 + ζ̄2
,

where ζ̄j =
√

K̄j ρ̄j , j = 1, 2, are the impedances of the two effective back-
ground media separated by the interface at z = −L1.

We consider the case in which this reflection is weak, which we simply
model here by assuming ζ̄1 = ζ̄2, or equivalently RI = 0. To simplify the pre-
sentation, we have assumed matched medium boundary conditions at both
ends of the random slab, and that only the bulk modulus is randomly fluctu-
ating.

We introduce the piecewise constant coefficient

c̄(z) =

{
c̄1 for z ∈ [−L,−L1) ,
c̄2 for z ∈ [−L1, 0] ,

(11.1)

which is the local average sound speed, and the (negative) effective travel time

ϑ(z) =

∫ z

0

1

c̄(z′)
dz′ =

⎧
⎪⎨
⎪⎩

−L1

c̄2
+

z + L1

c̄1
for z ∈ [−L,−L1) ,

z

c̄2
for z ∈ [−L1, 0] .

(11.2)
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We choose to define a negative travel time (since z < 0) so that its derivative
is exactly the reciprocal of the local sound speed.

The right- and left-going modes are defined by

p̂ε(ω, z) =

√
ζ̄

2

(
âε(ω, z)e

iωϑ(z)
ε − b̂ε(ω, z)e−

iωϑ(z)
ε

)
,

ûε(ω, z) =
1

2
√

ζ̄

(
âε(ω, z)e

iωϑ(z)
ε + b̂ε(ω, z)e−

iωϑ(z)
ε

)
,

where ζ̄ = ζ̄1 = ζ̄2, the constant effective impedance.
For z ∈ [−L,−L1) ∪ (−L1, 0), the modes satisfy the coupled system of

ordinary differential equations:

d

dz

[
âε

b̂ε

]
=

1

ε
Hω

(
c̄(z),

ϑ(z)

ε
, ν

( z

ε2

))[
âε

b̂ε

]
,

Hω (c̄, ϑ, ν) =
iω

2c̄
ν

[
1 −e−2iωϑ

e2iωϑ −1

]
.

They also satisfy the following boundary conditions at the ends of the slab
[−L, 0]:

âε(ω,−L) = 0 , b̂ε(ω, 0) = f̂(ω) .

At the interface z = −L1 the continuity of the pressure and velocity fields
and the absence of contrast of impedance imply

âε(ω, (−L1)
−) = âε(ω, (−L1)

+) , b̂ε(ω, (−L1)
−) = b̂ε(ω, (−L1)

+) . (11.3)

For −L ≤ z0 ≤ z ≤ 0, we introduce the propagator matrix Pε
ω(z0, z), which

satisfies the equation

d

dz
Pε

ω(z0, z) =
1

ε
Hω

(
c̄(z),

ϑ(z)

ε
, ν

( z

ε2

))
Pε

ω(z0, z) , (11.4)

with the initial condition Pε
ω(z0, z = z0) = I. With this definition, we have

Pε
ω(−L, 0)

[
0

b̂ε(ω,−L)

]
=

[
âε(ω, 0)

f̂(ω)

]
,

obtained using the relation

Pε
ω(−L, 0) = Pε

ω(−L1, 0)Pε
ω(−L,−L1)

and the continuity conditions (11.3) at z = −L1. As in the previous chapter,
the trace of Hω is zero, and Pε

ω can be written as

Pε
ω(−L, z) =

[
αε

ω(−L, z) βε
ω(−L, z)

βε
ω(−L, z) αε

ω(−L, z)

]
,



308 11 Applications to Detection

with |αε
ω(−L, z)|2 − |βε

ω(−L, z)|2 = 1. We can then define the reflection coef-
ficient by

Rε
ω(−L, z) =

βε
ω(−L, z)

αε
ω(−L, z)

,

so that the reflected right-going wave is âε(ω, 0) = Rε
ω(−L, 0)f̂(ω). From

(11.4) we deduce that Rε
ω(−L, z) satisfies in −L ≤ z ≤ 0 the Riccati equation

dRε
ω

dz
= − iω

2c̄(z)ε
ν
( z

ε2

)(
e

−2iωϑ(z)
ε − 2Rε

ω + (Rε
ω)2e

2iωϑ(z)
ε

)
,

with the initial condition Rε
ω(−L, z = −L) = 0.

At this point the analysis of time-reversal refocusing follows the lines of
Section 10.1. The refocused pulse given in (10.3) converges to the deterministic
pulse given by (10.6). The refocusing kernel KTRR is given by (10.7), where the
refocusing density ΛL

TRR(ω, τ) =W1(ω, τ,−L, 0) is the solution of the system
of transport equations (9.23) with the only difference that the constant speed
c̄ is replaced by the piecewise-constant speed c̄(z) defined in (11.1).

We can now make use of the probabilistic representation of the solution
of the transport equations presented in detail in Section 9.2.2. Since, by hy-
perbolicity, the refocused pulse is not affected by L for L large enough, we
simplify the problem by letting L go to infinity, and we denote the density
ΛL

TRR(ω, τ) by ΛTRR(ω, τ). We use the results of Section 9.2.3 to solve ex-
plicitly the transport equations from −∞ to −L1 in medium 1 with constant

speed c̄1. Denoting the solution by W(c̄1)
p , we deduce from (9.40) that

W(c̄1)
p (ω, τ) =

⎧
⎨
⎩

δ(τ) if p = 0 ,
8pγω2

c̄1

(γω2τ/c̄1)
p−1

(8 + γω2τ/c̄1)p+1
1[0,∞)(τ) otherwise .

(11.5)

We next solve the transport equations from −L1 to 0, in medium 2 with

constant speed c̄2, and with the initial conditionW(c̄1)
p (ω, τ,−L1) given above.

The probabilistic representation (9.32) obtained in Section 9.2.2 gives

ΛTRR(ω, τ) = E

[
W(c̄1)

N
(c̄2)
0

(
ω, τ − 2

c̄2

∫ 0

−L1

N (c̄2)
s ds

)
| N (c̄2)

−L1
= 1

]
.

Here N
(c̄2)
z jumps by ±1 with probability 1/2 and with intensity n2γω2/(2c̄2

2),
n denoting the value of the process and 0 being an absorbing state.

Denoting by W(c̄2) the expression (11.5) with c̄2 instead of c̄1, we write
W(c̄1) =W(c̄2) +

(
W(c̄1) −W(c̄2)

)
, so that we obtain

ΛTRR(ω, τ) = Λ
(c̄2)
TRR(ω, τ) (11.6)

+ E

[(
W(c̄1)

N
(c̄2)
0

−W(c̄2)

N
(c̄2)
0

)(
ω, τ − 2

c̄2

∫ 0

−L1

N (c̄2)
s ds

)
| N (c̄2)

−L1
= 1

]
.
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The first term is the stationary solution in a half-space with constant speed
c̄2, given explicitly by (9.41),

Λ
(c̄2)
TRR(ω, τ) =

8γω2/c̄2

(8 + γω2τ/c̄2)
2 1[0,∞)(τ) .

Formula (11.6) is very convenient for computing the density ΛTRR(ω, τ)
by Monte Carlo simulations as illustrated in Figures 11.2 and 11.3. In the first
case (Figure 11.2) the speed increases at the reflector, producing a negative
jump in the density at τ = 2L/c̄2 = 2. In the second case (Figure 11.3) the
speed decreases at the reflector, producing a positive jump in the density at
τ = 2L/c̄2 = 2. We can give the following heuristic interpretation of these
jumps. Let us consider the case (Figure 11.2) in which the sound speed in-
creases at the reflector position −L1. As soon as the wave front passes through
−L1, it speeds up, and its time profile becomes elongated and smoother rela-
tive to the scale of the random inhomogeneities. As a result, the backscattering
is reduced and the density has a negative jump. However, scattering by a ran-
dom half-space results in total reflection. This implies that the power spectral
density integrated over all times is equal to one, with or without the weak
reflector. That is why we observe in Figures 11.2b and 11.3b an inversion
of the behavior of the density for large τ that compensates for the jump at
τ = 2L/c̄2. In fact, as τ →∞, we get from (11.6) the asymptotic behavior

ΛTRR(ω, τ) ≃ 8c̄1

γω2τ2
,

while we have, in the case of a stationary random half-space without reflector,

Λ
(c̄2)
TRR(ω, τ) ∼ 8c̄2

γω2τ2
.

The trajectories of N
(c̄2)
z reaching 0 do not contribute to the expectation

in (11.6), sinceW(c̄1)
0 (ω, 0)−W(c̄2)

0 (ω, 0) = 0, and they have in fact been taken

into account in the first term Λ
(c̄2)
TRR(ω, τ). For the trajectories not reaching 0,

the integral
∫ 0

−L1
N

(c̄2)
s ds is at least equal to L1, and because of the restriction

on the support of the W ’s, ΛTRR(ω, τ) will differ from Λ
(c̄2)
TRR(ω, τ) only for

τ > 2L1/c̄2, which corresponds to the travel time (back and forth) from
the surface z = 0 to the reflector. In fact, at τ = 2L1/c̄2 there is a jump
in ΛTRR(ω, τ) due to the contribution of the set of trajectories that stay at
Nz = 1 for all z ∈ [−L1, 0]. The other trajectories will produce an integral∫ 0

−L1
N

(c̄2)
s ds strictly larger than 2L1/c̄2 and therefore will contribute only for

τ > 2L1/c̄2. The size of this jump can then easily be computed from formula
(11.6):

E

[(
W(c̄1)

1 −W(c̄2)
1

)
(ω, 0)1{N

(c̄2)
z =1,z∈[−L1,0]} | N

(c̄2)
−L1

= 1
]
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Fig. 11.2. Plot (a): Densities τ �→ ΛTRR(ω, τ ) (dashed line) and τ �→ Λ
(c̄2)
TRR(ω, τ )

(solid line). Plot (b): Ratio of the densities τ �→ RΛ(τ ) := ΛTRR(ω, τ )/Λ
(c̄2)
TRR(ω, τ ).

Here we assume γω2 = 2, L1 = 1, c̄1 = 1.3, and c̄2 = 1. The dotted line stands for
the asymptotic value c̄1/c̄2.
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Fig. 11.3. Plot (a): Densities τ �→ ΛTRR(ω, τ ) (dashed line) and τ �→ Λ
(c̄2)
TRR(ω, τ )

(solid line). Plot (b): Ratio of the densities τ �→ RΛ(τ ) := ΛTRR(ω, τ )/Λ
(c̄2)
TRR(ω, τ ).

Here we assume γω2 = 2, L1 = 1, c̄1 = 1.7, and c̄2 = 2.

=
(
W(c̄1)

1 −W(c̄2)
1

)
(ω, 0)P

[
N (c̄2)

z = 1, z ∈ [−L1, 0] | N (c̄2)
−L1

= 1
]

=
γω2

8

(
1

c̄1
− 1

c̄2

)
e
−γω2L1

2c̄2
2 . (11.7)

Detection of a weak reflector, assuming that c̄2 is known at the surface,
starts by doing time reversal physically, then retrieving the density ΛTRR(ω, τ)
from the deterministic refocused pulse given in (10.6, 10.7), and next compar-

ing it with Λ
(c̄2)
TRR(ω, τ). An observed jump at a time τ∗ indicates the presence

of a reflector at depth L1 = τ∗c̄2/2. Moreover, the speed c̄1 can be retrieved
from the size of this jump using formula (11.7).
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The generalization to multiple weak reflectors is indeed possible. The loca-
tions of the jumps in the density ΛTRR(ω, τ) correspond to (two-way) travel
times to the physical locations of the jumps in speed. However, the formulas
for retrieving the speeds are not explicit for a given frequency.

In a typical inverse problem setting, the procedure described in this sec-
tion is applied for multiple frequencies, and estimates of the locations and
magnitudes of the velocity jumps are obtained with a least-squares method.

11.2 Detection of an Interface Between Media

We now consider the case of two media as in Figure 11.1 with the same
background parameters (K̄, ρ̄), or equivalently (ζ̄ , c̄), and with fluctuation
processes that have different statistical parameters. The model has the form

1

K(z)
=

⎧
⎪⎪⎨
⎪⎪⎩

1
K̄

for z ∈ (−∞,−L) ,
1
K̄

(
1 + ν1(z/ε2)

)
for z ∈ [−L,−L1) ,

1
K̄

(
1 + ν2(z/ε2)

)
for z ∈ [−L1, 0) ,

1
K̄

for z ∈ [0,∞) ,

ρ(z) = ρ̄ for z ∈ (−∞, +∞) .

To simplify the presentation, we have assumed matched medium boundary
conditions at both ends of the random slab, and that only the bulk modulus
is randomly fluctuating. The fluctuation processes ν1 and ν2 are assumed to be
independent, stationary, centered, and ergodic. We denote by γj the respective
integrated autocorrelations

γj =

∫ ∞

−∞
E[νj(0)νj(s)] ds , j = 1, 2 .

The interface z = −L1 does not generate a coherent reflection, since the
average impedance is constant. Proceeding along the lines of the previous
section we find that the reflection coefficient Rε

ω(−L, 0) satisfies in −L ≤ z ≤ 0
the Riccati equation

dRε
ω

dz
= − iω

2c̄ε
ν
(
z,

z

ε2

)(
e

−2iωz
c̄ε − 2Rε

ω + (Rε
ω)2e

2iωz
c̄ε

)
,

with the initial condition Rε
ω(−L,−L) = 0, and with the fluctuation process

ν (z, ·) defined by

ν (z, ·) =

{
ν1(·) for z ∈ [−L,−L1) ,
ν2(·) for z ∈ [−L1, 0] .

(11.8)

At this point, the analysis of time-reversal refocusing follows again the
lines of Section 10.1. The refocused pulse given in (10.3) converges to the
deterministic pulse given by (10.6). The refocusing kernel KTRR is given by
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(10.7), where the density ΛL
TRR(ω, τ) =W1(ω, τ, 0) is obtained by solving the

system of transport equations (9.23) with the only difference that the constant
coefficient γ is replaced by the piecewise-constant coefficient γ(z) defined by

γ(z) =

{
γ1 for z ∈ [−L,−L1) ,
γ2 for z ∈ [−L1, 0] .

(11.9)

As in the previous section we let L go to infinity, and we denote the density
ΛL

TRR(ω, τ) by ΛTRR(ω, τ). We solve explicitly the transport equations from
−∞ to −L1 in medium 1 with constant γ = γ1. Denoting the solution by

W(γ1)
p , we deduce from (9.40) that

W(γ1)
p (ω, τ) =

⎧
⎨
⎩

δ(τ) if p = 0 ,
8pγ1ω

2

c̄

(γ1ω
2τ/c̄)p−1

(8 + γ1ω2τ/c̄)p+1
1[0,∞)(τ) otherwise .

(11.10)

We solve next the transport equations from −L1 to 0, in medium 2 with

constant γ = γ2, and with the initial condition W(γ1)
p (ω, τ,−L1) given above.

The probabilistic representation of Section 9.2.2 gives

ΛTRR(ω, τ) = E

[
W(γ1)

N
(γ2)
0

(
ω, τ − 2

c̄

∫ 0

−L1

N (γ2)
s ds

)
| N (γ2)

−L1
= 1

]
,

where N
(γ2)
z jumps by±1 with probability 1/2 and with intensity n2γ2ω

2/(2c̄2).
Here n denotes the state of the process and n = 0 is an absorbing state.

Writing W(γ1) =W(γ2) +
(
W(γ1) −W(γ2)

)
we obtain

ΛTRR(ω, τ) = Λ
(γ2)
TRR(ω, τ) (11.11)

+ E

[(
W(γ1)

N
(γ2)
0

−W(γ2)

N
(γ2)
0

)(
ω, τ − 2

c̄

∫ 0

−L1

N (γ2)
s ds

)
| N (γ2)

−L1
= 1

]
,

with

Λ
(γ2)
TRR(ω, τ) =

8γ2ω
2/c̄

(8 + γ2ω2τ/c̄)2
1[0,∞)(τ) ,

and the difference
(
W(γ1)

p −W(γ2)
p

)
given explicitly by (11.10) and a similar

formula with γ1 replaced by γ2.
Using the trajectory analysis of the previous section we find that

ΛTRR(ω, τ) = Λ
(γ2)
TRR(ω, τ) for τ < 2L1/c̄ ,

and that there is a jump at τ = 2L1/c̄ of size

E

[(
W(γ1)

1 −W(γ2)
1

)
(ω, 0)1{N

(γ2)
z =1,z∈[−L1,0]} | N

(γ2)
−L1

= 1
]

=
(
W(γ1)

1 −W(γ2)
1

)
(ω, 0)P

[
N (γ2)

z = 1, z ∈ [−L1, 0] | N (γ2)
−L1

= 1
]

=
ω2

8c̄
(γ1 − γ2) e−

γ2ω2L1
2c̄2 .
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Assuming that c̄ and γ2 are known, these two facts can be used to detect, lo-
cate, and characterize a sudden change in the fluctuations statistics, including
the case of a region without fluctuations, corresponding to γ1 = 0.

Comparing the results of this section (jump in γ) with the results of the
previous section (jump in c̄), with constant impedance in both cases, it is clear
that only the ratio γ/c̄ matters.

A consequence of this remark is that if both the background speed c̄
and the statistics γ are changing at an interface −L1, with no jump in the
impedance, and if these two coefficients are known in medium 2 before the in-
terface, then the weak reflector is detected as an observed jump in the density
ΛTRR(ω, τ) at τ∗. The depth L1 is recovered through the formula L1 = τ∗c̄2/2.
However, only the ratio γ1/c̄1 can be recovered from the expression for the
jump size

ω2

8

(
γ1

c̄1
− γ2

c̄2

)
e
− γ2ω2L1

2c̄2
2 =

ω2

8

(
γ1

c̄1
− γ2

c̄2

)
e−

γ2ω2τ∗
4c̄2 .

11.3 Waves in One-Dimensional Dissipative
Random Media

In this section we generalize the model considered so far for acoustic waves by
introducing absorption, which is modeled by a linear dissipative term in the
acoustic equations. We show that, up to some technical changes, the statistical
properties of transmitted and reflected waves are again described by a system
of transport equations in the regime of scale separation. We also show that
time reversal is still efficient in recompressing coherent and incoherent waves
despite the loss of energy due to absorption.

11.3.1 The Acoustic Model with Random Dissipation

We consider the acoustic wave equations with dissipation

ρ
∂uε

∂t
+

∂pε

∂z
+ σuε = 0 , (11.12)

1

K

∂pε

∂t
+

∂uε

∂z
= 0 , (11.13)

where pε is the pressure, uε is the velocity, σ is the dissipation of the medium,
ρ is the density, and K is the bulk modulus. The fluctuations of the medium
parameters are described by

1

K
=

{
1
K̄

(
1 + ν(z/ε2)

)
if z ∈ [−L, 0]

1
K̄

if z ∈ (−∞,−L) ∪ (0,∞) ,
(11.14)

ρ = ρ̄ for all z (11.15)
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as previously, and

σ =

{
σ(z, z/ε2) if z ∈ [−L, 0] ,
0 if z ∈ (−∞,−L) ∪ (0,∞) ,

(11.16)

where for any z ∈ [−L, 0], ζ 	→ σ(z, ζ) is a nonnegative-valued stationary
mixing process with mean σ̄(z) = E[σ(z, ζ)]. This allows us to consider cases
in which the dissipation background σ̄(z) is not uniform. In particular, it
includes the following types of media.

1. The dissipation coefficient has a stationary statistical distribution:

σ
(
z,

z

ε2

)
= σ0

( z

ε2

)
,

where σ0 is a stationary ergodic random process taking nonnegative values
with mean σ̄0 = E[σ0(ζ)].

2. The dissipation coefficient is different inside some embedded layer [z0, z1],
−L < z0 < z1 < 0,

σ
(
z,

z

ε2

)
=

⎧
⎨
⎩

σ1

( z

ε2

)
if z0 < z < z1 ,

σ0

( z

ε2

)
if − L ≤ z ≤ z0 and z1 ≤ z ≤ 0 ,

where σ0 and σ1 are two stationary ergodic random processes taking non-
negative values. We denote by σ̄j their respective means

σ̄j = E[σj(ζ)] ,

and we assume that σ̄1 = σ̄0. The goal of the following section is to detect
the layer [z0, z1].

We consider scattering by the finite slab (−L, 0), where a left-going pulse
is impinging on the random slab.

11.3.2 Propagator Formulation

In this section we first express the scattering problem as a two-point boundary
value problem in the frequency domain, and then rewrite it as an initial value
problem in terms of the propagator. This analysis follows the lines carried out
in the previous chapters. We consider the random acoustic equation (11.12–
11.13) and take the scaled-time Fourier transform so that the system reduces
to a system of ordinary differential equations:

dp̂ε

dz
− iωρ̄

ε
ûε + σ

(
z,

z

ε2

)
ûε = 0 , (11.17)

dûε

dz
− iω

K̄ε

(
1 + ν

( z

ε2

))
p̂ε = 0 . (11.18)
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As in the case without dissipation, we decompose the wave into right-going
modes âε and left-going modes b̂ε:

âε(ω, z) =
(
ζ̄1/2ûε (ω, z) + ζ̄−1/2p̂ε (ω, z)

)
e

−iωz
c̄ε ,

bε(ω, z) =
(
ζ̄1/2ûε (ω, z)− ζ̄−1/2p̂ε (ω, z)

)
e

iωz
c̄ε .

The modes satisfy the linear system

d

dz

[
âε

b̂ε

]
= Hω

(z

ε
, νε(z), σε(z)

) [
âε

b̂ε

]
, (11.19)

where the complex 2× 2 matrix Hω is given by

Hω(z, ν, σ) =
iω

2c̄
ν

[
1 −e−2iωz/c̄

e2iωz/c̄ −1

]
+

σ

2ζ̄

[
−1 −e−2iωz/c̄

e2iωz/c̄ 1

]
,

(11.20)
using the notation

νε(z) =
1

ε
ν
( z

ε2

)
, σε(z) = σ

(
z,

z

ε2

)
. (11.21)

The boundary conditions correspond again to a left-going wave of the form
f(t/ε) incoming from the right:

b̂ε(ω, z = 0) = f̂(ω) , âε(ω, z = −L) = 0 .

We introduce the propagator Pε
ω(−L, z), which is a complex 2×2 matrix, the

solution of

d

dz
Pε

ω(ω,−L, z) = Hω

(z

ε
, νε(z), σε(z)

)
Pε

ω(−L, z) , Pε
ω(−L, z = −L) = I ,

such that

Pε
ω(−L, z)

[
âε(ω,−L)

b̂ε(ω,−L)

]
=

[
âε(ω, z)

b̂ε(ω, z)

]
.

The main difference with the nondissipative case is that, if (α, β) is a solution
of (11.19), then (β, α) is not a solution due to the dissipation term in (11.20).
The propagator matrix Pε

ω has the form

Pε
ω(−L, z) =

[
αε

ω,1(−L, z) αε
ω,2(−L, z)

βε
ω,1(−L, z) βε

ω,2(−L, z)

]
,

where (αε
ω,1, β

ε
ω,1)

T and (αε
ω,2, β

ε
ω,2)

T , are solutions of equation (11.19) with,
respectively, the initial conditions

αε
ω,1(−L, z = −L) = 1 , βε

ω,1(−L, z = −L) = 0 , (11.22)

αε
ω,2(−L, z = −L) = 0 , βε

ω,2(−L, z = −L) = 1 . (11.23)
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We define the transmission and reflection coefficients T ε
ω(−L, z) and Rε

ω(−L, z)
as before:

Pε
ω(−L, z)

[
0

T ε
ω(−L, z)

]
=

[
Rε

ω(−L, z)
1

]
. (11.24)

In terms of the propagator entries they are given by

Rε
ω(−L, z) =

αε
ω,2(−L, z)

βε
ω,2(−L, z)

, T ε
ω(−L, z) =

1

βε
ω,2(−L, z)

,

and satisfy the closed-form nonlinear differential system

dRε
ω

dz
= − iω

2c̄
νε(z)

(
e−2iωz/(c̄ε) − 2Rε

ω + (Rε
ω)2e2iωz/(c̄ε)

)

− σε(z)

2ζ̄

(
e−2iωz/(c̄ε) + 2Rε

ω + (Rε
ω)2e2iωz/(c̄ε)

)
, (11.25)

dT ε
ω

dz
=

iω

2c̄
νε(z)

(
1−Rε

ωe2iωz/(c̄ε)
)

T ε
ω

− σε(z)

2ζ̄

(
1 + Rε

ωe2iωz/(c̄ε)
)

T ε
ω , (11.26)

with the initial conditions

Rε
ω(−L, z = −L) = 0 , T ε

ω(−L, z = −L) = 1 ,

at z = −L. As seen in the previous chapters, the transmitted and reflected
waves admit the following integral representations:

Bε(t, z = −L) =
1

2π

∫
ei ω

ε ( L
c̄ −t)f̂(ω)T ε

ω(−L, 0) dω , (11.27)

Aε(t, z = 0) =
1

2π

∫
e−i ωt

ε f̂(ω)Rε
ω(−L, 0) dω , (11.28)

with the transmission and reflection coefficients satisfying (11.25–11.26).
The solution vectors (αε

ω,j , β
ε
ω,j) satisfy

d

dz

(
|αε

ω,j |2 − |βε
ω,j|2

)
= −σε(z)

ζ̄

∣∣∣αε
ω,je

iωz/(c̄ε) + βε
ω,je

−iωz/(c̄ε)
∣∣∣
2

≤ 0 ,

and thus
|αε

ω,2(−L, z)|2 + 1 ≤ |βε
ω,2(−L, z)|2 .

This implies the energy-dissipation relation

|Rε
ω|2 + |T ε

ω|2 ≤ 1 , (11.29)

and in turn the uniform boundedness of the transmission and reflection coef-
ficients.
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11.3.3 Transmitted Wave Front

Before considering time reversal we give an integral representation for the
transmitted stable wave front observed at z = −L around the expected arrival
time L/c̄. By (11.27), the transmitted wave front observed on the time scale
of the initial pulse is given by

Bε(L/c̄ + εs, z = −L) =
1

2π

∫
e−iωsf̂(ω)T ε

ω(−L, 0) dω . (11.30)

The results obtained in Chapter 8 can be easily extended. The process
(Bε(L/c̄ + εs, z = −L))−∞<s<∞ converges in the space of the continuous
functions to

bL(s) =
1

2π

∫
f̂(ω) exp

(
iω(s−

√
γ

2c̄
W0(L))− γω2

8c̄2
L−

∫ 0

−L

σ̄(z)

2ζ̄
dz

)
dω ,

where W0(L) is a standard Brownian motion and γ is the integrated covariance
of the process ν. Using convolution operators, the transmitted front can be
written in a simpler form:

bL(s) = Gatt × (K ∗ f)

(
s−
√

γ

2c̄
W0(L)

)
, (11.31)

which means that a random centering appears with the Brownian motion
W0(L), while the pulse shape spreads in a deterministic way through the
convolution by the Gaussian kernel K whose Fourier transform is

K̂(ω) = exp

(
−γω2L

8c̄2

)
.

Dissipation acts, as expected, as an attenuation factor

Gatt = exp

(
−

∫ 0

−L

σ̄(z)

2ζ̄
dz

)
.

Only the mean dissipation σ̄(z) appears in the attenuation factor, as can be
seen by a simple averaging argument. Thus, as far as the stable wave front is
concerned, the random effects and the dissipative effects simply add.

11.3.4 The Refocused Pulse for Time Reversal in Reflection

In this section we consider the time-reversal setup described in Section 10.1,
that is, the time reversal of the reflected wave. The analysis of the new reflected
signal follows the same lines, and we get the same integral representation
(10.3):
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Sε
L(t1 + εs) =

1

(2π)2

∫ ∫
e−iωse−iεhs/2f̂(ω − εh/2)Ĝ(h)

×Rε
ω+εh/2(−L, 0)Rε

ω−εh/2(−L, 0)dh dω . (11.32)

Here G is the recording cutoff function. However, the changes in the Riccati
equation (11.25) modify the joint distribution of the reflection coefficients at
different frequencies.

Frequency Autocorrelation Function of the Reflection Coefficient

The representation (11.32) shows that the statistical distribution of the refo-
cused pulse depends on the frequency autocorrelation function of the reflection
coefficient. We proceed as in Chapter 9 and for p, q ∈ N introduce

Uε
p,q(ω, h, z) =

(
Rε

ω+εh/2(−L, z)
)p (

Rε
ω−εh/2(−L, z)

)q

.

Using the Riccati equation (11.25) satisfied by Rε
ω , we have that

∂Uε
p,q

∂z
=

iω

c̄
νε(p− q)Uε

p,q +
iω

2c̄
νεe

2iωz
c̄ε

(
qe−

ihz
c̄ Uε

p,q−1 − pe
ihz

c̄ Uε
p+1,q

)

+
iω

2c̄
νεe−

2iωz
ε

(
qe

ihz
c̄ Uε

p,q+1 − pe
−ihz

c̄ Uε
p−1,q

)

−(p + q)
σε

ζ̄
Uε

p,q − e
2iωz

c̄ε
σε

2ζ̄

(
pe

ihz
c̄ Uε

p+1,q + qe−
ihz

c̄ Uε
p,q−1

)

−e−
2iωz

c̄ε
σε

2ζ̄

(
qe

ihz
c̄ Uε

p,q+1 + pe−
ihz

c̄ Uε
p−1,q

)
,

starting from Uε
p,q(ω, h, z = −L) = 10(p)10(q). Taking a shifted scaled Fourier

transform with respect to h,

V ε
p,q(ω, τ, z) =

1

2π

∫
eih(τ−(q+p)z/c̄)Uε

p,q(ω, h, z) dh , (11.33)

we get

∂V ε
q,p

∂z
=

iω

c̄
νε(p− q)V ε

p,q − (p + q)
σε

ζ̄
V ε

p,q

+
iω

2c̄
νεe

2iωz
c̄ε

(
qV ε

p,q−1 − pV ε
p+1,q

)
+

iω

2c̄
νεe−

2iωz
ε

(
qV ε

p,q+1 − pV ε
p−1,q

)

−e
2iωz

c̄ε
σε

2ζ̄

(
pV ε

p+1,q + qV ε
p,q−1

)
− e−

2iωz
c̄ε

σε

2ζ̄

(
qV ε

p,q+1 + pV ε
p−1,q

)
,

starting from V ε
p,q(ω, τ, z = −L) = δ(τ)10(p)10(q). As in Section 9.2.1, we can

use the limit theorem of Section 6.7.3 to show that the process V ε
p,q converges

as ε→ 0 to a diffusion process. In particular, the expectations E[V ε
p,p(ω, τ, z)],

p ∈ N, converge toWp(ω, τ,−L, z), which obey the closed system of transport
equations
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∂Wp

∂z
+

2p

c̄

∂Wp

∂τ
= (LωW)p −

2pσ̄(z)

ζ̄
Wp , (11.34)

(Lωφ)p =
p2

Lloc(ω)
(φp+1 + φp−1 − 2φp) , (11.35)

starting from Wp(ω, τ,−L, z = −L) = δ(τ)10(p). Here Lloc(ω) = (4c̄2)/(γω2)
is the localization length introduced in (7.81). We then get the limit of the
autocorrelation function of the reflection coefficient:

E

[
Rε

ω+εh/2(−L, 0)Rε
ω−εh/2(−L, 0)

]
ε→0−→

∫
W1(ω, τ,−L, 0)eihτdτ , (11.36)

whereW1(ω, τ,−L, 0) is obtained by solving the system of transport equations
(11.34).

Convergence of the Refocused Pulse

This section is devoted to the analysis of the convergence of the refocused
pulse shape Sε

L(t1 + ε·) to a deterministic shape as ε→ 0.
The proof of the tightness of the process Sε

L(t1+ε·) is exactly the same as in
the nondissipative case, since we use only the fact that |Rε

ω| ≤ 1. The uniform
boundedness (10.5) also implies that the finite-dimensional distributions of
the process Sε

L(t1 + ε·) are characterized by the moments

E[Sε
L(t1 + εs1)

p1 · · ·Sε
L(t1 + εsk)pk ] (11.37)

for all real numbers τ1 < · · · < sk and all integers p1, . . . , pk.
Let us first consider the first moment. Taking the expectation of the rep-

resentation (11.32) and using (11.36) yields

E[Sε
L(t1 + εs)]

ε→0−→ 1

(2π)2

∫ ∫ ∫
e−iωseihτ f̂(ω)Ĝ(h)W1(ω, τ,−L, 0) dh dτ dω

=
1

2π

∫ ∫
e−iωsf̂(ω)G(τ)W1(ω, τ,−L, 0) dτ dω .

The computation of the general moment (11.37) follows the same lines as
in Section 10.1, and we eventually get the same result: The refocused signal
(Sε

L(t1 + εs))−∞<s<∞ converges in probability as ε→ 0 to

SL(s) =
1

2π

∫
ΛL

TRR(ω, τ)f̂ (ω)e−iωsG(τ) dω dτ ,

where ΛL
TRR(ω, τ) = W1(ω, τ,−L, 0) is the density given by the system

(11.34). We can also write this as

SL(s) = (f(− ·) ∗KTRR(·)) (s) ,

where the Fourier transform of the refocusing kernel KTRR is given by
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K̂TRR(ω) =

∫
G(τ)ΛL

TRR(ω, τ) dτ .

We can give a probabilistic representation to the density ΛL
TRR, and more

generally of the solution of the transport equations (11.34), in terms of the
jump Markov process introduced in Section 9.2.2. By means of the Feynman–
Kac formula (see Section 6.6.5), we get

∫ τ1

τ0

Wp(ω, τ,−L, 0)dτ = E

[
1EL exp

(
−2

ζ̄

∫ 0

−L

σ̄(−L− s)Nsds

)
| N−L = p

]
,

EL =

{
2

c̄

∫ 0

−L

Nsds ∈ [τ0, τ1] , N0 = 0

}
. (11.38)

This representation is very useful in deriving qualitative and quantitative
properties of the refocusing kernel, as we will see in the next section.

In the particular case of a constant mean dissipation, σ̄(z) = σ̄0, the
probabilistic representation of the densities Wp is

Wp(ω, τ,−L, 0) = E

[
δ

(
τ − 2

c̄

∫ 0

−L

Nsds

)
10(N0)

× exp

(
−2σ̄0

ζ̄

∫ 0

−L

Nsds

)
| N−L = p

]
.

We note that the argument of the exponential is deterministic because the

value of the integral
∫ 0

−L Nsds is constrained to be equal to c̄τ/2. As a result,

Wp(ω, τ,−L, 0) =W(0)
p (ω, τ,−L, 0)e−c̄σ̄0τ/ζ̄, (11.39)

where W(0)
p is the solution of the transport equations (9.23) in the absence of

dissipation. We can also verify directly that (11.39) is indeed a solution of the
transport equations (11.34) with σ̄(z) = σ̄0.

11.4 Application to the Detection of a Dissipative Layer

In this section we show that time reversal can be used as an efficient and sta-
tistically stable method to image a dissipative layer embedded in a randomly
scattering medium. We consider the same configuration as the one analyzed
in the previous section. We compute explicitly the refocusing kernel and show
that it contains information about the presence of an embedded dissipative
layer. Finally, we show how this information can be extracted. In practical sit-
uations the refocusing kernels are estimated from measured reflected signals.
We comment on the implementation of such a procedure in Section 10.2.2.
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Fig. 11.4. Profile of the mean dissipation.

11.4.1 Constant Mean Dissipation

We consider the case of a half-space and we assume that there is no embedded
layer. The mean dissipation is constant σ̄(z) ≡ σ̄0. We compute explicitly the
solution for the system of transport equations using (11.39) and (9.40):

Wp(ω, τ) =
∂

∂τ

[(
γω2τ/c̄

8 + γω2τ/c̄

)p

1[0,∞)(τ)

]
e−c̄σ̄0τ/ζ̄ . (11.40)

We thus get a closed-form expression for the density ΛTRR(ω, τ) = W1(ω, τ)
in the case of a constant mean dissipation, which we denote by

Λ0(ω, τ) =
8γω2/c̄

(8 + γω2τ/c̄)
2 e−c̄σ̄0τ/ζ̄1[0,∞)(τ). (11.41)

Assuming that we record all the reflected signal at the mirror, so that
G ≡ 1, then we have an explicit formula for the refocusing kernel

K̂TRR(ω) = 1− 8c̄2σ̄0

ζ̄γω2
exp

(
8c̄2σ̄0

ζ̄γω2

)
Ei

(
8c̄2σ̄0

ζ̄γω2

)
,

where Ei is the exponential integral function

Ei(x) =

∫ ∞

1

exp(−xt)

t
dt .

This refocusing kernel is plotted in Figure 11.5. The fact that it behaves like a
high-pass filter can be explained as follows: the pulse is reflected back by the
random half-space because of wave localization, it partly dissipates, and the
time-reversal mirror sends back everything that is recorded. High frequencies
(above the cutoff frequency ωc = 4c̄

√
σ̄0/(ζ̄γ)) are well recovered, because

they do not penetrate far and they spend a short time in the random dissi-
pative half-space. In contrast, low frequencies are highly dissipated, because
they penetrate deeper and spend a longer time in the medium before being
scattered back.

11.4.2 Thin Dissipative Layer

We consider here a configuration in which a thin layer with mean dissipation
σ̄1 located in [z0, z1] is embedded into a half plane with mean dissipation
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σ̄0 (see Figure 11.4). The layer is thin in the sense that z0 − z1 → 0, but
its dissipation coefficient is high, so that σ̄1(z0 − z1) → λ. We discuss the
domain of validity of this limit in the next section. First, we solve the system
of transport equations (11.34) from −∞ to z0, so that we get the stationary
solution (11.40):

W(z0)
p (ω, τ) =

∂

∂τ

[(
γω2τ/c̄

8 + γω2τ/c̄

)p

1[0,∞)(τ)

]
e−c̄σ̄0τ/ζ̄ .

Second, we solve the system across the layer from z0 to z1. The layer is very
thin, so that the Markov process does not jump. As a result, we get

W(z1)
p (ω, τ) =W(z0)

p (ω, τ)e−2λp/ζ̄

=
∂

∂τ

[(
γω2τ/c̄

8 + γω2τ/c̄

)p

1[0,∞)(τ)

]
e−c̄σ̄0τ/ζ̄−2λp/ζ̄ .

Third, we solve the system from z1 to 0. Using the probabilistic representation
of the solution of the system transport equations with an arbitrary initial
condition (see Section 9.2.2), we find that the density ΛTRR(ω, τ) is given by

Λ(ω, τ) = E

[
W(z1)

N0

(
ω, τ − 2

c̄

∫ 0

z1

Nsds

)
| Nz1 = 1

]
.

This density would be equal to the stationary solution (11.41) if the multi-
plicative factor exp(−2λN0/ζ̄) were absent. We then expand this factor as
1−

(
1− exp(−2λN0/ζ̄)

)
, so that we obtain

Λ(ω, τ) = Λ0(ω, τ)− E

[
W̃(0)

N0

(
ω, τ − 2

c̄

∫ 0

z1

Nsds

)

×
(
1− e−2λN0/ζ̄

)
| Nz1 = 1

]
e−c̄σ̄0τ/ζ̄ , (11.42)
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where

W̃(0)
p (ω, τ) =

⎧
⎨
⎩

δ(τ) if p = 0 ,
8pγω2

c̄

(γω2τ/c̄)p−1

(8 + γω2τ/c̄)p+1
1[0,∞)(τ) otherwise .

(11.43)

Next we analyze the expectation in the right-hand side of (11.42). If N0 = 0,
then the second term inside the expectation is zero. If N0 ≥ 1, then Nz ≥ 1
for all z ∈ [z1, 0] because 0 is an absorbing state. This means that only the
paths of the process that never reach zero can contribute to the value of the

expectation. These paths satisfy
∫ 0

z1
Nsds ≥ |z1|. We also know that W̃(0)

p (ω, τ)
is zero for τ < 0. This shows that the first term inside the expectation is zero
for any τ < 2|z1|/c̄. Accordingly, the density Λ is indistinguishable from the
density Λ0 corresponding to a constant mean dissipation for any τ ≤ 2|z1|/c̄.
When τ crosses this critical value corresponding to a round trip from the
surface to the dissipative layer, a density jump occurs. Indeed, a set of paths
suddenly contributes to the expectation in the right-hand side of (11.42). This
is the set of paths where no jump occurs (i.e., Nz = 1 for all z ∈ [z1, 0]). The
density then jumps from

Λ
(
ω, τ = (2|z1|/c̄)−

)
= Λ0 (ω, 2|z1|/c̄)

to

Λ
(
ω, τ = (2|z1|/c̄)+

)
= Λ0(ω, 2|z1|/c̄)− W̃(0)

1 (ω, 0)
(
1− e−2λ/ζ̄

)

×P (no jump before 0 | Nz1 = 1) e−c̄σ̄0τ/ζ̄

= Λ0(ω, 2|z1|/c̄) [1−∆Λ] ,

where the relative amplitude of the jump is

∆Λ =
(
1− e−2λ/ζ̄

)(
1 +

γω2

4c̄2
|z1|

)2

exp

(
−γω2|z1|

2c̄2

)
. (11.44)

Summary. In order to detect the depth and the dissipation coefficient of the
layer from a measured power spectral density Λ, we plot the ratio of the mea-
sured density Λ over the density Λ0 with constant mean dissipation σ̄0. This
ratio is one up to τ = 2|z1|/c̄ and has a jump at τ = 2|z1|/c̄, which enables us
to recover the depth z1. The amplitude of the jump is given by (11.44), which
allows us to recover the dissipation strength λ.

We have carried out Monte Carlo simulations for the jump Markov process
N to compute Λ from the expression (11.42). The results for a particular set
of parameters are plotted in Figure 11.6, where the jump in the density can
be seen clearly.
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Fig. 11.6. Plot (a): Density τ �→ Λ(ω, τ ). Plot (b): Ratio of the densities τ �→
Λ(ω, τ )/Λ0(ω, τ ). Here we assume γω2/c̄2 = 2, z0 = 1, c̄ = 1, and ζ̄ = 1.

11.4.3 Thick Dissipative Layer

We revisit the previous configuration without assuming that the layer is thin.
Accordingly, we consider a configuration in which a layer with mean dissipa-
tion σ̄1 lying in [z0, z1] is embedded into a half-space with mean dissipation
σ̄0. We proceed as above and find that

Λ(ω, τ) = E

{
W(z0)

N0

(
ω, τ − 2

c̄

∫ 0

z0

Nsds

)

× exp

(
2
σ̄0 − σ̄1

ζ̄

∫ 0

z0−z1

Nsds

)
| Nz0 = 1

}
e
− c̄σ̄0τ

ζ̄

= Λ0(ω, τ) − E

{
W̃(0)

N0

(
ω, τ − 2

c̄

∫ 0

z0

Nsds

)

×
[
1− exp

(
2
σ̄0 − σ̄1

ζ̄

∫ 0

z0−z1

Nsds

)]
| Nz0 = 1

}
e
− c̄σ̄0τ

ζ̄ . (11.45)

If Nz0−z1 = 0, then Nz = 0 for all z ∈ [z0 − z1, 0] and the second term inside
the expectation is zero. If Nz0−z1 ≥ 1, then Nz ≥ 1 for all z ∈ [z0, z0 − z1], so

that 2
∫ 0

z0
Nsds ≥ 2|z1|. The fact that W̃(0)

p (ω, τ) is zero for τ < 0 then shows

that the first term inside the expectation is zero if τ ≤ 2|z1|/c̄. Accordingly,
Λ(ω, τ) = Λ0(ω, τ) for τ ≤ 2|z1|/c̄.

The derivative of the density jumps at τ = 2|z1|/c̄. Indeed, for τ just
above 2|z1|/c̄ a path contributes to the value of the expectation that appears
in the right-hand side of (11.45), namely the path where Nz = 1 for all
z ∈ [z0, z0 − z1], and a jump from state 1 to state 0 occurs at z0 + c̄τ/2.
Accordingly, the derivative Λ′ = ∂Λ/∂τ goes from

Λ′ (ω, τ = (2|z1|/c̄)−
)

= Λ′
0 (ω, 2|z1|/c̄)
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= −
(

2γω2

c̄

)
γω2/c̄ + c̄σ̄0(4 + γω2|z1|/c̄2)/ζ̄

(4 + γω2|z1|/c̄2)
3 e−2σ̄0|z1|/ζ̄

to

Λ′(ω, τ = (2|z1|/c̄)+) = Λ′
0(ω, 2|z1|/c̄)− σ̄1 − σ̄0

8ζ̄
γω2e−γω2|z1|/(2c̄2)e−2σ̄0|z1|

= Λ′
0(ω, 2|z1|/c̄) [1 + ∆Λ′] ,

where the relative amplitude of the jump is given by

∆Λ′ =
σ̄1 − σ̄0

16ζ̄

(4 + γω2|z1|/c̄2)3

γω2/c̄2 + σ̄0(4 + γω2|z1|/c̄2)/ζ̄
exp

(
−γω2|z1|

2c̄2

)
. (11.46)

There is a second jump in the derivative of Λ at τ = 2|z0|/c̄. Indeed, the
mechanism described just above fails precisely when τ becomes larger than
τ = 2|z0|/c̄, because the jump of the Markov process at z0 + c̄τ/2 > 0 has no
influence.

Summary. In order to detect the depth, the thickness, and the dissipation
coefficient of the layer from a measured power spectral density Λ, we plot the
ratio of the measured density Λ over Λ0. The ratio is one up to τ = 2|z1|/c̄.
The position of the first jump in the derivative of the density is 2|z1|/c̄. The
position of the second jump is 2|z0|/c̄. The amplitude of the first jump is given
by (11.46), which allows us to recover σ̄1 assuming σ̄0 is known.

We have carried out Monte Carlo simulations for the jump Markov process
N to compute Λ from the expression (11.45). The results for a particular set of
parameters are plotted in Figure 11.7, where the first jump of the derivative
density can be seen clearly. It may be more difficult to detect the second
jump if the layer is thick. The case in which the thickness of the layer is small,
z1−z0 = 0.1, is very similar to the approximation of a thin layer with λ = 0.1
presented in Figure 11.6.

The thin-layer approximation developed in Section 11.4.2 can now be dis-
cussed more quantitatively. The interpretation in terms of the jump Markov
process is helpful for this discussion. Considering expression (11.45), it can be
seen that the approximation is valid if the event “the process jumps between
z0 − z1 and 0” is negligible. The brackets [.] in the right-hand side of (11.45)
then simplify to [1− exp(2(σ̄0 − σ̄1)(z1 − z0)N0/ζ̄)], and we recover precisely
(11.42). This event is negligible if γω2|z1 − z0|/c̄2 ≪ 1, and this condition is
the criterion for the validity of the thin-layer approximation.
Concluding remarks In Section 10.2.2 we discused two different approaches
for estimating the power spectral density Λ. They give robust and stable
estimates of the density by measurents from a single realization of the medium.
The results obtained in this section, tell us that the detection of an anomalous
layer can be done by looking for a discontinuity in Λ or in its τ -derivative.
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Fig. 11.7. Plot (a): Density τ �→ Λ(ω, τ ). Plot (b): Ratio of the densities τ �→
Λ(ω, τ )/Λ0(ω, τ ). Here we assume γω2/c̄2 = 2, c̄ = 1, ζ̄ = 1, z1 = 1, σ̄0 = 0, σ̄1 = 1,
and the thickness of the layer z1 − z0 goes from zero (absence of dissipative layer)
to one.

Notes

The results of this chapter on dissipation and detection of a dissipative layer
were derived in 2004 by Fouque–Garnier–Nachbin–Sølna in [63]. The results on
detection of weak reflectors were derived in [66]. The general inverse problem,
which consists in recovering the slowly varying background parameters from
the reflections, is treated in [8] and [133].
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Time Reversal in Transmission

In this chapter we consider time reversal in transmission where a source emits
a pulse at one end of a one-dimensional slab, and a time reversal mirror lo-
cated at the other end of the slab records the transmitted signal. The mirror
then reemits a segment of the recorded signal in the reverse direction of time
so that what is recorded last is sent first (last-in-first-out at the mirror).
This is in contrast with a standard mirror which corresponds to first-in-first-
out. This time-reversal setup is illustrated in Figure 12.1. In Section 12.1 we
consider the case in which the mirror records only the stable front of the
transmitted signal, which has been studied in detail in Chapter 8. The main
effects of randomness are the spreading of the pulse and a random shift in
the arrival time. We will see that time reversal does not compensate for this
spreading and that the signal spreads even further while propagating back to
the original source point. In contrast, we will see in Section 12.2 that, when
the fluctuations following the stable wave front are recorded, then the qual-
ity of the refocusing is greatly improved. This can be explained in terms of
the frequency content of these fluctuations and the localization theory pre-
sented in Chapter 7. The time-reversal results derived here will be presented
in the framework of separation of scales introduced in the previous chapters,
namely in the strongly heterogeneous white-noise regime. In particular, the
analysis relies on the precise asymptotics of the moments of the transmission
coefficients derived in Chapter 7 and in Chapter 9. Applications to commu-
nications using the results presented in this chapter will be addressed in the
next chapter. Time reversal in reflection in the case of a one-dimensional
random medium was studied in Chapter 10. Other time-reversal situations,
including three-dimensional randomly layered media, will be presented in the
subsequent chapters.
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Fig. 12.1. Propagation of a pulse through a slab of random medium (0, L). This
figure is similar to Figure 10.1, but we now record a long piece of the transmitted
wave.

12.1 Time Reversal of the Stable Front

In Chapter 8 we described the shape of the wave front generated by a pulse
propagating through a one-dimensional random slab in the strongly heteroge-
neous white-noise regime. We found that when this wave front is observed at
its random arrival time it can be expressed as a convolution of the transmitted
front in the homogeneous case with a deterministic kernel that depends on
the statistics of the medium fluctuations. In this section we discuss the time
reversal of the transmitted stable front as illustrated in Figure 12.2. We will
see that the effect of randomness is simply a spreading of the back-propagated
pulse corresponding to twice the travel distance. The effect of time reversal is
to cancel the random component in the arrival time of the transmitted pulse.
In other words, time reversal does not play a significant role when only the
wave front is used. In Section 12.2 we will consider the more interesting case
in which a part of the incoherent coda wave is also time reversed.
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12.1.1 Time-Reversal Experiment

We consider a random slab (−L, 0) embedded in a homogeneous medium with
matched medium boundary conditions. A short pulse of the form f(t/ε) in-
coming from the right homogeneous half-space is scattered by the random
slab. As seen in Section 9.4, the transmitted wave admits the integral repre-
sentation

Bε(t,−L) =
1

2π

∫
e−iω t−L/c̄

ε T ε
ω(−L, 0)f̂(ω) dω , (12.1)

where T ε
ω(−L, 0) is the transmission coefficient defined in (9.9). The first step

in time reversal of the wave front consists in recording the transmitted signal
at the end of the slab z = −L during a small time interval of duration of order
ε centered at time t1. More precisely, a segment of order ε around t1 of the
transmitted signal is “clipped” using a cutoff function G, with t1 to be chosen
later. We denote the recorded part of the wave by yε, so that

yε(t) = Bε(t1 + t,−L)G

(
t

ε

)
.

We then time reverse this segment of signal and send it back into the same
medium. This means that we need to consider a new problem defined by the
same acoustic equations, but with the new incoming signal given by

fε
new(t) = yε(−t) = Bε(t1 − t,−L)G

(
− t

ε

)
.

It is a right-going wave incoming from the left homogeneous half-space. Using
the fact that we are dealing with real-valued signals, we can write

Bε(t1 − t,−L) = Bε(t1 − t,−L) =
1

2π

∫
T ε

ω(−L, 0)f̂(ω)eiω
t1−t−L/c̄

ε dω ,

so that the scaled Fourier transform of the new incoming signal is of the form

f̂ε
new(ω) =

∫
ei ωt

ε fε
new(t) dt = ε

∫
eiωsBε(t1 − εs,−L)G(−s) ds

= ε

∫
eiωs

{
1

2π

∫
e−iω′sT ε

ω′(−L, 0)f̂(ω′)eiω′ t1−L/c̄
ε dω′

}
G(−s) ds

=
ε

2π

∫
T ε

ω′(−L, 0)f̂(ω′)

{∫
ei(ω′−ω)(−s)G(−s) ds

}
eiω′ t1−L/c̄

ε dω′

=
ε

2π

∫
T ε

ω′(−L, 0)f̂(ω′)Ĝ(ω − ω′)eiω′ t1−L/c̄
ε dω′ .

The new incoming signal is scattered by the random slab and gives rise to a
reflected wave Bε

new(t,−L) at z = −L and a transmitted wave Aε
new(t, 0) at

z = 0 that is the original source point. The transmitted signal observed in the
time domain around the observation time tobs reads
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(a) A left-going pulse f(t/ε) is impinging the random slab (−L, 0), and
it generates a transmitted signal Bε(t,−L). The TRM, used in a passive
mode, records the wave front yε(t).
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Random slab

(b) The TRM is used as an active device and it sends back into the medium
the signal yε(−t). We observe the new transmitted signal Aε

new(t, 0).

Fig. 12.2. Experimental setup for time reversal of the stable wave front.

Sε
L(tobs + εs) = Aε

new(tobs + εs, 0)

=
1

2πε

∫
e−iω(s+

tobs−L/c̄

ε )f̂ε
new(ω)T̃ ε

ω(−L, 0) dω , (12.2)

where T̃ ε
ω (resp. R̃ε

ω) is defined as the adjoint transmission (resp. reflection)
coefficient for the experiment corresponding to a right-going input wave in-
coming from the left (see Figure 12.4 for the definition of the adjoint reflection
and transmission coefficients, and compare with Figure 12.3 for the definition
of the standard reflection and transmission coefficients). Using the propagator
matrix (9.7) we find that the adjoint reflection and transmission coefficient
satisfy

Pε
ω(−L, 0)

[
1

R̃ε
ω(−L, 0)

]
=

[
T̃ ε

ω(−L, 0)
0

]
.

The adjoint coefficients are given in terms of the entries αε
ω and βε

ω of the
propagator matrix (9.5) by

R̃ε
ω(−L, 0) = −βε

ω(−L, 0)

αε
ω(−L, 0)

, T̃ ε
ω(−L, 0) =

1

αε
ω(−L, 0)

. (12.3)
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By comparing with the corresponding expressions (9.9) for the standard re-
flection and transmission coefficients, one gets that the two transmission co-
efficients are equal:

T̃ ε
ω(−L, 0) =

1

αε
ω(−L, 0)

= T ε
ω(−L, 0) .

�
−L 0 z

Random slab
�
T ε

ω(−L, 0)

�0 � 1

�
Rε

ω(−L, 0)

Fig. 12.3. Reflection and transmission coefficients.
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Fig. 12.4. Adjoint reflection and transmission coefficients.

Substituting the expression of f̂ε
new into the representation (12.2) of

Sε
L(tobs + εs) yields the integral representation of the transmitted signal

Sε
L(tobs + εs) =

1

(2π)2

∫ ∫
e−iωse−i ω

ε (tobs−L
c̄ )ei ω′

ε (t1−L
c̄ )f̂(ω′)Ĝ(ω − ω′)

×T ε
ω′(−L, 0)T ε

ω(−L, 0) dω′ dω . (12.4)

12.1.2 The Refocused Pulse

The integral representation (12.4) holds for any value of ε, and we now study
the behavior of the transmitted signal in the limit ε→ 0. By choosing

t1 = tobs = L/c̄ ,

the rapid phases in (12.4) cancel. This particular choice corresponds to (1)
a recording-time window centered at the expected arrival time of the pulse
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front during the first part of the experiment, (2) an observation-time window
centered at the expected arrival time of the new transmitted signal after ree-
mission. We thus expect to observe a stable front. From the mathematical
point of view (12.4) has the same structure as (8.35), which means that we
deal with a problem similar to the one addressed in Chapter 8. The statistical
distribution of the transmitted wave is characterized by its moments, which
involve the moments of the transmission coefficients and their conjugates at
different frequencies. We get a characterization of the limit by substituting
the asymptotic transmission coefficient T̃ω′(−L, 0) given as in (8.60) for the
random transmission coefficients T ε

ω′(−L, 0):

SL(s) = lim
ε→0

Sε
L

(
L

c̄
+ εs

)

=
1

(2π)2

∫ ∫
e−iωsf̂(ω′)Ĝ(ω − ω′)T̃ω′(−L, 0)T̃ω(−L, 0) dω′ dω

=
1

(2π)2

∫ ∫
e−iωsf̂(ω′)Ĝ(ω − ω′)e−iω′

√
γ

2c̄ W (L)e−ω′2 γL

4c̄2

×eiω
√

γ

2c̄ W (L)e−ω2 γL

8c̄2 dω′ dω .

By computing the inverse Fourier transforms we get the expression for the
limiting transmitted pulse:

SL(s) =
{[(

f ∗ NDL(−(·+ θL))
)
G(−·)

]
∗ NDL(·)

}
(s− θL) ,

where NDL is the Gaussian kernel (8.44). The interpretation of the-time re-
versed wave can be seen from this expression: first it spreads out and randomly
shifts; then it is multiplied by G; then it is time-reversed; and finally it once
again spreads out and randomly shifts. Note that the second shift tends to
compensate for the first one, but this compensation can be blurred out by
the cutoff function G. To see this we rewrite the expression of the limiting
transmitted pulse as follows:

SL(s) =
{[(

f ∗ NDL(·)
)
G(·+ θL)

]
∗ NDL(·)

}
(−s) . (12.5)

If we take G = 1, then this expression can be reduced to

SL(s) = f ∗ ND2L(−s) , (12.6)

which shows that the time-reversal operation has completely compensated for
the random time shift, but not for the deterministic spreading. We shall see
in the next sections that time reversal can also compensate for the spreading
by recording a significant part of the incoherent coda wave.

If G is such that
(
f ∗NDL(·)

)
G(·+θL) = f ∗NDL(·), which means that we

have recorded the whole pulse front, then the result is equivalent to having
G = 1. However, θL is a Gaussian random variable, which implies in particular
that its support is not bounded. Thus, we cannot guarantee that a given
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compactly supported time-window function G will record the stable part of
the transmitted signal, since this signal can be delayed by an uncontrolled
random time.

12.2 Time Reversal with Coda Waves

12.2.1 Time-Reversal Experiment

The time-reversal procedure consists in recording the transmitted signal at
z = −L over a time interval [L/c̄ + t0, L/c̄ + t1] as shown in Figure 12.5. A
piece of the recorded signal is cut using a cutoff function t 	→ G(t − L/c̄),
where the support of G is included in [t0, t1]:

yε(t) = Bε(L/c̄ + t, z = −L)G(t) .

In contrast to the procedure used in the previous section, here we cut a
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�
Aε(t, 0)

�

f(t/ε)

Random slab

(a) A left-going pulse f(t/ε) is impinging the random slab (−L, 0) and
it generates a transmitted signal Bε(t,−L). The TRM, used in a passive
mode, records a segment yε(t) of the transmitted signal.

�
−L 0 z

�

�

yε(t1 − t)
�

Aε
new(t, 0)

Random slab

(b) The TRM is used as an active device and it sends back into the medium
the signal yε(t1 − t). We observe the new transmitted signal Aε

new(t, 0).

Fig. 12.5. Setup for a time reversal in transmission (TRT) experiment with coda
waves.

segment of size one. We then time-reverse that segment of signal and send it
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back into the same medium. This means that we have a new problem with a
new source term located at z = −L and given by

fε
new(t) = yε(t1 − t) = Bε(L/c̄ + t1 − t, z = −L)G(t1 − t) .

The scaled Fourier transform of this source term is

f̂ε
new(ω) =

∫
ei ωt

ε fε
new(t) dt

= ε

∫
eiωsBε(L/c̄ + t1 − εs, z = −L)G(t1 − εs) ds

= ε

∫
eiωs

{
1

2π

∫
e−iω′sT ε

ω′(−L, 0) f̂(ω′)eiω′ t1
ε dω′

}
G(t1 − εs) ds

=
ε

2π

∫
T ε

ω′(−L, 0) f̂(ω′)

{∫
ei(ω′−ω)(−s)G(t1 − εs) ds

}
eiω′ t1

ε dω′

=
1

2π

∫
T ε

ω′(−L, 0)f̂(ω′)Ĝ

(
ω − ω′

ε

)
eiω

t1
ε dω′.

Accordingly, the new incoming signal propagates back into the same medium,
and generates a new transmitted signal, which we observe at the time tobs+εs,
which is around the time tobs in the scale of the initial pulse. In terms of the
transmission coefficients the observed transmitted signal is given by

Sε
L(tobs + εs) = Aε

new(tobs + εs, z = 0)

=
1

2πε

∫
f̂ε
new(ω)T ε

ω(−L, 0)e
−iω

(
s+

tobs−L/c̄

ε

)

dω .

Substituting the expression of f̂ε
new into this equation yields the following

representation of the new transmitted signal:

Sε
L(tobs + εs) =

1

(2π)2ε

∫
f̂(ω2)Ĝ

(
ω1 − ω2

ε

)
e
−iω1

(
s+

tobs−L/c̄−t1
ε

)

×T ε
ω1

(−L, 0)T ε
ω2

(−L, 0)dω1 dω2 .

After the change of variable ω1 = ω + εh/2 and ω2 = ω − εh/2, the represen-
tation becomes

Sε
L(tobs + εs) =

1

(2π)2

∫
e−iωsei

ω(t1+L/c̄−tobs)

ε eih(t1+L/c̄−tobs)/2−iεhs/2

×f̂(ω − εh/2)Ĝ(h)T ε
ω+εh/2(−L, 0)T ε

ω−εh/2(−L, 0)dh dω . (12.7)

We can now carry out the precise analysis of the transmitted wave. Due to
the presence of the fast phase exp(iω(t1 + L/c̄− tobs)/ε) in (12.7), it is easily
seen that at the observation point z = 0,

refocusing takes place only if tobs = L/c̄ + t1,
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and in a window around this observation time the refocused signal becomes

Sε
L(L/c̄ + t1 + εs) =

1

(2π)2

∫
e−iωse−iεhs/2f̂(ω − εh/2)Ĝ(h)

×T ε
ω+εh/2(−L, 0)T ε

ω−εh/2(−L, 0)dh dω . (12.8)

The product of transmission coefficients has been analyzed in detail in Section
9.4. Using the asymptotic analysis of their moments we can characterize the
limit of the refocused pulse Sε

L(L/c̄ + t1 + εs) as a continuous process with
respect to the time variable s. The situation is similar to time reversal in
reflection studied in Chapter 10, with transmission coefficients replacing re-
flection coefficients. A detailed proof of the convergence, including tightness,
was given in the context of time reversal in reflection in Section 10.1.3. The
proof of the convergence for time reversal in transmission follows exactly the
same lines. Here we give directly the limiting refocused pulse for time reversal
in transmission with coda waves.

12.2.2 Decomposition of the Refocusing Kernel

Proposition 12.1. The refocused signal (Sε
L(L/c̄ + t1 + εs))s∈(−∞,∞) con-

verges in probability as ε→ 0 to the deterministic pulse

SL(s) = (f(− ·) ∗KTRT(·)) (s) , (12.9)

where the Fourier transform of the refocusing kernel KTRT is given by

K̂TRT(ω) =

∫
G(τ)ΛTRT(ω, dτ) . (12.10)

The refocusing spectral measure ΛTRT(ω, dτ) = W(T )
0 (ω, dτ,−L, 0) is given

by the system of transport equations (9.67) corresponding to the transmission
problem.

The deterministic nature of the refocused pulse, meaning that it is inde-
pendent of the particular realization of the medium, is referred to as statis-
tical stability or the self-averaging property. This property is important
in many applications to communications or detection where the aim is to
construct stable estimators of quantities of interest.

If we assume that the medium is homogeneous (γ = 0), then ΛTRT(ω, dτ) =
δ0(dτ), so that

K̂TRT(ω) = G(0) ,

and therefore the refocused pulse has exactly the same shape as the input one:

SL(s) = G(0)f(−s) .

Indeed, as expected, in the homogeneous medium the pulse f travels through
the medium at constant speed c̄ without deformation. As a result, we record it
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perfectly if the recording-time window captures it, that is to say, if t0 < 0 < t1.
After reemission by the TRM, the new pulse travels without deformation once
again, and we get the original pulse shape.

Let us now consider the effect of randomness and assume that γ > 0.

Considering the form (9.73) of W(T )
0 and its decomposition into singular and

continuous parts, we can divide the refocusing kernel into two kernels cor-
responding respectively to the stable and the incoherent components of the
recorded signal that participate in the refocusing:

K̂TRT(ω) = K̂(TRT,stab)(ω) + K̂(TRT,inc)(ω) , (12.11)

with

K̂(TRT,stab)(ω) = G(0) exp

(
− L

Lloc(ω)

)
, (12.12)

K̂(TRT,inc)(ω) =

∫
G(τ)W(T )

0,c (ω, dτ,−L, 0) , (12.13)

where the localization length Lloc(ω) = 4c̄2/(γω2) was defined by (7.81). The
refocused pulse is therefore

SL(s) =
(
f(− ·) ∗K(TRT,stab)(·)

)
(s) +

(
f(− ·) ∗K(TRT,inc)(·)

)
(s) .

The refocusing kernel K(TRT,stab) is the contribution to time reversal of the
stable wave front. It results from the double action of the deterministic spread-
ing kernel on the pulse front in forward and backward directions. This is ac-
tually exactly the kernel that we found when we considered the time reversal
of the stable front in Section 12.1 (see (12.6)). Of course, this contribution
completely vanishes if we do not record the pulse front (i.e., if G(0) = 0).

The kernel K(TRT,inc) is the contribution to time reversal of the transmit-
ted incoherent coda waves. Its form is rather complicated. In order to discuss
its qualitative properties, we consider two particular cases: a short recording-
time window, or a very long recording-time window.

12.2.3 Midband Filtering by the Medium

Let us assume that we record a small segment of the transmitted wave, in the
sense that the cutoff function G has its support in [t0, t1] such that t0 < 0 < t1,
and γω2

0t1/c̄ ≪ 1, with ω0 the typical frequency of the input pulse. This
can also be written c̄t1 ≪ Lloc(ω0), where Lloc(ω0) is the localization length
introduced in (7.81). We then use the expansion (9.75),

W(T )
0 (ω, dτ,−L, 0) ≈ c̄L

2L2
loc(ω)

exp

(
− L

Lloc(ω)

)
dτ ,

to deduce that
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K̂(TRT,inc)(ω) ≈ c̄L

2L2
loc(ω)

exp

(
− L

Lloc(ω)

)
×

∫ ∞

0

G(t) dt .

As a result, the kernel K(TRT,inc) is a midband filter. It retains only the
frequencies around ωc, where

ω2
c =

8c̄2

γL

corresponds to the maximum of K̂(TRT,inc)(ω). The localization length asso-
ciated with this frequency is Lloc(ωc) = L/2. Thus the frequencies around
ωc can probe the random slab and experience scattering, but they are not
yet completely reflected by the strong localization effect. As a result, these
incoherent waves can be recorded by the TRM at the output of the slab, and
they can contribute to the refocused pulse when they are sent back.
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Fig. 12.6. Refocusing kernels for time reversal in transmission. The dashed line in
the left plot shows a midband filter that corresponds to the case in which only the
incoherent coda wave is sent back. The dotted line in the right plot shows a low-pass
filter that corresponds to the case in which only the stable transmitted wave front
is sent back, while the solid line corresponds to the case in which everything that is
recorded in transmission is sent back. Note the difference in the vertical scaling in
the two figures.

12.2.4 Low-Pass Filtering

Let us now address the ideal case in which we record completely the trans-
mitted signal and send back everything that is recorded. This ideal case is
obtained by setting G ≡ 1. We then find that the refocusing kernel is

K̂TRT(ω) =

∫
ΛTRT(ω, dτ) .
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By Proposition 9.4 this is the limit of the mean power transmission coefficient:

K̂TRT(ω) = lim
ε→0

E[|T ε
ω(−L, 0)|2] ,

which has been computed in Chapter 7 and is given explicitly by Proposition
7.4. Thus we have

K̂TRT(ω) = ξ1

(
L

Lloc(ω)

)
,

where ξ1 is given by (7.52). In Figure 12.6 we compare this kernel with the
kernel K̂(TRT,stab)(ω) given in (12.12) obtained when only the stable trans-

mitted wave front is sent back. The kernel K̂TRT(ω) is a low-pass filter whose
cutoff frequency is higher than the cutoff frequency of K̂(TRT,stab)(ω), which
is because we send back the whole transmitted wave. We have seen in Section
8.2.2 that the most important part of the transmitted energy is contained in
the incoherent wave rather than in the stable wave front when L is larger than
Lloc(ω). As a result, time reversal in transmission is more efficient when we
send back the incoherent wave together with the stable wave front than when
we send back only the front.
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Fig. 12.7. Plot (a): Four time-reversal experiments are carried out with the trans-
mitted signal shown in Figure 12.1, depending on the reemitted segments of the
signal: (i) only the wave front is sent back; (ii) the stable wave front plus a piece of
the coda is sent back (front+coda); (iii) the stable wave front is removed from the
reemitted signal (coda 1); (iv) the stable wave front plus the early coda is removed
(coda 2). The last three reemitted signals are plotted. Plot (b): Zoom on the stable
wave front and the early coda.
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12.3 Discussion and Numerical Simulations

We consider the numerical setup described in Section 8.2.3. We record the
transmitted signal shown in Figure 12.1. We can then perform a series of time-
reversal experiments, by sending back different segments of the time-reversed
recorded signal. Two of these experiments are plotted in Figures 12.8–12.9.
The different segments are plotted in Figure 12.7a, and the corresponding
refocused pulses are plotted in Figure 12.10.
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Fig. 12.8. We use the same random medium as in Figure 12.1 and send back the
time-reversed transmitted signal. Snapshots of the wave profile at increasing times
are plotted from bottom to top. We can see the refocused pulse that emerges from
the random medium. Here the reemitted signal consists of the stable wave front plus
a piece of the coda.

Comparison of the refocused pulses in Figures 12.10a (reemission of the
stable front only) and 12.10b (reemission of the stable front and the coda)
shows clearly the refocusing improvement that results when the incoherent
coda is sent back with the stable front. The time-reversal process recompresses
the incoherent wave fluctuations with the stable front, which enhances the
refocusing properties, as predicted by the theory developed in this chapter.

Comparison of the refocused pulses in Figures 12.10c (reemission of coda
1) and 12.10d (reemission of coda 2) shows that refocusing can occur even
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Fig. 12.9. The same as in Figure 12.1 but the reemitted signal consists only of the
coda (coda 1, in Figure 12.7a). A refocused pulse is, however, noticeable.

when sending back the coda only. When observing the refocused pulses, only
minor changes are noticeable between the two cases. The main difference is
that the noise level is higher with the reemission of coda 1 than with coda 2.
In the limit ε → 0, both cases are equivalent because the noise level is going
to zero, but the numerical simulations at finite ε give these fine details, which
can be explained as follows.
When performing the time-reversal experiment with coda 1, we do not send
back the wave front, but we send back the wave fluctuations that were just
behind it and that were generated during the forward propagation of the wave
front (see Figure 12.7). The back-propagation of these wave fluctuations gives
rise to the relatively large noise in the vicinity of the refocused pulse seen in
pictures (b) and (c) at negative t. This noise can actually be approximated by a
convolved version of the early part of the coda 1 signal seen in Figure 12.7. This
noise is large compared to the residual noise in the refocused signal generated
by the back-propagation of the time-reversed incoherent waves, which can be
seen in picture (c) at positive t and in picture (d) at positive t and negative
t ∈ (−15, 0).
When reemitting coda 2 (picture (d)), the wave fluctuations just behind the
transmitted wave front over a time interval of duration 15 are not sent back,
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so that the large noise in the refocused signal obtained in the case of coda 1
is not present in the vicinity t ∈ (−15, 0) of the refocused pulse, but can be
detected in the region t ≤ −15. However, the most important part of the wave
fluctuations are sent back, so the refocusing of these wave fluctuations gives
rise to a refocused pulse that is very similar to the one obtained with coda 1.
As a result, the signal-to-noise ratio with the time reversal of coda 2 appears
to be higher in the vicinity of the refocused pulse than with coda 1.
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Fig. 12.10. Refocused pulses after time reversal of different segments of the trans-
mitted signal. In thick dashed lines are plotted the theoretical refocused pulses,
obtained by convolutions of the original pulse shape with the theoretical refocus-
ing kernels. In plot (a), the theoretical refocusing kernel is (12.12). In plot (b), the
refocusing kernel is (12.11). In plots (c) and (d), the refocusing kernel is (12.13).

Notes

Time reversal of stable fronts is studied in [67] by Fouque and Sølna in the
context of three-dimensional randomly layered media as introduced in Chapter
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14. Time reversal in transmission of incoherent waves is presented for the first
time in Section 12.2.



13

Application to Communications

In this chapter we present an application of time reversal in transmission
to communications through a one-dimensional channel with random fluctua-
tions. We consider the communications scheme in which the transmitter emits
a train of pulses that encodes a binary message. The pulse train is transmitted
through a random channel and recorded by the receiver. We assume that the
signal-to-noise ratio at the receiver is large (infinite), in the sense that there
is no additive noise, such as electronic noise, in the signal recorded by the
receiver. For very simple receivers we derive quantitative estimates for the
intersymbol interference (ISI), which affects the decoding of the received sig-
nal. By very simple receivers we mean here ones for which no advanced signal
processing method, such as equalization filtering, is applied to decode the re-
ceived signal. The received signal is decoded by simply tapping it at multiples
of the intersymbol time. We show that the signal-to-interference ratio (SIR),
which is a quantity that measures intersymbol interference, is self-averaging
in one-dimensional randomly layered media, in the strongly heterogeneous
white-noise regime. The computable form of SIR in this asymptotic limit al-
lows us to compare the advantages, if any, when using time reversal at the
transmitter as opposed to not using it. It is expected that time reversal will
decrease ISI, and hence increase SIR, because of refocusing of pulses, as we
saw in the previous chapter. The analysis of this chapter shows, however, that
this is not always the case.

The contents of this chapter are not essential for the remainder of the
book. However, the reader interested in communications problems can find
an interesting application of time reversal here, and an example of how the
computations carried out in the previous chapters can be applied to such
problems.
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13.1 Review of Basic Communications Schemes

13.1.1 Nyquist Pulse

A function f0(t) is a Nyquist pulse if it satisfies the Nyquist condition for zero
intersymbol interference (ISI):

f0(kTb) =

{
1 if k = 0 ,
0 if k ∈ Z\{0} .

The sinc function

f0(t) =
sin(πt/Tb)

πt/Tb

is the most commonly used Nyquist pulse. In the frequency domain it has the
form

f̂0(ω) =

∫
f(t)eiωt dt =

{
Tb if |ω| ≤ π/Tb ,
0 if |ω| > π/Tb ,

and we denote by B = 2π/Tb the bandwidth. The pulse function f0 is used
to encode the elementary bits of information for the transmission of a binary
message, as we now explain.

Let us consider a communications channel connecting a transmitter and a
receiver. If the binary message is the sequence (δk)k=1,...,N , δk ∈ {0, 1}, then
the transmitter encodes the message in the form of a train of Nyquist pulses

S(t) =

N∑

k=1

δkf0(t− kTb) . (13.1)

Other encoding methods (for instance, δk ∈ {−1, 1}) are also possible, and the
analysis of this chapter can be extended to these situations. The transmitter
sends the signal S whose Fourier transform is given by

Ŝ(ω) = f̂0(ω)
N∑

k=1

δkeiωkTb . (13.2)

The signal received by the receiver is Str = K ∗ S, where K is the impulse
response of the channel. Here we have assumed zero additive noise at the
receiver, that is, infinite signal-to-noise ratio. In the frequency domain

Ŝtr(ω) = K̂(ω)Ŝ(ω) ,

where K̂ is the transfer function of the channel, that is the Fourier transform
of the impulse response, and Ŝ is the Fourier transform of the signal given in
(13.1).

If the transfer function of the channel is frequency-flat as in a homoge-
neous medium, then, after removing the propagation time delay, the transfer
function of the channel is identically one, and the received pulse train Str

is exactly S, given by (13.1). As a consequence the message can be read by
tapping at t = kTb, that is, by evaluating Str(kTb) = δk for all k = 1, . . . , N .
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13.1.2 Signal-to-Interference Ratio

If the transmission channel is perturbed, then it degrades the zeros of the
Nyquist pulse, producing intersymbol interference. This interference can be
quantified with the signal-to-interference ratio defined by

SIR =
f2
tr(0)∑

k �=0 f2
tr(kTb)

, (13.3)

where ftr is the transmitted pulse and pulse shaping is done with the Nyquist
pulse f0:

f̂tr(ω) = K̂(ω)f̂0(ω) . (13.4)

Note that high SIR means low interference between bits, with a zero interfer-
ence producing an infinite SIR.

The Poisson summation formula

∞∑

n=−∞
δ(t− n) =

∞∑

k=−∞
exp(2iπkt) (13.5)

is useful for expressing the denominator of the SIR in terms of a continuous
integral. Indeed, for any t0 we have

∞∑

k=−∞
ftr

(
t0 +

2πk

B

)2

=
∑

k

∫
ftr(t0 + t)2δ

(
t− 2πk

B

)
dt

=
B

2π

∑

n

∫
ftr(t0 + t)2einBt dt

=
B

(2π)3

∑

n

∫ ∫
K̂(ω1)K̂(ω2)f̂0(ω1)f̂0(ω2)

×ei(ω2−ω1)t0

∫
ei(ω2−ω1+nB)t dt dω1 dω2 .

Introducing the change of variables ω1 = ω−h/2, ω2 = ω+h/2, and integrating
with respect to t gives the Dirac distribution δ(h− nB). We therefore have

∞∑

k=−∞
ftr

(
t0 +

2πk

B

)2

=
B

(2π)2

∑

n

∫
f̂0

(
ω − nB

2

)
f̂0

(
ω +

nB

2

)

×einBt0K̂

(
ω − nB

2

)
K̂

(
ω +

nB

2

)
dω .

Using the fact that the support of f̂0 is included in [−B/2, B/2], the sum over
n is reduced to the term n = 0:

∞∑

k=−∞
ftr

(
t0 +

2πk

B

)2

=
B

(2π)2

∫
|f̂0(ω)|2|K̂(ω)|2 dω . (13.6)



346 13 Application to Communications

By the Parseval equality the right-hand side is simply equal to the total energy∫
f2
tr(t) dt, up to the multiplicative factor B/(2π). The fact that the discrete

sum is equal to the continuous integral can be viewed as a manifestation
of Shannon’s sampling theorem for band-limited signals. We thus get two
equivalent expressions for SIR:

SIR =
ftr(0)2

B
2π

∫
f2
tr(t) dt− ftr(0)2

(13.7)

=

∣∣∣
∫

f̂0(ω)K̂(ω) dω
∣∣∣
2

B
∫
|f̂0(ω)|2|K̂(ω)|2 dω −

∣∣∣
∫

f̂0(ω)K̂(ω) dω
∣∣∣
2 . (13.8)

13.1.3 Modulated Nyquist Pulse

The frequency band of the transmission channel is usually of the form [ω0 −
B/2, ω0 + B/2], with B < ω0 or even B ≪ ω0. In such a case the signal S(t)
given by (13.1) is modulated at the frequency ω0 before transmission, and the
emitted signal is

Sem(t) =
1

2
S(t)e−iω0t + c.c. ,

where c.c. stands for complex conjugate. The Fourier transform of Sem,

Ŝem(ω) =
1

2
Ŝ(ω − ω0) +

1

2
Ŝ(ω + ω0) ,

has support contained in the frequency band of the transmission channel. The
signal received by the intended receiver is K ∗Sem, which gives in the Fourier
domain

K̂ ∗ Sem(ω) =
1

2

[
K̂(ω)Ŝ(ω − ω0) + K̂(ω)Ŝ(ω + ω0)

]
.

This signal is shifted in baseband by demodulation at the receiver, which
means that a modulation is applied to the signal

Str(t) = K ∗ Sem(t)eiω0t + c.c. ,

which gives in the Fourier domain

Ŝtr(ω) = K̂ ∗ Sem(ω + ω0) + K̂ ∗ Sem(ω − ω0) .

The application of a low-pass filter gives

Ŝtr(ω) =
1

2
[K̂(ω + ω0) + K̂(ω − ω0)]Ŝ(ω)

=
1

2
[K̂(ω0 + ω) + K̂(ω0 − ω)]Ŝ(ω)

=
1

2
K̂(ω0 + ω)Ŝ(ω) +

1

2
K̂(ω0 − ω)Ŝ(−ω) ,
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where Ŝ is the Fourier transform of the signal given by (13.2). In the time
domain,

Str(t) =
1

4π

∫
K̂(ω0 + ω)Ŝ(ω)e−iωt dω + c.c.

We can now revisit the results obtained in Section 13.1.2. Using once again
the Poisson formula, we obtain instead of (13.6),

∞∑

k=−∞
ftr

(
t0 +

2πk

B

)2

=
B

(2π)2

∫
|f̂0(ω)|2Kω0(ω) dω ,

where

Kω0(ω) =
|K̂(ω0 + ω)|2 + Re(K̂(ω0 + ω)K̂(ω0 − ω))

2
,

and the SIR can be written in the form

SIR =
Re

(∫
f̂0(ω)K̂(ω0 + ω) dω

)2

B
∫
|f̂0(ω)|2Kω0(ω) dω − Re

(∫
f̂0(ω)K̂(ω0 + ω) dω

)2 . (13.9)

13.2 Communications in Random Media Using
Nyquist Pulses

We consider now a one-dimensional random medium. We want to transmit a
sequence of bits (δk)k=1,...,N from a transmitter A to a receiver B with scalar
waves governed by the equation

1

c2(z)

∂2u

∂t2
− ∂2u

∂z2
= 0 ,

which is the acoustic wave equation with constant density. More general wave
equations, in particular ones that contain dispersion, will be considered in
Chapter 18.

In the standard direct-communications scheme described in Figure
13.1, the signal

Sdir(t) =

N∑

k=1

δkf0(t− kTb)

is sent by the transmitter through the medium from A to B, which is the
channel. The transmitted signal at the receiver B, denoted by S(tr,dir), has
the following Fourier transform:

Ŝ(tr,dir)(ω) = K̂dir(ω)f̂0(ω)

N∑

k=1

δkeikTbω ,
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Fig. 13.1. Transmission of the binary message 1101 by a direct-communications
scheme. The left part describes the operations performed by the transmitter and
the right part describes the operations performed by the receiver. A Nyquist pulse
f0 is used (1). A train of three Nyquist pulses encodes the message 1101 (2). The
pulse train is sent by the transmitter and a blurred pulse train is received by the
receiver (3). The receiver taps the pulse train to decode the binary message (4).

where K̂dir is the transfer function of the medium (the channel).
In time-reversal communications two stages are required, as shown in

Figure 13.2. In the first stage, the Nyquist pulse f0(t) is sent by the intended
receiver B. The intended transmitter A records a segment of the transmitted
signal, and then time-reverses it to obtain the new signal f1(t), which is used
to encode the bit sequence in the time-reversal scheme. Thus, in the second
stage, the transmitter A sends the signal

STR(t) =

N∑

k=1

δkf1(t− kTb)

through the channel. The transmitted signal at the receiver B, denoted by
S(tr,TR)(t), has the Fourier transform

Ŝ(tr,TR)(ω) = K̂TRT(ω)f̂0(ω)
N∑

k=1

δkeikTbω ,

where K̂TRT is the time-reversal transfer function.
The goal now is to compare the SIRs, defined by (13.3), for the two com-

munications methods, which are direct transmission using f0 and time reversal
using f1.
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Fig. 13.2. Transmission of the binary message 1101 with the TR-communications
scheme. The left part describes the operations performed by the transmitter and the
right part describes the operations performed by the receiver. A Nyquist pulse f0

is emitted by the intended receiver (1). The intended transmitter records a blurred
Nyquist pulse (2) and time-reverses it in its memory (3). This pulse f1 is used by
the transmitter to generate a train of three pulses encoding the binary message 1101
(4). The receiver receives a blurred pulse train (5) and taps it to decode the binary
message (6).
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13.2.1 Direct Transmission

In this section we compute the energy spectra for the transmitted coherent
and incoherent signals in the direct-communications scheme through a random
medium. These spectra will be used in Section 13.2.3, where we compare the
various SIRs. We carry out the analysis in the strongly heterogeneous white-
noise regime as before. The correlation length of the inhomogeneities in the
medium is of order ε2 and the pulse width is of order ε. The scaled Nyquist
pulse is

fε
0 (t) = f0

(
t

ε

)
.

We assume that the transmitter sends one bit encoded by the function fε
0 (t).

The transmission channel is modeled by our one-dimensional random slab, the
transmitter A is located at z = 0, and the receiver B is located at the end of the
slab z = L. Here we consider a random slab occupying the region (0, L) and
we use the asymptotic theory developed in the previous chapter on (−L, 0). In
this chapter, we shift the transmitted signal with respect to the random arrival
time of the wave front, so that it is centered. As a consequence, the coherent
(i.e., mean) wave is given in the limit ε→ 0 by the stabilized wave-front shape
as described in Proposition 8.3. The transmitted signal, denoted by fdir, has
two components. The first one is the stabilized transmitted pulse front, and
the second one contains the small coda fluctuations (sometimes called the
“grass”):

fdir(t) = f(dir,coh) (t) + f(dir,inc)(t) .

(1) The coherent wave f(dir,coh)(t) is here the stabilized wave-front
shape. In the limit ε→ 0, as established in Proposition 8.3, it is given by

f(dir,coh) (t) =
1

2π

∫
K̂coh(ω)f̂0(ω)e−iωt/ε dω , (13.10)

where

K̂coh(ω) = exp

(
−γω2L

8c̄2

)
. (13.11)

We write here this kernel in the form

K̂coh(ω) = ξ0

(
L

Lloc(ω)

)
,

where Lloc(ω) = 4c̄2/(γω2) is the localization length given by (7.81) and ξ0 is
the function

ξ0(l) = exp

(
− l

2

)
. (13.12)
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This stable front has support of order ε and an amplitude of order one, that
is, of the same order as the input Nyquist pulse. The total energy of the wave
front is given by (9.80):

∫
f2
(dir,coh)(t) dt =

ε

2π

∫
ξ2
0

(
L

Lloc(ω)

)
|f̂0(ω)|2 dω .

(2) The incoherent wave fluctuations f(dir,inc)(t) analyzed in Section
9.4.3 are, in the limit ε → 0, a zero-mean Gaussian process whose mean
intensity is given by

E[f2
(dir,inc)(t)] =

ε

2π

∫
W(T )

0,c (ω, t)|f̂0(ω)|2 dω ,

where W(T )
0,c is the continuous part of the solution of the system of trans-

port equations in (9.74). The incoherent wave has support of order one and
amplitude of order

√
ε. The mean energy of the incoherent wave is given by

(9.81):

∫
E[f2

(dir,inc)(t)] dt =
ε

2π

∫
(ξ1 − ξ2

0)

(
L

Lloc(ω)

)
|f̂0(ω)|2 dω ,

where the function ξ1 is defined by (7.52). As shown in Section 7.2.2, the
intensity of the transmitted wave is random. However, the total transmitted
energy ∫

f2
dir(t) dt =

ε

2π

∫
|f̂0(ω)|2|T ε

ω|2 dω

is a self-averaging quantity, in the sense that it converges as ε → 0 in mean
square and in probability to the deterministic energy

∫
f2
dir(t) dt =

ε

2π

∫
|f̂0(ω)|2ξ1

(
L

Lloc(ω)

)
dω . (13.13)

13.2.2 Communications Using Time Reversal

In this section we compute the energy spectra for the transmitted coherent and
incoherent signals using the time-reversal-communications scheme through
a random medium. As before in previous chapters, we denote by G(t) the
recording-time-window function used by the transmitter. The pulse obtained
at the receiver, when one bit encoded by f1 is sent by the transmitter, is
again centered in time with respect to its random arrival time. The received
signal, denoted by fTR(t), has two components. The first one is the stabilized
refocused signal, and the second one contains the small wave fluctuations
(grass):

fTR(t) = f(TR,coh)(t) + f(TR,inc)(t) .
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(1) The coherent wave f(TR,coh)(t), in the limit ε→ 0, is given in (12.9):

f(TR,coh)(t) =
1

2π

∫
K̂TRT(ω)f̂0(ω)e−iωt/ε dω ,

with

K̂TRT(ω) =

∫
G(τ)ΛTRT(ω, dτ) ,

where ΛTRT is given by (12.10). The coherent wave has support of order ε
and amplitude of order one, that is, of the same order as the input pulse. The
total energy of the coherent wave is

∫
f2
(TR,coh)(t) dt =

ε

2π

∫
K̂2

TRT(ω)|f̂0(ω)|2 dω . (13.14)

In the case G = 1, in which the transmitter uses the full signal trace of the
wave first sent by the receiver, we have

K̂TRT(ω) = ξ1

(
L

Lloc(ω)

)
, (13.15)

where ξ1 is given by (7.52), so that

f(TR,coh)(t) =
1

2π

∫
ξ1

(
L

Lloc(ω)

)
f̂0(ω)e−iωt/ε dω . (13.16)

We note here that the filtering kernel in the time-reversal case, ξ1(L/Lloc(ω)),
coincides with the kernel that describes the power spectrum in the direct-
transmission case, as shown in (13.13).

(2) The small incoherent wave fluctuations f(TR,inc)(t) admit the follow-
ing integral representation obtained using (12.8) and subtracting the coherent
component described above:

f(TR,inc)(t) =
1

(2π)2

∫
e−iωt/εe−iht/2f̂0(ω − εh/2) Ĝ(h)T ε

ω+εh/2T
ε
ω−εh/2 dh dω

−f(TR,coh)(t) .

Note that the second term on the right-hand side is the expected value of the
first term in the limit ε → 0. Therefore, the mean energy of the incoherent
wave, to leading order in ε, is given by

∫
E[f2

(TR,inc)(t)] dt = ε

(
1

(2π)3

∫
Ĝ(h)Ĝ(h′)U(ω, h, h′) dh dh′ |f̂0(ω)|2 dω

−
∫

f2
(TR,coh)(t) dt

)
,

where
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U(ω, h, h′) = lim
ε→0

E
[
|T ε

ω|2T ε
ω−εh′T ε

ω−εh

]
.

Here the number of frequencies has been reduced by one because of the Dirac
distribution that results from the integration with respect to time.

In the case G = 1 we have Ĝ(h) = 2πδ(h) and the mean incoherent energy
is ∫

E[f2
(TR,inc)(t)] dt =

ε

2π

∫ (
E[τω(L)2]− E[τω(L)]2

)
|f̂0(ω)|2 dω ,

where τω(L) is the limit in distribution of |T ε
ω|2, described in Proposition 7.3.

The moments of τω(L) are given by (7.49), so that we have

∫
E[f2

(TR,inc)(t)] dt =
ε

2π

∫ (
ξ2 − ξ2

1

)(
L

Lloc(ω)

)
|f̂0(ω)|2 dω ,

where the functions ξn are defined by (7.50).
The energy of the transmitted signal is a self-averaging quantity. This can

be established easily in the case G = 1, since the expression of the total energy
can then be reduced to

∫
f2
TR(t) dt =

ε

2π

∫
|f̂0(ω)|2|T ε

ω|4 dω .

By the same arguments as those used in Section 7.2.2, we can show that the
second moment of the energy converges to the square of the first moment.
This is due to the decorrelation property of the transmission coefficient in the
frequency domain. As a result, the total energy converges as ε → 0 in mean
square and in probability to the deterministic energy

∫
f2
TR(t) dt =

ε

2π

∫
|f̂0(ω)|2ξ2

(
L

Lloc(ω)

)
dω . (13.17)

13.2.3 SIRs for Coherent Pulses

In this section we compute the signal-to-interference ratios that are associated
with the coherent parts of the transmitted signals, in the direct- and the time-
reversal-communications schemes. In the scaled regime the SIR is given by

SIR =
f2
tr(0)

I
, I =

∑

k �=0

f2
tr(2επk/B) . (13.18)

The interference term I can be decomposed into two terms:

I = Icoh + Iinc .

Here Icoh is the contribution of the coherent wave given by

Icoh =
∑

k �=0

f2
coh(2επk/B) ,
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while Iinc is the contribution of the incoherent wave. The interference term
is deterministic in the limit ε → 0, as we will see below. In this section we
neglect the small incoherent wave fluctuations, with amplitude of order

√
ε, as

noted in the previous section, in the transmitted signals ftr. This corresponds
to considering that the sum in the expression (13.18) for I is restricted to
integers k of order less than ε−1. Denoting the resulting SIR by SIRcoh we get

SIRcoh =
f2
coh(0)

Icoh
, Icoh = lim

N→∞
lim
ε→0

∑

k �=0,|k|≤N

f2
tr(2επk/B) .

Direct Transmission

In this section we compute SIRcoh in the direct-transmission scheme, and we
denote it by SIR(dir,coh). It is given by

SIR(dir,coh) =
f2
(dir,coh)(0)

Idir,coh
, Idir,coh =

∑

k �=0

f2
(dir,coh)(2επk/B) ,

where the coherent wave is given by (13.10),

f(dir,coh)(2επk/B) =
1

2π

∫
K̂coh(ω)f̂0(ω)e−iω2πk/B dω .

The kernel K̂coh(ω) has the form

K̂coh(ω) = exp

(
− L

2LB
loc

(
2ω

B

)2
)

,

where

LB
loc = Lloc(B/2) =

16c̄2

γB2

is the localization length corresponding to the frequency B/2, as introduced
in (7.73). As a result, we have

SIR(dir,coh) =

[∫ 1

0 ξ0

(
L

LB
loc

x2
)

F̂0(x) dx
]2

∫ 1

0
ξ2
0

(
L

LB
loc

x2
)

F̂ 2
0 (x) dx −

[∫ 1

0
ξ0

(
L

LB
loc

x2
)

F̂0(x) dx
]2 ,

(13.19)
with ξ0(l) = exp(−l/2), and F̂0 is the normalized Fourier transform of the
pulse:

F̂0(x) =
B

2
f̂0

(
B

2
x

)
. (13.20)

The formula (13.19) shows that the SIR is a function of L/LB
loc only.
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Time-Reversal Communications

If we assume that all of the transmitted signal in the first stage is recorded
by the transmitter A, then the time-reversal kernel is given by K̂TR(ω) =
ξ1(L/Lloc(ω)). The TR kernel has the form

K̂TR(ω) = ξ1

(
L

LB
loc

(
2ω

B

)2
)

.

As a result, the SIR can be written as a function of L/LB
loc only:

SIR(TR,coh) =

[∫ 1

0
ξ1

(
L

LB
loc

x2
)

F̂0(x) dx
]2

∫ 1

0 ξ2
1

(
L

LB
loc

x2
)

F̂ 2
0 (x) dx −

[∫ 1

0 ξ1

(
L

LB
loc

x2
)

F̂0(x) dx
]2 .

(13.21)
Comparing this with (13.19) shows that the direct-transmission system is more
efficient than the time-reversal-communications system, in disordered media.
Figure 13.3b plots the ratio of the two SIRs.
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Fig. 13.3. SIRs (a) and ratio of the SIRs (b) for the two transmission systems
when only the coherent pulses are taken into account. Here the Nyquist pulse is a
sinc, meaning that F̂0(x) = π1[−1,1](x).

13.2.4 Influence of the Incoherent Waves

In this section we take into account the contribution to the interference term
I of the small incoherent wave fluctuations. Now we consider the sum in the
expression (13.18) of I extending to all integers k, including those of order
ε−1.
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Direct Transmission

In the limit ε → 0 the contribution of the incoherent wave to the numerator
of the expression for SIR is negligible. However, they should be taken into
account for the computation of the denominator (the interference term). As
shown in Section 13.1.2, we have

∑

k �=0

f2
dir

(
2επk

B

)
=

B

(2π)2

∫
|f̂0(ω)|2|T ε

ω|2 dω − f2
dir(0) .

As a consequence, the denominator of the SIR is a self-averaging quantity in
the limit ε→ 0 that is given by

Idir =
B

(2π)2

∫
E[τω(L)]|f̂0(ω)|2 dω − 1

(2π)2

∣∣∣∣
∫

K̂coh(ω)f̂0(ω) dω

∣∣∣∣
2

=
B

(2π)2

∫
ξ1

(
L

Lloc(ω)

)
|f̂0(ω)|2 dω

− 1

(2π)2

∣∣∣∣
∫

ξ0

(
L

Lloc(ω)

)
f̂0(ω) dω

∣∣∣∣
2

.

The numerator of the SIR is also a self-averaging quantity, according to the
theory developed in Chapter 8, and it is given by the evaluation of the square
of (13.10) at t = 0. As a result, the SIR is a self-averaging quantity, and
it can be written as a function of L/LB

loc only:

SIRdir =

[∫ 1

0
ξ0

(
L

LB
loc

x2
)

F̂0(x) dx
]2

∫ 1

0 ξ1

(
L

LB
loc

x2
)

F̂ 2
0 (x) dx −

[∫ 1

0 ξ0

(
L

LB
loc

x2
)

F̂0(x) dx
]2 , (13.22)

where ξ0(l) = exp(−l/2) and ξ1 is defined by (7.52). We compare it now with
the one obtained when using time reversal.

Time-Reversal Communications

We assume again that G = 1. In the limit ε→ 0 the contribution of the inco-
herent wave in the numerator of the expression of SIR is negligible. However,
they should be taken into account for the computation of the denominator
(the interference term). We have

∑

k �=0

f2
TR

(
2επk

B

)
=

B

(2π)2

∫
|f̂0(ω)|2|T ε

ω|4 dω − f2
TR(0) .

As a consequence, the denominator of the SIR is a self-averaging quantity in
the limit ε→ 0 and it is given by
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ITR =
B

(2π)2

∫
E[τω(L)2]|f̂0(ω)|2 dω − 1

(2π)2

∣∣∣∣
∫

K̂TR(ω) f̂0(ω) dω

∣∣∣∣
2

=
B

(2π)2

∫
ξ2

(
L

Lloc(ω)

)
|f̂0(ω)|2 dω

− 1

(2π)2

∣∣∣∣
∫

ξ1

(
L

Lloc(ω)

)
f̂0(ω) dω

∣∣∣∣
2

.

The SIR is therefore a self-averaging quantity, and it can be written as a
function of L/LB

loc only:

SIRTR =

[∫ 1

0
ξ1

(
L

LB
loc

x2
)

F̂0(x) dx
]2

∫ 1

0 ξ2

(
L

LB
loc

x2
)

F̂ 2
0 (x) dx −

[∫ 1

0 ξ1

(
L

LB
loc

x2
)

F̂0(x) dx
]2 . (13.23)

Here the ξn’s are defined by (7.50). Comparing with (13.22) we see that, also
when all contributions to interferences are included, the direct-communications
system is more efficient than the TR-communications system, for disordered
media. The SIRs are plotted in Figure 13.4 for a more quantitative compari-
son. Note that the SIR is smaller than 1 when L/Lloc is larger than 8.
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Fig. 13.4. SIRs (a) and ratio of the SIRs (b) for the two communications schemes
when the incoherent wave fluctuations are taken into account. Here the Nyquist
pulse is a sinc, meaning F̂0(x) = π1[−1,1](x).

13.2.5 Numerical Simulations

In this subsection we discuss the results of numerical simulations using the
acoustic equations in a random medium in order to validate our theoretical
predictions. We consider a medium with a piecewise-constant bulk modulus.
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This means that the bulk modulus is constant in each elementary layer of
thickness δz. In each layer, ν takes a value that is equal to ±σκ with probability
1/2. The other parameters in the numerical simulations are: B = 2, L = 250,
δz = 0.1, σκ = 0.8, ρ̄ = 1, K̄ = 1, and thus c̄ = 1. The random slab is a
stack of 2500 layers. With these parameters we have Lloc(B/2) = 62.5 and
L/Lloc = 4. The input pulse is a sinc function.

In Figure 13.5a we compare the signals recorded at the end of the slab in
the absence of randomness and with two realizations of the random medium
for the direct-transmission scheme. The recorded signals in the presence of
randomness contain a short stable front that is randomly shifted, and a small-
amplitude long coda. We can thus validate the theory: the shapes of the
recorded signals are clearly deterministic because they do not depend on the
particular realization of the medium, while the coda is changing when the
medium is changed. We can also validate the theory quantitatively. In Figure
13.5b we take the input signal and convolute it with the deterministic kernel
(13.11), and compare it with the random recorded signals time-shifted to allow
for better comparison. The agreement is excellent.

In Figure 13.6a we compare the signals recorded at the end of the slab in
the absence of randomness and with two realizations of the random medium,
for the time-reversal scheme. The recorded signals in the presence of ran-
domness contain a short coherent signal that occurs at the deterministic time
predicted by the theory, and a small-amplitude long coda that extends in
both directions in time. We can also validate the TR theory quantitatively.
In Figure 13.6b we take the input signal and convolute it with the determin-
istic TR kernel (13.15), and compare it with the random recorded signals.
No time shift is necessary to get an excellent agreement, in contrast to the
direct-transmission scheme.

We now consider the value of the SIR. Theoretically, the SIR should be
SIRdir = 2.25 for the direct-transmission scheme, and SIRTR = 1.95 for the
TR-communications scheme (see Figure 13.4a, L/Lloc = 4). The numerical
results obtained from a set of 500 simulations give SIRdir = 2.40 and SIRTR =
2.00. The numerical standard deviations for the two SIRs are std(SIRdir) =
0.4 and std(SIRdir) = 0.3, respectively. These small values, compared to the
mean values, demonstrate the statistical stability of the SIR in the asymptotic
regime that we are considering.

13.3 Communications in Random Media Using
Modulated Nyquist Pulses

In this section we revisit the results obtained above by considering modulated
Nyquist pulses. The modulation changes the picture, as can be seen by exam-
ining the expression (13.9) for the SIR. The term K̂(ω0 + ω)K̂(ω0 − ω) that
appears in the integral of the interference term is equal to |K̂(ω)|2 if ω0 = 0,
but it can contain rapid phases as soon as ω0 = 0.
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Fig. 13.5. Signals recorded at the end of the slab for the direct-transmission scheme
(Tb = 2π/B). Plot (a): Comparison between the signal in homogeneous medium
(dashed lines) and the signals obtained from simulations with two different real-
izations of the random medium (solid and dot-dashed lines). Plot (b): Comparison
between the theoretical pulse front predicted by the theory (thick dashed lines) and
the signals obtained from simulations (and time-shifted by the user to remove the
random time shifts). The pulse front is predicted very well.

13.3.1 SIRs of Modulated Nyquist Pulses

The analysis follows the same lines as the one in Section 13.2. It is based
on formula (13.9). In the direct-transmission system we remove the random
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Fig. 13.6. Signals recorded at the end of the slab for the time-reversal scheme.
Plot (a): Comparison between the signal in a homogeneous medium (dashed lines)
and the signals obtained from simulations with two different realizations of the
random medium (solid and dot-dashed lines). Plot (b): Comparison between the
theoretical refocused pulse predicted by the TR theory (thick dashed lines) and the
signals obtained from simulations (no time shift is performed).
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Fig. 13.7. Plot (a): Pulse profiles before transmission (dashed) and after transmis-
sion (solid). Plot (b): Taps recorded at tk = kTb, k ∈ Z. The direct-transmission
scheme is used.
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Fig. 13.8. Plot (a): Pulse profiles before transmission (dashed) and after transmis-
sion (solid). Plot (b): Taps recorded at tk = kTb, k ∈ Z. The TR-communications
scheme is used.

time delay by shifting the transmitted pulse so that it is maximum at 0. Such
an operation is not necessary in transmission with time reversal. The random
time shift is not important for SIR because it is the same for all Nyquist pulses
in a pulse train. There is no relative shift induced between pulses.

From the analysis, we see that the SIRs are statistically stable quantities in
the sense that they do not depend on the particular realization of the random
medium, but only on its statistical properties. Explicit expressions for the
SIRs can be obtained, and they can be cast in a form that depends only on
L/Lloc(ω0) and B/ω0. The SIRs for direct transmission and for time-reversal
transmission are given by the two following expressions:
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Fig. 13.9. SIRs for direct- and TR-transmission schemes with modulated Nyquist
pulses versus the bandwidth. Here Lloc = Lloc(ω0).
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SIRdir =
Ndir

Idir
, (13.24)

Ndir =

[∫ 1/2

−1/2

ξ0

(
L

Lloc
(1 +

B

ω0
x)2

)
F̂0(2x) dx

]2

,

Idir =
1

2

∫ 1/2

−1/2

ξ1

(
L

Lloc
(1 +

B

ω0
x)2

)
F̂0(2x) dx

+
1

2

∫ 1/2

−1/2

ξ0

(
L

Lloc
(1 +

B

ω0
x)2

)
ξ0

(
L

Lloc
(1 − B

ω0
x)2

)
F̂ 2

0 (2x) dx

−Ndir , (13.25)

SIRTR =
NTR

ITR
, (13.26)

NTR =

[∫ 1/2

−1/2

ξ1

(
L

Lloc
(1 +

B

ω0
x)2

)
F̂0(2x) dx

]2

,

ITR =
1

2

∫ 1/2

−1/2

ξ2

(
L

Lloc
(1 +

B

ω0
x)2

)
F̂ 2

0 (2x) dx

+
1

2

∫ 1/2

−1/2

ξ1

(
L

Lloc
(1 +

B

ω0
x)2

)
ξ1

(
L

Lloc
(1 − B

ω0
x)2

)
F̂ 2

0 (2x) dx

−NTR . (13.27)

Here ξ0(l) = exp(−l/2) and the ξn’s are defined by (7.50). The SIRs are
plotted in Figure 13.9. We see that there are regimes in which TR transmission
is more efficient than direct transmission. They occur in highly disordered
media. For example, for small bandwidth, time-reversal transmission turns
out to be more efficient than the direct transmission when L/Lloc ≥ 2.

13.3.2 Numerical Simulations

We use the same setup as in Section 13.2.5, but we now consider a modulated
sinc pulse. The parameters are: B = 0.25, ω0 = 0.5, L = 1500, δz = 0.05,
σκ = 0.8, ρ̄ = 1, K̄ = 1, and c̄ = 1. With these parameters we have Lloc(ω0) =
500 and L/Lloc = 3. In Figures 13.10–13.11 we plot the transmitted pulses
obtained for both direct and TR transmission. Comparison of the numerical
pulse fronts and the theoretical predictions shows once again good agreement
and statistical stability.

Theoretically, the SIR should be SIRdir = 1.0 for direct transmission and
SIRTR = 1.2 for the TR transmission (see Figure 13.9d, L/Lloc = 3, B/ω0 =
0.5). The numerical results obtained with 500 realizations give SIRdir = 1.1
and SIRTR = 1.3. The numerical standard deviations for the two SIRs are
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std(SIRdir) = 0.25 and std(SIRTR) = 0.2, respectively. The small values of
the standard deviations compared to their respective mean values come from
the statistical stability of the SIR. Note that in the considered configuration
the SIR is higher for TR transmission than for direct transmission. This can
also be seen in the plot of the taps of the transmitted signals (Figure 13.12)
where the level of fluctuations of the TR refocused pulse is smaller than that
of the directly transmitted pulse.
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Fig. 13.10. Signals recorded at the end of the slab for direct transmission (Tb =
2π/B). Plot (a): Comparison between the pulse front predicted by the theory (solid)
and the signal obtained from simulations, with the random time shift removed (dot-
dashed). The pulse front is predicted very well. The input pulse is the dashed curve.
Plot (b): The same pulses in baseband.

13.3.3 Discussion

The differences seen in SIR in media with weak and strong disorder can be ex-
plained as follows. Time-reversal transmission has a disadvantage because the
random channel is traversed twice, so that more energy is scattered. However,
it has an advantage because it recompresses the incoherent waves. Depending
on the strength of the disorder, the gain may or may not dominate the loss.

Communications systems in ultra-wideband channels with time reversal,
equalization, and finite SNR are considered in [162]. Spatial focusing for time
reversal in communications applications is considered in [127]. An important
reason for using time reversal is to have transmission with low probability
of intercept, by using a cutoff function that excludes the coherent part [99].
If a tap is placed in the channel at C, between A and B, then it will be very
difficult to detect a coherent signal.
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Fig. 13.11. Signals recorded at the end of the slab for time-reversal transmission.
Plot (a): Comparison between the refocused pulse predicted by the TR theory (solid)
and the signal obtained from simulations (dot-dashed). The refocused pulse is pre-
dicted very well. The input pulse is the dashed curve. Plot (b): The same pulses in
baseband.
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Fig. 13.12. Taps at t = kTb, k ∈ Z, of the recorded signals in baseband for both
methods.

Notes

The application to communications discussed in this chapter is presented for
the first time in this book. We refer to [141] for a systematic presentation of
broadband communications systems.
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Scattering by a Three-Dimensional Randomly
Layered Medium

In this chapter we extend the theory presented in the previous chapters that
deal with one-dimensional waves to the case with waves generated by a point
source and scattered by a three-dimensional randomly layered slab. The lay-
ered medium varies only with respect to one coordinate, which we choose to
be the z-coordinate in our notation. In this chapter we consider layered media
that vary only in the slab section z ∈ (−L, 0). We do not limit ourselves to
piecewise constant media, but rather model the z-variation in the same way
as in the one-dimensional case through coefficients depending on z.

We pay special attention to the modeling of a point source emitting a
short pulse in Section 14.1. The techniques that we present here involve a
decomposition of the wave field into plane-wave modes that propagate as
one-dimensional waves. Each mode is characterized by a propagator that has a
similar form as before, and these different propagators are statistically coupled
through the random medium variations. We consider a regime of separation
of scales similar to the one studied in the one-dimensional case, that is, the
strongly heterogeneous white-noise regime, in which the correlation length of
the medium is smaller than the wavelength, which is smaller than the distance
of propagation or the size of the slab. The stationary-phase method, in-
troduced in this chapter and combined with diffusion approximation results,
plays a crucial role in the asymptotic analysis of wave propagation in randomly
layered media. The techniques of decomposing the wave into modes and us-
ing stationary phase will also be important in Chapters 15 and 16, where
we discuss various three-dimensional time-reversal experiments. In Section
14.2 we extend the stabilization of the wave front of Chapter 8 to the three-
dimensional setting. In Section 14.3 we study the incoherent waves reflected
by the random slab. This study generalizes the results obtained in Chapter 9
in the one-dimensional case.
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14.1 Acoustic Waves in Three Dimensions

We consider linear acoustic waves propagating in three spatial dimensions:

ρ
∂u

∂t
+∇p = F , (14.1)

1

K

∂p

∂t
+∇ · u = 0 , (14.2)

where p is the pressure, u is the velocity, ρ is the density of the medium, and
K the bulk modulus. We will write the three-dimensional spatial variable as
(x, z) = (x, y, z) and we will refer to z as the vertical variable and to x as the
horizontal variable. The velocity field has three components as well, which we
denote by u = (v, u) = (v1, v2, u). The source is modeled by the forcing term

F(t,x, z) = f(t,x)δ(z − zs) .

14.1.1 Homogenization Regime

We first consider the regime in which the wave propagates over a distance
that is of the same order as the typical wavelength of the source, while the
density and the bulk modulus are randomly varying on a fine scale along the
z-coordinate:

K(x, z) = K(z/ε) , ρ(x, z) = ρ(z/ε) ,

where ρ and K are ergodic random processes, which we assume are bounded
and bounded away from zero. In this section we revisit the homogenization
regime studied in the one-dimensional case in Chapter 4. The natural step now
is to carry out a Fourier transform with respect to the horizontal variables x.
It is actually convenient to carry out a joint Fourier transform in time and
space in order to obtain equations in the Fourier domain having the same
form as those in the one-dimensional case. This joint transform enables us to
decompose the waves into right- and left-going wave modes in the z-direction:

û(ω, κ, z) =

∫ ∫
eiω(t−κ·x)u(t,x, z) dt dx ,

p̂(ω, κ, z) =

∫ ∫
eiω(t−κ·x)p(t,x, z) dt dx ,

where κ denotes the two-dimensional slowness vector. The inverse transform
is given by

p(t,x, z) =
1

(2π)3

∫ ∫
e−iω(t−κ·x)p̂(ω, κ, z)ω2 dω dκ ,

with a similar formula for the velocity. Observe the presence of the factor
ω2 in this Fourier inverse due to our specific choice of Fourier variables and
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the number of transverse dimensions. The acoustic equations in the Fourier
domain read

−iωρ
(z

ε

)
v̂ + iωκp̂ = f̂x(ω, κ)δ(z − zs) , (14.3)

−iωρ
(z

ε

)
û +

∂p̂

∂z
= f̂z(ω, κ)δ(z − zs) ,

− iω

K(z/ε)
p̂ + iωκ · v̂ +

∂û

∂z
= 0 .

Here v̂ and û denote respectively the Fourier transform of the horizontal
velocity field v and that of the vertical velocity field u. By eliminating v̂ we
deduce that (û, p̂) satisfy the following closed system for z = zs:

dp̂

dz
= iωρ

(z

ε

)
û , (14.4)

dû

dz
= iω

(
1

K(z/ε)
− κ2

ρ(z/ε)

)
p̂ , (14.5)

where κ = |κ| is the slowness of the mode. Thus we have reduced the acoustic
equations to a family of random ordinary differential equations for the modes.
By applying the averaging theorem presented in Section 4.5.2 in the limit
ε→ 0, we get the effective system

dp̂

dz
= iωρ̄û , (14.6)

dû

dz
= iω

(
1

K̄
− κ2

ρ̃

)
p̂ , (14.7)

where ρ̄ = E[ρ] is the mean density, ρ̃ = (E[ρ−1])−1 is the harmonic mean
density, and K̄ = (E[K−1])−1 is the harmonic mean bulk modulus. Starting
from the following subsection, we will consider the case in which there is no
fluctuation in the density, so that ρ̄ = ρ̃. We will return to the case with ran-
dom fluctuations in the density in Section 17.3, where the difference between ρ̄
and ρ̃ will play a role. The system (14.6–14.7) can be reduced to the following
second-order homogeneous differential equation for û:

d2û

dz2
+ ω2D(κ)û = 0 ,

where we have defined

D(κ) =
ρ̄

K̄
− κ2ρ̄

ρ̃
.

Note that p̂ satisfies the same equation. The form of the solution depends on
the sign of D(κ). If κ is smaller than κmax defined by

κmax =

√
ρ̃

K̄
, (14.8)
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then D(κ) > 0 and the general solution is a superposition of propagating
modes

exp
[
±iω

√
D(κ)(z − zs)

]
.

If κ is larger than κmax, then D(κ) < 0 and the solution is an evanescent
mode,

exp
[
±ω

√
−D(κ)(z − zs)

]
,

with the sign chosen so as to select the exponentially decaying solution. In
the next section we describe the diffusion approximation regime in which the
wave propagates over distances much larger than the wavelength. Therefore,
in that context, the evanescent modes will not play any role, and only the
propagating modes will contribute to the quantities of interest.

14.1.2 The Diffusion Approximation Regime

We shall now discuss the strongly heterogeneous white-noise regime, in which
the correlation length of the medium ∼ ε2 is much smaller than the typical
wavelength ∼ ε, which is itself much smaller than the propagation distance
∼ 1. For simplicity we start by considering the case in which the density is
constant and the bulk modulus is randomly varying. As one can see from
(14.3), this permits a simple representation of the transverse velocity field vε

in terms of the pressure field pε, and subsequently a reduction of the four-
dimensional system in (uε,vε, pε) to a two-dimensional system in (uε, pε).
The generalization to the case with a randomly varying density is presented
in Section 17.3.

From the results of the previous section we know that the reciprocal of the
bulk modulus is homogenized, and therefore we model fluctuations around this
quantity. The bulk modulus is z-dependent in the slab (−L, 0) and constant
outside:

1

K(x, z)
=

1

K(z)
=

{ 1
K

(
1 + ν(z/ε2)

)
for z ∈ [−L, 0] ,

1
K

for z ∈ (−∞,−L) ∪ (0,∞) ,

ρ(x, z) = ρ̄ for all (x, z) .

In this chapter we assume a matched medium at both ends of the slab, so
that the homogenized coefficients ρ̄ and 1/K̄ are constant in the full space.
The nonmatched case will be treated in Section 17.1.

The source term has the form

Fε(t,x, z) = εq

[
fx
fz

](
t

ε
,
x

ε

)
δ(z − zs) , (14.9)

where the multplicative factor εq gives the amplitude scaling and the exponent
q will be specified later. The time duration of the source is short, of order ε;
the source is located to the right of the random slab at z = zs with zs > 0;
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and its horizontal support, centered at the origin, is also on the scale ε. We
denote by fx the transverse components of the source and by fz its vertical
component. This setup is illustrated in Figure 14.1.

�
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zs0−L

z

x

�� ��
�
�

	



�
�


�

��

��
�

Fig. 14.1. Initial setup. The random slab occupies the region z ∈ [−L, 0]. The
source is located at (0, zs) with zs > 0.

14.1.3 Plane-Wave Fourier Transform

We carry out a joint Fourier transform in time and transverse spatial coor-
dinates. The goal is to obtain a decomposition of the waves into right- and
left-going wave modes in the z-direction. As in the previous chapters we look
at the wave on the ε time scale, which is equivalent to using high frequencies
ω/ε. We therefore introduce the specific Fourier transform of the pressure

p̂ε(ω, κ, z) =

∫ ∫
ei ω

ε (t−κ·x)pε(t,x, z) dt dx ,

with a similar formula for the vertical velocity ûε and the horizontal velocity
v̂ε. The inverse transform is given by

pε(t,x, z) =
1

(2πε)3

∫ ∫
e−i ω

ε (t−κ·x)p̂ε(ω, κ, z)ω2 dω dκ , (14.10)

with again a similar formula for the velocity fields. Taking the specific Fourier
transform gives that ûε = (v̂ε, ûε) and p̂ε satisfy the system

−ρ̄
iω

ε
v̂ε +

iω

ε
κp̂ε = εq+3f̂x(ω, κ)δ(z − zs) , (14.11)

−ρ̄
iω

ε
ûε +

dp̂ε

dz
= εq+3f̂z(ω, κ)δ(z − zs) , (14.12)

− 1

K(z)

iω

ε
p̂ε +

iω

ε
κ · v̂ε +

dûε

dz
= 0 , (14.13)

where f̂ denotes the unscaled specific Fourier transform:

f̂(ω, κ) =

∫ ∫
f(t,x)eiω(t−κ·x) dt dx . (14.14)
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By eliminating v̂ε we deduce that (ûε, p̂ε) satisfy the following closed system
for z = zs:

− iω

ε
ρ̄ûε +

dp̂ε

dz
= 0 , (14.15)

iω

ε

(
κ2

ρ̄
− 1

K(z)

)
p̂ε +

dûε

dz
= 0 . (14.16)

The jumps at z = zs are given by

[ûε]zs
:= ûε(ω, κ, z+

s )− ûε(ω, κ, z−s ) = εq+3

(
κ · f̂x(ω, κ)

ρ̄

)
, (14.17)

[p̂ε]zs
:= p̂ε(ω, κ, z+

s )− p̂ε(ω, κ, z−s ) = εq+3
(
f̂z(ω, κ)

)
. (14.18)

We now define the effective mode speed for the propagating modes κ < κmax:

c̄(κ) =
c̄√

1− κ2c̄2
, (14.19)

where κmax =
√

K̄/ρ̄ = 1/c̄ has been introduced in (14.8). Similarily we define
the effective mode acoustic impedance and the mode-dependent effective
bulk modulus by

ζ̄(κ) = ρ̄c̄(κ) , K̄(κ) = ρ̄c̄(κ)2 . (14.20)

With these definitions the equations for p̂ε and ûε take the form

− iω

ε
ρ̄ûε +

dp̂ε

dz
= 0 , (14.21)

− iω

ε

1

K̄(κ)

(
1 +

c̄(κ)2

c̄2
ν
( z

ε2

))
p̂ε +

dûε

dz
= 0 . (14.22)

These equations show that, mode by mode, the problem is a one-dimensional
wave-propagation problem with the mode-dependent medium fluctuations de-
fined by

νκ(z) =
c̄(κ)2

c̄2
ν(z) . (14.23)

14.1.4 One-Dimensional Mode Problems

By analogy with (5.20) in the one-dimensional case, we decompose the
wavefield into right- (ǎε = ǎε(ω, κ, z)) and left-going (b̌ε = b̌ε(ω, κ, z)) waves
with respect to the z-direction by setting

p̂ε(ω, κ, z) =

√
ζ̄(κ)

2

(
ǎε(ω, κ, z)e

iωz
εc̄(κ) − b̌ε(ω, κ, z)e−

iωz
εc̄(κ)

)
, (14.24)

ûε(ω, κ, z) =
1

2
√

ζ̄(κ)

(
ǎε(ω, κ, z)e

iωz
εc̄(κ) + b̌ε(ω, κ, z)e−

iωz
εc̄(κ)

)
. (14.25)
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Substituting these expressions into (14.21–14.22) establishes the system sat-
isfied by the modes (ǎε, b̌ε):

dǎε

dz
=

iω

2c̄(κ)ε
νκ

( z

ε2

)(
ǎε − e

−2iωz
c̄(κ)ε b̌ε

)
, (14.26)

db̌ε

dz
=

iω

2c̄(κ)ε
νκ

( z

ε2

)(
e

2iωz
c̄(κ)ε ǎε − b̌ε

)
. (14.27)

Using the definitions (14.24) and (14.25) of ǎε and b̌ε and the expressions
(14.17) and (14.18) for the jumps in ûε and p̂ε, we deduce the jumps at z = zs

for the modes ǎε and b̌ε:

[ǎε]zs
= εq+3

(√
ζ̄(κ)

ρ̄
κ · f̂x(ω, κ) +

1√
ζ̄(κ)

f̂z(ω, κ)

)
e

−iωzs
εc̄(κ) , (14.28)

[
b̌ε

]
zs

= εq+3

(√
ζ̄(κ)

ρ̄
κ · f̂x(ω, κ)− 1√

ζ̄(κ)
f̂z(ω, κ)

)
e

iωzs
εc̄(κ) . (14.29)
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�
b̌ε(−L)

Fig. 14.2. Boundary conditions for the modes ǎε and b̌ε.

The system for ǎε and b̌ε is associated with the boundary conditions at
z = zs and z = −L that are shown in Figure 14.2. We assume that no energy
is coming from +∞ and −∞, so that we get the radiation conditions

ǎε(ω, κ,−L) = 0, b̌ε(ω, κ, z+
s ) = 0 .

The jump condition (14.29) then gives b̌ε(ω, κ, z−s ) = εq+3Š(ω, κ), where

Š(ω, κ) =

(
−

√
ζ̄(κ)

ρ̄
κ · f̂x(ω, κ) +

1√
ζ̄(κ)

f̂z(ω, κ)

)
e

iωzs
εc̄(κ) . (14.30)

The boundary conditions for the right- and left-going wave components en-
tering the slab are therefore

ǎε(ω, κ,−L) = 0 , (14.31)

b̌ε(ω, κ, 0) = εq+3Š(ω, κ) . (14.32)
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The particular form of Š depends on the choice of the physical source. Next
we give two simple examples with particular choices of the source term in the
case of a homogeneous medium so that ν = 0.

Example 14.1. Assume that medium is homogeneous, ν ≡ 0, and that the
source emits in the z-direction and has the following form:

f̂x(ω, κ) = 0, f̂z(ω, κ) = f̂(ω)δ(κ− κ0) ,

which corresponds to

fx(t,x) = 0, fz(t,x) = − 1

4π2
f

′′
(t− κ0 · x) ,

using the unscaled specific Fourier transform (14.14). In this case we have

Š(ω, κ) =
1√

ζ̄(κ0)
f̂z(ω)e

iωzs
εc̄(κ0) δ(κ− κ0) .

Let us also assume that q = 2, so that for z < zs, we have

pε(t,x, z) =
1

8π2
f

′′
(

t− κ0 · x + (z − zs)/c̄(κ0)

ε

)
.

This is a plane-wave traveling in the direction of the three-dimensional slow-

ness vector s =
(
κ0,−

√
1− κ2

0c̄
2/c̄

)
. �

Example 14.2. Consider next the case with emission from a spatial point
source, so that (14.9) becomes

Fε(t,x, z) = εq

[
fx
fz

](
t

ε

)
δ

(
x− xs

ε

)
δ(z − zs) . (14.33)

Then we find a special case of (14.30),

Š(ω, κ) =

(
−

√
ζ̄(κ)

ρ̄
κ · f̂x(ω) +

1√
ζ̄(κ)

f̂z(ω)

)
ei ω

ε (zs/c̄(κ)−κ·xs) , (14.34)

and the pressure field in the deterministic case is then obtained by applying
the specific inverse Fourier transform (14.10) to p̂ε given by (14.24) with the
boundary conditions for ǎε and b̌ε given in (14.31–14.32). In the next section
we introduce the stationary-phase method, which will enable us to get a simple
expression for this transmitted pressure. �

Henceforth we assume that the source is located at the surface, so that

zs = 0 ,

Š(ω, κ) = −
√

ζ̄(κ)

ρ̄
κ · f̂x(ω, κ) +

1√
ζ̄(κ)

f̂z(ω, κ) .
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Each mode can now be analyzed as in Chapter 8. We begin by introducing the
propagator Pε

(ω,κ)(−L, 0) associated with mode κ and frequency ω. Observe
that the propagator depends on the mode κ only through the slowness κ. It
satisfies an equation that is analogous to (8.37):

d

dz
Pε

(ω,κ)(−L, z) =
1

ε
H(ω,κ)

(z

ε
, νκ

( z

ε2

))
Pε

(ω,κ)(−L, z) , (14.35)

with the initial conditions Pε
(ω,κ)(−L, z = −L) = I. This ordinary differential

equation is derived exactly as in the previous chapters by replacing c̄ with
c̄(κ) and ν with νκ defined in (14.19) and (14.23). In this case the matrix
H(ω,κ) becomes

H(ω,κ)(z, ν) =
iων

2c̄(κ)

[
1 −e

−2iωz
c̄(κ)

e
2iωz
c̄(κ) −1

]
. (14.36)

As in the one-dimensional case discussed in Chapter 5, the propagator takes
the form

Pε
(ω,κ)(−L, 0) =

[
αε

(ω,κ)(−L, 0) βε
(ω,κ)(−L, 0)

βε
(ω,κ)(−L, 0) αε

(ω,κ)(−L, 0)

]
,

where the coefficients depend on the frequency ω and the slowness modulus
κ. The trace of H(ω,κ) is zero, and it follows again that

|αε
ω,κ|2 − |βε

ω,κ|2 = 1 . (14.37)

The transmitted left-going wave is defined in terms of the harmonic amplitude
b̌ε, which can be found from the relations

Pε
(ω,κ)(−L, 0)

[
0

b̌ε(ω, κ,−L)

]
=

[
ǎε(ω, κ, 0−)
εq+3Š(ω, κ)

]
, (14.38)

where we have used the boundary conditions (14.31) and (14.32) with zs = 0.
Consequently, we have

b̌ε(ω, κ,−L) = εq+3Š(ω, κ)T ε
(ω,κ)(−L, 0) , (14.39)

where we have defined the transmission coefficient

T ε
(ω,κ)(−L, 0) =

1

αε
(ω,κ)(−L, 0)

. (14.40)

Using (14.37) we obtain that the transmission coefficient T ε
(ω,κ)(−L, 0) is uni-

formly bounded by one. From the same result we also get the important
mode-energy-conservation relation

|ǎε(ω, κ, 0−)|2 + |b̌ε(ω, κ,−L)|2 = |εq+3Š(ω, κ)|2 . (14.41)
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14.1.5 Transmitted-Pressure Integral Representation

In this section we derive an integral representation for the transmitted pressure
pulse pε(t,x,−L). Substituting the expressions (14.31) for ǎε(ω, κ,−L) and
(14.39) for b̌ε(ω, κ,−L) into (14.24), we obtain

p̂ε(ω, κ,−L) = −εq+3Š(ω, κ)
√

ζ̄(κ)

2
T ε

(ω,κ)(−L, 0)e
iωL

εc̄(κ) .

By the inverse Fourier transform (14.10) it follows that

pε(t0 + εs,x,−L) = − 1

(2πε)3

∫ ∫
e−i ω

ε (t0+εs−κ·x−L/c̄(κ))T ε
(ω,κ)(−L, 0)

×
{

εq+3Š(ω, κ)
√

ζ̄(κ)

2

}
ω2 dω dκ , (14.42)

where the transmitted pressure is observed at the time t = t0 + εs, that is,
in a time window centered at t0 and on the scale ε of the initial source pulse,
with s being the time variable in this “magnified” window.

14.2 The Transmitted Wave Front

We have seen that in the one-dimensional case, the front of the transmitted
wave retains its shape up to a random time shift and a convolution with a
Gaussian density given in Proposition 8.3. Our objective is to extend this
theory to the three-dimensional case in which the front is now a surface prop-
agating from the point source. We review here the theory that describes this
front. The main result is presented in Proposition 14.3, Section 14.2.3. Con-
vergence of finite-dimensional distributions for the wave front is derived in
Section 14.2.1 using a moment argument introduced in Section 5.2.3 and dis-
cussed in Chapter 8 in the one-dimensional case.

14.2.1 Characterization of Moments

From the integral expression (14.42) we see that the transmission coefficients
T ε

(ω,κ)(−L, 0) determine the transmitted wave field. From the energy conser-

vation (14.41) it follows that the moduli of these coefficients are bounded by
one. It is important to note that the distribution of the wave in time and space
depends on the joint distribution of the transformed wave over all frequencies
ω and horizontal wave vectors κ. We next illustrate that knowledge of the
joint moments of the transmitted wave for all finite combinations of differ-
ent frequencies and wave vectors is enough to characterize the distribution of
the transmitted wave in time and space. This follows from the fact that the
expectations in (14.43) below have arguments that involve a finite number
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of frequencies and wave vectors. A convenient way to characterize the finite-
dimensional distributions of the scalar wave is to compute the joint moments
of order m1, . . . , mn,

E[pε(t0,1 + εs1,x1,−L)m1 · · · pε(t0,n + εsn,xn,−L)mn ] ,

which, using (14.42), can be written in an integral form with respect to the
variables ωj,l, κj,l, 1 ≤ l ≤ n, 1 ≤ j ≤ ml:

(−1)m

(2πε)(3m)

∫
· · ·

∫
e−i

∑
ωj,lslei

∑ ωj,lφj,l
ε E

[∏
T ε

(ωj,l,κj,l)
(−L, 0)

]

×

⎛
⎝

ε(q+3)m
∏

Š(ωj,l, κj,l)
√

ζ̄(κj,l)

2m

⎞
⎠∏

ω2
j,l dωj,l dκj,l , (14.43)

where we have defined

m =

n∑

l=1

ml ,

φj,l = φ(t0,l, κj,l,xl) = −t0,l + κj,l · xl + L/c̄(κj,l) ,

and the sum in the exponent and the products are taken over all the distinct
frequencies and wave vectors, that is, over l and j, such that

1 ≤ l ≤ n , 1 ≤ j ≤ ml .

Therefore, we are led to study the joint distribution of the transmission coef-
ficients for a finite number of frequencies and wave vectors. We now relabel
these by (ω1, κ1), . . . , (ωm, κm). First, consider the situation with the phase
φj,l = 0. Then, if we could obtain the limits

lim
ε→0

E

[
T ε

(ω1,κ1)
(−L, 0) · · ·T ε

(ωm,κm)(−L, 0)
]

(14.44)

of all these finite-dimensional problems, we would have characterized all the
finite-dimensional distributions of the transmitted wave front in space and
time. The argument presented in Section 8.2.5 in the one-dimensional case
can be directly applied to the present situation. The limits (14.44) are given
by

E

[
T̃(ω1,κ1)(−L, 0) · · · T̃(ωm,κm)(−L, 0)

]
, (14.45)

where the coefficients T̃(ω,κ)(−L, z) are solutions of the system of stochastic
differential equations

dT̃(ω,κ) = −ω2 γκ

4c̄(κ)2
T̃(ω,κ)dz + iω

√
γκ

2c̄(κ)
T̃(ω,κ)dW0(L + z) , (14.46)
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driven by a single standard Brownian motion W0. The initial condition is
given at −L by T̃(ω,κ)(−L, z = −L) = 1. The modified correlation length
coefficient γκ is given by

γκ =

∫ ∞

−∞
E[νκ(0)νκ(z)] dz =

c̄(κ)4

c̄4
γ , (14.47)

where the important physical parameter γ is discussed in detail in Section
6.3.6. In the example discussed there, F2(Y (z)) corresponds to ν(z) in the
model we analyze here. As in the one-dimensional case in (8.60), an application
of Itô’s formula shows that equation (14.46) admits the following explicit
solution:

T̃(ω,κ)(−L, 0) = exp

(
iω

√
γκ

2c̄(κ)
W0(L)− ω2 γκ

8c̄(κ)2
L

)
. (14.48)

Therefore, if we substitute T̃ for T ε in (14.43), we obtain a characterization
of the distribution for the wave front through its moments. This substitution
leads to the correct asymptotic limit expression for the wave front also in
the case with a fast phase, that is, when φj,l is nonzero. The small-ε limit
for the front is then obtained via a subsequent stationary-phase argument.
We denote by p̃ the limit for the pressure that follows from the subsequent
stationary phase evaluation, so that

p̃(s,x,−L) := (sp) lim
ε→0

pε(t0 + εs,x,−L)

= (sp) lim
ε→0

−εq

(2π)3

∫ ∫
e−iωsei

ωφ(t0,κ,x)
ε T̃(ω,κ)(−L, 0)

×
{

Š(ω, κ)
√

ζ̄(κ)

2

}
ω2 dω dκ , (14.49)

where the phase φ is given by

φ(t0, κ,x) = −t0 + κ · x + L/c̄(κ) .

14.2.2 Stationary-Phase Point

In this section we calculate the stationary-phase point that will give the ex-
pression for p̃(s,x,−L). The stationary-phase method is briefly reviewed in
Appendix 14.4. It follows from the scaling of the two-dimensional stationary-
phase result and the expression (14.49) that the transmitted pressure pulse is
of order one if q in (14.49) takes the value −1, and we now make this choice:

q = −1 .

We find from (14.77) and (14.19) that the main contribution to the integral
expression (14.49) occurs at the stationary-phase point that solves
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∇κφ = 0 .

Using the notation x = (x1, x2), κ = (κ1, κ2), we have

∇κφ =

⎡
⎢⎣

∂φ

∂κ1
∂φ

∂κ2

⎤
⎥⎦ =

⎡
⎢⎢⎣

x1 +
∂

∂κ1

(
L

c̄(κ)

)

x2 +
∂

∂κ2

(
L

c̄(κ)

)

⎤
⎥⎥⎦ =

[
x1 − Lκ1c̄(κ)
x2 − Lκ2c̄(κ)

]
,

and the Hessian (used in the asymptotic computation of the integral) is

Hκ(φ) =

⎡
⎢⎢⎣

∂2φ

∂κ2
1

∂2φ

∂κ1∂κ2

∂2φ

∂κ1∂κ2

∂2φ

∂κ2
2

⎤
⎥⎥⎦ = − c̄(κ)3L

c̄2

[
1− c̄2κ2

2 c̄2κ1κ2

c̄2κ1κ2 1− c̄2κ2
1

]
.

Therefore, the stationary horizontal slowness vector κsp solves

κsp =
x

c̄(κsp)L
=

x
√

1− c̄2κ2
sp

c̄L
, (14.50)

where we again used (14.19) and κ2
sp = |κsp|2 = κ2

sp,1 + κ2
sp,2. Solving (14.50)

for κ2
sp we obtain

c̄2κ2
sp =

|x|2
|x|2 + L2

, c̄(κsp)2 = c̄2 |x|2 + L2

L2
.

We now substitute this explicit expression for c̄2κ2
sp into (14.50) to obtain the

stationary-phase point

κsp(x) =
x

c̄
√
|x|2 + L2

.

This value for the slowness vector corresponds to a plane-wave mode that is
traveling in the direction (x,−L), that is, the direction of the vector from the
source to the point of observation (x,−L), as shown in Figure 14.3.

Next, we substitute κ2
sp in (14.47) and (14.20) to obtain

γκsp =

(
1 +
|x|2
L2

)2

γ , ζ̄(κsp) = ζ̄

√
1 +
|x|2
L2

.

Finally, the value of the phase at the stationary point is given by

φ(t0, κsp,x) = −t0 +

√
|x|2 + L2

c̄
.

By Proposition 14.4, the value of the integral (14.49) goes to zero as ε→ 0 if
φ(t0, κsp,x) = 0. So we choose t0 to cancel it:
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Fig. 14.3. In this figure we show the source position at 0, the observation point at
(x,−L), and the stationary slowness vector κsp.

t0 =

√
|x|2 + L2

c̄
.

This corresponds to choosing t0 to be the travel time from the source point
at the origin to the point of observation (x,−L) under the constant effective
medium sound speed c̄. Upon substitution in (14.48) we finally obtain

T̃(ω,κsp)(−L, 0) = exp

(
iω

√
γ

2c̄

√
1 +
|x|2
L2

W0(L)− ω2 γ

8c̄2

(
1 +
|x|2
L2

)
L

)
.

14.2.3 Characterization of the Transmitted Wave Front

We have used the diffusion-approximation limit to obtain a joint description
of the plane-wave modes, and we next derive a simple explicit formula for
the limit of the transmitted wave using the stationary-phase method based
on the stationary point calculated above. Applying Proposition 14.4 given in
Appendix 14.4 to (14.49), we obtain

p̃(s,x,−L) =
ζ̄1/2L1/2

8π2c̄ (|x|2 + L2)
3/4

×
∫

e−iωseiω
√

γ

2c̄

√
1+ |x|2

L2 W0(L)e
−ω2 γ

8c̄2

(
1+ |x|2

L2

)
L
iωŠ(ω, κsp) dω .

The corresponding limit expression for the transmitted pressure front p̃0 in a
constant medium is obtained by evaluating the above expression for γ = 0;
we obtain

p̃0(s,x,−L) =
ζ̄1/2L1/2

8π2c̄ (|x|2 + L2)
3/4

∫
e−iωsiωŠ(ω, κsp) dω .

Let us consider the case with a spatial point source located at the origin:

Fε(t,x, z) =
1

ε

[
fx
fz

](
t

ε

)
δ
(x

ε

)
δ(z) = ε

[
fx
fz

](
t

ε

)
δ (x) δ(z) .
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The expression (14.30) of the functional Š at the stationary slowness vector
κsp can be simplified:

Š(ω, κsp) =
1

ζ̄1/2(L2 + |x|2)1/4L1/2

(
−x · f̂x(ω) + Lf̂z(ω)

)
.

As a result, the limiting pressure field also reads

p̃(s,x,−L) = − 1

8π2c̄ (|x|2 + L2)

×
∫

e−iωseiω
√

γ

2c̄

√
1+ |x|2

L2 W0(L)e
−ω2 γ

8c̄2

(
1+ |x|2

L2

)
L
iω

(
x · f̂x(ω)− Lf̂z(ω)

)
dω ,

and in the homogeneous medium we get simply

p̃0(s,x,−L) =
1

4πc̄ (|x|2 + L2)
(x · f ′x(s)− Lf ′

z(s)) . (14.51)

We now summarize the result and state the following proposition. It describes
the transmitted pressure pulse through the random medium as a simple mod-
ification of the pressure pulse obtained through the homogenized medium.

Proposition 14.3. In probability distribution the following characterization
of the transmitted wave process holds:

lim
ε→0

pε

(√
|x|2 + L2

c̄
+ εs ,x,−L

)
= p̃(s,x,−L) ,

where

p̃(s,x,−L) =
[
ND(L,x)

∗ p̃0(·,x,−L)
] (

s−Θ(L,x)

)
, (14.52)

and we set

D2
(L,x) =

γ

4c̄2

(
1 +
|x|2
L2

)
L , (14.53)

Θ(L,x) =

√
γ
(
1 + |x|2

L2

)

2c̄
W0(L) , (14.54)

ND(s) =
1√
2πD

e−s2/2D2

.

Note therefore that the shape of the wave front is given by the deterministic
quantity

ND(L,x)
∗ p̃0(·,x,−L) ,

which is the convolution of the homogeneous front with the Gaussian density
ND(L,x)

. This is often referred to as stabilization of the front. The pulse shape
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corresponds to a “diffusion” in time or a smearing of the transmitted wave
process via a convolution with the Gaussian density. The random variable
Θ(L,x) corresponds to a “travel time” shift of the type we discussed in Section
8.2.7: it is proportional to W0(L), which is a Gaussian random variable with
mean zero and variance L. Note that the variance of the random time shift
Θ(L,x) is proportional to the travel distance

√
L2 + |x|2. The relation between

the stable front and the coherent wave given by E[p̃(s,x,−L)] is as in the one-
dimensional case; namely, the coherent wave is given by the double convolution
of the homogeneous front with the Gaussian density ND(L,x)

, that is,

E[p̃(s,x,−L)] =
[
N2D(L,x)

∗ p̃0(·,x,−L)
]
(s) .

This completes the description of the transmitted stable front, and we
now turn our attention to the study of the incoherent waves starting with the
reflected pressure.

14.3 The Mean Reflected Intensity Generated
by a Point Source

We consider the case of a point source located at the surface at position (0, 0),
emitting a short pulse at time 0. Our goal here is to analyze the reflected
pressure field. The point source generates the source term

Fε(t,x, z) = ε1/2f

(
t

ε

)
δ(x)δ(z)

[
0
1

]
, (14.55)

which imposes the boundary conditions

b̌ε(ω, κ, 0−) = ε3/2Š(ω, κ) , Š(ω, κ) =
1√
ζ̄(κ)

f̂(ω) .

The amplitude of the source has been scaled (q = 1/2 in (14.9)) so that the
mean reflected intensity will be of order one.

14.3.1 Reflected-Pressure Integral Representation

We observe the pressure field at the surface z = 0, at the location x = 0, and
at time t > 0. Its Fourier representation is given by (14.10), and by (14.24),
its Fourier transform is

p̂ε(ω, κ, 0+) =

√
ζ̄(κ)

2
ǎε(ω, κ, 0+) ,

where we have taken into account the boundary conditions b̌ε(ω, κ, 0+) = 0.
The right-going modes at z = 0+ and at z = 0− are related by the jump
condition (14.28),
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ǎε(ω, κ, 0+) = ǎε(ω, κ, 0−) +
ε3/2

√
ζ̄(κ)

f̂(ω) ,

and the right-going mode at z = 0− is obtained from the propagator relation
(14.38):

ǎε(ω, κ, 0−) = Rε
(ω,κ)(−L, 0)

ε3/2

√
ζ̄(κ)

f̂(ω) ,

where we have introduced the reflection coefficient defined by

Rε
(ω,κ)(−L, z) =

βε
(ω,κ)(−L, z)

αε
(ω,κ)(−L, z)

. (14.56)

As a result, the integral representation of the reflected pressure is

pε(t,x, 0+) (14.57)

=
1

16π3ε3/2

∫
e−i ω

ε (t−κ·x)[1 + Rε
(ω,κ)(−L, 0)]f̂(ω)ω2 dω dκ .

This field has two components:

• The first component is the direct emission from the source. It is taken
into account by the term 1 in the square brackets of the right-hand side
of (14.57), and it can be computed easily:

pε
dir(t,x, 0+) =

1

16π3ε3/2

∫
e−i ω

ε (t−κ·x)f̂(ω)ω2 dω dκ =
ε1/2

2
f

(
t

ε

)
δ(x) .

Note that this component is concentrated at x = 0 and around the time
t = 0.

• The second component is the reflection of the source signal by the random
medium. It is taken into account by the term Rε

(ω,κ)(−L, 0), and we shall
see that it can be detected only after the arrival time t > 0 of the direct
component.

From now on, we observe the pulse at a time t > 0, meaning that the wave
due to the direct emission from the source has vanished. As we shall see in the
next section (equation (14.69) with p = 1 and q = 0), the expectation of the
reflection coefficient converges to 0 as ε → 0, so that the mean value of the
reflected field is asymptotically 0, meaning that there is no coherent signal in
the reflected wave. In order to analyze this incoherent wave field, we compute
its second moment.

14.3.2 Autocorrelation Function of the Reflection Coefficient
at Two Nearby Slownesses and Frequencies

We consider the mean reflected intensity given by
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E[pε(t,x, 0)2] =
1

256π6ε3

∫ ∫
e−i ω−ω′

ε t+i ωκ−ω′κ′
ε ·x

×E

[
Rε

(ω,κ)(−L, 0)Rε
(ω′,κ′)(−L, 0)

]
f̂(ω)f̂(ω′)ω2ω′2 dω dκ dω′ dκ

′ . (14.58)

As can be seen from this integral representation, the autocorrelation function
of the reflection coefficient plays a crucial role. The analysis is very simi-
lar to the one-dimensional case because we essentially deal with plane-waves.
We now study the reflection and transmission coefficients Rε

(ω,κ)(z0, z) and

T ε
(ω,κ)(z0, z) defined for a random slab occupying the region [z0, z]. Using the

representation (14.56) of the reflection coefficient and the equations satisfied
by (αε

(ω,κ), β
ε
(ω,κ)), we can deduce a closed nonlinear differential system satis-

fied by the reflection and transmission coefficients:

dRε
(ω,κ)

dz
=
−iω

2c̄(κ)ε
νκ

( z

ε2

)(
e

−2iωz
c̄(κ)ε − 2Rε

(ω,κ) + (Rε
(ω,κ))

2e
2iωz
c̄(κ)ε

)
, (14.59)

dT ε
(ω,κ)

dz
=

iω

2c̄(κ)ε
νκ

( z

ε2

)(
1−Rε

(ω,κ)e
2iωz
c̄(κ)ε

)
T ε

(ω,κ) . (14.60)

The initial conditions for these nonlinear differential equations are, at z = z0,

Rε
(ω,κ)(z0, z = z0) = 0 , T ε

(ω,κ)(z0, z = z0) = 1 .

We then introduce the family of products of reflection coefficients

Uε
p,q(ω, κ, h, λ, z0, z) =

(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p (

Rε
(ω−εh/2,κ−ελ/2)(z0, z)

)q

.

From the Riccati equation (14.59) and the expansion

2(ω + εh/2)

c̄(κ + ελ/2)
=

2ω

c̄(κ)
+ ε

(
h

c̄(κ)
− ωλc̄(κ)κ

)
+ O(ε2) ,

we get

∂Uε
p,q

∂z
=

iω

c̄(κ)
νε

κ(p− q)Uε
p,q

+
iω

2c̄(κ)
νε

κe
2iωz
c̄(κ)ε

(
qe−

ihz
c̄(κ)

+iωλc̄(κ)κzUε
p,q−1 − pe

ihz
c̄(κ)

−iωλc̄(κ)κzUε
p+1,q

)

+
iω

2c̄(κ)
νε

κe−
2iωz
c̄(κ)ε

(
qe

ihz
c̄(κ)−iωλc̄(κ)κzUε

p,q+1 − pe−
ihz
c̄(κ) +iωλc̄(κ)κzUε

p−1,q

)
,

starting from Uε
p,q(ω, κ, h, λ, z0, z = z0) = 10(p)10(q). Here we have set

νε
κ(z) = νκ(z/ε2)/ε and we have not written terms of order ε that will vanish

in the limit ε→ 0. We consider the associated family of Fourier transforms

V ε
p,q(ω, κ, τ, χ, z0, z) =

c̄2ω

4π2c̄(κ)2

∫ ∫
e−ih(τ c̄2/c̄(κ)2−(p+q)z/c̄(κ))

× eiωλ(χ−(p+q)zc̄(κ)κ)Uε
p,q(ω, κ, h, λ, z0, z) dh dλ . (14.61)
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The form of this transform ensures that the variable τ can be interpreted as
a travel time, as we shall see below. The family V ε

p,q satisfies

∂V ε
p,q

∂z
= −(p + q)

c̄(κ)

c̄2

∂V ε
p,q

∂τ
− c̄(κ)κ(p + q)

∂V ε
p,q

∂χ
+

iω

c̄(κ)
νε

κ(p− q)V ε
p,q

+
iω

2c̄(κ)
νε

κe
2iωz
c̄(κ)ε

(
qV ε

p,q−1 − pV ε
p+1,q

)
+

iω

2c̄(κ)
νε

κe−
2iωz
c̄(κ)ε

(
qV ε

p,q+1 − pV ε
p−1,q

)
.

We now apply the limit theorem of Section 6.7.3, in the same way as in Section
9.2.1. This establishes that the process (V ε

p,q)p,q∈N converges in distribution
as ε→ 0 to a diffusion process. In particular, the moments converge,

E[V ε
p,q(ω, κ, τ, χ, z0, z)]

ε→0−→ Vp,q(ω, κ, τ, χ, z0, z) ,

where the family (Vp,q)p,q∈N satisfies the system of transport equations

∂Vp,q

∂z
+ (p + q)

c̄(κ)

c̄2

∂Vp,q

∂τ
+ c̄(κ)κ(p + q)

∂Vp,q

∂χ

= − 3(p− q)2

Lloc(ω, κ)
Vp,q +

pq

Lloc(ω, κ)
(Vp+1,q+1 + Vp−1,q−1 − 2Vp,q) ,

starting from Vp,q(ω, κ, τ, χ, z0, z = z0) = 10(p)10(q)δ(τ)δ(χ). The mode-
dependent localization length Lloc(ω, κ) is defined by

Lloc(ω, κ) =
4c̄4

γc̄(κ)2ω2
, γ =

∫ ∞

−∞
E[ν(0)ν(z)] dz . (14.62)

Note that the localization length for the (ω, κ) mode can be written as

Lloc(ω, κ) =
c̄2

c̄(κ)2
Lloc(ω) ,

where Lloc(ω) is the one-dimensional localization length defined in (7.81). For
any integer p0, the subfamily (Vp,p+p0)p∈N satisfies a closed subsystem. This
subsystem of transport equations has zero initial conditions if p0 = 0, which
shows that

Vp,q(ω, κ, τ, χ, z0, z) = 0 if p = q . (14.63)

Furthermore, for p = q, Vp := Vp,p satisfies the system

∂Vp

∂z
+ 2p

c̄(κ)

c̄2

∂Vp

∂τ
+ 2pc̄(κ)κ

∂Vp

∂χ
=

p2

Lloc(ω, κ)
(Vp+1 + Vp−1 − 2Vp) ,

Vp(ω, κ, τ, χ, z0, z = z0) = 10(p)δ(τ)δ(χ) , (14.64)

and it has a probabilistic interpretation. In order to describe this interpreta-
tion we introduce the jump Markov process (Nz)z≥z0

with state space N and
infinitesimal generator
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L(ω,κ)φ(N) =
N2

Lloc(ω, κ)
(φ(N + 1) + φ(N − 1)− 2φ(N)) .

The solution Vp can be written as the expectation of a functional of this jump
process:

Vp(ω, κ, τ, χ, z0, z) = E

[
10(Nz)δ

(
τ − 2

c̄(κ)

c̄2

∫ z

z0

Nsds

)

×δ

(
χ− 2c̄(κ)κ

∫ z

z0

Nsds

)
| Nz0 = p

]
.

We can combine the two Dirac distributions to obtain

Vp(ω, κ, τ, χ, z0, z) =Wp(ω, κ, τ, z0, z)δ
(
χ− c̄2κτ

)
, (14.65)

where Wp is defined by

Wp(ω, κ, τ, z0, z) = E

[
10(Nz)δ

(
τ − 2

c̄(κ)

c̄2

∫ z

z0

Nsds

)
| Nz0 = p

]
. (14.66)

The simplification (14.65) can also be seen directly from the transport equa-
tions (14.64). The functions Wp can be characterized as the solutions of the
system of transport equations

∂Wp

∂z
+ 2p

c̄(κ)

c̄2

∂Wp

∂τ
=

p2

Lloc(ω, κ)
(Wp+1 +Wp−1 − 2Wp) , (14.67)

Wp(ω, κ, τ, z0, z = z0) = 10(p)δ(τ) . (14.68)

We therefore recover the same system of transport equations as in the one-
dimensional case. Taking the inverse Fourier transform of (14.61), we get that
for z0 ≤ z,

E

[(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p (

Rε
(ω−εh/2,κ−ελ/2)(z0, z)

)q]
(14.69)

ε→0−→
∫
Wp(ω, κ, τ, z0, z)eiτ [hc̄2/c̄(κ)2−ωλc̄2κ]dτ × e2ipz[−h/c̄(κ)+ωλc̄(κ)κ] ,

if q = p and

E

[(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p (

Rε
(ω−εh/2,κ−ελ/2)(z0, z)

)q] ε→0−→ 0 ,

otherwise.
The case with a semi-infinite slab (z0 → −∞) leads to explicit formulas for

the autocorrelation function of the reflection coefficient. Applying the same
method as in Section 9.2.3, we get that the functionWp converges as z0 → −∞
to the limit

Wp(ω, κ, τ, z0, z)
z0→−∞−→ P∞

p

(
c̄2τ

c̄(κ)Lloc(ω, κ)

)
c̄2

c̄(κ)Lloc(ω, κ)
, (14.70)
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where P∞
p is given by (9.39). By the same arguments as those used in Section

9.2.2, we can actually claim that the limit is reached,

Wp(ω, κ, τ, z0, z) = P∞
p

(
c̄2τ

c̄(κ)Lloc(ω, κ)

)
c̄2

c̄(κ)Lloc(ω, κ)
,

as soon as

τ ≤ 2c̄(κ)

c̄2
(z − z0) . (14.71)

Finally, setting Uε
j = R(ωj +

εhj

2 , μj +
ελj

2 , 0)R(ωj − εhj

2 , μj − ελj

2 , 0), we can
show in the same way as in Section 9.2.4 that for two distinct frequencies
ω1 = ω2 or for two distinct slownesses μ1 = μ2 one has

|E [Uε
1Uε

2 ]− E [Uε
1 ] E [Uε

2 ]| ε→0−→ 0 . (14.72)

This decorrelation property will be used in the next chapter to deduce the
self-averaging property of the time-reversed refocused pulse.

14.3.3 Asymptotics of the Mean Intensity

We consider the integral representation of the mean reflected intensity (14.58).
We parameterize the observation point x = (x, 0), x > 0, and we use polar
coordinates for κ and κ

′, that is, we write κ = μeθ and κ
′ = μ′eθ′ , where

eθ is the unit vector (cos θ, sin θ). The slowness moduli μ and μ′ take values
between 0 and 1/c̄, and the slowness angles θ and θ′ take values in [0, 2π]. We
obtain

E[pε(t,x, 0+)2] =
1

256π6ε3

∫ ∫
e−i ω−ω′

ε t+i ωxµ cos θ−ω′xµ′ cos θ′
ε

×E

[
Rε

(ω,μ)R
ε
(ω′,μ′)

]
f̂(ω)f̂(ω′)ω2μω′2μ′ dθ dθ′ dω dμ dω′ dμ′ .

In Section 14.3.2 it is shown that the standard reflection coefficients are cor-
related only if the frequencies and the slowness moduli are close to each other
at order ε. We therefore perform the change of variables ω′ = ω − εh and
μ′ = μ− ελ:

E[pε(t,x, 0+)2] =
1

256π6ε

∫ ∫
e−iht+i(hμ+ωλ)x cos θ′

ei ωµx
ε [cos θ−cos θ′]

×E

[
Rε

(ω,μ)R
ε
(ω−εh,μ−ελ)

]
|f̂(ω)|2ω4μ2 dθ dθ′ dh dλ dω dμ .

The fast phase can be used in a stationary-phase argument, which gives two
contributions. The first one is concentrated on θ′ = θ = 0, the second one is
concentrated on θ′ = θ = π:

E[pε(t,x, 0+)2] =
∑

q∈{−1,1}

1

128π5x

∫ ∫
e−iht+iq(hμ+ωλ)x

×E

[
Rε

(ω,μ)R
ε
(ω−εh,μ−ελ)

]
|f̂(ω)|2ω3μ dh dλ dω dμ . (14.73)
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Substituting the limit (14.69) into (14.73), one obtains

lim
ε→0

E[pε(t,x, 0+)2] =
∑

q∈{−1,1}

1

128π5x

∫ ∫
e−iht+iq(hμ+ωλ)x

×W1 (ω, μ, τ,−L, 0) eiτ [hc̄2/c̄(μ)2−ωλc̄2μ]|f̂(ω)|2ω3μ dτ dh dλ dω dμ .

Integrating with respect to h gives the Dirac mass factor δ(t−τ c̄2/c̄(μ)2−qμx).
We then integrate with respect to λ, so that we obtain the Dirac mass factor
δ(ωqx−ωτc̄2μ). Since the support ofW1 is restricted to positive τ and x > 0,
only the integral with q = 1 contributes to the value of the mean intensity.
This gives

lim
ε→0

E[pε(t,x, 0+)2] =
1

32π3x

∫ ∫
W1 (ω, μ, τ,−L, 0) δ

(
c̄2

c̄(μ)2
τ − t + μx

)

× δ
(
x− c̄2μτ

)
|f̂(ω)|2ω2μ dτ dω dμ .

The second Dirac mass

δ
(
x− c̄2μτ

)
=

1

c̄2τ
δ
(
μ− x

c̄2τ

)

concentrates the integral with respect to μ on the value x/(c̄2τ). For this value
of μ, the first Dirac mass becomes δ(τ− t), so that the integral with respect to
μ is actually concentrated on the value x/(c̄2t). If this value does not belong
to the interval [0, 1/c̄], which is the support of the integral in μ, then the mean
intensity is zero. In other words, the mean intensity is zero if x > c̄t. This is
not surprising, since c̄t is the distance traveled at time t by the wave emitted
from O at time 0. If x < c̄t, then the mean reflected intensity is not zero and
is given by

lim
ε→0

E[pε(t,x, 0+)2] =
1

32π3c̄4t2

∫
W1 (ω, κx,t, t,−L, 0) |f̂(ω)|2ω2 dω ,

(14.74)
where

κx,t =
x

c̄2t
.

Note that for a given observation point x = (x, 0), x > 0, and a given travel
time t > x/c̄, in the limit ε → 0, only the waves with the slowness vector
κ = (κx,t, 0) contribute to the incoherent intensity given in formula (14.74).
Schematically these waves experience multiple scattering by the medium and
can be represented as paths from the origin to the observation point x, as
we now explain. The total length of these paths is c̄t. They are continuous,
piecewise linear, and their angles with respect to the surface have cosine equal
to x/(c̄t) = c̄κx,t. Two such paths are shown in Figure 14.4. This path-angle
interpretation is valid only for layered media, where scattering does not modify
the slowness vector, but only couples right-going (ǎε(ω, κ)) and left-going
(b̌ε(ω, κ)) modes with the same frequency and slowness vector.
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Fig. 14.4. Two typical “paths” participating in the incoherent wave intensity
observed at position x = (x, 0), x = 4, and at time t = 4

√
5 ≈ 8.94. The

mean velocity is c̄ = 1. All paths arrive with the same angle θ whose cosine is
cos(θ) = x/(c̄t) = 1/

√
5. Here we have θ ≈ 1.11.

In the asymptotic L large, we have

W1(ω, κx,t, t,−L, 0)
L→∞−→ c̄2

c̄(κx,t)Lloc(ω, κx,t)
P∞

1

(
c̄2t

c̄(κx,t)Lloc(ω, κx,t)

)
,

where P∞
1 is given by (9.39) and Lloc(ω, κ) is the mode-dependent localization

length defined by (14.62). In fact, this limit is reached as soon as the condition
(14.71) is fulfilled:

t ≤ 2c̄(κx,t)

c̄2
L ,

which can also be written
√

c̄2t2 − x2 < 2L .

As a result, if the condition c̄t < 2L is satisfied, then we have for all x < c̄t,

W1 (ω, κx,t, t,−L, 0) =
c̄

Lloc(ω)

c̄t√
c̄2t2 − x2

P∞
1

(
c̄t

Lloc(ω)

c̄t√
c̄2t2 − x2

)
,

where Lloc(ω) = 4c̄2/γω2 is the one-dimensional localization length defined
by (7.81). Finally, this gives an explicit representation of the mean reflected
intensity in the limit ε→ 0:

lim
ε→0

E[pε(t,x, 0+)2] =
1

32π3c̄4t2

×

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∫
⎡
⎢⎣

c̄
2Lloc(ω)

c̄t√
c̄2t2−x2

(
1 + c̄t

2Lloc(ω)
c̄t√

c̄2t2−x2

)2

⎤
⎥⎦ |f̂(ω)|2ω2 dω if t > x/c̄ ,

0 if t < x/c̄ .

(14.75)
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This representation is valid as soon as c̄t < 2L, and it allows us to discuss
quantitatively the space-time behavior of the mean reflected intensity at the
surface. Let us consider an initial pulse whose Fourier transform is concen-
trated in a narrow band around the frequency ω0. As can be seen in Figures
14.5 and 14.6, at a given time t such that c̄t ≥ Lloc(ω0), the mean reflected
intensity is continuously distributed in the disk with center at 0 and radius
c̄t. The asymptotic spatial distribution is obtained from (14.75):

lim
ε→0

E[pε(t,x, 0+)2]
c̄t≫Lloc(ω0)≈

√(
1− |x|

2

c̄2t2

)

+

× lim
ε→0

E[pε(t,0, 0+)2] ,

where (·)+ = max(·, 0), and the time decay rate of the central intensity is

lim
ε→0

E[pε(t,0, 0+)2]
c̄t≫Lloc(ω0)≈ ω2

0Lloc(ω0)

8π2c̄5t4
× 1

2π

∫
|f̂(ω)|2 dω

=
1

2π2γc̄3t4
× 1

2π

∫
|f̂(ω)|2 dω , (14.76)

which is independent of the carrier frequency. To sum up, for long times, the
mean reflected intensity has a self-similar spatial distribution in the disk with
center at 0 and radius c̄t, and it is given by

lim
ε→0

E[pε(t,x, 0+)2]
c̄t≫Lloc(ω0)≈ 1

2π2γc̄3t4

√(
1− |x|

2

c̄2t2

)

+

× 1

2π

∫
|f̂(ω)|2 dω .
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Fig. 14.5. Mean reflected intensity as a function of time t �→ E[pε(t,x = (x, 0), 0+)2]
in the limit ε → 0 as given by (14.75). Here the initial pulse is the second derivative
of a Gaussian, with Fourier transform f̂(ω) = ω2 exp(−ω2/5). The mean velocity is
c̄ = 1 and the integrated covariance γ = 4.
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Fig. 14.6. Mean reflected intensity as a function of space x �→ E[pε(t,x =
(x, 0), 0+)2] in the limit ε → 0. The configuration is the one described in Figure
14.5.

14.4 Appendix: Stationary-Phase Method

The One-Dimensional Case

Let φ and f be two smooth real-valued functions defined on the interval
(−a, a) with a positive. Assume that φ′(s) vanishes only at s0 ∈ (−a, a) and
that φ′′(s0) = 0. The integral

I(ε) =

∫ a

−a

ei φ(s)
ε f(s) ds

can be approximated as ε→ 0 by

lim
ε→∞

1√
ε
I(ε)e−i

φ(s0)
ε =

√
2π√

|φ′′(s0)|
ein∗ π

4 f(s0) ,

where n∗ = sgn(φ′′(s0)). This result also holds true if a = ∞, φ ∈ C∞(R, R),
and f belongs to the Schwartz class of infinitely smooth and rapidly decaying
functions.

The n-Dimensional Case

The stationary-phase theorem can be generalized to n-dimensional integrals.
Let n be a positive integer, and O an open subset of Rn. Let φ and f be two
smooth functions from O to R. Assume that ∇φ(s) vanishes only at s0 ∈ O
and that the determinant of the Hessian Hs0(φ) of φ at s0 is nonzero. The
integral

I(ε) =

∫

O

ei φ(s)
ε f(s) dns

can be approximated as ε→ 0 by



390 14 Scattering by a Three-Dimensional Randomly Layered Medium

lim
ε→∞

1

εn/2
I(ε)e−i

φ(s0)
ε =

(2π)n/2

√
| detHs0(φ)|

ei(2n∗−n) π
4 f(s0) , (14.77)

where n∗ is the number of positive eigenvalues of Hs0(φ). The point s0 such
that ∇φ(s0) = 0 is referred to as the stationary-phase point. We can
actually prove that there exists a constant C that depends only on f and φ
such that

∣∣∣∣∣
1

εn/2
I(ε)− (2π)n/2

√
| detHs0(φ)|

ei(2n∗−n) π
4 f(s0)e

i
φ(s0)

ε

∣∣∣∣∣ ≤ C
√

ε . (14.78)

A Degenerate Case

The typical configuration that is encountered in this book is actually degen-
erate. The result that we need is summarized in the following proposition.

Proposition 14.4. For any ε > 0, let us consider the integral

I(ε) =

∫

R

∫

Rn

ei ωφ(s)
ε f(ω, s)ωn/2 dns dω ,

where φ ∈ C∞(Rn, R) and f belongs to the Schwartz class of infinitely smooth
and rapidly decaying functions. We assume that ∇φ(s) vanishes only at s0 ∈
Rn and that the determinant of the Hessian Hs0(φ) of φ at s0 is nonzero.
There are two cases:

1. If φ(s0) = 0, then

lim
ε→0

1

εn/2
I(ε) = 0 . (14.79)

2. If φ(s0) = 0, then

lim
ε→0

1

εn/2
I(ε) =

(2π)n/2

√
| detHs0(φ)|

ei(2n∗−n) π
4

∫
f(ω, s0) dω , (14.80)

where n∗ is the number of positive eigenvalues of Hs0(φ).

The proof of this proposition is based on the estimate (14.78) applied with a
fixed ω. Setting

I(ε, ω) =

∫

Rn

ei ωφ(s)
ε f(ω, s)ωn/2 dns ,

we obtain that there exists C(ω) such that
∣∣∣∣∣

1

εn/2
I(ε, ω)− (2π)n/2

√
| detHs0(φ)|

ei(2n∗−n) π
4 ei

ωφ(s0)
ε f(ω, s0)

∣∣∣∣∣ ≤ C(ω)
√

ε .

The factor ωn/2 in the integral I(ε, ω) is important, since the phase scales
with ω/ε. Furthermore, the smooth and bounded properties of f ensure that
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C(ω) is integrable. We can now integrate with respect to ω. If φ(s0) = 0, then
the integral ∫

ei
ωφ(s0)

ε f(ω, s0) dω

goes to zero as ε→ 0 by the Riemann–Lebesgue lemma, which yields (14.79).
If φ(s0) = 0, then we immediately get (14.80).

Notes

Most of the material presented in Section 14.1 is from the review paper [8].
The formula (14.52) describing the shape of the front pulse has been derived
in the three-dimensional case in [38] and in the case with additional horizontal
weak fluctuations in [109, 160]. This problem was also addressed in [46, 118].
An introduction to the stationary-phase method can be found in the book by
Bleisten and Handelsman [15]. The result needed in the book is summarized in
Appendix 14.4. One of the main areas of applications of the theory of waves
propagating in disordered media is imaging of embedded active sources or
passive scatterers. Coherent interferometry in finely layered random media,
exploiting the stable structure of the front derived in this chapter, is presented
in [18].





15

Time Reversal in a Three-Dimensional
Layered Medium

In this chapter we discuss the basic properties of time reversal in three-
dimensional randomly layered media, and we compare the fundamental diffrac-
tion limit phenomenon in the homogeneous and random cases. An active
source located inside the medium emits a pulse that is recorded on a time-
reversal mirror. The wave is sent back into the medium, either numerically
with the knowledge of the medium, or physically into the real medium. The
goal of this chapter is to give a precise description of the refocusing of the
pulse. In our regime of separation of scales we show that the pulse refocuses at
the original location of the source and at a critical time. In fact, time-reversal
refocusing contains information about the source that cannot be obtained by
a direct arrival-time analysis. The resolution at the source may be enhanced
by the randomness in the medium. This phenomenon is sometimes referred
to as a superresolution effect.

15.1 The Embedded-Source Problem

We consider our familiar strongly heterogeneous white-noise regime, where the
typical wavelength is large relative to the correlation length of the medium,
but short relative to the depth of the source. In this chapter, we first study
wave propagation in a three-dimensional layered medium in the case that
the source is inside the medium. We then consider time reversal of the wave
emanating from the source and analyze the refocusing properties of the wave
field. Our analysis shows how the time-reversal technique can be useful for
source estimation in the context of randomly layered media. We consider
linear acoustic waves propagating in three spatial dimensions:

ρ
∂uε

∂t
+∇pε = Fε , (15.1)

1

K

∂pε

∂t
+∇ · uε = 0 , (15.2)
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where pε is the pressure, uε is the velocity, ρ is the density of the medium,
and K the bulk modulus. The forcing term Fε is due to the source. We
consider the case with a constant density (for simplicity) and a randomly
fluctuating bulk modulus that is z-dependent only in the slab (−L, 0). Note
that by hyperbolicity of the system of governing equations we can choose L
large enough so that the termination of the slab does not affect the wave field
at the surface z = 0 over the time period that we consider. In view of the
homogenization results presented in Section 4.4, we consider a medium with
random fluctuations centered at the homogenized quantities. We therefore
discuss the model

ρ ≡ ρ̄ , (15.3)

1

K
=

⎧
⎪⎨
⎪⎩

1

K̄

(
1 + ν

( z

ε2

))
if z ∈ [−L, 0] ,

1

K̄
if z ∈ (−∞,−L) ∪ (0,∞) ,

(15.4)

where ν is a zero-mean mixing process and ε2 is a small dimensionless param-
eter that characterizes the ratio between the correlation length of the medium
and the typical depth of the source. A point source located at (xs, zs), zs ≤ 0,
generates a forcing term Fε at time ts that is given by

Fε(t, x, y, z) =

[
fx
fz

](
t− ts

ε

)
δ

(
x− xs

ε

)
δ(z − zs)

= ε2

[
fx
fz

](
t− ts

ε

)
δ (x− xs) δ(z − zs) . (15.5)

Note that the time duration of the source is short and scaled by ε, which is
large compared to the correlation length of the medium; which is O(ε2). In
our time-reversal setup we place a time-reversal mirror of spatial size O(1) at
the origin. Our setup is illustrated in Figure 15.1.

�

�

−L 0 z

x
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zs

S

Mirror M

����
��
�

��
��

Fig. 15.1. Emission from a point source.

In Section 15.2 we derive an integral representation for the time-reversed
wave field. The integral representation is obtained by taking a Fourier trans-
form in the time and horizontal space coordinates. This reduces the problem
to a family of one-dimensional problems that can be analyzed by decomposing
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the wave field into right- and left-going waves as in the previous chapter. In
Section 15.3 we consider the case of a homogeneous medium and we compute
in particular the size of the refocused spot size (Rayleigh resolution formula).
In Section 15.4 we analyze time reversal with a source embedded into a ran-
domly layered medium with a mirror at the surface. We carry out a careful
stationary-phase analysis, which is combined with diffusion approximation re-
sults in the limit of small ε. This gives a limit for the time-reversed wave field,
which reveals a refocusing of the pulse at a critical time and at the original
source location. The focal-spot size is explicitly computed in some particular
configurations and compared with the results obtained in the homogeneous-
medium case, which exhibits the so-called superresolution effect. The theoreti-
cal formulas are based on a description of the moments of the mode-dependent
reflection and transmission coefficients presented in Chapter 14, and which will
be extended in Appendix 15.6.

15.2 Time Reversal with Embedded Source

15.2.1 Emission from a Point Source

In the scaling that we consider, the typical wavelength of the source is small,
O(ε), and, as in the previous chapter, we use the following specific Fourier
transform and its inverse with respect to time and the transverse direction:

p̂ε(ω, κ, z) =

∫ ∫
pε(t,x, z)e

iω
ε (t−κ·x) dt dx ,

pε(t,x, z) =
1

(2πε)3

∫ ∫
p̂ε(ω, κ, z)e−

iω
ε (t−κ·x)ω2 dω dκ ,

where x = (x, y) stands for the transverse spatial variables. Taking the scaled
Fourier transform in (15.1) and (15.2) and using (15.5) shows that ûε =
(v̂ε, ûε) and p̂ε satisfy the system

−ρ̄
iω

ε
v̂ε +

iω

ε
κp̂ε = ε3f̂x(ω)e

iω
ε (ts−κ·xs)δ(z − zs), (15.6)

−ρ̄
iω

ε
ûε +

∂p̂ε

∂z
= ε3f̂z(ω)e

iω
ε (ts−κ·xs)δ(z − zs) , (15.7)

− 1

K(z)

iω

ε
p̂ε +

iω

ε
κ · v̂ε +

∂û

∂z
= 0 , (15.8)

where f̂ is the ordinary unscaled Fourier transform of the pulse profile

f̂(ω) =

∫
f(t)eiωt dt , f(t) =

1

2π

∫
f̂(ω)e−iωt dω .

By eliminating v̂ε, we deduce that (ûε, p̂ε) satisfy the following closed system
for −L < z < zs and zs < z < 0:
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∂ûε

∂z
+

iω

ε

(
− 1

K(z)
+
|κ|2
ρ̄

)
p̂ε = 0 , (15.9)

∂p̂ε

∂z
− iω

ε
ρ̄ûε = 0 , (15.10)

with the jumps at z = zs given by

[ûε]zs
= ε3 κ · f̂x(ω)

ρ̄
e

iω
ε (ts−κ·xs) , (15.11)

[p̂ε]zs
= ε3f̂z(ω)e

iω
ε (ts−κ·xs). (15.12)

We introduce the right- and left-propagating wave modes ǎε and b̌ε, which
are defined as in (14.24) and (14.25) by

p̂ε(ω, κ, z) =

√
ζ̄(κ)

2

(
ǎε(ω, κ, z)e

iωz
εc̄(κ) − b̌ε(ω, κ, z)e−

iωz
εc̄(κ)

)
, (15.13)

ûε(ω, κ, z) =
1

2
√

ζ̄(κ)

(
ǎε(ω, κ, z)e

iωz
εc̄(κ) + b̌ε(ω, κ, z)e−

iωz
εc̄(κ)

)
,(15.14)

where κ = |κ|, c̄ =
√

K̄/ρ̄ is the effective speed, c̄(κ) is the effective mode-
dependent vertical velocity (14.19), and ζ̄(κ) is the mode-dependent acoustic
impedance (14.20), which are recalled here:

c̄(κ) =
c̄√

1− c̄2κ2
, ζ̄(κ) = ρ̄c̄(κ) . (15.15)

We consider only propagating modes and ignore evanescent modes, meaning
that |κ| < c̄−1 as discussed in Chapter 14. The system for ǎε and b̌ε can be
written in the form

∂

∂z

[
ǎε

b̌ε

]
=

1

ε
H(ω,κ)

(z

ε
, νκ

( z

ε2

)) [
ǎε

b̌ε

]
, (15.16)

where the complex 2× 2 matrix H(ω,κ) is given by (14.36)

H(ω,κ)(z, ν) =
iων

2c̄(κ)

[
1 −e−

2iωz
c̄(κ)

e
2iωz
c̄(κ) −1

]
. (15.17)

The mode-dependent random process νκ is defined by (14.23):

νκ(z) =
c̄(κ)2

c̄2
ν(z) =

1

1− c̄2κ2
ν(z) .

Using the definitions (15.13) and (15.14) and the expressions (15.11) and
(15.12) for the jumps in ûε and p̂ε, we deduce the jumps at z = zs for the
modes ǎε and b̌ε:
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[ǎε]zs
= ε3e

iω
ε (ts−κ·xs−zs/c̄(κ))Sa(ω, κ) , (15.18)

[
b̌ε

]
zs

= ε3e
iω
ε (ts−κ·xs+zs/c̄(κ))Sb(ω, κ) , (15.19)

with the source contributions given by

Sa(ω, κ) =

√
ζ̄(κ)

ρ̄
κ · f̂x(ω) +

1√
ζ̄(κ)

f̂z(ω) , (15.20)

Sb(ω, κ) =

√
ζ̄(κ)

ρ̄
κ · f̂x(ω)− 1√

ζ̄(κ)
f̂z(ω) . (15.21)

The system for ǎε and b̌ε is supplemented with the boundary conditions at
z = 0 and z = −L that are shown in Figure 15.2. We assume that no energy
is coming from +∞ or −∞, so that we get the conditions

ǎε(ω, κ,−L) = 0 , b̌ε(ω, κ, 0) = 0 .

The quantity of interest is the wave field at the surface, which is completely
characterized by ǎε(ω, κ, 0), since b̌ε(ω, κ, 0) = 0.

�
−L 0 zzs

�
b̌ε(−L)

�0 = ǎε(−L) �
0 = b̌ε(0)

�
ǎε(0)

�
b̌ε(z−
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s )
�

ǎε(z+
s )

�
b̌ε(z+

s )

Fig. 15.2. Boundary conditions at z = −L and z = 0 corresponding to the emission
from the point source located at depth zs.

We transform this boundary value problem into an initial value problem
by introducing the propagator Pε

(ω,κ)(z0, z), −L ≤ z0 ≤ z ≤ 0, which is a
family of complex 2× 2 matrices that solve

∂Pε
(ω,κ)

∂z
=

1

ε
H(ω,κ)

(z

ε
, νκ

( z

ε2

))
Pε

(ω,κ) , Pε
(ω,κ)(z0, z = z0) = I .

Using the particular form of the matrix H(ω,κ), one can show that the prop-
agator matrix can be written as

Pε
(ω,κ)(z0, z) =

[
αε

(ω,κ) βε
(ω,κ)

βε
(ω,κ) αε

(ω,κ)

]
(z0, z) ,

where the column vector (αε
(ω,κ), β

ε
(ω,κ))

T solves (15.16) with the initial con-
ditions
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αε
(ω,κ)(z0, z = z0) = 1 , βε

(ω,κ)(z0, z = z0) = 0 . (15.22)

The boundary conditions at z = −L and z = 0 and the jump conditions
(15.18) and (15.19) imply that

[
ǎε(z−s )

b̌ε(z−s )

]
= Pε

(ω,κ)(−L, zs)

[
0

b̌ε(−L)

]
, (15.23)

[
ǎε(0)

0

]
= Pε

(ω,κ)(zs, 0)

[
ǎε(z+

s )

b̌ε(z+
s )

]
= Pε

(ω,κ)(zs, 0)

[
ǎε(z−s ) + [ǎε]zs

b̌ε(z−s ) +
[
b̌ε

]
zs

]
,(15.24)

where for notational simplicity, we do not display the arguments (ω, κ) in ǎε

and b̌ε. Inverting Pε
(ω,κ)(zs, 0) in (15.24) and substituting (15.23) in (15.24)

gives the following system:

[
βε

(ω,κ)(−L, zs)b̌
ε(−L) + [ǎε]zs

αε
(ω,κ)(−L, zs)b̌

ε(−L) +
[
b̌ε

]
zs

]
=

[
αε

(ω,κ)(zs, 0)ǎε(0)

−βε
(ω,κ)(zs, 0)ǎε(0)

]
.

Solving these equations for ǎε(0) gives

ǎε(ω, κ, 0) = T ε
g (ω, κ, zs) [ǎε]zs

−Rε
g(ω, κ, zs)

[
b̌ε

]
zs

,

where Rε
g and T ε

g are the generalized reflection and transmission coef-
ficients defined by

Rε
g(ω, κ, z) =

βε
(ω,κ)

(−L,z)

αε
(ω,κ)

(−L,z)

αε
(ω,κ)(z, 0) + βε

(ω,κ)(z, 0)
βε
(ω,κ)

(−L,z)

αε
(ω,κ)

(−L,z)

, (15.25)

T ε
g (ω, κ, z) =

1

αε
(ω,κ)(z, 0) + βε

(ω,κ)(z, 0)
βε
(ω,κ)

(−L,z)

αε
(ω,κ)

(−L,z)

, (15.26)

which are evaluated at a general depth z in the slab (−L, 0). Using the expres-
sions (15.18) and (15.19) for the jumps gives the following explicit formula for
ǎε(0):

ǎε(ω, κ, 0) = ε3e
iω
ε (ts−κ.xs)

[
e−

iωzs
εc̄(κ) T ε

g (ω, κ, zs)Sa(ω, κ)

−e
iωzs
εc̄(κ) Rε

g(ω, κ, zs)Sb(ω, κ)
]

. (15.27)

The coefficients Rε
g and T ε

g are generalized versions of the reflection and trans-
mission coefficients used in the previous chapters, as we explain now. This will
enable us to give an interpretation of the content of formula (15.27) at the end
of this section. The transmission and reflection coefficients T ε

(ω,κ)(−L, z) and

Rε
(ω,κ)(−L, z) for a slab [−L, z] (see Figure 15.3 and Section 9.1) are given in

terms of αε
(ω,κ) and βε

(ω,κ) by
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Rε
(ω,κ)(−L, z) =

βε
(ω,κ)(−L, z)

αε
(ω,κ)(−L, z)

, T ε
(ω,κ)(−L, z) =

1

αε
(ω,κ)(−L, z)

. (15.28)

We also introduce R̃ε
(ω,κ) and T̃ ε

(ω,κ) defined as the adjoint reflection and
transmission coefficients for the experiment corresponding to a right-going
input wave incoming from the left (see Figure 15.4). They were introduced in
the one-dimensional case in Section 12.1.1. They are given in terms of αε

(ω,κ)
and βε

(ω,κ) by

R̃ε
(ω,κ)(z, 0) = −

βε
(ω,κ)(z, 0)

αε
(ω,κ)(z, 0)

, T̃ ε
(ω,κ)(z, 0) =

1

αε
(ω,κ)(z, 0)

. (15.29)

Note that the two transmission coefficients are equal: T̃ ε
(ω,κ)(z, 0) = T ε

(ω,κ)(z, 0).

�
−L 0z

�
T ε

(ω,κ)(−L, z)

�0 � 1

�
Rε

(ω,κ)(−L, z)

Fig. 15.3. Reflection and transmission coefficients.

�
−L 0z

�
R̃ε

(ω,κ)(z, 0)

�1 � 0

�
T̃ ε

(ω,κ)(z, 0)

Fig. 15.4. Adjoint reflection and transmission coefficients.

We can express the generalized coefficients Rε
g and T ε

g in terms of the
usual reflection and transmission coefficients Rε

(ω,κ) and T ε
(ω,κ) and the adjoint

coefficients R̃ε
(ω,κ) and T̃ ε

(ω,κ):

Rε
g(ω, κ, z) =

T̃ ε
(ω,κ)(z, 0)Rε

(ω,κ)(−L, z)

1− R̃ε
(ω,κ)(z, 0)Rε

(ω,κ)(−L, z)
, (15.30)

T ε
g (ω, κ, z) =

T̃ ε
(ω,κ)(z, 0)

1− R̃ε
(ω,κ)(z, 0)Rε

(ω,κ)(−L, z)
. (15.31)
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Interpretation of the Generalized Coefficients

Keeping in mind the interpretation of the usual reflection and transmission
coefficients by a random slab (see Section 5.1.6), we now explain the content
of the generalized coefficients. We first consider the generalized transmission
coefficient T ε

g . We can rewrite it as a series

T ε
g (ω, κ, z) = T̃ ε

(ω,κ)(z, 0)

∞∑

n=0

[
R̃ε

(ω,κ)(z, 0)Rε
(ω,κ)(−L, z)

]n

, (15.32)

where we use the fact that |R̃ε
(ω,κ)(z, 0)| < 1 and |Rε

(ω,κ)(−L, z)| < 1, as

follows from the energy conservation relation (7.11). The first term T̃ ε
(ω,κ)(z, 0)

corresponds to waves transmitted from z to 0 without interacting with the
left medium (−L, z) and containing all the interactions with the medium

(z, 0). The next term (n = 1) corresponds to waves, R̃ε
(ω,κ)(z, 0), reflected

by (z, 0) into (−L, z), and then reflected back, Rε
(ω,κ)(−L, z), by (−L, z) into

(z, 0), and finally transmitted, T̃ ε
(ω,κ)(z, 0), to the surface. The following terms

correspond to multiple bounces back and forth between the two slabs (−L, z)
and (z, 0) before transmission to the surface. The full series describes the
total transmission from z to 0 of waves initially going to the right at point z.
Similarly, we can expand the generalized reflection coefficient and we obtain
a series for the total transmission from z to 0 of waves initially going to the
left at point z. The first term Rε

(ω,κ)(−L, z)T̃ ε
(ω,κ)(z, 0) corresponds to waves

interacting first with the slab (−L, z) and then transmitted from z to 0. The
other terms of the series describe the mutiple bounces back and forth between
the two slabs before transmission to the surface.

The asymptotic analysis of the moments of these coefficients, started in
the previous chapters, will be completed in Appendix 15.6. Note that if z = 0,
then Rε

g(ω, κ, 0) = Rε
(ω,κ)(−L, 0) and T ε

g (ω, κ, 0) = 1.

Interpretation of (15.27) for the Surface Modes Generated by the Internal
Source

There are two contributions in (15.27): T ε
g Sa and Rε

gSb. The first one cor-
responds to the waves generated by the source, initially propagating to the
right, and transmitted at the surface by the generalized transmission coeffi-
cient T ε

g . The second term contains the waves generated by the source, initially
propagating to the left, and sent back by the medium to the surface by the
generalized reflection coefficient Rε

g.

Integral Representation of the Field at the Surface

We denote the wave at the surface z = 0 by (uε
s, p

ε
s). By taking an inverse

Fourier transform we obtain
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pε
s(t,x) =

1

(2πε)3

∫ √
ζ̄(κ)

2
ǎε(ω, κ, 0)e−

iω
ε (t−κ·x)ω2 dω dκ , (15.33)

uε
s(t,x) =

1

(2πε)3

∫
1

2
√

ζ̄(κ)
ǎε(ω, κ, 0)e−

iω
ε (t−κ·x)ω2 dω dκ , (15.34)

vε
s(t,x) =

1

(2πε)3

∫ √
ζ̄(κ)

2ρ̄
κǎε(ω, κ, 0)e−

iω
ε (t−κ·x)ω2 dω dκ , (15.35)

where uε
s = (vε

s, u
ε
s). These signals contain a stable wave front of duration

O(ε) corresponding to the duration of the source and a long noisy coda part
that is caused by the multiple scattering by the layers. These coda waves are
part of, and play a crucial role in, the time-reversal procedure that we describe
next.

15.2.2 Recording, Time Reversal, and Reemission

The first step of the time-reversal procedure consists in recording the velocity
signal and/or the pressure signal at the surface z = 0 on the mirror M =
{(x, z),x ∈ D, z = 0} during some time interval centered at t = 0. The shape
of the mirror whose center is located at the point 0 is given by D ⊂ R2. It
turns out that as ε → 0, the interesting asymptotic regime arises when we
record the signal during a long time interval whose duration is of order one.
We consider here the situation in which only the velocity is recorded. The case
in which the pressure signal is recorded will be discussed in Section 15.5.5.

�

�

−L 0 z

x

xs

zs

S

Mirror M
�
�

�
�

�
�

�
�

Fig. 15.5. Emission from the mirror.

In the second step of the time-reversal procedure a piece of the recorded
signal is clipped using a cutoff function t 	→ G1(t), where the support of G1

is included in [−t1/2, t1/2]. We denote the recorded part of the wave by uε
rec,

so that

uε
rec(t,x) = uε

s(t,x)G1(t)G2 (x) , (15.36)

where G2 is the spatial cutoff function introduced by the mirror,

G2(x) = 1D(x) ,
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and D is the shape of the mirror. We could alternatively choose more-general
spatial cutoff functions G2 with integrability conditions (for instance L1∩L2).
We then time-reverse this piece of the signal and send it back into the same
medium, as illustrated in Figure 15.5. This means that we consider a new
problem defined by the acoustic equations (15.1–15.2) with the source term

Fε
TR(t,x, z) = ρ̄c̄uε

rec(−t,x)δ(z) , (15.37)

where the subscript TR stands for “time reversal” and the factor ρ̄c̄ has been
added to restore the physical dimension of the expression. Note that by lin-
earity of the problem this factor plays no role in the analysis. In terms of
right- and left-going wave modes, the problem is defined by the linear system
(15.16) for −L ≤ z < 0, with the boundary conditions

b̌ε
TR(ω, κ, 0+) = 0 , ǎε

TR(ω, κ,−L) = 0 ;

see Figure 15.6, and the jump condition

[
b̌ε
TR

]
0

=

√
ζ̄(κ)

ρ̄
κ · F̂ε

TR,x(ω, κ)− 1√
ζ̄(κ)

F̂ ε
TR,z(ω, κ) ,

where, using successively (15.37), (15.36), (15.35), and (15.34), we have

F̂ε
TR,x(ω, κ) =

ρ̄c̄

(2πε)3

∫ √
ζ̄(κ′)

2ρ̄
κ
′Ĝ1

(
ω − ω′

ε

)
Ĝ2

(
ωκ + ω′

κ
′

ε

)

× ǎε(ω′, κ′, 0)ω′2 dω′ dκ
′ ,

F̂ ε
TR,z(ω, κ) =

ρ̄c̄

(2πε)3

∫
1

2
√

ζ̄(κ′)
Ĝ1

(
ω − ω′

ε

)
Ĝ2

(
ωκ + ω′

κ
′

ε

)

× ǎε(ω′, κ′, 0)ω′2 dω′ dκ
′ .

The quantity ǎε(ω, κ, 0) is given by (15.27), and the Fourier transforms of
the window functions are defined by

Ĝ1(ω) =

∫
G1(t)e

iωtdt , Ĝ2(k) =

∫
G2(x)e−ik·xdx .

This configuration is now described by the system (15.16) for −L ≤ z < 0.

From b̌ε
TR(0−) = −[b̌ε

TR]0 and the expressions for F̂ε
TR,x and F̂ ε

TR,z given above

we deduce the following boundary condition at z = 0−

b̌ε
TR(ω, κ, 0−) =

1

(2πε)3

∫
H0(κ, κ′)

2
Ĝ1

(
ω − ω′

ε

)
Ĝ2

(
ωκ + ω′

κ
′

ε

)

× ǎε(ω′, κ′, 0)ω′2 dω′ dκ
′ , (15.38)

where
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H0(κ, κ′) =
ρ̄c̄√

ζ̄(κ)ζ̄(κ′)
− c̄

√
ζ̄(κ)ζ̄(κ′)

ρ̄
κ · κ′ . (15.39)

The boundary condition at z = −L is simply the radiation condition

ǎε
TR(ω, κ,−L) = 0 . (15.40)

The Fourier transforms of the pressure and the velocity are now given by
(15.13) and (15.14), where ǎε and b̌ε are replaced by ǎε

TR and b̌ε
TR.

�
−L 0 z

�
b̌ε
TR(−L)

�0 = ǎε
TR(−L) �

0 = b̌ε
TR(0+)

�
ǎε
TR(0+)

�
b̌ε
TR(0−)

�
ǎε
TR(0−)

Fig. 15.6. Boundary conditions at z = −L and z = 0 corresponding to the emission
from the mirror located at z = 0.

15.2.3 The Time-Reversed Wave Field

The new incoming signal propagates into the same medium and produces the
time-reversed wave field. Here we derive an exact integral representation for
this wave field, which will be exploited in the following sections to analyze the
refocusing properties of the time-reversed field.

The radiation condition (15.40) at z = −L implies that

[
ǎε
TR(0−)

b̌ε
TR(0−)

]
= Pε

(ω,κ)(−L, 0)

[
0

b̌ε
TR(−L)

]
= b̌ε

TR(−L)

[
βε

(ω,κ)(−L, 0)

αε
(ω,κ)(−L, 0)

]
.

Solving this equation for b̌ε
TR(−L) gives

b̌ε
TR(−L) =

b̌ε
TR(0−)

αε
(ω,κ)(−L, 0)

.

Computing the (2, 2)-entry of the decomposition,

Pε
(ω,κ)(−L, 0) = Pε

(ω,κ)(z, 0)Pε
(ω,κ)(−L, z) ,

shows, using the definitions of Rε
g and T ε

g in (15.25) and (15.26), that

αε
(ω,κ)(−L, 0) =

αε
(ω,κ)(−L, z)

T ε
g (ω, κ, z)

=
βε

(ω,κ)(−L, z)

Rε
g(ω, κ, z)

,
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and from this we obtain
[

ǎε
TR(z)

b̌ε
TR(z)

]
= Pε

(ω,κ)(−L, z)

[
0

b̌ε
TR(−L)

]

= b̌ε
TR(−L)

[
βε

(ω,κ)(−L, z)

αε
(ω,κ)(−L, z)

]

=
b̌ε
TR(0−)

αε
(ω,κ)(−L, 0)

[
βε

(ω,κ)(−L, z)

αε
(ω,κ)(−L, z)

]

= b̌ε
TR(0−)

[
Rε

g(ω, κ, z)
T ε

g (ω, κ, z)

]
. (15.41)
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ǎε
TR(0+)
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ǎε
TR(0−)
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ǎε
TR(z)

�
b̌ε
TR(z)

Fig. 15.7. Boundary conditions at z = −L and z = 0 corresponding to reemission
from the TR-mirror located on the plane z = 0. The field is observed at the point
z ∈ (−L, 0).

Using (15.13), (15.14), and (15.41) and applying an inverse Fourier trans-
form, we find that the wave for −L ≤ z < 0 is given by

pε
TR(t,x, z) =

1

(2πε)3

∫ √
ζ̄(κ1)

2
b̌ε
TR(ω1, κ1, 0

−)
[
Rε

g(ω1, κ1, z)e
iω1z

εc̄(κ1)

−T ε
g (ω1, κ1, z)e

− iω1z

εc̄(κ1)

]
e−

iω1
ε (t−κ1·x)ω2

1 dω1 dκ1 , (15.42)

uε
TR(t,x, z) =

1

(2πε)3

∫
1

2
√

ζ̄(κ1)
b̌ε
TR(ω1, κ1, 0

−)
[
Rε

g(ω1, κ1, z)e
iω1z

εc̄(κ1)

+T ε
g (ω1, κ1, z)e

− iω1z

εc̄(κ1)

]
e−

iω1
ε (t−κ1·x)ω2

1 dω1 dκ1 . (15.43)

Substituting the expression (15.38) for b̌ε
TR(ω, κ, 0−) into the equation for uε

TR

yields the following representation for the vertical velocity:

uε
TR(t,x, z) =

1

(2π)6ε3

∫ ∫
H0(κ1, κ2)

4
√

ζ̄(κ1)
Ĝ1

(
ω1 − ω2

ε

)
Ĝ2

(
ω1κ1 + ω2κ2

ε

)

× e
i
(

−(ω2ts+ω1t)+(ω2κ2·xs+ω1κ1·x)

ε

)
⎡
⎣

4∑

j=1

P ε
j

⎤
⎦ω2

1ω
2
2 dω1 dκ1 dω2 dκ2 , (15.44)
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where we define the P ε
j ’s by

P ε
1 = −e

i
(
− ω2zs

εc̄(κ2)
+

ω1z

εc̄(κ1)

)

Rε
g(ω1, κ1, z)Rε

g(ω2, κ2, zs)Sb(ω2, κ2) ,

P ε
2 = e

i
(

ω2zs
εc̄(κ2)

+
ω1z

εc̄(κ1)

)

Rε
g(ω1, κ1, z)T ε

g (ω2, κ2, zs)Sa(ω2, κ2) ,

P ε
3 = e

i
(

ω2zs
εc̄(κ2)−

ω1z

εc̄(κ1)

)

T ε
g (ω1, κ1, z)T ε

g (ω2, κ2, zs)Sa(ω2, κ2) ,

P ε
4 = −e

i
(
− ω2zs

εc̄(κ2)
− ω1z

εc̄(κ1)

)

T ε
g (ω1, κ1, z)Rε

g(ω2, κ2, zs) Sb(ω2, κ2) .

Motivated by the presence of the terms Ĝ1(
ω1−ω2

ε ) and Ĝ2

(
ω1κ1+ω2κ2

ε

)
, we

carry out the change of variables ω1 = ω+εh/2, ω2 = ω−εh/2, κ1 = κ+ελ/2,
κ2 = −κ + ελ/2, which to leading order gives

uε
TR(t,x, z) =

1

(2π)6

∫ ∫
H0(κ,−κ)

4
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ)

⎡
⎣

4∑

j=1

P̃ ε
j

⎤
⎦

× e
iω
ε (−(ts+t)+κ·(x−xs))e

ih
2 (ts−t+κ·(x+xs))+

iω
2 λ·(x+xs)ω4dω dh dκ dλ , (15.45)

with

P̃ ε
1 = −e

−iω
ε ( zs−z

c̄(κ) )e
ih
2

zs+z
c̄(κ)

− iω
2 λ·κc̄(κ)(zs+z)Rε

gR
ε
g Sb(ω,−κ) ,

P̃ ε
2 = e

iω
ε ( zs+z

c̄(κ) )e−
ih
2

zs−z
c̄(κ) + iω

2 λ·κc̄(κ)(zs−z)Rε
gT

ε
g Sa(ω,−κ) ,

P̃ ε
3 = e

iω
ε ( zs−z

c̄(κ) )e−
ih
2

zs+z
c̄(κ)

+ iω
2 λ·κc̄(κ)(zs+z)T ε

g T ε
g Sa(ω,−κ) ,

P̃ ε
4 = −e−

iω
ε ( zs+z

c̄(κ) )e
ih
2

zs−z
c̄(κ)

− iω
2 λ·κc̄(κ)(zs−z)T ε

g Rε
g Sb(ω,−κ) ,

where the complex-conjugated coefficients are evaluated at (ω − εh/2,−κ +
ελ/2, zs), the other coefficients are evaluated at (ω + εh/2, κ + ελ/2, z), and
we have used that ∇κ c̄(κ) = c̄3(κ)κ from the definition (15.15). Note that
using the definition (15.39), we have

H0(κ,−κ) =
c̄(κ)

c̄
.

In the following sections we study the asymptotic behavior of the time-reversed
wave field uε

TR in the limit ε→ 0.

15.3 Homogeneous Medium

We first examine the deterministic case with ν ≡ 0, which corresponds to a
source embedded into a homogeneous medium at the depth zs < 0.
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15.3.1 The Field Recorded at the Surface

The recorded wave field at a point M = (x, 0) at the surface is described in
terms of (15.27) with Rε

g = 0 and T ε
g = 1, which gives

ǎε(ω, κ, 0) = ε3e
iω
ε (ts−κ·xs−zs/c̄(κ))Sa(ω, κ) .

The signal that can be recorded at the surface is a spherical wave. Using
the Fourier representation (15.34) of the pressure field at the surface and the
definition (15.20) of the source contribution Sa, we find that the pressure
signal is given by

pε
s(t,x) =

1

2(2π)3

∫ (
ζ̄(κ)κ

ρ̄
· f̂x(ω) + f̂z(ω)

)
e

iωφ(κ)
ε ω2 dω dκ , (15.46)

where the phase term φ is

φ(κ) = ts − t + κ · (x− xs)−
zs

c̄(κ)
.

As ε → 0 the asymptotic behavior of the integral (15.46) is governed by its
fast phase φ/ε. We apply the stationary-phase method to the integral (see
Appendix 14.4). The partial derivatives of the phase with respect to the phase
variables κ are given by

∇κφ = x− xs + κc̄(κ)zs .

There exists a unique stationary point given by κ = κsp, with

κsp =
1

c̄

x− xs√
z2

s + |x− xs|2
=

1

c̄

x− xs

SM
.

By Proposition 14.4, the limit value of the integral (15.46) is of order o(ε)
if φ(κsp) = 0 and it is of leading order ε only if φ(κsp) = 0, that is, if the
observation time t satisfies ts− t+SM/c̄ = 0, where SM is the distance from
the source to the mirror. Thus, we evaluate the pressure field pε

s(t,x) at the
time t = ts + SM/c̄ + εT , and a direct application of the stationary-phase
result in Appendix 14.4 gives the approximation

pε
s

(
ts +

SM

c̄
+ εT,x

)
≈ ε

4πc̄SM2
SM ·

[
f ′x
f ′

z

]
(T ) ,

with SM being the vector from the source to the mirror. Similarly, from
(15.34) and (15.35), we deduce that the three-dimensional velocity field is
approximated by

uε
s

(
ts +

SM

c̄
+ εT,x

)
≈ ε

SM

4πρ̄c̄2SM3
SM ·

[
f ′x
f ′

z

]
(T ) . (15.47)

Note that the amplitudes of these waves are small, of order ε, and they have
a short duration of order ε.
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15.3.2 The Time-Reversed Field

In the homogenous case the time-reversed wave field is described by (15.45)
with Rε

g = 0 and T ε
g = 1. In this case only the P̃ ε

3 term contributes to uε
TR

which reduces to

uε
TR(t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)Ĝ1(h)Ĝ2 (hκ + ωλ) (15.48)

× e
iωφ(κ)

ε e
ih
2 (ts−t+κ·(x+xs)− zs+z

c̄(κ) )+ iω
2 (λ·(x+xs)+λ·κc̄(κ)(zs+z))ω4dω dh dκ dλ ,

where the rapid phase is

φ(κ) = −(ts + t) + κ · (x− xs) +
zs − z

c̄(κ)
. (15.49)

We again apply the stationary-phase method and observe first that

∇κφ = x− xs − κc̄(κ)(zs − z) .

There are three cases depending on the observation time t and the observation
point M = (x, z). The first case corresponds to observing the wave front before
it refocuses at the original source point, whereas the second case corresponds
to an observation point on the wave front after it has refocused, and we
show below that these two contributions are small, of order ε. The third case
corresponds to observing the wave front at the original source point and at
the critical time, and the refocused wave is of order one.

• If t < −ts, then there exists one stationary point given by κ = κsp, with

κsp = −1

c̄

x− xs√
|z − zs|2 + |x− xs|2

= −1

c̄

x− xs

SM
.

By Proposition 14.4, the value of the integral (15.48) is of order ε if the
observation point M satisfies z > zs and SM = c̄|t + ts|. Otherwise, the
value of the integral is o(ε).

• If t > −ts, then there exists one stationary point given by κ = κsp, with

κsp =
1

c̄

x− xs√
|z − zs|2 + |x− xs|2

=
1

c̄

x− xs

SM
.

By Proposition 14.4, the value of the integral (15.48) is of order ε if the
observation point M satisfies z < zs and SM = c̄(t + ts). Otherwise, the
value of the integral is o(ε).

• If t = −ts, the critical time, there exists one stationary map if and only
if x = xs and z = zs, and the map is globally stationary, meaning that
the rapid phase vanishes identically, which in turn implies that the value
of the integral (15.48) is of order one.
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We thus consider an observation time t close to −ts and an observation point
close to (xs, zs). This is done using the following parameterization:

t = −ts + εT , x = xs + εX , z = zs + εZ . (15.50)

The integral representation of the refocused velocity field becomes

uε
TR(t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)Ĝ1(h)Ĝ2 (hκ + ωλ)

× eiω(−T+κ·X− Z
c̄(κ) )eih(ts+κ·xs− zs

c̄(κ) )+iω(λ·xs+λ·κc̄(κ)zs)ω4dω dh dκ dλ

=
1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ) (15.51)

×
(
−

√
ζ̄(κ)

ρ̄
κ · f̂x(ω) +

1√
ζ̄(κ)

f̂z(ω)

)

× eiω(−T+κ·X− Z
c̄(κ) )eih(ts+κ·xs− zs

c̄(κ) )+iω(λ·xs+λ·κc̄(κ)zs)ω4 dω dh dκ dλ ,

where we have used (15.20). We next apply the change of variables λ 	→ k =
ωλ + hκ so that

uε
TR(t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)Ĝ1(h)Ĝ2 (k)

× eiω(−T+κ·X− Z
c̄(κ)

)eih(ts− c̄(κ)zs
c̄2

)+ik·(xs+κc̄(κ)zs)ω2 dω dh dκ dk ,

and we integrate with respect to k and h to obtain that in the limit ε → 0,
the vertical velocity field is given by

uTR(t,x, z) =
1

(2π)3

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
G1

(
ts − zs

c̄(κ)

c̄2

)
G2 (xs + κc̄(κ)zs)

×Sa(ω,−κ)eiω(−T+κ·X− Z
c̄(κ) )ω2 dω dκ . (15.52)

Qualitatively, the mirror emits a converging spherical wave whose ampli-
tude is of order ε and whose support at time t < −ts lies in the upper part
of the sphere with center S and radius c̄|t + ts|. At the critical time −ts the
refocusing occurs at the original source location S. The refocused pulse has
an amplitude of order one and it is given by (15.52). After the time −ts a di-
verging spherical wave is going downward from the point S (see Figure 15.8).
We can be more precise and give quantitative information on the focal spot.

In order to simplify the formula and clarify the roles of the different quan-
tities in the refocusing, we assume that the source is concentrated in frequency
in a narrow band around a large carrier frequency ω0, and is located relatively
far from the mirror. These assumptions translate into

f(t) = f0

(
t

Tw

)
e−iω0t + c.c. , (15.53)
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Fig. 15.8. Pulse refocusing in a homogeneous medium. The focal-spot size depends
on the numerical aperture, which measures the angular diversity of the refocused
waves that participate in the refocusing.

with ω0Tw ≫ 1, and |zs| ≫ a, where Tw is the initial pulse width, a is
the diameter of the mirror, and “c.c.” stands for the complex-conjugated
quantity. The function f0 is the envelope of the pulse profile, whose support
is normalized to be of order one. The spatial cutoff function determining the
mirror has the form

G2(x) = g2

(x

a

)
, (15.54)

where g2 is the normalized cutoff function. We choose the (x, y)-axes so that
the horizontal position of the source is xs = (xs, 0) with xs ≥ 0. Then, we carry
out the changes of variables κ 	→ y = xs +κc̄(κ)zs and ω 	→ ω̃ = Tw(ω−ω0),
and we integrate with respect to y and ω̃, so that we get

uTR(t,x, z) =
a2zsω

2
0

16π2c̄3ρ̄OS4
OS · f0

(
− T

Tw
+

(X, Z) ·OS

c̄OSTw

)
eiω0(−T+ (X,Z)·OS

c̄OS )

×G1

(
ts +

OS

c̄

)
ĝ2

(
ω0a|zs|
c̄OS3

(xsZ − zsX),
ω0a

c̄OS
Y

)
+ c.c. , (15.55)

where OS is the vector from the origin to the source. Note that the vertical
refocused velocity field is nonzero only if the signal originating from the source
has been recorded by the mirror, meaning that ts+OS/c̄ lies in the support of
G1. The focal shape depends on the Fourier transform of the mirror shape and
the initial pulse profile. We introduce the new orthonormal frame (e1, e2, e3)
defined by

e1 =
1

OS

⎡
⎣
−zs

0
xs

⎤
⎦ , e2 =

⎡
⎣

0
1
0

⎤
⎦ , e3 =

1

OS

⎡
⎣

xs

0
zs

⎤
⎦ ,

and described in Figure 15.9. If we take out the rapid oscillatory term at
frequency ω0, the pulse shape envelope in the frame (e1, e2, e3) is given by
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|uTR(t,x, z)| =
∣∣∣∣
OS

OS
· f0

(
− T

Tw
+

(X, Z) · e3

c̄Tw

)∣∣∣∣

×
∣∣∣∣ĝ2

(
ω0a|zs|
c̄OS2

(X, Z) · e1,
ω0a

c̄OS
(X, Z) · e2

)∣∣∣∣ , (15.56)

up to a multiplicative factor. This pulse shape is plotted in Figure 15.11. We
can now discuss the spot-shape radii in the three spatial directions.
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Fig. 15.9. Frame adapted to the refocusing.

• In the e3-direction (along the vector OS), the focal spot size is determined
by the initial pulse width Tw and it is given by

R3 = c̄Tw .

• In the other two directions, the focal-spot size is determined by the mirror
size a. In the e2-direction, the focal spot has the size

R2 =
λ0OS

a
,

where λ0 = 2πc̄/ω0 is the carrier wavelength of the pulse. In the e1-
direction, the focal spot has the size

R1 =
λ0OS2

a|zs|
=

λ0OS

a1
with a1 = a

|zs|
OS

.

These formulas are consistent with the standard Rayleigh resolution for-
mula, which claims that the focal spot of a beam with carrier wavelength
λ0 focused with a system of effective size as from a distance OS is of order
λ0OS/as [20]. Here the effective size is a in the e2-direction and a1 in the e1-
direction. We can explain the differences in the effective sizes, which involve
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the differences in the focal-spot radii, by looking at the numerical apertures
of the waves that participate in the refocusing (see Figure 15.10). The spot
sizes in the directions ej are given by Rj = λ0/∆φj , j = 1, 2, where

∆φ1 = arctan

(
xs + a

2

|zs|

)
− arctan

(
xs − a

2

|zs|

)
|zs|≫a≈ |zs|a

OS2
, (15.57)

∆φ2 = arctan
( a

2OS

)
− arctan

(
− a

2OS

) |zs|≫a≈ a

OS
. (15.58)
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Fig. 15.10. Cones of aperture. The left plot shows the (e1, e3)-section of the cone
of aperture. The right plot shows the (e2, e3)-section.

15.4 Complete Description of the Time-Reversed Field
in a Random Medium

Now we analyze the case with a random medium. We first consider the P ε
3

term in the expression (15.45) for the vertical velocity. As shown in Appendix
15.6, the generalized transmission coefficient depends only on the modulus of
the wave vector, so we can write

u
(ε,3)
TR (t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)Ĝ1(h)Ĝ2 (hκ + ωλ) (15.59)

×T ε
g

(
ω − εh

2
, | − κ +

ελ

2
|, zs

)
T ε

g

(
ω +

εh

2
, |κ +

ελ

2
|, z

)

× e
iωφ

ε e
ih
2 (ts−t+κ·(x+xs)− zs+z

c̄(κ) )+ iω
2 (λ·(x+xs)+λ·κc̄(κ)(zs+z))ω4 dω dh dκ dλ ,

where the rapid phase φ is given by (15.49). As ε→ 0 the asymptotic behavior
of this integral is governed by its fast phase and by the product of the two
transmission coefficients that contains the effect of randomness. We first apply
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Fig. 15.11. Pulse shape in the plane (e1, e3). The mirror is a square with size a,
the initial source is vertical and emits a Gaussian pulse of duration Tw. As a result
the spot shape is a sinc function with radius D⊥ = λ0/∆φ1 with ∆φ1 = a|zs|/OS2

in the e1-direction and a Gaussian function with radius c̄Tw in the e3-direction. It is
also a sinc function with radius λ0/∆φ2 with ∆φ2 = a/OS in the e2-direction (not
shown here).

the stationary-phase method, and we will deal with the random part of the
integral in a second step. The rapid phase is the same as in the homogeneous
case, and we find that the globally stationary point is determined by t+ts = 0,
x = xs, and z = zs. We then consider an observation time t close to −ts and an
observation point close to (xs, zs) according to the parameterization (15.50).
The integral representation of the refocused velocity field is then

u
(ε,3)
TR (t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)Ĝ1(h)Ĝ2 (hκ + ωλ) (15.60)

×T ε
g

(
ω − εh

2
, | − κ +

ελ

2
|, zs

)
T ε

g

(
ω +

εh

2
, |κ +

ελ

2
|, zs + εZ

)

× eiω(−T+κ·X− Z
c̄(κ) )eih(ts+κ·xs− zs

c̄(κ) )+iω(λ·xs+λ·κc̄(κ)zs)ω4 dω dh dκ dλ .

The effect of the randomness is contained in the product of the generalized
transmission coefficients. In the next section we exploit the asymptotic anal-
ysis of the autocorrelation function studied in Appendix 15.6 to deduce the
refocusing properties of the pulse.
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15.4.1 Expectation of the Refocused Pulse

The expectation of u
(ε,3)
TR (t,x, z) given in (15.60) involves the first moment

of the product of generalized transmission coefficients. In Appendix 15.6 it is
shown that the generalized transmission coefficients at two frequencies and
slowness vectors are correlated only if the frequencies and the moduli of the
slowness vectors are close to each other at order ε. In (15.88) it is shown that
for any l and any h, we have

E

[
T ε

g

(
ω − εh

2
, κ− εl

2
, zs

)
T ε

g

(
ω +

εh

2
, κ +

εl

2
, zs + εZ

)]
(15.61)

ε→0−→
∫

ei[hc̄2/c̄(κ)2−ωlc̄2κ]τW(T )
g (ω, κ, τ) dτ ,

where

W(T )
g (ω, κ, τ) =

∞∑

n=0

[
Wn(ω, κ, ·,−L, zs) ∗W(T )

n (ω, κ, ·, zs, 0)
]
(τ) . (15.62)

Using
∣∣∣∣κ +

ελ

2

∣∣∣∣ = κ +
εl

2
, l =

κ · λ
κ

+O(ε) ,

we get after substitution of (15.61) into (15.60) that in the limit ε → 0, the

expectation E

[
u

(ε,3)
TR (t,x, z)

]
converges to

u
(3)
TR(t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)Ĝ1(h)Ĝ2 (hκ + ωλ) (15.63)

×
∫

e
i

[
hc̄2/c̄(κ)2−ω

(
κ·λ

κ

)
c̄2κ

]
τW(T )

g (ω, κ, τ) dτ

×eiω(−T+κ·X− Z
c̄(κ)

)eih(ts+κ·xs− zs
c̄(κ) )+iω(λ·xs+λ·κc̄(κ)zs)ω4 dω dh dκ dλ .

Performing the change of variables λ 	→ k = ωλ + hκ and grouping the
exponential terms together gives

u
(3)
TR(t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)Ĝ1(h)Ĝ2 (k)W(T )

g (ω, κ, τ)

×eiω(−T+κ·X− Z
c̄(κ) )eih(ts− c̄(κ)zs

c̄2
+τ)+ik·(xs+κc̄(κ)zs−c̄2κτ)ω2 dω dh dκ dk dτ .

We finally integrate with respect to k and h to obtain

u
(3)
TR(t,x, z) =

1

(2π)3

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sa(ω,−κ)G1

(
ts − zs

c̄(κ)

c̄2
+ τ

)
(15.64)

×G2

(
xs + κc̄(κ)zs − c̄2

κτ
)
W(T )

g (ω, κ, τ)eiω(−T+κ·X− Z
c̄(κ) )ω2 dω dκ dτ .
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We can deal with the other three components by the same method. The result
(15.90) obtained in Appendix 15.6.3 shows that the limit as ε→ 0 of the cross
moments of Rε

g and T ε
g are zero, so that the contributions of the P ε

2 and P ε
4

terms vanish in the limit ε→ 0. Therefore we only need to study the P ε
1 term.

We obtain that in the limit ε→ 0, the expectation E

[
u

(ε,1)
TR (t,x, z)

]
converges

to

u
(1)
TR(t,x, z) =

−1

(2π)3

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Sb(ω,−κ)G1

(
ts − zs

c̄(κ)

c̄2
+ τ

)
(15.65)

×G2

(
xs + κc̄(κ)zs − c̄2

κτ
)
W(R)

g (ω, κ, τ)eiω(−T+κ·X+ Z
c̄(κ) )ω2 dω dκ dτ ,

where

W(R)
g (ω, κ, τ) =

∞∑

n=0

[
Wn+1(ω, κ, ·,−L, zs) ∗W(T )

n (ω, κ, ·, zs, 0)
]
(τ) . (15.66)

15.4.2 Refocusing of the Pulse

The main results of this section are the refocusing of the pulse and its self-
averaging property. These results are precisely stated in the following theorem,
which gives the refocusing property and the convergence of the refocused pulse
to a deterministic shape concentrated at −ts in time and at the original source
location (xs, zs) in space.

Theorem 15.1.
(a) For any T0 > 0, R0 > 0, Z0 > 0, δ > 0, and (t0,x0, z0) = (−ts,xs, zs),
we have

P

(
sup

|t−t0|≤εT0,|x−xs|≤εR0,|z−z0|≤εZ0

|uε
TR(t,x, z)| > δ

)
ε→0−→ 0 .

(b) For any T0 > 0, R0 > 0, Z0 > 0, and δ > 0, we have

P

(
sup

|T |≤T0,|X|≤R0,|Z|≤Z0

|uε
TR(−ts + εT,xs + εX, zs + εZ)

−UTR(T,X, Z)| > δ

)
ε→0−→ 0 ,

where UTR is the deterministic pulse shape

UTR(T,X, Z) =
1

(2π)3

∫
K+(ω, κ)

[
c̄(κ)κ · f̂x(ω) + f̂z(ω)

]

× eiω(−T+κ·X+ Z
c̄(κ) )ω2 dω dκ

+
1

(2π)3

∫
K−(ω, κ)

[
−c̄(κ)κ · f̂x(ω) + f̂z(ω)

]

× eiω(−T+κ·X− Z
c̄(κ) )ω2 dω dκ , (15.67)
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and the refocusing kernels are given by

K+(ω, κ) =
1

4c̄ρ̄

∫
G1

(
ts − zs

c̄(κ)

c̄2
+ τ

)
G2

(
xs + κc̄(κ)zs − c̄2

κτ
)

×W(R)
g (ω, κ, τ) dτ , (15.68)

K−(ω, κ) =
1

4c̄ρ̄

∫
G1

(
ts − zs

c̄(κ)

c̄2
+ τ

)
G2

(
xs + κc̄(κ)zs − c̄2

κτ
)

×W(T )
g (ω, κ, τ) dτ . (15.69)

The picture is qualitatively the same for the time-reversed transverse velocity
and pressure fields. The precise expressions for the refocused fields are the
following:

PTR(T,X, Z) =
ρ̄

(2π)3

∫
K+(ω, κ)c̄(κ)

[
c̄(κ)κ · f̂x(ω) + f̂z(ω)

]

× eiω(−T+κ·X+ Z
c̄(κ) )ω2 dω dκ

+
ρ̄

(2π)3

∫
K−(ω, κ)c̄(κ)

[
c̄(κ)κ · f̂x(ω)− f̂z(ω)

]

× eiω(−T+κ·X− Z
c̄(κ) )ω2 dω dκ ,

VTR(T,X, Z) =
1

(2π)3

∫
K+(ω, κ)c̄(κ)κ

[
c̄(κ)κ · f̂x(ω) + f̂z(ω)

]

× eiω(−T+κ·X+ Z
c̄(κ) )ω2 dω dκ

+
1

(2π)3

∫
K−(ω, κ)c̄(κ)κ

[
c̄(κ)κ · f̂x(ω)− f̂z(ω)

]

× eiω(−T+κ·X− Z
c̄(κ) )ω2 dω dκ .

The proof of the theorem is a generalization of the arguments described
in Chapter 9 and goes along the following main steps.

• We first consider the expected value of uε
TR. By the result of Section 15.4.1

we find that this expectation converges to the limiting value given in the
theorem.

• We then consider the variance of uε
TR. We write the second moment as

a multiple integral involving the product of four generalized reflection or
transmission coefficients at four different frequencies as in (14.72). Using
the decorrelation property of these coefficients we deduce that the variance
goes to zero. Note that an integral over frequency (ensured by the time-
domain nature of time reversal) is needed for the stabilization or the self-
averaging of the refocused pulse.
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15.5 Refocusing Properties in a Random Medium

15.5.1 The Case |zs| ≪ Lloc

The complete expressions of the refocusing kernels are complicated and do
not allow a simple discussion. In order to be more quantitative we consider
the case

|zs| ≪ Lloc(ω0) ,

where Lloc(ω0) = 4c̄2/(γω2
0) is the localization length associated with the

carrier wavelength ω0. This means that we address the case of a source whose
depth is small enough so that we can detect a stable wave front at the surface.
We also assume that L≫ Lloc, which means that we deal with a random half-
space, and, using (14.70), we deduce

W0(ω, κ, τ,−L, zs) = δ(τ) ,

W1(ω, κ, τ,−L, zs) =
c̄(κ)

2Lloc(ω)

1
(
1 + c̄(κ)τ

2Lloc(ω)

)2 1[0,∞)(τ) ,

W2(ω, κ, τ,−L, zs) =
c̄(κ)2τ

2Lloc(ω)2
1

(
1 + c̄(κ)τ

2Lloc(ω)

)3 1[0,∞)(τ) .

Since |zs| ≪ Lloc, we can expand W(T )
p with respect to |zs|/Lloc. Using the

probabilistic interpretation (15.84) and with the same method as that used to

derive (9.76), we obtain that only W(T )
0 and W(T )

1 give contributions of order
one and of order |zs|/Lloc. They are given by

W(T )
0 (ω, κ, τ, zs, 0) = exp

(
− c̄(κ)2

c̄2

|zs|
Lloc

)
δ(τ) +W(T )

0,c (ω, κ, τ, zs, 0)

≈ exp

(
− c̄(κ)2

c̄2

|zs|
Lloc

)
δ(τ) ,

W(T )
1 (ω, κ, τ, zs, 0) ≈ c̄(κ)

2Lloc
1[0,2|zs|c̄(κ)/c̄2](τ) .

As a result, we obtain

W(R)
g (ω, κ, τ) =

c̄(κ)

2Lloc

1
(
1 + c̄(κ)τ

2Lloc

)2 −
|zs|
Lloc

c̄(κ)3

2c̄2Lloc

1− c̄(κ)τ
2Lloc(

1 + c̄(κ)τ
2Lloc

)3 , (15.70)

W(T )
g (ω, κ, τ) = exp

(
− c̄(κ)2

c̄2

|zs|
Lloc

)
δ(τ) +

|zs|
Lloc

c̄(κ)3

2c̄2Lloc

1
(
1 + c̄(κ)τ

2Lloc

)2 , (15.71)

to leading order. The first term in the right-hand of (15.71) corresponds to the
contribution of the stable wave front. The other terms are the contributions
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of the incoherent waves. Note that the first term in the right-hand side of
(15.70) has a mass of the same order O(1) with respect to |zs|/Lloc as the
contribution of the stable front in (15.71).

We parameterize the horizontal position of the source by xs = (xs, 0),
xs > 0, and we assume that the spatial cutoff function associated with the
mirror has the form (15.54): G2(x) = g2(x/a), where a is the diameter of
the mirror and g2 is the normalized cutoff function. In order to simplify the
forthcoming expressions we also assume that f is given by (15.53), where ω0

is the high-carrier frequency and Tw is the time-pulse width, with ω0Tw ≫ 1.

15.5.2 Time Reversal of the Front

Let us assume that we record only the front. This means that the support of
the function G1 is of the form [T0 −∆T , T0 + ∆T ] with ε≪ ∆T ≪ 1, and

T0 =
OS

c̄
+ ts

corresponds to the arrival time at the mirror of the wave front emitted by
the source. Due to the small support of G1, only the components in δ(τ) of

the densities W(R)
g and W(T )

g contribute to the refocusing kernels K±(ω, κ).

As seen above, W(R)
g has no Dirac contribution, while W(T )

g has one, with
the weight exp[−c̄(κ)2|zs|/(c̄2Lloc)]. We then get the same expression for the
refocused pulse shape as in the homogeneous case, up to the exponential
damping term. More precisely, the envelope of the focal spot is no longer
given by (15.56), but by

|UTR(T,X, Z)| ≈ exp

(
− OS2

|zs|Lloc

) ∣∣∣∣
OS

OS
· f0

(
− T

Tw
+

(X, Z) · e3

c̄Tw

)∣∣∣∣

×
∣∣∣∣ĝ2

(
ω0∆φ1

c̄
(X, Z) · e1,

ω0∆φ2

c̄
(X, Z) · e2

)∣∣∣∣ , (15.72)

where the ∆φj ’s are defined by (15.57–15.58) and Lloc = Lloc(ω0) = 4c̄2/(γω2
0).

This shows that the focal-spot shape is the same as in the homogeneous case.
The only difference is a slight reduction of the amplitude due to the decay of
the energy of the stable front.

In the next sections, we assume that we record some part of the long
incoherent waves. This means that G1(t) = 1[T1,T2](t), where T0 < T1 < T2.

15.5.3 Time Reversal of the Incoherent Waves with Offset

We assume that the mirror is not exactly above the source and denote by
xs > 0 the offset. The expression (15.67) for the refocused field UTR can be
significantly simplified if we assume that the following four hypotheses are
satisfied:
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by the stable wave front and by the incoherent scattered waves ((e1, e3)-section on
the left and (e2, e3)-section on the right).

H1. The timewindow cutoff function is of the form G1(τ) = 1[T1,T2](τ) with
T2 > T1 > T0, where T0 = ts + OS/c̄ is the arrival time of the front. This
means that we do not capture the coherent front.

H2. The spatial shape of the time-reversal mirror is of the form G2(x) =
g2(x/a), the reference frame is oriented such that the source location is
xs = (xs, 0), and the offset xs is much larger than the mirror diameter a.
This means that we consider a narrow-aperture situation.

H3. The source emits a pulse with a carrier frequency ω0 that is much larger
than the bandwidth 1/Tw (equal to the inverse of the pulse width). This
allows us to derive a simplified high-frequency expression for the refocused
field.

H4. The random slab is a semi-infinite random half-space and the source
depth is much smaller than the localization length Lloc = 4c̄2/(γω2

0), with
ω0 the carrier frequency. This allows us to obtain explicit approximations
for the kernel densities Wg, which in turn will allow us to discuss quanti-
tatively the properties of the refocusing.

We introduce the angles 0 < θ1 < θ2 < π/2:

θj = arccos

(
xs

c̄(Tj − ts)

)
. (15.73)

As discussed below and shown in Figure 15.13, this defines a “temporal” cone
delimited by the angle of the shortest ray θ1 and the angle of the longest ray
θ2 recorded by the center point of the mirror. After some algebra detailed in
Appendix 15.8 based on the set of hypotheses H1 −−H4, we obtain that the
refocused focal spot is given by
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UTR(T,X, Z) =
a2ω2

0

32π2ρ̄c̄3xsLloc

∫ cos(θ1)

cos(θ2)

1
(

1 + xs

2Llocη
√

1−η2

)2

1√
1− η2

× ĝ2

(
ω0aη

c̄xs
(X − η√

1− η2
Z),

ω0aη

c̄xs
Y

)
e

i
ω0
c̄

(
ηX+Z

√
1−η2−T

)

×
[
f0z +

η√
1− η2

f0x

](
− T

Tw
+

Xη + Z
√

1− η2

c̄Tw

)
dη + c.c. . (15.74)

The y-component f0y of the source does not appear in this leading-order
expression, because it has not been recorded by the mirror due to the fact
that the source location has a zero y-coordinate. As pointed out above, this
expression holds true if |zs| ≪ Lloc and xs > 0. If we moreover assume that
xs is of the same order as |zs|, so that xs ≪ Lloc, then the first factor in
the integral simplifies and becomes one. Let us write θ1 = θ̄ − ∆θ/2 and
θ2 = θ̄ + ∆θ/2, with

θ̄ =
θ1 + θ2

2
=

1

2

[
arccos

(
xs

c̄(T2 − ts)

)
+ arccos

(
xs

c̄(T1 − ts)

)]
. (15.75)

We now introduce the new orthonormal frame (w1,w2,w3) defined by

w1 =

⎡
⎣
− sin θ̄

0
cos θ̄

⎤
⎦ , w2 =

⎡
⎣

0
1
0

⎤
⎦ , w3 =

⎡
⎣

cos θ̄
0

sin θ̄

⎤
⎦ , (15.76)

and described in Figure 15.14. In this frame, w3 is the main direction of
arrival of the time-reversed incoherent waves that have interacted with the
medium below zs and that participate in the refocusing at the original source
location. Note the striking difference with the direction of arrival e3 of the
time-reversed front (compare the two pictures in Figure 15.14). The range
of θ̄ is (θ0, π/2) with θ0 = arccos(xs/OS): θ̄ is close to θ0 when T0 < T1 <
T2 ց T0, corresponding to the recording and reemission of a short piece of
incoherent waves near the front. The angle θ̄ is close to π/2 when T2 > T1 ր
∞, corresponding to a piece of incoherent waves far from the front.

We can simplify further the expression (15.74) by assuming that ∆θ is
relatively small, so that we can expand the arguments of the integral in η ∈
(cos(θ̄−∆θ/2), cos(θ̄+∆θ/2)) around the central value cos(θ̄). We then obtain
that in the frame (w1,w2,w3), the envelope of the refocused field (15.74) can
be approximated as

|UTR(T,X, Z)| ≈
∣∣∣∣ĝ2

(
−ω0∆ψ1

c̄
(X, Z) ·w1,

ω0∆ψ2

c̄
(X, Z) ·w2

)∣∣∣∣

×
∣∣∣∣sinc

(
ω0∆θ

2c̄
(X, Z) ·w1

)∣∣∣∣
∣∣∣∣w3 · f0

(
− T

Tw
+

(X, Z).w3

c̄Tw

)∣∣∣∣ , (15.77)
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up to a multiplicative factor. Here we have introduced the angles

∆ψ1 =
a

xs tan θ̄
, ∆ψ2 =

a cos θ̄

xs
. (15.78)

1. In the w3-direction, the focal-spot size is governed by the initial pulse
width Tw and it is given by c̄Tw.

2. In the w2-direction, the focal spot is determined by the mirror size a and
it has the size λ0/∆ψ2, where ∆ψ2 = a(cos θ̄)/xs (∆ψ2 is represented in
the right picture of Figure 15.12). This size is consistent with the Rayleigh
formula. The random medium cannot help refocusing in this transverse
direction because no scattering occurs in this direction. This is connected
to the layered structure of the medium and should not happen in a three-
dimensional random medium with isotropic medium fluctuations.

3. In the w1-direction, the focal spot radius depends on the two angular
cones ∆θ and ∆ψ1, which can be chosen independently:

• The angle ∆θ is determined by the recording time interval [T1, T2]:

∆θ = θ2− θ1 = arccos

(
xs

c̄(T2 − ts)

)
− arccos

(
xs

c̄(T1 − ts)

)
. (15.79)

This temporal cone is delimited by the angle of the shortest ray θ1

and the angle of the longest ray θ2 recorded by the center point of the
mirror (see the right picture of Figure 15.14).

• The angle ∆ψ1 is determined by the spatial size of the mirror. This ge-
ometrical cone is delimited by the two rays with the same travel time
xs/[c̄ cos(θ̄)] originating from the two ends of the mirror, at x = −a/2
and x = a/2. These rays are plotted in the left picture of Figure
15.12. The value of the angle ∆ψ1 is computed by trigonometry. The
crossover of these two rays is responsible for the minus sign in the first
argument of ĝ2 in (15.77).

Two cases should then be distinguished to determine the size of the focal
spot size in the w1-direction.

(1) If ∆θ ≪ ∆ψ1 ≪ 1, which is the case in particular if only a very short
piece of coda is recorded, then (15.74) can be simplified to

|UTR(T,X, Z)| ≈
∣∣∣∣ĝ2

(
−ω0∆ψ1

c̄
(X, Z) ·w1,

ω0∆ψ2

c̄
(X, Z) ·w2

)∣∣∣∣

×
∣∣∣∣w3 · f0

(
− T

Tw
+

(X, Z) ·w3

c̄Tw

)∣∣∣∣ . (15.80)

In this case, the angular diversity of the refocused waves mainly originates
from the numerical aperture of the mirror, and we get a formula in qualitative
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agreement with the Rayleigh resolution formula. More quantitatively, if we
record a piece of the coda just after the front, meaning that T1, T2 are close
to T0, then θ̄ = arccos(xs/OS) and the focal spot size is λ0|zs|/a. Recall that
the focal spot size generated by the front is given by λ0OS2/(a|zs|). This
shows that the random medium enables correction for the offset xs.

(2) If ∆ψ1 ≪ ∆θ ≪ 1, then (15.74) simplifies to

|UTR(T,X, Z)| ≈
∣∣∣∣ĝ2

(
0,

ω0∆ψ2

c̄
(X, Z) ·w2

)∣∣∣∣
∣∣∣∣sinc

(
ω0∆θ

2c̄
(X, Z) ·w1

)∣∣∣∣

×
∣∣∣∣w3 · f0

(
− T

Tw
+

(X, Z) ·w3

c̄Tw

)∣∣∣∣ . (15.81)

In this case, the angular diversity of the refocused waves mainly originates
from the temporal refocusing cone ∆θ described above. Therefore the focal
spot size is λ0/∆θ as soon as ∆θ > a/OS. This size is determined by the
angular diversity of the refocused incoherent waves and it is much smaller
than the prediction of the Rayleigh resolution formula. As we show below,
(15.81) can be extended to ∆θ ≈ 1. The focal-spot size is then of order the
diffraction limit if ∆θ ≈ 1, that is, if T2 − T1 ≥ c̄/xs. This means that

recording a long coda allows us to enhance dramatically the effective
aperture of the mirror thanks to the multiple scattering in the random
medium below the source.

The spot shape is plotted in Figure 15.15. Qualitatively, if we increase the
recording time window by taking a larger T2 and a smaller T1, then we get
a wider and wider numerical aperture for the virtual mirror located below S.
The largest numerical aperture is [θ0, π/2], where θ0 = arccos (xs/OS). It is
obtained for T1 close to T0 and T2 − T0 ≫ c̄/xs.

(3) In the case ∆ψ1 ≪ ∆θ ≈ 1, we can reconsider the expression (15.74)
and focus our attention on the spatial profile in the w1-direction. We obtain
that for any r,

|UTR(T = 0, (X, Z) = rw1)| ≈
∣∣∣∣∣

∫ 1/2

−1/2

cos
(ω0r

c̄
cos(∆θξ)

)
dξ

∣∣∣∣∣ ,

which shows that the size of the focal spot is of the order of the carrier
wavelength λ0 when ∆θ ≈ 1. If ∆θ could become close to 2π, then the focal
spot would converge to the Bessel function J0(ω0r/c̄) and its radius would be
equal to 0.383λ0.

Note that in the regime |zs| ≪ Lloc studied in this section the incoherent
waves scattered by the random slab (zs, 0) do not contribute to the refocusing
at the original source location.

Let us finally comment on the case |zs| ≥ Lloc. If zs is large and becomes
comparable to the localization length, then the refocusing can become even
better, since incoherent waves scattered in the slab (zs, 0) can also contribute
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Fig. 15.13. Pulse refocusing when the incoherent waves are recorded. The two
typical paths shown correspond to the shortest and the longest ones recorded, or
equivalently sent back by the mirror, and producing the angles θ1 and θ2, respec-
tively. This path-angle interpretation is valid in the layered case considered here as
discussed in Section 14.3, Figure 14.4.
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Fig. 15.14. Frame adapted to the refocusing of the front wave (left picture) and
frame adapted to the refocusing of the incoherent waves (right picture).

to the refocusing of the pulse (see Figure 15.16). However, it is more cumber-
some to write explicit formulas because no analytical expressions are available
for the refocusing densities. In the best conditions (where the recording time
window is infinite) the numerical aperture is generated by two cones (θ0, π/2)
and (−π/2,−θ0).

15.5.4 Time Reversal of the Incoherent Waves Without Offset

We now discuss the case in which the mirror is located just above the source:
xs = 0. If we assume the set of hypotheses H1 to H4 stated at the beginning
of Section 15.5.3 (except the requirement that xs ≫ a), then we can apply
the method described in Appendix 15.8 to simplify the expression (15.67) of
the refocused field UTR. We obtain, to leading order in |zs|/Lloc,
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Fig. 15.15. Left picture: Pulse shape generated by the refocusing of the incoherent
waves in the plane (w1,w3). The mirror is square with size a and the initial pulse
profile is Gaussian with duration Tw. Here a = 0.33, zs = −3, xs = 4 (OS = 5),
ts = 0 (c̄T0 = 5), c̄T1 = 6, c̄T2 = 8, so that tan θ̄ = 1.38, ∆φ1 = 0.04, ∆ψ1 = 0.06,
and ∆θ = 0.2. As a result, the spot shape is a sinc function with radius D⊥/5,
where D⊥ = λ0xs tan θ̄/a in the w1-direction and a Gaussian function with radius
c̄Tw in the w3-direction. The spot shape in the w2-direction is a sinc function with
radius λ0/∆ψ2, where ∆ψ2 = a cos θ̄/xs. For comparison we show the focal spot in
the homogeneous case in the right picture.
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Fig. 15.16. Different contributions of the multiply scattered waves to the aperture
enhancement in the case |zs| > Lloc. The dashed lines stand for two typical paths
that participate in the lower aperture cone (θ0, π/2). The solid lines stand for two
typical paths that participate in the upper aperture cone (−π/2, θ0).
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UTR(T,X, Z) =
a2ω2

0

16πρ̄c̄3Lloc|zs|
f0z

(
− T

Tw
+

Z

c̄Tw

)
eiω0(−T+ Z

c̄ )

×
∫ η1

η2

ĝ2

(
ω0a

c̄|zs|
ηX

)
dη + c.c. ,

where the parameters 0 < η2 < η1 < 1 are given by

ηj =

(
1 +

c̄(Tj − T0)

|zs|

)−1

.

Here T2 > T1 > T0, which means that the parameters ηj are smaller than 1.
The spatial profile of the refocused field has therefore a radius that is larger
than the Rayleigh limit λ0|zs|/a. This shows that in the case in which the
mirror is located just above the source, the refocusing of the incoherent waves
cannot involve superresolution, because the angular diversity of the refocused
waves is very small (the geometry is as in the right picture of Figure 15.12
with the cone of aperture ∆ψ2 = η1a/|zs|).

15.5.5 Record of the Pressure Signal

In the previous sections we have assumed that the time-reversal mirror records
the three components of the velocity signal, and uses this signal as a new three-
dimensional source for the back-propagation. Practically, with the usual ex-
perimental constraints in acoustics, a time-reversal mirror consists of an array
of transducers; it records the pressure signal, and it uses this signal as a new
source emitting in the z-direction. In this paragraph we briefly revisit the re-
sults in this framework. The analysis is identical; the difference is that instead
of (15.37), we now consider that the source term for the back propagation is

Fε
TR(t,x, z) = pε

rec(−t,x)δ(z)

[
0
1

]
,

with

pε
rec(t,x) = pε

s(t,x)G1(t)G2 (x) .

The results are then qualitatively unchanged, but the refocusing kernels given
by (15.68, 15.69) should be multiplied by the factor c̄/c̄(κ).

15.6 Appendix A: Moments of the Reflection and
Transmission Coefficients

15.6.1 Autocorrelation Function of the Transmission Coefficient at
Two Nearby Slownesses and Frequencies

Cross-moments of transmission and reflection coefficients are required in Sec-
tion 15.4. The analysis of moments of reflection coefficients has been per-
formed in Section 14.3.2. We perform the same analysis for the transmission
coefficient, and we get that if q = p:
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E

[(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p

T ε
(ω+εh/2,κ+ελ/2)(z0, z)

×
(
Rε

(ω−εh/2,κ−ελ/2)(z0, z)
)q

T ε
(ω−εh/2,κ−ελ/2)(z0, z)

]
(15.82)

ε→0−→
∫
W(T )

p (ω, κ, τ, z0, z)eiτ [hc̄2/c̄(κ)2−ωλc̄2κ] dτ × e2ipz[−h/c̄(κ)+ωλc̄(κ)] ,

and otherwise

E

[(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p

T ε
(ω+εh/2,κ+ελ/2)(z0, z)

×
(
Rε

(ω−εh/2,κ−ελ/2)(z0, z)
)q

T ε
(ω−εh/2,κ−ελ/2)(z0, z)

]
ε→0−→ 0 , (15.83)

where the quantityW(T )
p is obtained through the following system of transport

equations:

∂W(T )
p

∂z
+ 2p

c̄(κ)

c̄2

∂W(T )
p

∂τ

=
1

Lloc(ω, κ)

(
(p + 1)2W(T )

p+1 + p2W(T )
p−1 − (p2 + (p + 1)2)W(T )

p

)
,

W(T )
p (ω, κ, τ, z0, z = z0) = 10(p)δ(τ) .

The solution W(T )
p has the probabilistic interpretation

W(T )
p (ω, κ, τ, z0, z) = E

[
δ

(
τ − 2

c̄(κ)

c̄2

∫ z

z0

N (T )
u du

)
10(N

(T )
z ) | N (T )

z0
= p

]

(15.84)
in terms of the jump Markov processes N (T ) with infinitesimal generator given
by

L(T )φ(N) =
1

Lloc(ω, κ)

[
(N + 1)2φ(N + 1) + N2φ(N − 1)

−((N + 1)2 + N2)φ(N)
]
,

where Lloc(ω, κ) is defined by (14.62).

15.6.2 Shift Properties

Straightforward manipulations based on shifts of the governing equations show
that (

Rε
(ω,κ)(z, z1), T

ε
(ω,κ)(z, z1), ν

ε
κ(z)

)
z0≤z≤z1

and (
Rε

(ω,κ)(z − z1, 0)e
2iωz1
c̄(κ)ε , T ε

(ω,κ)(z − z1, 0), νε
κ(z − z1)

)
z0≤z≤z1

have the same distribution. Similarly,
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(
Rε

(ω,κ)(z, 0), T ε
(ω,κ)(z, 0), νε

κ(z)
)

z0≤z≤0

and (
R̃ε

(ω,κ)(z, 0)e
−2iωz0

c̄(κ)ε , T̃ ε
(ω,κ)(z, 0), νε

κ(z0 − z)
)

z0≤z≤0

have the same distribution. These shift properties are used in the next sec-
tion, devoted to the analysis of the generalized transmission and reflection
coefficients.

15.6.3 Generalized Coefficients

As shown by the integral representation (15.45), the cross-correlation of the
generalized reflection coefficients plays an important role. We define

Uε
g = E

[
Rε

g

(
ω +

εh

2
, μ +

ελ

2
, zs + εZ

)
Rε

g

(
ω − εh

2
, μ− ελ

2
, zs

)]
.

(15.85)
Using the representation (15.30) of the generalized coefficient Rε

g in terms of
the usual reflection and transmission coefficients (with moduli less than 1),
we obtain that

Uε
g =

∞∑

n,m=0

E

[
Rεm+1

Rεn+1 R̃εn
T̃ ε R̃ε

m

T̃ ε
]

,

where Rεm+1
is evaluated at (ω− εh/2, μ− ελ/2,−L, zs), Rεn+1 is evaluated

at (ω + εh/2, μ + ελ/2,−L, zs + εZ), R̃εn
T̃ ε is evaluated at (ω + εh/2, μ +

ελ/2, zs + εZ, 0), and R̃ε
m

T̃ ε is evaluated at (ω − εh/2, μ − ελ/2, zs, 0). As
ε → 0 the propagators between −L and zs and between zs and 0 become
independent. By continuity with respect to z of the limits of the moments of
the reflection and transmission coefficients, the small offset εZ does not play
any role in the limit of Uε

g . Accordingly, we shall obtain the limit of Uε
g as

ε → 0 by looking at the limits of E[Rεm+1
Rεn+1] and E[R̃εn

T̃ εR̃ε
m

T̃ ε]. By
using the shift properties of the reflection coefficients described in Appendix
15.6.2 and the expressions of the limit values for moments of reflection and
transmission coefficients, we obtain that

E

[
Rεn+1Rεm+1

]
ε→0−→ 0 and E

[
R̃εn

T̃ ε R̃ε
m

T̃ ε
]

ε→0−→ 0

if m = n and

E

[
Rεn+1Rεn+1

]
ε→0−→ e2i(n+1)[−h/c̄(μ)+λωc̄(μ)μ]zs

×
∫
Wn+1(ω, μ, τ,−L, zs)e

iτ [hc̄2/c̄(μ)2−ωλc̄2μ] dτ ,
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E

[
R̃εn

T̃ ε R̃ε
n

T̃ ε
]

ε→0−→ e2in[h/c̄(μ)−λωc̄(μ)μ]zs

×
∫
W(T )

n (ω, μ, τ, zs, 0)eiτ [hc̄2/c̄(μ)2−ωλc̄2μ] dτ ,

where Wn and W(T )
n are described in Section 14.3.2 and Appendix 15.6.1

respectively. We can then deduce that

Uε
g

ε→0−→
∞∑

n=0

e2i[−h/c̄(μ)+λωc̄(μ)μ]zs

∫
Wn+1(ω, μ, τ)eiτHdτ

×
∫
W(T )

n (ω, μ, τ)eiτHdτ

= e2i[−h/c̄(μ)+λωc̄(μ)μ]zs

∞∑

n=0

∫
Wn+1 ∗τ W(T )

n (ω, μ, τ)eiHτ dτ ,(15.86)

where H = hc̄2/c̄(μ)2 − ωλc̄2μ.
Similarly, if we consider the product of two generalized transmission coef-

ficients,

U (T ),ε
g = E

[
T ε

g

(
ω +

εh

2
, μ +

ελ

2
, zs + εZ

)
T ε

g

(
ω − εh

2
, μ− ελ

2
, zs

)]
,

(15.87)
then, using the expansion

U (T ),ε
g =

∞∑

n,m=0

E

[
Rεm

Rεn R̃εn
T̃ ε R̃ε

m

T̃ ε
]

,

we can show that

U (T ),ε
g

ε→0−→
∞∑

n=0

∫
Wn(ω, μ, τ)eiτHdτ

∫
W(T )

n (ω, μ, τ)eiτH dτ

=

∞∑

n=0

∫
Wn ∗τ W(T )

n (ω, μ, τ)eiHτ dτ , (15.88)

where H = hc̄2/c̄(μ)2 − ωλc̄2μ.
The limit of the cross moment

U (TR),ε
g = E

[
T ε

g

(
ω +

εh

2
, μ +

ελ

2
, zs + εZ

)
Rε

g

(
ω − εh

2
, μ− ελ

2
, zs

)]

(15.89)
can be obtained by expanding in series the expressions (15.30–15.31) of Rε

g

and T ε
g :
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U (TR),ε
g =

∞∑

n,m=0

E

[
Rεm

Rεn R̃εn
T̃ ε R̃ε

m+1

T̃ ε

]

ε→0−→
∞∑

n,m=0

lim
ε→0

E

[
Rεm

Rεn
]

lim
ε→0

E

[
R̃εn

T̃ ε R̃ε
m+1

T̃ ε

]
.

For each term with indices (m, n) of this series, one of the two limits is zero,
so the global limit is zero. This shows that

U (TR),ε
g

ε→0−→ 0 , (15.90)

and we get the same result if we exchange the roles of Rε
g and T ε

g .

15.7 Appendix B: A Priori Estimates for the
Generalized Coefficients

Estimates of moments of the generalized transmission and reflection coef-
ficients are required to establish tightness and convergence results. In this
subsection we prove that T ε

g admits moments of any order that are uniformly
bounded with respect to ε. This in turn implies that Rε

g admits moments of
any order that are uniformly bounded with respect to ε, since the definitions
(15.25–15.26) of the generalized coefficients show that

Rε
g(ω, κ, zs) = T ε

g (ω, κ, zs)R
ε
(ω,κ)(−L, zs) ,

and |Rε
(ω,κ)(−L, zs)| is bounded by 1.

We first give a simple representation of the generalized transmission co-
efficient in terms of the usual transmission coefficient. From the propagator
relation Pε

(ω,κ)(−L, 0) = Pε
(ω,κ)(zs, 0)Pε

(ω,κ)(−L, zs), we get

αε
(ω,κ)(−L, 0) = αε

(ω,κ)(zs, 0)αε
(ω,κ)(−L, zs) + βε

(ω,κ)(zs, 0)βε
(ω,κ)(−L, zs) .

Using the expression (15.28) of the usual transmission coefficient, we have

T ε
(ω,κ)(−L, 0)

T ε
(ω,κ)(−L, zs)

=
αε

(ω,κ)(−L, zs)

αε
(ω,κ)(−L, 0)

=
αε

(ω,κ)(−L, zs)

αε
(ω,κ)(zs, 0)αε

(ω,κ)(−L, zs) + βε
(ω,κ)(zs, 0)βε

(ω,κ)(−L, zs)
.

Comparing this identity with the definition (15.26) of the generalized trans-
mission, we obtain

T ε
g (ω, κ, zs) =

T ε
(ω,κ)(−L, 0)

T ε
(ω,κ)(−L, zs)

. (15.91)
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The reflection and transmission coefficients satisfy the nonlinear differential
equations (14.59–14.60):

dRε
(ω,κ)

dz
= − iω

2c̄(κ)ε
νκ

( z

ε2

)(
e

−2iωz
c̄(κ)ε − 2Rε

(ω,κ) + (Rε
(ω,κ))

2e
2iωz
c̄(κ)ε

)
,

dT ε
(ω,κ)

dz
=

iω

2c̄(κ)ε
νκ

( z

ε2

)(
1−Rε

(ω,κ)e
2iωz
c̄(κ)ε

)
T ε

(ω,κ) ,

with the initial conditions at z = −L given by Rε
(ω,κ)(−L, z = −L) = 0 and

T ε
(ω,κ)(−L, z = −L) = 1. The equation for T ε

(ω,κ) can be integrated,

T ε
(ω,κ)(−L, z) = exp

[∫ z

−L

iω

2c̄(κ)ε
νκ

(
z′

ε2

)(
1−Rε

(ω,κ)(−L, z′)e
2iωz′
c̄(κ)ε

)]
,

so that we get from (15.91) the integral representation |T ε
g | = exp(Y ε) with

Y ε =
1

ε

∫ 0

zs

f
(
Rε

1(z), Rε
2(z),

z

ε
, νκ

( z

ε2

))
dz ,

f(R1, R2, τ, ν) =
ων

2c̄(κ)
[R2 cos(2ωτ/c̄(κ)) + R1 sin(2ωτ/c̄(κ))] ,

where Rε
1(z) = Re(Rε

(ω,κ)(−L, z)) and Rε
2(z) = Im(Rε

(ω,κ)(−L, z)). The es-
timates of the exponential moments of Y ε are based on the perturbed-test-
function method. To simplify the presentation we assume that the process ν
is a bounded ergodic Markov process whose generator Q satisfies the Fred-
holm alternative. Since ν 	→ f(R1, R2, τ, ν) has zero mean with respect to
the invariant probability measure of ν for any R1, R2, τ , there exists a
bounded function f1 such that Qf1 = −f . Let us introduce the periodic
function τ(z) = z mod πc̄(κ)/ω. The vector (Rε

1(z), Rε
2(z), τ(z/ε), νκ(z/ε2))

is a Markov process with a compact state space and generator

Lε =
1

ε
F1(R1, R2, τ, ν)

∂

∂R1
+

1

ε
F2(R1, R2, τ, ν)

∂

∂R2
+

1

ε

∂

∂τ
+

1

ε2
Q ,

where

F1(R1, R2, τ, ν) =
ων

2c̄(κ)

{
−2R2 + (R2

1 −R2
2 − 1) sin(2ωτ/c̄(κ))

+ 2R1R2 cos(2ωτ/c̄(κ))} ,

F2(R1, R2, τ, ν) =
ων

2c̄(κ)

{
2R1 + (R2

2 −R2
1 − 1) cos(2ωτ/c̄(κ))

+ 2R1R2 sin(2ωτ/c̄(κ))} .

The bounded functions F1,2 are obtained from the real and imaginary parts
of the right-hand side of (14.59) multiplied by ε. The process
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M ε(z) = εf1

(
Rε

1(z), Rε
2(z), τ

(z

ε

)
, νκ

( z

ε2

))

− εf1

(
Rε

1(zs), R
ε
2(zs), τ

(zs

ε

)
, νκ

(zs

ε2

))

− ε

∫ z

zs

Lεf1

(
Rε

1(z
′), Rε

2(z
′), τ

(
z′

ε

)
, νκ

(
z′

ε2

))
dz′

is a martingale whose quadratic variation

〈M ε〉z = ε2

∫ z

zs

(
Lεf2

1 − 2f1Lεf1

)(
Rε

1(z
′), Rε

2(z
′), τ

(
z′

ε

)
, νκ

(
z′

ε2

))
dz′

is uniformly bounded with respect to ε by a constant CM . By decomposing
Lεf1 and using Qf1 = −f , we get

1

ε
f = −εLεf1 + F1∂R1f1 + F2∂R2f1 + ∂τf1 ,

so that we can write
Y ε = M ε(0) + Nε(0) ,

where the term

Nε(z) =

εf1

(
Rε

1(zs), R
ε
2(zs), τ

(zs

ε

)
, νκ

(zs

ε2

))
− εf1

(
Rε

1(z), Rε
2(z), τ

(z

ε

)
, νκ

( z

ε2

))

+

∫ z

zs

(
F1

∂

∂R1
+ F2

∂

∂R2
+

∂

∂τ

)
f1

(
Rε

1(z
′), Rε

2(z
′), τ

(
z′

ε

)
, νκ

(
z′

ε2

))
dz′

is uniformly bounded with respect to ε by a constant CN . As a result,

E[|T ε
g |p] = E[exp(pY ε)] ≤ E[exp(pM ε(0))] exp(CNp) ≤ exp

(
CM

p2

2
+ CNp

)
.

The last inequality comes from the identity

E

[
exp

(
pM ε(z)− p2

2
〈M ε〉z

)]
= 1 ,

which implies E[exp(pM ε(z))] exp(− p2

2 CM ) ≤ 1.

15.8 Appendix C: Derivation of (15.74)

The goal of this appendix is to derive the simplified expression (15.74) for the
refocused field UTR. This derivation is based on the set of hypotheses H1 to
H4 stated at the beginning of Section 15.5.3, which can be summarized by

xs ≫ a , ω0Tw ≫ 1 , |zs| ≪ Lloc .
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We start from the expressions (15.68–15.69) of the refocusing kernels. We first
perform the change of variables τ 	→ τ̃ with the mapping τ̃ = ts−zsc̄(κ)/c̄2+τ ,
and we obtain that

K+(ω, κ) =
1

4c̄ρ̄

∫
G1 (τ̃) G2

(
xs + κ(ts − τ̃ )c̄2

)
W(R)

g (ω, κ, τ(τ̃ )) dτ̃ ,

where τ(τ̃ ) is the inverse mapping τ(τ̃ ) = τ̃ − ts + zsc̄(κ)/c̄2, and K−(ω, κ)

is given by the same expression with W(T )
g instead of W(R)

g . By taking into
account the form of the time-window cutoff function G1(τ) = 1[T1,T2](τ) with
T2 > T1 > T0, the form of the spatial shape of the time-reversal mirror
G2(x) = g2(x/a), and the fact that the reference frame is oriented such that
xs = (xs, 0), we get after the change of variable τ̃ 	→ η with η = xs/[c̄(τ̃ − ts)]
that

K+(ω, κ) =
xs

4c̄2ρ̄

∫ cos(θ1)

cos(θ2)

g2

(
xs

a
(1− κ1c̄

η
),−xs

a

c̄κ2

η

)
W(R)

g (ω, κ, τκ(η))
dη

η2
,

where cos(θj) = xs/[c̄(Tj − ts)], j = 1, 2, and

τκ(η) =
1

c̄

(
xs

η
+

c̄(κ)zs

c̄

)
.

We next substitute this expression for K+(ω, κ) and the corresponding one
for K−(ω, κ) into the integral representation (15.67) of UTR. Then we perform
the change of variables κ = (κ1, κ2) 	→ κ̃ = (κ̃1, κ̃2) with c̄κ1 = η − κ̃1ηa/xs

and c̄κ2 = −κ̃2ηa/xs. Using the fact that xs ≫ a, we write the following
expansion:

1

c̄(κ)
=

1

c̄

[
√

1− η2 +
η2

√
1− η2

κ̃1
a

xs
+ O

(
a2

x2
s

)]
.

We thus obtain
UTR(T,X, Z) = UTR,+ + UTR,− ,

with

UTR,+ =
1

(2π)3

∫ cos(θ1)

cos(θ2)

∫ [
η√

1− η2
f̂x(ω) + f̂z(ω)

]
W(R)

g

(
ω,

η

c̄
, τ(η)

)

× a2

4xsc̄4ρ̄

∫
g2 (κ̃) e

iω

(
−T+ η

c̄ X+

√
1−η2

c̄ Z

)

e
−i ωaη

c̄xs

(
κ̃·X−κ̃1Z η√

1−η2

)

dκ̃ω2 dω dη .

Here we have used the notation X = (X, Y ), and τ(η) is defined by

τ(η) =
1

c̄

(
xs

η
+

zs√
1− η2

)
. (15.92)
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The second term, UTR,−, is given by a similar expression with W(T )
g instead

of W(R)
g . The time τ(η) can be interpreted as the relative travel time from

the source S to the mirror O for a plane wave with the slowness vector κ =
(η/c̄, 0). The term “relative” is due to the fact that the travel times in the

density W(R)
g are measured relatively to the travel time of the coherent front,

so the correct interpretation of τ(η) is a difference between two travel times,
the first one corresponding to the length of a path that goes from S to O with
rays whose cosines are equal to η, the second one corresponding to the length
of the direct path that goes from S to the surface with the ray whose cosine
is equal to η, as described in Figure 15.17.

−1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

S

O
θ

x

z

Fig. 15.17. Travel time interpretation of τ (η) given by (15.92). The dashed lines
correspond to two paths that go from S to O with rays whose cosines cos(θ) are
equal to η. These paths have equal lengths l1. The thick dot-dashed line corresponds
to the direct path that goes from S to the surface with the ray whose cosine is equal
to η. This path has length l2. The value τ (η) is the difference between the travel
times of these two paths with the velocity c̄, that is, τ (η) = c̄(l1 − l2).

We now exploit the form f(t) = f0(t/Tw)e−iω0t + c.c. of the source, and
we perform the change of variables ω 	→ ω̃ with ω = ω0 + ω̃/Tw and we keep
only the leading-order terms in the small parameter 1/(ω0Tw):

UTR,+ =
1

(2π)3

∫ cos(θ1)

cos(θ2)

∫ [
η√

1− η2
f̂0x(ω̃) + f̂0z(ω̃)

]
W(R)

g

(
ω0,

η

c̄
, τ(η)

)

× a2

4xsc̄4ρ̄
e

iω0

(
−T+ η

c̄ X+

√
1−η2

c̄ Z

)

e
i ω̃

Tw

(
−T+ η

c̄ X+

√
1−η2

c̄ Z

)

×
∫

g2 (κ̃) e
−i

ω0aη
c̄xs

(
κ̃·X−κ̃1Z η√

1−η2

)

dκ̃ω2
0 dω̃ dη + c.c. .

By integrating first with respect to κ̃, then ω̃, we obtain
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UTR,+ =

∫ cos(θ1)

cos(θ2)

[
η√

1− η2
f0x + f0z

](
− T

Tw
+

ηX +
√

1− η2Z

c̄Tw

)

×W(R)
g

(
ω0,

η

c̄
, τ(η)

) a2ω2
0

16π2xsc̄4ρ̄
eiω0(−T+ η

c̄ X+

√
1−η2

c̄ Z)

× ĝ2

(
ω0aη

c̄xs
(X − Z

η√
1− η2

),
ω0aη

c̄xs
Y

)
dη + c.c. . (15.93)

Finally, we use the hypothesis |zs| ≪ Lloc to simplify further this ex-
pression. We consider the approximations (15.70–15.71), and keep only the
leading-order terms in |zs|/Lloc. On the one hand, the expression of UTR,−
involves the density W(T )

g evaluated at the positive times τ(η). By (15.71),
this term is of order |zs|/Lloc, and thus we get that UTR,− is vanishing. On

the other hand, the expression of UTR,+ involves the density W(R)
g evaluated

at τ(η), which is of order one by (15.70):

W(R)
g

(
ω0,

η

c̄
, τ(η)

)
=

c̄

2Lloc

√
1− η2

1
(

1 + xs

2
√

1−η2ηLloc

)2 + O

( |zs|
Lloc

)
,

where Lloc = 4c̄2/(γω2
0). Substituting this expression into (15.93), we finally

obtain that the refocused focal spot is given by (15.74).

Notes

Time-reversal ultrasound acoustics has been thoroughly investigated experi-
mentally by M. Fink and his collaborators [55, 57], and by W. Kuperman’s
group in the context of underwater acoustics [113]. Temporal and spatial refo-
cusing in disordered media has been observed and explained by multipathing
effects due to multiple scattering. The spatial refocusing and statistical stabil-
ity properties have been derived mathematically in the parabolic approxima-
tion regime [10, 16, 136, 53], in the radiative transfer regime [11, 52], and in
the case of three-dimensional randomly layered media [62] (and in details in
this chapter). In general, the statistical stability of the refocusing is ensured
by the superposition in the time domain of many approximately uncorrelated
frequency components. The superresolution effect is due to multipathing, and
in the case of randomly layered media treated in this chapter the paths con-
tributing to the aperture enhancement are clearly identified as paths scattered
by the medium below the source.





16

Application to Echo-Mode Time Reversal

The analysis carried out in the previous chapter can be extended to the case
in which a passive scatterer embedded in a random medium is illuminated by
a source located at the surface. A time-reversal mirror records the scattered
signal, where the scattering results from the interaction of the wave field with
the small inhomogeneities and with the embedded scatterer. The mirror sends
back the time-reversed signal into the medium. As in the previous chapter, the
mirror has a large spatial extent and records a long time segment of the wave
field. This experiment gives rise to the richest scattering situation addressed
in this book. We will show that the time-reversed wave field focuses tightly
on the scatterer. Again we will observe a superresolution effect: The focusing
at the scatterer is enhanced by random fluctuations in the medium.

16.1 The Born Approximation for an Embedded
Scatterer

The random medium occupying the slab (−L, 0) is again defined by (15.3)
and (15.4). Now a point source is located just above the surface at (0, 0+)
and emits at time zero a short pulse. Moreover, a scatterer is buried inside
the random medium. We consider acoustic waves described by (15.1) and
(15.2) with the external source given as in (15.5),

Fε(t,x, z) = ε2

[
0
1

]
f

(
t

ε

)
δ (x) δ(z) , (16.1)

and scaled so that it will produce a refocused field of order one. Figure 16.1
illustrates the geometry of the configuration: a point source is located at the
origin O = (0, 0), the scatterer position is S = (xs, zs), and the time-reversal
mirror M is located in the plane z = 0, but not necessarily at the origin O.

We now consider a scatterer embedded at S = (xs, zs). We model this
scatterer as a local change in the density of the medium
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Fig. 16.1. Emission from a point source located at O = (0, 0). The scatterer position
is S = (xs, zs). The signal is recorded at the mirror M .

ρ(x, z) = ρ̄ + ρ11B(x, z) ,

where B is a small domain around S. The system that governs the propagation
of the acoustic waves can be written in the form

ρ̄
∂uε

∂t
+∇pε = Fε − ρ11B(x, z)

∂uε

∂t
,

1

K(z)

∂pε

∂t
+∇ · uε = 0 .

We apply the Born approximation (or single-scattering approximation)
for the modeling of the scattering by the scatterer S [123]: the total field

uε = uε
0 + uε

1 + uε
r , pε = pε

0 + pε
1 + pε

r (16.2)

is the superposition of the primary field (uε
0, p

ε
0) that solves

ρ̄
∂uε

0

∂t
+∇pε

0 = Fε ,

1

K(z)

∂pε
0

∂t
+∇ · uε

0 = 0 ,

and of a secondary field (uε
1, p

ε
1) that originates from the emission of a sec-

ondary source located at S. The emission of the secondary source is propor-
tional to the primary field at the position of the scatterer:

ρ̄
∂uε

1

∂t
+∇pε

1 = −ρ11B(x, z)
∂uε

0

∂t
, (16.3)

1

K(z)

∂pε
1

∂t
+∇ · uε

1 = 0 . (16.4)

In the Born approximation, the reminder (uε
r , p

ε
r) is assumed to be negligible

(see (16.10) below for conditions ensuring the validity of this approximation).
Note that the Born approximation concerns only the interaction of the wave
with the scatterer at S. The multiple scattering of the wave with the random
medium is taken into account.
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16.1.1 Integral Expressions for the Wave Fields

We first consider the primary field (uε
0, p

ε
0). The pressure field pε

0 just below the

surface is given by (15.42) with z = 0 and b̌ε(0−) = ε3f̂(ω)/
√

ζ̄(κ) replacing
b̌ε
TR(ω, κ, 0−):

pε
0(t,x, 0−) =

1

(2π)3

∫ Rε
(ω,κ)(−L, 0)− 1

2
e−i ω

ε (t−κ·x)f̂(ω)ω2 dω dκ .

Taking into account the jump condition (15.18), the field just above the surface
is

pε
0(t,x) =

1

(2π)3

∫ Rε
(ω,κ)(−L, 0) + 1

2
e−i ω

ε (t−κ·x)f̂(ω)ω2 dω dκ . (16.5)

The vertical velocity field is correspondingly given by (15.43):

uε
0(t,x) =

1

(2π)3

∫ Rε
(ω,κ)(−L, 0) + 1

2ζ̄(κ)
e−i ω

ε (t−κ·x)f̂(ω)ω2 dω dκ . (16.6)

Similarly, the pressure and vertical velocity fields at the position (xs, zs) inside
the medium (zs < 0) are given by (15.42) and (15.43):

pε
0(t,xs, zs) =

1

(2π)3

∫ [
Rε

g(ω, κ, zs)

2
e−i ω

ε (t−κ·xs−zs/c̄(κ)) (16.7)

− T ε
g (ω, κ, zs)

2
e−i ω

ε (t−κ·xs+zs/c̄(κ))

]
f̂(ω)ω2 dω dκ ,

uε
0(t,xs, zs) =

1

(2π)3

∫ [
Rε

g(ω, κ, zs)

2ζ̄(κ)
e−i ω

ε (t−κ·xs−zs/c̄(κ)) (16.8)

+
T ε

g (ω, κ, zs)

2ζ̄(κ)
e−i ω

ε (t−κ·xs+zs/c̄(κ))

]
f̂(ω)ω2 dω dκ ,

vε
0(t,xs, zs) =

1

(2π)3ρ̄

∫
κ

[
Rε

g(ω, κ, zs)

2
e−i ω

ε (t−κ·xs−zs/c̄(κ)) (16.9)

− T ε
g (ω, κ, zs)

2
e−i ω

ε (t−κ·xs+zs/c̄(κ))

]
f̂(ω)ω2 dω dκ .

We next consider the secondary field and take a Fourier transform with
respect to the time and the transverse spatial variables in (16.3–16.4) to obtain

−ρ̄
iω

ε
v̂ε

1 + i
ω

ε
κp̂ε

1 = ρ1
iω

ε

∫
vε

0(t,x, z)1B(x, z)ei ω
ε (t−κ·x) dt dx ,

−ρ̄
iω

ε
ûε

1 +
∂p̂ε

1

∂z
= ρ1

iω

ε

∫
uε

0(t,x, z)1B(x, z)ei ω
ε (t−κ·x) dt dx ,

− 1

K(z)

iω

ε
p̂ε
1 + i

ω

ε
κ · v̂ε

1 +
∂ûε

1

∂z
= 0 ,
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where uε
1 = (vε

1, u
ε
1) and uε

0 = (vε
0, u

ε
0). We assume that the scattering region

B is smaller than the wavelength, and we model it by a point scatterer with
scattering volume ε3σs, with σs small, so that ρ1Vol(B) = ρ̄σsε

3 and

ρ11B(x, z) = ε3ρ̄σsδ(x − xs)δ(z − zs) .

Moreover, the fact that the parameter σs is small ensures the validity of the
Born approximation, in the sense that in the expansion (16.2) we have

(uε
0, p

ε
0) ∼ ε2 , (uε

1, p
ε
1) ∼ ε2σs , (uε

r, p
ε
r) ∼ ε2σ2

s . (16.10)

This result is not obvious, but it will be explained in the next sections, in
particular in Propositions 16.1 and 16.2.

Therefore, the secondary field (uε
1, p

ε
1) solves

−ρ̄
iω

ε
v̂ε

1 + i
ω

ε
κp̂ε

1 = ε3Sε
1,x(ω)e−i ω

ε κ·xsδ(z − zs) , (16.11)

− ρ̄
iω

ε
ûε

1 +
∂p̂ε

1

∂z
= ε3Sε

1,z(ω)e−i ω
ε κ·xsδ(z − zs) , (16.12)

− 1

K(z)

iω

ε
p̂ε
1 + i

ω

ε
κ · v̂ε

1 +
∂ûε

1

∂z
= 0 ,

with the secondary source terms given by

Sε
1,x(ω) =

iσs

(2π)2

∫
κ
′

2

[
Rε

g(ω, κ′, zs)e
i ω

ε (κ′·xs+zs/c̄(κ′)) (16.13)

−T ε
g (ω, κ′, zs)e

i ω
ε (κ′·xs−zs/c̄(κ′))

]
f̂(ω)ω3 dκ

′ ,

Sε
1,z(ω) =

iσs

(2π)2

∫
ρ̄

2ζ̄(κ′)

[
Rε

g(ω, κ′, zs)e
i ω

ε (κ′·xs+zs/c̄(κ′)) (16.14)

+ T ε
g (ω, κ′, zs)e

i ω
ε (κ′·xs−zs/c̄(κ′))

]
f̂(ω)ω3 dκ

′ .

Note that these source terms correspond to the emission from a point source
similar to the embedded source problem (15.6–15.8) addressed in Section 15.2.

Let us consider the secondary pressure field pε
1 at the observation point

M = (xm, 0) as illustrated in Figure 16.1 and representing a point mirror,
say. From the analysis carried out in Section 15.2, we get

pε
1(t,xm, 0) =

1

(2πε)3

∫ √
ζ̄(κ)

2
ǎε
1(ω, κ, 0)e−i ω

ε (t−κ·xm)ω2 dω dκ ,

with

ǎε
1(ω, κ, 0) = ε3ei ω

ε (−κ·xs)
[
e−i ωzs

εc̄(κ) T ε
g (ω, κ, zs)S

ε
a(ω, κ)

− ei ωzs
εc̄(κ) Rε

g(ω, κ, zs)S
ε
b (ω, κ)

]
, (16.15)
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Sε
a(ω, κ) =

√
ζ̄(κ)

ρ̄
κ · Sε

1,x(ω) +
1√
ζ̄(κ)

Sε
1,z(ω) ,

Sε
b (ω, κ) =

√
ζ̄(κ)

ρ̄
κ · Sε

1,x(ω)− 1√
ζ̄(κ)

Sε
1,z(ω) .

Thus, pε
1 consists of four terms. The first one is

pε
1,I(tm + εσ,xm, 0) =

σs

(2π)5
i

4

∫
T ε

g (ω, κ, zs)T
ε
g (ω, κ′, zs)

×
(
− ζ̄(κ)κ · κ′

ρ̄
+

ρ̄

ζ̄(κ′)

)
e−iωσei ω

ε φI(κ,κ′)f̂(ω)ω5 dω dκ dκ
′ , (16.16)

where the rapid phase is

φI(κ, κ′) = −tm + κ · xm − zs/c̄(κ)− κ · xs + κ
′ · xs − zs/c̄(κ′) .

The three other terms pε
1,II , pε

1,III , and pε
1,IV have similar expressions but

with crossed products Rε
gT

ε
g , T ε

g Rε
g, and Rε

gR
ε
g, respectively, and rapid phases

with different signs in front of zs/c̄(κ) and zs/c̄(κ′).

16.2 Asymptotic Theory for the Scattered Field

The field that can be observed at the surface consists of the superposition of
the primary field (with subscript 0) and the secondary field (with subscript 1).

16.2.1 The Primary Field

We first look at the primary field in (16.5–16.6). This field has two compo-
nents:

1. A deterministic component, which can be estimated in the limit ε → 0
by use of the Weyl representation of a spherical wave [120, Section 3.2.4],
which we discuss in Chapter 2.

2. A random component that involves the reflection coefficient Rε
(ω,κ)(−L, 0).

Concerning the coherent field, we get the following proposition by inte-
grating the expectation of (16.5) and (16.6), which shows that the coherent
waves have an amplitude of order ε2 at the surface.

Proposition 16.1. Let tm ∈ R be an observation time and M = (xm, 0) an
observation point at the surface (xm = 0). The rescaled mean signal detected
at M converges as
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E[pε
0(tm + εσ,xm, 0)]

ε2

ε→0−→ 0 , (16.17)

E[vε
0(tm + εσ,xm, 0)]

ε2

ε→0−→ 0 , (16.18)

E[uε
0(tm + εσ,xm, 0)]

ε2

ε→0−→

⎧
⎨
⎩
− 1

4πρ̄c̄|xm|2
f(σ) if c̄tm = |xm| ,

0 otherwise.
(16.19)

The result stated in Proposition 16.1 means that the coherent wave has
amplitude of order ε2 and it is very particular to the vertical source case. For
a general source emitting in the three spatial dimensions, we would observe a
coherent signal of order ε at the surface.

The particular scaling we used for the source (16.1) means that the inco-
herent waves observed at the surface have an amplitude of order ε3/2. The
evaluation of the order of magnitude of the incoherent primary waves follows
from the analysis carried out in Section 14.3, where the point source (14.55)
has the amplitude factor ε1/2 and the intensity of the incoherent waves is of
order one. Here the source (16.1) has the amplitude factor ε2, so the incoherent
primary waves have amplitude of order ε3/2. By comparing the typical ampli-
tude of the incoherent waves with that of the coherent waves described in the
previous proposition, we can then conclude that the primary field observed at
the surface is dominated by the incoherent wave fluctuations of order ε3/2.

16.2.2 The Secondary Field

We now address the secondary field and consider first the term pε
1,I given

by (16.16). It is convenient to use polar coordinates, and we parameterize
xs = |xs|eθs , xm = xs + |xm − xs|eθ̄, κ = μeθ, and κ

′ = μ′eθ′. We apply
a stationary-phase argument similar to the one used in Chapter 14. We find
that there exists a unique stationary point given by

μ′
c =

1

c̄

|xs|√
|xs|2 + z2

s

, μc =
1

c̄

|xm − xs|√
|xm − xs|2 + z2

s

, θ′c = θs , θc = θ̄ .

The point κ
′
c = (μ′

c, θ
′
c) corresponds to the direction of the ray going from the

source O to the scatterer S, while the point κc = (μc, θc) corresponds to the
direction of the ray going from the source S to the scatterer M . By Proposition
14.4, the limit value of the integral (16.16) is of order o(ε2) if φI(κc, κ

′
c) = 0,

and it is of leading order ε2 if φI(κc, κ
′
c) = 0, that is, if tm = tc with

tc =
1

c̄

(√
|xs|2 + z2

s +
√
|xm − xs|2 + z2

s

)
=

1

c̄
(|OS|+ |SM |) . (16.20)

We then find that to leading order in ε,
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pε
1,I(tm + εσ,xm, 0) =

ε2σs

(2π)3
i

4

|zs|
c̄3

OS · SM

|OS|3|SM |2 (16.21)

×
∫

T ε
g (ω, μc, zs)T

ε
g (ω, μ′

c, zs)e
−iωσ f̂(ω)ω3 dω .

We also find that the three other terms p1,II , p1,III , and p1,IV do not have
such a stationary point, so that they bring a contribution to the value of p1

that is at least of order
√

ε lower than p1,I .
We finally use the expansion (15.32) of the generalized transmission coeffi-

cient and we apply a moment analysis similar as the one carried out in Section
14.2.1 to obtain the statistical limit of the product T ε

g (ω, μc, zs)T
ε
g (ω, μ′

c, zs).
This allows us to state the following proposition, which describes the structure
of the secondary field observed at the surface.

Proposition 16.2.
(a) If c̄tm = |OS|+ |SM |, then the rescaled pressure field pε

1(tm +ε·,xm, 0)/ε2

at the observation point M = (xm, 0) converges to 0.
(b) If c̄tm = |OS|+ |SM |, then the rescaled pressure field converges in distri-
bution to a random function

pε
1(tm + εσ,xm, 0)

ε2

ε→0−→ σs

(2π)3
i

4

|zs|
c̄3

OS · SM

|OS|3|SM |2 (16.22)

×
∫

f̂(ω) exp

[
iω (Ts − σ)− ω2

(
γ

8c̄2

|OS|2 + |SM |2
|zs|

)]
ω3 dω ,

where Ts is a random time delay

Ts =
1

c̄

√
γ

2

( |OS|+ |SM |
|zs|

)
W0(zs) , (16.23)

and W0 is a standard Brownian motion.

The result stated in Proposition 16.2 holds true only if M is not on the
surface ring with center xs and passing through O. In that case, the two
random travel times from O to S and from S to M are perfectly correlated,
and the global random travel time is Ts = 1

c̄

√
2γ|OS|/|zs|W0(zs).

This proposition means that the secondary field at the observation point
has a deterministic shape given by the inverse Fourier transform of

ε2σs

(2π)2
iω3

4

|zs|
c̄3

(
OS · SM

|OS|3|SM |2
)

f̂(ω) exp

[
−γω2

8c̄2

( |OS|2 + |SM |2
|zs|

)]
.

This deterministic shape is the convolution of the original pulse shape of the
source with a deterministic kernel. The field has also a random center, which
is given by

T1 = tc + εTs =
1

c̄
(|OS|+ |MS|)

(
1 + ε

√
γ

2

1

|zs|
W0(zs)

)
. (16.24)
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Concerning the vertical velocity field, we get a similar result. This shows
that the primary and secondary fields have coherent components whose am-
plitudes are of order ε2. However, these coherent components are buried in
the incoherent primary waves, whose typical amplitude is of order ε3/2. To be
complete, we can add that the secondary incoherent field is even smaller, of
order ε5/2. However, we will see in the next section that the secondary incoher-
ent waves participate to leading order in the refocusing of the time-reversed
wave field at the location of the scatterer S.

16.3 Time Reversal of the Recorded Wave

16.3.1 Integral Representation of the Time-Reversed Field

We assume that we record the velocity signal at the surface, at the mirror M .
This second step of the time-reversal procedure is implemented as described
in Section 15.2.2, where we discussed the situation with an internal source.
The only difference will be that we amplify the recorded signal before ree-
mission. In this chapter the internal source has been replaced by the waves
being reflected by an internal scatterer. We next show how the superresolu-
tion phenomenon observed in the previous chapter generalizes to the current
configuration. Recall that the first time-reversal step consists in recording the
velocity signal and/or the pressure signal at the surface z = 0 on the mirror
M = {(x, z),x ∈ D, z = 0} during some time interval centered at t = 0. The
shape of the mirror is given by D ⊂ R2. We record the signal during a large
time interval whose duration is of order one. We consider again the situation
in which only the velocity is recorded.

In the second step of the time-reversal procedure we clip a piece of the
recorded signal by a cutoff function t 	→ G1(t), where the support of G1 is
included in [−t1/2, t1/2], with t1 > 0. The recorded part of the wave is denoted
by uε

rec and is
uε

rec(t,x) = uε(t,x)G1(t)G2(x) , (16.25)

with uε being the total velocity field and where G2 is the spatial cutoff function
introduced by the mirror, whose support is in the domain D. We then time-
reverse this piece of the signal and send it back into the same medium as
illustrated in Figure 15.5. We therefore consider a new problem defined by
the acoustic wave equations (15.1–15.2) with the new source term

Fε
TR(t,x, z) =

ρ̄c̄uε
rec(−t,x)δ(z)

ε
, (16.26)

where the factor ρ̄c̄ has been added to restore the physical dimension of the
expression. The amplification factor 1/ε has been introduced so that the re-
focused field on the scatterer will be of order one. Note that the recorded sig-
nals have amplitudes of order ε3/2, so the reemitted signals have amplitudes
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of order ε1/2. Apart from the amplification factor, the mirror is implemented
exactly as in Section 15.2.2.

The wave field in the second part of the time-reversal experiment can be
decomposed and described by:

(1) The reemitted primary field, which is not scattered by S during the back-
propagation.

(2) The reemitted secondary field. In order to be consistent with the Born
approximation, we neglect the scattering of this field at S, since it produces
a field of order σ2

s .
(3) The new scattered field, which is the reemitted primary field that is scat-

tered by S during the back-propagation.

As we will show, the component (2) will refocus at the scatterer S and give
the leading contribution to the wave field there. We first study the component
(2) of uε

TR. We will discuss the other wave components (1) and (3) in Section
16.3.4.

We now find by comparing (16.11) and (16.12) with (15.6) and (15.7)
respectively and taking the amplification factor into account that the time-
reversed signal uε

TR is described by (15.44) under the replacements

ts 	→ 0 , f̂x(ω) 	→ Sε
1,x/ε , f̂z(ω) 	→ Sε

1,z(ω)/ε .

The time-reversed vertical velocity can therefore be described by

uε
TR(t,x, z) =

1

(2π)6ε4

∫ ∫
H0(κ1, κ2)

4
√

ζ̄(κ1)
Ĝ1

(
ω1 − ω2

ε

)
Ĝ2

(
ω1κ1 + ω2κ2

ε

)

× ei
−ω1t+ω2κ2·xs+ω1κ1·x

ε

⎡
⎣

4∑

j=1

P ε
j

⎤
⎦ω2

1ω
2
2 dω1 dκ1 dω2 dκ2 , (16.27)

where we define the P ε
j ’s by

P ε
1 = −e

i
(
− ω2zs

εc̄(κ2)
+

ω1z

εc̄(κ1)

)

Rε
g(ω2, κ2, zs)R

ε
g(ω1, κ1, z)Sε

b (ω2, κ2) ,

P ε
2 = e

i
(

ω2zs
εc̄(κ2)

+
ω1z

εc̄(κ1)

)

T ε
g (ω2, κ2, zs)R

ε
g(ω1, κ1, z)Sε

a(ω2, κ2) ,

P ε
3 = e

i
(

ω2zs
εc̄(κ2)−

ω1z

εc̄(κ1)

)

T ε
g (ω2, κ2, zs)T

ε
g (ω1, κ1, z)Sε

a(ω2, κ2) ,

P ε
4 = −e

i
(
− ω2zs

εc̄(κ2)
− ω1z

εc̄(κ1)

)

Rε
g(ω2, κ2, zs)T

ε
g (ω1, κ1, z)Sε

b (ω2, κ2) ,

and where we recall that

Sε
a(ω, κ) =

√
ζ̄(κ)

ρ̄
κ · Sε

1,x(ω) +
1√
ζ̄(κ)

Sε
1,z(ω) , (16.28)

Sε
b (ω, κ) =

√
ζ̄(κ)

ρ̄
κ · Sε

1,x(ω)− 1√
ζ̄(κ)

Sε
1,z(ω) , (16.29)
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Sε
1,x(ω) =

iσs

(2π)2

∫
κ
′

2

[
Rε

g(ω, κ′, zs)e
i ω

ε (κ′·xs+zs/c̄(κ′))

−T ε
g (ω, κ′, zs)e

i ω
ε (κ′·xs−zs/c̄(κ′))

]
f̂(ω)ω3 dκ

′ ,

Sε
1,z(ω) =

iσs

(2π)2

∫
ρ̄

2ζ̄(κ′)

[
Rε

g(ω, κ′, zs)e
i ω

ε (κ′·xs+zs/c̄(κ′))

+ T ε
g (ω, κ′, zs)e

i ω
ε (κ′·xs−zs/c̄(κ′))

]
f̂(ω)ω3 dκ

′ .

16.3.2 Refocusing in the Homogeneous Case

We first consider the homogeneous medium situation with T ε
g ≡ 1 and Rε

g ≡ 0.
The refocusing of the primary field has been studied in Chapter 15. Here
we concentrate our attention on the refocusing of the secondary field. Then
(16.27) gives

uε
TR(t,x, z) =

1

ε(2π)6

∫ ∫
H0(κ,−κ)

4
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ)

× e
iω
ε ( zs−z

c̄(κ) )e−
ih
2

zs+z
c̄(κ)

+ iω
2 λ·κc̄(κ)(zs+z) (−iσs)

(2π)2

∫
e−i ω

ε (κ′·xs−zs/c̄(κ′))f̂(ω)ω3

×
(√

ζ̄(κ)

2ρ̄
κ · κ′ +

1√
ζ̄(κ)

(
ρ̄

2ζ̄(κ′)

))
ei h

2 (κ′·xs−zs/c̄(κ′)) dκ
′

× e
iω
ε (−t+κ·(x−xs))e

ih
2 (−t+κ·(x+xs))+

iω
2 λ·(x+xs)ω4 dω dh dκ dλ .

We now apply the stationary-phase method and find that the fast-phase com-
ponent involving κ

′ gives the unique stationary-phase slowness vector

κ
′
c =

xs

c̄
√

x2
s + z2

s

,

which leads to the approximation

uε
TR(t,x, z) =

1

(2π)6

∫ ∫
H0(κ,−κ)

4
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ) (16.30)

×e
iω
ε ( zs−z

c̄(κ) )e−
ih
2

zs+z
c̄(κ)

+ iω
2 λ·κc̄(κ)(zs+z)

×
(
−

√
ζ̄(κ)

ρ̄
κ · f̂2,x(ω) +

1√
ζ̄(κ)

f̂2,z(ω)

)

× e
iω
ε (−(OS/c̄+t)+κ·(x−xs))e

ih
2 (OS/c̄−t+κ·(x+xs))+

iω
2 λ·(x+xs)ω4 dω dh dκ dλ ,

with the travel time from the source to the scatterer being OS/c̄ and where

f̂2,x(ω) = −xsĤ(ω) , f̂2,z(ω) = −zsĤ(ω) , Ĥ(ω) =
σs|zs|ω2f̂(ω)

4πc̄2OS3
.

(16.31)
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The time-reversed field has exactly the same form as in (15.48) upon the
replacements

ts 	→ OS/c̄ , f̂x 	→ f̂2,x , f̂z 	→ f̂2,z . (16.32)

Therefore, we can conclude that the secondary reemitted field will refocus and
be of order one at the scatterer and be small elsewhere.

In order to illustrate the refocusing we consider now a configuration cor-
responding to the one discussed in Section 15.3:

• We assume that the source is concentrated in frequency in a narrow band
around a large carrier frequency ω0. This means that the function f in
(16.1), the source pulse profile, has the form

f(t) = f0

(
t

Tw

)
e−iω0t + c.c. , (16.33)

with ω0Tw ≫ 1, where Tw is the initial pulse width and the function f0 is
the envelope of the pulse profile with a normalized support.

• The mirror is supposed to be located at the same location as the source,
with a diameter a that is small compared to the depth of the scatterer
|zs|. We introduce the normalized spatial cutoff function g2 determining
the mirror shape:

G2(x) = g2

(x

a

)
.

We choose the (x, y)-axes so that the horizontal position of the scatterer
is xs = (xs, 0), with xs ≥ 0. Introducing the parameterization

t = −OS

c̄
+ εT , x = xs + εX , and z = zs + εZ , (16.34)

and using the orthonormal basis vectors

e1 =
1

OS

⎡
⎣
−zs

0
xs

⎤
⎦ , e2 =

⎡
⎣

0
1
0

⎤
⎦ , e3 =

1

OS

⎡
⎣

xs

0
zs

⎤
⎦ ,

we find by analogy with the result in (15.55) that in the limit ε → 0, the
refocused field is

uTR(t,x, z) =

(
σsa

2z2
sω4

0

64π3c̄5ρ̄OS4

)
f0

(
− T

Tw
+

(X, Z) · e3

c̄Tw

)
e

iω0

(
−T+

(X,Z)·e3
c̄

)

×G1

(
2
OS

c̄

)
ĝ2

(
ω0a|zs|
c̄OS2

(X, Z) · e1,
ω0a

c̄OS
(X, Z) · e2

)
+ c.c. . (16.35)

This formula shows that we observe a refocused field only if 2OS/c̄ lies in the
support of G1. Here O is the source location, which emits at time 0 a short
pulse, and the position of the mirror. The time 2OS/c̄ corresponds to a round
trip from O to S, and G1(2OS/c̄) > 0 means that the signal emitted by the
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source at O and scattered by the scatterer at S is recorded by the mirror at
O. The envelope of the refocused pulse is, up to a multiplicative factor,

|uTR(t,x, z)| =
∣∣∣∣f0

(
− T

Tw
+

(X, Z) · e3

c̄Tw

)∣∣∣∣

×
∣∣∣∣ĝ2

(
ω0a|zs|
c̄OS2

(X, Z) · e1,
ω0a

c̄OS
(X, Z) · e2

)∣∣∣∣ . (16.36)

Therefore, in the homogeneous medium the refocused field in the case with a
scatterer has the same form as in the case with an embedded source (compare
(16.36) with (15.56)). The main aspects of the refocusing mechanism are as
found in Section 15.3:

• In the e3-direction (direction from the source to the scatterer), the focal
spot size is approximately c̄Tw, that is, the envelope pulse width.

• In the two other directions, the focal spot size is determined by the mirror
size a. In the e1- and e2-directions, the focal spot has approximately the
sizes λ0OS2/(a|zs|) and λ0OS/a respectively, where λ0 = 2πc̄/ω0 is the
carrier wavelength of the pulse. These formulas correspond again to the
standard Rayleigh resolution formula.

16.3.3 Refocusing of the Secondary Field in the Random Case

We now consider the situation with a random medium and study carefully
the reemitted secondary field. This subsection contains the technical details,
while the main result will be summarized in Theorem 16.3 in Section 16.4. By
substituting (16.28) and (16.29) in (16.27) we obtain the integral representa-
tion of the time-reversed vertical velocity uε

TR. This integral expression can
be split into a sum of eight terms, each of them involving a product of three
reflection or transmission coefficients of the form

Qε
g,1Q

ε
g,2Q

ε
g,3 ,

with Q = R or T . From the probabilistic point of view, only the terms involv-
ing an even number of reflection coefficients give rise to a significant contri-
bution; otherwise, the expectation goes to zero. Thus, only four of the eight
components remain, namely those involving

(A) : T ε
g,1R

ε
g,2R

ε
g,3 , (16.37)

(B) : T ε
g,1T

ε
g,2T

ε
g,3 ,

(C) : Rε
g,1R

ε
g,2T

ε
g,3 ,

(D) : Rε
g,1T

ε
g,2R

ε
g,3 .

These components are schematically described in Figure 16.2. The index 3
stands for the propagation from the source O to the scatterer S. The index 2
stands for the propagation from the scatterer S to the mirror M . The index
1 stands for the back-propagation from M to the scatterer position.
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The A Component

One can check that the expectation of the product of coefficients of Configu-
ration A goes to zero as ε→ 0. This is because the two reflection coefficients
are complex-conjugated, while only one complex conjugation is necessary and
sufficient to cancel the random phase, as follows from the moment analysis.
Therefore only three nontrivial components remain.
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Fig. 16.2. The different wave components. The original source is located at O. The
scatterer position is S = (xs, zs). The signal is recorded at the observation point
M = (xm, 0).

The B Component

Let us write explicitly the B component:

uε
TR,B(t,x, z) =

1

(2π)6ε4

∫ ∫
H0(κ1, κ2)

4
√

ζ̄(κ1)
Ĝ1

(
ω1 − ω2

ε

)
Ĝ2

(
ω1κ1 + ω2κ2

ε

)

× e
i
(

−ω1t+ω2κ2·xs+ω1κ1·x
ε

)

e
i
(

ω2zs
εc̄(κ2)

− ω1z

εc̄(κ1)

)

T ε
g (ω2, κ2, zs)T

ε
g (ω1, κ1, z)

× iσs

(2π)2

∫
T ε

g (ω2, κ′, zs)e
−i

ω2
ε (κ′·xs−zs/c̄(κ′))f̂(ω2)ω

3
2
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×
(√

ζ̄(κ2)

2ρ̄
κ2 · κ′ − 1√

ζ̄(κ2)

(
ρ̄

2ζ̄(κ′)

))
dκ

′ ω2
1ω

2
2 dω1 dκ1 dω2 dκ2 .

Again we are motivated by the presence of the terms Ĝ1 and Ĝ2 to carry
out the change of variables ω1 = ω + εh/2, ω2 = ω − εh/2, κ1 = κ + ελ/2,
κ2 = −κ + ελ/2, which to leading order gives

uε
TR,B(t,x, z) =

1

ε(2π)6

∫ ∫
H0(κ,−κ)

4
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ) (16.38)

× e
iω
ε ( zs−z

c̄(κ) )e−
ih
2

zs+z
c̄(κ)

+ iω
2 λ·κc̄(κ)(zs+z)T ε

g

(
ω − εh

2
,

∣∣∣∣−κ +
ελ

2

∣∣∣∣ , zs

)

×T ε
g

(
ω +

εh

2
,

∣∣∣∣κ +
ελ

2

∣∣∣∣ , z
)

(−iσs)

(2π)2

∫
T ε

g (ω − εh

2
, |κ′| , zs)e

−i ω
ε (κ′·xs− zs

c̄(κ′) )

× f̂(ω)ω3

(√
ζ̄(κ)

ρ̄
κ ·

(
κ
′

2

)
+

1√
ζ̄(κ)

(
ρ̄

2ζ̄(κ′)

))
ei h

2 (κ′·xs−zs/c̄(κ′)) dκ
′

× e
iω
ε (−t+κ·(x−xs))e

ih
2 (−t+κ·(x+xs))+

iω
2 λ·(x+xs)ω4 dω dh dκ dλ .

The contribution of this term closely resembles the contribution of the corre-
sponding component (15.59) in the embedded source problem. As in the step
leading to (16.30), we apply the stationary-phase method, an integration with
respect to κ

′ gives again the unique stationary slowness vector

κ
′
c =

xs

c̄
√

x2
s + z2

s

,

and we find the leading order approximation

uε
TR,B(t,x, z) =

1

(2π)6

∫ ∫
H0(κ,−κ)

4
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ)

× e
iω
ε ( zs−z

c̄(κ) )e−
ih
2

zs+z
c̄(κ)

+ iω
2 λ·κc̄(κ)(zs+z)

(
−

√
ζ̄(κ)

ρ̄
κ · f̂2,x(ω) +

1√
ζ̄(κ)

f̂2,z(ω)

)

×T ε
g

(
ω − εh

2
,

∣∣∣∣−κ +
ελ

2

∣∣∣∣ , zs

)
T ε

g

(
ω +

εh

2
,

∣∣∣∣κ +
ελ

2

∣∣∣∣ , z
)

T ε
g

(
ω − εh

2
, κ′

c, zs

)

× e
iω
ε (−(OS/c̄+t)+κ·(x−xs))e

ih
2 (OS/c̄−t+κ·(x+xs))+

iω
2 λ·(x+xs)ω4 dω dh dκ dλ ,

where f̂2,x and f̂2,z are defined by (16.31). Therefore, the time-reversed field
has exactly the same form as the one discussed in (15.59) upon the replace-

ments ts 	→ OS/c̄, f̂x 	→ f̂2,x, f̂z 	→ f̂2,z and the multiplication by a third trans-

mission coefficient T ε
g (ω − εh/2, κ′

c, zs). The rapid phase is now the same as in
the homogeneous case and we have a globally stationary point for t = −OS/c̄,
x = xs, and z = zs corresponding to the vanishing of the rapid phase. We next
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consider the limit of the product of the three transmission coefficients evalu-
ated at the globally stationary point. The integral with respect to κ averages
the product of the first two transmission coefficients so that it can be sub-
stituted by its limiting expectation (15.88) as ε → 0. The third transmission
coefficient is taken at the fixed slowness vector κ

′
c and it can be substituted

by its limiting expression as ε→ 0:

T ε
g

(
ω − εh

2
, κ′

c, zs

)
ε→0−→ e

−i 1√
Lloc(ω,κ′

c)
W0(zs)+ zs

2Lloc(ω,κ′
c) , (16.39)

where Lloc(ω, κ′
c) = (4|zs|c̄2)/(ω2γOS) and W0 is a standard Brownian mo-

tion. Substituting these limits into the integral representation and evaluating
in the vicinity of the globally stationary point using the parameterization
(16.34) yields the following limit expression for the B component as ε→ 0:

uTR,B(t,x, z) =
1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ)

×
∫

ei[hc̄2/c̄(κ)2−ωκ·λc̄2]τW(T )
g (ω, κ, τ) dτe

−i 1√
Lloc(ω,κ′

c)
W0(zs)+ zs

2Lloc(ω,κ′
c)

×
(
−

√
ζ̄(κ)

ρ̄
κ · f̂2,x(ω) +

1√
ζ̄(κ)

f̂2,z(ω)

)

× eiω(−T+κ·X− Z
c̄(κ) )eih(OS

c̄ +κ·xs− zs
c̄(κ) )+iω(λ·xs+λ·κc̄(κ)zs)ω4 dω dh dκ dλ .

We rewrite this expression as

uTR,B(t,x, z) =
1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ) (16.40)

×
∫

ei[hc̄2/c̄(κ)2−ωκ·λc̄2]τW(T )
g (ω, κ, τ) dτ

×
(
−

√
ζ̄(κ)

ρ̄
κ · f̂3,x(ω) +

1√
ζ̄(κ)

f̂3,z(ω)

)

× eiω(−(T+χc)+κ·X− Z
c̄(κ) )eih(OS

c̄ +κ·xs− zs
c̄(κ) )+iω(λ·xs+λ·κc̄(κ)zs)ω4 dω dh dκ dλ ,

for

f̂3,x(ω) = −xsH̃(ω) , f̂3,z(ω) = −zsH̃(ω) , χc =
γOS

4|zs|c̄2
W0(zs) ,

H̃(ω) =
σs|zs|ω2

4πc̄2OS3
f̂(ω)e

zs
2Lloc(ω,κ′

c) .

The C Component

We next consider the contribution associated with the C terms in (16.37). By
repeating the steps used in the derivation of the B component (16.40) we find
the following approximation for this term:
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uε
TR,C (t,x, z) =

1

(2π)6

∫ ∫
c̄(κ)

4c̄
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ) (16.41)

×
∫

ei[hc̄2/c̄(κ)2−ωκ·λc̄2]τW(R)
g (ω, κ, τ) dτ

×
(√

ζ̄(κ)

ρ̄
κ · f̂3,x(ω) +

1√
ζ̄(κ)

f̂3,z(ω)

)

× eiω(−(T+χc)+κ·X+ Z
c̄(κ) )eih(OS

c̄ +κ·xs− zs
c̄(κ) )+iω(λ·xs+λ·κc̄(κ)zs)ω4 dω dh dκ dλ .

The B and C components are the main contributions to the refocused field,
as we discuss explicitly below.

The D Component

We discuss the contribution of the D term in (16.37). We show that this com-
ponent does not contribute to a refocused wave field. The integral expression
for this term can be obtained via the steps leading to (16.38), and we obtain
the leading-order expression

uε
TR,D(t,x, z) =

1

ε(2π)6

∫ ∫
H0(κ,−κ)

4
√

ζ̄(κ)
Ĝ1(h)Ĝ2 (hκ + ωλ) (16.42)

×e
iω
ε ( zs+z

c̄(κ) )e−
ih
2

zs−z
c̄(κ)

+ iω
2 λ.κc̄(κ)(zs−z)T ε

g

(
ω − εh

2
,

∣∣∣∣−κ +
ελ

2

∣∣∣∣ , zs

)

×Rε
g

(
ω +

εh

2
,

∣∣∣∣κ +
ελ

2

∣∣∣∣ , z
)

(−iσs)

(2π)2

∫
Rε

g

(
ω − εh

2
, |κ′| , zs

)
e
−i ω

ε

(
κ′·xs+

zs
c̄(κ′)

)

× f̂(ω)ω3

(√
ζ̄(κ)

ρ̄
κ ·

(
κ
′

2

)
+

1√
ζ̄(κ)

(
ρ̄

2ζ̄(κ′)

))
ei h

2 (κ′·xs−zs/c̄(κ′)) dκ
′

× e
iω
ε (−t+κ·(x−xs))e

ih
2 (−t+κ·(x+xs))+

iω
2 λ·(x+xs)ω4 dω dh dκ dλ .

As seen in Chapter 15, the generalized reflection coefficients evaluated at two
different slowness vectors are correlated only as long as the moduli of the
slowness vectors are within an ε-neighborhood of each other. We therefore
carry out the change of variables κ

′ = (μ + εl)eθ′, κ = μeθ, and write x =
μxeθx , xs = μxseθxs

. This gives the following representation for the fast phase
in the integral expression for uTR,D :

φ(μ, θ, θ′) =
z

c̄(μ)
−μμx cos(θ′− θxs)− t+μμx cos(θ− θx)−μμxs cos(θ− θxs) .

It follows that we have a global stationary point with φ ≡ 0 only if

z = t = μx = μxs = 0 ,

and only then may uε
TR,D be of order one. However, this means that the two

generalized reflection coefficients in (16.42) are evaluated at the two different
depths z = 0 and z = zs and one can show that their expectation then goes
to zero and that uε

TR,D does not contribute to the refocused field.
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16.3.4 Contributions of the Other Wave Components

We have just studied the reemission of the secondary field, labeled (2) in
Section 16.3.1, into the random medium, and found that it refocuses at the
position of the scatterer and that it generates a focal spot whose amplitude
is of order one. We now discuss the other wave components, labeled (1) and
(3) in Section 16.3.1, which in fact will contribute at a lower order at the
scatterer.

The Reemitted Primary Field

We first discuss the role of the reemitted primary field u0. We assume, how-
ever, that we do not reemit the deterministic wave front directly transmitted
from the source to the mirror. Reemission and refocusing of the incoherent
primary field was discussed in Chapter 15. The source at O is defined as in
(15.5) and the analysis in Chapter 15 shows that we will have refocusing at
a later time of a strong signal of order ε−1 at the original source location
O. However, the reemitted incoherent primary field will be small at the scat-
terer position S. It can be shown using the integral representation of this wave
component and the moment analysis presented in Chapter 15 that indeed this
wave component is small, of order ε1/2, at S, so that it does not generate a
significant wave component at the position S of the scatterer.

The New Scattered Field

We finally discuss the new scattered field, that is, the wave field generated
by reemission from the mirror that is scattered by the embedded scatterer
during the back-propagation. This field can again be described in terms of
the Born approximation. To be consistent with the Born approximation and
consider a field that scales with the scattering volume σs, we discuss only the
new scattered field generated by the primary field uε

0 (since the component
generated by uε

1 will scale with σ2
s). The reflections of this wave component off

the internal scatterer do not create any coherent structure during the back-
propagation. Indeed, it can be checked that this wave component involves
products of transmission and reflection coefficients whose expectations vanish
in the limit ε→ 0.

16.4 Time-Reversal Superresolution with a Passive
Scatterer

16.4.1 The Refocused Pulse Shape

The main results of this section are the refocusing of the pulse and its self-
averaging property in a randomly corrected time frame. These results are
precisely stated in the following theorem, which gives the refocusing property
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and shows that the wave field converges to a deterministic shape when ob-
served relative to the random time −OS/c̄ + εχc and at the original source
location (xs, zs) in space.

Theorem 16.3.
(a) For any T0 > 0, R0 > 0, Z0 > 0, δ > 0, and (t0,x0, z0) = (−OS/c̄,xs, zs),
and (t0,x0, z0) = (0,0, 0), we have

P

(
sup

|t−t0|≤εT0,|x−xs|≤εR0,|z−z0|≤εZ0

|uε
TR(t,x, z)| > δ

)
ε→0−→ 0 .

(b) For any T0 > 0, R0 > 0, Z0 > 0, and δ > 0, we have

P

(
sup

|T |≤T0,|X|≤R0,|Z|≤Z0

∣∣∣∣u
ε
TR

(
−OS

c̄
+ εT,xs + εX, zs + εZ

)

−UTR(T + χc,X, Z)
∣∣∣ > δ

)
ε→0−→ 0 ,

where UTR is the deterministic pulse shape

UTR(T,X, Z) =
1

(2π)3

∫
K+(ω, κ) [−c̄(κ)κ · xs − zs]

× f̂(ω)eiω(−T+κ·X+ Z
c̄(κ) )ω2 dω dκ

+
1

(2π)3

∫
K−(ω, κ) [c̄(κ)κ · xs − zs]

× f̂(ω)eiω(−T+κ·X− Z
c̄(κ) )ω2 dω dκ . (16.43)

The refocusing kernels are given by

K+(ω, κ) =

∫
G1

(
OS

c̄
− zs

c̄(κ)

c̄2
+ τ

)
G2

(
x2,s + κc̄(κ)zs − c̄2

κτ
)

×W(R)
g (ω, κ, τ) dτ

(
σs|zs|ω2

16πc̄3ρ̄OS3
e
− |zs|

2Lloc(ω,κ′
c)

)
, (16.44)

K−(ω, κ) =

∫
G1

(
OS

c̄
− zs

c̄(κ)

c̄2
+ τ

)
G2

(
xs + κc̄(κ)zs − c̄2

κτ
)

×W(T )
g (ω, κ, τ) dτ

(
σs|zs|ω2

16πc̄3ρ̄OS3
e
− |zs|

2Lloc(ω,κ′
c)

)
, (16.45)

where Lloc(ω, κ′
c) = (ω2γOS)/(4|zs|c̄2). The random travel time correction χc

is a zero-mean Gaussian random variable with variance γOS/(4c̄2).

The picture is qualitatively the same for the time-reversed transverse velocity
and pressure fields. The precise expressions for the refocused fields are the
following:
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PTR(T,X, Z) =
ρ̄

(2π)3

∫
K+(ω, κ)c̄(κ)

[
c̄(κ)κ · f̂3,x(ω) + f̂3,z(ω)

]

× eiω(−(T+χc)+κ·X+ Z
c̄(κ) )ω2 dω dκ

+
ρ̄

(2π)3

∫
K−(ω, κ)c̄(κ)

[
c̄(κ)κ · f̂3,x(ω)− f̂3,z(ω)

]

× eiω(−(T+χc)+κ·X− Z
c̄(κ) )ω2 dω dκ ,

VTR(T,X, Z) =
1

(2π)3

∫
K+(ω, κ)c̄(κ)κ

[
c̄(κ)κ · f̂3,x(ω) + f̂3,z(ω)

]

× eiω(−(T+χc)+κ·X+ Z
c̄(κ) )ω2 dω dκ

+
1

(2π)3

∫
K−(ω, κ)c̄(κ)κ

[
c̄(κ)κ · f̂3,x(ω)− f̂3,z(ω)

]

× eiω(−(T+χc)+κ·X− Z
c̄(κ) )ω2 dω dκ .

The proof of the theorem is again a generalization of the arguments de-
scribed in Chapter 9 and goes along the following main steps:

• We first consider the expected value of uε
TR correctly centered with respect

to the fine-scale random time correction χc. By a generalization of the
results of Section 15.4.1 we find that this expectation converges to the
limiting value given in the theorem.

• We then consider the variance of uε
TR correctly centered with respect to χc.

We write the second moment as a multiple integral involving the product
of four reflection coefficients at four different frequencies as in (14.72).
Using the decorrelation property of the reflection coefficients we deduce
that the variance goes to zero.

• Note that an integral over frequency (ensured by the time-domain nature
of time reversal) is needed for the stabilization or the self-averaging of the
refocused pulse.

16.4.2 Superresolution with a Random Medium

If we compare the expression (16.43) of the refocused pulse shape in the
embedded-scatterer problem with the equivalent expression (15.67) in the
internal-source problem, we find that the principal superresolution effect will
be as in the case of an internal source up to a spreading by a Gaussian kernel.
Note, however, that the statistically stable refocused wave field is observed at
the randomly corrected “fine-scale” time T + χc.

We continue the time-reversal example introduced in Section 16.3.2, where
we discussed the homogeneous case. We make the same assumptions with the
additional assumption that a ≪ |zs| ≪ Lloc ≪ L, where Lloc = 4c̄2/(γω2

0).
Here we make use of the analysis presented in Section 16.4 to characterize the
effects of medium heterogeneity. The superresolution phenomenon unraveled
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in Section 15.4.2 in the context of an internal source carries over to the present
configuration with an internal scatterer. In the case of an internal source,
the envelope of the refocused field has the form (15.77). In the case of an
internal scatterer, we take into account the effect of the modification due to
the third transmission coefficient in (16.39), and we find that the envelope of
the refocused field is given by

|UTR(T,X, Z)| ≈
∣∣∣∣ĝ2

(
−ω0∆ψ1

c̄
(X, Z) ·w1,

ω0∆ψ2

c̄
(X, Z) ·w2

)∣∣∣∣

×
∣∣∣∣sinc

(
ω0∆θ

2c̄
(X, Z) ·w1

)∣∣∣∣
∣∣∣∣f

(
−T + χc

Tw
+

(X, Z).w3

c̄Tw

)∣∣∣∣ , (16.46)

up to a multiplicative factor. This expression is obtained in terms of the
parameterization (16.34) and in the frame (w1,w2,w3) defined by (15.76):

w1 =

⎡
⎣
− sin θ̄

0
cos θ̄

⎤
⎦ , w2 =

⎡
⎣

0
1
0

⎤
⎦ , w3 =

⎡
⎣

cos θ̄
0

sin θ̄

⎤
⎦ .

Here θ̄ and ∆θ are defined respectively by (15.75–15.79), ∆ψ1 and ∆ψ2 by
(15.78). The envelope of the refocused field (16.46) is very similar to the
envelope of the refocused field (15.77) obtained in the case of an internal
source. The only difference is a random time delay represented by the term
χc and which originates from the random travel time from the source to the
scatterer. There is also an exponential damping factor that is hidden in the
multiplicative factor, and which originates from the decay of the stable wave
front emitted by the source and received by the scatterer. Thus, in the w1-
direction, the focal spot again has size λ0/∆θ when ∆θ > a/OS. As described
in Section 15.5.3, the condition ∆θ > a/OS means that the angular diversity
of the refocused wave mainly originates from multiple scattering effects rather
than the numerical aperture of the mirror. The focal-spot size λ0/∆θ is then
imposed by the angular diversity of the refocused incoherent waves, and it is
again much smaller than the prediction of the Rayleigh resolution formula.
In the w2- and w3-directions, the refocusing radii are as in the case of the
internal source and described by (15.81).

Note finally that in the situation described in this chapter, the time-
reversal mirror receives a very low amplitude signal, of order ε3/2; it amplifies
the received signal by the factor ε−1, so that it sends back an acoustic sig-
nal whose amplitude is small, of order ε1/2. This generates a focal spot at
the location of the scatterer whose amplitude is of order one. However, the
time-reversal mirror could send back a signal with amplitude of order one,
which means that it could amplify the received signal by the factor ε−3/2.
If the time-reversal experiment is performed with this amplification factor,
then a very high amplitude, of order ε−1/2, is obtained at the location of the
scatterer.
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Notes

In this chapter we have shown that by time-reversing incoherent waves, it
is possible to concentrate energy on a passive scatterer buried in a random
medium. The amplification of these time-reversed waves is the basic principle
of time-reversal ultrasound target destruction, applied, for instance, to kid-
ney stones [56]. The iteration of this procedure can be used to enhance the
refocusing at the selected target, as described in [144, 145, 146, 147]. In such
experiments, both sides of the medium surrounding the target are accessible,
and the addition of a randomly layered slab below the medium (opposite to
the source and time-reversal mirror apparatus) can dramatically enhance the
refocusing at the target according to the theory developed in this chapter.
The randomly layered slab can be produced once for all due to the statistical
stability, with a correlation length compatible with the source and the regime
of separation of scales studied in this book.

Time-reversal ideas have been used recently to propose a method for imag-
ing a heterogeneous medium by cross-correlating the noisy traces recorded at
the surface [166, 149, 157]. The mathematical analysis in the case of randomly
layered media is given in [76]. The idea is related to the discussion in Section
10.2 comparing the cross-correlation with time-reversal refocusing.





17

Other Layered Media

In this chapter we extend the theory of wave propagation and time reversal
in random media to more general randomly layered media. We still consider
the linear acoustic wave equations in the strongly heterogeneous white-noise
regime as in the previous chapters. In Section 17.1 we incorporate in the theory
the effects of discontinuities in the effective parameters at the boundaries of
the random medium. It is important to take into account these effects in
practical situations in which the source or the time-reversal mirror is usually
located outside of the material to be probed. In Section 17.2 we consider the
case in which the effective medium parameters vary smoothly on the macro-
scale. In Section 17.3 we consider the situation in which the density parameter
is also randomly varying. The main additional difficulty is that the problem
cannot be reduced to a decoupled family of one-dimensional problems. We
study the coupled system and we derive the corresponding asymptotics for
the stable front and the refocused pulse.

17.1 Nonmatched Effective Medium

In this section we summarize modifications in the theory that follow when the
random slab has nonmatched effective parameters. That is, we consider the
linear acoustic wave equations (14.1) with the medium parameters

1

K(x, z)
=

1

K(z)
=

⎧
⎪⎨
⎪⎩

1
K1

for z ∈ (−∞,−L) ,
1
K

(
1 + ν(z/ε2)

)
for z ∈ [−L, 0] ,

1
K2

for z ∈ (0,∞) ,

ρ(x, z) = ρ̄ for all (x, z) .

The fluctuations ν are defined as before, but the wave speeds to the left and to
the right of the random slab are in general different from the effective medium
wave speed c̄ =

√
K̄/ρ̄ in the interior of the slab.
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17.1.1 Boundary and Jump Conditions

We introduce the mode- and section-dependent effective speeds

c̄(κ, z) =

⎧
⎪⎪⎨
⎪⎪⎩

c1(κ) = c1√
1−c2

1κ2
for z ∈ (−∞,−L) ,

c̄(κ) = c̄√
1−c̄2κ2

for z ∈ [−L, 0] ,

c2(κ) = c2√
1−c2

2κ2
for z ∈ (0,∞) ,

with

c1 =
√

K1/ρ̄ , c2 =
√

K2/ρ̄ .

The corresponding impedances are defined by

ζ̄(κ, z) = ρ̄c̄(κ, z) ,

and we use the notation ζ1(κ), ζ̄(κ), and ζ2(κ) for the mode-dependent
impedances respectively to the left, in, and to the right of the random slab.
Then, we decompose the wave field as before:

p̂ε(ω, κ, z) =

√
ζ̄(κ, z)

2

(
ǎε(ω, κ, z)e

iωz
εc̄(κ,z) − b̌ε(ω, κ, z)e−

iωz
εc̄(κ,z)

)
,

ûε(ω, κ, z) =
1

2
√

ζ̄(κ, z)

(
ǎε(ω, κ, z)e

iωz
εc̄(κ,z) + b̌ε(ω, κ, z)e−

iωz
εc̄(κ,z)

)
.

The z dependence of the “effective” wave speed now leads to jump conditions
for the coefficients at z = 0 and z = −L. Next we use the continuity conditions
on the velocity ûε and the pressure p̂ε to derive the jump conditions. First,
we introduce the parameters

r
(±)
1 (κ) =

1

2

(√
ζ̄/ζ1(κ)±

√
ζ1/ζ̄(κ)

)
, (17.1)

r
(±)
2 (κ) =

1

2

(√
ζ2/ζ̄(κ)±

√
ζ̄/ζ2(κ)

)
, (17.2)

and the matrices

Jε,1
ω,κ =

⎡
⎣ r+

1 (κ)e
iωL

ε

(
1

c̄(κ)
− 1

c1(κ)

)

r−1 (κ)e
iωL

ε

(
1

c̄(κ)
+ 1

c1(κ)

)

r−1 (κ)e
iωL

ε

(
− 1

c̄(κ)− 1
c1(κ)

)

r+
1 (κ)e

iωL
ε

(
− 1

c̄(κ) + 1
c1(κ)

)

⎤
⎦ , (17.3)

Jε,2
ω,κ =

[
r+
2 (κ) r−2 (κ)

r−2 (κ) r+
2 (κ)

]
, (17.4)

where we have

(r+
j )2(κ)− (r−j )2(κ) = 1 , j = 1, 2.



17.1 Nonmatched Effective Medium 459

This gives the jump condition at the surface

[
ǎε(z = 0+)

b̌ε(z = 0+)

]
= Jε,2

ω,κ

[
ǎε(z = 0−)

b̌ε(z = 0−)

]
, (17.5)

with the corresponding relation satisfied at z = −L:

[
ǎε(z = (−L)+)

b̌ε(z = (−L)+)

]
= Jε,1

ω,κ

[
ǎε(z = (−L)−)

b̌ε(z = (−L)−)

]
. (17.6)

The mode-dependent interface reflection coefficients RI,j(κ) and transmission
coefficients TI,j(κ) are defined by

TI,j(κ) =
1

r+
j (κ)

=
2
√

ζj ζ̄(κ)

ζj(κ) + ζ̄(κ)
, (17.7)

RI,j(κ) =
r−j (κ)

r+
j (κ)

= (−1)j ζj(κ)− ζ̄(κ)

ζj(κ) + ζ̄(κ)
, (17.8)

for j ∈ {1, 2}. Here the subscript “I” stands for “Interface.” Then we have,
for instance, at the surface

[
ǎε(z = 0+)

b̌ε(z = 0−)

]
=

[
TI,2 RI,2

−RI,2 TI,2

] [
ǎε(z = 0−)

b̌ε(z = 0+)

]
, (17.9)

with
|TI,2|2 + |RI,2|2 = 1 .

In the random slab the propagator Pε
(ω,κ)(−L, z) solves the same equation

(14.35) as before, and we obtain

[
ǎε(0+)

b̌ε(0+)

]
= Jε,2

ω,κ Pε
(ω,κ)(−L, 0) Jε,1

ω,κ

[
ǎε((−L)−)

b̌ε((−L)−)

]
. (17.10)

This is the setup used to generalize the configurations and experiments studied
in the previous chapters. In the next sections we give two examples of such
generalizations, namely the transmitted cohererent pressure field through a
nonmatched random slab and the reflected wave by a nonmatched random
half-space.

17.1.2 Transmission of a Pulse through a Nonmatched
Random Slab

We consider the situation with a source located in the half-space z > 0, and we
want to characterize the transmitted pressure field in the half-space z < −L.
Thus, we introduce the nonmatched transmission and reflection coefficients
T ε

(ω,κ) and Rε
(ω,κ), which solve
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Fig. 17.1. Boundary conditions for the modes in the case of a nonmatched medium.

[Rε
(ω,κ)

1

]
= Jε,2

ω,κ Pε
(ω,κ)(−L, 0) Jε,1

ω,κ

[
0

e
iωL

ε

(
1

c̄(κ)− 1
c1(κ)

)

T ε
(ω,κ)

]
. (17.11)

Here we choose to add a phase to the generalized transmission coefficient
because it simplifies with the phase factor of the jump matrix Jε,1

ω,κ defined by
(17.3). Writing the propagator as

Pε
(ω,κ) =

[
αε

(ω,κ) βε
(ω,κ)

βε
(ω,κ) αε

(ω,κ)

]
,

and using the definitions (17.3–17.4) for the jump matrices Jε,j
ω,κ, we obtain

T ε
(ω,κ) =

1

αε
(ω,κ) r+

1 r+
2 + βε

(ω,κ) r−1 r+
2 e

2iωL
εc̄(κ) + βε

(ω,κ) r+
1 r−2 + αε

(ω,κ) r−1 r−2 e
2iωL
εc̄(κ)

.

Using the notation (17.7) and (17.8), the definitions

T ε
(ω,κ) =

1

αε
(ω,κ)

, R̃ε
(ω,κ) =

−βε
(ω,κ)

αε
(ω,κ)

, Rε
(ω,κ) =

βε
(ω,κ)

αε
(ω,κ)

,

and the relation

αε
(ω,κ)

αε
(ω,κ)

=
αε

(ω,κ)α
ε
(ω,κ) − βε

(ω,κ)β
ε
(ω,κ)

αε
(ω,κ)

2 +
βε

(ω,κ)β
ε
(ω,κ)

αε
(ω,κ)

2

=
1

αε
(ω,κ)

2 +
βε

(ω,κ)β
ε
(ω,κ)

αε
(ω,κ)

2 = (T ε
(ω,κ))

2 −Rε
(ω,κ)R̃

ε
(ω,κ) ,

we find that

T ε
(ω,κ) =

TI,1TI,2T
ε
(ω,κ)

1− Uε
(ω,κ)

,

with

Uε
(ω,κ) = −RI,1RI,2

(
(T ε

(ω,κ))
2 −Rε

(ω,κ)R̃
ε
(ω,κ)

)
e

2iωL
εc̄(κ)

+ RI,1R̃
ε
(ω,κ)e

2iωL
εc̄(κ) −RI,2R

ε
(ω,κ) . (17.12)
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We can then expand the nonmatched transmission coefficient in the form

T ε
(ω,κ) = TI,1TI,2T

ε
(ω,κ)

∞∑

j=0

[Uε
(ω,κ)]

j . (17.13)

The first term (j = 0) contains the direct arrival of the wave front, and
the following terms contain all the bounces back and forth by the interfaces
before transmission. The integral representation for the transmitted pressure
pulse is

pε(t0 + εs,x, (−L)−) =
−1

(2πε)3

∫ ∫
e−i ω

ε (t0+εs−κ.x)

√
ζ1(κ)

2
e

iωL
εc1(κ)

×
{

b̌ε(ω, κ, 0+)T ε
(ω,κ)e

iωL
ε

(
1

c̄(κ)
− 1

c1(κ)

)}
ω2 dω dκ . (17.14)

where b̌ε(ω, κ, 0+) models the incoming wave (see (17.16–17.17) below for a

particular case). Note that the two exponential factors e
iωL

εc1(κ) and e
iωL

ε

(
1

c̄(κ)
− 1

c1(κ)

)

simplify to e
iωL

εc̄(κ) .

Deterministic Case

In the deterministic case we have T ε
(ω,κ) = 1, Rε

(ω,κ) = R̃ε
(ω,κ) = 0, and we

obtain the following expression for the transmitted pressure:

pε(t0 + εs,x, (−L)−) =
−1

2(2πε)3

∫ ∫
e−iωs

√
ζ1(κ)b̌ε(ω, κ, 0+)

×TI,1TI,2

⎛
⎝

∞∑

j=0

e
iωφ(j,κ,t0,x,L)

ε (−RI,1RI,2)
j

⎞
⎠ω2 dω dκ ,

with the fast phase factor

φ(j, κ, t,x, L) = −t + κ · x +
(1 + 2j)L

c̄(κ)
.

We assume that the source is a point source located at the right of the surface
and that it is compactly supported in time on the ε scale and also centered in
time. Then the initial coefficient b̌ε(ω, κ, 0+) contains no fast-phase term and
the stationary phase point associated with the phase φ(j, κ, t,x, L) is

κsp,j(x) =
x

c̄
√
|x|2 + ((1 + 2j)L)2

,

and is computed as in Section 14.2.2. This value for the slowness vector corre-
sponds to a plane-wave mode that is traveling in the direction (x,−(1+2j)L),
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that is, the direction of the vector from the source to the virtual point of ob-
servation (x,−(1+2j)L) (see Figure 17.2). Therefore, at the point (x,−L) we
will observe a sequence of pressure pulses p0,j corresponding to the primary
arrivals and the higher-order multiples associated with the reflections from
the slab interfaces. The arrival time of the jth pulse is

t(j) =

√
|x|2 + ((1 + 2j)L)2

c̄
, (17.15)

and we can write

pε(t(j) + εs,x, (−L)−)
ε→0−→ p0,j(s,x,−L) ,

where the particular form of p0,j depends on the particular form for the source
pulse. We assume that the source term has a scaling as in Section 14.2.2,
so that the transmitted pulses have amplitudes of order one. For instance,
we can consider the case of a point source located just at the right of the
surface at position (0, 0+), emitting a short pulse at time 0, and generating the
forcing term

Fε(t,x, z) = εf

(
t

ε

)
δ(x)δ(z)

[
0
1

]
. (17.16)

We then have

b̌ε(ω, κ, 0+) =
ε2

√
ζ2(κ)

f̂(ω) (17.17)

and

p0,j(s,x,−L) = −TI,1TI,2(κsp,j)[−RI,1RI,2(κsp,j)]
jc1(κsp,j)

1/2

4πc̄c2(κsp,j)1/2(2j + 1)L
f ′(s) .

(17.18)
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Fig. 17.2. In this figure we show the source position at 0, the observation point at
(x,−L), and the stationary slowness vector for j = 1: κsp,1 = x/[c̄

√
|x|2 + (3L)2].
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Random Case

In the random case we proceed as in Section 14.2, and we get a characterization
in distribution of the (jth-order mutiple) transmitted pressure pulse process
by the replacements

T ε
(ω,κ)(−L, 0) 	→ T̃(ω,κ)(−L, 0) ,

Rε
(ω,κ)(−L, 0) 	→ 0 ,

R̃ε
(ω,κ)(−L, 0) 	→ 0 ,

in the expression (17.13) for the nonmatched transmission coefficient, where

T̃(ω,κ)(−L, 0) = exp

(
iω

√
γκ

2c̄(κ)
W0(L)− ω2 γκ

8c̄(κ)2
L

)
,

W0 is a standard Brownian motion, and

γκ =
c̄4(κ)

c̄4
γ , γ =

∫ ∞

−∞
E[ν(0)ν(z)]dz

are obtained as in Section 14.2.1, equation (14.48). Substituting into the in-
tegral representation (17.14) of the transmitted pressure field, we obtain that
the associated pressure approximation p̃ε is given by

p̃ε(t0 + εs,x, (−L)−) =
−1

2(2πε)3

∫ ∫
e−iωs

√
ζ1(κ)b̌ε(ω, κ, 0+)

×TI,1TI,2T̃(ω,κ)

⎛
⎝

∞∑

j=0

e
iωφ(j,κ,t0,x,L)

ε

(
−RI,1RI,2(T̃(ω,κ))

2
)j

⎞
⎠ω2 dω dκ .

Finally, we get the following version of the stable-front formula in the case of
a nonmatched medium:

Proposition 17.1. In probability distribution the following characterization
of the jth multiple of the transmitted wave process holds:

lim
ε→0

pε
(
t(j) + εs,x, (−L)−

)
= p̃j(s,x,−L) ,

where

t(j) =

√
|x|2 + ((1 + 2j)L)2

c̄
,

p̃j(s,x,−L) =
[
p0,j(·,x,−L) ∗ ND(L,x,j)

] (
s−Θ(L,x,j)

)
,

and we set, for j = 1, 2, . . .,
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D2
(L,x,j) =

γ

4c̄2

(
1 +

|x|2
((1 + 2j)L)2

)
(1 + 2j)L ,

Θ(L,x,j) =

√
γ
(
1 + |x|2

((1+2j)L)2

)

2c̄
(1 + 2j)W0(L) ,

ND(s) =
1√
2πD

e−s2/2D2

,

with W0 a standard Brownian motion. Here p0,j is the pulse shape obtained
in a homogeneous medium (given by (17.18) if the source is (17.16)).

Note that the variance of the travel-time correction term,

E[(Θ(L,x,j))
2] = (1 + 2j)D2

(L,x,j) ,

becomes large relative to the support of the determinsitic spreading for high-
order multiples. This follows, since the pulse experiences the same random
medium on its successive lags and the travel-time corrections are additive.

17.1.3 Reflection by a Nonmatched Random Half-Space

We consider the same situation as in the previous subsection, and analogously
we compute the nonmatched reflection coefficient Rε

(ω,κ) from (17.11):

Rε
(ω,κ) =

RI,2 + Vε
(ω,κ)

1− Uε
(ω,κ)

, (17.19)

where Uε
(ω,κ) is given by (17.12) and

Vε
(ω,κ) = Rε

(ω,κ)+RI,1

(
(T ε

(ω,κ))
2 −Rε

(ω,κ)R̃
ε
(ω,κ)

)
e

2iωL
εc̄(κ) −RI,1RI,2R̃

ε
(ω,κ)e

2iωL
εc̄(κ) .

If we consider an incoming pulse arriving from the right half-space and observe
the reflected wave during a finite time interval, then the end of the slab at
z = −L plays no role if L is large enough due to the finite speed of the wave
propagation. Accordingly, we can restrict ourselves to the case in which the
medium is matched at z = −L. In other words, we now assume that RI,1 = 0
(c1 = c̄ and ζ1 = ζ̄), and the reflection coefficient takes the simpler form

Rε
(ω,κ) =

RI,2 + Rε
(ω,κ)

1 + RI,2Rε
(ω,κ)

,

which can be expanded as

Rε
(ω,κ) = RI,2 +

∞∑

n=0

(−RI,2)
nT 2

I,2(R
ε
(ω,κ))

n+1 . (17.20)
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The first term RI,2 represents the wave that has been directly reflected by
the interface before entering the slab. The second term (n = 0) is T 2

I,2R
ε
(ω,κ),

which represents the wave that goes through the interface, is reflected back by
the inhomogeneities of the slab, and goes out to the right half-space through
the interface. It is the only term that is present in the matched medium case.
The other terms (n ≥ 1) represent waves that have been reflected back n
times in the random slab by the interface.

The integral representation for the reflected pressure wave is

pε(t,x, 0+) =
−1

2(2πε)3

∫ ∫
e−i ω

ε (t−κ.x)Rε
(ω,κ)

√
ζ2(κ)b̌ε(ω, κ, 0+)ω2 dω dκ ,

where b̌ε(ω, κ, 0+) models the incoming wave. We can now carry through the
various moment analyses needed in the study of the reflected wave or the time-
reversed refocused pulse. These moment analyses involve products of standard
reflection coefficients Rε

(ω,κ) and therefore the solution Wp of the transport

equations (14.67).
For instance, we can consider the case of a point source located just at the

right of the surface at position (0, 0+), emitting a short pulse at time 0, and
compute the mean reflected intensity. The point source generates the source
term

Fε(t,x, z) = ε1/2f

(
t

ε

)
δ(x)δ(z)

[
0
1

]
,

which imposes the boundary condition

b̌ε(ω, κ, 0+) =
ε3/2

√
ζ2(κ)

f̂(ω) .

We observe the mean reflected intensity at the surface z = 0, at the location
x = 0, and at time t > 0:

E[pε(t,x, 0+)2] =
1

256π6ε3

∫ ∫
e−i ω−ω′

ε t+i ωκ−ω′κ′
ε ·x

×E

[
Rε

(ω,κ)Rε
(ω′,κ′)

]
f̂(ω)f̂(ω′)ω2κω′2κ′ dω dκ dω′ dκ′ .

We parameterize x = (x, 0), x > 0, and use polar coordinates for κ and κ
′:

E[pε(t,x, 0+)2] =
1

256π6ε3

∫ ∫
e−i ω−ω′

ε t+i ωxµ cos(θ)−ω′xµ′ cos(θ′)
ε

×E

[
Rε

(ω,μ)Rε
(ω′,μ′)

]
f̂(ω)f̂(ω′)ω2μω′2μ′ dω dθ dμ dω′ dθ′ dμ′ . (17.21)

We follow the stationary-phase analysis carried out in Section 14.3.3, which
addresses the same problem in the matched-medium case. The difference is
contained in the expectation of the product of the two generalized reflection
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coefficientsRε
(ω,μ). From the expansion (17.20) and the limits (14.69), we get that

E

[
Rε

(ω,μ)Rε
(ω+εh,μ+ελ)

]

ε→0−→ R2
I,2 +

∞∑

n=0

R2n
I,2T

4
I,2

∫
Wn+1 (ω, μ, τ,−L, 0) eiτ [hc̄2/c̄(μ)2−ωλc̄2μ]dτ .

By substitution into (17.21) we obtain that in the limit ε → 0, the mean
intensity is zero if x > c̄t, and if x < c̄t, then it is given by

lim
ε→0

E[pε(t,x, 0+)2] =
∞∑

n=0

R2n
I,2T

4
I,2

32π3c̄4t2

∫
Wn+1 (ω, κx,t, t,−L, 0) |f̂(ω)|2ω2 dω ,

where
κx,t =

x

c̄2t
.

In the asymptotic L large (in fact, as soon as L ≥ c̄t/2),

Wp(ω, κx,t, t,−L, 0)
L→∞−→ c̄2

c̄(κx,t)Lloc(ω, κx,t)
P∞

p

(
c̄2t

c̄(κx,t)Lloc(ω, κx,t)

)
,

where P∞
p is given by (9.39) and Lloc(ω, κ) is the localization length defined

by (14.62). As a result, if the condition c̄t < 2L is satisfied, then we have for
all x < c̄t,

Wn+1 (ω, κx,t, t,−L, 0) =
c̄

Lloc(ω)

c̄t√
c̄2t2 − x2

P∞
n+1

(
c̄t

Lloc(ω)

c̄t√
c̄2t2 − x2

)
,

where Lloc(ω) = 4c̄2/γω2 is the one-dimensional localization length defined
by (7.81). This gives an explicit representation of the mean reflected intensity
for x < c̄t:

lim
ε→0

E[pε(t,x, 0+)2] =
T 4

I,2

32π3c̄4t2

∫ c̄
2Lloc(ω)

c̄t√
c̄2t2−x2

(
1 + c̄t

2Lloc(ω)
c̄t√

c̄2t2−x2
T 2

I,2

)2 |f̂(ω)|2ω2 dω ,

where TI,2 is given by (17.7) evaluated at κx,t. This type of computation can
be generalized in an analogous manner in order to treat other situations such
as a source emitting from above the surface (zs > 0) or a source embedded in
the medium (zs < 0). Similarly, time-reversal refocusing could be computed in
the case of a nonmatched medium, as a generalization of the results obtained
in Chapters 15 and 16.

17.2 General Background

Up to this point we have dealt with layered media with a random bulk modulus
that is rapidly varying around a constant value or a piecewise constant value,
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as in Sections 8.3 and 11.1. In this section we extend the results to the case
in which the bulk modulus is also modulated by a slow background variation
described by the deterministic smooth function K0(z). Thus, we model the
parameters of the medium as

1

K(x, z)
=

1

K(z)
=

{
1

K0(z)

(
1 + ν(z/ε2)

)
for z ∈ [−L, 0] ,

1
K

for z ∈ (−∞,−L) ∪ (0,∞) ,

ρ(x, z) = ρ̄ for all (x, z) .

To simplify, we assume a matched medium at both ends of the slab in the
sense that K0(−L) = K̄ = K0(0) and we address our familiar strongly het-
erogeneous white-noise regime, where the correlation length of the medium,
which is of order ε2, is much smaller than the typical wavelength of order ε,
which is itself much smaller than the propagation distance of order 1. The
new aspect of the analysis is primarily that the mode decomposition needs to
be adapted to the general background. More precisely, we have to center the
modes along the slowly varying characteristics imposed by the slowly varying
background. We are then able to define reflection and transmission coefficients
in the same way as in the constant-background case. The key ingredient is still
the separation-of-scales technique and the associated diffusion-approximation
theorem. We can then characterize the limiting statistical distribution of the
reflection coefficient in terms of a solution of a system of transport equations
that follow the slowly varying characteristics. The application of this result
to time reversal is then similar to the constant-background case.

−L 0

0.5

1

1.5

2

z

K

Fig. 17.3. A typical profile (solid line) of the bulk modulus with a slowly varying
background (dashed line).

17.2.1 Mode Decomposition

The slowly varying background can be characterized by its local velocity and
impedance
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c̄(z) =
√

K0(z)/ρ̄ , ζ̄(z) = ρ̄c̄(z) .

We next adapt the sequence of transforms that we have introduced in the
constant-background case. The mode velocity and impedance are in this case

c̄(κ, z) =
c̄(z)√

1− κ2c̄2(z)
, ζ̄(κ, z) = ρ̄c̄(κ, z) . (17.22)

We assume that there are no turning points, that is, we consider only modes
such that κc̄(z) < 1 for all z ∈ (−L, 0). In order to define the characteristics
along which we center the modes, we introduce the travel time

ϑκ(z) =

∫ z

0

dz′

c̄(κ, z′)
, (17.23)

which is the effective time necessary for a plane wave with slowness κ to
reach the depth z (more precisely, this time is −ϑκ, since z is negative).
We decompose the wave field into right- (ǎε = ǎε(ω, κ, z)) and left-going
(b̌ε = b̌ε(ω, κ, z)) waves with respect to the z-direction by setting

p̂ε(ω, κ, z) =

√
ζ̄(κ, z)

2

(
ǎε(ω, κ, z)e

iωϑκ(z)
ε − b̌ε(ω, κ, z)e−

iωϑκ(z)
ε

)
, (17.24)

ûε(ω, κ, z) =
1

2
√

ζ̄(κ, z)

(
ǎε(ω, κ, z)e

iωϑκ(z)
ε + b̌ε(ω, κ, z)e−

iωϑκ(z)
ε

)
. (17.25)

Substituting these expressions into the acoustic equations gives the system
satisfied by the modes (ǎε, b̌ε):

dǎε

dz
=

iω

2c̄(κ, z)ε
νκ

(
z,

z

ε2

)(
ǎε − e

−2iωϑκ(z)
ε b̌ε

)
+

1

2

c̄′(κ, z)

c̄(κ, z)
e

−2iωϑκ(z)
ε b̌ε ,(17.26)

db̌ε

dz
=

iω

2c̄(κ, z)ε
νκ

(
z,

z

ε2

)(
e

2iωϑκ(z)
ε ǎε − b̌ε

)
+

1

2

c̄′(κ, z)

c̄(κ, z)
e

2iωϑκ(z)
ε ǎε , (17.27)

where the prime stands for partial derivatives with respect to z, and

νκ(z, z̃) =
c̄(κ, z)2

c̄(z)2
ν(z̃) .

The system (17.26–17.27) describes the coupling between the right- and left-
going modes. This coupling results from the scattering with the rapidly vary-
ing fluctuations described by the terms proportional to the random process
νκ and also from the scattering with the slowly varying background captured
by the terms proportional to c̄′/c̄. We can use the propagator formulation
and introduce the reflection and transmission coefficients in the same way as
we did in the constant-background case in Section 14.1. The Riccati equation
satisfied by the reflection coefficient is
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dRε
(ω,κ)

dz
= − iω

2c̄(κ, z)ε
νκ

(
z,

z

ε2

)(
e

−2iωϑκ(z)
ε − 2Rε

(ω,κ) + (Rε
(ω,κ))

2e
2iωϑκ(z)

ε

)

+
1

2

c̄′(κ, z)

c̄(κ, z)

(
e

−2iωϑκ(z)
ε − (Rε

(ω,κ))
2e

2iωϑκ(z)
ε

)
. (17.28)

The terms proportional to c̄′(κ, z)/c̄(κ, z) in the right-hand side do not play
any role in the limit ε → 0 because they average out due to the fast phases
(see Theorem 6.4). Thus the Riccati equation for the reflection coefficient is
very similar to the one encountered in the constant-background case.

17.2.2 Transport Equations

As seen in the previous chapters, the autocorrelation function of the reflection
coefficient plays a primary role, and its limiting statistical distribution has
been found to be characterized by a system of transport equations. It turns
out that this is still the case with a general background. We introduce the
family of products of reflection coefficients

Uε
p,q(ω, κ, h, λ, z0, z) =

(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p (

Rε
(ω−εh/2,κ−ελ/2)(z0, z)

)q

.

From the Riccati equation (17.28) and the expansion

2(ω + εh/2)ϑκ+ελ/2(z) = 2ωϑκ(z) + ε (hϑκ(z)− ωλξκ(z)) + O(ε2) ,

where

ξκ(z) =

∫ z

0

κc̄(κ, z′)dz′ ,

we get that Uε satisfies to leading order the system

∂Uε
p,q

∂z
=

iω

c̄(κ, z)
νε

κ(p− q)Uε
p,q

+
iω

2c̄(κ, z)
νε

κe
2iωϑκ(z)

ε

(
qe−ihϑκ(z)+iωλξκ(z)Uε

p,q−1 − peihϑκ(z)−iωλξκ(z)Uε
p+1,q

)

+
iω

2c̄(κ, z)
νε

κe−
2iωϑκ(z)

ε

(
qeihϑκ(z)−iωλξκ(z)Uε

p,q+1 − pe−ihϑκ(z)+iωλξκ(z)Uε
p−1,q

)
,

starting from Uε
p,q(ω, κ, h, λ, z0, z = z0) = 10(p)10(q). Here we have set

νε
κ(z) = νκ(z, z/ε2)/ε, and we have omitted the terms proportional to c̄′/c̄

because they average out as ε → 0. We consider the associated family of
Fourier transforms

V ε
p,q(ω, κ, τ, χ, z0, z) =

ω

4π2

∫ ∫
e−ih[τ−(p+q)ϑκ(z)]+iωλ[χ−(p+q)ξκ(z)]

×Uε
p,q(ω, κ, h, λ, z0, z) dh dλ . (17.29)
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By applying the limit theorem of Section 6.7.3, in the same way as in Section
9.2.1, we obtain that the process (V ε

p,q)p,q∈N converges in distribution as ε→ 0
to a diffusion process. In particular, the moments converge,

E[V ε
p,p(ω, κ, τ, χ, z0, z)]

ε→0−→ Vp(ω, κ, τ, χ, z0, z) ,

where Vp satisfies the system of transport equations

∂Vp

∂z
+

2p

c̄(κ, z)

∂Vp

∂τ
+ 2pc̄(κ, z)κ

∂Vp

∂χ
=

p2

Lloc(ω, κ, z)
(Vp+1 + Vp−1 − 2Vp) ,

(17.30)
starting from Vp(τ, ω, κ, χ, z0, z = z0) = 10(p)δ(τ)δ(χ). The “local” localiza-
tion length is

Lloc(ω, κ, z) =
4c̄(z)4

γc̄(κ, z)2ω2
, γ =

∫ ∞

−∞
E[ν(0)ν(z)] dz .

The solution of this system admits a representation in terms of the inhomo-
geneous jump Markov process (Nz)z≥z0

with state space N and infinitesimal
generator

L(ω,κ,z)φ(N) =
N2

Lloc(ω, κ, z)
(φ(N + 1) + φ(N − 1)− 2φ(N)) .

The solution Vp can be written as the expectation of a functional of this jump
process:

Vp(ω, κ, τ, χ, z0, z) = E

[
10(Nz)δ

(
τ − 2

∫ z

z0

Ns

c̄(κ, z0 + z − s)
ds

)

× δ

(
χ− 2

∫ z

z0

κc̄(κ, z0 + z − s)Nsds

)
| Nz0 = p

]
.

Note that we cannot combine the two Dirac distributions as we could do in
the constant-background case, so we cannot eliminate the χ-variable from the
transport equations. Taking the inverse Fourier transform of (17.29), we get
that for z0 ≤ z,

E

[(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p (

Rε
(ω−εh/2,κ−ελ/2)(z0, z)

)q]
(17.31)

ε→0−→

⎧
⎨
⎩

e2ip[−hϑκ(z)+ωλξκ(z)]

∫ ∫
Vp(ω, κ, τ, χ, z0, z)ei[τh−ωλχ] dτ dχ if q = p ,

0 otherwise.

These asymptotic moments, and similar ones for the transmission coefficients,
can be used to characterize quantities of interest, such as the transmitted
stable front, the mean reflected intensity, the time-reversed refocused pulse,
for instance. The main difference with the constant-background case is that
the stationary points involved in the computations of integral representations
are given implicitly, and do not lead to simple formulas. We give some of these
results in the next section.
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17.2.3 Applications

Transmitted Stable Front

The results obtained in Chapter 14 concerning the transmitted stable front
can be generalized to the case of a general background. At the offset x, we
can observe a stable front around the time

t0 =

∫ 0

−L

1

c̄(z)
√

1− c̄(z)2κ2
0

dz .

Here κ0 = |κ0| is defined implicitly by

x = κ0

∫ 0

−L

c̄(z)√
1− c̄(z)2|κ0|2

dz ,

which is assumed to be unique. For the reader familiar with geometrical optics
[20], the stationary slowness vector corresponds to the fastest ray going from
the source O to the observation point (x,−L) in absence of random fluctu-
ations. This ray is uniquely defined if we assume that there are no caustics
until depth L. The time t0 corresponds to the travel time along this ray path.

As in the constant-background case, the transmitted stable front through
a random slab is modified in two ways compared to the homogeneous case.
First, it experiences a small random time shift, which can be described as a
Gaussian random variable with zero mean and variance

D2
(L,x) =

γ

4

∫ 0

−L

1

c̄(z)2[1− c̄(z)2κ2
0]

dz .

Second, its shape is the convolution of the homogeneous front with a deter-
ministic Gaussian kernel whose variance is D2

(L,x).

Mean Reflected Intensity

The mean reflected intensity is obtained as in Section 14.3.3. One starts from
the integral representation (14.73) and uses the asymptotic expression (17.31)
(with p = q = 1) for the autocorrelation function of the reflection coefficient.
One then obtains

lim
ε→0

E[pε(t,x, 0+)2] =
1

32π3x

∫ ∫
V1(ω, μ, t− μx, x,−L, 0)|f̂(ω)|2ω2μ dω dμ ,

for x = (x, 0), x > 0. The effect of the varying background is contained in the
density V1 given by the system of transport equations (17.30).
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Time Reversal

We can also revisit the results obtained in Chapter 15 for time reversal in
the presence of a general background. The analysis is similar to the constant-
background case. The difference arises when we substitute the limiting ex-
pression of the autocorrelation function of the reflection coefficient. We get
the same result as stated in Theorem 15.1: refocusing is observed on the orig-
inal source position, and refocusing occurs exactly at the expected time −ts.
The pulse shape can be expressed as a convolution of the original pulse shape
with a refocusing kernel that is given in terms of the solution of the system
of transport equations (17.30).

Inverse Problem

The inverse problem, which consists in reconstructing the slowly varying back-
ground K0(z) from the observation of the reflected waves can be approached
in the following way. The quantity V1(ω, κ, τ, χ,−L, 0) is estimated from the
cross-correlations of the reflected signals, or from the time-reversal refocusing
kernels. Then, the coefficient K0(z) is retrieved by solving the deterministic
inverse problem associated with the system of transport equations (17.30).
These two steps are delicate and involve sophisticated statistical estimators
and numerical procedures beyond the scope of this book. We refer to [8, 133]
for more details.

17.3 Medium with Random Density Fluctuations

In this section we discuss the case in which not only the bulk modulus, but
also the density fluctuates randomly. We consider again linear acoustic waves
propagating in three spatial dimensions:

ρ
∂uε

∂t
+∇p = Fε , (17.32)

1

K

∂pε

∂t
+∇ · uε = 0 , (17.33)

with ρ the density of the medium and K the bulk modulus.
As before, we model fluctuations around the reciprocal of the bulk modulus

and introduce now also fluctuations in the density as

1

K(x, z)
=

1

K(z)
=

{ 1
K

(
1 + ν(z/ε2)

)
for z ∈ [−L, 0] ,

1
K

for z ∈ (−∞,−L) ∪ (0,∞) ,

ρ(x, z) =

{
ρ
(
1 + η(z/ε2)

)
for z ∈ [−L, 0] ,

ρ for z ∈ (−∞,−L) ∪ (0,∞) ,
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where the random fluctuations ν and η are ergodic Markov processes. We
consider a source located in the right homogeneous half-space at the location
(0, zs), zs > 0, which imposes the forcing term

Fε(t,x, z) = εq

[
0
1

]
f

(
t

ε
,
x

ε

)
δ(z − zs) . (17.34)

Taking the specific Fourier transform gives in this case the system

−ρ̄(1 + η)
iω

ε
v̂ε +

iω

ε
κp̂ε = 0 ,

−ρ̄(1 + η)
iω

ε
ûε +

∂p̂ε

∂z
= εq+3f̂(ω, κ)δ(z − zs) ,

− 1

K̄
(1 + ν)

iω

ε
p̂ε +

iω

ε
κ · v̂ε +

∂ûε

∂z
= 0 ,

with f̂ being the unscaled specific Fourier transform. From (14.6–14.7) we see
that both the mean density ρ̄ and the harmonic mean density ρ̃ defined by

1

ρ̃
= E

[
1

ρ̄(1 + η)

]

are important in determining the effective medium. In general, ρ̃ ≤ ρ̄ and in
the case that ρ̃ < ρ̄ we do not have matched boundary conditions, as
we discuss next. We eliminate v̂ε to get the system

− iω

ε
ρ̄(1 + η)ûε +

∂p̂ε

∂z
= εq+3f̂(ω, κ)δ(z − zs) , (17.35)

− iω

ε

(
1

K̄
(1 + ν)− κ2

ρ̃
(1 + η̃)

)
p̂ε +

∂ûε

∂z
= 0 , (17.36)

where we have introduced the centered process η̃ defined by

1

ρ̄(1 + η)
=

1

ρ̃
(1 + η̃) .

We moreover define the mode-dependent wave speed by

c̄(κ, z) =

{
c̄(κ) = c̄√

1−κ2c̄2(ρ̄/ρ̃)
for z ∈ [−L, 0] ,

c0(κ) = c̄√
1−c̄2κ2

for z ∈ (−∞,−L) ∪ (0,∞) ,
(17.37)

where c̄2 = K̄/ρ̄, and the effective mode-dependent acoustic impedance is
given by

ζ̄(κ, z) =

{
ζ̄(κ) = ρ̄c̄(κ) for z ∈ [−L, 0] ,
ζ0(κ) = ρ̄c0(κ) for z ∈ (−∞,−L) ∪ (0,∞) .

(17.38)

These definitions allow us to write
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− iω

ε
ρ̄(1 + η)ûε +

∂p̂ε

∂z
= εq+3f̂(ω, κ)δ(z − zs) , (17.39)

− iω

ε

1

ρ̄c̄(κ, z)2
(1 + νκ) p̂ε +

∂ûε

∂z
= 0 , (17.40)

by defining the mode-dependent medium fluctuations

νκ =
c̄(κ)2

c̄2
(ν − η̃) + η̃ .

Thus, we have transformed the problem into a family of one-dimensional mode
propagation problems that take the same form as those we have analyzed
before. We accordingly decompose the pressure and velocity into right- (ǎε)
and left-going (b̌ε) modes:

p̂ε(ω, κ, z) =

√
ζ̄(κ, z)

2

(
ǎε(ω, κ, z)e

iωz
εc̄(κ,z) − b̌ε(ω, κ, z)e−

iωz
εc̄(κ,z)

)
, (17.41)

ûε(ω, κ, z) =
1

2
√

ζ̄(κ, z)

(
ǎε(ω, κ, z)e

iωz
εc̄(κ,z) + b̌ε(ω, κ, z)e−

iωz
εc̄(κ,z)

)
. (17.42)

In the case with fluctuations in the density, the mode system involves the two
processes

mκ = νκ + η , nκ = νκ − η , (17.43)

since by substituting (17.41) and (17.42) in (17.39) and (17.40) we get

d

dz

[
ǎε

b̌ε

]
=

iω

2c̄(κ)ε

[
mκ

(
z
ε2

)
−nκ

(
z
ε2

)
e

−2iωz
c̄(κ)ε

nκ

(
z
ε2

)
e

2iωz
c̄(κ)ε −mκ

(
z
ε2

)
] [

ǎε

b̌ε

]
, (17.44)

for z ∈ (−L, 0). The continuity conditions for p̂ε and ûε give the following
jump conditions for the amplitudes at the location of the source:

[ǎε]zs
= εq+3 1√

ζ0(κ)
f̂(ω, κ)e

−iωzs
εc0(κ) , (17.45)

[
b̌ε

]
zs

= −εq+3 1√
ζ0(κ)

f̂(ω, κ)e
iωzs

εc0(κ) . (17.46)

In the following subsection we discuss how the propagator and the distri-
bution of the slab-transmission coefficients are affected by the density varia-
tions. Then in Sections 17.3.2 and 17.3.4 respectively we will use these results
to analyze how the transmitted and reflected fields are affected.

17.3.1 The Coupled-Propagator White-Noise Model

The propagators now solve the differential equation

d

dz
Pε

(ω,κ)(−L, z) =
1

ε
H(ω,κ)

(z

ε
, mκ

( z

ε2

)
, nκ

( z

ε2

))
Pε

(ω,κ)(−L, z) , (17.47)
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with the 2× 2 matrix H(ω,κ) given by

H(ω,κ)(z, m, n) =
iω

2c̄(κ)

[
m −ne

−2iωz
c̄(κ)

ne
2iωz
c̄(κ) −m

]
,

and Pε
(ω,κ,)(−L, z = −L) = I. The trace of H(ω,κ) is still zero, and the prop-

agator can be written in the form

Pε
(ω,κ)(−L, z) =

[
αε

(ω,κ)(−L, z) βε
(ω,κ)(−L, z)

βε
(ω,κ)(−L, z) αε

(ω,κ)(−L, z)

]
.

As in Section 14.2.1, in order to characterize the transmitted pulse, we are led
to study the joint distribution of the transmission coefficients

T ε
(ωj ,κj)

(−L, 0) =
1

αε
(ωj ,κj)

(−L, 0)
,

for a finite number of frequencies and wave vectors (ω1, κ1), . . . , (ωM , κM ). In
particular, we need to characterize the limits

lim
ε→0

E

[
T ε

(ω1,κ1)
(−L, 0) · · ·T ε

(ωM ,κM )(−L, 0)
]

. (17.48)

The joint statistics of the propagators follow, from the distribution of the mul-
tifrequency and multislowness propagator Pε

M (−L, z) = Pε
(ω1,...,κM)(−L, z),

which is the 2M × 2M block-diagonal complex matrix

Pε
M (−L, z) =

⎡
⎢⎢⎣

Pε
(ω1,κ1)

(−L, z) · · · 0

·
·

0 · · · Pε
(ωM ,κM )(−L, z)

⎤
⎥⎥⎦ ,

where the complex linear system for Pε is defined in terms of

HM (z, m1, · · · , nM ) =

⎡
⎢⎢⎣

H(ω1,κ1)(z, m1, n1) · · · 0
·
·

0 · · · H(ωM ,κM )(z, mM , nM )

⎤
⎥⎥⎦ .

The multifrequency propagator system is

d

dz
Pε

M (−L, z) =
1

ε
HM

(z

ε
, mκ1

( z

ε2

)
, . . . , nκM

( z

ε2

))
Pε

M (−L, z) , (17.49)

with the initial condition Pε
M (−L, z = −L) = I, where I is the identity matrix

of dimension 2M .
We want now to apply the diffusion-approximation result introduced in

Section 6.7.3 to obtain the diffusion limit for the multifrequency propagator,
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similarly as in Section 8.2.4. We first rewrite the differential equations for the
2× 2 diagonal entries in (17.49) in the expanded form

d

dz
Pε

(ωj ,κj)
(−L, z) =

iωj

2c̄(κj)ε
(η + η̃)

( z

ε2

) [
1 0
0 −1

]
Pε

(ωj ,κj)
(−L, z) (17.50)

+
iωj c̄(κj)

2c̄2ε
(ν − η̃)

( z

ε2

)[
1 0
0 −1

]
Pε

(ωj ,κj)
(−L, z)

− ωj

2c̄(κj)ε
nκj

( z

ε2

)
sin

(
2ωjz

c̄(κj)ε

)[
0 1
1 0

]
P(ωj ,κj)(−L, z)

− iωj

2c̄(κj)ε
nκj

( z

ε2

)
cos

(
2ωjz

c̄(κj)ε

)[
0 1
−1 0

]
Pε

(ωj ,κj)
(−L, z) ,

where we have used the relation

mκ(z) = (η + η̃) +
c̄(κ)2

c̄2
(ν − η̃) .

The equation for the limiting propagator can be obtained by “white-noise
substitutions,” as explained in Section 6.7.3 and as we detail below. These
substitutions require that one study the joint asymptotics of the driving pro-
cesses that appear in the right-hand side of (17.50).

By application of the diffusion approximation Theorem 6.1, we get that
the R2-valued process

(
1

ε

∫ z

0

(η + η̃)

(
z′

ε2

)
dz′,

1

ε

∫ z

0

(ν − η̃)

(
z′

ε2

)
dz′

)

converges in distribution to the diffusion Markov process (X1, X2) with the
infinitesimal generator

L =
γ11

2

∂2

∂X2
1

+
γ22

2

∂2

∂X2
2

+ γ12
∂2

∂X1∂X2
,

where

γ11 =

∫ ∞

−∞
E[(η(0) + η̃(0))(η(z) + η̃(z))]dz , (17.51)

γ12 =

∫ ∞

−∞
E[(η(0) + η̃(0))(ν(z)− η̃(z))]dz ,

γ22 =

∫ ∞

−∞
E[(ν(0) − η̃(0))(ν(z)− η̃(z))]dz .

The diffusion Markov process (X1, X2) can be represented as

X1(z) =
√

γ11W
(1)(z) ,

X2(z) =
γ12√
γ11

W (1)(z) +
√

γ22

√
1− γ2

12

γ11γ22
W (2)(z) ,
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where W (1) and W (2) are two independent standard Brownian motions. As
a consequence, the following convergence holds true jointly for the set of M
slownesses (κ1, . . . , κM ):

1

ε

∫ z

0

mκj

(
z′

ε2

)
dz′

ε→0−→ √γ1,κjW
(1)(z) +

√
γ2,κj W

(2)(z) , (17.52)

where

γ1,κ = γ11

(
1 +

γ12

γ11

c̄(κ)2

c̄2

)2

, γ2,κ = γ22

(
1− γ2

12

γ11γ22

)
c̄(κ)4

c̄4
. (17.53)

We also have the convergence in distribution of the R2M -valued process

(
1

ε

∫ z

0

nκj

(
z′

ε2

)
sin

(
2ωjz

′

c̄(κj)ε

)
dz′ ,

1

ε

∫ z

0

nκj

(
z′

ε2

)
cos

(
2ωjz

′

c̄(κj)ε

)
dz′

)

1≤j≤M

ε→0−→
√

γnκj√
2

(
Wj(z), W̃j(z)

)
1≤j≤M

, (17.54)

where Wj , W̃j , j = 1, . . . , M are independent standard Brownian motions and

γnκ =

∫ ∞

−∞
E[nκ(0)nκ(z)] dz . (17.55)

Here the orthogonality of the Fourier basis leads to the independence of the
Brownian motions Wj and W̃j with respect to each other, and also with respect
to W (1) and W (2). From the expression

nκ = (η̃ − η) +
c̄(κ)2

c̄2
(ν − η̃) ,

we can write

γnκ = γ̃11 + 2γ̃12
c̄(κ)2

c̄2
+ γ22

c̄(κ)4

c̄4
, (17.56)

where we have introduced the coefficients

γ̃11 =

∫ ∞

−∞
E[(η(0) − η̃(0))(η(z)− η̃(z))] dz ,

γ̃12 =

∫ ∞

−∞
E[(η(0) − η̃(0))(ν(z)− η̃(z))] dz .

We now apply the diffusion approximation result stated in Section 6.7.3
to the system of random ordinary differential equations (17.50), and we ob-
tain that the limit multifrequency propagator satisfies the following system of
stochastic differential equations written is Stratonovich form:
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dP(ωj ,κj)(−L, z) =
iωj
√

γ1,κj

2c̄(κj)

[
1 0
0 −1

]
P(ωj ,κj)(−L, z) ◦ dW (1)(z)

+
iωj
√

γ2,κj

2c̄(κj)

[
1 0
0 −1

]
P(ωj ,κj)(−L, z) ◦ dW (2)(z)

−
ωj
√

γnκj

2
√

2c̄(κj)

[
0 1
1 0

]
P(ωj ,κj)(−L, z) ◦ dWj(z)

−
iωj
√

γnκj

2
√

2c̄(κj)

[
0 1
−1 0

]
P(ωj ,κj)(−L, z) ◦ dW̃j(z) . (17.57)

This result shows that the 2 × 2 elementary propagators that are associated
with a particular frequency and slowness are coupled through the two Brow-
nian motions W (1) and W (2). This reflects the fact that now both the density
and the bulk modulus are randomly varying. In the case with a constant
density, only one Brownian motion couples the propagators as described in
(8.51).

The transmission coefficients are given by

T ε
(ωj,κj)

(−L, z) =
1

αε
(ωj ,κj)

(−L, z)
,

and we can now use the above diffusion limit to obtain the limits as ε → 0
of these coefficients, which we denote by T(ω,κ). We follow the same strategy
as the one in Section 8.2.5, to show that the transmission coefficients have
martingale representations similar to (8.57). From (17.57) the random vector
(T ε

(ω1,κ1)
(−L, 0), . . . , T ε

(ωM ,κM)(−L, 0)) converges in distribution as ε → 0 to

the limit (T(ω1,κ1)(−L, 0), . . . , T(ωM ,κM )(−L, 0)), where the limit transmission
coefficients have the martingale representations

T(ωj,κj)(−L, 0) = M̃(ωj,κj)(−L, 0)T̃(ωj,κj)(−L, 0) , j = 1, . . . , M . (17.58)

Here

T̃(ωj ,κj)(−L, 0) = exp

(
iωj

√
γ1,κj

2c̄(κj)
W (1)(L) + iωj

√
γ2,κj

2c̄(κj)
W (2)(L)

)

× exp

(
−ω2 γnκj

8c̄(κj)2
L

)
, (17.59)

and for each j, the process M̃(ωj ,κj)(−L, 0) is a complex martingale that

depends only on the pair of Brownian motions (Wj , W̃j). Therefore, these

martingales are independent of each other, and independent of T̃ωj(−L, 0),

which is a function of the Brownian motions W (1) and W (2) only. The
joint limits for the transmission coefficient at frequencies and slownesses
(ω1, κ1), . . . , (ωM , κM ) will lead to the weak limit for the transmitted front.
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17.3.2 The Transmitted Field

In this section we derive an approximation for the transmitted front. Recall
that the specific Fourier transform for the pressure and the longitudional ve-
locity component are given by (17.41) and (17.42) with the impedance having
a jump at the surface:

ζ̄(κ, z) =

⎧
⎨
⎩

ζ̄(κ) = ζ̄√
1−κ2 c̄2(ρ̃/ρ̄)

for z ∈ [−L, 0] ,

ζ0(κ) = ζ̄√
1−κ2c̄2

for z ∈ (−∞,−L) ∪ (0,∞) ,
(17.60)

with ζ̄ =
√

ρ̄K̄. The continuity condition on the pressure and the velocity
imposes a jump condition on the coefficients ǎε and b̌ε at the two interfaces z =
0 and z = −L. Let the mode-dependent surface interface reflection coefficients
RI(κ) and transmission coefficients TI(κ) be defined by

RI(κ) =
ζ0(κ)− ζ̄(κ)

ζ0(κ) + ζ̄(κ)
, TI(κ) =

√
1−RI(κ)2 =

2
√

ζ0(κ)ζ̄(κ)

ζ0(κ) + ζ̄(κ)
, (17.61)

and define also

r(±)(κ) =
1

2

(√
ζ0/ζ̄(κ)±

√
ζ̄/ζ0(κ)

)
,

so that TI = 1/r+ and RI = r−/r+. We observe the transmitted pressure at
the time t = t0 + εs at the horizontal offset x. The situation can be actually
interpreted as a particular case of the nonmatched medium configuration stud-
ied in Section 17.1. The integral representation for the transmitted pressure
field is given by (17.14),

pε(t0 + εs,x, (−L)−) =
−1

2(2πε)3

∫ ∫
e−i ω

ε (t0+εs−κ.x)
√

ζ0(κ)e−
iωL

εc̄(κ)

×T ε
(ω,κ)b̌

ε(ω, κ, 0+)ω2 dω dκ , (17.62)

where b̌ε(ω, κ, 0+) models the incoming wave and is given by (17.46) with the
radiation condition b̌ε(ω, κ, z+

s ) = 0:

b̌ε(ω, κ, 0+) = εq+3 1√
ζ0(κ)

f̂(ω, κ)e
iωzs

εc0(κ) .

The generalized transmission coefficient is given by the relation (17.11):

[Rε
(ω,κ)

1

]
= Jε,2

ω,κ Pε
(ω,κ)(−L, 0) Jε,1

ω,κ

[
0

e
iωL

ε

(
1

c̄(κ)− 1
c0(κ)

)

T ε
(ω,κ)

]
, (17.63)

where the interface jump matrices are given by
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Jε,1
ω,κ =

⎡
⎣ r+(κ)e

iωL
ε

(
1

c̄(κ)
− 1

c0(κ)

)

−r−(κ)e
iωL

ε

(
1

c̄(κ)
+ 1

c0(κ)

)

− r−(κ)e
iωL

ε

(
− 1

c̄(κ)− 1
c0(κ)

)

r+(κ)e
iωL

ε

(
− 1

c̄(κ) + 1
c0(κ)

)

⎤
⎦ ,

Jε,2
ω,κ =

[
r+(κ) r−(κ)
r−(κ) r+(κ)

]
.

We can expand the generalized transmission coefficient as in (17.13),

T ε
(ω,κ) = T 2

I T ε
(ω,κ)

∞∑

j=0

[
Uε

(ω,κ)

]j

,

Uε
(ω,κ) = R2

I

(
(T ε

(ω,κ))
2 + Rε

(ω,κ)R̃
ε
(ω,κ)

)
e

2iωL
εc̄(κ) + RI

(
R̃ε

(ω,κ)e
2iωL
εc̄(κ) −Rε

(ω,κ)

)
,

where Rε
(ω,κ) and T ε

(ω,κ) are the usual reflection and transmission coefficients,

while R̃ε
(ω,κ) is the adjoint reflection coefficient as defined in (15.28–15.29):

Rε
(ω,κ) =

βε
(ω,κ)

αε
(ω,κ)

, R̃ε
(ω,κ) = −

βε
(ω,κ)

αε
(ω,κ)

, T ε
(ω,κ) =

1

αε
(ω,κ)

. (17.64)

By the same computation as the one carried out in Section 14.2.1, we get a
characterization in distribution of the transmitted pressure pulse field by the
replacements

T ε
(ω,κ)(−L, 0) 	→ T̃(ω,κ) , Rε

(ω,κ)(−L, 0) 	→ 0 , R̃ε
(ω,κ)(−L, 0) 	→ 0 ,

where

T̃(ω,κ) = exp

(
iω

√
γ1,κ

2c̄(κ)
W (1)(L) + iω

√
γ2,κ

2c̄(κ)
W (2)(L)− ω2 γnκ

8c̄(κ)2
L

)

= exp

(
iω

√
γmκ

2c̄(κ)
W0(L)− ω2 γnκ

8c̄(κ)2
L

)
, (17.65)

W0(L) is a standard Brownian motion, and the coefficient γmκ defined by

γmκ =

∫ ∞

−∞
E[mκ(0)mκ(z)]dz (17.66)

depends on the slowness κ and can also be written as

γmκ = γ1,κ + γ2,κ = γ11 + 2γ12
c̄(κ)2

c̄2
+ γ22

c̄(κ)4

c̄4
. (17.67)

The other coefficients γ1,κ, γ2,κ, and γnκ are given by (17.53) and (17.56). We
therefore find that

p̃ε(t0 + εs,x, (−L)−) =
−εq

2(2π)3

∫ ∫
e−iωsf̂(ω, κ)

×T 2
I T̃(ω,κ)

∞∑

j=0

e
iωφ(j,κ,t0,x,L)

ε

(
RI T̃(ω,κ)

)2j

ω2 dω dκ ,
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where

φ(j, κ, t0,x, L) = −t0 + κ · x +
(1 + 2j)L

c̄(κ)
+

zs

c0(κ)
.

We consider now the situation in which the source is located at the surface:
zs → 0, and with q = −1, so that the transmitted pulse has amplitude of
order one. Then, we can carry out the stationary-phase evaluation as before
and find that for each j, the rapid phase φ(j, ·, t0,x, L) has one stationary
slowness vector given by

κsp,j(x) =
x

c̄
√
|x|2ρ̄/ρ̃ + (1 + 2j)2L2(ρ̄/ρ̃)2

.

For this stationary point, we have φ(j, κsp,j , t0,x, L) = 0 only if the observa-
tion time is equal to t(j), given by

t(j)(x) =
(1 + 2j)L

c̄

(
1 +

|x|2ρ̃
(1 + 2j)2L2ρ̄

)1/2

. (17.68)

Furthermore, we have

c̄(κsp,j)
2 = c̄2

(
1 +

|x|2ρ̃
(1 + 2j)2L2ρ̄

)
,

c0(κsp,j)
2 = c̄2

1 + |x|2ρ̃
(1+2j)2L2ρ̄

1 + |x|2ρ̃
(1+2j)2L2ρ̄

(
1− ρ̃

ρ̄

) ,

RI(κsp,j) =

|x|2ρ̃
(1+2j)2L2ρ̄

(
1− ρ̃

ρ̄

)

2 + |x|2ρ̃
(1+2j)2L2ρ̄

(
1− ρ̃

ρ̄

) ,

TI(κsp,j) =
2
[
1 + |x|2ρ̃

(1+2j)2L2ρ̄

(
1− ρ̃

ρ̄

)]1/2

2 + |x|2ρ̃
(1+2j)2L2ρ̄

(
1− ρ̃

ρ̄

) .

We thus arrive at the following generalization of the stabilization of the
stable-front result in Proposition 14.3.

Proposition 17.2. In probability distribution the following characterization
of the transmitted wave process holds. At the offset x, we can observe a trans-
mitted pulse at time t(j) given by (17.68) for any j = 0, 1, 2, . . . , whose asymp-
totic form is

lim
ε→0

pε
(
t(j) + εs,x,−L

)
= p̃j(s,x,−L) ,

where
p̃j(s,x− L) =

[
ND(L,x,j)

∗ p̃0,j(·,x,−L)
] (

s−Θ(L,x,j)

)
,

and we set
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D2
(L,x,j) =

1

4c̄2

[
γ̃11

(
1 +

|x|2ρ̃
(1 + 2j)2L2ρ̄

)−1

+ 2γ̃12

+ γ22

(
1 +

|x|2ρ̃
(1 + 2j)2L2ρ̄

)]
(1 + 2j)L ,

Θ(L,x,j) =
1

2c̄

[
γ11

(
1 +

|x|2ρ̃
(1 + 2j)2L2ρ̄

)−1

+ 2γ12

+ γ22

(
1 +

|x|2ρ̃
(1 + 2j)2L2ρ̄

)]1/2

(1 + 2j)W0(L) ,

ND(s) =
1√
2πD

e−s2/2D2

,

with W0(L) a standard Brownian motion. Here p̃0,j is the pulse shape

p̃0,j(s,x,−L) = −
[
RI(κsp,j)

2jTI(κsp,j)
2c̄ρ̃

4πc̄(κsp,j)2ρ̄(2j + 1)L

]
f ′

j(s) ,

where

fj(t) =

∫
f(t + κsp,j(x) · y,y)dy .

In the case that there are no density fluctuations we have

• ρ̄ = ρ̃,
• γ11 = γ̃11 = γ12 = γ̃12 = 0,
• RI = 0, TI = 1, so that p̃0,j = 0 if j ≥ 1 and p̃0,0 is the transmitted pulse

shape obtained in the homogeneous medium

p̃0,0(t,x,−L) = − 1

4πc̄(|x|2 + L2)
f ′
0(t) ,

f0(t) =

∫
f

(
t +

x · y
c̄
√
|x|2 + L2

,y

)
dy .

We thus recover the result stated in Proposition 14.3.

17.3.3 Transport Equations

As seen in the previous chapters, the limit autocorrelation function of the re-
flection coefficient determines important physical quantities such as the mean
reflected intensity. The asymptotic analysis of the two-frequency correlation
function of the reflection coefficient is carried out in this section, and it will be
applied to the computation of the mean reflected intensity in Section 17.3.4.
From (17.44) we deduce the closed nonlinear differential system satisfied by
the reflection and transmission coefficients:
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dRε
(ω,κ)

dz
= − iω

2c̄(κ)ε

(
nκ

( z

ε2

)
e

−2iωz
c̄(κ)ε −mκ

( z

ε2

)
2Rε

(ω,κ)

+ nκ

( z

ε2

)
(Rε

(ω,κ))
2e

2iωz
c̄(κ)ε

)
,

dT ε
(ω,κ)

dz
= − iω

2c̄(κ)ε

(
mκ

( z

ε2

)
− nκ

( z

ε2

)
Rε

(ω,κ)e
2iωz
c̄(κ)ε

)
T ε

(ω,κ) ,

starting from Rε
(ω,κ)(z0, z = z0) = 0, T ε

(ω,κ)(z0, z = z0) = 1. We again intro-
duce the family of products

Uε
p,q(ω, κ, h, λ, z0, z) =

(
Rε

(ω+εh/2,κ+ελ/2)(z0, z)
)p (

Rε
(ω−εh/2,κ−ελ/2)(z0, z)

)q

,

and obtain the following slightly modified system for Uε
(p,q):

dUε
p,q

dz
=

iω

c̄(κ)
mε

κ(p− q)Uε
p,q

+
iω

2c̄(κ)
nε

κe
2iωz
c̄(κ)ε

(
qe

−ihz
c̄(κ)

+iωλc̄(κ)κzUε
p,q−1 − pe

ihz
c̄(κ)

−iωλc̄(κ)κzUε
p+1,q

)

+
iω

2c̄(κ)
nε

κe−
2iωz
c̄(κ)ε

(
qe

ihz
c̄(κ)−iωλc̄(κ)κzUε

p,q+1 − pe
−ihz
c̄(κ) +iωλc̄(κ)κzUε

p−1,q

)
,

starting from Uε
p,q(ω, κ, h, λ, z0, z = z0) = 10(p)10(q) and where we again

ignore terms of order ε that will vanish in the limit ε → 0. We have also
set mε

κ(z) = mκ(z/ε2)/ε and nε
κ(z) = nκ(z/ε2)/ε. Next we introduce the

associated family of Fourier transforms:

V ε
p,q(ω, κ, τ, χ, z0, z) =

ωψ(κ)

4π2

∫ ∫
e−ih(τψ(κ)−(p+q)z/c̄(κ))

×eiωλ(χ−(p+q)zc̄(κ)κ)Uε
p,q(ω, κ, h, λ, z0, z) dh dλ ,

where

ψ(κ) =
1− c̄2κ2

1− c̄2κ2( ρ̄
ρ̃ − 1)

.

This particular normalization with ψ(κ) ensures that the variable τ can be
interpreted as a travel time, as we shall see below. The family (V ε

p,q)p,q now
satisfies

∂V ε
p,q

∂z
= − p + q

ψ(κ)c̄(κ)

∂V ε
p,q

∂τ
− c̄(κ)κ(p + q)

∂V ε
p,q

∂χ
+

iω

c̄(κ)
mε

κ(p− q)V ε
p,q

+
iω

2c̄(κ)
nε

κe
2iωz
c̄(κ)ε

(
qV ε

p,q−1 − pV ε
p+1,q

)
+

iω

2c̄(κ)
nε

κe−
2iωz
c̄(κ)ε

(
qV ε

p,q+1 − pV ε
p−1,q

)
.

By applying the limit theorem of Section 6.7.3, in the same way as in Section
9.2.1, we obtain that the process (V ε

p,q)p,q∈N converges in distribution as ε→ 0
to a diffusion process. In particular, the moments converge to
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E[V ε
p,q(ω, κ, τ, χ, z0, z)]

ε→0−→ Vp,q(ω, κ, τ, χ, z0, z) ,

where the family (Vp,q)p,q∈N satisfies the system of transport equations

∂Vp,q

∂z
+

p + q

ψ(κ)c̄(κ)

∂Vp,q

∂τ
+ c̄(κ)κ(p + q)

∂Vp,q

∂χ

=
pq

Lloc(ω, κ)
(Vp+1,q+1 + Vp−1,q−1 − 2Vp,q)−

(
(p− q)2

Lloc(ω, κ)
+

2(p− q)2

L̃loc(ω, κ)

)
Vp,q

starting from Vp,q(ω, κ, τ, χ, z0, z = z0) = 10(p)10(q)δ(τ)δ(χ). Here the mode-
dependent localization length is given by

Lloc(ω, κ) =
4c̄2(κ)

ω2γnκ
, L̃loc(ω, κ) =

4c̄2(κ)

ω2γmκ
, (17.69)

where γnκ and γmκ are given by (17.56) and (17.66). As in the case with
constant density we have that

Vp,q(ω, κ, τ, χ, z0, z) = 0 if p = q , (17.70)

and if we consider p = q, then we have

Vp,p(ω, κ, τ, χ, z0, z) =Wp(ω, κ, τ, z0, z)δ(χ− ψ(κ)c̄(κ)2κτ) ,

where Wp satisfies the closed system

∂Wp

∂z
+

2p

ψ(κ)c̄(κ)

∂Wp

∂τ
=

p2

Lloc(ω, κ)
(Wp+1 +Wp−1 − 2Wp) ,

starting fromWp(ω, κ, τ, z0, z = z0) = 10(p)δ(τ). Note that these are the same
equations for Wp as the ones we arrived at in Section 14.3.2. However, now
the localization length Lloc(ω, κ) is defined differently and is given by (17.69).

17.3.4 Reflection by a Random Half-Space

We consider the case of a point source located at the surface at position (0, 0),
emitting a short pulse at time 0, and compute the mean reflected intensity.
The point source generates the source term

Fε(t,x, z) = ε1/2f

(
t

ε

)
δ(x)δ(z)

[
0
1

]
,

which imposes the boundary condition b̌ε(ω, κ, 0+) = ε3/2f̂(ω)/
√

ζ0(κ). The
integral representation for the reflected pressure wave is

pε(t,x, 0+) =
1

2(2π)3ε3/2

∫ ∫
e−i ω

ε (t−κ.x)Rε
(ω,κ)f̂(ω)ω2 dω dκ ,
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where Rε
(ω,κ) is given by (17.63). In the case of a random half-space, as shown

in Section 17.1.3, we can expand the generalized reflection coefficient

Rε
(ω,κ) = RI +

∞∑

n=0

(−RI)
nT 2

I (Rε
(ω,κ))

n+1 , (17.71)

where RI(κ) and TI(κ) are given by (17.61). We observe the mean reflected
intensity at the surface z = 0, at the location x = 0, and at time t > 0. The
computation follows the lines of the one carried out in Section 14.3.3, and we
obtain, instead of (14.73), the following expression for the mean intensity:

E[pε(t,x, 0+)2] =
∑

q∈{−1,1}

1

128π5x

∫ ∫
e−iht+iq(hμ+ωλ)x

×E

[
Rε

(ω,μ)Rε
(ω−εh,μ−ελ)

]
|f̂(ω)|2ω3μ dλ dh dω dμ . (17.72)

There are two differences with the computation carried out in Section 14.3.3.

• The first difference is the expression for the limit autocorrelation of the
generalized reflection coefficient. From the expansion (17.71) we get

E

[
Rε

(ω,μ)Rε
(ω+εh,μ+ελ)

]

ε→0−→ R2
I +

∞∑

n=0

R2n
I T 4

I

∫
Wn+1 (ω, μ, τ) eiτ [hψ(μ)−ωλc̄2μ] dτ ,

where Wn+1 is given by

Wn+1(ω, μ, τ) =
c̄(μ)ψ(μ)

Lloc(ω, μ)
P∞

n+1

(
c̄(μ)ψ(μ)τ

Lloc(ω, μ)

)
,

P∞
n+1 is given by (9.39), and Lloc(ω, μ) is the localization length defined by

(17.69). Substituting into (17.72), and integrating in h and λ as in Section
14.3.3, we get

lim
ε→0

E[pε(t,x, 0+)2] =
∞∑

n=0

1

32π3x

∫ ∫
R2n

I T 4
I δ (ψ(μ)τ − t + μx)

×δ
(
x− ψ(μ)c̄(μ)2μτ

)
Wn+1 (ω, μ, τ) |f̂(ω)|2ω2μ dτ dω dμ .

• The integral in τ concentrates on t (which shows that the variable τ inWn

is indeed a travel time) and the integral in μ concentrates on κx,t, which
is such that

x− ψ(κx,t)c̄(κx,t)
2κx,tt = 0 ,

that is to say,

κx,t =

√
1 + 4( ρ̄

ρ̃ − 1)( x
c̄t )

2 − 1

2( ρ̄
ρ̃ − 1)x

t

. (17.73)
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The integral in μ runs over (0, κmax) with κmax =
√

ρ̃/(c̄
√

ρ̄). This interval
determines the slownesses of the propagating modes (see Section 14.1.1,
equation (17.37)). The condition to get a nonzero mean intensity is then
κx,t < κmax, which also reads

x < c̃t , c̃ = c̄

√
ρ̄√
ρ̃

=

√
K̄√
ρ̃

.

This condition is in fact natural, since c̃ is the horizontal effective velocity
given by the homogenization theory described in Section 14.1.1. As a re-
sult, in the limit ε→ 0, the mean intensity is zero if x > c̃t, and if x < c̃t,
then it is given by

lim
ε→0

E[pε(t,x, 0+)2] =

∞∑

n=0

R2n
I T 4

I

32π3c̄4t2
× 1

( x
c̄2tκx,t

)2[ 2x
c̄2tκx,t

− 1]

×
∫
Wn+1 (ω, κx,t, t) |f̂(ω)|2ω2 dω .

Taking into account the explicit expression for Wn+1, we get the following
expression for the mean reflected intensity for x < c̃t:

lim
ε→0

E[pε(t,x, 0+)2] =
T 4

I (κx,t)

32π3c̄4t2
× 1

( x
c̄2tκx,t

)2[ 2x
c̄2tκx,t

− 1]

×
∫ c̄(κx,t)ψ(κx,t)

2Lloc(ω,κx,t)(
1 +

c̄(κx,t)ψ(κx,t)t
2Lloc(ω,κx,t)

T 2
I (κx,t)

)2 |f̂(ω)|2ω2 dω ,

which, compared with the formula (14.75) in the case ρ̃ = ρ̄, summarizes the
effect of random fluctuations in the density.

Notes

The nonmatched-medium case and the general-background case addressed in
Sections 17.1 and 17.2 have been presented for instance in [8]. In particular,
the propagation of the stable front in the presence of a general background
is analyzed in detail in [38, 100, 46, 118]. The study of a varying density
presented in Section 17.3 is new.
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Other Regimes of Propagation

In this chapter we present several generalizations of the theory developed in
the previous chapters and we describe the effects on time-reversal properties.
Each section is devoted to a particular modification of the theory to accom-
modate new features of the model. For clarity we choose to present these
modifications separately in order to isolate the effects of each new feature
of the model. In Section 18.1 we study the weakly heterogeneous regime in
which the diffusion-approximation theory applies in randomly layered three-
dimensional media. In this realistic regime introduced in Chapter 5, and de-
veloped in Chapter 8 for the study of the one-dimensional transmitted wave
front, the size of the fluctuations in the medium parameters is small and the
pulse is short, with a typical wavelength of the same order as the correlation
length of the medium. In Section 18.2 we study the effects of dispersion in
the medium. We consider the example of the Boussinesq system describing
low-amplitude shallow water waves. We show that time reversal recompresses
both the dispersive oscillatory tail of the wave front and the random incoherent
waves. In Section 18.3 we incorporate a weak nonlinearity in the equations
and we study the combined effects of nonlinearity and randomness on the
propagation of the front pulse and its time reversal. In Section 18.4 we ad-
dress the natural question of the impact of a change of the medium during
a time-reversal experiment. We quantify the loss of statistical stability of the
refocusing.

18.1 The Weakly Heterogeneous Regime in Randomly
Layered Three-Dimensional Media

In Chapters 14–17 we have analyzed wave-propagation phenomena in three-
dimensional randomly layered media in a specific regime of separation of
scales, the strongly heterogeneous white-noise regime, where the correlation
length of the medium ∼ ε2 is smaller than the typical propagation distance
∼ 1 and the amplitude of the fluctuations of the medium is of order 1. We
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have seen that for such a configuration, the propagation of a pulse with a
typical wavelength of order ε gives rise to a macroscopic interplay that can be
analyzed in detail. In this section we show that this regime is not the only one
that can be analyzed. We now consider the weakly heterogeneous regime in the
context of three-dimensional waves. One-dimensional wave propagation was
analyzed in this regime in Chapters 7–8. In this case the correlation length
of the medium ∼ ε2 is smaller than the propagation distance ∼ 1, but the
fluctuations of the medium are weak, of order ε. If we send a pulse with a
typical wavelength of order ε, then the effect of randomness completely van-
ishes in the limit ε → 0, as can be seen from the analysis of the previous
chapter, where the integrated covariance γ would vanish (as ε2). However, if
we consider a pulse with a typical wavelength ∼ ε2, that is, of the same order
as the correlation length of the medium, then the interaction between the
fluctuations of the medium and the wave becomes stronger, and it turns out
that this regime leads to a macroscopic interplay and to an effective regime
that can be analyzed through the diffusion approximation theory. Thus, we
model the medium parameters as

1

K(x, z)
=

1

K(z)
=

⎧
⎪⎨
⎪⎩

1

K̄

(
1 + εν

( z

ε2

))
for z ∈ [−L, 0] ,

1

K
for z ∈ (−∞,−L) ∪ (0,∞) ,

ρ(x, z) = ρ̄ for all (x, z) .

Probing this medium with a pulse with a carrier wavelength of order ε2 allows
us to apply a separation-of-scales technique and to get a remarkable effective
solution. The analysis is more or less identical to the one performed in the first
regime. From the wave-propagation point of view we use the same mode de-
composition. From the probabilistic point of view we apply a modified version
of the diffusion-approximation theorem that takes into account the new scales.
In this section we shall point out the new features in the weakly heterogeneous
regime.

18.1.1 Mode Decomposition

The specific Fourier transform is modified to take into account the scales
present in this problem:

p̂ε(ω, κ, z) =

∫
pε(t, x, z)eiω(t−κ.x)/ε2

dt dx ,

pε(t,x, z) =
1

(2πε2)3

∫
p̂ε(t, x, z)e−iω(t−κ.x)/ε2

ω2 dω dκ .

We decompose the wave field into right- and left-going waves by setting

p̂ε(ω, κ, z) =

√
ζ̄(κ)

2

(
ǎε(ω, κ, z)e

iω
ε2 c̄(κ) − b̌ε(ω, κ, z)e

− iωz
ε2c̄(κ)

)
, (18.1)
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Fig. 18.1. The two regimes of separation of scales. Picture (a): correlation length
(ε2) ≪ wavelength (ε) ≪ propagation distance (1); strong fluctuations (1). Picture
(b): correlation length (ε2) ∼ wavelength (ε2) ≪ propagation distance (1); weak
fluctuations (ε).

ûε(ω, κ, z) =
1

2
√

ζ̄(κ)

(
ǎε(ω, κ, z)e

iωz
ε2 c̄(κ) + b̌ε(ω, κ, z)e

− iωz
ε2 c̄(κ)

)
, (18.2)

where we recall that c̄(κ) = c̄/
√

1− c̄2κ2 and ζ̄(κ) = ρ̄c̄(κ). Substituting these
expressions into the random acoustic wave equations establishes the system
satisfied by the modes (ǎε, b̌ε):

dǎε

dz
=

iω

2c̄(κ)ε
νκ

( z

ε2

)(
ǎε − e

−2iωz

ε2c̄(κ) b̌ε
)

, (18.3)

db̌ε

dz
=

iω

2c̄(κ)ε
νκ

( z

ε2

)(
e

2iωz
ε2c̄(κ) ǎε − b̌ε

)
, (18.4)

where

νκ(z) =
c̄(κ)2

c̄2
ν(z) .

We can again introduce the reflection and transmission coefficients and find
that these coefficients satisfy closed-form equations. We write explicitly the
Riccati equation satisfied by the reflection coefficient:

dRε
(ω,κ)

dz
= − iω

2c̄(κ)ε
νκ

( z

ε2

)(
e

−2iωz

ε2 c̄(κ) − 2Rε
(ω,κ) + (Rε

(ω,κ))
2e

2iωz
ε2c̄(κ)

)
.

The main difference is that the period of the rapid phase is now of the same
order as the correlation length of the medium. We therefore expect that the
wave will be more sensitive to the fine structure of the fluctuations in the
medium parameters.
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18.1.2 Transport Equations

The sequence of transforms performed to study the moments of the reflection
coefficients is the same as the one used in the first regime of separation of
scales. The first difference stands in the frequency-correlation radius of the
reflection coefficient, which is now of order ε2. Accordingly, the study of the
autocorrelation function of the reflection coefficient is performed with two
nearby frequencies of the form ω+ε2h/2 and ω−ε2h/2. The same phenomenon
holds true for the slowness-correlation radius. The final difference appears
when we apply the diffusion-approximation theory because the periodic and
random components have the same velocity rate. By applying Theorem 6.5
we get that for z0 ≤ z,

lim
ε→0

E

[(
Rε

(ω+ε2h/2,κ+ε2λ/2)(z0, z)
)p (

Rε
(ω−ε2h/2,κ−ε2λ/2)(z0, z)

)q]
(18.5)

=

⎧
⎨
⎩

e2ipz[−h/c̄(κ)+ωλc̄(κ)κ]

∫
Wp(ω, κ, τ, z0, z)eiτ [hc̄2/c̄(κ)2−ωλc̄2κ]dτ if q = p,

0 if q = p,

where Wp is the solution of the system of transport equations

∂Wp

∂z
+

2pc̄(κ)

c̄2

∂Wp

∂τ
=

p2

L
(w)
loc (ω, κ)

(Wp+1 +Wp−1 − 2Wp) , (18.6)

starting from Wp(ω, κ, τ, z0, z = z0) = 10(p)δ(τ), where

L
(w)
loc (ω, κ) =

4c̄4

γ(2ω/c̄(κ))c̄(κ)2ω2
, (18.7)

γ(k) =

∫ ∞

−∞
E[ν(0)ν(z)] cos(kz)dz . (18.8)

The function γ(k) is the power spectral density of the fluctuations of the
medium. In the strongly heterogeneous white-noise regime addressed in the
previous chapters, the only parameter that remains from the fluctuations of
the medium parameters is the correlation length defined as

γ(0) =

∫ ∞

−∞
E[ν(0)ν(z)]dz .

In the regime we consider in this section, the full spectrum of fluctuations
of the medium parameters plays a role. Note that by considering the low-
frequency limit ω → 0 in (18.7), we recover the expression of the strongly
heterogeneous white-noise regime Lloc = [4c̄4]/[γ(0)c̄(κ)2ω2].

18.1.3 Applications

In this subsection, we briefly extend to the weakly heterogeneous regime some
of the main results obtained in this book in the strongly heterogeneous white
noise regime.
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Transmission of the Stable Front

The stabilization of wave front theory discussed in Section 14.2 is still valid
qualitatively in the weakly heterogeneous regime. Namely, the transmitted
front pulse through a slab of randomly layered medium is modified in two
ways compared to the transmitted pulse obtained in a homogeneous medium.
This has already been seen in the one-dimensional case in Chapter 8. First,
it is randomly time-shifted, and this random time delay can be described in
terms of a Brownian motion, and its variance is proportional to the power
spectral density γ(0) evaluated at zero frequency. Second, it experiences a
deterministic shape modification described by the convolution of the homo-
geneous front with a deterministic kernel. However, this kernel is no longer
Gaussian, but it depends in an explicit manner of the power spectral density.
More quantitatively, if the source is of the form

Fε(t,x, z) =
1

ε2

[
fx
fz

](
t

ε2
,
x

ε2

)
δ(z − zs) ,

then the statement of Proposition 14.3 is modified as follows.

Proposition 18.1. In probability distribution the following characterization
of the transmitted wave process holds:

lim
ε→0

pε

(√
|x|2 + L2

c̄
+ ε2s,x,−L

)
= p̃(s,x,−L) ,

where

p̃(s,x,−L) =
[
K(L,x) ∗ p̃0(·,x,−L)

] (
s−Θ(L,x)

)
.

Here

• The pulse p̃0(·,x,−L) is the front pulse obtained through the homogeneous
medium. In the case of a point source located at the origin, it is given by
(14.51).

• The time shift Θ(L,x) is Gaussian distributed and can be written as

Θ(L,x) =

√
γ(0)

(
1 + |x|2

L2

)

2c̄
W0(L) ,

where W0 is a standard Brownian motion.
• The deterministic convolution kernel K(L,x)(t) is given in the Fourier do-

main by

K̂(L,x)(ω) = exp

{
−

ω2c̄2
(L,x)

8c̄4

[
γ

(
2ω

c̄(L,x)

)
+ iγ(s)

(
2ω

c̄(L,x)

)]
L

}
,
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where c̄(L,x) = c̄
√

1 + |x|2
L2 and

γ(s)(k) = 2

∫ ∞

0

E[ν(0)ν(z)] sin(kz)dz .

Mean Reflected Intensity

We can study the waves reflected by a random slab in the weakly heteroge-
neous regime by following the same steps as in Section 14.3. Let us consider
a point source located at the origin and generating the forcing term

Fε(t,x, z) = f

(
t

ε2

)[
0
1

]
δ(x)δ(z) .

We observe the reflected waves at the surface, at the offset x = (x, 0), x > 0,
and at time t > 0. The mean reflected intensity is zero if x > c̄t, and if x < c̄t,
then it is given by (14.74) with W1 the solution of the system (18.6). The
picture is therefore unchanged.

Time Reversal

We can revisit the results obtained in Chapter 15 in the new regime of sepa-
ration of scales. We address the case of the exterior point source of the form

Fε(t,x, z) = ε4f

(
t− ts

ε2

)[
0
1

]
δ(x− xs)δ(z) .

The result is then exactly the same as in the first regime, and we recover the
statement of Theorem 15.1 with the refocusing kernel given in terms of the
solution W1 of the system (18.6).

18.2 Dispersive Media

The acoustic-wave equations that we have considered so far form a hyper-
bolic system. It is interesting to address dispersive systems, since many
different types of wave-propagation phenomena are actually modeled by dis-
persive systems. In this section we consider a one-dimensional dispersive ran-
dom system. We show that the key point is the decomposition of the wave
field into suitable right- and left-propagating modes. The analysis of the sta-
tistical distribution of the reflection coefficients then follows the same lines as
in the hyperbolic case. An interesting feature concerning time reversal is that
it can recompress both the incoherent fluctuations promoted by randomness
and the oscillatory tail caused by dispersion. As a result, the localization
of a source can be made with more accuracy in a dispersive context than in
a hyperbolic one because the source location is precisely the transition point
between the recompression of the dispersive oscillations and the generation of
a new oscillatory tail.
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Fig. 18.2. Propagation of a Gaussian pulse in a hyperbolic medium (a) and in a
dispersive medium (b). The pulse profiles are plotted at different times. The pulse
travels without distortion in the hyperbolic medium. In the dispersive medium an
oscillatory tail develops behind the front pulse.

18.2.1 The Terrain-Following Boussinesq Model

We consider the Boussinesq equation that describes the evolution of surface
waves in shallow channels [124]:

M ε(z)
∂ηε

∂t
+

∂uε

∂z
= 0 , (18.9)

∂uε

∂t
+

∂ηε

∂z
− β

∂3uε

∂z2∂t
= 0 , (18.10)

where ηε is the wave elevation and uε is the depth-averaged velocity, and z
and t are the space and time coordinates, respectively. The spatial variations
of the coefficient M ε are imposed by the bottom profile

M ε(z) = 1 + εν
( z

ε2

)
,

where 1 stands for the constant mean depth, and the dimensionless small
parameter ε characterizes the amplitude of the relative fluctuations of the
bottom and their correlation length. These fluctuations are modeled by the
zero-mean stationary random process ν(z). Note that we consider here the
weakly heterogeneous regime. According to the results of Section 18.1, we
probe the medium with a pulse whose support is comparable to the correlation
length of the random medium, that is, of order ε2.

The coefficient β measures the dispersion strength. In this section we con-
sider the case in which the dispersion parameter β is of order ε4: β = β0ε

4.
The dispersion term involves three derivatives, which shows that dispersive
effects for the pulse under consideration show up after a propagation distance
of order ε2. The dispersive effects after a propagation distance of order 1 are
therefore very strong.
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18.2.2 The Propagating Modes of the Boussinesq Equation

We first consider the homogeneous Boussinesq equation (with ν ≡ 0):

∂η

∂t
+

∂u

∂z
= 0 , (18.11)

∂u

∂t
+

∂η

∂z
− β

∂3u

∂z2∂t
= 0 , (18.12)

with a smooth initial condition

u(t = 0, z) = u0(z) , η(t = 0, z) = η0(z) .

Taking the spatial Fourier transform

ǔ(t, k) =

∫
u(t, z)e−ikz dz , η̌(t, k) =

∫
η(t, z)e−ikz dz ,

the Boussinesq equation (18.11–18.12) can be reduced to a set of ordinary
differential equations:

dη̌

dt
= −ikǔ , (18.13)

(
1 + βk2

) dǔ

dt
= −ikη̌ . (18.14)

Introducing the frequency corresponding to the wave number k through the
dispersion relation

ω(k) =
k√

1 + βk2
, (18.15)

we get closed-form expressions for the solutions:

ǔ(t, k) =
1

2

(
ǔ0(k) +

ω

k
η̌0(k)

)
e−iωt +

1

2

(
ǔ0(k)− ω

k
η̌0(k)

)
eiωt,

η̌(t, k) =
1

2

(
k

ω
ǔ0(k) + η̌0(k)

)
e−iωt − 1

2

(
k

ω
ǔ0(k)− η̌0(k)

)
eiωt .

From these expressions we can conclude that any solution can be decom-
posed as the superposition of left-propagating modes (u(l), η(l)) and right-
propagating modes (u(r), η(r)):

u(t, z) = u(r)(t, z) + u(l)(t, z) , η(t, z) = η(r)(t, z) + η(l)(t, z) ,

where

u(r)(t, z) =
1

4π

∫ (
ǔ0(k) +

ω

k
η̌0(k)

)
e−iω(k)t+ikz dk ,

η(r)(t, z) =
1

4π

∫
k

ω

(
ǔ0(k) +

ω

k
η̌0(k)

)
e−iω(k)t+ikz dk ,

u(l)(t, z) =
1

4π

∫ (
ǔ0(k)− ω

k
η̌0(k)

)
eiω(k)t+ikz dk ,

η(l)(t, z) = − 1

4π

∫
k

ω

(
ǔ0(k)− ω

k
η̌0(k)

)
eiω(k)t+ikz dk .
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This decomposition will be used in the inhomogeneous case in the next section.
It plays the same role as the simple decomposition we have used in the previous
sections devoted to hyperbolic wave equations. Here the mode decomposition
is exact for the dispersive waves under consideration.

18.2.3 Mode Propagation in a Dispersive Random Medium

We consider the problem on the finite slab −L ≤ z ≤ 0 where boundary con-
ditions are imposed at −L and 0 corresponding to a left-going pulse entering
the slab from the right at z = 0. We can generalize the standard approach
for acoustic equations to the dispersive case using the decomposition intro-
duced in the previous section. We consider the random Boussinesq equation
(18.9–18.10) and take the specific time Fourier transform

ûε(ω, z) =

∫
uε(t, z)e

iωt
ε2 dt , η̂ε(ω, z) =

∫
ηε(t, z)e

iωt
ε2 dt ,

so that the system reduces to a set of ordinary differential equations:

[
1− β0ω

2
(
1 + εν

( z

ε2

))] dη̂ε

dz
=

iω

ε2
ûε +

β0ω
2

ε
ν′

( z

ε2

)
η̂ε , (18.16)

dûε

dz
=

iω

ε2

(
1 + εν

( z

ε2

))
η̂ε , (18.17)

where ν′ stands for the spatial derivative of ν. We introduce the scaled wave
number k0 corresponding to the scaled frequency ω:

k0(ω) =
ω√

1− β0ω2
. (18.18)

The modes with frequency ω2 > 1/β0 correspond to evanescent modes that
are not taken into account here. Note that the true frequency is ω/ε2, and we
have the identity

k
( ω

ε2

)
=

k0(ω)

ε2
,

where k is the true wave number [the reciprocal of the function defined by
(18.15)]. We can decompose the wave into right-going modes Âε and left-going
modes B̂ε:

Âε(ω, z) = η̂ε(ω, z) +
k0

ω
ûε(ω, z) ,

B̂ε(ω, z) = η̂ε(ω, z)− k0

ω
ûε(ω, z) .

The modes (Âε, B̂ε) satisfy
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dÂε

dz
=

ik0

ε2
Âε +

ik0

2ε
ν
( z

ε2

)
(Âε + B̂ε) +

β0k
2
0

2ε
ν′

( z

ε2

)
(Âε + B̂ε)

+
iω2

2k0ε2

(
1

1− β0ω2(1 + εν(z/ε2))
− 1

1− β0ω2

)
(Âε − B̂ε)

+
βω2

2ε
ν′(

z

ε2
)

(
1

1− β0ω2(1 + εν(z/ε2))
− 1

1− β0ω2

)
(Âε + B̂ε) ,

dB̂ε

dz
= − ik0

ε2
B̂ε − ik0

2ε
ν
( z

ε2

)
(Âε + B̂ε) +

β0k
2
0

2ε
ν′

( z

ε2

)
(Âε + B̂ε)

+
iω2

2k0ε2

(
1

1− β0ω2(1 + εν(z/ε2))
− 1

1− β0ω2

)
(Âε − B̂ε)

+
βω2

2ε
ν′(

z

ε2
)

(
1

1− β0ω2(1 + εν(z/ε2))
− 1

1− β0ω2

)
(Âε + B̂ε) .

We expand the last terms of the right-hand sides up to O(ε3) terms

ω2

1− β0ω2(1 + εν(z/ε2))
− ω2

1− β0ω2
= εβ0k

4
0ν

( z

ε2

)
+ε2β2

0k6
0ν

2
( z

ε2

)
+O(ε3).

(18.19)
We now look at the waves along the frequency-dependent modified character-
istics defined by

âε(ω, z) = Âε(ω, z) exp

(
− ik0z

ε2

)
exp

[
−εβ0k

2
0

2
ν
( z

ε2

)
− ε2β2

0k4
0

4
ν2

( z

ε2

)]
,

b̂ε(ω, z) = B̂ε(ω, z) exp

(
ik0z

ε2

)
exp

[
−εβ0k

2
0

2
ν
( z

ε2

)
− ε2β2

0k4
0

4
ν2

( z

ε2

)]
,

which satisfy the linear equation

d

dz

[
âε

b̂ε

]
(ω, z) = Hε

ω(z)

[
âε

b̂ε

]
(ω, z) . (18.20)

The complex 2× 2 matrix Hε
ω is given by

Hε
ω(z) =

[
Qε

1(ω, z) Qε
2(ω, z)e−

2ik0z

ε2

Qε
2(ω, z)e

2ik0z

ε2 Qε
1(ω, z)

]
, (18.21)

with

Qε
1(ω, z) =

ik0

2ε

(
1 + β0k

2
0

)
ν
( z

ε2

)
+

iβ2
0k5

0

2
ν2

( z

ε2

)
+ O(ε) , (18.22)

Qε
2(ω, z) =

ik0

2ε

(
1− β0k

2
0

)
ν
( z

ε2

)
+

βk2
0

2ε
ν′

( z

ε2

)
− iβ2

0k5
0

2
ν2

( z

ε2

)

+
β2

0k4
0

2
ν
( z

ε2

)
ν′

( z

ε2

)
+ O(ε) . (18.23)
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The small terms of order ε come from the O(ε3) term in the expansion (18.19).
The reflection and transmission coefficients satisfy the closed-form nonlinear
differential system

dRε
ω

dz
= 2Qε

1(ω, z)Rε
ω − e−

2ik0z

ε2 Qε
2(ω, z)(Rε

ω)2 + e
2ik0z

ε2 Qε
2(ω, z),(18.24)

dT ε
ω

dz
= −T ε

ω

(
e−

2ik0z

ε2 Qε
2(ω, z)Rε

ω + Qε
1(ω, z)

)
. (18.25)

These nonlinear equations have the same structure as the Riccati equation
encountered in the hyperbolic case and weakly heterogeneous regime. We can
therefore carry out a similar analysis.

18.2.4 Transport Equations

The autocorrelation function of the reflection coefficient plays an important
role. In particular, it naturally appears in the integral representation of the
refocused pulse obtained as a result of a time-reversal experiment. In order to
get its limiting distribution as ε→ 0, we introduce for p, q ∈ N,

Uε
p,q(ω, h, z0, z) =

(
Rε

ω+ε2h/2(z0, z)
)p (

Rε
ω−ε2h/2(z0, z)

)q

.

Setting

k′
0(ω) =

∂k0

∂ω
(ω) =

1

(1− β0ω2)3/2
= (1 + β0k

2
0)

3/2, (18.26)

and using the Riccati equation (18.24) satisfied by Rε
ω, we deduce

∂Uε
p,q

∂z
= 2(p− q)Qε

1U
ε
p,q + Qε

2e
−2ik0(ω)z

ε2

(
pe−ik′

0(ω)hzUε
p−1,q − qeik′

0(ω)hzUε
p,q+1

)

+Qε
2e

2ik0(ω)z

ε2

(
qe−ik′

0(ω)hzUε
p,q−1 − peik′

0(ω)hzUε
p+1,q

)
,

starting from Uε
p,q(ω, h, z0, z = z0) = 10(p)10(q). Taking a shifted scaled

Fourier transform with respect to h,

V ε
p,q(ω, τ, z0, z) =

1

2π

∫
e−ih[τ−k′

0(ω)(p+q)z]Uε
p,q(ω, h, z) dh ,

we get

∂V ε
p,q

∂z
= −k′

0(ω)(p + q)
∂V ε

p,q

∂τ
+ 2(p− q)Qε

1V
ε
p,q

+Qε
2e

−2ik0(ω)z

ε2
(
pV ε

p−1,q − qV ε
p,q+1

)
+ Qε

2e
2ik0(ω)z

ε2
(
qV ε

p,q−1 − pV ε
p+1,q

)
,

starting from V ε
p,q(ω, τ, z0, z = z0) = δ(τ)10(p)10(q). Applying the limit theo-

rem of Section 6.7.3 in the same way as in Section 9.2.1 establishes that the
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process V ε
p,q converges to a diffusion process as ε → 0. In particular, the ex-

pectations E[V ε
p,p(ω, τ, z0, z)], p ∈ N, converge to Wp(ω, τ, z0, z), which obey

the closed system of transport equations

∂Wp

∂z
+ 2k′

0(ω)p
∂Wp

∂τ
=

p2

L
(β)
loc (k0(ω))

(Wp+1 +Wp−1 − 2Wp) , (18.27)

starting from Wp(ω, τ, z0, z = z0) = δ(τ)10(p), where

L
(β)
loc (k0) =

4

γ(2k0)k2
0(1 + β0k2

0)
2

, (18.28)

and γ is the power spectral density of the random process ν,

γ(k) =

∫ ∞

−∞
E[ν(0)ν(z)] cos(kz) dz . (18.29)

Note that the limit transport equations (18.27) have the same form as those
(9.23) obtained in the nondispersive case. The difference is contained in the
expression of the group velocity 1/k′

0(ω) and that of the localization length

L
(β)
loc (k0(ω)).

18.2.5 Time Reversal

By revisiting the analysis carried out in Section 10.1, we get the integral
representation of the refocused pulse at a position close to the surface:

Sε
L(t1 + ε2s, z = ε2ζ) =

1

(2π)2

∫ ∫
e−iωs+ik0(ω)ζe−iεhs/2+iεk′

0(ω)ζ

×f̂(ω − εh/2)Ĝ(h)Rε
ω+εh/2(−L, 0)Rε

ω−εh/2(−L, 0)dh dω .

The analysis is similar to the hyperbolic case, and we find that the limiting
refocused pulse shape at the original source location is

SL(s, ζ = 0) = (KTRR(·)∗f(−·)) (s) , (18.30)

where the Fourier transform of the refocusing kernel is

K̂TRR(ω) =

∫
G(τ)W1(ω, τ,−L, 0) dτ .

The analysis of the refocusing kernel can be made simple by considering the
case of a random half-space and a cutoff function G(t) = 1[0,t1](t). The refo-
cusing kernel is then given by

K̂TRR(ω) =
ω2/Ω2(ω)

1 + ω2/Ω2(ω)
with Ω2(ω) =

8
(
1− β0ω

2
)3/2

γ(2ω/
√

1− β0ω2)t1
.
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Thus the refocusing kernel has the form of a high-pass filter whose cutoff
frequency decays with increasing β0. This shows that time-reversal focusing
in reflection is more efficient in the dispersive case than in the hyperbolic
case. This is essentially due to the fact that the effective wave number is
larger in the dispersive medium, which enhances the localization effect and
the back-scattering promoted by randomness.

When the wave moves away from z = 0, its shape is rapidly affected by
dispersion, and it is given by

SL(s, ζ) =
(
Kβ

ζ (·)∗KTRR(·)∗f(−·)
)

(s− ζ) , (18.31)

where the Fourier transform of the dispersive kernel is

K̂β
ζ (ω) = ei[k0(ω)−ω]ζ .

In the hyperbolic case β0 = 0, the refocused pulse that emerges from the
medium is a traveling pulse that propagates to the right without deformation:

SL(s, ζ) = sL(s− ζ, 0) .

In the dispersive case β0 > 0, the wave develops an oscillatory tail as it
propagates away from the original source location:

SL(s, ζ) = Kβ
ζ ∗sL(s− ζ, 0) .

Thus dispersion provides an improvement for source location, in one-dimension,
as a consequence of the recompression of the dispersive tail, which in the time-
reversal experiment is ahead of the pulse. As soon as the recompressed pulse
travels over the original source location, a dispersive oscillatory tail starts to
develop behind the pulse. The source location is precisely where there is no
dispersive oscillation, either in front or behind the pulse.

18.3 Nonlinear Media

This section is concerned with the study of the deformation of a nonlinear
pulse traveling in a random medium. We consider shallow-water waves with
a spatially random depth. We demonstrate that in the presence of properly
scaled stochastic forcing the solution to the nonlinear conservation law is
regularized, leading to a viscous shock profile. This enables us to perform
time reversal experiments beyond the critical time for shock formation.

We extend the theory developed in this book to nonlinear waves by decom-
posing the solution of the perturbed system using the Riemann invariants of
the unperturbed system. Using a stochastic averaging theorem we show that
the right-going Riemann invariant satisfies a viscous Burgers-like equation.
The apparent viscosity is a pseudodifferential operator defined in terms of the
power spectral density of the random fluctuations.
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Fig. 18.3. Propagation of a pulse of the form −t exp(−t2) in a nonlinear medium
without viscosity (a) and with a small viscosity (b). Viscosity reads as a term of
the form µ∂2

zu in the right-hand side of (18.33). In the absence of viscosity a shock
occurs at a critical time. The uniqueness of the solution is lost after this time.
We plot in picture (a) the solution given by the characteristic method. A small
viscosity prevents shock formation. A solution of the inviscid system after the critical
time that is more physical than the one given by the characteristic method can
be obtained by considering the solution of the viscous system with an evanescent
viscosity.

18.3.1 Shallow-Water Waves with Random Depth

The shallow-water equations are given by [45]

∂η

∂t
+

∂(1 + εν + αη)u

∂z
= 0 , (18.32)

∂u

∂t
+

∂η

∂z
+ αu

∂u

∂z
= 0 , (18.33)

where η is the free surface elevation and u is the horizontal velocity component.
Note that we do not show explicitly the ε-dependence of η and u in order to
simplify the notation. We assume that the bottom of the channel is randomly
varying in (0, L). More precisely, the fluid body is given by

H(t, z) =

{
1 + εν(z) + αη(t, z) if z ∈ (0, L) ,
1 + αη(t, z) if z ∈ (−∞, 0) ∪ (L,∞) ,

where 1 is the normalized mean depth. The parameter α is the ratio of the
typical wave amplitude over the mean depth. It governs the strength of the
nonlinearity. The parameter ε is the order of magnitude of the fluctuations of
the bottom, which are described by the stationary zero-mean random process
ν(z).

We consider the regime in which the amplitude of the fluctuations is small,
i.e., ε is small, and the typical wavelength of the initial wave is of the same
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order of magnitude as the correlation length of the fluctuations of the bottom.
As shown in Section 18.1, we should consider a propagation distance of order
ε−2 to experience a macroscopic effect due to randomness. In this context we
must also prescribe the order of magnitude of the nonlinear parameter α. It
turns out that the suitable scaling between ε and α to exhibit the interplay
between the nonlinear and random effects is

α = ε2α0 , (18.34)

where α0 is the normalized nonlinear parameter, which is a fixed nonnegative
number of order one.

The random process ν is assumed to be stationary, to be smooth, and to
satisfy the moment conditions E[ν(0)] = 0, E[ν(0)2] <∞, and E[(∂zν(0))2] <
∞. Its autocorrelation function

φ0(z) = E[ν(z0)ν(z0 + z)] (18.35)

is also assumed to decay fast enough so that
∫ ∞
0 |φ0(z)|1/2dz <∞.

Let us introduce the “deterministic” local propagation speed

c =
√

1 + αη , (18.36)

which does not include the term εν, but it is nevertheless random through
the term αη. We can reformulate the above equations in terms of c and u to
obtain

∂c

∂t
+

α

2
c
∂u

∂z
+ αu

∂c

∂z
+

αε

2c

∂νu

∂z
= 0 , (18.37)

∂u

∂t
+ αu

∂u

∂z
+

2c

α

∂c

∂z
= 0 . (18.38)

We define the Riemann invariants (corresponding to the unperturbed nonlin-
ear hyperbolic system)

A(t, z) =
αu + 2c− 2

α
, B(t, z) =

αu− 2c + 2

α
. (18.39)

If the bottom is flat ν ≡ 0, then we get back the standard right- and left-going
modes (A and B, respectively) of the nonlinear hyperbolic system

∂A

∂t
+ c+

∂A

∂z
= 0 ,

∂B

∂t
− c−

∂B

∂z
= 0 ,

with c+ = c + αu = 1 + α(3A + B)/4 and c− = c − αu = 1 − α(A + 3B)/4.
The identities (18.39) can be inverted:

u =
A + B

2
, c = 1 + α

A−B

4
.
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Substituting these expressions into (18.37–18.38), we get the system governing
the dynamics of the Riemann invariants in the presence of nonlinearity and
randomness:

∂A

∂t
+

(
1 + α

3A + B

4

)
∂A

∂z
= −ε

2

∂ν(A + B)

∂z

1

1 + α(A −B)/4
, (18.40)

∂B

∂t
+

(
−1 + α

A + 3B

4

)
∂B

∂z
=

ε

2

∂ν(A + B)

∂z

1

1 + α(A−B)/4
. (18.41)

The system is completed by the initial condition corresponding to a right-
going wave incoming from the homogeneous half-space z < 0 and impinging
the random slab (0, L):

A(t, z) = f(t− z) , B(t, z) = 0, t < 0 ,

where the function f is compactly supported in (0,∞).

18.3.2 The Linear Hyperbolic Approximation

If we neglect terms of order α, that is to say if we neglect all nonlinear con-
tributions, then the system for the Riemann invariants can be reduced to

Q(z)
∂

∂z

[
A
B

]
=

∂

∂t

[
A
B

]
+

ε

2
ν′(z)

[
1 1
−1 −1

] [
A
B

]
,

where ν′ stands for the derivative of ν and the 2 × 2 matrix Q(z) is defined
by

Q(z) =
1

2

[
−2− εν(z) −εν(z)

εν(z) 2 + εν(z)

]
.

This equation can be inverted, which gives

∂

∂z

[
A
B

]
= Q−1(z)

∂

∂t

[
A
B

]
− ε

2

ν′(z)

1 + εν(z)

[
1 1
1 1

] [
A
B

]
, (18.42)

where

Q−1(z) =
1

1 + εν(z)
Q(z) .

The identity (18.42), which holds true up to terms of order O(α), will be
used in the forthcoming sections to rewrite the system (18.40–18.41) for the
Riemann invariants as a partial differential equation of the form

∂

∂z

[
A
B

]
= F (A, B, At, Bt, ν, ν′) ,

with the same accuracy as the original system.
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In the linear hyperbolic approximation, (18.42) can be explicitly analyzed
to study the wave dynamics. Indeed, the matrix Q−1 can be diagonalized.
The eigenvalues of the matrix Q−1(z) are ±λε(z), with

λε(z) =
1√

1 + εν(z)
. (18.43)

We introduce the matrix U(z),

U(z) =
1

2

[
λε(z)1/2 + λε(z)−1/2 λε(z)1/2 − λε(z)−1/2

λε(z)1/2 − λε(z)−1/2 λε(z)1/2 + λε(z)−1/2

]
, (18.44)

which is such that

U−1(z)Q−1(z)U(z) = λε(z)

[
−1 0
0 1

]
.

By introducing

[
A1

B1

]
(t, z) = λε(z)−1U−1(z)

[
A
B

]
(t, z) ,

the system (18.42) takes the simple form

∂

∂z

[
A1

B1

]
= λε(z)

[
−1 0
0 1

]
∂

∂t

[
A1

B1

]
− ε

4

ν′(z)

1 + εν(z)

[
0 1
1 0

] [
A1

B1

]
, (18.45)

where we have used the fact that

(U−1)′(z)U(z) = − εν′(z)

4(1 + εν(z))

[
0 1
1 0

]
, U−1(z)

[
1 1
1 1

]
U(z) =

[
1 1
1 1

]
.

Equation (18.45) clearly exhibits the two relevant phenomena. The first term
in the right-hand side describes a change of the velocity described by λε(z).
The second term in the right-hand side describes a coupling between the two
modes due to the term εν′.

The system (18.45) has the same form as (4.24) obtained in the context
of linear acoustic waves with a centering along local characteristics (Section
4.3.1). In order to complete the analogy between the linear approximation
of the random-shallow-water wave equations and the random-acoustic-wave
equations studied in the previous chapters, we can consider the twisted modes
defined by [

A2

B2

]
(t, z) = Q(z)

[
A
B

]
(t, z) .

The twisted modes satisfy

∂

∂z

[
A2

B2

]
= Q−1(z)

∂

∂t

[
A2

B2

]
=

[
−1 0
0 1

]
∂

∂t

[
A2

B2

]
+

νε(z)

2

[
1 −1
1 −1

]
∂

∂t

[
A2

B2

]
,
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where

νε(z) =
εν(z)

1 + εν(z)
.

This system has the same form as (4.28) obtained in the context of linear
acoustic waves with a centering along constant characteristics (Section 4.3.2).
By taking the Fourier transform with respect to time and considering long
propagation distances of the form z/ε2, the random partial differential equa-
tion can be reduced to a set of random ordinary differential equations. We
can then perform the same analysis as for the acoustic wave equations with a
random bulk modulus in the weakly heterogeneous regime.

18.3.3 The Effective Equation for the Nonlinear Front Pulse

In this section we perform a series of transformations to rewrite the nonlinear
evolution equations of the modes (18.40–18.41) by centering along the char-
acteristic of the right-going mode. We will then obtain a system that can be
integrated more easily. In a second step we shall apply an averaging theorem
to this system in order to establish an effective nonlinear equation for the
front pulse. The method follows closely the strategy used in Section 8.1 for
the linear acoustic equations.

Our goal is to study the wave propagation for times and distances of order
ε−2. Accordingly, we can neglect in (18.40–18.41) the terms of order ε3. We
can also use (18.42), valid up to order ε, to rewrite some z derivatives as
time derivatives. This can be done with a sufficient accuracy for the nonlinear
terms by taking into account that α = ε2α0. As a result, we obtain

∂

∂z

[
A
B

]
= Q−1(z)

∂

∂t

[
A
B

]
− ε

ν′

2(1 + εν)

[
1 1
1 1

] [
A
B

]

+ε2 α0

4

[
3A + B 0

0 A + 3B

]
∂

∂t

[
A
B

]
+ O(ε3) . (18.46)

The random topography affects the propagation of the Riemann invariants by
perturbing their characteristics, so that the matrix Q−1 in (18.46) is not the
identity matrix. Two main effects can be distinguished: the diagonal terms
describe random corrections to the local speed, while the off-diagonal parts
describe random coupling. Our first goal is to center the propagation equa-
tions along the randomly perturbed characteristics. This can be done by the
change of variables proposed in Section 18.3.2: the propagation equation in
the eigenbasis of the matrix Q−1 frame exhibits a propagation matrix that
is diagonal with z-dependent entries. We push the simplification forward by
considering a new spatial variable that is related to the travel time along the
characteristics

ζ(z) =

∫ z

0

λε(s) ds . (18.47)

We now introduce the modified modes
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[
A1

B1

]
(t, ζ) = λε(z(ζ))−1U−1(z(ζ))

[
A
B

]
(t, z(ζ)) . (18.48)

Note that ν′(z(ζ))
λε(z(ζ)) = d

dζ ν(z(ζ)). We still denote this quantity by ν′. Finally we

consider the reference frame
τ = t− ζ , (18.49)

which moves with the right-going mode A1, so that the equation for (A1, B1)
reads

∂

∂ζ

[
A1

B1

]
=

[
0 0
0 2

]
∂

∂τ

[
A1

B1

]
− ε

ν′

4(1 + εν)

[
0 1
1 0

] [
A1

B1

]

+ε2 α0

4

[
3A1 + B1 0

0 A1 + 3B1

]
∂

∂τ

[
A1

B1

]
+ O(ε3) . (18.50)

The random medium introduces a coupling between the two modes through
the term proportional to ν′ as a consequence of multiple scattering. The equa-
tion for A1 can be integrated for ζ > 0 as

A1(τ, ζ) =

∫ ζ

0

SA(τ, y)dy + f(τ) , (18.51)

SA(τ, ζ) =
−εν′(ζ)B1(τ, ζ)

4(1 + εν(ζ))
+

ε2α0(3A1 + B1)

4

∂A1

∂τ
(τ, ζ) + O(ε3) . (18.52)

Recall that we consider a propagation distance ζ of order ε−2. However, we
need to be careful to get precise estimates because of the shock-forming nature
of the equations. Let K > 0 and T > 0. We introduce the stopping distance

LK = inf

{
l ≥ 0 s.t. sup

τ∈[−T,T ]

(∣∣∣∣A1

(
τ,

l

ε2

)∣∣∣∣ +

∣∣∣∣
∂A1

∂τ

(
τ,

l

ε2

)∣∣∣∣
)
≥ K

}
.

(18.53)
As long as ζ ≤ LK/ε2, the solutions of the equations (18.50) are well defined.
We shall show that B1 is of order ε, so that SA is of order ε2, and the integral in
(18.51) will turn out to be of order one. The equation for B1 can be integrated
as

B1(τ, ζ) = −1

2

∫ τ

−∞
SB

(
s, ζ +

τ − s

2

)
ds , (18.54)

SB(τ, ζ) =
−εν′(ζ)A1(τ, ζ)

4(1 + εν(ζ))
+

ε2α0(A1 + 3B1)

4

∂B1

∂τ
(τ, ζ) + O(ε3) . (18.55)

The integral in (18.54) seems to have an infinite support (−∞, τ). However, we
are interested in the front pulse, which means that we consider only shifted
times τ lying in some interval [−T, T ] with a fixed T of order one. On the
other hand, the initial conditions impose that A1 and B1 are zero for τ < 0
and ζ = 0. The transport equations (18.50) then show that A1 and B1 are
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zero for τ < 0 whatever ζ ≥ 0. Thus the integral with respect to s in (18.54)
actually goes from 0 to τ . Furthermore, (18.55) shows that SB is of order ε.
This allows us to claim that

sup
τ∈[−T,T ],ζ∈[0,LK/ε2]

{
|B1(τ, ζ)|+

∣∣∣∣
∂B1

∂τ
(τ, ζ)

∣∣∣∣
}
≤ Kε . (18.56)

We can now substitute the integral representation (18.54) for B1 into the one
(18.51) for A1:

A1(τ, ζ) = f(τ)− ε2

32

∫ ζ

0

ν′(y)

∫ τ

−∞
ν′

(
y +

τ − s

2

)
A1

(
s, y +

τ − s

2

)
ds dy

+ε2 3α0

4

∫ ζ

0

A1
∂A1

∂τ
(τ, y) dy + O(ε3(1 + ζ)) . (18.57)

Note that we have eliminated the terms ε2B1∂τA1, ε2B1∂τB1, ε2A1∂τB1,
since they are of order ε3 and are negligible for a propagation distance of
order ε−2. We introduce the rescaled right-going mode

Aε
1(τ, ζ) = A1

(
τ,

ζ

ε2

)
,

which satisfies

Aε
1(τ, ζ) = f(τ) +

3α0

4

∫ ζ

0

Aε
1

∂Aε
1

∂τ
(τ, y) dy

− 1

32

∫ ζ

0

ν′
( y

ε2

)∫ τ

−∞
ν′

(
y

ε2
+

τ − s

2

)
Aε

1

(
s, y + ε2 τ − s

2

)
ds dy + O(ε) .

In a formal way, we can write this equation in the form

Aε
1(ζ) = f +

∫ ζ

0

G(Aε
1(y)) dy +

∫ ζ

0

F
( y

ε2

)
Aε

1(y) dy , (18.58)

where F (y) is a linear random operator acting on functions A(τ) as

[F (y)A](τ) = − 1

32
ν′(y)

∫ τ

−∞
ν′

(
y +

τ − s

2

)
A(s) ds .

The random operator F (y) possesses nice ergodic properties inherited through
ν′. Thus an averaging over the fast-varying component of (18.58) can be ap-
plied as in the appendix of Chapter 8. In the limit ε → 0, we get that Aε

1

converges to Ã1, the solution of

Ã1(ζ) = f +

∫ ζ

0

G(Ã1(y)) dy +

∫ ζ

0

F̃ Ã1(y) dy ,
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where F̃ = E[F (y)], that is to say,

[F̃A](τ) = − 1

32

∫ τ

−∞
E

[
ν′(y)ν′

(
y +

τ − s

2

)]
A(s) ds .

The integral equation satisfied by the limiting pulse front Ã1 is explicitly

Ã1(τ, ζ) = f(τ) +
3α0

4

∫ ζ

0

Ã1
∂Ã1

∂τ
(τ, y) dy − 1

16

∫ ζ

0

ΛÃ1(τ, y) dy , (18.59)

where the operator Λ is

ΛA(τ) =
1

2

∫ τ

0

φ1(
s

2
)A(τ − s) ds =

[
1

2
φ1

( ·
2

)
1[0,∞)(·)

]
∗A(τ) ,

with
φ1(y) = E[ν′(z)ν′(z + y)] .

The convergence holds true in the space of the continuous functions C([0, L̃K ]×
[−T, T ], R), where T and K are arbitrary, and L̃K is the deterministic stopping
distance defined by (18.53) for the deterministic function Ã1. In the Fourier
domain,

∫ ∞

−∞
ΛA(τ)eiωτ dτ = b1(2ω)

∫ ∞

−∞
A(τ)eiωτ dτ , (18.60)

b1(ω) =

∫ ∞

0

φ1(τ)eiωτ dτ . (18.61)

Note that the integral is going from 0 to ∞, and not from −∞ to ∞. As we
shall discuss in the next section, this restriction has consequences in terms of
hyperbolicity and dispersion. By use of Fourier analysis, b1 can be expressed
in terms of the autocorrelation function of the random stationary process ν.
Let us set

b0(ω) =

∫ ∞

0

φ0(y)eiωy dy , (18.62)

where φ0 is the autocorrelation function of ν,

φ0(y) = E[ν(z)ν(z + y)] .

The relation (8.29) obtained in Section 8.1.3 holds true:

b1(ω) = −iωφ0(0) + ω2b0(ω) . (18.63)

Accordingly, Λ can be decomposed into the sum of a transport term corre-
sponding to the term −iωφ0(0) in (18.63) and a pseudodifferential operator
corresponding to ω2b0(ω). In terms of the true mode A, we have to take care
of the change of variable z 	→ ζ(z). In the macroscopic scales,
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ζ
( z

ε2

)
=

z

ε2
− ε

2

∫ z
ε2

0

ν(x) dx +
3ε2

8

∫ z
ε2

0

ν(x)2dx + O(ε) , (18.64)

so that it converges as

ζ
( z

ε2

)
− z

ε2

ε→0−→ 1√
2

√
b0(0)W0(z) +

3

8
φ0(0)z , (18.65)

where W0(z) is a standard Brownian motion. We can then state the following
result.

Let Ã0 be the solution of

∂Ã0

∂z
= LÃ0 +

3α0

4
Ã0

∂Ã0

∂τ
, (18.66)

starting from Ã0(τ, 0) = f(τ). We denote by Lshock the shock distance of Ã0.
For any L < Lshock and T , the front pulse Aε(τ, z) := A(τ + z/ε2, z/ε2),
z ∈ [0, L], τ ∈ [−T, T ], converges in distribution in the space of continuous
functions to Ã given by

Ã(τ, z) = Ã0

(
τ −

√
b0(0)√

2
W0(z)− φ0(0)

2
z, z

)
. (18.67)

The operator L can be written explicitly in the Fourier domain as

∫ ∞

−∞
LA(τ)eiωτ dτ = −b0(2ω)ω2

4

∫ ∞

−∞
A(τ)eiωτ dτ .

This result extends the stable-front theory addressed in Chapter 8 to
weakly nonlinear waves. As in the linear case, the front-pulse propagation
is modified in two ways for the random fluctuations of the medium. First,
the front pulse is delayed by a random time shift, described by the Brownian
motion W0(z). Second, it experiences diffusion, dispersion, and attenuation,
modeled by the pseudodifferential operator L. The physical description of this
operator is given in detail in the next section.

18.3.4 Analysis of the Pseudospectral Operator

In this section we analyze the main properties of the effective equation for
the front pulse. The important function that determines the dynamics is the
Fourier transform b0(ω) of the positive lag part of the autocorrelation func-
tion of the random fluctuations of the bottom. The pseudodifferential operator
L models the deterministic pulse spreading imposed by the random fluctua-
tions of the bottom. The effective equation for the front pulse depends both
on randomness (through the function b0) and on nonlinearity (through the
parameter α0). The pseudospectral operator L can be divided into two parts:
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L = Lr + Li , (18.68)
∫ ∞

−∞
LrA(τ)eiωτ dτ = −γ(2ω)ω2

8

∫ ∞

−∞
A(τ)eiωτ dτ , (18.69)

∫ ∞

−∞
LiA(τ)eiωτ dτ = − iγ(s)(2ω)ω2

8

∫ ∞

−∞
A(τ)eiωτ dτ , (18.70)

where γ and γ(s) are respectively twice the real and imaginary parts of b0,

γ(ω) =

∫ ∞

−∞
E[ν(0)ν(z)] cos(ωz) dz , γ(s)(ω) = 2

∫ ∞

0

E[ν(0)ν(z)] sin(ωz) dz .

In particular, γ is the power spectral density of the random process ν and is
nonnegative. Thus Lr can be interpreted as an effective diffusion operator.
Moreover, Li generates a frequency-dependent phase modulation, and it pre-
serves the wave energy. It can thus be interpreted as an effective dispersion
operator.

Let us address the case in which the power spectral density of the pro-
cess ν can be considered as constant over the spectral range of f : b0(ω) ≡
μ0 = γ(0)/2. This arises if the typical wavelength of the pulse is larger than
the correlation radius of the medium. In this situation the first phase of the
effective evolution is governed by the viscous Burgers equation

∂Ã0

∂z
=

μ0

4

∂2Ã0

∂τ2
+

3α0

4
Ã0

∂Ã0

∂τ
. (18.71)

However, new frequencies are generated by the nonlinear term, which may fall
in the tail of the function b0. Then the last equation may eventually fail to
describe exactly the dynamics of the front pulse, and one must consider the
true equation (18.67) with the pseudodifferential operator.

The viscous Burgers equation (18.71) supports self-similar waves or even
traveling waves as shown in [167, Chapter 4]. A simple example is the dam-
breaking problem, where an initial step propagates into the random medium.
The corresponding traveling wave is given in [167, Section 4.3].

18.3.5 Time Reversal

The time-reversal theory for nonlinear acoustic waves has been investigated
experimentally by Tanter et al. [164]. They analyzed the nonlinear mechanism
for energy transfer to higher harmonic components during forward propaga-
tion. The main goal of their experiments was to check for the reversibility
of this energy transfer. The acoustic experiments were carried out for a non-
linear sinusoidal wave propagating in a homogeneous medium. The energy
reversibility among harmonics was shown to be broken only for propagation
longer than the shock-formation distance. The previous analysis allows us
to address this issue for a broadband pulse in the presence of randomness.
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We have just shown how the random medium regularizes the problem, allow-
ing for propagation beyond the shock distance. This is another example in
which randomness helps in a dramatic fashion. Having prevented a deriva-
tive singularity from emerging, the fast transition layer saturates (i.e., the
shock structure forms) and a self-similar traveling wave can emerge from the
balance between nonlinearity and the stochastic forcing. This combined mech-
anism is enough to prevent the shock from fully developing and therefore it
allows for the propagation beyond the shock distance. Hence time reversal
can be performed beyond the critical time. This situation has been studied
in detail in [61]. We show that time reversal is indeed successful in inverting
the harmonic generation in order to recover the original spectrum and in re-
compressing the incoherent fluctuations. Indeed, the apparent viscosity does
not remove energy from the system. It only converts coherent wave energy
into incoherent fluctuations, and these incoherent waves can be recompressed
along the back-propagation of the front pulse.

18.4 Time Reversal with Changing Media

This section addresses the impact of a modification of the random medium on
refocusing during a time-reversal experiment. Even in the presence of signifi-
cant perturbations a coherent refocused pulse is observed. The theory predicts
the level of recompression observed as well as the conditions for the loss of
statistical stabilization. It is shown that the statistical properties of the refo-
cused pulse depend on a simple set of parameters that describe the correlation
degree of the medium. The refocused pulse has in general a random shape that
can be described in terms of a system of stochastic transport equations driven
by a single Brownian motion.

18.4.1 The Experiment

We revisit the time-reversal experiment in reflection that we studied in Section
10.1. We assume here that the fluctuations of the medium may have been
modified between the time windows corresponding to the first and second
parts of the time-reversal experiment. We shall denote by ν(1), respectively
ν(2), the random process that represents the fluctuations of the medium during
the first, respectively second, part of the time-reversal experiment. Here ν(1)

and ν(2) are assumed to have the same statistical distribution, but they are
different realizations and we shall see that the impact of this difference will be
characterized by a correlation degree between the two processes. By revisiting
the analysis carried out in Section 10.1, we get the integral representation of
the refocused pulse

Sε
L(t1 + εs, z = 0) =

1

(2π)2

∫ ∫
e−iωse−iεhs/2f̂(ω − εh/2)Ĝ(h)

×Rε,2
ω+εh/2(−L, 0)Rε,1

ω−εh/2(−L, 0)dh dω , (18.72)
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Fig. 18.4. Different realizations of the random bulk modulus. Picture (a) corre-
sponds to a Gaussian continuous model. Picture (b) corresponds to a stepwise con-
stant model. The realizations plotted in dashed (respectively dotted) lines have a
correlation degree δ = 0.9 (respectively δ = 0.75) with the realizations plotted in
solid lines (see (18.78) for the definition of δ).

where Rε,1
ω , respectively Rε,2

ω , stands for the reflection coefficient correspond-
ing to the first, respectively second, realization of the random medium. This
section is devoted to the proof of the convergence of the refocused pulse shape
to an effective shape as ε→ 0.

18.4.2 Convergence of the Finite-Dimensional Distributions

The uniform boundedness (10.5) still holds true with two different reflection
coefficients, since we use only the fact that |Rε,j

ω | ≤ 1. This in turn implies
that the finite-dimensional distributions of the process Sε

L(t1 + ·) will be char-
acterized by the moments

E[Sε
L(t1 + εs1)

p1 · · ·Sε
L(t1 + εsk)pk ] , (18.73)

for all real numbers s1 < · · · < sk and all integers p1, . . . , pk.

First Moment

The statistical distribution of the refocused pulse depends on the frequency
autocorrelation function of the reflection coefficient. We extend the approach
developed in the previous chapters. It is necessary to consider a family of
moments so as to get a closed system of equations. We introduce, for p, q ∈ N,

Uε
p,q(ω, h,−L, z) =

(
Rε,2

ω+εh/2(−L, z)
)p (

Rε,1
ω−εh/2(−L, z)

)q

.

Using the Riccati equation satisfied by Rε,j
ω , we deduce
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∂Uε
p,q

∂z
=

iω

c̄
(pνε,2 − qνε,1)Uε

p,q

+
iω

2c̄
e

2iωz
c̄ε

(
qνε,1e−

ihz
c̄ Uε

p,q−1 − pνε,2e
ihz

c̄ Uε
p+1,q

)

+
iω

2c̄
e−

2iωz
c̄ε

(
qνε,1e

ihz
c̄ Uε

p,q+1 − pνε,2e−
ihz

c̄ Uε
p−1,q

)
,

starting from Uε
p,q(ω, h,−L, z = −L) = 10(p)10(q). Here we have set νε,j(z) =

νj(z/ε2)/ε. Taking a shifted scaled Fourier transform with respect to h,

V ε
p,q(ω, τ,−L, z) =

1

2π

∫
e−ih[τ−(p+q)z/c̄]Uε

p,q(ω, h,−L, z) dh , (18.74)

we get

∂V ε
p,q

∂z
= −p + q

c̄

∂V ε
p,q

∂τ
+

iω

c̄
(pνε,2 − qνε,1)V ε

p,q

+
iω

2c̄
e

2iωz
c̄ε

(
qνε,1V ε

p,q−1 + pνε,2V ε
p+1,q

)

+
iω

2c̄
e−

2iωz
c̄ε

(
qνε,1V ε

p,q+1 − pνε,2V ε
p−1,q

)
,

starting from V ε
p,q(ω, τ,−L, z = −L) = δ0(τ)10(p)10(q). Applying the limit

theorem of Section 6.7.3 in the same way as in Section 9.2.1 establishes that
the processes V ε

p,q converge to diffusion processes as ε→ 0. In particular, the
expectations E[V ε

p,p(ω, τ,−Lz)], p ∈ N, converge to vp(ω, τ,−L, z), which obey
the closed system of transport equations

∂vp

∂z
+

2p

c̄

∂vp

∂τ
= (Lωv)p −

γ(1− δ)ω2

c̄2
p2vp , (18.75)

(Lωv)p =
γδω2

4c̄2
p2 (vp+1 + vp−1 − 2vp)−

γ(1− δ)ω2

2c̄2
p2vp , (18.76)

starting from vp(ω, τ,−L, z = −L) = δ0(τ)10(p), where

γ =

∫ ∞

−∞
E[ν(1)(0)ν(1)(z)]dz =

∫ ∞

−∞
E[ν(2)(0)ν(2)(z)] dz , (18.77)

δ =
1

γ

∫ ∞

−∞
E[ν(2)(0)ν(1)(z)]dz =

1

γ

∫ ∞

−∞
E[ν(1)(0)ν(2)(z)] dz . (18.78)

Here γ is the standard integrated autocorrelation of the process ν in absence
of time perturbations, and δ characterizes the correlation degree between the
processes ν(1) and ν(2). If the fluctuations of the medium are the same in the
two steps of the experiment (ν(1) ≡ ν(2)), then δ = 1, and the limit transport
equations (18.75) have the same form as the ones obtained in Section 9.2.1.
If the fluctuations of the medium are completely uncorrelated in the two
steps of the experiment (ν(1) and ν(2) independent), then δ = 0, so that
vp(ω, τ,−L, z) = δ0(τ)10(p).
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We then get the limit of the autocorrelation function of the reflection
coefficient:

E

[
Rε,2

ω+εh/2(−L, 0)Rε,1
ω−εh/2(−L, 0)

]
ε→0−→

∫
v1(ω, τ,−L, 0)eihτdτ .

Higher Moments

The convergence of the refocused pulse will be obtained by a moment analysis
similar to the one carried out in Section 10.1.3 for the corresponding problem
when the medium is not changing. Our objective is then to identify stochastic
processes Wp whose moments

E

⎡
⎣

m∏

j=1

Wpj (ωj , τj ,−L, 0)

⎤
⎦

are the limits of the moments

E

⎡
⎣

m∏

j=1

V ε
pj ,pj

(ωj , τj ,−L, 0)

⎤
⎦

for m distinct frequencies (ωj)1≤j≤m and any sets (pj)1≤j≤m ∈ Nm and
(τj)1≤j≤m ∈ Rm.

The quantity vp(ω, τ,−L, 0) is the limit of E[V ε
p,p(ω, τ,−L, 0)] as ε→ 0 and

is obtained through the system of transport equations (18.75). Unfortunately,
as we shall see below, the limit of E[V ε

p1,p1
(ω1, τ1,−L, 0)V ε

p2,p2
(ω2, τ2,−L, 0)]

as ε→ 0 is not equal to vp1(ω1, τ1,−L, 0)vp2(ω2, τ2,−L, 0) when δ = 1, which
shows that the desired process Wp cannot be the deterministic process vp.

We now introduce the family of processes Wp defined as the solutions of
the system of stochastic transport equations

dWp +
2p

c̄

∂Wp

∂τ
dz =

iω
√

2γ(1− δ)

c̄
pWp dW0(z)

−γ(1− δ)ω2

c̄2
p2Wp dz + (LωW)p dz , (18.79)

driven by a standard Brownian motion W0(z). In Stratonovich form, this
system can be written as

dWp +
2p

c̄

∂Wp

∂τ
dz =

iω
√

2γ(1− δ)

c̄
pWp ◦ dW0(z) + (LωW)p dz .

It is straightforward to check by Itô’s formula that

vp(ω, τ,−L, z) = E[Wp(ω, τ,−L, z)] ,



514 18 Other Regimes of Propagation

where the expectation E is taken with respect to the distribution of the
Brownian motion W0(z). Substituting this expression into the limit of the
expectation of (18.72) yields

E[Sε
L(t1 + εs)]

ε→0−→ 1

(2π)2

∫ ∫ ∫
e−iωseihτ f̂(ω)Ĝ(h)E [W1(ω, τ,−L, 0)] dh dτ dω

=
1

2π

∫ ∫
e−iωsf̂(ω)G(τ)E [W1(ω, τ,−L, 0)] dτ dω .

Let us now consider the general moment (18.73). Using the representation
(18.72) for each factor Sε

L(t1 +εsj), these moments can be written as multiple

integrals over m =
∑k

j=1 pj frequencies:

E

⎡
⎣

k∏

j=1

Sε
L(t1 + εsj)

pj

⎤
⎦ =

1

(2π)p

∫
...

∫
E

⎡
⎢⎢⎣

∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

Uε
1,1(ωj,l, hj,l,−L, 0)

⎤
⎥⎥⎦

×
∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

f̂(ωj,l)e
−iωj,lsj e−iεhj,lsj/2Ĝ(hj,l)dωj,l dhj,l .

The important quantity is E

[∏
j,l U

ε
1,1(ωj,l, hj,l,−L, 0)

]
. Our problem is now

to find the limit, as ε goes to 0, of these moments for m distinct frequencies.
This limit will be deduced from the study of the convergence of the distribution
of (Uε

p1,q1
(ω1, h1,−L, z), . . . , Uε

pm,qm
(ωm, hm,−L, z)), which results once again

from the application of a diffusion-approximation theorem. Introducing V ε as
in (18.74), it is found that (V ε

p1,q1
(ω1, τ1,−L, z), . . . , V ε

pm,qm
(ωm, τm,−L, z))

converges as ε→ 0 to a diffusion process. In particular,

vp1,...,pm(ω1, . . . , ωm, τ1, . . . , τm,−L, z) := lim
ε→0

E

⎡
⎣∏

j

V ε
pj ,pj

(ωj , τj ,−L, z)

⎤
⎦

is the solution of

∂vp1,...,pm

∂z
+

2

c̄

∑

j

pj
∂vp1,...,pm

∂τj
=

∑

j

Lωj vp1,...,pm

−2γ(1− δ)

c̄

⎛
⎝∑

j

ωjpj

⎞
⎠

2

vp1,...,pm ,

starting from vp1,...,pm(ω1, . . . , ωm, τ1, . . . , τm,−L, z = −L) =
∏

j δ0(τj)10(pj).
Using the families of processesWp introduced in (18.79) defined for every fre-
quency ω with the same Brownian motion W0(z), a direct calculation using

Itô’s formula shows that E
[∏

jWpj (ωj , τj ,−L, z)
]

satisfies the above system,

so that we have
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vp1,...,pm(ω1, . . . , ωm, τ1, . . . , τm,−L, z) = E

⎡
⎣

m∏

j=1

Wpj (ωj , τj ,−L, z)

⎤
⎦ ,

and consequently,

E [Sε
L(t1 + εs1)

p1 · · ·Sε
L(t1 + εsk)pk ]

ε→0−→ 1

(2π)m

∫
· · ·

∫
E

⎡
⎢⎢⎣

∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

W1(ωj,l, τj,l − L, 0)

⎤
⎥⎥⎦

×
∏

1 ≤ j ≤ k
1 ≤ l ≤ pj

f̂(ωj,l)e
−iωj,lsj G(τj,l)dωj,l dτj,l

= E

⎡
⎣ ∏

1≤j≤k

(
1

2π

∫
W1(ω, τ,−L, 0)f̂(ω)e−iωsj G(τ)dω dτ

)pj

⎤
⎦ .

This shows the convergence of the finite-dimensional distributions of (Sε
L(t1 +

εs))s∈(−∞,∞) to those of

1

2π

∫
W1(ω, τ,−L, 0)f̂(ω)e−iωsG(τ)dω dτ .

18.4.3 Convergence of the Refocused Pulse

The tightness of the process (Sε
L(t1 + εs, z = 0))s∈(−∞,∞) can be established

exactly as in Section 10.1. Together with the convergence of the finite-
dimensional distributions that we have just established, this demonstrates
the following proposition.

Proposition 18.2. The refocused signal (Sε
L(t1 + εs, z = 0))s∈(−∞,∞) con-

verges in distribution as ε→ 0 to

SL(s) =
1

2π

∫
W1(ω, τ,−L, 0)f̂(ω)e−iωsG(τ) dω dτ ,

where W1(ω, τ,−L, 0) is the random density that derives from the system
(18.79). We can also write

SL(s) = (f(− ·)∗KTRR(·)) (s) ,

where the Fourier transform of the random refocusing kernel KTRR is given
by

K̂TRR(ω) =

∫
G(τ)W1(ω, τ,−L, 0) dτ . (18.80)
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Fig. 18.5. Illustration of the loss of statistical stability when the medium is chang-
ing. We plot the refocused pulse shapes for an input pulse that is the second deriva-
tive of a Gaussian in the same configuration as in Figures 10.1–10.2. Picture (a)
corresponds to the standard time-reversal experiment with the same medium, so
that δ = 1, and we present the results of 10 experiments performed with different
realizations of the medium with the same statistical distribution (this figure is a
copy of Figure 10.4). Picture (b) corresponds to the results of 10 experiments in
which the medium is changing during the experiment so that δ = 0.75.

We can give a probabilistic representation of the random density W1 in
terms of a jump Markov process. Let us introduce the process (Nz)z≥−L

with state space N ∪ {⋄} (where ⋄ is the cemetery state) and infinitesimal
generator Lω given by (18.76). Note that as soon as δ < 1, the jump process
can be killed. When the jump process reaches the state x ∈ N∗, a random
clock with exponential distribution and mean τ(ω, x) = 2c̄2/(x2γω2) starts
running. When the clock strikes, the process is killed and goes to ⋄ with
probability p⋄ = 1 − δ; it jumps to x + 1 with probability δ/2, and to x − 1
with probability δ/2. Finally, 0 is an absorbing state. We can extend the
representation proposed in Section 9.2.2 for the case δ = 0 to the system
(18.79) by means of a Feynman–Kac formula:

∫ τ1

τ0

W1(ω, τ,−L, 0)dτ = E

[
1[τ0,τ1]

(
2

c̄

∫ 0

−L

Nzdz

)
10(N0)

× exp

(
i

√
2γ(1− δ)ω

c̄

∫ 0

−L

N−L−zdW0(z)

)
| N−L = 1

]
, (18.81)

where the expectation is taken with respect to the distribution of the jump
process, but not with respect to the distribution of the Brownian motion
W0. The refocused pulse shape has therefore a random shape in the presence
of perturbations of the medium fluctuations. There is no longer statistical
stability as there used to be in the standard configurations where the medium
is the same throughout the time-reversal experiment (see Figure 18.5).
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Notes

The weakly heterogeneous regime addressed in Section 18.1 has been pre-
sented, for instance, in [8]. The effects on time reversal are new. The results
with dispersion, nonlinearity, and time variations presented in Sections 18.2,
18.3, and 18.4, were derived in 2004, respectively in [60], [61], and [4]. The
asymptotic analysis of wave propagation in randomly layered media has been
extended to electromagnetic waves in [106], and time reversal in that context
is studied in [78]. Among other waves not introduced in this book, elastic
waves are of importance in geophysical imaging [151], and their asymptotic
analysis has been considered in detail in [108].
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The Random Schrödinger Model

In this chapter we consider the propagation of linear and nonlinear waves. We
focus here for simplicity and pedagogical reasons on the Schrödinger equation,
but the forthcoming results can be applied to other situations. The problem
for the linear case is very similar to the case of the acoustic waves addressed
in Chapter 7 in the frequency domain, but not in the time domain. The re-
sults for the transmission problem are stated in the first part of the chapter.
The main statement is that, for a given incident wave, the transmission co-
efficient for a system of finite length decays exponentially with the size of
the system. This phenomenon is one of the manifestations of wave localiza-
tion in one-dimensional random media. We address both time-harmonic and
time-dependent problems.

The main aim of the chapter is to discuss the robustness of localization
with respect to nonlinearity. More exactly, we want to know how the expo-
nential decay of the transmission can be modified by a nonlinearity. Some
nonlinear dispersive systems such as the nonlinear Schrödinger (NLS) equa-
tion have special solutions called solitons that can propagate without change in
form or diminution of speed in a homogeneous medium. Solitons are therefore
candidates for testing the stability of the exponential localization in nonlinear
and random media. In the second part of this chapter we study the propaga-
tion of a soliton through a slab of a nonlinear and random medium. We use a
perturbed version of the inverse transform to exhibit several typical behaviors
depending on the amplitude of the incoming soliton.

19.1 Linear Regime

19.1.1 The Linear Schrödinger Equation

Throughout the chapter we consider the Schrödinger equation, which models
many important physical phenomena such as, for instance, the dynamics of the
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state function in quantum mechanics. In a linear and homogeneous medium
it reads

iut + uxx = 0 , (19.1)

where the partial derivatives are denoted by subscripts. This equation admits
elementary solutions of the form

u = a exp i
(
kx− k2t

)
,

where k ∈ R is the wave number. The phase of this monochromatic wave can
be written as k(x−kt), which shows that the phase velocity is equal to k. The
fact that the phase velocity depends on the wave number, in contrast to the
standard wave equation, plays an important role in the wave dynamics. Let us
now consider the initial value problem that is defined by (19.1) together with
an initial condition at t = 0: u(t = 0, x) = u0(x), where u0 ∈ L2. A solution
procedure for this problem is by Fourier transform. One first applies a direct
Fourier transform (DFT) to the initial condition:

û(0, k) =
1

2π

∫ ∞

−∞
u(0, x)e−ikxdx .

The partial differential equation (19.1) is thus transformed into a set of un-
coupled ordinary differential equations:

ût = −ik2û =⇒ û(t, k) = û(0, k)e−ik2t . (19.2)

The solution at any time t can be obtained by applying the inverse Fourier
transform (IFT):

u(t, x) =

∫ ∞

−∞
û(t, k)eikxdk .

Schematically, we have

u(0, x)
DFT−→ û(0, k)

(19.1) ↓ ↓ Explicit and uncoupled evolutions (19.2)

u(t, x)
IFT←− û(t, k)

This resolution method allows us to describe the main difference between the
standard wave equation, which is hyperbolic and supports the propagation of
traveling waves, and the Schrödinger equation, which is a dispersive system.
As pointed out above, the frequency components of a pulse solution of the
Schrödinger equation do not travel with the same velocity, which involves
pulse spreading. Using the notation f̂(k) = û(0, k), the solution at any time t
can be written as

u(t, x) =

∫ ∞

−∞
f̂(k) exp i

(
kx− k2t

)
dk .
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If f̂(k) is smooth enough so that the stationary-phase method can be applied
(see Appendix 14.4), then for t≫ 1,

u(t, x) ∼
√

π

t
f̂
( x

2t

)
exp i

(
x2

4t
− π

4

)
,

which shows that the amplitude of the wave decays as 1/
√

t, while its support

increases as t. Furthermore, if the initial condition is such that f̂ is concen-
trated around the carrier wave number k0, then the wave propagates with the
group velocity 2k0, as seen in Figure 19.1.
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Fig. 19.1. Wave propagation governed by the linear Schrödinger equation (19.1).
The spatial profiles x �→ |u(t, x)| are plotted at times t = 0, 0.1, . . ., 0.6. The initial
condition is u0(x) = exp(−x2 +10ix) (picture (a)) and u0(x) = exp(−x2/10+10ix)
(picture (b)). In both cases the carrier wave number is 10, so that the velocity is 20.
In picture (a) the initial pulse is short, and dispersion takes place quickly. In picture
(b) the initial pulse is broad, and dispersive effects are not yet noticeable.

19.1.2 Transmission of a Monochromatic Wave

This subsection is devoted to the study of the propagation of monochromatic
waves. Let û(x) be the complex amplitude at x ∈ R of a monochromatic wave
u(t, x) = exp(−ik2t)û(x) traveling in the one-dimensional medium described
in Figure 19.2, where a random slab is embedded between two homogeneous
half-spaces. We address in this chapter the weakly heterogeneous regime, in
which the typical wavelength of the input wave is of the same order as the
correlation length of the random potential, the typical amplitude of the fluc-
tuations of the potential is small, of order ε, and the propagation distance is
large, of order ε−2.
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Inside the slab [0, L/ε2] the wave satisfies the inhomogeneous Schrödinger
equation iut + uxx = εV (x)u. By Fourier transforming this equation, we get
that the field û satisfies the Helmholtz-type equation

ûxx + (k2 − εV (x))û = 0 , for x ∈ [0, L/ε2] , (19.3)

where V is the realization of a random, stationary, ergodic, and zero-mean
process.

The medium is homogeneous outside the slab [0, L/ε2] and the wave u
obeys the Schrödinger equation iut + uxx = 0. Accordingly, û satisfies in the
region x ≤ 0 and x ≥ L/ε2 the equation

ûxx + k2û = 0 .

The general solution in the region x ≤ 0 is

û(x) = Al(k)eikx + Bl(k)e−ikx ,

where Al, respectively Bl, is the right-going mode, respectively left-going
mode, in the left half-space. Similarly, the general solution in the region
x ≥ L/ε2 is

û(x) = Ar(k)eikx + Br(k)e−ikx ,

where Ar, respectively Br, is the right-going mode, respectively left-going
mode, in the right half-space. We consider the particular case described in
Figure 19.2 in which there is no wave incoming from +∞, so that Br(k) =
0, while a wave with amplitude 1 is coming from −∞, so that Al(k) = 1.
Therefore, we have

û(x) = eikx + Rε(k, L)e−ikx , for x ≤ 0 ,

and
û(x) = T ε(k, L)eikx , for x ≥ L/ε2 ,

where the complex-valued random variables Rε and T ε are the reflection and
transmission coefficients, respectively. Note that the wave satisfies

ikû + ûx = 2ikeikx , for x ≤ 0 ,

and
ikû− ûx = 0 , for x ≥ L/ε2 .

The continuity of û and ûx at x = 0 and x = L/ε2 then implies that the
solution û of (19.3) also satisfies the two point boundary conditions

ikû + ûx = 2ik at x = 0 , ikû− ûx = 0 at x = L/ε2 . (19.4)

The problem turns out to be equivalent to the one studied in Chapter 7,
where we addressed the acoustic wave equations. The only difference is that
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�
0 L/ε2

x

�

T ε(k, L)ei(kx−k2t)

�

Rε(k, L)e−i(kx+k2t)

�

ei(kx−k2t)

iut + uxx = εV (x)u

Fig. 19.2. Transmission of a monochromatic wave.

(19.3) appeared in the form ûxx + k2(1 + εm(x))û = 0. The two problems are
thus completely equivalent if we set V (x) = −k2m(x). This can be done for
a monochromatic wave involving only one wave number k, but the case of a
pulse involving several frequencies is qualitatively different.

The following proposition holds true when the potential V is a stationary
process, that has finite moments of all orders and is rapidly mixing. We may
assume, for instance, that V is a Markov, stationary, ergodic process on a
compact space satisfying the Fredholm alternative (see Chapter 6).

Proposition 19.1. For ε small enough and fixed, there exists a finite local-
ization length Lε

loc(k) such that with probability one.

lim
L→∞

1

L
ln |T ε|2(k, L) = − 1

Lε
loc(k)

. (19.5)

This localization length has the limit

lim
ε→0

1

Lε
loc(k)

=
1

Lloc(k)
, (19.6)

where Lloc(k) is given by

1

Lloc(k)
=

γ(2k)

4k2
, γ(k) =

∫ ∞

−∞
E[V (0)V (x)] cos(kx) dx . (19.7)

We give an outline of the proof below. First, we compare this result with
the one obtained in the framework of the random acoustic wave equation
and stated in Proposition 7.6. The localization length for the acoustic wave
equation (normalized so that c̄ = 1 and k = ω) in the weakly heterogeneous
regime can be expanded as

1

Lloc

∣∣∣∣acoustic =
γ(2k)k2

4
.

Note that the factor k2 has moved compared to (19.7), because the acoustic
model and the Schrödinger model both correspond to Helmholtz-type equa-
tions, but the coefficients do not have the same wave-number dependence.
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Let us first consider wave numbers small enough so that γ(k) ∼ γ(0). This
means that klc ≪ 1, where lc is the correlation length of the medium. Propo-
sition 19.1 establishes that the localization length for the random Schrödinger
equation is a quadratic function of the wave number, and thus it decays to
0 as k → 0. This means that low-frequency waves cannot penetrate into the
slab. This is in dramatic contrast to the acoustic wave situation, in which the
localization length goes to infinity as k → 0, which means that low-frequency
waves penetrate deep into the slab.

The above results hold true if the wave number k satisfies klc ≪ 1, so
that it does not lie in the tail of the power spectral density γ. For high wave
numbers klc ≫ 1, the dependence of the localization length with respect to
the wave number is imposed by the decay of the power spectral density, and
thus we may encounter different configurations. If we consider the case of an
exponential autocorrelation function E[V (0)V (x)] = σ2 exp(−|x|/lc), then the
power spectral density is the Lorentzian

γ(k) =
2σ2lc

1 + k2l2c
.

As a result, the localization length for the acoustic-wave model saturates to
the limit value 2lc/σ2 for high wave numbers (see also Figure 19.3a), while the
localization length for the Schrödinger model increases as k4 (meaning that
high-frequency waves can penetrate deep into the medium).

If we consider the case of a Gaussian autocorrelation function

E[V (0)V (x)] = σ2 exp(−x2/l2c) ,

then the power spectral density is the Gaussian

γ(k) =
√

πσ2lc exp

(
−k2l2c

4

)
.

As a consequence, the localization lengths for the acoustic wave model and
the Schrödinger model both increase very quickly for high frequencies (see
Figure 19.3b).

These two covariance functions describe respectively very rough and very
smooth random medium fluctuations. We see that this gives rise to a strik-
ing contrast in how far the high frequencies can penetrate into the random
medium.

Proof (of Proposition 19.1). We follow closely the strategy developed in Sec-
tion 7.3 in the framework of the acoustic-wave equation. The study of the
exponential behavior of the power-transmission coefficient |T ε|2 can be di-
vided into two steps. First, the localization length is shown to be equal to the
inverse of the Lyapunov exponent associated with the random oscillator

vxx + (k2 − εV (x))v = 0 .
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Fig. 19.3. Localization length versus wave number for an exponential autocorrela-
tion function E[V (0)V (x)] = exp(−|x|) (picture (a)) and a Gaussian autocorrelation
function E[V (0)V (x)] = exp(−x2) (picture (b)).

Second, the expansion of the Lyapunov exponent of the random oscillator is
computed.

For consistency, we show how to transform the boundary value problem
(19.3–19.4) into an initial value problem similar to (7.3). Inside the perturbed
slab we expand û in the form

û
(
k,

x

ε2

)
= aε(k, x)eik x

ε2 + bε(k, x)e−ik x
ε2 , (19.8)

where aε and bε are respectively the right- and left-going modes defined by

aε =
ikû + ûx

2ik
e−ik x

ε2 , bε =
ikû− ûx

2ik
eik x

ε2 .

The process (aε, bε) is a solution of

d

dx

[
aε

bε

]
=

1

ε
Hk

( x

ε2

) [
aε

bε

]
, Hk(x) =

i

2k
V (x)

[
−1 −e−2ikx

e2ikx 1

]
. (19.9)

The boundary conditions (19.4) read, in terms of aε and bε,

aε(k, 0) = 1 , bε(k, L) = 0 . (19.10)

The end of the proof is then identical to that presented in Section 7.3. �

Proposition 19.1 gives the typical decay of the power-transmission coeffi-
cient. The next proposition gives its average decay.

Proposition 19.2. The power-transmission coefficient |T ε(k, L)|2 converges
in distribution as ε → 0 to the Markov process τk(L) whose infinitesimal
generator is
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Lk =
1

Lloc(k)

[
τ2
k (1− τk)

∂2

∂τ2
k

− τ2
k

∂

∂τk

]
, (19.11)

where Lloc(k) is given by (19.7).

Proof. The proof follows the lines of the arguments given in Section 7.1 to
study the power-transmission coefficient in the acoustic case. �

In particular, the mean-power-transmission coefficient E[|T ε(k, L)|2] con-
verges as ε→ 0,

lim
ε→0

E[|T ε(k, L)|2] = E[τk(L)] = ξ1

(
L

Lloc(k)

)
, (19.12)

where ξ1(l) is given by (7.52):

ξ1(l) = exp

(
− l

4

)∫ ∞

0

e−μ2l 2πμ sinh(μπ)

cosh2(μπ)
dμ .

The decay of the mean power transmission coefficient is therefore

lim
L→∞

1

L
ln (E[τk(L)]) = − 1

4Lloc(k)
,

which shows that the exponential behavior of the expectation of the power-
transmission coefficient is very different from its typical behavior. The “right”
localization length is intuitively the “typical” one (19.7), in the sense that it
is the one that is observed for a “typical” realization of the medium. In fact,
the next subsection shows that this holds true only for purely monochromatic
waves.

19.1.3 Transmission of a Pulse

�
0 L/ε2

x

�

utr(t, x)

�

uref(t, x)

�

uinc(t, x)

iut + uxx = εV (x)u

Fig. 19.4. Transmission of a pulse.

We consider a wave incoming from the left:
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uinc(t, x) =
1

2π

∫ ∞

0

f̂(k) exp i
(
kx− k2t

)
dk , x ≤ 0 , (19.13)

where f̂ ∈ L2 and has support in (0,∞). The assumption on the support of f̂
is necessary to ensure that we are dealing with a right-going wave (remember
that the phase velocity is k). The total field in the region x ≤ 0 thus consists
of the superposition of the incoming wave uinc and the reflected wave:

uref(t, x) =
1

2π

∫ ∞

0

f̂(k)Rε(k, L) exp i
(
−kx− k2t

)
dk , x ≤ 0 ,

where Rε(k, L) is the reflection coefficient. The field in the region x ≥ L/ε2

consists only of the transmitted wave that is right-going:

utr(t, x) =
1

2π

∫ ∞

0

f̂(k)T ε(k, L) exp i
(
kx− k2t

)
dk , x ≥ L/ε2 , (19.14)

where T ε(k, L) is the transmission coefficient. Inside the slab the wave has
the general form

u(t, x) =
1

2π

∫ ∞

−∞
û(k, x) exp

(
−ik2t

)
dk , 0 ≤ x ≤ L/ε2 .

The total transmitted energy is

T ε(L) =
1

2π

∫ ∞

0

|f̂(k)|2|T ε(k, L)|2 dk ,

and it converges to its limit expectation.

Proposition 19.3. The transmitted energy T ε(L) converges in probability to
T (L):

T (L) =
1

2π

∫ ∞

0

|f̂(k)|2ξ1

(
L

Lloc(k)

)
dk ,

where ξ1(L/Lloc(k)) is the asymptotic value (19.12) of the expectation of the
power-transmission coefficient |T ε(k, L)|2.

Proof. The idea is to show that the power-transmission coefficients at two dis-
tinct frequencies k1 and k2 are asymptotically uncorrelated as ε→ 0. With this
result, it is easy to derive the asymptotic behavior of the power-transmission
coefficient using the same arguments as those used in Section 7.2.2 in the
framework of the acoustic-wave equations.

More precisely, Proposition 19.2 gives the limit value of the expectation of
|T ε(k, L)|2 for one frequency k, so that

E [T ε(L)]
ε→0−→ 1

2π

∫ ∞

0

|f̂(k)|2ξ1

(
L

Lloc(k)

)
dk .
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Next one considers the second moment:

E
[
T ε(L)2

]
=

1

4π2

∫ ∞

0

∫ ∞

0

|f̂(k)|2|f̂(k′)|2E
[
|T ε(k, L)|2|T ε(k′, L)|2

]
dk dk′ .

The computation of this moment requires that one study the two-frequency
correlation function E

[
|T ε(k1, L)|2|T ε(k2, L)|2

]
. Using the same arguments as

those used in Section 7.2.3 in the framework of the acoustic-wave equations,
we obtain that the pair (|T ε(k1, L)|2, |T ε(k2, L)|2) converges in distribution
to (τk1(L), τk2(L)), where the two processes τk1(L) and τk2 (L) are two inde-
pendent Markov processes whose infinitesimal generators are respectively Lk1

and Lk2 defined by (19.11). Consequently,

E
[
T ε(L)2

] ε→0−→
(

1

2π

∫ ∞

0

|f̂(k)|2ξ1

(
L

Lloc(k)

)
dk

)2

,

which proves the convergence of T ε(L) to T (L) in L2(P). Since the limit value
is deterministic, the convergence also holds true in probability. �

Let us assume that the incoming wave is narrowband, that is, that the spec-
trum f̂ is concentrated around the carrier wave number k0 with a bandwidth
that is smaller than 1, but larger than ε2. Then T (L) decays exponentially
with the width of the slab as

1

L
ln T (L)

L≫1∼ − 1

4Lloc(k0)
. (19.15)

Note that this is the typical behavior of the expected value of the power-
transmission coefficient of a monochromatic wave with wave number k0. This
self-averaging property is implied by the asymptotic decorrelation of the
power-transmission coefficients at different frequencies.

Remark 19.4. In Chapter 8 we studied the stabilization of the front pulse in
the case of the acoustic equations. Such a theory does not exist in the case of
the Schrödinger equation, because the front pulse does not exist. The reason
is that the system is dispersive, and the computation carried out in Section
19.1.1 shows that after a propagation distance (or time) of order ε−2, the
amplitude of a pulse traveling in a homogeneous medium is of order ε.

19.2 Nonlinear Regime

19.2.1 Waves Called Solitons

Solitary Waves in Communications

A solitary wave is a wave that propagates without change of form or diminu-
tion of speed. The study of solitary waves began in 1838 with the observation
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by J. Scott Russel of such a water wave while riding on a horse along a canal.
However, no mathematical theory available at the time predicted a solitary
wave. The problem was resolved in 1895 by Korteweg and de Vries, who
derived an equation (now known as the KdV equation) that governs small
shallow-water waves [110]. Boussinesq in 1871 also derived a nonlinear wave
equation governing such long waves [22]. Despite this early work, no further
application was discovered until the 1960s. In 1967 Gardner, Green, Kruskal,
and Miura first discovered an original method for solving KdV by applying an
implicit linearization of the equation; the so-called inverse scattering transform
[72]. Lax (1968) considerably generalized these ideas [115], and Zakharov and
Shabat (1972) showed that the method worked for the nonlinear Schrödinger
(NLS) equation [171]:

iut + uxx + |u|2u = 0 .

At this time it was known that the NLS equation describes the propagation of
short pulses in single-mode optical fibers [125]. Hasegawa (1973) then claimed
that the “soliton” was the ideal candidate to be the information bit for the
next generation of optical fibers [87].

Indeed, communications in optical fibers [88] consist in sending binary
messages at very high rates. A sequence of 0’s and 1’s can be coded as a train
of short pulses, where a 1 is represented by a pulse and a 0 by the absence
of a pulse in the corresponding arrival time slot of the train. The success of
this method is based on the fact that modern technology has succeeded in
producing purified glass fiber with a very low level of attenuation. Unfortu-
nately, another phenomenon appears to be a limitation in the race toward
higher and higher transmission rates. Indeed, dispersion makes pulses spread
out. However, nonlinear effects such as self-focusing compete with dispersion.
The NLS equation, which describes this competition to a good approximation,
has a special solution, the so-called soliton, for which the nonlinear effects ex-
actly counterbalance dispersion. It is therefore a good candidate to be the
information bit for a new generation of optical fibers [86]. In order to confirm
this hope, it is relevant to study the behavior of a soliton when it propagates
through weakly perturbed media over very large distances.

To be complete, we must add that soliton-based communications schemes
present some serious drawbacks, such as four-wave mixing, which is detrimen-
tal for wavelength-division multiplexing. As a result, they have so far never
been implemented in real communications systems. Alternative solutions have
been explored. A simple solution consists in a direct dispersion compensation
for linear pulse propagation by the use of a periodic concatenation of pieces
of fibers with opposite signs of dispersion. However, in any realistic optical
network it will not be possible to compensate for all the dispersion in each
element, so that there will remain some residual dispersion. Furthermore, the
amplitude of the signal is bounded from below to keep a reasonable signal-
to-noise ratio, so that the nonlinearity should also be taken into account. In
[71] it was shown that the pulse propagation in such conditions is described
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by the NLS equation with a distance-varying dispersion coefficient. As a re-
sult, the concept of a dispersion-managed soliton in dispersion-compensated
lines was proposed. It combines the advantages of the traditional fundamental
soliton of the NLS equation and the dispersion-managed non-return-to-zero
signal transmission. Both computational and experimental investigations have
shown the existence and the stability of this new type of optical solitary wave.

Solitary Waves in Bose–Einstein Condensates

In 1924, Einstein pointed out that bosons (particles that have integer spin)
could “condense” at low temperature in unlimited numbers into a single
ground state, because they are not constrained by the Pauli exclusion principle
(the Pauli exclusion principle claims that two fermions, particles of half-integer
spins, cannot have identical quantum numbers). The result of this “conden-
sation” is a macroscopic quantum state, a Bose–Einstein condensate (BEC),
which is a physically intriguing phenomenon. The conditions for achieving a
BEC are quite extreme. The participating particles must be identical, and this
is a condition that is difficult to achieve for whole atoms. The condition of
indistinguishability requires that the de Broglie wavelengths of the particles
overlap significantly. This requires extremely low temperatures, so that the
de Broglie wavelengths are long enough, but this also requires a rather high
particle density to narrow the gaps between the particles.

The experimental realization of BEC in dilute atomic gases [44] founded a
rapidly progressing new field of research [42]. This major achievement was per-
mitted by the development of laser cooling techniques, to cool quantum gases
to extremely low temperatures, and of magnetic trapping methods, allowing
the production of temperatures on the order of the nanokelvin.

The most widely used approach for the description of a quantum degen-
erate bosonic system is the mean-field Gross–Pitaevskii (GP) theory [84]. In
this approach all particles are considered to be in the same quantum state
described by the condensate wave function, which evolves in time according
to the GP equation

i�
∂ψ

∂t
= − �2

2m
∆ψ + V (r)ψ + g|ψ|2ψ ,

where m is the mass of a particle and V is the external trapping potential.
The nonlinearity parameter is g = 4π�2as/m, where as is the s-wave scat-
tering length. This scattering length is the interaction range associated with
the s-wave scattering between pairs of bosons (the only interaction that is
significant at low temperature). The GP equation has a straightforward inter-
pretation: each boson evolves in the external potential V and in the mean-field
potential produced by the other bosons. This equation is valid for a large num-
ber of atoms at low temperature, in the case that the mean distance between
the atoms is larger than as. This equation shows that interactions play an
important role although the gas is dilute.
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In cigar-like trapping potentials, the dynamics in the radial direction are
averaged out and the longitudinal profile of the wave function satisfies the
one-dimensional GP equation. We can then recover the NLS equation by re-
casting this equation in dimensionless units. In this framework, a soliton is
a perturbation of the density that propagates with constant speed, without
deformation. The absence of dispersion, as in nonlinear optics, is due to the
compensation between the nonlinear term and the kinetic term in the GP
equation.

19.2.2 Dispersion and Nonlinearity

Dispersion in Wave-Propagation Phenomena

A linear dispersive system is any system that admits elementary solutions of
the form

u = a exp i (kx− ωt) , (19.16)

where the frequency ω is a definite real function of the wave number k, and
the so-called dispersion relation ω(k) is determined by the particular system.
For instance, the Boussinesq equation studied in Section 18.2 has the disper-
sion relation ω(k) = k/

√
1 + βk2. Any general solution can be obtained by

superposition of elementary wave trains (19.16) to form Fourier integrals

u =

∫
F (k) exp i (kx− ω(k)t) dk ,

where F is chosen to fit the boundary or initial conditions with use of the
Fourier inversion theorem. The wave components travel with their own phase
velocity ω(k)/k. Dispersion is due to the fact that the dispersion relation is
usually not linear. As a consequence, the phase velocity depends on the wave
number k. As time evolves, the different component modes disperse and the
pulse spreads out. A more quantitative analysis can be easily carried out for
the linear Schrödinger equation iut + uxx = 0, whose dispersion relation is
ω(k) = k2. As shown in Section 19.1.1, the amplitude of the wave decays as
1/
√

t, while its support increases as t.

Catastrophic Collapse in Nonlinear Media

The simplest equation describing nonlinear propagation effects is the Burgers
equation:

ut + uux = 0 . (19.17)

This equation can be solved analytically by the standard method of character-
istics. If the initial condition u(t = 0, x) = u0(x) is smooth, then the solution
remains smooth until time tc, and its derivative is explicitly given by

ux(t, x) =
u0x(x)

1 + u0x(x)t
,
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where tc is defined by t−1
c := maxx {−u0x(x)}. At time tc the solution breaks

up (more exactly, a shock develops). An extensive study of this equation can
be found, for instance, in [167].

19.2.3 The Nonlinear Schrödinger Equation

We have just seen in the previous section that dispersion tends to spread out
a pulse, while certain types of nonlinearity tend to concentrate the wave. It is
therefore natural to address the case of dispersive and nonlinear systems and
to look for solutions that achieve a balance between dispersion and nonlinear-
ity. We study here the NLS equation, which supports such solutions.

An Introduction to the Inverse Scattering Transform

The goal of this subsection is to present the inverse scattering transform (IST),
which transforms the NLS equation into a set of uncoupled ordinary differ-
ential equations. As we shall see, the IST can be seen as the analogue of the
Fourier transform that achieves the same result for the linear Schrödinger
equation. More detail can be found in [119].

The IST aims at studying the solutions of nonlinear partial differential
equations of the type ut = F (u) with rapidly decaying initial conditions. It
can be applied in the case that the evolution equation is equivalent to the
linear operator relation

∂L(u)

∂t
+ [L(u),A(u)] = 0 , (19.18)

where [L,A] = LA−AL. It is based on the fact that u(t, .) can be character-
ized by some spectral data of the operator L(u(t, .)). The homogeneous NLS
equation

iut + uxx + 2|u|2u = 0 (19.19)

can be expressed in the form (19.18) if we set

L(u) = iP
∂

∂x
+ Q(u) , with P =

[
1 0
0 −1

]
and Q(u) =

[
0 u
−u 0

]
.

The operator A is of the type −2iP ∂2

∂x2 + C(u), with C(u)→ 0 when u→ 0,
ux → 0. The domain of L(u) is the space H1(R),

H
1(R) =

{
ψ such that ψ ∈ L

2(R), ψx ∈ L
2(R)

}
,

which is a dense subset of the Hilbert space L2(R) defined by

L
2(R) =

{
ψ = ψ1e1 + ψ2e2, ψj ∈ L2(R)

}
, e1 =

[
1
0

]
, e2 =

[
0
1

]
,

equipped with the scalar product

〈ψ, φ〉 =
∫ +∞

−∞
[ψ1φ1(x) + ψ2φ2(x)] dx .
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Operator L(0)

The operator L(0) is self-adjoint. The real axis constitutes its essential spec-
trum. The eigenspace associated with the eigenvalue λ ∈ R has dimension 2
and admits as a basis the couple

(
e1e−iλx, e2eiλx

)
. Moreover, the point spec-

trum of L(0) is empty, because the nontrivial solutions of vx = iλv are not in
L2(R).

Essential Spectrum of the Operator L(u(t = t0, .))

Let us consider the spectral problem associated with the operator L(u) =
L(0) + Q(u):

L(u(t, x))ψ(t, x) = λ(t)ψ(t, x) , ψ = ψ1e1 + ψ2e2 . (19.20)

If u(t = t0, .) ∈ L1(R), then Q(u) is L(0)-compact. As a consequence of
the Weyl theorem, the essential spectrum of L(u) is equal to the real axis.
Equation (19.20) actually admits two linearly independent solutions when λ
is real. We introduce the so-called Jost functions f and g, defined as the
eigenfunctions of L(u) associated with the real eigenvalue λ that satisfy the
following boundary conditions:

f(x, λ)
x→+∞−→ e2eiλx , g(x, λ)

x→−∞−→ e1e−iλx .

If we denote by ψ̌ the vector (ψ2,−ψ1) associated with a vector ψ solution of
(19.20), then ψ̌ is a solution of Lψ̌ = λψ̌. In the case of a real eigenvalue, ψ
and ψ̌ are linearly independent and form a basis of the space of the solutions
of (19.20). It can then be proved that the Jost functions are related by

g(x, λ) = a(λ)f̌(x, λ) + b(λ)f(x, λ), (19.21)

f(x, λ) = −a(λ)ǧ(x, λ) + b(λ)g(x, λ) . (19.22)

Substituting the second equality into the first one, we also exhibit the following
conservation relation:

|a(λ)|2 + |b(λ)|2 = 1 . (19.23)

Using (19.20) we get two additional conservation relations, which concern the
norms of the Jost functions f and g:

|f1(x, λ)|2 + |f2(x, λ)|2 = 1 , |g1(x, λ)|2 + |g2(x, λ)|2 = 1 .

Multiplying (19.21) by the vector f̌ , we get an explicit representation of the
coefficient a as the Wronskian of f and g:

a(λ) = g1(x, λ)f2(x, λ) − g2(x, λ)f1(x, λ) . (19.24)

We are able to provide a more explicit representation of the Jost functions f
and g. Writing f̃1(x, λ) = eiλxf1(x, λ) and f̃2(x, λ) = e−iλxf2(x, λ), we find
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from (19.20) that f̃ satisfies a system of integral equations. Furthermore, f̃1

can be eliminated from this system by substitution, so that we get a closed
equation for f̃2, whose solution is

f̃2(x, λ) = 1 +

∫ ∞

x

dyM(y, x, λ)

(
1 +

∫ ∞

y

dzM(z, x, λ) (. . .)

)
,

where M(y, x, λ) = −u(y)
∫ y

x dzu(z)e2iλ(y−z). This expression holds true when

u ∈ L1, because the associated sequence converges absolutely. The function f̃1

also admits a similar representation. Let us examine carefully the properties
of f̃ . If y 	→ |y|n|u(y)| ∈ L1, then f̃1 and f̃2 are of class Cn over the real axis.
If u ∈ L1, then f̃1 and f̃2 can be analytically continued in the upper complex
half-plane Im(λ) ≥ 0, where they have no singularity. Indeed, in view of the
definition of M one can see that the exponential term has a norm equal to
e−2Imλ(y−z) (remember that we integrate over the domain y − z > 0), which
decays faster than any polynomial term brought by the λ-derivatives.

Point Spectrum of the Operator L(u(t = t0, .))

From (19.24) we can define an analytic continuation of a(λ) over the upper
complex half-plane. A noticeable feature then appears. If λr is a zero of a(λ),
then f and g are linearly dependent, so there exists a coefficient ρr such that
g(x, λr) = ρrf(x, λr). The corresponding eigenfunction is bounded and decays
exponentially as x→ +∞ (because |f | ∼ e−Imλrx) and as x→ −∞ (because
|g| ∼ e+Imλrx). Thus λr is an element of the point spectrum of L(u). Moreover,
we can compute from (19.20) and (19.24) the λ-derivative of a at λ = λr:

a′(λr) = −2iρr

∫ +∞

−∞
dx f1f2(x, λr) . (19.25)

It can then be proved that the set (a(λ), b(λ), λr , ρr, a
′(λr)) characterizes the

Jost functions f and g, as well as the solution u. The inverse transform is essen-
tially based on the resolution of the linear integrodifferential Gelfand–Levitan–
Marchenko equation, whose entries are defined by the set (a, b, λr, ρr, a

′(λr)):

K1(x, y) = Φ(x + y)−
∫ ∞

x

K1(x, y′′)

∫ ∞

x

Φ(y + y′)Φ(y′ + y′′) dy′ dy′′ ,

K2(x, y) = −
∫ ∞

x

K1(x, y′)Φ(y + y′) dy′ , (19.26)

where

Φ(y) = −
∑

r

iρr

a′(λr)
eiλry +

1

2π

∫ +∞

−∞

b(λ)

a(λ)
eiλy dλ .

We can get the eigenvector f = (f1, f2) from the kernel K = (K1, K2) solution
of (19.26):
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f(x, λ) = e2eiλx +

∫ ∞

x

K(x, y)eiλy dy . (19.27)

We then obtain u by the formula u(x) = −2iK1(x, x). The understanding of
the inverse problem associated with the operator L(u) is not yet complete. In
particular the precise characterization of the spectral data which lead to well-
defined potentials u has not yet been completed. However, in the case that the
initial condition u0 is rapidly decaying, so that it satisfies x 	→ |x|n|u0|(x) ∈ L1

for any n, the inverse scattering can be rigorously obtained [2].
The great advantage of the method is that the evolution equations of the

scattering data are uncoupled:

a(t, λ) = a(t0, λ), b(t, λ) = b(t0, λ)e−4iλ2(t−t0) , ρr(t) = ρr(t0)e
−4iλ2

r(t−t0) .

To sum up, the scattering transform involves the following operations:

u(t0, x)
direct scatt.−→ (a, b, λr, ρr, a

′(λr)) (t0)
NLS ↓ ↓ uncoupled evolution equations

u(t, x)
inverse scatt.←− (a, b, λr, ρr, a

′(λr)) (t)

.

What is striking is the remarkable analogy to Fourier analysis of the linear
Schrödinger equation (see Section 19.1.1).

Conserved Quantities

There exists an infinite number of quantities that are preserved by the homo-
geneous nonlinear Schrödinger equation (19.19) [119]. They can be represented
as functionals of the solution u or in terms of the scattering data. We present
here only two of them, which are of physical interest.

• The mass of the wave N =
∫
|u|2dx. With n(λ) = −π−1 ln |a(λ)|2, the

mass is also given by

N =
∑

r

2i(λr − λr) +

∫
n(λ) dλ . (19.28)

• The Hamiltonian H =
∫
|ux|2 − |u|4dx, which can also be expressed as

H =
∑

r

8i

3
(λr

3 − λr
3) + 4

∫
λ2n(λ) dλ . (19.29)

Soliton

There exists a special solution of (19.19) with finite mass and Hamiltonian
that is called a soliton:
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u0(t, x) = 2ν0

exp i
(
2μ0(x− 4μ0t) + 4(ν2

0 + μ2
0)t

)

cosh (2ν0(x− 4μ0t))
. (19.30)

This solution achieves a stable and perfect balance between dispersion and
nonlinearity, so that its envelope (the modulus of the field) is traveling with
constant velocity and shape. The mass and the velocity of the soliton are
respectively 4ν0 and 4μ0. The width of the envelope of the soliton is conversely
proportional to its mass. The soliton (19.30) is associated with the scattering
data

a0(λ) =
λ− (μ0 + iν0)

λ− (μ0 − iν0)
, b0(λ) = 0 . (19.31)

Here a0 admits a unique zero in the upper complex half-plane denoted
by λ0 = μ0 + iν0. The coefficient associated with the zero λ0 is ρ0 =
i exp

(
−4i(μ0 + iν0)

2t
)
. Figure 19.5 plots two different solitons at time t = 0.

Both have the same mass, and consequently the same envelope, but they have
different velocities. Note that in the case ν0 ≫ μ0 (respectively ν0 ≪ μ0), the
soliton oscillates slowly (respectively quickly) within its envelope.
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Fig. 19.5. Solitons at time t = 0. The dashed lines represent the envelopes (the
moduli) of the solitons, while the solid lines represent the real and imaginary parts.
Picture (a): 4ν0 = 2, 4µ0 = 0.4. Picture (b): 4ν0 = 2, 4µ0 = 12.8.

19.2.4 Soliton Propagation in Random Media

Competition Between Randomness and Nonlinearity

The main aim of the second part of this chapter is to discuss the stability of
localization with respect to nonlinearities. More exactly, we want to know how
the exponential decay of the transmission can be modified by a nonlinearity.
The problem is much more difficult than for the linear case, and the methods
used to study the linear case seem to fail completely. Some stability of local-
ization has been conjectured. In particular, Fröhlich et al. have conjectured
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that solutions to the stationary nonlinear Schrödinger equation localize for
sufficiently small initial data [70]. In the case of a general nonlinearity, results
can be found in the literature for the stationary problem. It is very different
from the linear case, since the transmission problem is no longer uniquely
defined. Indeed, because of the nonlinearity, the transmitted intensity is not
a linear function of the incident intensity. This phenomenon called bistability
means that there may exist more than one output state for a given input
state depending on hysteresis. The effect of randomness on bistability was
addressed in [103]. The problem with fixed output was also considered in [47].
The authors show that for strong nonlinearity, the transmission coefficient
cannot decay faster than a power law. These results show strong evidence
that there exist delocalized transmission states. However, since only the time-
harmonic problem has been addressed, not all of these states are physical [25],
so that a complete study with a time-dependent model is required to under-
stand this issue. This is the topic addressed in the second part of this chapter,
where the propagation of a soliton through a slab of nonlinear and random
medium is considered. Indeed, solitons can propagate without change of form
or diminution of speed in homogeneous nonlinear dispersive media. Solitons
are therefore candidates to test the stability of the exponential localization
in nonlinear and random media. Physical [83], numerical [102], and experi-
mental works [94] predict that for an NLS soliton propagating in a random
medium, there exist two distinct regimes that depend on the soliton parame-
ters. Furthermore, one of these regimes is expected to be very different from
the localization regime in that the soliton retains its mass although it loses
velocity. Using a perturbed version of the inverse scattering transform we can
give a proof of this conjecture.

The Perturbed Nonlinear Schrödinger Equation

We consider a perturbed Schrödinger equation with a nonzero right-hand side:

iut + uxx + 2|u|2u = εR(u)(t, x) . (19.32)

The small parameter ε > 0 characterizes the amplitude of the perturbation,
whose spatial support is the interval [0, L/ε2]. Outside this interval the per-
turbation is zero. The model of the perturbation is taken to be

R(u)(t, x) = V1(x)u(t, x) + V2(x)|u|2u(t, x) + (V3(x)ux(t, x))x , (19.33)

for x ∈ [0, L/ε2]. Here V1, V2, and V3 are random, stationary, ergodic, zero-
mean, and independent processes. We assume that a right-going soliton with
parameters (ν0, μ0) is incoming from the homogeneous left half-space (Fig-
ure 19.6).

The Deterministic Asymptotic Regime

Let L > 0. We denote by Ωε
L the measurable set of realizations of the process

(Vj)j=1,2,3 such that the scattered wave consists of one soliton plus some
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+iut + uxx + 2|u|2u = εR(u)

Fig. 19.6. Transmission of a soliton.

radiation. In terms of the spectral data it means that the Jost coefficient a
admits a unique zero in the upper complex half-plane. We denote by νε and με

the rescaled processes defined on Ωε
L by νε(x) = ν(x/ε2) and με(x) = μ(x/ε2)

(i.e., the coefficients of the transmitted soliton in position x/ε2), and on Ωε
L

c

by νε(x) = 0 and με(x) = 0. We can now state our main convergence result
(we then give a sketch of the proof).

Proposition 19.5.
1. lim

ε→0
P (Ωε

L) = 1.

2. The R2-valued process (νε(x), με(x))x∈[0,L] converges in probability as a
continuous process to the R2-valued deterministic function (νl(x), μl(x))x∈[0,L]

that satisfies the system of ordinary differential equations

⎧
⎪⎨
⎪⎩

dνl

dx
= F (νl, μl), νl(0) = ν0 ,

dμl

dx
= G(νl, μl), μl(0) = μ0 ,

(19.34)

where the functions F and G are given by

F (ν, μ) = − 1

4π

3∑

j=1

∫ ∞

−∞
|cj |2(ν, μ, λ)γj(2k(ν, μ, λ)) dλ ,

G(ν, μ) = − 1

8π

3∑

j=1

∫ ∞

−∞

(
λ2

μν
+

ν

μ
− μ

ν

)
|cj |2(ν, μ, λ)γj(2k(ν, μ, λ)) dλ .

The coefficients γj and k are defined by:

γj(k) =

∫ ∞

−∞
E[Vj(0)Vj(x)] cos(kx) dx , k(ν, μ, λ) =

(λ− μ)2 + ν2

2μ
.

(19.35)
The functions cj are written explicitly in [73, 1]. For consistency we write the
full expression of c1:

c1(ν, μ, λ) =
π

24μ3

(λ− μ + iν)
2

cosh (π(μ2 − ν2 − λ2)/(4μν))
. (19.36)
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The first point means that the event “the scattered wave consists of one soliton
plus some radiation” occurs with very high probability for small ε, while the
second point gives the effective dynamics of the coefficients of the transmitted
soliton, which turn out to be statistically stable quantities. This means that
the shape of the transmitted soliton (and its velocity) are deterministic in our
scaled regime. The situation is in some sense similar to the theory developed
in Chapter 8 that describes the deformation of a linear pulse propagating in
a random hyperbolic medium.

The analysis of the effective system (19.34) shows that there exist two
main regimes up to transitory regimes.

1. If the mass of the incoming soliton is small enough, then the velocity of
the soliton is almost constant, while its mass decreases to 0:
- as exp(−L/Lloc) (perturbation of the linear potential),
- as L−1/4 (perturbation of the nonlinear coefficient),
- as L−1/2, then as exp(−L/L′

loc) (dispersive perturbation).
2. If the mass of the soliton is large enough, then it remains almost constant,

while its velocity slowly decreases to 0. The decay rate depends on the tail
of the spectrum of the perturbation, but we can state in great generality
that it is at most logarithmic.

We discuss in more detail the case of a random potential in Section 19.2.5.

The Main Steps of the Proof

We now list the main steps of the proof [73, 1].

1. A Priori Estimates
The following quantities (mass and Hamiltonian) are preserved by the
perturbed Schrödinger equation (19.32):

Ntot =

∫
|u|2 dx , Htot =

∫
H0(x) dx + ε

∫
H1(x) dx , (19.37)

where H0(x) = |ux|2 − |u|4 and H1(x) = V1(x)|u|2 + 1
2V2(x)|u|4 −

V3(x)|ux|2. Assume that the Vj are bounded processes. Sobolev inequal-
ities then prove that the H1-norm, the L4-norm, and the L∞-norm of
u(t, .) are uniformly bounded with respect to t ∈ R and ε ∈ (0, 1). Fur-
thermore,

∫
H1(x) dx can be bounded uniformly with respect to t ∈ R by

a constant that depends only on Ntot and Htot.
2. Stability of the Zero of the Jost Coefficient a

The zero of the Jost coefficient b corresponds to the soliton. This part
strongly relies on the analytical properties of a in the upper complex
half-plane. Basically, we apply Rouché’s theorem so as to prove that the
number of zeros is constant. This method is efficient to prove that the
zero is preserved, but it does not give control on its precise location in the
upper half-plane (remember that the real part of the zero is the parameter
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μ and the imaginary part is ν). This step is not sufficient to compute the
variations of the soliton parameters.

3. Balance Between Radiation and Soliton
The Jost coefficients a and b satisfy the coupled equations [93]

∂a(λ, t)

∂t
= 0 + ε

(
a(λ, t)Γ̌ (λ, t) + b(λ, t)Γ (λ, t)

)
,

∂b(λ, t)

∂t
= −4iλ2b(λ, t)− ε

(
a(λ, t)Γ (λ, t) + b(λ, t)Γ̌ (λ, t)

)
,

where

Γ (λ, t) = −
∫ (

R(u)f2
2 + R(u)f2

1

)
dx ,

Γ̌ (λ, t) = −
∫ (

R(u)f1f2 −R(u)f1f2

)
dx .

From these equations we can estimate the amount of radiation emitted
during some time interval in terms of mass and Hamiltonian thanks to
(19.28–19.29). We are then able to deduce the evolution equations of the
coefficients of the soliton by using the conservation of the mass and of the
Hamiltonian, Ntot and Htot. Indeed, the total mass and Hamiltonian are
conserved, but the discrete (soliton) and continuous (radiation) compo-
nents vary along the propagation. The variations ∆(..) of these quantities
are constrained by the relations

∆(Ntot) = 0 = 4∆ν +

∫
∆n(λ) dλ ,

∆(Htot) = 0 = 16∆
(
νμ2 − ν3/3

)
+ 4

∫
λ2∆n(λ) dλ + ε∆

(∫

R

H1(x) dx

)
.

For times of order O(ε−2), the radiated mass density ∆n(λ) is of order
O(1), while the last term in the expression of the total Hamiltonian is
of order ε by the a priori estimates. Thus we can compute the long-time
behavior of the coefficients of the soliton in the asymptotic framework ε→
0. We can now in fact apply the diffusion approximation theorem presented
in Chapter 6, and find that the coefficients of the soliton converge in
probability to nonrandom functions that satisfy the system (19.34).

19.2.5 Reduction of Wave Localization by Nonlinearity

Localization Regime and Nonlinear Regime

In this subsection we describe in more detail the case of a random potential
V1 where V2 = V3 = 0 in (19.33). We study the asymptotic evolutions of the
coefficients of the transmitted soliton as a function of the macroscopic length
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L of the random slab, i.e., L/ε2 in the microscopic scale. By Proposition 19.5
these evolutions are described by (19.34). We aim at exhibiting the relevant
characteristics of this deterministic system of ordinary differential equations.
• In the regime ν0 ≪ μ0, the system (19.34) can be simplified:

⎧
⎪⎪⎨
⎪⎪⎩

dνl

dx
= −γ1(4μl)

16

νl

μ2
l

, νl(0) = ν0 ,

dμl

dx
= −γ1(4μl)

48

ν2
l

μ3
l

, μl(0) = μ0 .
(19.38)

This gives
(
1− 1/3 (ν0/μ0)

2
)1/2

≤ μl(x)/μ0 ≤ 1, which shows that the ve-

locity of the soliton is almost constant during the propagation, while the mass
(equal to 4νl) decreases. The coefficient νl of the transmitted soliton decreases
exponentially with the propagation distance:

νl(x) ∼ ν0 exp

(
− x

Lexp

)
, Lexp =

16μ2
0

γ1(4μ0)
. (19.39)

Note that if the approximation ν ≪ μ holds true for the initial conditions,
then it actually holds true during the whole propagation, since the velocity
is almost constant while the mass decreases. The domain ν ≪ μ is therefore
stable.
• In the regime μ0 ≪ ν0, the system (19.34) can be simplified:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dνl

dx
= −π

√
2γ1(2ν2

l /(2μl))

28

ν
9/2
l

μ
11/2
l

exp

(
−π

2

νl

μl

)
, νl(0) = ν0 ,

dμl

dx
= −π

√
2γ1(2ν2

l /(2μl))

29

ν
11/2
l

μ
13/2
l

exp

(
−π

2

νl

μl

)
, μl(0) = μ0 .

(19.40)

It can be readily checked that
(
1− 2 (μ0/ν0)

2
)1/2

≤ νl(x)/ν0 ≤ 1 , which

means that the mass of the soliton is almost constant during the propagation,
while the velocity of the soliton decreases. The limit behavior for large x
of the coefficient μl depends on the functions γ1, more exactly on the high-
frequency behaviors of the Fourier transforms of the autocorrelation functions
of the process V1. For instance, if E[V1(0)V1(x)] = σ2 exp(−|x|/lc), then

lim
x→∞

μl(x)× ln(x) =
πν0

2
,

which means that the velocity decreases as the logarithm of the length.
This logarithmic rate actually represents the maximal decay of the veloc-
ity. Whatever the process V1, the terms of the right-hand sides of (19.40)
have at least an exponential decay of the type exp[−(πν)/(2μ)], which im-
plies lim infx→∞ μl(x)× ln(x) ≥ πν0/2. However, the decay rate may be much
slower. As an example, if the autocorrelation functions are E[V1(0)V1(x)] =
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σ2 exp(−x2/l2c), then the velocity decreases as the square root of the logarithm
of x:

lim
x→∞

μ(x)×
√

ln(x) =
ν2
0 lc
2

.

Note that the approximation μ ≪ ν actually holds true during the whole
propagation, since the mass is almost constant while the velocity decreases,
which shows that the domain μ≪ ν is stable.
• The two previous stable regimes are actually the only ones that can

be observed, up to transitory regimes. Indeed, for a fixed value of the initial
velocity 4μ0, there exists a threshold value Nc for the initial mass 4ν0 above
which we observe a slow decay of the velocity, while the mass goes to a constant
value, and below which we observe an exponential decay of the mass, while
the velocity goes to a constant value.

Asymptotics for a Small-Amplitude Soliton

It can be noted that in the limit case ν0/μ0 → 0, the incoming soliton can be
approximated by a linear pulse,

u0(t, x) ∼
∫ +∞

−∞
f̂(k)eikx−ik2t dk , with f̂(k) =

1

2
cosh−1

(
π

4

(
k − 2μ0

ν0

))
,

whose spectral content f̂ is sharply peaked about the wave number k0 = 2μ0.
Furthermore, the spectrum of the emitted radiation is peaked around the
wave number −2μ0 (there exists also a secondary peak about +2μ0, which is
weaker).

These statements are in qualitative agreement with the linear approxima-
tion. The exponential decay length Lexp defined by (19.39) can be written in
terms of the carrier wave number as Lexp = 4k2

0/γ1(2k0). It is equal to the lo-
calization length Lloc(k0) of a monochromatic wave with wave number k0 scat-
tered by a slab of linear random medium (see Proposition 19.1). However, the
typical behavior of the transmitted energy (mass) for a linear pulse with car-
rier frequency k0 is the exponential decay (19.15): T (L) ∼ exp(−L/(4Lloc)),
whose decay rate is one fourth the decay rate exp(−L/Lloc) of the soliton. This
means that the transmitted wave consists of a soliton plus some radiation, and
that for L > Lloc most of the transmitted energy consists of radiation. This
situation is in some sense close to the theory describing the stable propagation
of the wave front in a random hyperbolic linear medium: as we have seen in
Chapters 7 and 8, the energy of the wave front is decaying as exp(−L/Lloc)
(see (8.48), with Lloc = 4c̄2/(γω2)), while the total transmitted energy is
decaying as exp(−L/(4Lloc)) (see (7.77)).

Numerical Simulations

The results in the previous subsections hold true in the limit case ε → 0,
where the amplitudes of the perturbations go to zero and the length of the
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random slab goes to infinity. In this subsection we show that the asymptotic
behaviors of the soliton can be observed in numerical simulations in the case
that ε is small, more precisely, smaller than any other characteristic scale of the
problem. We use a fourth-order split-step method to simulate the perturbed
nonlinear Schrödinger equation (19.32). This numerical algorithm provides
accurate and stable solutions [102]. For the sake of simplicity we consider
only perturbations of the linear potential V1 and take V2 = V3 = 0 in (19.33).
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Fig. 19.7. Picture (a): Envelope of the initial soliton (solid line) with mass 4ν0 = 2
and velocity 4µ0 = 1.6. The dashed line plots a realization of the random potential
εV1 with ε = 0.05 and lc = 0.4. Picture (b): Envelopes of the soliton when its center
crosses different depth lines l for one of the realizations of the random potential.
The coordinate x is normalized around the depth line l.

We assume in this subsection that the potential is constant over elementary
intervals of length lc and take independent random values over each interval
that obey uniform distributions over [−1, 1]. In Figures 19.7–19.8, we present
simulations in which the initial wave at time t = 0 is a soliton with mass 4ν0 =
2 and velocity 4μ0 = 1.6 centered at x = 0 (see Figure 19.7a). The simulated
evolutions of the coefficients of the soliton are presented in Figure 19.8 for
seven different realizations of the random potential with ε = 0.05 and lc = 0.4.
They are compared with the theoretical evolutions given by (19.34) in the
scale x/ε2. It thus appears that the numerical simulations are in very good
agreement with the theoretical results. Figure 19.7b plots the envelopes of the
solution at different depths corresponding to one of the simulations, which
shows that the wave keeps the basic form of a soliton although it loses some
mass. All these results confirm that the system (19.34) describes accurately
the transmission of a soliton through a random slab in the regime of small
perturbations and large slabs.
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Fig. 19.8. Coefficients of the transmitted soliton whose initial coefficients are 4ν0 =
2, 4µ0 = 1.6 with a random potential whose amplitude is ε = 0.05 and correlation
length lc = 0.4. Picture (a) (respectively (b)) shows the mass (respectively velocity).
The thick solid lines represent the theoretical coefficients of the transmitted soliton.
The thin dashed and dotted lines plot the simulated masses and velocities of the
transmitted solitons for seven different realizations of the random potential.

Notes

The results derived in the second part of this chapter and some extensions
can be found in a series of papers [73, 1, 77]. Nonlinear and dispersive systems
exhibit different behaviors, so it is worth considering other integrable systems.
For instance, the Korteweg–de Vries equation, with a third-order dispersion,
has been studied in [75], and the results turn out to be very different compared
to the randomly perturbed NLS equation. Indeed, the scattering of the soliton
generates not only continuous radiation during its motion, but also a soliton
gas, that is, a collection of a very large number of solitons with very small
masses, whose total mass is of order one. It would be interesting to get a
classification of the integrable systems in terms of their respective behaviors
with respect to random perturbations. Furthermore, the interaction of solitons
in random media represents a great challenge for practical applications to
communications or condensed matter. These issues are still the subject of
intense research.
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Propagation in Random Waveguides

In this chapter we consider wave propagation in an acoustic waveguide whose
bulk modulus is a three-dimensional random function. This is the first time
in this book that we consider such general random perturbations. However,
using the propagating modes of the unperturbed waveguide we can reduce
the three-dimensional wave propagation problem to the study of a system
of ordinary differential equations with random coefficients. It is the Fourier
transform of the mode amplitudes that satisfy these differential equations, to
which we can apply the asymptotic theory of Chapter 6.

We deal with the usual scaled quantities, which are the propagation dis-
tance, the carrier wavelength, the bandwidth, and the standard deviation and
the correlation lengths of the random perturbations in the different directions.
We now encounter a new length scale: the width of the waveguide, which con-
trols the number of propagating modes. We study the asymptotic behavior
of the transmitted waves in the weakly heterogeneous regime, with a fixed
number of propagating modes.

After deriving the coupled mode amplitude equations we consider the
forward-scattering approximation in Section 20.2. In this approximation the
coupling between forward- and backward-propagating modes is considered
negligible compared to the coupling between only forward-propagating modes.
The asymptotic theory of Chapter 6 can be applied in a straightforward way
to the full forward and backward mode-coupling system. We focus our at-
tention in this chapter on the forward-scattering approximation for two rea-
sons. First, with the forward-scattering approximation we can calculate ana-
lytically many interesting quantities, such as the transmitted wave intensity
and spatial focusing in time reversal. Without the forward-scattering approx-
imation the reflection and transmission of energy can be analyzed with an
infinite-dimensional system of transport equations. It is, however, much more
complicated than the one in Chapter 9, which corresponds, essentially, to a
single-mode waveguide. Second, from the asymptotic theory we see that the
statistical coupling coefficient between a forward mode and a backward mode
is proportional to the power spectral density of the random perturbations
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evaluated at the sum of their corresponding wave numbers. The statistical
coupling coefficient between two forward modes is, however, proportional to
the power spectral density of the random perturbations evaluated at the dif-
ference of the two wave numbers. This means that if the power spectral density
has a cutoff wave number, or if it decays fast enough, which means that the
random perturbations are not too rough, then the coupling between forward
modes is dominant and the forward-scattering approximation is justified. We
discuss further this important point in Section 20.2.6. The forward-scattering
approximation is used widely in underwater acoustics, in fiber optics, and
elsewhere. It is because of the use of the forward-scattering approximation
that we restrict the analysis to the weakly heterogeneous regime introduced
in Chapter 18.

In Section 20.4 we analyze the statistics of a transmitted broadband pulse.
The main result is that the original pulse is decomposed into a sum of modal
pulses that propagate with the different modal speeds and can be described
by a front pulse stabilization theory, as in Chapter 8. The analysis is com-
pleted in Section 20.5 with a detailed study of time reversal for the trans-
mitted field. The refocused field has a diffraction-limited transverse spatial
profile that is independent of the size of the time-reversal mirror, provided
that the propagation distance is large enough to ensure mode energy equipar-
tition. The refocused field is, moreover, statistically stable. This is a conse-
quence of the fact that in the broadband case the Fourier representation of
the pulse is a superposition of many approximately uncorrelated components.
This is the same phenomenon that we have seen in the one-dimensional case in
Chapter 10.

The analysis of the pulse coda, which is the incoherent wave fluctuations
in the broadband regime, as well as the study of pulse propagation in the
narrowband regime, requires knowledge of the joint statistical distribution of
the Fourier mode amplitudes at two nearby frequencies. In Section 20.6 we
obtain the effective system of transport equations that describes the dynamics
of the mode coupling in the narrowband case. We can then analyze the statis-
tics, and in particular the autocorrelation function, of the incoherent wave
fluctuations in Section 20.7.

Finally, in Sections 20.8–20.9 we study the transmission and time reversal
of a narrowband pulse. An interesting result here is that statistical stability for
the time-reversed refocused field can be achieved even in narrowband regimes
when the refocused pulse is a superposition of a large number of modes and
the time-reversal mirror is not too small. This statistical stability is different
from that in the broadband regime, which is the result of decoherence in the
frequency domain and there are no restrictions on the size of the time-reversal
mirror.
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20.1 Propagation in Homogeneous Waveguides

In this section we study wave propagation in an acoustic waveguide that
supports a finite number of propagating modes. In an ideal waveguide the
geometric structure and the medium parameters can have a general form
in the transverse directions but must be homogeneous along the waveguide
axis. There are two general types of ideal waveguides, those that surround
a homogeneous region with a confining boundary and those in which the
confinement is achieved with a transversely varying index of refraction. We
will present the analysis of the effects of random perturbations on waveguides
of the first type and we will illustrate specific results with a planar waveguide.
The main difference in working with waveguides of the second type is that
the transverse wave mode profiles depend on the frequency, but this does not
affect the theory we present here.

20.1.1 Modeling of the Waveguide

As in most of this book, we consider linear acoustic waves propagating in
three spatial dimensions modeled by the system of wave equations

ρ(r)
∂u

∂t
+∇p = F , (20.1)

1

K(r)

∂p

∂t
+∇ · u = 0 , (20.2)

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of
the medium, and K the bulk modulus. The source is modeled by the forcing
term F(t, r).

D

z

x

Fig. 20.1. Waveguide geometry.

We assume that the transverse profile of the waveguide is a simply con-
nected region D in two dimensions. The direction of propagation along the
waveguide axis is z, and the transverse coordinates are denoted by x ∈ D
(see Figure 20.1). In the interior of the waveguide the medium parameters are
homogeneous,
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ρ(r) ≡ ρ̄, K(r) = K̄, for x ∈ D and z ∈ R .

By differentiating with respect to time (20.2) and substituting (20.1) into it,
we get the standard wave equation for the pressure field:

∆p− 1

c̄2

∂2p

∂t2
= ∇ · F , (20.3)

where ∆ = ∆⊥ + ∂2

∂z2 and ∆⊥ is the transverse Laplacian. The sound speed

is c̄ =
√

K̄/ρ̄.
We must now prescribe boundary conditions on the boundary ∂D of the

domain D. In underwater acoustics, or in seismic wave propagation, the den-
sity is much smaller outside the waveguide than inside. This means that we
must use a pressure-release boundary condition since the pressure is very weak
outside, and therefore, by continuity, the pressure is zero just inside the wave-
guide. Motivated by such examples, we will use Dirichlet boundary conditions

p(t,x, z) = 0 for x ∈ ∂D and z ∈ R . (20.4)

We can also consider other types of boundary conditions if, for example, the
boundary of the waveguide is a rigid wall, in which case the normal velocity
vanishes. By (20.1) we obtain Neumann boundary conditions for the pressure.

20.1.2 The Propagating and Evanescent Modes

A waveguide mode is a monochromatic wave p(t,x, z) = p̂(ω,x, z)e−iωt with
frequency ω, where p̂(ω,x, z) satisfies the time harmonic form of the wave
equation (20.3) without a source term

∂2

∂z2
p̂(ω,x, z) + ∆⊥p̂(ω,x, z) + k2(ω)p̂(ω,x, z) = 0 . (20.5)

Here k = ω/c̄ is the wave number and we have Dirichlet boundary conditions
on ∂D. The transverse Laplacian in D with Dirichlet boundary conditions
on ∂D is self-adjoint in L2(D). Its spectrum is an infinite number of discrete
eigenvalues

−∆⊥φj(x) = λjφj(x) , x ∈ D , φj(x) = 0 , x ∈ ∂D ,

for j = 1, 2, . . .. The eigenvalues are positive and nondecreasing, and we as-
sume for simplicity that they are simple, so we have 0 < λ1 < λ2 < · · ·. The
eigenmodes are real and form an orthonormal set

∫

D
φj(x)φl(x) dx = δjl .

The modal wave numbers βj(ω) are defined by
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βj(ω) =

√
ω2

c̄2
− λj , λj ≤

ω2

c̄2
, (20.6)

and we denote by N(ω) the number of eigenmodes for which this inequality
holds. The solutions

p̂j(ω,x, z) = φj(x)e±iβj(ω)z , j = 1, . . . , N(ω) ,

of the wave equation (20.5) are the propagating waveguide modes. For j >
N(ω) we define the modal wave numbers by

βj(ω) =

√
λj −

ω2

c̄2
, λj >

ω2

c̄2
, (20.7)

and the corresponding solutions

q̂j(ω,x, z) = φj(x)e±βj(ω)z , j > N(ω) ,

of the wave equation (20.5) are the evanescent waveguide modes.

The planar waveguide. This is the special case in which D is (0, d)×R

and we consider only solutions that depend on x ∈ (0, d). In this case,

λj =
π2j2

d2
, φj(x) =

√
2

d
sin

(
πjx

d

)
, j ≥ 1 ,

and the number of propagating modes is

N(ω) =

[
ωd

πc̄

]
,

where [x] is the integer part of x. The propagating modal wave numbers are
now given by

βj(ω) =

√
ω2

c̄2
− π2j2

d2
, j = 1, 2, . . . , N(ω) .

Variable index of refraction. When the wave mode structure is deter-
mined by a transversely varying index of refraction that is confining, then the
eigenmodes are solutions of

∆⊥φj(ω,x) + k2(ω)n2(x)φj(ω,x) = μj(ω)φj(ω,x)

with or without boundary conditions, depending on the confining behavior
of n2(x). The modal wave numbers are now given by βj(ω) =

√
μj(ω) when

μj ≥ 0 and by βj(ω) =
√
−μj(ω) when μj < 0. The main difference with the

case above is that the mode profiles φj depend on the frequency ω.
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20.1.3 Excitation Conditions for an Incoming Wave

For a right-propagating wave that is incoming from the left the pressure field
at z = 0 can be written as a superposition of propagating modes

p̂(ω,x, z = 0) =

N(ω)∑

j=1

âj(ω)√
βj(ω)

φj(x) ,

where

âj(ω) =
√

βj(ω)

∫

D
p̂(ω,x, z = 0)φj(x) dx .

The factor
√

βj is introduced so that the differential equations derived in the
next section will be symmetric. Since this is a right-propagating wave we know
that the jth mode has modal wave number +βj, so we can write the complete
solution as

p̂(ω,x, z) =

N(ω)∑

j=1

âj(ω)√
βj(ω)

φj(x)eiβj(ω)z .

20.1.4 Excitation Conditions for a Source

We consider a localized source in the plane z = 0 that emits a signal with
orientation in the z-direction:

F(t,x, z) = f(t,x)δ(z)ez .

Here ez is the unit vector pointing in the z-direction. By (20.1), this source
term implies that the pressure satisfies the following jump conditions across
the plane z = 0,

p̂(ω,x, z = 0+)− p̂(ω,x, z = 0−) = f̂(ω,x) ,

while (20.2) implies that there is no jump in the longitudinal velocity, so that
the pressure field also satisfies

∂p̂

∂z
(ω,x, z = 0+)− ∂p̂

∂z
(ω,x, z = 0−) = 0 .

Here f̂ is the Fourier transform of f with respect to time:

f̂(ω,x) =

∫
f(t,x)eiωt dt , f(t,x) =

1

2π

∫
f̂(ω,x)e−iωt dω .

The pressure field can be written as a superposition of the complete set of
modes
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p̂(ω,x, z) =

⎡
⎣

N∑

j=1

âj(ω)√
βj(ω)

eiβjzφj(x) +
∞∑

j=N+1

ĉj(ω)√
βj(ω)

e−βjzφj(x)

⎤
⎦ 1(0,∞)(z)

+

⎡
⎣

N∑

j=1

b̂j(ω)√
βj(ω)

e−iβjzφj(x) +

∞∑

j=N+1

d̂j(ω)√
βj(ω)

eβjzφj(x)

⎤
⎦ 1(−∞,0)(z) ,

where âj is the amplitude of the jth right-going mode propagating in the right

half-space z > 0, b̂j is the amplitude of the jth left-going mode propagating

in the left half-space z < 0, and ĉj (respectively d̂j) is the amplitude of the
j-th right-going (respectively left-going) evanescent mode. Substituting this
expansion into the jump conditions, multiplying by φj(x), integrating with
respect to x over D, and using the orthogonality of the modes, we express the
mode amplitudes in terms of the source:

âj(ω) = −b̂j(ω) =

√
βj(ω)

2

∫

D
f̂(ω,x)φj(x) dx ,

ĉj(ω) = −d̂j(ω) = −
√

βj(ω)

2

∫

D
f̂(ω,x)φj(x) dx .

If we look at these waves in the region z > 0 far from the source, at a distance
large compared to the wavelength, then the evanescent modes are negligible,
and the waves have the form

p̂(ω,x, z) =

N(ω)∑

j=1

âj(ω)√
βj(ω)

φj(x)eiβj(ω)z .

In the case of a point source f(t,x) = f(t)δ(x − x0), we simply have

âj(ω) =
1

2

√
βj(ω)φj(x0)f̂(ω) .

20.2 Mode Coupling in Random Waveguides

A simple model for a randomly perturbed waveguide is one for which the
density ρ(r) = ρ̄ is uniform, as in most of this book, and the reciprocal of the
bulk modulus has the form

1

K(r)
=

1

K̄
(1 + ν(r)) .

Here ν(r) is a three-dimensional stationary random field with mean zero, with
a given covariance, and with some additional properties that are needed for the
asymptotic analysis that are discussed later. We are not entering the theory
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of random fields but simply illustrate our model by the following example,
which is a bounded random field:

ν(r) =
∑

j

νjψ(r− rj).

Here the {νj} are independent identically distributed bounded random vari-
ables with mean zero, and the points {rj} are independent three-dimensional
random variables that are uniformly distributed over the different cubes of a
cubic tiling of R3. The function ψ is real-valued, smooth, bounded, and with
compact support in R3.

Random perturbations of this kind are very different from the layered ones
that we have considered up to now. The reason that we can use the asymptotic
theory of Chapter 6 to analyze waves in randomly perturbed waveguides is
that the mode amplitudes satisfy differential equations with z-dependent ran-
dom coefficients that are projections of ν(x, z) on the transverse eigenmodes
{φj(x)}.

We will use the weakly heterogeneous regime described in Chapter 18.
We consider a randomly perturbed waveguide section occupying the region
z ∈ [0, L/ε2], with two homogeneous waveguides occupying the two half spaces
z < 0 and z > L/ε2. The bulk modulus and the density have the form

1

K(x, z)
=

{ 1
K

(1 + εν(x, z)) for x ∈ D , z ∈ [0, L/ε2] ,
1
K

for x ∈ D , z ∈ (−∞, 0) ∪ (L/ε2,∞) ,

ρ(x, z) = ρ̄ for x ∈ D , z ∈ (−∞,∞) .

The perturbed wave equation satisfied by the pressure field is

∆p− 1 + εν(x, z)

c̄2

∂2p

∂t2
= ∇ · F , (20.8)

where the average sound speed is c̄ =
√

K̄/ρ̄. The pressure field also satisfies
the boundary conditions (20.4). We assume that a guided wave is incoming
from the left through the perfect waveguide and (for z < 0) has in the Fourier
domain the form

p̂in(ω,x, z) =

N(ω)∑

j=1

φj(x)p̂j(ω, z) , p̂j(ω, z) =
âj,0(ω)√

βj(ω)
eiβj(ω)z , (20.9)

where âj,0(ω) is the projection of the incident wave p̂in(ω,x, z = 0) onto the
jth mode:

âj,0(ω) =
√

βj(ω)

∫

D
φj(x)p̂in(ω,x, z = 0) dx .

The weak fluctuations of the medium parameters induce a coupling between
the propagating modes, as well as between propagating and evanescent modes,
which build up and become of order one after a propagation distance of order
ε−2, as expected from the asymptotic theory of Chapter 6, which we will use
below.
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20.2.1 Coupled Amplitude Equations

We fix the frequency ω and expand the field p̂ inside the randomly perturbed
waveguide in terms of the transverse eigenmodes

p̂(x, z) =

N∑

j=1

φj(x)p̂j(z) +

∞∑

j=N+1

φj(x)q̂j(z) , (20.10)

where p̂j is the amplitude of the jth propagating mode and q̂j is the amplitude
of the jth evanescent mode. For j ≤ N we introduce the right-going and left-
going mode amplitudes âj and b̂j defined by

p̂j(z) =
1√
βj

(
âj(z)eiβjz + b̂j(z)e−iβjz

)
, (20.11)

dp̂j(z)

dz
= i

√
βj

(
âj(z)eiβjz − b̂j(z)e−iβjz

)
. (20.12)

Then it follows that âj and b̂j have the form

âj(z) =
iβj p̂j +

dp̂j

dz

2i
√

βj

e−iβjz , b̂j(z) =
iβj p̂j − dp̂j

dz

2i
√

βj

eiβjz .

The total field p̂ satisfies the time-harmonic wave equation

∆p̂(ω,x, z) + k2(1 + εν(x, z))p̂(ω,x, z) = 0 . (20.13)

Using (20.10) in this equation, multiplying it by φl(x), and integrating over
x ∈ D, we deduce from the orthogonality of the eigenmodes (φj)j≥1 the
following system of coupled differential equations for the mode amplitudes:

dâj

dz
=

iεk2

2

∑

1≤l≤N

Cjl(z)√
βjβl

(
âle

i(βl−βj)z + b̂le
−i(βl+βj)z

)

+
iεk2

2
√

βj

∑

l>N

Cjl(z)q̂l(z)e−iβjz , 1 ≤ j ≤ N , (20.14)

db̂j

dz
= − iεk2

2

∑

1≤l≤N

Cjl(z)√
βjβl

(
âle

i(βl+βj)z + b̂le
i(βj−βl)z

)

− iεk2

2
√

βj

∑

l>N

Cjl(z)q̂l(z)eiβjz , 1 ≤ j ≤ N , (20.15)

d2q̂j

dz2
− β2

j q̂j + εgj(z) = 0 , j ≥ N + 1 . (20.16)

Here
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Cjl(z) =

∫

D
φj(x)φl(x)ν(x, z) dx , (20.17)

gj(z) = k2
∑

l>N

Cjl(z)q̂l + k2
∑

1≤l≤N

Cjl(z)√
βl

(
âle

iβlz + b̂le
−iβlz

)
. (20.18)

Note that gj is a linear function of â, b̂, and q̂. The system (20.14–20.16) is
complemented with the boundary conditions

âj(0) = âj,0 , b̂j

(
L

ε2

)
= 0 , (20.19)

for the propagating modes. The second condition indicates that no wave is
incoming from the right. We also use the radiation conditions

lim
z→±∞

q̂j(z) = 0 ,

which imply that the evanescent modes are decaying. The solution of (20.16)
that satisfies the radiation conditions is

q̂j(z) =
ε

2βj

∫ ∞

−∞
gj(z + s)e−βj |s| ds . (20.20)

20.2.2 Conservation of Energy Flux

We saw in Chapter 4 that energy-flux conservation in the one-dimensional
case implies a conservation relation for the right- and left-propagating wave
amplitudes that has the form |â|2 − |b̂|2 = constant. We now generalize this
relation to waveguides.

Let |â|2 =
∑N

j=1 |âj |2 and |b̂|2 =
∑N

j=1 |b̂j |2. Using (20.14–20.15) we have

d

dz
(|â|2 − |b̂|2) = −k2ε Im

⎡
⎣

N∑

j=1

∑

l>N

Cjl√
βj

(âje
−iβjz + b̂je

iβjz)q̂l

⎤
⎦ .

By (20.18) the right-hand side can be rewritten as

d

dz
(|â|2 − |b̂|2) = −ε Im

[
∑

l>N

(
ĝl − k2

∑

l′>N

Cll′ q̂l′

)
q̂l

]
= −ε Im

[
∑

l>N

ĝlq̂l

]
.

We use the integral representation (20.20) and we integrate over z to get

(|â|2 − |b̂|2)(z)− (|â|2 − |b̂|2)(0) = −ε2

2

∑

l>N

1

βl
Ĝl(z) , (20.21)

where Ĝl(z) is defined by
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Ĝl(z) =

∫ z

−∞

∫ ∞

−∞
Im

[
ĝl(y)ĝl(y + s)

]
e−βl|s| ds dy .

The quantity Ĝl(z) can also be written as

2iĜl(z) =

∫ z

−∞

∫ ∞

−∞
ĝl(y)ĝl(y + s)e−βl|s| ds dy

−
∫ z

−∞

∫ ∞

−∞
ĝl(y)ĝl(y + s)e−βl|s| ds dy .

We transform the second term as follows (by the simple changes of variables
y 	→ y − s and then s 	→ −s):

∫ z

−∞

∫ ∞

−∞
ĝl(y)ĝl(y + s)e−βl|s| ds dy =

∫ ∞

−∞

∫ z+s

−∞
ĝl(y − s)ĝl(y) dy e−βl|s| ds

=

∫ ∞

−∞

∫ z−s

−∞
ĝl(y + s)ĝl(y) dy e−βl|s| ds ,

so that we get

Ĝl(z) =
1

2

∫ ∞

−∞

∫ z

z−s

Im[ĝl(y)ĝl(y + s)] dy e−βl|s| ds .

The waveguide is homogeneous in the section (L/ε2,∞), which implies that
ĝl(y) = 0 if y > L/ε2. In the previous double integral, we can observe that
if s < 0, then y > z, while if s > 0, then y + s > z. As a consequence, if
z ≥ L/ε2, then either y or y + s is larger than L/ε2, so that the product
ĝl(y)ĝl(y + s) is always 0. This shows that Ĝl(z) = 0 if z ≥ L/ε2. By (20.21)
we thus obtain

|â|2(L/ε2)− |b̂|2(L/ε2) = |â|2(0)− |b̂|2(0) .

Using the boundary conditions (20.19) at 0 and L/ε2, we get the conservation
of energy flux

|â|2(L/ε2) + |b̂|2(0) = |â0|2 , (20.22)

which is exact for any ε. The identity (20.22) expresses the conservation of the
global flux. The local flux inside the inhomogeneous section of the waveguide
is, however, not preserved except in the limit ε → 0. The evanescent modes
can store a small amount of energy during the mode-coupling process, which
gives the O(ε2) correction term on the right side of (20.21). There cannot be
any energy stored in the evanescent modes for z ≥ L/ε2 because it is not
possible for them to give back this energy to the propagating modes in the
homogeneous section (L/ε2,∞). There is no coupling between modes in the
homogeneous waveguide section.



556 20 Propagation in Random Waveguides

20.2.3 Evanescent Modes in Terms of Propagating Modes

In this and the next subsection we show how to obtain asymptotically a closed
system of equations for the propagating-mode amplitudes while taking into
account coupling with the evanescent modes.

We first substitute (20.18) into (20.20) and rewrite it in the vector-matrix
form

(Id − εΨ)q̂ = εq̃ .

Here the operator Ψ is defined by

(Ψq̂)j(z) =
k2

2βj

∑

l≥N+1

∫ ∞

−∞
Cjl(z + s)q̂l(z + s)e−βj |s| ds , j ≥ N + 1 ,

and the vector function q̃ is given by

q̃j(z) =
k2

2βj

∑

1≤l≤N

∫ ∞

−∞

Cjl(z + s)√
βl

×
(
âl(z + s)eiβl(z+s) + b̂l(z + s)e−iβl(z+s)

)
e−βj|s| ds , j ≥ N + 1 . (20.23)

Introducing the norm ‖q̂‖ =
∑

j≥N+1 β−1
j supz |q̂j(z)|, we have

‖Ψq̂‖ ≤
∑

j≥N+1

β−1
j sup

z

k2

2βj

∑

l≥N+1

∫ ∞

−∞
|Cjl(z + s)||q̂l(z + s)|e−βl|s| ds

≤ Kk2

2

∑

j≥N+1

β−2
j

∑

l≥N+1

sup
z
|q̂l(z)|

∫ ∞

−∞
e−βl|s| ds

≤ KK ′k2
∑

l≥N+1

β−1
l sup

z
|q̂l(z)| = KK ′k2‖q̂‖ ,

where K = supj,l,z |Cjl(z)| ≤ supz,x |ν(z,x)| and K ′ =
∑

j≥N+1 β−2
j . Note

that K ′ is indeed finite for a broad class of waveguides. This is, for example, the
case in the planar waveguide because we have βj =

√
π2j2/d2 − ω2/c̄2 ∼ πj/d

for j ≫ N . Thus Ψ is a bounded operator, and so for ε small enough, Id − εΨ
is invertible and can be approximated by Id + εΨ + O(ε2). For j ≥ N + 1 we
can therefore write

q̂j(z) =
εk2

2βj

∑

1≤l≤N

∫ ∞

−∞

Cjl(z + s)√
βl

×
(
âl(z + s)eiβl(z+s) + b̂l(z + s)e−iβl(z+s)

)
e−βj|s| ds + O(ε2) .

Furthermore, over a distance of order 1, the variation of â and b̂ is at most of
order ε, so we can substitute âl(z) and b̂l(z) for âl(z + s) and b̂l(z + s) up to
an error of order ε, and we obtain
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q̂j(z) =
εk2

2βj

∑

1≤l≤N

∫ ∞

−∞

Cjl(z + s)√
βl

×
(
âl(z)eiβl(s+z) + b̂l(z)e−iβl(s+z)

)
e−βj|s| ds + O(ε2) . (20.24)

We have assumed in this analysis that the vector function q̃ defined by (20.23)
is bounded in the norm ‖ · ‖ uniformly in ε. This will follow if the mode am-

plitudes âj and b̂j are bounded uniformly in ε. Using the methods of Chapter
6 it can be shown that such bounds hold in probability as ε→ 0.

20.2.4 Propagating-Mode-Amplitude Equations

Substituting (20.24) into (20.14–20.15), we have the following system of dif-
ferential equations for the propagating-mode amplitudes

dâ

dz
= ε[H(aa)(z)â + H(ab)(z)b̂] + ε2[G(aa)(z)â + G(ab)(z)b̂] + O(ε3) , (20.25)

db̂

dz
= ε[H(ba)(z)â + H(bb)(z)b̂] + ε2[G(ba)(z)â + G(bb)(z)b̂] + O(ε3) . (20.26)

Here the matrices G(·,·)(z) and H(·,·)(z) are given by

H
(aa)
jl (z) =

ik2

2

Cjl(z)√
βjβl

ei(βl−βj)z , (20.27)

H
(ab)
jl (z) =

ik2

2

Cjl(z)√
βjβl

e−i(βl+βj)z , (20.28)

H
(ba)
jl (z) = − ik2

2

Cjl(z)√
βjβl

ei(βl+βj)z , (20.29)

H
(bb)
jl (z) = − ik2

2

Cjl(z)√
βjβl

ei(βj−βl)z , (20.30)

G
(aa)
jl (z) =

ik4

4

∑

l′>N

∫ ∞

−∞

Cjl′ (z)Cll′ (z + s)√
βjβ2

l′βl

eiβl(z+s)−iβjz−βl′ |s| ds , (20.31)

G
(ab)
jl (z) =

ik4

4

∑

l′>N

∫ ∞

−∞

Cjl′ (z)Cll′(z + s)√
βjβ2

l′βl

e−iβl(z+s)−iβjz−βl′ |s| ds , (20.32)

G
(ba)
jl (z) = − ik4

4

∑

l′>N

∫ ∞

−∞

Cjl′ (z)Cll′ (z + s)√
βjβ2

l′βl

eiβl(z+s)+iβjz−βl′ |s| ds , (20.33)

G
(bb)
jl (z) = − ik4

4

∑

l′>N

∫ ∞

−∞

Cjl′ (z)Cll′ (z + s)√
βjβ2

l′βl

e−iβl(z+s)+iβjz−βl′ |s| ds . (20.34)

The matrices G(·,·) represent the effective coupling of the propagating modes
with the evanescent modes. We note that the rescaled processes âε

j , b̂ε
j , j =

1, . . . , N , given by
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âε
j(z) = âj

( z

ε2

)
, b̂ε

j(z) = b̂j

( z

ε2

)
, (20.35)

are solutions of

dâε

dz
=

[
1

ε
H(aa)

( z

ε2

)
+ G(aa)

( z

ε2

)]
âε

+

[
1

ε
H(ab)

( z

ε2

)
+ G(ab)

( z

ε2

)]
b̂ε , (20.36)

db̂ε

dz
=

[
1

ε
H(ba)

( z

ε2

)
+ G(ba)

( z

ε2

)]
âε

+

[
1

ε
H(bb)

( z

ε2

)
+ G(bb)

( z

ε2

)]
b̂ε . (20.37)

The propagating-mode amplitudes are completely determined by the sys-
tem (20.36–20.37) as soon as we specify the two-point boundary conditions

âε
j(0) = âj,0 , b̂ε

j(L) = 0 , (20.38)

which come from (20.19). This is the usual reflection-transmission setup that
we follow in this book, where no wave enters the waveguide at z = L (in the
scaling of (20.36–20.37)) and the incident wave at z = 0 has the form (20.9).

The system (20.36–20.37) and the boundary conditions (20.38) determine
the propagating-mode amplitudes. Even though this system involves only the
propagating-mode amplitudes, it takes into account the effect of the evanes-
cent modes as well. If one is interested in determining the evanescent modes,
one should first integrate the system (20.36–20.37) and then substitute the
solutions into the integral representations (20.24) of the evanescent modes.

20.2.5 Propagator Matrices

The two-point linear boundary value problem for (20.36–20.37) has the same
structure as the one encountered in the one-dimensional case in Section 4.4.3.
It can therefore be solved using propagator matrices, which are now 2N ×2N
random matrices. The system (20.36–20.37) can be put into full vector-matrix
form

dXε

dz
= Hε(z)Xε ,

where Xε is the 2N -vector obtained by concatenating the N -vectors âε and
b̂ε,

Xε(z) =

[
âε(z)

b̂ε(z)

]
,

while Hε is the 2N × 2N matrix

Hε(z) =
1

ε

[
H(aa)

(
z
ε2

)
H(ab)

(
z
ε2

)

H(ba)
(

z
ε2

)
H(bb)

(
z
ε2

)
]

+

[
G(aa)

(
z
ε2

)
G(ab)

(
z
ε2

)

G(ba)
(

z
ε2

)
G(bb)

(
z
ε2

)
]

.
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The 2N×2N propagator matrices Pε(z) are now solutions of the initial value
problem

dPε

dz
= Hε(z)Pε ,

with the initial condition Pε(z = 0) = I. The general solution of (20.36–20.37)
satisfies, for any 0 ≤ z ≤ L,

[
âε(z)

b̂ε(z)

]
= Pε(z)

[
âε(0)

b̂ε(0)

]
, Pε(z) =

[
Pε

aa(z) Pε
ab(z)

Pε
ba(z) Pε

bb(z)

]
.

When we specialize this relation to z = L and use the boundary conditions
(20.38), with â0 successively the unit vectors, we get

[
T̂ε(L)

0

]
= Pε(L)

[
I

R̂ε(L)

]
. (20.39)

Here we have defined the N ×N random reflection and transmission matrices
R̂ε(L) and T̂ε(L).

The matrices H(·,·) and G(·,·) satisfy the symmetry relation

H(aa)(z) = H(bb)(z) , H(ab)(z) = H(ba)(z) ,

G(aa)(z) = G(bb)(z) , G(ab)(z) = G(ba)(z) ,

so we can check that if (âε(z), b̂ε(z)) is a solution, then (b̂ε(z), âε(z)) is also a
solution. This imposes that the propagator have the form

Pε(z) =

[
Pε

aa(z) Pε
ab(z)

Pε
ab(z) Pε

aa(z)

]
. (20.40)

Note that the matrix Pε
aa describes the coupling between different right-going

modes, while Pε
ab describes the coupling between right-going and left-going

modes.
In addition to the general symmetry or reciprocity relation that gives the

form (20.40) for the propagator matrices, we also have the global flux conser-
vation relation (20.22). When this relation is used in conjunction with (20.39)
we get the N -mode generalization of the reflection-transmission conservation
relation

R̂ε†R̂ε + T̂ε†T̂ε = I , (20.41)

where the sign † stands for the conjugate transpose. This relation holds in
general, with evanescent modes taken into consideration and for any ε. When
the evanescent modes are not taken into consideration, so that the G terms in
Hε are identically zero, then there are additional symmetries satisfied by the
propagator matrices Pε. We will not describe these symmetries here because
we will use the forward-scattering approximation that is introduced in the
next section.
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Let us have a look at the set of random ordinary differential equations
(20.36–20.37). This is a set of linear ordinary differential equations with
boundary conditions and rapidly varying random coefficients. The situation
is very similar to the one encountered in the previous chapters dealing with
the one-dimensional case in the weakly heterogeneous regime:

• dimension of the system: Instead of having two modes (the right-going
mode and the left-going mode in the one-dimensional case), we now have
a set of 2N modes (the N right-going and the N left-going modes). This
difference does not represent any theoretical difficulty, even though the
computations are lengthy, but it will be almost impossible to extract in-
formation from the limit system comparable to what we can do in the
N = 1 case.

• diffusive terms: The matrices H(·,·) have exactly the same form as those
encountered in the previous chapters, since they have the same symmetry
properties and the same diffusive scaling.

• drift terms: A new feature in the waveguide case is the presence of the
nonzero-mean terms G(·,·). These terms can be dealt with according to
the general theory of the diffusion approximation presented in Chapter 6.
In the limit ε→ 0, they become equal to their average with respect to the
distribution of ν and to the rapid phase (which we denote by 〈·〉):

〈
E[G

(aa)
jl (·)]

〉
,

〈
E[G

(ab)
jl (·)]

〉
, . . . .

Considering the expression (20.31), because of the presence of the phases
ei(βl−βj)z only the terms with j = l are nonzero. As a result,

〈
E[G

(aa)
jl (·)]

〉
= iκj(ω)δjl ,

where

κj(ω) =
∑

l′>N(ω)

ω4

4c̄4βl′(ω)βj(ω)

×
∫ ∞

−∞
E[Cjl′ (0)Cjl′ (s)] cos(βj(ω)s)e−βl′ (ω)|s| ds . (20.42)

Similarly,
〈

E[G
(ab)
jl (·)]

〉
=

〈
E[G

(ba)
jl (·)]

〉
= 0 ,

〈
E[G

(bb)
jl (·)]

〉
= −iκj(ω)δjl .

The role of the evanescent modes in the limit ε → 0 is completely char-
acterized by the diagonal matrices

〈
E[G(aa)]

〉
and

〈
E[G(bb)]

〉
. Note that the

diagonal coefficients here are purely imaginary. This shows that the coupling
with the evanescent modes does not remove energy from the propagating
modes, nor does it affect the coupling between the propagating modes, but
it introduces for each propagating mode a dispersive or frequency-dependent
phase modulation.
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20.2.6 The Forward-Scattering Approximation

The limit as ε→ 0 of Pε(z) can be obtained and identified as a multidimen-
sional diffusion process, meaning that the entries of the limit matrix satisfy
a system of linear stochastic differential equations. The stochastic differential
equations for the limit entries of Pε

ab(z) are coupled to the limit entries of
Pε

aa(z) through the coefficients
∫ ∞

−∞
E[Cjl(0)Cjl(z)] cos (βj(ω) + βl(ω))z) dz , j, l = 1, . . . , N(ω) .

This is because the phase factors present in the matrices H(ab)(z) and G(ab)(z)
are ±(βj + βl)z. On the other hand, the stochastic differential equations for
the limit entries of Pε

aa(z) are coupled to each other through the coefficients
∫ ∞

−∞
E[Cjl(0)Cjl(z)] cos (βj(ω)− βl(ω))z) dz , j, l = 1, . . . , N(ω) .

This is because the phase factors present in the matrices H(aa)(z) and G(aa)(z)
are ±(βj −βl)z. If we assume that the power spectral density of the process ν
(i.e. the Fourier transform of its z-autocorrelation function) possesses a cutoff
frequency, then it is natural to consider the case in which

∫ ∞

−∞
E[Cjl(0)Cjl(z)] cos (βj(ω) + βl(ω))z) dz = 0 , j, l = 1, . . . , N(ω) ,

(20.43)
while (at least) some of the intracoupling coefficients (those with |j − l| = 1)
are not zero. As a result of this assumption, the asymptotic coupling between
Pε

aa(z) and Pε
ab(z) becomes zero. If we also take into account the initial con-

dition Pε
ab(z = 0) = 0, then the limit of Pε

ab(z) is 0.
In the forward-scattering approximation we neglect the left-going (back-

ward) propagating modes. As we have just seen, it is valid in the limit ε→ 0
when the condition (20.43) holds. In this case we can consider the simplified
coupled mode equation given by

dâε

dz
=

1

ε
H(aa)

( z

ε2

)
âε + G(aa)

( z

ε2

)
âε , (20.44)

where H(aa) and G(aa) are the N×N complex matrices given by (20.27–20.31).
The system (20.44) is supplemented with the initial condition âε

j(ω, z = 0) =
âj,0(ω). In the forward-scattering approximation, conservation relation (20.22)
becomes

N∑

j=1

|âε
j(L)|2 =

N∑

j=1

|âj,0|2 . (20.45)

As in the general case, we introduce the transfer or propagator matrix
Tε(ω, z), which is the fundamental solution of (20.44). It is the N(ω)×N(ω)
matrix solution of
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d

dz
Tε(ω, z) =

[
1

ε
H(aa)

( z

ε2

)
+ G(aa)

( z

ε2

)]
Tε(ω, z) (20.46)

starting from Tε(ω, 0) = I. The (j, l) entry of the transfer matrix is the
transmission coefficient T ε

jl(ω, L), i.e., the output amplitude of the mode j
when the input wave is a pure l mode with amplitude one. The conservation
relation (20.45) shows that Tε(ω, L) is a unitary matrix.

20.3 The Time-Harmonic Problem

In this section we consider the system of random differential equations (20.44)
for a single frequency ω.

20.3.1 The Coupled Mode Diffusion Process

We will now apply the diffusion approximation results of Chapter 6 to the
system (20.46). The limit distribution of âε as ε→ 0 is a diffusion on CN(ω).
We will assume that the following nondegeneracy condition holds.

The longitudinal wave numbers βj are distinct along with their sums
and differences.

In this case the infinitesimal generator of the limit â has a simple form, pro-
vided we write it in terms of â and â, rather than in terms of the real and
imaginary parts of â. We thus get the following result.

Proposition 20.1. The complex mode amplitudes (âε
j(ω, z))j=1,...,N converge

in distribution as ε → 0 to a diffusion process (âj(ω, z))j=1,...,N whose in-
finitesimal generator is

L =
1

4

∑

j �=l

Γ
(c)
jl (ω)

(
AjlAjl + AjlAjl

)
+

1

2

∑

j,l

Γ
(1)
jl (ω)AjjAll

+
i

4

∑

j �=l

Γ
(s)
jl (ω)(All −Ajj) + i

∑

j

κj(ω)Ajj , (20.47)

Ajl = âj
∂

∂âl
− âl

∂

∂âj

= −Alj . (20.48)

Here we have defined the complex derivatives in the standard way: if z = x+iy,
then ∂z = (1/2)(∂x − i∂y) and ∂z = (1/2)(∂x + i∂y). The coefficients Γ (c),
Γ (s), and Γ (1) are given by

Γ
(c)
jl (ω) =

ω4γ
(c)
jl (ω)

4c̄4βj(ω)βl(ω)
if j = l , (20.49)

Γ
(c)
jj (ω) = −

∑

n�=j

Γ
(c)
jn (ω) , (20.50)



20.3 The Time-Harmonic Problem 563

γ
(c)
jl (ω) =

∫ ∞

−∞
cos ((βj(ω)− βl(ω))z) E[Cjl(0)Cjl(z)] dz , (20.51)

Cjl(z) =

∫

D
φj(x)φl(x)ν(x, z) dx , (20.52)

Γ
(s)
jl (ω) =

ω4γ
(s)
jl (ω)

4c̄4βj(ω)βl(ω)
if j = l , (20.53)

Γ
(s)
jj (ω) = −

∑

n�=j

Γ
(s)
jn (ω) , (20.54)

γ
(s)
jl (ω) = 2

∫ ∞

0

sin ((βj(ω)− βl(ω))z) E[Cjl(0)Cjl(z)] dz , (20.55)

Γ
(1)
jl (ω) =

ω4γ
(1)
jl

4c̄4βj(ω)βl(ω)
for all j, l , (20.56)

γ
(1)
jl =

∫ ∞

−∞
E[Cjj(0)Cll(z)] dz . (20.57)

The coefficients of the second derivatives of the generator L are homo-
geneous of degree two, while the coefficients of the first derivatives are ho-
mogeneous of degree one. As a consequence we can write closed differential
equations for moments of any order. In the next section we shall introduce
explicitly the equations for the first-, second-, and fourth-order moments. Be-
fore considering moments we will discuss some qualitative properties of the
diffusion process â.

The coefficients γ
(c)
jl , and thus Γ

(c)
jl , are proportional to the power spectral

densities of the stationary process Cjl(z) for j = l. They are therefore non-
negative. We shall assume that the off-diagonal entries of the matrix Γ (c) are
positive.

The infinitesimal generator satisfies

∀j, n, Ajn

(
N∑

l=1

|âl|2
)

= 0 =⇒ L
(

N∑

l=1

|âl|2
)

= 0 .

This implies that the diffusion process is supported on a sphere of CN , whose
radius R0 is determined by the initial condition R2

0 =
∑N

l=1 |âl,0(ω)|2. The
operator L is not self-adjoint on the sphere, because of the term Γ (s) in (20.47).
This means that the process is not reversible. However, the uniform measure
on the sphere is invariant, and the generator is strongly elliptic. From the
theory of irreducible Markov processes with compact state space, we know
that the process is ergodic, which means in particular that for large z the
limit process â(z) converges to the uniform distribution over the sphere of
radius R0. This fact can be used to compute the limit distribution of the
mode powers (|âj |2)j=1,...,N for large z, which is the uniform distribution over
HN ,
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HN =

⎧
⎨
⎩(Pj)j=1,...,N , Pj ≥ 0,

N∑

j=1

Pj = R2
0

⎫
⎬
⎭ . (20.58)

We carry out a more detailed analysis that is valid for any z in Section 20.3.3.
We address now the computation of the first moment in the asymptotic limit
ε→ 0.

20.3.2 Mean Mode Amplitudes

From Proposition 20.1 we get the following result.

Proposition 20.2. The expected values of the mode amplitudes E[âε
j(ω, z)]

converge as ε→ 0 to E[âj(ω, z)], which is given by

E[âj(ω, z)] = exp

(
Γ

(c)
jj (ω)z

2
−

Γ
(1)
jj (ω)z

2
+

iΓ
(s)
jj (ω)z

2
+ iκj(ω)z

)
âj0(ω) .

The real part of the exponential factor is [Γ
(c)
jj (ω)−Γ

(1)
jj (ω)]z/2. The coef-

ficient Γ
(c)
jj (ω) is negative. The coefficient Γ

(1)
jj (ω) is nonnegative because it is

proportional to the power spectral density of Cjj at 0 frequency. As a result,

the damping coefficient [Γ
(c)
jj (ω) − Γ

(1)
jj (ω)]/2 is negative, and therefore the

mean mode amplitude decays exponentially with propagation distance. The
exponential decay rate is given by

sup
j=1,...,N

|E [âj(ω, z)]| ≤ sup
j=1,...,N

|âj,0| e−λ1z

with

λ1 =
1

2
inf

j=1,...,N

{
Γ

(1)
jj − Γ

(c)
jj

}
= inf

j=1,...,N

{
N∑

l=1

ω4γ
(c)
jl (ω)

8c̄4βj(ω)βl(ω)

}
.

This exponential decay rate implies that the transmitted field loses its co-
herence. The study of the incoherent field requires the analysis of the higher
moments of the mode amplitude.

20.3.3 Coupled Power Equations

The generator of the limit process â possesses an important symmetry,
which follows from noting that when applying the generator to a function
of (|â1|2, . . . , |âN |2), we obtain another function of (|â1|2, . . . , |âN |2). This im-
plies that the limit process (|â1(z)|2)j=1,...,N is itself a Markov process.
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Proposition 20.3. The mode powers (|âε
j(ω, z)|2)j=1,...,N converge in distri-

bution as ε → to the diffusion process (Pj(ω, z))j=1,...,N whose infinitesimal
generator is

LP =
∑

j �=l

Γ
(c)
jl (ω)Pl

∂

∂Pj

[
Pj

(
∂

∂Pj
− ∂

∂Pl

)]

=
∑

j �=l

Γ
(c)
jl (ω)

[
PlPj

(
∂

∂Pj
− ∂

∂Pl

)
∂

∂Pj
+ (Pl − Pj)

∂

∂Pj

]
. (20.59)

As pointed out above, the diffusion process (Pj(ω, z))j=1,...,N is supported
inHN . As a first application of this result, we compute the mean mode powers:

P
(1)
j (ω, z) = E[Pj(ω, z)] = lim

ε→0
E[|âε

j(ω, z)|2] .

Using the generator LP we get the following proposition.

Proposition 20.4. The mean mode powers E[|âε
j(ω, z)|2] converge to P

(1)
j (ω, z),

which is the solution of the linear system

∂P
(1)
j

∂z
=

∑

n�=j

Γ
(c)
jn (ω)

(
P (1)

n − P
(1)
j

)
, (20.60)

starting from P
(1)
j (ω, z = 0) = |âj,0|2, j = 1, . . . , N .

The solution of this system can be written in terms of the exponential of
the matrix Γ (c):

P (1)(ω, z) = exp
(
Γ (c)(ω)z

)
P (1)(ω, 0) .

We note that the vector P (1)(ω, z) has a probabilistic interpretation, which we
consider in detail in Section 20.6.2. We give here some of its basic properties.
First, the matrix Γ (c) is symmetric and real, its off-diagonal terms are positive,
and its diagonal terms are negative. The sums over the rows and columns are
all zero. As a consequence of the Perron–Frobenius theorem, Γ (c) has zero
as a simple eigenvalue, and all other eigenvalues λN ≤ · · · ≤ λ2 < 0 are
negative. The eigenvector associated with the zero eigenvalue is the uniform
vector (1, . . . , 1)T . This shows that

sup
j=1,...,N

∣∣∣∣P
(1)
j (ω, z)− 1

N
R2

0

∣∣∣∣ ≤ Ce−λ2z ,

where R2
0 =

∑N
j=1 |âj,0|2. In words, the mean mode powers converge exponen-

tially fast to the uniform distribution, which means that we have asymptotic
equipartition of mode energy. The Perron–Frobenius theorem also provides
an expression for the rate of convergence
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λ2 = inf

⎧
⎨
⎩−BT Γ (c)B, B ∈ R

N such that
N∑

j=1

Bj = 0,
N∑

j=1

B2
j = 1

⎫
⎬
⎭ .

Using the relation Γ
(c)
jj = −∑

l �=j Γ
(c)
jl , we can get an estimate for λ2 of the

form

λ2 ≤ inf
j=1,...,N

{
−Γ

(c)
jj

}
= inf

j=1,...,N

⎧
⎨
⎩

∑

l �=j

ω4γ
(c)
jl (ω)

4c̄4βj(ω)βl(ω)

⎫
⎬
⎭ .

This estimate implies that λ2 ≤ 2λ1, which means that the convergence rate
to equilibrium of the average mode powers is slower than the convergence rate
of the square mean amplitudes, although both are of the same order of mag-
nitude. We shall denote by Lequip the inverse of λ2, which is the equipartition
distance for the mean mode powers.

20.3.4 Fluctuations Theory

Proposition 20.3 also allows us to study the fluctuations of the mode powers
by looking at the fourth-order moments of the mode amplitudes:

P
(2)
jl (ω, z) = lim

ε→0
E
[
|âε

j(ω, z)|2|âε
l (ω, z)|2

]
= E[Pj(ω, z)Pl(ω, z)] .

Using the generator LP we get a system of ordinary differential equations for

limit fourth moments (P
(2)
jl )j,l=1,...,N , which has the form

dP
(2)
jj

dz
=

∑

n�=j

Γ
(c)
jn

(
4P

(2)
jn − 2P

(2)
jj

)
,

dP
(2)
jl

dz
= −2Γ

(c)
jl P

(2)
jl +

∑

n

Γ
(c)
ln

(
P

(2)
jn − P

(2)
jl

)
+

∑

n

Γ
(c)
jn

(
P

(2)
ln − P

(2)
jl

)
,

for j = l. The initial conditions are P
(2)
jl (z = 0) = |âj,0|2|âl,0|2. This is a

system of linear ordinary differential equations with constant coefficients that
can be solved by computing the exponent of the evolution matrix.

It is straightforward to check that the function P
(2)
jl ≡ 1+δjl is a stationary

solution of the fourth moment system. Using the positivity of Γ
(c)
jl , j = l, we

conclude that this stationary solution is asymptotically stable, which means

that the solution P
(2)
jl (z) starting from P

(2)
jl (z = 0) = |âj,0|2|âl,0|2 converges

as z →∞ to

P
(2)
jl (z)

z→∞−→

⎧
⎪⎨
⎪⎩

1

N(N + 1)
R4

0 if j = l ,

2

N(N + 1)
R4

0 if j = l ,

where R2
0 =

∑N
j=1 |âj,0|2. This implies that the normalized correlation
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Cor(Pj , Pl)(z) :=
P

(2)
jl (z)− P

(1)
j (z)P

(1)
l (z)

P
(1)
j (z)P

(1)
l (z)

has the following asymptotic form:

Cor(Pj , Pl)(z)
z→∞−→

⎧
⎪⎨
⎪⎩

− 1

N + 1
if j = l ,

N − 1

N + 1
if j = l .

We see from the j = l result that if, in addition, the number of modes N
becomes large, then the mode powers become uncorrelated.

The large-z behavior for j = l shows that whatever the number of modes
N , the mode powers Pj are not statistically stable quantities. The full distri-
bution function of any mode power can be calculated in the asymptotic “z
large” using the fact that the invariant measure of (Pj)j=1,...,N is the uniform
measure over HN . Thus the probability distribution of P1 is the marginal
distribution obtained by integrating the normalized uniform distribution over
(Pj)j=2,...,N . By symmetry, all the Pj have the same asymptotic distribution,
whose density is

ψ(p1) = (N − 1)R2
0(R

2
0 − p1)

N−21[0,R2
0]
(p1) .

Therefore, in the limit z →∞ the moments of P1 are given by

E[P1(z)k]
z→∞−→

∫
pk
1ψ(p1) dp1 =

k!(N − 1)!

(N + k − 1)!
R2k

0 .

When N is large, we have k!(N − 1)!/(N + k − 1)! ∼ k!/Nk. This shows that
for large N , the distribution of P1(z) is close to that of an exponential random
variable with mean R2

0/N .

20.4 Broadband Pulse Propagation in Waveguides

Bandwidth plays a basic role in the propagation of pulses in a waveguide be-
cause of dispersion. There are two types of dispersion. First, the modes travel
with different group velocities 1/β′

j(ω) for different modes j = 1, . . . , N(ω),
which gives strong pulse spreading whatever the bandwidth. Second, each
mode is dispersive because βj(ω) is not linear in ω. This second type of dis-
persion depends strongly on the bandwidth.

20.4.1 Integral Representation of the Transmitted Field

We assume that a point source located inside the waveguide at (z = 0,x = x0)
emits a pulse with carrier frequency ω0 and bandwidth of order εq, q > 0,
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Fε(t,x, z) = fε(t)δ(x − x0)δ(z)ez .

The pulse has the form
fε(t) = f(εqt)eiω0t (20.61)

in the time domain, and in the Fourier domain

f̂ε(ω) =
1

εq
f̂

(
ω − ω0

εq

)
.

This point source generates evanescent modes, left-going propagating modes,
which we do not need to consider, since they propagate in a homogeneous
half-space, and right-going modes, which we analyze. As shown in Section
20.1.4, the interface conditions at z = 0, which are initial conditions in the
forward-scattering approximation, have the form

âε
j(ω, 0) =

1

2

√
βj(ω)f̂ε(ω)φj(x0) , for j ≤ N(ω) .

The transmitted field observed at time t is therefore

ptr

(
t,x,

L

ε2

)
=

1

4π

∫ N(ω)∑

j,l=1

√
βl(ω)√
βj(ω)

φj(x)φl(x0)f̂
ε(ω)T ε

jl(ω)eiβj(ω) L
ε2 −iωt dω .

(20.62)
We assume in this section that q = 1. The analysis that follows can be

carried out for any 0 < q < 2. In this general case the pulse width is of
order ε−q ≪ ε−2, which means that it is much smaller than the propagation
distance. As a result, the modes are separated in time by the modal dispersion
during propagation. The restriction q > 0 allows us to simplify the expression
for the transmitted field by freezing the number of modes to the one for the
carrier frequency. The case q = 2, which is the narrowband case, is addressed
in Section 20.8.

We observe the field in a time window of order 1/ε, which is comparable
to the pulse width, and centered at time t0/ε2, which is of order the travel
time to go to distances of order 1/ε2:

pε
tr(t0, t,x, L) := ptr

(
t0
ε2

+
t

ε
,x,

L

ε2

)
,

pε
tr(t0, t,x, L) =

1

4πε

∫ N(ω)∑

j,l=1

√
βl(ω)√
βj(ω)

φj(x)φl(x0)f̂

(
ω − ω0

ε

)
T ε

jl(ω)

×ei
βj(ω)L−ωt0

ε2 e−i ωt
ε dω .

We change variables to ω = ω0 + εh and we expand βj(ω0 + εh) with respect
to ε:
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pε
tr(t0, t,x, L) =

1

4π

N(ω0)∑

j,l=1

√
βl(ω0)√
βj(ω0)

φj(x)φl(x0)e
i

βj(ω0)L−ω0t0

ε2 e−i
ω0t

ε

×
∫

f̂(h)T ε
jl(ω0 + εh)ei

[β′
j(ω0)L−t0]h

ε ei[β′′
j (ω0)L

h2

2 −ht] dh . (20.63)

Note that here we have also replaced N(ω0 + εh) by N(ω0), which is a legiti-
mate approximation for ε small.

20.4.2 Broadband Pulse Propagation in a Homogeneous
Waveguide

We first consider the expression (20.63) in a homogeneous waveguide where
T ε

jl = δjl. Because of the fast phase exp i[β′
j(ω0)L− t0]h/ε in (20.63), the jth

mode is different from zero only when the time window is centered at t0 = t̄j ,

t̄j := β′
j(ω0)L , (20.64)

which is the travel time of the jth mode. This follows from the Riemann-
Lebesgue lemma. Near this time, only one term survives in (20.63) and the
transmitted field is given by

pε
tr(t̄j , t,x, L) =

1

4π
φj(x)φj(x0)e

i
βj(ω0)L−ω0t0

ε2 −i
ω0t

ε

∫
f̂(h)ei[β′′

j (ω0)L h2

2 −ht] dh

=
1

2
φj(x)φj(x0)e

i
βj(ω0)L−ω0t0

ε2 −i
ω0t

ε Kj,L ∗ f(t) , (20.65)

where Kj,L(t) is the function whose Fourier transform is

K̂j,L(ω) = eiβ′′
j (ω0)L

ω2

2 .

This means that for ε small we observe a train of transmitted pulses that
are well separated from each other. Each pulse is that of a single mode, and
it travels with the group velocity of this mode 1/β′

j(ω0). The support of the

pulse is of order the original pulse width, that is to say, ε−1. However, each
pulse mode is also dispersed by the convolution kernel Kj,L(t).

20.4.3 The Stable Wave Field in a Random Waveguide

We next consider the transmitted field (20.63) in a random waveguide. We fix
again a time window whose width is comparable to that of the input pulse
and centered at the travel time t0 = t̄j of the jth mode.

Proposition 20.5. The transmitted field observed around time t0 = t̄j has
the following form:

pε(t̄j , t,x, L) = p̃ε
tr,j(t,x, L)ei

βj(ω0)L−ω0t0

ε2 −i
ω0t

ε .
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The field p̃ε
tr,j(t,x, L) converges in distribution as ε → 0 as a continuous

function in (t,x, L) to

p̃tr,j(t,x, L) =
1

2
φj(x)φj(x0)e

iW (j)(L)Kj,L ∗ f(t) , (20.66)

where W (j)(L) is a Brownian motion with variance

E

[(
W (j)(L)

)2
]

= Γ
(1)
jj (ω0)L ,

and Kj,L is a deterministic convolution kernel whose Fourier transform is

K̂j,L(ω) = exp

(
1

2
Γ

(c)
jj (ω0)L +

i

2
Γ

(s)
jj (ω0)L + iκj(ω0)L + iβ′′

j (ω0)L
ω2

2

)
.

The coefficients Γ
(c)
jj , Γ

(s)
jj , and Γ

(1)
jj are defined in Proposition 20.1. In or-

der to completely describe the joint distribution of the transmitted field for
all the modes, we note that the random process (W (j)(L))j=1,...,N is an N -
dimensional Brownian motion with covariance matrix

E

[
W (j)(L)W (l)(L)

]
= Γ

(1)
jl (ω0)L .

This proposition looks somewhat similar to the pulse-stabilization theory
presented in Chapter 8 in a one-dimensional random medium. We get stabi-
lization of the pulse up to a random phase; that is, the pulse intensity observed
near the travel time of each mode is deterministic. The random phase is char-
acterized in terms of Brownian motions. However, the pulse intensities attenu-
ate exponentially with propagation distance and spread dispersively through
the kernel Kj,L. There is no diffusion for the deterministic pulse intensity
as there is in the pulse-stabilization theory in the one-dimensional case. The
proof of the proposition goes along the same lines as the one presented in
detail in Chapter 8, so we do not give it here.

We note that we can identify the transmitted field as the solution of an
effective stochastic equation. We write

pε
tr (t̄j , t,x, L)

ε→0∼ p̃tr,j(t,x, z = L)ei
βj(ω0)L−ω0t0

ε2 −i
ω0t

ε ,

and note that the field components p̃tr,j obey the stochastic system of
Schrödinger equations

dp̃tr,j + β′
j(ω0)

∂p̃tr,j

∂t
dz =

(
Γ

(c)
jj (ω0)

2
+ i

Γ
(s)
jj (ω0)

2
+ iκj(ω0)

)
p̃tr,jdz

+ip̃tr,j ◦ dW (j)(z)−
iβ′′

j (ω0)

2

∂2p̃tr,j

∂t2
dz ,
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starting from p̃tr,j(t,x, z = 0) = φj(x)φj(x0)f(t)/2. From this equation we
get immediately the equation satisfied by the coherent field, or mean field

E[pε
tr (t,x, L)]

ε→0∼
N∑

j=1

pmf,j(t,x, z = L)ei
βj(ω0)L−ω0t0

ε2 −i
ω0t

ε

with pmf,j(t,x, z = L) the solution of the Schrödinger equation with damping

∂pmf,j

∂z
+ β′

j(ω0)
∂pmf,j

∂t
=

(
Γ

(c)
jj (ω0)

2
−

Γ
(1)
jj (ω0)

2
+ i

Γ
(s)
jj (ω0)

2
+ iκj(ω0)

)
pmf,j

−
iβ′′

j (ω0)

2

∂2pmf,j

∂t2
.

The additional damping term −Γ
(1)
jj (ω0)/2 on the right-hand side is the

Itô–Stratonovich correction that appears in the expectation of the previous
stochastic Schrödinger equation. It corresponds to the averaging of the ran-
dom phase given in terms of the Brownian motion W (j).

20.5 Time Reversal for a Broadband Pulse

20.5.1 Time Reversal in Waveguides

We will now consider time reversal in a waveguide in a setup similar to the one
that we analyzed in Chapter 12. A point source located in the plane z = 0
at the lateral position x0 emits a pulse fε(t) of the form (20.61). A time-
reversal mirror is located in the plane z = L/ε2 and occupies the subdomain
DM ⊂ D. The field is recorded for a time interval [t0/ε2, t1/ε2] at the time-
reversal mirror, and it is reemitted time-reversed into the waveguide toward
the original source location at z = 0.

The transmitted wave observed at time t is

ptr

(
t,x,

L

ε2

)
=

1

4π

N∑

j,l=1

√
βl√
βj

φj(x)φl(x0)

∫
f̂ε(ω)T ε

jl(ω)eiβj(ω) L
ε2 −iωt dω ,

which is the same as (20.62). The time-reversal mirror records the field from
time t0/ε2 up to time t1/ε2, and time-reverses it. The new source at the
time-reversal mirror that will generate the back-propagating waves is

Fε
TR(t,x, z) = −fε

TR(t,x)δ

(
z − L

ε2

)
ez ,

with

fε
TR(t,x) = ptr

(
t1
ε2
− t,x,

L

ε2

)
G1(t1 − ε2t)G2(x) ,
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where G1 is the time-window function, of the form G1(t) = 1[t0,t1](t), and G2

is the spatial-window function G2(x) = 1DM (x). The source Fε
TR points in

the negative z-direction, toward the initial source location z = 0. The Fourier
transform of the source intensity is

f̂ε
TR(ω,x) =

1

4πε2

∫ N∑

j,l=1

√
βl√
βj

G2(x)φj(x)φl(x0)f̂ε(ω′)T ε
jl(ω

′)

×Ĝ1

(
ω − ω′

ε2

)
e−iβj(ω

′) L
ε2 +iω

t1
ε2 dω′ .

This source generates both propagating and evanescent modes. The left-going
propagating modes have amplitudes

b̂m(ω) =

√
βm(ω)

2

∫

D
f̂ε
TR(ω,x)φm(x) dx eiβm(ω) L

ε2 ,

which when substituting the expression for the source intensity gives

b̂m(ω) =
1

8πε2

N∑

j,l=1

√
βlβm√

βj

Mmjφl(x0)

∫
f̂ε(ω′)T ε

jl(ω
′)

×Ĝ1

(
ω − ω′

ε2

)
ei[βm(ω)−βj(ω

′)] L
ε2 +iω

t1
ε2 dω′ .

Here the coupling coefficients Mjl are given by

Mjl =

∫

D
φj(x)G2(x)φl(x) dx . (20.67)

We have explicit formulas for the coupling coefficients Mjl in two cases:

• If the mirror spans the complete cross section D of the waveguide, then
we have G2(x) = 1 and Mjl = 1 if j = l and 0 otherwise.

• If the mirror is pointlike at x = x1, meaning G2(x) = |D|δ(x−x1), with the
factor |D| added for dimensional consistency, then Mjl = |D|φj(x1)φl(x1).

The back-propagating wave is left-going, starting from L/ε2, and it is given
by

p̂inc(TR)

(
ω,x,

L

ε2

)
=

N∑

m=1

b̂m(ω)√
βm

φm(x)e−iβm(ω) L
ε2 .

The refocused field at 0, in the Fourier domain, is given by

p̂ref(TR)(ω,x, 0) =

N∑

m,n=1

(Tε)T
n,m(ω)b̂m(ω)√

βn
φn(x) . (20.68)
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Here (Tε)T (ω) is the transfer matrix for the left-going modes propagating from
L/ε2 to 0, and it is the transpose of Tε(ω). This follows from the unitarity of
the transfer matrix Tε(ω). From (20.68) we obtain

p̂ref(TR)(ω,x, 0) =
1

8πε2

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×
∫

f̂ε(ω′)T ε
jl(ω

′)T ε
mn(ω)Ĝ1

(
ω − ω′

ε2

)
ei[βm(ω)−βj(ω

′)] L
ε2 +iω

t1
ε2 dω′ .

After the change of variable ω′ = ω−ε2h, the refocused field observed at time
tobs reads

pref(TR) (tobs,x, 0) =
1

8π2

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

∫ ∫
f̂ε(ω − ε2h)

×T ε
jl(ω − ε2h)T ε

mn(ω)Ĝ1 (h) eiβm(ω) L
ε2 −iβj(ω−ε2h) L

ε2 +iω
t1
ε2 −iωtobs dh dω .

In the forward-scattering approximation the power delay spread of trans-
mitted signals is not very long because there is no backscattering to produce
long codas. This is to be contrasted with what happens in one-dimensional
random media as we saw in Chapter 12. Moreover, we concentrate our atten-
tion more on spatial effects in the chapter, so it is reasonable to assume that
we record the field for all time at the time-reversal mirror. This means that
we have G1 = 1 and Ĝ1(h) = 2πδ(h). The expression for the refocused field
now simplifies to

pref(TR) (tobs,x, 0) =
1

8π2

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

∫ ∫
f̂ε(ω)

×T ε
jl(ω)T ε

mn(ω)ei[βm(ω)−βj(ω)] L
ε2 +iω

t1
ε2 −iωtobs dω . (20.69)

20.5.2 Integral Representation of the Broadband Refocused Field

In this section we consider a pulse of the form

fε(t) = f(εt)eiω0t , (20.70)

which is the same as (20.61) with q = 1, and in the Fourier domain

f̂ε(ω) =
1

ε
f̂

(
ω − ω0

ε

)
.

We observe the refocused field in a time window comparable to the width of
the pulse and centered at a time tobs/ε2, which is of the order of travel times
into the waveguide
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pref(TR)

(
tobs

ε2
+

t

ε
,x, 0

)
=

1

4πε

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×
∫

f̂

(
ω − ω0

ε

)
T ε

jl(ω)T ε
mn(ω)ei[βm(ω)−βj(ω)] L

ε2 +iω
t1−tobs

ε2 −iω t
ε dω .

Here Mmj is defined by (20.67). We make the change of variable ω = ω0 + εh
and expand βj(ω0 + εh) with respect to ε and get the following expression of
the refocused field:

pref(TR)

(
tobs

ε2
+

t

ε
,x, 0

)
=

1

4π

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj ](ω0)
L
ε2 eiω0

t1−tobs
ε2 −i

ω0t
ε

×
∫

f̂ (h)T ε
jl(ω0 + εh)T ε

mn(ω0 + εh)ei
[β′

m−β′
j ](ω0)L+(t1−tobs)

ε he−iht dh . (20.71)

20.5.3 Refocusing in a Homogeneous Waveguide

We first use the expression (20.71) for time reversal in a homogeneous wave-
guide. In this case T ε

jl = δjl, and the refocused field is

pref(TR)

(
tobs

ε2
+

t

ε
,x, 0

)
=

1

2

N∑

j,m=1

Mmjφm(x)φj(x0)e
i[βm−βj ](ω0)

L
ε2 +iω0

t1−tobs
ε2

×e−i
ω0t

ε f

(
[β′

m − β′
j ](ω0)L + t1 − tobs

ε
− t

)
.

We observe a refocused pulse only for a discrete set of observation times
parameterized by two integers j, m ∈ {1, . . . , N}

tobs = t̄jm := t1 + [β′
m − β′

j ](ω0)L .

These times are the differences of mode travel times from O to L and back. If
we observe the refocused pulse at tobs = t̄jm with j = m, then we see only one
mode (the mode m) because the other contributions in pref(TR) are negligible
as ε→ 0. Therefore the refocused field has the form

pref(TR)

(
t̄jm

ε2
+

t

ε
,x, 0

)
=

1

2
Mmjφm(x)φj(x0)

×ei[βm−βj ](ω0)
L
ε2 −iω0

[β′
m−β′

j ](ω0)L

ε2 −i
ω0t

ε f (−t) .

Note that the intensity of this field is independent of ε. If we observe the
refocused field at tobs = t1, which is the travel-time difference to the time-
reversal mirror and back for a single mode, so that m = j in t̄jm, we see a
contribution from all modes
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pref(TR)

(
t1
ε2

+
t

ε
,x, 0

)
= Hω0,x0(x)e−i

ω0t
ε f (−t) . (20.72)

Here the spatial profile Hω0,x0 has the form

Hω0,x0(x) =
1

2

N∑

j=1

Mjjφj(x)φj(x0) . (20.73)

In a homogeneous medium, spatial focusing of the time-reversed field at the
source is determined by Hω0,x0(x). From (20.67) we see that spatial focusing
depends on (a) the size of the time-reversal mirror, which is the support of G2

in the matrix M , and (b) the number N of propagating modes. If the time-
reversal mirror spans the width of the waveguide, then Mjj does not depend
on j and Hω0,x0(x) becomes more focused for x near x0 as the number of
propagating modes N increases. If the time-reversal mirror does not span the
width of the waveguide, then the spatial focusing profile of the time-reversed
field is more complicated. It is compared to focusing profiles in the random
case in Figure 20.2 at the end of this chapter.

For a planar waveguide we have φj(x) =
√

2/d sin(πjx/d) and βj =√
ω2/c2 − π2j2/d2. For a time-reversal mirror that spans the width of the

waveguide, G2(x) = 1[0,d](x), Mjj = 1 for all j. In the continuum limit N ≫ 1
the spatial focusing profile at the source simplifies to

Hω0,x0(x)
N≫1−→ 1

λ0
sinc

(
2π(x− x0)

λ0

)
,

where λ0 = 2πc̄/ω0 is the carrier wavelength and the sinc function is defined
by sinc(x) = sin(x)/x. In the limit N ≫ 1 we interpret the sum in (20.73)
as a Riemann sum and get the simplified expression above by computing the
resulting integral. The limit sinc profile is the best transverse profile that
we can obtain, because spatial focusing reaches the diffraction limit λ0/2,
which is the first zero of the sinc function. Note that the continuum limit
N ≫ 1 corresponds to d≫ λ0.

20.5.4 Refocusing in a Random Waveguide

The time-reversed field at the plane of the source is given by (20.71). We
will now use this expression when the transfer matrix T ε

jl(ω) is the one for
a random waveguide. We note first that the product of two elements of the
matrix appears in (20.71), at the same frequency and with one of the two
conjugated. We recall from (20.70) that in this broadband case the pulse width
is of order 1/ε and the bandwidth is of order ε. We will see in the next section,
in Proposition 20.7, that the decoherence frequency of T ε

jl(ω) is of order ε2.
This means that in the integral over frequencies in (20.71) we are summing
over a large number, of order 1/ε, of approximately uncorrelated random
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variables. The expression for the time-reversed field in (20.71) is therefore
self-averaging, by the law of large numbers. The refocused field does not differ
much as ε→ 0 from its expected value, which is

E

[
pref(TR)

(
tobs

ε2
+

t

ε
,x, 0

)]
=

1

4π

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj](ω0)
L
ε2 eiω0

t1−tobs
ε2 −i

ω0t
ε

×
∫

f̂ (h)E[T ε
jl(ω0 + εh)T ε

mn(ω0 + εh)]ei
[β′

m−β′
j ](ω0)L+(t1−tobs)

ε he−iht dh .(20.74)

From this expression we see that we need to calculate the expected value
E[T ε

jl(ω0 + εh)T ε
mn(ω0 +εh)] as ε→ 0. The following propositions contain the

information that we need.

Proposition 20.6. The expectation of two transmission coefficients at the
same frequency has a limit as ε→ 0, which is given by

E[T ε
jj(ω, L)T ε

ll(ω, L)]
ε→0−→ eQjl(ω)L if j = l , (20.75)

E[T ε
jl(ω, L)T ε

jl(ω, L)]
ε→0−→ T (l)

j (ω, L) , (20.76)

E[T ε
jm(ω, L)T ε

ln(ω, L)]
ε→0−→ 0 in the other cases , (20.77)

where (T (l)
j (ω, z))j=1,...,N(ω) is the solution of the system of linear equations

∂T (l)
j

∂z
=

∑

n�=j

Γ
(c)
jn (ω)

(
T (l)

n − T (l)
j

)
, T (l)

j (ω, z = 0) = δjl . (20.78)

The coefficients Γ
(c)
jl are given by (20.49–20.52). The damping factors Qjl are

Qjl(ω) =
Γ

(c)
jj (ω) + Γ

(c)
ll (ω)

2
−

Γ
(1)
jj (ω) + Γ

(1)
ll (ω)− 2Γ

(1)
jl (ω)

2

+i
Γ

(s)
jj (ω)− Γ

(s)
ll (ω)

2
+ i[κj(ω)− κl(ω)] . (20.79)

The real parts of the damping factors Qjl are negative. This implies that the
moments (20.75) decay exponentially with the length of the waveguide L.

From the analysis of Section 20.3.3, we know that

sup
j,l

∣∣∣∣T
(l)

j (ω, z)− 1

N

∣∣∣∣ ≤ Ce−z/Lequip , (20.80)

where Lequip is the equipartition distance for the mean mode powers intro-
duced at the end of Section 20.3.3. Therefore, the expectation of the square
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moduli of the entries of the transfer matrix in (20.76) converge exponentially
fast to the constant 1/N .

By Proposition 20.6, the expectation of the product of transmission coef-
ficients at the same frequency ω + εh becomes independent of h as ε → 0.
Therefore the fast phase in h in (20.74) cannot be compensated for, unless
it is zero. This shows that we can observe the refocused field only at time
tobs = t1 or at times tobs = t̄jm, j = m. Let us first consider the second case.
For fixed j = m we have

E

[
pref(TR)

(
t̄jm

ε2
+

t

ε
,x, 0

)]
=

1

4π

N∑

l,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj ](ω0)
L
ε2 eiω0

t1−tobs
ε2 −i

ω0t

ε

∫
f̂ (h)E[T ε

jl(ω0 + εh)T ε
mn(ω0 + εh)]e−iht dh .

Proposition 20.6 shows that the limit of the expectation is nonzero only if
l = j and n = m, and then the limit becomes independent of h, so that

E

[
pref(TR)

(
t̄jm

ε2
+

t

ε
,x, 0

)]
=

1

2
Mmjφm(x)φj(x0)e

i[βm−βj](ω0)
L
ε2

×eiω0
t1−tobs

ε2 −i
ω0t

ε eQjm(ω0)Lf(−t) .

In this refocused field only one mode contributes, and its amplitude decays
exponentially with propagation distance.

Let us next consider the refocused field at time tobs = t1. All modes
contribute to it:

E

[
pref(TR)

(
t1
ε2

+
t

ε
,x, 0

)]
=

1

4π

N∑

j,l,n=1

√
βl√
βn

Mjjφn(x)φl(x0)e
−i

ω0t
ε

∫
f̂ (h)

×E[T ε
jl(ω0 + εh)T ε

jn(ω0 + εh)]e−iht dh .

By Proposition 20.6, only the terms with l = n give nonzero values, and we
therefore get the following expression for the mean refocused pulse:

E

[
pref(TR)

(
t1
ε2

+
t

ε
,x, 0

)]
=

1

2

N∑

j,l=1

MjjT (l)
j (ω0, L)φl(x)φl(x0)e

−i
ω0t

ε f(−t) .

(20.81)

This is the main result regarding time reversal in the broadband case. We
will now consider it in some special cases in order to explain its implications
for spatial focusing in time reversal.

For small propagation distances, L ≪ Lequip, the transfer matrix is close
to the identity matrix. We therefore recover the result (20.72) of the homo-
geneous case, where the distribution of the mirror-coupling coefficient matrix
M , defined by (20.67), plays a central role.
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For large propagation distances, L≫ Lequip, we use (20.80) and get

E

[
pref(TR)

(
t1
ε2

+
t

ε
,x, 0

)]
L≫Lequip∼

⎛
⎝ 1

N

N∑

j=1

Mjj

⎞
⎠Hω0,x0(x)e−i

ω0t
ε f(−t) ,

(20.82)
where the spatial focusing profile Hω0,x0 is given here by

Hω0,x0(x) =
1

2

N(ω0)∑

l=1

φl(x)φl(x0) . (20.83)

In this case the distribution of the mirror-coupling coefficients M plays no
role. Only the average of the diagonal entries Mjj appears as a multiplicative
factor that does not affect the spatial focusing profile. This means that spa-
tial focusing in time reversal in a random waveguide, in a regime of strong
scattering, does not depend on the size of the time-reversal mirror.

In the case of a planar waveguide, we have φj(x) =
√

2/d sin(πjx/d),

βj =
√

ω2/c2 − π2j2/d2. In the continuum limit N ≫ 1, we get the simplified
focusing profile

Hω0(x)
N≫1−→ 1

λ0
sinc

(
2π(x− x0)

λ0

)
,

which is the diffraction-limited focal spot in time reversal. The refocused pulse
is therefore concentrated around the original source location x0 with a reso-
lution of half a wavelength.

As noted above, (20.81) is the main result of this section. It describes how
in time-reversal focusing we go from (20.72) in a homogeneous medium to
(20.82) for a random waveguide in the equipartition regime, L≫ Lequip.

To conclude this section we give some comments about the statistical sta-
bility of the refocused field. The self-averaging property can be justified with
the same arguments that were used in the one-dimensional random media. As
already noted, it comes from the broadband source pulse, meaning that the
refocused field (20.71) is an integration over a frequency band that is much
larger (of order ε) than the frequency correlation, or coherence, of the transfer
matrix (of order ε2). When we take the expectation of the square of (20.71)
we get in the asymptotic limit ε → 0 the square of the expectation, which
means that the variance is going to zero and that the refocused field is self-
averaging. The expression (20.81) is consequently valid not only in mean, but
also in probability, that is, for any typical realization of the random medium.
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20.6 Statistics of the Transmission Coefficients at Two
Nearby Frequencies

20.6.1 Transport Equations for the Autocorrelation Function of
the Transfer Matrix

Up to now we have been able to compute many quantities of interest, such
as time-reversal focusing in the broadband case, with only single-frequency
statistical properties of the transfer matrix, as ε → 0. We did need the fact
that frequency decoherence is of order ε2 in order to have statistical stability,
as in the previous section, but we did not need quantitative, two-frequency
statistical information. However, in many physically interesting contexts, such
as in calculating the mean transmitted intensity or the mean refocused field
amplitude in narrowband cases, we do need this information. We now intro-
duce a proposition that describes the two-frequency statistical properties that
we will need in the applications in the remainder of this chapter.

Proposition 20.7. The autocorrelation function of the transmission coeffi-
cients at two nearby frequencies admits a limit as ε→ 0:

E[T ε
jj(ω, L)T ε

ll(ω − ε2h, L)]
ε→0−→ eQjl(ω)L if j = l , (20.84)

E[T ε
jl(ω, L)T ε

jl(ω − ε2h, L)]
ε→0−→ e−iβ′

j(ω)hL

∫
W(l)

j (ω, τ, L)eihτ dτ , (20.85)

E[T ε
jm(ω, L)T ε

ln(ω − ε2h, L)]
ε→0−→ 0 in the other cases, (20.86)

where (W(l)
j (ω, τ, z))j=1,...,N(ω) is the solution of the system of transport equa-

tions

∂W(l)
j

∂z
+ β′

j(ω)
∂W(l)

j

∂τ
=

∑

n�=j

Γ
(c)
jn (ω)

(
W(l)

n −W(l)
j

)
, z ≥ 0 , (20.87)

W(l)
j (ω, τ, z = 0) = δ(τ)δjl . (20.88)

The coefficients Γ
(c)
jl are given by (20.49–20.52). The damping factors Qjl are

Qjl(ω) =
Γ

(c)
jj (ω) + Γ

(c)
ll (ω)

2
−

Γ
(1)
jj (ω) + Γ

(1)
ll (ω)− 2Γ

(1)
jl (ω)

2

+i
Γ

(s)
jj (ω)− Γ

(s)
ll (ω)

2
+ i[κj(ω)− κl(ω)] . (20.89)

We note that the real parts of the damping factors Qjl are negative and

that the solutions of the transport equations are measures. If j = l, then W(l)
j

has a continuous density, butW(l)
l has a Dirac mass at τ = β′

l(ω)z with weight
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exp(Γ
(c)
ll z), where Γ

(c)
ll is given by (20.50), and a continuous density denoted

by W(l)
l,c (ω, τ, z):

W(l)
l (ω, τ, z) dτ = eΓ

(c)
ll (ω)zδ(τ − β′

l(ω)z) dτ +W(l)
l,c (ω, τ, z) dτ .

Note also that by integrating the system of transport equations with respect
to τ , we recover the result of Proposition 20.6.

The system of transport equations describes the coupling between the N
forward-going modes. It is in the form of a system of transport equations that
we have encountered in previous chapters (Chapter 9), but it is has a very
different interpretation. The indices j = 1, . . . , N play equivalent roles, for
they represent the labels of the modes, while in the transport equations of
Chapter 9 the indices stand for the order of the moments of the transmission
or reflection coefficients.

The transport equations have quite the standard form. They describe the
evolution of the coupled powers of the modes in space and time, with trans-
port velocities equal to the group velocities of the modes 1/β′

j(ω). Therefore,
the transport equations (20.87) could have been written down as the nat-
ural space-time generalization of the coupled power equations (20.78). The
mathematical content of Proposition 20.7 is that this simple and intuitive
space-time extension of (20.78) does not connect accurately the quantities
that satisfy the transport equation and the moments of the random transfer
matrix. The two-frequency nature of the statistical quantities that satisfy the
transport equations is clear in Proposition 20.7.

Proof. For fixed indices m and n we consider the product of two transfer
matrices

Uε
jl(ω, h, z) = T ε

jm(ω, z)T ε
ln(ω − ε2h, z) ,

and note that it is the solution of

dUε
jl

dz
=

ik2

2ε

(
Cjj(

z
ε2 )

βj(ω)
− Cll(

z
ε2 )

βl(ω − ε2h)

)
Uε

jl

+
ik2

2ε

∑

j1 �=j

Cjj1 (
z
ε2 )√

βjβj1(ω)
ei(βj1−βj)(ω) z

ε2 Uε
j1l

− ik2

2ε

∑

l1 �=l

Cll1(
z
ε2 )√

βlβl1(ω − ε2h)
ei(βl−βl1

)(ω−ε2h) z
ε2 Uε

jl1

+
ik4

4

∑

j1

∑

l′>N

∫ ∞

−∞

Cjl′ (
z
ε2 )Cj1l′(

z
ε2 + s)√

βjβ2
l′βj1(ω)

ei[βj1−βj ](ω) z
ε2

×eiβj1 (ω)s−βl′(ω)|s| ds Uε
j1l

− ik4

4

∑

l1

∑

l′>N

∫ ∞

−∞

Cll′(
z
ε2 )Cl1l′(

z
ε2 + s)√

βlβ2
l′βl1(ω − ε2h)

ei[βl−βl1
](ω−ε2h) z

ε2

×e−iβl1
(ω−ε2h)s−βl′(ω−ε2h)|s| ds Uε

jl1 ,
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with the initial conditions Uε
jl(ω, h, z = 0) = δmjδnl. Expanding βl(ω − ε2h)

with respect to ε gives the simpler system

dUε
jl

dz
=

ik2

2ε

(
Cjj(

z
ε2 )

βj(ω)
− Cll(

z
ε2 )

βl(ω)

)
Uε

jl

+
ik2

2ε

∑

j1 �=j

Cjj1 (
z
ε2 )√

βjβj1(ω)
ei(βj1−βj)(ω) z

ε2 Uε
j1l

− ik2

2ε

∑

l1 �=l

Cll1(
z
ε2 )√

βlβl1(ω)
ei(βl−βl1

)(ω) z
ε2 ei(β′

l−β′
l1

)(ω)zhUε
jl1

+
ik4

4

∑

j1

∑

l′>N

∫ ∞

−∞

Cjl′ (
z
ε2 )Cj1l′(

z
ε2 + s)√

βjβ2
l′βj1

ei[βj1−βj](ω) z
ε2

×eiβj1(ω)s−βl′(ω)|s| ds Uε
j1l

− ik4

4

∑

l1

∑

l′>N

∫ ∞

−∞

Cll′ (
z
ε2 )Cl1l′(

z
ε2 + s)√

βlβ2
l′βl1

ei[βl−βl1
](ω) z

ε2

×e−iβl1
(ω)s−βl′ (ω)|s| ds ei[β′

l1
−β′

l](ω)hzUε
jl1 .

We can apply the limit theorems of Chapter 6 to this system of random
differential equations or we can first introduce the Fourier transform

V ε
jl(ω, τ, z) =

1

2π

∫
e−ih(τ−β′

l(ω)z)Uε
jl(ω, h, z) dh ,

which is the solution of

∂V ε
jl

∂z
+ β′

l(ω)
∂V ε

jl

∂τ
=

ik2

2ε

(
Cjj(

z
ε2 )

βj(ω)
− Cll(

z
ε2 )

βl(ω)

)
V ε

jl

+
ik2

2ε

∑

j1 �=j

Cjj1 (
z
ε2 )√

βjβj1(ω)
ei(βj1−βj)(ω) z

ε2 V ε
j1l

− ik2

2ε

∑

l1 �=l

Cll1(
z
ε2 )√

βlβl1(ω)
ei(βl−βl1

)(ω) z
ε2 V ε

jl1

+
ik4

4

∑

j1

∑

l′>N

∫ ∞

−∞

Cjl′ (
z
ε2 )Cj1l′(

z
ε2 + s)√

βjβ2
l′βj1

ei[βj1−βj](ω) z
ε2

×eiβj1(ω)s−βl′(ω)|s| ds V ε
j1l

− ik4

4

∑

l1

∑

l′>N

∫ ∞

−∞

Cll′ (
z
ε2 )Cl1l′(

z
ε2 + s)√

βlβ2
l′βl1

ei[βl−βl1
](ω) z

ε2

×e−iβl1
(ω)s−βl′(ω)|s| ds V ε

jl1 ,

with the initial conditions V ε
jl(ω, h, z = 0) = δmjδnlδ(τ). We can now apply

a variant of the diffusion approximation theorem of Chapter 6 and get the
result stated in the proposition. The details of the proof follow closely that of
Proposition 9.1. �
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20.6.2 Probabilistic Representation of the Transport Equations

The transport equations (20.87) have a probabilistic representation, which is
similar to the one we introduced in Section 9.2.2. This probabilistic repre-
sentation can be used for Monte Carlo simulations as well as for getting a
diffusion approximation. It is primarily this diffusion approximation that we
want to derive in this section. We will use it in the applications that follow in
this chapter.

We introduce the jump Markov process (Jz)z≥0 whose state space is
{1, . . . , N(ω)} and whose infinitesimal generator is

Lφ(j) =
∑

l �=j

Γ
(c)
jl (ω) (φ(l)− φ(j)) .

We also define the process Bz by

Bz =

∫ z

0

βJsds , z ≥ 0 ,

which is well defined because Jz is piecewise constant. As in Section 9.2.2,
we get the probabilistic representation of the solutions of the system (20.78)
and those of to the transport equations (20.87) in terms of the jump Markov
process Jz:

T (n)
j (ω, L) = P (JL = j | J0 = n) , (20.90)

∫ τ1

τ0

W(n)
j (ω, τ, L) dτ = P (JL = j , BL ∈ [τ0, τ1] | J0 = n) . (20.91)

The process Jz is an irreducible, reversible, and ergodic Markov process. Its
distribution converges as z →∞ to the uniform distribution over {1, . . . , N}.
The convergence is exponential with a rate that is equal to the second eigen-

value of the matrix Γ (c) = (Γ
(c)
jl )j,l=1,...,N . The first eigenvalue of this matrix

is zero, with eigenvector the uniform distribution over {1, . . . , N}. The second
eigenvalue can be written in the form −1/Lequip, which defines the equiparti-
tion distance Lequip.

We next determine the asymptotic distribution of the process Bz. From
the ergodic theorem we have that with probability one,

Bz

z

z→∞−→ β̂′(ω) ,

where

β̂′(ω) =
1

N(ω)

N(ω)∑

j=1

β′
j(ω) .

We can interpret the z-large limit to mean that z is considerably larger than
Lequip.
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For a planar waveguide we have that βj =
√

ω2/c2 − π2j2/d2 and N(ω) =
[(ωd)/(πc̄)]. In the continuum limit N(ω)≫ 1 we obtain the expression

β̂′(ω) =
1

c̄

∫ 1

0

1√
1− s2

ds =
π

2c̄
,

which is independent of ω. This ω-independence property is likely to hold for
a broad class of waveguides.

By applying a central limit theorem for functionals of ergodic Markov
processes, we find that in distribution,

Bz − β̂′(ω)z√
z

z→∞−→ N (0, σ2
β′(ω)) .

Here N (0, σ2
β′(ω)) is a zero-mean Gaussian random variable with variance

σ2
β′(ω) = 2

∫ ∞

0

Ee

[
(β′

J0
(ω)− β̂′(ω))(β′

Js
(ω)− β̂′(ω))

]
ds

=
2

N(ω)

N(ω)∑

j=1

(β′
j(ω)− β̂′(ω))

∫ ∞

0

E

[
β′

Js
(ω)− β̂′(ω) | J0 = j

]
ds

= − 2

N(ω)
BT (Γ (c))−1B ,

where B = (Bj)j=1,...,N(ω) with Bj = β′
j(ω) − β̂′(ω) and Ee stands for ex-

pectation with respect to the stationary process Jz. We note here that Γ (c)

is not an invertible matrix since it possesses zero as an eigenvalue. However,
the equation Γ (c)B̃ = B can be solved because B belongs to the orthog-
onal complement of the null space of Γ (c). The solution B̃ is uniquely de-
fined up to a component that belongs to the null space of Γ (c). Therefore
BT B̃ = BT (Γ (c))−1B is uniquely defined. Note also that the order of magni-
tude of σ2

β′(ω) is

σ2
β′(ω) ≈ 2Lequip ×

1

N

N∑

j=1

[
β′

j(ω)− β̂′(ω)
]2

.

This formula is only an order-of-magnitude estimate. The exact value of σ2
β′(ω)

is given above.
These limit theorems imply that, when L≫ Lequip, we have

T (n)
j (ω, L)

L≫Lequip∼ 1

N(ω)
, (20.92)

W(n)
j (ω, τ, L)

L≫Lequip∼ 1

N(ω)

1√
2πσ2

β′(ω)L
exp

(
− (τ − β̂′(ω)L)2

2σ2
β′(ω)L

)
. (20.93)
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The asymptotic result (20.92) shows that T (n)
j (τ) becomes independent of

n, the initial mode index, and uniform over j ∈ {1, . . . , N(ω)}. This is the
regime of energy equipartition among all propagating modes. The asymptotic
result (20.93) is equivalent to the diffusion approximation for the system of
transport equations (20.87). This system becomes asymptotically a system of
uncoupled advection-diffusion equations that have the common form

∂W
∂z

+ β̂′(ω)
∂W
∂τ

=
1

2
σ2

β′(ω)

∂2W
∂τ2

.

20.7 Incoherent Wave Fluctuations in the Broadband
Case

In this section we complete the analysis carried out in Section 20.4, where we
studied pulse propagation with a broadband source of the form (20.70). In
Section 20.4.3 we showed that a coherent field, with a deterministic intensity,
can be observed near the times t̄j defined by (20.64). We now consider the
statistics of the transmitted field at a time t0 ∈ {t̄j, j = 1, . . . , N}.

We first consider the mean field

E[pε
tr(t0, t,x, L)] =

1

4π

N∑

j,l=1

√
βl√
βj

φj(x)φl(x0)e
i

βj(ω0)L−ω0t0

ε2 −ω0t
ε

×
∫

f̂(h)E[T ε
jl(ω0 + εh)]ei

[β′
j(ω0)L−t0]h

ε ei[β′′
j (ω0)L h2

2 −ht] dh .

By Proposition 20.2, the expected value of the transmission coefficient con-

verges to a value independent of h. Therefore, the fast phase ei
[β′

j(ω0)L−t0]h

ε

cannot be compensated with any other term of the integral, which is then
proportional to f(t + [t0− t̄j ]/ε) and is asymptotically negligible. This means
that the coherent field can be observed only near the times t̄j , j = 1, . . . , N .

We compute next the mean transmitted intensity at a time t0 ∈ {t̄j , j =
1, . . . , N}:

E

[
|pε

tr (t0, t,x, L)|2
]

=
1

16π2

∫ ∫ N∑

j,l,m,n=1

√
βlβn√
βjβm

φj(x)φl(x0)φm(x)φn(x0)

×ei
(βj−βm)(ω0)L

ε2 f̂(h)f̂(h′)E[T ε
jl(ω0 + εh)T ε

mn(ω0 + εh′)]

×ei
[β′

j(ω0)L−t0](h−h′)
ε ei[β′′

j (ω0)L
h2−h′2

2 −(h−h′)t] dh dh′ .

Because of the presence of the rapid phase ei
[β′

j(ω0)L−t0](h−h′)
ε , we make the

change of variable h′ = h− εξ:
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E

[
|pε

tr (t0, t,x, L)|2
]

=
ε

16π2

∫ ∫ N∑

j,l,m,n=1

√
βlβn√
βjβm

φj(x)φl(x0)φm(x)φn(x0)

×f̂(h)f̂(h− εξ)E[T ε
jl(ω0 + εh)T ε

mn(ω0 + εh− ε2ξ)]

×ei
(βj−βm)(ω0)L

ε2 ei[β′
j(ω0)L−t0]ξ dh dξ .

We can now apply Proposition 20.7 and obtain

E

[
|pε

tr (t0, t,x, L)|2
]

= εIε
1 + εIε

2 ,

Iε
1

ε→0∼ 1

16π2

∫ ∫ N∑

j �=m=1

φj(x)φj(x0)φm(x)φm(x0)e
i
(βj−βm)(ω0)L

ε2

×|f̂(h)|2eQjm(ω0)Lei[β′
j(ω0)L−t0]ξ dh dξ ,

Iε
2

ε→0∼ 1

16π2

∫ ∫ N∑

j,l=1

βl

βj
φ2

j (x)φ2
l (x0)

×|f̂(h)|2
∫
W(l)

j (ω0, τ, L)eiξτe−it0ξ dτ dh dξ .

Carrying out the ξ integral in the limit expression for Iε
1 shows that it is

concentrated at the times t0 = t̄j , j = 1, . . . , N . Since t0 is different from this
set of times, it follows that Iε

1 goes to zero as ε → 0. The ξ integral can also
be done in the limit expression for Iε

2 , and we have

lim
ε→0

Iε
2 =

1

8π

∫
|f̂(h)|2 dh×

N∑

j,l=1

βl

βj
φ2

j (x)φ2
l (x0)

∫
W(l)

j (ω0, τ, L)δ(τ − t0) dτ .

The measure W(l)
j contains a Dirac mass at τ = t̄j for j = l. Since t0 is

different from this set of times, only the absolutely continuous part of W(l)
j

contributes. The mean transmitted intensity is therefore locally stationary in
time because it depends only on t0 and not on t:

lim
ε→0

1

ε
E

[
|pε

tr (t0, t,x, L)|2
]

= I(t0,x, L) , (20.94)

where

I(t0,x, L) =
F0

4

N(ω0)∑

j,l=1

βl(ω0)

βj(ω0)
φ2

j (x)φ2
l (x0)W(l)

j,c(ω0, t0, L) , (20.95)

F0 =
1

2π

∫
|f̂(ω)|2 dω .

In the same way we get the following asymptotic expression for the auto-
correlation function of the transmitted field:
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lim
ε→0

1

ε
ei

ω0(s−t)

ε2 E [pε
tr (t0, t,x, L) pε

tr (t0, s,y, L)] = cω0,t0(x,y)F (t − s), (20.96)

where

ct0,ω0(x,y) =
1

4

N(ω0)∑

j,l=1

βl(ω0)

βj(ω0)
φj(ω0,x)φj(y)φ2

l (x0)W(l)
j,c(ω0, t0, L) ,

F (t) =
1

2π

∫
|f̂(ω)|2eiωt dω .

In the asymptotic equipartition regime L ≫ Lequip, the functions W(l)
j

become independent of j and l and are given by (20.93). The limit mean
transmitted intensity becomes in this regime

I(t0,x, L)
L≫Lequip∼ F0Hω0,x0(x)Kω0(t0) , (20.97)

where Hω0,x0 and Kω0 are given by

Hω0,x0(x) =
1

4N(ω0)

N(ω0)∑

j=1

φ2
j(x)

βj(ω0)
×

N(ω0)∑

l=1

φ2
l (x0)βl(ω0) , (20.98)

Kω0(t) =
1√

2πσ2
β′(ω0)

L
exp

(
− (t− β̂′(ω0)L)2

2σ2
β′(ω0)

L

)
. (20.99)

The autocorrelation function becomes

ct0,ω0(x,y)
L≫Lequip∼ H(2)

ω0,x0
(x,y)Kω0(t0) , (20.100)

where H
(2)
ω0,x0 is given by

H(2)
ω0,x0

(x,y) =
1

4N(ω0)

N(ω0)∑

j=1

φj(x)φj(y)

βj(ω0)
×

N(ω0)∑

l=1

φ2
l (x0)βl(ω0) . (20.101)

These results show that in the equipartition regime the autocorrelation func-
tion has a universal form, in the sense that it depends only on the unperturbed
waveguide, and not on the statistics of the random perturbations.

For the planar waveguide, and in the continuum limit N(ω0)≫ 1, we have

Hω0,x0(x)
N(ω0)≫1∼ π2

16λ0d
, (20.102)

H(2)
ω0,x0

(x, y)
N(ω0)≫1∼ π2

16λ0d
× J0

(
2π(x− y)

λ0

)
, (20.103)

where J0 is the zero-order Bessel function. We see from these results that
the mean intensity becomes uniform across the waveguide cross-section, and
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that the spatial extent of the autocorrelation function is of the order of the
wavelength. These are characteristic properties of the statistics of the speckle
pattern of the transmitted field.

Summary. The transmitted field has a coherent part, which is a train of
short pulses centered at the times t̄j = β′

j(ω0)L, j = 1, . . . , N . The amplitudes
of these pulses are of order one, their supports in time are of order ε, and they
decay exponentially with propagation distance as described in Proposition
20.5.

The transmitted field has also an incoherent part, whose typical amplitude
is of order

√
ε and whose support in time is of order one. This field has

zero mean and variance (20.94). It becomes dominant for long propagation

distances, where its time profile becomes a Gaussian centered at β̂′(ω0)L and
with a width increasing as

√
L.

20.8 Narrowband Pulse Propagation in Waveguides

We consider the same situation as in Section 20.4, with a source term of the
form (20.61), but we assume here that q = 2, so that

fε(t) = f(ε2t)eiω0t (20.104)

in the time domain, and in the Fourier domain

f̂ε(ω) =
1

ε2
f̂

(
ω − ω0

ε2

)
.

A pulse width of order ε−2 is comparable to the travel time over the propa-
gation distance. As a result, the modes overlap significantly during the prop-
agation.

The transmitted field at time t/ε2 has the form

pε
tr(t,x, L) = ptr

(
t

ε2
,x,

L

ε2

)
,

pε
tr(t,x, L) =

1

4πε2

∫ N(ω)∑

j,l=1

√
βl(ω)√
βj(ω)

φj(x)φl(x0)f̂

(
ω − ω0

ε2

)

×T ε
jl(ω)ei

βj(ω)L−ωt

ε2 dω .

We change variables ω = ω0 + ε2h and we expand βj(ω0 + ε2h) with respect
to ε:

pε
tr(t,x, L) =

1

4π

∫ N∑

j,l=1

√
βl√
βj

φj(x)φl(x0)f̂(h)T ε
jl(ω0 + ε2h)

×ei
βj(ω0)L−ω0t

ε2 ei[β′
j(ω0)L−t]h dh .
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As before in this chapter, we do not show the dependence of N on ω0 after
we approximate N(ω0 + ε2h) by N(ω0).

20.8.1 Narrowband Pulse Propagation in a Homogeneous
Waveguide

In a homogeneous waveguide we have that T ε
jl = δjl and

pε
tr (t,x, L) =

1

4π

∫ N∑

j=1

φj(x)φj(x0)f̂(h)ei
βj(ω0)L−ω0t

ε2 ei[β′
j(ω0)L−t]h dh

=
1

2

N∑

j=1

φj(x)φj(x0)e
i

βj(ω0)L−ω0t

ε2 f
(
t− β′

j(ω0)L
)

.

The transmitted field is therefore a superposition of modes, each of which is
centered at its travel time β′

j(ω)L. The modal dispersion makes the overall
spreading of the transmitted field linearly increasing with L.

20.8.2 The Mean Field in a Random Waveguide

The mean transmitted field is calculated using Proposition 20.2 with the spe-
cial initial conditions âj(0) = δjl. We express the result in the form of a new
proposition.

Proposition 20.8. The mean transmission coefficients E[T ε
jl(ω, L)] converge

to zero as ε→ 0 if j = l and to T̄j(ω, L) if j = l, where (T̄j(ω, L))j=1,...,N(ω)

is given by

T̄j(ω, L) = exp

(
Γ

(c)
jj (ω)L

2
−

Γ
(1)
jj (ω)L

2
+

iΓ
(s)
jj (ω)L

2
+ iκj(ω)L

)
. (20.105)

In the asymptotic regime ε→ 0, the mean transmitted field is given by

E[pε
tr (t,x, L)] =

1

4π

∫ N∑

j=1

φj(x)φj(x0)f̂(h)T̄j(ω0, L)ei
βj(ω0)L−ω0t

ε2

×ei[β′
j(ω0)L−t]h dh

=
1

2

N∑

j=1

φj(x)φj(x0)T̄j(ω0, L)ei
βj(ω0)L−ω0t

ε2 f
(
t− β′

j(ω0)L
)

.

The mean field is still a superposition of modes, but they are exponentially
damped and vanish for L large, L > Lequip(ω0). Therefore, the mean field
vanishes for large L. We now turn our attention to the mean intensity, which
accounts for the conversion of the coherent field into incoherent wave fluctu-
ations.
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20.8.3 The Mean Intensity in a Random Waveguide

We express the transmitted intensity as the expectation of a double integral

E

[
|pε

tr(t,x, L)|2
]

=
1

16π2

N∑

j,l=1

N∑

m,n=1

√
βlβn√
βjβm

φj(x)φl(x0)φm(x)φn(x0)

×ei
[βj(ω0)−βm(ω0)]L

ε2

∫ ∫
f̂ (h) f̂ (h′)E[T ε

jl(ω0 + ε2h)T ε
mn(ω0 + ε2h′)]

×ei[β′
j(ω0)L−t]h−[β′

m(ω0)L−t]h′
dh dh′ .

Using Proposition 20.7 we see that there are two contributions to this integral:

E

[
|pε

tr(t,x, L)|2
]

= Iε
1(t,x, L) + Iε

2 (t,x, L) , (20.106)

where

Iε
1(t,x, L)

ε→0∼ 1

16π2

N∑

j �=m=1

φj(x)φj(x0)φm(x)φm(x0)e
i
[βj(ω0)−βm(ω0)]L

ε2

×
∫ ∫

f̂ (h) f̂ (h′)eQjm(ω0)Lei[β′
j(ω0)L−t]h−i[β′

m(ω0)L−t]h′
dh dh′ ,

Iε
2(t,x, L)

ε→0∼ 1

16π2

N∑

j,l=1

βl

βj
φ2

j(x)φ2
l (x0)

×
∫ ∫

f̂ (h) f̂ (h′)

∫
W(l)

j (ω0, τ, L)ei(h−h′)τ dτ ei(h′−h)t dh dh′ .

The limit of the first contribution is

Iε
1 (t,x, L)

ε→0∼ 1

4

N∑

j �=m=1

φj(x)φj(x0)φm(x)φm(x0)e
i
[βj(ω0)−βm(ω0)]L

ε2

×eQjm(ω0)Lf(t− β′
j(ω0)L)f(t− β′

m(ω0)L) . (20.107)

We see that it decays exponentially with the propagation distance because of
the damping factors exp(Qjm(ω0)L). We can therefore neglect this contribu-
tion for L≫ Lequip(ω0).

The limit of the second contribution is

Iε
2 (t,x, L)

ε→0∼ 1

4

N∑

j,l=1

βl

βj
φ2

j (x)φ2
l (x0)

∫
W(l)

j (ω0, τ, L)f(t− τ)2 dτ .

The measures W(l)
j (ω0, τ, L) admit densities for j = l, but the measure

W(l)
l (ω0, τ, L) also possesses a Dirac mass with weight exp(Γ

(c)
ll L) at τ =

β′
j(ω)L. As a result, we can write



590 20 Propagation in Random Waveguides

lim
ε→0

Iε
2 (t,x, L) =

1

4

N∑

l=1

φ2
l (x)φ2

l (x0) exp(Γ
(c)
ll (ω0)L)f(t− β′

l(ω0)L)2

+
1

4

N∑

j,l=1

βl

βj
φ2

j(x)φ2
l (x0)

∫
W(l)

j,c(ω0, τ, L)f(t− τ)2 dτ . (20.108)

The first sum is exponentially decaying for large L because of the damping
factor. The second term is the main contribution. In the asymptotic equipar-
tition regime L≫ Lequip(ω0) we use the diffusion approximation (20.93). We
conclude that

lim
ε→0

E

[
|pε

tr (t,x, L)|2
]

L≫Lequip∼ Hω0,x0(x) × [Kω0 ∗ (f2)](t) , (20.109)

where Hω0,x0 and Kω0 are given by (20.98–20.99).
Summary. The main results of this section are:

• The mean field decays exponentially with propagation distance.
• The mean transmitted intensity converges to a stationary transverse spa-

tial profile Hω0,x0 .

• The mean transmitted intensity is concentrated around the time β̂′(ω0)L
with a spread that is of order σβ′(ω0)

√
L ∼

√
LLequip(ω0)/c̄ for a pulse

with carrier frequency ω0. Note that σβ′(ω0)

√
L≪ L/c̄, which means that

the time spread increases as
√

L in a random waveguide, while it increases
linearly in a homogeneous one. This is because the modes are strongly
coupled together and propagate with the same “average” group velocity

1/β̂′(ω0) in the random waveguide. The “average” group velocity is actu-
ally the harmonic average of the group velocities of the modes 1/β′

j(ω0).

20.9 Time Reversal for a Narrowband Pulse

We consider the time-reversal setup of Section 20.5, but we now consider
narrowband pulses of the form (20.104). We observe the refocused field at
time tobs/ε2:

pref(TR)

(
tobs

ε2
,x, 0

)
=

1

4πε2

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

∫
f̂

(
ω − ω0

ε2

)

×T ε
jl(ω)T ε

mn(ω)ei[βm(ω)−βj(ω)] L
ε2 +iω

t1−tobs
ε2 dω .

We make the change of variable ω = ω0 + ε2h,

pref(TR)

(
tobs

ε2
,x, 0

)
=

1

4π

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

∫
f̂ (h)

×T ε
jl(ω0 + ε2h)T ε

mn(ω0 + ε2h)ei[βm−βj ](ω0+ε2h) L
ε2 +iω0

t1−tobs
ε2 +ih(t1−tobs) dh ,
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and expand βj(ω0 + ε2h) with respect to ε,

pref(TR)

(
tobs

ε2
,x, 0

)
=

1

4π

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj ](ω0)
L
ε2 +iω0

t1−tobs
ε2

×
∫

f̂ (h)T ε
jl(ω0 + ε2h)T ε

mn(ω0 + ε2h)ei{[β′
m−β′

j](ω0)L+(t1−tobs)}h dh .

20.9.1 Refocusing in a Homogeneous Waveguide

In the homogeneous case, T ε
jl = δjl and the refocused field is

pref(TR)

(
tobs

ε2
,x, 0

)
=

1

2
eiω0

t1−tobs
ε2

N∑

j,m=1

ei[βm−βj ](ω0)
L
ε2

×Mmjφm(x)φj(x0)f
(
[β′

m − β′
j ](ω0)L + t1 − tobs

)
.

The refocused field is a weighted sum of modes. The weights depend on the
size of the mirror through the coefficients Mmj.

20.9.2 The Mean Refocused Field in a Random Waveguide

The statistical stability that we have in the broadband case, discussed in
Section 20.5.4, does not carry over to the narrowband case. This is because the
decoherence frequency, which is of order ε2, is comparable to the bandwidth,
which is also of order ε2 in the narrowband case. We compute first the mean
refocused field and consider the statistical stability thereafter.

The mean refocused field is

E

[
pref(TR)

(
tobs

ε2
,x, 0

)]
=

1

2

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj ](ω0)
L
ε2 +iω0

t1−tobs
ε2 E[T ε

jl(ω0)T
ε
mn(ω0)]f

(
[β′

m − β′
j ](ω0)L + t1 − tobs

)
.

From Proposition 20.7 we have the limit values of the expectations of products
of two transmission coefficients, so we can write

E

[
pref(TR)

(
tobs

ε2
,x, 0

)]
= pε

1 + pε
2 ,

pε
1

ε→0∼ 1

2

N∑

j �=m=1

Mmjφm(x)φj(x0)e
i[βm−βj ](ω0)

L
ε2 +iω0

t1−tobs
ε2

×eQjm(ω0)Lf
(
[β′

m − β′
j ](ω0)L + t1 − tobs

)
,

pε
2

ε→0∼ 1

2
eiω0

t1−tobs
ε2 f (t1 − tobs)

N∑

j,l=1

Mjjφl(x)φl(x0)T (l)
j (ω0, L) .
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The term pε
1 decays exponentially with propagation distance because of the

damping factors coming from Qjm. We can therefore neglect this term in the
asymptotic equipartition regime. The term pε

2 does contribute. It refocuses
around the time tobs = t1 with the original pulse shape, time-reversed. The
spatial focusing profile is a weighted sum of modes, with weights that depend
on the size of the time-reversal mirror through the coefficients Mjl and on the

mean square transmission coefficients T (l)
j .

In the asymptotic equipartition regime L ≫ Lequip, the coefficients

T (l)
j (ω0, L) converge to 1/N for all j and l, which gives for the mean refo-

cused field

lim
ε→0

E

[
pref(TR)

(
tobs

ε2
,x, 0

)]
L≫Lequip∼ eiω0

t1−tobs
ε2 f (t1 − tobs)

× 1

N(ω0)

N(ω0)∑

j=1

Mjj ×
1

2

N(ω0)∑

l=1

φl(x)φl(x0) . (20.110)

The spatial refocusing profile can then be computed explicitly because it does
not depend on the mirror shape or size. In the case of a planar waveguide, we
have φj(x) =

√
2/d sin(πjx/d), βj =

√
ω2/c2 − π2j2/d2, and in the contin-

uum limit N ≫ 1 we have

1

2

N∑

l=1

φl(x)φl(x0)
N≫1∼ 1

λ0
sinc

(
2π

x− x0

λ0

)
.

The mean refocused pulse is therefore concentrated around the original source
location x0 with a resolution of half a wavelength, which is the diffraction limit.

20.9.3 Statistical Stability of the Refocused Field

As we noted already, we cannot claim that the refocused field is statistically
stable by using the same argument as in the broadband case, in Section 20.5.4,
because here we have a narrowband pulse. However, we can achieve statistical
stability through the summation over the modes. We will show this result in
the quasimonochromatic case in which the pulse envelope is f(t) = 1 and

f̂(h) = 2πδ(h). In this case, it is clear that statistical stability cannot arise
from time averaging, and the refocused field is

pref(TR)

(
tobs

ε2
,x, 0

)
=

1

2

N∑

j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj](ω0)
L
ε2 +iω0

t1−tobs
ε2 T ε

jl(ω0)T
ε
mn(ω0) .

From (20.110), the mean refocused pulse at x = x0 is in the asymptotic
equipartition regime
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lim
ε→0

E

[
pref(TR)

(
tobs

ε2
,x0, 0

)]
L≫Lequip∼ eiω0

t1−tobs
ε2

1

N

N∑

j=1

Mjj ×
1

2

N∑

l=1

φ2
l (x0) .

(20.111)
We now compute the second moment of the refocused field observed at

x = x0:

E

[∣∣∣∣pref(TR)

(
tobs

ε2
,x0, 0

)∣∣∣∣
2
]

=
1

4

N∑

j,m,j′,m′=1

√
βlβmβl′βm′√
βjβnβj′βn′

MmjMm′j′

×φl(x0)φn(x0)φl′ (x0)φn′(x0)e
i[βm−βj+βm′−βj′ ](ω0)

L
ε2 E[T ε

jlT
ε
mnT ε

j′l′T
ε
m′n′ ] .

Using the results of Section 20.3.4 regarding fourth-order moments of the
transfer matrix, we have

lim
ε→0

E[T ε
jlT

ε
mnT ε

j′l′T
ε
m′n′ ]

L≫Lequip∼

⎧
⎪⎪⎨
⎪⎪⎩

2
N(N+1) if (j, l) = (m, n) = (j′, l′) = (m′, n′) ,

1
N(N+1) if (j, l) = (m, n) = (j′, l′) = (m′, n′) ,

1
N(N+1) if (j, l) = (m′, n′) = (j′, l′) = (m, n) ,

0 otherwise .

Using these fourth-order moment results in the expression for the second mo-
ment of the refocused field, we see that in the limit ε→ 0 and in the asymptotic
equipartition regime L≫ Lequip,

lim
ε→0

E

[∣∣∣∣pref(TR)

(
tobs

ε2
,x0, 0

)∣∣∣∣
2
]

L≫Lequip∼ R4
0

4N(N + 1)

⎡
⎣2

∑

j

M2
jj +

∑

j �=j′

MjjMj′j′ +
∑

j �=j′

M2
jj′

⎤
⎦

L≫Lequip∼ R4
0

4N(N + 1)

⎡
⎢⎣

⎛
⎝∑

j

Mjj

⎞
⎠

2

+
∑

j,j′

M2
jj′

⎤
⎥⎦ ,

where R2
0 =

∑N
l=1 φ2

l (x0). Let us introduce the relative standard deviation S
of the refocused field amplitude

S2 := lim
ε→0

E

[∣∣pref(TR)

(
tobs

ε2 ,x0, 0
)∣∣2

]
−

∣∣E
[
pref(TR)

(
tobs

ε2 ,x0, 0
)]∣∣2

∣∣E
[
pref(TR)

(
tobs

ε2 ,x0, 0
)]∣∣2 .

We have statistical stability when S is small. From (20.111) and the definition
of R0 we have

lim
ε→0

∣∣∣∣E
[
pref(TR)

(
tobs

ε2
,x0, 0

)]∣∣∣∣
L≫Lequip∼ R2

0

2N

N∑

j=1

Mjj .
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We can therefore write S2 in the asymptotic equipartition regime as

S2 L≫Lequip∼ − 1

N + 1
+

N

N + 1

1

Qmirror
, (20.112)

where the quality factor Qmirror is defined by

Qmirror =

∑
j,l MjjMll∑

j,l M
2
jl

.

This quality factor depends only on the time-reversal mirror. We will have
statistical stability when the number of modes N is large and when the quality
factor Qmirror is large. We can consider two extreme cases:

• If the time-reversal mirror spans the waveguide cross-section, then Mjl =
δjl and the quality factor is equal to N , which is optimal since the relative
standard deviation is then zero for any N . This result is not surprising
since the time-reversal mirror records the transmitted signal fully, in both
time and space, which implies optimal refocusing.

• If the time-reversal mirror is pointlike at x1, then Mjl = φj(x1)φl(x1)
and the quality factor is 1, which is bad, because the relative standard
deviation S is asymptotically equal to

√
N − 1/

√
N + 1. The fluctuations

of the refocused field are therefore of the same order as the mean field,
which means that there is no statistical stability.

In the next section, we address some particular cases where explicit calcula-
tions are possible.

20.9.4 Numerical Illustration of Spatial Focusing and Statistical
Stability in Narrowband Time Reversal

We consider very narrowband quasimonochromatic pulses and compare the
transverse profiles of the refocused fields for a homogeneous waveguide and
for a random waveguide in the equipartition regime. We consider the planar
waveguide where the modes are given by φj(x) =

√
2/d sin(πjx/d) and the

modal wave numbers by βj =
√

ω2/c2 − π2j2/d2. We also assume that λ0 ≫
d, so that the number of propagating modes is large.

Homogeneous Waveguide

In the homogeneous case of Section 20.9.1, the spatial profile of the refocused
field is

|pref(TR) (x) | = 1

2

∣∣∣∣∣∣

N∑

j,m=1

ei[βm−βj ](ω0)
L
ε2 Mmjφm(x)φj(x0)

∣∣∣∣∣∣
.

For a time-reversal mirror that spans the width of the waveguide this expres-
sion becomes, in the continuum limit N ≫ 1, the sinc profile
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|pref(TR) (x) | = 1

λ0

∣∣∣∣sinc

(
2π(x− x0)

λ0

)∣∣∣∣ .

Let us consider a time-reversal mirror of size a located in x ∈ [d/2−a/2, d/2+
a/2]: G2(x) = 1[d/2−a/2,d/2+a/2](x). We then have

Mjl =
a

d

[
cos

(
(j − l)π

2

)
sinc

(
(j − l)πa

2d

)

− cos

(
(j + l)π

2

)
sinc

(
(j + l)πa

2d

)]
.

Using these formulas we plot in Figure 20.2 the spatial profile of the refocused
field for different sizes a of the time-reversal mirror. The peak at the original
source location is there in all cases, but for smaller time-reversal mirrors, large
side lobes appear.

Random Waveguide

For a random waveguide in the equipartition regime L ≫ Lequip, the mean
spatial profile of the refocused field is, as in Section 20.9.2,

∣∣E[pref(TR)(x)]
∣∣ =

1

N

N∑

j=1

Mjj ×
1

2

N∑

l=1

φl(x0)φl(x) .

In the continuum limit N ≫ 1 we obtain the diffraction-limited sinc profile

∣∣E[pref(TR)(x)]
∣∣ N≫1∼ 1

N

N∑

j=1

Mjj ×
1

λ0
sinc

(
2π(x− x0)

λ0

)
.

The mean spatial profile is, up to an amplitude factor, independent of the
mirror size. However, the statistical statistical stability of the refocused field
depends, in the narrowband case, on the size of the time-reversal mirror as
shown in Figure 20.3, which is a plot of S in (20.112) for different sizes of the
time-reversal mirror.

Notes

This chapter is devoted to the analysis of wave propagation in waveguides
with random inhomogeneities in a regime in which there is significant mode
coupling between a finite number of propagating modes. The statistical anal-
ysis of the coupled mode equations at a single frequency leads to the coupled
power equations for the second moments of the mode amplitudes that were
previously derived in ocean acoustics [105, 48] and used in fiber optics [121].
A recent treatment of propagation in random waveguides and mostly elec-
tromagnetic applications is [150]. The system of transport equations for the
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Fig. 20.2. Transverse profile of the refocused pulse in a homogeneous waveguide
with diameter d. Here d = 20 and λ0 = 1, so there are 40 modes. The original pulse
location is x0 = d/2. The dotted curve is the sinc profile, which is the focusing profile
of a full-size time-reversal mirror. It is also the mean refocusing profile for a random
waveguide, in the equipartition regime and for any size of time-reversal mirror. The
solid curves are the refocusing profiles for time-reversal mirrors of different sizes a.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

a

S

Fig. 20.3. The relative standard deviation S, from (20.112), of the refocused field
as a function of the mirror size a. Here d = 20 and λ0 = 1.
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two-frequency autocorrelation function of the transfer matrix is derived from
first principles here for the first time. The application of the transport equa-
tions to pulse propagation and time reversal is also new in this chapter.

A pulse propagating in a random waveguide acquires characteristic features
that do not depend on the detailed statistics of the random perturbations. In
the regime in which the transmitted field has lost memory of its original
modal distribution because of strong mode coupling, the group velocity of
the pulse becomes the harmonic average of the modal group velocities. In
this regime, pulse spreading becomes proportional to the square root of the
distance from the source, and not proportional to the distance, as it would
be in a homogeneous waveguide. This effect has been known for more than
thirty years [142], but we give here a complete and systematic presentation.
The main mathematical tool for this is the two-frequency analysis of the mode
transfer matrix.

Time reversal in waveguides is an important problem in many applications,
in underwater acoustics and elsewhere, and several experiments have been
carried out in media that can be modeled as randomly perturbed waveguides
[113, 148]. Here we look carefully at the roles of the source bandwidth, the
carrier frequency, which determines the number of propagating modes, and
the size of the time-reversal mirror in the statistical stability of the refocused
fields.

This chapter can be viewed as a transition from the main topic of this book,
one-dimensional wave propagation or three-dimensional wave propagation in
randomly layered media, to the general problem of wave propagation in three-
dimensional random media. The general research area of waves in random
media is huge, with dedicated journals and specialized literature. Indeed, in
this chapter, we have considered waveguides with general three-dimensional
random inhomogeneities, with a finite number of propagating modes. When
the waveguide is very wide and the number of modes goes to infinity, then wave
propagation in a random waveguide in the forward-scattering approximation
tends to wave propagation in a general three-dimensional random medium in
the paraxial regime [91, 16, 10]. Multimode propagation in random waveguides
without the forward-scattering approximation [26] can be analyzed to some
extent by the methods of this chapter. More generally, it can be analyzed in
regimes other than the ones considered here, with applications in many areas
of modern physics [12].
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59. J.-P. Fouque, J. Garnier, J. C. Muñoz Grajales, and A. Nachbin, Time reversing
solitary waves, Phys. Rev. Lett. 92 (2004), 094502.

60. J.-P. Fouque, J. Garnier, and A. Nachbin, Time reversal for dispersive waves in
random media, SIAM J. Appl. Math. 64 (2004), 1810–1838.

61. J.-P. Fouque, J. Garnier, and A. Nachbin, Shock structure due to stochas-
tic forcing and the time reversal of nonlinear waves, Physica D 195 (2004),
324–346.

62. J.-P. Fouque, J. Garnier, A. Nachbin, and K. Sølna, Time reversal refocusing
for point source in randomly layered media, Wave Motion 42 (2005), 238–260.

63. J.-P. Fouque, J. Garnier, A. Nachbin, and K. Sølna, Imaging of a dissipative
layer in a random medium using a time-reversal method, Proceedings of the



602 References

Conference MC2QMC 2004, H. Niederreiter and D. Talay, eds., Springer, Berlin,
2006, pp. 127–145.

64. J. P. Fouque and E. Merzbach, A limit theorem for linear boundary value prob-
lems in random media, Ann. Appl. Probab. 4 (1994), 549–569.

65. J.-P. Fouque and A. Nachbin, Time-reversed refocusing of surface water waves,
SIAM Multiscale Model. Simul. 1 (2003), 609–629.

66. J.-P. Fouque and O. Poliannikov, Time reversal detection in one-dimensional
random media, Inverse Problems 22 (2006), 903–922.

67. J.-P. Fouque and K. Sølna, Time-reversal aperture enhancement, SIAM Multi-
scale Model. Simul. 1 (2003), 239–259.

68. A. Friedman, Partial Differential Equations of Parabolic Type, Prenctice Hall,
Englewood Cliffs, 1964.

69. H. Frisch and S. P. Lloyd, Electron levels in a one-dimensional random lattice,
Phys. Rev. 120 (1960), 1175–1189.
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Index

antireflection layer, 43
aperture

cone, 411
effective, 421
numerical, 411

autocorrelation function
generalized reflection and transmis-

sion coefficients, 426
random process, 93, 134
reflected wave, 267
reflection coefficient, 255, 381, 485
transmission coefficient, 272, 424, 579
transmitted wave, 279, 585

averaging, 86, 135

bandwidth, 344
Born approximation, 436
Bose–Einstein condensates, 530
boundary conditions, 37, 548
Bragg mirror, 54
Brownian motion, 103, 110
bulk modulus, 10, 33, 366

central limit theorem, 102
characteristics

constant, 73
frequency-dependent, 496
lines, 75
local, 72

coda, 230, 333
communications, 343, 528
cone

geometrical, 420
temporal, 420

conservation equations, 9
correlation length, 93
cross-correlation, 298

d’Alembert’s formula, 12
density, 10, 33, 366, 472
detection, 305
differential equations

random, 85
stochastic, 120, 152

diffraction limit, 575
diffusion

approximation, 104, 122
process, 104, 153
scaling, 102

ellipticity, 128
strong, 145

energy
energy conservation relation, 39, 81,

178, 373, 554
energy density, 21
equipartition of, 565
transmission of, 175, 190, 278

equation of state, 10
ergodicity, 115
Euler equations, 30

Feynman–Kac formula, 155
filter

high-pass, 290
low-pass, 338
mid-band, 337



610 Index

finite-dimensional distributions,
286, 375

forward-scattering approximation, 561
Fourier transform

one-dimensional, 22, 41, 76, 99, 520
three-dimensional, 27, 369, 488

Fredholm alternative, 124
frequency, 22, 41

Gauss–Green theorem, 29
Goupillaud medium, 57
grass, 350
Green’s function, 19, 22, 154
Gross–Pitaevskii equation, 530
group velocity, 498, 521, 567

homogenization, 65, 82, 366
Huygens’s principle, 20

impedance, 34, 370
impulse response, 45, 344
infinitesimal generator, 111
integrated autocorrelation, 134, 200
intensity, 266, 277, 385, 486, 584
intersymbol interference, 344
inverse problem, 472
inverse scattering transform, 532
Itô’s formula, 150

Jost functions, 533
jump process, 258, 383, 582

Kirchhoff’s formula, 16
Kolmogorov

backward equation, 113
criterion for tightness, 131
forward equation, 114

law of large numbers, 82
localization length

for the Schrödinger model, 523
in the strongly heterogeneous regime,

200, 383
in the weakly heterogeneous regime,

198, 498
low probability of intercept, 363
Lyapunov exponent, 161, 202

Markov process, 110
martingale

convergence, 129
problem, 112
property, 112
quadratic variation, 112, 172
representation of the transmission

coefficient, 183, 234
medium

background, 466
changing, 510
dispersive, 492, 531
dissipative, 313
effective, 69, 88
fluctuations, 92
homogeneous, 34
homogenized, 69, 366
matched, 81
non-matched, 457
nonlinear, 499, 531
periodic, 63
piecewise-constant, 62
random, 65, 368, 551

Mehler–Fock transform, 210
mirror

standard, 290
time reversal, 284, 290

modulus of continuity, 288
Monte Carlo simulations, 309

nonlinear Schrödinger equation, 529
nonlinear waves, 499, 519

offset, 417
optical fibers, 529
Ornstein–Uhlenbeck process, 120

perturbed-test-function method,
124, 429

plane-wave modes, 369
Poisson

equation, 124
process, 117
summation formula, 345

power spectral density, 128, 135, 179,
268, 291, 490

power transmission coefficient, 178
pressure, 10, 33, 366
propagator

formulation, 50, 314
interface propagator, 39
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multifrequency propagator, 230
propagator matrix, 42, 77, 100, 180,

373, 474, 558
two-frequency propagator, 193

pulse
calibration, 302
Nyquist, 344
refocused, 286, 317, 331, 499, 515
shape, 94
spreading, 230, 508
transmission of, 190
width, 94

quality factor, 594

radiation condition, 23, 37, 554
random harmonic oscillator, 201
reflection and transmission coefficients

adjoint, 47, 242, 330, 399
estimates, 81, 428
for a heterogeneous slab, 79, 81
for a layer, 42
for a multilayer slab, 52
for a nonmatched random

medium, 459
for a one-dimensional random

medium, 102, 177
for a random waveguide, 559
for a three-dimensional randomly

layered medium, 373
for an interface, 39
generalized, 398
local, 52, 79
shift properties, 425

reflector
interface, 36
weak, 306

refocusing
density, 289, 308
kernel, 288, 335, 415, 452
measure, 335

regime
homogenization, 97, 366
strongly heterogeneous white-noise,

97, 225, 368
weakly heterogeneous, 97, 216,

487, 552
relative compactness, see tightness
retarded-potential formula, 19

Riccati equation, 79, 252, 308, 382
Riemann invariants, 501

scales, 69
scatterer, 435
scattering

matrix, 47
multilayer, 48
periodic medium, 63
random medium, 65, 68
single interface, 36
single layer, 39

scattering data, 535
Schrödinger equation, 520, 532
self-averaging

refocused pulse, 289, 335, 578, 592
signal-to-interference ratio, 356
transmitted energy, 192

semigroup, 110
signal-to-interference ratio, 345
signal-to-noise ratio, 294
sinc function, 296, 575
slowness vector, 28, 366
soliton, 535
source, 10, 36, 368, 394, 550
speed of sound, 10, 34, 370
stationary phase, 389

degenerate, 390
map, 407

stationary-phase
point, 376

statistical stability, see self-averaging
stochastic integral

Itô, 147
Stratonovich, 158

superresolution, 393, 451

tapping, 344
tightness, 131, 236, 288
time reversal

echo-mode, 435
experiment, 282, 329, 401, 510
in reflection, 283, 498
in transmission, 327, 509
in waveguides, 571
mirror, 284, 290, 401
refocusing, 285, 334, 414, 452,

577, 594
transfer function, 344



612 Index

transport equations
probabilistic representation, 258, 274,

383, 582
reflection coefficient, 257, 384,

490, 497
stochastic, 513
transfer matrix, 579
transmission coefficient, 273

travel time, 219, 236, 380

unitary matrix, 48, 562

velocity, 10, 33, 366
viscosity, 499

wave equations
acoustic wave equations, 10, 33, 366
Boussinesq equation, 493
Burgers equation, 509, 531
Helmholtz equation, 22
Korteweg–de Vries equation, 544
nonlinear Schrödinger equation, 529
one-dimensional, 12
shallow-water equations, 500

three-dimensional, 14

wave front
coherent, 220, 228

energy of, 229
stable, 217, 328, 350, 378, 491, 569

wave localization, 186, 536
wave number, 22, 96

dispersion relation, 494
modal, 548

waveguide, 547
waves

coherent, 352
incoherent, 249, 351, 352, 385, 584

monochromatic, 22
plane, 23

propagating and evanescent, 26,
368, 548

reflected and transmitted, 40, 50, 53,
75, 101, 374, 380

right- and left-going, 35, 98, 371,
494, 553

spherical, 24

Weyl’s formula, 25


