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Preface 

This book, which deals with vibration in continuous media, originated from the 
material of lectures given to engineering students of the National Institute of 
Applied Sciences in Lyon and to students preparing for their Master’s degree in 
acoustics. 

 
The book is addressed to students of mechanical and acoustic formations 

(engineering students or academics), PhD students and engineers wanting to 
specialize in the area of dynamic vibrations and, more specifically, towards medium 
and high frequency problems that are of interest in structural acoustics. Thus, the 
modal expansion technique used for solving medium frequency problems and the 
wave decomposition approach that provide solutions at high frequency are 
presented. 

 
The aim of this work is to facilitate the comprehension of the physical 

phenomena and prediction methods; moreover, it offers a synthesis of the reference 
results on the vibrations of beams and plates. We are going to develop three aspects: 
the derivation of simplified models like beams and plates, the description of the 
phenomena and the calculation methods for solving vibration problems. An 
important aim of the book is to help the reader understand the limits hidden behind 
every simplified model. In order to do that, we propose simple examples comparing 
different simplified models of the same physical problem (for example, in the study 
of the transverse vibrations of beams). 

  
The first few chapters are devoted to the general presentation of continuous 

media vibration and energy method for building simplified models. The vibrations 
of continuous three-dimensional media are presented in Chapter 1 and the equations 
which describe their behavior are established thanks to the conservation laws which 
govern the mechanical media. Chapter 2 presents the problem in terms of variational 
formulation. This approach is fundamental in order to obtain, in a systematic way, 
the equations of the simplified models (also called condensed media), such as 
beams, plates or shells. These simplified continuous media are often sufficient 
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models to describe the vibrational behavior of the objects encountered in practice. 
However, their importance is also linked to the richness of the information which is 
accessible thanks to the analytical solutions of the equations which characterize 
them. Nevertheless, since these models are obtained through a priori restriction of 
possible three-dimensional movements and stresses, it is necessary to master the 
underlying hypothesis well, in order to use them advisedly. The aim of Chapters 3 
and 4 is to provide these hypotheses in the case of beams and plates. The derivation 
of equations is done thanks to the variational formulations based on Reissner and 
Hamilton’s functionals. The latter is the one which is traditionally used, but we have 
largely employed the former, as the limits of the simplified models obtained in this 
way are established more easily. This approach is given comprehensive coverage in 
this book, unlike others books on vibrations, which dedicate very little space to the 
establishment of simplified models of elastic solids. 

 
Chapters 5, 6 and 7 deal with the different aspects of the behavior of beams and 

plates in free vibrations. The vibrations modes and the modal decomposition of the 
response to initial conditions are described, together with the wave approach and the 
definition of image source linked to the reflections on the limits. We must also insist 
on the influence of the “secondary effects”, such as shearing, in the problems of 
bending plates. From a general point of view, the discussion of the phenomena is 
done on two levels: that of the mechanic in terms of modes and that of the 
acoustician in terms of wave’s propagation. The notions of phase speed and group 
velocity will also be exposed. 

 
We will provide the main analytical results of the vibrations modes of the beams 

and rectangular or circular plates. For the rectangular plates, even quite simple 
boundary conditions often do not allow analytical calculations. In this case, we will 
describe the edge effect method which gives a good approximation for high order 
modes. 

 
Chapter 8 is dedicated to the introduction of damping. We are going to show that 

the localized source of damping results in the notion of complex modes and in a 
difficulty of resolution which is much greater than the one encountered in the case of 
distributed damping, where the traditional notion of vibrations modes still remains. 

 
The calculation of the forced vibratory response is at the center of two chapters. 

We will start by discussing the modal decomposition of the response (Chapter 9), 
where we are going to introduce the classical notions of generalized mass, stiffness 
and force. Then we will continue with the decomposition in forced waves (Chapter 
10) which offers an alternative to the previous method and is very effective for the 
resolution of beam problems. 

 
For the modal decomposition, the response calculations are conducted in the 

frequency domain and time domain. The same instances are treated in a manner 
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which aims to highlight the specificities of these two calculation techniques. Finally 

we will study the convergence of modal series and the way to accelerate it.  

 

In the case of forced wave decomposition, we will show how to treat the case of 

distributed and non-harmonic excitations, starting from the solution for a localized, 

harmonic excitation. This will lead us to the notion of integral equation and its key 

idea: using the solution of a simple case to treat a complicated one. 

 

Chapters 11 and 12 deal with the problem of approximating the solutions of 

vibration problems, using the Rayleigh-Ritz method. This method employs directly 

the variational equations of the problems. The classical approach, based on 

Hamilton’s functional, is used and the convergence of the solutions studied is 

illustrated through some examples. The Rayleigh-Ritz quotient – which stems 

directly from this approach – is also introduced. 

 

A second approach is proposed, based on the Reissner’s functional. This is a 

method which has not been at the center of accounts in books on vibrations; 

however, it presents certain advantages, which will be discussed in some examples. 
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Chapter 1 

Vibrations of Continuous Elastic Solid Media 

1.1. Objective of the chapter 

This work is addressed to students with a certain grasp of continuous media 

mechanics, in particular, of the theory of elasticity. Nevertheless, it seems useful to 

recall in this chapter the essential points of these domains and to emphasize in 

particular the most interesting aspects in relation to the discussion that follows. 

After a brief description of the movements of the continuous media, the laws of 

conservation of mass, momentum and energy are given in integral and differential 

form. We are thus led to the basic relations describing the movements of continuous 

media. 

The case of small movements of continuous elastic solid media around a point of 

static stable equilibrium is then considered; we will obtain, by linearization, the 

equations of vibrations of elastic solids which will be of interest to us in the 

continuation of this work. 

At the end of the chapter, a brief exposition of the equations of linear vibrations 

of viscoelastic solids is outlined. The equations in the temporal domain are given as 

well as those in the frequency domain, which are obtained by Fourier 

transformation. We then note a formal analogy of elastic solids equations with those 

of the viscoelastic solids, known as principle of correspondence. 

Generally, the presentation of these reminders will be brief; the reader will find 

more detailed presentations in the references provided at the end of the book. 
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1.2. Equations of motion and boundary conditions of continuous media 

1.2.1. Description of the movement of continuous media  

To observe the movement of the continuous medium, we introduce a Galilean 

reference mark, defined by an origin O and an orthonormal base 1 2 3e  , e  , e .
f f f

 In this 

reference frame, a point M, at a fixed moment T, has the co-ordinates 1 2 3(x  , x  , x ).  

The Euler description of movement is carried out on the basis of the four 

variables 1 2 3(x  , x  , x  , t);  the Euler unknowns are the three components of the speed 

U
f

 of the particle which is at the point M at the moment t. 

)t, x, x, (x UU 321i=
f

 [1.1] 

Derivation with respect to time of quantities expressed with Euler variables is 

particular; it must take into account the variation with time of the co-ordinates ix  of 

the point M. 
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Figure 1.1. Location of the continuous medium 
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For example, for each acceleration component iけ  of the particle located at the 

point M, we obtain by using the chain rule of derivation: 

3
ji i i

i

j 1 j

xdU U U

dt t tx=

∂∂ ∂
γ = = +

∂ ∂∂∑ , 

and noting that: 

t

x
U

j
j ∂

∂
= , 

we obtain the expression of the acceleration as the total derivative of the velocity: 

3
i i i

i j

j 1 j

dU U U
U

dt t x=

∂ ∂
γ = = +

∂ ∂∑ ; 

or in index notation: 

i i
i i, j j

dU U
U U

dt t

∂
γ = = +

∂
. [1.2] 

In the continuation of this work we shall make constant use of the index notation, 

which provides the results in a compact form. We shall briefly point out the 

equivalences in the traditional notation: 

– partial derivation is noted by a comma: 

ji,
j

i U
x

U
=

∂

∂
; 

– an index repeated in a monomial indicates a summation: 

jji,j

3

1j
ji,  UU U U =∑

=
. 

The Lagrangian description is an alternative to the Euler description of the 

movement of continuous media. It consists of introducing Lagrange variables 



20     Vibration in Continuous Media 

)t, a, a, a( 321 , where )a, a, a( 321  are the co-ordinates of the point where the 

particle is located at the moment of reference t0. The Lagrange unknowns are the co-

ordinates xi of the point M where the particle is located at the moment t: 

t), a, a, (a x 321ii φ= . [1.3] 

 

 

x3 

a3 

x1a1 

M(t) 

a2 

x2 

2

1

3 

M(t0)

 

Figure 1.2. Initial ai and instantaneous xi co-ordinates  

ja  being independent of time, the speed or the acceleration of the particle M 

with co-ordinates xi is deduced from it by partial derivation: 

t), (a 
t

t), (a     け          t), (a
t

t), (a U ji2

2

jij
i

ji φ
∂

∂
=

∂

φ∂
= . [1.4] 

The Lagrangian description is direct: it identifies the particle; the Euler 

description is indirect: it uses variables with instantaneous significance, which 

eventually proves to be interesting for the motion study of continuous media; it is 

the reason for the frequent use of Euler’s description. The two descriptions are, of 

course, equivalent; the demonstration thereof can be found in the titles on the 

mechanics of continuous media provided in the references section. 
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1.2.2. Law of conservation 

Laws that govern the evolution of continuous media over time are the laws of 

conservation: conservation of mass, conservation of momentum and conservation of 

energy. These laws can be expressed in an integral form [1.5] or in a differential 

form [1.6] with the boundary condition [1.7]. 

The general form of the conservation law is provided in this section; it will be 

detailed in the next sections with the conservation of mass, momentum and energy. 

Let us consider a part D of the continuous medium whose movement is being 

observed. Let us also introduce its boundary D  and nj the direction cosines of the 

exterior normal n
f

, which is supposed to exist in all the points of D . V is the 

volume of the continuous medium and V  is the surface delimiting it. These 

quantities are defined in Figure 1.3. 

2

1

3 

V

V  

D

n
f

 

D

 

Figure 1.3. Continuous medium V with boundary V  and part D with boundary D  

The integral form of a conservation equation, in a very general case, is given by 

the following equation: 

∫∫∫ =+
D

i

D

jij

D

i Bn gA
dt

d
. [1.5] 
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dt

d
 indicates the total derivative, i.e. the derivative with respect to time when the 

derived quantity is followed in its movement. Ai and Bi are vector quantities, in the 

general case of dimension 3, but may also be scalar values, in the particular case of 

dimension 1. 

From a physical point of view: 

∫
D

iA
dt

d
 represents the fluctuation over time of a physical value, attached to the 

part D of the continuous medium, whose movement is being followed. 

j

D

 ij ng∫  represents the action of the exterior surface on D. 

∫
D

iB
 represents the action of the exterior volume on D. 

The law of conservation [1.5] thus translates the fact that the fluctuation over 

time of a quantity attached to the part D, followed in its movement, results from the 

actions of surface and volume affecting the part D of the considered continuous 

medium from the outside. 

We may associate a differential form to the integral form of the conservation 

equation. 

The differential form of the conservation law: 

Ai (A U g ) B        in  V,i j ij ,j it

∂
+ + =

∂
 [1.6] 

g  n C        on  V.ij j i=  [1.7] 

Equation [1.6] supposes that Ai, αij, Bi and Ci are continuously derivable in any 

point of V. This assumption, which we adopt, excludes the existence of 

discontinuity surfaces in volume V. For a detailed account of discontinuity surfaces 

we refer the reader to specialized works on continuous media mechanics. 

The boundary condition [1.7] translates the equality of the projection of the 

tensor ijα  following the external normal to an external action of surface contact iC . 

This action of contact will generally be a given in a problem; we shall see, however, 
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that sometimes it will be preferable to modify the boundary condition, in order to 

more easily introduce the action of the exterior upon the continuous medium. 

1.2.3. Conservation of mass 

This law of conservation postulates that the mass of a part D of the continuous 

medium, whose movement is followed, remains constant over time. 

To give the integral form of this conservation law, let us introduce the density 

ρ(M, t); under these conditions the law of conservation of mass is written: 

0t)(M, と
dt

d

D

=∫ . [1.8] 

Equation [1.8] is a particular case of the general form [1.5]. The associated 

differential form is deduced from it: 

0)  Uと (と
dt

d
j,j =+ . [1.9] 

Equation [1.9] is called continuity relation. 

1.2.4. Conservation of momentum 

A fundamental law of mechanics is introduced. To apply this law to every part D 

of the continuous medium, it is necessary to define the external efforts applied to D. 

These are of two kinds: 

– efforts exerted on D by systems external to the continuous medium, which are 

remote actions or forces of volume written )t,M(fi ; 

– efforts exerted on D through surface actions on D ; these are actions of local 

contact verifying the two following conditions: 

a) at each point M of the boundary D  and at every moment t, these efforts are 

represented by a density of force iT , 

b) the vector iT  at the moment t depends only on the point M and the unitary 

vector normal to D  in M. 

Let us state [1.10], where σij is a second-order tensor, called a stress tensor: 

j iji njT = . [1.10] 
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Note: in [1.10], Ti is the ith component of the resulting stress for the vector n ;
f

 

σij is the ijth component of the stress tensor. Somewhat abusing the language, the σij 

will also be called stresses. 

Let us write the fundamental law of the dynamics applied to a part D of the 

continuous medium. Equality of the dynamic torque and the torque of the external 

efforts applied to D led to the two relations [1.11] and [1.12]; O is a point related to 

the point of reference, which we take as the origin without restricting the general 

case: 

∫∫∫ +=
D

ij

D

 ij

D

i fnjとU
dt

d
, [1.11] 

)fxfx(n  )jxj(x)とUxとUx(
dt

d
 

D

lk k lj

D

 ljk  kj l

D

lk k l −+−=− ∫∫∫
 [1.12] 

with (1,k) = {(1,2), (2,3), (3,1)}. 

Relations [1.11] and [1.12] express the conservation of momentum. Their 

expressions can also be given in vectorial notation: 

∫∫∫ +=
DDD

fTUと
dt

d
, 

D DD

d
OM とU OM T OM f.

dt
∧ = ∧ + ∧∫ ∫ ∫

iiiif if iiiif if iiiif f
 

The associated partial derivative equation [1.11] is: 

d
(とU ) (とU U ) j f        in  Vi j i ,j ij,j i

dt
+ = + . [1.13] 

By using the continuity equation [1.9] in [1.13] and after appropriate grouping, 

we obtain: 

d
と U U  U j f        in  Vi j i,j ij,j i

dt
+ = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

. [1.14] 
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The first member of [1.14] represents iとけ  where iγ  is the acceleration of the 

particle located at the point M, which we calculated in [1.2]. Equation [1.14] thus 

appears as a generalization of the point mechanics. It bears the name of the equation 

of motion. 

Let us now exploit the law of conservation [1.12], by writing the associated 

partial derivative equation: 

l k k l l k k l j l kj k lj , j

l k k l

d
           (x とU - x とU ) +  (x とU - x  とU ) U - (x  j - x j )

dt

                                                                                 = x f - x f

⎡ ⎤⎣ ⎦
 [1.15] 

with (1,k) = {(1,2), (2,3), (3,1)}. 

Let us take the example of the couple (1,k) = (1,2) and develop the derivations. 

After rearranging the terms we obtain: 

. jjfj)UとU()とU(
dt

d
 x                       

fj)UとU()とU(
dt

d
 x

12211j1j,j,j112

2j2j,j,j221

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

 

Taking into account the relation [1.13] the first member is nil; it is thus noted 

that: 

2112 jj = . 

Proceeding in an identical manner for couples (2,3) and (3,1), we obtain the 

general relation of reciprocity of stresses: 

jiij jj = . [1.16] 

The conservation of momentum involves the symmetry of the stress tensor. 

1.2.5. Conservation of energy 

At every moment the total derivative of the energy E (D) of a part D of the 

continuous medium is the sum of the power of the external efforts exerted on D and 

the rate of heat received by D. 
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Energy E (D) is the sum of kinetic and potential energy, i.e.: 

∫ ⎟
⎠

⎞
⎜
⎝

⎛
+=

D

2
iU

2

1
e と(D) E  [1.17] 

with e as the specific potential energy. 

The integral form of the law of conservation of energy is given by [1.18], where 

qj is the heat flow vector. The minus sign is related to taking into account the 

external normal, thus qjnj represents the heat flow emitted by the continuous 

medium. 

∫∫∫ +−=⎟
⎠

⎞
⎜
⎝

⎛
+

D

iijjij

D

 ij

D

2
i Ufn qUnjU

2

1
e と

dt

d
. [1.18] 

 

The differential form of the law of conservation of energy results from [1.18]; 

we obtain all the calculations done: 

d 1 12 2と e U とU  e U U j q f U   in Vi j i i ij i i i
dt 2 2 ,j

+ + + − + =
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
. [1.19] 

It follows from transforming [1.19] using relations [1.9] and [1.14]: 

と e U  e j  U q        in Vi ,i ij i,j j,j
t

∂
+ = −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

. [1.20] 

This partial derivative equation has a simple physical interpretation, since the 

total derivative of specific potential energy appears in the term between the brackets 

(on the left-hand side of the equation). Thus the variation of specific potential 

energy results from the power of interior efforts (σij Ui,j) and from a contribution of 

heat (–qj,j). 

1.2.6. Boundary conditions 

The boundary conditions represent the natural prolongation of the conservation 

equations, over the surface V  of the continuous medium. They are obtained through 

the relation [1.7] given in the general case of a conservation law, which will have to 

be further specified by the conservation of mass, momentum and energy. 
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Let us note first of all that the conservation of mass [1.8] does not involve a 

boundary condition because the term ijg  does not appear in [1.8]. 

Equation [1.11] of the conservation of momentum involves the boundary 

condition: 

j  n = F        on Vij j i . [1.21] 

Fi represent the components of the external surface forces applied to the 

continuous medium. 

Equation [1.12] of the conservation of momentum involves the boundary 

condition: 

x  j  n - x  j  n = x  F - x  F        on V,l kj j k lj j l k k l
 [1.22] 

with (l,k) = {(1,2), (2,3), (3,1)}. 

 

The second member represents the moment of external surface forces applied to 

V. The verification of the boundary condition [1.21] involves the verification of 

[1.22] which, therefore, does not bring any additional information. 

The conservation of energy involves the boundary condition: 

q  n + j  n U = ぃ + F U        on Vi i ij j i i i . [1.23] 

Π is the amount of heat introduced into the continuous medium, by action of 

contact at its boundary surface. iiUF  is the power introduced by the surface forces 

applied to V . 

By using the relation [1.21] in [1.23], we obtain: 

q  n = ぃ       on Vi i . [1.24] 

The formulation of a problem of continuous media mechanics is summarized to 

finding the density ρ(M, t), speed t)M,(Ui , stress t)M,(jij  and the specific energy 

density e(M, t), knowing the forces exiting the volume t)M,(fi  and the surface 

t)M,(Fi  as well as the quantity of heat input Π (M, t). All these quantities are 

related by the 4 partial derivative equations [1.9], [1.14], [1.16], [1.20] to be verified 

in the volume V and the two boundary conditions [1.21], [1.24] to be verified over 

the surface V.  
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1.3. Study of the vibrations: small movements around a position of static, stable 
equilibrium 

1.3.1. Linearization around a configuration of reference 

Linearized equations that we are going to establish only reflect a physical reality 

if the continuous medium keeps the positions close to those, which it occupies in the 

configuration of reference, during its movement. We choose a Lagrange position of 

reference, and the displacement of the particle M is expressed by the formula: 

t), (a Wax jiii += . [1.25] 

xi is the ith co-ordinate of particle M whose movement is being followed (Euler’s 

variable). ai is the ith co-ordinate of particle M in the configuration of reference 

(Lagrange’s variable). Wi(aj, t) is the ith co-ordinate of the displacement of point M 

around its position in the situation of reference. We suppose that this displacement 

as well as its derivatives are small: 

idW
1

dt
<<  and i

j

dW
1

dx
<< . [1.26] 

We will examine the consequences of the assumption [1.26]: 

a) Let us at first consider a regular function f(xi, t), and let us express its value in 

the vicinity of the position of reference. The components xi of the position of the 

point M are close to the co-ordinates ai, of the same point M that had occupied it in 

the position of reference; consequently, a first approximation of the value of the 

function may be obtained by considering the first terms of its development in a 

Taylor series in the vicinity of ai: 

t), a(  
x

f
  )a(xt), (a ft), (x f i

3

1j j
jjii ∑

= ∂

∂
−+= , 

that is, taking into account the decomposition of movement [1.25]: 

t), a( 
x

f
  t), (a W)t, (a ft), (x f i

3

1j j
ijii ∑

= ∂

∂
+= . [1.27] 
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Taking into account the regularity of t), f(xi , the partial derivative t), (a 
x

f
i

j∂

∂
 is 

bounded. From [1.26] and [1.27] we deduce that in the first approximation: 

t), f(at), f(x ii = . [1.28] 

b) Let us now take the derivative 
ja

f

∂

∂
; by using the chain derivation formula it 

follows: 

j

i
3

1i ij a

x
  

x

f
 

a

f

∂

∂

∂

∂
=

∂

∂ ∑
=

. 

Introducing the form [1.25] of the movement xi, we shall obtain: 

j

i
3

1i ijj a

W
  

x

f
 

x

f

a

f

∂

∂

∂

∂
+

∂

∂
=

∂

∂ ∑
=

. 

The second term of the right-hand side member being infinitely small, it can be 

deduced that in the first approximation: 

jj x

f

a

f

∂

∂
=

∂

∂
. [1.29] 

c) Let us calculate the total derivative of a regular function t), (xG i : 

3

i i j i
j 1 j

dG G G
(x  ,t)   (x  ,t)  U  (x  ,t),

dt t x=

∂ ∂
= +
∂ ∂

∑  

that is, taking into account the decomposition of movement [1.25]: 

3
j

i i i

j 1 j

WdG G G
(x  ,t)   (x  ,t)   (a  ,t).

dt t x t=

∂∂ ∂
= +
∂ ∂ ∂∑  
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The function t), (xG i  being regular, t), x(
x

G
i

j∂

∂
 is bounded, the second term of 

the second member is infinitely small; we thus have at first approximation: 

t), x(
t

G

dt

dG
i∂

∂
= , 

i.e. also taking into account [1.28]: 

t), a(
t

G

dt

dG
i∂

∂
= . 

To sum up, for small movements: 

t), a(
t

G
t), (x   Ut), (x 

x

G
 t), x(

t

G

dt

dG
iiji

3

1j j
i ∂

∂
=

∂

∂
+

∂

∂
= ∑

=
. [1.30] 

The distinction between the Euler and Lagrangian descriptions is no longer 

necessary: on the one hand the initial and current co-ordinates ai and xi can be 

assimilated and the particulate derivative can be replaced by the partial derivative 

with respect to time. This is true for regular functions, i.e. not for discontinuity 

surfaces. 

Let us examine the effects of [1.28], [1.29] and [1.30] on the equations 

describing the behavior of the continuous medium. 

The equation of conservation of mass [1.9] becomes: 

と
(a  ,t) 0       in Vi

t

∂
=

∂
, 

that is: 

と (a  ,t) と (a )       in Vi i= . [1.31] 

During small movements, the density of the continuous medium does not vary 

over time. This property is valid only at first approximation; at a higher degree of 

accuracy, there is an additional small term, which fluctuates with time. In linear 

acoustics, this small disturbance must be preserved in calculations as it intervenes in 
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the ideal gas law of the acoustic medium. In the case of elastic solids considered 

here, the constant term is sufficient to describe the conservation of mass. 

Equations [1.14] and [1.16], translating the conservation of momentum, become: 

32
iji

i i i i2
jj 1

jW
と (a ) (a  ,t)   (a  ,t) f(a  ,t)       in V,

at =

∂∂
= +

∂∂
∑  [1.32] 

ij i ji ij  (a  ,t) j  (a  ,t)       in V.=  [1.33] 

Equation [1.20], characterizing the conservation of energy, becomes: 

3 3 2
i

i i ij i i
ji 1 j 1

3
j

i
jj 1

Weと (a ) (a  ,t) j  (a  ,t)   (a  ,t)
t t a

q
                                                          (a  ,t)     in V.

a

= =

=

∂∂
=

∂ ∂ ∂

∂
−

∂

∑∑

∑
 [1.34] 

Boundary conditions: 

3

ij i j i i i

j 1

 j (a  ,t)  n (a ) F (a  ,t)       on V,

=

=∑  [1.35] 

3

j i j i i

j 1

q (a  ,t)  n (a ) ぃ(a  ,t)       on V.

=

− =∑  [1.36] 

Equations [1.31] to [1.36] constitute the linearized model of general equations 

within the framework of small movements, around a configuration of reference, 

defined by the relations [1.25] and [1.26]. 

All quantities appearing in the linearized equations [1.31] to [1.36] are variables 

of the pair (ai, t); thus, for the study of small movements, the equations and the 

boundary conditions are inscribed directly on the configuration of reference. 
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In the continuation of the course, we will often consider the case of adiabatic 

movements. This assumption involves 0t), a(q ii = ; there follows a modification of 

the equation of energy [1.34] and boundary condition [1.36] which become: 

We i,jと j        in Vij
t t

∂∂
=

∂ ∂
, [1.37] 

ぃ 0       on V= . [1.38] 

The boundary condition [1.38] translates the impossibility for the adiabatic 

medium to exchange heat. 

The equation of energy [1.37] shows that the variation of specific potential 

energy is due only to the power of interior efforts. 

We have used the index notation in [1.37], and from now we will make constant 

use of it. 

1.3.2. Elastic solid continuous media 

The unknowns of a problem of vibration of an elastic solid are: W  ,    and  e.i ijσ  

The calculation reveals 10 independent quantities (taking into account the symmetry 

of the stress tensor). However, the equations of continuity, movement and energy 

provide only 5 relations at each point. Thus, information is missing to determine the 

solution of the problem; that is the stress-strain relation of the continuous medium. 

The stress-strain relation is characteristic of material; it connects the stress tensor 

to that of the strain of the continuous medium. In the case of small movements, 

considered here, the behavior of the continuous medium is well represented by the 

law of elastic behavior. The stress-strain relation is of the type: 

j (a  ,t) C (a )  i (a  ,t)       on Vij i ijkl i kl i= . [1.39] 

The quantity t), a(i ikl  is a symmetrical second-order tensor; it is the strain 

tensor defined by the relation: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
=

k

l

l

k
ikl

a

W

a

W

2

1
t), a(i , 
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or in the index notation: 

)WW(
2

1
t), a(i kl,lk,ikl += . 

The tensor of the 4th order Cijkl(ai) characterizes the elastic properties of the 

continuous medium. In the references provided at the end of the chapter, a detailed 

presentation may be found. Let us note here that this tensor has the properties of 

symmetry [1.40]: 

klijijlkjiklijkl CCCC === . [1.40] 

Taking into account the properties [1.40] of the stress-strain relation, we obtain a 

second expression equivalent to [1.39]: 

t), a(  W)(aCt), a(j ikliijkliij = . [1.39’] 

1.3.3. Summary of the problem of small movements of an elastic continuous 
medium in adiabatic mode 

The problem consists of finding Wi, σij and e, knowing fi, Fi, Cijkl and ρ, 

verifying: 

2

ij, j i2
= f

Wiと        in V,
t

σ +
∂

∂
 [1.41a] 

We iと j         in V,ij
t t ,j

∂∂
=

∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 [1.41b] 

j C  i C W        in V.ij ijkl kl ijkl k,l= =  [1.41c] 

Boundary conditions: 

j  n F        on V.ij j i=  [1.41d] 



34     Vibration in Continuous Media 

The use of [1.4c] in [1.41b] makes it possible to integrate the equation of energy, 

which becomes [1.41e]: 

1 1
とe  i  C i  i  j        in Vij ijkl kl ij ij

2 2
= = . [1.41e] 

The knowledge of ij ij  and  σ ε  implies that of e; there are thus only two 

unknowns in the present problem: ij ij and  σ ε , in order to determine which 

equations [1.41a], [1.4c] and [1.41] need to be integrated. 

These equations are well adapted to the description of vibrations of solids whose 

displacements remains close to the static position of equilibrium, which is taken as a 

configuration of reference. 

1.3.4. Position of static equilibrium of an elastic solid medium 

The vibrations of continuous media occur around a position of stable static 

equilibrium. Consequently, the first stage of the study of the vibrations consists of 

determining this position of static equilibrium. 

Let us consider the position of the continuous medium at rest, when no force is 

applied to it, as a configuration of reference and suppose that the position of static 

equilibrium is close to this position of reference. 

In these conditions it is possible to use equations [1.41], obtained with the 

assumption of small movements, to describe the state of static equilibrium. In fact, 

the task is to find )a(W i
S
j  and )a(j i

S
ij  verifying equations [1.41] when the forces 

)a(F i
S
j  and )a(f i

S
j  are applied. The reader will note that all the quantities appearing 

in the static problem are independent of time; it follows that derivations of these 

quantities with respect to time are nil and the partial derivative equations [1.41a, c, 

d] are reduced to: 

S S
ij,j ij f 0       in V+ = , [1.42] 

S S
ij ijkl klj C  i        in V= , [1.43] 

S S
ij j ij  n F        in V= . [1.44] 

The equations of continuity and energy are automatically verified since density 

and specific internal energy are constant over time, and equal to ρs and es. 
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1.3.5. Vibrations of elastic solid media 

Vibrations of elastic solids are small movements around a position of static 

equilibrium, generated by dynamic forces t), a(f j
D
i  and t), a(F j

D
i  superimposed 

with static forces, so that: 

S D S D
f (a t) f (a ) f (a  ,t) and  F (a t) F (a ) F (a  ,t)i j i j i j i j i j i j= + = + . [1.45] 

 2 

1 

3 

Static 

force  

Configuration

of 

reference 

Position of static equilibrium 

Static 

force  

 
Figure 1.4. Configuration of reference and position of static equilibrium 

We will make the assumption that the application of dynamic forces introduces 

only small movements, i.e. dynamic stresses are sufficiently weak, and that static 

equilibrium is stable. The movement is described by linearized equations [1.41], in 

which we reveal the division of quantities into static values characteristic of the state 

of equilibrium (exponent S) and dynamic values characterizing the vibrations 

(exponent D): 

)a(とt), と(a i
S

i = , 

t), a(W)a(Wt), a(W i
D
ji

S
jij += , 

t), a(j)a(jt), a(j i
D
iji

S
ijiij += , 

t), a(e)a(et), e(a i
D

i
S

i += . [1.46] 
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Figure 1.5. Position of static equilibrium and vibratory movement 

Let us introduce the decompositions [1.46] into equations [1.41a, c, d]. After a 

rather simple calculation, we find: 

2 D
WS S D S Diと j j f f        in Vij,j ij,j i i2
t

∂
= + + +

∂
, [1.47] 

{ }S D S Dj j C  i i        in Vij ij ijkl kl kl+ = + , [1.48] 

S D S Dj  n j  n F F        on Vij j ij j i i+ = + . [1.49] 

These equations can be simplified by taking account of the static equilibrium 

conditions [1.42], [1.43], [1.44] to become: 

2 D
WS D Diと j f        in Vij,j i2
t

∂
= +

∂
, [1.50] 

D Dj C  i        in Vij ijkl kl= . [1.51] 
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Boundary conditions: 

D Dj  n F        on Vij j i= . [1.52] 

A remarkable property of equations [1.50] to [1.52] is their quasi-independence 

of the state of static equilibrium around which the system vibrates. In fact, the only 

influence of static equilibrium is related to the density of the medium. Under normal 

conditions, Sρ  varies very little and the vibrations of a continuous medium are not 

affected by a modification of the static position. The variations of the field of gravity 

in particular do not modify appreciably the vibratory state of the continuous 

medium. 

1.3.6. Boundary conditions 

The boundary condition [1.52] translates the equality of the normal dynamic 

stresses tensor projection with external surface forces applied to the elastic solid. 

The external forces are supposed to be given in the problem, which presents a 

difficulty in practice. Indeed, they result from actions of contact with other 

mechanical media that are generally unknown. To overcome this difficulty, the two 

following simplified configurations are generally introduced: 

Free surface LV : this situation is to be considered when the external actions on 

the surface are sufficiently weak to be regarded as nil. We would then write: 

Dj  n 0       on Vij j L= . [1.53] 

Constrained surface EV : this situation occurs when external actions on the 

surface are very strong and tend to impose a given displacement on the surface 

considered. The external force applied under these conditions strongly depends on 

the response of the continuous medium. It is preferable to model the boundary 

condition on an embedded surface by consequence of application of the external 

force, i.e. an imposed displacement iD . We would then write: 

D
W D        on Vi i E= . [1.54] 

The two models [1.53] and [1.54] are extreme cases, and one can consider types 

of intermediate boundary conditions having a certain flexibility. 

We will see in the chapters related to the vibrations of beams or plates how to 

introduce this type of boundary conditions. However, let us specify, at this general 
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level, that taking into account sophisticated boundary conditions involves the need 

for measuring quantities describing the behavior of the boundaries, which poses 

large experimental problems. For mechanical problems of vibrations, it is often at 

the level of boundary conditions that the uncertainty of modeling is the strongest. In 

the continuation, we will often suppose that the continuous medium is either 

constrained, or free, or subjected to known external forces, on the surface limiting 

the elastic solid. Constrained surfaces EV , free surfaces LV , and those where 

external forces FV  are given, are disjointed; consequently: 

E L

L F

E F

E L F

V V  ,

V V  ,

V V  ,

V V V V .

∩ =∅

∩ =∅

∩ =∅

∪ ∪ =

 

1.3.7. Vibrations equations 

The problem of vibrations of elastic solids is stated as follows: to find the fields 

of stress ijj  and of displacement iW  verifying the equations: 

– Equations of motion: 

2
Wiと j f        in Vij,j i2
t

∂
= +

∂
. [1.55] 

– Stress-strain relation: 

j C W        in Vij ijkl k,l= . [1.56] 

– Boundary conditions: 

j  n 0       on Vij j L= , [1.57] 

W D        on Vi i E= , [1.58] 
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j  n F        on Vij j i F= . [1.59] 

Note: in order to be concise, we give up the exponents S and D in the notation 

for static and dynamic states. Let us also recall that all the quantities appearing in the 

equations of vibrations [1.55] to [1.59] are of a dynamic nature, except density 

which is characteristic of the static position. 

1.3.8. Notes on the initial conditions of the problem of vibrations 

As long as the continuous medium has not been subjected to dynamic excitation 

(volume forces, surface forces or displacements imposed at the limits), it is in a 

static equilibrium. It follows that for an application of the vibratory state at the 

moment 0t , we will take the following initial conditions: 

0)t, a(W 0ii = , [1.60] 

0)t, a(
t

W
0i

i =
∂

∂
. [1.61] 

The partial derivative equation in time being of the second-order, the two initial 

conditions are sufficient. 

It is sometimes interesting to describe the vibrations of a continuous medium 

starting at a moment 1t , posterior to the application of forces. At this moment, the 

system is no longer in a static equilibrium, but is in a given vibratory state 

(displacement )a(X ii  and speed ))a(V ii  so that the following initial conditions 

would have to be taken: 

( ) ( )i i 1 i
W a , t X a= , [1.62] 

( ) ( )i

i 1 i i

W
a , t V a

t

∂
=

∂
. [1.63] 

Let us note to close this point that in many vibratory problems, the interest lies in 

the forced “movement” which is independent of the initial conditions, the latter then 

not being specified. 



40     Vibration in Continuous Media 

1.3.9. Formulation in displacement 

The vibration problem defined in section 1.3.7 has displacement and stress fields 

as unknowns. It is a mixed formulation in stress and displacement. It is often 

interesting to reduce the number of unknown functions, and therefore the number of 

equations, to thus have a more compact formulation. This reduction is carried out by 

substitution of the stress field by its expression as a function of displacements [1.56] 

in equations [1.55], [1.57] and [1.59]. We then obtain a formulation, which now 

only depends on vibratory displacements. 

To find the displacement field iW  verifying: 

2
Wiと (C W ) f        in Vijkl k,l ,j i2
t

∂
= +

∂
, [1.64] 

W D        on Vi i E= , [1.65] 

C  W  n 0      on Vijkl k,l j L= , [1.66] 

C  W n F        on Vijkl k,l j i F= . [1.67] 

This formulation in displacement has the clear advantage of decreasing the 

number of unknowns, since at any point of the continuous medium, it is sufficient to 

establish the displacements. This reduction of the number of unknowns is, however, 

made at the expense of the simplicity of resolution of equations, which see their 

order of spatial derivation increasing. 

1.3.10. Vibration of viscoelastic solid media 

We will see in the following chapters that vibrations of continuous media are 

characterized by the presence of resonances, for which the damping of the vibrating 

system plays a capital role. The elastic systems that we have considered are not 

dissipative and consequently will not be representative of the vibratory answer to 

resonances. To take account of the dissipation parameter, it is necessary to consider 

a behavior relation more complex than that of linear elasticity: linear viscoelasticity. 

Viscoelastic materials have some rigidity but dissipate more energy by internal 

friction. Contrary to elasticity, where the stress changes instantaneously with strain, 

viscoelasticity introduces a memory effect: the stress at a certain moment depends 
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on all the former strain. It is thus necessary to utilize time in the stress-strain relation 

of a viscoelastic material; numerous models have been elaborated according to the 

type of dependence on time. Within the narrow framework of these reminders, we 

will limit ourselves to the following model: 

k,l

ij i ijkl

W
j (a  ,t) そ  .

t

∂
= ⊗

∂
 [1.68] 

This stress-strain relation characterized by a product of temporal convolution, 

noted as ⊗ , shows that the stress field at the moment t depends on the former strain 

of the continuous medium. 

To summarize, vibrations of the viscoelastic continuous medium are described 

by the fields of stress t), a(j iij  and of displacements t), a(W ii  verifying: 

2
Wiと j f        in Vij,j i2
t

∂
= +

∂
, [1.69] 

Wk,lj (a  ,t) そ        in V ,ij i ijkl
t

∂
= ⊗

∂
 [1.70] 

j  n 0       on Vij j L= , [1.71] 

W D        on Vi i E= , [1.72] 

j  n F        on Vij j i F= . [1.73] 

Equations [1.69] to [1.73] may be brought to equations of the type of those 

obtained for the elastic medium by introducing Fourier transforms W,     and  Cσ ## #  of 

the values W, σ and C: 

dt e  t), a(Wの), a(W
~  tの j

iiii
−

+∞

∞−
∫= , [1.74] 

dt e  t), (ajの), a(j~  tの j
iijiij

−
+∞

∞−
∫= , [1.75] 
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dt e  t), (aCの), a(C
~  tの j

iijkli ijkl
−

+∞

∞−
∫= , [1.76] 

where ω is the angular frequency. 

Taking the Fourier transform of equations [1.69] – [1.73], it follows: 

ijij,i
2 f

~
j~W

~との +=− , [1.77] 

lk,ijklij W
~

C
~j~ = , [1.78] 

j  n 0       on Vij j L=# , [1.79] 

W D        on Vi i E=# # , [1.80] 

j n F        on Vij j i F= ## . [1.81] 

The Fourier transformation makes it possible to replace the convolution product 

characteristic of the stress-strain relation in time domain by a simple product in 

frequency domain. 

Let us now take the Fourier transform of the vibrations equations of the elastic 

system [1.55] – [1.59]; it follows: 

ijij,i
2 f

~
j~W

~との +=− , [1.82] 

lk,ijklij W
~

Cj~ = , [1.83] 

j  n 0       on Vij j L=# , [1.84] 

W D        on Vi i E=# # , [1.85] 

j n F        on Vij j i F= ## . [1.86] 

A formal analogy known as the principle of correspondence is noted between the 

two systems of equations [1.77] – [1.81] and [1.82] – [1.86]. 
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In fact, all the equations of elastic and viscoelastic systems are identical except 

for those related to the stress-strain relation. For the elastic medium, the tensor of 

elasticity moduli is independent of time and, thus, remains unchanged after Fourier 

transformation of the stress-strain relation (i.e. real and independent of the angular 

frequency ω). For the viscoelastic medium, the Fourier transform of the viscoelastic 

modules which are variable with time appears in [1.78]; there follow two significant 

consequences: 

– on the one hand ijklC
~

 is variable with the angular frequency ω; 

– on the other hand ijklC
~

 is a complex number. The real part represents the 

elastic effect, the imaginary part that of dissipation. These coefficients are called 

complex modules. 

The complex module translates a phase shift between stress and strain; this 

vision, characteristic of the representation in frequency domain, is the consequence 

of the delay between stress and displacements characterizing the viscoelastic 

medium in time domain. 

Loss factors ijkl η  are often introduced: 

{ } ) j1(  C
~

  ReC
~

ijklijklijkl η+= . 

In short, in frequency domain, the elastic or viscoelastic continuous media have 

the same equations. This leads, due to a preoccupation with simplicity, to the 

undertaking of studies of the elastic medium in time domain, and the introduction of 

viscoelasticity afterwards, by complex modules in frequency domain. 

The resolution of the equations in frequency domain yields  

W (a  ,の)  and  j (a  ,の)i i ij i
# # . 

Temporal solutions should be expressed thereafter; this is of course achieved by 

inverse Fourier transformation: 

dの e  の), (aW
~

2ヾ
1

t), a(W  tjの
iiii ∫

+∞

∞−

+= , 

dの e  の), (a j~ 
2ヾ
1

t), a(j  tjの
iiij

+
+∞

∞−
∫= . 
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Let us note that in general the inverse transformation is not carried out because 

the physical interpretation of the results is in fact easier in frequency domain. 

Note: the viscoelastic medium is not conservative and the adiabatic assumption 

of behavior is no longer realistic, the equation of energy which has to be considered 

is not [1.37] anymore, but the complete equation [1.34]. 

1.4. Conclusion 

This chapter constitutes an introduction to the governing equations of the 

vibrations of elastic solid continuous media. Its essential goal is to present the 

assumptions underlying the equations, which we will come back to use in the 

continuation. These reminders would not in any way be capable of replacing a 

thorough study of the works specialized in this field, but constitute instead the 

minimum knowledge necessary for the good understanding of what follows. 

A basic comment that we will make in conclusion of the chapter relates to the 

great complexity of the equations obtained. Indeed, the partial derivative equations 

which describe the vibrations, although already simplified compared to the general 

case, do not have known analytical solutions. We are thus confronted with the 

alternative of an approximate resolution, which can be only numerical, or with the 

introduction of additional assumptions, simplifying the problem sufficiently to lead 

to analytical solutions. It is the second option that has generally been exploited; it 

has led to the mono and bi-dimensional continuous media that engineers have called 

beams, plates and shells. The methodology of passage of the tri-dimensional 

medium into simplified media is thus of capital importance. In the following 

chapters we provide the methodology by using the variational approach. 



Chapter 2 

Variational Formulation for Vibrations of 

Elastic Continuous Media  

2.1. Objective of the chapter 

The equations describing vibrations of elastic solid media in 3 dimensions have 

been provided in Chapter 1. We will demonstrate that it is possible to obtain them by 

calculating the extrema values of energy functionals. Moreover, this approach lays 

the theoretical foundation which enables the construction of models of condensed 

elastic continuous media. This would allow passing from a 3D to a 2D or 1D problem. 

 

Variational formulation uses directional derivation and can thus appear to be a 

more cumbersome version of the traditional formulation. It is, in fact, at the level of 

searching for approximate solutions that variational formulation assumes its full 

importance, since it suffices to restrict functional spaces where the extremalization is 

carried out. It is this step which will enable us in the following chapters to 

systematically obtain the equations of beams and plates without any difficulty other 

than the choice of assumptions restricting the field of movement and stress 

according to the geometry of the continuous medium. 

 

The object of this chapter is double. On the one hand, we present the basic idea 

of variational formulation which consists of passing from a local aspect of forces 

equilibriums to a global energy aspect. In addition, we obtain results, which will be 

useful in the continuation, i.e. the functionals of Reissner and Hamilton, as well as 

Euler equations associated with the extremalization of various types of functionals. 

For uniformity of presentation, we will suppose that all the functions that appear in 

the equations are sufficiently regular so that integrals exist. 
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2.2. Concept of the functional, bases of the variational method 

2.2.1. The problem  

The equations of the vibrations of a continuous medium that we have determined 

in Chapter 1 (equations [1.55] to [1.59]) are: 

] [
2

Wiと j f        in   V  t  ,tij,j i 0 12
t

∂
= + ×

∂
, [2.1] 

] [10klij t,  tVin           j ×= εijklC , [2.2] 

] [1 0Ljij t, tVover          0nj ×= , [2.3] 

] [10E t,  Vover          tDW ii ×= , [2.4] 

] [10F1j t,  Vover          n tFij ×=σ . [2.5] 

Moments t0 and t1 are arbitrary. 

 

The basis of the variational method consists of posing the problem in a different, 

global form leading to the implicit respect of equations [2.1] to [2.5]. 

2.2.2. Fundamental lemma  

The result that we will point out is fundamental in the sense that it contains the 

basic idea of the variational method, which consists of passing from a local to a 

global presentation. 

 

Let us recall first of all that a family F of open sets D of a volume V is dense in 

V if for any point M ∈ V and for all neighborhood of the point M, there exists at 

least one set D of the family which lies inside the neighborhood. To solidify the 

ideas, let us give without demonstration three families dense in V: 

– all of the open balls inside of V; 

– all of the open cubes whose edges are parallel to the axes of co-ordinates; 

– all of the open sets of V. 

 

The fundamental lemma is stated as follows: let f(M) be a function defined and 

continuous in V and F a family of sets D dense in V. If for any set D belonging to 

the family the integral [2.6] is nil, 
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0dv f(M)

D

=∫ , [2.6] 

then the function f(M)
 
is identically nil in V. 

 

To show the lemma, let us presume that in a certain point  VM0 ∈ , )f(M0  
is not 

nil. Let us take for example the case 0)f(M0 > . It is possible, taking into account 

the continuity of f(M), to find a neighborhood of 0M such that in this neighborhood 

)f(M 1/2)(f(M) 0> . Let us consider then a set D of the family F interior to the 

neighborhood. We have: 

∫∫ >>
D

0

D

0dv   )f(M 
2

1
dv f(M) , 

which contradicts the hypothesis [2.6]. 

2.2.3. Basis of variational formulation  

Let us take the example of the equation of motion [2.1]. The use of the 

fundamental lemma makes it possible to write it in the form of: 

0dv  fj
t

W
と 

D

ijij,2

i

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

∂

∂
∫ . [2.7] 

D belongs to a family of dense open sets in ] [10 t,  tV × . 

 

However, formula [2.7] is not very practical and we would rather write: 

] [( ) t,  tVっ W    0dvdt Wfj
t

W
と 10

**

i

t

t V

*

iijij,2

i

21

0

×∈∀=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

∂

∂
∫∫ . [2.8] 

The space Ω∗(V × ]t0,t1[) 
is that of functions with real values, indefinitely 

derivable, definite on V × ]t0,t1[.  

The functions t), x, x, x(W 321
*
i  can be interpreted as vibratory movements, 

which are, however, not compelled to verify all the conditions imposed on real 

movements of the continuous medium (in particular, boundary conditions); in this 

sense, they are merely virtual movements. 
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To demonstrate the equivalence of [2.8] and [2.l], it is enough to consider, 

initially, the field of movement t), x, x, x(W 321
*
i  provided below: 

⎪
⎩

⎪
⎨

⎧

=
0

0

t), x, x, (x W

W

321

i
1

*

i . [2.9] 

Let Dε(X1, X2, X3, T) be the open ball, of band ε, centered in (X1, X2, X3, T), i.e.: 

{ },  iT)t()Xx()Xx()Xx( t), x, x, (x 

T), X, X, (XD

222
33

2
22

2
11321

321i

<−+−+−+−

=
 

the functions t), x, x, (x W 321
i
1  are strictly positive inside Dε(X1, X2, X3, T) of 

] [10 t,  tV×
 
and nil outside of it. 

 

Such functions exist and can be construed in the following fashion: 

.
iT)t()Xx()Xx()Xx( 

1
  exp t) ,   x ,   x , (x  W 

),,,(     ),   ,   , (

222

33

2

22

2

11

3 2 1

i 
1 

3213 2 1

⎟
⎠

⎞
⎜ 
⎜ 
⎝ 

⎛ 

−−+−+−+−
= 

∈ TXXXD t x x xIf ε 
 

. 0 t) ,   x ,   x ,   (x  W 

), , , (    ) ,   ,   ,   (  

3 2 1 
i 

1 

3213 2 1 

= 

∉ TXXXDt x x x If ε

 

For the field of virtual movement [2.9], the condition [2.8] is translated by: 

i
1

t

t V

i
11j1j,2

1
2

 W    0dvdt  Wfj
t

W
と 

1

0

∀=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

∂

∂
∫ ∫ . [2.10] 

Let us suppose that there exists a point (X1, X2, X3, T) where equation [2.11] is 

verified (the case where the value would be negative would be treated in an identical 

manner): 

 

0T), X, X, (X fj
t

W
と 3211j1j,2

1
2

>
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

∂

∂
. [2.11] 
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We then can, taking continuity into account, find a neighborhood of (X1, X2, X3, T) 

such that for any point (x1, x2, x3, t) in this neighborhood: 

. T), X, X, (X fj
t

W
と 

2

1
                                 

 t), x, x, (x fj
t

W
と

3211j1j,2

1
2

3211j1j,2

1
2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

∂

∂
>

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

∂

∂

 [2.12]  

Let us consider an open ball Dε(X1, X2, X3, T) inside the neighborhood. Due to 

[2.11] and owing to the fact that the function i
1W  is strictly positive in the open ball 

and nil outside of it, we have: 

∫ ∫

∫ ∫

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

∂

∂
>

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

∂

∂

1

0 321i

1

0

t

t T), X, X, (XD

321j1j,2

1
2

t

t V

i
11j1j,2

1
2

;dvdt  T), X, X, (X fj
t

W
と 

2

1
        

dvdt  Wfj
t

W
と

 

i.e. since the volume of the ball is strictly positive: 

∫ ∫ >
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−

∂

∂1

0

t

t V

i
11j1j,2

1
2

0dvdt  Wfj
t

W
と . [2.13] 

This inequality contradicts [2.10]. Consequently, it is deduced from it that the 

condition [2.8] involves: 

] [103211j1j,2

1
2

t,  tVt), x, x, (x     0fj
t

W
と ×∈∀=−−

∂

∂
. 

Similarly, considering the fields of virtual movements 2

3

0 0
w  and 0

w0

ε
ε

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, it 

could be shown that condition [2.8] involves: 

] [

] [. t,  tVt), x, x, (x     0fj
t

W
と

, t,  tVt), x, x, (x     0fj
t

W
と

103213j3j,2

3
2

103212j2j,2

2
2

×∈∀=−−
∂

∂

×∈∀=−−
∂

∂
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To sum up, there is an equivalence between equations [2.8] and [2.l], which 

appear as global and local formulations of the continuous media equation of motion. 

 

From a physical point of view, this result shows that if the integral over time of 

the work of the force of volume ijij,2

i
2

fj
t

W
と −−

∂

∂
 is nil for any displacement 

] [( ) t,  tVっW 10**
i ×∈ , then the force of volume is nil. The integral [2.8] defines a 

functional を  that associates a real number )W, j, を(W *
iiji  to each triplet 

)W, j, W( *
iiji : 

*    : Ω×Σ×ΩΞ                      IR 

       )W, , W( *
iiji σ                   )W, , W( *

iiji σΞ
 

with: 

っ : the set of fields of indefinitely derivable displacements, defined over 

] [10 t,  tV × , with real values; 

:ぇ the set of fields of tensors of indefinitely derivable stress, defined over 

] [10 t,  tV × , with real values; 

*っ : the set of fields of indefinitely derivable virtual displacements, defined over 

] [10 t,  tV × , with real values. 

 

If the pair )j,W( ij i  does not verify the equation of motion [2.l], the functional 

)W, j, を(W *
iiji  is not nil. 

If the pair )j,W( ij i  verifies the equation of motion [2.l], the functional 

)W, j, を(W *
iiji  is nil. 

 

2.2.4. Directional derivative 

The transformation of the local presentation [2.l] to global presentation [2.8] is 

the basic idea of the variational method; however, a second transformation is 

generally carried out, which consists of displaying [2.8] as the directional derivative 

of a simpler functional. Let us introduce the functionalΨ : 

Σ×ΩΨ     :                 IR 
      ), W( iji σ              ), W( iji σΨ  
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with: 

( ) dvdt  Wfi j 
2

1

t

W
 と 

2

1
 j, W ょ

1

0

t

t V

iiijij

2

i
iji ∫ ∫ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
= . [2.14] 

The integrand contains three terms: the first is the kinetic energy, the second is 

the deformation energy and the third is the potential energy of the volume efforts. 

 

Let us break up the field of displacement Wi in the following manner: 

*
iii そWWW += . [2.15] 

iW  is the field of displacement verifying the equation of motion, for a fixed 

stress field σij (this notation has nothing to do with that of Chapter 1 where the bar 

indicated the boundary of a space): 

] [10321ijij,2

i
2

t,  tVt), x, x, (x     0fj
t

W
と ×∈∀=−−

∂

∂
; 

 λ is a real number, *
iW  is a field of virtual displacement. 

 

Let us replace W in [2.14] with its expression [2.15]: 

( )

( ) ( ) .dvdt  WそWfiそi j
2

1
                             

t

W
そ

t

W
 と

2

1
j,WそW ょ

*
iii

*
ijijij

t

t V

2
*
ii

ij
*
ii

1

0

⎭
⎬
⎫

+++−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂

⎩
⎨
⎧

=+ ∫ ∫
 [2.16]  

The directional derivative of the functional [2.14] with respect to Wi at the point 

)j,W( ij i  noted )W, j, W( ょh *
iijiW  is by definition: 

0そij
*
ii

*
iij iW )j, そWW( ょ

dそ
d

)W, j,W( ょh =+= ; [2.17]  

that is: 

dvdt  Wf Wj
t

W

t

W
と )W, j, W( ょh

1

0

t

t V

*
ii

*
ji,ij

*
ii*

iijiW ∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧

+−
∂

∂

∂

∂
= .  [2.18]  
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Let us transform equation [2.18]. By using Green’s formulae and integration by 

parts, it follows: 

. dv W
t

W
とdtvd W n j                                

dvdt  Wfj
t

W
と)W,j, W( ょh

1

0

1

0

1

0

 t

 tV

*
i

i*
i

t

t V

jij

*
ijij,2

i
2t

t V

*
i ijiW

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
++

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
++

∂

∂
−=

∫∫ ∫

∫ ∫
 [2.19]  

In the first integral of the second member we recognize the expression defined in 

[2.8] as the global form of the equation of motion. Thus, if we suppose that, on the 

one hand, *
iW  is nil over V  at any moment t and that, on the other hand, it is nil 

over V at moments 0t  and 1t , the global form of the equation of motion is obtained 

by writing [2.20], that is by setting equal to 0 the directional derivative of the 

functional ょ  for all virtual displacements satisfying the boundary condition 

0W*
i =  over the surface V  and the initial and final conditions 0)tM,(W 0

 *
i = , 

0)t(M, W 1
*
i =  for any point M of the volume V: 

*
i

*
iijiW  W    0)W, j, W( ょ h ∀= .  [2.20]  

A significant point appears here: it relates to the boundary conditions and the 

initial and final conditions of virtual displacement. Indeed it can be observed that the 

directional derivative of [2.14] in addition to the global form of the equation of 

motion reveals two additional terms which disappear when virtual displacement 

verifies the conditions: 0W*
i =  over the surface V,  0)tM,(W 0

 *
i =  and 

0)t(M, W 1
*
i = , for any point M of the volume V.  

 

Let us suppose now that virtual displacements verify 0)t(M, W 0
*
i =  and 

0)t(M, W 1
*
i = , for any point M of the volume V, but are left without the boundary 

condition. Taking into account [2.19], the relation [2.20] then becomes: 

.  W    0dtvd  Wn j                              

dvdt  Wfj
t

W
と)W, j, W( ょ h

*
i

*
i

t

t V

jij

*
ijij,2

i
2t

t V

*
iijiW

1

0

1

0

∀=+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
++

∂

∂
−=

∫ ∫

∫ ∫
 [2.21]  
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All of the virtual displacements nil over V  are contained in the set of virtual 

displacements free over V ; the relation [2.21] thus implies: 

( )

, Vover   0W W

0dvdt  Wfj
t

W
と W, j,W ょh

*

i

 *

i

t

t V

*

ijij,2

i

2

*

iij iW

1

0

=∀

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

−= ∫ ∫
 

that is: 

] [10jij,2

i

2

t,  tVin              0fj
t

W
と ×=++

∂
∂

− . [2.22] 

Taking this result into account, equation [2.21] is reduced to: 

*
i

*
i

t

t V

jij  W    0dtvd  Wn j 
1

0

∀=∫ ∫ .  [2.23]  

Considering now the virtual displacements not nil over V , we deduce from the 

fundamental lemma that: 

] [10jij t,  tV over             0n j ×= .  [2.23’]  

If virtual displacements are left free over V , the nullity of the directional 

derivative [2.21] leads to the two relations [2.22] and [2.23’], that is to the equation 

of motion and the limiting condition of the free boundary type.  

 

It is necessary to note here the importance of functional spaces where the 

directional derivation is carried out since they lead to different equations being 

verified.  

 

Let us take the case of space Ω0 of fields of displacements nil at the edges and 

equal to displacement solutions at the two moments, initial and final: 

] [{ 

}. VM  )t(M, W)t(M, W, )t(M,  W ) t (M,   and  W 

t,  t t , VM  0t)(M, W  t) (M,    W っ   

1i1i0i 0 i 

10ii 0 
∈∀== 

∈∀∈∀== 
 [2.24]  
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Introducing virtual displacements t)(M, W*
i  verifying the relation [2.25],  

t)(M, そWt)(M, Wt)(M, W *
iii += ,  [2.25]  

we note, since t)(M,Wi  and t)(M,Wi  are elements of the space, that t)(M, W*
i  

must verify the relations [2.26] and [2.27]: 

] [10
*
i t,  t t  ,  VM     0t)(M, W ∈∀∈∀= ,  [2.26]  

VM     0)t(M, W)t(M, W 1
*
i0

*
i ∈∀== .  [2.27]  

The relations [2.26] and [2.27] confirm that virtual displacements do not form 

part of the space Ω0 of real displacements. 

 

By using virtual displacements compatible with Ω0 in [2.19], we obtain: 

] [. t,  tVt)(M,                                                                  

0fj
t

W
と W    0)W, j, W( ょ h

10

ijij,2

i
2

*
i

*
iijiW

×∈∀

=++
∂

∂
−⇔∀=

 [2.28]  

Let us now take the case of the space Ω1姐 伊containing the fields of displacements 

free on the surface V  and equal to solution displacements at the two moments t0 

initial and t1 final: 

}{ VM     )t(M,W)tM,(W, )t(M,W)tM,(W t)(M, Wっ 1i1i0i0ii1 ∈∀===  [2.29]  

The decomposition [2.25] shows then that in general: 

] [10
*
i t,  t t  ,  VM     0t)(M, W ∈∀∈∀≠ .  [2.30]  

Using [2.30] in [2.19] we arrive at [2.21] that leads to the results [2.22] and 

[2.23]. In more mathematical terms we write [2.31]: 

] [
] [⎪

⎪
⎩

⎪⎪
⎨

⎧

×∈∀=

×∈∀=++
∂

∂
−

⇔

∀=

. t,  tVt)(M,     0n j

t,  tVt)(M,     0fj
t

W
と

                    

 W    0)W, j, W( ょ h

10jij

10ijij,2

i
2

*
i

*
iijiW

 [2.31]  
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The functional space where the directional derivation of a functional is carried 

out leads, as we have just demonstrated, to respecting different boundary conditions: 

– for Ω0 the boundary condition ] [10i t,  tVt)(M,     0W ×∈∀=  is prescribed; 

– for Ω1 the boundary condition ] [10jij t,  tVt)(M,     0n j ×∈∀=  is deduced 

from the calculation of extremum. 

 

This duality of the prescribed and deduced boundary conditions depending on 

the functional space where the directional derivation is carried out is general. 

Similarly, we could also obtain deduced initial and final conditions rather than those 

which we have prescribed: 

VM     )t(M,W)tM,(W, )t(M,W)tM,(W 1i1i0i0i ∈∀== .  

However, the problems seldom arise in terms of initial and final conditions. 

Indeed, all the conditions are deferred to the initial moment. Consequently, the use 

of the variational technique to determine these conditions is generally unnecessary 

and in the continuation we will always place ourselves in the case of prescribed 

initial and final conditions. 

2.2.5. Extremum of a functional calculus  

We can give a physical image of the directional derivative based on the well-

known concept of extremum. 

 

Let us consider the functional of the preceding section and more precisely the 

expression [2.16]. For a fixed stress field σij, the solution displacement t)M,(Wi  is 

also fixed. If, moreover, we consider a particular field of virtual displacements 
*

iW  (M,t),  the functional becomes nothing more than a function of the real variable λ. 

 

We write this function down as: そ)(f
*
i

W . That is: 

)j,そWW( ょ)( f ij
*
iiW*

i

+=λ .  [2.32]  

Under these conditions, writing: 

0)j, そWW( ょ
dそ
d

)W, j, W( ょh
0そij

*
ii

*
iijiW =+= =  [2.33]  
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amounts to having: 

0(0)そf
*
i

W =∂∂ .  [2.34]  

The traditional results of real functions show that the function そ)(f
*
i

W  presents 

an extremum in 0, and that, taking into account [2.32], it is equal to ), W( iji σΨ . If 

the condition [2.33] is verified for any virtual displacement t)(M, W*
i , all the 

functions そ)(f
*
i

W  present an extremum in 0 equal to ), W( iji σΨ . 

 

Consequently, stating that the directional derivative )W, j, W( ょh *
iijiW  is nil for 

any virtual displacement t)(M, W*
i , means that the functional presents an extremum 

for the pair )j, W( iji  (i.e. is stationary): 

)j, W(ょ
Extr

)j,W( ょ W    0)W, j, W( ょh ijiij i
*
i

*
iijiW Ω

=⇔∀= .  [2.35]  

As we have already stressed, the functional space where the calculation of 

extremum is carried out must be specified. We will thus use the notation [2.35] for 

saying that the extremum is obtained over the space Ω.  

 

The extremum can be a maximum or a minimum; to establish that the second 

derivative of そ)(f
*
i

W  needs to be calculated. There are two cases: 

– the extremum is a minimum if: 0)0(
dそ

fd

2

W
2

*
i > ; [2.36a] 

– the extremum is a maximum if: 0)0(
dそ

fd

2

W
2

*
i < .  [2.36b] 

There is no use in establishing whether the extremum of a functional is a 

maximum or a minimum in terms of the equivalence of the variational formulation 

and traditional formulation of the elastic solids vibration problems, since the only 

condition of stationarity is necessary. 

2.3. Reissner’s functional 

2.3.1. Basic functional 

The Reissner’s functional is of the mixed type, that is it depends on the two 

variables )j, W( iji . It will make it possible to find the set of equations [2.1] – [2.5] 

describing the vibrations of a continuous medium. 
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Let us introduce two functional spaces ] [( ) t,  tVっ 10R ×  and ] [( ) t,  tVぇ 10R × . 

 

] [( ) t,  tVっ 10R ×  is the space of the fields of kinematically acceptable 

displacements t)M,(Wi . These displacements are real, defined over ] [10 t,  tV × , 

indefinitely derivable and verifying the imposed displacement boundary conditions 

[2.37a] and the initial and final conditions [2.37b] and [2.37c]: 

] [10Eii t,  tVt)(M,     t)(M,Dt)M,(W ×∈∀= ,  [2.37a]  

VM     )t(M,W)tM,(W 0i0i ∈∀= ,  [2.37b]  

VM     )t(M,W)tM,(W 1i1i ∈∀= .  [2.37c]  

] [( ) t,  tVぇ 10R ×  is the space of the real stress fields ijj (M,t),  defined over 

] [10 t,  tV ×  and indefinitely derivable.  

 

The Reissner’s functional )j, W(R iji1  is defined by: 

RR1    :R Σ×Ω                    IR 

        ), W( iji σ                     ), W(R iji1 σ
 

with: 

,dt  vd WF dv j S j
2

1
                                            

Wfi j
t

W
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iiijij
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∫

∫ ∫
 [2.38]  

Sijkl is the inverse tensor of Cijkl characteristic of the elastic law of behavior [2.2]: 

klijklij j Si = .  
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The following result can be stated: the directional derivatives of Reissner’s 

functional δWR1 and δσR1 are equal to 0 for a pair RRiji ぇっ)j, W( ×∈  if and only if 

the pair )j, W( iji  verifies equations [2.1] – [2.5]. It can also be said that the pair 

)j, W( iji  render the Reissner’s functional R1 stationary over the product space 

R Rっ ぇ×  if and only if it verifies equations [2.1] – [2.5]. We will note: 

)j, W()j, W(R
ぇっ

Extr
)j, W(R ijiiji1

RR
iji1 ⇔

×
=  verifies equations [2.1] – [2.5].  

 

To show the result stated previously it suffices to use the results of section 2.2. 

Let us calculate the directional derivatives δWR1 and δσR1: 

)j,そWW(R
dそ
d

)W, j, W(Rh ij
*
ii1

*
iiji1W += , [2.39]  

)そjj, W(R
dそ
d

)j, j, W(Rh *
ijiji1

*
ijiji1 +=σ , [2.40] 

For δWR1, after using the formulas of Green and of integration by parts over time 

we obtain [2.41]: 

.dt   vd  Wn jvd  W)Fn j(                               

dv  Wfj
t

W
と  )W, j, W(Rh

LF
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∫ ∫
 [2.41]  

Similarly, for δσR1, we obtain the relation [2.42]: 

∫ ∫ −=σ

1

0

t

t V

*
ijijklijkl

*
ijiji1 dvdt j )ij (S)j, j, W(Rh .  [2.42]  

After setting the directional derivatives equal to 0, equations [2.43], [2.44] and 

[2.45] are obtained from δWR1 and equation [2.46] from δσR1: 

] [ ,  t,  tVt)(M,     0fj
t

W
と               

 W    0)W, j, W(Rh

10ijij,2

i
2

*
i

*
iiji1W

×∈∀=++
∂

∂
−⇔

∀=

 [2.43]  
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] [10Ljij t,  tVt)(M,     0n j ×∈∀= , [2.44] 

] [10Fijij t,  tVt)(M,     Fn j ×∈∀= ; [2.45] 

] [ .  t,  tVt)(M,     0j Si                            

j     0)j, j,W(R h

10klijklij

*
ij

*
ijij i1j

×∈∀=−⇔

∀=
 [2.46]  

The four relations [2.1], [2.2], [2.3] and [2.5] are easily found; the relation [2.4] 

has already been prescribed taking into account the choice of functional space ΩR 

which imposed it a priori: 

] [10Eii t,  tVt)(M,     DW ×∈∀= . 

2.3.2. Some particular cases of boundary conditions  

a) Constrained medium  

Consider the case where: VVE =  and ∅== FL VV . 

 

The functional R1 is reduced to [2.47]: 

.dt   dv  j S j
2

1
Wf                                                  

        i j 
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 [2.47]  

The functional space where extremalization is carried out is still defined by 

R Rっ ぇ ;×  however, the condition [2.37a] Wi = Di must in this case be verified for 

the entire boundary V  of the continuous medium. If the imposed displacement is 

nil, we will simply have Wi = 0 over 0 1V ]t  , t [× .  

b) Free medium  

Consider the case where: VVL =  and ∅== FE VV . 

 

The Reissner’s functional is still given by [2.47], the functional space is ΩR × ΣR; 

however, EV  being reduced to the empty set, the condition [2.37a] is no longer 

prescribed; the kinematically acceptable displacements are free over the boundary of 

the continuous medium. 
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2.3.3. Case of boundary conditions effects of rigidity and mass 

In certain cases we are brought to introduce boundary conditions intermediate 

between constrained and free surface. These conditions are characterized by a 

rigidity K and a mass µ; mathematically we use the following model type: 

] [10K2

i
2

ijij t,  tVt)(M,      
t

W
µKWn j ×∈∀

∂

∂
−−= ; [2.48]  

KV  is part of the boundary V  where the boundary condition [2.48] must be verified. 

 

This type of boundary condition is in fact the most general; the traditional 

conditions of constrained and of free surface are borderline cases of this condition: 

we obtain a free surface by setting K = 0 and µ = 0; a constrained surface by setting 

µ = 0 and making K tend towards infinity. 

 

The problem of vibration of elastic solids thus consists of finding the pair 

), W( iji σ  verifying equations [2.1] – [2.5], given at the beginning of the chapter, and 

equation [2.48] above. 

 

Moreover, we will have: 

KFEL VVVVV ∪∪∪=  

and: 

∅=∩=∩=∩=∩=∩=∩ KFEKEFKLFLEL VVVVVVVVVVVV .  

The variational form of this problem can be stated as follows: the couple ), W( iji σ  

render the Reissner’s functional R2(Wi, σij) stationary over the product space ΩR × ΣR 
if and only if it verifies equations [2.1] to [2.5] and [2.48], with: 
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 [2.49]  

The demonstration, identical to that of section 2.3.1, is left to the reader by way 

of exercise.  
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2.4. Hamilton’s functional 

2.4.1. The basic functional 

The Hamilton’s functional is a functional that depends only on the field of 

displacements Wi. It allows finding the equations of formulation in displacement of 

the problems of elastic solid media vibrations. These equations have been provided 

in Chapter 1, equations [1.64] – [1.67]. We will remind them here: 

 

] [10ij,klijkl2

i
2

t,  tVt)(M,     f)i C(
t

W
と ×∈∀+=

∂

∂
, [2.50] 

] [10Ljklijkl t,  tVt)(M,     0n i C ×∈∀= , [2.51] 

] [10Eii t,  tVt)(M,     DW ×∈∀= , [2.52] 

] [10Fijklijkl t,  tVt)(M,     Fn i C ×∈∀= . [2.53] 

We have the following result: the field of displacement iW  renders the 

Hamilton’s functional H1 stationary over the space of kinematically admissible 

displacements ΩR if and only if it verifies equations [2.50] – [2.53].  

ii1
R

i1 W)W(H
っ
Extr

)W(H ⇔=  verifies equations [2.50] – [2.53]  [2.54]  

with: 
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To demonstrate this result, let us calculate the directional derivative of δWH1: 
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 [2.56] 
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The calculation of the directional derivative over the space ΩR defined in [2.37] 

involves the nullity of the last term of the left member of [2.56] and the following 

equality: 

vd  Wn i Cvd  Wn i C *
i

VV

jklijkl
*
i

V

jklijkl

LF

∫∫
∪

=
.  

The directional derivative [2.56] is thus reduced to: 

.dt  vd  Wn i Cvd  W)Fn i C(                 

dv  Wf)i C(
t

W
と)W, W(Hh

*
i

V

jklijkl
*
i

V

ijklijkl

t

t

*
iij,klijkl2

i
2

V

*
ii1W

LF

1

0

⎟
⎟
⎟

⎠

⎞
−−−

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
++

∂

∂
−=

∫∫

∫ ∫
 [2.57]  

It follows that the nullity of the directional derivative for any virtual 

displacement Wi
∗ implies that iW  must respect the relations [2.50], [2.51] and 

[2.53]. In other words: 

i
*
i

*
ii1W W W    0)W, W(Hh ⇔∀=  verifies [2.50], [2.51], [2.53].  

Moreover, as the boundary condition [2.52] has been prescribed by the choice of 

the functional space ΩR, we duly obtain the result [2.54]. 

2.4.2. Some particular cases of boundary conditions  

a) Boundary conditions presenting effects of mass and spring  
 

We employ the same notations as in section 2.3.3. The Hamilton’s functional H2 

becomes in this case: 
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Variational Formulation for Vibrations of Elastic Continuous Media     63 

The displacement iW , which is the solution of the problem, must verify: 

)W(H
っ
Extr

)W(H i2
R

i2 = .  

 

b) Constrained medium 
 
 In this case VVE = . The functional H1 is reduced to: 

dt dv Wfi C i
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We still have the result [2.54]; however, the condition [2.37a] which provides the 

definition of the space ΩR must be verified over the entire boundary V .  

c) Free medium 

In this case VVL = . The Hamilton’s functional is provided by [2.55] and the 

space ΩR is no longer subject to the condition [2.37a], since EV  is reduced to the 

empty set. The kinematically admissible displacements are thus left free over the 

entire boundary V  of the continuous medium.  

2.5. Approximate solutions  

The exact solutions of the problems of elastic solid media vibration are generally 

impossible to find and we must be satisfied with approximations. A way of 

obtaining these approximations consists of using the geometrical characteristics of 

the continuous medium to determine a priori simplified sets of displacements and 

stress. These are the hypotheses of condensation which we will explain in detail in 

the following chapters. Let us simply say here that spaces ΩR and ΣR are restricted to 

spaces Ωc and Σc verifying: Ωc ⊂ ΩR ⊂ Σc ⊂ ΣR. 

 

The variational technique may be used directly for the study of approximate 

solutions. Indeed, it is enough to carry out the calculation of extremum on the 

subspace corresponding to the hypotheses of condensation. The approximate 

solution of the problem )j~, W
~

( iji  can be found by writing: 

 

)j, W(R
ぇっ

Extr
)j~, W

~
(R iji1

CC
iji1 ×
= .  
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It is rather difficult to determine if the pair )j~, W
~

( iji  is close to the exact solution 

pair )j, W( iji . We can only affirm that in the product space ΩC × ΣC the pair 

)j~, W
~

( iji  is the best possible approximation. To the extent that the space ΩC × ΣC 
has been well selected, the approximate solution will be realistic. There are, 

however, methods to quantify the validity of the approximation. On this subject we 

may address ourselves to the article of Guyader [GUY 86] which uses a residual 

functional to justify the assumption of thin plates. 

 

It is the ease of obtaining the approached formulations, by simple restriction of 

functional spaces where we carry out the calculation of extremum that constitutes 

the main attraction of the variational method.  

2.6. Euler equations associated to the extremum of a functional 

2.6.1. Introduction and first example  

Euler equations state the conditions that the functions, on which a functional 

depends to become stationary, must verify. They thus make it possible to dispense 

with the often long calculation of the directional derivatives. We present the method 

of acquiring the Euler equations with two examples: firstly, when the unknown 

function depends only on the variable of space (which corresponds to the problems 

of statics of beams) and, secondly, in the next section, when the unknown function 

depends on two variables of space and time (which corresponds to the problems of 

vibrations of plates or shells). We will finally draw up a summary of the various 

types of functionals and associated Euler equations, which will be useful to us 

thereafter. 

 

To begin with let us consider a functional of the form [2.60]: 

( ) ( )dx y(x) Fy(x) 

L

0
∫=Λ .  [2.60]  

The functions y(x) are not constrained to verify any boundary condition in y(x) 

and x = L (afterwards we will consider the case of prescribed boundary conditions).  

  

We can interpret each function y(x) as a path of integration upon which the value 

on the functional calculus depends. Calculating the extremum of the functional 

consists in determining the path of integration (x)y  placing the value of the 

functional at its extremum. The calculation can be carried out thanks to the 

directional derivative as we have highlighted in the preceding sections.  
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Let us calculate the directional derivative of the functional in the neighborhood 

of the function (x)y  that is supposed to return the extremum of the functional. We 

pose [2.61] and then carry out the calculation [2.62]: 

)x(そy(x)yy(x) *+= ,  [2.61]  

dx )そyy( 
dそ
dF

 )そyy(
dそ
d

0そ

*

L

0
0そ

*

=
=

+=+
Λ

∫ .  [2.62]  

Observing the rules of composed derivations, and supposing that the function F 

depends on y(x) and its derivatives 
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Let us transform [2.63] by integration by parts. After all the calculations it results in: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) . 
y

F
 xy

y

F

dx

d
1...

y

F
 x y

y

F

dx

d
1...

y

F
 x y

dx y y
y

F

dx

d
1... y

y

F

dx

d
y

y

F

 )そyy(
dそ
d

L 

0 
x,

*
x,

L 

0 
x,

2n

2n
2n

x,

*x,

L 

0 
x,

1n

1n
1n

x,

*

L

0

*

x,
n

n
n

x,

0そ
*

n

1-n

n2

n

n

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂
−++

∂

∂
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂
−++

∂

∂
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂
−++

∂

∂
−

∂

∂
=

+
Λ

−

−
−

−

−
−

=

∫

 [2.64]  
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Setting the directional derivative [2.64] equal to 0 for any virtual displacement 

y∗(x) implies verifying the following equations: 

1) an equation to be verified in the domain x ∈ ]0, L[: 

( ) ( ) ( ) ( ) 0y
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dx
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nx,
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; [2.65] 

2) boundary conditions to be verified in x = 0 and x = L: 
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and for 1 < i ≤ n: 
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The number of terms to be cumulated in the expression [2.67] varies with index 

i: only the first (n – i + 1) terms are to be considered in the sum. For example, for 

i = 2,  there are n – 1 terms to be cumulated, while for i = n, there remains only one 

term and the limiting condition [2.67] is reduced to: 

0)y(
y

F

nx,

=
∂

∂
.  

Let us now consider the case where the functions y(x) are constrained to verify 

the boundary conditions: 

0

L

0

0 cy(L)       and       cy(0) == ,  [2.68]  

and for 1 ≤ i ≤ n – 1: 

i

Li

i

i

0i

i

c)(
dx

yd
       and       c)0(

dx

yd
== L .  [2.69]  

Taking into account the decomposition [2.61] and owing to the fact that the 

function (x)y  is a particular y(x) function, it follows: 

* *
y (0) 0       and       y (L) 0= = ,  [2.70]  
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and for 1 ≤ i ≤ n – 1: 

 

i * i *

i i

d y d y
(0) 0       and       (L) 0

dx dx
= =  [2.71]  

Setting the directional derivative equal to 0 over the space of functions y(x) that we 

have just defined, taking into account the cancellation of the terms with boundaries in 

[2.64] (consequently, of [2.70] and [2.71]), leads to the verification of solely equation 

[2.65]. The boundary conditions are now prescribed by [2.68] and [2.69]. 

 

In short the calculation of extremum of the functional [2.60] gives the Euler 

equation [2.65] to be verified in the domain ]0, L[, and to the alternative choice of 

prescribed or deduced boundary conditions ([2.66] or [2.68], [2.67] or [2.69]) that 

has to be determined according to the problem considered. 

 

As an example, let us take the case of n = 1.  

The Euler equation to be verified ∀x ∈ ]0, L[ is reduced to: 

0)y(
y

F

dx

d
)y(

y

F

x,

=
∂

∂
−

∂

∂
.  [2.72]  

The boundary conditions to choose alternatively are: 

– for 0x = : 

either: 
0
0c(0)y = ,  [2.73]  

or: 0)0(
y

)yF(

x,

=
∂

∂
; [2.74]  

– for Lx = : 

either: 
0
Lc(L)y = ,  [2.75] 

or: 0)L(
y

)yF(

x,

=
∂

∂
.  [2.76] 

  

If the functional depends on several functions yi(x): 

( ) ( ) dx  )x(y,..., (x)y F )x(y,..., (x)y 

L

0

n1n1 ∫=Λ .  [2.77]  

A calculation similar to the preceding developments shows that the Euler 

equations that we stipulated for a function y(x) must be verified for each function 

)x(yi  in order to render the functional stationary.  
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Henceforth, in order to be concise, we will not mention anymore that the 

equations are verified by the particular function )x(yi . We will note, for example, 

instead of [2.72]: 

0
y

F
 

dx

d

y

F

x,

=
∂

∂
−

∂

∂
.  [2.78]  

2.6.2. Second example: vibrations of plates  

The functional [2.60] was of the type describing the problems of statics of 

beams, since it depended only on the functions of the single variable of space x. In 

order to obtain the Euler equations for a more general case, we will consider the case 

of the functionals of the type describing the problems of vibrations of plates (see 

Chapter 4), i.e. of the type [2.79]: 

( ) ( ) dt dx dx t), x, (xW  Ft), x, (xW  21

t

t S

2121

1

0

∫ ∫=Λ .  [2.79] 

The functions W(x1, x2, t) that we consider hereafter are constrained to verify the 

initial and final conditions: 

. S)x, (x  )t, x, (xW ) t ,   x ,      W(x and 

)t, x, (xW) t ,   x ,         W(x 

211211 2 1 

0210 2 1 

∈∀= 

= 

 [2.80]  

The function t), x, (xW 21  is the solution that we seek and we break up the 

functions W(x1, x2, t) in the usual manner: 

t), x, (x そWt), x, (xWt), x, W(x 21
*

2121 += .  [2.81]  

The calculation of the directional derivative δWΛ using the rules of chain 

derivation yields: 

.dt  dx dx  W)W(
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F
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 [2.82]  
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In order to write [2.82] we have supposed that the function F depended on W as 

well as its partial derivative of the 1st order with respect to time and of the 2nd order 

with respect to the variables of space.  

 

Hereafter, in order to avoid convoluted notation, we will not indicate that the 

function F and its derivatives are to be calculated for the function W . We will note, 

for example: 

 

W

F
by              )W(

W

F

∂
∂

∂
∂

.  

 

Using the formulas of integration by parts over time and of Ostrogradski for the 

space variables, it follows: 
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 [2.83]  

The terms at the boundaries over time which appear during integration by parts 

are nil considering the hypothesis [2.80]. Quantities n1 and n2 are the direction 

cosines of the normal vector external to the contour S  of the plate. 

 

The normal and tangential derivative W,n and W,s are linked to the derivatives 

W,x
1 and W,x

2 by the following relations: 

. WnWn   Wand   WnWnW

, nWnW   Wand   nWnWW

s,1n,2,2s,2n,1,1

1,22,1s,2,21,1n,

−=−=

+=+=

 [2.84]  
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By introducing W,n and W,s the third integral of the second member of [2.83] 

becomes: 
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Observing that: 
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after calculation and suitable grouping of terms we obtain a new expression for 

[2.83]: 
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Note: to apply the variational method the replacement of the first member of 

[2.86] by the second member is obligatory since over S  the tangential derivative 

*s,W  is completely determined by the given of the function W∗; these two quantities 

thus cannot vary separately and must be grouped. 

 

The Euler equations associated with the extremalization of the functional [2.87] 

are obtained by writing: 

 

**
W  W    0)W,W( h ∀=Λ .  

 

After calculation follows the equation of motion [2.88] and the boundary 

conditions [2.89] – [2.92]. 

 

Equation of motion: 
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Boundary conditions to be verified ] [1021 t,  t t  ,  S)x, (x ∈∀∈∀ : 

either     W(x  ,x  ,t) d(x  ,x  ,t)1 2 1 2= , [2.89] 

( )F F F2
or    n n n 1 n1 2 1 2

W W x W,1 ,2 1 ,11

F F F2 3 3
            n (1 n ) n n2 1 1 2

x x W xW W2 2 ,12 1,22 ,12

F F2 2
                                  n  n n  n 02 1 1 2

x x WW2 1 ,22,11
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+ − +
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∂ ∂ ∂ ∂ ∂ ∂
− + − −

∂ ∂ ∂ ∂∂ ∂

∂ ∂ ∂ ∂
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 [2.90] 

and: 

either    W (x  ,x  ,t) c(x  ,x  ,t),n 1 2 1 2= , [2.91] 
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F F F2 2
or  n n n  n 01 2 1 2

W W W,11 ,22 ,21

∂ ∂ ∂
+ + =

∂ ∂ ∂
, [2.92] 

where t), x, x(d 21  and t), x, x(c 21  are the displacements and the normal derivative 

of the displacements imposed on the boundary S  of the plate. For a clamped 

boundary, these two functions are nil.  

2.6.3. Some results  

Providing the Euler equations in very general cases of functionals is difficult, 

taking into account the heaviness of the expressions that have to be handled, in 

particular, boundary conditions. It has, however, appeared necessary to us to gather 

the results which will be brought into use in the following chapters and which in fact 

cover nearly all the functionals interesting for our purposes.  

  

We still consider that the functionals depend only on one function in order not to 

weigh down the writing since the case of functionals depending on several functions 

amounts applying the results, which we provide, to each function. We are still in the 

situation where the extremum is calculated over the set of functions verifying the 

initial and final conditions.  

2.6.3.1. Mechanical type functional of non-deformable solid 

The functions describing these systems depend only on time; they are most often 

generalized co-ordinates qi(t). The mechanical type functionals of not deformable 

solid are thus of the form: 

 

( ) ( )∫=
1

0

t

t

dt  (t) q F(t) q L .  [2.93]  

 

The function F depends on the function q(t) and on its first derivative q,t (t).  

 

The Euler equation associated with the extremalization of [2.93] is given by 

[2.94]; it is the simple form of the Lagrange equations: 
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2.6.3.2. Static beam type functional 

This case has been detailed in section 2.6.1, to which we refer the reader. The 

functional of the type [2.60] leads to the equation of motion [2.65] and to the 

boundary conditions [2.66] and [2.67]. 

2.6.3.3. Beams vibration type functional 

The functions describing the vibratory behavior of beams depend on time and a 

variable of space. The corresponding functionals are of the type: 
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In the integrand of [2.95] we consider that the function F depends on W and on 

its partial derivative 
j 1 j

W t x
+∂ ∂ ∂ which we will note jtx,

W , where the index j 

varies from 1 to n. 

 

The calculation of extremum of the functional leads to verifying an equation in 

the domain and n boundary conditions: 

 

Equation of motion: 
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or in shortened form: 
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Let us observe that a nil derivation index indicates that there is no derivation.  

 

For example: 

3
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The boundary conditions are given by the n alternatives to be verified in x = 0 

and x = L at any moment ] [10 t,  tt ∈  
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i j 1
i 1

i j 1
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Let us take as an example the case n = 2. Equation [2.97] becomes: 
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The two boundary conditions are obtained with [2.99]: 

 

either 

 

 

or 

 

and: 

 

either 

 

or 

 

2.6.3.4. Plates vibration type functional 

This case has been described in section 2.6.2. 

2.6.3.5. Three-dimensional medium vibration type functional 

The functions describing the vibratory behavior depend on time and three 

variables of space; the functionals are of the type: 

( ) ( ) dt dx dx dx t), x, x, (xW  Ft), x, x, (xW  L 321

t

t V

321321

1

0

∫ ∫= .  [2.100]  

We will suppose that the integrand depends on the function W and its first 

derivative with respect to time and the three variables of space. 
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The equation to verify ] [10321 t,  t t  ,  V)x, x, (x ∈∀∈∀  is: 
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The boundary condition to verify ] [10321 t,  t t  ,  V)x, x, (x ∈∀∈∀  is given by 

the alternative: 
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where n1, n2, n3 are the direction cosines of the external normal vector.  

2.7. Conclusion 

The variational method that we have just presented transforms the local 

description in terms of equilibrium of force from Chapter 1 into a global description 

in terms of energy; they are two manifestations of the same phenomenon. 

Practically, the search for the solution of a problem is carried out by the calculation 

of stationary point values of a functional over the set of fields of displacements 

and/or admissible stresses. All the interest of the method consists in this particular 

way of obtaining the solutions. Indeed, the complexity of the phenomena is such that 

in general only approximations are possible. However, this search for approximate 

solutions is performed in a simple and natural manner using the variational method 

since it suffices to employ the same technique of calculation of extremum but on 

subsets of the fields of displacements and/or admissible stresses. This restriction of 

the fields is delicate because it is carried out a priori, taking into account the 

characteristics of the studied elastic solid medium (geometry, stress type, etc.); these 

are the assumptions of condensation, which owe their name to the fact that they 

often lead to mono or bi-dimensional continuous media. 

  

Several other functionals built on the same basic idea could be proposed; we 

have limited ourselves here to the two principal ones, Reissner and Hamilton, which 

will be used alternatively in the following discussion. 
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From a mathematical point of view, the variational formulation is based on 

directional derivation; this operation generally takes rather a long time to carry out 

but can be curtailed considerably by the use of the Euler equations which stem from 

it. For a certain number of standard functionals we have provided the Euler 

equations. The rather heavy formalism requires a little training, for which the 

following chapters will provide plenty of opportunity.  

 



Chapter 3 

Equation of Motion for Beams 

3.1. Objective of the chapter 

The three-dimensional equations of a continuous solid elastic medium vibrations 

provided in Chapter 1 are of a great complexity and in general cannot be solved 

analytically. However, elastic solids used in the mechanical engineering present 

geometrical characteristics which simplify the mathematical analysis of their 

vibrations. These simplifications made a priori have led to the theories of beams, 

plates and shells. In the following chapters we will present the traditional 

simplifications; let us state here that with the use of the variational approach, this 

step will lead to “condensing” the three-dimensional continuous medium into a 

simpler, bi or mono-dimensional, continuous medium. 

Theories of beams consist of constructing mono-dimensional models and in this 

sense represent the simplest continuous media. This simplicity is extremely useful 

since it leads to obtaining analytical solutions of the problem equations and, 

consequently, to studying the vibratory phenomena in a comprehensive fashion. 

Research of the basic vibratory phenomena results in the identification of three 

elementary movements: longitudinal vibrations, vibrations of torsion and bending 

vibrations. Of course, such a decomposition of the beam movements is a 

simplification based on a decoupling linked to the excitation type and the frequency 

band. The study of coupled longitudinal movements, torsion and bending is possible, 

but with an increased difficulty of resolution. 

The equations will be set with the use of Reissner’s functional and, thus, of 

mixed variables: tensor of stress and of displacements. However, purely for 
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purposes of comparison we will provide the results obtained with Hamilton’s 

functional. The approach is based on the calculation of the extremum of functionals 

presented in Chapter 2 and more precisely on the use of the Euler equations. To 

benefit from this chapter the reader must have a good grasp of the variational 

techniques given in Chapter 2. 

3.2. Hypotheses of condensation of straight beams 

The defined mechanical medium is considered (Figure 3.1). Two of the 

dimensions (width b and thickness h) of this mechanical medium are small 

compared to the third (length L). Such a geometrical particularity leads to sides x2 

and x3 of the points of the continuous medium that never move away considerably 

from the axis 1, which is the longitudinal axis of the beam passing through the 

center of the cross-section x2 = 0 and x3 = 0. To exploit the preceding observation 

mathematically we carry out a development of the components of displacement and 

components of the tensor of stress of the solid medium in a Taylor series: 
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+=

  [3.2] 

Taking into account the field of variation of x2 and x3, it appears reasonable to 

truncate the developments [3.1] and [3.2] with linear terms; this is the beam 

hypothesis. 

The problem, therefore, is not solved since the functions  t), 0 , 0 , x(W 1i , 

t), 0 , 0 , x(
x

W
1

2

i

∂

∂
, etc., to be calculated require knowledge of t), x, x, x(W 321i  and 

of t), x, x, x(j 321ij  as well as their first derivatives in 2x and 3x ; however, these are 

precisely the unknowns of the problem. In fact, the developments [3.1] and [3.2] are 

interesting for the shape of displacements and the tensor of the stress which they 

suggest. 
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2 

3 L  

Figure 3.1. Geometry of a beam 

It is this general form which we will retain while writing down the fields of 

displacements and of stress [3.3] and [3.4] as: 

t), x(Wxt), x(Wxt), x(Wt), x, x, x(W 1
3
i31

2
i21

0
i321i ++= ,  [3.3] 

t), x(j xt), x(j xt), x(jt), x, x, x(j 1
3
ij31

2
ij21

0
ij321ij ++= .  [3.4] 

They are formally identical to [3.1] and [3.2], but the functions 
0 2 3 0 2 3

i i i ij ij ij
W  , W  ,W  ,  ,   and j j j  are now independent and must be adjusted in order to 

verify as well as possible the equations of continuous medium vibrations. 

Let us note that the displacement and stress fields [3.3] and [3.4] are too 

simplified to verify in all points the three-dimensional equations of the continuous 

solid elastic media vibrations provided equations [2.1] – [2.5] in Chapter 2 and are 

thus mere approximations of the 3D solutions. 

For beams, we will verify the equations of elastic solid media vibrations only in 

the sense of an average over the cross-section. The equations which will result from 

it will depend only on the variable of space 1x  and of the time; they are thus 

characteristic of a mono-dimensional medium. This transformation of a three-

dimensional medium into a mono-dimensional medium via developments [3.3] and 

[3.4] is sometimes called condensation and the hypotheses expressed by [3.3] and 

[3.4] are the hypotheses of condensation. 

We thus define a beam as a continuous medium the displacement and tensor of 

stresses components of which can be tackled using the condensation hypotheses 

[3.3] and [3.4] with an acceptable precision. 
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Resolving the problem of vibrations of beams in general consists of determining 

the 27 unknown functions of the fields [3.3] and [3.4], that is, to solve 27 paired 

equations. This formidably complex task has not yet been performed. It is preferable 

to simplify the condensation hypotheses [3.3] and [3.4] based on particular 

excitations conditions. This amounts to breaking up the study of the vibrations of 

beams into three elementary cases: longitudinal vibrations, vibrations of torsion and 

bending vibrations. We will follow this procedure by identifying to the best possible 

extent the hypotheses that underlie the equations that will be obtained. 

3.3. Equations of longitudinal vibrations of straight beams 

3.3.1. Basic equations with mixed variables 

Initially, we will define the hypotheses of condensation adapted to the study of 

the longitudinal vibrations of beams; in fact the issue is to preserve only the 

dominating terms in the fields [3.3] and [3.4]. This simplification of displacement 

and stress fields is carried out by a physical analysis of displacements and 

constraints associated with the type of vibration considered. The operation is not 

easy; in our opinion it constitutes the most delicate part of the modeling of dynamic 

behavior of elastic solids. 

Longitudinal vibrations of beams bring about considerable displacements along 

axis 1 and weak displacements along axes 2 and 3; we accept, moreover, that the 

displacement along axis 1 is the same for all the points of the same cross-section, 

that is: 

. 0t), x, x, x(W

, 0t), x, x,x(W

, t), x(Wt), x, x, x(W

3213

32 12

1
0
13211

=

=

=

  [3.5] 

The field of displacement [3.5] is of course a first approximation of the real 

movement; it must be noted that the Poisson effect, which describes the reduction of 

the cross-section when the beam lengthens, is not taken into account. We could 

consider a finer theory taking this effect into account by using the field of 

displacement [3.6]: 

 t), x(Wxt), x, x, x(W

 t), x(Wxt), x, x, x(W

, t), x(Wt), x, x, x(W

1
3
333213

1
2
223212

1
0

13211

=

=

=

  [3.6] 
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To understand the physical significance of the hypotheses, the reader could 

proceed graphically in the following manner. Let us consider a rectangular cross-

section and represent the displacements of its points induced by the term t), x(W 1
0
1  

(Figure 3.2). It is a displacement following axis 1 identical for all the points of a 

given cross-section; it is thus a translation of the cross-sections along axis 1. 

 
)t, (xW 1

0
1  2 

b 

h 

3 

1 

 

Figure 3.2. Graphic representation of displacement t), x(W 1
0

1  

Figure 3.3 depicts the displacement t), x(Wx 1
2
22  representing a movement of 

flattening and swelling of the cross-section along axis 2; the term t), x(Wx 1
3
33  

represents the same type of movement following axis 3. 

These two movements characterize the Poisson effect, that is, the reduction of 

the cross-section when the beam is extended by traction or the increase in the cross-

section when the beam is subjected to a longitudinal compression. 

We leave the task to interpret each term of the fields [3.3] and [3.4] to the reader 

by way of exercise. 
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Figure 3.3. Graphic representation of displacements 
t), x(Wx 1

2
22  and t), x(Wx 1

3
33  

In terms of stresses we suppose that the effect of traction-compression 

dominates, that is that longitudinal stress 11j  is considerably greater than other 

stresses. We pose: 

  [3.7]

 

The fields [3.5] and [3.7] constitute the hypotheses of condensation which we 

consider for the study of longitudinal vibrations; we will thus neglect the Poisson 

effect in the rest of the discussion. 

To obtain the equations of motion and the boundary conditions which must be 

verified by t), x(W 1
0
1  and t), x(j 1

0
11  we use the Reissner’s functional defined in 

Chapter 2 (equation [2.38]) supposing that the external surface forces are nil 0Fi = . 

. 1, 1)(j)(i, if  0 t) ,   x ,   x , x( j 

, t), x(j t) ,   x ,   x ,  x( j 

3 2 1ij 

1
0 
113 2 111 

≠=

= 
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Generally: 
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When restricting Wi and σij to [3.5] and [3.7] and replacing them, taking into 

account the fact that the force of volume if is null in free vibration, it follows: 
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The dependence of the stress and displacements fields being fixed on x2 and x3 

we can integrate over the cross-section of the beam; separating the integral of 

volume into an integral over the length and one over the cross-section, it follows: 
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where S is the cross-section of the beam, possibly a function of 1x  for a beam with a 

variable section. 

Integration over the cross-section condenses the continuous medium since the 

unknown functions are dependent only on the variable of space x1. From a physical 

point of view, this approach makes it possible to verify the equations of elastic solid 

continuous media globally over the cross-section and no longer in every point. The 

reader can realize this by introducing [3.5] and [3.7] into the three-dimensional 

equations given in Chapter 2 (equations [2.1] – [2.5]) and by noting that these 

cannot be verified. 

To obtain the partial derivative equations characteristic of longitudinal vibrations 

of straight beams, it suffices to render the functional [3.10] stationary. Calculation is 

quite simple if the results of Chapter 2 for the Euler equations associated with a 

functional are used. For example, the application of equation [2.97] of Chapter 2, to 

our case, yields: 

0
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and: 

0
j
F

0
11

=
∂

∂
. 

Upon calculation that gives the equation of motion [3.11] and the stress-strain 

relation [3.12]: 

Stress-strain relation: 

] [L, 0  x , t      0)Sj(
xt

W
とS 1
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11
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  [3.11] 

Relation of beam behavior: 

] [L, 0  x  , t      0S Sj
x

W
S 11111

0
11

1

0
1 ∈∀∀=+

∂

∂
− .  [3.12] 

By application of equations [2.99] of Chapter 2, we obtain the boundary 

conditions: 

0
1 1 1 1

0 0
1 1 11 1 1

 either   W (x  ,t) 0     t  ,  x 0   and   x L

 or   W (x  ,t) 0 Sj 0     t  ,  x 0   and   x L .

= ∀ = =

≠ ⇒ = ∀ = =

  [3.13] 

The boundary conditions are given in the form of an alternative which is always 

interpreted as the nullity of a displacement or that of a constraint. In our case we will 

speak of a clamped end when displacement is imposed as nil and of a free end when 

the displacement is left free of all movement. Taking into account [3.13], these two 

boundary conditions will be translated mathematically by: 

0

1

0

11

free end:                    W 0 ,

clamped end:          Sj 0 .

=

=
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A beam in longitudinal vibration will thus take three types of basic boundary 

conditions: 

( ) ( )0 0
clamped-clamped:   W 0 ,t 0   and   W L ,t 0     t1 1= = ∀ ; [3.14] 

( ) ( )0 0
free-clamped:    Sj 0 ,t 0   and   W L ,t 0    t11 1= = ∀ ; [3.15] 

( ) ( )0 0

11 11free-free:   Sj 0 ,t 0   and   Sj L ,t 0    t= = ∀ . [3.16] 

3.3.2. Equations with displacement variables 

In order to limit the number of unknown functions and equations, we often 

proceed by substitution in the equations in order to make the variables of stress 

disappear and thus to formulate the problem using only displacement variables. 

Let us draw from [3.12] the value of t), x(j 1
0
11  according to t), x(W 1

0
1 : 
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For an isotropic material with a Young modulus E, we have E/1S1111 =  it 

follows: 

t), x(
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∂
= . [3.18] 

Substituting [3.18] in [3.11], we obtain the equation of the free vibrations with 

displacement variables: 
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Substituting [3.18] in [3.13] we obtain the boundary conditions in displacement 

variables: 

0
1 1 1 1

0
1

1 1 1
1

 either  W (x  ,t) 0     t  ,  x 0  and  x L

W
 or   ES (x  ,t) 0     t  ,  x 0  and  x L .

x

= ∀ = =

∂
= ∀ = =

∂

 [3.20] 

In the particular case of the homogenous beam (it is the simplest case, which is, 

in fact, one of the rare cases that can be solved without difficulty (see Chapter 5)) it 

is supposed that E,  and Sρ are constant at every point of the beam which leads to 

the equations: 

Equation of vibrations: 
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Boundary conditions: 

0
1 1 1 1

0
1

1 1 1
1

either   W (x  ,t) 0     t  ,  x 0   and   x L

W
or   ES (x  ,t) 0     t  ,  x 0  and   x L .

x

= ∀ = =

∂
= ∀ = =

∂

  [3.22] 

3.3.3. Equations with displacement variables obtained by Hamilton’s functional 

The formulations in displacements no longer consider stresses as variables 

independent of displacement, but as quantities related by the three-dimensional 

stress-strain relation: 

klijklij i Cj = . [3.23] 

The hypotheses of condensation should thus only relate to displacements, the 

values of the stresses being the direct consequence of respecting [3.23]. Taking 
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again the field of displacements [3.5] we deduce with the help of [3.23] the 

associated field of stresses; for an isotropic material we have: 

. 0jj  ,  0jj  ,  0jj

,  WCj  ,   WCj  ,   WCj

233231132112

0
1,1331133

0
1,1221122

0
1,1111111

======

===
 [3.24] 

The field of stresses [3.24] is different from [3.7] since the components of the 

tensor of stresses 22j  and 33j  are non-nil since the coefficients 2211C  and 3311C  

are non-nil. It is, in fact, less realistic since from a physical point of view 22j  and 

33j  must be weak; indeed, the boundary conditions in any point of the external 

surface of the beam are that of a free surface: 

0n j jij = ,  [3.25] 

where the quantities jn are the direction cosines of the external normal vector n
f

 to 

the external surface of the beam. Their values are illustrated in Figure 3.4. 

Let us place ourselves at the point )x, /2h, x( 31  on the external surface of the 

beam )0n, 1n, 0n( 321 === . We deduce from [3.25] that: 

0)x, h/2, x(j 3122 = . 

Placing ourselves at other points of the surface, we would obtain in the same 

manner: 

0)2b, x, x(j   ,   0)2b, x, x(j   ,   0)x,2h, x(j 213321333122 =−==− . 
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Figure 3.4. Normal vector external to surface of the beam 
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The thickness and the width of the beam are small by hypothesis and the stresses 

thus only vary a little throughout the cross-section, that is 0  and  0 3322 ≈≈ σσ , 

which is contradictory with the hypotheses [3.24] but corresponds perfectly to [3.7]. 

We see here the great disadvantage of the formulation with displacements, which 

associates a much less realistic state of stresses to a realistic simplification of the 

field of displacements. 

Using the field of displacements [3.5] in Hamilton’s functional (equation [2.55], 

Chapter 2) it follows after integration over the cross-section: 
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The calculation of the stationarity of the functional [3.26], taking into account 

the results of Chapter 2, leads to the equations: 

Equation of vibrations: 
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Boundary conditions: 

0
1 1 1 1

0
1

1111 1 1 1
1

either    W (x  ,t) 0     t  ,  x 0  and  x L

W
or  C S (x  ,t) 0     t  ,  x 0  and  x L .

x

= ∀ = =

∂
= ∀ = =

∂

  [3.28] 

Equations [3.27] and [3.28] correspond to [3.19] and [3.20]. There exists, 

however, a difference on the level of the equations coefficients since 

11111111 S1C ≠ . For an isotropic material, for example, we have E1S1111 =  and 

)2(1  ち)(1  )ち(1 EC 2
1111 ν−+−= . 
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The comparison with experience shows that the results drawn from equations 

[3.19] and [3.20] are more satisfactory than those drawn from [3.27] and [3.28]. This 

established fact has led the users of formulations with displacements to amend the 

three-dimensional stress-strain relation in the case of beam or plate. We pose for the 

beams: EC1111 = . At this cost the formulations with displacements and mixed 

formulations lead to the same results. 

3.4. Equations of vibrations of torsion of straight beams 

3.4.1. Basic equations with mixed variables 

Once again we adopt the methodology applied in the preceding section. It is thus 

necessary to define the hypotheses of condensation as the first step. The movement 

of torsion is characterized by a rotation of the cross-sections around the longitudinal 

axis of the beam; the stresses that result from it are of a shearing type. The fields of 

displacements and stresses of the beam are reduced under these conditions to: 

;  t), (x g  x t), x, x, x(W

, t), (x g  x t), x, x, x(W

, 0t), x, x, x(W

123213

133212
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+=
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=

 [3.29] 

. t), (x  kxjj  ,  t), (x  kxjj

, 0jj  ,  0j  ,  0j  ,  0j

123113132112

3223332211

+==−==

=====
  [3.30] 

To depict the field of displacements [3.29] we have traced the displacements in a 

cross-section in Figure 3.5. The quantity t), g(x1  is the angle of torsion 

characteristic of the rotation of the cross-sections. The stresses associated with the 

movement of torsion are pure shear stresses. 

Note: the hypotheses of condensation [3.29] and [3.30] are applicable to beams 

having a cross-section symmetrical with respect to axis 1 (in particular, circular). A 

non-symmetrical cross-section would introduce a coupling with the bending. 
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Figure 3.5. Displacements in a cross-section corresponding 
to the field of displacement [3.29] 

Let us calculate the Reissner’s functional of the problem by introducing [3.29] 

and [3.30] in equation [2.38] of Chapter 2. For a beam homogenous in the cross-

section and consisting of an isotropic material, it follows (the calculation is left to 

the reader as an exercise): 
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 [3.31] 

( )2 2
0 2 3 2 3

S

with   I x x   dx  dx  .= +∫ ∫  

Let us now apply the results of Chapter 2 concerning the extremalization of the 

functional [3.31]. Noting 4G1S1212 =  where G is the Coulomb module of material, 

we obtain: 

Equation of motion: 

] [L, 0  x  , t      0) I(
xt
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とI 10
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∂
. [3.32] 
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Stress-strain relation: 

] [L, 0  x  , t      
G

k
I

x

g
I 10

1
0 ∈∀∀=
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∂
. [3.33] 

Boundary conditions: 

1 1 1

1 0 1 1 1

either   g (x  ,t) 0     t  ,  x 0  and  x L

or   g (x  ,t) 0 I  k  (x  ,t) 0    t  ,  x 0  and  x L .

= ∀ = =

≠ ⇒ = ∀ = =

  [3.34] 

The term t), (x  kI 10  is homogenous with a torque, it is the torsional moment 

which is opposed to the rotation of torsion t), (x g 1 . 

Equations [3.32], [3.33] and [3.34] define the problem of pure torsion of 

isotropic beams; they result from a simplification of three-dimensional movement, 

realistic for beams with cross-sections symmetrical or nearly symmetrical with 

respect to axis 1. 

3.4.2. Equation with displacements 

It is enough to draw t), (x k 1  on the basis of t), (x g 1  from equation [3.33]: 

] [L, 0  x  , t      
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then to replace t), (x k 1 with its expression resulting from [3.35] in the equation of 

motion [3.32], that is: 
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Similarly, we obtain for the boundary conditions: 

1 1 1

1 0 1 1 1
1

either   g (x  ,t) 0     t  ,  x 0  ,  x L

g
or   g (x  ,t) 0 I  G (x  ,t) 0    t  ,  x 0  ,  x L .

x

= ∀ = =

∂
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∂

  [3.37] 

The term ( )t, x
x

g
G I 1

1
0 ∂

∂
 is the torsional moment expressed on the basis of the 

angle of torsion. 

Let us examine the particular case of the homogenous isotropic beam: it is the 

simplest case. It is supposed that G,    and  I0ρ  are constants. The equations with 

displacements are simplified and become: 

Equation of vibrations: 

] [L, 0  x  , t      0
x

g
GI

t

g
とI 12

1

2

02

2

0 ∈∀∀=
∂

∂
−

∂

∂
. [3.38] 

Boundary conditions: 

1 1 1

1 0 1 1 1
1

 either   g (x  ,t) 0     t  ,  x 0  ,  x L

g
 or   g (x  ,t) 0 I  G (x  ,t) 0    t  ,  x 0  ,  x L .

x

= ∀ = =

∂
≠ ⇒ = ∀ = =

∂

 [3.39] 

Note: 

a) The boundary conditions of a beam in vibrations of torsion are of two types: 

– clamped end: 0t), (x g 1 =  (zero rotation of the cross-section); 

– free end: 0t), x(
x

g
G I 1

1
0 =

∂

∂
 (zero torque). 

A beam in vibration of torsion could thus be clamped-clamped, clamped-free or 

free-free. 
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b) The equations of vibrations of torsion of homogenous and isotropic beams 

[3.38] and [3.39] are formally identical to the equations of longitudinal vibrations of 

homogenous and isotropic beams [3.21] and [3.22]. This similarity is surprising 

enough taking into account the difference of the two movements considered; on the 

other hand, it is very practical since it makes it possible to study the two vibratory 

movements in the same way. In fact, equations [3.21], [3.22] and [3.38], [3.39] are 

also found in the two problems of sound pipes and of vibrating cords. Equation 

[3.21] or [3.38], representative of several vibratory phenomena, has received the 

name of the “waves equation”. 

c) The representations with displacements have the advantage of limiting the 

number of unknowns while making the components of the tensor of stresses 

disappear; however, many students use the equations with displacements without 

noting the relation of displacements with the components of the tensor of stresses. 

Such a presentation of the problem gives access to resonance frequencies, but can be 

misleading when we want to determine the most affected parts of the structure. It is 

indeed common to assimilate “strong stress” with “strong displacement”, which in 

general is not true; according to the cases in question, a vibratory amplitude antinode 

corresponds to a stresses node or antinode. 

d) The direct formulation with displacements using the hypotheses of 

condensation [3.29] in the Hamilton’s functional again yields equations [3.38] and 

[3.39]. For the problem of torsion there is not only formal similarity between the 

direct formulation with displacements and that resulting from the formulation in 

mixed variables, as is the case for longitudinal vibrations, but there is a perfect 

correspondence of the two formulations. 

3.5. Equations of bending vibrations of straight beams 

3.5.1. Basic equations with mixed variables: Timoshenko’s beam 

The bending of straight beams represents a simultaneously transverse and 

longitudinal vibratory movement (rotation of the cross-sections), introducing 

longitudinal and shearing stresses. Setting out again the basic hypotheses of 

condensation of beams [3.3] and [3.4] and preserving only the terms prevalent in 

this vibratory state, we define the hypotheses of condensation of bending of beams: 

axis 1 coincides with the middle fiber of the beam, that is, the locations of the 

centers of gravity of the cross-sections. 
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Displacements: 

. 0t), x, x, x(W

, t), x(Wt), x, x,x(W

, t), x(Wxt), x, x, x(W

3213

1
0
232 12

1
2

123211

=

=

=

  [3.40] 

Figure 3.6 shows the displacements of bending, which correspond to a dominant 

movement of translation of cross-sections along axis 2 and a rotation of the cross-

sections with respect to axis 3. 

Tensor of stresses: 

. 0t), x, x, x(j   ,   0t), x, x, x(j

, t), x(j t), x, x, x(j   ,   0t), x, x,x(j

, 0t), x, x, x(j   ,   t), (xj xt), x, x, x(j

3212332113

1
0
123211232 133

321221
2
11232111

==

==

==

  [3.41] 

Note: 

a) Relations [3.40] and [3.41] introduce an effect of shearing via the term 0
12j ; 

taking it into account is characteristic of Timoshenko’s hypothesis. 

b) These hypotheses correspond to bending in the (1, 2) plane. We could also 

introduce bending into the (1, 3) plane by permutation of indices 2 and 3 in [3.40] 

and [3.41], and define the bending in space by summing up the fields. 

c) These hypotheses are realistic if the cross-section presents symmetry with 

respect to axis 3. 

Solving the problem of bending consists of determining the four unknown 

functions 0
12

2
11

0
2

2
1 , , W, W σσ . We will employ Reissner’s functional to establish the 

equations which these unknown functions must verify. 

 

We place ourselves within the framework of an orthotropic material whose 

orthotropism planes coincide with the planes defined by our system of axes (1, 2, 3). 

In this case the stress-strain relation is given by: 
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Figure 3.6a. Transverse displacement t), x(W 1

0
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It is a translation of the cross-section along axis 2 
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Figure 3.6b. Longitudinal displacement t), x(Wx 1
2

12 . 

It is a rotation of the cross-section with respect to axis 3 

The correspondence between the tensors ijklS  and ijklC  has been detailed in 

many works. However, to illustrate this correspondence, let us take the term 12i . It 

comes with the 4th line from the preceding system: 12121212 2j Si = . We also had: 

12121212 2i Cj = . The identification leads to: 

1212
1212

4C

1
S = . [3.43] 

Injecting the fields [3.42] and [3.43] into Reissner’s functional [2.38], it follows: 
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For the type of material considered, 0S1212 =  (and all the symmetrical terms). 

Noting 2
3 2

S S

I x  ds  and  S ds= =∫ ∫  after integration on the cross-section, it 

follows: 
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  [3.45] 

The calculation of extremum of the functional [3.45] leads to the equations: 

] [L, 0  x  , t      0)j I(
xt

W
とISj 1

2
113

1
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1
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3
0
12 ∈∀∀=

∂

∂
+

∂

∂
−− ,  [3.46] 

] [L, 0  x  , t      0)Sj(
xt

W
とS 1

0
12

1
2

0
2

2

∈∀∀=
∂

∂
+

∂

∂
− ,  [3.47] 

] [L, 0  x  , t      0Sj S
x

W
W S 1

0
121212

1

0
22

1 ∈∀∀=+⎟
⎟
⎠

⎞
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∂

∂
+− ,  [3.48] 

] [L, 0  x  , t      0j S
x

W
 I 1

2
111111

1

2
1

3 ∈∀∀=⎟
⎟
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⎞
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−

∂

∂
− . [3.49] 
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Relations [3.46] and [3.47] are the equations of motion following axes 1 and 2; 

relations [3.48] and [3.49] are the stress-strain relation of the beam for 0
12j  and 2

11j . 

The boundary conditions are given by the relations: 

0 0 2 2
2 12 1 3 11

1 1

W 0  or  Sj 0  and  W 0  or  I j 0

                                                                t  ,  x 0  and  x L.

= = = =

∀ = =

  [3.50] 

The term 0
12Sj  is homogenous with a force which is opposed to transverse 

displacement, which is called shearing force; it is introduced by the shearing 0
12j . 

The term 2
113jI  is homogenous to a torque opposed to the rotation of cross-sections 

and is called bending moment. 

There will thus be a set of four boundary conditions possible for each end of the 

beam: 

a) 0  Wand  0W 2

1

0

2 ==  

The two movements along axes 1 and 2 are blocked. The end will be said to be 

clamped; 

b) 0j I  and  0W 2

113

0

2 ==  

Transverse movement is blocked, longitudinal movement is free. The end will be 

said to be supported; 

c) 0j I  and  0Sj 2

113

0

12 ==  

Both movements, longitudinal and transverse, are free, the constraints which 

correspond to them are nil, and the end is free; 

d) 0Sj  and  0W 0

12

2

1 ==  

Longitudinal displacement is nil; transverse displacement is free. This boundary 

condition, difficult to realize in practice, is said to be guided. 

A bending beam could thus be clamped-clamped, clamped-supported, etc. 

3.5.2. Equations with displacement variables: Timoshenko’s beam 

It is enough to draw 0
12j  and 2

11j  from equations [3.48] and [3.49]: 
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] [L, 0  x  , t      
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1111

2
11 ∈∀∀

∂

∂
= ,  [3.52] 

then to introduce these expressions into equations [3.46] and [3.47] which become: 
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  [3.54] 

The boundary conditions [3.50] are given by: 

0
0 2 2
2 1 1 1

1212 1

WS
either   W 0,     or W 0  t,  x 0,  x L

4S x

⎛ ⎞∂
= + = ∀ = =⎜ ⎟⎜ ⎟∂⎝ ⎠

  [3.55] 

and 

2
2 3 1

1 1 1
1111 1

I W
either   W =0,    or 0  t,  x 0,  x L.

S x

∂
= ∀ = =

∂
 [3.56] 

The writing with displacement variables reveals only two unknowns: the 

transverse displacement and the rotation of cross-sections. In practice, rotations of 

cross-sections are not accessible in experiments and the principal demonstration of 

the bending of beams is transverse displacement 0
2W . It is thus interesting to give 

only one equation function of this quantity. This is possible for homogenous beams 

by carrying out the following operations on equations [3.53] and [3.54]: we draw the 

value of 1
2

1 xW ∂∂  from [3.54] according to 0
2W , and we then derive [3.53] with 

respect to 1x and replace 1
2

1 x/W ∂∂ by the expression obtained. This processing that 

we do not carry out in detail leads to the equation: 
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  [3.57a] 

If we introduce the modules of Coulomb G and Young E with: 

1111 1212E 1/ S  and G 1/ 4S ,= =  

while noting 0
2W  as W to reduce the writing, it follows: 

0
t x
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+
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∂
. [3.57b] 

It is the most synthetic equation of beams with shearing and rotational inertia; let 

us recall that it is limited to homogenous beams. 

A correction of the modulus of rigidity noted G' is often introduced with: 

gGG'= . 

The multiplication coefficient α  traditionally introduced to characterize the 

correction of shearing obviously does not have anything to do with the angle of 

torsion introduced in section 3.3. 

This correction appears because the constant form of the shear stress throughout 

the thickness of the beam is very approximate. To realize the approximation, it is 

enough to note that to verify the boundary condition of the free surface, the shearing 

stress must be nil over these surfaces, which is not verified by the hypotheses. 

We may clearly see that the form of the cross-section will have an influence on 

the correction that has to be applied. Various authors have been interested in this 

problem and have calculated the α  corrections that have to be applied by comparing 

the solution with constant stress and a precise calculation of the shearing stress. We 

provide some corrections of the shearing modulus taken from the following 

references: Cowper [COW 66], Dharmarajan and McCutchen [DHA 73]: 
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a) beam with a circular cross-section made of an orthotropic material: 

13133

3

Gち27E

6E
g

−
=  ; 

3E  is the Young modulus, 13ν  is the Poisson’s ratio, and 13G  is the shearing 

modulus. 

b) beam with a circular cross-section made of an isotropic material: 

( )
6ち7

ち1 6
g

+

+
=  ; 

c) beam with a rectangular cross-section made of an orthotropic material: 

13133

3

Gち6E

5E
g

−
=  ; 

d) beam with a rectangular cross-section made of an isotropic material: 

( )
11ち12

ち1 10
g

+

+
=  ; 

e) hollow tube with a circular cross-section (a and b are the interior and exterior 

diameters) made of an orthotropic material: 

2)18m18m2m(Gち7)27m27m7m(E

)m(1 1)(m6E
g
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24
3

−−+−−−+
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=  

with abm = . 

For thin-walled tubes 1m ≈ , the expression of g  is simplified: 

13133

3

Gち2E

E
g

−
=  ; 

f) hollow tube with a circular cross-section made of an isotropic material (case of 

the thin wall 1m ≈ ): 

ち2

ち)(1 2
g

+

+
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3.5.3. Basic equations with mixed variables: Euler-Bernoulli beam  

The hypotheses that we will describe rest on the fact that shearing stress 0
12j  is 

generally low and can thus be neglected in the first approximation. By using the 

relation [3.48] which in Timoshenko’s model connects this shearing stress with the 

displacements 2
1W  and 0

2W , we note that if 0j0
12 = , we have 1

0
2

2
1 xW W ∂∂−= . 

These observations result in adopting the following hypotheses of condensation 

when transverse shearing is neglected: 

Displacements: 
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  [3.58] 

The displacements translate the equality of the rotation angle of the cross-

sections with the slope of transverse displacement. 

Tensors of stresses: 

. 0t), x, x, x(j  ,  0t), x, x, x(j

, t), x(j t), x, x, x(j  ,  0t), x, x, x(j

, 0t), x, x, x(j  ,  t), (xj xt), x, x, x(j
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  [3.59] 

Upon introducing these displacements and stress fields into the Reissner’s 

functional (equation [2.38], Chapter 2), it follows after calculations: 
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  [3.60] 
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The calculation of extremum of the functional [3.60] leads to the equations: 

Equation of motion: 
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Stress-strain relation: 
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Boundary conditions: 

0 2
2 3 11 1 1
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. [3.64] 

3.5.4. Equations of the Euler-Bernoulli beam with displacement variable 

To obtain the equations of Bernoulli’s beam as a function of the transverse 

displacement of cross-sections variable t), x(W 1
0
2 , it suffices to draw t), x(j 1

2
11  from 

equation [3.62] and then to replace in [3.61], [3.63] and [3.64]: 
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Equation of motion: 
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Boundary conditions: 

2 0
0 3 2
2 2

1 1111 1
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I W
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x S x
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To obtain the traditional equation of bending beams vibrations we must introduce 

an additional simplification neglecting the effects of rotational inertia of the beam. 

We thus neglect 
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 in [3.66], which while replacing 1111S1  by 

1E  (Young’s modulus of material in the longitudinal direction) yields: 

Equation of motion: 
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Boundary conditions: 

2 0
0 2
2 3 1 1 12

1 1
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x x
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and 
0 2 0
2 2

3 1 1 12
1 1

W W
either  0  ,  or I  E 0     t  ,  x 0  and x L

x x

∂ ∂
= = ∀ = =

∂ ∂
.  [3.70b] 

Note: 

a) Vibratory movement is described by equations which no longer reveal the 

stresses, but the latter are of course always present and can be calculated with the 

expression [3.65] as long as t), x(W 1
0
2  is known. 

b) Equations with displacements [3.69] and [3.70] could be obtained directly 

with the Hamilton’s functional, but would require a modification of the elastic 
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constants of three-dimensional material, as for the longitudinal beams vibrations 
(see section 3.3.3). The functional to be used in this case is given by: 
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c) In the case of isotropic material, equations [3.69], [3.70] and [3.71] of course 
remain valid; the longitudinal Young modulus is then simply the Young modulus of 
the isotropic material. 

d) The quantity 
⎟
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x
, appearing in [3.70] and placed in duality 

with the displacement 0
2W , is homogenous to a force: it is called the shearing force. 

The quantity 
2
1

0
2

2

31 x

W
I E

∂

∂
, appearing in [3.71] and opposed to the rotation of the 

cross-sections 1
0
2 xW ∂∂  is homogenous to a torque: it is called bending moment. 

3.6. Complex vibratory movements: sandwich beam with a flexible inside 

The hypotheses of condensation which we have used in the preceding sections 
describe the three elementary vibratory movements of beams homogenous in the 
cross-section. The non-homogenous beam has more complex states of stresses and 
displacements in its breadth, but they can be reconstituted on the basis of the 
elementary fields of bending, torsion, traction-compression. As an example we 
consider the case of a sandwich beam with a soft core. 

The beam consists of three layers: the two on the outside are made of rigid 
materials (high elasticity modulus), while the core is made of a soft material (weak 
elasticity modulus). 
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Let us suppose that the beam is excited transversely; the rigid layers will have a 

movement of bending, and the soft internal layer will have a movement imposed by 

the displacement of the rigid layers, as shown in Figure 3.7. We will note the 

transverse displacement as t),W(x  rather than t), x(W 1
0
2  in order to avoid 

heaviness of writing and we use a local reference for each layer: 
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These fields of displacements make it possible to ensure the continuity of 

displacements at the interfaces; the reader can check it by calculating displacements 

in 2ex 12 =  for the first layer and 2ex 22 −=  for the layer 2, as well as in 

2ex 22 =  and 2ex 32 −=  for layers 2 and 3. 

Longitudinal displacements are represented in Figure 3.7; we can notice that 

layers 1 and 3 have neutral fibers (zero displacement) in the middle of the layers, 

whereas the flexible internal layer has a shifted neutral fiber. 
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Figure 3.7. Deformation of the cross-section of the sandwich beam 

To obtain the equation of vibrations of the sandwich beam, we will use 

Hamilton’s functional rather than Reissner’s functional, which will save us from 

introducing independent stress fields. 

In expression [3.76], iと is the density of material of layer i, iS  is the surface of 

section i, i
1111C  is the longitudinal module of layer i, and 2

1212C  is the shearing 

modulus of layer 2. 
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After integrating over the cross-sections of the layers and regrouping terms, we 

obtain: 
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where b is the width of the sandwich beam and ie  is the thickness of layer i: 
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The calculation of the extremum of the functional is performed thanks to the 

results of Chapter 2. The application to the functional [3.76] yields the equation of 

motion [3.77] and the boundary conditions [3.79] and [3.80]: 
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Using the note to section 3.3.3, we will replace i
1111C  by Young’s modulus iE ; 

2
1212C  is equal to the Coulomb modulus 2G . Moreover, if we suppose that the 

characteristics are constant with x and that rotational inertia is neglected, the 

equation becomes: 
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The boundary conditions ∀t, x1 = 0 and x1 = L to be verified are given by: 

3
WW

either   W 0  ,  or  G K (E I E J E I ) 02 2 1 1 2 2 3 3 3x x

∂∂
= − + + =

∂ ∂
  [3.79] 

and: 

2
WW

either   0  ,  or  (E I E J E I ) 01 1 2 2 3 3 2x x

∂∂
= − + + =

∂ ∂
. [3.80] 

These equations describe the vibratory behavior of the sandwich beam; however, 

to be realistic, it is necessary that the hypotheses which have led to the fields of 

displacements [3.72], [3.73] and [3.74] are respected; that is, 3212 EE  ,  EE <<<< , 

to have a soft internal layer with respect to the surface layers. From a practical point 
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of view, this situation occurs when the internal layer consists of a viscoelastic 

material and the surface layers consist of rigid materials; equations [3.78], [3.79] 

and [3.80] are thus representations of the vibrations of beams with an internal 

damping layer. However, they are not usable for the sandwich beams with rigid 

cores. 

The example that we have treated shows that using the fields of displacements 

associated with elementary vibratory states (bending, torsion, traction-compression), 

it is possible to reconstitute complex vibratory states, which appear in non-

homogenous beams. The hypotheses of condensation adapted to the description of a 

complex movement are, however, not easy to determine without certain practice. 

The modeling of damping properties of multi-layer beams have brought about 

several models based on different hypotheses of condensation; some references are 

provided in the bibliography. 

3.7. Conclusion 

In this chapter we gave the equations governing longitudinal, transverse and 

torsion vibrations of straight beams. In the following chapters these equations will 

be used as a basis to describe the vibratory behavior of beams. 

The method used for setting up the equations calls upon the functionals of 

Reissner and Hamilton presented in Chapter 2. We have also stuck to clearly 

specifying the hypotheses leading to the equations, which will make it possible for 

the reader to determine their limits of validity and thus to be critical of the results of 

an estimated calculation. From a practical point of view, the method breaks up into 

three parts: 

a) establishing of condensation hypotheses which restrict the stresses and 

deformations field of the continuous medium, taking into account its form (truncated 

Taylor development) and external force applied (longitudinal, transverse, torsion); 

b) calculating the functional taking into account the hypotheses of condensation; 

c) calculating of the extremum of the functional. 

The delicate part of work is undoubtedly establishing the hypotheses of 

condensation. An essential goal of this chapter is to show the reader how these 

hypotheses are established in the traditional cases and how calculations can be 

extended to more complex cases such as that of the sandwich beams with a soft core 

that we have addressed. 
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Chapter 4 

Equation of Vibration for Plates 

4.1. Objective of the chapter 

Plates are continuous media with a more complicated mechanical behavior than 

that of beams. The greatest complexity comes from the fact that the description of 

plates’ vibrations introduces functions with two variables of space. Thus, we have to 

deal with a two-dimensional (2D) medium. 

The set up of equations is fundamentally identical to that of beams. We will use 

an energy formulation based on Reissner’s functional with independent 

displacement and stress fields, and then kinematic hypotheses revealing two 

elementary movements: in plane vibration (membrane effect) and transverse 

vibrations. Various simplifying hypotheses will be presented leading to the model of 

Mindlin and then of Love-Kirchhoff. We will show, in particular, that the generally 

used equations are the result of very strong simplifying hypotheses and that these 

equations are often employed outside of their valid domain. 

The plate being two-dimensional, we may sometimes find it beneficial to use 

polar rather than Cartesian co-ordinates. We will describe the passage between the 

two descriptions and will eventually arrive at the Love-Kirchhoff plate equations in 

polar co-ordinates. 
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4.2. Thin plate hypotheses 

4.2.1. General procedure 

We apply the same steps as for beams based on the fact that one of the 

dimensions of the structure (thickness h, direction x3) is small compared to the width 

b and the length l. We can then develop the fields of displacements and stress in 

Taylor series and obtain a suitable approximation by truncating these fields to the 

first order: 

t),0, x, x(
x

W
xt),0, x, x(Wt), x, x, x(W 21

3

i
321i321i ∂

∂
+≈ ,  [4.1] 

t),0, x, x(
x

j
xt),0, x, (x jt), x, x, (x j 21

3

ij
321ij321ij ∂

∂
+≈ . [4.2] 

The expressions [4.1] and [4.2] suggest seeking an approximation of the fields in 

the forms [4.3] and [4.4]: 

t),x,xWxt),x,xWt),x,x,xW  2 1(3
i3 2 1(0

i 3 2 1(i += ,  [4.3] 

t), x, (x jxt), x, (x jt), x, x, (x j 21
3
ij321

0
ij321ij += .  [4.4] 

As in theory of beams, the fields of displacements [4.3] and stresses [4.4] contain 

a set of vibratory states that are generally separated into independent movements so 

as to be able to study them easier. We separate the vibrations of plates into two 

elementary vibratory movements: vibrations in the plane of the plate and transverse 

vibrations, this second type of vibration being by far the most present in the 

problems encountered in practice. 

4.2.2. In plane vibrations 

This type of vibration corresponds to the longitudinal vibrations of beams. It is 

supposed that transverse displacement is nil: 

0t),x,x,xW  3 2 1(3 = ,  [4.5a] 
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and those displacements in the directions 1 and 2 are constant throughout the 

thickness: 

t),x,x(Wt),x,x,xW  2 1
0
1 3 2 1(1 = ,  [4.5b] 

t),x,x(Wt),x,x,xW  2 1
0
2 3 2 1(2 = . [4.5c] 

The field of tensors of stress is copied from that of beams and leads to: 
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other stresses being supposed to be nil. 

In the plate hypothesis, longitudinal vibrations in the plane are accompanied by 

longitudinal stresses but also by shearing )j( 12 . 

4.2.3. Transverse vibrations: Mindlin’s hypotheses 

This vibratory movement is counterpart beams bending movement. We will 

employ the hypotheses extrapolated from those described for beams in Chapter 3. 

The field of displacements is thus provided by: 
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Transverse displacement is supposed to be constant throughout the thickness and is 

accompanied by longitudinal movements produced by rotations around axes 1 and 2. 
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Stresses associated to [4.7] are of the form [4.8]: 
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The hypotheses [4.7] and [4.8] correspond to those of Mindlin; they are 

characterized by taking transverse shearing into account. This effect is negligible for 

isotropic materials at a low frequency. The Love-Kirchhoff theory, presented 

hereafter, is then sufficient. For anisotropic materials at a high frequency; taking 

into account transverse shearing is necessary for a good theory – experiment 

comparison. Let us note that the comment made in Chapter 3 on the incompatibility 

of shearing stresses 13j  and 23j  with the condition of free surface for 2hx3 ±=  is 

also present here. Indeed: 
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whereas we should have zero constraints on the external surfaces of the plate. This 

comes from too strong a truncation of the developments [4.1] and [4.2]; the 

parabolic term would make it possible to get rid of the incompatibility but with very 

heavy calculations. The most frequently adopted procedure consists of keeping this 

simple model, the terms 0
13j  and 0

23j  appearing as the average (constant in the 

thickness) of variable stress in the thickness. This approach leads, as has been 

described for beams, to a correction of the shearing constants. 

4.2.4. Transverse vibrations: Love-Kirchhoff hypotheses  

These hypotheses are equivalent to the Euler-Bernoulli hypotheses for beams: 

they amount to supposing that transverse shearing is nil. For displacements it 

consists of equalizing rotations around axes 1 and 2 describing displacements in the 

thickness with the respective slopes of transverse displacement. 
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The associated stress field is: 
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4.2.5. Plates which are non-homogenous in thickness 

Plates homogenous through thickness are the ones most generally found in 

practice; they present a remarkable property of decoupling vibrations in the plane 

and transverse vibrations, which can thus be studied separately. When mechanical 

characteristics vary through thickness of the plate, movements are coupled and must 

be studied together; we will clarify this point later on. The fields of displacements to 

be considered are provided by the superposition of the two fields describing 

movements in the plane and transverse movements. For example, for the Mindlin’s 

plate, the field of displacements to be considered is the superposition of [4.7] and 

[4.5]: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

+=

+=

. t), x, x(Wt), x, x, x(W

t), x, x(Wxt), x, x(Wt), x, x, x(W

t), x, x(Wxt), x, x(Wt), x, x, x(W

21
0
33213

21
3
2321

0
23212

21
3
1321

0
13211

  [4.11] 



116     Vibration in Continuous Media 

4.3. Equations of motion and boundary conditions of in plane vibrations 

The equations are set up using the variational method based on Reissner’s 

functional given in Chapter 2 (equation [2.38]) that we particularize here for the 

case of free vibrations, that is, without an external force of excitation: 
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It suffices now to use the approximations [4.5] and [4.6] of the fields of 

displacements and stresses in the functional [4.12]: 
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In the preceding expression we have supposed that the material was 

homogenous, that the thickness of the plate h  was constant and that the stress-strain 

relation of material had zero terms )0S(S 12221211 == , which is verified for an 

isotropic material, or a material which is orthotropic, the orthotropy axes being 1 

and 2. We have used S to denote the surface of the plate. 

Taking into account integration over the thickness, the description of plate 

vibrations is performed by functions of a space with two dimensions defined over a 

surface S. For this reason the plate is compared to a 2D medium with surface S and 

contour S . 

The calculation of the extremum of the functional is carried out using the Euler 

equations which we have provided in Chapter 2 (equations [2.88] to [2.92]). The 

functional having only first derivatives, many of the terms of the Euler equations 

will be nil, in particular, only one group of boundary conditions will be considered 

([2.89] and [2.90]). 
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There are five equations to verify on the surface of the plate S, since there are 

five unknown functions. They are obtained by the calculation of the Euler equation 

with respect to each unknown function 0
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Equations [4.14] and [4.15] are the equations of motion in directions 1 and 2, 

while equations [4.16], [4.17] and [4.18] represent the stress-strain relation 

associated with the movements in the plane of the plate. 

The associated boundary conditions are given by [2.89] and [2.90] in any point 

of the boundary line S  defining the plate where 1n  and 2n  are the direction cosines 

of the external normal vector (see Figure 4.1): 
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and: 

0

2

0 0

12 1 22 2
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or         :    j  n j  n 0 .
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⎪
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  [4.20] 

 2 

S
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n2

1

2 

S

n1

n
f

 

Figure 4.1. Representation of a plate with a surface S  and an external normal  
unit vector n

f
in a point of its boundary line S  

These boundary conditions are interpreted physically as the nullity of 

displacement (clamped) or of stresses placed in duality (free boundary). 

 

From equations [4.14] – [4.20] a formulation with displacements can be drawn. 

It is enough to express the three components of the tensor of the stresses 
0 0 0

11 12 22j  ,j   and  j with respect to 0
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2W  thanks to the three relations [4.16], 

[4.17] and [4.18]: 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂∂+∂∂

∂∂

∂∂

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

1
0
22

0
1

2
0
2

1
0
1

0
1212

0
2222

0
1122

0
2211

0
1111

0
12

0
22

0
11

xWxW

xW

xW

 

C

0

0

0

C

C

0

C

C

j

j

j

. [4.21] 

The coefficients of the matrix appearing in [4.21] are easily identified in 

equations [4.16], [4.17] and [4.18]; we leave the calculation thereof for the general 

case to the reader. 

For an isotropic material we have: 

4G)(1S   ,   EちS   ,   E1SS 1212112222221111 =−===  
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where E is the Young modulus, G is the shearing modulus and ち  is the Poisson’s 

material ratio. 

The coefficients are drawn from this: 

. ち))(2(1EGC
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  [4.22] 

These elasticity coefficients do not correspond to those of the three-dimensional 

stress-strain relation; they constitute a law of two-dimensional behavior applicable 

to plates. 

By changing [4.14] and [4.15] we obtain the two equations of motion to be 

verified in any point of S: 
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The boundary conditions are given by [4.25] and [4.26]; they must be verified in 

any point of the boundary S : 

0
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120     Vibration in Continuous Media 

and: 
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The formulation with displacements reduces the number of unknowns, but 

increases the order of derivation of the equations; nonetheless, this form is the one 

generally used. Let us recall that setting up equations using Reissner’s functional 

followed by substitution of stresses by their expressions according to the 

displacements, as we did while passing from equations [4.14] – [4.20] to [4.23] – 

[4.26], avoids the inconsistencies of the stress-strain relation which appear during 

the set up of equations with displacement variables using the Hamilton’s functional 

(see Chapter 3). In the case of an isotropic material we can use the expressions 

[4.22] in [4.23] – [4.26] to arrive at the following equations, equations [4.23] and 

[4.24] being written in a more compact form: 
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The boundary conditions to verify S )x, x( 21 ∈∀  become: 
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4.4. Equations of motion and boundary conditions of transverse vibrations 

4.4.1. Mindlin’s hypotheses: equations with mixed variables 

The equations are set up by rendering the extremum of Reissner’s functional 

[4.12] particularized for the fields of displacements and of stress [4.7] and [4.8], that 

is: 
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In this expression we considered that the thickness was constant and equal to h. 

Moreover, we posed 12hI 3=  and considered an isotropic material. 

The calculation of extremum is carried out thanks to the Euler equations [2.88] – 

[2.92] of Chapter 2. The Euler equations stemming from displacement variables 

( 0
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those stemming from the stresses ( 0
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Equations [4.31] and [4.32] are representative of the rotational movement in the 

thickness; equation [4.33] governs the transverse movement. We use the set of 

equations stemming from the calculation of extremum with respect to the stress 

variables 0

23

0

13

3

22

3

12

3

11 j  and  j, j, j, j  in order to write the stress-strain relation in 

matrix form [4.34]. 

 

The calculation of extremum also provides the boundary conditions with [2.89] 

and [2.90] from Chapter 2. The direction cosines of the external unit normal vector 

to the boundary line S of the plate are noted )n, n( 21 : 
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and: 
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4.4.2. Mindlin’s hypotheses: equations with displacement variables 

It is enough to draw the expression of stresses from the stress-strain relation 

[4.34] and to report them in equations [4.31] to [4.33] and in the boundary 

conditions [4.35] – [4.37]. 

 

Equations of the motion to verify ( ) Sx, x 21 ∈∀ : 
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Boundary conditions to verify S)x, (x 21 ∈∀ : 
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4.4.3. Love-Kirchhoff hypotheses: equations with mixed variables 

The calculation of Reissner’s functional is carried out with the field of 

displacement [4.9] and the stress field [4.10]. To simplify calculations we also 

consider here a homogenous and isotropic material as well as a plate with constant 

thickness: 
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The equation of motion and the stress-strain relation are calculated here also 

thanks to Euler’s equations [2.88] – [2.92] from Chapter 2. They are more 

complicated to apply than in the preceding cases since the functional [4.44] reveals a 

second derivative. Upon calculation it follows: 
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Equation of the motion to verify S)x, (x 21 ∈∀ : 
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Stress-strain relation to verify S)x, (x 21 ∈∀ : 
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Boundary conditions to verify S)x, (x 21 ∈∀ : 

0
3either  :  W 0= ,  [4.47] 
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The number of unknowns is smaller than in the case of the Mindlin’s hypotheses, 

but the equations have a higher order of derivation and are, therefore, rather 

complicated. 
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Figure 4.2. Representation of the unit vectors in a point of the boundary line S  of the plate. 
n
f

 normal s
f

 tangent  

We can give another form of more compact boundary conditions by introducing 

the normal n∂∂  and tangential s∂∂  derivatives connected to the derivatives 

following 1x and 2x by the relations: 
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that is also: 
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Let us denote by bending moment M  the quantity placed in duality with the normal 

derivative of transverse displacement ⎟⎟
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Let us denote by shearing force T  the quantity placed in duality with transverse 

displacement 0
3W by the boundary condition [4.48]. After a long but not difficult 

calculation, it is shown that this quantity is also written in the form [4.53]: 
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The boundary conditions [4.49] and [4.50] are thus written S  )x, (x 21 ∈∀ : 
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4.4.4. Love-Kirchhoff hypotheses: equations with displacement variables 

In this case it is also possible to substitute the tensors of stresses with their 

expressions according to the transverse displacement 0
3W  provided by the stress-

strain relation [4.46]. Substituting in [4.45] we obtain the equation of motion: 
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with )(1EID
2ν−= bending stiffness. [4.56’] 
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We also obtain by substitution the boundary conditions [4.54] and [4.55] where 

the bending moment and the shearing force are given by: 
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and: 
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In order to be concise, in these expressions we have replaced 0
3W with W. 

These are the most frequently employed equations, but an additional 

simplification is introduced by neglecting the effect of rotational inertia (we will see, 

on the basis of the case of beams in Chapter 6, that this simplification is acceptable 

for a low frequency). We then have the standard equations: 

S)x, (x     0
x

W

x x

W
2

x

W
 D

t

W
h 214

2

4

2
2

2
1

4

4
1

4

2

2

∈∀=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂∂

∂
+

∂

∂
−

∂

∂
ρ−   [4.59] 
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and: 
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M  is given by [4.57] and T  by [4.58]. In the expression of the shearing force, 

the term 22 tWI ∂∂ρ  associated with rotational inertia is neglected. 

4.4.5. Love-Kirchhoff hypotheses: equations with displacement variables obtained 
using Hamilton’s functional 

In this chapter we have until now made exclusive use of Reissner’s functional, 

the equations with displacement variables being obtained by substitution of stresses 

by displacements in the equations with mixed variables. 

It is also possible to directly obtain the equations with displacements by using 

Hamilton’s functional. The two approaches were detailed in Chapter 3 in the case of 

beams, thus, we will present this approach for plates only briefly by limiting 

ourselves to the most often encountered case of the Love-Kirchhoff hypotheses. 

The field of displacements considered is the one described by equation [4.9]. It 

suffices then to replace general displacements by those from expression [4.9] in the 

general expression of Hamilton’s functional given in equation [2.55] in Chapter 2. 

Upon calculation we obtain after integration over thickness for a plate with constant 

thickness h made of an isotropic material homogenous in the thickness: 
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In this expression, D is the bending stiffness of the plate defined in [4.56’] and 

rotational inertia has been neglected in the expression of kinetic energy. It is the 

classical functional used in the problems of plates, in particular, within the 

framework of the Rayleigh-Ritz method. 
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We calculate Euler’s equations [2.88] with respect to the variable W to obtain the 

equation of motion and equations [2.89], [2.90], [2.91] and [2.92] to determine the 

boundary conditions. After all the calculations we receive equations identical to 

those obtained in section 4.4.4. There is, thus, an equivalence between the set-up of 

equations using Reissner’s functional with two independent fields and Hamilton’s 

functional with only one field of displacements. However, this equivalence is 

obtained by using the moduli of elasticity 0
ijklC  given by [4.21] and not the moduli 

ijklC  of the three-dimensional stress-strain relation in Hamilton’s functional. Here 

also, as for beams in Chapter 3, the two formulations are equivalent only if the 

elastic moduli are modified and adapted to the case under consideration. 

4.4.6. Some comments on the formulations of transverse vibrations 

There are several possible formulations of transverse plates vibrations. The 

Mindlin’s hypotheses are adapted to the description of anisotropic plates and high 

frequencies. The Love-Kirchhoff hypotheses result from the statics of isotropic 

plates and constitute the most severe approximation; they are realistic only for low 

frequency forecasting of isotropic plates vibrations. However, the simplicity of 

equations resulting from the Love-Kirchhoff hypotheses often leads to their use 

outside of their actual field of validity. A first approximation of the result is then 

obtained. 

In general, formulations with displacements are preferred to mixed formulations 

because they decrease the number of equations to be processed. We can, however, 

wonder whether the concentration of derivations over a restricted number of 

equations is not damaging in the end, especially for physical interpretation. The 

expression of the boundary shearing force [4.58] is completely explicit on the 

subject of the difficulty of interpretation. 

4.5. Coupled movements 

We have defined two elementary movements to describe the vibrations of plates: 

vibrations in the plane of the plate and transverse vibrations. These vibratory states 

are uncoupled for homogenous plates but are coupled as soon as the plate has 

variable characteristics in the thickness. 
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Let us consider a vibratory movement of the plate resulting from a combination 

of transverse vibrations and vibrations in the plane. The fields of displacements and 

stresses describing the movement are defined by the superposition of [4.5] and [4.7] 

and of [4.6] and [4.8], that is: 
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The Reissner’s functional of the problem is rather bulky and we do not write it 

down as a whole but limit ourselves only to the terms revealing the variables 3
1W  

and 0
1W  in order to write the two equations of motion which result from it: 

.dsdt   ...dx  Wdx 
x

W
  x                          

x

W
 

x

W
 x

x

W
 dx 

x

W
  x

x

W
 

x

W
 x

x

W
 dx 

t

W
     

t

W

t

W
x2

t

W
 x    

2

1
), (W R

2h

2h

3
3
1

0
133

2

3
13

12
2
3

2h

2h 2

0
13

12
2

3
10

123
2

0
10

123
1

3
13

11
2
3

2h

2h 1

0
13

11
1

3
10

113
1

0
10

113

2
0
1

t

t S

2h

2h

0
1

3
1

3

2
3
12

3iji

1

0

⎟⎟
⎟

⎠

⎞
+σ−⎟

⎟
⎠

⎞

∂

∂
σ+

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
σ+

∂

∂
σ+

∂

∂
σ−⎟

⎟
⎠

⎞

∂

∂
σ+

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
σ+

∂

∂
σ+

∂

∂
σ−

⎟⎟
⎟

⎠

⎞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

⎜
⎜
⎜

⎝

⎛

⎜⎜
⎜

⎝

⎛

∂

∂

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
ρ=σ

∫

∫

∫

∫ ∫ ∫

+

−

+

−

+

−

+

−

  [4.63] 
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The coupling of plane and transverse movements comes from the terms in 3x  of 

[4.63]; after integration over the thickness these terms are eliminated in the 2nd and 

3rd lines because: 

∫
+

−

=
2h

2h

33 0dx x   [4.64] 

but they generally remain in the first line if the density varies in the thickness: 
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If the density is constant in thickness, it can stem form the integral [4.65], which 

is then nil. 

The integration of [4.63] over the thickness yields: 
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We are able to calculate the equations of motion coming from the calculation of 

extremum with respect to the two functions 3
1W  and 0

1W : 
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Equation [4.67] can be compared to [4.31]; equation [4.68] can be compared to 

[4.14]. The coupling of movement in the plane 0
1W  and transverse movement 3

1W  
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is related to the value of the integral [4.65], which is nil if the density is constant 

through the thickness; we then find the equations uncoupled since [4.67] coincides 

exactly with [4.31] and [4.68] coincides exactly with [4.14]. The examination of the 

whole of Reissner’s functional and the equations which result from it would show 

that the property highlighted for the two equations [4.67] and [4.68] can be 

generalized and that for a material with constant characteristics in the thickness, 

transverse vibrations and vibrations in the plane are uncoupled. 

4.6. Equations with polar co-ordinates 

4.6.1. Basic relations 

In certain problems we may find it beneficial to use polar co-ordinates rather 

than Cartesian co-ordinates which we have employed up until now. The 

transformation of equations written in Cartesian co-ordinates into equations written 

in polar co-ordinates is rather simple. We will exploit it here. 

Let us introduce r and θ, the polar co-ordinates of a point of the plate. They are 

connected to the Cartesian co-ordinates x1 and x2 by the relations: 
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Figure 4.3. Cartesian and polar co-ordinates of the point M 
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By observing the rule of chain derivation, we deduce: 
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A rather simple calculation with equations [4.69] yields the following results: 
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With [4.70] we deduce from it: 
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Equations [4.71] are at the basis of the transformation of equations with 

Cartesian co-ordinates into polar co-ordinates. Thanks to these expressions, 

derivatives of higher orders can be calculated. For example, let us calculate the 

second derivative: 
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Calculation provides the following expressions: 
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It is then remarkable to note that the Laplace operator has the simple form: 
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4.6.2. Love-Kirchhoff equations of the transverse vibrations of plates  

We are interested in the standard equation [4.59], which neglects rotational 

inertia. The operator appearing in plate bending equation of motion is also called 

bilaplacian: 
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By using the result [4.74] we note that: 
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After calculation we obtain: 
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In the case of axisymmetric movement し)W(r,  is independent of θ and 

derivations with respect to this variable are nil; the operator is greatly simplified: 
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The equation of the transverse vibrations of plates retains the form: 
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where the bilaplacian 2〉  is given by [4.77] in general and by [4.78] for axisymmetric 

movements. In Cartesian co-ordinates, the bilaplacian is equal to [4.75]. 

The boundary conditions associated with equation [4.79] were provided in [4.60] 

and [4.61] in Cartesian co-ordinates; we may of course provide an expression 

thereof in polar co-ordinates. For that it is necessary to express the normal 

derivative, the bending moment and the shearing force in these co-ordinates. 

Let us examine the normal derivative: 
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The expression of bending moment has been given in [4.57], while the 

expression of shearing force is in [4.58]. To obtain the expressions in polar co-

ordinates, the procedure is commonplace since it is a question of replacing the 

derivative with respect to the Cartesian variables by the expressions [4.71]; 

however, calculation is extremely long and the expressions obtained are very heavy. 

In addition we would find ourselves in the case of an axisymmetric problem, which 

implies the circular shape of the plate. Under these conditions the direction cosines 

of the external unit normal vector take the form: 

θ=θ= sinn  , cosn 12 . [4.81] 

We note with [4.80] and [4.81] that in this case: 
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=
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. 

To calculate the bending moment and the shearing force, let us take the 

particular expressions resulting from [4.73] in the axisymmetric case where the 

displacement of the plate is independent of θ. It follows: 
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A similar calculation also leads to: 
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Once all the calculations have been done, the two expressions are obtained: 
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We have neglected the effect of rotational inertia in the shearing force. 
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In the case of the circular plate with axisymmetric vibratory movement, the 

equations of the problem are greatly simplified, in particular, the expressions of 

bending moment and of the shearing force. These expressions are valid only in one 

very particular case of circular plate vibrations since the vector is independent of し, 

which occurs for an excitation that is also axisymmetric as a point transverse force 

applied to the center of the plate. For an offset transverse force, the simplified 

equations are no longer usable since transverse displacement will depend on し. 

4.7. Conclusion 

In this chapter we have established the equations of the vibrations of thin plates. 

The variational set-up of equations is based on Reissner’s functional and we have 

systematically obtained equations with mixed variables, then by substitution the 

equations with displacements. The case of movements in the plane and then of 

transverse movements have been tackled. For transverse vibrations of plates, the two 

traditional hypotheses were exposed (Mindlin and Love-Kirchhoff). Finally, the 

equations in polar co-ordinates were provided in the simple case of the Love-

Kirchhoff operator. 

We have attempted to show the methods and thus provide the reader with a 

general procedure to establish equations of plates motion. As for beams, which have 

been covered in Chapter 3, all the information is contained in the hypotheses of 

condensation adopted for displacements and stresses. For plates, these hypotheses 

result from a development of the various functions describing the vibrations of the 

plate in Taylor series over the thickness. For thin plates that we consider, these 

developments are truncated of the first order taking into account the low thickness. 

In addition to the technique of setting up equations, the suggested procedure 

makes it possible to determine the domain of applicability of the established theory 

thanks to the physical interpretation which arises from the hypotheses of 

condensation employed. 



Chapter 5 

Vibratory Phenomena Described  

by the Wave Equation 

5.1. Introduction 

The wave equation is a partial derivative equation which we highlighted in 

Chapter 3 during the study of longitudinal and torsion vibrations of beams. This 

equation is also representative of two other vibratory phenomena which are often 

encountered: vibrations of cords and fluctuations of acoustic pressure in pipes. 

The study of the wave equation is particularly interesting because its relative 

simplicity makes it possible to easily find a solution and describe many basic 

concepts. 

In the first section we present the problem, and more precisely we recapitulate 

the set of applications of the wave equation; then we demonstrate the uniqueness of 

the solution. In the following section, we provide a solution by the method of 

propagation, which will lead us to notion of the image source to take into account 

the boundary conditions. Resolution by separation of variables will then be carried 

out, which will lead to the key concept of the natural mode of vibration, from which 

will result the general form of the response by modal decomposition. Finally a 

summary table of the modal system for the case of standard boundary conditions is 

drawn up. 

The last section will give a detailed presentation of two applications with some 

of the most remarkable physical tendencies of vibratory behavior. Moreover, they 

will provide practical examples of calculations, modal system and vibratory 

response, with displacements as well as with stresses. 
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5.2. Wave equation: presentation of the problem and uniqueness of the solution 

5.2.1. The wave equation 

The wave equation is the following partial derivative equation: 

0
x

y
ct)x,(

t

y

2

2
2

2

2

=
∂

∂
−

∂

∂
. [5.1] 

The function y(x, t) represents vibratory movement, the constant c is characteristic 

of the studied medium; it is called celerity or waves propagation velocity. 

This equation is representative of longitudinal vibratory and torsion movements 

of homogenous beams, as we have shown in Chapter 3. In fact, vibrations of cords 

and fluctuations in pressure in pipes are also governed by this equation. The 

correspondence between the general equation [5.1] and the four physical situations 

that it describes is presented in Table 5.1. 

To properly present the problem, that is, in fact, to ensure the uniqueness of the 

solution, it is necessary to provide equation [5.1] with boundary conditions and 

initial conditions. 

Boundary conditions: 

t)0,(
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y

g
1

t)y(0,

0 ∂
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−= ,  [5.2] 

t)L,(
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y

g
1

t)y(L,

L ∂

∂
= . [5.3] 

Initial conditions: 

x)(dy(x,0) 0= ,  [5.4] 

x)(vx,0)(
t

y
0=

∂

∂
. [5.5] 

with 0d  initial displacement and 0v  initial speed. 
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Physical situation t),y(x  c  

Longitudinal 

vibrations 
)t,x(U0

1
: longitudinal 

displacement of cross-sections ρ
=

E
cL

, celerity of 

longitudinal waves. 

E : Young modulus 

ρ : density 

Vibrations of torsion 

of beams 

)t,x(α : rotation of cross-

sections ρ
=

G
cT

, celerity of the 

waves of torsion. 

G : Coulomb modulus 

ρ : density 

Vibrating cords )t,x(y : transverse 

displacement of the cord S

T
cT ρ

=  

T : tension of the cord 

ρ : density 

S : cross-section of the cord 

Sound pipes )t,x(p : fluctuation in pressure c : speed of sound in fluid 

(air 340 m/s). 

Table 5.1. The applicability of the wave equation
 

Initial conditions are taken at the moment 0t =  to simplify the writing. 

Boundary conditions are particular: they correspond to resilient mounting 

characterized by 0g  and Lg  for each end. From a physical point of view, our 

definition shows that these quantities are homogenous to lengths and representative 

of the limits impedance. Indeed, we find the classical boundary conditions of 

clamped end for 0g0 =  (or 0gL = ), and of a free end making 0g  (or Lg ) tend 

towards infinity: 

clamped end: y(0,t) 0.=  

free end:
y

(0,t) 0.
x

∂
=

∂
 

These two types of boundary conditions thus appear as a borderline case of [5.2] 

and [5.3]. 
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5.2.2. Equation of energy and uniqueness of the solution 

5.2.2.1. Equation of energy 

Let us multiply the two members of equation [5.1] by 
t

y

∂

∂
; it follows: 
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Let us take the integral of equation [5.6] between two fixed positions a and b: 
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Let us integrate by parts the second term of the first member of [5.7]; we obtain: 
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Observing that: 
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equation [5.8] is written: 
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Equation [5.10] is in fact nothing but the expression of conservation of energy, 

except for a multiplicative constant constant) ( =µ . Indeed, let us multiply the two 

members by the linear density µ  of the medium considered; it follows: 
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The first member represents the energy variation of the section [a, b] over time. 

Indeed, we recognize the sum of the densities of kinetic and deformation energies 

under the integral sign of the first member. 

The second member is the difference of the powers introduced at the two ends a 

and b of the section. 

The principle of conservation of energy is thus entirely contained in the wave 

equation. 

If we now apply equation [5.11] to points 0 and L, ends of the beam, taking into 

account the boundary conditions [5.2] and [5.3] and after integration over time, it 

follows: 
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where E is a constant. 

Equation [5.12] means that the energy of the total system, that is taking account 

the energy of the boundaries, is constant over time. In the 3rd and 4th term of the first 

member of [5.12] we recognize the energies of the boundaries. Calculating equation 

[5.12] at the initial moment we obtain the constant value of energy over time which 

is equal to the value taken at the initial moment, that is to say, taking into account 

[5.4] and [5.5]: 
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  [5.13] 

The equation of energy [5.13] is the foundation of the demonstration of the 

solution uniqueness which is proposed in the following section. 
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5.2.2.2. Uniqueness of the solution 

Let us consider two solutions t)x,(y1  and t)x,(y2  which verify equations [5.1] 

to [5.5] and their difference t)Y(x, . 

t)x,(yt)x,(yt)Y(x, 21 −= . [5.14] 

The linearity of these equations implies that the difference of the two solutions 

t)Y(x,  verifies the wave equation [5.1] as well as the boundary and initial 

conditions: 
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Y
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The function t)Y(x,  verifying the wave equation and the boundary conditions 

[5.15] and [5.16] also satisfies the integral form [5.12], that is: 

. Et)Y(L,g cµ 
2

1
                                                             

t)Y(0,g cµ 
2

1
dx 

x

Y
µ  c

t

Y
µ  

2

1

2
L

2

2
0

2

L

0

2

2

2

=+

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
∫

  [5.19] 

It is now enough to take equation [5.19] at 0t =  to deduce from it that the 

constant is nil, taking into account [5.17] and [5.18]. Thus, at any moment: 
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Relation [5.20] expresses the nullity of the sum of positive quantities, which 

must thus also be nil on their own. From that we deduce, on the one hand, that 
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0t)Y(0, =  and 0t)Y(L, =  and, on the other hand, that 
x

Y

∂

∂
 and 

t

Y

∂

∂
 must be nil 

almost everywhere in the open interval ] [L0, . Since the function t)Y(x,  also 

verifies the wave equation, it must be continuously derivable twice and consequently 

nil. The two solutions t)x,(y1  and t)x,(y2  are combined. Thus, the uniqueness of 

the solution of the problem defined by equations [5.1] – [5.5] is proven. 

5.3. Resolution of the wave equation by the method of propagation (d’Alembert’s 
methodology) 

5.3.1. General solution of the wave equation 

Let us consider the wave equation [5.1] and seek a general solution by carrying 

out the change of variables: 

ctxu += ,  [5.21] 

ctxv −= . [5.22] 

 

By using the chain rule of derivation, we can show that: 
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then by replacing in the wave equation we obtain in the system of variables (u,v):  

0
vu
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=
∂∂

∂
. [5.25] 

This equation is solved in two stages: 

a) F(u)
u

y
=
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∂
  [5.26] 

where F(u)  is an arbitrary function of u. 
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b) g(v)f(u)y +=   [5.27] 

where f  is the primitive of F  and g  is an arbitrary function. 

Returning to the variables x and t via the definitions [5.21] and [5.22], the 

general solution of the wave equation is: 

ct)g(xct)f(xt)y(x, −++= . [5.28] 

The functions f and g are arbitrary provided that they are continuously derivable 

twice. This property of the solutions is absolutely remarkable. To understand its 

physical meaning, we will examine the first part of the solution ( )ctxf + , at various 

moments. Let us propose an arbitrary movement at the moment t and observe the 

evolution over time (Figure 5.1). Displacement associated with the point x  at the 

moment t  is associated the point 'x  the moment 't  if: 

ct'x'ctx +=+ . [5.29] 

From that we deduce: 

)t'(t cxx' −−= . [5.30] 

When time increases, displacement is relocated towards negative x  without 

deformation; it is said that it is propagated. 

 

The remarkable aspect of the solutions thus results in the fact that any initially 

imposed displacement (which is arbitrary) completely describes the displacement at 

any later moment just by translation of the initial shape. 

By considering infinitesimal increases dxxx' +=  and dttt' += , we 

demonstrate with [5.30] that: 

c 
dt

dx
−= . [5.31] 

This quantity c  is homogenous to speed: it characterizes the propagation. It is 

called celerity of the waves or propagation velocity. For the part of that solution that 

we have just studied, speed is negative and characterizes a propagation towards 

decreasing x. 

A similar reasoning for the second part of the solution )ctx(g −  would show the 

same phenomenon but with an opposite propagation velocity c+  and thus a 

propagation towards growing x. The general solution is thus the superposition of 

two displacements propagating at the same speed but in opposite directions. 
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 t 

– c (t'– t) 
x 

F (x+ct) 

– c 

t 

t' 

t'' 
– c 

 

Figure 5.1. Propagation of displacement without deformation. Displacement at the moment t 
is translated towards negative x at the moment t’ with a propagation velocity equal to –c  

5.3.2. Taking initial conditions into account 

Let us consider the initial conditions [5.4] and [5.5] and seek the general solution 

verifying them; it follows: 

)x(dg(x)f(x) 0=+ , [5.32] 

)x(v(x)cg'(x)f' c 0=− . [5.33] 

By ' in [5.33] we have denoted derivation. By transforming the two preceding 

equations we obtain: 

g(x))x(df(x) 0 −=   [5.34] 

and: 

( ) )x(v(x)2g'(x)'d c 00 =− . [5.35] 

By integrating the second equation and then using the result in the first we 

obtain: 

g(0)dx (x)v
2c

1

2

)0(d

2

つ)(d
つ)(g

つ

0

0
00 +−−= ∫   [5.36] 
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and: 

g(0)dx (x)v
2c

1

2

)0(d

2

)(d
)f(

つ

0

0
00 −++

ξ
=ξ ∫ . [5.37] 

These two expressions, taken respectively for ctxつ −=  and ctxつ += , make it 

possible to find the general form of the solution verifying the initial conditions [5.4] 

and [5.5]: 

dつ )( v
2c

1

2

ct)x(d

2

ct)x(d
t)y(x,

ctx

ctx

0
00 ξ+

−
+

+
= ∫

+

−

. [5.38] 

To illustrate this result let us consider the following example: 
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with: 

0u   if   1H(u)       ,  0u   if   0H(u) >=<=   [5.40] 

and: 

0)x(v0 = . [5.41] 

We immediately deduce from it that for every 0t ≥ : 
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[5.42] 
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x

( )tx,y 

c
L t =

2c
Lt =  

4c
Lt =  

t

 

Figure 5.2. Propagation of initial displacement 

Figure 5.2 illustrates the vibratory state at various moments after the initial 

moment. A certain number of characteristic phenomena can be observed in this figure: 

a) the initial condition generates two identical displacement shapes that 

propagate in opposite directions; 

b) each displacement has the same shape as the one imposed initially but with 

half the amplitude; 

c) the two displacements do not become deformed during their propagation. This 

property is characteristic of a non-dispersive medium; 

d) the two displacements are propagated with respective velocities   and cc− +  

for the two terms of [5.41]. 

Let us take as a second example the initial conditions of imposed velocity: 

. Lx0   if   x
L

ヾ
sin )(    vand

  L  x,  0    xif    0)(       v

0)(d       

0

0

0

<<⎟
⎠
⎞

⎜
⎝
⎛=

><=

=

x

x

x

  [5.43] 

From that we deduce: 

( )dつ つ v
2c

1
t)y(x,

ctx

ct-x

0∫
+

= ,  [5.44] 

that is: 

[ ] ct x

ct x0 つ)(D
2c

1
t)y(x,

+
−=   [5.45] 
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0

0

0

1
D ( )  if  0,

1
D ( )  cos  if  0 x L,

L

1
D ( )  if  L.

ξ = − ξ <
π

πξ⎛ ⎞ξ = − < <⎜ ⎟π ⎝ ⎠

ξ = ξ >
π

  [5.46] 

After calculations we can draw up Table 5.2, which gives the expression of 

vibratory displacement y(x, t) according to the respective values of x + ct and x – ct. 
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Table 5.2. Values of y (x, t) according to x + ct and x – ct 

Figure 5.3 shows vibratory displacement at several characteristic moments. 

x

y(x,t) 

c
L t =

2c
L t =

4c
L t =

t

 

Figure 5.3. Consecutive displacements under an initial condition of imposed velocity 
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Vibratory behavior following an initial imposed velocity condition is different 

from behavior following an initial imposed displacement condition, which we have 

described previously.  

Indeed, the initial velocity generated between 0 and L extends in the course of 

time to the whole of the beam with an evolution of form over time. Propagation 

velocities ± c remain present since they characterize the displacement of the 

displacement front (see Figure 5.4). 

– c + c

y(x, t)

x  

Figure 5.4. Propagation velocity of displacements following 
an initial condition of imposed velocity 

5.3.3. Taking into account boundary conditions: image source 

Taking into account boundary conditions leads to the concept of image source. 

To begin with, let us consider a semi-infinite medium ] ,L]−∞ , clamped at point 

Lx = , that is, verifying: 

 t    0t)y(L, ∀= . [5.47] 

Let us further consider that the beam is subjected to the initial conditions [5.39] 

and [5.40]. The solution is then given by: 

. 
2

ct)x2L(d

2

ct)x2L(d
                                      

2

ct)x(d

2

ct)x(d
t)y(x,

00

00

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+

+−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

+
=

  [5.48] 

The first term of the right-hand member is the direct wave, while the second is 

the wave reflected by the clamped end. 

It is clearly a solution of the wave equation since it is a function of the two 

variables ctx +  and ctx − . We may also note that when Lx = : 

0t)y(L, = . [5.49] 



152     Vibration in Continuous Media 

L 2L

t = L/2c

t = L/c 

t = 3L/2c

t = 0
0 

 

Figure 5.5. Displacement of the real and fictional media at different point in time 

It is interesting to examine movement over time while introducing a fictional 

continuous medium in the continuity of the real medium (Figure 5.5). At the initial 

moment, in addition to real displacement, the solution reveals a mirror image 

displacement in the fictitious medium laid out antisymmetrically with respect to the 

clamped end. At the later moments we observe four disturbances occurring in the 

real and fictional media: two of them propagate with velocity c in the direction of 

increasing x and the two others towards decreasing x. In the real medium the 

clamped end reveals a reflection of the disturbance with an inversion of the sign of 

the displacements. The real source creates the direct field; the image source creates 

the field reflected by the boundary. 

A boundary condition can thus be taken into account by introducing an image of 

the initial displacement into a fictional medium extending from the real medium. 

Real medium Fictional medium
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This concept can extend to more complex configurations, in particular, with a finite 

beam clamped at the ends:  

0t)y(L, = ,  [5.50] 

0t)L, y( =− . [5.51] 

Let us consider the initial conditions [5.39] and [5.40], as previously, and 

position in Figure the 5.6 the different images, which are now unlimited in number 

because it is necessary to introduce the image of an image: 

 

–L + L 2L 3L 4L– 2L– 3L 

Image 2 

Image 1 Image 1 

Image 3 

 

Figure 5.6. Propagation in a finite medium  
Initial displacements in the real and fictional media  

Image 1: images of the real source with respect to the two boundaries 
Image 2: images of the first images with respect to the two boundaries 

Image 3: images of the second images with respect to the two boundaries 

The initial displacement )x(d0  being defined as between L−  and L + , we 

associate an infinite number of images to it over the entire x axis. The initial 

displacement defined in the real and fictional media is written: 

g(x, 0)  d (x)0

 d (2L x) d ( 2L x)       (first images I ) ,0 0 1

 d (4L x) d ( 4L x)       (second images I ) ,0 0 2

 d (6L x) d ( 6L x)       (third images I ) .0 0 3

=

− − − − −

+ − + − −

− − − − −

  [5.52] 

Displacement [5.52] is written out only until the third image but, naturally, it 

comprises an infinity thereof. 

Real medium Fictional medium Fictional medium 
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The vibratory response of the beam is obtained by applying the result [5.38] 

when initial speed is nil and initial displacement is given by [5.52]: 

( ) ( )( )

( ) ( )( ) . 
2

1)(
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2

1)(
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⎜
⎜

⎝

⎛ −
−−++−+

−
+

+
=

∑

∑
∞

=

∞

=
  [5.53] 

We can easily notice that the solution [5.53] really verifies the boundary 

conditions [5.50] and [5.51]. 

This technique of resolution by image source is applicable in many other 

problems. In the physical sense, it makes boundary conditions appear as more or less 

deforming mirrors. For absorbing boundaries, the reflection is accompanied by a 

weakening, and images of higher orders are initially far from the real medium and, 

when reaching it, have very low amplitude. The solution t)y(x,  then tends towards 

0 when t tends towards infinity. 

5.4. Resolution of the wave equation by separation of variables 

5.4.1. General solution of the wave equation in the form of separate variables 

A second method of resolving the equation is possible: it is based on the 

separation of variables. In general, the method that we are going to expose is the one 

preferred over the previous method because it highlights the concept of natural 

vibration modes. 

Let us consider the solutions of the wave equation separated into the product of 

two functions f(x) and g(t): 

g(t)  f(x)t)y(x, = . [5.54] 

Introducing the form [5.54] into the wave equation [5.1], it follows: 

)x(
dx

fd
g(t) cf(x)  (t)

dt

gd

2

2
2

2

2

= . [5.55] 
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Let us separate the variables in [5.55]: 

t)そ(x,
f(x)

dx

fd

c
g(t)

dt

gd

2

2

2

2

2

== . [5.56] 

The first member of [5.56] is independent of x, while the second member is 

independent of t; their equality implies that the function t)そ(x,  that we have 

introduced in the third member is simultaneously independent of x and t, i.e. equal 

to a constant a. Equation [5.56] is thus separated into two equations: 

0ag(t))t(
dt

gd

2

2

=− ,  [5.57] 

0f(x)
c

a
)t(

dx

fd

22

2

=− . [5.58] 

The constant a  can be negative, positive or zero. Let us consider these three 

possibilities. 

1) if 0a < , we will pose 2の a −= , 0の ≠ . 

Equations [5.57] and [5.58] become: 

0g(t) の)t(
dt

gd
2

2

2

=+   [5.59] 

and: 

0f(x) k)t(
dx

fd
2

2

2

=+   [5.60] 

with: k の c.=  [5.61] 

The solutions of [5.59] and [5.60] are given by: 

 t)(sin  B t)( cosA g(t) ω+ω= ,  [5.62] 

(kx)sin  D(kx) cos Cf(x) += . [5.63] 
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The time behavior is described by [5.62], the movement occurs with the angular 

frequency ω. The space aspect is described by [5.63], it is characterized by a wave 

number k. Angular frequency and wave number are linked by the relation [5.61] 

called the dispersion relation. 

2) 0)(の   0a ==  

Equations [5.59] and [5.60] become: 

0)t(
dt

gd

2

2

=   [5.64] 

and: 

0)t(
dx

fd

2

2

= . [5.65] 

The solutions to [5.64] and [5.65] are: 

BAtg(t) +=   [5.66] 

and: 

DCxf(x) += . [5.67] 

These uniform movements are of a different nature to those described by [5.62] 

and [5.63]. This particular behavior would be representative of a zero angular 

frequency 0)(の = . 

3) 0a > , we will pose 0  , a 2 >δδ= . 

Equations [5.57] and [5.58] become: 

0g(t) )t(
dt

gd
2

2

2

=δ−   [5.68] 

and: 

0f(x)
c

)t(
dx

fd

2

2

2

2

=
δ

− . [5.69] 
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The solutions to [5.68] and [5.69] are given by: 

t  t BeAeg(t) δ−δ +=   [5.70] 

 x)c(  x)c(
DeCef(x)

δ−δ += . [5.71] 

In short, there are three different types of solution to the wave equation obtained 

by separation of variables: 

( ) ( )(kx)sin  D(kx) cos C t)(sin  Bt)( cosA t)y(x,  :  0a +ω+ω=< ,  [5.72] 

( ) ( )DCx BAtt)y(x,  :  0a ++== ,  [5.73] 

( )( ) x)c( x)c( t  t DeCe BeAet)y(x,  :  0a
δ−δδ−δ ++=> .  [5.74] 

5.4.2. Taking boundary conditions into account 

Let us take the case of boundary conditions of the free type, that is, let us 

impose: 

0t)L,(
x

y
  and  0t)0,(

x

y
=

∂
∂

=
∂
∂ . [5.75] 

Taking into account the separation of variables, equations [5.75] become: 

df df
(0) 0  and  (L) 0

dx dx
= = . [5.76] 

Solutions of the wave equation [5.72] – [5.74] must also verify [5.76] in order to 

authorize a physical movement. Let us examine whether this is possible. 

Taking into account [5.76], the form [5.72] leads to equations: 

0(kL)sin k  C  and  0D == . [5.77] 

That is to say, either to the trivial solution 0DC == , or to the solution 0D = , 

0C ≠  and: 

0(kL)sin = . [5.78] 
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Equation [5.78] is called an equation with normal (or eigen-) frequencies; indeed, 

only certain values of k can satisfy it. These are normal wave numbers noted nk : 

 
∞ = = ,   ...   1, n for   

L

nヾ  
k n 

. [5.79] 

Taking into account the relation of dispersion [5.61], an angular frequency nの  

corresponds to each normal wave number: 

 
∞= = ,  ...   1, n for   

L

n ヾ  
cの n 

.  [5.80] 

Consequently, there is an infinite number of possible solutions resulting from the 

form [5.72]: 

( ) )x(f  t)(のsin Bt)(の cosAt)x,(y nnnnnn +=   [5.81] 

n n
n

with:  f (x) C cos x
L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

. [5.82] 

The function )x(fn  is the mode shape. It is defined with an arbitrary 

multiplicative constant nC , which we can normalize to one without losing the 

generality. 

Now let us consider the solutions resulting from [5.73]. Taking into account 

[5.76] after calculation we have: C = 0 and unspecified D. Consequently, there is 

only one possible solution resulting from [5.73]: 

00 BtAt)y(x, += . 

In the preceding expression, we normalized the constant D  to a singular unit. 

This movement characterizes a displacement of a rigid body, also called a 

movement of a rigid solid. 

To finish, let us take the third form of the solution given by [5.74]; the 

introduction into [5.76] gives the following relations: 

C + D = 0 and CeLδ/c + De-Lδ/c = 0,
 

that is: 

L
C D and C sinh 0.

c

⎛ ⎞= − δ =⎜ ⎟
⎝ ⎠

 

Respecting these equations is only possible with the trivial solution 0DC == . 

There are thus no solutions resulting from [5.74]. 
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The most general movement is that resulting from the superposition of the 

solutions which we have highlighted: 

( )∑
∞

=
⎟
⎠

⎞
⎜
⎝

⎛
+++=

1n
nnnn00 x

L

nヾ
 cos t)(のsin  Bt)(の cos ABtAt)y(x,   [5.83] 

n
nヾ

with:  の c
L

= . 

Vibratory movement is the combination of a uniform movement of a rigid solid 

and of an infinity of vibratory movements with normal pulsations ωn, and mode 

shapes characterized by the wave numbers of kn. 

The presence of movement of rigid solid is linked to the free-free boundary 

conditions; all other boundary conditions would eliminate this type of movement 

with only the solutions resulting from the form [5.72] remaining. In the clamped-

free case, for example, we would obtain: 

( )∑
∞

=
+=

1n
nnnnn x)(ksin  t)(のsin  Bt)(の cosAt)y(x,   [5.84] 

2n 1 ヾ
with:  の ck   and  k   n n n

2 L

−
= = . [5.85] 

The analysis of [5.84] or [5.83] shows that movement with deformation is the 

sum of independent movements characterized by a normal angular frequency nの  

and a mode shape )x(fn . Each pair of angular frequency nの  and mode shape )x(fn  

constitutes a mode. Certain authors apply the name of normal mode to the mode 

shape )x(fn  alone. The set of normal angular frequencies and mode shapes pairs 

constitutes the modal system of the beam. We can provide this modal system for the 

cases that we have treated: 

nヾ nヾ
free-free:       c ,cos x

L L

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
,  [5.86] 

2n 1 ヾ 2n 1 ヾ
clamped-free:       c   ,  sin x

2 L 2 L

⎛ − − ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. [5.87] 

Free vibratory movement thus occurs with normal angular frequency for the 

system considered. 

Mode shapes of modes 1, 2 and 3, for the embedded-free case are examined in 

Figures 5.7, 5.8 and 5.9. 
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Figure 5.7. Mode shape of mode 1 of the clamped-free medium 

 

 

 

Figure 5.8. Mode shape of mode 2 of the clamped-free medium 
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Figure 5.9. Mode shape of mode 3 of the clamped-free medium 

The point characteristic of modal movement, that is, of the part of movement 

associated with an index n, is the appearance of nodes and antinodes of vibration. 

Let us take the modal movement of the 1st order of the clamped-free beam t)(x,y1 : 

( ) ⎟
⎠

⎞
⎜
⎝

⎛+= x
2L

ヾ
sin    t)(のsin  B t)(の cos At)x,(y 11111 . 

It is the product of the mode shape (x)f1  by a sinusoidal function of time; at 

several consecutive moments, the medium traces the spindle defined in Figure 5.10. 

The point of zero amplitude 0)x( =  is a node of vibration, while the point 

Lx =  is an antinode of vibration; it corresponds to the maximum amplitude of the 

vibratory displacement of mode 1. 

Let us examine the modal movement of the 2nd order: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛+= x
2L

3ヾ
sin    t)(のsin  B t)(の cosAt)x,(y 222 22 . 

Displacements over time are given in Figure 5.11. This movement presents two 

nodes in 0x =  and 32Lx =  and two antinodes in 3Lx =  and Lx = . 

The number of nodes (or antinodes) is characteristic of a mode; an additional 

node appears when we pass from mode n to mode n + 1. The total movement which 

is the superposition of these modal movements does not present a node in the strict 
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sense of the term since the points of zero displacement are different for each mode. 

However, for conditions of excitation favoring a mode, that is those with amplitude 

much larger than of the other modes, we will find a low vibratory amplitude in the 

vicinity of the nodes of the favored mode often comparable to a node by extension. 

 

Figure 5.10. Vibratory response of mode 1 of the clamped-free beam, 
 at different moments 

L/3 2L/3

 

Figure 5.11. Vibratory response of mode 2 of the clamped-free beam 

Expressions [5.81] and [5.84] give the general forms of the solutions verifying 

the wave equation and the free-free and clamped-free boundary conditions. There 

remain some unknowns since the terms iA  and iB  are arbitrary; in fact, the initial 

conditions will fix these values and thus ensure the uniqueness of the solution. 
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Finally, let us note that the modal system results from the verifying of the wave 

equation and the boundary conditions. It is the essential characteristic of vibrating 

systems, since this modal system defines all of the movements that the medium is 

likely to have. Table 5.3 summarizes the modal systems associated with the wave 

equation for different boundary conditions. 

Notes: 

a) The free-free boundary condition allows a movement without deformation 

which results in a zero normal angular frequency, that is, in a uniform movement. 

The mode shape equals 1, that is, the displacement is the same in any point of the 

structure. 

b) The vibration normal angular frequencies in the clamped-clamped and free-

free cases are identical. This situation is surprising since the systems are different, 

but does not have to lead us to thinking that the vibrations are the same ones because 

the mode shapes are completely different. 

5.4.3. Taking initial conditions into account  

The finite medium is now subject to the initial conditions [5.4] and [5.5] that we 

recollect: 

. )x(vx,0)(
t

y

, )x(dy(x,0)

0

0

=
∂

∂

=

 

Boundary 
conditions 

Characteristic 
equation 

Normal angular 
frequency 

Mode shapes 
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0t)y(0, =  
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0
c

のL
sin =⎟⎟
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⎝
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⎟⎟
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⎛
x
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sin  
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0t)L,(
x

y
=
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∂
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c

のL
 cos =⎟

⎠

⎞
⎜
⎝
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ヾ
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12n
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−
=  

n=1,…, ∞ 

⎟⎟
⎠
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⎝

⎛ −
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L

ヾ
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12n
sin  

n=1,…, ∞ 

Free-free 

0t)0,(
x

y
=

∂

∂
 

0t)L,(
x

y
=

∂

∂
 

Elastic modes 

0
c

のL
sin =⎟

⎠

⎞
⎜
⎝

⎛  

..................... 

Solid mode 

c
L

nヾ
のn =  

n=1,…, ∞ 

..................... 

0の0 =  

⎟
⎠

⎞
⎜
⎝

⎛
= x

L

nヾ
cos  

n=1,…, ∞ 

..................... 

1 

Table 5.3. Summary of the vibration modes, for the free or clamped boundary conditions 
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Let us take the example of the free-free beam whose solution is given by [5.81] 

and [5.82]. Imposing the respect of the initial conditions, it follows: 

)x(d
L

nヾ
 cos ABy(x,0) 0

1n
n0 =⎟

⎠

⎞
⎜
⎝

⎛
+= ∑

∞

=
,  [5.88] 

)x(vx
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y
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1n
nn0 =⎟

⎠

⎞
⎜
⎝

⎛
+=

∂

∂ ∑
∞

=
. [5.89] 

Equation [5.88] shows that the terms 0B  and nA  correspond to the coefficients 

of development of the function )x(d0  in Fourier series; similarly 0A  and nB  are the 

coefficients of development of )x(v0 . After all the calculations, it follows: 

∫=
L

0

00 dx (x)d
L

1
B ,  [5.90] 

∫=
L

0

00 dx (x)v
L

1
A ,  [5.91] 

∫ ⎟
⎠

⎞
⎜
⎝

⎛
=

L

0

0n dx (x)d x
L

nヾ
 cos

L

2
A ,  [5.92] 

∫ ⎟
⎠

⎞
⎜
⎝

⎛
=

L

0

0
n

n dx (x) vx
L

nヾ
 cos

Lの
2

B . [5.93] 

The use of [5.90] – [5.93] in the general form of vibratory displacement [5.83] 

provides the solution to the problem. This solution is expressed by a series just as for 

the technique of preceding resolution using source-image (expression [5.52]). Each 

method has its advantages and its disadvantages; however, the separation of 

variables is generally preferred because it reveals the key concept of normal angular 

frequency and normal displacement. 

The introduction of initial conditions consisted of developing functions )x(d0  

and )x(v0  in Fourier series. This procedure is general but Fourier series will not be 

forcing the traditional developments into sine and cosine. Let us consider another 

case of boundary conditions. The general form of the solution is given by: 

( )∑
∞

=
+=

1n
nnnnn )x(f t)(のsin Bt)(の cosAt)y(x, . [5.94] 
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Respecting the initial conditions imposes: 

)x(d)x(f A 0
1n

nn =∑
∞

=
,  [5.95] 

)x(v)x(f の B 0
1n

nnn =∑
∞

=
. [5.96] 

It is thus in general a decomposition into a series of normal functions which 

should be carried out. These functions have the property of orthogonality 

demonstrated in section 5.4.4. 

npnp

L

0

n hNdx (x)f )x(f =∫   [5.97] 

where nN  is the norm of mode n, nph is the Kroneker symbol. 

Let us take the equality [5.95], multiply the two members by )x(fp  and integrate 

over the length of the beam. Taking into account the property of orthogonality 

[5.97], it follows: 

dx )x(f (x)d
N

1
A

L

0

p0
p

p ∫= . [5.98] 

This expression relates to [5.92]. Similarly with [5.96] we obtain the expression 

pB  relating to [5.93]: 

dx (x)f (x)v
Nの
1

B

L

0

p0
pp

p ∫= . [5.99] 

5.4.4. Orthogonality of mode shapes 

The essential property for the calculation of vibratory response following initial 

conditions is the orthogonality of mode shapes. To demonstrate it, let us, again base 

ourselves on equation [5.60] which must be verified for each mode shape. 
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For the oscillatory modes 0のn ≠ , mode shapes verify [5.100]: 

0f 
c

の
dx

fd

n2

2
n

2

n
2

=+ . [5.100] 

If rigid movement is possible, the associated mode shapes )x(f0  must verify 

[5.65], that is: 

0
dx

fd

2

0
2

= . [5.101] 

We can assemble [5.100] and [5.101] into the single form [5.100] by introducing 

a zero normal angular frequency for the rigid movement. 

Let us multiply [5.100] by the mode shape of the mode p, integrate between 0 

and L and cleverly group: 

dx (x)f  (x)f
c

の
dx (x)

dx

fd
)x(f n

L

0
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2
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2

n
2L

0

p ∫∫ =− . [5.102] 

We also have a symmetrical equation by permuting the indices: 

dx (x)f  (x)f
c

の
dx (x)

dx

fd
)x(f n

L
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2
p

2

p
2L
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Let us consider the first member of [5.103] and carry out integration by parts; 

after regrouping we obtain: 
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⎡
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  [5.104] 

Since the mode shapes verify the boundary conditions, it follows that the second 

member of [5.104] is nil. Indeed, for the traditional conditions, clamped or free, we 

have either )x(fn , or )x(
dx

dfn  (either )x(fp  or )x(
dx

dfp
), which are nil at each end. 

From this it follows that the product )x(
dx

df
 (x)f

p
n  is nil when 0x =  and Lx = . 



Vibratory Phenomena Described by the Wave Equation     167 

For the boundary conditions which we have considered at the beginning of the 

chapter (equations [5.2] and [5.3]) we have: 

)0(
dx

df
g)0(f n

0n =   [5.105] 

and: 

)L(
dx

df
g)L(f n

0n = . [5.106] 

Let us replace )0(fp , )L(fp , )0(fn , )L(fn  by their expressions drawn from 

[5.105] and [5.106]; the second member of [5.104] becomes: 

. 0)0(
dx

df
)0(

dx

df
g                                                             

)L(
dx

df
)L(

dx
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dx
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dx
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g)L(

dx
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)L(

dx
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g

pn
0

pn
L

pn
0

pn
L

=+

−−

 

The second member of [5.104] is thus also nil for yield strengths. The relation 

[5.104] is consequently reduced to: 

0dx )x(
dx

fd
)x(fdx )x(

dx

fd
)x(f

2

p
2L

0

n2

n
2L

0

p =+− ∫∫ . [5.107] 

This equation shows the symmetry of the second derivative operator, which is at 

the base of the orthogonality of the mode shapes. Indeed, let us introduce this 

relation into [5.102] and [5.103]; it follows: 

0dx (x)f  )x(f  )の(の n

L

0

p
2
p

2
n =− ∫ . [5.108] 

There is thus the alternative: 

L

n p n n n

0

 and f (x) f (x) dx Nω = ω =∫   [5.109] 
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or: 

L

n p p n

0

 and f (x) f (x) dx 0.ω ≠ ω =∫   [5.110] 

This shows the orthogonality of the mode shapes. Let us note that [5.110] and 

[5.104] show that there is also a second property of orthogonality: 

2L
p

n n p2

0

d f
f (x) (x) dx 0 if .

dx
= ω ≠ ω∫  [5.111] 

In problems of vibration, there is always a double orthogonality of the mode 

shapes: orthogonality with respect to the operator of mass [5.110] and orthogonality 

with respect to the operator of stiffness [5.111] of the problem considered. 

5.5. Applications 

5.5.1. Longitudinal vibrations of a clamped-free beam 

We consider a clamped-free beam subjected to a static force at its free end until 

the moment 0t =  when the force is suddenly canceled. 

t<0

F

t=0  

Figure 5.12. Initial conditions of the beam 

To calculate the response of the beam at the moment T > 0 it is necessary, first of 

all, to calculate the deformation of the beam at the moment T = 0, then to introduce 

it as the initial condition of free vibratory displacement following the sudden 

cancellation of force. 
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Static deformation U(x) corresponding to the compression of the beam is 

obtained by resolving the problem of static equilibrium of the beam. It is thus a 

question of solving equation [5.112], which results from the equation of longitudinal 

vibrations of beams when displacement does not depend on time. We then force the 

solution to respect the boundary conditions [5.113]. 

] [L0,  x    0
dx

Ud
ES

2

2

∈∀= ,  [5.112] 

( ) ( )dU
U 0 0 and ES L F

dx
= = − . [5.113] 

The general solution of equation [5.112] is: 

xDCU(x) 00 += . [5.114] 

The two boundary conditions [5.113] lead to the solution: 

x
ES

F
U(x) −= . [5.115] 

The initial conditions to apply to the vibratory problem are deduced from this: 

00) (x,
t

U
   andx   

ES

F
0) U(x, =

∂
∂

−= . [5.116] 

Let us consider the solution of the problem obtained by modal decomposition 

that we have outlined in section 5.4.2, equations [5.83] and [5.87]: 
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Taking into account of the initial conditions yields: 
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From it we deduce: 
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Equation [5.119] gives vibratory displacement in any point x and at any moment 

t following the cancellation of the static force at the moment t = 0. 

A second characteristic is key in the study of longitudinal vibrations of beams, 

that is the stress of traction-compression, which is connected to the displacement 

U(x, t) by the relation [3.18] provided in Chapter 3. 

t)x,(
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U
Et)x,(j11 ∂

∂
= ,  [5.120] 
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The analysis of the longitudinal displacement and the stress of 

traction-compression can be carried out mode by mode in order to break up the 

vibratory state into simple elements. First of all, let us consider the modal 

amplitudes of displacement and stress and carry them over to Figure 5.13: 

Amplitude of displacement of the mode n: 
22

n

)Lヾ( 1)2n(

1)(

ESL

8F

−

−
, 

Amplitude of stress of the mode n: 
1)2n(

1)(

Sヾ
4F

n

−

−
. 

We observe that the amplitudes of modal displacements decrease much more 

quickly than those of modal stresses; it will thus be easier to converge in 

displacement than in stress. Another consequence of this distortion of amplitude is 

the difficulty in extrapolating a visual feeling resulting from displacements from the 

state of stress of the beam. This is all the more true since the space mode shapes for 

displacements and stresses are radically different. Let us trace the mode shapes and 

stresses of the first three modes (Figure 5.14): the correspondence between a node of 

displacement and an antinode of stress and vice versa is remarkable. It is thus 

necessary to expect to record strong stresses at the places of low amplitude for 

beams in longitudinal vibrations as well as in torsion. 

The “engineering rules” stipulate that mode 1 is dominating in the problems free 

of vibrations. We may clearly observe in our example the truthfulness of this 

assertion but it should not, however, be forgotten that, although widespread, this 

property is not true in general. In fact, the amplitude of various modes is related to 

the space form of the initial conditions, as shown by the expressions [5.100] and 

[5.101]. We can say that the modes whose mode shapes will be similar to the form 
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of initial displacement and/or initial speed will respond strongly. In the case 

analyzed in this section, initial displacement is given in Figure 5.15; it is unarguably 

closer to the deformation of mode 1 than of those of the following modes which 

produce sign changes. 
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Figure 5.13. Modal amplitudes of displacements and stresses 

 

Figure 5.14. Mode shapes of displacements and stresses 
for the first three modes 
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This is the reason for the preponderance of mode 1 in vibratory displacement of 

beams that we have studied. It is also the reason for the great frequency of 

occurrence of this situation, because it is rare to create in practice the initial 

conditions close, for example, to mode 2. This would require the creation of an 

opposition to the initial phase, which is the application of two opposed forces in L 

and L/3. In general, favoring mode n requires the use of n static forces adjusted in 

sign and position. 

L)ESF(−

x

L

)x(d0  

 

Figure 5.15. Static deformation of the beam 

5.5.2. Torsion vibrations of a line of shafts with a reducer 

We consider a reducer made up of two shafts coupled by a set of gears. To study 

the vibrations of torsion of this unit we model the system as defined in Figure 5.16. 

The quantities 1R  and 2R  are respectively the radii of gears linked to shafts 1 

and 2, 1I  and 2I  are polar inertias of the cross-sections of the two shafts, 1G  and 

2G  are the moduli of materials rigidity, finally 1L  and 2L  the lengths. 

 

1R

2R

L1 L2

x 0 

 

Figure 5.16. Line of shafts with a reducer 
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Noting as t)x,(g1  and t)x,(g2  the respective angles of torsion of shafts 1 and 2, 

and introducing local references into each beam, we can write the boundary 

conditions of the two shafts as follows: 

– Torque of shaft 1 nil in 0 (free boundary): 

0t)0,(
x

g
I G 1
11 =
∂

∂
. [5.122] 

– Equality of displacements at the point of contact of the teeth: 

t)(0, g Rt), (L g R 22111 −= . [5.123] 

Equilibrium of forces in contact with the teeth expressed according to the torques 

of the two shafts: 

t)0,(
x

g
  

R

I G
t), (L 

x

g
  

R

I G 2

2

22
1

1

1

11

∂

∂
−=

∂

∂
. [5.124] 

Torque of shaft 2 nil in 2L  (free boundary): 

0t), L(
x

g
I G 2

2
22 =
∂

∂
. [5.125] 

Modeling employed to describe the behavior of the reducer neglects, on the one 

hand, the masses of the gears and, on the other hand, the elasticity of the teeth, all in 

all we are considering here a low frequency simplification. 

We will calculate the total modal system of the set of two shafts, that is, we will 

find the solutions of the free vibratory problems. 

The angles of torsion t)x,(g1  and t)x,(g2  must verify the equations of motion of 

shafts 1 and 2 and the boundary conditions [5.122] – [5.125] respectively. 

Respecting the equations of motion involves: 

( ) ( )

, 
と
Gのk  :with

 x)(ksin  D x)(k cos C  t)(のsin  B t)(の cos At)x,(g          

1

1
11

111111111

=

++=
  [5.126] 
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( ) ( )2 2 2 2 2 2 2 2 2

2
2 2

2

           g (x,t) A  cos (の  t) B  sin (の  t)  C  cos (k  x) D  sin (k  x)

G
with:  k の  .

と

= + +

=

 [5.127] 

At this level of writing the solutions of the equations of motion the time 

functions are different. In order to satisfy the equations of connection [5.124] and 

[5.125] at any moment, it is, however, necessary to pose the equality of the temporal 

functions: 

1,2ifor        t)(のsin  B t)(の cosA  t)(のsin  B t)(の cos A iiii =+=+ . 

The coupling between the two beams clearly leads to only one single system 

vibrating as a whole with the pulsation ω. The wave numbers and thus the 

wavelengths are, however, different for the two beams. We may observe that for a 

given angular frequency, the wavelength is shorter for greater velocities of waves of 

torsion. 
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Introducing these solutions under the boundary conditions [5.122] – [5.125], it 

follows: 

0D1 = ,  [5.130] 

221111 C R)L (k cos C R −= ,  [5.131] 

22
2

22
11 11

1

11 k D  
R

I G
)L (ksin k C 

R

I G
= ,  [5.132] 

)L (k cos k D)L (ksin  k C 22222222 = . [5.133] 

To simplify let us take the case where the two shafts have identical characteristics: 

LLL  ,  III  ,G  GG  ,  ととと 21212121 ======== .  [5.134] 
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The equation with frequencies results from respecting equations [5.131] – 

[5.133]: 
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To obtain non-trivial solutions the determinant of the system must be nil: 
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This equation is the characteristic equation for normal wave numbers; it admits 

two families of solutions: 
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Let us examine the first family. The normal eigenfrequencies result from [5.128] 

and [5.137]: 
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The system [5.135] becomes: 
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The mode shape associated to the mode n  is obtained by introducing the 

particular values of C1, D1, C2 and D2 into the space form of the solutions [5.126] 

and [5.127], that is, after having normalized AC1  to one: 

}{
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Let us examine the second family. The normal angular frequencies result from 

[5.128] and [5.138]: 
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The system [5.135] becomes: 

 

⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟

⎟

⎠

⎞

⎜ ⎜ 
⎜ 
⎜ 
⎜ 

⎝ 

⎛ 

− 

− 

0

0

0

D

C

C

 

0   1) (    0  

R–1/  0   R 1)( 

0  R    0  

 2

2

 1

 m 
21 

 m 
 2 

/ . [5.144] 

It creates the solutions: 
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To fix the ideas, let us trace the mode shapes of the two modes taking 12 2RR = . 

The mode n = 1 is given in Figure 5.17, and the mode m = 1 is given in Figure 5.18. 

Cutting into modes n and m is arbitrary and is introduced only for mathematical 

convenience. Physically we will find the traditional modal sequence by increasing 

the normal angular frequency: mode 1, that of lower normal frequency, is m = 1, 

mode 2 is that corresponding to n = 1, mode 3 to m = 2, etc. 
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Until now we have considered solutions resulting from [5.126] and [5.127] 

representing vibratory movement with deformation. The line of shafts being free at 

its ends, there will also be a mode of vibration without deformation (mode 0). The 

solutions are of the type: 

⎪⎩

⎪
⎨
⎧

++=

++=

. )D x (C )B t A(t)(x, g

)D x (C )B t A(t)(x, g

0202002

0101001
  [5.147] 
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Figure 5.17. Mode shape of the n=1 mode 

Respect the boundary conditions [5.122] to [5.125] leads to the solution: 
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12002

001
  [5.148] 

In fact, this solution describes the uniform rotation of the two beams (contrary 

direction for the two beams with respect to the reduction 12 RR ). 
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2L L 

 
Figure 5.18. Mode shape of the m=1 mode 

The free vibratory response is given by the accumulation of all the possibilities 

of movements: 
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The values of the constants 0A , nA , mA , 0B , nB  and mB are fixed by the 

initial conditions. 

5.6. Conclusion 

The wave equation that we have studied is directly applicable to the vibrations of 

beams in traction and torsion but also to cords and sound pipes. We have shown two 
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methods to describe free vibration. The method of propagation which introduces the 

concept of image source when we take the finite aspect of the structures into account 

is well adapted to the calculation of free response of the large-sized systems. The 

method of separation of variables which leads to the key concept of normal mode 

introduces vibratory response as a superposition of the independent modal 

responses. 

Two examples of calculations showed how to take initial conditions into account 

and to obtain vibratory displacements and stresses. A characteristic of modal 

behavior of the structures governed by the wave equation is the correspondence 

between antinodes of displacements and nodes of stresses and between nodes of 

displacements and antinodes of stresses. 

In the case of coupled structures, we have extended the results obtained for 

isolated structures by connecting interfaces. This procedure, put into practice by a 

line of shafts composed of two beams and a reducer, can be generalized to the case 

of several coupled systems. 
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Chapter 6 

Free Bending Vibration of Beams 

6.1. Introduction 

In this chapter we consider the vibratory movement of beams most commonly 

met in practice: bending vibrations. 

This prevalence of the problems of bending results from the following aspects: 

a) The normal angular frequency of bending is the first to appear when we 

describe the axis of frequencies increasing starting from zero. In other words, the 

first modes of a beam with all effects mixed together (bending, traction, torsion) are 

those of bending. 

b) Transverse excitations on beams are the most current; they are the ones 

generating bending modes. 

c) For a given value of dynamic stress and compared to the other vibratory 

movements, flexing movements generate very large displacements. Consequently, 

we may have non-dangerous constraints for the beam, which produce large 

transverse movements that can be uncomfortable. 

d) Bending movements impact the surrounding air and lead to the generation of 

noise. 

Various hypotheses have been proposed in Chapter 3 to describe the bending of 

beams; the most sophisticated theories introduce “secondary” effects (shearing, 

rotational inertia) which can prove to be important for high frequency or anisotropic 

materials. Our discussion will, nevertheless, be based on the strongest hypothesis 

(pure bending) because it allows an approach with fewer calculations. The influence 

of secondary effects will be discussed afterwards. 
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As a first development we solve the equation of motion by separation of 

variables. The solution is interpreted in term of traveling and vanishing waves, and 

the concepts of phase speed and group speed are introduced to characterize the 

propagation in infinite beams. 

We then introduce boundary conditions and deduce from them the vibration 

modes. A summary table is given. 

Examples of application are finally presented to describe the principal physical 

phenomena. Into the second part the secondary effects of rotational inertia and 

shearing are introduced separately and simultaneously. The results are then interpreted 

in terms of propagation velocity and of normal mode. We also establish the criteria 

that make it possible to determine a priori if the secondary effects are negligible. 

6.2. The problem 

We consider a straight beam oriented along axis 1 of an orthonormal system of 

reference, and we are interested in the movement generated by a transverse 

excitation. This vibratory state was analyzed in detail in Chapter 3, section 3.5. It 

was shown that several models can be proposed according to the level of 

simplification that we allow ourselves. The simplest theory, and thus the most 

restrictive one, will be used as a basis for this discourse. In section 6.7 we will 

demonstrate the influence of effects neglected in the traditional approach. 

Thus, we consider the case of pure bending described in section 3.5.3 of Chapter 

3. Displacements of the continuous medium are given by the expressions [6.1]: 

. 0t), x, x, x(W

, t), W(xt), x, x, x(W

, t), x(
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W
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23211
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∂

∂
−=

  [6.1] 

The function t), W(x1  represents the transverse displacement of the beam; it 

verifies the following equations: 

Equation of motion: 
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In this expression, I  is the inertia of the cross-section of the beam with respect to 

direction 3, E  is Young’s modulus of material which is here supposed to be 

isotropic, と  is the density, and S  is the cross-section of the beam. We no longer 

specify that the equations are valid in the time interval ] [10 t,  t , we simply note  t∀  

since moments 0t  and 1t  are arbitrary. 

Boundary conditions to verify in  t  , L xand  0x ∀== : 

1

2

12

1 1

either:  W(x  ,t) 0 ,

W
or     :  EI (x  ,t) 0
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Longitudinal stress is deduced from the value of transverse displacement by the 

relation [6.5]: 

t), x(
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W
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232111 ∂

∂
= . [6.5] 

The solution of equation [6.2] is the basis for the calculation of vibratory 

response of beams in bending. It is only analytically possible in the particularly 

simple cases of variation of the mechanical characteristics along the beam length. 

We will base our discourse on the simplest case, that of the homogenous beam with 

a constant cross-section, which is easily solved. Under these conditions, とS  and EI  

are constants and equation [6.2] becomes: 
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6.3. Solution of the equation of the homogenous beam with a constant cross-
section 

6.3.1. Solution 

To solve equation [6.6] we employ the method of separation of variables. Thus, 

we pose: 

g(t)  f(x)t)W(x, = . [6.7] 

To simplify the notations from now on, we will write x  instead of 1x . 

Let us introduce the expression [6.7] into equation [6.6]; it follows: 

0g(t)  (x)
dx
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EI
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4
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=+ . [6.8] 

Let us separate the variables by grouping on the right the functions of time and 

on the left the functions of space: 

af(x))x(
dx
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Following the traditional argumentation, we observe that “a” is a constant. 

Indeed, the first member of [6.9] is independent of x and the second member is 

independent of t: “a” is thus independent of time and of x; it is a constant. 

Equation [6.9] separates into two equations: 
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where the constant “a” can be positive, negative or nil. From that we deduce the 

three types of solutions: 

1) 0a = , leading to the solutions: 

32 FxExDxCf(x)     and     BAtg(t) +++=+= . [6.12] 

I.e. with [6.7]: 

)FxExDx(C B)At(t)W(x, 32 ++++= . [6.13] 

2) 0a < , we then pose 2の a −= . 

The solutions of [6.10] and [6.11] are given by: 

(kx)sh  F(kx)ch  E(kx)sin  D(kx) cos Cf(x)

,  t)(sin  B t)( cosA g(t)
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  [6.14] 

2k 
とS

EI
 の   :with    = . [6.15] 

The quantity の  is the angular frequency of the vibratory movement; the quantity 

k which appears in the space solution is called a wave number. The relation [6.15] 

connecting angular frequency and the wave number is the relation of dispersion. 

The solution is thus: 

( ) (
). (kx)sh  F(kx)ch  E                                                               
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After all the calculations we obtain: 
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And finally the transverse displacement of the beam: 

( ) ( )j x j xa  t a  t x x           W(x,t) Ae Be  Ce De Ee Fe

とS
with:  g  j  a  .

EI

α α α α−− −= + + + +

=

  [6.18] 

As we have shown during the resolution of the wave equation using separation of 

variables (section 5.4 of Chapter 5), the case of the positive constant leads to the 

trivial solution 0 t),x(W =  if we respect the boundary conditions, so let us not 

exploit this any further before the solution [6.18]. 

The solution [6.13] is possible but marginal because it is to be considered only in 

the case of boundary conditions allowing movements without strain. Instead of 

vibratory movements in a strict sense, it induces uniform movements (translation or 

rotation of the whole beam). 

Vibratory movement is introduced by the case of the negative constant and thus 

has the general form [6.16]. Let us stress that there are other equivalent forms of 

writing this solution down, in particular [6.19] and [6.20]: 

( ) (
)kxkx FeEe                                                                           

(kx)sin  D(kx) cos C  t)(sin  B t)( cosA t)W(x,

−++

+ω+ω=
  [6.19] 

and: 

( )( )kxkxjkxjkxtjtj FeEeDeCe BeAet)W(x, −−ω−ω ++++= . [6.20] 

In the continuation we will make use of the most adapted solution form 

depending on the case. 

6.3.2. Interpretation of the vibratory solution, traveling waves, vanishing waves 

We are particularly interested in the solution [6.16] or of course in its equivalent 

forms [6.19] and [6.20]. 



Free Bending Vibration of Beams     187 

Let us take, for example, the form [6.19] and distribute the product. After 

suitable regrouping of the terms we obtain a new expression: 

. e  t)(sin  ae  t)(sin  a

e  t)( cos ae  t)( cos akx) t(sin  a

kx) t( cos akx) t(sin  akx) t( cos at)W(x,
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54
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ω+ω++ω+

+ω+−ω+−ω=

  [6.21] 

Each term of [6.21] is interpreted as a wave. The first four terms are traveling 

waves; the four following are vanishing waves. We need to develop this further in 

order to understand clearly the physical significance associated with these concepts. 

Let us take the first traveling wave of equation [6.21], that is [6.22] and represent 

the state of displacement of the beam at the moments 0t  and 〉tt0 +  in Figure 6.1: 

kx) t( cos a1 −ω . [6.22] 

 

0tt =

〉x  

〉ttt 0 +=  

 

Figure 6.1. Propagation of the traveling bending wave 

We see that at two consecutive moments the displacements of the beam 

progresses towards positive x. To determine the speed with which this progression 

occurs, it is enough to note that the two points x  and 〉xx +  of the same vibratory 

level at the moments 0t  and 〉tt0 +  must verify: 

( )〉x)(xk 〉t)(t の cos akx) t(の cos a 0101 +−+=−   [6.23] 
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and, more exactly, to select two points with the same amplitude in the same phase 

congruence (there is an infinite number of point with the same amplitude): 

(x)k )(t の〉x)(xk 〉t)(t の 00 −=+−+ . 

From that we draw: 

k

の
〉t

〉x
= . [6.24] 

Passing to the limit, we observe that the propagation velocity of the waves of 

bending (or celerity of bending), cF, is given by: 

Fc
k

の
dt

dx
== . 

But the variables k  and の  are not independent, they must verify the relation of 

dispersion [6.15]. Consequently, we can express the propagation velocity of the 

bending waves according as a function of k  with [6.25] or as a function of のwith 

[6.26]: 

k とSEI cF = ,  [6.25] 

の とSEI c 4
F = . [6.26] 

This result is important: it shows that if the solutions of the equation of bending 

are interpreted in terms of traveling waves in a similar way to the solutions of the 

equation of longitudinal or torsion vibrations of beams, there exists a fundamental 

difference because the celerity of the bending waves depends on the frequency (it is 

said then that the medium is dispersive) whereas torsion or longitudinal vibrations 

are independent of it. The celerity of the bending waves is nil for zero angular 

frequency and tends towards infinity together with the angular frequency. A similar 

calculation would show that the three other traveling waves of [6.21] have the same 

celerity, and the wave )kx t(sin  a2 −ω  is also propagated towards growing x, 

whereas the waves )kx t( cos a3 +ω  and )kx t(sin  a4 +ω  are propagated towards 

decreasing x. 

A second type of wave is present in the solution [6.21]; let us take, for example, 
kx

7 e  t)(sin  a ω  and display in Figure 6.2 the displacements of the beam at various 

consecutive moments 0t , 1t , 2t , 3t . 
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The wave is not propagated: for a given observation moment, it has an 

exponential variation with x. As time passes, the space form of the vibratory 

movement is preserved and only its amplitude is modified. This movement is 

characterized by a very strong space variation which is comparable to a phenomenon 

of disappearance of the signal with distance, since the amplitude quickly becomes 

undetectable in experiments when we move away from the wave origin of the wave 

(from which the name of the vanishing wave originates). 

 

Figure 6.2. Vibratory movement of a vanishing wave  

6.4. Propagation in infinite beams 

6.4.1. Introduction  

We consider an infinite beam, which is of course unrealistic, but in certain cases 

constitutes a correct approximation of “sufficiently long” finite beams. After all, 

introducing boundary conditions, despite appearing more satisfactory at first sight, 

often results in very imperfect modeling. 

A first comment has to be made: it concerns the unrealism of the movement 

produced by vanishing waves during the response of an infinite beam, because they 

introduce infinite displacements when x  tends towards infinity. 

 

0 t t =   

1 t t =   

2 t t = 
  

3 t t =   

t) W(x, 

  

x1 
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The vibratory field of an infinite physically acceptable beam will thus include 

only traveling waves, that is to say by taking the form [6.20] thereof and cumulating 

all the possible movements: 

∫
∞

∞−

ω−ω
⎟⎟
⎠

⎞
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⎝

⎛
+= dk  e  e B(k)e  A(k)et)W(x, jkxtjjkxtj . [6.27] 

The integral comes due to the fact that the most general solution is obtained by 

the summation of all the traveling waves. 

A transformation of [6.27] provides the equivalent form which we are going to 

use: 

∫
∞

∞−

= dk e )t,k(g)t,x(W jkx   [6.28] 

2EI
with:  g (k,t) d (k)  cos (  t ( ))    and   の  k

とS
kω ϕ= + = . [6.29] 

The function )t,k(g  contains constants d(k)  and )k(ϕ  that have to be 

determined. Of course, their values can be fixed by the conditions of initial 

displacements and velocity of the beam. 

The general form of the solution given in [6.28] can be found by solving the 

equation of motion [6.6] using the Fourier space transform. Let t)(k,W
~

 be the 

Fourier space transform of W(x, t): 

dx e t)W(x,t)(k,W
~ jkx∫

∞

∞−

−= . 

We will determine t)(k,W
~

 by taking the Fourier transform of equation [6.6], 

that is after all the calculations: 
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For each value of k, this differential in time equation is integrated without 

difficulty to give: 

2k
とS

EI
 の   and   ))( t( cos  e(k)t)(k,W

~ =+= kψω . 

The space-time solution is obtained by an inverse Fourier transformation 

t)(k,W
~

: 

dke ))k( t( cos  e(k)
2

1
t)W(x, jkx∫
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ψ+ω
π

= . 

This solution clearly coincides with [6.28] and [6.29] where we posed: 

(k)(k)   and   
2ヾ
e(k)d(k) Ψ== ϕ . 

6.4.2. Propagation of a group of waves 

To explain the phenomenon of propagation of a group of waves, we will 

consider the particular case of an initial displacement of the type [6.30], which we 

display in Figure 6.3, and with zero initial speed. 
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Courbe  enveloppe
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xsin  ∆

)0 ,x( W

 

Figure 6.3. Initial displacements of the beam 

We can calculate the function t)g(k,  contained in [6.28] in the following 

manner. At t = 0, the general form [6.28] becomes: 

∫
∞

∞−

= dx e 0) (x, g0) W(x, jkx . [6.31] 

This expression indicates that 0) g(k,  is the Fourier transform of 0) W(x, : 

dx e 0) W(x,0) g(k, jkx∫
∞

∞−

−=  [6.32] 

To observe the initial condition of imposed displacement [6.30a] we may use the 

known result on the Fourier transformation of the gate function. Initial displacement 

[6.30a] was selected to coincide with the Fourier transform of the following “gate” 

function )0 ,k(g : 
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By using this result and the solution [6.29] we obtain the two relations: 

[ ] [ ] ( )
[ ] [ ] ( ) . 0coskd〉k  〉,k〉k  〉,kk 

1cos kd〉k  〉,k〉k  〉,kk

=ϕ⇒+−∪+−−−∉

=ϕ⇒+−∪+−−−∈
 

To introduce the initial condition of zero speed [6.30b], we calculate t)k,(dtdg  

with [6.29] and then its value at t 0.=  We then use the equality with the Fourier 

transform of the initial speed. 
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∂
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In our case initial speed is nil and: 

00) k,(
dt

dg
= , 

that is: 

0sin   の d(k) =ϕ . 

We deduce: 
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From a physical point of view this initial condition amounts to exciting a group 

of waves with wave numbers close to k. 

Transferring this to [6.28], we obtain finally: 

dk e  t)( cosdk e  t)( cost)W(x, jkx
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The relation [6.15] between の  and k  must be clearly taken into account in this 

expression: 

2k
とS

EI
 の = . 

Since we have supposed k〉 << , we may approach the function の(k)  using its 

Taylor development truncated in the first order: 
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After change of variable and use of [6.36], the integral [6.35] becomes: 
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の
ik) ( の cos                        

 di e  t(k)
k

の
iの(k) cost)W(x,

 xi)k( j
〉

〉

 xi)(k j
〉

〉

+−
+

−

+
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−

∫

∫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−

∂

∂
+−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+=

  [6.37] 

After a long but not difficult calculation we obtain the result [6.38]: 

( ) ( )( )
( )

( )

( )( )
( )

( )

sin k t x
k

W x, t cos k t kx

k t x
k

sin k t x
k

                                 cos k t kx

k t x
k

⎛ ∂ω ⎞⎛ ⎞∆ +⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠= ω +
∂ω

+
∂

⎛ ∂ω ⎞⎛ ⎞∆ −⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠+ ω −
∂ω

−
∂

  [6.38] 

To obtain this result we have supposed: 

( ) ( ) ( ) ( )k k  and k k
k k

∂ω ∂ω
ω = ω − = − −

∂ ∂
. [6.39] 

As the relation of dispersion [6.15] indicates, this hypothesis is valid in the case 

studied. Of course, if the relation of dispersion does not allow verifying [6.39], the 

solution [6.38] is not valid and, consequently, must be modified. 
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If we pose t = 0, the expression [6.38] of vibratory displacement coincides with 

the initial condition [6.30]. Two signals are created at successive moments; they 

move in opposite directions. Let us consider the one moving towards negative x  

t)(x,W− : 

( ) ( )( )
( )

( )

sin k t x
k

W _ x, t cos k t kx

k t x
k

⎛ ∂ω ⎞⎛ ⎞∆ +⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠= ω +
∂ω

+
∂

. [6.40] 

Figure 6.4 illustrates the propagation movement of the group of waves. 

 

x 

htc g

 

 position at the moment htt +   position at the moment t  

Figure 6.4. Propagation of the group of waves towards negative x-coordinates;  
only envelope curves are represented 

 
 

The signal is composed of the product of two terms with very different 

frequencies: a classical wave with a short wavelength and a pseudo-wave with a 

large wavelength. 

The classical wave ( )cos の (k)t kx+  describes a vibratory movement with the 

angular frequency ω, which propagates at the bending wave speed Fc with a wave 

number k  [6.25] or [6.26]: 

( )( )cos k t kxω + . [6.41] 

The pseudo-wave, the second term of the product in [6.40], characterizes the 

envelope curve of the signal and depends on the size of the group of waves by its 
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angular frequency equal to kの〉 ∂∂  and at the same time its maximum amplitude, 

equal to〉 . The maximum is taken at the moment t  at the point x  given by: 

)k(
k

の
tx
∂

∂
−= . [6.42] 

The displacement of this point of maximum amplitude over time is characteristic 

of the pseudo-wave propagation. Thus, we obtain the propagation velocity gc  of this 

signal with: 

)k(
dk

dの
dt

dx
cg == . [6.43] 

In the case of the equation of dispersion of beams in pure bending [6.15], it 

follows: 

k 
とS

EI
 2cg = . [6.44] 

Let us recall that the propagation velocity of the bending waves was given by 

[6.25]: 

k 
とS

EI
 cF = . [6.45] 

The celerity cg of the pseudo-wave is called group speed; it is different from 

celerity cF, known as phase speed, associated with the traditional wave. In the case 

considered, we observe that group speed is twice higher than phase speed. It follows 

that the combined movement of the product of the two signals, which are propagated 

at different speeds, does not keep the same form over time; it is a fundamental 

difference with respect to the case of the wave equation that we have examined in 

Chapter 5. 

Note: in the case of the wave equation, the relation of dispersion is of the 

kcの =  type; from it stems the equality of phase and group speed, since 

kのkの =∂∂ . The medium is known to be not dispersive because the propagation of 

a package of waves occurs without modification of the space form of the signal over 

time. 
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6.5. Introduction of boundary conditions: vibration modes 

6.5.1. Introduction 

The solutions of the equation of motion were obtained in section 6.3 using 

separation of variables. We will now introduce boundary conditions, which will 

highlight the set of vibratory movements that the beam can undergo. Naturally, the 

vibrations are different when the boundary conditions change and it is out of the 

question to consider all the possibilities here (there are 16 types of boundary 

conditions, since there are 4 possibilities at each end and there are two ends). We 

will consider only certain types of boundary conditions to illustrate this point. 

The resolution by separation of variables revealed three types of solutions: 

[6.13], [6.16] and [6.17]. While studying longitudinal vibrations we saw that the 

type [6.17] yielded only the zero solution since it had to respect the boundary 

conditions. The same applies here and we will not consider this solution further. The 

[6.13] type of solution is characteristic of rigid beam movements and is only 

possible if boundary conditions allow them; this is particularly the case for free 

ends, but there are other possibilities which we will examine below. The type [6.16] 

will give an infinite number of solutions for all the cases of boundary conditions. 

6.5.2. The case of the supported-supported beam 

The boundary conditions are as follows: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂

∂

=

0t)0,(
x

W
EI

0t)W(0,

2

2   [6.46] 

and: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂

∂

=

. 0t)L,(
x

W
EI

0t)W(L,

2

2   [6.47] 

The relations [6.46] and [6.47] mean that transverse displacement is nil at each 

end and that longitudinal movement linked to the rotation of cross-sections is free, 

which imposes the nullity of the torque. This modeling of boundaries is well adapted 

to the description of a beam supported by ball bearings that block transverse 
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movements but allow the rotation of cross-sections and, thus, the longitudinal 

movements. 

This type of boundary conditions does not allow rigid movements, and the 

solution [6.13] of the equation of motion leads only to the zero solution. Vibratory 

movements thus all result from the solution [6.16]: 

( )(
)sh(kx) Fch(kx) E                                                                 

sin(kx) Dcos(kx) C  t)sin( B t)cos(A t)W(x,

++

+ω+ω=
  [6.48] 

2EI
with:  の   k

とS
= . [6.49] 

Let us impose that [6.48] satisfy the boundary conditions [6.46] and [6.47]. After 

calculations it follows: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=++−−

=+++

=−

=+

. 0sh(kL) Fch(kL) Esin(kL) Dcos(kL) C

0sh(kL) Fch(kL) Esin(kL) Dcos(kL) C

0EC

0EC

  [6.50] 

The first two relations lead to: 0EC ==  from which using the last two 

relations we deduce: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

− 0

0

F

D
 

sh(kL)  sin(kL)

sh(kL)    )kLn(si
. [6.51] 

If the linear system [6.51] has a non-nil determinant, we infer a single solution: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

0

0

F

D
. [6.52] 

Taking into account the fact that the constants C  and E  are nil, we deduce from 

the general form [6.48] that: 

0t)W(x, = . [6.53] 
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To obtain a non-zero solution, it is thus necessary that the determinant of [6.51] 

be nil. That gives: 

0sh(kL) sin(kL) = ,  [6.54] 

that is: 

0 sin(kL) = . [6.55] 

This characteristic equation shows that there is an infinite number of values of 

the wave number nk that verify it: 

∞==   , ...  , 1n  , 
L

nヾ
kn . [6.56] 

Each wave number solution nk  is associated with a normal angular frequency 

due to the equation of dispersion [6.49]: 

∞=⎟
⎠

⎞
⎜
⎝

⎛
=   , ...  , 1n  ,  

L

nヾ
 

とS

EI
 の

2

n . [6.57] 

To fully characterize the solutions it remains to solve the linear system [6.51] for 

the values nk  given by [6.56], which cancel its determinant. We obtain: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

π

π

0

0

F

D
 

)sh(n  0

)sh(n  0
,  [6.58] 

that is 0F = and any D . 

Taking into account all these results in the [6.48] form of vibratory displacement 

there follows for each modal index n a modal movement t)(x,Wn  given by [6.59]: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
+= x

L

nヾ
sin   tのsin  Btの cos At)x,(W nnnnn . [6.59] 

This expression characterizes the movement of the n mode of vibration. It occurs 

with the normal angular frequency nの  (equation [6.57]) and with the mode shape 

(x)fn  given by [6.60] (the arbitrary constant D has been posed as equal to 1): 
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⎟
⎠

⎞
⎜
⎝

⎛
= x

L

nヾ
sin )x(fn . [6.60] 

Figure 6.5 illustrates the mode shape of the first 3 modes. 
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Figure 6.5. Mode shapes of the first three modes of vibration of bending 
of a supported-supported beam 

General vibratory movement is the sum of all the modal movements, that is: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
+=∑

∞

=
x

L

nヾ
sin   t)(のsin  Bt)(の cos At)W(x,

1n
nnnn . [6.61] 

The constants nA  and nB  will be fixed by the initial conditions at the origin of 

the free vibrations. Their calculation requires the use of the properties of 

orthogonality of mode shapes. We will not proceed further with this calculation. 
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6.5.3. The case of the supported-clamped beam 

The boundary conditions are now: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂

∂

=

0t)(0,
x

W
EI

0t)W(0,

2

2   [6.62] 

and: 

⎪
⎩

⎪
⎨

⎧

=
∂

∂

=

. 0t)(L,
x

W

0t)W(L,

  [6.63] 

Clamping in L  blocks the two displacements, transverse and longitudinal, which 

amounts to setting to zero the slope since it is equal to the rotation of the cross-

sections, which is in turn connected to longitudinal displacement. With respect to the 

preceding case, only the fourth relation of [6.50] is modified and becomes: 

0ch(kL) Fsh(kL) Ecos(kL) Dsin(kL) C =+++− . [6.64] 

The solution, which is completely similar to that of the preceding section, leads to: 

0EC == . [6.65] 

Two other constants being subjected to verification of [6.66]: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

0

0

F

D
 

sh(kL)  cos(kL)

sh(kL)   sin(kL)
. [6.66] 

Setting to zero the determinant of [6.66] leads to the characteristic equation: 

th(kL)tg(kL) = . [6.67] 

This characteristic equation is not as simple to solve as in the case of the 

supported-supported beam and requires computerized processing. We propose here a 

graphic method, which is not very precise but makes it possible to clearly locate the 

solutions. 
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In Figure 6.6 we have plotted the two curves tg(kL)  and th(kL)  so that each 

intersection provides a root. First of all, it should be noticed that there is an infinite 

number of solutions if we take into account the periodicity of the tangent function. It 

should also be noted that as the hyperbolic tangent very quickly tends towards one, 

we have an approximation of the roots by approximating the characteristic equation 

[6.67] by: 

1tg(kL) = . [6.68] 

That is, values: 

∞=
−

=  , ... , 1nfor      
L

ヾ
4

14n
k n

. [6.69] 

The very first modes require computerized processing if we wish to be very 

precise, but the approximation [6.69] is already quite good. We can deduce from it 

the values of normal angular frequencies using the equation of dispersion [6.49]: 

2

n
L

ヾ
4

14n
 

とS

EI
 の ⎟

⎠

⎞
⎜
⎝

⎛ −
= . [6.70] 

 
Figure 6.6. Roots of the characteristic equation of the supported-clamped beam 
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The calculation of mode shapes is carried out using the wave numbers solution 

[6.69] in the linear system [6.66]. After all the calculations it follows: 

F ヾ
4

14n
sh  2 D ⎟

⎠

⎞
⎜
⎝

⎛ −
−= . [6.71] 

That is, posing 1D =  and replacing the various quantities by their respective 

values in the general mode shape [6.48]: 

( ) )x(f t)(sin B t)( cosAt)W(x, n
1n

nnnn ⋅ω+ω=∑
∞

=
  [6.72] 

with: 

n n

n

4n 1 ヾ 4n 1 ヾ
           f (x) sin x F sh x

4 L 4 L

and

1
           F

4n 1
2 sh ヾ

4

⎛ − − ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= −
−⎛ ⎞

⎜ ⎟
⎝ ⎠

  [6.73] 

And for large enough n : 

4n 1

42e

−⎛ ⎞− π⎜ ⎟
⎝ ⎠− . [6.74] 

The approximation of nF  [6.74] is better the higher the rank of the mode. 

Let us consider the normal strains of modes; they are given by the expression 

[6.73]. For high ranked modes, by expressing the sine hyperbolic by form into an 

exponential we obtain: 

)L(x 
L

ヾ
4

14n
)L(x 

L

ヾ
4

14n

n e
2

1
e

2

1
x

L

ヾ
4

14n
sin )x(f

+
−

−−
−

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= . [6.75] 

The third term of the second member is small for all the values of x  and can be 

neglected; the second, on the other hand, is not negligible when x is close to L and 

must be preserved. Consequently, mode shape consists of two dominating terms: 

L)(x 
L

ヾ
4

14n

n e
2

1
x

L

ヾ
4

14n
sin )x(f

−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= . [6.76] 
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Figure 6.7 illustrates the variations of the two terms depending on x: the first 

term is important everywhere in the beam and characterizes the internal solution, 

while the second decreases very quickly when we move away from the Lx =  end; 

it introduces the edge effect. When the total displacement is traced, it is obviously 

very close to the internal solution as long as we are far from the clamped end. 

Towards the L  end of the beam, the edge effect is of the same order of magnitude 

as the internal solution. 

This interpretation calls for several observations: 

1. The tendency described is general for problems of bending. The presence of 

edge effects is characteristic of the influence of vanishing waves present in the 

solution of the equation of motion. 

2. Edge effects appear in the vicinities of beams singularities, naturally, with 

boundary conditions, but also in the case of beams with a variable section at the 

level of each inertia variation; see Figure 6.8. 

3. The boundary condition of support does not introduce edge effects (the same 

is true for the guided condition). 

4. The edge effect has real influence only at a distance of 〉  from the singularity, 

which is lower than the quarter wavelength そ  of the internal solution; that is: 

の 
とS

EI
 

2

ヾ
の
c

2

ヾ
4

そ
〉

4

F ==< . [6.77] 
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a) 

b) 

c) 
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Figure 6.7. Mode shapes of the 3rd mode of a supported-clamped beam 
a) Internal solution, b) Edge effect, c) Mode shape 

For mode n we can introduce into [6.77] the normal angular frequency nの , the 

distance of influence of the edge effect results from it: 

nn

4

2k

ヾ
の 
とS

EI
 

  
2

ヾ
〉 =< .  [6.78] 

In the case considered, nk  is provided in [6.69]. From that we draw: 

14n

2L
〉

−
< . [6.79] 

We note with [6.79] that the distance characteristic of the zone of influence of 

the edge effect strongly decreases when the order of the mode grows. 
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effet de bord solution interne  

Figure 6.8. Localization of the edge effects on a clamped-free beam with variable inertia  

6.5.4. The free-free beam 

The boundary conditions are in this case: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
∂

∂

=
∂

∂

0t)0,(
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EI
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2

  [6.80] 

and: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
∂

∂

=
∂

∂

. 0t)(L,
x

W
EI

0t)L,(
x

W
EI

3

3

2

2

  [6.81] 

The bending moment and shearing force are nil at both ends. These boundary 

conditions that leave the ends free for transverse and rotation displacement allow 

movements without strain (or of rigid solid). Thus, it is necessary to consider 

solutions of the [6.13] type in addition to the solutions of the [6.16] type. 

Let us consider the solution of the equation of motion of the [6.13] type. 

Applying boundary conditions [6.80] and [6.81] leads to: 

0FE == . 

edge effect internal solution
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That is, to solutions of the form: 

Dx)(C B)At(t)W(x, ++=   [6.82] 

where C  and D  are unspecified. 

We can separate [6.82] into two solutions, representative of the rigid modes of 

translation and rotation of the beam so that the two mode shapes are orthogonal: 

– translation mode: 

)BtA(t)x,(W 00T +=  ; [6.83] 

– rotation mode: 

⎟
⎠

⎞
⎜
⎝

⎛
−+=

2

L
x )BtA(t)x,(W '0'0R . [6.84] 

We often call these movements “zero modes” because they represent uniform 

movements, which have one infinite period and, therefore, a zero frequency. 

Let us consider the solution of the equation of motion of the [6.16] type; the 

application of boundary conditions [6.81] leads to: 

FD

, EC

=

=
 

and: 
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C
 

cos(kL)ch(kL) sh(kL)sin(kL)

sh(kL)sin(kL) ch(kL)cos(kL)
. [6.85] 

To obtain non-trivial solutions it is necessary that the determinant of [6.85] be 

nil, that is: 

1ch(kL) cos(kL) = . [6.86] 

The solutions of [6.86] must be approximated using a computer; we will find the 

values of the roots in the summary table of the following section. For the first modes 

there is no obvious approximation, but for the higher modes 1)(kL >>  we may 

approximate the characteristic equation by: 

0 cos(kL) = ,  [6.87] 
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that is: 

2

ヾ
1)2n(kL += . [6.88] 

An infinite number of solutions is thus obtained: 

– normal wave numbers: 

2L

ヾ
1)2n(kn +=  ; [6.89] 

– normal angular frequencies: 

2
nn k 

とS

EI
 の =  ; [6.90] 

– mode shapes: 

( ) ( )x)sh(kx)sin(kDx)ch(kx)cos(k)x(f nnnnnn +++=   [6.91] 

L)sh(kL)sin(k

L)ch(kL)cos(k
Dwith    

nn

nn
n −

−
−= . [6.92] 

For the high rank modes we note that 1Dn −≈ . Mode shapes are then 

approximated by: 

x)sh(kx)ch(kx)sin(kx)cos(k)x(f nnnnn −+−= . [6.93] 

The first two terms of the second member of [6.93] are characteristic of the 

internal solution, while the two last ones apply to the edge effects at the ends of the 

beam L)  xand  0( ==x . 

The most general free vibration movement is obtained by an accumulation of all 

the modal movements including zero modes: 

. )x(f  t)のsin Btの cosA(                                          

2

L
x )BtA()BtA(t)W(x,

n
1n

nnnn

'0'000

∑
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=
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⎟
⎠

⎞
⎜
⎝

⎛
−+++=

  [6.94] 
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6.5.5. Summary table 

Table 6.1. Table giving the vibration modes of beams in bending for various boundary 
conditions. We provide the first numerical values of 2

n )Lk(  
 and then an asymptotic form for large n 

Calculations completely similar to those of the preceding sections can be made 

in all the cases of boundary conditions and provide the normal modes of beams in 

bending. We have drawn a table which recapitulates the results in several cases of 

boundary conditions. The calculation of normal angular frequencies is performed 

Boundary 
conditions 

Characteristic 
equations 

2
n L)k(  Mode shapes 

Supported-

supported 
0(kL)sin =  

9.87, 39.50, 88.9,…
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using the equation 2
n4n L)(k 

とSL

EI
 の ⋅=  where the value of 2

nL)k( is provided in 

the table. 

For the free-free case, there are two rigid modes in addition to the vibration 

modes; for the free-supported case, there is one rigid mode. 

6.6. Stress-displacement connection 

During the study of longitudinal or torsion vibrations we have seen that modal 

stresses varied inversely to vibratory displacement: a node of displacement 

corresponding to an antinode of stress and vice versa. What happens in the case of 

bending? To clarify this point we will take the case of the supported-clamped beam 

analyzed previously. 

Longitudinal stress is calculated on the basis of transverse displacement by the 

relation [6.5]. Replacing t), W(x1  with the expression [6.75], it follows (we 

reintroduce the notation 1x  instead of x  in order to avoid any ambiguity): 

∑
∞

=
+=

1n
1nnnnn

2
n232111 )(x h  t)のsin Btの cos(A kE xt), x, x, x(j  [6.95a] 

n 1 n 1 n n 1with:  h (x )  sin(k x ) F  sh(k x )= − + ,  [6.95b] 

where nk  is given by [6.69], nの 伊by [6.70] and nF  by [6.73]. 

Expression [6.95a] shows that the bending stress is nil for the neutral fiber 

0)(x2 =  and maximum for the upper and lower surfaces )2h(x2 ±= . We also 

observe that bending stress breaks up into a modal series whose normal functions 

are )(xh 1n  [6.95b]. 

Figure 6.9 illustrates the variation of the normal stress functions )(xh 1n . The 

results are to be compared with those in Figure 6.7 which represented mode shapes. 

We note that in the part of the beam dominated by the internal solution, a node (or 

an antinode) of displacement corresponds to a node (or an antinode in opposing 

phase) of constraint. This situation is the reverse of that of longitudinal and torsion 

vibrations. In the part of beam close to the clamped end dominated by the edge 

effect the situation is different since a zero displacement corresponds to maximum 

stress. In the case of a free end, we would note that for a maximum displacement at 

the end we record zero stress. The correspondence between modal displacements 
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and modal stresses is thus differentiated. In the part of beam dominated by the 

internal solution an antinode (or a node) of displacement corresponds an antinode 

(or a node) of stress. When the edge effect is greater, the tendency is reversed since 

an antinode (or a node) of displacement corresponds to a node (or an antinode) of 

stress. It should be noted that for a condition of support, there is no edge effect and 

the internal solution dominates until the end. 

The calculation of the response by modal decomposition poses the problem of 

the number of terms to be considered in the calculation of the series. It is not 

possible to give a general rule since amplitudes nA and nB  depend on the initial 

conditions. We can, on the other hand, affirm that convergence in stress would be 

more difficult than in displacement taking into account the multiplicative term 2
nk  

which appears in [6.95]. Indeed, the generic term of the modal stress series [6.95] 

will always decrease slower than the term of the modal displacement series [6.72]. 

a) 

b) 

c) 

x1

x1

x1

11σ   

11σ   

11σ   

 

Figure 6.9. Normal stress of the 3rd mode of a supported-clamped beam: 
a) internal solution, b) edge effect, c) normal constraint 

6.7. Influence of secondary effects 

Equation [6.2], which is at the foundation of our discourse, represents the effect 

of pure bending and results from simplifying hypotheses which we have examined 

in Chapter 3. The validity of the simplified approach poses the problem of the 
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influence of secondary effects that have been neglected. There are two secondary 

effects: rotational inertia and transverse shearing. Taking these effects into account 

raises various technical difficulties; the calculation which is simple enough for 

rotational inertia is more difficult for shearing. We will consider the two cases 

successively. 

6.7.1. Influence of rotational inertia 

The equation representative of vibratory movement was provided in Chapter 3, 

equation [3.66]. 
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Here we have, on the one hand, adopted a simplified notation and, on the other 

hand, supposed a homogenous beam. Let us seek the solutions of the vibrations 

problem in the form: 

 tjのe f(x)t)W(x, = . [6.97] 

Replacing it in equation [6.96], it follows: 

0
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EI
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The solution of this equation is of the type: 

cos(kx) Fsin(kx) Ex)ch( Dx)sh( Cf(x) ++α+α=   [6.99] 

with: 
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and: 
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The general solution consists of four terms: the first two characterized by a wave 

number α  are vanishing waves, while the last two with a wave number k  are 

traveling waves. 

We can calculate the phase speed Fc  of the traveling waves with pulsation ω  in 

a traditional way using the ratio: 

2
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== . [6.102] 

At low frequencies we can approximate this expression by: 

の 
とS

EI
 c 4F = . [6.103] 

The propagation velocity given by [6.103] corresponds to the phase speed of 

beams in bending without secondary effects that we have calculated (equation 

[6.26]). 

At high frequencies the approximation of [6.102] is: 

と
E

 cF = . [6.104] 

The speed of traveling waves with a high frequency becomes independent of ω, 

which shows that at a high frequency, a beam in bending with rotational inertia is a 

non-dispersive medium. This celerity is equal to that of longitudinal waves. 

Rotational inertia is thus an important effect at high frequencies, since it 

modifies the propagation velocity of waves; at low frequencies, however, it is 

negligible. 

On the basis of the solution [6.99] it is easy to take into account the boundary 

conditions to determine the vibration modes of a beam in bending. Here we will 

consider the case leading to the simplest solution: that of a beam supported at both 

ends. The application of boundary conditions leads to the characteristic equation: 

. Eany  and   0FDC  :with  

0sin(kL)           

===

=
  [6.105] 
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The solutions of [6.105] are given by the sequence of values: 

∞== , ... 1,n  ,  
L

nヾ
kn   [6.106] 

from which, with [6.101], we can draw the values of normal angular frequencies: 

2

2n
L

nヾ
  

)Lnヾ( とIとS
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The mode shapes are given by: 

⎟
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= x

L

nヾ
sin )x(fn . [6.108] 

The comparison with solutions obtained without the effect of rotational inertia 

reveals that normal pulsations are modified but the mode shape stays the same. This 

second property is not general; it appears for the conditions of supported ends, but 

mode shapes would be modified in the case of clamped or of a free end. 

Nonetheless, the tendency concerning angular frequencies is general, since rotational 

inertia makes normal pulsation decrease. If we introduce the relationship ni 伊between 

normal angular frequencies of the n mode calculated, taking rotational inertia into 

account and omitting it, we obtain: 

2n
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= . [6.109] 

This factor ni 伊is characteristic of the influence of rotational inertia: when it tends 

towards 1, the effect is negligible; the weaker it is in front of 1, the more influence 

rotational inertia has. Thus, we may state that the effect of rotational inertia is 

increasing with the order of the mode and that the characteristics of the beam are 

also important. The non-dimensional value )SLI( 2  is characteristic of the influence 

of rotational inertia; it reflects the geometry of the beam, but at the same time is 

independent of the material. To reinforce these ideas, let us consider a one meter-

long beam with a circular cross-section of two centimeters in diameter: we then 

have: 62 4.10)SLI( −= and the error over the normal angular frequencies does not 

exceed 10% for the modes of the order n smaller than 25. 
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6.7.2. Influence of transverse shearing 

The equations representative of the bending of beams with transverse shearing 

and rotational inertia were provided and interpreted in Chapter 3, equations [3.53] 

and [3.54]. We recall them here using a simplified notation in order to be concise: 

t)W(x,  is the vector of the beam (previously noted 0

2W (x,t))  and t)く(x,  is the 

rotation of the cross-section (previously noted t)(x,W2
1 ). 
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Let us note that the effect of rotational inertia is introduced by the first term of 

the left-hand part of equation [6.110] and that it suffices to remove it to take into 

account nothing but the shearing effect. 

We will consider harmonic movements of the type: 

 tjのe f(x)t)W(x, = ,  [6.112] 

 tjのe (x)h t)(x, く = . [6.113] 

Inserting these expressions into equations [6.110] and [6.111], we obtain a 

system with a differential equation [6.114] where rotational inertia is neglected: 
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In order to be even more concise, we note: 

12121111 4S1G   and   S1E == α . 

For an isotropic material, these quantities correspond to the Coulomb and Young 

moduli. For an orthotropic material E  is the longitudinal module of the beam, G  is 
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the shearing modulus with respect to the axes (1,2) and g  is the shearing correction 

(see Chapter 3, section 3.5.2). 

 

The resolution of this system is classical; it suffices to seek the solutions in the 

form: 
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Replacing in the system [6.114]: 
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To obtain non-trivial solutions, the determinant of the system [6.116] must be 

nil, that is: 

0CBkAk 24 =++   [6.117a] 

with: 

22 GSG C,IESB,SISEGA αρα−=ωρ=α= . [6.117b] 

The solutions of equation [6.117a] are obtained easily since they are those of a 

polynomial of the second degree in 2k . There are four 1k ±  and 2jk ±  solutions 

with: 

2A

〉B
 k1

+−
= ,  [6.118] 

2A

〉B
 k2

++
=   [6.119] 

and: 

4ACB〉 2 −= . 

To characterize the solutions completely, it is also necessary to determine the 

unknowns M and N of the linear system [6.116]. This is done by calculating the 
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terms of the matrix for the values of k  canceling the determinant. Obviously there is 

no unique pair (M, N), and we choose to fix N equal to one and to calculate M 

consequently. With the first line from the system it follows: 
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In short, there are four elementary solutions; the general solution is the linear 

combination. 
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Vibratory movement results from the superposition of two vanishing waves with 

a wave number 1k  and two traveling waves with a wave number 2k . 

Let us consider the celerity of the traveling waves: 

2
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の
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with 2k  given by [6.119], that is: 
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This celerity depends on the angular frequency; therefore, the medium is 

dispersive. We can calculate it in the extreme cases of low and high frequencies. 

At a low frequency we have the approximation: 

ω=  
EI

とS
 k 4

2 . [6.125] 

The use of [6.125] in [6.123] gives the celerity found with the theory of bending 

without secondary effects (equation [6.26]). We may thus conclude that transverse 
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shearing is negligible at low frequencies. The boundary frequency of validity of the 

theory without shearing is rather difficult to obtain; it would result from the 

comparison of the values of 2k  provided by [6.124] and [6.125] for increasing 

frequencies; as long as the two wave numbers are close, shearing does not have an 

influence. 

In the extreme case of high frequencies we have the approximation: 

の
と

Gg
 k2 =   [6.126] 

and thus: 

と
Gg

 cF = . [6.127] 

This propagation velocity corresponds to that of the waves of shearing, already 

highlighted in the problem of torsion in Chapter 5. The value is in fact a little 

different, taking into account the correction of the shearing modulus. 

We can also observe the asymptotic value of 2M  thanks to [6.121] and to the 

low and high frequency values of 2k . For low frequencies it follows: 

22 jk M −= . 

With [6.118] we deduce that the propagation part of the solution is given by: 

xjk2xjk2
22 e 

1

jk
 Fe 

1

jk
 E

)x(f

)x(h −
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
. [6.128] 

We note that: 
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This corresponds to the hypothesis of pure bending where the rotation of the 

cross-sections is equal to the slope and confirms the fact that transverse shearing is 

negligible at a low frequency. 

At high frequencies, 2M  tends towards zero ( ))の1O(M2 = . This means that 

transverse displacement occurs without rotation of cross-sections and, therefore, that 

the longitudinal constraint is nil. The movement is a pure shearing wave, as the 

propagation velocity would lead us to believe [6.127]. 

Figure 6.10 illustrates the type of movements of the beam at a low frequency. 

 

Figure 6.10. Low frequency movement: standard bending, transverse movement is 
accompanied by a rotation of the cross-sections 

Figure 6.11 illustrates the type of movements of the beam at a high frequency: 

 

Figure 6.11. High frequency movement: pure shearing wave 

The calculation of the modal system is performed in a traditional fashion by 

requiring the solution [6.122] to respect the boundary conditions. We will consider 

the simplest case, that of the supported-supported beam without, however, 

developing calculations. The mode shape of the index n is given by the vector: 
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The corresponding normal angular frequency is given by the expression: 
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Let us introduce, as for the study of the influence of rotational inertia, the 

relationship ni  between the normal angular frequencies calculated with and without 

secondary effects (here shearing) given by the expressions [6.131] and [6.57]: 
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We observe that, as for rotational inertia: 

– the factor is always weaker than 1 and that, therefore, taking shearing into 

account always makes the normal angular frequencies decrease; 

– the value 1/SL2
 is characteristic of the influence of shearing but is amplified by 

the ratio GgE . Let us add on this subject that for an isotropic material: 

α+= ち)1(2
Gg
E

 

where ち  is the Poisson’s ratio of material and g  is the shearing correction which 

depends on the form of the cross-section (see Chapter 3). 

Thus, for a steel beam with a circular cross-section, this amplifying factor is 

equal to 2.88. For an orthotropic material the amplification is much stronger because 

these materials are characterized by a weak shearing modulus. For a composite 

material composed of bidirectional fiberglass immersed in resin, the E/Gα ratio 

normally reaches 7. The shearing effect thus acquires a considerable importance for 

these materials. With [6.132] and [6.109] we also note that if the shearing and 

rotational inertia effects are of the same order of magnitude, shearing dominates. 

The shearing effect is greater the higher the rank n of the mode. 
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The free vibratory response is obtained by cumulating modal vibratory movements: 
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where the constants An and Bn are set by the initial conditions. We will not proceed 

further with these calculations. 

6.7.3. Taking into account shearing and rotational inertia 

6.7.3.1. Propagation of waves 

In the two preceding sections, we treated the two secondary effects separately. 

Here we will consider the case where the two effects are considered simultaneously. 

We will limit ourselves to the analysis using only the W vector of the beam, that is, 

on the basis of equation [3.57b] from Chapter 3: 
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The case without shearing is obtained in this form where only the W vector 

appears while removing the terms which depend on G in [6.134] (in fact, it is the 

limit when G tends towards infinity, which demonstrates that this hypothesis 

consists of rigidifying the shearing modulus in an artificial way, thus blocking this 

movement). The case without rotational inertia amounts to ignoring the fourth term 

of the first member of [6.134]; the standard equation consists of ignoring all these 

terms. 

For a harmonic movement, we pose: 

 tjのe f(x)t)W(x, = . 

Equation [6.134] becomes: 
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The solution of the differential equation [6.135] is standard; we seek the solution 

in the form: 

kxef(x) =   [6.136] 
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where k  is determined by the characteristic equation: 
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For each frequency ω  we associate the solutions: 
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where ∆  is the positive or zero quantity defined by: 
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Let us introduce the angular frequency limっ which satisfies 1k 0=  and delimits 

two different vibratory behaviors: 

とI

SGg
 っlim = . [6.141] 

For limっの < , there are two pure imaginary wave numbers pjk ±  resulting from 

[6.139] and two real wave numbers ek ±  resulting from [6.138]. The solution of the 

problem is: 

x)(kch  Fx)(ksh  Ex)(k cos Dx)(ksin  Cf(x) eepp +++= . [6.142] 

The expressions of pk  characteristic of the propagation part of the vibrations and 

ek  characteristic of the vanishing part of the vibrations are provided hereunder: 
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For limΩ>ω , the four solutions of [6.138] and [6.139] become imaginary and 

vibratory movement is composed of four traveling waves: 

x)(k cos Fx)(ksin  Ex)(k cos Dx)(ksin  Cf(x) 'e'epp +++= . [6.145] 

Wave numbers pk  and 'ek  are given respectively by [6.143] and [6.146]: 
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We can associate a physical significance to the angular frequency limΩ . Let us 

take the case of a rectangular section to settle the ideas. Equation [6.141] becomes: 

h

32

と
Gg

 っlim =   [6.147] 

where Tc
と

Gg
 =  is the celerity of transverse waves and h  is the thickness of the 

beam. 

By introducing the wavelength Tそ  of transverse waves (defined by [6.148]) into 

equation [6.147] we obtain the relation [6.149]: 

と
Gg

 2ヾそT = , [6.148] 

ヾ
3

そh T= . [6.149] 

The angular frequency limっ  is thus characteristic of a shearing wavelength close 

to the thickness of the beam. We can thus conclude that at higher frequencies, the 

beam hypothesis is no longer well adapted to describe the phenomena. 

The calculation of propagation velocities clarifies the physical phenomena; it is 

necessary to distinguish the behavior at frequencies higher and lower than limっ . 
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For limっの < , the celerity of the traveling waves is calculated easily thanks to 

[6.143]: 
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When の  tends towards limっ ,  ∆ tends towards zero and celerity tends towards a 

constant value: limc . 
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This celerity lies between the two values と
E cL =  and と

Gg cT =  

corresponding to the velocities of longitudinal and transversal waves which 

characterized the bending waves speeds with either rotational inertia or shearing 

alone. 

For limっの > , there are two speeds of propagation associated with the two types 

of traveling waves appearing in the solution: 
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and: 
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The analysis at the extremes of these expressions is interesting: if ω  tends 

towards limっ  by a higher value, we note that 
p e limc c c ;= =  if ω  tends towards 

infinity, we have pc  tending towards Lc  and ec  tending towards Tc . 
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Figure 6.12. Velocity of the bending waves: 
a) pure bending, b) with rotational inertia, c) with shearing 

Thus, above “omegalim”, two different types of traveling waves take part in the 

vibratory movement. In high frequency approximation, the first are propagated with 

the velocity of longitudinal waves, and the second with the velocity of transverse 

waves. In fact, they coincide with the high frequency approximations noted in 

sections 6.7.1 and 6.7.2 for waves of bending with rotational inertia and waves of 

bending with shearing respectively. Thus, at high frequencies, the two secondary 

effects are uncoupled. 

Figure 6.12 shows the celerity of the waves of bending in the three cases of the 

bending equation: fundamental case, with rotational inertia, with shearing; Figure 

6.13 has the celerity of the waves of bending when the two secondary effects are 

considered. We note that at low frequencies all the theories coincide but that they 

deviate from one another at high frequencies. 



226     Vibration in Continuous Media 

 
Fc  

ρ= E cL

ρ
α= G  cT

limっ
ω   

(b)

(a) 

 

Figure 6.13. Velocity of bending waves with shearing and rotational inertia (a), 
with rotational inertia only (b) 

6.7.3.2 Vibration modes 

The vibration modes of finite beams is traditionally outlined by seeking solutions 

of the type [6.142] and [6.145] verifying the boundary conditions. This calculation is 

rather long and we will not give it here. We directly give the result obtained in the 

simple case of the supported-supported beam. 

The normal strains remain identical to the simple case of pure flexing, that is: 
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For a given mode shape )x(fn  we associate two normal angular frequencies nの  
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This unfolding of the normal angular frequencies comes from the existence of a 

hidden variable t)(x, く which we excluded to obtain the simple form of the equation 

of motion [6.134] which only depends on t)W(x, . The apparent simplification of 

this procedure, in fact, pays off in the calculation of the response, since the modes of 

angular frequency nの  and 'nの  are not orthogonal (they have the same mode shape) 

which presents a problem for the introduction of boundary conditions. This problem 

of non-orthogonality of modes would not appear had we kept equations [6.110] and 

[6.111] to solve the problem in a similar fashion to the solution in section 6.7.2. 

6.8. Conclusion 

This chapter described the vibrations of bending of beams according to the 

various hypotheses used to model this problem. We showed, in particular, that the 

influence of the secondary effects of shearing and rotational inertia could be 

important for high frequencies and for the thicker beams. The anisotropy of material 

considerably amplifies the effect of shearing which cannot be neglected even for the 

first modes. 

The analysis of vibratory phenomena was performed for the beam in pure 

bending because the relative simplicity of the equation of motion allows easier 

exploitation. Two types of solutions appear during the resolution of the equation of 

motion: waves traveling as for longitudinal vibrations so for those of torsion, but 

also vanishing waves which acquire their importance at the singularities of the beam 

(boundary conditions, excitation, variation of inertia). Traveling waves are 

characterized by a propagation velocity which varies with frequency; we then say 

that the medium is dispersive. This property marks an important difference with the 

vibrating mediums described by the wave equation where the velocity of waves is 

constant. The dispersive nature of the solution modifies the space form of a 

disturbance during its propagation and prohibits the use of the images method 

presented in Chapter 4. 

The propagation of a package of waves with very close frequencies reveals the 

group speed characterizing the overall displacement of the disturbance. 

The vibrations modes of finite beams were presented in various cases and a 

summary table was drawn up. Mode shapes were characterized by a different 
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behavior according to whether the point of observation is localized in the vicinity of 

the boundaries or not. With relation to this, we introduced the concepts of internal 

solution and edge effect: the internal solution is generated by traveling waves, 

vanishing waves effectively appear only in the edge effect. Finally the relation 

between stress and transverse displacement was studied; we may derive the 

following tendencies: when the edge effect is present (near the singularities) an 

antinode (or a node) of modal displacement corresponds to a node (or an antinode) 

of stress; when the internal solution dominates a node (or an antinode) of 

displacement corresponds to a node (or an antinode) of stress. 



Chapter 7 

Bending Vibration of Plates 

7.1. Introduction 

Vibrations of thin plates constitute a problem that is difficult to solve 

analytically; in fact, only a small number of cases make it possible to find analytical 

expressions of vibration modes. A first limitation is due to the shape of the plate, 

which must be rectangular or circular; in this chapter we mainly study rectangular 

plates and give a short example for circular plates. A second limitation comes from 

the type of boundary conditions of the plate, which must be particular. Let us 

underline that the a priori simple case of the rectangular plate with all of its four 

edges clamped does not form part of the cases where an analytical solution of the 

vibration modes can be found. 

A difference with the vibrations of beams appears when plates are studied; it is 

the complexity of calculations, if only at the level of the presentation of problems 

and more particularly of the writing of boundary conditions. The first part of this 

chapter will consist of a systematic recording of the various boundary conditions 

that can be applied to rectangular plates in order to familiarize the reader with the 

subject. 

We will then determine the modal system in the cases that are treated 

analytically and which we will interpret physically. Finally, we develop the edge 

effect method which provides the approximated vibration modes for high rank 

modes in analytical form. 

At the end of the chapter we propose an example of vibrations of a circular plate. 
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There are a large number of publications on this area; let us point out that there 

are several works which have tabulated the first normal angular frequency and mode 

shapes of plates with various boundary conditions and which constitute a 

complement to this discussion. We give a non-exhaustive list of these works in the 

bibliography. 

7.2. Posing the problem: writing down boundary conditions 

Our discourse is built on the equation of pure bending which neglects rotational 

inertia, that is, on the simplest possible approach. This approach is linked to our 

desire to limit as mush as possible the cumbersomeness of calculations, so as to 

emphasize the physical aspects. 

Let us recall the equation of bending of plates [7.1] stated in Chapter 4 (equation 

[4.56]): 
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ρ  is the density of material, h is the thickness of the plate, D  is the bending 

rigidity )ち(1 12  EhD 23 −=  where E is the Young modulus and ν  is the 

Poisson’s ratio. 

Let us consider a rectangular plate with sides a and b as shown in Figure 7.1. To 

write the boundary conditions for each edge, it is necessary to define the external 

normal n
f

 and the tangent s
f

: 
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1n  and 2n  are the direction cosines of the external normal vector. On the edge 

0x = , for example, we have: 
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All of the normal vectors and tangents are clarified in Figure 7.1. 
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Figure 7.1. Rectangular plate, normal and tangent vectors at the edges 

To consolidate our understanding we will explicitly write the four possible 

boundary conditions: clamped, supported, guided and free. 

The boundary conditions associated with the equation of motion [7.1] are 

provided by the two alternatives [7.2] and [7.3]. 

1 2

1 2

either  :  W(x  ,x  ,t) 0 ,

  

or        :  T(x  ,x  ,t) 0

=⎧
⎪
⎨
⎪ =⎩

  [7.2] 

and: 

1 2

1 2

either  :  W n(x  ,x  ,t) 0 ,

or       :  M(x  ,x  ,t) 0 .

∂ ∂ =⎧
⎪
⎨
⎪ =⎩

  [7.3] 

In these equations, T is the shearing force and M is the normal bending moment 

at the edge of the plate. We recall their general expressions provided in Chapter 4, 

equations [4.58] and [4.57], concerning the set-up of the equation of thin plates: 
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The normal and tangent derivatives are by definition equal to: 
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Using the expressions of these derivatives and those of the direction cosines of 

the normal vectors at each edge of the plate we may write down the corresponding 

boundary conditions a) at the clamped edge, b) at the supported edge, c) at the 

guided edge and d) at the free edge. 

Clamped edge conditions, written for the edge 0x1 = : 
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Condition of support, written for the edge 0x2 = : 
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This boundary condition is simplified a little further because the first condition 
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Condition of guidance, written for the edge x1 = a: 
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Free condition, written for the edge x2 = b: 
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7.3. Solution of the equation of motion by separation of variables 

7.3.1. Separation of the space and time variables 

Let us pose: 

g(t)  )x, f(xt), x, W(x 2121 = . [7.12] 

Let us inject the form [7.12] in the equation of motion [7.1]. It follows: 
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Let us perform the separation of the variables of space and time in [7.13]: 
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The constant can be negative, nil or positive, thus leading to different solutions. 

However, as we saw for beams, the positive constant leads to the trivial solution 

when boundary conditions are observed; thus, we exploit only the two cases of zero 

and negative constants. 

a) Zero constant. In this case, equation [7.14] is reduced to: 

0)t(
dt

gd

2

2

=   [7.15] 

and: 

0)x, (x 
xx

f
2

x

f

x

f
 D 212

2
2
1

4

4
2

4

4
1

4

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂∂

∂
+

∂

∂
+

∂

∂
. [7.16] 



Bending Vibration of Plates     235 

The solution of these equations does not represent the vibratory movements 

themselves but uniform displacements which characterize the rigid movements that 

can appear for certain boundary conditions (free plate conditions, in particular). The 

general form of rigid movement of the plate is composed of the translation and of 

two rotations with respect to axes 1 and 2, i.e.: 

)ExDx(C B)At(t), x,W(x 212 1 +++= . [7.17] 

b) Negative constant 

By posing the constant equal to 2の−  we obtain: 
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The temporal equation [7.18] is solved very easily. We obtain: 

 t)(sin  B t)( cosA g(t) ω+ω= . [7.20] 

The equation of space is, however, difficult to solve since it remains a partial 

derivative equation. The search for solutions in the form of separate variables is 

fruitless in many cases of boundary conditions. In spite of this restrictive aspect, it is 

interesting because the only cases where the modal system has an analytical form 

are those where the separation of variables is applicable. 

7.3.2. Solution of the equation of motion by separation of space variables 

Let us suppose that the solution of space can be broken up as follows: 

)x(l )(xl)x,f(x 22112 1 = . [7.21] 
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Using relation [7.21] in equation [7.19] it follows: 
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Let us seek the solutions of equation [7.22] on a basis of exponentials: 
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Making a replacement in [7.22] it follows: 
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That is, to have a non-trivial solution: 
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To each particular value 2
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1k  there correspond two particular values 2
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2k  verifying [7.25]: 

とh

D
  の)けけ( 2

2
2
1 =+   [7.26] 

and: 

とh

D
  の)hけ( 2

2
2
1 −=+ . [7.27] 

The solutions for )x( 11ϕ  and )x( 22ϕ  are then respectively: 

1111
 x け

1
 xけ

111 e be a)x(
−+=ϕ ,  [7.28] 

22222222
 xh 

2
 xh

2
 x け

2
 xけ

222 e de ce be a)x(
−− +++=ϕ . [7.29] 

We can of course find a symmetrical form by inverting the indices 1 and 2. 
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It should immediately be noted that the solutions [7.28] and [7.29] will not in 

general make it possible to satisfy the boundary conditions for the 0x1 =  and 

ax1 =  edges of the plate, since we have two constants of integration in [7.28] and 

four boundary conditions to impose. In general, the application of boundary 

conditions to the solution obtained in the form of separate variables will lead to the 

trivial solution 0)x, f(x 21 = . There are, however, certain boundary conditions for 

which we obtain non-trivial solutions. 

7.3.3. Solution of the equation of motion (second method) 

A second method of solving equation [7.19] is possible; it is based on a rewriting 

of the following equation in factorized form: 

0)x, f(x  
D
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 の

xx
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∂
+

∂

∂
. [7.30] 

Let us consider the solutions )x, x(f 21
 +  and )x, x(f 21

 −  of the two equations 

built with the differential operators appearing in the product: 

0)x, x(f  
D
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 の

xx
21
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and: 
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2 1
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− . [7.32] 

We can easily demonstrate that the sum of the two solutions 

)x, x(f 21
 + + )x, x(f 21

 −  is the solution of equation [7.19]. Indeed, to simplify this, 

let us note: 
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and: 

⎟
⎟

⎠
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In its factorized form, equation [7.30] is written: 

{ } 0) f L(L   =−+ . 

Replacing )x, f(x 21  by the decomposition )x, x(f 21
 + + )x, x(f 21

 −  it follows: 

{ } { }( ) { }( ) 0 f L L f L Lff LL         =+=⎟
⎠
⎞

⎜
⎝
⎛ + −−++−+−+−+ . [7.33] 

Taking into account [7.32] we have the relation { } 0f L   =−− , from which we 

draw: 

{ } 0f LL   =⎟
⎠
⎞

⎜
⎝
⎛ +−+ . 

Inverting the order of derivations we can also write: 

{ } { } ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ ++−+−+ f LLf LL      . 

Finally, taking into account [7.31] { } 0f L  =++ , and we state by grouping all 

these results in [7.33]: 

{ } 0ff L L   =⎟
⎠
⎞

⎜
⎝
⎛ + −+−+ . 

Thus, the sum of )x, x(f 21
 +  and )x, x(f 21

 −  is the solution of the equation of the 

vibrations of plates [7.30]. 
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Let us seek the solution )x, x(f 21
 +  in the traditional form of an exponential 

product: 

2211
 xk xk

21
 e e)x, x(f =+ . 

Introducing this form into equation [7.31] leads to the result: 

( ) ( )1 1 1 1 2 2 2 2け x  け x け x  け x 
1 2 1 1 2 2

2 2
2 1

           f (x  ,x ) a  e b  e   a  e b  e

とh
with:  け の  け  .

D

− −+ = + +

= −

 

In the same manner we obtain for equation [7.32]: 

( ) ( )1 1 1 1 2 2 2 2け x  け x x  x 
1 2 1 1 2 2

2 2
2 1

          f (x  ,x ) a  e b  e  a  e b  e

とh
with:  h  の  け  .

D

δ δ− −− = + +

= − −

 

This method of resolution leads to the same result as the method used in section 

7.2.2. Indeed, the superposition of the two solutions )x, x(f 21
 +  and )x, x(f 21

 −  

clearly coincides with the forms [7.28] and [7.29]: 

)x, x(f)x,x(f)x,f(x 21
 

2 1
 

2 1
−+ += . 

The decomposition of the equation of plates vibration into a product equation is 

particularly interesting in the case of circular plates, which we consider briefly at the 

end of the chapter. 

7.4. Vibration modes of plates supported at two opposite edges 

7.4.1. General case 

This case of boundary conditions makes it possible to find an analytical solution 

for the modal system. 

We suppose that the two supported edges are the edges 0x1 =  and ax1 = ; the 

solutions [7.28] and [7.29] are the convenient forms. If these are the edges 0x2 =  
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and bx2 = , it is necessary to take the symmetrical form of [7.28] and [7.29] by 

inverting the indices 1 and 2. 

Let us require the boundary conditions in 0x1 =  and ax1 =  to be respected; it 

follows: 

. 0)a(
dx

d
0)xa,(

x

f

, 0)0(
dx

d
0)x0,(

x

f

, 0)a(0)xf(a,

, 0)0(0)xf(0,

2
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1
2

22
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2

2
1
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2

12
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=
ϕ

⇒=
∂

∂

=
ϕ

⇒=
∂

∂

=ϕ⇒=

=ϕ⇒=

 

The application of the first two conditions to [7.28] is redundant and leads to: 

11 b a −= . [7.34] 

The third and fourth conditions are also redundant and give: 

0e be a
a  け

1
aけ

1
1 1 =+ −

. 

By combining the two preceding equations we obtain: 

0a) sh(け1 = . 

I.e. there is an infinity of wave numbers 1nけ  solution: 

a

nヾ
jけ1n = . [7.35] 

Using equations [7.34] and [7.35] in the general form [7.28], we associate the 

function )x( 11nϕ  to each wave number: 

⎟
⎠

⎞
⎜
⎝

⎛
=ϕ 11n1n x

a

nヾ
sin  a . [7.36] 
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Note that it is the two by two redundancy of the boundary conditions that makes 

it possible to have non-trivial solutions for )x( 11ϕ  verifying four boundary 

conditions with two integration constants. We conceive that it is an exceptional 

situation and is only valid for particular boundary conditions. 

For the two other edges 0x2 =  and x2 = b, we can impose any type of boundary 

conditions: supported, clamped, free or guided edge. As an example we will take the 

case of two supported edges, which has the advantage of leading to rather short 

calculations. 

7.4.2. Plate supported at its four edges 

The function )x( 22ϕ  must verify the other boundary conditions: 

0)b(
dx

d
  ,  0)0(

dx

d
  ,  0)0(  ,  0)0(

2
2

2
2

2
2

2
2

22 =
ϕ

=
ϕ

=ϕ=ϕ . 

With the form [7.29] of )x( 22ϕ  it follows for the conditions in x2 = 0: 

. 0)d(c h)b(a け

, 0dcba

22
2
222

2
2

2222

=+++

=+++
 

We can note with [7.26] and [7.27] that: 

0
D

とh
 の 2けh 2

2
2
2 ≠−=− . 

The linear system has a non-zero determinant and its solution is: 

 22 2 2 d  c and       b   a − = −= . [7.37] 

Taking into account the preceding relations [7.37], the conditions in b give: 

⎪
⎩

⎪
⎨

⎧

=+

=+

. 0b)sh(h h cb)sh(け  けa

, 0b)sh(h cb)sh(け a

2
2
222

2
22

2222

  [7.38] 
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Non-trivial solutions are obtained if the determinant of the linear system [7.38] is 

nil: 

0b)sh(h  b)sh(け  )け(h 22
2
2

2
2 =− . [7.39] 

The quantity 2
2

2
2 けh −  being non-zero equation [7.39] is satisfied if: 

0b)sh(hor       0 b)sh(け 22 == . 

Let us consider these two possibilities: 

a) The equation 0 b)sh(け 2 =  is verified for an infinite number of 2mけ  values 

with: 

b

mヾ
jけ2m = . [7.40] 

Using this result in [7.38], we note that if 0b)sh(h 2 ≠ , then 0c2 =  and 2a  is 

unspecified. Bringing together all the results, the form )x( 22mϕ  solution is given by 

[7.41] for each value 2mけ : 

∞=⎟
⎠

⎞
⎜
⎝

⎛
=ϕ  , ... , 1m  ,  x

b

mヾ
sin  a)x( 22m22m . [7.41] 

The amplitude 2ma  is arbitrary. 

b) The equation 0b)sh(h 2 =  is verified for an infinite number of values 2ph , 

with: 

b

pヾ
jh2p = . [7.42] 

Using this result in [7.38], we note that if 0 b)sh(け 2 ≠ , then 0a2 =  and 2c  is 

unspecified. Bringing all the results together, the form )x( 22pϕ  solution is given by 

[7.43] for each value 2pけ : 

∞=⎟
⎠

⎞
⎜
⎝

⎛
=ϕ  , ... , 1p  ,  x

b

pヾ
sin  a)x( 22p22p . [7.43] 

The amplitude 2pa  is arbitrary. 
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It should be noted with [7.41] and [7.43] that the two possibilities lead to the 

same solutions; it is thus necessary to also recognize here an effect of the 

redundancy of the boundary conditions of support. It is enough to consider one of 

the two sets of solutions. We take the one with the index m. 

The vibration modes of the plate supported at its four edges now stems from the 

set of the results obtained. To each pair of indices )m,n(  we associate the normal 

angular frequency nmの  deduced from equations [7.26], [7.35] and [7.42]: 

⎟
⎟
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=

22

nm
b
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nヾ
 

とh

D
 の . [7.44] 

The mode shape )x, x(f 21nm  is calculated using [7.21], [7.36] and [7.43], that is: 

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= 2121nm x

b

mヾ
sin  x

a

nヾ
sin )x, x(f . [7.45] 

The constants have been normalized to one due to a preoccupation with 

simplification. The modal vibratory movement is obtained by multiplying the 

solutions of space and of time: 

( )

. x
b

mヾ
sin   x

a

nヾ
sin                                                            

 t)(sin  B t)cos( At), x, x(W

21

nmnmnmnm21nm

⎟
⎠

⎞
⎜
⎝

⎛
⎟
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⎞
⎜
⎝

⎛

ω+ω=
  [7.46] 

Finally, the most general movement is produced by the superposition of modal 

movements: 

t), x, x(W t), x, W(x 21nm
1n 1m

21 ∑ ∑
∞

=

∞

=
= . [7.47] 

The constants of integration nmA  and nmB  are fixed by the initial conditions. 

The use of the alternative solutions [7.40] and [7.41] instead of [7.42] and [7.43] 

naturally leads to the same modal vibratory movements. However, there appears a 

difference in calculation, because the normal angular frequencies are negative in this 

case. It is of course just a sleight of hand, because at the level of [7.46], introducing 

negative angular frequencies amounts to changing the sign of the constant npB ,  

which in any case is arbitrary at this stage of calculation. 
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7.4.3. Physical interpretation of the vibration modes 

The vibration modes of the rectangular plate supported at its four edges was 

provided by [7.44] and [7.45]. We can note that the modes are defined by a double 

index with respect to the directions 1 and 2. The mode )1,1( is that of the lower 

normal angular frequency 11の  and of the mode shape )x, x(f 2111  whose values are 

given below: 

. x
b

ヾ
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ヾ
sin )x, x(f  and

b
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ヾ
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Figure 7.2a. Mode shape of the mode (1,1) of a supported rectangular plate. 
Three-dimensional image 

Figure 7.2 presents the mode shape. We note that for this mode of lower normal 

angular frequencies, all the points of the plate vibrate in phase. A second 

representation is used traditionally, the layout of nodal lines ({ }1 2x  ,x  being such 

that nm 1 2f (x  ,x ) 0= ). 

2x

1x

11f
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2x   

 b 

a 0 
1x

 

Figure 7.2b. Mode shape of the mode (1,1) of a supported rectangular plate. 
Nodal lines (none for this mode) 

Let us consider the mode (2,1); its modal characteristics are given by: 
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This mode is the second in frequency if ba > . It presents a nodal line for 

2ax1 =  as Figure 7.3b indicates. On both sides of the nodal line, the vibrations 

occur in opposition of phase. 

 

 

 

Figure 7.3a. Mode shape of the mode (2,1) of a supported rectangular plate. 
Three-dimensional image 
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2x  

1x  

 

b 

a a/2 
 

Figure 7.3b. Mode shape of the mode (2,1) of a supported rectangular plate. 
Nodal line 

Finally, we take the example of a higher order mode, the mode (3,4): 
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Figure 7.4a. Mode shape of the mode (3,4) of a supported rectangular plate. 
Three-dimensional image 
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Figure 7.4b. Mode shape of the mode (3,4) of a supported rectangular plate. 
Nodal lines 

This mode presents two nodal lines in the 1x  direction (in 3a  and 32a ) and 

three nodal lines in the 2x  direction (in 4b , 2b  and 43b ). On both sides of a 

nodal line the vibrations are in opposition of phase. 

These mode shapes present nodal lines parallel to axes 1 and 2; it is an obligatory 

characteristic of the solutions obtained in the form of separate space variables. On 

the contrary, we may affirm that the modes of vibration of rectangular plates that do 

not have nodal lines parallel to the axes cannot be obtained by separation of space 

variables. Figure 7.5 shows the mode shape of a free rectangular plate: the nodal 

lines are not parallel to the axes; for this case of boundary conditions the technique 

of separation of space variables used in this chapter does not yield a result. 

 

 

Figure 7.5. Mode shape of the 17th mode of a rectangular plate free at its edges 

1x
  

2x
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7.4.4. The particular case of square plates 

This particular case of rectangular plates presents different pairs of normal 

modes, which have the same normal angular frequencies. These are the modes (n, m) 

and (m, n). The response of a pair of modes follows the general formula [7.46]: 
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To simplify the analysis, let us suppose that the constants nmB  and mnB  are nil. 

Two modes with the same normal angular frequency can be grouped: 
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Everything occurs as if there was only one combined mode whose shape is the 

linear combination of the mode shapes of the 2 modes (n, m) and (m, n) with the 

same normal angular frequency. The effect obtained is rather spectacular when we 

visualize the nodal lines of the combined modes. Of course the amplitudes nmA  and 

mnA greatly influence the result; they depend on the initial conditions of the 

vibration initiating and can thus vary greatly. Figure 7.6 gives several examples of 

results; when one amplitude is large compared to the other, we observe a situation 

where only one mode is barely visible, but when the amplitudes are close, the 

resulting nodal lines have forms that are very far removed from primitive nodal 

lines. 
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Figure 7.6a. The two basic mode shapes 13f  and 31f  for a square plate 

If the constants nmB  and mnB  are not nil, the combination of the two modes 

produces two different combined modes, one is associated with )t( cos nmω  and the 

other to )t(sin nmω . Strictly speaking, there are no nodal lines, since the lines of zero 

displacement over time move away from the nodal lines of a mode combined to 

another. 

 

Amplitudes of the mode shapes: A13 = 0.703, A31 = 0.707 
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Amplitudes of the mode shapes: A13 = –0.707, A31 = 0.707 

 

Amplitudes of the mode shapes: A13 = 0.5, A31 = 0.86 

 

Amplitudes of the mode shapes: A13 = –0.5, A31 = 0.86 
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Amplitudes of the mode shapes: A13 = 0.38, A31 = 0.92 

 

Amplitudes of the mode shapes: A13 = 0.38, A31 = 0.92 

Figure 7.6b. Combined modes stemming from the combination of the modes (1.3) and (3.1) 
for various amplitudes of the two modes 

These particular phenomena, associated with simply supported square plates, 

remain true when the boundary conditions are identical for the four edges, because 

the symmetry of the problem necessarily involves the existence of normal angular 

frequency doublets. 

7.4.5. Second method of calculation 

A second method of calculation of the modal system of plates supported at two 

opposite edges can be employed; it is more direct and poses the space solution of the 

problem a priori in the form: 

)x(h  x
a

nヾ
sin )x, f(x 2n

1n
121 ∑
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=
⎟⎟
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= . [7.48] 
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The decomposition into sine offers the double property of defining a functional 

base and verifying the boundary conditions of support for 0x1 =  and ax1 = . 

Now it remains to verify, firstly, the equation of space [7.19] and, secondly, the 

remaining boundary conditions for 0x2 = and bx2 = . 

Let us start with verifying equation [7.19]; injecting [7.48] in [7.19], we obtain: 
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To uncouple the equations, it is sufficient to use the orthogonality of the sine 

functions: 
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Multiplying equation [7.49] by ⎟
⎠

⎞
⎜
⎝

⎛
1x

a

mヾ
sin , then integrating it from 0 to a, 

it follows: 

0h 
D

とh
の

a

mヾ
dx

hd

a

mヾ
 2

dx

hd

m
2

4

2
2

m
22

4
2

m
4

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
− . 

It is a differential equation which is easily integrated. Noting: 

, 
a

mヾ
D

とh
 の jr   and

D

とh
 の

a

mヾ
 r     

2

2m

2

1m

⎟
⎠
⎞

⎜
⎝
⎛−=

+⎟
⎠
⎞

⎜
⎝
⎛=

  [7.50] 
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we obtain: 

. )x(rch  F)x(rsh  E                                                 

)x(r cos D)x(rsin  C)x(h

21mm21mm

22mm22mm2m

++

+=
  [7.51] 

Let us introduce the boundary conditions for the edges 0x2 =  and bx2 = . All 

the boundary conditions for an edge are possible; however, to consolidate our 

concepts we consider the clamped edges: 

. 0)b(
dx

dh
0b), x(

dx

df

, 0)0(
dx

dh
0,0) x(

dx

df

, 0)b(h0b), f(x

, 0)0(h0,0) f(x

2

m
1

2

2

m
1

2

m1

m1

=⇒=

=⇒=

=⇒=

=⇒=

  [7.52] 

Using the form [7.51] under the four conditions [7.52], we obtain the 

homogenous linear system [7.53]: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
0

0

0

0

 

F

E

D

C

 

b)sh(rr   b)sh(rr   b)sin(rr   b)cos(rr

b)ch(r        b)sh(r      b)cos(r          b)sin(r   

0                 r                 0                     r      

1                   0                    1                       0       

m

m

m

m

1m1m1m1m2m2m2m2m

1m1m2m2m

1mm2
. [7.53] 

To obtain non-trivial solutions, it is necessary that the determinant of the system 

be nil. Upon some calculation this leads to the characteristic equation: 

( ) b)sh(r  b)sin(r  )rr(1b)ch(r  b)cos(rr 2r 1m2m
2

1m
2
2m1m2m2m1m −=− . [7.54] 

The solution of this characteristic equation is not trivial and requires 

computerized treatment. Let us note, however that 1mr  and 2mr  are not independent 

variables but, on the contrary, are connected to the angular frequency ω by equations 

[7.50]. Thus, we seek to determine the angular frequencies ω verifying [7.54]. For 

each index m we find an infinite number of solutions ∞= , ... 1,m . Each solution is 

consequently identified by a double index pqの . For a square plate we may draw up 

Table 7.1 indicating the first six normal angular frequencies. 
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mode 1.1 2.1 1.2 2.2 3.1 1.3  

28,946 54,743 69,320 94,584 102,213 129,086 A-E-A-E 

D

h
 a 2

pq

ρ
ω

19,739 49,348 49,348 78,956 98,696 98,696 A-A-A-A 

Table 7.1. Adimensional normal angular frequencies of the first 6 modes 
of a square plate, with a side a. (boundary conditions: all supported (A-A-A-A)  

or supported-clamped (A-E-A-E) 

We may note thanks to Table 7.1 that clamping two edges produces an effect of 

stiffness compared to the condition of support, which increases the normal angular 

frequencies. This effect is all the more pronounced when the mode is of a low rank. 

The calculation of mode shapes requires the resolution of the linear system 

[7.53] for each root of the equation. Computerized processing also generally proves 

necessary here. In certain particular cases we will be able to find tabulations of mode 

shapes in [LEI 93] and [CORN 84]. We may, however, state the technique of 

calculation of mode shapes rather simply. Let us consider the mode (n, m) with an 

angular frequency nmの ; thanks to equations [7.50] we associate to it the two wave 

numbers 1nmr  and 2nmr , which of course give a determinant equal to zero of the 

system [7.53]. Consequently, the solution vector of [7.53] is not unique. We may, 

nonetheless, choose one of them by normalizing the solution vector. 

The mode shape is then provided by: 

(

). )xch(r F)xsh(r E                                           

)xcos(r D)xsin(r C x
a

nヾ
sin )x, x(f

21nmnm21nmnm

22nmnm22nmnm121nm

++

+⎟
⎠

⎞
⎜
⎝

⎛
=

 

7.5. Vibration modes of rectangular plates: approximation by the edge effect 
method  

7.5.1. General issues 

As we saw previously, the calculation of the vibration modes in analytical form 

is impossible in the majority of the cases of boundary conditions. Several techniques 

of approximation are possible, most commonly based on the Rayleigh-Ritz method. 

A possible choice of the test functions used in this method consists of approximating 
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the mode shape (n, m) of the rectangular plate by the product of the mode shapes of 

beam of the orders n and m in the directions 1 and 2 respectively. We treat this type 

of calculation in Chapters 11 and 12 which deal with the approximation of the modal 

system by the Rayleigh-Ritz method. 

A different technique suggested by Bolotin is based on a physical property of the 

modes which stipulates that the high order modes of homogenous rectangular plates 

present different behaviors away from their boundaries and near them. During the 

study of beam vibrations we observed this phenomenon linked to vanishing waves 

which have real influence only in the vicinity of the boundaries and are 

characteristic of the edge effect. Far from the boundaries, the solution stems entirely 

from traveling waves; it is the internal solution. 

7.5.2. Formulation of the method 

We seek an approximate solution of equation [7.19] of the space function 

)x, f(x 21 . The idea of the method consists of using different approximations of the 

solution far and near the boundaries, these solutions being based on the one obtained 

by separation of space variables [7.28] and [7.29]. The form presumed valid far from 

the edges 0x1 =  and ax1 =  is: 

)(x h  ) xsin(k)x, f(x 2211121 ϕ+= . [7.55] 

This solution supposes that in this part of the plate the solution in direction 1 

contains only the internal solution ) xsin(k 111 ϕ+ . 

Symmetrically, the form presumed valid far from the edges 0x2 =  and bx2 =  

is: 

)(x h  ) xsin(k)x, f(x 1122221 ϕ+= . [7.56] 

These forms of solution [7.55] and [7.56] must, on the one hand, verify the 

equation of motion [7.19] and, on the other hand, coincide when the point of 

observation is far from the four edges. 

Introducing, to begin with, the respect of equation [7.19] by the form [7.56], it 

follows: 

0h の
D

とh
k

dx

hd
2k

dx

hd

1
24

22
1

1
2

2
24

1

1
4

=⎟
⎠

⎞
⎜
⎝

⎛
++− . [7.57] 
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Equation [7.57] has as a solution: 

11111
xs 

1
)xa(s 

1112111 e Ee D)ね xsin(s C)(x h
−−− +++=   [7.58] 

2

22 kの 
D

とh
  s  :with  −=   [7.59] 

and: 

2
21 kの 

D

とh
  s += . [7.60] 

Performing the same operation with the form [7.55] we obtain: 

21221
 xr 

 2
)xb(r 

 2222 222 eEeD)ね xsin(rC)(x h
−−− +++=   [7.61] 

2
2 1

とh
with:  r    の k

D
= −   [7.62] 

and: 

2
11 kの 

D

とh
  r += . [7.63] 

The solutions [7.58] and [7.61] are formed using the same model: they contain 

an internal sinusoidal solution and edge effects characterized by decreasing 

exponentials when we move away from the boundaries. This conforms well with the 

initial hypothesis: far from the boundaries only the internal solution remains. This 

hypotheses will be verified all the better the greater the value of the wave number 1s  

(or 1r ). 

In the case of beams in bending vibrations we observed the same structure of 

solutions. The zone where the edge effect is important is about a quarter of the 

wavelength of natural waves and, therefore, reduces sharply with frequency. 
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Let us use the fact that the two forms must coincide far from the boundaries and 

that the internal solutions provided by the two forms of solutions must, therefore, be 

equal: 

) xsin(k  )ねxsin(sC) xsin(k  )ね xsin(rC 22211 2 2111222 1 ϕ++=ϕ++ . 

This lead to the identification: 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

==

ϕ=Ψ

=

ϕ=Ψ

=

CCC

kr

ks

21

22

22

11

12

. [7.64] 

2 

1

Zone de validité 

de la solution [7.55] 

Zone de validité 

de la solution [7.56]

 

Figure 7.7. Zones of validity of the solutions of the edge effect method  

The internal solution is thus provided by: 

) xksin(  ) xk(sinC 222111 ϕ+ϕ+ . [7.65] 

Zone of validity of the 

solution [7.55] 

Zone of validity of 

the solution [7.56] 



258     Vibration in Continuous Media  

EE IS

EE

IS

 

Figure 7.8. Representation of the solutions of the edge effect method 
IS: internal solution, EE: edge effect  

Moreover, taking into account [7.59] and [7.62], it follows: 

)kk( 
h

D
 2

2
2
1 +

ρ
=ω . [7.66] 

That is, with [7.60] and [7.63]: 

2
2

2
11 k2ks += ,  [7.67] 

2
1

2
21 k2kr += . [7.68] 

The two forms of solutions are thus, finally, provided by: 

– for 1x  far from the edges 0x1 =  and x1 = a: 

( )
e  ) xsin(k Ee  ) xsin(k D       

) x(ksin  ) xsin(k C)x, x(f

2121
xr 

1112
xbr 

1112

22211121

−−− ϕ++ϕ++

ϕ+ϕ+=

;

  [7.69] 
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– for 2x  far from the edges 0x2 =  and x2 = b: 

. e  ) xsin(k Ee  ) xsin(k D      

) x(ksin  ) xsin(k C)x, x(f

1111
xs 

2221
)xa(s 

2221

22211121

−−− ϕ++ϕ++

ϕ+ϕ+=
  [7.70] 

7.5.3. The plate clamped at its four edges 

It is a question of imposing the respect of the boundary conditions on the four 

edges considering the form [7.69] or [7.70] adapted to the selected edge. Let us 

consider, to begin with, the edge 0x1 = . It is of course the form [7.70] which is 

adapted to it. However, it is simplified because the second term of [7.70] represents 

the effect edge for ax1 = , which is negligible for 0x1 = . The approximation of the 

solution in the vicinity of the edge 0x1 =  is, therefore, reduced to two terms: 

11
xs 

222122211121 e  ) xsin(k E) x(ksin  ) xsin(k C)x, x(f
−ϕ++ϕ+ϕ+= . 

This form of solution is applicable at the edge, far from the corners because the 

edge effect in the second direction becomes important there. On the assumption that 

this edge effect decreases sharply when we move away from the boundary, it will 

only have influence very locally, very close to the corners, and will not have a very 

significant effect on the result. 

The application of the boundary conditions of clamped edge provides two 

relations: 

0Esin  C0)x,0(f 112 =+ϕ⇒= ,  [7.71] 

0s E cos k C0)x,0(
x

f
11112

1

=−ϕ⇒=
∂

∂
. [7.72] 

Proceeding in a similar way for the edge ax1 =  we obtain: 

0D)a sin(k C0)x,a(f 1112 =+ϕ+⇒= ,  [7.73] 

0s D)a cos(k k C0)x,a(
x

f
111112

1

=+ϕ+⇒=
∂

∂
. [7.74] 
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Using the linear system formed by equations [7.71] and [7.72] and supposing 

that the determinant is nil, we obtain the first line from [7.75]. Proceeding in the 

same way with equations [7.73] and [7.74] we draw the second line from [7.75] in 

order to obtaining a non-trivial solution: 

⎪⎩

⎪
⎨
⎧

=ϕ+−ϕ+

=ϕ+ϕ

0)a (ksin  s)a (k cos k

0sin  s cos k

11111111

1111
  [7.75] 

The system of equations [7.75] has the solutions: 

a/2 k 11 −=ϕ ,  [7.76] 

a/2) (ktg
s

k
1

1

1 = . [7.77] 

Symmetrically for the edges 0x2 =  and bx2 =  after all the calculations, we 

obtain: 

b/2 k 22 −=ϕ ,  [7.78] 

b/2) (ktg
r

k
2

1

2 = . [7.79] 

It now remains to determine the angular frequencies which make it possible to 

simultaneously verify [7.77] and [7.79]. These angular frequencies are provided by 

[7.66] from the moment when the wave numbers 1k  and 2k  verify the two 

equations: 

1
22 2

1 2

2
12 2

2 1

k
      tg(k  b/2)

k 2k

k
and   tg(k  a/2) ,

k 2k

=
+

=
+

  [7.80] 

where we have made use of equations [7.67] and [7.68]. 

The solution of equations [7.80] requires computerized processing, which we 

will not perform here. However, to show the quality of the prediction, by way of an 

example, in Table 7.2 we give the value obtained for the first mode of a square plate. 
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 Edge effect method Rayleigh-Ritz method 

D

h
 a 2

11

ρ
ω  35.09 35.99 

Table 7.2. Comparison of the values of the first adimensional normal angular frequency of a 
clamped square plate, calculated by the edge effect method and by the Rayleigh-Ritz method 

(according to [KIN 74]) 

The result of the table shows an already satisfactory prediction while the edge 

effect method converges all the better the higher the wave numbers 1k  and 2k  are. 

It is this characteristic of better convergence for the higher modes which marks the 

specificity of this approach. 

7.5.4. Another type of boundary conditions 

A similar calculation can be carried out when the plate has other boundary 

conditions. For a square plate clamped at two adjacent edges and supported at the 

other two edges the first normal angular frequency is given in Table 7.3. In this case 

the approximation is still better, because the support does not generate the edge 

effect (error of 0.7% instead of 2.6% in the case where all the edges are clamped). 

 

 Edge effect method Ritz method 

D

h
 a 2

11

ρ
ω  26.87 27.06 

Table 7.3. Comparison of the values of the first adimensional normal angular frequency, 
calculated by the edge effect method and by the Ritz method (according to [KIN 74]) 

The edge effect method is thus applicable to obtain an approximation of the 

normal angular frequencies of rectangular plates, the approximation being better the 

higher the ranks of the modes are. There is, however, a limitation to its use when the 

boundary conditions leave the transverse displacement of the plate free. This fact is 

highlighted in Table 7.4. 

We may note that the edge effect method does not predict all the frequencies of 

resonance when two opposite edges are free: it is then dangerous to use it even if it 

does provide a correct approximation of the normal angular frequencies, which it is 

able to predict. This phenomenon is explained by the fact that the hypothesis of an 
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edge effect localized at the boundaries is not acceptable when two opposite edges 

are free because the plate then presents modes of the beam type. 

In the case of boundary conditions where transverse displacement is blocked at 

the edges (clamping and supports), the edge effect method gives good results and 

more so when the modes have a high rank, as opposed to the methods of traditional 

discretization. 

 

Boundary conditions Edge effect method Results from written works 

clamped in 

0x1 =  and ax1 =  

 

free in 

0x2 =  and ax2 =  

26.73 

44.56 

67.29 

80.60 

88.17 

22.17 

26.40 

43.6 

61.2 

67.2 

79.8 

87.5 

clamped in 0x1 =  

 

free in 

ax1 = , 0x2 =  and 

ax2 =
 

7.78 

26.27 

30.06 

53.21 

Lower limit 

3.43 

7.26 

20.87 

26.50 

28.55 

51.50 

60.25 

Upper limit 

3.473 

8.54 

21.30 

27.29 

31.17 

54.26 

61.28 

clamped in 

0x1 =  and 0x2 =  

 

free in 

ax1 =  and ax2 =  

5.866 

25.05 

25.05 

47.13 

63.87 

Lower limit 

6.958 

24.80 

26.80 

48.05 

63.14 

 

Table 7.4. Adimensional normal angular frequencies of square plates 
presenting free edges (according to [KIN 74]) 
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7.5.5. Approximation of the mode shapes 

The approximation of mode shape is simple to carry out: let us take the example 

of the clamped plate. Each normal mode (n, m) is characterized by wave numbers 

nm1k  and nm2k , which are the solutions of the characteristic equation [7.80]. From 

them with [7.76] and [7.78] we deduce the values of nm1ϕ and nm2ϕ : 

1nm 1nm 2nm 2nm k  a / 2    and     k  b / 2ϕ ϕ= − = − . 

Finally, thanks to [7.71] and [7.73], we can express the constants nm1E  and 

nm1D : 

. )a sin(k C D

, sin C E

1nm1nmnm1

1nmnm1

ϕ+−=

ϕ−=
 

By symmetry we also draw nm2E  and nm2D : 

. )a sin(k C D

, sin C E

2nm2nmnm2

2nmnm2

ϕ+−=

ϕ−=
 

It is enough to report these values in the general form [7.69] – [7.70] to obtain 

the mode shape )x, x(f 21nm . The constant C  is not fixed but traditionally one can 

make it equal to the unit. 

7.6. Calculation of the free vibratory response following the application of 
initial conditions 

To reduce the calculations as much as possible, we consider a plate supported at 

all its edges. The general form of the vibratory response is then given by [7.47], that 

is: 

. x
b

m
sin   x

a

n
 sin                                                                  

)tsin  Bt cos A(  t), x, x(W

21

1n 1m
nmnmnmnm21

ππ

ω+ω=∑ ∑
∞

=

∞

=
  [7.81] 
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The initial conditions are of the type: 

)x, x(d0) , x, x(W 21021 = ,  [7.82] 

)x, x(v)0 , x, x(
t

W
21021 =

∂

∂
. [7.83] 

With [7.81] we draw from this the two equations: 

∑ ∑
∞

=

∞

=
=

ππ

1n 1m
21021nm )x, x(dx

b

m
sin   x

a

n
sin  A    [7.84] 

and: 

∑ ∑
∞

=

∞

=
=

ππ
ω

1n 1m
21021nmnm )x, x(vx

b

m
sin   x

a

n
sin   B  . [7.85] 

To calculate the modal amplitudes nmA  and nmB , it is necessary to use the 

orthogonality of mode shapes: 
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Following the classical procedure we obtain: 

2121

a

0

b

0

210pq dxdx x
b

q
sin   x

a

p
 sin  )x, x(d   
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4
A

ππ
= ∫ ∫ , [7.86] 
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210
pq

pq dxdx x
b

q
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a

p
 sin  )x, x(v   
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1
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ππ
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= ∫ ∫ . [7.87] 
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By way of an example, an excitation through impact at the point )X, X( 21  

produces initial conditions of the type: 

⎪⎩

⎪
⎨
⎧

−δ−δ=

=

)X(x   )X(x  V)x, x(v

0)x, x(d

22110210

210
 

where 0V  is speed at the point of impact. 

Using of these expressions in [7.86] and [7.87] leads to the result: 

.  

X
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q
sin   X

a

p
 sin
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V4
B

0A

pq

21
0

pq

pq

ω
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=
 

The vibratory movement following the shock is thus: 

∑∑
∞

=

∞

= ω

ππππ

ω
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1n nm

2121

1m
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21
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x
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m
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n
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m
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n
sin

  t)sin(  
ab

V4

)t, x, x(W

  [7.88] 

We have already studied the calculation of the free response for beams; the case 

of the plates is the same and does not introduce any fundamental differences. In 

particular, we find the classical tendency: excitation through point impact shock 

does not produce a response of a mode if the point of impact coincides with a nodal 

line of this mode. 

7.7. Circular plates 

7.7.1. Equation of motion and solution by separation of variables 

This case is not treated in detail like that of the rectangular plates; we present the 

method and some sufficiently explicit cases of application so that the reader can 

generalize the approach. 

Expressing the equation of motion of circular plates in polar co-ordinates has an 

obvious interest. We gave the equations within the framework of various hypotheses 
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in Chapter 4. Hereafter we will consider the case of the Love-Kirchhoff hypotheses, 

and equations [4.79] and [4.76] which we recall below. 

{ } 0W D
t

W
h 2

2

2

=∆+
∂

∂
ρ   [7.89] 

2 2 2 2
2

2 2 2 2 2 2

1 1 1 1
with:    

r r r rr r r r

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎜ ⎟ ⎜ ⎟∆ = + + + +
⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠θ θ

. [7.90] 

To solve this equation we will use separation of variables. First of all, at the level 

of the time and variables of space ),r( θ : 

),r(f  )t(g)t,,r(W θ=θ . [7.91] 

The introduction of [7.91] in [7.89] with subsequent separation of variables 

yields: 

0)t(g )t(g
dt

d
2

2

2

=ω+   [7.92] 

and: 

{ } 0 ),r(f  D),r(f h 22 =θ∆+θρω− . [7.93] 

Equation [7.92] admits the traditional solution of the vibratory problems: 

tsinFtcosE)t(g ω+ω= . [7.94] 

To solve equation [7.93] let us once again apply the separation of variables; we 

seek a solution in the form of [7.95]. 

)( s  r)( h),r(f θ=θ . [7.95] 

Let us note, moreover, that taking into account the periodicity of the function 

)( s θ , we can break it up into a Fourier series and obtain the general form: 

θ+θ+=θ ∑
∞

=
nsinBncosAA)( s n

1n
n0 . [7.96] 
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Let us use the technique of resolution from section 7.3.3, introducing the two, 

operators +L  and  L− : 
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The solution of [7.93] is the sum of the solutions of [7.97] and [7.98]. Let us first 

consider [7.97]. Introducing the form [7.96] for )( s θ  we obtain: 
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Using the orthogonality of the functions θnsin  and θncos , we determine a set 

of functions: 

θncos)r(hn ,  [7.100a] 

θnsin)r(hn ,  [7.100b] 

)r(h0 ,  [7.100c] 

which are solutions of [7.99] if they verify [7.101]: 
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Expressions [7.100] define shapes which will characterize the modes of vibration 

when boundary conditions are applied. 
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We can also write equation [7.101] in a different form by multiplying it by 2r : 
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In order to coincide with the standard form of the Bessel equation, let us carry 

out the change of variable: 

D
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Noting also that: krz =  with 
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Equation [7.103] admits two solutions: )z(Jn  and )z(Yn : Bessel functions of the 

first and second type. Figure 7.9 illustrates the typical behavior of these functions 

for orders 0 and 1. The point to be emphasized is the oscillating character of these 

functions that can be approximated to the behavior of traveling waves appearing in 

the solution in Cartesian co-ordinates. Another characteristic aspect is the singularity 

of the Bessel function of second type at the origin; this non-physical characteristic 

leads to the suppression of this term in certain problems, as in section 7.7.2. 
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Figure 7.9a. Bessel function of the first type )z(J0  
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Figure 7.9b. Bessel function of the first type )z(J1  
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Figure 7.9c. Bessel function of the second type )z(Y0  
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Figure 7.9d. Bessel function of the second type )z(Y1  
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Proceeding in an identical manner for equation [7.98] we arrive at equation 

[7.103’], which is the modified Bessel equation: 
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Equation [7.103’] admits the solutions )z(In  and )z(Kn  that are the modified 

Bessel functions of the first and second types respectively. Figure 7.10 illustrates the 

typical behavior of these functions at the order 0 and the order 1. These functions have 

a behavior that can be compared to that of vanishing waves of the solution in Cartesian 

co-ordinates. The )z(Kn functions are singular at the origin and will have to be 

removed in the problems of full plates like the one studied in section 7.7.2. 
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Figure 7.10a. Modified Bessel function of the first type )z(I0  
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Figure 7.10b. Modified Bessel function of the first type )z(I1  
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Figure 7.10c. Modified Bessel function of the second type )z(K0  
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Figure 7.10d. Modified Bessel function of the second type )z(K1  

The general solution of )z(hn is obtained by cumulating the various solutions: 

)z(KD)z(IC)z(YB)z(JA)z(h nnnnnnnnn +++= . [7.104] 

Naturally, it is advisable to fix the value of the constants using boundary 

conditions, but we will make this calculation in the following sections. 
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7.7.2. Vibration modes of the full circular plate clamped at the edge 

The modal system stems from verifying the equation of motion and the boundary 

conditions. Using the solutions [7.104] obtained in section 7.7.1, we only have to 

verify the boundary conditions: 

0)a(h0)t,,a(W n =⇒=θ   [7.105] 

and: 

)a(
dr

dh
0)t,,a(

r

W n⇒=θ
∂

∂
. [7.106] 

Passing from writing the conditions over )t,,r(W θ  to those over hn(r) in the 

preceding relations once again arises from the use of the properties of orthogonality 

of the functions θncos  and θnsin . 

The function hn(x) has four constants of integration and there are two boundary 

conditions; therefore, there is an apparent lack of information to calculate the 

constants. However, two of the functions of the solution [7.104] are not physical, 

since they lead to infinite displacements at the center of the plate and must thus be 

removed. We thus consider that: 

)kr(IC)kr(JA)r(h nnnnn += . [7.107] 

The application of the boundary conditions leads to the linear system: 
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h
with:   ka   and   k  

D

ρλ ω= = . [7.109] 

To have a non-trivial solution, the linear system must have a zero determinant. 

We thus have: 

0)(I  )(
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)(J n
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n =λλ−λλ . [7.110] 
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We can use the known relations for the derivation of the Bessel functions: 

n n

n n 1 n n 1

dJ dI
( ) nJ ( ) J ( )    and    ( ) nI ( ) I ( )

d d
+ +λ λ = λ − λ λ λ λ = λ + λ λ

λ λ
 

to rewrite the determinant: 

0)(J  )(I)(I  )(J 1nn1nn =λλ+λλ ++ . [7.111] 

The solution of [7.111] is performed with the aid of a computer. The values have 

been tabulated in [LEI 93]; here we draw a short table thereof: 

 

 21
n)(λ  22

n)(λ  23
n)(λ  24

n)(λ  

n = 0 10.2158 39.771 89.104 158.183 

n = 1 21.26 60.82 120.08 199.06 

n = 2 34.88 84.58 153.81 242.71 

Table 7.5. First roots of equation [7.111] for various values of n. Normal angular 

frequencies are given by 2j
n2nj )(

h

D
 

a

1
λ

ρ
=ω n for circumferential index,  

and j for radial index 

We obtain the solution for the radial shape thanks to equations [7.107] and 

[7.108] by normalizing the constant nA  to one: 
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. [7.113] 

In short, the modal movements of clamped circular plates are provided by the 

following expressions: 

– modes symmetrical in θ: 

j j j j j j j j
n n n n n n n n n n           W (r, , t) (E cos t F sin t)  cos n  (J  (k r) C I  (k r))

for   n 0 ,  ... ,   ;

θ = ω + ω θ +

= ∞
  [7.114] 
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– modes anti-symmetrical in θ: 

j j j j j j j j

n n n n n n n n n n          W (r, , t) (E cos t F sin t)  sin n  (J (k r) C I (k r))

for   n 1 ,  ... ,  .

θ = ω + ω θ +

= ∞
  [7.115] 

The symmetrical and anti-symmetrical modes have the same normal angular 

frequencies given by expression [7.116]: 
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n2nj )(  

h

D
 

a

1
λ

ρ
=ω . [7.116] 

The symmetrical and anti-symmetrical mode shapes are in fact identical; we 

obtain the anti-symmetrical ones by making the symmetrical ones turn by 90°. Mode 

0 is particular, since it does not have a corresponding anti-symmetrical mode. 

Mode shapes are provided by the two expressions: 

( ) ( )( )rk ICrk J )n(cos),r(f j
nn

j
n

j
nn

j
sym,n +θ=θ   [7.117] 

and: 

( ) ( )( )rk ICrk J )nsin(),r(f j
nn

j
n

j
nn

j
asym,n +θ=θ . [7.118] 

Each mode is thus characterized by two indices, j and n. The index n defines the 

number of nodal diameters, whilst the index j defines the number of nodal circles 

(equal to 1j − ). Table 7.6 gives the radius of nodal circles for some modes. 

 

 j = 1 j = 2 j = 3 j = 4 

n = 0  0.379 
0.255 

0.583 

0.191 

0.439 

0.688 

n = 1  0.489 
0.350 

0.640 

0.272 

0.497 

0.721 

n = 2  0.559 
0.414 

0.679 

0.330 

0.540 

0.746 

Table 7.6. Radii of nodal circles (R/a), for some modes 
of the clamped circular plate 
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Figures 7.11 and 7.12 give a visualization of the mode shapes of the modes 

(n = 1, j = 1) and (n = 2, j = 2). 
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Figure 7.11. Diametrical cross-section of the shape of the first mode n=1. 1
sym,1f  
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Figure 7.12. Diametrical cross-section of the shape of the first mode n=2. 2
sym,2f  

Let us note, finally, that this technique of calculation can be used for all the types 

of boundary conditions: support, free edge, elastic support, guided edge, under the 

condition that the boundary condition remains the same in any point of the periphery 

of the plate. The difficulty for circular plates is due to the use of the Bessel 

functions. The use of tables of values used to be necessary but computers have 
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completely eliminated this difficulty since the Bessel functions are now available in 

commercial softwares. 

7.7.3. Modal system of a ring-shaped plate 

We will cover this example very briefly in order to demonstrate the difference 

with the full circular plate. We will take the case where the boundary conditions are 

expressed in the simplest manner: clamped at the external circle, with a radius a, and 

at the internal circle, with a radius b, defining the limits of the plate. 

The boundary conditions are thus: 

W W
W(a, , t) 0  ,  W(b, , t) 0  ,  (a, , t) 0  and  (b, , t) 0

r r

∂ ∂
θ = θ = θ = θ =

∂ ∂
.  [7.119] 

Again adopting the solutions [7.100], the boundary conditions [7.119] lead to: 

n n
n n

dh dh
h (a) 0  ,  h (b) 0  ,  (a) 0  and  (b) 0

dr dr
= = = = . [7.120] 

It now remains to replace )r(hn  by its expression [7.104] which verifies the 

equation of motion to obtain the linear system [7.121]. It should be noted that for 

ring-shaped plates, the complete solution must be used as opposed to the case of full 

circular plates, where the singular functions were to be removed in [7.104] at the 

origin. 
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To obtain non-trivial solutions of equation [7.121], it is necessary that the 

determinant be nil. This condition provides the characteristic equation, which is 

satisfied for certain values of k , that is, for certain values of the angular frequency 

since k  and ω  are connected by the relation of dispersion: 

D

h
 k
ρ

ω= . [7.122] 



Bending Vibration of Plates     277 

We provide some results obtained from published works ([LEI 93]), in Table 7.7. 

 

Circumferential modal 

index 
b/a = 0.1 b/a = 0.3 b/a = 0.5 b/a = 0.7 

n = 0 27.3 45.2 89.2 248 

n = 1 28.4 46.6 90.2 249 

n = 2 36.7 51 93.3 251 

Table 7.7. Normal adimensional angular frequencies 
D

 a2
ρ

ω  for the first modes with 

circumferential indices 0, 1 and 2, according to the ratio 
of the internal and external radii of a ring-shaped plate 

7.8. Conclusion 

In this chapter we have presented vibrations of rectangular and circular plates. 

Our discourse has been, however, mainly geared towards rectangular plates. 

For rectangular plates, the method of separation of space variables provides 

analytical solutions in certain cases of boundary conditions, but only gives the trivial 

solution for the majority of cases. The problem of plates is thus of a superior order 

of difficulty to that of beams and even in a priori simple cases there is no analytical 

solution. 

The classical techniques of approximate calculation are based on the 

Rayleigh-Ritz method. However, we did not exploit this path in this chapter because 

it will be the subject of a specific approach and instead we preferred a lesser known 

method of approximation, the edge effects method, which has the effect of better 

converging for the modes of a higher rank, as opposed to the methods of traditional 

discretization, which converge better for the first modes. This method can lead to 

incorrect results when two opposite edges are free; it would, therefore, be advisable 

to use it with care. 

For circular plates a minor difficulty is due to the fact that the solutions are 

expressed by Bessel functions; however, modern data processing means make it 

possible to get rid of the tables of values and finally overcome the difficulty of 

calculation of these functions. The cases of circular and ring-shaped plates were 

demonstrated to highlight the parts of the equation of motion solution to be 

preserved in calculation. 
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From a general point of view, the vibrations of plates lead to the same 

phenomena as for beams: the existence of modes characterized by normal angular 

frequency and mode shapes. If the basic phenomena are identical, it is, however, 

advisable to note a quantitative difference: the density of modes in a given 

frequency band is much stronger for beams than for plates. 



Chapter 8 

Introduction to Damping:  

Example of the Wave Equation 

8.1. Introduction 

In the previous chapters we have described free vibratory movements of elastic 

solids. However, an important parameter was neglected: damping. The object of this 

chapter is to show its influence at the level of physical phenomena that it introduces, 

as well as at the level of mathematical difficulties that it raises with respect to the 

orthogonality of the modes. 

The present discourse is based on the wave equation which describes the 

vibrations of beams in longitudinal or torsion movement, as well as of cords and 

sound pipes. The results naturally extend to more complicated systems, although it 

did not appear pertinent to us to present the calculations of complex cases 

considering how heavy they are. 

Damping of a structure results from a loss of energy arising from several 

physical phenomena which are, generally, difficult to apprehend. Certain types of 

dissipation do not affect linearity, whereas others, such as solid friction, are strongly 

nonlinear. To draw the attention of the reader to the importance of damping for the 

free vibratory response of mechanical systems, we propose a small, easily realizable 

experiment, which clearly demonstrates the potential uses of dissipation. 

We would need two stemmed crystal glasses (more ordinary glasses can be also 

used), a small spoon, a bottle of water and a champagne bottle. Fill three-quarters of 

the first glass with water, and the second one with champagne, then gently tap the 
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two glasses with the spoon. We observe that the glass of water makes a ringing 

sound whereas the champagne glass makes a muted noise (Figure 8.1); this is the 

acoustic demonstration of very different vibratory states of the two glasses. 

Champagne dampens much more and stops the vibrations quickly, causing the 

muted noise. The explanation is obvious to anyone who has used a bicycle pump to 

inflate a tire. The compression of the volume of air heats up the pump and acts as 

thermal dissipation of the mechanical energy. It is the same phenomenon which 

explains the damping capacity of liquids with gas bubbles, the vibrations transmitted 

to the liquid acting on the bubbles as multiple small pumps. Let us note that if the 

reader does not have champagne, any carbonated beverage will be sufficient. A 

second characteristic fact must be stressed: heating effects related to damping are 

weak, and one would have to tap long and hard to heat the champagne. This 

tendency can be generalized to mechanical systems and explains the difficulty in 

measuring the loss factors precisely, considering their very low values. 

This analysis of the phenomenon of two glasses is anecdotal; its purpose is to 

give a simple image of a much more complicated phenomenon. In reality, the 

presence of bubbles modifies the propagation velocity of waves, lowering it quite 

considerably. The spectrum of the response is modified by a downwards shift of the 

of resonance frequencies, which also participates in the modification of the acoustic 

output. 

In this chapter, we will remain within the framework of linear damping: classical 

viscous damping, linear viscoelasticity and dissipation by absorbing limits. These 

three mechanisms will lead to the concept of complex normal angular frequency, 

characteristic of the vibrations of damped systems. We will then study the properties 

of orthogonality of the normal functions and will show how to introduce the initial 

conditions. 

ding... tap

 

Figure 8.1. The experiment with two glasses 
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8.2. Wave equation with viscous damping 

This model of damping is the simplest; it consists of introducing an additional 

term, proportional to speed, into the equation of motion. To be more specific, let us 

consider a beam in longitudinal vibration, whose equation of motion was provided 

in Chapter 3 (equation [3.21]) and let us introduce the term of viscous damping. The 

equation becomes: 
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. [8.1] 

Introducing the celerity of waves c and the variable U instead of 0

1U ,  to simplify 

the notation, the general equation, which interests us, takes the form: 
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. [8.2] 

In this expression, とE c =  is the celerity of longitudinal waves and δ  is the 

damping parameter homogeneous to the inverse of a time. 

We solve equation [8.2] by separation of variables: 

g(t)  f(x)t)U(x, = . [8.3] 

Introducing [8.3] into [8.2] and separating the variables, it follows: 

0g(t) K
dt

dg
h

dt

gd
2

2

2

=−+ , [8.4] 

0fK
dx

fd
c 2

2

2

2 =− , [8.5] 

where 2K  is a constant. 
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Let us solve the temporal equation [8.4] using the traditional method. After all 

the calculations it follows: 

( ) ( ) t24Kh t 2h  t24Kh t 2h 2222

e e Be eA g(t)
+−−+− += . [8.6] 

A similar calculation leads to the solution of the space equation [8.5]: 

cxKcxK 
DeCef(x) += −

. [8.7] 

The space-time solution t)U(x,  is thus: 

( ) ( )

( ) .  DeCe                                                                    

e e Be eA t)U(x,

cxKcxK

 t24Kh t 2h  t24Kh t 2h 2222
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⎞
⎜⎜
⎝

⎛
+=

−

+−−+−

 [8.8] 

For the moment, the constant K  which arises from the separation of variables is 

not fixed and may be complex. To determine it, we have to introduce boundary 

conditions for the beam. We choose non-dissipative boundary conditions, of the 

clamped type at two ends: 

 t    0t)U(0, ∀= , [8.9a] 

 t    0t)U(L, ∀= . [8.9b] 

Applying these boundary conditions to the solution [8.8] yields: 

0DC =+ , [8.10] 

0DeCe /cL KL/c K =+− . [8.11] 

That is, if we are interested in a non-trivial solution: 

0ee L/c KL/c K =−−   [8.12] 

and: 

0D C ≠−= . [8.13] 
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Let us consider a complex K  of the form: 

jのgK += . [8.14] 

Equation [8.12] becomes: 
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Separating the real and imaginary parts: 
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If α  is different from 0, the system of equations [8.16] does not have a solution. 

If α = 0, the system admits an infinity of solutions ω  such that: 
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In short, respecting non-dissipative boundary conditions [8.9] leads to purely 

imaginary values of K: 

L

nヾ
jcjのK nn == . [8.18] 

The constants C  and D  are opposed as indicated by [8.13] but are not defined in 

a unique fashion. Grouping all these results, the solution of space [8.7] is 

particularized for the mode shapes )x(fn  defined for each mode n: 

⎟
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⎜
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⎛
= x

L

nヾ
sin  C)x(f nn

  [8.19] 

the constant nC being arbitrary and non-nil. 
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The space-time solution t)U(x,  for these boundary conditions is obtained taking 

[8.18] into account in [8.8] and regrouping the possible solutions: 

)x(f  )t(g t)U(x, n
1n

n∑
∞

=
= . [8.20] 

)x(fn  is the mode shape of mode n, given by [8.19]. 

( ) ( ) t 2h t24のh j

n

 t24のh j

nn e e  Be  A)t(g
2
n

22
n

2
−+−−+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= . 

The arbitrary value of the constant nC  is not important, since we can incorporate 

it in the constants nA  and nB  of the temporal solution. This situation makes it 

possible to simplify the expression of mode shape adopting 1Cn =  without loss of 

generality. This is the way in which we will proceed. 

For weak damping, which is common in practice: 

n2のh <   [8.21] 

the temporal solution is oscillating with the angular frequency nっ given in [8.22]. 

( )22
nn 2hの っ −= . [8.22] 

It is the damped normal angular frequency as opposed to the non-damped normal 

angular frequency nの  which characterizes the vibrations when 0h =  and equation 

[8.2] is reduced to the standard wave equation. 

The temporal response of mode n, )t(gn  can also be expressed in the form: 

( ) *
n nj t j t

n n ng t A e B e
λ − λ= +   [8.23] 

n nwith:  そ っ jh 2= + . [8.24] 

The quantity nそ  is called the complex normal angular frequency of mode n: the 

real part represents the oscillating nature of the solution, while the imaginary part 

represents the dissipative character of the movement which weakens over time. 



Introduction to Damping: Example of the Wave Equation     285 

Note: 

– if nそ  is a complex normal angular frequency, then its complex conjugate *nそ  is 

also one; 

– when 0h = , i.e. for a non-damped system, complex normal angular frequency 

becomes real. The concept of complex normal angular frequency is thus associated 

with that of damping; 

– for the model of damping considered here, we observe that the imaginary part 

of nそ  given by [8.24] is independent of the mode. That will be different in the 

models of damping which we consider hereafter. 

Let us examine the vibrations of the damped beam following these initial 

conditions: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂

∂

=

. 0x,0)(
t

U

d(x)U(x,0)

  [8.25] 

Let us use the general form of the solution [8.20] under the two initial conditions 

[8.25]. It follows: 

d(x)x
L

nヾ
sin   )BA(U(x,0)

1n
nn =⎟

⎠

⎞
⎜
⎝

⎛
+=∑

∞

=
, [8.26] 

0x
L

nヾ
sin   )Bそそ(A jx,0)(

t

U

1n
n*nnn =⎟

⎠

⎞
⎜
⎝

⎛
−=

∂

∂ ∑
∞

=
. [8.27] 

To determine the constants nA  and nB , it is enough to use the properties of 

orthogonality, which amounts to breaking up initial displacements and speeds into a 

Fourier series of sine and to identify then term by term. Equations [8.26] and [8.27] 

yield respectively: 

dx x
L

nヾ
sin   d(x)

L

2
BA

L

0

nn ∫ ⎟
⎠

⎞
⎜
⎝

⎛
=+ , [8.28] 

*nnnn そBそA = . [8.29] 

Relation [8.29] leads to: 

n

*n
nn そ
そ

BA = . [8.30] 
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From [8.28] we draw: 

dx x
L

nヾ
sin   d(x)

Lっ
そ

B

L

0n

n
n ∫ ⎟

⎠

⎞
⎜
⎝

⎛
=   [8.31] 

and: 

dx x
L

nヾ
sin   d(x)

Lっ
そ

A

L

0n

*n
n ∫ ⎟

⎠

⎞
⎜
⎝

⎛
= . [8.32] 

We note that if d(x)  is real, *nn BA = ; vibratory displacement following the 

initial conditions [8.25] is, therefore: 

. x
L

nヾ
sin   )tsin(

2っ
h

)tcos(                                    

 dx  
L

2d(x)
x

L

nヾ
sin et)U(x,

n
n

n

L

01n

t2h

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ω+Ω

⎟
⎠

⎞
⎜
⎝

⎛
= ∫∑

∞

=

−

  [8.33] 

The global response is obviously real since it represents true movement, even if 

at certain points in the calculation we introduce complex quantities (in particular, 

complex normal angular frequency). 

Figure 8.2 illustrates the time history of mode n, which is a damped sinusoid 

representing a dissipation of energy during movement, which is stronger the larger 

δ  is. 

 

Figure 8.2. Time history of mode n 
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8.3. Damping by dissipative boundary conditions  

8.3.1. Presentation of the problem 

This type of dissipation in structures is very often encountered in practice, the 

losses at the boundaries often being predominant by comparison to other types of 

dissipation. The phenomena of losses at the boundaries result from the coupling with 

vibrating systems related to the medium considered. The exact description of these 

couplings is very complex; an approximate modeling, which we will examine, 

introducing the overall losses by a force of dissipation proportional to the vibratory 

speed of the boundaries is often preferred. 

Thus, we consider a beam without damping, in longitudinal vibrations, 

embedded at 0 and having an absorbing boundary in L (see Figure 8.3). 

 

x 

0 
L 

Z 

 

Figure 8.3. Beam with a dissipative boundary 

The equations which govern the vibratory movement are: 

0
x

U
ES

t

U
とS

2

2

2

2

=
∂

∂
−

∂

∂
, [8.34] 

0t)U(0, = , [8.35] 

0t)L,(
t

U
Zt)L,(

x

U
ES =

∂

∂
+

∂

∂
. [8.36] 
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The real constant Z translates the absorbing property of the boundary at L. It 

introduces neither elastic nor mass effects. To take these effects into account it 

would be necessary to replace [8.36] by: 

0t)L,(KUt)L,(
t

U
Zt)L,(

t

U
Mt)L,(

x

U
ES

2

2

=+
∂

∂
+

∂

∂
+

∂

∂
  [8.37] 

with M and K being respectively the mass and the stiffness of the boundary (see 

Figure 8.4). 

K 

M

Z 
 

Figure 8.4. Beam with a boundary condition, with stiffness K, mass M and damping Z 

The solution would be very heavy, and thus we will only consider the purely 

dissipative boundary condition [8.36], which is sufficient to describe the effect of 

damping at the boundaries. 

8.3.2. Solution of the problem 

The general solution [8.34] obtained by separation of the variables is: 

g(t)  f(x)t)U(x, =  [8.38] 

with: 
K x/cK x/c DeCef(x) += −   [8.39] 

and: 
KtKt BeAeg(t) += − . [8.40] 

In these expressions, ρ= E/ c  is the speed of the longitudinal waves and K  is 

a complex constant. 

The boundary condition [8.36] implies: 

D C −= ,  [8.41] 



Introduction to Damping: Example of the Wave Equation     289 

( ) ( ) 0C ee Zee
c

ES
A L/cK L/cK L/cK L/cK =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++ −− , [8.42] 

( ) ( ) 0C ee Zee
c

ES
 B L/cK L/cK L/cK L/cK =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+ −− . [8.43] 

First we will determine the solutions of [8.42], then those resulting from [8.43]; 

the total solution will be the sum of all the solutions. 

Let us examine equation [8.42]. We have either A = 0, C = 0, or: 

( ) ( ) 0ee Zee 
c

ES
L/cK L/cK L/cK L/cK =−++ −− . 

The first two possibilities lead to the trivial solution. To discuss the third 

possibility, let us pose jのgK += . It follows: 

0ee  Z
c

ES
ee  Z

c

ES cLjっcLgcLjっcLg =⎟
⎠

⎞
⎜
⎝

⎛
−+⎟

⎠

⎞
⎜
⎝

⎛
+ −− . [8.44] 

By transforming the complex exponential and separating the real and the 

imaginary part, we obtain: 

0e Z
c

ES
e Z

c

ES
 c)Lcos(

cLgcLg =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−+⎟

⎠

⎞
⎜
⎝

⎛
+Ω −

  [8.45] 

and: 

0e Z
c

ES
e Z

c

ES
 c)Lsin(

cLgcLg =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−+⎟

⎠

⎞
⎜
⎝

⎛
+−Ω −

. [8.46] 

There are two possibilities to satisfy [8.45] and [8.46]: 

a) First possibility: 

0c)Lcos( =Ω   [8.47] 
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and: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−=⎟

⎠

⎞
⎜
⎝

⎛
+ − cLgcLg

e Z
c

ES
e Z

c

ES
. [8.48] 

Let us consider the case of weak damping, then c/ESZ <  and let us trace in 

Figure 8.5 the two curves L/c e Z
c

ES α−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  and L/c e Z

c

ES α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− . The intersection 

shows that there is a value solving equation [8.48]: 02hg >= . 

 

Figure 8.5. Root of equation [8.48] 

Equation [8.47] has an infinite number of possible solutions, given by the 

relation: 

ヾ
2

12n

c

L
っ

−
= , 

i.e. an infinite number of normal angular frequency: 

L

ヾ
2

12n
cっn

−
= . [8.49] 



Introduction to Damping: Example of the Wave Equation     291 

In short, there exists a first set of non-trivial solutions. For ∞= , ... 1,n : 

⎟
⎠
⎞⎜

⎝
⎛ −= −−−−−  x/c)2hj(っ j x/c)2hj(っ j t)2hj(っ j

nn
nnn ee eCAt)U(x, . [8.50] 

b) Now let us consider the second possibility of solution of [8.45] and [8.46]: 

0c)Lsin( =Ω   [8.51] 

and: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−−=⎟

⎠

⎞
⎜
⎝

⎛
+ − cLgcLg 

e Z
c

ES
 e Z

c

ES
. [8.52] 

Let us trace in Figure 8.6 the two curves L/c e Z
c

ES α−⎟
⎠

⎞
⎜
⎝

⎛
+  and 

L/c e Z
c

ES α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− . They do not have an intersection, and equation [8.52] cannot be 

satisfied. This second possibility does not give a solution. 

 

 

Figure 8.6. Resolution of equation [8.51] (no solution) 
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Let us examine the solutions of equation [8.43]. Using an approach similar to the 

discussion of equation [8.42], we obtain a range of solutions in the following form 

(it is enough to change Z  into )Z (−  and α  into ) ( α−  in the previous discussion): 

⎟
⎠
⎞⎜

⎝
⎛ −= ++−+ /cx )2hjっ( j/cx )2hj(っ j t)2hj(っ j

nn
nnn ee e CBt)U(x,   [8.53] 

with nっ  given by [8.49]. 

Combining all of the found solutions, we obtain the general solution (we have 

posed nnn DCA =  and nnn E CB −= ): 

, ee e E                         

ee e Dt)U(x,

 x/c)2hj(っ j x/c)2hj(っ j t)2hj(っ j
n

1n

 x/c)2hj(っ j x/c)2hj(っ j t)2hj(っ j
n

nnn

nnn

⎟
⎠
⎞⎜

⎝
⎛ −+

⎟
⎠
⎞⎜

⎝
⎛ −=

+−++

∞

=

−−−−−∑
  [8.54] 

i.e.: 

)x(f e E)x(f e Dt)U(x, n
 tjそ

n*n
tjそ

1n
n

n
*
n += −

∞

=
∑ . [8.55] 

Once again, as in the case covered in section 8.2, we find the complex normal 

angular frequency nそ  and *nそ , characteristic of the presence of damping . 

2

h
jっそ   and   

2

h
jっそ n

*

nnn −=+= . 

The imaginary parts of complex normal angular frequency are also independent 

of the mode here. 

Also let us note that nっ , the real part of complex normal angular frequency, is 

independent of damping at the boundaries; this is a notable difference with the case 

of distributed damping covered in section 8.2. There is no damped normal angular 

frequency nっ  here differing from the non-damped normal angular frequency nの . 

However, there seems to be a considerable difference by comparison to the 

previous case, since the normal deformations )x(fn  and )x(f*n , associated with the 

normal angular frequency nそ  and *nそ , are complex conjugate, whereas in the 

general solution [8.19] found in section 8.2, mode shapes were real and identical. 
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Figure 8.7 presents the real and imaginary parts of mode shape of the 2nd order, 

f2(x); the imaginary part is weak taking into account the considered case 

characteristic of a weak damping 2( 0,02 ).δ = Ω  Figure 8.8 presents the real and 

imaginary parts of the same mode shape when damping is stronger. We note that the 

imaginary part adopts a much greater importance. 
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Figure 8.7. Real  and imaginary  part of the mode shape 
of the second complex mode. 1 meter long beam, 

case of weak damping: 20.02 δ = Ω  
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Figure 8.8. Real  and imaginary  part of the mode shape 
of the second complex mode. 1 meter long beam, 

case of strong damping: 20.2 δ = Ω  



294     Vibration in Continuous Media  

What is the physical significance of complex mode shapes? To answer this 

question we point out the physical significance of the modes which we have already 

highlighted during the study of free vibrations of non-damped systems. A normal 

mode represents a state of displacement characterized by movements in the same or 

in opposed phase of all the points of the structure. When the modes are complex, the 

movement associated with a mode no longer occurs in the same or in opposed phase, 

but with a phase shift which could be characterized thanks to the real and imaginary 

parts of the mode shape. This phase is variable with the point of the beam 

considered; consequently, the nodes of vibration generally no longer exist, except if 

the real and imaginary parts of the mode shape are nil at the same points. 

8.3.3. Calculation of the vibratory response 

The calculation of the vibratory response to initial conditions poses the problem 

of orthogonality of the mode shape, which is here quite particular. We will come 

back to it in detail in section 8.5 while here we give its properties without 

demonstration: 

0)L(f  (L)f 
ES

Zc
jdx (x)f  (x)f )そ(そ *pn

L

0

2

*pnn*p =+− ∫ , [8.56] 

0)L(f  (L)f 
ES

Zc
jdx (x)f  (x)f )そ(そ p*n

L

0

2

p*n*np =−− ∫ , [8.56’] 

, [8.57]

 

. [8.57’]

 

Let us note that the properties [8.56] and [8.56’] are true even if pn = , whereas 

[8.57] and [8.57’] are not. 

Let us suppose that the initial conditions given at 0t = are: 

d(x)U(x,0) = , [8.58] 

pnpn

L 

0 

2

p n n p そそ if 0)L(f (L)f
ES

Zc
jdx (x)f   (x) f   ) そ ( そ ≠=−+ ∫ 

pn*p*n

L 

0 

2

* p * n * n * p そそ if 0)L(f (L)f
ES

Zc
jdx (x)f   (x) f   ) そ ( そ ≠=++ ∫ 
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v(x)x,0)(
t

U
=

∂

∂
. [8.59] 

Let us use the decomposition [8.55] under the initial conditions [8.58] and 

[8.59]: 

d(x))x(fE)x(fD nn
1n

*nn =+∑
∞

=
, [8.60] 

 v(x)j )x(f そ E)x(f そ D nnn
1n

*n*nn −=+−∑
∞

=
. [8.61] 

To be able to use the properties of orthogonality, it is necessary to proceed in a 

rather special manner, as follows. Let us multiply [8.60] by )x(fそ pp and [8.61] by 

)x(fp : 

d(x)  (x)f)x(f  (x)fE)x(f  (x)fD ppnppn
1n

*nppn λ=λ+λ∑
∞

=
, [8.62] 

)x  v()x(f j )x(f  )x(f そ E)x(f  (x)f そ D pnpnn
1n

*np*nn −=+−∑
∞

=
. [8.63] 

Let us add the two equations, then integrate the two members between 0 and L: 

.dx  )x  v()x(f jdx )xd(  )x(f そ

dx )x(f  )x(f )そ(そEdx )x(f  )x(f )そ(そD

L

0

p

L

0

pp

n

L

0

ppnn*n
1n

L

0

p*npn

∫∫

∫∑ ∫
−=

++−
∞

=   [8.64] 

We recognize a part of the properties of orthogonality [8.56] and [8.57]; there 

are, however, several terms missing, which we will introduce noting that in x = L, 

the initial condition in displacement is verified: 

d(L)0) U(L, = , [8.65] 
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i.e. using the decomposition [8.54]: 

d(L))L(fE)L(fD nn*nn =+∑ . [8.66] 

Let us multiply [8.66] by )L(f 
ES

Zc
 j p

2

−  and sum up, member by member, with 

[8.64]: 

. d(L)  (L)f
ES

Zc
jdx   v(x)(x)f jdx d(x)  (x)f そ       

(L)f  (L)f
ES

Zc
jdx (x)f  (x)f )そ(そ E                

(L)f  (L)f
ES

Zc
jdx (x)f  (x)f )そ(そ D

p

2L

0

p

L

0

pp

np

2

n

L

0

ppnn

1n

L

0

*np

2

*np*npn

−−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

∫∫

∫

∑ ∫
∞

=

  [8.67] 

Using the properties of orthogonality [8.56] and [8.57], it follows: 

( )

∫

∫

−

−−

=
L

0

2
p

2
2
pp

L

0

p

2

pp

p

(L)f
ES

Zc
jdx (x)f 2そ

d(L)  (L)f
ES

Zc
jdx jv(x)d(x)そ (x)f

E . [8.68] 

To calculate pD , it is necessary to proceed in a similar fashion, but multiplying 

[8.60] by )x(fそ *p*p , [8.61] by )x(f*p and [8.66] by )L(f
ES

Zc
j *p

2

. We then use the 

properties of orthogonality [8.56] and [8.57] to obtain: 

( )

∫

∫

+

++

=
L

0

2*
p

2
2*

p*p

L

0

*p

2

*p*p

p

(L)f
ES

Zc
jdx (x)f 2そ

d(L)  (L)f
ES

Zc
jdx jv(x)d(x) そ (x)f

D . [8.69] 
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It now suffices to introduce the expressions of pE  and pD in [8.54] to express 

the vibratory response of the beam with damping at the boundaries. We will not 

push this very technical calculation further, let us underline, however, that the final 

result must give a real displacement if we take real initial displacements and speeds, 

despite the appearance of complex calculation intermediaries (normal angular 

frequency and mode shapes). 

Let us note in conclusion that this model of damping, localized at the boundaries, 

brings us to complex mode shape leads to much heavier calculations than distributed 

damping studied in section 8.2, which preserved real mode shapes independent of 

damping. 

8.4. Viscoelastic beam 

The hypothesis of linear viscoelasticity is that which provides the best 

approximation of internal dissipations in materials. It leads to a heavier formulation 

than those presented previously, because the stress-strain relation of material is 

defined by a product of convolution (see Chapter 1, equation [1.68]). In the case of a 

beam in longitudinal vibrations, the equations representative of the vibrations are the 

ones obtained in Chapter 3 (equations [3.21] and [3.12]), which we recall: 

0
x

)S(

t

U
とS

2

2

=
∂

σ∂
−

∂

∂
, [8.70] 

Ex

U σ
=

∂

∂
. [8.71] 

For a viscoelastic material, the stress-strain relation [8.71] is modified: 

dk k)(x,
k

k)d(tt)x,(
x

U
t

-
∂

σ∂
−=

∂

∂
∫
∞

. [8.72] 

This law of viscoelasticity shows that longitudinal strain of the beam observed at 

the moment t depends on the state of stress at all prior moments. Thus, viscoelastic 

material has a memory effect. 

We will seek the vibratory movements of the viscoelastic beam in the form: 

tje (x)Yt)U(x, λ=   [8.73] 
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and: 

tje (x)t)x,( λσ=σ . [8.74] 

As in the previous examples, we will interpret λ  as a complex normal angular 

frequency. 

Introducing [8.73] and [8.74] into [8.70] and [8.72], we obtain: 

0)x(
dx

d
S(x)YとS そ2 =

σ
−−   [8.75] 

and: 

(x) dk e k)d(tje (x)
dx

Yd j
t

tj σ−λ= λτ

∞−

λ ∫ . [8.76] 

To push the calculations further, it is necessary to make an assumption on the 

form of the function Γ . We choose: 

⎪⎩

⎪
⎨
⎧

<∀

>∀−
=

γ−

. 0u      0

, 0u      )e(1d
d(u)

u  

  [8.77] 

Note: the viscoelastic stress-strain relation introduces two parameters γ  and Γ . 

To illustrate the underlying physical properties, let us consider that a state of stress 

is applied abruptly at the moment T: 

( ) T)H(k  x~k)(x, −σ=σ  

and thus: 

T)h(k  (x)~k)x,(
k

−σ=
∂

σ∂
. 

In these expressions H  is the step function and h  is the Dirac distribution. 

The viscoelastic stress-strain relation yields the value of 
x

U

∂

∂
: 

(x)~ dk  T)h(k  k)d(tt)x,(
x

U
t

-

σ−−=
∂

∂
∫
∞

, [8.78] 
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i.e.: 

( )
⎪⎩

⎪
⎨
⎧

<∀

>∀σ−
=σ−=

∂

∂ −−

. T t    0

, T t    )x(~ d  e1
)x(~  T)d(tt)x,(

x

U
T)(t   け

  [8.79] 

Figure 8.9 illustrates the phenomenon: non-abrupt strain corresponds to an 

abrupt application of stresses – it is the phenomenon of creep, which is more 

pronounced the larger γ  is. 

Let us introduce the function defined in [8.77] into equation [8.76]: 

( ) )x( d e e1djそe (x)
x

Y j
t

)(t  tj στ−=
∂

∂ λτ

∞−

τ−γ−λ ∫ , [8.80] 

that is, after calculation: 

λτλ σ
+

=
∂

∂ jtj e )x( 
けjそ

け
de (x)

x

Y
. [8.81] 

 

Figure 8.9. Stress (top graph) and strain (bottom graph) of a viscoelastic beam 
in longitudinal vibrations versus time 
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Note: in the integral [8.80], the limit at ∞−=k  which appears during 

integration by parts does not contribute insofar as λ  has a negative imaginary part, 

as we will see later. 

Using [8.75] and [8.81] we obtain the system of equations to be solved: 

⎪
⎪
⎩

⎪
⎪

⎨

⎧

=σ

=
σ

+

)x(
dx

Yd
E)x(

0)x(
dx

d
S(x)YとSそ

*

2

  [8.82] 

where we introduced the complex Young modulus *E  defined by identification in 

[8.81]: 

d
けそj1

E*
+

= . [8.83] 

The system [8.82] is reduced to the equation: 

0)x(
dx

Yd
S E(x)YとS そ

2

2

*2 =+ . [8.84] 

This differential equation is easily integrated: 

 xEと jそ xEと jそ **

BeAe(x)Y
−

+= . [8.85] 

To determine the values of λ , we will consider boundary conditions of the type 

which is clamped at both ends, that is: 

0(L)Y   and   0(0)Y == . [8.86] 

The fact that [8.86] is verified by [8.85] leads to an infinite number of solutions 

of the form: 

∞==  , ... ,  1n  ,  
L

nヾ
そ 

E

と
 n

*
, [8.87] 
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with: 

⎟
⎠

⎞
⎜
⎝

⎛
= x

L

nヾ
sin )x(Yn . [8.88] 

The relation [8.87] deserves thorough examination since *E  depends on λ  

under the terms of [8.83]. It follows: 

)けそj(1 
L

nヾ
dと そ n

2

2
n +⎟

⎠

⎞
⎜
⎝

⎛
= . [8.89] 

Equation [8.89] is polynomial of the second degree: 
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We deduce its two roots nそ  and *nλ : 
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 [8.91] 

Reintroducing the notations used previously, we will note that the non-damped 

normal angular frequency is obtained for values of γ  tending towards infinity 

(which corresponds to abrupt strain when stress is applied abruptly: see Figure 8.9). 

In this case it follows: 

L

nヾ
 

dと
1

 そn = . [8.92] 

This value corresponds to the non-damped normal angular frequency, which is 

generally given as nn その = . 

The damped normal angular frequency in its turn is equal to: 

2
nnn )2けの(1 のっ −= . [8.93] 
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Lastly, the complex normal angular frequency is expressed in the form: 

n

2
n

n っ
2け
の

jそ +=  

Note: expression [8.93] shows that for a fixed value of γ, there will always be a 

normal angular frequency, on the basis of which the radical will become imaginary. 

Under these conditions, the modal movements will no longer be vibratory but rather 

exponentially decreasing, since λn will be purely imaginary. This situation, 

characteristic of a super critical damping of the modes, will occur at higher 

frequencies the larger γ is, signifying that the material will be less dissipative. 

In summary, on the basis of [8.73] and of the previous results [8.88] and [8.91], 

we obtain the general form of the vibratory movements of the viscoelastic beam as a 

combination of all the modal solutions: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
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∞

=

−
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nヾ
sin   e Be At)U(x,

1n

tjそ
n

tjそ
n

*
nn . [8.94] 

It preserves the general form characteristic of damped systems with conjugated 

complex normal angular frequencies. 

Normal stresses given in [8.88] are real: it is the consequence of a damping 

distributed uniformly over the entire beam (damping localized at the ends produced 

complex normal deformations). 

A second form can be proposed for the vibratory displacement: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
Ω+Ω=∑

∞

=

⎟⎟
⎠

⎞
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⎝

⎛
−

x
L

nヾ
sin   t)sin( B t)cos( A e t)U(x, n'nn'n

1n

t
2け
の2

n

. [8.95] 

It is identical to the form [8.20] obtained for damping proportional to the speed, 

but this time the exponential decay of the amplitude over time depends on the mode. 

The complex Young modulus introduced in [8.83] can now be calculated taking into 

account the values of λn that solve the problem. After all the calculations it follows: 

2

2
nn

2

2
n*n

4け
の

1 
け
の

j
2け
の

1 
d
1

E −+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−= . [8.96] 

It should be noted that for our viscoelastic model, the complex Young modulus 

is variable with the mode. Consequently, we will index it. 
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In the limit case where γ  tends towards infinity, we find again an elastic 

material; the complex Young modulus becomes purely real, independent of the 

mode and equal to: 

d
1

E = . [8.97] 

The existence of an imaginary part for the Young modulus is thus characteristic 

of the phenomenon of viscoelastic damping. Very often the loss factor η  is 

introduced, noting: 

)j1(EE nnn η+= . [8.98] 

In our case we obtain with these notations: 
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and: 
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In the case of slightly damped modes 1けのn << , the Young modulus decreases 

as the normal angular frequency of the mode grows; the modal loss factor, close to 

けのn , thus increases with the normal angular frequency of the mode. 

8.5. Properties of orthogonality of damped systems 

As we saw, the general form of the vibratory response of a damped continuous 

medium is: 

)x(f e E)x(f e Dt)U(x, n
 tjそ

n*n
tjそ

1n
n

n
*
n += −

∞

=
∑ . [8.101] 
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We can write the equations which must satisfy mode shapes )x(fn  in a general 

form introducing each modal movement into the equation of motion and the 

boundary conditions of the problem. It follows: 

] [L0,  x    (x)f a )x(
dx

fd

n
2
n2

n
2

∈∀−= , [8.102] 

)0(f)0(
dx

df
g n

n0
n = , [8.103] 

)L(f)L(
dx

df
g n

nL
n = . [8.104] 

In the problem covered in section 8.2, we can identify the constants: 
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L
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n
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In the problem covered in section 8.3: 

n

L
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0
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Z
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In the problem covered in section 8.4: 
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nヾ
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n
0
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2
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⎞
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⎝
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= . [8.107] 

We thus write down the equations associated with [8.102] – [8.104] for the 

complex conjugate quantities: 

] [L0,  x    (x)f a )x(
dx

fd
*p

2*
p2

*p
2

∈∀−= , [8.108] 

)0(f)0(
dx

df
 g *p

*p*0
p = , [8.109] 
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)L(f)L(
dx

df
 g *p

*p*L
p = . [8.110] 

First property of orthogonality 

Let us multiply equation [8.102] by the mode shape )x(fp , then integrate the two 

members between 0 and L ; it follows: 
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 . 

Let us integrate the first member by parts and use equation [8.102] for the index p: 
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Using the relations [8.103] and [8.104] and the relations symmetrical in n and p: 
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Second property of orthogonality 

Relation [8.111] is the first property of orthogonality of damped vibrating 

systems. There is a second one, which employs the complex conjugate mode shapes. 

Let us multiply equation [8.102] by )x(f*p , then integrate between 0 and L; it 

follows: 

∫∫ −=
L

0

*pn

L

0

2
n*p2

n
2

dx (x)f  (x)f a dx (x)f  (x)
dx

fd
. 
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Integrating anew the first member by parts, then using the relations [8.108] to 

[8.110], after all the calculations, we get: 

. 0)g(g (0)
dx

df
)0(

dx

df
                                                  

)g(g (L)
dx

df
)L(

dx

df
dx (x)f  )x(f )a(a

0*
p

0
n

n
*p

*L
p

L
n

n
*p

*p

L

0

n
2*

p
2
n

=−+

−−− ∫
  [8.112] 

The relation [8.112] is the second property of orthogonality of damped systems. 

Let us consider some particular cases: 

a) If the constants 0
ng  and L

ng  are real and independent of the mode, the 

relations of orthogonality are reduced to: 

0dx (x)f  )x(f )a(a p
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2
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2
n =− ∫   [8.113] 

and: 

0dx (x)f  )x(f )a(a *p
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p
2
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Let us consider the case of two different modes n and p. It follows that pn aa ≠  

and *pn aa ≠ , wherefrom we deduce: 

0dx (x)f  (x)f p

L

0

n =∫   [8.115] 

and: 

0dx (x)f  )x(f *p

L

0

n =∫ . [8.116] 

Note: it can so happen that for two different modes n and p we have an equality 

of an and ap; it is a situation of degeneration where passing from [8.113] to [8.115] is 

no longer possible. We are then in a situation where several normal functions are 

associated with the same eigenvalue. However, thanks to Schmidt’s orthogonalization 

process, it is always possible to make the mode shapes orthogonal among themselves. 
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Let us now consider the case where n = p; the relation [8.113] is automatically 

verified, and the relation [8.114] yields: 

{ } ( )
2L

2

n n

0

Im a f x dx 0=∫ , 

i.e.: 

{ } 0a  Im 2
n = . 

The eigenvalues 2
na  are purely real, the problems [8.102] – [8.104] and  

[8.108] – [8.110] coincide exactly and, consequently: 

)x(f)x(f n*n = . 

This amounts to stating that mode shapes are also purely real. The problems 

covered in sections 8.2 and 8.4 are observed in this particular situation 

( 0gg L
n

0
n == ). 

b) In the case covered in section 8.3 we are dealing with the general situation. 

Replacing the various constants with the [8.106] values the two properties of 

orthogonality become: 
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i.e. after some manipulation: 

2L

n p n p p n n p
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and: 
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These are the two properties and their conjugate expressions which we have used 

in section 8.3. 

Let us note that we can define several other properties of orthogonality 

equivalent to [8.119] and [8.120]. It is enough, for example, to replace )x(fn  by 

)x(
dx

fd
 

a

1

2

n
2

2
n

−  under the terms of the equality [8.102] to obtain another form of the 

basic relations [8.111] and [8.112]. We leave it to the reader to look further into this 

aspect, taking into account the heaviness of the expressions. Following the problem, 

there exists an adapted form of the properties of orthogonality which it would be 

necessary to establish. Also, let us recall that these properties of orthogonality are 

key in the calculations of vibratory response because they offer the means of 

uncoupling the modes and, thus, of calculating the modal amplitudes separately. 

8.6. Conclusion 

The phenomenon of damping is related to very complex physical mechanisms 

which act inside the structures and at the level of their boundaries. They represent a 

conversion of mechanical energy into heat or a transfer of mechanical energy of the 

structure to its environment. Taking damping into account leads to the appearance of 

complex normal angular frequency. The imaginary part introduces the effect of 

exponential reduction of the vibratory amplitude over time, while the real part, as for 

the purely elastic systems, translates a sinusoidal movement over time. Mode shapes 

are in general also complex. They can, however, remain real, if the effect of 

damping is proportional to the effects of mass or stiffness. This situation occurs for 

distributed damping studied in sections 8.2 and 8.4, but not for damping localized at 

the boundaries considered in section 8.3. 

Although complex quantities are introduced to characterize damping, the 

vibratory response resulting from real initial conditions is also real. 

Calculations are considerably weighed down by taking damping into account; 

therefore, this study is undertaken only if the case of purely elastic systems is not 

sufficient to resolve the problem presented. 



Chapter 9 

Calculation of Forced Vibrations  

by Modal Expansion 

9.1. Objective of the chapter 

The problems of free vibrations which we have addressed in the previous chapter 

study vibratory movements following an initial disturbance of the state of 

equilibrium. Here we consider other vibratory movements caused by the application 

of a force variable in time. These problems are more complex since they 

superimpose the effect of the initial conditions and the application of force. They 

will be solved by the method of modal decomposition. This method is general and 

makes it possible to treat all types of forces: local or distributed, permanent or 

transitory. 

The method is formulated on a reference example where the stages of calculation 

are well detailed. The amplitude associated with each vibration mode is the solution 

of the modal equation, i.e. the equation of a system with a degree of freedom, 

characterized by a generalized mass, a generalized stiffness, a generalized damping 

and a generalized force. 

The difficulties of calculation, on the one hand, lie in the determination of these 

generalized quantities in the non-simple cases, in particular when the boundary 

conditions do not conform to the traditional cases (some examples will be provided). 

On the other hand, solving the modal equation is in itself a difficult problem when 

the force has a complicated temporal fluctuation. At this level it is necessary to 

break up the excitations into two distinct branches: deterministic forces, known at 

any moment, and random forces, known only in the sense of probabilities. Here we 
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primarily consider the deterministic efforts, since the random vibrations require a 

specific treatment which will only be mentioned. 

We outline the calculation in the two basic cases: harmonic excitation and 

impulse excitation. We then show how these two responses can be used to solve the 

case of any excitation in frequency domain thanks to the Fourier transform and in 

time domain by a convolution integral. 

The response by modal decomposition is expressed by a series. The question of 

convergence of the series, which we study briefly, is then raised. We also provide a 

technique to accelerate the convergence of modal series. 

The method of modal decomposition is general, which is its strength but also its 

weakness in the sense that its generality involves a heavy of calculation. There are 

also methods adapted to particular cases which offer faster processing. In Chapter 10 

we will see the method of forced waves, which is very powerful in the problems of 

beams. 

9.2. Stages of the calculation of response by modal decomposition 

9.2.1. Reference example 

The calculation that we are about to perform can be generalized, as shall be seen 

later. However, to avoid at least a heavy notation we will consider a rather simple 

reference example: a beam in bending supported at its two ends. This case lends 

itself particularly well to analytical calculation. 

Stage 1. Presenting the problem 

It is a matter of writing three groups of equations which completely define the 

problem of forced vibrations: the equation of motion, boundary conditions and 

initial conditions. Respecting all these equations is necessary to ensure uniqueness 

of the solution. 

Equation of forced movement of the bending beam: 

] [ 0  t,  L0,  x    )t,x( p
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∂
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∂
ρ . [9.1] 

It is the classic equation of bending beams when secondary effects are neglected 

(see Chapter 3, section 3.5). The second member represents the excitation: it is 

homogenous with force per unit of length and depends on space and time. 
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Boundary conditions (simple support at the ends): 
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  [9.2] 

Initial conditions: 

. )x(v)0,x(
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0
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∂

=

  [9.3] 

The quantities )x(d0  and )x(v0  are respectively initial displacement and initial 

speed at any point x of the beam. 

Stage 2. Calculation of the vibration modes, orthogonality of mode shapes 

The calculation of the forced vibratory response is based on the preliminary 

knowledge of the vibration modes, that is, of the solution of the problem of free 

vibrations. 

The normal vibration modes are solutions in the form of (see Chapter 6): 

)x(f  )tsinBtcosA()t,x(W nnnnnn ω+ω= . [9.4] 

where nの  is the normal angular frequency and )x(fn  is the mode shape of the order 

n. )t,x(Wn  is the modal displacement. 

Introducing this solution into the equation of free movement (equation [9.1] with 

the second member being nil) and for the boundary conditions [9.2], we note that: 
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x d
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2
n ∈=+ρω− , [9.5] 
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Equations [9.5] and [9.6] are at the origin of the properties of orthogonality of 

mode shape. 

Let us examine the symmetry of the operators of mass and stiffness of equation 

[9.5]. These properties, which we want to establish, are defined by: 
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Equation [9.8] is obviously verified, the demonstration of [9.7] is carried out by 

integration by parts of the second member of [9.7] and taking into account the 

boundary conditions [9.6]. Indeed: 

L 
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n3

p
3L
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n

3

p
3

n
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0
4
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4
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dx

f d
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EIdx f 
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f d
EI
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⎥

⎦

⎤

⎢
⎢

⎣

⎡
+−= ∫∫ . 

The terms at the boundaries are nil, since mode shapes verify [9.6]. Repeating 

integration by parts, it follows: 

∫∫ ⎥
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⎦

⎤

⎢
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f d
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Here the terms at the boundaries are still nil, taking into account [9.6]. Applying 

the same procedure once again, it follows: 

∫ ∫ ⎥
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The terms at the boundaries are still nil. Finally, a last integration by parts 

produces: 

∫ ∫ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=

L

0

L

0
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0 
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n
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p4

n
4

n4

p
4

f
dx

f d
EIdx f

dx

f d
EIdx f

dx

f d
EI . 

It thus suffices to note that the terms at the boundaries are nil in order to declare 

the verifying of [9.7]. 

These properties of symmetry are at the basis of the orthogonality of mode 

shapes. Let us note that they are not only related to the operators of mass and 

stiffness but also to the boundary conditions. Finally, let us underline that the terms 

at the boundaries would disappear for all other cases of standard boundary 

conditions (clamped, free end, etc.) and that consequently the properties of 

symmetry are identical for all these boundary conditions. 

To get to the properties of orthogonality, let us proceed as follows: 

Let us multiply equation [9.5] by pf  and integrate between 0 and L: 

∫ ∫ =+ρω−
L

0

L

0

p4

n
4

pn
2
n 0dx f

dx

f d
EIdx f f S . [9.9] 

A symmetrical formula is obtained by inverting the indices n and p in equation 

[9.9]: 

∫ ∫ =+ρω−
L

0

L

0

n4

p
4

np
2
p 0dx f

dx

f d
EIdx f f S . [9.10] 

Using the properties of symmetry [9.7] and [9.8] in [9.9] we obtain: 

∫ ∫ =+ρω−
L

0

L

0

n4

p
4

pn
2
n 0dx f

dx

f d
EIdx f f S , 
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i.e. by subtracting member by member with [9.10]: 

0dx f f S  )( pn

L

0

2
p

2
n =ρω−ω ∫ . 

If pnの ω= the equation is automatically verified. 

If pnの ω≠ the equality to zero implies: 

∫ =ρ
L

0

pn 0dx f f S . [9.11] 

This is the property of orthogonality with respect to the operator of mass. With 

[9.9] we immediately deduce from it a second property of orthogonality with respect 

to the operator of stiffness: 

L 4

n
n p p4

0

d  f
if     EI f  dx 0.

dx
ω ≠ ω ⇒ =∫  [9.12] 

At this point it is interesting to introduce two quantities which will play an 

important part in the calculation of the modal response. 

We denote the following integral as generalized mass nM : 

∫ ρ=
L

0

2
nn dx f S  M . [9.13] 

We also denote the following integral as generalized stiffness nK : 

∫=
L

0

n4

n
4

n dx f 
dx

f d
EIK . [9.14] 

With [9.5], [9.13] and [9.14] we note that generalized mass and generalized 

stiffness enjoy the remarkable property: 

nnn M/K ω= . [9.15] 
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Stage 3. Modal decomposition of the response, modal equations 

We can demonstrate that the set of normal functions )x(fn  is a basis of the 

functional space where the solution of the problem defined by equations [9.1], [9.2] 

and [9.3] lies. We admit this result without demonstration; the reader may refer to 

the work of M. Roseau [ROS 84] for its mathematical aspects. Let us note that this 

property has already been exploited for the free response of beams in Chapters 5, 6 

and 7, since the response is expressed as a series of normal functions. This is the 

idea is used in modal decomposition; we seek the solution of the problem of forced 

vibrations in the form: 

)x(f  )t(a)t,x(W n
1n

n∑
+∞

=
= . [9.16] 

In expression [9.16] the amplitudes )t(an  are unknown and thus need to be 

calculated in order to solve the problem. These amplitudes must adapt so that the 

modal expansion [9.16] verifies the three groups of equations [9.1], [9.2] and [9.3]. 

Let us note, first of all, that the modal expansion verify the boundary conditions 

[9.2] by construction, since each normal function verifies them separately (equation 

[9.6]). Thus, we have, for example: 

n n n
n 1

W(0, t)  a (t)  f (0) 0   (since f (0) 0   according to [9.6])
+∞

=
= = =∑ . 

The same applies to the other three boundary conditions. 

Let us now examine the equation of forced movement [9.1] and substitute the 

form [9.16] in [9.1]: 

)t,x(p)x(
dx

f d
)t(a EI)x(f  t)(a S 

4

n
4

1n
nn

1n
n =+ρ ∑∑

+∞

=

+∞

=

$$ . [9.17] 

This form is sterile since this equation has an infinite number of unknowns na . 

The key to the solution consists of uncoupling the modes by using the orthogonality 

of normal functions. For that it suffices to multiply equation [9.17] by a normal 

function )x(fp  and to integrate it between 0 and L; it follows: 

∫

∑ ∫ ∑∫

=

+ρ
+∞

=

+∞

=
L

0

p

1n

L

0 1n
p4

n
4

npnn

L

0

.dx  x)(f t)p(x,                                                                       

dx x)(f 
dx

f d
)t(a EI dx x)(f  x)(f  t)(a S  $$
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Let us invert the summations and the integrals: 

∫

∑ ∫ ∑ ∫

=

+ρ
+∞

=

+∞

=
L

0

p

1n

L

0 1n

L

0

p4

n
4

npnn

.dx  x)(f  t)p(x,                                                                     

dx x)(f  
dx

f d
 EI  )t(adx f f S   )t(a$$

  [9.18] 

We recognize the properties of orthogonality with respect to the operators of 

mass and stiffness in [9.18], which implies that all the terms of the sums are nil 

except for the single index n = p. It follows: 

)t(FK  t)(aM  t)(a ppppn =+$$ . [9.19] 

pM  and pK are respectively the generalized mass and the generalized stiffness 

of the mode p, defined by equations [9.13] and [9.14]. )t(Fp  is the generalized force 

of the mode p given by [9.20]: 

dx  x)(f t)p(x, )t(F p

L

0

p ∫= . [9.20] 

Equation [9.18] is the modal equation associated to the mode p; its solution will 

provide the unknown for the )t(ap  problem. The remarkable point is that this 

equation is that of a system vibrating with one degree of freedom (see Figure 9.1), 

which, taking into account [9.15], has the same normal angular frequency as the 

vibration mode studied. 

pM

pK

(t)Fp

(t)a p

 

Figure 9.1. System with one degree of freedom, representative of the modal equation 
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To ensure the uniqueness of the solution of [9.19], it is necessary to provide this 

equation with initial conditions; these will of course stem from equations [9.3]. Let 

us use modal decomposition in these equations: 

)x(d)x(f  0)(a 0n
1n

n =∑
+∞

=
, [9.21] 

)x(v)x(f  0)(a 0n
1n

n =∑
+∞

=

$ . [9.22] 

To exploit these equations, it is also necessary to uncouple the modes using the 

properties of orthogonality: let us use the orthogonality with respect to the operator 

of mass, multiplying [9.21] and [9.22] by )x(f S pρ  and integrating it between 0 and 

L. (we could also use orthogonality with respect to stiffness multiplying [9.21] and 

[9.22] by 
4

p
4

dx

f d
EI ). 

After using orthogonality we obtain: 

p0

L

0

pp dx/M  x)(d )x(f S)0(a ∫ ρ= , [9.23] 

∫ ρ=
L

0

p0pp dx/M  x)( vx)(f  S)0(a$ . [9.24] 

The solution of the modal equation [9.19] equipped with the initial conditions 

[9.23] and [9.24] provides the unknown modal amplitudes. It is enough then to 

introduce them into the initial expression [9.16] to find the solution of the problem. 

We will provide some examples later on. 

9.2.2. Overview 

The method which was been highlighted with a reference example can be easily 

generalized. Let us consider an equation of forced motion of the type: 

] [ 0  t,  L0,   x   )t,x(p)W(L
 t

W
 J

2

2

>∈∀=+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

∂
  [9.25] 
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where J is the operator of mass and L is the operator of stiffness. J and L are two 

differential space operators. 

Let us suppose the existence of normal modes verifying the analog of equation 

[9.5]: 

0)(f L)(f J nn
2
n =+ω− . [9.26] 

Finally, let us suppose that the two operators are symmetrical. (The boundary 

conditions which we did not write down must be defined so that symmetry is 

verified.) We show then, as previously, the properties of orthogonality: 

  [9.27] 

  [9.28] 

Under these conditions, the modal amplitudes associated to the decomposition of 

the solution in the form [9.4] are obtained by the solution of modal equations of the 

[9.19] type, where the generalized masses and stiffness are provided by [9.27] and 

[9.28]. 

The method of modal decomposition is very generally applicable to problems of 

vibration of beams, but also of plates, shells, etc. The procedure is exactly identical 

to the one employed in the reference example; the difficulty that can appear in 

certain cases is the description of the properties of orthogonality when they are 

complicated by non-standard boundary conditions. 

Let us take two examples to consolidate our ideas: 

a) The non-homogenous bending beam. The equation of forced movement is as 

follows: 

)t,x(p
 x

W
EI

 x t
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S

2

2

2

2

2

2

=
⎟⎟
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⎞
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⎝
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ρ . [9.29] 
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The generalized mass and the generalized stiffness of mode n are: 

 

.dx  
dx
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EI

dx

d
fK

dx  f  SM
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2
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ρ=

∫

∫
  [9.30] 

Standard boundary conditions (support, embedding, free or guided) are assumed. 

b) Longitudinal vibrations of a beam with nonstandard boundary conditions. 

We consider the vibrations of a non-homogenous beam defined in Figure 9.2. It 

is clamped at 0 and attached to a mass M at the L end. It is the mass added at the end 

L which makes the problem non-standard. 

 
M

 

Figure 9.2. Beam studied in case b) 

The equation of motion and the boundary conditions are as follows: 

] [ L0,     x)t,x(p
x

U
ES

x t

U
S

2
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∈=⎟
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⎞
⎜
⎝

⎛
∂

∂

∂

∂
−

∂

∂
ρ ,  [9.31] 
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ES

0)t,0(U

2

2   [9.32] 

Mode shapes verify the following equations: 

0
dx

df
ES

dx

d
f  S n
n

2
n =⎟

⎠

⎞
⎜
⎝

⎛
−ρω− , [9.33] 
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⎧
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. M L)(f )L(
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ES

0)0(f

n
2
n

n

n

  [9.34] 

We leave it to the reader to demonstrate the two properties of orthogonality of 

our problem: 

L

n p n p

0

 S f  f  dx M f (L) f (L) 0    if n pρ + = ≠∫ , [9.35] 

L
2n

p n n p

0

dfd
 ES  f  dx  M f (L) f (L) 0    if n p
dx dx

⎛ ⎞ +ω = ≠⎜ ⎟
⎝ ⎠∫ , [9.36] 

and to deduce from it that the modal equation is of the [9.19] type with generalized 

quantities equal to: 

)L(f  Mdx f  S M

L

0

2
n

2
nn ∫ +ρ= , [9.37] 

)L(f M dx f 
dx

df
ES

dx

d
  K 2

n
2
nn

n
L

0

n ω+⎟
⎠

⎞
⎜
⎝

⎛
= ∫ , [9.38] 

dx t)(x, p f )t(F

L

0

nn ∫= . [9.39] 

Note: for the calculation of generalized masses and stiffness, it is necessary to 

use equation [9.33] and the boundary condition in L [9.34]. 
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9.2.3. Taking damping into account 

The problem that we have treated previously does not take an important 

parameter into account: damping. It is an oversimplification since under certain 

conditions of excitation damping is the parameter which dominates the forced 

vibratory response. It is necessary, therefore, to take it into account in the 

calculations. Two methods present themselves: consider an equation of motion or 

dissipative boundary conditions (in the case of free vibrations, we have examined 

various possibilities in Chapter 8), or pragmatically introduce generalized modal 

damping in the modal equation. Although less elegant, it is very often this second 

option which is chosen in practice, because it meets two requirements of an 

engineer: simplicity and correspondence with the damping measurement technique. 

In this chapter we will consider only the introduction of generalized damping nλ  

into the modal equation: 

)t(F)t(a K)t(a )t(a M nnnnnnn =+λ+ $$$ . [9.40] 

It is a viscous type damping modeled in equation [9.40]. Other models can be 

considered; the reader will be able to find many descriptions thereof in other works 

concerning systems with one degree of freedom, which represent the modal equation 

in short form. 

A reduced form of the modal equation [9.40] is often introduced: 

n

n
n

2
nnnnn

M

)t(F
)t(a )t(a  2)t(a =ω+ωε+ $$$ , [9.41] 

n
n

n

K
   :  normal angular frequency,

M
=ω  [9.42] 

n n n n/ 2 M  :  rate of damping=ε λ ω .                           [9.43] 

The advantage of this reduced form is that it characterizes damping by the 

parameter ni , which in general is slowly variable with the mode. We admit that for 

a standard mechanical system n 0.01ε ≈ , for a very slightly damped mechanical 

system n 0.001ε ≈ , for a heavily damped mechanical system n 0.1ε ≈  (such a 

strong value requires the use of a sandwich with a highly damped core). 
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9.3. Examples of calculation of generalized mass and stiffness 

9.3.1. Homogenous, isotropic beam in pure bending 

Let us consider a homogenous, isotropic beam in pure bending simply supported 

at its ends. We have demonstrated in Chapter 6 that the vibration modes were given 

by: 

2

22

n
L

 n

S

EI
 

π

ρ
=ω , [9.44] 

⎟
⎠

⎞
⎜
⎝

⎛ π
= x

L

n
 sinD)x(f nn . [9.45] 

The constant nD  is arbitrary and can be fixed at one without losing the 

generality of the expression; however, let us preserve it here in calculations. 

Generalized mass has the expression: 

∫ ⎟
⎠

⎞
⎜
⎝

⎛ π
ρ=

L

0

22
nn dx x

L

n
 sin D S M , [9.46] 

i.e. after calculations: 

2
nn D 

2

L
 SM ρ= . [9.47] 

Generalized stiffness has the expression: 

dx x
L

n
sin  

dx

x
L

n
sind

EI D K

L

0
4

4

2
nn

π
π

= ∫ , [9.48] 

that is, after calculations: 

2

L
 D 

L

n
EIK 2

n4

44

n

π
= . [9.49] 



Calculation of Forced Vibrations by Modal Expansion     323 

Finally, generalized force is given by: 

∫
π

=
L

0

nn dx t)p(x,  x
L

n
sin D  t)(F . 

If the type of force causing the excitation is not specified, we cannot proceed 

further with the calculation of the generalized force. 

A first observation must be made: generalized values do not have intrinsic 

physical significance, since they depend on the normalization of mode shapes by the 

arbitrary factor nD . 

For 2Dn =  the generalized mass is equal to the mass of the beam, but for 

nD 1,000 2=  the generalized mass is a million times more than the real mass. 

Therefore, physical significance should not be attached to generalized quantities, 

except, however, for the n nK / M  ratio, which is independent of normalization and 

equal to 2
nの . 

If one takes 1Dn =  for all the modes, as is common in practice, we note that 

generalized mass is constant with the mode: it is not a general property but a 

characteristic of this particular case. Generalized stiffness increases with the index 

of the mode meaning that the dynamic stiffness of the beam increases when the 

wavelength of the mode shapes decreases. 

9.3.2. Isotropic homogenous beam in pure bending with a rotational inertia effect 

It is a slightly more complicated case since the operator of mass has an 

additional term by comparison to the previous case: 

2

2

dx

d
ISJ ρ−ρ= , [9.50] 

4

4

dx

d
EIL = . [9.51] 

We determined the vibration modes in the case of boundary conditions of the 

simple support type in Chapter 6. Mode shapes keep the simple form: 

x
L

n
sin)x(fn

π
= . [9.52] 
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From that we deduce that generalized mass and generalized stiffness given by 

[9.13] and [9.14] are equal to: 

dx x
L

n
sin  x

L

n
sin

dx

d
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n
sin SM
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= ∫ , [9.54] 

that is, after all calculations: 
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⎛ π
ρ+ρ= , [9.55] 

2

L

L

 n
EIK

4

44

n

π
= . [9.56] 

Generalized mass increases with the mode owing to the effect of rotational 

inertia, which becomes dominating for high ranking modes. Generalized stiffness 

remains identical to the case in 9.3.1 (equation [9.49] when 1Dn = ). 

9.4. Solution of the modal equation 

We will consider the two basic cases: harmonic excitation and impulse 

excitation, then we will show how these two cases make it possible to treat the 

general case. 

9.4.1. Solution of the modal equation for a harmonic excitation 

To consolidate our ideas let us consider the example of reference from the 

beginning of the chapter, i.e. the vibrations of bending of a simply supported beam. 

The generalization of the results which we are going to highlight is rather obvious. 

Let us, moreover, consider that the excitation is harmonic of angular frequency ω: 

tje )x(p)t,x(p ω= . [9.57] 
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The modal equation with damping [9.40] is particularized on the basis of [9.20] 

for our excitation to a generalized force of the type: 

tj
n

L

0

n edx    x)(f  (x)p)t(F ω∫= , [9.58] 

j t
n nthat is,   F (t) F   e

ω= . [9.59] 

Taking into account the time-space separation [9.57], the temporal form of the 

generalized force is identical to that of the excitation. 

The modal equation is thus: 

tj

n

n
n

2
nnnnn e 

M

F
)t(a )t(a   2)t(a ω=ω+ωε+ $$$ . [9.60] 

It is a second-order differential equation with constant coefficients, which is 

integrated in very classical fashion. The solution is the sum of the general solution 

of the homogenous equation and of a particular solution of the equation with a 

second member. 

The general solution of the homogenous equation is given by: 

t  
nnnnn

nne )t cos Btsin  A()t(a
εω−Ω+Ω=  [9.61] 

2

n n nwhere    1Ω = ω −ε . [9.62] 

nっ is the damped normal angular frequency. It coincides with the normal 

angular frequency nの  if damping is nil; in the contrary case it is slightly weaker. In 

the standard cases n( 0.01)ε = , the shift is negligible. 

The particular solution is of the type: 

tj
nn e a)t(a ω=   [9.63] 

n
n 2 2

n n n n

F 1
with    a

M 2j    
=

ω −ω + ε ω ω
. [9.64] 
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The amplitude of the forced response is the product of the amplitude of the 

excitation )M/F( nn  by a term called frequency response )(Hn ω  which represents 

the amplitude of the vibrating system under unitary excitation. We have: 

)  j2( /1)(H nn
22

nn ωωε+ω−ω=ω . [9.65] 

Joining [9.61] and [9.63] we obtain the desired solution. It is not defined in a 

unique manner since the constants nA  and nB  are not fixed. To eliminate the 

uncertainty, it is necessary to use the initial conditions [9.21] and [9.22]. 

Let us adopt initial conditions of rest to reduce calculations, i.e. 

0 0d (x) 0  and  v (x) 0= =  it follows with [9.21] and [9.22]: 

n na (0) 0   and   a (0) 0= =$ . 

The first condition leads to: 

0aB nn =+ . 

The second is more complicated: 

0a  jA B   nnnnnn =ω+Ω+εω− , 

from which we draw: 

n n

n n n n

n

j  
B  a     and    A  a

ω+ω ε
= − = −

Ω
. 

The solution of the problem is thus: 
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nn
n

nn
nn ee  tcost sin   

 j
 a)t(a nn   [9.66] 

where na is given by [9.64]. 

This expression of modal amplitude shows several basic phenomena that are 

crucial for the comprehension of vibratory phenomena forced by a harmonic 

excitation. The modal response breaks up into two parts: 

– the transitory state, which stems from the general solution of the equation 

without a second member, and which occurs with the damped normal angular 
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frequency nっ that is completely independent of the excitation and characteristic of 

the structure; 

– the forced response, which comes from the particular solution of the equation 

with a second member, which occurs with the angular frequency of the force. 

There is, therefore, a basic difference between these two parts of the solution 

since they are carried out at different frequencies – that is the first remarkable 

phenomenon. The second is linked to the exponential decay of the transitory state 

with time, which is all the stronger the stronger the damping is and the higher the 

normal angular frequency is. The transitory state, in fact, only has real importance at 

the very beginning of the phenomenon, at the moments immediately after the initial 

moment. Figure 9.3 gives an illustration of the phenomenon. 

t

)aRe( n  

 

 Transitory state (real part) Forced response (real part) 

Figure 9.3. Transitory and forced responses of the vibratory response 

Insofar as we are generally interested in the established response, and that in any 

event the initial conditions are often badly known in practice, calculations are 

generally limited to the forced response alone. We thus approach the response given 

in [9.66]: 

tj
nn e a)t(a ω≈ . 
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The calculation is simplified, since the initial conditions no longer intervene. It 

is, in fact, a very good approximation of the modal response as long as the transitory 

signal is weakened. For a given damping, this intervenes all the quicker the larger 

the normal angular frequency of the mode is. The most slowly weakening mode is, 

thus, the first. As an example, if the first normal frequency is 100 Hz and the rate of 

damping is  210 ,−  as is common in mechanics, the exponential decrease after 1 

second is given by π−2e . This represents a reduction in the vibratory amplitude by a 

factor of 3 10  86,1 −  after 1 second. 

Let us note that joining the two parts of the solutions together can have a 

constructive effect leading to maximum vibratory amplitude at the start of the 

phenomenon. In certain borderline cases, this effect leads to the rupture of the 

structure at the beginning of the excitation. 

The third notable phenomenon is the resonance. It characterizes the amplification 

of vibratory amplitude at a particular frequency of excitation. To reveal the 

resonance, it suffices to study the factor na  given by [9.64], which appears in 

calculation as the complex amplitude of the forced response. It is preferable to 

introduce the module and the phase associated with this amplitude: 
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22
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22
nn

n
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ωωε+ω−ω
= ,  [9.67] 
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nn
n

   2
 Arctg . [9.68] 

The case where damping is nil is interesting because it demonstrates the extreme 

limit of the phenomenon of resonance. We note in Figure 9.4 that amplitude tends 

towards infinity when ω  tends towards nの ; it is the phenomenon of resonance 

characterized by an amplification of vibratory movement when the angular 

frequency of excitation is close to the normal angular frequency of the mode. We 

note that the phase nφ  is then equal to 2/π . For excitation angular frequencies that 

are much weaker than the pulsation of resonance nω<<ω , we note with [9.67] and 

[9.68] that: 

F
a     and    0

K
≈ φ ≈n

n n
n

. 
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The vibratory behavior of the generalized vibrating system is dominated by 

stiffness, as is the static behavior. 

For excitation angular frequency much higher than the angular frequency of 

resonance nω>>ω , we note that: 

n2
n

F
a     and    

 M

n
n ≈ φ ≈ π

ω
. 

It is a vibratory behavior dominated by the generalized mass of the vibrating 

system. The case of non-zero damping is not very different: only the behavior with 

resonance is notably modified, the maximum amplitude being reached when the 

pulsation of excitation ω 伊is equal to the angular frequency resonance nっ : 

2
nnn  21 ε−ω=Ω . [9.69] 

The frequency of resonance thus depends on the damping of the system which 

provokes it. Let us note that the angular frequency of damped resonance is different 

from the damped normal angular frequency given by [9.62]: nn Ω≠Ω . This 

variation of the frequency of the maximum amplitude is, however, very weak for the 

current case n( 0.01)ε = . The passing of the phase to zero, on the other hand, always 

occurs for nω=ω , whatever the value of damping. This is why we sometimes speak 

of nっ  as the angular frequency of amplitude resonance and of nの as of the phase 

resonance. The amplitude resonance nっ  is given by: 

2
nn

2
nn

n
n

1   2

1
 

M

F
a

ε−εω
= . [9.70] 

The forced vibratory behavior of a vibration mode is dominated by mass or 

stiffness as soon as ω moves away from nっ ; in this case it is impossible to measure 

the damping since its effect is masked by those of mass or stiffness. On the other 

hand, during resonance, damping dominates the phenomenon as shown by [9.70], 

and can thus be measured. This is why the introduction of damping mode by mode 

as we did in [9.40] is coherent with the reality of measurements of damping. The 

frequency zone where damping dominates is rather weak. In practice, we can show 

that the 3dB bandwidth, n〉 , associated with the peak of resonance, for weak 

damping is equal to: 

nnn  2 εω=∆ . [9.71] 
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For modal rate of damping of n 0.01ε =  we have a bandwidth of 

n
2 

n  10.2 ω=∆ − . A decrease of 3dB is observed when we deviate by 1% from the 

frequency of resonance. 

Equation [9.71] provides a means of measuring damping; it is the technique of 

the bandwidth. 

Let us note, finally, that for very strong damping, unrealistic for normal 

mechanical systems, the phenomenon of resonance disappears. Indeed, equation 

[9.70] shows that the frequency of the maximum of amplitude is nil  

if ni  is equal to 2/1  and the maximum no longer exists if 2/1n >ε . 

 

Figure 9.4. Normalized amplitude and phase of the response in frequency 
of the generalized vibrating system 

9.4.2. Solution of the modal equation for an impulse excitation 

To consolidate the ideas, let us look again at the example of reference of the 

bending beam supported at its ends. The force of excitation per unit of length has the 

form: 

(t)   )x(p~)t,x(p δ= . [9.72] 

The quantity (x)p~  is the space distribution of the external effort and t)( δ  is the 

Dirac distribution, representing an ideal impulse excitation. 

ω/ωn 

ω/ωn 
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The generalized force associated with the impulse excitation [9.72] is also an 

impulse: 

)t(  F
~

)t(F nn δ=   [9.73] 

L

n n
0

with    F f (x)  p(x) dx.= ∫# #  

The modal equation takes the form: 

)t(  
M

F
~

)t(a )t(a   2)t(a

n

n
n

2
nnnnn δ=ω+ωε+ $$$ . [9.74] 

The solution of this equation is simple to obtain. We give the result directly: 

n n

n
  tn

n
n n

0    if  t 0 ,

a (t)
F

 e  sin t    if t 0 .
M

− ω ε

⎧
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⎪= ⎨
⎪ Ω ≥⎪ Ω⎩

#   [9.75] 

This solution coincides with the transitory state following an initial condition of 

speed: 

nnn M/F
~

)0(a =$ . 

The impulse excitation thus generates a free vibratory state, characterized by the 

damped normal angular frequency nっ  and an exponential decrease that is stronger 

the stronger nn ωε  is. We can introduce the modal impulse response )t(hn  as the 

particular case of [9.75] where the amplitude of the modal impulse force of equation 

[9.74] equals unity: 

n n

n
  t

n
n

0    if   t 0 ,

h (t)
1

 e  sin t     if t 0 .
− ω ε

⎧ <⎪⎪= ⎨
⎪ Ω ≥
⎪Ω⎩

  [9.76] 

This elementary solution will be used as a basis for calculation of the response to 

any excitation in section 9.4.4. 
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9.4.3. Unspecified excitation, solution in frequency domain 

Let us now consider an unspecified excitation p(x, t) that is still sufficiently 

regular so that the Fourier transform exists: 

∫
∞+

∞−

ω−=ω
 

 

tj dt t)p(x, e ),x( P . [9.77] 

We can naturally obtain by inverse transformation: 

ωω
π

= ω+
∞+

∞−
∫ d e )P(x, 

2

1
)t,x(p tj

 

 

 . [9.78] 

The expression [9.78] shows that any excitation can be broken up into a 

harmonic sum of excitation whose amplitude with the angular frequency ω is equal 

to πω 2/),x(P . From a physical point of view, we conceive that the response will be 

the sum of the responses to the various harmonic excitations, since the system is 

linear. To give shape to this idea, it is sufficient to use the Fourier transformation of 

the modal equation [9.41]: 

nnn
2
nnnnn

2 M/)(F)(A )(A    j 2)(A ω=ωω+ωωεω+ωω−  [9.79] 
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n n
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and: 

∫∫ ∫ ω==ω ω−
∞+

∞−

L
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n
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L

0

nn dx ),x(P  )x(fdt edx  t)p(x,  x)(f  )(F .          [9.81] 

We can draw the value of )(An ω  from equation [9.79]: 

nn
22

nn

n
n

   j 2

1
  

M

)(F
)(A

ωεω+ω−ω

ω
=ω .  [9.82] 

In this expression we recognize the frequency response of the mode n, )(Hn ω , 

characteristic of the harmonic response with the angular frequency ω which we have 

introduced in section 9.4.1, equation [9.65].  
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nn
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The modal vibratory amplitude is obtained by taking the inverse Fourier 

transformation: 

ωω
π

ω
= ω+

∞+

∞−
∫ d e )(H 

M 2

)(F
 )t(a tj

n

 

 n

n
n   [9.84] 

The expression [9.84] demonstrates that which has been suggested physically by 

the linearity of the system: the response )t(an  is equal to the sum of the responses to 

harmonic interferences with an amplitude of nn M 2/)(F πω . 

The first way to solve the modal equation in the case of any excitation consists in 

using the Fourier transform, thus, working in frequency domain. The vibrating 

system is characterized by its frequency response )(Hn ω , the excitation is 

characterized by the Fourier transform of the generalized force. 

There is a second possibility to calculate the vibratory response working in time 

domain. We will set out its form in the next section. 

9.4.4. Unspecified excitation, solution in time domain 

Let us consider an unspecified excitation p (x, t). The associated generalized 

force is )t(Fn . We have to find the modal response )t(an  verifying: 

n

n
n

2
nnnnn

M

)t(F
)t(a )t(a   2)t(a =ω+ωε+ $$$ . [9.85] 

Let us suppose, moreover, that the generalized system has the following initial 

conditions at the time 0t : 

00n d)t(a = , [9.86] 

00n v)t(a =$ . [9.87] 
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To solve this problem we will use the impulse response )t(h  defined by equation 

[9.76]. Let us pose the integral nI : 

( ) dt  )t(h  )t(a )t(a   2)t(a I n

 

 

n
2
nnnnnn −τω+ωε+= ∫

∞+

∞−

$$$ . 

We suppose, moreover, that before the initial moment 0t , the system is at rest 

and that, therefore: 

n 0
a (t) 0    if    t t= < . 

The integral nI  can thus be written: 

( ) dt  )t(h  )t(a )t(a   2)t(a I
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Taking into account equation [9.85], we also have: 
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Let us carry out integration by parts of [9.88]; after all the calculations it follows: 
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  [9.90] 

The expression [9.90] is simplified by taking into account the properties of the 

impulse response, which verifies the equation of motion: 

)t( )t(h )t(h   2)t(h n
2
nnnnn −τδ=−τω+−τωε+−τ $$$ . 

The integral of [9.90] is thus equal to: 
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Noting, furthermore, that the law of causality implies that the impulse response 

is nil before the force is applied, we have: 

n
h ( t) 0    if    tτ − = τ < . 

The terms at the boundaries of [9.90] become: 

( ) )t(h  )t(a)t(h  )t(a   2)t(a 0n0n0n0nnn0n −τ+−τωε+− $$ . [9.92] 

Finally, gathering [9.89], [9.91] and [9.92], we obtain: 

( ) . )t(h  )t(a   2)t(a                                          

)t(h  )t(adt 
M

)t(F
 )t(h )(a

0n0nnn0n

0n0n
n

n

t

nn

0

−τωε++

−τ−−τ=τ ∫
τ

$

$

  [9.93] 

This expression gives the modal amplitude at any moment τ according to the 

initial conditions and the force applied between the initial moment and the moment 

of observation. The impulse response is given by [9.76], that is: 
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  [9.94] 

In many practical cases, the vibrating system is at rest when the force is applied 

to it; it follows that: 

n 0 0a (t ) 0    and    a(t ) 0= =$ . 

The expression [9.93] is simplified into: 

dt  
M

)t(F
)t(h )(a

n
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nn

0

∫
τ

−τ=τ . [9.95] 

The [9.95] form of the response has a simple physical explanation. Let us note, 

first of all, that )t(hn −τ  is the impulse response at the moment τ when the 

generalized vibrating system is excited at the moment t. The integral [9.95] indicates 
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that the force nn M/)t(F  can be broken up into a succession of impulses producing 

impulse responses whose superposition gives the total vibration. 

Expression [9.95] is very simple but requires going backwards until the moment 

of rest to calculate the action of all the forces applied. For numerical calculations 

that render the integral [9.95] discrete, the number of calculation steps can be very 

large. We may then find it beneficial to carefully use [9.93] taking ∆−τ=0t  as the 

initial moment where ∆ is the temporal step of calculation. 

9.5. Example response calculation 

9.5.1. Response of a bending beam excited by a harmonic force 

a) Point excitation 

First of all, let us present the problem. We consider a homogenous beam in pure 

bending with support boundary conditions. The equation of motion and the 

boundary conditions are thus: 
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The excitation force has an amplitude P, an angular frequency ω and is localized 

in 0x . 

The vibration modes of the beam were calculated in the chapter on free 

vibrations of beams in bending. It is given by: 
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The vibratory response is, thus, sought in the form of a modal series: 
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modal amplitudes )t(an  being solutions of modal equations: 

n

n
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)t(a )t(a   2)t(a =ω+ωε+ $$$ . 

The generalized mass and force are given respectively by: 
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All intermediate calculations were provided in section 9.2.1 since this case 

constituted our example of reference. However, we have not given a particular space 

form to the excitation force distribution. 

The solution of the modal equation has been provided in section 9.4.1. When the 

transitory effects are neglected, we have: 
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The forced response is thus provided by: 
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Expression [9.96] clearly shows the influence of a point excitation force. Let us 

take, for example, an effort applied in 2/Lx0 = . We observe that the responses of 

modes 2, 4, 6… are nil. This result is explained by the fact that the mid-point of the 

beam is a vibration node for the even modes. A point transverse force applied to a 

vibration node does not get modal response. Conversely, the response of modes 1, 3, 

5, … etc. is maximum since )x
L

nヾ
sin( 0  is equal to one when 2/Lx0 = . This 

result is linked to the fact that the mid-point of the beam is an antinode of vibration 
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for the odd modes. This constitutes the second remarkable tendency for point 

excitation: if the force is applied to an antinode it maximizes the modal response. 

 

A way of reducing modal response is thus to localize the force at one of its 

vibration nodes. 

Note: the described tendency is very often verified: excitation at a node does not 

produce modal response. It is, however, not general; an excitation of transverse 

beam vibrations by a localized torque produces exactly the opposite effect and it is 

the excitation at an antinode that cancels modal response. 

b) Multi-point excitation 

Let us consider the excitation force applied at two points: 

( ) tj
00 e  )x'(x  'P)x(x  P)t,x(p ω−δ+−δ= . 

The forced response of the beam is obtained by applying the principle of 

superposition, a simple consequence of the linearity of the problem. Using the 

previous calculation (equation [9.96]), it follows: 
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This result shows that the response of a mode can be canceled by adding a 

secondary force (P’); for that it suffices to satisfy the reduction: 
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We thus have: 
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Canceling the modal response is always possible as long as the point of 

application 0'x  is not at a vibration node. 
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The result [9.97] can be generalized to K excitation points in an obvious manner 

by summing up the separately calculated responses. 

c) Uniformly distributed excitation  

Let us take a constant distributed force: 

tje B)t,x(p ω= . 

In the previous calculations, only the generalized force is modified and becomes: 

tjtj
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Let us note immediately that generalized force is nil for all the even modes, 

which implies a zero response for these modes. Physically this tendency is related to 

the symmetry of loading which cannot excite asymmetrical modes. We may also 

interpret this result as cancelation of work resulting from the symmetrical force 

applied to asymmetric modal deformations. This concept of work of the force 

applied to modal deformations gives a physical image of the generalized force; we 

may then better understand the reduction of the generalized force of the odd modes 

as the order of the mode increases (see Figure 9.5). 

To sum up, the vibratory response of the beam is equal to: 
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Figure 9.5. Work of a uniform excitation applied to various modes 
of a supported-supported beam. Modes 2 and 4: total compensation of positive 
and negative work. Mode 3: partial compensation. Mode 1: no compensation 
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d) Sinusoidally distributed excitation  

Let us consider an excitation of the type: 

tje  x
L

k
sin)t,x(p ωπ

= . 

The calculation of the generalized force leads to the result: 
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It follows that the series is reduced to a single non-zero term corresponding to 

the index n = k: 
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This notable property is linked to the fact that loading coincides with the normal 

deformation of the order k. The orthogonality of normal functions leads to the 

cancelation of all generalized forces except for a single one for the index kn = . 

From a physical point of view, we may interpret this cancelation by the 

phenomenon of compensation of generalized forces highlighted in section c). Here 

the compensation is complete for all modes n which are different from k. 

9.5.2. Response of a beam in longitudinal vibration excited by an impulse force 
(time domain calculation) 

Let us consider a clamped-free beam in longitudinal vibration, excited by a 

shock applied to the point 0x . The presentation of the problem consists of writing 

down the three types of equations given below: the equation of motion, boundary 

conditions and initial conditions. 

Equation of motion: 
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Boundary conditions: 
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Initial conditions: 
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The function f(t) appearing in the equation of motion is homogenous to a force. 

It has constant amplitude, equal to one, during the period of force application T: 
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0    if  t T .
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Let us apply the method of modal decomposition to solve this problem. The 

modal system of the clamped-free beam has been calculated in Chapter 6: 
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We seek the response in the form of a modal series: 
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Amplitudes are provided by resolving the modal equation: 
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In this equation, the generalized mass and force are given respectively by the two 

equations below: 
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The modal equation can be resolved using two approaches, time and frequency 

domains, described in section 9.4. The one that is more appropriate here is the time 

domain approach, which we provide in detail. 

The solution is given by [9.95], which leads to two different expressions, during 

and after the moment T. 

During the shock )T( <τ : 
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For the moments following the application of shock )T( >τ , the formula 

changes a little, since the force is nil after the moment T: 
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This integral is not difficult to calculate; however, the expression obtained is 

very cumbersome, so in order to simplify matters, we will consider the case of a 

non-damped beam )0( n =ε . The integral [9.101] then leads to the result: 
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This expression is valid for T>τ . For T≤τ , i.e. during the shock, we obtain 

from [9.100]: 
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The vibratory amplitude of the beam is obtained by using these expressions of 

(t)an  in the modal decomposition. For example, during the application of the shock, 

the vibratory amplitude is given by: 
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9.5.3. Response of a beam in longitudinal vibrations subjected to an impulse force 
(frequency domain calculation) 

We consider the general case of the solution in frequency domain. Modal 

vibratory amplitude is provided by equation [9.84] which we recall: 

ω
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The calculation of the inverse Fourier transform which yields )t(an  can be 

carried out numerically. In the calculation of the integral, it would then be necessary 

to take into account the angular frequencies close to the normal angular frequency 

nの 姐伊for which the denominator is very small and, consequently, the integrand takes 

its maximum value, which is characteristic of the resonance phenomenon. These 

numerical calculations are, however, very long and we can sometimes avoid them by 

an integration in the complex plane. 



344     Vibration in Continuous Media   

 y 

x

2r

– R +R
nっnっ−

nniの 1r

Contour ∞け  

 

Figure 9.6. Path of integration (z=x+jy) 

Let us consider the path of integration γ of the form defined in Figure 9.6 and 

calculate the integral: 
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Applying the residue theorem makes it possible to calculate the first integral of 

the second member: 

∫ ∑
∞γ

π=   2jdz f(z)  residues located in the complex half-plane with an  

 imaginary positive part. 

Boundary line γ∞ 
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Let us suppose that the function (z)Fn  does not have a pole in the field of 

integration. The function: 
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then has two of them defined by the zeros of the denominators 
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These two poles are located in the vicinity of the damped normal angular 

frequency nっ 伊and its opposite ) ( nΩ− . 

Damping creates a positive imaginary part with two poles, which are thus both in 

the field of integration. 

These are two simple poles; the residues are calculated using the two 

expressions: 
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We thus draw from it the following expression of (t)an : 
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The simple practical cases are those where the integral of the second member is 

nil; we thus have: 

⎥⎦
⎤

⎢⎣
⎡ −

Ω
−= Ω−Ωεω− t  j

2n
t  j

1n
t   

nn
n

nnnn e  )r(Fe  )r(F e  
M 2

j
)t(a . [9.108] 



346     Vibration in Continuous Media   

It is a solution of the free modal vibration type, which represents the solution at 

the moments when the force is no longer applied and, thus, when the structure 

vibrates freely. 

We can now apply the result [9.108] to find the solution by temporal calculation 

of the problem highlighted to section 9.5.2. 

The Fourier transform of the generalized force is given by the integral: 
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It is enough to introduce this expression into [9.108] to obtain the vibratory 

response. In order to compare the results with temporal calculations, we will 

consider the borderline case of zero damping. Under these conditions 

n21 r r ω=−=  and equation [9.108] gives: 
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This expression coincides exactly with [9.102] which gave the vibratory 

amplitude for the moments Tt > . 

On the other hand, the vibratory amplitude during shock [9.103] is not provided 

by this result. This is due to the integral which appears in the second member of 

[9.107], which is effectively zero in the case of calculations leading to [9.108], but is 

no longer nil if Tk ≤ . 

The expression of the integral appearing in the second member of [9.107] is: 
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The behavior of the integral when R tends to infinity is related to the 

exponentials of the numerator; after transformation, the numerator can be written: 

 tsin  R  t cos jRT)(t sin  R T)(t  cos jR e  ee  e θ−θ−θ−−θ+ +− . 

Between 0 and π sin θ is always positive and the integrand tends towards 0 when 

R tends towards infinity, if t > T. The integral is thus null if t > T; it is a 

consequence of Jordan’s lemma, since in this case we can affirm that the boundary 

of zf(z)  is nil when R tends towards infinity. If k T,≤  the preceding property is no 

longer verified, which explains why our calculation no longer leads to the result, 

since it presumes that the integral is nil. A complete calculation taking the value of 

the integral into account is possible; we will not perform this here so as to avoid 

weighing down the text. 

Generally the application of [9.108] would require the nullity of the integral to 

be verified over the half-circle with an infinite radius. The form of [9.108] is 

characteristic of a free vibratory response and thus cannot represent the vibratory 

state when the force applied is not nil. This expression will thus be interesting for 

impulse excitations and will provide the answer after the moment of the shock. 

9.6. Convergence of modal series 

The method of modal decomposition expresses the vibratory response in the 

form of a series, which leads to the problem of convergence. We may, of course, 

find it beneficial to accumulate the least number of terms possible in order to 

accelerate calculations and certain techniques are sometimes used to improve 

convergence. 

9.6.1. Convergence of modal series in the case of harmonic excitations 

Let us consider the case covered in section 9.5.1, point a). We considered a 

bending beam excited at the point 0x  by a harmonic force with the angular 

frequency ω. The vibratory response provided by equation [9.96] was: 
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This expression is characteristic of the calculation of response by decomposition 

in modal series. To accelerate its convergence it is, therefore, necessary to study the 

series of the following type: 

∑
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π

1n
n x

L

n
sin   a  . 

These are series of the Fourier type whose convergence is well-known; if the 

amplitude of the term of the order n is in the form of )n/1(Oa r
n =  when ∞→n , 

then if 1r ≥ , the series converges, and if 1r < , the series diverges. 

We may, moreover, show that the derivative 
1r

1r

x 

W 

−

−

∂

∂
 is discontinuous. Thus, the 

function broken up into series has the following regularity: if r = 2, W(x,t) has a 

discontinuity of slope, if r = 1, it has a discontinuity, and if r = 0, it is a Dirac 

distribution (the series diverges). 

In the case considered here, the normal angular frequency is given by 

222
n L /  n SEI/ πρ=ω , the generic term of the series being consequently 

proportional to 41/n  when ∞→n . The series is thus convergent and the response 

continues according to x. The variation of na  in 41/n  means, in fact, that it is the 

third derivative of the function which is discontinuous. On the physical level, this is 

quite coherent with our knowledge of bending internal efforts, since a localized 

force introduces a discontinuity of the shearing force 33  x/W  EI ∂∂ . 

For the uniformly distributed excitation studied in section 9.5.1, point c), the 

response presents a generic term with an even faster decrease )n/1(Oa 5
n = . On the 

one hand, the series will converge quicker and, on the other hand, the shearing force 

will be continuous this time. 
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Figure 9.7. Evolution of the generic term of the modal series according 
 to the regularity of the response 

To sum up, the convergence of the modal series is linked to the regularity of the 

force applied, i.e. to the second member of the equation of motion. If the load is 

continuous, all the quantities with a physical significance and expressed by 

derivation of the displacement will be continuous. In the case of a bending beam 

considered in section 9.5.1, point c), the bending moment and the shearing force can 

be calculated using term by term derivation of the modal series and will converge. 

If the load is irregular, in particular, if it is a Dirac distribution, the modal series 

giving the displacement will converge and the calculation of its successive 

derivatives using term by term derivation of the series is legitimate as long as the 

generic term decreases at least in 1/n2. When the decrease is in 1/n, the represented 

function is discontinuous, and its term by term derivation within the framework of 

the theory of distributions leads to a divergent series. In this case, we may either 

work with the distributions, although the functions constructed on the basis of 

divergent series do not have local sense, or if we wish to preserve the local sense, we 

may no longer carry out term by term derivation but do it in the sense of the 

decomposition into a Fourier series of discontinuous functions (the reader may refer 

to any good mathematical work on the Fourier series). An example of this type of 

behavior is the calculation of the shearing force when the beam is excited by 

localized torque. Using term by term derivation of the series representing 

displacement, we obtain a divergent series for the shearing force. 
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9.6.2. Acceleration of the convergence of modal series of forced harmonic responses 

Once again let us take the calculation performed in section 9.5.1, point a), in the 

case of the excitation of a beam bending under a harmonic force with the angular 

frequency の localized in 0x . The response is provided by [9.96]. We observe that 

the modes can be assembled into three groups: 

– those responding in mass; we then have: ω<<ωn . Their responses in the first 

approximation are given by: 
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– resonant modes verifying ののp ≈ . Their responses are given by the general 

form: 
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– modes responding in stiffness; we then have: ω>>ωr . Their responses in the 

first approximation are of the form: 
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This last category of modes is the most numerous (there is an infinite number of 

them) and determines the speed of convergence. 

In fact, the amplitude [9.111] is characteristic of static modal response; it is 

enough to make 0=ω  in the general form [9.110] to obtain it. It is this property 

which is at the root of accelerated convergence. 
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Let us consider the static problem resulting from the previous case: it is the same 

problem, but the angular frequency of excitation is nil. The solution of this problem 

noted (x)WS  is given by the expression [9.96] particularized to 0=ω , that is, 

[9.112]: 
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The displacement (x)WS  verifies equation [9.113] as well as the conditions of 

support at the ends: 
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The acceleration of convergence is achieved by making the static solution (x)WS  

take into account the modes responding in stiffness (see the articles of M.A. Akgün 

[AKG 93] and D. Williams [WIL 45] for more information). 

We write [9.114] where )x(WD  is the dynamic contribution to determine: 

( ) tj
SD e  )x(W)x(W)t,x(W ω+= . [9.114] 

Let us use the [9.114] decomposition of the solution in the equation of motion 

(the dependence in tje ω  is omitted to simplify matters): 
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Taking into account [9.113] we obtain: 
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We return to a standard equation to calculate )x(WD  but the excitation is no 

longer the one actually applied but is linked to the static solution. Taking into 

account the regularity of )x(WD , the calculation leads to a rapid convergence. 
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Applying modal decomposition to equation [9.116] we find: 
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with: 
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Generally the vibratory solution obtained by traditional modal decomposition is 

given by: 
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where p(x) is the distribution of the excitation force. 

Noting that the static solution verifies: 
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dx
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we can demonstrate that: 
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Thus, we note the acceleration of convergence of the calculation of )x(WD , 

since for large n indices, modal amplitudes decrease in 4
n/1 ω  and not in 2

n/1 ω  as in 

the classical solution. The static solution can be obtained in analytical form in many 

cases and at any rate can be calculated much more easily than the vibratory solution. 
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To illustrate this method, let us take the case from section 9.5.1, point c), that is, 

a uniform distributed excitation. The static solution is obtained easily since it is the 

solution of the problem: 
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. 

The solution of this equation verifying the boundary conditions of support is 

given by: 
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The dynamic part is now calculated with [9.117]. Using [9.119] in [9.118], we 

obtain: 
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The dynamic response is thus equal to: 
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The vibratory response is the joining of )x(WS  and )x(WD  given respectively by 

[9.120] and [9.121]. The improvement of convergence is spectacular; for the initial 

calculation in section 9.5.1, point c), the amplitude of mode n was proportional to 

1/n5; for the present case, the amplitude of mode n of the dynamic solution is 

proportional to 1/n9 (which is what was indicated by [9.119]). 

9.7. Conclusion 

This chapter has presented the calculation of the forced vibratory response by 

modal decomposition. It is a general method which introduces modal amplitudes as 

unknowns. They are determined through the resolution of the modal equation, which 

is that of a system with one degree of freedom where the generalized characteristics 
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of the mode appear: generalized mass, stiffness and force. Generalized damping is 

also introduced at the level of this equation with a viscous model. 

The description of the modal equation results from the application of the 

properties of orthogonality, which are at the foundation of the decoupling of modes. 

In the simple cases, the properties of orthogonality are fairly easy to determine; in 

the case of complicated boundary conditions, they may be difficult to pinpoint. 

The resolution of the modal equation may be carried out in time domain or 

frequency domain. In time domain, the modal impulse response is the basic tool of 

calculation, since the modal response is obtained by the product of convolution of 

the impulse response and the force. In frequency domain, the modal harmonic 

response is used multiplied by the Fourier transform of the force: we obtain the 

modal response according to the frequency and then the inverse Fourier transform 

yields the time history. 

The end of the chapter presents the problem of the convergence of modal series 

and especially of its acceleration by using the static response of the vibrating system. 

The disadvantage of the modal method is that it expresses the response in the 

form of a series which presents convergence problems and leads to heavy 

calculations. It should, however, be noted that we can also see an advantage in this 

approach, because the answer is split into elementary movements (modes) and can 

thus be easily understood, offering a course of action to reduce vibrations. 

We can consider another approach, not based on modal decomposition, which in 

certain cases makes it possible to obtain the response in analytical form: this will be 

discussed in the next chapter. 



Chapter 10 

Calculation of Forced Vibrations 

by Forced Wave Decomposition  

10.1. Introduction 

In Chapter 9 we provided a method of calculation of the vibratory response of 

structures subjected to dynamic stresses by modal decomposition. This method is 

general, since it is applicable to any structure and any type of excitation. This 

generality, however, costs us, since the response is expressed in the form of a series 

which presents problems of calculation related to the convergence of modal series. 

The method that we are going to develop is more restrictive, since it is primarily 

applicable to mono-dimensional structures, excited at a point by a harmonic force. 

Its biggest advantage is that it offers analytical solutions. The fundamental element 

of the method is the concept of the forced wave, which is the solution of the 

homogenous equation of motion. As we will see, the technique of calculation rests 

on a sub-structuring of the vibrating system, the solutions will thus be defined by 

parts. 

The discourse will be based on some examples: torsion and bending of beams, 

the extension of which to more complex cases is quite straightforward. At the end of 

the chapter we will present the generalization that can be made for distributed and 

non- homogenous excitations, which removes the initial restriction of the method on 

harmonic localized excitations.  

In short, the method of response calculation by decomposition in forced waves is 

applicable to mono-dimensional structures homogenous by parts. It is based on a 
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sub-structuring, each section being delimited by two singular points (discontinuity 

of structure or point of excitation); the solution is thus provided by parts. 

The method extends to plates via semi-modal decomposition of the vibratory 

response. At the end of the chapter we present this approach, which, however, 

remains of limited use for rectangular or circular plates and for particular boundary 

conditions. 

10.2. Introduction to the method on the example of a beam in torsion 

10.2.1. Example: homogenous beam in torsion 

To give form to the method we will consider the simplest case, in order to avoid 

the technical difficulties and, thus, to better outline the fundamental idea of 

calculation. 

The wave equation, representative of the vibrations of torsion of beams (but also 

of the longitudinal vibrations of beams, as well as vibrations of the cords and pipes), 

will provide the example we are looking for. 

The decomposition of the vibratory solutions into forced waves appears naturally 

when a harmonic excitation applied to a point is considered. To formulate the 

method, let us consider a homogenous beam with a constant cross-section excited at 

the point 0x  by harmonic torque. In the example, the beam is clamped at both ends 

(see Figure 10.1). 

 

Figure 10.1. Beam in torsion excited by harmonic torque 
tjMe ω
 localized in 0x  

Presenting the problem so as to reveal the decomposition into a forced wave has 

its particularities. In fact, it is necessary to sub-structure it so as to have to solve only 

homogenous equations of motion. In our case we will divide the beam into two 

sections: SS1 and SS2. 

The subsystem SS1 is the section of beam defined by the open segment [ x,0 ] 0 . 

In this part, the unknown representing the angle of torsion will be noted )t,x(1α . 

 

x 

0
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 Me ω
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The subsystem SS2 is the section of beam defined by the open segment [ L, x ] 0 . In 

this part the unknown representing the angle of torsion will be noted )t,x(2α . The 

equations that must be satisfied by these two unknowns are: 

] [

, 0)t,x(
x

GI)t,x(
t

I

x,0 x
        1SS

12

2

012

2

0

0

=α
∂

∂
−α

∂

∂
ρ

∈
  [10.1] 

] [

. 0)t,x(
x

GI)t,x(
t

I

L, x x
        2SS

22

2

022

2

0

0

=α
∂

∂
−α

∂

∂
ρ

∈
  [10.2] 

The boundary conditions of clamped type are: 

0)t,0(1 =α , [10.3] 

0)t,L(2 =α . [10.4] 

The conditions of connection to the interface )xx( 0=  are: 

– continuity of displacements: 

)t, x()t, x( 0201 α=α ; [10.5] 

– discontinuity of moments of torsion due to the localized torque applied: 

tj
0

2
00

1
0 Met), x(

x
GIt), x(

x
GI

ω=
∂
α∂

−
∂
α∂

. [10.6] 

The vibratory movement solution is the superposition of the forced vibration and 

the free vibration. Decomposition into forced waves applies only to the forced 

vibration and is, therefore, only representative of the response once the transitory 

state weakens. 

We will thus only seek the forced response, which has the form: 

tj
11 e x)()t,x( ωα=α  [10.7] 
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tj
22 e x)()t,x( ωα=α . [10.8] 

The quantities )x(1α  and )x(2α  represent the complex amplitudes of harmonic 

vibratory movements. 

Using the expressions [10.7] and [10.8], equations [10.1] – [10.6] become: 

[ x0, ]    x  ,  0
dx

 d
GI)x(  I 02

1
2

01
2

0 ∈=
α

+αωρ , [10.9] 

[ L,  x]    x  ,  0
dx

 d
GI)x(  I 02

1
2

02
2

0 ∈=
α

+αωρ , [10.10] 

0)0(1 =α , [10.11] 

0)L(2 =α , [10.12] 

)x()x( 0201 α=α , [10.13] 

M)x(
dx

d
GI)x(

dx

d
GI 0

1
00

2
0 =

α
−

α
. [10.14] 

Let us note that it is not necessary to write down the initial conditions, since 

those are used only for the calculation of the transitory state, which is not taken into 

account here. 

10.2.2. Forced waves 

The solutions of equations [10.9] and [10.10] can be easily calculated, since we 

are dealing with standard differential equations. We obtain: 

( ) jkx
1

jkx
11 e Be Ax −+=α   [10.15] 

T Twith:    k c    and   c  G= ω = ρ ; [10.16] 



Calculation of Forced Vibrations by Forced Wave Decomposition     359 

similarly: 

jkx
2

jkx
22 e Be A)x( −+=α . [10.17] 

These solutions can be interpreted in terms of traveling waves propagating in 

both directions: of increasing and decreasing x. They are forced waves in the sense 

that the angular frequency ω  and, therefore, the wave number k  provided in 

[10.16] are determined by the force applied. 

The equivalent form is often used: 

kxcox  bkxsin  a)x( 111 +=α  [10.18] 

kxcox  bkxsin  a)x( 222 +=α . [10.19] 

10.2.3. Calculation of the forced response 

It suffices to make the solutions defined in each section respect the boundary and 

connection conditions. Verifying [10.11] and [10.12] yields: 

kxsin  a)x( 11 =α , [10.20] 

L)k(xsin  a)x( 22 −=α . [10.21] 

Respecting [10.13] and [10.14] leads to the linear system [10.22]: 

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−

−−

02

1

00

00

GI kM

0

a

a
  

)Lk(x cos    kxcos

)Lk(xsin     kxsin
. [10.22] 

The solutions are: 

det

)Lk(x sin
  

GI k

M
a 0

0
1

−
−= , [10.23] 

det

kx sin
  

GI k

M
a 0

0
2 −= . [10.24] 
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where det, the determinant of the system, is equal to: 

kL sindet = . [10.25] 

The forced response is obtained immediately replacing 1a  and 2a  in [10.20] and 

[10.21]. We obtain an expression by substructure: 

[ x0, ]   x ,kx   sin  
kL sin

)Lk(x sin
  

GI k

M
)x( 0

0

0
1 ∈

−
−=α , [10.26] 

[ L,  x]   x ,  L)k(x sin  
kL sin

kx sin
  

GI k

M
)x( 0

0

0
2 ∈−−=α . [10.27] 

As opposed to the method of modal decomposition, the response is obtained in 

an analytical form, which does away with the problem of series calculation. 

However, the same phenomena are present, in particular, the concept of resonance, 

which appears here when the determinant of the linear system [10.22] is nil. That is, 

when 
L

n
k

π
=  and, thus, when the angular frequency of excitation takes the values 

L

nG
 n

π
ρ

=ω . 

These values correspond to the normal angular frequency of the clamped-

clamped beam. Thanks to the expressions of the response [10.26] and [10.27], we 

observe that for these frequencies, vibratory amplitude is infinite. This tendency is 

coherent with the fact that the beam is non-damped. 

The analytical expression of the forced response, furthermore, highlights the 

phenomena that are difficult to identify by modal decomposition. In fact, the effects 

of anti-resonance block the response of a section of the beam. 

Let us examine the response of the SS1 section. It is nil in any point when: 

0)Lx(ksin 0 =− , 

i.e. with the angular frequency of excitation: 

0
p

xL

pG
 

−
π

ρ
=ω . 
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These angular frequencies correspond to resonances of the SS2 section clamped 

at both ends. Everything occurs as if the SS2 section, which has the ability to vibrate 

with great amplitude at these frequencies, absorbed the whole of the excitation, thus 

blocking the other section. 

Of course, the situation changes with the angular frequency of resonance of the 

SS1 section: 

L

qG
 q

π
ρ

=ω . 

10.2.4. Heterogenous beam 

Decomposition into forced waves can be used in the case of beams with abruptly 

variable heterogenity. Let us take the case of Figure 10.2 to illustrate the method. 

 tjMe ω

x 

0x  
1L  2L  0 

 

Figure 10.2. Vibrations of torsion of a beam with abruptly variable inertia 

Sub-structuring must reveal three sections where three unknown functions are 

defined: 

. [ L,  x] x    when   x)(

, [ x, L ] x    when   x)(

[, L0, ] x    when   x)(

203

012

11

∈

∈

∈

α

α

α

 

The three functions verify the following equations of motion: 

0
dx

 d
I G  I 

2

1
2

111
2

11 =
α

+αωρ , [10.28] 
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0
dx

 d
I G  I 

2

2
2

222
2

22 =
α

+αωρ , [10.29] 

0
dx

 d
I G  I 

2

3
2

223
2

22 =
α

+αωρ . [10.30] 

These three equations have classical solutions of the type [10.18]: 

xk cos bxksin  a)x( 11111 +=α , [10.31] 

xk cos bxksin  a)x( 22222 +=α , [10.32] 

xk cos bxksin  )x( 23233 +α=α , [10.33] 

1
1

1

2
2

2

G
               k  
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G
               k   .

ρ

ρ

= ω

= ω

  [10.34] 

Now it is sufficient to write down the connection and boundary conditions which 

link these solutions: 

⎪
⎪
⎪
⎪
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⎪
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=

α

α=α

=α

. 0)L(

, M)x(
dx

d
IG)x(
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0302
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2
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11
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1

  [10.35] 
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The use of the solutions of the equation of motion under the [10.35] conditions 

yields a non- homogenous linear system which when resolved provides the unknown 

amplitudes )b ..., , b, a( 311  and, thus, the vibratory response in each section with 

[10.31] – [10.33]. We leave it to pursue the calculations later on. 

Decomposition into forced waves requires sub-structuring aimed at isolating 

sections of the homogenous beam with constant inertia whose solution for the 

equation of motion is known. The sections would thus be delimited by points of 

singularity (discontinuity of structure and applied force); here two singularities give 

three sections. Generally, N  singularities will give 1N +  sections. 

10.2.5. Excitation by imposed displacement 

In certain problems we know the amplitude of vibrations at the point of 

excitation while the applied force is unknown. The method of decomposition in 

forced waves can be used in this case in a completely simple manner. Let us take 

once again the case of section 10.2.1. Replacing the excitation by torque by an 

imposed angle of torsion: 

⎪
⎩

⎪
⎨

⎧

γ=α

γ=α

ω

ω

. e t), x(

e t), x(

tj
02

tj
01

  [10.36] 

The solution is identical to the case of section 10.2.1. Equations [10.9] – [10.12] 

remain unchanged. The conditions of connection are different here; it is necessary to 

replace [10.13] and [10.14] by the two conditions: 

γ=α )x( 01 , [10.37] 

γ=α )x( 02 . [10.38] 

Vibratory movement is calculated in a similar way and after all the calculations 

we obtain: 

0
1

kxsin

kxsin
)x( γ=α , [10.39] 
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)Lx(ksin

)Lx(ksin
)x(

0
2 −

−
γ=α . [10.40] 

We can deduce the torque applied to produce this vibratory movement thanks to 

the relation [10.14]: 

⎟
⎠

⎞
⎜
⎝

⎛ α
−

α
= )x(

dx

d
)x(

dx

d
 GIM 0

2
0

1 , [10.41] 

that is: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
γ=

)Lk(xsin   kxsin

kLsin
 GIkM

00

. [10.42] 

The expression [10.42] makes it possible to highlight two remarkable properties 

of torque that have to be applied to a beam to produce a given angle γ : 

1) the torque that has to be applied tends towards 0 at the beam’s resonance 

angular frequencies. At these frequencies 
L

n
G n

π
ρ=ω , the numerator is nil; 

2) the torque tends towards infinity at anti-resonance angular frequencies when 

the denominator is nil. The angular frequencies of anti-resonance are given by the 

two following expressions: 
L

pG
 p

π
ρ

=ω  and 

0
q

xL

qG
 

−
π

ρ
=ω . 

Figure 10.3 illustrates the responses of the same structure excited either by an 

imposed angular displacement constant with the frequency (equation [10.39]), or by 

a localized torque constant with the frequency (equation [10.26]). The curves are 

very different, in particular, beam resonances no longer appear as maxima for the 

excitation in displacement; in fact, it is at the subsystem anti-resonance angular 

frequency that the amplitude is infinite. We see here all the difficulty of 

interpretation of frequency response when the excitation is barely known. 
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Figure 10.3. Level of vibratory displacement according to the wave number k of a 1 m long 

beam, observed at the 0.3 m point for an excitation of torsion in 0.65 m by: 

 Constant imposed angular displacement ( 1=γ ) 

 Constant imposed excitation torque ( 1)GI(M 0 = ) 

10.3. Resolution of the problems of bending 

10.3.1. Example of an excitation by force 

In principle, the problem of bending is not different from that of torsion; at the 

technical level, the difficulty is greater since the solution of the equation of motion 

contains vanishing waves and because it is possible to excite bending beams in two 

distinct ways: by force and by torque. 

We will initially consider a clamped-free beam excited by a harmonic transverse 

force applied at 0x  (see Figure 10.4). We seek the solution of the forced vibration in 

the form: 

] [
] [⎪

⎩

⎪
⎨

⎧

∈

∈
=

ω

ω

. L,  x   x ,  e x)(W

x0,    x ,  e x)(W

)t,x(W

0
tj

2

0
tj

1

  [10.43] 

k 
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Figure 10.4. Bending vibrations of a clamped-free beam, 

excited by a harmonic force 
tje F ω

 

It is necessary, of course, to sub-structure the beam into two sections. Vibratory 

amplitudes )x(W1  and )x(W2  verify the equations of motions: 

] [04

1
4

1
2 x0,    x ,  0

x

W 
EI)x(W S ∈=

∂

∂
+ρω− , [10.44] 

] [L,  x   x ,  0
x

W 
EI)x(W S 04

2
4

2
2 ∈=

∂

∂
+ρω− . [10.45] 

These differential equations are easily integrated: 

)kx(ch D)kx(sh CkxcosBkxsinA)x(W 11111 +++= , [10.46] 

)kx(ch D)kx(sh CkxcosBkxsinA)x(W 22222 +++= , [10.47] 

4
EI

with:    k    
S

= ω
ρ

. [10.48] 

The solutions reveal traveling waves through the sine and cosine, and also 

vanishing waves through the hyperbolic sine and cosine. 

Writing down the boundary and connection conditions will allow, as previously, 

calculating the constants 2211 D, C ..., , B, A  appearing in the solutions [10.46] and 

[10.47]. 
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Boundary conditions: 

⎪
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  [10.49] 

Conditions of connection: 

1 0 2 0

1 2
0 0

2 2
1 2

0 02 2

3
2

W (x ) W (x )                           continuity of displacements,

dW dW
(x ) (x )                    continuity of slopes,

dx dx

d W d W
EI (x ) EI (x )        continuity of bending moments,

dx dx

d W
EI

d

=

=

=

3
1

0 03 3

d W
(x ) EI (x ) F   discontinuity of the shearing forces.

x dx
− =

 [10.50] 

Introducing solutions [10.46] and [10.47] under the 8 boundary and connection 

conditions leads to the calculation of the 8 constants. We will not proceed further 

with this extremely heavy calculation, which requires computerized processing. To 

give an example, we take the case of a supported-free beam where the point of 

excitation is at the Lx0 =  end of the beam. In this case only one section is 

necessary and the boundary conditions are: 

0)0(W1 = , [10.51] 

0)0(
dx

W d
EI

2

1
2

= , [10.52] 
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0)L(
dx

W d
EI

2

1
2

= , [10.53] 

F)L(
dx

W d
EI

3

1
3

= . [10.54] 

The introduction of [10.46] into [10.51] and [10.52] shows that 0DB 11 == . 

The conditions [10.53] and [10.54] give: 
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1
, [10.55] 

that is: 
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=

)k (EI  F
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)k (EI  F
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. [10.56] 

The vibratory response is thus: 

[ ]kxsh   kLsin kxsin   kLsh  
kLch  kLsin kL cos  kLsh 

)k (EI  F
)x(W

3

1 +
−

−
= . [10.57] 

The denominator of [10.57], when equal to zero, corresponds to the 

characteristic equation of a supported-free beam; vibratory amplitude will thus tend 

towards infinity at angular frequencies of resonance of the supported-free beam, 

which satisfy the characteristic equation. 

10.3.2. Excitation by torque 

Let us once again take the example of Figure 10.4 replacing the excitation force 

by a harmonic couple 
j t

Me
ω

. The solution of the problem is obtained in a manner 

similar to the case of section 10.3.1. Vibratory movements in the two sections have 

the general form [10.46] and [10.47], while boundary conditions are those described 
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in [10.49]. Conditions of connection are slightly modified, the two last equations of 

[10.50] becoming: 

⎪
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⎪
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  [10.58] 

To identify the constants appearing in the solutions of the equations of motion 

[10.46] and [10.47], we use the 8 boundary and connection conditions. 

10.4. Damped media (case of the longitudinal vibrations of beams) 

10.4.1. Example 

We will consider the longitudinal vibrations of a clamped-free damped beam 

excited by a harmonic force localized in 0x . 

Damping is introduced via a complex Young modulus, since we are dealing with 

harmonic movement: 

)j1(EE* η+= , 

where η  is the loss factor of material. 

We will sub-structure the beam into two sections where longitudinal 

displacements are respectively: 

] [

] [

1 0

2 0

           U (x)  when  x   0,x

and      U (x)  when  x   x  ,L  .

∈

∈
 

The equations to verify are the following: 

] [02

1
2

*
1

2 x0,    x ,  0
dx

U d
S EU  S ∈=+ωρ , [10.59] 
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] [L,  x   x ,  0
dx

U d
S EU  S 02

2
2

*
2

2 ∈=+ωρ , [10.60] 

0)0(U1 = , [10.61] 

0)L(
dx

Ud
S E 2* = , [10.62] 

)x(U)x(U 0201 = , [10.63] 

F)x(
dx

Ud
S E)x(

dx

Ud
S E 0

1*
0

2* =− . [10.64] 

The solutions of the equations of motion [10.59] and [10.60] are obtained in a 

traditional fashion: 

x*jk
1

x*jk
11 e Be A)x(U −+= , [10.65] 

x*jk
2

x*jk
22 e Be A)x(U −+= , [10.66] 

* E
with:    k      1 j

P

⎛ ⎞
= ω + η⎜ ⎟⎜ ⎟

⎝ ⎠
. [10.67] 

The wave number being complex, the propagation is carried out with a 

weakening of amplitude. For weak damping, which generally is the case in practice, 

there is the following approximation: 

γ−=⎟
⎠
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⎜
⎝

⎛ η
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2
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E
  k* . [10.68] 
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The calculation of vibratory response is straightforward; it suffices to calculate 

the integration constants appearing in [10.65] and [10.66] so that they verify the 

conditions [10.61] – [10.64]. However, in order to avoid weighing down the 

discussion, we will take a simpler case supposing that Lx0 = , i.e. the excitation is 

at the end of the beam. Only one section is necessary; the solution [10.65] must 

verify the boundary conditions: 

, )(
dx

dU
 S E    and

0)0(          

1*

1

FL

U

=

=
  [10.69] 

that is: 

1 1 1 1
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A B 0 A  B

and
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  [10.70] 

Thus, we obtain: 

)ee(  
)e(e*jk

S)*(E  F
)x(U L*jkL*jk

L*jkL*jk1
−

− −
+

= . [10.71] 

Taking damping into account, the denominator of equation [10.71] cannot be 

zero; we are therefore witnessing damped resonances. 

Taking the damping account into account is done without difficulty, thanks to the 

introduction of complex elasticity moduli. The forced waves then present a decrease 

during their propagation and the calculation of the vibratory response no longer 

reveals any infinite amplitudes at resonance angular frequencies. 

10.5. Generalization: distributed excitations and non-harmonic excitations 

10.5.1. Distributed excitations  

The decomposition in forced waves was established for localized excitations. We 

can use these solutions as “solvers” for more complex cases. Let us take, for 

example, the case of the torsion of beams from section 10.2.1, but suppose that the 

beam is excited by a distributed harmonic moment: tje )x(m ω . 



372     Vibration in Continuous Media  

The equation to be satisfied is thus: 

] [L0,    x ,  )x(m
dx

 d
GI)x(  I

2

2

0
2

0 ∈=
α

+αωρ , [10.72] 

0)0( =α , [10.73] 

0)L( =α . [10.74] 

Let us consider the solution obtained in [10.26] and [10.27], for a localized 

excitation by a torque placed in x0. Let us suppose, moreover, that the torque has a 

unit amplitude )1M( = : 

] [0
0

0
1 x0,    x ,  kxsin  
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)Lx(ksin
  

GI k

1
)x( ∈

−
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1
)x( 0

0

0
2 ∈−−=α . [10.76] 

This elementary solution is related to the Green function of the problem and 

corresponds to the solution of the problem of torsion of a beam excited by a Dirac 

distribution placed in x0. To show that the solution described by [10.75] and [10.76] 

makes it possible to solve the problem defined by equations [10.72], [10.73] and 

[10.74], the step is a little long. Let us carry out the integral: 
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Taking into account [10.72], we have on the one hand: 

∫∫ α+α=
L

x

2

x

0

1

0

0

dx  x)(m  x)( dx  x)(m  x)(I . [10.78] 
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In addition, let us integrate by parts the expression [10.77]; we obtain: 
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dx

 d
GI)x(  I                                  

dx  )x(  
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∫

∫

  [10.79] 

Taking into account [10.9] and [10.10], the integrals are nil; taking into account 

[10.11] – [10.14], [10.72] and [10.73], the non-nil terms at the boundaries are 

summarized by: 

⎥
⎦

⎤
⎢
⎣

⎡ α
+

α
−α= )x(

dx

d
GI)x(

dx

d
GI )x(I 0

2
00

1
00 . [10.80] 

When the excitation moment is unitary )1M( = , equation [10.14] indicates with 

[10.80] that the term between brackets is equal to unity, and thus: 

)x(I 0α= . 

After grouping with [10.78], it follows: 

dx )x(m )x(dx )x(m )x()x(

L

x

2

x

0

10

0

0

∫∫ α+α=α , 

that is: 

( ) .dx   L)k(xsin   
kLsin

kxsin
 

kGI

)x(m
                                         

dx  (kx)sin   
kLsin

)Lx(ksin
  

kGI

)x(m
 )x(

0
L

x 0

x

0

0

0
0

0

0

−−

−
−=α

∫

∫
  [10.81] 

The response to a localized unitary excitation allows the calculation of the 

response to a distributed excitation via the integral equation [10.81]. 
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To illustrate this expression, let us first consider an excitation torque of the Dirac 

distribution type )'xx()x(m −δ=  and suppose that 0x'x < . The application of 

[10.81] leads to: 

∫
−

−=
−−δ

−=α
0

x

0

0

0

0

0
0 'kxsin

kLsin

)Lx(ksin

kGI

1
dx  kxsin

kLsin

)Lx(ksin

kGI

)'xx(
  )x( . 

We find again the solution [10.75] with notations reversed between x and x'. 

If 0x'x > , we obtain: 

∫ −−=
−δ

−=α
L

x

0

0

0

0
0

0

)L  'x(ksin
kLsin

kxsin

kGI

1
dx  kxsin

kLsin

kxsin

kGI

)'xx(
  )x( . 

We also find again the relationship [10.76], still with reversed notations. Thus 

the Green function defined by the expressions [10.75] and [10.76] appears as the 

response at the point x to a Dirac distribution placed in 0x . 

Let us now consider an excitation consisting of a set of torque as shown in 

Figure 10.5. This excitation corresponds to an approximation of the distributed 

moment )x(m : 

∑
=

−δ≈
N

1i
ii )xx(  )x(M)x(m , [10.82] 

with: iii   )x(m)x(M ∆=  where i∆  is the length of application of the torque )x(m i . 

The response at the point x0 to these N  excitation torques is by linearity the sum 

of the responses to each excitation torque. The expression of this response has two 

forms depending on whether the point of observation is to the right [10.27] or to the 

left point of the excitation [10.26]. Therefore, considering that 1j0j xxx +<< , it 

follows: 

∑

∑

+=

=

∆−−

∆
−

−=α

N

1ji
ii

0

0
i

j

1i
ii

0

0
i0

.  )Lk(xsin   
kLsin 

kxsin 
  

kGI

1
)x(M                             

 kxsin   
kLsin

)Lk(xsin 
  

kGI

1
 )x(M )x(

  [10.83] 
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The expression [10.81] is sometimes interpreted as passing to the limit of the 

expression [10.83]. 

The procedure that we have just applied is completely general and consists of 

solving a problem using the Green function. The basic tool is the solution of the 

problem to a unitary localized excitation, which is the Green function of the 

problem. We then proceed as shown to obtain the response to an excitation 

distributed by an integral equation. We leave it to the reader to apply this step to 

longitudinal and bending vibrations as an exercise; the calculations are heavier in the 

latter case. 

 

Figure 10.5. Approximation of the distributed excitation torque 
by a comb of localized torques 

10.5.2. Non-harmonic excitations 

The method of decomposition into forced waves is based on the harmonic 

excitation of structures; we may, however, use it for excitations with unspecified 

time variation thanks to the Fourier transformation. 

To consolidate our ideas let us once again take the example of the beam in 

torsion from section 10.2.1, but for a non-harmonic excitation. 

  

i
∆

 
0   

L 

x 

∆
m(x) 

  

0   
L 

x 

m(x)   
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Equations [10.1] – [10.5] remain unchanged, and the discontinuity of moment of 

torsion [10.6] becomes: 

)t(Mt), x(
x

GIt), x(
x

GI 0
2

00
1

0 =
∂
α∂

−
∂
α∂

. [10.84] 

Let us take the time Fourier transforms of these equations. Noting the Fourier 

transform of the angle of torsion in section i as )t,x(~
iα : 

∫
∞+

∞−

ω−α=ωα
 

 

tj
ii dt e  )t,x(),x(~ , [10.85] 

it follows: 

] [0

2

01
2

0 x0,    x ,  0
dx

)x,(~ d
GI),x(~  I ∈=

ωα
+ωαωρ , [10.86] 

] [L,  x   x ,  0
dx

),x(~ d
GI),x(~  I 0

2
2

02
2

0 ∈=
ωα

+ωαωρ , [10.87] 

0),0(~
1 =ωα , [10.88] 

0),0(~
2 =ωα , [10.89] 

), x(~), x(~
0201 ωα=ωα , [10.90] 

)(M
~

), x(
dx

~d
GI), x(

dx

~d
GI 0

1
00

2
0 ω=ω

α
−ω

α
, [10.91] 

where )(M
~ ω  is the Fourier transform of the excitation torque: 

∫
∞+

∞−

ω−=ω
 

 

tj dt e  )t(M)(M
~

. [10.92] 

Equations [10.86] – [10.91] are formally identical to equations [10.9] – [10.14] 

and, therefore, lead to the same results for 1 2(x, )  and  (x, )α ω α ω# #  as for 
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)(  and  x)( 21 xαα  obtained for a forced movement harmonic of an angular 

frequency ω, equations [10.26] and [10.27], that is: 

] [

] [

0
1 0

0

0
2 0

0

sin k(x L)M( )
          (x, )     sin kx  ,  x   0,x  ,

kGI sin kL

sin kxM( )
          (x, )     sin k(x L)  ,  x   x  ,L  ,

kGI sin kL

G
with:    k     .

−ωα ω = − ∈

ωα ω = − − ∈

= ω
ρ

#
#

#
#   [10.93] 

It is now possible to obtain the vibrations of torsion taking the inverse Fourier 

transform, for example, for )t,x(~
1α : 

∫
∞+

∞−

ω ω
−ω

−
π

=α
 

 

tj0

0
1 d ekx sin   

kLsin

)Lk(xsin 
  

kGI

)(M
~

   
2

1
)t,x( . [10.94] 

Of course, the Fourier integral is not necessarily easy to calculate and a 

numerical problem may arise here. 

10.5.3. Unspecified homogenous mono-dimensional medium 

The method is applicable to any homogenous mono-dimensional structure whose 

harmonic movement is governed by a homogenous differential equation of the type: 

∑
=

=β
N2

0n
n

n

n 0
dx

 U(x)d
 . [10.95] 

The quantities βn are constant coefficients, U(x) is the unknown of the problem, 

and 2N is the order of derivation of the equation of motion. For example, for the 

equation of bending of beams, we have: 

EI  ,  0  ,  S   ,  2N 4321
2

0 =β=β=β=βωρ−=β= . 
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The number of boundary conditions associated with this equation is equal to the 

order of derivation 2N, that is N conditions at each end. They have the general form 

of N alternatives: 

j

j

2N 1 j

2N 1 j 2N 1 j

d  U
either   (x) 0 ,

dx

j 0,  ... ,N 1  

d  U
or           (x) 0 .

dx

− −

− − − −

⎧
⎪ =
⎪
⎪⎪= − ⎨
⎪
⎪ β =⎪
⎪⎩

  [10.96] 

These conditions are to be verified at both ends x = 0 and x = L. The excitation 

can occur via N types of forces applied to the beam. 

Let us take the case of a source point 0x : the beam is sub-structured into two 

sections where vibratory displacement is given respectively by U1(x) and U2(x). The 

simultaneous application of N localized forces leads to the discontinuity of the N 

quantities: 

j0j

1
j

j0j

2
j

j F)x(
dx

 Ud
)x(

dx

 Ud
      1N2 , ... ,Nj =β−β−=   [10.97a] 

and to the continuity of the N quantities: 

)x(
dx

 Ud
)x(

dx

 Ud
      1N, ... ,0j 0j

1
j

0j

2
j

=−= . [10.97b] 

The two unknown functions U1(x) and U2(x) are solutions of equation [10.95], 

i.e.: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

∑

∑

=

=

, e  a)x(U

e  a)x(U

N2

1j

kjxj
22

N2

1j

kjxj
11

  [10.98] 
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where jk  are the solutions of the characteristic equation associated with equation 

[10.95]: 

∑
=

=β
N2

0n

n
n 0k  . [10.99] 

The solutions reveal 2N unknowns per section, that is, 4N unknowns in all, 
j
1a  

and 
j
2a . Writing down the 2N boundary conditions [10.96] and the 2N connection 

conditions [10.97a] and [10.97b] leads to a linear system 4N × 4N, whose solution 

provides the unknowns of the problem. 

The method directly extends to the case of structures homogenous by parts as in 

section 10.2.2; it is enough to sub-structure it into a sufficient number of sections. 

10.6. Forced vibrations of rectangular plates 

The method of decomposition into forced waves is adapted to the resolution of 

the problem of mono-dimensional vibration; we may, however, apply it to 

rectangular plates. The forced response is no longer obtained by an analytical 

expression but by a simple series. It is a simplification compared to the classical 

modal decomposition, which leads to a double series. Let us take the example of a 

rectangular plate with length a and width b and consider that the opposite edges 

ax1 =  and 0x1 =  are simply supported. The plate is excited at the point )X, X( 21  

by a harmonic force: 

)Xx(  )Xx( Fe 2211
tj −δ−δω . [10.100] 

Taking into account the harmonic excitation, the forced response is of the type: 

tj
2121 e  )x, x(Wt), x, x(W ω= . [10.101] 

The equations to respect in order to solve this problem are the following: 

– the equation of motion for ] [ ] [b,0 a,0     )x, x( 21 ×∈ : 

;  )Xx(  )Xx( Fe                                                    

)x, (xW  
xx x

2
x
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⎞

⎜
⎜

⎝

⎛

∂

∂
+
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∂
+

∂

∂
+ρω−

ω
  [10.102] 
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– the boundary conditions at the supported edges are given by: 

0)x,a(W  ,  0)x,0(W 22 ==   [10.103] 

and: 

0)x,a(W
x

  ,  0)x,0(W
x

22
1

2

22
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2

=
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∂
=

∂

∂
. [10.104] 

We will seek the solution of the problem in the form of a series whose each term 

verifies the boundary conditions [10.103] and [10.104] at the edges 0x1 =  and 

1x a= : 

∑
∞

=
⎟
⎠

⎞
⎜
⎝

⎛ π
=

1n
12n21 x

L

n
sin   )(x h )x, x(W . [10.105] 

Let us introduce equation [10.105] into the equation of motion [10.102]: 

. )Xx(  )Xx(F                                                          

x
L

n
 sin)x(h  h

L

n
 D                                

)x(
dx

hd

L

n
 D2)x(

dx

hd
D 

2211

12n
2

4

1n
22

2

n
22

24
2

n
4

−δ−δ=

⎟
⎠

⎞
⎜
⎝

⎛ π
⎟⎟
⎟

⎠

⎞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ωρ−⎟

⎠

⎞
⎜
⎝

⎛ π
+

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ π
−∑

∞

=

  [10.106] 

Let us multiply this equation by ⎟
⎠

⎞
⎜
⎝

⎛ π
1x

L

p
 sin  and integrate the two members 

between 0 and L; after having introduced the property of orthogonality [10.107], 

equation [10.108] follows: 

L

1 1
0

n p L
if  n p  :     sin  x   sin  x

L L 2

π π⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ , [10.107a] 

L

1 1
0

n p
if  n p  :     sin  x   sin  x 0

L L

π π⎛ ⎞ ⎛ ⎞≠ =⎜ ⎟ ⎜ ⎟
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∫ , [10.107b] 
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  [10.108] 

Equation [10.108] is of the type that can be solved by the method of forced 

waves. 

Let us break up the function )x(h 2n  into two parts: 

– for ] [22 X,0 x ∈  we introduce the unknown )x(h 2
1
n  satisfying the equation: 
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  [10.109] 

– for ] [L, X x 22 ∈  we introduce the unknown )x(h 2
2
n  satisfying the equation: 
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  [10.110] 

To begin with, let us examine the boundary conditions. It is possible to choose 

all the configurations: it is necessary to write down the connection conditions at 

22 Xx =  and the boundary conditions at 0x2 =  and at Lx2 = , support, clamped, 

free or guided edge. 

To consolidate, we choose the conditions of support at both ends. The 

displacement of the plate must verify equations [10.111] and [10.112]: 

0)b, x(W  ,  0)0, x(W 11 ==   [10.111] 
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and: 

0)b, x(W
x

  ,  0)0, x(W
x

12
2

2

12
2

2

=
∂

∂
=

∂

∂
. [10.112] 

Taking into account the form [10.105] of vibratory displacement, the preceding 

equations lead to boundary conditions directly applicable to the unknown functions 

)x(h 2
1
n  and )x(h 2

2
n : 

2 1 2 2
n n1 2

n n 2 2
2 2

d h d h
h (0) 0  ,  h (b) 0   and   (0) 0  ,  (b) 0

dx dx
= = = = . [10.113] 

To obtain equations [10.113] we made use of the property of orthogonality 

[10.107]. 

Let us examine the connection of the solutions over the x2 = X2 interface; for 

plates it is necessary to verify the continuity of displacement, its normal derivative at 

the line of interface, the bending moment carried by the line of interface and the 

discontinuity of the shearing force due to the presence of the excitation effort. The 

expressions of the bending moment and the shearing force have been provided in 

Chapter 4, equations [4.57] and [4.58]. 

Another approach consists of reasoning directly using equation [10.108]. We 

note that the Dirac distribution produces the discontinuity of the third derivative of 

)x(h 2n . The connection conditions are thus: 

)X(h)X(h 2
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n = , [10.114] 

)X(
dx

dh
)X(

dx

dh
2

2

2
n

2
2

1
n = , [10.115] 
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⎟
⎠
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dx

hd
)X(
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. [10.117] 

The calculation of the solutions of equations [10.109] and [10.110] is well 

known; we obtain: 

, )x(ch D)x(sh C                                                   

)xk(cosB)xk(sinA)x(h

2nn12nn1

2nn12nn12
1
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( ) ( )
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2 22 2

n n

h hn n
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D L D L

ρ ω ρ ωπ π⎛ ⎞ ⎛ ⎞= − γ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. [10.120] 

These solutions consist of vanishing waves with wave numbers nγ  and traveling 

waves with a wave number nk ; this situation is true as long as 
h

D
 

L

n
2

ρ
⎟
⎠

⎞
⎜
⎝

⎛ π
>ω . 

For weaker pulsations of excitation, there are four vanishing waves, since the wave 

number nk  is then imaginary. 

Applying boundary conditions [10.114] – [10.117] provides the solutions: 

)x(sh C)xk(sinA)x(h 2nn12nn12
1
n γ+=   [10.121] 

and: 

( ) ( ))Lx(sh C)Lx(ksinA)x(h 2nn22nn22
2
n −γ+−= . [10.122] 
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The constants of integration are given by the solution of the linear system 

[10.123]. 
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The vibratory response of the plate is obtained, finally, using [10.121] and 

[10.122] in [10.105]: 

– for ] [22 X,0 x ∈  we have: 
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– for ] [b,X x  22 ∈  we have: 
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  [10.125] 

This method of calculation of the vibratory response extends to plates the 

decomposition into forced waves. The response is expressed as a semi-modal 

decomposition: modes in one direction and forced waves in the other. The domain of 

application of this approach is quite narrow; in fact, it is necessary that the vibration 

modes )x, x( 21QΦ  can be expressed by separation of space variables: 

)x(f  )x(f)x,x( 2mQ1nQ2 1Q =Φ . [10.126] 



Calculation of Forced Vibrations by Forced Wave Decomposition     385 

Under these conditions, the calculation of response by modal decomposition can 

be expressed in the form: 

)x(f  )x(f  a    )x, x(W 2mQ1nQ
1nQ 1mQ

nQmQ21 ∑ ∑
∞

=

∞

=
= . [10.127] 

Let us introduce the function )x(h 2nQ  given by [10.128]: 

)x(f  a  )x(h 2mQ
1mQ

nQmQ2nQ ∑
∞

=
= . [10.128] 

Under these conditions, we may rewrite the modal decomposition [10.127] in the 

form of a semi-modal decomposition: 

)x(f  )x(h  )x, x(W 1nQ
1nQ

2nQ21 ∑
∞

=
= . [10.129] 

The property [10.126] which the modes must satisfy is very restrictive. In fact, 

the shape of the plate is already very limited, rectangular or circular; moreover, the 

boundary conditions cannot be unspecified. For rectangular plates, the method 

requires that two opposite edges be supported or guided, while the boundary 

conditions for the other edges are unspecified subject to being the same for a given 

edge. 

When the method functions, it offers an unquestionable advantage by limiting 

calculations to a mono-dimensional series. For the application to a network of 

coupled plates, see [REB 97]. 

10.7. Conclusion 

The method of calculation of response by decomposition into forced waves is 

applicable to mono-dimensional structures homogenous by parts. It is based on a 

sub-structuring, each section being delimited by two singular points (discontinuity 

of structure or point of excitation). The solution is thus provided by parts. 

The advantage of the method is to give an analytical expression of the solution. 

This avoids the problems involved in the expression in the form of a series of 

solutions resulting from modal decomposition. 
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The case of damped structures is easily considered via complex moduli of 

elasticity. 

The technique of calculation naturally reveals resonances, but also anti-resonances. 

The method can be generalized to distributed harmonic excitations thanks to the 

construction of the Green function by forced waves, which is the solution of the 

problem with localized unit excitation. 

The method is also widely used for non-harmonic excitations, thanks to the use 

of the Fourier transformation of time signals. 

Finally, the method can be applied to all the problems of beams homogenous by 

parts: it suffices to solve the differential equation of space associated with harmonic 

movement; technically the method is weighed down but remains identical in its 

principle. 

For plates the approach by forced waves is used in the case of a semi-modal 

decomposition of the vibratory response. However, in order to be usable, the modes 

of the plate must be written down in the shape of the product of two modal 

functions, each depending on only one variable of space. This situation occurs, in 

particular, for rectangular plates with particular limiting conditions. 



Chapter 11 

The Rayleigh-Ritz Method based on 

Reissner’s Functional 

11.1. Introduction 

In the majority of cases of elastic solid media vibrations, obtaining exact 

analytical solutions is impossible. Therefore, it is necessary to make use of 

approximation methods. In this light the Rayleigh-Ritz method is an important 

method, because it constitutes the basis for energy methods, such as, for example, 

the finite elements method. The goal of this and the following chapters is not to 

provide a discourse on numerical methods (there is already an excellent selection of 

literature on this subject), but rather to present the groundwork for the energy 

method. 

As we will see, the Rayleigh-Ritz method uses the variational form of the 

equations of the vibrations of the continuous mediums. There are two principal 

alternatives, which we have presented in this course: the formulation in 

displacements stemming from Hamilton’s functional and the formulation in stresses 

and displacements stemming from Reissner’s functional. If the methods are 

basically identical, their forms are rather specific and we have chosen to cover them 

both. In this chapter we expose the formulation stemming from the two-fields 

Reissner’s functional. 

The discourse is based on a rather simple example of reference: vibrations of 

flexion of beams. This choice aims at revealing the foundations of the method 

without weighing down the presentation by abstractions linked to a general case. 



388     Vibration in Continuous Media 

11.2. Variational formulation of the vibrations of bending of beams 

We consider Bernoulli’s model of beam characterized by two unknown 

functions )t,x(W  and )t,x(σ  that are, respectively, the transverse displacement and 

longitudinal stress. Reissner’s functional for this problem was provided in Chapter 

3, equation [3.60] (the notation used here is simplified): 

dxdt  
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=τ . [11.1] 

In this expression, E is the Young modulus and ρ  is the density of the material, 

while S and I are respectively the cross-section and the inertia of bending of the 

beam. 

Let us note that in equation [11.1], the effect of rotational inertia was not 

covered in order to simplify matters. 

The solution of the problem of vibration consists of determining the particular 

functions )t,x(W  and )t,x(σ  rendering the functional stationary [11.1]. Following 

the functional space, where the calculation of extremum is performed, we obtain 

solutions corresponding to various boundary conditions. 

Let us consider, to begin with, the spaces W  and Σ  of the functions )t,x(W  

and )t,x(σ , sufficiently regular so that the integral [11.1] exists, and without any 

restrictive conditions at the 0 and L ends. The calculation of the extremum of the 

functional, as carried out in Chapter 3, leads to respecting equations [11.2] – [11.7] 

at any moment t: 

] [L0,    x ,  0) I(
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∈=σ
∂

∂
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∂

∂
ρ , [11.2] 

] [L0,    x ,  
x

W
E

2

2

∈σ=
∂

∂
− , [11.3] 

0)t,0( =σ , [11.4] 

0)t,L( =σ , [11.5] 
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0)t,0(
x

 
=

∂

σ∂
, [11.6] 

0)t,L(
x

 
=

∂

σ∂
. [11.7] 

This case is representative of the free-free beam, and we will note the space W  

by LLW . 

Let us modify the functional space of displacements )t,x(W  by restricting 

ourselves to the sub-space of the null functions in 0 and L: 

0)t,0(W = , [11.8] 

0)t,L(W = . [11.9] 

This new space of functions, noted AAW , because it leads to the boundary 

conditions of support at both ends, is included in the previous space: 

LLAA WW ⊂ . 

The calculation of the extremum leads to equations [11.2], [11.3], [11.4] and 

[11.5] only, equations [11.6] and [11.7] no longer appear, taking into account the 

conditions [11.8] and [11.9] imposed on displacement. A very important aspect of 

the variational method appears here: the boundary stress conditions result from 

variational calculation and are, therefore, not necessarily imposed a priori by the 

choice of the functional space where we search for the extremum. 

On the contrary, the boundary displacement conditions are not produced by the 

calculation of extremum and need to be imposed a priori by the choice of the 

functional space AAW . 

Equations [11.2] to [11.7] are representative of the beam free at both ends. 

Equations [11.2] - [11.5] and [11.8], [11.9] are those of the beam supported at both 

ends. Let us give a third example: that of the beam clamped at both ends; the space 
EEW  to be considered is the sub-space of LLW  such that: 

0)t,0(W = , [11.10] 
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0)t,L(W = , [11.11] 

0)t,0(
x

W
=

∂

∂
, [11.12] 

0)t,L(
x

W
=

∂

∂
. [11.13] 

The calculation of extremum leads only to the respect of the equation of motion 

[11.2] and of the stress-strain relation [11.3]. The boundary conditions all are 

imposed a priori by the restriction on the functional sub-space EEW . 

The variational presentation of the problem of free vibrations of beams will thus 

be the following (we take the example of a beam on two supports): find the pair 
AA(W(x, t) , (x,t))   W  x σ ∈ Σ  that returns the extremum of the functional [11.1]. 

Using a more compact notation: 

)R(W,  Ext),W(R
 x WAA

σ=σ
Σ

. [11.14] 

We can propose an alternative of the formulation which uses boundary 

conditions which the stresses must verify. For example, in the supported case, we 

can restrict the functional space of working stresses to the sub-space of constraints 
AAΣ , nil at the ends of the beam. 

Equations [11.4] and [11.5] are thus verified a priori. The problem of the 

supported beam is stated in the following way: find the pair 
AA AA(W(x, t) , (x,t))   W  x σ ∈ Σ  returning the extremum of the functional [11.1]. 

That is, in compact notation: 

)R(W, Ext),W(R
AAAA x W

σ=σ
Σ

. [11.15] 

The advantage of [11.15] compared to [11.14] is that it allows improved 

convergence in the calculation of the approximate solutions which are sought in a 

more restricted AAΣ  space rather than in Σ . The disadvantage lies in the difficulty 

of construction of the sub-space AAΣ , taking into account larger requirements of 

the conditions to be verified a priori. 

In conclusion, the kinematic boundary conditions need to be verified a priori, 
whereas their a priori respect is optional for stresses. 
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11.3. Generation of functional spaces 

The Rayleigh-Ritz method relates to a particular technique of construction of 

functional spaces W  and Σ . By decomposition on a functional basis we will write: 

∑
∞

=
φ=

1n
nn )x(  t)(a)t,x(W , [11.16] 

∑
∞

=
ψ=σ

1n
nn )x(  t)(b)t,x( . [11.17] 

The functions )x(nφ  and )x(nψ  constitute functional bases defined a priori; the 

amplitudes )t(an  and )t(bn  are the unknowns of the problem. 

Let us take the example of the space AAW ; it will be generated as follows: 

 

⎪⎭
⎪
⎬
⎫

⎪ ⎩ 

⎪ 
⎨ 
⎧ 

=φ=φφ= = ∑ 

∞ 

= 
0)L(and     0)0(x)( t)(a) t , x ( W W n

1 n 
nnn

AA . [11.18] 

Let us notice that each basic function must verify the conditions 0)0(n =φ  and 

0)L(n =φ . This stems from the fact that any function of the [11.16] type must 

verify the boundary conditions [11.8] and [11.9]. The particular function where all 

the amplitudes but one, the nth one, are nil leads to: 

n n n na (t)  (0) 0     t    and    a (t)  (L) 0    tφ = ∀ φ = ∀ , 

i.e.: 

n n(0) 0    and    (L) 0φ = φ = . 

The bases of functions that are usually considered are either of the polynomial 

type or of the Fourier series type. We will have the occasion to consider both of 

these cases, but in this chapter only the example of polynomial development will be 

used. 
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11.4. Approximation of the vibratory response 

The approximation of the solution of the problem is obtained simply by carrying 

out the extremum calculation over the sub-spaces of functional spaces W  and Σ . 

In the Rayleigh-Ritz method, the sub-spaces are built by truncating the series 

[11.16] and [11.17]. For example, the sub-space of AAW  with N elements AA
NW  

will be obtained by considering the N first terms of the series: 

N
AA
N n n n n

n 1

W W(x, t) a (t)  (x)  (0) 0    and    (L) 0
=

⎧ ⎫
= = φ φ = φ =⎨ ⎬
⎩ ⎭

∑ . [11.19] 

For the problem of the beam supported at the ends, the search for solutions 

approximated using the variational technique will, therefore, consist of finding the pair 
AA

N N(W(x, t) , (x,t))   W  x σ ∈ Σ  returning the extremum of Reissner’s functional: 

)R(W, Ext),W(R
M

AA
N

 x W
σ=σ

Σ
. [11.20] 

It is a form identical to [11.14], where functional spaces have a finite dimension. 

As we will see in examples later on, using this technique, we construct a discrete 

system with N degrees of freedom approximating the vibratory behavior of the 

beam. 

In [11.20], the functional space Mぇ  is the sub-space of ぇ  such that: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ψ=σ=Σ ∑
=

M

1m
mmM )x(  t)(b )t,x( , [11.21] 

where the functions )x(mψ  constitute a functional base of Mぇ . 

Note: we took functional spaces of identical dimensions for AA
NW  and Nぇ ; this 

is not obligatory, but has the advantage of leading to manipulating square matrices 

during computerized processing of the method. 

11.5. Formulation of the method 

Let us consider the approximations of displacements and stresses, defined in the 

previous section: 

∑
=

φ=
N

1n
nn )x(  )t(a)t,x(W , [11.22] 
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∑
=

ψ=σ
N

1m
mm )x(  )t(b)t,x( . [11.23] 

The calculation of Reissner’s functional [11.1] after using [11.22] and [11.23] 

gives: 
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We may propose a matrix expression of the functional: 

{ } { } { } { } { } { } { } { } dt  b  (C) b 
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1
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1
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where: 

{ } ( ))t(a  .......  t)(a  t)(aa n21
 t = , [11.26] 

{ } ( ))t(b  .......  t)(b  t)(bb n21
 t = , [11.27] 

L

np np n p
0

(A) (A )    with    A  S (x)  (x)  dx,= = ρ φ φ∫  [11.28] 

2L
n

np np m 2
0

d  (x)
(B) (B )    with    B  (x)    dx,

dx

φ
= = ψ∫  [11.29] 
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L

mq mq m q
0

1
(C) (C )    with    C  (x)  (x) dx.

E
= = ψ ψ∫  [11.30] 

The calculation of extremum leads to the matrix relations: 

{ } { } { }0 b  )B(a  A)( =+$$ , [11.31] 

{ } { }b  )C(a  )B( T = . [11.32] 

Incorporating the second matrix equation into the first, we obtain: 

{ } { } { }0 a  (B) )(C )B(a  A)( t1 =+ −$$ . [11.33] 

This equation is, in fact, the traditional representation of mass-spring vibrating 

systems with N degrees of freedom where (A) is the matrix of mass and 
t1 )(B )(C B)( −  is the matrix of stiffness. These two matrices are symmetrical. 

We may apply the standard results of the discrete vibrating systems: there are N 

modes of vibrations, each characterized by a normal angular frequency iω  and a 

normal vector i{a } . The general solution is expressed by the sum of modal 

movements: 

{ } { }∑
=

ωβ+ωα=
N

1i
iiiii a  )tsin  t cos ( a(t) . [11.34] 

The normal angular frequencies are equal to the square roots of the eigenvalues 

of the matrix: 

t1 1 (B) )(C (B) )A( −− . [11.35] 

The associated normal vectors are orthogonal with respect to the matrices of 

mass and stiffness: 

{ } { } ji  if    0a  (A) a i

 t

j ≠= , [11.36] 

{ } { } ji  if    0a  (B) )(C (B) a i

1 t

j ≠=− t ; [11.37] 
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finally: 

{ } { }
{ } { }i t

i

i
t1 t

i2
i

a  (A) a 

a  (B) )(C (B) a −

=ω . [11.38] 

These results stemming from the discrete mass-spring system provide an 

approximation of the vibratory response of the beam. Using [11.34] in [11.22], we 

obtain: 

( )∑
=

ωβ+ωα=
N

1i
ii ii i )x(f  )t(sin  )t( cos  )t,x(W . [11.39] 

The functions )x(fi  are the approximated mode shapes. They are given by: 

∑
=

φ=
N

1n
nni )x( a )x(f

i

 [11.40] 

where 
i

na  is the nth the component of the ith normal vector. 

These mode shapes possess the property of orthogonality [11.41]: 

 S f (x)  f (x)  dx 0    if  i ji j
0

ρ
ρ = ≠∫ . [11.41] 

Indeed, substituting )x(fi  and )x(f j  by their respective expressions resulting 

from [11.40] gives: 
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that is, with the notation [11.28]: 

∫ ∑∑
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and in matrix notation: 

{ } { }∫
ρ

=ρ
0

j
t 

iji a  (A) a dx  x)(f  x)(f S . [11.44] 

With [11.36] we then deduce that the approximated mode shapes )x(fi  and )x(f j  

are orthogonal in the sense of the integral [11.41]. 

The calculation of stresses is straightforward thanks to the relation [11.32], we 

draw the vector { }b  knowing the vector { }a : 

{ } { }a(t)  (B) )C(b(t) t1 −= , [11.45] 

that is, with [11.34]: 

{ } { }i
N

1i
i ii i b  )tsin  t cos (b ∑

=
ωβ+ωα=   [11.46] 

where: 

{ } { }i t1 
i a  (B) )C(b −= . [11.47] 

After an obvious calculation, we draw: 

∑
=

ωβ+ωα=σ
N

1i
iiiii )x(h  )tsin  t cos ()t,x( . [11.48] 
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The functions )x(hi  are the approximated stresses mode shapes given by: 

)x(b)x(h n

N

1n
ni

i

ψ=∑
=

, [11.49] 

where the quantity 
i

nb  is the nth the component of the ith normal vector { }ib . 

We leave it to the reader, as an exercise, to demonstrate the two other properties 

of orthogonality: 

2L
j

i 2
0

d  f (x)
 h (x)    dx 0    if  i j

dx
= ≠∫   [11.50] 

and: 

L

i j
0

I
 h (x)  h (x) dx 0    if  i j
E

= ≠∫ . [11.51] 

The Rayleigh-Ritz method makes it possible to approximate the vibrations of a 

continuous medium by a discrete mass-spring system. The vibration modes of the 

mass-spring system later lead to an approximation of the vibratory response of the 

continuous medium. 

11.6. Application to the vibrations of a clamped-free beam 

In this section, we will use a simple case to put the method into practice and we 

will show some tendencies characteristic thereof on the basis of calculations of 

systems with a low number of degree of freedom. 

11.6.1. Construction of a polynomial base 

One way of building the functional bases is to use a polynomial decomposition 

of the functions )t,x(W  and )t,x(σ . The general form is of the type: 

∑
∞

=
=

0n

n
n  xt)(a)t,x(W . [11.52] 
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Such a decomposition is suggested by a development in Taylor series: 
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Let us take the example of the case of a clamped-free beam. Displacement in 0 

and its first derivative must be zero to verify the boundary displacement conditions. 

From this we deduce that: 
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that is, introducing the unknowns )t(an  into [11.54]: 

∑
∞

=
=

2n

n
n   xt)(a)t,x(W . [11.55] 

The stress field is left free of any boundary conditions: 

∑
∞

=
=σ

0n

n
n   xt)(b)t,x( . [11.56] 

Functional spaces EL
NW  and MΣ  where the extremum calculations will be 

carried out are thus defined by: 
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Figure 11.1. Schematic representation of the case treated in the example of reference 

11.6.2. Modeling with one degree of freedom 

To have a simple approximation of the technique of calculation we will adopt 

the maximum restriction of the sub-spaces, i.e. N = M = 1: 

2
2 0(t).W(x, t) a (t) x  and (x, t) b= σ =  [11.59] 

It is, of course, a very rough approximation, since it supposes that bending stress 

is constant with x. 

The calculation of Reissner’s functional leads to: 
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  [11.60] 

It is a functional of the rigid body mechanics type, since the only unknown are 

functions of time. 
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The calculation of its extremum is traditional. Noting the integrand of [11.60] as 

( ))t(b, t)(a F 02  we obtain: 

0
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F
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dt

d

22
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0
b

F

0

=
∂

∂
, 

that is, after calculation: 
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$$ , [11.61] 

0)t(b  
E

IL
)t(a IL2 02 =+− . [11.62] 

Substituting the expression of )t(b0  stemming from [11.62] in the expression 

[11.61], we obtain the equation of a system with one degree of freedom of the 

unknown )t(a2 : 

0)t(a ILE4)t(a  
5

SL

22

5

=+
ρ

$$ . [11.63] 
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Figure 11.2. The system with one degree of freedom approximating 
 the first oscillatory mode of the beam 

The solution provides: 

tsinBtcosA)t(a 1 1 2 ω+ω= , [11.64] 

with: 

1 4

EI
4.472 .

SL
ω =

ρ
 [11.65] 

We also draw from it: 

)tsinBtcosA( EI2)t(b 1 1 0 ω+ω= , [11.66] 

that is, finally, using the expressions [11.59]: 

2
1 1   x)tsinBtcosA()t,x(W ω+ω= , [11.67] 

)tsinBtcosA( EI2)t,x( 1 1 ω+ω=σ . [11.68] 
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An indicator of the quality of the prediction is the value of the normal angular 

frequency, because it can be compared with the exact value ex
1 ω , which we gave in 

Chapter 6 for the bending vibrations of beams. 

1

ex

4

EI
3.52 .

SL
ω =

ρ
 [11.69] 

The error committed evaluated expressed as a percentage gives: 

 [11.70] 

This error is large; a finer approximation can be obtained by pushing the 

developments further. Let us examine the case of a development with the two terms 

of displacement and of bending stress. 

11.6.3. Model with two degrees of freedom 

Let us consider the displacements )t,x(W  and the stresses )t,x(σ  in the 

following form: 

. x t)(b)t(b)t,x(

,  xt)(a xt)(a)t,x(W

10

3
3

2
2

+=σ

+=
 

The calculation of Reissner’s functional leads to equation [11.71]: 

.dt   
3

L
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⎝
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⎣
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⎟
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⎞
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ρ
= ∫ $$$$

  [11.71] 

  27%. 

1

ex 
1 1 = 

ω

ω −ω 
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The four Euler equations resulting from the calculation of extremum are given 

below: 

0b ILb IL2a
6

L
Sa

5

L
S 1

2
03

6

2

5

=++ρ+ρ $$$$ , [11.72] 

0b IL2b IL3a
6

L
Sa

7

L
S 1

3
0

2
2

6

3

7

=++ρ+ρ $$$$ , [11.73] 

0b
E2

IL
b

E

IL
a IL3a IL2 1

2

03
2

2 =++−− , [11.74] 

0b
E3

IL
b

E2

IL
a IL2a IL 1

3

0

2

3
3

2
2 =++−− . [11.75] 

From [11.74] and [11.75] we may draw the relations [11.76]: 

3120 a E6b  ,  a E2b == . [11.76] 

then, replacing in [11.72] and [11.73], there follows the matrix system [11.77], 

characteristic of a system with two degrees of freedom: 
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2

32
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7

6
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$$

$$
. [11.77] 

The solution of this equation is classical and consists of seeking solutions in the 

following form: 

tj

2

1

1

2
e  

a

a

)t(a

)t(a
ω

⎪⎭

⎪
⎬
⎫
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⎪
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⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

. 
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The characteristic equation resulting from it is given by: 

0
SL

EI
 12

SL

EI

35

34

1260

1

4
2

4
4 =

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ρ
+ω

ρ
−ω . [11.78] 

We obtain two solutions corresponding to two normal angular frequencies: 

1 4

EI
3.53273

SL
ω =

ρ
  [11.79] 

2 4

EI
34.937

SL
ω =

ρ
. [11.80] 

The error for the first normal angular frequency is now much weaker 1 0.3%ε = , 

while that for the second angular frequency remains very large 2 50%ε = . 

These results are characteristic of the convergence of the Rayleigh-Ritz method: 

– the convergence of a normal angular frequency towards exactitude improves 

when we increase the number of terms of the developments describing 

displacements and stresses, i.e., on a more physical level, when the number of the 

degrees of freedom of the associated discrete system grows; 

– for a number of terms of fixed developments, the convergence of normal 

angular frequencies worsens when the order of the mode increases. We clearly note 

here a much better convergence for mode 1 than for mode 2. 

11.6.4. Model with one degree of freedom verifying the displacement and stress 
boundary conditions 

As we have emphasized earlier, respecting the boundary stress conditions is 

optional, since the calculation of the extremum of Reissner’s functional leads to 

their verification. 

The functional space 
N

Σ  defined by the expression [11.58] has previously been 

used with a truncation into one or two terms. It does not a priori observe the 

boundary stress conditions and a significant number of terms may be necessary to 

approximate them. In a case of this type, the convergence of the method can be 

rather slow and it may be interesting to restrict the space of stresses to the sub-space 
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of 
N

Σ  a priori verifying the boundary stress conditions to accelerate the 

convergence. 

To observe this effect, we will use the functional sub-space 
EL

N
Σ which respects 

the boundary conditions at the free end in Lx = , rather than the space 
N

Σ  

employed in the preceding examples. 

The space EL

N
Σ  is defined by: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=σ=Σ ∑
+

=

m
1N

2m
m

EL
N )Lx)(t(b)t,x( . [11.81] 

The basic functions m)Lx( −  for 2m ≥  are clearly nil and have zero first 

derivatives, at point x = L as required by the boundary conditions of the free end 

(σ(L, t) = 0 and / x  (L,t) 0).∂σ ∂ =  

We restrict ourselves to the first term of each development so as not to weigh 

down the calculations: 

2 2
2 2(t)W(x, t) a (t) x  and (x, t) b  (x L) .= σ = −  [11.82] 

The calculation of Reissner’s functional is straightforward and gives: 

∫ ⎥
⎥
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⎡
+−

ρ
=

1

0

t

t

5

2
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22

5

2
222 dt 

5

L
)b(

E2

I

3

L
a b I2

5

L
)a(

2

S
)b, a(R $ . [11.83] 

The calculation of extremum is immediate and leads to the equations: 

0b
3

IL2
a

5

L
S 2

3

2

5

=+ρ $$ , [11.84] 

0b
5

IL
a

3

L2

2

5

2

3

=+− , [11.85] 

i.e.: 

222 a
L

E

3

10
b = , [11.86] 
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0a IEL
9

20
a

5

L
S 22

5

=+ρ $$ . [11.87] 

Equation [11.87] is that of a system with one degree of freedom, its integration 

leading to the solution: 

tsinBtcosA)t(a 1 1 2 ω+ω=  [11.88] 

with 1 ω , the normal angular frequency of the system with one degree of freedom, 

given by: 

1
4

EI   0.3333.
SL

ω =
ρ

 [11.89] 

The relative error for the normal angular frequency 1ε , defined in equation 

[11.70], gives: 

1 5.3%ε = −  [11.90] 

This error is definitely less than 27% obtained with the model with one degree of 

freedom in section 11.6.2, which shows the clear interest to observe the boundary 

stress conditions a priori. 

It as should be noticed as the error with respect to the exact normal angular 

frequency can be positive or negative, i.e. the method over-estimates or 

underestimates the exact value according to the case. We will reconsider this point 

in Chapter 12 where Hamilton’s functional with one field is used instead of 

Reissner’s functional. 

11.7. Conclusion 

The Rayleigh-Ritz method based on Reissner’s functional with two fields makes 

it possible to find a discrete mass-spring system whose vibratory characteristics, 

normal angular frequencies and vectors, make it possible to give an approximation 

of the vibration modes of the continuous medium. Our discourse based on the 

example of reference of the beam in bending vibration has revealed the basic aspects 

of the method, in particular, related to the choice of functional spaces where the 

calculation of extremum is carried out. 

The generalization to other cases of continuous media is simple; it may be 

summarized to a modification of the functional, which will be representative of the 

case considered, for example, the functional [3.10] from Chapter 3 for longitudinal 

vibrations, or the functional [4.30] from Chapter 4 for transverse vibration of plates 
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(Mindlin’s hypotheses), or the functional [4.44] from Chapter 4 for the Love-

Kirchhoff hypotheses. Each unknown function is then developed on a truncated 

functional basis. For example, in the case of a Love-Kirchoff plate, we will have: 

∑

∑

∑

∑

=

=

=

=

γ=σ

δ=σ

ψ=σ

φ=

N

1i
21ii21

3
22

N

1i
21ii21

3
12

N

1i
21ii21

3
11

N

1i
21ii21

0
3

. )x, x(  t)(dt), x, x(

, )x, x(  t)(ct), x, x(

, )x, x(  t)(bt), x, x(

, )x, x(  t)(at), x, x(W

 

The calculation of extremum of the functional is then performed with respect to 

the amplitudes ai(t), bi(t), ci(t) and di(t), which, finally, leads to a matrix problem 

with eigenvalues of the [11.33] type and to the solution exhibited in section 11.6 to 

obtain the approximate vibration modes of the structure. 

We do not develop these very heavy calculations here. In the case of the 

Rayleigh-Ritz method based on Hamilton’s functional with one field covered in the 

next chapter, we will develop the case of plates. 

An important point is the convergence of the approximate solutions; it will be 

studied in the case of Hamilton’s functional in the following chapter. We will see 

then that the Rayleigh-Ritz method ensures a convergence by a higher value of 

normal angular frequencies. Nothing stems from it here, as shown by the results of 

section 11.6, where the approximated normal angular frequencies are either higher 

or lower than the exact normal angular frequencies towards which they converge. 

We will reconsider this point in the following chapter during the study of 

convergence. 
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Chapter 12 

The Rayleigh-Ritz Method based on 

Hamilton’s Functional  

12.1. Introduction 

In this chapter we present the most common Rayleigh-Ritz method: it is based 

on Hamilton’s variational formulation of the problems of vibrations of elastic solids. 

Our discourse again follows the broad outline of the steps taken in Chapter 11, in 

particular, the application of the method to a reference example. The Rayleigh-Ritz 

method that we present in this chapter is the most used, because, on the one hand, its 

formulation is simpler, but also because it has convergence properties that the 

approach of Chapter 11 does not have. These properties of convergence are 

examined at the end of the chapter and the link with Rayleigh’s quotient is 

established. 

12.2. Reference example: bending vibrations of beams 

12.2.1 Hamilton’s variational formulation  

The Rayleigh-Ritz method uses a variational formulation for support when 

calculating the approximated solutions of a vibration problem. In Chapter 11, we 

presented the method stemming from Reissner’s functional. Here we develop the 

Rayleigh-Ritz method based on Hamilton’s functional. 
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The problem of bending of beams resulting from Bernoulli’s hypothesis has 

been defined in Chapter 3. It is a matter of finding the field of displacement 

)t,x(W , returning the extremum of Hamilton’s functional provided by equation 

[3.71]: 

( ) dxdt  
 x

W

2

EI

t

 W 

2

とS
t)W(x,H

1

0

t

t
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0
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2

22
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∂
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⎞
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⎝

⎛

∂

∂
= . [12.1] 

The functional space where the calculation of extremum must be carried out 

depends on the boundary conditions of the beam. The boundary displacement 

conditions relate to two quantities: transverse displacement )t,x(W  and rotation of 

cross-sections t)x,(
x

W

∂

∂
; these conditions must be a priori observed. 

The force conditions relate to the bending moment t)x,(
x

W
EI

2

2

∂

∂
 and the 

shearing force t)x,(
x

W
EI

3

3

∂

∂
. They do not have to be respected a priori, but as we 

saw with Reissner’s functional with two fields, their respect a priori accelerates 

convergence. 

Let us take the case of a clamped-free beam to consolidate the ideas. The 

functional space where the calculation of extremum must be carried out is the set of 

functions that are sufficiently regular for the integral [12.1] to exist and that verify 

the two boundary displacement conditions imposed in x = 0: 

W
W(0,t) 0   and   (0,t) 0.

x

∂
= =

∂
 

We will note this functional space as L-EW . The field of displacement t)(x,W
~

 

of this functional space, which returns the extremum of the functional ( )t)W(x,H , is 

the one verifying the three equations: 

] [ ] [102
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] [
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∂

∂
, [12.3] 
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 x

W
~

EI
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⎜
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⎛
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∂
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∂
. [12.4] 

12.2.2. Formulation of the Rayleigh-Ritz method 

In variational terms, the problem of free bending vibrations of clamped-free 

beams is stated as follows: find the field of displacement t)(x,W
~

 of the functional 

space L-EW , returning the extremum of Hamilton’s functional. 

( ) ( )t)W(x,H Extt)(x,W
~

H
L-EW

= . 

Note: the solution t)(x,W
~

 is a particular t)W(x,  displacement; however, for 

convenience of writing we will note the solution without the tilde, thus confusing at 

the notation level the solution of the problem and an unspecified displacement. 

The Rayleigh-Ritz method is characterized by a particular technique of 

functional space generation obtained by decomposition over a functional basis 

)x(ln  verifying the boundary displacement conditions: 

0)0(
dx

dl
   and   0=(0)l n

n = . [12.5] 

The approximation of the solution comes from the truncation of the functional 

base with N terms: 

)x(l  (t)at)W(x, n

N

1n
n∑

=
= . [12.6] 

The unknowns are the amplitudes )t(an , which have to be adjusted in order to 

return the extremum of the functional. 
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By introducing the approximated expression of displacements [12.6] into the 

functional [12.1], after calculation we obtain: 

( )

.dt   dx  
dx

ld
  

dx

ld
EI a a                                              

dx  (x)l  (x)l とS a a )t(aH
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  [12.7] 

We may propose a matrix expression of [12.7]: 

{ }( ) { } { } { } { } dt  a  (K) a 
2

1
a  (M) a 

2

1
 a H

1
t

to

 t t∫ ⎟
⎠

⎞
⎜
⎝

⎛
−= $$   [12.8] 

where: 

{ } ( )(t)a..., , (t)a, (t)aa n21
 t = , [12.9] 

L

np np n p
0

(M) (M )    with  M とS l (x)  l (x)  dx,= = ∫  [12.10] 

22L
pn

np np 2 2
0

d ld l
(K) (K )    with  K EI (x) (x) dx.

dx dx
= = ∫  [12.11] 

The calculation of extremum classically leads to the equation: 

{ } { } { }0 a  )K(a  (M) =+$$ . [12.12] 

This equation is to be compared to that of a system with N degrees of freedom, 

where (M) is the matrix of mass and (K) is the matrix of stiffness. The traditional 

results for the vibrations of discrete systems are, consequently, directly usable. 
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The solution of [12.12] is provided by joining N modal movements: 

{ } { }i
N

1i
iiii a  t)のsin  くtの cos (g a ∑

=
+=   [12.13] 

where iの  is the ith normal angular frequency and i{a }  is the associated normal 

vector. These quantities are calculated with respect to the matrix (M)–1 (K) whose 

eigenvalues are equal to 2
iの  and the normal vectors are i{a } . The constants ig  and 

iく  are fixed by the initial conditions at the origin of the vibratory movement. 

There are, moreover, two following properties of orthogonality: 

{ } { } ji  if    0a  (M) a j

 t

i ≠= , [12.14] 

{ } { } ji  if    0a  (K) a j

 t

i ≠= . [12.15] 

Finally, normal angular frequencies verify the relation: 

{ } { }
{ } { }i t

i

i
 t

i2
i

a  (M) a 

a  (K) a 
の = . [12.16] 

Vibratory amplitudes calculated with [12.13] are introduced into the 

decomposition [12.6] of the vibratory movement of the beam; after grouping of the 

terms of the expression [12.17] of vibratory displacement, we deduce: 

)x(f  t)のsin  くtの cos g(t)W(x, k

N

1k
kkkk∑

=
+= . [12.17] 

In expression [12.17] the function )x(fk  is the mode shape of the mode k . It is 

given by [12.18] where kia  is the ith component of kth normal vector: 

∑
=

ϕ=
N

1i
ikik )x( a)x(f .  [12.18] 
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The properties of orthogonality [12.14] and [12.15] induce properties of 

orthogonality on the mode shape (x)fk : 

L

i j
0

 S f (x)  f (x)  dx 0    if  i jρ = ≠∫   [12.19] 

and: 

22L
ji

2 2
0

d fd f
 EI (x)  (x)  dx 0    if  i j .

dx dx
= ≠∫  [12.20] 

The demonstration is straightforward: we replace the normal strains by their 

expressions [12.18] in [12.19] and [12.20], and we then use the results [12.14] and 

[12.15]. 

12.2.3. Application: use of a polynomial base for the clamped-free beam 

This polynomial base was presented in the preceding chapter in section 11.6. We 

adopt it again here without justification; the reader may refer to the previous 

discussion for more information on this issue. 

The functional space where the calculation of extremum takes place is the one 

described by equation [11.57] from Chapter 11: 

⎪⎭
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⎬
⎫
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⎪
⎨
⎧

== ∑
+

=

1N

2n

n
n

EL
N   x(t)at)W(x,W . [12.21] 

Each basic function clearly satisfies the boundary displacement conditions in 

point 0, but not the stress ones in L. 

As an example, we consider the simplest case where N = 1, the displacement of 

the beam being approximated by: 

2
2  x(t)at)W(x, = . [12.22] 
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Introducing the expression [12.22] into the functional [12.7], we obtain after all 

the calculations: 

dt  )EIL(a 2)a(
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The calculation of extremum is straightforward and leads to the differential 

equation [12.24]: 

0a EIL 4a
5

L
とS 22

5

=+$$ . [12.24] 

The solution is: 

tsinBtcosA)t(a 11112 ω+ω=   [12.25] 

with: 

1 4

EI
4.472.

SL
ω =

ρ
 [12.26] 

This result is identical to the previous chapter (equation [11.65]), which was 

obtained using the technique with two fields and one degree of freedom. Thus, at 

this level there is no decisive advantage in using one or other of the variational 

techniques. The method with one field is, however, definitely easier to implement. 

Introducing the a priori respect of boundary stress conditions was rather simple 

using the technique with two fields; that is an advantage since this would be difficult 

to formulate with the functional with one field using a polynomial base. However, 

the use of another functional base type which we will encounter later overcomes this 

difficulty. 

12.3. Functional base of the finite elements type: application to longitudinal 
vibrations of beams  

The finite elements method uses a different technique to generate the functions 

approximating the solution. It is, however, closely linked to the Rayleigh-Ritz 

method by the use of the variational method to obtain the approximated solutions. 

We do not pretend to provide a total presentation of the finite elements method in 

these few lines, but rather to show its connection to the Rayleigh-Ritz method. 
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The functional to be considered for the case in point is naturally the longitudinal 

vibrations of beams functional provided in Chapter 3, equation [3.26]: 
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Generating the functions of approximation is a particular process based on 

functions defined piece by piece. Let us cut up the beam into N equal segments with 

a length of ∆  (these segments are denoted elements) and introduce the N functions 

t)x,(ねn  defined in [12.28]: 
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Figure 12.1 provides the graph of the function t).(x,ねn  These functions, when 

reassembled, offer the possibility to approximate the vibratory displacement 

t)x,(W0
1  by a continuous line. 

t)x,(ねt)x,(W
N

1n
n

0
1 ∑

=
= . [12.29] 

Figure 12.2 gives an example of approximation resulting from the 

decomposition of vibratory movement by [12.29] for N = 5. We may note that the 

functions )t(Un , which represent displacements at point ∆n  of the beam, (or 

displacement at node n) constitute the new unknowns of the problem. 
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Figure 12.1. Function t)x,(ねn  at a given moment t 

 

∆4∆ ∆2 ∆3 ∆5

)t,x(W0
1

x

 

Figure 12.2. Example of approximated vibratory displacement at a fixed moment t  
(case where N=5) 

To consolidate our ideas without performing too heavy a calculation, let us take 

the case where N = 2. The two functions of approximation are: 

] [1 0
1 0

U (t) U (t)
ね (x,t) x U (t)    if  x  0, L 2  ,

L 2

−
= + ∈  [12.30] 
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] [2 1
2 2 1

U (t) U (t)
ね (x,t) x U (t) 2 U (t)    if  x  L 2,L .

L 2

−
= − + ∈  [12.31] 

The calculation of the functional is carried out by introducing the approximated 

expression of t)x,(W0
1 : 

( )

.dxdt   t)x,(
dx

dね
 ES                                                         

t)x,(
dt

dね
 とS    

2

1
dxdt  t)x,(

dx
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 E              
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dね
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1
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⎢
⎣

⎡
⎟
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⎞
⎜
⎝

⎛
ρ=

∫ ∫

∫ ∫

  [12.32] 

The functions t)x,(ね1  and t)x,(ね2  given in [12.30] and [12.31] correspond to 

the case of the free beam since displacements )t(U0  and )t(U2  are left free and 

represent displacements at the ends of the beam. 

To treat the case where the beam is clamped in 0, it is sufficient to write 

0)t(U0 = . The function of approximation t)x,(ね1  given in [12.30] is then reduced 

to: 

x
L/2

)t(U
t)x,(ね 1

1 = . 

If the beam is clamped in L, we pose 0)t(U2 = . The function of approximation 

t)x,(ね2  results from [12.31] in an obvious manner. 

Thus, in the case of the beam fixed at its two ends, [12.30] and [12.31] are 

reduced to: 

x
2L

)t(U
t)x,(ね 1

1 = , [12.33] 
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)t( U2x
2L

)t(U
t)x,(ね 1

1
2 +−= . [12.34] 

The functional [12.32] then takes the expression [12.35]: 

( ) ( ) ( )∫ ⎥
⎦

⎤
⎢
⎣

⎡
−=

1

0

t

t

2
1

2

11 dt  )t(U
L

2
ES )t(U

6

L
とS)t(U H $ . [12.35] 

The calculation of extremum leads to the equation of a system with one degree 

of freedom: 

0)t(  U
L

2ES
)t(U  

6

L
 とS 11 =+$$ ,  [12.36] 

that is, with the solution: 

 t)のsin   く tの cos  g()t(U 11111 +=   [12.37] 

with the normal angular frequency equal to: 

L

3 2
  

と
E

 の1 = . [12.38] 

We can estimate the quality of this approximation by comparing it with the exact 

normal angular frequency provided in Chapter 4, (
L

ヾ
と
E

 のex
1 = ). Calculation 

yields a relative error of approximately 10%. 

Let us notice that the functions t)x,(ねn  given in [12.28] could not be used in the 

case of the bending of beams. Indeed, taking into account the discontinuity of their 

first derivative, these functions are not derivable twice with respect to x as the 

functional [12.1] requires. In this case, it would be necessary to consider parabolic 

instead of linear functions to ensure the continuity of the first derivative and, thus, 

the existence of second derivatives. 

With this approximation technique, the sufficient regularity of the used functions 

of space is the most important issue. This regularity obviously depends on the 

degree of derivation of the functions appearing in the functional. 
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The advantage of this method of approximation compared to the traditional 

development of the Rayleigh-Ritz method, whose example is provided in section 

12.2, lies in the shape of the matrices of mass and stiffness. These matrices are 

generally full in the traditional case, whereas they are band matrices in the case of 

the finite elements type approximation. This particular property can be detected on 

the basis of the functions [12.30] and [12.31] and of the functional [12.32]; indeed, 

it is obvious that the variables )t(U0  and )t(U2  do not have direct coupling since 

they do not appear in the same element. It follows that the matrix of mass will have 

the following tri-band form: 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

2212

121101

01     00

M   M        0

M   M    M

0   MM

. [12.39] 

This property of matrices remains regardless of the number of sections. Thus, it 

is possible to use much more powerful adapted numerical algorithms than those 

applicable to the general case of full matrices. 

12.4. Functional base of the modal type: application to plates equipped with 
heterogenities 

In many problems, the vibrating structure consists of a carrier structure equipped 

with various heterogenities. To consolidate, we will consider the case of a 

rectangular plate with added mass and distributed springs. This will enable us to 

give an example of application to continuous 2D mediums and to use a modal 

functional base, which, in fact, constitutes the principal approach used in the 

Rayleigh-Ritz method. 

Let us take a rectangular plate with the dimensions a by b, supported at the 

edges, with an added mass M at the point )y, x( MM  and with a distributed spring 

K  positioned at the line x = xR. The functional considered is that of the plate 

supporting the mass and the distributed spring; its construction is rather simple, 

since it uses the property of addition of energies. Let us suppose that the plate has a 

transverse movement )t,y,x(W  governed by the Love-Kirchhoff hypothesis; the 

functional representative of the transverse movement of the plate was provided in 

Chapter 4. The functional of the whole system results from joining the energies of 

the plate, of the mass and of the spring, that is: 
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  [12.40] 

where µ  is the mass per unit of area of the plate and D  is its bending stiffness. 

Vibratory displacement must now be approximated by decomposition on a 

truncated functional basis. This functional base has to verify the kinematic boundary 

conditions. An interesting way to build this base consists in using the normal modes 

of the support plate, which of course verify the kinematic boundary conditions by 

construction. Moreover, they verify the boundary conditions with respect to the 

forces, which guarantee faster convergence as we saw in the previous chapter. 

In the case of the rectangular plate supported at its 4 edges, the normal modes 

y)x,(lnm  have a simple analytical expression, which we provided in Chapter 7: 

y
b

mヾ
sinx  

a

nヾ
siny)x,(lnm = . [12.41] 

The vibratory response is sought in the form: 

y)x,(l  )t(a  t)y,W(x, nm

N

1n

M

1m
nm∑ ∑

= =
= . [12.42] 

Introducing this decomposition of the response into the functional, after the 

calculation of the double integrals over the surface of the plate we find: 

( ) { } { } { } { }∫ ⎥
⎦

⎤
⎢
⎣

⎡
−=

1

0

t

t

nm
 t

nmnm
 t

nmnm dt a  (K) a 
2

1
a  (M) a 

2

1
)t(a H $$  [12.43] 
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where (M) and (K) are the matrices of mass and stiffness whose generic terms have 

the form: 

, y
b

qヾ
sin  x

a

pヾ
sin                                                                 

  y
b

mヾ
sin  x

a

nヾ
sin M h h

4

ab
µM

mm

mmmqnpnmpq +=

  [12.44] 

mqR

Rmqnp
2
nmnmpq

h
2

b
  x

a

pヾ
sin                                                                         

x
a

nヾ
sinK   h  h  の 

4

ab
µK +=

  [12.45] 

where ijh  is the Kronecker symbol and 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=

2

22

2

22

nm
b

ヾm

a

ヾn
  

µ

D
 の . 

It should be noted that if M = 0 and K = 0, the matrices of mass and stiffness 

become those of the bare plate; under these conditions the matrices of mass and 

stiffness are diagonal. This property relates to the fact that the functions y)x,(nmϕ  

are the mode shapes of the bare plate. 

The calculation of the extremum of the functional [12.43] is classical; it leads to 

the matrix system: 

{ } { } { }0 a  )K(a  (M) nmnm =+$$ . 

Thus, we have built a discrete mass-spring system, approximating the vibratory 

characteristics of the heterogenous plate. 

The advantage of the use of the modes of the carrier structure stems from two 

aspects which allow a good convergence of the result: 

– the functional base verifies the kinematic boundary conditions, as well as the 

boundary stress conditions, which ensures accelerated convergence as we saw in the 

previous chapter; 

– the modal base y)x,(nmϕ  is the exact solution when heterogenities of mass 

and stiffness tend towards zero. We may, therefore, consider that for low 

heterogenities, the modal base of the heterogenous plate will be close to y)x,(nmϕ  

and that, consequently, the developments with a small number of terms will be 

sufficient. 
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12.5. Elastic boundary conditions  

12.5.1. Introduction 

In order to be able to apply the Rayleigh-Ritz method with the same functional 

base regardless of the boundary conditions, we can employ the concept of elastic 

boundary condition. We outline this approach on a very simple case of a beam in 

longitudinal vibrations, in order to enable the reader to understand the foundation of 

the method. The more complicated cases are treated in a similar way. In fact, it 

suffices to adapt the functional to the treated case. On this subject we will provide 

some results taken from the works given in the bibliography. 

12.5.2. The problem 

We consider the longitudinal vibrations of a beam clamped in 0 and assign a 

yield stiffness in L. 

 

K  

 

Figure 12.3. Beam clamped in 0 and with yield stiffness in L 

The equations of free vibrations governing this case are the following: 

0
x

t)(x,U 
ES

t

t)(x,U 
とS

2

2

2

2

=
∂

∂
+

∂

∂
, [12.46] 

0t)(0,U = , [12.47] 

t)L,(UKt)L,(
x

U
ES =

∂

∂
. [12.48] 

t)(x,U  is the longitudinal displacement solving the problem, ρ  is the density, 

E  is the Young modulus and S  is the section of the beam. Relation [12.48] 

translates the elastic boundary condition of stiffness K  applied at the end L . It 
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makes it possible to treat the cases starting at the free end for 0K =  to the clamped 

end for ∞→K . 

In variational terms, the problem presents itself in the following light: find 

t)(x,U  that verifies: 

( ) ( ){ } t)U(x,H  Extt)(x,UH
ELU

= . [12.49] 

Hamilton’s functional is obtained by joining the beam and spring functionals: 

( ) ∫ ∫ ⎟
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t

U
 とS  t)U(x,H . [12.50] 

The functional base to consider is that of a clamped-free beam, since 

displacement is not imposed in L. In the example given here, let us choose a 

polynomial base: 

∑
∞

=
=

1n

n
n

EL  x(t)aU . [12.51] 

The index 0n =  is excluded so that the boundary condition in 0x =  is verified. 

12.5.3. Approximation with two terms 

We choose a truncated functional base with two terms, that is: 

2
21  x(t)a x(t)a t)U(x, +≈ . [12.52] 

Introducing this approximation into the functional [12.50] leads to: 
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  [12.53] 
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The calculation of extremum provides the system with two degrees of freedom 

[12.54]. To simplify calculations we take the case of unitary length: 
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. [12.54] 

The two normal angular frequencies associated to [12.54] are calculated in a 

classical fashion. We come to equation [12.55]: 

0
3

ES
 K)ES(

3

とSES
1/30 K)(ES とSの

240

とS)(
の 2

2
4 =⎟⎟
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⎝

⎛
++⎥

⎦

⎤
⎢
⎣

⎡
++− . [12.55] 

If K  is null, the model corresponds to a clamped-free beam, the calculation then 

leads to the two normal angular frequencies: 

1 2
E Eの   1.579    and    の   5.67,
と と

= =  

These two values are to be compared with the exact angular frequencies: 

1 2
E ヾ E 3ヾの      and    の  
と 2 と 2

= = . 

In the case where K  tends towards infinity, the model corresponds to a 

clamped-clamped beam. The calculation of the two roots of [12.55] leads to an 

infinite normal angular frequency and to: 

1
Eの  3.16227
と

= . 

This angular frequency is to be approximated to the exact normal pulsation: 

と
E

  ヾの1 = . 
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When the stiffness of the boundary varies from 0 to infinity, the first normal 

angular frequency of the model varies from 
E

 1.579
と

 to 
E

 3.162
と

, and the 

second pulsation varies from 
E

 5.67
と

 ad infinitum. 

This approach makes it possible to sweep boundary stiffness to infinity over all 

the boundary conditions between the free and the clamped ends without modifying 

the functional base, which remains that of the clamped-free beam. The 

approximation over the first mode is completely correct; over the second mode it is 

worse for the free end and is completely degraded for the clamped end. It should 

also be noted that, at the numerical level, using very large rigidities K renders the 

matrices ill conditioned and poses numerical problems. Thus, despite an apparent 

simplicity, this technique comes up against the choice of the value K that needs to 

be chosen to describe a clamped end correctly. Too low a value does not model a 

clamped end, while too strong a value creates numerical problems; in fact the value 

of K depends on the structure and the eigenfrequency considered, and it requires a 

numerical study of the solutions in each considered case. 

12.6. Convergence of the Rayleigh-Ritz method 

12.6.1. Introduction 

The property of convergence of the Rayleigh-Ritz method is important because 

it largely explains the success of the method in this field. As we demonstrate, 

normal angular frequencies converge by higher values when the functional space, 

where the calculation of extremum is performed, grows. On a physical plane, the 

reduction in the normal angular frequency when additional movements are allowed 

amounts to releasing the system, making it more flexible. Let us note that this 

property of convergence is specific to the Rayleigh-Ritz method based on 

Hamilton’s functional and is not true if the variational formulation used is 

Reissner’s functional. 

12.6.2. The Rayleigh quotient 

Let us consider Hamilton’s functional [12.1] describing the bending of beams. 

To consolidate, let us adopt boundary conditions of clamped type at both ends. The 

extremum of the functional is attained for the solution field of displacement 
EEW  t)(x,W ∈  that verifies: 
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( ) ( ){ } t)W(x,H Extt)(x,WH
EEW

= . 

Let us formulate equation [12.56] where λ  is a real number: 

t) v(x,そt)(x,Wt)W(x, += . [12.56] 

We observe with [12.56] that, if 0=λ , t)(x,Wt)W(x, =  and thus that the 

calculation of the extremum is provided by the condition: 

( )( ) t) v(x,    00)(そ  t)そv(x,WH
dそ
d

∀==+ . [12.57] 

This amounts to saying that the directional derivative of H  is nil in t)(x,W . 

The calculation of the extremum of the functional [12.1] using [12.57] leads to 

the result: 
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By restricting the functions t)v(x,  to verify the two conditions 

0)tv(x,)tv(x, 10 == , by integration by parts over time, the integral [12.58] 

becomes: 
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We know that the solutions of the problem of free vibrations have the form: 

)x(f    t)のsin   Btの cosA  (t)(x,W nnn +=  [12.60] 

where nの  is the normal angular frequency of mode n and )x(fn  is the mode shape. 

Let us further restrict the test functions t)ち(x,  to take the form [12.61], with 

0)g(t)g(t 10 == : 

)x(  g(t)t)v(x, ψ= . [12.61] 
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Taking into account [12.60] and [12.61], the integral [12.59] becomes: 
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where: 
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that is, finally: 
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In the particular case where we take nね(x) f (x),=  we obtain the Rayleigh 

quotient, which provides the normal angular frequency according to the mode 

shape: 
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 EI
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12.6.3. Introduction to the modal system as an extremum of the Rayleigh quotient 

In this section, we present the method of calculation of the modal system 

stemming from that of extremum of the Rayleigh quotient. Let us introduce the 

functional ( ))x(y Ω , called the Rayleigh quotient associated to the shape function 

)x(y . 
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Let us calculate the directional derivative of (y) Ω  when )x(fy(x) n= . We 

obtain: 
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Using the relation [12.63] we can give a simpler form of [12.66]: 
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Finally, with [12.64], we note that the directional derivative of Ω  is nil in 

)x(fn : 

)x(     0 0)(そ
d

)(f っ d n ψ∀==
λ

λψ+
. [12.68] 

The Rayleigh quotient is stationary for each mode shape of the problem and its 

value is equal to the corresponding normal angular frequency. 
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( ) ( ))x(f っy(x) っ Y
Extの n

2
n ==  [12.69] 

where Y  is the functional space of the admissible y(x)  functions. 

There arises the additional question of the nature of the extremum. To clear this 

point up, it is necessary to calculate the second directional derivative leading to the 

following result: 
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Let us take the case of the first vibration mode ( )11 の, (x)f : 

∫
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The normal angular frequency considered is the one with the smallest value; 

consequently, the function )x(f1  is the one returning the smallest possible Rayleigh 

quotient and, thus, for any function )x(ψ  we will have: 
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The consequence of this inequality for equation [12.71] is: 
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The extremum is thus a minimum for the first mode shape: 

( ) ( ))x(f っy(x) っ  Y
Minの 1

2
1 == . [12.74] 

For higher order modes, this property does not apply directly, since the relation 

[12.72] which characterizes 
1
の  is not true for other modes. It remains true if 

functional space where the calculation of extremum is performed excludes the mode 

shapes of lower order mode than the considered mode. For example, for mode 2, we 

will calculate the extremum in the functional space 1Y , excluding mode 1: 
1Y Y {a  f (x)}

1
= −  where a is a real number. 

We then have: 

( ) ( ))x(f っy(x) っ Y
Minの 212

2 == . [12.75] 

In general: 
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2n1n
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2

n xx −
−−

− −=== . [12.76] 

Normal angular frequencies thus appear as minima of the Rayleigh quotient 

taken in increasingly restricted functional spaces. 

12.6.4. Approximation of the normal angular frequencies by the Rayleigh 
quotient or the Rayleigh-Ritz method 

Let us consider a sub-space of the size N of the space Y defined in section 12.6.3 

and write it down as NY . This sub-space is constructed, as in the Rayleigh-Ritz 

method, by the linear combination of N basic kinematically admissible functions. 

The calculation of the minimum of the Rayleigh quotient in the sub-space NY  leads 

to an approximation N
1の  of the first mode of vibration: 

( ) ( ))x(f っy(x) っ Y
Minの N

1N

N
1 ==   [12.77] 

where )x(f N
1  corresponds to an approximation of the mode shape )x(f1 . 
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Let us consider the sub-space of dimension N+1 of the functional space Y built 

by adding one base function to the space NY ; we thus have: 

1NN YY +⊂ . 

Under these conditions, the approximation 1N
1の +  obtained by minimizing the 

Rayleigh quotient over 1NY +  is necessarily smaller than N
1の , since the minimum is 

sought over a larger space containing NY . We thus have: 

1N
1

N
1 のの +≥   [12.78] 

The convergence of the Rayleigh quotient is thus carried out by a higher value 

when we increase the size of the sub-space where the extremum is calculated. 

Taking into account the identity of the solutions obtained using the Rayleigh 

quotient and using the Rayleigh-Ritz method, the same applies to the latter. 

The property is repeated for the higher order modes insofar as 1N
i

N
i YY +⊂ ; we 

will have 1N
i

N
i のの +> . 

We may thus conclude that the normal angular frequency obtained by the 

Rayleigh-Ritz method converge by higher values. On the physical plane, this 

tendency indicates an increased flexibility of the system when we increase the 

number of basic functions. We may also state that limiting the possible movements 

of the vibrating continuous medium by restricting the functional spaces where the 

solution is sought amounts to blocking the possible movements through an added 

stiffness, which leads to normal angular frequencies that are higher the more we 

limit the possible movements. 

12.7. Conclusion 

In this chapter we have presented the most widespread Rayleigh-Ritz method 

based on Hamilton’s functional. Compared to the method presented in the preceding 

chapter it retains the same basic idea, which consists of building an equivalent 

discrete system, although this approach has the advantage of leading to normal 

angular frequencies converging by higher value, which is not the case when we use 

the Reissner’s functional. 
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The procedure consists of expressing vibratory displacements as a linear 

combination of functions constituting a subspace of finite dimension of the 

admissible functional space. This approach is at the origin of the finite elements 

method, which, in fact, amounts to approximating the solutions with particular basic 

functions. 

We have also provided several simple examples to illustrate the important 

aspects of the method and established the link with the Rayleigh quotient. 
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