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Preface

This book, which deals with vibration in continuous media, originated from the
material of lectures given to enginegristudents of the National Institute of
Applied Sciences in Lyon and to students preparing for their Master’s degree in
acoustics.

The book is addressed to students noéchanical and acoustic formations
(engineering students or academics), PhD students and engineers wanting to
specialize in the area of dynamic vibrati@msl, more specifically, towards medium
and high frequency problems that are of interest in structural acoustics. Thus, the
modal expansion technique used for solving medium frequency problems and the
wave decomposition approach that provide solutions at high frequency are
presented.

The aim of this work is to facilitate the comprehension of the physical
phenomena and prediction methods; moreover, it offers a synthesis of the reference
results on the vibrations of beams and plates. We are going to develop three aspects:
the derivation of simplified models like beams and plates, the description of the
phenomena and the calculation methods for solving vibration problems. An
important aim of the book is to help the reader understand the limits hidden behind
every simplified model. In order to doat we propose simple examples comparing
different simplified models of the same physical problem (for example, in the study
of the transverse vibrations of beams).

The first few chapters are devoted to the general presentation of continuous
media vibration and energy method for building simplified models. The vibrations
of continuous three-dimensional media are presented in Chapter 1 and the equations
which describe their behavior are established thanks to the conservation laws which
govern the mechanical media. Chapter 2gmessthe problem in terms of variational
formulation. This approach is fundamental in order to obtain, in a systematic way,
the equations of the simplified models (also called condensed media), such as
beams, plates or shells. These simplificontinuous media are often sufficient
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models to describe the vibrational behavior of the objects encountered in practice.
However, their importance is also linked to the richness of the information which is
accessible thanks to the analytical sohsimf the equations which characterize
them. Nevertheless, since these models are obtained thequgbvi restriction of
possible three-dimensional movements and stresses, it is necessary to master the
underlying hypothesis well, in order to use them advisedly. The aim of Chapters 3
and 4 is to provide these hypothesethincase of beams and plates. The derivation

of equations is done thanks to the variational formulations based on Reissner and
Hamilton’s functionals. The latter is the one which is traditionally used, but we have
largely employed the former, as the limits of the simplified models obtained in this
way are established more easily. This approach is given comprehensive coverage in
this book, unlike others b&s on vibrations, which dedicate very little space to the
establishment of simplified models of elastic solids.

Chapters 5, 6 and 7 deal with the different aspects of the behavior of beams and
plates in free vibrations. The vibrations modes and the modal decomposition of the
response to initial conditions are described, together with the wave approach and the
definition of image source linked to the reflections on the limits. We must also insist
on the influence of the “secondary effectstich as shearing, in the problems of
bending plates. From a general point of view, the discussion of the phenomena is
done on two levels: that of the mechanic in terms of modes and that of the
acoustician in terms of wave’s propagation. The notions of phase speed and group
velocity will also be exposed.

We will provide the main analytical results of the vibrations modes of the beams
and rectangular or circular plates. Foe trectangular plates, even quite simple
boundary conditions often do not allow analytical calculations. In this case, we will
describe the edge effect method which gives a good approximation for high order
modes.

Chapter 8 is dedicated to the introduction of damping. We are going to show that
the localized source of damping results in the notion of complex modes and in a
difficulty of resolution which is much greater than the one encountered in the case of
distributed damping, where the traditionakion of vibrations modes still remains.

The calculation of the forced vibratory response is at the center of two chapters.
We will start by discussing the modal decomposition of the response (Chapter 9),
where we are going to introduce the classitions of generalized mass, stiffness
and force. Then we will continue withagldecomposition in forced waves (Chapter
10) which offers an alternative to the previous method and is very effective for the
resolution of beam problems.

For the modal decomposition, the response calculations are conducted in the
frequency domain and time domain. The same instances are treated in a manner
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which aims to highlight the specificities of these two calculation techniques. Finally
we will study the convergence of modal series and the way to accelerate it.

In the case of forced wave decomposition, we will show how to treat the case of
distributed and non-harmonic excitations, starting from the solution for a localized,
harmonic excitation. This will lead us to the notion of integral equation and its key
idea: using the solution of a simple case to treat a complicated one.

Chapters 11 and 12 deal with the problem of approximating the solutions of
vibration problems, using the Rayleigh-Ritz method. This method employs directly
the variational equations of the problems. The classical approach, based on
Hamilton’s functional, is used and the convergence of the solutions studied is
illustrated through some examples. The Rayleigh-Ritz quotient — which stems
directly from this approach — is also introduced.

A second approach is proposed, based on the Reissner’s functional. This is a
method which has not been at the center of accounts in books on vibrations;
however, it presents certain advantages, which will be discussed in some examples.
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Chapter 1

Vibrations of Continuous Elastic Solid Media

1.1. Objective of the chapter

This work is addressed to students with a certain grasp of continuous media
mechanics, in particular, of the theory of elasticity. Nevertheless, it seems useful to
recall in this chapter the essential points of these domains and to emphasize in
particular the most interesting aspects in relation to the discussion that follows.

After a brief description of the movements of the continuous media, the laws of
conservation of mass, momentum and energy are given in integral and differential
form. We are thus led to the basic relations describing the movements of continuous
media.

The case of small movements of continuous elastic solid media around a point of
static stable equilibrium is then considered; we will obtain, by linearization, the
equations of vibrations of elastic solids which will be of interest to us in the
continuation of this work.

At the end of the chapter, a brief exposition of the equations of linear vibrations
of viscoelastic solids is outlined. The equations in the temporal domain are given as
well as those in the frequency domain, which are obtained by Fourier
transformation. We then note a formal analogy of elastic solids equations with those
of the viscoelastic solids, known as principle of correspondence.

Generally, the presentation of these reminders will be brief; the reader will find
more detailed presentations in the references provided at the end of the book.
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1.2. Equations of motion and boundary conditions of continuous media
1.2.1.Description of the movement of continuous media

To observe the movement of the continuous medium, we introduce a Galilean
reference mark, defined by an origin O and an orthonormal base g, ,g,,¢;. In this

reference frame, a point M, at a fixed moment T, has the co-ordinates (X1 ,X3 ,X3).
The Euler description of movement is carried out on the basis of the four

variables (x;,x,,x5,t); the Euler unknowns are the three components of the speed
U of the particle which is at the point M at the moment t.

U = U, (x;,%,,X3,1) [1.1]

Derivation with respect to time of quantities expressed with Euler variables is
particular; it must take into account the variation with time of the co-ordinates x; of
the point M.

X2

Figure 1.1.Location of the continuous medium
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For example, for each acceleration component v; of the particle located at the
point M, we obtain by using the chain rule of derivation:

dU ou, U5X
ot

i

o OX; ot
and noting that:
OX.
U =—
J ot

we obtain the expression of the acceleration as the total derivative of the velocity:

or in index notation:

du, U,
Y; ZTZT_‘_UI'JUj . [12]

In the continuation of this work we shall make constant use of the index notation,
which provides the results in a compact form. We shall briefly point out the
equivalences in the traditional notation:

— partial derivation is noted by a comma:
ou,

T hj
6xJ

— an index repeated in a monomial indicates a summation:

-

1 UijUj=U;; U;-
J:

The Lagrangian description is an alternative to the Euler description of the
movement of continuous media. It consists of introducing Lagrange variables
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(a;,a,,a5,t), where (a;,a,,a;) are the co-ordinates of the point where the
particle is located at the moment of reference ty. The Lagrange unknowns are the co-
ordinates x; of the point M where the particle is located at the moment t:

X; =0, (a;,a,,25,1). [1.3]
2
A
X2
N
S
a) N
\M’({O)/\;‘ M(1)
aj X1
\\ 1
a3 S ~ o
X3 >

Figure 1.2.Initial a; and instantaneous x; co-ordinates

a; being independent of time, the speed or the acceleration of the particle M
with co-ordinates Xx; is deduced from it by partial derivation:

02

oo,
LRI (@0 =24 @50, [1.4]

U, (a i ,t) = g

The Lagrangian description is direct: it identifies the particle; the Euler
description is indirect: it uses variables with instantaneous significance, which
eventually proves to be interesting for the motion study of continuous media; it is
the reason for the frequent use of Euler’s description. The two descriptions are, of
course, equivalent; the demonstration thereof can be found in the titles on the
mechanics of continuous media provided in the references section.
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1.2.2.Law of conservation

Laws that govern the evolution of continuous media over time are the laws of
conservation: conservation of mass, conservation of momentum and conservation of
energy. These laws can be expressed in an integral form [1.5] or in a differential
form [1.6] with the boundary condition [1.7].

The general form of the conservation law is provided in this section; it will be
detailed in the next sections with the conservation of mass, momentum and energy.

Let us consider a part D of the continuous medium whose movement is being
observed. Let us also introduce its boundary D and n; the direction cosines of the
exterior normal i, which is supposed to exist in all the points of D . V is the
volume of the continuous medium and V is the surface delimiting it. These
quantities are defined in Figure 1.3.

Figure 1.3.Continuous medium V with boundary V and part D with boundary D

The integral form of a conservation equation, in a very general case, is given by
the following equation:

d
a Ai+Iaijnj:IBi' [1.5]
D D
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— indicates the total derivative, i.e. the derivative with respect to time when the
dt

derived quantity is followed in its movement. A; and B; are vector quantities, in the
general case of dimension 3, but may also be scalar values, in the particular case of
dimension 1.

From a physical point of view:

d
E A represents the fluctuation over time of a physical value, attached to the
D

part D of the continuous medium, whose movement is being followed.

o1, : i
I U™J  represents the action of the exterior surface on D.

D
J' B, . .
: 1 represents the action of the exterior volume on D.

The law of conservation [1.5] thus translates the fact that the fluctuation over
time of a quantity attached to the part D, followed in its movement, results from the
actions of surface and volume affecting the part D of the considered continuous
medium from the outside.

We may associate a differential form to the integral form of the conservation
equation.

The differential form of the conservation law:

OA; .
7+(A1UJ+(11J)’J =Bl n V, [16]

Equation [1.6] supposes that A;, aj, Bi and C; are continuously derivable in any
point of V. This assumption, which we adopt, excludes the existence of
discontinuity surfaces in volume V. For a detailed account of discontinuity surfaces
we refer the reader to specialized works on continuous media mechanics.

The boundary condition [1.7] translates the equality of the projection of the
tensor o; following the external normal to an external action of surface contact C; .
This action of contact will generally be a given in a problem; we shall see, however,



Vibrations of Continuous Elastic Solid Media 23

that sometimes it will be preferable to modify the boundary condition, in order to
more easily introduce the action of the exterior upon the continuous medium.

1.2.3.Conservation of mass

This law of conservation postulates that the mass of a part D of the continuous
medium, whose movement is followed, remains constant over time.

To give the integral form of this conservation law, let us introduce the density
p(M, t); under these conditions the law of conservation of mass is written:

d
oM =0. 1.8
dtip( ) [1.8]

Equation [1.8] is a particular case of the general form [1.5]. The associated
differential form is deduced from it:

d
ap+(pUj),j=0. [1.9]
Equation [1.9] is called continuity relation.

1.2.4.Conservation of momentum

A fundamental law of mechanics is introduced. To apply this law to every part D
of the continuous medium, it is necessary to define the external efforts applied to D.
These are of two kinds:

— efforts exerted on D by systems external to the continuous medium, which are
remote actions or forces of volume written (M, t) ;

— efforts exerted on D through surface actions on D ; these are actions of local
contact verifying the two following conditions:

a) at each point M of the boundary D and at every moment t, these efforts are
represented by a density of force T,

b) the vector T, at the moment t depends only on the point M and the unitary
vector normal to D in M.

Let us state [1.10], where o is a second-order tensor, called a stress tensor:

T, =oyn; [1.10]



24 Vibration in Continuous Media

Note: in [1.10], T; is the i™ component of the resulting stress for the vector fi;
Gj is the ij™ component of the stress tensor. Somewhat abusing the language, the Gjj
will also be called stresses.

Let us write the fundamental law of the dynamics applied to a part D of the
continuous medium. Equality of the dynamic torque and the torque of the external
efforts applied to D led to the two relations [1.11] and [1.12]; O is a point related to

the point of reference, which we take as the origin without restricting the general
case:

d
= fpu;=foyn;+ |1, [1.11]
dt } 5 D
d [1.12]
EJ‘(XIpUk—xkpUl)—J‘(xlckj —xkcslj) nj+.[(xlfk—xk1°l)

D D D

with (1,k) = {(1,2), (2,3), 3,1)}.

Relations [1.11] and [1.12] express the conservation of momentum. Their
expressions can also be given in vectorial notation:

de = (= (-
—ij - IT 4 jf,
dty, 5 b
L [OM ApU = [OM AT+ [OM AF.
dts s :
The associated partial derivative equation [1.11] is:
d .
a(pUi)-i-(pUjUi),j :Gij,j+fi in V. [1.13]

By using the continuity equation [1.9] in [1.13] and after appropriate grouping,
we obtain:

d
p (dtUi +Uj Ui,jj:c’ij,j +1 in V. [1.14]
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The first member of [1.14] represents pY; where V; is the acceleration of the
particle located at the point M, which we calculated in [1.2]. Equation [1.14] thus
appears as a generalization of the point mechanics. It bears the name of the equation
of motion.

Let us now exploit the law of conservation [1.12], by writing the associated
partial derivative equation:

d

5 1Pk Xk PU1)+[ (x1pUx - Xk pUP) Uj - (x) 05 - X Glj):| i [1.13]
=xfi -xi fy

with (Lk) = {(1,2), (2,3), (3,1)}.

Let us take the example of the couple (1,k) = (1,2) and develop the derivations.
After rearranging the terms we obtain:

d
X [a(pUz) + (pUzUj)’j — Oy fzj

d
- xz[a(pUl) + (pUlUj)’j ~ 0y~ flJ =0, = 0jy-

Taking into account the relation [1.13] the first member is nil; it is thus noted
that:

Gip = Oy,

Proceeding in an identical manner for couples (2,3) and (3,1), we obtain the
general relation of reciprocity of stresses:

G = Oji [1.16]

The conservation of momentum involves the symmetry of the stress tensor.

1.2.5.Conservation of energy

At every moment the total derivative of the energy E (D) of a part D of the
continuous medium is the sum of the power of the external efforts exerted on D and
the rate of heat received by D.
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Energy E (D) is the sum of kinetic and potential energy, i.e.:
! 2
E(D)=Ip e+5Ui [1.17]
D

with e as the specific potential energy.

The integral form of the law of conservation of energy is given by [1.18], where
q; is the heat flow vector. The minus sign is related to taking into account the
external normal, thus qjn; represents the heat flow emitted by the continuous
medium.

d 1
— — 112 | = _
dtip(e+2Uij—jcijnjUi qj“j*’ifiUi, [1.18]

The differential form of the law of conservation of energy results from [1.18];
we obtain all the calculations done:

d 1 1
dt(p (e"‘zUiz)j"‘(PUj (€+2Ui2j—UiGij+qij =fiU; inVv. [1.19]

B

It follows from transforming [1.19] using relations [1.9] and [1.14]:
0 .
p §e+Ui ei |=0j Ui,j_qj,j inVv. [1.20]

This partial derivative equation has a simple physical interpretation, since the
total derivative of specific potential energy appears in the term between the brackets
(on the left-hand side of the equation). Thus the variation of specific potential
energy results from the power of interior efforts (c; U;;) and from a contribution of

heat (—q;;).

1.2.6.Boundary conditions

The boundary conditions represent the natural prolongation of the conservation
equations, over the surface V of the continuous medium. They are obtained through
the relation [1.7] given in the general case of a conservation law, which will have to
be further specified by the conservation of mass, momentum and energy.
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Let us note first of all that the conservation of mass [1.8] does not involve a
boundary condition because the term 0t does not appear in [1.8].

Equation [1.11] of the conservation of momentum involves the boundary
condition:

cjjnj=§ onV. [1.21]

F; represent the components of the external surface forces applied to the
continuous medium.

Equation [1.12] of the conservation of momentum involves the boundary
condition:

X] OL; N; - Xl o3 n; = X1 B -x1c K on\_/,
1 Okj =Xk Ofj 1Y 1%k - Xk Tl [1.22]

with (Lk) = {(1,2), (2,3), (3,1)}.

The second member represents the moment of external surface forces applied to
V. The verification of the boundary condition [1.21] involves the verification of
[1.22] which, therefore, does not bring any additional information.

The conservation of energy involves the boundary condition:
gj nj tojjn;U; =MI+EU; onV. [1.23]
IT is the amount of heat introduced into the continuous medium, by action of

contact at its boundary surface. EU; is the power introduced by the surface forces

applied to V.
By using the relation [1.21] in [1.23], we obtain:
qjn;=11 onV. [1.24]

The formulation of a problem of continuous media mechanics is summarized to
finding the density p(M, t), speed U;(M, t), stress Gij(M, t) and the specific energy
density e(M, t), knowing the forces exiting the volume f}(M,t) and the surface
E(M,t) as well as the quantity of heat input IT (M, t). All these quantities are
related by the 4 partial derivative equations [1.9], [1.14], [1.16], [1.20] to be verified
in the volume V and the two boundary conditions [1.21], [1.24] to be verified over
the surface V.
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1.3. Study of the vibrations: small movements around a position of static, stable
equilibrium

1.3.1.Linearization around a configuration of reference

Linearized equations that we are going to establish only reflect a physical reality
if the continuous medium keeps the positions close to those, which it occupies in the
configuration of reference, during its movement. We choose a Lagrange position of
reference, and the displacement of the particle M is expressed by the formula:

X =a; + W, (a.1). [1.25]

x; is the i" co-ordinate of particle M whose movement is being followed (Euler’s
variable). a; is the i" co-ordinate of particle M in the configuration of reference
(Lagrange’s variable). Wi(aj, t) is the i"™ co-ordinate of the displacement of point M
around its position in the situation of reference. We suppose that this displacement
as well as its derivatives are small:

dw,
dt

We will examine the consequences of the assumption [1.26]:

i

dxj

<<1 and

<<1. [1.26]

a) Let us at first consider a regular function f(x;, t), and let us express its value in
the vicinity of the position of reference. The components x; of the position of the
point M are close to the co-ordinates a;, of the same point M that had occupied it in
the position of reference; consequently, a first approximation of the value of the
function may be obtained by considering the first terms of its development in a
Taylor series in the vicinity of a;:

s of
.0 =f(@,0+ Y (x—a) — (@,0)
j=1 6XJ

that is, taking into account the decomposition of movement [1.25]:

3 of
f(xi,t):f(ai,t)+jZIWj(ai,t)a(ai,t). [127]

J
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Taking into account the regularity of f(x;,t), the partial derivative aax— (a;,t) is
j
bounded. From [1.26] and [1.27] we deduce that in the first approximation:

f(x;,t) = f(a;, 1) [1.28]

of
b) Let us now take the derivative 8_ ; by using the chain derivation formula it

3

follows:

Introducing the form [1.25] of the movement x;, we shall obtain:

of _of <~ of oW,
da; Ox; i3 Ox; Oa;

The second term of the right-hand side member being infinitely small, it can be
deduced that in the first approximation:

of 6f

[1.29]
8a 8x

c) Let us calculate the total derivative of a regular function G (x;, 1) :

dG oG
E:_( i ﬂt)+z . (Xl 7t) U (Xl 9t)
=1 OX;

that is, taking into account the decomposition of movement [1.25]:

dG oG 3
_=_ 9t )
" (x; )+ Zl: ,
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. . oG .
The function G (x;,t) being regular, g(xi ,t) is bounded, the second term of
i
the second member is infinitely small; we thus have at first approximation:

a ot U7

i.e. also taking into account [1.28]:

w_m@o
a o

To sum up, for small movements:

dG oG 3 0G oG
E:E(Xi,t)"‘;a(xi,t) Uj(xi,t)=5(ai,t). [1.30]
=1

The distinction between the Euler and Lagrangian descriptions is no longer
necessary: on the one hand the initial and current co-ordinates a; and x; can be
assimilated and the particulate derivative can be replaced by the partial derivative
with respect to time. This is true for regular functions, i.e. not for discontinuity
surfaces.

Let us examine the effects of [1.28], [1.29] and [1.30] on the equations
describing the behavior of the continuous medium.

The equation of conservation of mass [1.9] becomes:

op .
—(a; ,5)=0 nVv,
ot
that is:
p(aj,t)y=p(aj) inV. [1.31]

During small movements, the density of the continuous medium does not vary
over time. This property is valid only at first approximation; at a higher degree of
accuracy, there is an additional small term, which fluctuates with time. In linear
acoustics, this small disturbance must be preserved in calculations as it intervenes in
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the ideal gas law of the acoustic medium. In the case of elastic solids considered
here, the constant term is sufficient to describe the conservation of mass.

Equations [1.14] and [1.16], translating the conservation of momentum, become:
p(a) ‘(%,0 }j ”(a H+fa; ) iV, [1.32]

Gij (ai ,t)ZGji (ai ,t) in V. [133]

Equation [1.20], characterizing the conservation of energy, becomes:

@)@J)ZZ%@D @n

i=1 j=1

[1.34]
3 6qj .
—Z— (a;,t) InV.
= Oa.
j=1 ]
Boundary conditions:

3 —
Z oji(a; ,t) nj(a;))=F(@;.,t) onV, [1.35]
j=1
3 —
Z_qj(ai ) nj(a;)=II(a; ,t)  onV. [1.36]

=

Equations [1.31] to [1.36] constitute the linearized model of general equations
within the framework of small movements, around a configuration of reference,
defined by the relations [1.25] and [1.26].

All quantities appearing in the linearized equations [1.31] to [1.36] are variables
of the pair (a;, t); thus, for the study of small movements, the equations and the
boundary conditions are inscribed directly on the configuration of reference.
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In the continuation of the course, we will often consider the case of adiabatic
movements. This assumption involves g;(a; ,t) = 0 ; there follows a modification of
the equation of energy [1.34] and boundary condition [1.36] which become:

de OWj ,

P—=0ij——— mVv, [1.37]
ot ot

=0 onV. [1.38]

The boundary condition [1.38] translates the impossibility for the adiabatic
medium to exchange heat.

The equation of energy [1.37] shows that the variation of specific potential
energy is due only to the power of interior efforts.

We have used the index notation in [1.37], and from now we will make constant
use of it.

1.3.2.Elastic solid continuous media

The unknowns of a problem of vibration of an elastic solid are: W; , Gij and e.
The calculation reveals 10 independent quantities (taking into account the symmetry
of the stress tensor). However, the equations of continuity, movement and energy
provide only 5 relations at each point. Thus, information is missing to determine the
solution of the problem; that is the stress-strain relation of the continuous medium.

The stress-strain relation is characteristic of material; it connects the stress tensor
to that of the strain of the continuous medium. In the case of small movements,
considered here, the behavior of the continuous medium is well represented by the
law of elastic behavior. The stress-strain relation is of the type:

Gij (a; ,H) = Cijkl (aj) gxi(aj »b) onV. [1.39]

The quantity € (a;,t) is a symmetrical second-order tensor; it is the strain
tensor defined by the relation:

1{ oW, oW,
akl(ai,t) =—| —k 4 1
2( Oa; Oay,

>
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or in the index notation:
1
e(a;, ) = E(Wk,l + W)

The tensor of the 4™ order Cij(ai) characterizes the elastic properties of the
continuous medium. In the references provided at the end of the chapter, a detailed
presentation may be found. Let us note here that this tensor has the properties of
symmetry [1.40]:

Cijkl = Cjikl = Cijlk = Cklij : [1.40]

Taking into account the properties [1.40] of the stress-strain relation, we obtain a
second expression equivalent to [1.39]:

Gij(ai ) = Cijkl(ai) Wi, 0. [1.397]
1.3.3. Summary of the problem of small mements of an elastic continuous

medium in adiabatic mode

The problem consists of finding W;, o; and e, knowing fi, F;, Cyjq and p,
verifying:

82Wi )
P—7 —ojtfi  mV, [1.41a]
ot
oe oW; )
SV inV, [1.41b]
ot ot )
y
oij = Gijk1 &kl = CijkaWk,1  in V. [1.41c]

Boundary conditions:

ojjnj=F onV. [1.41d]
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The use of [1.4c] in [1.41b] makes it possible to integrate the equation of energy,
which becomes [1.41e]:

1 1
pe = 5 5 Cl_]kl €kl = ij Oij inVv. [1.41¢]

The knowledge of oy and ¢; implies that of e; there are thus only two
unknowns in the present problem: oy and &, in order to determine which

equations [1.41a], [1.4c] and [1.41] need to be integrated.

These equations are well adapted to the description of vibrations of solids whose
displacements remains close to the static position of equilibrium, which is taken as a
configuration of reference.

1.3.4.Position of static equilibrium of an elastic solid medium

The vibrations of continuous media occur around a position of stable static
equilibrium. Consequently, the first stage of the study of the vibrations consists of
determining this position of static equilibrium.

Let us consider the position of the continuous medium at rest, when no force is
applied to it, as a configuration of reference and suppose that the position of static
equilibrium is close to this position of reference.

In these conditions it is possible to use equations [1.41], obtained with the
assumption of small movements, to describe the state of static equilibrium. In fact,
the task is to find Ws(a) and Gs(a) verifying equations [1.41] when the forces
FS(a) and f S(a) are applied. The reader will note that all the quantities appearing
1n the static problem are independent of time; it follows that derivations of these
quantities with respect to time are nil and the partial derivative equations [1.41a, c,
d] are reduced to:

o +f7=0 iV, [1.42]
0% =Gy ey inV, [1.43]
oin,=F> inV. [1.44]

The equations of continuity and energy are automatically verified since density
and specific internal energy are constant over time, and equal to p® and €’.



Vibrations of Continuous Elastic Solid Media 35

1.3.5.Vibrations of elastic solid media

Vibrations of elastic solids are small movements around a position of static
equilibrium, generated by dynamic forces fiD(aj,t) and FiD(aj,t) superimposed
with static forces, so that:

S D S D
fi(ajt)Zfi (aj)+fi (aj ,t) and Fi(ajt)ZFi (aj)+Fi (aj 1) . [1.45]

Position of static equilibrium

Static
force

Static
force

Configuration
of
reference

3

Figure 1.4.Configuration of reference and position of static equilibrium

We will make the assumption that the application of dynamic forces introduces
only small movements, i.e. dynamic stresses are sufficiently weak, and that static
equilibrium is stable. The movement is described by linearized equations [1.41], in
which we reveal the division of quantities into static values characteristic of the state
of equilibrium (exponent S) and dynamic values characterizing the vibrations
(exponent D):

p(a;,t) = pS(ai),
Wia;,t) = st’(ai) + WJD(ai ),
Gij(ai ] t) = Gi(al) + G{]’)(ai > t) >

e(a;,t) = eS(a;) + eP(a; , 1). [1.46]
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2
Static equilibrium
Static
force .
Vibratory
movement
Dynamic
force
> 1

Figure 1.5.Position of static equilibrium and vibratory movement

Let us introduce the decompositions [1.46] into equations [1.41a, ¢, d]. After a
rather simple calculation, we find:

sé*wP s p s p

P 721 :Gij,j+cij,j+fi +1 inVv, [1.47]
at

S D s D] .

SHRS :Cijkl{ 81<1+8k1} inV, [1.48]

Gisj nj+(5ilj) nj = iS+FiD 01’1\_/. [149]

These equations can be simplified by taking account of the static equilibrium
conditions [1.42], [1.43], [1.44] to become:

2D
o>w;
p> S0 =it v, [1.50]

ot

D D .
ojj = Cijkl €Kl mV. [1.51]
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Boundary conditions:

GL-) n; :FiD onV. [1.52]

A remarkable property of equations [1.50] to [1.52] is their quasi-independence
of the state of static equilibrium around which the system vibrates. In fact, the only
influence of static equilibrium is related to the density of the medium. Under normal
conditions, pS varies very little and the vibrations of a continuous medium are not
affected by a modification of the static position. The variations of the field of gravity
in particular do not modify appreciably the vibratory state of the continuous
medium.

1.3.6.Boundary conditions

The boundary condition [1.52] translates the equality of the normal dynamic
stresses tensor projection with external surface forces applied to the elastic solid.
The external forces are supposed to be given in the problem, which presents a
difficulty in practice. Indeed, they result from actions of contact with other
mechanical media that are generally unknown. To overcome this difficulty, the two
following simplified configurations are generally introduced:

Free surface VL: this situation is to be considered when the external actions on
the surface are sufficiently weak to be regarded as nil. We would then write:

n; =0 on\_/L. [1.53]

D
J

1

Constrained surface VE: this situation occurs when external actions on the
surface are very strong and tend to impose a given displacement on the surface
considered. The external force applied under these conditions strongly depends on
the response of the continuous medium. It is preferable to model the boundary
condition on an embedded surface by consequence of application of the external
force, i.e. an imposed displacement D;. We would then write:

W;" =D; onVg. [1.54]

The two models [1.53] and [1.54] are extreme cases, and one can consider types
of intermediate boundary conditions having a certain flexibility.

We will see in the chapters related to the vibrations of beams or plates how to
introduce this type of boundary conditions. However, let us specify, at this general
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level, that taking into account sophisticated boundary conditions involves the need
for measuring quantities describing the behavior of the boundaries, which poses
large experimental problems. For mechanical problems of vibrations, it is often at
the level of boundary conditions that the uncertainty of modeling is the strongest. In
the continuation, we will often suppose that the continuous medium is either
constrained, or free, or subjected to known external forces, on the surface limiting

the elastic solid. Constrained surfaces VE, free surfaces V; , and those where
external forces Vi are given, are disjointed; consequently:

%ﬁ\_ﬁ_ = ,
V_Lﬁ\_/l: :® N
%ﬁ\_/l: = N

Ve UV, UVE =V .
1.3.7.Vibrations equations

The problem of vibrations of elastic solids is stated as follows: to find the fields
of stress 5 and of displacement W, verifying the equations:

— Equations of motion:

82Wi .
pTZGij,j-i-fi mV. [1.55]

ot
— Stress-strain relation:
oij = CjjxiWk,1  inV. [1.56]
— Boundary conditions:

ojjnj=0 onVp, [1.57]

W;=D; onVg, [1.58]
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Gjj nj = K on \_/F . [1.59]

Note: in order to be concise, we give up the exponents S and D in the notation
for static and dynamic states. Let us also recall that all the quantities appearing in the
equations of vibrations [1.55] to [1.59] are of a dynamic nature, except density
which is characteristic of the static position.

1.3.8.Noteson the initial conditions of the problem of vibrations
As long as the continuous medium has not been subjected to dynamic excitation
(volume forces, surface forces or displacements imposed at the limits), it is in a

static equilibrium. It follows that for an application of the vibratory state at the
moment t,, we will take the following initial conditions:

Wia;,tg) =0 [1.60]

oW,
o (a;,t) =0 [1.61]

The partial derivative equation in time being of the second-order, the two initial
conditions are sufficient.

It is sometimes interesting to describe the vibrations of a continuous medium
starting at a moment t;, posterior to the application of forces. At this moment, the
system is no longer in a static equilibrium, but is in a given vibratory state
(displacement Xi(a;) and speed Vi(a;)) so that the following initial conditions
would have to be taken:

W, (awtl):X(ai)a [1.62]
oW
@)=V (a). [1.63]

Let us note to close this point that in many vibratory problems, the interest lies in
the forced “movement” which is independent of the initial conditions, the latter then
not being specified.
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1.3.9.Formulation in displacement

The vibration problem defined in section 1.3.7 has displacement and stress fields
as unknowns. It is a mixed formulation in stress and displacement. It is often
interesting to reduce the number of unknown functions, and therefore the number of
equations, to thus have a more compact formulation. This reduction is carried out by
substitution of the stress field by its expression as a function of displacements [1.56]
in equations [1.55], [1.57] and [1.59]. We then obtain a formulation, which now
only depends on vibratory displacements.

To find the displacement field W, verifying:

82Wi .
pT = (Cijklwk,l ),J + fi mVv, [1.64]
ot
W; =D;  on Vg, [1.65]
Cijkl Wk,l n; = 0 on \_/L , [1.66]
Cijkl Wi nj=E  onVg. [1.67]

This formulation in displacement has the clear advantage of decreasing the
number of unknowns, since at any point of the continuous medium, it is sufficient to
establish the displacements. This reduction of the number of unknowns is, however,
made at the expense of the simplicity of resolution of equations, which see their
order of spatial derivation increasing.

1.3.10.Vibration of viscoelastic solid media

We will see in the following chapters that vibrations of continuous media are
characterized by the presence of resonances, for which the damping of the vibrating
system plays a capital role. The elastic systems that we have considered are not
dissipative and consequently will not be representative of the vibratory answer to
resonances. To take account of the dissipation parameter, it is necessary to consider
a behavior relation more complex than that of linear elasticity: linear viscoelasticity.

Viscoelastic materials have some rigidity but dissipate more energy by internal
friction. Contrary to elasticity, where the stress changes instantaneously with strain,
viscoelasticity introduces a memory effect: the stress at a certain moment depends
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on all the former strain. It is thus necessary to utilize time in the stress-strain relation
of a viscoelastic material; numerous models have been elaborated according to the
type of dependence on time. Within the narrow framework of these reminders, we
will limit ourselves to the following model:

i

oW,
0y(a; 0 = hy ®—L [1.68]

This stress-strain relation characterized by a product of temporal convolution,
noted as ®, shows that the stress field at the moment t depends on the former strain
of the continuous medium.

To summarize, vibrations of the viscoelastic continuous medium are described
by the fields of stress Gij(ai ,t) and of displacements Wy(a, ,t) verifying:

82Wi )
pTZGij’j-i-fi mVv, [1.69]
ot
Wkl
Gij (aj ,H) = xijkl ® mnv, [1.70]
ojjnj=0 onVp, [1.71]
W; =D;  on Vg, [1.72]
Gjj nj = K on \_/F . [1.73]

Equations [1.69] to [1.73] may be brought to equations of the type of those
obtained for the elastic medium by introducing Fourier transforms W, & and C of
the values W, ¢ and C:

+00

Way,0) = [ W0 0 de, [1.74]
—00
+00 .

a0 = [oa.0 1t [1.75]

—0o0
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+00
Cijia (3, @) = Icijk](ai’t) e 1tdt [1.76]

—00
where o is the angular frequency.

Taking the Fourier transform of equations [1.69] — [1.73], it follows:

- pw?W; = SERRT [1.77]
6 = Cijia W1, [1.78]
Gi:n;=0 onVy, [1.79]
y L
W; =D;  on Vg, [1.80]
1 1 E
6:n;=E  onVg. [1.81]
jhy=h F

The Fourier transformation makes it possible to replace the convolution product
characteristic of the stress-strain relation in time domain by a simple product in
frequency domain.

Let us now take the Fourier transform of the vibrations equations of the elastic
system [1.55] — [1.59]; it follows:

—p?W, =&+ 1, [1.82]
Eij = Cijklwk,l , [1.83]
6ij n; =0 on \_/L, [1.84]
W;=D; onVg, [1.85]
6ij n; :Fi onVF. [1.86]

A formal analogy known as the principle of correspondence is noted between the
two systems of equations [1.77] — [1.81] and [1.82] —[1.86].
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In fact, all the equations of elastic and viscoelastic systems are identical except
for those related to the stress-strain relation. For the elastic medium, the tensor of
elasticity moduli is independent of time and, thus, remains unchanged after Fourier
transformation of the stress-strain relation (i.e. real and independent of the angular
frequency ). For the viscoelastic medium, the Fourier transform of the viscoelastic
modules which are variable with time appears in [1.78]; there follow two significant
consequences:

— on the one hand (Nlijkl is variable with the angular frequency o;

— on the other hand Ei'kl is a complex number. The real part represents the
elastic effect, the imaginary part that of dissipation. These coefficients are called
complex modules.

The complex module translates a phase shift between stress and strain; this
vision, characteristic of the representation in frequency domain, is the consequence
of the delay between stress and displacements characterizing the viscoelastic
medium in time domain.

Loss factors n jjk1 are often introduced:

Cijia = Re {Cijkl} (1+ 1M ) -

In short, in frequency domain, the elastic or viscoelastic continuous media have
the same equations. This leads, due to a preoccupation with simplicity, to the
undertaking of studies of the elastic medium in time domain, and the introduction of
viscoelasticity afterwards, by complex modules in frequency domain.

The resolution of the equations in frequency domain yields
Wi (aj ,») and 5ij (aj ,0).

Temporal solutions should be expressed thereafter; this is of course achieved by
inverse Fourier transformation:

1 +oo~ )
Wia, 0= [ W0 ¢tdo,

+00 )
o(a ) =— J 5(a,m) ¢ do
Jh 1 27[ 1 .

—00
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Let us note that in general the inverse transformation is not carried out because
the physical interpretation of the results is in fact easier in frequency domain.

Note: the viscoelastic medium is not conservative and the adiabatic assumption
of behavior is no longer realistic, the equation of energy which has to be considered
is not [1.37] anymore, but the complete equation [1.34].

1.4. Conclusion

This chapter constitutes an introduction to the governing equations of the
vibrations of elastic solid continuous media. Its essential goal is to present the
assumptions underlying the equations, which we will come back to use in the
continuation. These reminders would not in any way be capable of replacing a
thorough study of the works specialized in this field, but constitute instead the
minimum knowledge necessary for the good understanding of what follows.

A basic comment that we will make in conclusion of the chapter relates to the
great complexity of the equations obtained. Indeed, the partial derivative equations
which describe the vibrations, although already simplified compared to the general
case, do not have known analytical solutions. We are thus confronted with the
alternative of an approximate resolution, which can be only numerical, or with the
introduction of additional assumptions, simplifying the problem sufficiently to lead
to analytical solutions. It is the second option that has generally been exploited; it
has led to the mono and bi-dimensional continuous media that engineers have called
beams, plates and shells. The methodology of passage of the tri-dimensional
medium into simplified media is thus of capital importance. In the following
chapters we provide the methodology by using the variational approach.



Chapter 2

Variational Formulation for Vibrations of
Elastic Continuous Media

2.1. Objective of the chapter

The equations describing vibrations of elastic solid media in 3 dimensions have
been provided in Chapter 1. We will demonstrate that it is possible to obtain them by
calculating the extrema values of energy functionals. Moreover, this approach lays
the theoretical foundation which enables the construction of models of condensed
elastic continuous media. This would allow passing from a 3D to a 2D or 1D problem.

Variational formulation uses directional derivation and can thus appear to be a
more cumbersome version of the traditional formulation. It is, in fact, at the level of
searching for approximate solutions that variational formulation assumes its full
importance, since it suffices to restrict functional spaces where the extremalization is
carried out. It is this step which will enable us in the following chapters to
systematically obtain the equations of beams and plates without any difficulty other
than the choice of assumptions restricting the field of movement and stress
according to the geometry of the continuous medium.

The object of this chapter is double. On the one hand, we present the basic idea
of variational formulation which consists of passing from a local aspect of forces
equilibriums to a global energy aspect. In addition, we obtain results, which will be
useful in the continuation, i.e. the functionals of Reissner and Hamilton, as well as
Euler equations associated with the extremalization of various types of functionals.
For uniformity of presentation, we will suppose that all the functions that appear in
the equations are sufficiently regular so that integrals exist.
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2.2. Concept of the functionalpases of the vaational method
2.2.1.The problem

The equations of the vibrations of a continuous medium that we have determined
in Chapter 1 (equations [1.55] to [1.59]) are:

o°W, .
p—s=cjjj+fi in Vx]tg.ul, [2.1]
ot
0;=Cuga  in Vi8], [2.2]
on;=0 over Vo x]t,t], [2.3]
W=D over V,x]z,.t[, [2.4]
o;n=F over V;x|z,t[. [2.5]

Moments t, and t; are arbitrary.

The basis of the variational method consists of posing the problem in a different,
global form leading to the implicit respect of equations [2.1] to [2.5].

2.2.2.Fundamental lemma

The result that we will point out is fundamental in the sense that it contains the
basic idea of the variational method, which consists of passing from a local to a
global presentation.

Let us recall first of all that a family F of open sets D of a volume V is dense in
V if for any point M € V and for all neighborhood of the point M, there exists at
least one set D of the family which lies inside the neighborhood. To solidify the
ideas, let us give without demonstration three families dense in V:

— all of the open balls inside of V;
— all of the open cubes whose edges are parallel to the axes of co-ordinates;
— all of the open sets of V.

The fundamental lemma is stated as follows: let f(M) be a function defined and
continuous in V and F a family of sets D dense in V. If for any set D belonging to
the family the integral [2.6] is nil,
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J' fM)dv =0, [2.6]
D

then the function f(M) is identically nil in V.

To show the lemma, let us presume that in a certain point M, € V, f(M,) is not
nil. Let us take for example the case f(M,) > 0. It is possible, taking into account
the continuity of f(M), to find a neighborhood of M, such that in this neighborhood

f(M) > (1/2) f(M,)) . Let us consider then a set D of the family F interior to the
neighborhood. We have:

1
j fM) dv > — f(M,) J' dv>0,
D 2 D
which contradicts the hypothesis [2.6].

2.2.3.Basis of variational formulation

Let us take the example of the equation of motion [2.1]. The use of the
fundamental lemma makes it possible to write it in the form of:

oW,
I p e —o;;—f; | dv=0. [2.7]

D

D belongs to a family of dense open sets in V x ] to,t [

However, formula [2.7] is not very practical and we would rather write:
4
I|p
tyV

The space Q'(V x Jto,ti[) is that of functions with real values, indefinitely
derivable, definite on V x Jto,t;[.

W
Loy, —fi] Wdvdt=0 YW eQ'(Vx]t,,t[). [2.8]

82
&2

The functions Wi(x;,X,,X5,t) can be interpreted as vibratory movements,
which are, however, not compelled to verify all the conditions imposed on real
movements of the continuous medium (in particular, boundary conditions); in this
sense, they are merely virtual movements.
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To demonstrate the equivalence of [2.8] and [2.1], it is enough to consider,
initially, the field of movement Wi(x,, X, , X5, t) provided below:

WP (x,,X,,X5,t)
Wi = 0 ) [2.9]
0
Let D(X;, X5, X3, T) be the open ball, of band ¢, centered in (X, X,, X3, T), i.e.:

D.(X;,X,,X;5,T) =

(X)X, X5, D) |(X) — X1)2 + (X, — X2)2 + (X3 — X3)2 +({t-T)Y <¢2 },

the functions Wf (X;,X,,X;3,1) are strictly positive inside Dy(X;, Xa, X3, T) of

V x ] to ,tl[ and nil outside of it.
Such functions exist and can be construed in the following fashion:

If (xl 9X2 3X3 at) € Db(Xl 9X23X3 aT)

| )
(5~ X, 0, X, + (06 X+ (T € |

W (x,,X,,X5,t)=exp

If (X19XZ ’XS 3t) e DE(X19X2 9X3 ST)

\VlC (Xl DXZ aXB ,t):().

For the field of virtual movement [2.9], the condition [2.8] is translated by:

b w,
” P Oy~ h [Wpdvdt=0 v W, [2.10]
i,V

Let us suppose that there exists a point (X, X, X3, T) where equation [2.11] is
verified (the case where the value would be negative would be treated in an identical
manner):

52W1
p?_clj,j_fl (X;,X5,X5,T)>0. [2.11]
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We then can, taking continuity into account, find a neighborhood of (X, X,, X3, T)
such that for any point (X1, X5, X3, t) in this neighborhood:

62W1
p?—cu’j—fl (X15,X%5,%5,1)
[2.12]
1 62W1 .
>E p?—clj’j— 1 (XI,XZ,X?’,T)

Let us consider an open ball Dy(X,, X,, Xz, T) inside the neighborhood. Due to
[2.11] and owing to the fact that the function W[ is strictly positive in the open ball

and nil outside of it, we have:

t

2w,
II p?_clj,j _fl ng dvdt
t, \%

1 82W1 .
> 1P o XX X D [ favar
2 ot t, D,(X,,X,.X;,T)

i.e. since the volume of the ball is strictly positive:

t 2W.
| —2 1—0 —f, |[Wedvdt >0
p > L,j 0 1 . [2.13]

t()
This inequality contradicts [2.10]. Consequently, it is deduced from it that the

condition [2.8] involves:

°W,
P?—Glm—fl =0 V(x,%5,%X3,1) er]tO,tl[.
0 0
Similarly, considering the fields of virtual movements | w5 |and | 0 |, it
€
0 Wi

could be shown that condition [2.8] involves:

02w,
2 _02j,j_f2:0 V(xl,xz,x3,t)eVX]tO,tl[,

ot2
W,
p?—cﬁ’j—f_g =0 V(x],xz,x3,t)er]tO,tl[.

p
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To sum up, there is an equivalence between equations [2.8] and [2.1], which
appear as global and local formulations of the continuous media equation of motion.

From a physical point of view, this result shows that if the integral over time of
O°W.
the work of the force of volumep 2 ~ Siij —f; is nil for any displacement

Wi e Q*(V X ]to 4 [ ) , then the force of volume is nil. The integral [2.8] defines a

functional Z that associates a real number E(Wi,csij,Wi*) to each triplet

(\M ’ Gl_] ’ \K/l*) :

Z: QOxTxQF —> IR

(Wl » O

ij> W) E(W;. o

1j’vvi*)
with:
Q: the set of fields of indefinitely derivable displacements, defined over

V x ] ty,t [, with real values;

X :the set of fields of tensors of indefinitely derivable stress, defined over

V x ]to 4 [, with real values;

Q" : the set of fields of indefinitely derivable virtual displacements, defined over
V x ]to .4 [, with real values.

If the pair (W, Gij) does not verify the equation of motion [2.1], the functional
EW,, Gjj » W:) is not nil.

If the pair (W;,o}) verifies the equation of motion [2.1], the functional
EW,, Gjj » W:) is nil.

2.2.4.Directional derivative

The transformation of the local presentation [2.1] to global presentation [2.8] is
the basic idea of the variational method; however, a second transformation is
generally carried out, which consists of displaying [2.8] as the directional derivative
of a simpler functional. Let us introduce the functional ¥ :

¥Y: OxX —s> IR
(VVI > Uij) \P(VV] > Gij)
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with:

t]
ST 2

- 1
lj 20 € +fW}dvdt. [2.14]

The integrand contains three terms: the first is the kinetic energy, the second is
the deformation energy and the third is the potential energy of the volume efforts.

Let us break up the field of displacement W; in the following manner:
W, = W, + AW [2.15]
Wi is the field of displacement verifying the equation of motion, for a fixed

stress field o;; (this notation has nothing to do with that of Chapter 1 where the bar
indicated the boundary of a space):

_Glj,J_f;ZO V(XI,XZ,X3,t)€VX]t0,t1[;

M\ is a real number, Wi is a field of virtual displacement.

Let us replace W in [2.14] with its expression [2.15]:

b1 (ow, . aweY
(W, + AW, o, {fi{ ( xa—tlJ

Lo (5 e+ (W + xWi*)} dvdt.

[2.16]

The directional derivative of the functional [2.14] with respect to W; at the point
(W;,0;) noted 8y (W, 0y, Wy) is by definition:

i’ 1]’

Sy (W, W*):i\y(w +AW* o,

Oij > 1_]) |X 05 [2.17]

that is:

t,

o0, 0=

{ oW, W
t

— 0y Wi+ 1, Wi*} dvdt . [2.18]
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Let us transform equation [2.18]. By using Green’s formulae and integration by
parts, it follows:

S (W, , 0., Wi)

i oy + | W dvdt

<'—a

( [2.19]

t,
t,
t,
+Ij Gji 1 Wi dvdt + {jp i W*dv}
t, V t,
In the first integral of the second member we recognize the expression defined in
[2.8] as the global form of the equation of motion. Thus, if we suppose that, on the
one hand, Wi is nil over V at any moment t and that, on the other hand, it is nil
over V at moments t, and t;, the global form of the equation of motion is obtained
by writing [2.20], that is by setting equal to O the directional derivative of the
functional ¥ for all virtual displacements satisfying the boundary condition
Wi =0 over the surface V and the initial and final conditions Wl* M,ty) =0
Wi (M, t)) = 0 for any point M of the volume V:
Sy ¥ (Wi, 05, W =0 vV Wr [2.20]
A significant point appears here: it relates to the boundary conditions and the
initial and final conditions of virtual displacement. Indeed it can be observed that the
directional derivative of [2.14] in addition to the global form of the equation of
motion reveals two additional terms which disappear when virtual displacement
verifies the conditions: W# =0 over the surface V, Wl* M,t)) =0 and
Wi (M, t)) = 0, for any point M of the volume V.

Let us suppose now that virtual displacements verify W:*(M,t)) =0 and
Wi (M, t) = 0, for any point M of the volume V, but are left without the boundary
condition. Taking into account [2.19], the relation [2.20] then becomes:

t
Sy ¥ (W0, W) :” oy | Wy dvde
t,

: 2.21]
+”o n Wrdvdt =0 v Wy
Y

0
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All of the virtual displacements nil over V are contained in the set of virtual
displacements free over V ; the relation [2.21] thus implies:

ij ? i 2

3% (W0, , W)= ” [—pa;tw +cu.,j+wa;‘ dvdt=0
tyV

VW, [W, =0 overV,

that is:

W

—p—z toy+f=0 in Vx|t .t [ [2.22]

Taking this result into account, equation [2.21] is reduced to:

tI
II o;jn; Wrdvdt =0 VW [2.23]
t,V

0

Considering now the virtual displacements not nil over V, we deduce from the
fundamental lemma that:

o;n;=0  over Vx]t,.t[- [2.23°]

1

If virtual displacements are left free over V , the nullity of the directional
derivative [2.21] leads to the two relations [2.22] and [2.23’], that is to the equation
of motion and the limiting condition of the free boundary type.

It is necessary to note here the importance of functional spaces where the
directional derivation is carried out since they lead to different equations being
verified.

Let us take the case of space () of fields of displacements nil at the edges and
equal to displacement solutions at the two moments, initial and final:

Q, = {Wi(M,t)|Wi(M,t) 0 YMeV,Vte .4l

and W, (M, tp) = W, (M. 1), W, M, t) = W, Mty YMev) 22
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Introducing virtual displacements W (M, t) verifying the relation [2.25],
W, (M, t) = W, (M, t) + AW (M, 1) | [2.25]

we note, since W; (M, t) and Wl (M, t) are elements of the space, that W* (M, t)
must verify the relations [2.26] and [2.27]:

Wr(M,)=0 YMeV, Vte |ty [2.26]
Wr (M, t) = Wr(M,t) =0 YMeV. [2.27]

The relations [2.26] and [2.27] confirm that virtual displacements do not form
part of the space Q, of real displacements.

By using virtual displacements compatible with Q, in [2.19], we obtain:

o2,
+0..+f =0

Sy ¥ (W, 0 o2 ij,j i

ij°

WH=0 VYW —p

[2.28]
VM, 1) e Vx]t,,t].
Let us now take the case of the space 2, containing the fields of displacements

free on the surface V and equal to solution displacements at the two moments t,
initial and t; final:

Q, = { WM, D[ WM. tp) = WM, 1) WM. 1) = WM. 1) ¥M eV} [2.9]

The decomposition [2.25] shows then that in general:
Wr(M,) =0 YMeV, Vtelty,t[, [2.30]

Using [2.30] in [2.19] we arrive at [2.21] that leads to the results [2.22] and
[2.23]. In more mathematical terms we write [2.31]:

Sy ¥ (Wi, 05, W) =0 VW

82W,
Lroytf=0 YOMyeVx]t.y[ 231

= P ot2

oin;=0 YM.)eVx]t.y.
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The functional space where the directional derivation of a functional is carried
out leads, as we have just demonstrated, to respecting different boundary conditions:

— for Q the boundary condition W; =0 V (M,t) e V x ] to t][ is prescribed;

— for Q; the boundary condition G n; = 0 YIM,t) e Vx]to,tl[ is deduced

from the calculation of extremum.

This duality of the prescribed and deduced boundary conditions depending on
the functional space where the directional derivation is carried out is general.
Similarly, we could also obtain deduced initial and final conditions rather than those
which we have prescribed:

WM, t) = Wi(M, t;), WM, t;) = W(M,t) VMeV,

However, the problems seldom arise in terms of initial and final conditions.
Indeed, all the conditions are deferred to the initial moment. Consequently, the use
of the variational technique to determine these conditions is generally unnecessary
and in the continuation we will always place ourselves in the case of prescribed
initial and final conditions.

2.2.5.Extremum of a functional calculus

We can give a physical image of the directional derivative based on the well-
known concept of extremum.

Let us consider the functional of the preceding section and more precisely the
expression [2.16]. For a fixed stress field j;, the solution displacement Wi(M, t) is
also fixed. If, moreover, we consider a particular field of virtual displacements
W, (M,t), the functional becomes nothing more than a function of the real variable A.

We write this function down as: fy,,(A) . That is:
fw. ) =¥ (W; + AW, 0p) [2.32]

Under these conditions, writing:

_ d _
Sy ¥ (W, o, W) = ——F (W, + AW 0 |, =0 [2.33]
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amounts to having:

Ofy. [0 (0) =0 [2.34]

The traditional results of real functions show that the function fy,,(A) presents

an extremum in 0, and that, taking into account [2.32], it is equal to ¥ (Wi , Gij). If
the condition [2.33] is verified for any virtual displacement Wi (M,t), all the

functions fW;O‘) present an extremum in 0 equal to ¥ (Wi , O'ij) .

Consequently, stating that the directional derivative 3,V (Wi i » W) is nil for
any virtual displacement W;* (M, t) , means that the functional presents an extremum
for the pair (W; ,cij) (i.e. is stationary):

— — Extr
Syt (W, 05, W =0 VW V(W0 = ?‘I’(Wi » ). [2.35]

As we have already stressed, the functional space where the calculation of
extremum is carried out must be specified. We will thus use the notation [2.35] for
saying that the extremum is obtained over the space Q.

The extremum can be a maximum or a minimum; to establish that the second
derivative of fy,,(A) needs to be calculated. There are two cases:

dsz*

— the extremum is a minimum if: dkzi 0)>0; [2.36a]
dsz*

— the extremum is a maximum if: d)»zi 0)<0. [2.36D]

There is no use in establishing whether the extremum of a functional is a
maximum or a minimum in terms of the equivalence of the variational formulation
and traditional formulation of the elastic solids vibration problems, since the only
condition of stationarity is necessary.

2.3. Reissner’s functional
2.3.1.Basic functional
The Reissner’s functional is of the mixed type, that is it depends on the two

variables (W, , o). It will make it possible to find the set of equations [2.1] — [2.5]
describing the Vi‘tj)rations of a continuous medium.
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Let us introduce two functional spaces QR(V X ] to, tl[ ) and ZR(V X ] to tl[ ) .

QR(VX]tO,tl[) is the space of the fields of kinematically acceptable
displacements W;(M, t). These displacements are real, defined over Vx]to ,tl[ ,

indefinitely derivable and verifying the imposed displacement boundary conditions
[2.37a] and the initial and final conditions [2.37b] and [2.37c]:

WM, ) =DM, 1) V(M€ Vpx]t,l. [2.37a]
WM, t)) = WM,t) VMeV, [2.37b]
WM, t) = W(M,t) VMeV, [2.37¢]

ZR(Vx]tO ,tl[) is the space of the real stress fields o;;(M,t), defined over

V x ] to ,tl[ and indefinitely derivable.
The Reissner’s functional R (W, ,cij) is defined by:

R;: QpXZp —> IR
(W, Gjj — R, (W;, Gjj

with:

t, 2
1 (W,

R(W.,c. :J. I[_p( 1] —0..e.+fW.

I A et ij 7 i1
yL2 (ot

| [2.38]
+50- S. le}dv+J. EW, dv |dt,

ij “ijkl

<

Sija 1s the inverse tensor of Cjjq characteristic of the elastic law of behavior [2.2]:

& = Sijk1 Okl |
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The following result can be stated: the directional derivatives of Reissner’s
functional wR; and 6,R; are equal to 0 for a pair (W, ,Eij) € Qp x Xy ifand only if
the pair ( , C: J) verifies equations [2.1] — [2.5]. It can also be said that the pair
( (5) render the Reissner’s functional R; stationary over the product space
Q. >< Z‘ if and only if it verifies equations [2.1] — [2.5]. We will note:

_ Ext — . .
R(W,,5;) = LRI(Wi ,0;) < (W, ,5;) verifies equations [2.1]—[2.5].
Y Qp xZp J e

To show the result stated previously it suffices to use the results of section 2.2.
Let us calculate the directional derivatives dwR; and 6,R;:

d _
SWRI( Gy » W) = d_R (W + AWz, Gij) , [2.39]

d W = 5
0 R (W » Gjj > IJ) a R](VVi » Gjj + Xcij , [2.40]

For 6wR,, after using the formulas of Green and of integration by parts over time
we obtain [2.41]:

Y aZWl B
SwR(W; 5. W = [ | | +o 1 | Wrdv
t, \V
[2.41]
j(cu n; — F) Wy dv - [n; W dv | dt.
vL
Similarly, for 6,R;, we obtain the relation [2.42]:
t,
8(SRI( 61_] > Glj J '[ (Sljkl Ol ~ 81J) of dvdt [2.42]

O

After setting the directional derivatives equal to 0, equations [2.43], [2.44] and
[2.45] are obtained from dwR; and equation [2.46] from O.R;:
SR (W, ( WH =0 VW

oW, [2.43]
+G+E=0 VM eVx]ty.y[,

i’ lJ’

& —p
ot2
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Syn=0 V(M. eVy x]tg. 1]

[2.44]
5n=E VM0 eVex]ty.1]. [2.45]
85 Ry(W;,G;,0%) =0 Vo

[2.46]

&8-S0 =0 YMHeVx]t.q.

The four relations [2.1], [2.2], [2.3] and [2.5] are easily found; the relation [2.4]
has already been prescribed taking into account the choice of functional space Qg

which imposed it a priori:

W, =D, V(M,1)eV x|ty [

2.3.2.Some particular cases of boundary conditions

a) Constrained medium

Consider the case where: VE =V and VL = VF =J.

The functional R, is reduced to [2.47]:

t 2
1 OW.
o= | [ [49(2) -ovs

t,\V

[2.47]
1
+ W, + Ecij Sijkl le} dVJ dt.

The functional space where extremalization is carried out is still defined by
Q. xZ;; however, t@ condition [2.37a] W; = D; must in this case be verified for
the entire boundary V of the continuous medium. If the imposed displacement is
nil, we will simply have W; = 0 over Vx]t, ,t,[ .

b) Free medium

Consider the case where: VL =V and VE = VF =J.

The Reissner’s functional is still given by [2.47], the functional space is Qr x Zg;
however, Vp being reduced to the empty set, the condition [2.37a] is no longer

prescribed; the kinematically acceptable displacements are free over the boundary of
the continuous medium.



60  Vibration in Continuous Media

2.3.3.Case of boundary conditions effects of rigidity and mass

In certain cases we are brought to introduce boundary conditions intermediate
between constrained and free surface. These conditions are characterized by a
rigidity K and a mass u; mathematically we use the following model type:

2W,

1

Gijnj:_KWi_“? V(M,t)eva]to,tl[; [2.48]

V, is part of the boundary V where the boundary condition [2.48] must be verified.

This type of boundary condition is in fact the most general; the traditional
conditions of constrained and of free surface are borderline cases of this condition:
we obtain a free surface by setting K = 0 and p = 0; a constrained surface by setting
p =0 and making K tend towards infinity.

__The problem of vibration of elastic solids thus consists of finding the pair
W, ,Eij) verifying equations [2.1] — [2.5], given at the beginning of the chapter, and
equation [2.48] above.

Moreover, we will have:
V=V, uV,uVu Vg
and:
ViNVg =V N V=V, n Ve =VenVp =V nVp =Vpn Ve =3

The variational form of this problem can be stated as follows: the couple (W, , ;)
render the Reissner’s functional R,(W;, G;) stationary over the product space Qg x 2g
if and only if it verifies equations [2.1] to [2.5] and [2.48], with:

2
1 OW.
_[ {EP(?j - o8 + W

tl
R,(W, ’Gij) = I
t, |V

%%.s..klok]} dv+ [EW 07 | [2.49]

1
Ve

t

| 2
+j jl kw2 o[ 25| v | at
22 at

t, <

The demonstration, identical to that of section 2.3.1, is left to the reader by way
of exercise.
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2.4. Hamilton’s functional
2.4.1.The basic functional

The Hamilton’s functional is a functional that depends only on the field of
displacements W;. It allows finding the equations of formulation in displacement of

the problems of elastic solid media vibrations. These equations have been provided
in Chapter 1, equations [1.64] — [1.67]. We will remind them here:

OZW.

p—a = Cya )+ 1 VM0 e Vx]ty, [, [2.50]
Cijk1 8anj =0 V(M’t)EVLX]tO’tl[, [2.51]
W, =D; V(M1 eVpx]tg . [2.52]
Gkt 8= F V(Mat)GVFX]to’tl[. [2.53]

We have the following result: the field of displacement Wl renders the
Hamilton’s functional H; stationary over the space of kinematically admissible
displacements Qp if and only if it verifies equations [2.50] —[2.53].

— Extr
H,(W) =
[ AN O

HW) < Wl verifies equations [2.50] —[2.53] [2.54]
R

with:

2 ot 2

t, 2
NEATE _
W) = | I{—p( IJ g Cijklskl—i-fiVVinV+ [Ewav |ar. [2.55)

L,V v,

To demonstrate this result, let us calculate the directional derivative of dwH;:

Y 0°W,
W *) — 1 = *
Sy HW. W = [ [ | =» —* G+ § | Wy
t\V

0

. t [2.56]
s * A1 * A7 6“[1 *
_J.Cijklgklnjwi dv+J-FiWi dv |dt + jp Wxdv | .
Y AV A%

ot
v, t

0
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The calculation of the directional derivative over the space Qg defined in [2.37]
involves the nullity of the last term of the left member of [2.56] and the following
equality:

J‘Cl_]kl B 1 W dv = J.Cijkl By 1 Wi dv
V.UV,

The directional derivative [2.56] is thus reduced to:

. Y 62W
Sy, W = [ [ [ =p—7+
Vv

t

+ (Cijg )+ F; | Wrrdv

[2.57]
- I(Cijkl g0 — E) W dv- Icijkl & 0y Wit dv | dt.
V. Y

F L

It follows that the nullity of the directional derivative for any virtual
displacement W,;" implies that W, must respect the relations [2.50], [2.51] and
[2.53]. In other words:

SyH (W, W) =0 VWr & W, verifies [2.50], [2.51], [2.53].
Moreover, as the boundary condition [2.52] has been prescribed by the choice of
the functional space Q, we duly obtain the result [2.54].
2.4.2.Some particular cases of boundary conditions
a) Boundary conditions presenting effects of mass and spring

We employ the same notations as in section 2.3.3. The Hamilton’s functional H,
becomes in this case:

-

t,\V

0

2
I(ow, 1 _
Ep[ atlj _Egijcijklskln“iwinw [Ew,av

[l V

F

[2.58]

J —%K(Wf]dv dt.
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The displacement Wl , which is the solution of the problem, must verify:

— Extr
Hy(W) = )

Hy (W) |
R

b) Constrained medium

In this case VE =V . The functional H; is reduced to:

Y 2

1 oW, 1

H(W) = J- J. EP(—G 'J ~ S Cijir 81 + W, |dv |dt, [2.59]
i\ t

We still have the result [2.54]; however, the condition [2.37a] which provides the
definition of the space Qg must be verified over the entire boundary V .

c) Free medium

In this case VL = V. The Hamilton’s functional is provided by [2.55] and the
space Qg is no longer subject to the condition [2.37a], since Vf is reduced to the
empty set. The kinematically admissible displacements are thus left free over the
entire boundary V of the continuous medium.

2.5. Approximate solutions

The exact solutions of the problems of elastic solid media vibration are generally
impossible to find and we must be satisfied with approximations. A way of
obtaining these approximations consists of using the geometrical characteristics of
the continuous medium to determine a priori simplified sets of displacements and
stress. These are the hypotheses of condensation which we will explain in detail in
the following chapters. Let us simply say here that spaces Qg and Xy are restricted to
spaces (), and X, verifying: Q.c Qr c . < Z.

The variational technique may be used directly for the study of approximate
solutions. Indeed, it is enough to carry out the calculation of extremum on the
subspace corresponding to the hypotheses of condensation. The approximate
solution of the problem (W, , Eij) can be found by writing:

~ Extr
R,(W,,c;) = WRI(Wi 2 )

ij
Cc X &C
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It is rather difficult to determine if the pair (W G, ) is close to the exact solution
pair ( 0) We can only affirm that in the product space Q¢ x Xc the pair
(W;, 5 ) is the best possible approximation. To the extent that the space Q¢ x Z¢
has been well selected, the approximate solution will be realistic. There are,
however, methods to quantify the validity of the approximation. On this subject we
may address ourselves to the article of Guyader [GUY 86] which uses a residual
functional to justify the assumption of thin plates.

It is the ease of obtaining the approached formulations, by simple restriction of
functional spaces where we carry out the calculation of extremum that constitutes
the main attraction of the variational method.

2.6. Euler equations associated to the extremum of a functional
2.6.1.Introduction and first example

Euler equations state the conditions that the functions, on which a functional
depends to become stationary, must verify. They thus make it possible to dispense
with the often long calculation of the directional derivatives. We present the method
of acquiring the Euler equations with two examples: firstly, when the unknown
function depends only on the variable of space (which corresponds to the problems
of statics of beams) and, secondly, in the next section, when the unknown function
depends on two variables of space and time (which corresponds to the problems of
vibrations of plates or shells). We will finally draw up a summary of the various
types of functionals and associated Euler equations, which will be useful to us
thereafter.

To begin with let us consider a functional of the form [2.60]:

Aly()) = | F(y(x))dx.. [2.60]

Oy

The functions y(x) are not constrained to verify any boundary condition in y(x)
and x = L (afterwards we will consider the case of prescribed boundary conditions).

We can interpret each function y(x) as a path of integration upon which the value
on the functional calculus depends. Calculating the extremum of the functional
consists in determining the path of integration y(x) placing the value of the
functional at its extremum. The calculation can be carried out thanks to the
directional derivative as we have highlighted in the preceding sections.
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Let us calculate the directional derivative of the functional in the neighborhood
of the function y(x) that is supposed to return the extremum of the functional. We
pose [2.61] and then carry out the calculation [2.62]:

y() = ¥(x) + Ay*(x) | [2.61]
%@ +ay" | = TEG +ay") | dx. [2.62]
dr A=0 o dh =0

Observing the rules of composed derivations, and supposing that the function F

di
depends on y(x) and its derivatives d_ for an i variable to the n™ order, it follows:
Xl

dA Ll oF
- }\’* — * - *
dx®+ y) ﬂ (y)y+ ()y

[2.63]

*
X0
X!

Let us transform [2.63] by integration by parts. After all the calculations it results in:

dA
- +7\‘*
dx@ y)k:

L n
oF d oF d
= || =F)-——@F)+ o+ (1) ———(F) |y* d&x
z'; oy dx 8y,X dx ay,x,,
r L
dn—]
ey ()] T —T [264]
« an—l ay .
L ’ 0
r L
dn 2
Ay Ol - E oF
’ 0y 12 dx"=2 9y _,
- L 0
OF
+| ¥* n_,(x)
X ay’xn
0
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Setting the directional derivative [2.64] equal to 0 for any virtual displacement
y*(x) implies verifying the following equations:

1) an equation to be verified in the domain x € ]0, L[:

T )L )ty L

- 1 =0.

o a0 y)=0; [2.65]

2) boundary conditions to be verified in x =0 and x = L:

OF . d oF ,_ e
—— (y)-— +..+ (-1 E— =0, 2.66
oy ¥)-— oy )+t P - (¥) [2.66]
and for 1 <i<n:

oF d &F ;A oF
= () — V)+ .+ (=1 - ——(y)=0. 2.67
g e s 267

The number of terms to be cumulated in the expression [2.67] varies with index
i: only the first (n — i + 1) terms are to be considered in the sum. For example, for
i=2, there are n — 1 terms to be cumulated, while for i = n, there remains only one
term and the limiting condition [2.67] is reduced to:

OF

=0

X!

Let us now consider the case where the functions y(x) are constrained to verify
the boundary conditions:

y(0)=c; and y(L)=c, [2.68]
andfor1 <i<n-1:

d . d .

dx}i/(O):c}) and d—x}il(L):c‘L. [2.69]

Taking into account the decomposition [2.61] and owing to the fact that the
function y(x) is a particular y(x) function, it follows:

y (=0 and y (L)=0, 2.70]
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andfor  <i<n-1:
d y* d y*
—(0)=0 and —([L)=0 [2.71]
dx' dx'
Setting the directional derivative equal to 0 over the space of functions y(x) that we
have just defined, taking into account the cancellation of the terms with boundaries in
[2.64] (consequently, of [2.70] and [2.71]), leads to the verification of solely equation

[2.65]. The boundary conditions are now prescribed by [2.68] and [2.69].

In short the calculation of extremum of the functional [2.60] gives the Euler
equation [2.65] to be verified in the domain 0, L[, and to the alternative choice of
prescribed or deduced boundary conditions ([2.66] or [2.68], [2.67] or [2.69]) that
has to be determined according to the problem considered.

As an example, let us take the case of n = 1.

The Euler equation to be verified Vx € ]0, L[ is reduced to:

. d ¢F
—( )———(_) 0. [2.72]
oy X 0y
The boundary conditions to choose alternatively are:
—forx=0:
either: ¥(0) =¢{ [2.73]
or: ED gy~ o; [2.74]
X
—for x=L:
cither: Y(L) =¢{ | [2.75]
r: v} ——=({L)=0. [2.76]

,X

If the functional depends on several functions y;(x):

A (yl(x) e yn(x)) =| F (yl(x) yees yn(x)) dx. [2.77]

Oy

A calculation similar to the preceding developments shows that the Euler
equations that we stipulated for a function y(x) must be verified for each function
¥;(x) in order to render the functional stationary.



68  Vibration in Continuous Media

Henceforth, in order to be concise, we will not mention anymore that the
equations are verified by the particular function y,(x). We will note, for example,
instead of [2.72]:

g d [2.78]

2.6.2.Second example: vibrations of plates

The functional [2.60] was of the type describing the problems of statics of
beams, since it depended only on the functions of the single variable of space x. In
order to obtain the Euler equations for a more general case, we will consider the case
of the functionals of the type describing the problems of vibrations of plates (see
Chapter 4), i.e. of the type [2.79]:

tI
AW x5, 0) = [ (W 6x.x;,0)dx dxy dt [2.79]

4,3
The functions W(x;, X,, t) that we consider hereafter are constrained to verify the
initial and final conditions:
W(x; 5 Xy, tg) = W(X;, Xy, t)
_ [2.80]
and W(x;, X, ,t) = W(x;,X,,t) V(x,X,) €S.

The function W(x1 ,X,,1) is the solution that we seek and we break up the
functions W(x, X,, t) in the usual manner:

W), Xy, 1) = W(X;, Xy, 1) + AW* (X, X, , 1) [2.81]

The calculation of the directional derivative dwA using the rules of chain
derivation yields:
1 OF
8y AW, W#) = J' J' —(W) We + (W) Wr
t, S aw,t

oF — oF — —
+— W)Wt + —— (W) W% + W) W 2.82
o Wi+ (W) Wy (W) Wi, [2.82]

) 2 vv,ll

(W) Wi, +
12 ,22

(W) W3, [dx, dx, dt.
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In order to write [2.82] we have supposed that the function F depended on W as
well as its partial derivative of the 1* order with respect to time and of the 2" order
with respect to the variables of space.

Hereafter, in order to avoid convoluted notation, we will not indicate that the
function F and its derivatives are to be calculated for the function W . We will note,
for example:

oF — oF
* by L
aw ™Yy

Using the formulas of integration by parts over time and of Ostrogradski for the
space variables, it follows:

t
oOF & oF & oF 0 oF
By AW, W) :'” — =
Ly loW oW, ax oW, ax, oW,

2 oF ?  oF 0 GF

+— + +— W dx, dx, dt
OxF OW,||  Ox0xy OW |, Ox3 OW,,
+t”W LooF (o o o eF
2| — [2.83]
t,S 6W1 oW, 0x; OW ) 0xy OW 5
0 OF
—n,—
X, OW 5,

t1
oF OF OF _
+ .[J. W+ n, +n, + W% n, dsdt.
tS oW, oW 1y oW,,
The terms at the boundaries over time which appear during integration by parts
are nil considering the hypothesis [2.80]. Quantities n; and n, are the direction
cosines of the normal vector external to the contour S of the plate.

The normal and tangential derivative W, and W are linked to the derivatives
W, and W, X by the following relations:

W, =Wmn +W,n, and W =W n,+W,n,
[2.84]
W, =nW, -n,W, and W,=n,W, -nW

80
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By introducing W, and W the third integral of the second member of [2.83]
becomes:

t

‘ OF oF
I J. W= | (n)? +n,n, + (n,)?

t ’ W W22

.S Wi 21
[2.85]
OF OF OF _
+ W+ n n, - -nj dsdt.
’ oW,, W, oW,
Observing that:
1 oF oF
[ [ws| nn, - —n3 dsdt
WS OWa OWy, 12
r oF  oF oF 1280
=— J.W* n n, - - n} dsdt,
& S OWp OWy, oW,

after calculation and suitable grouping of terms we obtain a new expression for
[2.83]:

% oF ?  oF @ oF
+ +—
ox{ oW, 0x0xy OW 0x3 aW,zz

t
l OF OF o0 OF
+IJW*[HI 1 +n, W, —n1(1+n%)—

] W+ dx, dx, dt

s GW 0 0x, 8W11
[2.87]
OF ; 0 OF ; 0 OF
—ny(1 +nf)— -ny — -n3—
0xX,y OW 5, X, OW %) OW |,
OF 0 OF _
+n,n — +n,n3— dsdt
0%y OW |, 0x, W,
OF
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Note: to apply the variational method the replacement of the first member of

[2.86] by the second member is obligatory since over S the tangential derivative
W is completely determined by the given of the function W’; these two quantities

thus cannot vary separately and must be grouped.
The Euler equations associated with the extremalization of the functional [2.87]

are obtained by writing:
SyA (W, W9 =0 VW
After calculation follows the equation of motion [2.88] and the boundary
conditions [2.89] —[2.92].

Equation of motion:
oF o0 OF 0 OF 0 OF

2 OF
+_

oW OtOW, ox W, ox, oW, ox} W,

02 oF 0* oF 0% oF O GF
t o + + = [2.88]
Ox10%y OW 1,  Ox5 OWp,  OX,0t OW,,  Oxj0t OW
V(x,X)) €S , Vte ]to,tl[.
Boundary conditions to be verified V (x,,x,) € S,Vte ] to-t [:
either  W(x1 x5 ,t) = d(x] X5 ,b), [2.89]
OF oF 2\ 0 OF
or nj + 27—n1(1+n2)—7
OF 0 OF 8 OF
Cny+nd) 2 —n} —n3 [2.90]
aXZ 5W,22 5X2 oW ,12 axl awlz
2 0 OF 2 0 OF
+ny nj — +ny ny — =0
6X2 6W’11 axl 6W,22

and:
either W, (x] X9 ,0) =C(x] X2 1), [2.91]
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2 OF 2 OF OF
or nj +1n3 +nyny ——=0, [2.92]

Wil oW oW1

where a(x1 »X5,t) and C(x;,X,,t) are the displacements and the normal derivative

of the displacements imposed on the boundary S of the plate. For a clamped
boundary, these two functions are nil.

2.6.3.Some results

Providing the Euler equations in very general cases of functionals is difficult,
taking into account the heaviness of the expressions that have to be handled, in
particular, boundary conditions. It has, however, appeared necessary to us to gather
the results which will be brought into use in the following chapters and which in fact
cover nearly all the functionals interesting for our purposes.

We still consider that the functionals depend only on one function in order not to
weigh down the writing since the case of functionals depending on several functions
amounts applying the results, which we provide, to each function. We are still in the
situation where the extremum is calculated over the set of functions verifying the
initial and final conditions.

2.6.3.1. Mechanical type functional of non-deformable solid

The functions describing these systems depend only on time; they are most often
generalized co-ordinates q;(t). The mechanical type functionals of not deformable
solid are thus of the form:

t

L(q(t)= J'F(q ) dt . [2.93]
tO

The function F depends on the function q(t) and on its first derivative q (t).

The Euler equation associated with the extremalization of [2.93] is given by
[2.94]; it is the simple form of the Lagrange equations:

oF d oF

———— =0 Vte|t,t
aq  dt oq, Jto-t[. [2.94]
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2.6.3.2. Static beam type functional

This case has been detailed in section 2.6.1, to which we refer the reader. The
functional of the type [2.60] leads to the equation of motion [2.65] and to the
boundary conditions [2.66] and [2.67].

2.6.3.3. Beams vibration type functional

The functions describing the vibratory behavior of beams depend on time and a
variable of space. The corresponding functionals are of the type:

-

O

L(W(x,t)=||F(W(x,t)dxdt. [2.95]

0

-

In the integrand of [2.95] we consider that the function F depends on W and on

its partial derivative 6J+1W / atox? which we will note W o » Where the index ]

varies from 1 to n.

The calculation of extremum of the functional leads to verifying an equation in
the domain and n boundary conditions:

Equation of motion:

OF & OF o OF o+l oF
——— +o (=D =0

oW atoW, x OW, ooX" oW,

[2.96]
V(X:t)E]O:L[X]to’tl[a
or in shortened form:
! g O oF
ZZ( D atlalaw -=0 v x0e]oLx]. ], [2.97]

i=

Let us observe that a nil derivation index indicates that there is no derivation.

For example:

ow s
W= W o=W. 2.98
O3 =3 @ Vo [2.98]
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The boundary conditions are given by the n alternatives to be verified in x = 0

and x = L at any moment te]to,tl[
for j=0,..,n—-1

cither % =0, [2.99]

b 077N [ OF
or - | —
Z( ) ox (8Wx, J
Let us take as an example the case n = 2. Equation [2.97] becomes:
OF 0 OF 0 OF +62 oF 0% oF

— + =0
oW ot oW, ox oW ox2 OW x  OxOt OW

0.

Y (x,t) € ]O,L[x ]to ,tl[.
The two boundary conditions are obtained with [2.99]:

either W=0,

OF _Of_oF | .
or a\V,x ox anx ,

and:
either w =0,
ox

or  _F
aWXx

2.6.3.4. Plates vibration type functional

This case has been described in section 2.6.2.

2.6.3.5. Three-dimensional medium vibration type functional

The functions describing the vibratory behavior depend on time and three
variables of space; the functionals are of the type:
tI
L (W (X15X5, X3, t)) = I '[F (W (X15%X5, X3, t))dx1 dx, dx, dt. [2.100]
£,V
We will suppose that the integrand depends on the function W and its first
derivative with respect to time and the three variables of space.
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The equation to verify V(X;,X,,X;) eV , Vte ] to ,tl[ is:

ﬂ_g oF _i oF _i oF _i oF =0 [2101]
OW  OtOW, Ox) OW,  Ox) OW,  Oxy OW

The boundary condition to verify V(x;,X,,X;) € V,Vte ]to , tl[ is given by
the alternative:

cither W =0, [2.102]

OF oF OF
or —n+——n,+——n;=0

2.103
ow, ™ aw, ™ aw, ; (2.103]

where n;, n,, n3 are the direction cosines of the external normal vector.

2.7. Conclusion

The variational method that we have just presented transforms the local
description in terms of equilibrium of force from Chapter 1 into a global description
in terms of energy; they are two manifestations of the same phenomenon.
Practically, the search for the solution of a problem is carried out by the calculation
of stationary point values of a functional over the set of fields of displacements
and/or admissible stresses. All the interest of the method consists in this particular
way of obtaining the solutions. Indeed, the complexity of the phenomena is such that
in general only approximations are possible. However, this search for approximate
solutions is performed in a simple and natural manner using the variational method
since it suffices to employ the same technique of calculation of extremum but on
subsets of the fields of displacements and/or admissible stresses. This restriction of
the fields is delicate because it is carried out a priori, taking into account the
characteristics of the studied elastic solid medium (geometry, stress type, etc.); these
are the assumptions of condensation, which owe their name to the fact that they
often lead to mono or bi-dimensional continuous media.

Several other functionals built on the same basic idea could be proposed; we
have limited ourselves here to the two principal ones, Reissner and Hamilton, which
will be used alternatively in the following discussion.
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From a mathematical point of view, the variational formulation is based on
directional derivation; this operation generally takes rather a long time to carry out
but can be curtailed considerably by the use of the Euler equations which stem from
it. For a certain number of standard functionals we have provided the Euler
equations. The rather heavy formalism requires a little training, for which the
following chapters will provide plenty of opportunity.



Chapter 3

Equation of Motion for Beams

3.1. Objective of the chapter

The three-dimensional equations of a continuous solid elastic medium vibrations
provided in Chapter 1 are of a great complexity and in general cannot be solved
analytically. However, elastic solids used in the mechanical engineering present
geometrical characteristics which simplify the mathematical analysis of their
vibrations. These simplifications made a priori have led to the theories of beams,
plates and shells. In the following chapters we will present the traditional
simplifications; let us state here that with the use of the variational approach, this
step will lead to “condensing” the three-dimensional continuous medium into a
simpler, bi or mono-dimensional, continuous medium.

Theories of beams consist of constructing mono-dimensional models and in this
sense represent the simplest continuous media. This simplicity is extremely useful
since it leads to obtaining analytical solutions of the problem equations and,
consequently, to studying the vibratory phenomena in a comprehensive fashion.

Research of the basic vibratory phenomena results in the identification of three
elementary movements: longitudinal vibrations, vibrations of torsion and bending
vibrations. Of course, such a decomposition of the beam movements is a
simplification based on a decoupling linked to the excitation type and the frequency
band. The study of coupled longitudinal movements, torsion and bending is possible,
but with an increased difficulty of resolution.

The equations will be set with the use of Reissner’s functional and, thus, of
mixed variables: tensor of stress and of displacements. However, purely for
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purposes of comparison we will provide the results obtained with Hamilton’s
functional. The approach is based on the calculation of the extremum of functionals
presented in Chapter 2 and more precisely on the use of the Euler equations. To
benefit from this chapter the reader must have a good grasp of the variational
techniques given in Chapter 2.

3.2. Hypotheses of condensation of straight beams

The defined mechanical medium is considered (Figure 3.1). Two of the
dimensions (width b and thickness h) of this mechanical medium are small
compared to the third (length L). Such a geometrical particularity leads to sides x,
and x; of the points of the continuous medium that never move away considerably
from the axis 1, which is the longitudinal axis of the beam passing through the
center of the cross-section x, = 0 and x;3 = 0. To exploit the preceding observation
mathematically we carry out a development of the components of displacement and
components of the tensor of stress of the solid medium in a Taylor series:

oW,
Wi(x,X5,%3,10) = Wi(x,,0,0,t) + x, —(x,,0,0,1)
aX2
AW, [3.1]
L(x;,0,0,t) +...

+X;3
3

00
Gij(xl,xz,x3,t):csij(xl,O,O,t)+ngu(xl,o,o,t)
? 5. [3.2]
+x3—u(x1,0,0,t)+...
0X4

Taking into account the field of variation of x, and x3, it appears reasonable to
truncate the developments [3.1] and [3.2] with linear terms; this is the beam
hypothesis.

The problem, therefore, is not solved since the functions Wi(x;,0,0,1),
OW.

—i (x1,0,0,1), etc., to be calculated require knowledge of W(x;,x,,X5,t) and
X2
of csij(x1 ,X5,X3,1) as well as their first derivatives in x, and x5 ; however, these are

precisely the unknowns of the problem. In fact, the developments [3.1] and [3.2] are
interesting for the shape of displacements and the tensor of the stress which they
suggest.
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A
v

3 L

Figure 3.1.Geometry of a beam

It is this general form which we will retain while writing down the fields of
displacements and of stress [3.3] and [3.4] as:

Wix;, X5, X5, 1) = \ViO(XI )+ Xz\Niz(Xl O+ x3\Vi3(x1 0, [3.3]
0;i(X) 5 Xy, X5, 1) = G?j(Xl S0+ X, (sizj(x1 L)+ X5 <5i3j(x1 ). [3.4]

They are formally identical to [3.1] and [3.2], but the functions
W', W? W' 6] ,0; and G; are now independent and must be adjusted in order to

verify as well as possible the equations of continuous medium vibrations.

Let us note that the displacement and stress fields [3.3] and [3.4] are too
simplified to verify in all points the three-dimensional equations of the continuous
solid elastic media vibrations provided equations [2.1] — [2.5] in Chapter 2 and are
thus mere approximations of the 3D solutions.

For beams, we will verify the equations of elastic solid media vibrations only in
the sense of an average over the cross-section. The equations which will result from
it will depend only on the variable of space x; and of the time; they are thus
characteristic of a mono-dimensional medium. This transformation of a three-
dimensional medium into a mono-dimensional medium via developments [3.3] and
[3.4] is sometimes called condensation and the hypotheses expressed by [3.3] and
[3.4] are the hypotheses of condensation.

We thus define a beam as a continuous medium the displacement and tensor of
stresses components of which can be tackled using the condensation hypotheses
[3.3] and [3.4] with an acceptable precision.
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Resolving the problem of vibrations of beams in general consists of determining
the 27 unknown functions of the fields [3.3] and [3.4], that is, to solve 27 paired
equations. This formidably complex task has not yet been performed. It is preferable
to simplify the condensation hypotheses [3.3] and [3.4] based on particular
excitations conditions. This amounts to breaking up the study of the vibrations of
beams into three elementary cases: longitudinal vibrations, vibrations of torsion and
bending vibrations. We will follow this procedure by identifying to the best possible
extent the hypotheses that underlie the equations that will be obtained.

3.3. Equations of longitudinalvibrations of straight beams
3.3.1.Basic equations with mixed variables

Initially, we will define the hypotheses of condensation adapted to the study of
the longitudinal vibrations of beams; in fact the issue is to preserve only the
dominating terms in the fields [3.3] and [3.4]. This simplification of displacement
and stress fields is carried out by a physical analysis of displacements and
constraints associated with the type of vibration considered. The operation is not
easy; in our opinion it constitutes the most delicate part of the modeling of dynamic
behavior of elastic solids.

Longitudinal vibrations of beams bring about considerable displacements along
axis 1 and weak displacements along axes 2 and 3; we accept, moreover, that the
displacement along axis 1 is the same for all the points of the same cross-section,
that is:

W](X] > X2 > X3 > t) = WO(X] > t) >
W, (xy,%,,%5,0) =0, [3.5]
Wi(x,%,,%5,0) =0.

The field of displacement [3.5] is of course a first approximation of the real
movement; it must be noted that the Poisson effect, which describes the reduction of
the cross-section when the beam lengthens, is not taken into account. We could
consider a finer theory taking this effect into account by using the field of
displacement [3.6]:

Wl(xl ’ X2 ’ X3 ’ t) = Wlo(xl s t) ]
Wy(x, Xy, X5, 1) = X, W(x,, 1) [3.6]

Wi(X,, X, ,Xq, 1) = X3W3(x; , 1)
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To understand the physical significance of the hypotheses, the reader could
proceed graphically in the following manner. Let us consider a rectangular cross-
section and represent the displacements of its points induced by the term Wlo(x1 ,1)
(Figure 3.2). It is a displacement following axis 1 identical for all the points of a
given cross-section; it is thus a translation of the cross-sections along axis 1.

2 W]O(X] ’ t)

\/

=
Y

Figure 3.2.Graphic representation of displacement Wlo(xl ,)

Figure 3.3 depicts the displacement ><2W22()<1 ,t) representing a movement of
flattening and swelling of the cross-section along axis 2; the term X3W33(x1,t)
represents the same type of movement following axis 3.

These two movements characterize the Poisson effect, that is, the reduction of
the cross-section when the beam is extended by traction or the increase in the cross-
section when the beam is subjected to a longitudinal compression.

We leave the task to interpret each term of the fields [3.3] and [3.4] to the reader
by way of exercise.
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1o

( (h/2)W22 (%459

/ “/,gv —(W/2)WZ (x;,1)

'V ~(b2)W,

Y

NN

/ ' E
(b2)W3(x,, 1)

Figure 3.3.Graphic representation of displacements
X, W3(x, , t) and x3W3(x,, t)

In terms of stresses we suppose that the effect of traction-compression
dominates, that is that longitudinal stress o;; is considerably greater than other
stresses. We pose:

6] I(Xl s X2 s X3 s t) = G?l(xl s t) s

csij(x1 ,Xy,X5,1) =0 if (i,j) = (1, 1) [3.7]

The fields [3.5] and [3.7] constitute the hypotheses of condensation which we
consider for the study of longitudinal vibrations; we will thus neglect the Poisson
effect in the rest of the discussion.

To obtain the equations of motion and the boundary conditions which must be
verified by WU(x,,t) and of(x,,t) we use the Reissner’s functional defined in
Chapter 2 (equation [2.38]) supposing that the external surface forces are nil F; =0.
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Generally:

t

NI
1’1_| .

tV2

When restricting W; and o to [3.5] and [3.7] and replacing them, taking into
account the fact that the force of volume f; is null in free vibration, it follows:

1
] — Gy &t = 5 55 Slel Gy + ijdth [3.8]

t
aw 1
Wihofy) = .” _p{ ] _011W11+2‘5?1S11110?1 dvdt. [3.9]
iV

The dependence of the stress and displacements fields being fixed on x, and x;
we can integrate over the cross-section of the beam; separating the integral of
volume into an integral over the length and one over the cross-section, it follows:

t 2
0 o0y [ | Lol @ owo 4 Lgig0y2 d
ROWof) = [ [| S| 1 | = Sof W, + S, |dx, dt, [3.10]
o2 L 2

where S is the cross-section of the beam, possibly a function of x, for a beam with a
variable section.

Integration over the cross-section condenses the continuous medium since the
unknown functions are dependent only on the variable of space x;. From a physical
point of view, this approach makes it possible to verify the equations of elastic solid
continuous media globally over the cross-section and no longer in every point. The
reader can realize this by introducing [3.5] and [3.7] into the three-dimensional
equations given in Chapter 2 (equations [2.1] — [2.5]) and by noting that these
cannot be verified.

To obtain the partial derivative equations characteristic of longitudinal vibrations
of straight beams, it suffices to render the functional [3.10] stationary. Calculation is
quite simple if the results of Chapter 2 for the Euler equations associated with a
functional are used. For example, the application of equation [2.97] of Chapter 2, to
our case, yields:

oF 0 OoF 0 OF

W) Gt oWD,  ox, oW,
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and:

F
a—ozo.
8011

Upon calculation that gives the equation of motion [3.11] and the stress-strain
relation [3.12]:

Stress-strain relation:

82W0
ot2

oS _ai(3091)=0 vt,vx €0, [3.11]
X
1

Relation of beam behavior:

WY
~S—L +860,S,,,,=0 Vt,Vx e]0,L][. [3.12]

X

By application of equations [2.99] of Chapter 2, we obtain the boundary
conditions:

either W (x,; ,)=0 Vt,x,=0 and x,=L
[3.13]

or Wlo(xl D=0 :>SG?1=O Vt,x;=0 and x,=L.

The boundary conditions are given in the form of an alternative which is always
interpreted as the nullity of a displacement or that of a constraint. In our case we will
speak of a clamped end when displacement is imposed as nil and of a free end when
the displacement is left free of all movement. Taking into account [3.13], these two
boundary conditions will be translated mathematically by:

free end: W' =0,

clamped end: So}, =0.
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A beam in longitudinal vibration will thus take three types of basic boundary
conditions:

clamped-clamped: Wlo (0 ,t) =0 and Wlo (L ,t) =0 Vt; [3.14]
free-clamped: Sc?l (0 ,t) =0 and WIO (L ,t) =0 Vt; [3.15]
free-free: So),(0,t)=0 and So} (L,t)=0 Vt. [3.16]

3.3.2.Equations with displacement variables

In order to limit the number of unknown functions and equations, we often
proceed by substitution in the equations in order to make the variables of stress
disappear and thus to formulate the problem using only displacement variables.

Let us draw from [3.12] the value of cs?l(x1 ,t) according to WIO(X1 )¢

1 owo
ofy(x;, ) = ———1

1111 1

(x51) - [3.17]

For an isotropic material with a Young modulus E, we have S, =1/E it
follows:

owW?

cs?l(x1 ) =E—1L

X

(xq,0). [3.18]

Substituting [3.18] in [3.11], we obtain the equation of the free vibrations with
displacement variables:

o8 aZWIO i 8W10
o2 0x,

ES—L|=0 vt,Vvx e]o0,L[. [3.19]
aX1
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Substituting [3.18] in [3.13] we obtain the boundary conditions in displacement
variables:

cither W(x, ,)=0 Vt, x;=0 and x; =L
[3.20]

0
or ES oW,
ox

(x;,)=0 Vt,x,=0and x,=L.
1

In the particular case of the homogenous beam (it is the simplest case, which is,
in fact, one of the rare cases that can be solved without difficulty (see Chapter 5)) it
is supposed that E,p and S are constant at every point of the beam which leads to
the equations:

Equation of vibrations:

aZVV]O aZVV]O
—ES =0 Vvt,Vx e]0,L[. [3.21]
o2 ox?

pS

Boundary conditions:
either W'(x; /=0 Vt, x;=0 and x;=L

[3.22]

ow
or ES—/—(x; )=0 Vt,x;=0 and x;=L.
0

X1

3.3.3.Equations with displacement variables obtained by Hamilton’s functional

The formulations in displacements no longer consider stresses as variables
independent of displacement, but as quantities related by the three-dimensional
stress-strain relation:

S = Cijkt &1 - [3.23]

The hypotheses of condensation should thus only relate to displacements, the
values of the stresses being the direct consequence of respecting [3.23]. Taking
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again the field of displacements [3.5] we deduce with the help of [3.23] the
associated field of stresses; for an isotropic material we have:

_ 0 _ 0 _ 0
S11 —C1111W1,1 » 022 —C2211W1,1 » 033 —C3311W1,1’

[3.24]
01, =05, =0,03=03=0, 03 =0)3=0.

The field of stresses [3.24] is different from [3.7] since the components of the
tensor of stresses 6,, and o35 are non-nil since the coefficients C,,,; and Cy3,
are non-nil. It is, in fact, less realistic since from a physical point of view o,, and
o33 must be weak; indeed, the boundary conditions in any point of the external
surface of the beam are that of a free surface:

c.n =0, [3.25]

where the quantities n; are the direction cosines of the external normal vector n to
the external surface ofJ the beam. Their values are illustrated in Figure 3.4.

Let us place ourselves at the point (x,,h/2,x;) on the external surface of the
beam (n; =0,n, =1,n; =0). We deduce from [3.25] that:

Oyy(x;,0/2,%x5)=0.

Placing ourselves at other points of the surface, we would obtain in the same
manner:

0,5(% ,—h/2,x3) =0, o3(x,X%, ,b/2) =0, o3(x,%, ,—b/2) =0.

Figure 3.4.Normal vector external to surface of the beam
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The thickness and the width of the beam are small by hypothesis and the stresses
thus only vary a little throughout the cross-section, that is ,, 0 and o, %0,

which is contradictory with the hypotheses [3.24] but corresponds perfectly to [3.7].
We see here the great disadvantage of the formulation with displacements, which
associates a much less realistic state of stresses to a realistic simplification of the

field of displacements.

Using the field of displacements [3.5] in Hamilton’s functional (equation [2.55],
Chapter 2) it follows after integration over the cross-section:

L 2 2
1 (oW oWY
H (WP(x1 ) t))= f j EpS (—1] -Cip1S [gl] dx, dt. [3.26]
t, 0 1

The calculation of the stationarity of the functional [3.26], taking into account
the results of Chapter 2, leads to the equations:

Equation of vibrations:

s W) g WO
o ox,

leS—lJ=O Vt,Vx e]o,L[. [3.27]
ax1

Boundary conditions:
either Wlo(xl =0 Vt,x;=0and x;=L

[3.28]

0

oW,
or Gy S 2 L(x;.)=0 Vt,x;=0and x;=L.
X1

Equations [3.27] and [3.28] correspond to [3.19] and [3.20]. There exists,
however, a difference on the level of the equations coefficients since
Ciin# l/S““. For an isotropic material, for example, we have S, = 1/E and

C““:E(l—v2)/(1+v) (1-2v).
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The comparison with experience shows that the results drawn from equations
[3.19] and [3.20] are more satisfactory than those drawn from [3.27] and [3.28]. This
established fact has led the users of formulations with displacements to amend the
three-dimensional stress-strain relation in the case of beam or plate. We pose for the
beams: C,;;; = E. At this cost the formulations with displacements and mixed
formulations lead to the same results.

3.4. Equations of vibrations of torsion of straight beams
3.4.1.Basic equations with mixed variables

Once again we adopt the methodology applied in the preceding section. It is thus
necessary to define the hypotheses of condensation as the first step. The movement
of torsion is characterized by a rotation of the cross-sections around the longitudinal
axis of the beam; the stresses that result from it are of a shearing type. The fields of
displacements and stresses of the beam are reduced under these conditions to:

Wi(X,%X,,%5,1) =0,
Wy(X[,X,,X3,0) =—X3 0 (X, 1), [3.29]

Wi(x(, Xy, X3, ) =+ X, 0 (X), 1) ;

6;;=0,0y)=0,053=0,0,3=03 =0,
[3.30]
Ojy =0y = X3 T(X),1) , 013 =031 = X, T(X[, D).

To depict the field of displacements [3.29] we have traced the displacements in a
cross-section in Figure 3.5. The quantity o(x,,t) is the angle of torsion
characteristic of the rotation of the cross-sections. The stresses associated with the
movement of torsion are pure shear stresses.

Note: the hypotheses of condensation [3.29] and [3.30] are applicable to beams
having a cross-section symmetrical with respect to axis 1 (in particular, circular). A
non-symmetrical cross-section would introduce a coupling with the bending.
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—X3 0%y, t)

Figure 3.5.Displacements in a cross-section corresponding
to the field of displacement [3.29]

Let us calculate the Reissner’s functional of the problem by introducing [3.29]
and [3.30] in equation [2.38] of Chapter 2. For a beam homogenous in the cross-
section and consisting of an isotropic material, it follows (the calculation is left to
the reader as an exercise):

t

L oo 2 oo
R(a(xl,t),r(xl,t))zﬂ Eplo(aj L
%0 [3.31]

+48,,, 1, 7% |dxdt,

with I, :IJ(X§+X§) dx, dx; .
S

Let us now apply the results of Chapter 2 concerning the extremalization of the
functional [3.31]. Noting S;,,, = 1/4G where G is the Coulomb module of material,
we obtain:

Equation of motion:

0% 5
PIOE‘K(IM):O Vt, Vx e]o,Ll[. [3.32]
1
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Stress-strain relation:

oa.
[,—=1

T
— Vt,Vx €]|0,L]. [3.33]
Eeng vevselod

Boundary conditions:
either a(x; ,t)=0 Vt, x;=0 and x;=L

[3.34]

or (X,(Xl,t)¢0 :IOI(Xl,t)ZO vt,XIZO andXIZL.

The term I t(x;,t) is homogenous with a torque, it is the torsional moment
which is opposed to the rotation of torsion o (x;,t) .

Equations [3.32], [3.33] and [3.34] define the problem of pure torsion of
isotropic beams; they result from a simplification of three-dimensional movement,
realistic for beams with cross-sections symmetrical or nearly symmetrical with
respect to axis 1.

3.4.2.Equation with displacements

It is enough to draw 1 (x;,t) on the basis of a(x;,t) from equation [3.33]:

r:G% vt,vxe]o,L], [3.35]

1

then to replace t (x;, t) with its expression resulting from [3.35] in the equation of
motion [3.32], that is:

o2
p‘oma%[l‘)c’a%aj:” vi. vy elo.Ll. 1336
1 1
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Similarly, we obtain for the boundary conditions:

either a(x;,)=0 Vt,x;, =0, x,=L

[3.37]
oo

or OL(XI ,t);tO :IoGa_(Xl ,t):O Vt,x1=0,X1=L.
X

oa. . . .
The term 1, G — (Xl , t) is the torsional moment expressed on the basis of the

0x,

angle of torsion.

Let us examine the particular case of the homogenous isotropic beam: it is the
simplest case. It is supposed that G, p and I are constants. The equations with
displacements are simplified and become:

Equation of vibrations:

0% 0%a
91057_10(}5)(_2:0 Vi, Vx e]0,L][. [3.38]
1

Boundary conditions:

either a(x;,t)=0 Vt,x, =0, x;,=L

[3.39]

or a(x; )#0 =1, G%(xl H=0 Vt,x=0,x=L.
1

Note:

a) The boundary conditions of a beam in vibrations of torsion are of two types:

—clamped end: a(x;,t) =0 (zero rotation of the cross-section);

0
—free end: 1, G g(x (x;,t) =0 (zero torque).
1

A beam in vibration of torsion could thus be clamped-clamped, clamped-free or
free-free.
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b) The equations of vibrations of torsion of homogenous and isotropic beams
[3.38] and [3.39] are formally identical to the equations of longitudinal vibrations of
homogenous and isotropic beams [3.21] and [3.22]. This similarity is surprising
enough taking into account the difference of the two movements considered; on the
other hand, it is very practical since it makes it possible to study the two vibratory
movements in the same way. In fact, equations [3.21], [3.22] and [3.38], [3.39] are
also found in the two problems of sound pipes and of vibrating cords. Equation
[3.21] or [3.38], representative of several vibratory phenomena, has received the
name of the “waves equation”.

c) The representations with displacements have the advantage of limiting the
number of unknowns while making the components of the tensor of stresses
disappear; however, many students use the equations with displacements without
noting the relation of displacements with the components of the tensor of stresses.
Such a presentation of the problem gives access to resonance frequencies, but can be
misleading when we want to determine the most affected parts of the structure. It is
indeed common to assimilate “strong stress” with “strong displacement”, which in
general is not true; according to the cases in question, a vibratory amplitude antinode
corresponds to a stresses node or antinode.

d) The direct formulation with displacements using the hypotheses of
condensation [3.29] in the Hamilton’s functional again yields equations [3.38] and
[3.39]. For the problem of torsion there is not only formal similarity between the
direct formulation with displacements and that resulting from the formulation in
mixed variables, as is the case for longitudinal vibrations, but there is a perfect
correspondence of the two formulations.

3.5. Equations of bending vibrations of straight beams
3.5.1.Basic equations with mixed variables: Timoshenko’s beam

The bending of straight beams represents a simultaneously transverse and
longitudinal vibratory movement (rotation of the cross-sections), introducing
longitudinal and shearing stresses. Setting out again the basic hypotheses of
condensation of beams [3.3] and [3.4] and preserving only the terms prevalent in
this vibratory state, we define the hypotheses of condensation of bending of beams:
axis 1 coincides with the middle fiber of the beam, that is, the locations of the
centers of gravity of the cross-sections.
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Displacements:
Wi, X5, X5, 1) = X, W2(x, , 1),
Wy(X;, Xy, X5, 1) = Wg(xl 1), [3.40]
Wi(x),X,5,X5,1) =0.

Figure 3.6 shows the displacements of bending, which correspond to a dominant
movement of translation of cross-sections along axis 2 and a rotation of the cross-
sections with respect to axis 3.

Tensor of stresses:
011(X) Xy, X5, 1) = X, 671X, 1) 5 Oyn(X),X,,X5,1) =0,
035(X5 X5, X5, 1) =0, 65(X), Xy, X5, 1) :cs?z(xl L0, [3.41]
013X, Xy, X3,0) =0, 0x5(X),X5,%5,1) =0.

Note:

a) Relations [3.40] and [3.41] introduce an effect of shearing via the term G?z;
taking it into account is characteristic of Timoshenko’s hypothesis.

b) These hypotheses correspond to bending in the (1, 2) plane. We could also
introduce bending into the (1, 3) plane by permutation of indices 2 and 3 in [3.40]
and [3.41], and define the bending in space by summing up the fields.

c) These hypotheses are realistic if the cross-section presents symmetry with
respect to axis 3.

Solving the problem of bending consists of determining the four unknown
functions le , Wg , 6121 s 6?2 . We will employ Reissner’s functional to establish the
equations which these unknown functions must verify.

We place ourselves within the framework of an orthotropic material whose
orthotropism planes coincide with the planes defined by our system of axes (1, 2, 3).
In this case the stress-strain relation is given by:

b Sii115112251133 0 0 0 O11

&2 $22118222080033 0 0 0 022

€33 [ _ | S33115332053333 0 0 0 033 [3.42]
€y 0 0 0 S,, 0 0 2012 ’ '
€3 0 0 0 0 S530 203

€3 0 0 0 0 0 Sy53)l20
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m— |

/ N W0

Figure 3.6a.Transverse displacement Wzo(xl ,1).

It is a translation of the cross-section along axis 2

[‘ (h/2) le(xl ,t)

/

3

Figure 3.6b.Longitudinal displacement X2W12(X1 ,1).

It is a rotation of the cross-section with respect to axis 3

The correspondence between the tensors Sijkl and Cijkl has been detailed in
many works. However, to illustrate this correspondence, let us take the term ¢, . It
comes with the 4™ line from the preceding system: €, = S5y, 26}, . We also had:
61, = C,515 2¢;, - The identification leads to:

1

— [3.43]
4C1212

Si212 =

Injecting the fields [3.42] and [3.43] into Reissner’s functional [2.38], it follows:
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t 2 2
\ 1 OW2 OWY9
_ 1 2
R(\VIZ s Wg s 0121 s G?Z) = J‘ J. E p (Xz TJ + [TJ
t, V

oWy OW?
2 W, I

— o, - o, W —x3 ofy P [3-44]
1 X

1
+ Py (51111("2 of)? + 431212(0?2)2) dvdt.

For the type of material considered, S;,,, =0 (and all the symmetrical terms).

Noting I3 :J‘xg ds and S:J.ds after integration on the cross-section, it

S S
follows:
t 2
1 6W2 oW9
R(WZ, WY, 0?,,00,) = Ij — +S 2
2 ot
t, 0
oWy oW2
- Scs?2 —2 _ Sclzw 3(511 1 [3.45]
X X
1
Y (81111 L(of)? + 4S5, 3(0?2)2) dxdt.
The calculation of extremum of the functional [3.45] leads to the equations:
PWE 5
~Sof, —ply———+—(;02) =0 Vt, Vx, e]0,L[, [3.46]
ot2 0%,
2w 5
—pS +—(Sa%) =0 Vt,Vx, el0,L[, [3.47]
ot2 0%,
) oWy
~S| W +a_ +Sp5,80% =0 Vt,Vvx e]0,L[, [3.48]
X
1

X
1
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Relations [3.46] and [3.47] are the equations of motion following axes 1 and 2;
relations [3.48] and [3.49] are the stress-strain relation of the beam for 0?2 and 0121 .

The boundary conditions are given by the relations:

Wgzo or 50?2:0 and le =0 or 13(5121:0
[3.50]
Vt,x=0and x; =L.

The term Scs?2 is homogenous with a force which is opposed to transverse
displacement, which is called shearing force; it is introduced by the shearing 0?2.

The term 136121 is homogenous to a torque opposed to the rotation of cross-sections

and is called bending moment.

There will thus be a set of four boundary conditions possible for each end of the
beam:

a) W) =0 and W’ =0

The two movements along axes 1 and 2 are blocked. The end will be said to be
clamped;

b) W) =0 and 1,5}, =0

Transverse movement is blocked, longitudinal movement is free. The end will be
said to be supported;

¢) So}, =0 and 1,5}, =0

Both movements, longitudinal and transverse, are free, the constraints which
correspond to them are nil, and the end is free;

d) W’ =0 and So}, =0

Longitudinal displacement is nil; transverse displacement is free. This boundary
condition, difficult to realize in practice, is said to be guided.

A bending beam could thus be clamped-clamped, clamped-supported, etc.

3.5.2.Equations with displacementariables: Timoshenko’s beam

It is enough to draw 0?2 and (5121 from equations [3.48] and [3.49]:
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1 WY
o, = (W12+ 2} Vt, Vx e]0,L[, [3.51]
48 ox
1212 1
1 2
0121:—% Vt, ¥x e]0,L[, [3.52]
S Ox
1111 1

then to introduce these expressions into equations [3.46] and [3.47] which become:

02W?2 WO 1 W2
o, N s [Wlm ] i[_a_lzo

o2 48 ox, | Jox | S, ox
1212 1 1 1111 1 [3-53]
Vt,Vx e]0,L],
W) 5 S OWO
P a22+a_ pe il |
t X
1 1212 1 [3_54]

Vt, Vx e]0,Ll.

The boundary conditions [3.50] are given by:

WO
either WY =0, or 5 W12+a 2 =0 Vt, x,=0,x,=L  [3.55]
4S1212 ax1

and

I, oW}

1 0%

either W7=0, or =0 Vt, x;, =0, x, =L. [3.56]

The writing with displacement variables reveals only two unknowns: the
transverse displacement and the rotation of cross-sections. In practice, rotations of
cross-sections are not accessible in experiments and the principal demonstration of
the bending of beams is transverse displacement Wg . It is thus interesting to give
only one equation function of this quantity. This is possible for homogenous beams
by carrying out the following operations on equations [3.53] and [3.54]: we draw the
value of 6W12/8x1 from [3.54] according to Wg , and we then derive [3.53] with
respect to x; and replace 8W12 / 0x, by the expression obtained. This processing that
we do not carry out in detail leads to the equation:
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LW 2wy WY
T +PS—; +4p2 1, S5, ——
Sllll aXl ot at4
<) otwo [3.57a]
—pl| 1442212 | — 2 _¢
Sllll 8X128t2

If we introduce the modules of Coulomb G and Young E with:

while noting Wg as W to reduce the writing, it follows:

G

HW W 2l 4w EY W
—pl3[ + j [3.57b]

EL; +pS + =0
oxt ot? G ot ox? ot?

It is the most synthetic equation of beams with shearing and rotational inertia; let
us recall that it is limited to homogenous beams.

A correction of the modulus of rigidity noted G' is often introduced with:
G'=0aG.

The multiplication coefficient o traditionally introduced to characterize the
correction of shearing obviously does not have anything to do with the angle of
torsion introduced in section 3.3.

This correction appears because the constant form of the shear stress throughout
the thickness of the beam is very approximate. To realize the approximation, it is
enough to note that to verify the boundary condition of the free surface, the shearing
stress must be nil over these surfaces, which is not verified by the hypotheses.

We may clearly see that the form of the cross-section will have an influence on
the correction that has to be applied. Various authors have been interested in this
problem and have calculated the o corrections that have to be applied by comparing
the solution with constant stress and a precise calculation of the shearing stress. We
provide some corrections of the shearing modulus taken from the following
references: Cowper [COW 66], Dharmarajan and McCutchen [DHA 73]:
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a) beam with a circular cross-section made of an orthotropic material:

6F; .
TE; - 2\/13G13

E, is the Young modulus, v,; is the Poisson’s ratio, and G5 is the shearing
modulus.

b) beam with a circular cross-section made of an isotropic material:

C6(1+v)
T+6v

¢) beam with a rectangular cross-section made of an orthotropic material:
SE
o=—3
6E; —vi3Gy3
d) beam with a rectangular cross-section made of an isotropic material:

Lo lo(ry)
12+11v

e) hollow tube with a circular cross-section (a and b are the interior and exterior
diameters) made of an orthotropic material:

- 6Ey(m? — 1) (1 + m?)
Ey(7Tm® + 27m* — 27m?2 — 7) — v;3G,5(2m% + 18m* — 18m? - 2)

withm = b/a .
For thin-walled tubes m ~ 1, the expression of a is simplified:
_ E; )
2E; —vi3Gp3

f) hollow tube with a circular cross-section made of an isotropic material (case of
the thin wallm =~ 1):

2(1
g2 24+
2+4v
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3.5.3.Basic equations with mixed variables: Euler-Bernoulli beam

The hypotheses that we will describe rest on the fact that shearing stress 0?2 is
generally low and can thus be neglected in the first approximation. By using the
relation [3.48] which in Timoshenko’s model connects this shearing stress with the
displacements W7 and WY, we note that if of, =0, we have W = —6W§/8x1 )
These observations result in adopting the following hypotheses of condensation
when transverse shearing is neglected:

Displacements:

AWAY
Wl(Xl,Xz,X:;,t) = —X2—2(X1,t),
6X]

Wy(x, Xy, %5, 1) = Wi, , 1), [3.58]

Wi(x;, X, ,X5,1) =0.
The displacements translate the equality of the rotation angle of the cross-
sections with the slope of transverse displacement.
Tensors of stresses:
Gll(Xl 7X2 9X3 9t) = X2 0121()(1 9t) > 022(X1 7X2 7X3 7t) = On
033(X1 Xy, X5, 1) = 0, 015(X), X, , X5, 1) =0)(x;, 1), [3.59]
013X, Xy, X3,0) =0, 055(X;,%,,X3,1) =0.

Upon introducing these displacements and stress fields into the Reissner’s
functional (equation [2.38], Chapter 2), it follows after calculations:

2wy Y’ ows Y
0,67) = j I +ps| 2
0x,0t ot
WY
-Lof vy +1;8;,(07)? |dx, dt.

[3.60]
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The calculation of extremum of the functional [3.60] leads to the equations:
Equation of motion:

2wy 5 WY 02 5
-pS St Pl ——2(13(511):0
ot 0x, Ox,0t 0X{
[3.61]
Vi, Vx e]O,L[.
Stress-strain relation:
2WY )
~L—=+ 18,07, =0 Vt, Vx e]o,L[. [3.62]
1
Boundary conditions:
let WZO =0, let axi(l_g 0121)20 vt, X1 =0 and X1 =L [363]
1
and
0
let aa&:o,let I;of,=0 Vt,x;=0and x,=L- [3.64]
X1

3.5.4.Equations of the Eule-Bernoulli beam with displacement variable

To obtain the equations of Bernoulli’s beam as a function of the transverse
displacement of cross-sections variable Wg(x1 ,t), it suffices to draw 6121()(1 ,t) from
equation [3.62] and then to replace in [3.61], [3.63] and [3.64]:

1 62Wg
o7, = 5 [3.65]
Sllll aX1
Equation of motion:
2WO 3WwO 2 2WO
AL SN Ve ) Il L A
o2 ox | Cox e | x2S, oxd [3.66]

vVt ,Vxle]O,L[.
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Boundary conditions:

2,0
either WS:O , Or o)L 2 VZZ =0
X1\ Siin oxg

3.67]
VvVt 5 X1:O and X1:L

and
‘ ow? L, o*wW!
either 2-0,0r =~ "2

0x; St 5‘X12

=0 Vt,x;=0and x;=L. [3.68]

To obtain the traditional equation of bending beams vibrations we must introduce
an additional simplification neglecting the effects of rotational inertia of the beam.

PWY
ot2

0
We thus neglect 8_ ply

in [3.66], which while replacing l/Sllll by
X Oxy

E; (Young’s modulus of material in the longitudinal direction) yields:

Equation of motion:

2WY o2 2WY
TP TN
1

6712}0 Vt, Vx €]0,L[. [3.69]

Boundary conditions:

2vx70
either W20=0 , or 61[13 Ela VZz ]zO Vt,x;=0and x;, =L [3.70a]
X1 0x{

and
0 21470
either oW =0, orl, Ela W =0 Vt,x;=0and x;=L. [3.70b]
X ax%

Note:

a) Vibratory movement is described by equations which no longer reveal the
stresses, but the latter are of course always present and can be calculated with the
expression [3.65] as long as Wg(x1 ,t) is known.

b) Equations with displacements [3.69] and [3.70] could be obtained directly
with the Hamilton’s functional, but would require a modification of the elastic
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constants of three-dimensional material, as for the longitudinal beams vibrations
(see section 3.3.3). The functional to be used in this case is given by:

t 200 \2
ps aWO _EIf 2°W;
H(WQ(x, . 1)) = dxdt. 3.71

¢) In the case of isotropic material, equations [3.69], [3.70] and [3.71] of course
remain valid; the longitudinal Young modulus is then simply the Young modulus of
the isotropic material.

o 02W3 o . .
d) The quantity—| E; I5 , appearing in [3.70hnd placed in duality
0%y ox2

with the displacemenw9 , is homogenous to a fordgis called theshearing force.

529 |
, appearing in [3.71] and ppsed to the tation of the

The quantity E; I3
)
cross—sectionsﬁs‘?WS/f)x1 is homogenous to a torque: it is called bending moment.

3.6. Complex vibratory movements: sangich beam with a flexible inside

The hypotheses of condensation which we have used in the preceding sections
describe the three elementary vibratory movements of beams homogenous in the
cross-section. The non-hormegus beam has more complex states of stresses and
displacements in its breddtbut they can be reconstituted on the basis of the
elementary fields of bending, torsiotraction-compression. As an example we
consider the case of a sandwlzeam with a soft core.

The beam consists of three layers: th® on the outside are made of rigid
materials (high elasticity modulus), while tbere is made of a soft material (weak
elasticity modulus).
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Let us suppose that the beam is excited transversely; the rigid layers will have a
movement of bending, and the soft internal layer will have a movement imposed by
the displacement of the rigid layers, as shown in Figure 3.7. We will note the
transverse displacement as W(x,t) rather than Wg(x1 ,t) in order to avoid
heaviness of writing and we use a local reference for each layer:

e €
—layerl: x, e| - 1
R { 2 2}
oW
W, =—=x,—(x,1),
ox
W, = W(x, 1), [3.72]

W3=O;

e, €
—layer2: x, e | -2, 2
2 { 272

oW
W, = g(xz)_(xat)a
Ox

W, = W(x, 1), [3.73]
W, =0,
with:
€ +¢€ (& (&
gxy) =x,—=+3 -1 [3.74]
e, 2

W, = W(x, 1), [3.75]
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These fields of displacements make it possible to ensure the continuity of
displacements at the interfaces; the reader can check it by calculating displacements
in x, = 61/2 for the first layer and x, = —62/2 for the layer 2, as well as in

X, = ¢,/2 and x, = —e;/2 for layers 2 and 3.

Longitudinal displacements are represented in Figure 3.7; we can notice that
layers 1 and 3 have neutral fibers (zero displacement) in the middle of the layers,
whereas the flexible internal layer has a shifted neutral fiber.

Figure 3.7.Deformation of the cross-section of the sandwich beam

To obtain the equation of vibrations of the sandwich beam, we will use
Hamilton’s functional rather than Reissner’s functional, which will save us from
introducing independent stress fields.

In expression [3.76], p; is the density of material of layer i, S, is the surface of
section i, Cillll is the longitudinal module of layer i, and C12212 is the shearing
modulus of layer 2.
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After integrating over the cross-sections of the layers and regrouping terms, we
obtain:

t

L oW 2
H(W(x,1) = ” [(pls1 9,8, + Sy (—j
t, 0 ot

2
02w
+ (pII1 + p212 + p3I3) _8x8t

5 [3.76]
2W

ox2

2
oW
— C12212 K2 (gj :l dxdt

= (Cly [+ Cy I + Gy I

where b is the width of the sandwich beam and e, is the thickness of layer i:

&)

2
- +
Jy= Ig(xz)z ds, =(e3 5 elj be, + eiz = bed,
SZ

I :jx% ds; = be3f12,

J-L +e2+e3jd82:[el+e2+e3}bez.
S &
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The calculation of the extremum of the functional is performed thanks to the
results of Chapter 2. The application to the functional [3.76] yields the equation of
motion [3.77] and the boundary conditions [3.79] and [3.80]:

2
(S +poS, + 9353)6&_\;/ - %(CIZZIZKZ %Nj
02 ZW
— ﬁ((plll +p,J, + p3I3) @J [3.77]
0? 2w
+¥ (Cliply + Chpdy + C%llll3)¥ =0.

Using the note to section 3.3.3, we will replace C} 111 by Young’s modulus E;;
C12212 is equal to the Coulomb modulus G,. Moreover, if we suppose that the
characteristics are constant with x and that rotational inertia is neglected, the
equation becomes:

(P,S S S;) oW G,K oW
+ + — —
Po1 + P> P33at2 22275 .
oW [3.78]
+ (B} + EjJy + Esly)) ——=0.
ox4
The boundary conditions Vt, x; = 0 and x; = L to be verified are given by:
oW 63W
either W =0, or GHK» 6— —(E1l§ + EpJy + E3l3) 3= 0 [3.79]
X X
and:
2
i oW oW
either — =0, or —(E111+E2J2 +E3I3)72=0. [3.80]
ox 0x

These equations describe the vibratory behavior of the sandwich beam; however,
to be realistic, it is necessary that the hypotheses which have led to the fields of
displacements [3.72], [3.73] and [3.74] are respected; that is, E, << E; , E, << E;,
to have a soft internal layer with respect to the surface layers. From a practical point
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of view, this situation occurs when the internal layer consists of a viscoelastic
material and the surface layers consist of rigid materials; equations [3.78], [3.79]
and [3.80] are thus representations of the vibrations of beams with an internal
damping layer. However, they are not usable for the sandwich beams with rigid
cores.

The example that we have treated shows that using the fields of displacements
associated with elementary vibratory states (bending, torsion, traction-compression),
it is possible to reconstitute complex vibratory states, which appear in non-
homogenous beams. The hypotheses of condensation adapted to the description of a
complex movement are, however, not easy to determine without certain practice.
The modeling of damping properties of multi-layer beams have brought about
several models based on different hypotheses of condensation; some references are
provided in the bibliography.

3.7. Conclusion

In this chapter we gave the equations governing longitudinal, transverse and
torsion vibrations of straight beams. In the following chapters these equations will
be used as a basis to describe the vibratory behavior of beams.

The method used for setting up the equations calls upon the functionals of
Reissner and Hamilton presented in Chapter 2. We have also stuck to clearly
specifying the hypotheses leading to the equations, which will make it possible for
the reader to determine their limits of validity and thus to be critical of the results of
an estimated calculation. From a practical point of view, the method breaks up into
three parts:

a) establishing of condensation hypotheses which restrict the stresses and
deformations field of the continuous medium, taking into account its form (truncated
Taylor development) and external force applied (longitudinal, transverse, torsion);

b) calculating the functional taking into account the hypotheses of condensation;

¢) calculating of the extremum of the functional.

The delicate part of work is undoubtedly establishing the hypotheses of
condensation. An essential goal of this chapter is to show the reader how these
hypotheses are established in the traditional cases and how calculations can be
extended to more complex cases such as that of the sandwich beams with a soft core
that we have addressed.
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Chapter 4

Equation of Vibration for Plates

4.1. Objective of the chapter

Plates are continuous media with a more complicated mechanical behavior than
that of beams. The greatest complexity comes from the fact that the description of
plates’ vibrations introduces functions with two variables of space. Thus, we have to
deal with a two-dimensional (2D) medium.

The set up of equations is fundamentally identical to that of beams. We will use
an energy formulation based on Reissner’s functional with independent
displacement and stress fields, and then kinematic hypotheses revealing two
elementary movements: in plane vibration (membrane effect) and transverse
vibrations. Various simplifying hypotheses will be presented leading to the model of
Mindlin and then of Love-Kirchhoff. We will show, in particular, that the generally
used equations are the result of very strong simplifying hypotheses and that these
equations are often employed outside of their valid domain.

The plate being two-dimensional, we may sometimes find it beneficial to use
polar rather than Cartesian co-ordinates. We will describe the passage between the
two descriptions and will eventually arrive at the Love-Kirchhoff plate equations in
polar co-ordinates.
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4.2. Thin plate hypotheses
4.2.1.General procedure

We apply the same steps as for beams based on the fact that one of the
dimensions of the structure (thickness h, direction x;) is small compared to the width
b and the length 1. We can then develop the fields of displacements and stress in
Taylor series and obtain a suitable approximation by truncating these fields to the
first order:

OW.

\M(Xl ) X2 ) X3 s t) ~ W(Xl s X2 309 t) + X3 aTl(Xl H Xz 90’ t) b [41]
3
80ij

Gij (X1,%,, X3, t) = Gij (X1,%,,0,0 + X3 aT(Xl ,X5,0, ). [4.2]
3

The expressions [4.1] and [4.2] suggest seeking an approximation of the fields in
the forms [4.3] and [4.4]:

Wi, X,,%5,t) = VViO(X1 , Xy, 1) + X3V\fi3(x1 , X5, 1), [4.3]
Sjj (X[,%5,%3,0) = 08 (X,%,, 1)+ X3513j (X,%X5,1). [4.4]

As in theory of beams, the fields of displacements [4.3] and stresses [4.4] contain
a set of vibratory states that are generally separated into independent movements so
as to be able to study them ecasier. We separate the vibrations of plates into two
elementary vibratory movements: vibrations in the plane of the plate and transverse
vibrations, this second type of vibration being by far the most present in the
problems encountered in practice.

4.2.2.In plane vibrations

This type of vibration corresponds to the longitudinal vibrations of beams. It is
supposed that transverse displacement is nil:

Wi(X;,X,,%3,0) =0, [4.5a]
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and those displacements in the directions 1 and 2 are constant throughout the
thickness:

W), X5, X3, t) = WIO(X1 , Xy, 1), [4.5b]
Wyx, Xy, X5, 1) = WX, X5, 1) [4.5¢]
The field of tensors of stress is copied from that of beams and leads to:

o, 1(X1 s Xy, X3, t) = G?l(x1 s Xy, t)
Gyr(X1 5> Xy, X3, t) = ng(x] Xy, 1) [4.6]

Glz(xl s X2 ’ X3 > t) = G?z(xl ’ X2 > t) s

other stresses being supposed to be nil.

In the plate hypothesis, longitudinal vibrations in the plane are accompanied by
longitudinal stresses but also by shearing (o,,) .

4.2.3.Transverse vibrationsMindlin’s hypotheses
This vibratory movement is counterpart beams bending movement. We will

employ the hypotheses extrapolated from those described for beams in Chapter 3.
The field of displacements is thus provided by:

Wi(x),%,,X5,1) = )(3W13(x1 » X5, 1)
Wy(x,X5,X5,t) = X3W§’(X1 » X5, 1) [4.7]

W3(x1 » X5 5 X3 ,t) = W30(x1 , X5, 1),

Transverse displacement is supposed to be constant throughout the thickness and is
accompanied by longitudinal movements produced by rotations around axes 1 and 2.
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Stresses associated to [4.7] are of the form [4.8]:
011Xy, Xy, X3, 1) = X307,(X] . X5, 1)
Opn(Xy 5 Xg, X3, 1) = X3035(X), X5, 1)
O1(X1 Xy, X5, 1) = X3G%2(X1 Xy, 1)
[4.8]

o5(X) . X, X3, 1) = 05X, X5, )

c523(x1 s Xy, X3, t) = (s%(x1 Xy s t)

033(X(, Xy, X3,0) =0.

The hypotheses [4.7] and [4.8] correspond to those of Mindlin; they are
characterized by taking transverse shearing into account. This effect is negligible for
isotropic materials at a low frequency. The Love-Kirchhoff theory, presented
hereafter, is then sufficient. For anisotropic materials at a high frequency; taking
into account transverse shearing is necessary for a good theory — experiment
comparison. Let us note that the comment made in Chapter 3 on the incompatibility
of shearing stresses 6,5 and 6,5 with the condition of free surface for xy = £h/2 is
also present here. Indeed:

h 0
613()(],xz,iz,tj:cw(xl,xz,t)
h )\
and o,, xl,xz,ig,t =0,(%,,X,,t),

whereas we should have zero constraints on the external surfaces of the plate. This
comes from too strong a truncation of the developments [4.1] and [4.2]; the
parabolic term would make it possible to get rid of the incompatibility but with very
heavy calculations. The most frequently adopted procedure consists of keeping this
simple model, the terms 093 and 083 appearing as the average (constant in the
thickness) of variable stress in the thickness. This approach leads, as has been
described for beams, to a correction of the shearing constants.

4.2.4.Transverse vibrations: Love-Kirchhoff hypotheses

These hypotheses are equivalent to the Euler-Bernoulli hypotheses for beams:
they amount to supposing that transverse shearing is nil. For displacements it
consists of equalizing rotations around axes 1 and 2 describing displacements in the
thickness with the respective slopes of transverse displacement.
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0
W](X1>X29X3at)=x3 3(X1>X25t)
1
OWY
Wy(x), Xy, X5, 1) = X3 — (X, X, , 1) [4.9]
0x,
W3(x1 » Xy, X3, t) = W30(x1 Xy, 1)

The associated stress field is:

o1 1(X1 5 X5 X3, 1) = X307(X) . X5, 1)

0yy(X) 5 Xy, X5, 1) = X36%2(X1 X5, 1)

O19(X1 5 X5 X3, 1) = X3015(X X5, 1) [4.10]

c513(xl s Xy 5 X3 ,1)=0

Gy3(X15Xy,%3,8) =0

033(X;, X5, X3,1) = 0.

4.2.5.Plates which are non-homogenous in thickness

Plates homogenous through thickness are the ones most generally found in
practice; they present a remarkable property of decoupling vibrations in the plane
and transverse vibrations, which can thus be studied separately. When mechanical
characteristics vary through thickness of the plate, movements are coupled and must
be studied together; we will clarify this point later on. The fields of displacements to
be considered are provided by the superposition of the two fields describing
movements in the plane and transverse movements. For example, for the Mindlin’s
plate, the field of displacements to be considered is the superposition of [4.7] and
[4.5]:

WX, Xy, X5, 1) = WX, , X, , 1) + XWX, X5, 1)
Wy(x5X,,%5,1) = Wg(x1 Xy, 0+ )(3W§’(X1 X5, 1) [4.11]

W3(x1 » Xy 5 X3 ,t) = W30(x1 Xy, 1),
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4.3. Equations of motion and boundary conditions of in plane vibrations

The equations are set up using the variational method based on Reissner’s
functional given in Chapter 2 (equation [2.38]) that we particularize here for the
case of free vibrations, that is, without an external force of excitation:

el (oW Y 1
R(Wpcij):” SPL o) 0 Wi+ o Sy o | dvdt [4.12]
t,V

It suffices now to use the approximations [4.5] and [4.6] of the fields of
displacements and stresses in the functional [4.12]:

2
6W0 OWY OW9

1’ 1_] _[ J. + _2 _G?l_l
ot 0%,

owW0  owY oWY 1
0?2( L+ 2]‘082 2+~ (51131111011 [4.13]

0xXy 0% 0X,

0 0 0 0 0 0
+ 267 S 12 095 + 63 Syp2p O3 + 407, Spp15 67) [dsdt.

In the preceding expression we have supposed that the material was
homogenous, that the thickness of the plate h was constant and that the stress-strain
relation of material had zero terms (S;,;; = S;,,, =0), which is verified for an
isotropic material, or a material which is orthotropic, the orthotropy axes being 1
and 2. We have used S to denote the surface of the plate.

Taking into account integration over the thickness, the description of plate
vibrations is performed by functions of a space with two dimensions defined over a
surface S. For this reason the plate is compared to a 2D medium with surface S and
contour S .

The calculation of the extremum of the functional is carried out using the Euler
equations which we have provided in Chapter 2 (equations [2.88] to [2.92]). The
functional having only first derivatives, many of the terms of the Euler equations
will be nil, in particular, only one group of boundary conditions will be considered
([2.89] and [2.90]).
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There are five equations to verify on the surface of the plate S, since there are
five unknown functions. They are obtained by the calculation of the Euler equation

with respect to each unknown function W, W9, o9, , 6%, ,69, :

o2Wo oy 0
1 c 0o
41l 12

—-P =0 V (x,x)) €S, Vt, [4.14]
o ox ox, b
02WY 0 0
- 2, %05, %0 V(x,x,) €S, Vt, [4.15]
ot? 0x, 0X,
oWy 0 0
—L =8,,110% +8,20,0% V(x.x,)eS, Vt, [4.16]
1
oWO  oW?
_axl +—a 2 =4S,,0)% V(x,x) €S, Vt, [4.17]
2 X
oW} 0 0
6X_=S“22 o1 + S0, 05, V(X,X,) €S, Vt. [4.18]
2

Equations [4.14] and [4.15] are the equations of motion in directions 1 and 2,
while equations [4.16], [4.17] and [4.18] represent the stress-strain relation
associated with the movements in the plane of the plate.

The associated boundary conditions are given by [2.89] and [2.90] in any point
of the boundary line S defining the plate where n; and n, are the direction cosines

of the external normal vector (see Figure 4.1):

V(xl,xz)egz

either : W°=0

1

[4.19]

g0 0o
or : o6, n+o,n, =0
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and:

either : W, =0
[4.20]

g0 0 -
or : O, N +0,n,=0.

Figure 4.1.Representation of a plate with a surface S and an external normal
unit vector 0 in a point of its boundary line S

These boundary conditions are interpreted physically as the nullity of
displacement (clamped) or of stresses placed in duality (free boundary).

From equations [4.14] — [4.20] a formulation with displacements can be drawn.
It is enough to express the three components of the tensor of the stresses
o), .0}, and o), with respect to W0 and WY thanks to the three relations [4.16],
[4.17] and [4.18]:

091 C?m C?lzz 0 avvlo/axl
6, | =1C%,CYy O WY Jox, . [4.21]
o, 0 0 CYy, )\ oW /ox, + OWY fox,

The coefficients of the matrix appearing in [4.21] are easily identified in
equations [4.16], [4.17] and [4.18]; we leave the calculation thereof for the general
case to the reader.

For an isotropic material we have:

Si111 =800 =VE , 8190 =-VE , Sy, = 1/(4G)
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where E is the Young modulus, G is the shearing modulus and v is the Poisson’s
material ratio.

The coefficients are drawn from this:
Chi=Cho = E/(l -V,
)5y = VE/(1-VD), [4.22]
¥, =G = E/2(1+ ).

These elasticity coefficients do not correspond to those of the three-dimensional
stress-strain relation; they constitute a law of two-dimensional behavior applicable
to plates.

By changing [4.14] and [4.15] we obtain the two equations of motion to be
verified in any point of S:

W g (o awd o oWd
Pt |G tCm
a2 ox, ox, ox, 123
0 oWD oWy 423
+——| Chypy -+ [=0,
0X, 0xy  0Xy
WY g oWy oW,
P +a Chm B Clioa——
2 X2 1
[4.24]

The boundary conditions are given by [4.25] and [4.26]; they must be verified in
any point of the boundary S :

either : Wlo =0,

0 0 0 0 [4.25]

0 oW 0 oWy 0 oW oWy

or | Cyyqp +(311227aX n +Cpop2 +
2

Xl 8X2 8X1
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and:
either : Wzo =0,
[4.26]
0 0 0 0
0 5W1 0 5W2 0 5W1 5W2
or | Cooqq +Co00 —= | m2 +Cy212 + n =0.
axl 5X2 6X2 axl

The formulation with displacements reduces the number of unknowns, but
increases the order of derivation of the equations; nonetheless, this form is the one
generally used. Let us recall that setting up equations using Reissner’s functional
followed by substitution of stresses by their expressions according to the
displacements, as we did while passing from equations [4.14] — [4.20] to [4.23] —
[4.26], avoids the inconsistencies of the stress-strain relation which appear during
the set up of equations with displacement variables using the Hamilton’s functional
(see Chapter 3). In the case of an isotropic material we can use the expressions
[4.22] in [4.23] — [4.26] to arrive at the following equations, equations [4.23] and
[4.24] being written in a more compact form:

2 1oy P 14y O
—_— + —_—
2 (W) g olexp 2 a3 2 axax, |[WP ()
. +— [4.27]
ot w) I=viiyy @ 2 -y 02 wi 0

2 xox, o2 2 A

The boundary conditions to verify V(x,,x,) e S become:

either : Wlo =0,

[4.28]
E [[ow) ow) 1-v[ oW oW
or : 3 +v n; + + n, =0
1 -V é‘xl aX2 2 8X2 8X1
and:
either Wg =0,
[4.29]
0 0 0 0
E 5W2 an 1-v awl 5W2
or 5 +v ny + + n |=0.

1—-v 6x2 axl 2 axz axl
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4.4, Equations of motion and boundary conditions of transverse vibrations
4.4.1.Mindlin’s hypotheses: equations with mixed variables

The equations are set up by rendering the extremum of Reissner’s functional
[4.12] particularized for the fields of displacements and of stress [4.7] and [4.8], that

is:
2 2 2
Lol g 3 3 0
R(VVi,Gij)zj‘J‘ —pP I(%J +I(6W2J +h(aw3j
0s 2 ot ot ot

W3, W3 aw1 ow3
-1I| o}y —L + 03, —= + o} +—2
X X,

oWy oWy
- hcl{W3 +?J h02{W3 ~ — } [4.30]

1

332 332 3\2
1 [(olp GG, 0131032]

2 E E G E

32 3 )2
+E[(GI3) + (023) ] dsdt.

2 G G

In this expression we considered that the thickness was constant and equal to h.
Moreover, we posed I = h3 /12 and considered an isotropic material.

The calculation of extremum is carried out thanks to the Euler equations [2.88] —
[2.92] of Chapter 2. The Euler equations stemming from displacement variables
(W, W3, WY) yield the equations of motion:

02W3 o3 063
ol at21 +1;1+1 P2 _holy =0 V (x,,x,) €S, [4.31]

1 2

02W3 3 3
ol &22”% I%—h(s%:O V(x,X) €S, [4.32]

0x, 0x,
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=0 V(x,x,) €8S, [4.33]
o x,  ox b

those stemming from the stresses (o7, ,07, ,03,, 05,69, ) provide the stress-strain
relation:

E vE
000
6%1 1-vZ 1-v2 6W13/ 0%
63, VE E 8W§/8x2
o) |=| = T2 000 OWP [ox, + OW3 Jox, | [4.34]
093 _OV ;) M Goo Wl3 + 6W30 /ax]
083 8 8 8%}8 W% + 8W39/6x2

Equations [4.31] and [4.32] are representative of the rotational movement in the
thickness; equation [4.33] governs the transverse movement. We use the set of
equations stemming from the calculation of extremum with respect to the stress
variables ¢ ,0},,0),,6); and o), in order to write the stress-strain relation in
matrix form [4.34].

The calculation of extremum also provides the boundary conditions with [2.89]
and [2.90] from Chapter 2. The direction cosines of the external unit normal vector

to the boundary line S of the plate are noted (n;,n,):

either : W’ =0 V(x, x,)€eS,
[4.35]

or :I(c), n,+0,n,)=0 VY (x, ,x,)eS
and:
either : W) =0 V (x, ,x,)€S,

[4.36]

or : I(o}, n,+03, n,)=0, V¥ (x, X,) €S
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and:
either : WY =0 V(x,,x,)€S,

[4.37]

or ch(c% n,+0%n,)=0 V(x, Xx,)€S.

4.4.2.Mindlin’s hypotheses: equations with displacement variables

It is enough to draw the expression of stresses from the stress-strain relation

[4.34] and to report them in equations [4.31] to [4.33] and in the boundary
conditions [4.35] — [4.37].

Equations of the motion to verify V (Xl s Xz) eS:

AW3 g WP W3

oWY
pl - -1G +hG| WP +—2
ot? 1-v2 6x12 6x% 0x,
o [4.38]
E W.
~1| G+— 5 2 =0,
1—v= ] 0x,0x,
2W3 2W3 2W3
pl6 Wo ELOW 6TV 6 w23+6W30
oz 1-v? 0x, ox? ox,
s [4.39]
E W,
~1| G +— 5 ! =0,
1-v2 | ox,0x,
2WY 2WY  52WY 3 3
—ph— +hG I 1) IRET AL/ S Y [4.40]
o2 ot oxd ox,  0x,

Boundary conditions to verify V (x, , x,) € S:
either :W]3 =0

[4.41]
3 3 3 3
or : EIZ Wi +vaWZ n; +GI Wi +6W2 n, =0

1-v-| 0x 0x) 20X
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and
either :W3 =0
[4.42]
3 3 3
or : El 6W2 8W1 n, +GI Gl +_6W2 n =0
1-v2 6x2 8x1 0x,  0x4
and
either :W30 =0
[4.43]
0 0
or :Gh Wl3+6w3 n; +Gh W23~|—6W3 n,=0.
oxy Xy

4.4 3.Love-Kirchhoff hypotheses: e@tions with mixed variables
The calculation of Reissner’s functional is carried out with the field of

displacement [4.9] and the stress field [4.10]. To simplify calculations we also
consider here a homogenous and isotropic material as well as a plate with constant

thickness:
2 2
2WY 2WY 0
I 41 31 4+h W5
0,0t 0x,0t ot

H._.,.,
N —y
l\)|'—‘

2WY OTWY 2WY
+1 of) +02, B [4.44]
6x12 ax% Ox,0%,

r o (] ¢ - oo, o lebF )| asar

2

The equation of motion and the stress-strain relation are calculated here also
thanks to Euler’s equations [2.88] — [2.92] from Chapter 2. They are more
complicated to apply than in the preceding cases since the functional [4.44] reveals a
second derivative. Upon calculation it follows:
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Equation of the motion to verify V (x;,x,) € S:

02wy o4WY WY
ph 3 _ pI 3 n 3
ot? 8x126t2 6x§6‘t2
0203, %3 0203 [3.43]
i1 22 12
- +2 =0.
8x12 8x% 0x, 0%,
Stress-strain relation to verify V (x;,x,) € S:
E E 02 Wy
3 1-v2  1-+2 ox?
°n vE E o*W9
03, | = 0 [4.46]
o3 1-vZ 1-v2 ox3
= E || 02WY
0 0
l+v 0%, 0%,
Boundary conditions to verify V (x;,x,) € S:
either : WY =0, [4.47]
ooy, 2, 003 2,001 3
or 1| —=(n;+n, n5)+ n, +n, ny)+2—=n
[axl(l | 13) 6x2(2 2 0) o,
3 3 3
n 901 n, n12 n 003, n n% _,001) n% [4.48]
X2 1 X1
34570 34570
ot~ 0x, ot 0x,
and
0
either : 6X3 =0, [4.49]

or 1 (0131 n’ +26,, n, n, +c5, ni):O. [4.50]
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The number of unknowns is smaller than in the case of the Mindlin’s hypotheses,
but the equations have a higher order of derivation and are, therefore, rather
complicated.

©»i

2l

1

Figure 4.2.Representation of the unit vectors in a point of the boundary line S of the plate.
n normal S tangent

We can give another form of more compact boundary conditions by introducing
the normal 9/dn and tangential /s derivatives connected to the derivatives
following x; and x, by the relations:

0 0 0
——=n,—-n,—

ox, 'on os [4.51]

0 0 0
and —=n,—+n,—;
0X, on 0Os

that is also:

0 0
—=n—+n, —
on axl 6X2
[4.52]
0 0
and —=-n,—+n—.
0s aXl aXZ

Let us denote by bending moment M the quantity placed in duality with the normal

oW
derivative of transverse displacement (ﬁj by the boundary condition [4.50]:

— 3 n2 3 3 12
M = I(o7, nf + 2067, n; n, + 63, n%) .
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Let us denote by shearing force T the quantity placed in duality with transverse
displacement W30 by the boundary condition [4.48]. After a long but not difficult
calculation, it is shown that this quantity is also written in the form [4.53]:

WY
ot2

o B
T=— Mpl + Ia—((cf] —o3)n n, + 2052 —nd)). [4.53]
S

The boundary conditions [4.49] and [4.50] are thus written V' (x, , X,) € S:

either : WY =0

[4.54]
or : T=0.
and:
0
either : oW, =0
on [4.55]
or : M=0.

4.4 .4.Love-Kirchhoff hypotheses: equatis with displacement variables

In this case it is also possible to substitute the tensors of stresses with their
expressions according to the transverse displacement W30 provided by the stress-
strain relation [4.46]. Substituting in [4.45] we obtain the equation of motion:

orW oW o'W
—ph +pl +
ot2 oxp ot2  0xjot?
o'W o'W oW

4+2 5 2+ 2 =0
2% OX{ Ox5  0X3

[4.56]

with D = EI/(1 - v?) bending stiffness. [4.56°]
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We also obtain by substitution the boundary conditions [4.54] and [4.55] where
the bending moment and the shearing force are given by:

0*W 0rW 0*W
M=D +v n? +2(1-v) n, n,

ox? ox3 [ % (4.57]
2w 2W ’
+ SHV— n3
0x5 0x{
and:
P W | 5 0’W  02W
T=—|M+pl— |+—| D - (I+v)n;n,
on ot? 0s 8x12 8x%
[4.58]

0*W s
+4(1_V)8x6x (n5—np) || .

| )

In order to be concise, in these expressions we have replaced W30 with W.

These are the most frequently employed equations, but an additional
simplification is introduced by neglecting the effect of rotational inertia (we will see,
on the basis of the case of beams in Chapter 6, that this simplification is acceptable
for a low frequency). We then have the standard equations:

02w o*wW oW o*wW
—ph -D +2 + =0 V(x,x))€S [4.59]
ot2 oxt ox?ox3  0x§

and:

v (x, ,X,) €S [4.60]
or :T=0
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and:

n Y (x, X,) €S . [4.61]
or :M=0

M is given by [4.57] and T by [4.58]. In the expression of the shearing force,
the term ploZW /6t2 associated with rotational inertia is neglected.

4.4.5.Love-Kirchhoff hypotheses: equations with displacement variables obtained
using Hamilton’s functional

In this chapter we have until now made exclusive use of Reissner’s functional,
the equations with displacement variables being obtained by substitution of stresses
by displacements in the equations with mixed variables.

It is also possible to directly obtain the equations with displacements by using
Hamilton’s functional. The two approaches were detailed in Chapter 3 in the case of
beams, thus, we will present this approach for plates only briefly by limiting
ourselves to the most often encountered case of the Love-Kirchhoff hypotheses.

The field of displacements considered is the one described by equation [4.9]. It
suffices then to replace general displacements by those from expression [4.9] in the
general expression of Hamilton’s functional given in equation [2.55] in Chapter 2.
Upon calculation we obtain after integration over thickness for a plate with constant
thickness h made of an isotropic material homogenous in the thickness:

t

H(W (x,%,,1))= j j [ph/Z(@W/@t)z - (DR2) [(a2w Jox?
£, S

+ (W /axg)ZJ + 2V(@2W [ox}) (B2W fox3) [4.62]

+2(1-v) @W /o xlﬁxz)] dx, dx, dt.

In this expression, D is the bending stiffness of the plate defined in [4.56’] and
rotational inertia has been neglected in the expression of kinetic energy. It is the
classical functional used in the problems of plates, in particular, within the
framework of the Rayleigh-Ritz method.
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We calculate Euler’s equations [2.88] with respect to the variable W to obtain the
equation of motion and equations [2.89], [2.90], [2.91] and [2.92] to determine the
boundary conditions. After all the calculations we receive equations identical to
those obtained in section 4.4.4. There is, thus, an equivalence between the set-up of
equations using Reissner’s functional with two independent fields and Hamilton’s
functional with only one field of displacements. However, this equivalence is
obtained by using the moduli of elasticity Cgkl given by [4.21] and not the moduli
Cijkl of the three-dimensional stress-strain relation in Hamilton’s functional. Here
also, as for beams in Chapter 3, the two formulations are equivalent only if the
elastic moduli are modified and adapted to the case under consideration.

4.4.6.Some comments on the formulations of transverse vibrations

There are several possible formulations of transverse plates vibrations. The
Mindlin’s hypotheses are adapted to the description of anisotropic plates and high
frequencies. The Love-Kirchhoff hypotheses result from the statics of isotropic
plates and constitute the most severe approximation; they are realistic only for low
frequency forecasting of isotropic plates vibrations. However, the simplicity of
equations resulting from the Love-Kirchhoff hypotheses often leads to their use
outside of their actual field of validity. A first approximation of the result is then
obtained.

In general, formulations with displacements are preferred to mixed formulations
because they decrease the number of equations to be processed. We can, however,
wonder whether the concentration of derivations over a restricted number of
equations is not damaging in the end, especially for physical interpretation. The
expression of the boundary shearing force [4.58] is completely explicit on the
subject of the difficulty of interpretation.

4.5. Coupled movements

We have defined two elementary movements to describe the vibrations of plates:
vibrations in the plane of the plate and transverse vibrations. These vibratory states
are uncoupled for homogenous plates but are coupled as soon as the plate has
variable characteristics in the thickness.
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Let us consider a vibratory movement of the plate resulting from a combination
of transverse vibrations and vibrations in the plane. The fields of displacements and
stresses describing the movement are defined by the superposition of [4.5] and [4.7]
and of [4.6] and [4.8], that is:

W, (%),%,,%X5,t) = Wlo(xl,xz,‘[)+x3 W13(x1,x2,t)
W, (x),%,,%5,t) = Wg(xl,xz,t)—i-x3 W23(x1,x2,t)

W}(X]>X23X3>t)= W:‘?(le)(z’t)a

cll(xl,xz,x3,t) =G?I(XI,X2,t)+X3G%1(X1,X2,t),
czz(xl,xz,x3,t) :ng(xl,xz,t)+x3cs%2(x1,x2,t),
Glz(xl,xz,x3,t):G?Z(XI,xz,t)+x3cl32(x1,xz,t),
O3 (%), X5, %3, 1) = of3 (%), %,, 1),
)3 (X)X, X3, 1) = 693 (%), %, 1),

(533(X1,X2,X3,t) =0.

The Reissner’s functional of the problem is rather bulky and we do not write it
down as a whole but limit ourselves only to the terms revealing the variables W13
and Wlo in order to write the two equations of motion which result from it:

t h/2 2
o[ [aw3] OW3 OW?
p| x + 2% —————

ot ot
2 2

oW W owp ) W3 L AW

+| — dx3— I o) — t+X3 6}, ——+ 0} ——
at EANS ax, ox, [4.63]

ow? 2O w0 oW3 . oWD

263 O |k 0 oW 0 i 3 1

+ X307 o X3 Sip) +X3 0pp ox + 673 o

| b2 2 2 2

oW3 +h/2
+x3 o}, 6_1] dx; - IG?3 W dxy + ... |dsdt.
b2
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The coupling of plane and transverse movements comes from the terms in x5 of
[4.63]; after integration over the thickness these terms are eliminated in the 2™ and
3" Jines because:

+h/2
[xsdxy=0 [4.64]
i

but they generally remain in the first line if the density varies in the thickness:

+h/2
[oxgaxy 0. [4.65]
)

If the density is constant in thickness, it can stem form the integral [4.65], which
is then nil.

The integration of [4.63] over the thickness yields:

t +h/2 2 +h2
Frl L oW} oW oW,
R(W; o) = — | px3dxy —L| + |pxydxy—L—L
2 ot
t, S\ 7 - -h2

b o ot
+h/2 2
1 0 0 owW3
+— [oax, [%J Chot, 13, W [4.66]
b2 ot 0%, 0%,

W0 oW}
~hol,—L -To},—L —hol; W +... |dsdt.
X, 0X,

We are able to calculate the equations of motion coming from the calculation of
extremum with respect to the two functions Wl3 and W]0 :

+h/2 w3 th2 2W0
0°W, 0-W, 3 3
[ p3ax b [pxgdng o 120 1P e — 0, [4.67)
o oy ox
-2 i 1 2
2 pawo b2 82W3 0 0
0 0
pdx;— =+ [ pxydxg—--n L -p Pl g, [4.68]
a2 o

b2 i

Equation [4.67] can be compared to [4.31]; equation [4.68] can be compared to
[4.14]. The coupling of movement in the plane Wlo and transverse movement W13
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is related to the value of the integral [4.65], which is nil if the density is constant
through the thickness; we then find the equations uncoupled since [4.67] coincides
exactly with [4.31] and [4.68] coincides exactly with [4.14]. The examination of the
whole of Reissner’s functional and the equations which result from it would show
that the property highlighted for the two equations [4.67] and [4.68] can be
generalized and that for a material with constant characteristics in the thickness,
transverse vibrations and vibrations in the plane are uncoupled.

4.6. Equations with polar co-ordinates

4.6.1.Basic relations

In certain problems we may find it beneficial to use polar co-ordinates rather
than Cartesian co-ordinates which we have employed up until now. The
transformation of equations written in Cartesian co-ordinates into equations written
in polar co-ordinates is rather simple. We will exploit it here.

Let us introduce r and 6, the polar co-ordinates of a point of the plate. They are
connected to the Cartesian co-ordinates x; and x, by the relations:

X =1 sin®

X, =T1c0s0,

= [ 12+X% [4.69]

0 = Arctg (i]
X2

Xy

‘\e

Figure 4.3.Cartesian and polar co-ordinates of the point M

X4
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By observing the rule of chain derivation, we deduce:

0o _oa o
ox, ordx, 00 ox,

[4.70]
0 o 0

ox, Orox, 000x,

A rather simple calculation with equations [4.69] yields the following results:

. 00 cosH or 00 sin O
—=sme;g: ; — =c0s0 ; —=- .

0x, I r 0X, 0X, r

With [4.70] we deduce from it:

0 . 0 cosO O
— =sinf—+ —
0x, or r 00
[4.71]
0 0 sinB 0
—=cos0—— —.
0X, or r 00

Equations [4.71] are at the basis of the transformation of equations with
Cartesian co-ordinates into polar co-ordinates. Thanks to these expressions,
derivatives of higher orders can be calculated. For example, let us calculate the
second derivative:

0? . 0 cosB 0 . 0 cosB 0
— =|sinf—+ — || sin®—+ —
0 or r o0

o2 o sin® 8 o sin® 8
——=|cos0—— — || cosO— — — .
ox3 ax r 00 ax r 00

[4.72]
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Calculation provides the following expressions:

0? ) @ 2sinOcosd & 2sinOcosd 02
—— =sin20—— —+
? 2 12 00 r 0roo
cos?0 5 cos?0 02
+ —+ —_—,
r o 2 002
[4.73]
0? ) @ 2sinGcosd & 2sinOcosd 02
—=cos* 0 —+ —-
ox? or? r2 00 r orod
sin20 5 sin20 o2
+ —+ —
r o r2 002
It is then remarkable to note that the Laplace operator has the simple form:
02 92 92 145 1 02
A — [4.74]

=t ———.
oxt ox3 o2 ror r? o002

4.6.2.Love-Kirchhoff equations of the &ainsverse vibrations of plates

We are interested in the standard equation [4.59], which neglects rotational
inertia. The operator appearing in plate bending equation of motion is also called
bilaplacian:

o4 ot ot
A2:—4+2 5 2+—4. [475]
ox Oxf 0x5  0x3
By using the result [4.74] we note that:
2 19 10| 10 1 &
A= —+-—— +-— [4.76]

P | [ ——
o2 ror r200? || o2 ror 12062
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After calculation we obtain:

ot o, ot 104 23 o &3

= 44
ot r2or2o0? r* 004 rord 13 o0?or

A2

[4.77]
102 40 190

2o a2 Bor

In the case of axisymmetric movement W(r,0) is independent of 6 and
derivations with respect to this variable are nil; the operator is greatly simplified:

, 0 22 1 134
ey = % [4.78]
ot ro3 2oz o

The equation of the transverse vibrations of plates retains the form:

2w

where the bilaplacian A2 is given by [4.77] in general and by [4.78] for axisymmetric
movements. In Cartesian co-ordinates, the bilaplacian is equal to [4.75].

The boundary conditions associated with equation [4.79] were provided in [4.60]
and [4.61] in Cartesian co-ordinates; we may of course provide an expression
thereof in polar co-ordinates. For that it is necessary to express the normal
derivative, the bending moment and the shearing force in these co-ordinates.

Let us examine the normal derivative:

G 0 0
—=n—+n,—.
on lox,  Cox,

With [4.71] it follows:

0 o 1 0
— = (n,sin0 + n, cos ) — + —(n, cos 0 — n, sin ) —. [4.80]
o 20080 5+ T 207
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The expression of bending moment has been given in [4.57], while the
expression of shearing force is in [4.58]. To obtain the expressions in polar co-
ordinates, the procedure is commonplace since it is a question of replacing the
derivative with respect to the Cartesian variables by the expressions [4.71];
however, calculation is extremely long and the expressions obtained are very heavy.
In addition we would find ourselves in the case of an axisymmetric problem, which
implies the circular shape of the plate. Under these conditions the direction cosines
of the external unit normal vector take the form:

n, =cos0, n =sinH. [4.81]

We note with [4.80] and [4.81] that in this case:

an:E'

To calculate the bending moment and the shearing force, let us take the
particular expressions resulting from [4.73] in the axisymmetric case where the
displacement of the plate is independent of 0. It follows:

02 02 cos?0 5 9?2 02  sin20 )
—=sin?0—+—— , — =cos2 00—+ —.
0x? or? r o 0x3 or? r or

A similar calculation also leads to:

02 . 0% cosOsin® 0
=sin® cos0—— ——— —.
0x, 0X, or? T or

Once all the calculations have been done, the two expressions are obtained:

02w oW
M=D v [4.82]
or2 or
PW  9ZW
T=D +v [4.83]
or3 or2

We have neglected the effect of rotational inertia in the shearing force.
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In the case of the circular plate with axisymmetric vibratory movement, the
equations of the problem are greatly simplified, in particular, the expressions of
bending moment and of the shearing force. These expressions are valid only in one
very particular case of circular plate vibrations since the vector is independent of 0,
which occurs for an excitation that is also axisymmetric as a point transverse force
applied to the center of the plate. For an offset transverse force, the simplified
equations are no longer usable since transverse displacement will depend on 6.

4.7. Conclusion

In this chapter we have established the equations of the vibrations of thin plates.
The variational set-up of equations is based on Reissner’s functional and we have
systematically obtained equations with mixed variables, then by substitution the
equations with displacements. The case of movements in the plane and then of
transverse movements have been tackled. For transverse vibrations of plates, the two
traditional hypotheses were exposed (Mindlin and Love-Kirchhoff). Finally, the
equations in polar co-ordinates were provided in the simple case of the Love-
Kirchhoff operator.

We have attempted to show the methods and thus provide the reader with a
general procedure to establish equations of plates motion. As for beams, which have
been covered in Chapter 3, all the information is contained in the hypotheses of
condensation adopted for displacements and stresses. For plates, these hypotheses
result from a development of the various functions describing the vibrations of the
plate in Taylor series over the thickness. For thin plates that we consider, these
developments are truncated of the first order taking into account the low thickness.

In addition to the technique of setting up equations, the suggested procedure
makes it possible to determine the domain of applicability of the established theory
thanks to the physical interpretation which arises from the hypotheses of
condensation employed.



Chapter 5

Vibratory Phenomena Described
by the Wave Equation

5.1. Introduction

The wave equation is a partial derivative equation which we highlighted in
Chapter 3 during the study of longitudinal and torsion vibrations of beams. This
equation is also representative of two other vibratory phenomena which are often
encountered: vibrations of cords and fluctuations of acoustic pressure in pipes.

The study of the wave equation is particularly interesting because its relative
simplicity makes it possible to easily find a solution and describe many basic
concepts.

In the first section we present the problem, and more precisely we recapitulate
the set of applications of the wave equation; then we demonstrate the uniqueness of
the solution. In the following section, we provide a solution by the method of
propagation, which will lead us to notion of the image source to take into account
the boundary conditions. Resolution by separation of variables will then be carried
out, which will lead to the key concept of the natural mode of vibration, from which
will result the general form of the response by modal decomposition. Finally a
summary table of the modal system for the case of standard boundary conditions is
drawn up.

The last section will give a detailed presentation of two applications with some
of the most remarkable physical tendencies of vibratory behavior. Moreover, they
will provide practical examples of calculations, modal system and vibratory
response, with displacements as well as with stresses.
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5.2. Wave equation: presentation of the problem and uniqueness of the solution
5.2.1.The wave equation

The wave equation is the following partial derivative equation:

0%y 0%y
P
o2 x,t)—c ol 0. [5.1]

The function y(x, t) represents vibratory movement, the constant c is characteristic
of the studied medium,; it is called celerity or waves propagation velocity.

This equation is representative of longitudinal vibratory and torsion movements
of homogenous beams, as we have shown in Chapter 3. In fact, vibrations of cords
and fluctuations in pressure in pipes are also governed by this equation. The
correspondence between the general equation [5.1] and the four physical situations
that it describes is presented in Table 5.1.

To properly present the problem, that is, in fact, to ensure the uniqueness of the
solution, it is necessary to provide equation [5.1] with boundary conditions and

initial conditions.

Boundary conditions:

1 oy
0,t)=———(0,1), 5.2
0.0 == 2H0 [5.2]
1
yLo=-Ywy. [5.3]
o ox

Initial conditions:

y(x,0) = dy(x), [5.4]
%(X,O) = vy(X) - [5.5]

with d; initial displacement and v, initial speed.
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Physical situation

y(x, )

C

Longitudinal
vibrations

U?(x, t) : longitudinal

displacement of cross-sections

¢ = ‘/E , celerity of
p

longitudinal waves.
E : Young modulus
p : density

Vibrations of torsion
of beams

a(x, t) : rotation of cross-

sections

o = \F , celerity of the
p

waves of torsion.
G : Coulomb modulus
p : density

Vibrating cords

y(x, t) : transverse

displacement of the cord

Cr =
T pS

T : tension of the cord
p : density

S : cross-section of the cord

Sound pipes

p(x, t) : fluctuation in pressure

¢ : speed of sound in fluid
(air 340 m/s).

Table 5.1.The applicability of the wave equation

Initial conditions are taken at the moment t=0 to simplify the writing.
Boundary conditions are particular: they correspond to resilient mounting
characterized by o, and o for each end. From a physical point of view, our
definition shows that these quantities are homogenous to lengths and representative
of the limits impedance. Indeed, we find the classical boundary conditions of
clamped end for o, =0 (or a; =0), and of a free end making o, (or o ) tend

towards infinity:

clamped end: y(0,t) = 0.

free end: Q(O,t) =0.
0x

These two types of boundary conditions thus appear as a borderline case of [5.2]

and [5.3].
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5.2.2.Equation of energy and uniqueness of the solution

5.2.2.1. Equation of energy

0
Let us multiply the two members of equation [5.1] by Ey ; it follows:

0%y 0%y
N -2 g, [5.6]
ot o2 ot ox2

Let us take the integral of equation [5.6] between two fixed positions a and b:

t oy @

55 x, 1) dx — j cz_dx— [5.7]

Let us integrate by parts the second term of the first member of [5.7]; we obtain:

b o2 b o2
J.@—y(x t)dx-i—J.ayc2 ydx
ot ot2 ox  Oxot
a oy, oy NG o
= 2 — — —_—— —
c [ax (b, t) % (b, 1) 6x (a,1) ~ (a, t)j-
Observing that:
d 1 0oy oy
a4 dx = , 59
dt < ( j I J *T I ot at2 3]

equation [5.8] is written:

ng (@j (@] N
2 dt . ot ox
oy oy oy

[5.10]
=c? [% (b, t)E(b’ t) — &(a, t)E(a, t))

Equation [5.10] is in fact nothing but the expression of conservation of energy,
except for a multiplicative constant (z = constant). Indeed, let us multiply the two
members by the linear density p of the medium considered; it follows:
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d b ay 2 ay 2
E-! {p(aj +Czu(6_xj dx
oy oy

= uc2 [% (b, 1) % (b, 1) — ~ (a, 1) o (a, t)].

N | -

[5.11]

The first member represents the energy variation of the section [a, b] over time.
Indeed, we recognize the sum of the densities of kinetic and deformation energies
under the integral sign of the first member.

The second member is the difference of the powers introduced at the two ends a
and b of the section.

The principle of conservation of energy is thus entirely contained in the wave
equation.

If we now apply equation [5.11] to points 0 and L, ends of the beam, taking into
account the boundary conditions [5.2] and [5.3] and after integration over time, it
follows:

L 2 2
%0 [p(%} +c%{%} de+%ucza0y(0,t)2
[5.12]

1
+Eu@aLﬂL02=E

where E is a constant.

Equation [5.12] means that the energy of the total system, that is taking account
the energy of the boundaries, is constant over time. In the 3™ and 4™ term of the first
member of [5.12] we recognize the energies of the boundaries. Calculating equation
[5.12] at the initial moment we obtain the constant value of energy over time which
is equal to the value taken at the initial moment, that is to say, taking into account
[5.4] and [5.5]:

L 2
1 od 1
—J. H(vy? +c?p (—Oj dx +—pc? a, d3(0)
2 0 ox 2 [5.13]
1
+E”CZO‘L djL)=E.

The equation of energy [5.13] is the foundation of the demonstration of the
solution uniqueness which is proposed in the following section.
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5.2.2.2. Uniqueness of the solution

Let us consider two solutions y,(x,t) and y,(x,t) which verify equations [5.1]
to [5.5] and their difference Y(x,t).

Y(x, t) = yl(x, t) — yz(x, t). [5.14]

The linearity of these equations implies that the difference of the two solutions
Y(x,t) verifies the wave equation [5.1] as well as the boundary and initial

conditions:
oY
Y(0, ) = —a, — (0, t) [5.15]
0 ox
Y(L,t) = aLa—Y(L, t), [5.16]
Ox
Y(x,0)=0, [5.17]
oY
= (x,0)=0. [5.18]
& (x,0)

The function Y(x,t) verifying the wave equation and the boundary conditions
[5.15] and [5.16] also satisfies the integral form [5.12], that is:

L 2 2
1 oY oY 1
—| {n| S|+ @u] ] |dx o+ —ne2 oY (0, 12
2 (”(atj “(axn e 0

0 [5.19]

1
+Eu02 o Y(L,t)2 =E.

It is now enough to take equation [5.19] at t =0 to deduce from it that the
constant is nil, taking into account [5.17] and [5.18]. Thus, at any moment:

L 2 2
1 oY oY 1
— — | +cp|—| |[dx+—pc?a,Y(0,1)?
20{”((%) ”(axn S He7 &Y 0.9

[5.20]

1
+ Ep o Y(L,t)2 =0.

Relation [5.20] expresses the nullity of the sum of positive quantities, which
must thus also be nil on their own. From that we deduce, on the one hand, that
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oY oY
Y(0,t) =0 and Y(L,t) =0 and, on the other hand, that 6_ and 6_ must be nil
X t

almost everywhere in the open interval ]0,L[. Since the function Y(x,t) also
verifies the wave equation, it must be continuously derivable twice and consequently
nil. The two solutions y,(x,t) and y,(x,t) are combined. Thus, the uniqueness of

the solution of the problem defined by equations [5.1] — [5.5] is proven.

5.3. Resolution of the wave equation by the method of propagation (d’Alembert’s
methodology)

5.3.1.General solution of the wave equation

Let us consider the wave equation [5.1] and seek a general solution by carrying
out the change of variables:

u=x+ct, [5.21]

v=Xx-—ct. [5.22]

By using the chain rule of derivation, we can show that:

02 0?2 02 0?
—_— 2+ — [5.23]
0x2  ou? ouov  ov2

and:

02 ) 02 02 02

RN P S [5.24]
o2 ou? oudv  ov2

>

then by replacing in the wave equation we obtain in the system of variables (u,v):

02y
-0. [5.25]
ouov

This equation is solved in two stages:

a) % = F(u) [5.26]

where F(u) is an arbitrary function of u.
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b) y = f(u) + g(v) [5.27]

where f is the primitive of F and g is an arbitrary function.

Returning to the variables x and t via the definitions [5.21] and [5.22], the
general solution of the wave equation is:

y(x,t) = f(x + ct) + g(x —ct). [5.28]

The functions f and g are arbitrary provided that they are continuously derivable
twice. This property of the solutions is absolutely remarkable. To understand its
physical meaning, we will examine the first part of the solution f(x + ct) , at various
moments. Let us propose an arbitrary movement at the moment t and observe the
evolution over time (Figure 5.1). Displacement associated with the point x at the
moment t is associated the point x' the moment t' if:

X + ct = x+ct'. [5.29]
From that we deduce:
X'=x-c(t-t). [5.30]

When time increases, displacement is relocated towards negative x without
deformation; it is said that it is propagated.

The remarkable aspect of the solutions thus results in the fact that any initially
imposed displacement (which is arbitrary) completely describes the displacement at
any later moment just by translation of the initial shape.

By considering infinitesimal increases x'=x+dx and t'=t+dt, we
demonstrate with [5.30] that:

3 =-—c. [5.31]
dt
This quantity ¢ is homogenous to speed: it characterizes the propagation. It is
called celerity of the waves or propagation velocity. For the part of that solution that
we have just studied, speed is negative and characterizes a propagation towards
decreasing x.

A similar reasoning for the second part of the solution g(x — ct) would show the
same phenomenon but with an opposite propagation velocity +c and thus a
propagation towards growing x. The general solution is thus the superposition of
two displacements propagating at the same speed but in opposite directions.
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F (x+ct) t

t"
nd

-c (t';' t)

Figure 5.1.Propagation of displacement without deformation. Displacement at the moment t
is translated towards negative x at the moment t’ with a propagation velocity equal to —

5.3.2.Taking initial conditions into account

Let us consider the initial conditions [5.4] and [5.5] and seek the general solution
verifying them; it follows:

f(x) + g(x) = dy(x), [5.32]
cf'(x) —eg' (x) = vy(x) . [5.33]

By ' in [5.33] we have denoted derivation. By transforming the two preceding
equations we obtain:

f(x) = dy(x) - g(x) [5.34]
and:
c(dy () - 22" (®)) = vx) - [5.35]

By integrating the second equation and then using the result in the first we
obtain:

g
Cd® 40 1
O 20_(|).v0(x)dx+g(0) [5.36]
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and:
dy(®) | do(0) 1 ;
f(é) = T + T + 2—0!). VO(X) dx — g(O) . [537]

These two expressions, taken respectively for § = x —ct and & = x + ct , make it
possible to find the general form of the solution verifying the initial conditions [5.4]
and [5.5]:

1 X+ct
— j vo() de . [5.38]
¢ t

X—C

dox +et)  dylx—ct) |
2

y(x,t) =

To illustrate this result let us consider the following example:

d()(Z_[EH{H[EjH(EJ} (5.39]
L 2 2 2
with:

Hw=0 if u<0, Hu=1 if u>0 [5.40]
and:

Vo(x) = 0. [5.41]

We immediately deduce from it that for every t > 0:

y(x,t) = —sin?| —| x+ct—— ||| H| x +ct+ — |- H| x +ct — —
2 L 2 2 2

[5.42]

Ao o)



Vibratory Phenomena Described by the Wave Equation 149

y(x.1)
¢
=i
— i
> X

Figure 5.2. Propagation of initial displacement

Figure 5.2 illustrates the vibratory state at various moments after the initial
moment. A certain number of characteristic phenomena can be observed in this figure:

a) the initial condition generates two identical displacement shapes that
propagate in opposite directions;

b) each displacement has the same shape as the one imposed initially but with
half the amplitude;

c) the two displacements do not become deformed during their propagation. This
property is characteristic of a non-dispersive medium;

d) the two displacements are propagated with respective velocities — ¢ and +c
for the two terms of [5.41].

Let us take as a second example the initial conditions of imposed velocity:
dy(x)=0

vo(x)=0 if x<0,x>L [5.43]

and Vo(x)zsin(zxj if 0<x<L.

From that we deduce:

X+ct

1
Y,0 = x Lvo(g)dg , [5.44]
that is:
l +C
y(x,t) = — [Dy©] <+ [5.45]

2c x—ct
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Dy (&) = —— if £ <0,
e
D, (&)= -+ cos(n—gj if 0<x <L, [5.46]
T L
D, (&)=L if &> L.
T

After calculations we can draw up Table 5.2, which gives the expression of
vibratory displacement y(x, t) according to the respective values of x + ct and x — ct.

—o<Xx+ct<0 O<x+ct<L L<x+ct<mw
1 (TE()H—Ctj L
0 ———| cos -1 —
2mc L Tc
1 m(x + ct
- T | 1 (x —ct)
—L{l — oS w} 2ne L 1+ COS(LJ
27nc L L

(n(x—ct} 2nc
—cos| ——
L
1 +ct
L 1 COS(MJH 0
mc 2nc L

Table 5.2.Values of y (x, t) according to x + ct and x — ct

o>X—-ct>L| L>X—-¢ct>0 |0>X—-ct>—

Figure 5.3 shows vibratory displacement at several characteristic moments.

y(x,t)
A t

Figure 5.3.Consecutive displacements under an initial condition of imposed velocity



Vibratory Phenomena Described by the Wave Equation 151

Vibratory behavior following an initial imposed velocity condition is different
from behavior following an initial imposed displacement condition, which we have
described previously.

Indeed, the initial velocity generated between 0 and L extends in the course of
time to the whole of the beam with an evolution of form over time. Propagation
velocities + ¢ remain present since they characterize the displacement of the
displacement front (see Figure 5.4).

yx, )

—C N tc
>

Figure 5.4. Propagation velocity of displacements following
an initial condition of imposed velocity
5.3.3.Taking into account boundary conditions: image source

Taking into account boundary conditions leads to the concept of image source.
To begin with, let us consider a semi-infinite medium ]—oo,L], clamped at point
x = L, that is, verifying:

yL,H)=0 Vt. [5.47]

Let us further consider that the beam is subjected to the initial conditions [5.39]
and [5.40]. The solution is then given by:

dy(x +c)  dylx —ct)

2
~ (do(zL —xtet) dyL-x- ct)] [5.48]

2 2

y(x,t) = (

The first term of the right-hand member is the direct wave, while the second is
the wave reflected by the clamped end.

It is clearly a solution of the wave equation since it is a function of the two
variables x + ct and x — ct . We may also note that when x =L

y(L,t)=0. [5.49]
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Real medium Fictional medium

AN AN e t =1/
1\_/\/ V\L ' x
AN / Lo VAVAVE— =
VAV T \VAV4 t=3L/2¢c

Figure 5.5.Displacement of the real and fictional media at different point in time

It is interesting to examine movement over time while introducing a fictional
continuous medium in the continuity of the real medium (Figure 5.5). At the initial
moment, in addition to real displacement, the solution reveals a mirror image
displacement in the fictitious medium laid out antisymmetrically with respect to the
clamped end. At the later moments we observe four disturbances occurring in the
real and fictional media: two of them propagate with velocity c in the direction of
increasing x and the two others towards decreasing x. In the real medium the
clamped end reveals a reflection of the disturbance with an inversion of the sign of
the displacements. The real source creates the direct field; the image source creates
the field reflected by the boundary.

A boundary condition can thus be taken into account by introducing an image of
the initial displacement into a fictional medium extending from the real medium.
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This concept can extend to more complex configurations, in particular, with a finite
beam clamped at the ends:

y(L,t) =0, [5.50]

y=L,t)=0. [5.51]

Let us consider the initial conditions [5.39] and [5.40], as previously, and
position in Figure the 5.6 the different images, which are now unlimited in number
because it is necessary to introduce the image of an image:

ge 3

Fictional medium Real medium Fictional medium

Figure 5.6.Propagation in a finite medium
Initial displacements in the real and fictional media
Image 1: images of the real source with respect to the two boundaries
Image 2: images of the first images with respect to the two boundaries
Image 3: images of the second images with respect to the two boundaries

The initial displacement dj(x) being defined as between —L and +L, we
associate an infinite number of images to it over the entire x axis. The initial
displacement defined in the real and fictional media is written:

g(x,0)= do(x)
-dg(2L-x)-dp(-2L-x) (first images Iy) ,
[5.52]
+dp(4L-x)+dg(-4L—-x)  (second imagesIy),

—dg(6L-x)-dp(—-6L—x) (third imagesI3) .

Displacement [5.52] is written out only until the third image but, naturally, it
comprises an infinity thereof.
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The vibratory response of the beam is obtained by applying the result [5.38]
when initial speed is nil and initial displacement is given by [5.52]:

dy(x +ct) . dy(x —ct)
2 2
2 . . D!
+ 3 (d2iL — (x + 1)) + dy2iL - (x — ct)) 5 [5.53]
i=1

© -1 i
+ ) (dgl=2iL — (x + 1)) + do~ ZiL—(x—ct)))[( 2) J

i=1

y(x,t) =

-

We can easily notice that the solution [5.53] really verifies the boundary
conditions [5.50] and [5.51].

This technique of resolution by image source is applicable in many other
problems. In the physical sense, it makes boundary conditions appear as more or less
deforming mirrors. For absorbing boundaries, the reflection is accompanied by a
weakening, and images of higher orders are initially far from the real medium and,
when reaching it, have very low amplitude. The solution y(x,t) then tends towards
0 when t tends towards infinity.

5.4. Resolution of the wave equation by separation of variables

5.4.1.General solution of the wave equation the form of separate variables

A second method of resolving the equation is possible: it is based on the
separation of variables. In general, the method that we are going to expose is the one
preferred over the previous method because it highlights the concept of natural
vibration modes.

Let us consider the solutions of the wave equation separated into the product of
two functions f(x) and g(t):

y(x, 1) = ) g(t) [5.54]
Introducing the form [5.54] into the wave equation [5.1], it follows:
dzg 2

d=f
_= =2 o(t) —
2 ® f(x) = g® i x). [5.55]



Vibratory Phenomena Described by the Wave Equation 155

Let us separate the variables in [5.55]:

d%g d2f
dt? dx2
=2 — A1) [5.56]

g f(x)

The first member of [5.56] is independent of x, while the second member is
independent of t; their equality implies that the function A(x,t) that we have
introduced in the third member is simultaneously independent of x and t, i.e. equal
to a constant a. Equation [5.56] is thus separated into two equations:

d2g

ﬁ(t) —ag(t) =0, [5.57]
d2f a

@(t) - C—Zf(x) =0. [5.58]

The constant a can be negative, positive or zero. Let us consider these three
possibilities.

1)if a <0, we will pose a=—-0?, ® # 0.

Equations [5.57] and [5.58] become:

d2

ﬁ(t) +olgt)=0 [5.59]
and:

d2f

@(t) +k2f(x)=0 [5.60]
with: k = w/c. [5.61]

The solutions of [5.59] and [5.60] are given by:
g(t)=Acos(mt)+ Bsin(ot), [5.62]

f(x) = Ccos (kx) + D sin (kx) . [5.63]
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The time behavior is described by [5.62], the movement occurs with the angular
frequency . The space aspect is described by [5.63], it is characterized by a wave
number k. Angular frequency and wave number are linked by the relation [5.61]
called the dispersion relation.

2)a=0 (0=0)

Equations [5.59] and [5.60] become:

@(t) =0 [5.64]

de2 '
and:

&t 0 [5.65]

—(t) = . .

i ®

The solutions to [5.64] and [5.65] are:
gt)=At+B [5.66]

and:

f(x)=Cx +D. [5.67]

These uniform movements are of a different nature to those described by [5.62]
and [5.63]. This particular behavior would be representative of a zero angular
frequency (o = 0).

3)a>0,wewillpose a=82, §>0.

Equations [5.57] and [5.58] become:

d2g )

ﬁ(t) -8%gt)=0 [5.68]
and:

dzf 52
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The solutions to [5.68] and [5.69] are given by:

g(t) = Aedt 4+ Be= 0t [5.70]

f(x) = Ce®O% | pe~GlOx [5.71]

In short, there are three different types of solution to the wave equation obtained
by separation of variables:

a <0 :y(x,t) = (A cos (ot) + Bsin (ot))(C cos (kx) + Dsin (kx)),  [5.72]

a=0:y(xt)=(At+B)(Cx+ D), [5.73]

a>0:yxt= (AeSt + Be‘St)(Ce(S/C)X + De_(B/C)X). [5.74]

5.4.2.Taking boundary conditions into account

Let us take the case of boundary conditions of the free type, that is, let us
impose:

%(O,t) =0 and %(L,t) =0- [5.75]

Taking into account the separation of variables, equations [5.75] become:

£(0)=O and g(L):O. [5.76]
dx dx

Solutions of the wave equation [5.72] — [5.74] must also verify [5.76] in order to
authorize a physical movement. Let us examine whether this is possible.
Taking into account [5.76], the form [5.72] leads to equations:

D=0 and Cksin(kL)=0. [5.77]

That is to say, either to the trivial solution C =D =0, or to the solution D =0,
C # 0 and:

sin (kL) = 0. [5.78]
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Equation [5.78] is called an equation with normal (or eigen-) frequencies; indeed,
only certain values of k can satisfy it. These are normal wave numbers noted k

kq =% for n=1,...,00° [5.79]

Taking into account the relation of dispersion [5.61], an angular frequency o,
corresponds to each normal wave number:

(ON =C% for n=1,...,00° [5.80]

Consequently, there is an infinite number of possible solutions resulting from the
form [5.72]:

¥, (% ) = (A, cos (0, t) + B sin (o, 1) f,(x) [5.81]
with: f, (x)=C,cos (%xj [5.82]

The function f (x) is the mode shape. It is defined with an arbitrary
multiplicative constant C_, which we can normalize to one without losing the
generality.

Now let us consider the solutions resulting from [5.73]. Taking into account
[5.76] after calculation we have: C = 0 and unspecified D. Consequently, there is
only one possible solution resulting from [5.73]:

y(x,1) = Ayt + By

In the preceding expression, we normalized the constant D to a singular unit.
This movement characterizes a displacement of a rigid body, also called a
movement of a rigid solid.

To finish, let us take the third form of the solution given by [5.74]; the
introduction into [5.76] gives the following relations:

C+D=0and Ce"*+ De™* =0,

that is:

C=-DandC sinh(SEJ =0.
c

Respecting these equations is only possible with the trivial solution C=D =0.
There are thus no solutions resulting from [5.74].
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The most general movement is that resulting from the superposition of the
solutions which we have highlighted:

y(x,t) = Agt + B, + Z(An cos (o, t) + B, sin (oont))cos (HTT[ xj [5.83]

n=1
. nn
with: @, =c—.
L

Vibratory movement is the combination of a uniform movement of a rigid solid
and of an infinity of vibratory movements with normal pulsations ®,, and mode
shapes characterized by the wave numbers of k;,.

The presence of movement of rigid solid is linked to the free-free boundary
conditions; all other boundary conditions would eliminate this type of movement
with only the solutions resulting from the form [5.72] remaining. In the clamped-
free case, for example, we would obtain:

y(x.0) = Y (A c0s (0,1 + By sin (o,0)sin (k,x) [5.84]
n=1
. 2n-1 =@
with: o, =ck, and k, = T E [5.85]

The analysis of [5.84] or [5.83] shows that movement with deformation is the
sum of independent movements characterized by a normal angular frequency o
and a mode shape f_(x) . Each pair of angular frequency o, and mode shape f (x)
constitutes a mode. Certain authors apply the name of normal mode to the mode
shape f (x) alone. The set of normal angular frequencies and mode shapes pairs
constitutes the modal system of the beam. We can provide this modal system for the
cases that we have treated:

free-free: Cn—n,COS (n_n xj , [5.86]
L L
clamped-free: c 2n-ln , sin 20 -1 Tell. [5.87]
2 L 2 L

Free vibratory movement thus occurs with normal angular frequency for the
system considered.

Mode shapes of modes 1, 2 and 3, for the embedded-free case are examined in
Figures 5.7, 5.8 and 5.9.
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Figure 5.7. Mode shape of mode 1 of the clamped-free medium
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Figure 5.8. Mode shape of mode 2 of the clamped-free medium
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Deformation of mode 3
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Figure 5.9. Mode shape of mode 3 of the clamped-free medium

The point characteristic of modal movement, that is, of the part of movement
associated with an index n, is the appearance of nodes and antinodes of vibration.

Let us take the modal movement of the 1% order of the clamped-free beam yi(x%, 0 :
. [ m
yix, t) = (Al cos (o t) + By sin (o t)) sin (Z x) .
It is the product of the mode shape f(x) by a sinusoidal function of time; at
several consecutive moments, the medium traces the spindle defined in Figure 5.10.
The point of zero amplitude (x =0) is a node of vibration, while the point
x = L is an antinode of vibration; it corresponds to the maximum amplitude of the

vibratory displacement of mode 1.

Let us examine the modal movement of the 2™ order:
. . (3n
Yo%, 1) = (A2 cos (o, t) + B, sin (0, t)) sin Rx .

Displacements over time are given in Figure 5.11. This movement presents two
nodes in x =0 and x = 2L/3 and two antinodes in x =L/3 and x = L.

The number of nodes (or antinodes) is characteristic of a mode; an additional
node appears when we pass from mode n to mode n + 1. The total movement which
is the superposition of these modal movements does not present a node in the strict
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sense of the term since the points of zero displacement are different for each mode.
However, for conditions of excitation favoring a mode, that is those with amplitude
much larger than of the other modes, we will find a low vibratory amplitude in the
vicinity of the nodes of the favored mode often comparable to a node by extension.

Response of mode 1

Figure 5.10.Vibratory response of mode 1 of the clamped-free beam,
at different moments

L3 2L/3

Response of mode 2

|
=
|
|
i
|
|
|
|
|

Figure 5.11.Vibratory response of mode 2 of the clamped-free beam

Expressions [5.81] and [5.84] give the general forms of the solutions verifying
the wave equation and the free-free and clamped-free boundary conditions. There
remain some unknowns since the terms A; and B; are arbitrary; in fact, the initial
conditions will fix these values and thus ensure the uniqueness of the solution.
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Finally, let us note that the modal system results from the verifying of the wave
equation and the boundary conditions. It is the essential characteristic of vibrating
systems, since this modal system defines all of the movements that the medium is
likely to have. Table 5.3 summarizes the modal systems associated with the wave
equation for different boundary conditions.

Notes:

a) The free-free boundary condition allows a movement without deformation
which results in a zero normal angular frequency, that is, in a uniform movement.
The mode shape equals 1, that is, the displacement is the same in any point of the
structure.

b) The vibration normal angular frequencies in the clamped-clamped and free-
free cases are identical. This situation is surprising since the systems are different,
but does not have to lead us to thinking that the vibrations are the same ones because
the mode shapes are completely different.

5.4.3.Taking initial conditions into account

The finite medium is now subject to the initial conditions [5.4] and [5.5] that we
recollect:

y(x,0) = dy(x),

oy

E(X,O) = vy(x).

Boundary
conditions

Characteristic
equation

Normal angular
frequency

Mode shapes

Clamped-clamped

y(0,t) =0
y(L,t)=0

L
sin [m—j =0
c

. (nn j
sin| —X
L

n=1,..., ©

Clamped-free
y(0,) =0

751 _O
(’t)

L
cos [m—j =0
c

. (Zn—ln J
sin —X
2 L

n=1,...,©

Free-free

Oy
20,0)=0
ax( t)

%
—(L,t=0
5 oY

Elastic modes

Solid mode

Table 5.3.Summary of the vibration modes, for the free or clamped boundary conditions
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Let us take the example of the free-free beam whose solution is given by [5.81]
and [5.82]. Imposing the respect of the initial conditions, it follows:

y(x,0)= B +ZA cos(L] dyx), [5.88]
@(XO):A +§:B ® cos(ﬂszv(x). [5.89]
ot 4 0 ot n-n L 0

Equation [5.88] shows that the terms B\, and A correspond to the coefficients
of development of the function d((x) in Fourier series; similarly A, and B, are the
coefficients of development of v(x). After all the calculations, it follows:

1 L

By = ! dg(x) dx , [5.90]
1 L

Ay = Iivo(x) dx, [5.91]
L

= %z[cos (n_lit xj dy(x) dx, [5.92]

L
_ LL!)' (—xj vy dx [5.93]

The use of [5.90] — [5.93] in the general form of vibratory displacement [5.83]
provides the solution to the problem. This solution is expressed by a series just as for
the technique of preceding resolution using source-image (expression [5.52]). Each
method has its advantages and its disadvantages; however, the separation of
variables is generally preferred because it reveals the key concept of normal angular
frequency and normal displacement.

The introduction of initial conditions consisted of developing functions d(x)
and v(x) in Fourier series. This procedure is general but Fourier series will not be
forcing the traditional developments into sine and cosine. Let us consider another
case of boundary conditions. The general form of the solution is given by:

y(x,t) = i (A, cos (@, 1) + B,sin (0, 0)f (x). [5.94]
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Respecting the initial conditions imposes:

i A f.(x)=dy(x), [5.95]
n=1
iBn o, f,(x) = vyx). [5.96]
n=1

It is thus in general a decomposition into a series of normal functions which
should be carried out. These functions have the property of orthogonality
demonstrated in section 5.4.4.

L
J-fn(x) £, dx = N3, [5.97]
0

where N is the norm of mode n, 6np is the Kroneker symbol.

Let us take the equality [5.95], multiply the two members by fp(x) and integrate
over the length of the beam. Taking into account the property of orthogonality
[5.97], it follows:

1 L
A= ! dy(x) £,(0) dx. [5.98]
p

This expression relates to [5.92]. Similarly with [5.96] we obtain the expression
Bp relating to [5.93]:

1 L
B = Vo) £,(x) dx . [5.99]
(DPNP 2[ b

5.4.4.0rthogonality of mode shapes

The essential property for the calculation of vibratory response following initial
conditions is the orthogonality of mode shapes. To demonstrate it, let us, again base
ourselves on equation [5.60] which must be verified for each mode shape.
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For the oscillatory modes o, # 0, mode shapes verify [5.100]:

2
+onf =, [5.100]

If rigid movement is possible, the associated mode shapes fy(x) must verify
[5.65], that is:

d2f,

— 0 . [5.101]
dx?

We can assemble [5.100] and [5.101] into the single form [5.100] by introducing
a zero normal angular frequency for the rigid movement.

Let us multiply [5.100] by the mode shape of the mode p, integrate between 0
and L and cleverly group:

2f 7 L

J' B9 *(x)dx = % I £(x) £,(0 dx. [5.102]
0

We also have a symmetrical equation by permuting the indices:

L d2f o2 L
- j £ ) —L(x)dx =2 J £ (x) £,(x) dx. [5.103]
0 dx2 c2 0 P

Let us consider the first member of [5.103] and carry out integration by parts;
after regrouping we obtain:

jf(x)

d2f
" (x)dx + If 0~ 2 (x) dx

. df L
{f (x)—= p (X)} {fp(x)d—;(x)} .

0

[5.104]

Since the mode shapes verify the boundary conditions, it follows that the second
member of [5.104] is nil. Indeed, for the traditional conditions, clamped or free, we

df df
have either f (x), or d—n(x) (either fp(x) or d—p(x) ), which are nil at each end.
X X

df
From this it follows that the product f_(x) —~ P (x) isnil when x =0 and x = L.
dx
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For the boundary conditions which we have considered at the beginning of the
chapter (equations [5.2] and [5.3]) we have:

df
£,(0) = aod—;(o) [5.105]

and:
f (L) =q, (g': (L). [5.106]

Let us replace f (0), fp(L), £,(0), f(L) by their expressions drawn from
[5.105] and [5.106]; the second member of [5.104] becomes:

df df df df df df
o, —2(L)—2 (L) - o, —2(0) —2 (0) — o, —2(L)—2(L
de()dx() de()dx() de()dx()

dfn df
0)—2(0)=0.
dX()dx()

+(10

The second member of [5.104] is thus also nil for yield strengths. The relation
[5.104] is consequently reduced to:

Lo df koooa
- .([ (09— 5 (9dx + -([fn(x)dx—z(x) dx =0, [5.107]

This equation shows the symmetry of the second derivative operator, which is at
the base of the orthogonality of the mode shapes. Indeed, let us introduce this
relation into [5.102] and [5.103]; it follows:

L
(©2 - 2) jfp(x) f(x)dx=0. [5.108]
0

There is thus the alternative:

L
o, =, and [f,(x) f,(x) dx =N, [5.109]
0
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or:
L
®, # o, and jfp(x) f (x) dx =0. [5.110]
0

This shows the orthogonality of the mode shapes. Let us note that [5.110] and
[5.104] show that there is also a second property of orthogonality:

2

f
L(x)dx=0ifo, #o,. [5.111]

lfn(x) —

In problems of vibration, there is always a double orthogonality of the mode
shapes: orthogonality with respect to the operator of mass [5.110] and orthogonality
with respect to the operator of stiffness [5.111] of the problem considered.

5.5. Applications

5.5.1.Longitudinal vibrations of a clamped-free beam

We consider a clamped-free beam subjected to a static force at its free end until
the moment t = 0 when the force is suddenly canceled.

v _

t<0 t=0

Figure 5.12.Initial conditions of the beam

To calculate the response of the beam at the moment T > 0 it is necessary, first of
all, to calculate the deformation of the beam at the moment T = 0, then to introduce
it as the initial condition of free vibratory displacement following the sudden
cancellation of force.
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Static deformation U(x) corresponding to the compression of the beam is
obtained by resolving the problem of static equilibrium of the beam. It is thus a
question of solving equation [5.112], which results from the equation of longitudinal
vibrations of beams when displacement does not depend on time. We then force the
solution to respect the boundary conditions [5.113].

d2u
ES— =0 Vxe]o,L[, [5.112]
dx?
U(0)=0 and ES(;—U(L):—F. [5.113]
X

The general solution of equation [5.112] is:

Ux) =Cy +Dyx. [5.114]

The two boundary conditions [5.113] lead to the solution:
F
Ux)=—-—xX. [5.115]
) ES
The initial conditions to apply to the vibratory problem are deduced from this:
U(X,O):—ix and a—U(X,O):O- [5.116]
ES ot

Let us consider the solution of the problem obtained by modal decomposition
that we have outlined in section 5.4.2, equations [5.83] and [5.87]:

& 2n—1m=n
Ux,t) = A B_ si i —X |. 5.117
x,t) Z( L, cos (o t) + B sin (oant)) sm[ 1 xj [ ]

n=1

Taking into account of the initial conditions yields:

[5.118]

_ "
wt A= 2 (215 g D2 F
L 2n—-1=n) LES
2 L

From it we deduce:

2F & =nn 2n-1n
U(x, t) = i x| 5.119
(x, 1) N HZ:; T cos (@, 1) sm( - x) [5.119]
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Equation [5.119] gives vibratory displacement in any point x and at any moment
t following the cancellation of the static force at the moment t = 0.

A second characteristic is key in the study of longitudinal vibrations of beams,
that is the stress of traction-compression, which is connected to the displacement
U(x, t) by the relation [3.18] provided in Chapter 3.

o (x,t)=E el x, 1), [5.120]
[5).4
that is:
4F & (=Dr (En—ln ]
(X, t) =— cos (m,.t) cos —X|. 5.121
nte9 Sn; (n-1) ©n) 2 L B-121]

The analysis of the Ilongitudinal displacement and the stress of
traction-compression can be carried out mode by mode in order to break up the
vibratory state into simple elements. First of all, let us consider the modal
amplitudes of displacement and stress and carry them over to Figure 5.13:

8F "
ESL (2n—1)2 (/L)

Amplitude of displacement of the mode n:

: 4F (D"
Amplitude of stress of the mode n: — .
St (2n—1)

We observe that the amplitudes of modal displacements decrease much more
quickly than those of modal stresses; it will thus be easier to converge in
displacement than in stress. Another consequence of this distortion of amplitude is
the difficulty in extrapolating a visual feeling resulting from displacements from the
state of stress of the beam. This is all the more true since the space mode shapes for
displacements and stresses are radically different. Let us trace the mode shapes and
stresses of the first three modes (Figure 5.14): the correspondence between a node of
displacement and an antinode of stress and vice versa is remarkable. It is thus
necessary to expect to record strong stresses at the places of low amplitude for
beams in longitudinal vibrations as well as in torsion.

The “engineering rules” stipulate that mode 1 is dominating in the problems free
of vibrations. We may clearly observe in our example the truthfulness of this
assertion but it should not, however, be forgotten that, although widespread, this
property is not true in general. In fact, the amplitude of various modes is related to
the space form of the initial conditions, as shown by the expressions [5.100] and
[5.101]. We can say that the modes whose mode shapes will be similar to the form
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of initial displacement and/or initial speed will respond strongly. In the case
analyzed in this section, initial displacement is given in Figure 5.15; it is unarguably
closer to the deformation of mode 1 than of those of the following modes which
produce sign changes.

stresses

Figure 5.13.Modal amplitudes of displacements and stresses
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[}
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. o
Loim
=]
Lim

—_

Stress

Figure 5.14.Mode shapes of displacements and stresses
for the first three modes
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This is the reason for the preponderance of mode 1 in vibratory displacement of
beams that we have studied. It is also the reason for the great frequency of
occurrence of this situation, because it is rare to create in practice the initial
conditions close, for example, to mode 2. This would require the creation of an
opposition to the initial phase, which is the application of two opposed forces in L
and L/3. In general, favoring mode n requires the use of n static forces adjusted in
sign and position.

dy(x)
A
| > X
|1L
|
(FESL|— — — — — — — — = '

Figure 5.15.Static deformation of the beam

5.5.2.Torsion vibrations of a line of shafts with a reducer

We consider a reducer made up of two shafts coupled by a set of gears. To study
the vibrations of torsion of this unit we model the system as defined in Figure 5.16.

The quantities R, and R, are respectively the radii of gears linked to shafts 1
and 2, I, and 1, are polar inertias of the cross-sections of the two shafts, G, and
G, are the moduli of materials rigidity, finally L; and L, the lengths.

= PN

Ll LZ

Figure 5.16.Line of shafts with a reducer
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Noting as a(x,t) and a,(x,t) the respective angles of torsion of shafts 1 and 2,
and introducing local references into each beam, we can write the boundary
conditions of the two shafts as follows:

— Torque of shaft 1 nil in 0 (free boundary):
0
G, =L (0,0=0. [5.122]
o0x

— Equality of displacements at the point of contact of the teeth:

R o (L, t) = R, a,(0,1). [5.123]

Equilibrium of forces in contact with the teeth expressed according to the torques
of the two shafts:

G,1, oo
) =——22 2(0,1). 5.124
150 ax( ) [ ]

_Gl I1 %(L
R, ox R,

Torque of shaft 2 nil in L, (free boundary):
oa
G,I,—2(L,,t)=0. [5.125]
27275 V2

Modeling employed to describe the behavior of the reducer neglects, on the one
hand, the masses of the gears and, on the other hand, the elasticity of the teeth, all in
all we are considering here a low frequency simplification.

We will calculate the total modal system of the set of two shafts, that is, we will
find the solutions of the free vibratory problems.

The angles of torsion o,(x,t) and a,(x, t) must verify the equations of motion of
shafts 1 and 2 and the boundary conditions [5.122] — [5.125] respectively.

Respecting the equations of motion involves:

a,(x,t) = (A, cos (o, t) + B, sin (o, t))(C, cos (k, x) + D, sin (k, x))

with : k, =031/ ﬁ,
P

[5.126]



174  Vibration in Continuous Media

ay (x,t) = (A cos (@, t)+B, sin (, 1)) (C, cos (ky X)+D, sin (k, x))

[5.127]
with: k, =m2/ ’i .
P2

At this level of writing the solutions of the equations of motion the time
functions are different. In order to satisfy the equations of connection [5.124] and
[5.125] at any moment, it is, however, necessary to pose the equality of the temporal
functions:

A, cos(m; t)+ B, sin (0, t) =Acos(wt)+Bsin(ot) for i=1,2.

The coupling between the two beams clearly leads to only one single system
vibrating as a whole with the pulsation ®. The wave numbers and thus the
wavelengths are, however, different for the two beams. We may observe that for a
given angular frequency, the wavelength is shorter for greater velocities of waves of
torsion.

G G

ki=o/ -1, 0=2n "1 /o, [5.128]
Py Py

k, = ﬂ,xfzn %2 fo. [5.129]
Py Py

Introducing these solutions under the boundary conditions [5.122] — [5.125], it
follows:

D, =0, [5.130]

R, C, cos (k; L)) =-R,C,, [5.131]

G, 1 . G,1

#Cl ksin (k L) = —2-2 D, k,, [5.132]
1 2

C, k, sin (k, L,) = D, k, cos (k, L,) . [5.133]

To simplify let us take the case where the two shafts have identical characteristics:

p=py=p,G=G,=G, I =I,=1,L =L, =L. [5.134]
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The equation with frequencies results from respecting equations [5.131] —
[5.133]:

R, cos (kL) R, 0 (& 0
sin(kL)/R; 0 -1/R, C,|=(0]. [5.135]
0 sin(kL) —cos (kL)) ( D, 0

To obtain non-trivial solutions the determinant of the system must be nil:

R+ B2 | in (kL) cos (kL) = 0. [5.136]
R2 Rl

This equation is the characteristic equation for normal wave numbers; it admits
two families of solutions:

kK =2 o1, [5.137]
L
2m-1m=x
k= r.
m 2 L

m=1,..,0. [5.138]

Let us examine the first family. The normal eigenfrequencies result from [5.128]
and [5.137]:

n=1,..,0. [5.139]

The system [5.135] becomes:

R/ =D" R, 0 W G 0
0 0 —-1R, C,'=|0], [5.140]
0 0 (1 J\{by) \0)

It admits the solutions:

D,=0 and C, = (-1)““%@ [5.141]
1
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The mode shape associated to the mode n is obtained by introducing the
particular values of C;, D;, C, and D, into the space form of the solutions [5.126]
and [5.127], that is, after having normalized C,A to one:

fl(x) cos(nm/L)

teot=| =] .
£2(x) (D1 (R,/R,) cos (nm/L)

[5.142]

Let us examine the second family. The normal angular frequencies result from
[5.128] and [5.138]:

o= [— —, m=1,..,©. [5.143]

The system [5.135] becomes:

0 R, O ) C)) (0)
(—l)m/R1 0 —1/R, | C2|= ()|. [5.144]
0o Hmo JiDpy o)

It creates the solutions:

C,=0 and clz(_1)m%D2, [5.145]

2

2m -1
f1 (%) D™ R,/R,) cos( m2 %x]

{fm(x)}z B . (2m—1n j
sin

[5.146]

£2(x) T
2 L

To fix the ideas, let us trace the mode shapes of the two modes taking R, = 2R, .
The mode n =1 is given in Figure 5.17, and the mode m = 1 is given in Figure 5.18.

Cutting into modes n and m is arbitrary and is introduced only for mathematical
convenience. Physically we will find the traditional modal sequence by increasing
the normal angular frequency: mode 1, that of lower normal frequency, is m = 1,
mode 2 is that corresponding to n = 1, mode 3 to m = 2, etc.



Vibratory Phenomena Described by the Wave Equation 177

Until now we have considered solutions resulting from [5.126] and [5.127]
representing vibratory movement with deformation. The line of shafts being free at
its ends, there will also be a mode of vibration without deformation (mode 0). The
solutions are of the type:

o (%, 1) = (Ag t+B) (Cy; X + Dy

[5.147]
0, (X, 1) = (Ay t+ B (Cpy x + D).
3
]
=
B 0
2 L 2L
Z
&
Q
~
a1
Figure 5.17.Mode shape of the n=1 mode
Respect the boundary conditions [5.122] to [5.125] leads to the solution:
o (x,t) = (A t+ B)
[5.148]

oy (x,1) = (Ag t+ By (- R,/R,).

In fact, this solution describes the uniform rotation of the two beams (contrary
direction for the two beams with respect to the reduction R, /R1 ).
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Response of mode 1

Figure 5.18.Mode shape of the m=1 mode

The free vibratory response is given by the accumulation of all the possibilities
of movements:

o (x,1)

1
a0 | (Bt + By) (— R1/R2j

(=1n+ (RQ/R1) cos (n/L)

+ i (An cos (o, t) + B, sin ((ont)) cos (a1

n=1

[5.149]

+ i (Am cos (o, t) + B sin (u)mt))

m=1

(-D™+ R, /R,) cos((2m —1) n/2L)
sin ((2m - 1) ©/2L)

The values of the constants Ags A, Ayl By, By and B_ are fixed by the

initial conditions.

5.6. Conclusion

The wave equation that we have studied is directly applicable to the vibrations of
beams in traction and torsion but also to cords and sound pipes. We have shown two



Vibratory Phenomena Described by the Wave Equation 179

methods to describe free vibration. The method of propagation which introduces the
concept of image source when we take the finite aspect of the structures into account
is well adapted to the calculation of free response of the large-sized systems. The
method of separation of variables which leads to the key concept of normal mode
introduces vibratory response as a superposition of the independent modal
responses.

Two examples of calculations showed how to take initial conditions into account
and to obtain vibratory displacements and stresses. A characteristic of modal
behavior of the structures governed by the wave equation is the correspondence
between antinodes of displacements and nodes of stresses and between nodes of
displacements and antinodes of stresses.

In the case of coupled structures, we have extended the results obtained for
isolated structures by connecting interfaces. This procedure, put into practice by a
line of shafts composed of two beams and a reducer, can be generalized to the case
of several coupled systems.
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Chapter 6

Free Bending Vibration of Beams

6.1. Introduction

In this chapter we consider the vibratory movement of beams most commonly
met in practice: bending vibrations.

This prevalence of the problems of bending results from the following aspects:

a) The normal angular frequency of bending is the first to appear when we
describe the axis of frequencies increasing starting from zero. In other words, the
first modes of a beam with all effects mixed together (bending, traction, torsion) are
those of bending.

b) Transverse excitations on beams are the most current; they are the ones
generating bending modes.

c¢) For a given value of dynamic stress and compared to the other vibratory
movements, flexing movements generate very large displacements. Consequently,
we may have non-dangerous constraints for the beam, which produce large
transverse movements that can be uncomfortable.

d) Bending movements impact the surrounding air and lead to the generation of
noise.

Various hypotheses have been proposed in Chapter 3 to describe the bending of
beams; the most sophisticated theories introduce “secondary” effects (shearing,
rotational inertia) which can prove to be important for high frequency or anisotropic
materials. Our discussion will, nevertheless, be based on the strongest hypothesis
(pure bending) because it allows an approach with fewer calculations. The influence
of secondary effects will be discussed afterwards.
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As a first development we solve the equation of motion by separation of
variables. The solution is interpreted in term of traveling and vanishing waves, and
the concepts of phase speed and group speed are introduced to characterize the
propagation in infinite beams.

We then introduce boundary conditions and deduce from them the vibration
modes. A summary table is given.

Examples of application are finally presented to describe the principal physical
phenomena. Into the second part the secondary effects of rotational inertia and
shearing are introduced separately and simultaneously. The results are then interpreted
in terms of propagation velocity and of normal mode. We also establish the criteria
that make it possible to determine a priori if the secondary effects are negligible.

6.2. The problem

We consider a straight beam oriented along axis 1 of an orthonormal system of
reference, and we are interested in the movement generated by a transverse
excitation. This vibratory state was analyzed in detail in Chapter 3, section 3.5. It
was shown that several models can be proposed according to the level of
simplification that we allow ourselves. The simplest theory, and thus the most
restrictive one, will be used as a basis for this discourse. In section 6.7 we will
demonstrate the influence of effects neglected in the traditional approach.

Thus, we consider the case of pure bending described in section 3.5.3 of Chapter
3. Displacements of the continuous medium are given by the expressions [6.1]:

oW
WXy, X,5,X3, 1) ==X, — (X, 1),
0x,
W,(x;, %5, %3, 1) = Wix;, 1), [6.1]

Wi(x;,%,,%3,0) =0.

The function W(x;,t) represents the transverse displacement of the beam; it
verifies the following equations:

Equation of motion:

2w o2 82w
pS——+——|El—|=0 Vx,€]0,L[, Vt. [6.2]
a2 x| axd
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In this expression, I is the inertia of the cross-section of the beam with respect to
direction 3, E is Young’s modulus of material which is here supposed to be
isotropic, p is the density, and S is the cross-section of the beam. We no longer

specify that the equations are valid in the time interval ] to ,tl[ , we simply note V't

since moments t, and t, are arbitrary.
Boundary conditions to verify in x =0 andx =L, Vt:

either: W(x, ,t)=0,

[6.3]
2
or i(Ela—v2v(>(l ,t)]zO
ox o
and:
either: a—W(x1 =0,
o,
[6.4]
2
or EIa Vzv(xl 0 =0.

1

Longitudinal stress is deduced from the value of transverse displacement by the
relation [6.5]:

0°W
Gll(Xl,Xz,X?’,t) = XZ Ea—z(xl,t) [65]
X

The solution of equation [6.2] is the basis for the calculation of vibratory
response of beams in bending. It is only analytically possible in the particularly
simple cases of variation of the mechanical characteristics along the beam length.
We will base our discourse on the simplest case, that of the homogenous beam with
a constant cross-section, which is easily solved. Under these conditions, pS and EI
are constants and equation [6.2] becomes:

2w aA
+El——=0 Vx,e]0,L[, Vt. [6.6]
8xf

pS

ot2
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6.3. Solution of the equation of the homogenous beam with a constant cross-
section

6.3.1.Solution

To solve equation [6.6] we employ the method of separation of variables. Thus,
we pose:

W(x,t) = f(x) g(t). [6.7]
To simplify the notations from now on, we will write x instead of x; .

Let us introduce the expression [6.7] into equation [6.6]; it follows:

d%g d4f

—(t) f(x) + E—(X) g)=0. [6.8]

Let us separate the variables by grouping on the right the functions of time and
on the left the functions of space:

d2g EI d4f
dt2(t)/g(t) =- deX4(X)/f(X) =a. [6.9]

113 ”

Following the traditional argumentation, we observe that is a constant.
Indeed, the first member of [6.9] is independent of x and the second member is
independent of t: “a” is thus independent of time and of x; it is a constant.

Equation [6.9] separates into two equations:

d2g
5 -2z =0, [6.10]

d4f
d—4(x)+a—f(x)— [6.11]
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where the constant “a” can be positive, negative or nil. From that we deduce the
three types of solutions:

1) a =0, leading to the solutions:

g)=At+B and f(x)=C+Dx+Ex’+Fx’. [6.12]

L.e. with [6.7]:

W(x, t) = (At + B) (C + Dx + Ex2 + Fx3). [6.13]
2) a <0, we then pose a = —w?.

The solutions of [6.10] and [6.11] are given by:

g(t) = Acos(wt) + Bsin(ot),
[6.14]

f(x) = C cos (kx) + D sin (kx) + E ch (kx) + F sh (kx)

with : o= /gkz. [6.15]
pS

The quantity o is the angular frequency of the vibratory movement; the quantity
k which appears in the space solution is called a wave number. The relation [6.15]
connecting angular frequency and the wave number is the relation of dispersion.

The solution is thus:

W(x,1) = (A cos (ot) + Bsin (1)) (Ccos (kx) + Dsin (kx)

[6.16]
+ E ch (kx) + Fsh (kx)).
3)a>0
After all the calculations we obtain:
)= Aevat  BegVat
& [6.17]

f(x) = Cel® + De 1% 4 Beox 4 Fe0x
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And finally the transverse displacement of the beam:

W(x.t) = (Ae“/g t B2 ‘) (Cej‘"X +De 1% £ Ee® 4+ Fe % )
[6.18]
. pS

with: a=,[j, a— .
EI

As we have shown during the resolution of the wave equation using separation of
variables (section 5.4 of Chapter 5), the case of the positive constant leads to the
trivial solution W(x,t) =0 if we respect the boundary conditions, so let us not
exploit this any further before the solution [6.18].

The solution [6.13] is possible but marginal because it is to be considered only in
the case of boundary conditions allowing movements without strain. Instead of
vibratory movements in a strict sense, it induces uniform movements (translation or
rotation of the whole beam).

Vibratory movement is introduced by the case of the negative constant and thus
has the general form [6.16]. Let us stress that there are other equivalent forms of
writing this solution down, in particular [6.19] and [6.20]:

W(x,t) = (A cos (@ t) + Bsin (@ t))(C cos (kx) + D sin (kx)

6.19
+ Eekx + Fekx L6191

and:
W(x, t) = (Aej‘”t + Be*i“’t)(Cejk" + De I 4 Bekx 4 Fekx ) [6.20]

In the continuation we will make use of the most adapted solution form
depending on the case.
6.3.2.Interpretation of the vibratory soltion, traveling waves, vanishing waves

We are particularly interested in the solution [6.16] or of course in its equivalent
forms [6.19] and [6.20].
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Let us take, for example, the form [6.19] and distribute the product. After
suitable regrouping of the terms we obtain a new expression:

W(x,t) = a, cos (ot — kx) + a, sin (0t — kx) + a5 cos (o t + kx)
+a,sin (0t +kx) + a5 cos (0 t) e +a, cos (wt) ek [6.21]

+a,sin(ot) ekx + ag sin (o t) ekx,

Each term of [6.21] is interpreted as a wave. The first four terms are traveling
waves; the four following are vanishing waves. We need to develop this further in
order to understand clearly the physical significance associated with these concepts.

Let us take the first traveling wave of equation [6.21], that is [6.22] and represent
the state of displacement of the beam at the moments t; and t, + At in Figure 6.1:

a; cos (ot —kx). [6.22]

t=t, t=ty+At

Ax

Figure 6.1.Propagation of the traveling bending wave

We see that at two consecutive moments the displacements of the beam
progresses towards positive x. To determine the speed with which this progression
occurs, it is enough to note that the two points x and x + Ax of the same vibratory
level at the moments t, and t, + At must verify:

a; cos (w t; — kx) = a, cos (0) (tg + AD) -k (x + Ax)) [6.23]
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and, more exactly, to select two points with the same amplitude in the same phase
congruence (there is an infinite number of point with the same amplitude):

o (t) + At) —k (x + Ax) = 0 (t)) —k (%) .

From that we draw:

Ao [6.24]
Atk

Passing to the limit, we observe that the propagation velocity of the waves of
bending (or celerity of bending), cg, is given by:

x o .
d k7

But the variables k and ® are not independent, they must verify the relation of
dispersion [6.15]. Consequently, we can express the propagation velocity of the
bending waves according as a function of k with [6.25] or as a function of « with

[6.26]:

cp =+ El/pSk, [6.25]

¢ = 4 EpS Vo . [6.26]

This result is important: it shows that if the solutions of the equation of bending
are interpreted in terms of traveling waves in a similar way to the solutions of the
equation of longitudinal or torsion vibrations of beams, there exists a fundamental
difference because the celerity of the bending waves depends on the frequency (it is
said then that the medium is dispersive) whereas torsion or longitudinal vibrations
are independent of it. The celerity of the bending waves is nil for zero angular
frequency and tends towards infinity together with the angular frequency. A similar
calculation would show that the three other traveling waves of [6.21] have the same
celerity, and the wave a,sin(ot—kx) is also propagated towards growing X,
whereas the waves a;cos(ot+kx) and a,sin(wt+kx) are propagated towards
decreasing x.

A second type of wave is present in the solution [6.21]; let us take, for example,
a, sin (o t) ek and display in Figure 6.2 the displacements of the beam at various
consecutive moments t,, t;, t,, t;.
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The wave is not propagated: for a given observation moment, it has an
exponential variation with x. As time passes, the space form of the vibratory
movement is preserved and only its amplitude is modified. This movement is
characterized by a very strong space variation which is comparable to a phenomenon
of disappearance of the signal with distance, since the amplitude quickly becomes
undetectable in experiments when we move away from the wave origin of the wave
(from which the name of the vanishing wave originates).

W(x, t)
A

Figure 6.2.Vibratory movement of a vanishing wave

6.4. Propagation in infinite beams
6.4.1.Introduction

We consider an infinite beam, which is of course unrealistic, but in certain cases
constitutes a correct approximation of “sufficiently long” finite beams. After all,
introducing boundary conditions, despite appearing more satisfactory at first sight,
often results in very imperfect modeling.

A first comment has to be made: it concerns the unrealism of the movement
produced by vanishing waves during the response of an infinite beam, because they
introduce infinite displacements when x tends towards infinity.
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The vibratory field of an infinite physically acceptable beam will thus include
only traveling waves, that is to say by taking the form [6.20] thereof and cumulating
all the possible movements:

W(x, 1) = T [A(k)ej‘”t eI 4+ B(k) e 10t eIk J dk . [6.27]

—oo

The integral comes due to the fact that the most general solution is obtained by
the summation of all the traveling waves.

A transformation of [6.27] provides the equivalent form which we are going to
use:

W(x, t) = jg(k, £) el dk [6.28]
with: g (k,t)=T (k) cos (wt+¢@(k)) and o= E—ék2 . [6.29]
\ p

The function g(k,t) contains constants I['(k) and @(k) that have to be
determined. Of course, their values can be fixed by the conditions of initial
displacements and velocity of the beam.

The general form of the solution given in [6.28] can be found by solving the
equation of motion [6.6] using the Fourier space transform. Let W(k, t) be the

Fourier space transform of W(x, t):
Wik, ) = J Wi(x, t) e ¥ dx .

We will determine W(k, t) by taking the Fourier transform of equation [6.6],
that is after all the calculations:

2w -
- pS——(k,t) - EIk* W(k,t) = 0.
dt?
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For each value of k, this differential in time equation is integrated without
difficulty to give:

W(k, t)=0(k) cos(wt+y(k)) and o= \/?;kz .
p

_ The space-time solution is obtained by an inverse Fourier transformation
Wk, t):

W(x, t) = 2i j O(k) cos (ot + y(k)) e*dk .
T 0

This solution clearly coincides with [6.28] and [6.29] where we posed:

F(k):% and o(k) =¥ (k)-

6.4.2.Propagation of a group of waves

To explain the phenomenon of propagation of a group of waves, we will
consider the particular case of an initial displacement of the type [6.30], which we
display in Figure 6.3, and with zero initial speed.

W(x, 0) = 2 cos (kx) with 1 A <<k [6.30a]

>

sin (Ax)
X

a%(x, 0)=0. [6.300]
t
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Envelope curve

sin/Ax

Vibratory signal
Wi 0)

Figure 6.3.Initial displacements of the beam

We can calculate the function g(k,t) contained in [6.28] in the following
manner. At t =0, the general form [6.28] becomes:

o0
W(x, 0) = Ig (x,0) e dx . [6.31]
This expression indicates that g(k, 0) is the Fourier transform of W(x,0):

o(k, 0) = jW(x, 0) e % dx [6.32]

—00

To observe the initial condition of imposed displacement [6.30a] we may use the
known result on the Fourier transformation of the gate function. Initial displacement
[6.30a] was selected to coincide with the Fourier transform of the following “gate”
function g(k,0):

lifkelk-A,—k+Al
g(k0)={lifkelk—-A, k+Al [6.33]
0ifkel-k—A, —k+AJUlk-A, k+Al
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By using this result and the solution [6.29] we obtain the two relations:
ke[-k-A, —k+AJu[k-A, k+A]= T{k)cosp =1

ke[-k-A, —k+AJUlk-A, k+A]=T{k)cosp=0.

To introduce the initial condition of zero speed [6.30b], we calculate dg/dt (k, t)
with [6.29] and then its value at t=0. We then use the equality with the Fourier
transform of the initial speed.

[e'e}

d oW ;
8 (K, 0) = J' TN (x,0)e I dx . [6.34]
dt o, ot
In our case initial speed is nil and:
dg
—(k0)=0,
dt

that is:

I'k)o sing=0.

We deduce:
¢=0,
ke[-k-A -k+A]JUu[k-A k+A]=TK =1,
ke[-k-A —k+A]Julk-A, k+A]= Tk =0.

From a physical point of view this initial condition amounts to exciting a group
of waves with wave numbers close to k.

Transferring this to [6.28], we obtain finally:
k+A —k+A

W(x, t) = j cos (o t) & dk + Icos(wt)ejkxdk. [6.35]
k-A -k—-A
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The relation [6.15] between ® and k must be clearly taken into account in this
expression:

El
o=_|—Kk2.
pS

Since we have supposed A << k, we may approach the function w(k) using its
Taylor development truncated in the first order:

0w
k ~ ok —(k
ok +¢) 0)()+86k()

o0 [6.36]
o-k+¢)=o(-k)+e— (k).
( )~ o(=k) ” =k
After change of variable and use of [6.36], the integral [6.35] becomes:
+A om )
W(x, t) = I cos ((m(k) +e ™ (k)j tJ el (k+o)x ge
A o - [6.37]
+ J- cos (m (k) +e—(- k)jt el (KX g
A ok
After a long but not difficult calculation we obtain the result [6.38]:
sin(A(Z;:(k)t + XD
W(x,t)= cos((o(k)t+kx)
om
—(k)t +X
ok [6.38]
sin(A(g;O(k)t - XD
+ cos(m(k)t —kx)
0w
—(k)t -X
ok
To obtain this result we have supposed:
oo Oom
k)=w(-k) and —(k)=—-—(-k). 6.39
(k)=o) and 22(k) = 22(-k) (6:39)

As the relation of dispersion [6.15] indicates, this hypothesis is valid in the case
studied. Of course, if the relation of dispersion does not allow verifying [6.39], the
solution [6.38] is not valid and, consequently, must be modified.
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If we pose t = 0, the expression [6.38] of vibratory displacement coincides with
the initial condition [6.30]. Two signals are created at successive moments; they
move in opposite directions. Let us consider the one moving towards negative x

W_(x,1):
sin(A(Zj’j(k)t + XD

Z—Tj(k)t+x

W_(x,t) =cos(o(k)t+kx) [6.40]

Figure 6.4 illustrates the propagation movement of the group of waves.

position at the moment t + 0t position at the moment t

Figure 6.4.Propagation of the group of waves towards negative x-coordinates;
only envelope curves are represented

The signal is composed of the product of two terms with very different
frequencies: a classical wave with a short wavelength and a pseudo-wave with a
large wavelength.

The classical wave cos ((o ot + kx) describes a vibratory movement with the
angular frequency ®, which propagates at the bending wave speed cg with a wave
number k [6.25] or [6.26]:

cos(o(k)t+kx). [6.41]

The pseudo-wave, the second term of the product in [6.40], characterizes the
envelope curve of the signal and depends on the size of the group of waves by its



196  Vibration in Continuous Media

angular frequency equal to A dw/ok and at the same time its maximum amplitude,
equal to A . The maximum is taken at the moment t at the point x given by:

om
=—t—(k). 6.42
X t&k() [ ]

The displacement of this point of maximum amplitude over time is characteristic
of the pseudo-wave propagation. Thus, we obtain the propagation velocity Cy of this
signal with:

dx

dt

_dogy [6.43]

C
& dk

In the case of the equation of dispersion of beams in pure bending [6.15], it
follows:

EI
¢ =2 —k. [6.44]
g pS

Let us recall that the propagation velocity of the bending waves was given by
[6.25]:

EI
= | = k. [6.45]
F pS

The celerity ¢, of the pseudo-wave is called group speed; it is different from
celerity cg, known as phase speed, associated with the traditional wave. In the case
considered, we observe that group speed is twice higher than phase speed. It follows
that the combined movement of the product of the two signals, which are propagated
at different speeds, does not keep the same form over time; it is a fundamental
difference with respect to the case of the wave equation that we have examined in
Chapter 5.

Note: in the case of the wave equation, the relation of dispersion is of the
o = ke type; from it stems the equality of phase and group speed, since
0w/ok = w/k . The medium is known to be not dispersive because the propagation of
a package of waves occurs without modification of the space form of the signal over
time.
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6.5. Introduction of boundary conditions: vibration modes
6.5.1.Introduction

The solutions of the equation of motion were obtained in section 6.3 using
separation of variables. We will now introduce boundary conditions, which will
highlight the set of vibratory movements that the beam can undergo. Naturally, the
vibrations are different when the boundary conditions change and it is out of the
question to consider all the possibilities here (there are 16 types of boundary
conditions, since there are 4 possibilities at each end and there are two ends). We
will consider only certain types of boundary conditions to illustrate this point.

The resolution by separation of variables revealed three types of solutions:
[6.13], [6.16] and [6.17]. While studying longitudinal vibrations we saw that the
type [6.17] yielded only the zero solution since it had to respect the boundary
conditions. The same applies here and we will not consider this solution further. The
[6.13] type of solution is characteristic of rigid beam movements and is only
possible if boundary conditions allow them; this is particularly the case for free
ends, but there are other possibilities which we will examine below. The type [6.16]
will give an infinite number of solutions for all the cases of boundary conditions.

6.5.2.The case of the supported-supported beam

The boundary conditions are as follows:

W(@,t)=0
BZAVY [6.46]
EI——(0,t) =0
axz
and:
W(L,t)=0
02w [6.47]
EI—(L,t) = 0.
axz

The relations [6.46] and [6.47] mean that transverse displacement is nil at each
end and that longitudinal movement linked to the rotation of cross-sections is free,
which imposes the nullity of the torque. This modeling of boundaries is well adapted
to the description of a beam supported by ball bearings that block transverse
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movements but allow the rotation of cross-sections and, thus, the longitudinal
movements.

This type of boundary conditions does not allow rigid movements, and the
solution [6.13] of the equation of motion leads only to the zero solution. Vibratory
movements thus all result from the solution [6.16]:

W(x,1) = (A cos(wt) + Bsin(wt))(C cos(kx) + D sin(kx)

[6.48]
+ E ch(kx) + F sh(kx))

with: 0= | 2L k2. [6.49]
pS

Let us impose that [6.48] satisfy the boundary conditions [6.46] and [6.47]. After
calculations it follows:

C+E=0
C-E=0

i [6.50]
Ccos(kL) + Dsin(kL) + E ch(kL) + Fsh(kL) = 0

— Ccos(kL) — Dsin(kL) + E ch(kL) + Fsh(kL) = 0.

The first two relations lead to: C=E =0 from which using the last two
relations we deduce:

[sin(kL) sh(kL)][Dj {OJ
= | [6.51]
—sin(kL) sh(kL) J\ F 0

If the linear system [6.51] has a non-nil determinant, we infer a single solution:

o)

Taking into account the fact that the constants C and E are nil, we deduce from
the general form [6.48] that:

W(x,t)=0. [6.53]
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To obtain a non-zero solution, it is thus necessary that the determinant of [6.51]
be nil. That gives:

sin(kL)sh(kL) =0, [6.54]
that is:
sin(kL)=0. [6.55]

This characteristic equation shows that there is an infinite number of values of
the wave number k that verify it:

k =—,n=1, .., ©. [6.56]

Each wave number solution k is associated with a normal angular frequency

due to the equation of dispersion [6.49]:

2
o, = E—;["—“J n=1, .., ©. [6.57]
P

To fully characterize the solutions it remains to solve the linear system [6.51] for
the values k ~given by [6.56], which cancel its determinant. We obtain:

ool Lo

= , [6.58]
0 sh(nm) J\ F 0
thatis F=0and any D.

Taking into account all these results in the [6.48] form of vibratory displacement
there follows for each modal index n a modal movement W, (x,t) given by [6.59]:

W, (x, 1) = (An cosm,t+ B, sin wnt) sin [n{ x) . [6.59]

This expression characterizes the movement of the n mode of vibration. It occurs
with the normal angular frequency ®, (equation [6.57]) and with the mode shape
f,(x) given by [6.60] (the arbitrary constant D has been posed as equal to 1):



200  Vibration in Continuous Media

£ (x) = sin [n—” x] . [6.60]
L

Figure 6.5 illustrates the mode shape of the first 3 modes.

fl(x) A
Y » x
L
f2(X) A
t P x
L
A\/L
f(x) A
L 2 L
M A

Figure 6.5.Mode shapes of the first three modes of vibration of bending
of a supported-supported beam

General vibratory movement is the sum of all the modal movements, that is:

W(x,t) = i (An cos (o, t) + B, sin ((ont)) sin (n% xj . [6.61]

n=1

The constants A and B, will be fixed by the initial conditions at the origin of
the free vibrations. Their calculation requires the use of the properties of
orthogonality of mode shapes. We will not proceed further with this calculation.
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6.5.3.The case of the supported-clamped beam
The boundary conditions are now:
W(0,t)=0
oW [6.62]
EI——(0,t) =0
ox2

and:

W(L,t) =0

6.63
AL 16631
ox

Clamping in L blocks the two displacements, transverse and longitudinal, which
amounts to setting to zero the slope since it is equal to the rotation of the cross-
sections, which is in turn connected to longitudinal displacement. With respect to the
preceding case, only the fourth relation of [6.50] is modified and becomes:

—Csin(kL) + D cos(kL) + Esh(kL) + Fch(kL) = 0. [6.64]

The solution, which is completely similar to that of the preceding section, leads to:

C=E=0. [6.65]
Two other constants being subjected to verification of [6.66]:
sin(kL) sh(kL) \( D 0
= . [6.66]
cos(kL) sh(kL) J{ F 0
Setting to zero the determinant of [6.66] leads to the characteristic equation:
tg(kL) = th(kL). [6.67]
This characteristic equation is not as simple to solve as in the case of the
supported-supported beam and requires computerized processing. We propose here a

graphic method, which is not very precise but makes it possible to clearly locate the
solutions.
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In Figure 6.6 we have plotted the two curves tg(kL) and th(kL) so that each
intersection provides a root. First of all, it should be noticed that there is an infinite
number of solutions if we take into account the periodicity of the tangent function. It
should also be noted that as the hyperbolic tangent very quickly tends towards one,
we have an approximation of the roots by approximating the characteristic equation
[6.67] by:

tg(kL) = 1. [6.68]

That is, values:

k = T for n=1,...,0. [6.69]
4 L

The very first modes require computerized processing if we wish to be very
precise, but the approximation [6.69] is already quite good. We can deduce from it
the values of normal angular frequencies using the equation of dispersion [6.49]:

2
El (4n—1
o, = —[ 1 Ej . [6.70]
pS 4 L

tg(kD

1 th(kD)

% T 3% 2n

Figure 6.6.Roots of the characteristic equation of the supported-clamped beam
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The calculation of mode shapes is carried out using the wave numbers solution
[6.69] in the linear system [6.66]. After all the calculations it follows:

D:-\/Esh(4n4"lnjF. [6.71]

That is, posing D =1 and replacing the various quantities by their respective
values in the general mode shape [6.48]:

0

W(x, 1) = D (A cos (@, 1) + Bsin (@, 1) £,(x) [6.72]
n=1
with:
. (4n-1m= dn-1n
fn(x):(sm ( : Ixj+Fnsh ( : EXD
and [6.73]
Fn =" 14 1
J2sh ( n j
4
7[411711_[)
And for large enough n: —J2e . [6.74]

The approximation of F, [6.74] is better the higher the rank of the mode.

Let us consider the normal strains of modes; they are given by the expression
[6.73]. For high ranked modes, by expressing the sine hyperbolic by form into an
exponential we obtain:

In 4 n
4n —1 1 —(x-L) 1 - —(x+L)
fn(x):sin[ 1 Exj——e 4L T4 e 4L [675]
4 L
The third term of the second member is small for all the values of x and can be
neglected; the second, on the other hand, is not negligible when x is close to L and
must be preserved. Consequently, mode shape consists of two dominating terms:

4n-ln

dn—-1mn ) 1 = E(X*L).

f(x)= sin( EX - ﬁe [6.76]
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Figure 6.7 illustrates the variations of the two terms depending on x: the first
term is important everywhere in the beam and characterizes the internal solution,
while the second decreases very quickly when we move away from the x = L end;
it introduces the edge effect. When the total displacement is traced, it is obviously
very close to the internal solution as long as we are far from the clamped end.
Towards the L end of the beam, the edge effect is of the same order of magnitude
as the internal solution.

This interpretation calls for several observations:

1. The tendency described is general for problems of bending. The presence of
edge effects is characteristic of the influence of vanishing waves present in the
solution of the equation of motion.

2. Edge effects appear in the vicinities of beams singularities, naturally, with
boundary conditions, but also in the case of beams with a variable section at the
level of each inertia variation; see Figure 6.8.

3. The boundary condition of support does not introduce edge effects (the same
is true for the guided condition).

4. The edge effect has real influence only at a distance of A from the singularity,
which is lower than the quarter wavelength A of the internal solution; that is:

EI
A
A<__£C_F=£_ps. [6.77]
4 20 240
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\\%
a)A \/ \k\ > X,

W

/&* > X

b)A

5) l/\\//\ﬁ_; X

Figure 6.7.Mode shapes of the 3rd mode of a supported-clamped beam
a) Internal solution, b) Edge effect, c) Mode shape

For mode n we can introduce into [6.77] the normal angular frequency ®,, the
distance of influence of the edge effect results from it:

EI
4\{ oS
n \p T
A<— t—=—. [6.78]
2 . o, 2kn

In the case considered, k is provided in [6.69]. From that we draw:

2L

A< .
4n -1

[6.79]

We note with [6.79] that the distance characteristic of the zone of influence of
the edge effect strongly decreases when the order of the mode grows.
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L edge effect =% internal solution

Figure 6.8.Localization of the edge effects on a clamped-free beam with variable inertia

6.5.4.The free-free beam

The boundary conditions are in this case:

2w
El

0,)=0
) (0, 1)

. [6.80]
EI——(0,t) =0

0x3

and:

%W
El——(L,t) =0

ox2

Bw [6.81]
El—(L,t) =0.

ox3

The bending moment and shearing force are nil at both ends. These boundary
conditions that leave the ends free for transverse and rotation displacement allow
movements without strain (or of rigid solid). Thus, it is necessary to consider
solutions of the [6.13] type in addition to the solutions of the [6.16] type.

Let us consider the solution of the equation of motion of the [6.13] type.
Applying boundary conditions [6.80] and [6.81] leads to:

E=F=0.
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That is, to solutions of the form:
W(x,t) = (At + B) (C + Dx) [6.82]
where C and D are unspecified.

We can separate [6.82] into two solutions, representative of the rigid modes of
translation and rotation of the beam so that the two mode shapes are orthogonal:

— translation mode:
Wirx, 1) = (Agt + By) ; [6.83]

— rotation mode:
1 U L
Wr(x, 1) = (Apt + Bp) [ x = 5 . [6.84]

We often call these movements “zero modes” because they represent uniform
movements, which have one infinite period and, therefore, a zero frequency.

Let us consider the solution of the equation of motion of the [6.16] type; the
application of boundary conditions [6.81] leads to:

C=E,
D=F

and:

[6.85]

[ (cos(kL) — ch(kL))(sin(kL) — sh(kL))] [c] _ {0]

(sin(kL) — sh(kL))(ch(kL) — cos(kL)) )\ D) |0

To obtain non-trivial solutions it is necessary that the determinant of [6.85] be
nil, that is:

cos(kL)ch(kL) = 1. [6.86]

The solutions of [6.86] must be approximated using a computer; we will find the
values of the roots in the summary table of the following section. For the first modes
there is no obvious approximation, but for the higher modes (kL >>1) we may
approximate the characteristic equation by:

cos(kL)= 0, [6.87]
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that is:
T
kL = (2n+1);. [6.88]

An infinite number of solutions is thus obtained:

—normal wave numbers:
k =(@n+1)— ; [6.89]
n oL’ '

—normal angular frequencies:

/ EI
o, = —k% ; [6.90]
pS

— mode shapes:

f (x) = (cos(k,x) + ch(k, x))+ D, (sin(k x) + sh(k, x)) [6.91]

_cos(k,L)—ch(k,L)
sin(k, L)—sh(k, L)

with D, = [6.92]

For the high rank modes we note that D  ~—1. Mode shapes are then
approximated by:

f (x) = cos(kx) — sin(k x) + ch(k x) —sh(k X). [6.93]

The first two terms of the second member of [6.93] are characteristic of the
internal solution, while the two last ones apply to the edge effects at the ends of the
beam (x=0 and x=L).

The most general free vibration movement is obtained by an accumulation of all
the modal movements including zero modes:

L
W(x, 1) = (At + By) + (At + By (x - —j
B 2 [6.94]
+ Z (Ajcoso t+Bsinwt) f(x).

n=I
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6.5.5.Summary table

Boun_d_ary Charact_eristic (k,L)2 Mode shapes
conditions equations
9.87, 39.50, 88.9,...
Supported- sin (kL) = 0 sin| 2%«
supported (n“)z
224,617,121 Chlkyx) — costhyx)
e > ch(k_L)—cos(k_L)
Clamped-clamped | ch(kL)cos (kL) =1 m+1 Y n n
2 n _ sh(k x) —sin(k x)
sh(k L) —sin(k L)
15.4. 50. 104 ch(k,x) — cos(k x)
T 0| eh(k,L) —cos(k, L)
Cl d- rted | th(kL) = tg(kL 4n +1
amped-supporte (kL) = tg(kL) ( L " _ sh(k,x) —sin(k;;x)
sh(k, L) —sin(k L)
352,224,617, | Sa¥) - costl, )
T | eh(k L) + cos(k L)
Clamped-free | ch(kL)cos (kL) = -1 m+1 YV n n
5 T B sh(k x) —sin(k x)
121,... sh(k, L) - sin(k, L)
924 61.7. 121 ch(k, x) + cos(k, x)
o > | ch(k L) - cos(k L)
Free-free ch(kL)cos (kL) = 1 2n+1 " n
2 n _shikx) + sin(k  x)
sh(k L) —sin(k L)
15.4, 50, 104,... itk %) sh(k %)
2 sink x) s X
- th(kL) = tg(kL 4n +1 L=+ L
Supported-free (kL) = tg(kL) ( “4+ nj sin(k L) sh(k,L)

Table 6.1.Table giving the vibration modes of beams in bending for various boundary
conditions. We provide the first numerical values of (knL)2
and then an asymptotic form for large n

Calculations completely similar to those of the preceding sections can be made
in all the cases of boundary conditions and provide the normal modes of beams in
bending. We have drawn a table which recapitulates the results in several cases of
boundary conditions. The calculation of normal angular frequencies is performed
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EI
using the equation o = < (knL)2 where the value of (knL)2 is provided in

pSL
the table.

For the free-free case, there are two rigid modes in addition to the vibration
modes; for the free-supported case, there is one rigid mode.

6.6. Stress-displacement connection

During the study of longitudinal or torsion vibrations we have seen that modal
stresses varied inversely to vibratory displacement: a node of displacement
corresponding to an antinode of stress and vice versa. What happens in the case of
bending? To clarify this point we will take the case of the supported-clamped beam
analyzed previously.

Longitudinal stress is calculated on the basis of transverse displacement by the
relation [6.5]. Replacing W(x;,t) with the expression [6.75], it follows (we
reintroduce the notation x; instead of x in order to avoid any ambiguity):

0
011(X), Xy, X3, 1) = X, Ez k% (A cosm t+Bssinot) h (x) [6.95a]
n=l
with: h, (x;) =- sin(k,x;)+F, sh(k,x;), [6.95b]

where k_ is given by [6.69], w_ by [6.70] and E, by [6.73].

Expression [6.95a] shows that the bending stress is nil for the neutral fiber
(x, =0) and maximum for the upper and lower surfaces(x, = £h/2). We also
observe that bending stress breaks up into a modal series whose normal functions
are h (x,) [6.95b].

Figure 6.9 illustrates the variation of the normal stress functions h (x)). The
results are to be compared with those in Figure 6.7 which represented mode shapes.
We note that in the part of the beam dominated by the internal solution, a node (or
an antinode) of displacement corresponds to a node (or an antinode in opposing
phase) of constraint. This situation is the reverse of that of longitudinal and torsion
vibrations. In the part of beam close to the clamped end dominated by the edge
effect the situation is different since a zero displacement corresponds to maximum
stress. In the case of a free end, we would note that for a maximum displacement at
the end we record zero stress. The correspondence between modal displacements
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and modal stresses is thus differentiated. In the part of beam dominated by the
internal solution an antinode (or a node) of displacement corresponds an antinode
(or a node) of stress. When the edge effect is greater, the tendency is reversed since
an antinode (or a node) of displacement corresponds to a node (or an antinode) of
stress. It should be noted that for a condition of support, there is no edge effect and
the internal solution dominates until the end.

The calculation of the response by modal decomposition poses the problem of
the number of terms to be considered in the calculation of the series. It is not
possible to give a general rule since amplitudes A and B, depend on the initial
conditions. We can, on the other hand, affirm that convergence in stress would be
more difficult than in displacement taking into account the multiplicative term klzl
which appears in [6.95]. Indeed, the generic term of the modal stress series [6.95]
will always decrease slower than the term of the modal displacement series [6.72].

o1

N
NN

o1

=
SRR

—> X

A

b) A P x

=

SRR

o1

Figure 6.9.Normal stress of the 3" mode of a supported-clamped beam:
a) internal solution, b) edge effect, c) normal constraint

6.7. Influence of secondary effects

Equation [6.2], which is at the foundation of our discourse, represents the effect
of pure bending and results from simplifying hypotheses which we have examined
in Chapter 3. The validity of the simplified approach poses the problem of the
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influence of secondary effects that have been neglected. There are two secondary
effects: rotational inertia and transverse shearing. Taking these effects into account
raises various technical difficulties; the calculation which is simple enough for
rotational inertia is more difficult for shearing. We will consider the two cases
successively.

6.7.1.Influence of rotational inertia

The equation representative of vibratory movement was provided in Chapter 3,
equation [3.66].

2W oW o*W
—pl +EI =0. [6.96]
o2 ox2ot2 ox4

pS

Here we have, on the one hand, adopted a simplified notation and, on the other
hand, supposed a homogenous beam. Let us seek the solutions of the vibrations
problem in the form:

W(x, t) = f(x) el®*. [6.97]

Replacing it in equation [6.96], it follows:

5 5 d2f d4f

The solution of this equation is of the type:

f(x) = Csh(ax) + D ch(ax) + E sin(kx) + F cos(kx) [6.99]
with:
2 4
S
o= -P w24 [Rj P [6.100]
2E E 4 EI
and:

2 4
()
ke [P o2s [ﬂj_ﬁ_swz. [6.101]
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The general solution consists of four terms: the first two characterized by a wave
number o are vanishing waves, while the last two with a wave number k are
traveling waves.

We can calculate the phase speed cp of the traveling waves with pulsation ® in
a traditional way using the ratio:

== ® . [6.102]
k 2 S
P (Pj o7 eS
2F E) 4 EI

At low frequencies we can approximate this expression by:
EIl
cp =4 — o . [6.103]
pS

The propagation velocity given by [6.103] corresponds to the phase speed of
beams in bending without secondary effects that we have calculated (equation
[6.26]).

At high frequencies the approximation of [6.102] is:

cp=.—. [6.104]
p

The speed of traveling waves with a high frequency becomes independent of o,
which shows that at a high frequency, a beam in bending with rotational inertia is a
non-dispersive medium. This celerity is equal to that of longitudinal waves.

Rotational inertia is thus an important effect at high frequencies, since it
modifies the propagation velocity of waves; at low frequencies, however, it is
negligible.

On the basis of the solution [6.99] it is easy to take into account the boundary
conditions to determine the vibration modes of a beam in bending. Here we will
consider the case leading to the simplest solution: that of a beam supported at both
ends. The application of boundary conditions leads to the characteristic equation:

sin(kL)=0
[6.105]

with : C=D=F=0 andanyE.
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The solutions of [6.105] are given by the sequence of values:
k =—,n=1,..,0 [6.106]

from which, with [6.101], we can draw the values of normal angular frequencies:

EI (nnjz
o = |— — |y [6.107]
pS+pl(nm/L)2 \ L

The mode shapes are given by:
. (nn
f,(x) = sin (T xj . [6.108]

The comparison with solutions obtained without the effect of rotational inertia
reveals that normal pulsations are modified but the mode shape stays the same. This
second property is not general; it appears for the conditions of supported ends, but
mode shapes would be modified in the case of clamped or of a free end.
Nonetheless, the tendency concerning angular frequencies is general, since rotational
inertia makes normal pulsation decrease. If we introduce the relationship &, between
normal angular frequencies of the n mode calculated, taking rotational inertia into
account and omitting it, we obtain:

[6.109]

This factor ¢ is characteristic of the influence of rotational inertia: when it tends
towards 1, the effect is negligible; the weaker it is in front of 1, the more influence
rotational inertia has. Thus, we may state that the effect of rotational inertia is
increasing with the order of the mode and that the characteristics of the beam are
also important. The non-dimensional value (I/SI2) is characteristic of the influence
of rotational inertia; it reflects the geometry of the beam, but at the same time is
independent of the material. To reinforce these ideas, let us consider a one meter-
long beam with a circular cross-section of two centimeters in diameter: we then
have: (I/SI2)=4.10"%and the error over the normal angular frequencies does not
exceed 10% for the modes of the order n smaller than 25.
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6.7.2.Influence of transverse shearing

The equations representative of the bending of beams with transverse shearing
and rotational inertia were provided and interpreted in Chapter 3, equations [3.53]
and [3.54]. We recall them here using a simplified notation in order to be concise:
W(x,1t) is the vector of the beam (previously noted W (x,t)) and B(x,t) is the
rotation of the cross-section (previously noted le(x, t)).

B s oW o 1 o
it (BJ’_JH_ _L B, [6.110]
o2 48, ox ) ox| Sy ox
02w
AR (B+aﬂj 0. [6.111]
o2 ox| 48,0 ox

Let us note that the effect of rotational inertia is introduced by the first term of
the left-hand part of equation [6.110] and that it suffices to remove it to take into
account nothing but the shearing effect.

We will consider harmonic movements of the type:
W(x, 1) = f(x)el®t, [6.112]
B(x,t) =h(x)el®". [6.113]

Inserting these expressions into equations [6.110] and [6.111], we obtain a
system with a differential equation [6.114] where rotational inertia is neglected:

dz d
—SGu+Fl— —SGa—
dx2 dx {h(X)] (0} 61141
dz = . .
SGa-L pse? +5G— [\ f0) 0
dx dx?

In order to be even more concise, we note:
E=1/S,,, and oG =1/4S,,

For an isotropic material, these quantities correspond to the Coulomb and Young
moduli. For an orthotropic material E is the longitudinal module of the beam, G is
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the shearing modulus with respect to the axes (1,2) and o is the shearing correction
(see Chapter 3, section 3.5.2).

The resolution of this system is classical; it suffices to seek the solutions in the

form:
hx)) (M
= elx [6.115]
f(x) N
Replacing in the system [6.114]:
_ 2 _
SGa + Elk SGaG M 0
= ) [6.116]
SGaGok  pSw? +SGkZ \ N 0

To obtain non-trivial solutions, the determinant of the system [6.116] must be
nil, that is:

Ak +Bk2+C=0 [6.117a]
with:

A =ISEGasS, B = pS®?IE, C = — SGaGap?. [6.117b]

The solutions of equation [6.117a] are obtained easily since they are those of a
polynomial of the second degree in k2. There are four tk; and + jk, solutions

with:
k, = fﬂ [6.118]
2A
K, = /M [6.119]
2A
and:

A =B2 -4AC.

To characterize the solutions completely, it is also necessary to determine the
unknowns M and N of the linear system [6.116]. This is done by calculating the
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terms of the matrix for the values of k canceling the determinant. Obviously there is
no unique pair (M, N), and we choose to fix N equal to one and to calculate M
consequently. With the first line from the system it follows:

if k=+k, , M=+M, =SGu [6.120]

! )
plow’ —SGo + IEk;

. . k . [6.121]
f k=xk, , M=xM,=jSGo—F——————
1 27 2= apI(DZ—SG(I+IEk§

In short, there are four elementary solutions; the general solution is the linear
combination.

()-(4)e on( )

+F (_ ?42} S

[6.122]

Vibratory movement results from the superposition of two vanishing waves with
a wave number k; and two traveling waves with a wave number k., .

Let us consider the celerity of the traveling waves:

Cp=— [6.123]
F k2

with k, given by [6.119], that is:

I PSEl 2 + \/ (PSE 022 + 4p3El @2 G2 02
27 2EISGo: '

[6.124]

This celerity depends on the angular frequency; therefore, the medium is
dispersive. We can calculate it in the extreme cases of low and high frequencies.

At a low frequency we have the approximation:
pS
k,=4 EJE. [6.125]

The use of [6.125] in [6.123] gives the celerity found with the theory of bending
without secondary effects (equation [6.26]). We may thus conclude that transverse



218  Vibration in Continuous Media

shearing is negligible at low frequencies. The boundary frequency of validity of the
theory without shearing is rather difficult to obtain; it would result from the
comparison of the values of k, provided by [6.124] and [6.125] for increasing
frequencies; as long as the two wave numbers are close, shearing does not have an
influence.

In the extreme case of high frequencies we have the approximation:

k, = ’%m [6.126]

and thus:

cp= | —. [6.127]

This propagation velocity corresponds to that of the waves of shearing, already
highlighted in the problem of torsion in Chapter 5. The value is in fact a little
different, taking into account the correction of the shearing modulus.

We can also observe the asymptotic value of M, thanks to [6.121] and to the
low and high frequency values of Kk, . For low frequencies it follows:

M, = - jk, .

With [6.118] we deduce that the propagation part of the solution is given by:

h —iky) ko)
{ (X)J _ E[ z} Jx F{ 2]eﬂ<zx ‘ [6.128]
f(x) 1 1

We note that:
df
hx) =-— (%),
(x) dX( )
that is:

B(x,t) :—aﬂ(x,t).
Ox
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This corresponds to the hypothesis of pure bending where the rotation of the
cross-sections is equal to the slope and confirms the fact that transverse shearing is
negligible at a low frequency.

At high frequencies, M, tends towards zero (M2 = O(]/oa)). This means that
transverse displacement occurs without rotation of cross-sections and, therefore, that
the longitudinal constraint is nil. The movement is a pure shearing wave, as the
propagation velocity would lead us to believe [6.127].

Figure 6.10 illustrates the type of movements of the beam at a low frequency.

=

Figure 6.10.Low frequency movement: standard bending, transverse movement is
accompanied by a rotation of the cross-sections

Figure 6.11 illustrates the type of movements of the beam at a high frequency:

Figure 6.11.High frequency movement: pure shearing wave

The calculation of the modal system is performed in a traditional fashion by
requiring the solution [6.122] to respect the boundary conditions. We will consider
the simplest case, that of the supported-supported beam without, however,
developing calculations. The mode shape of the index n is given by the vector:

hn(x) M, cos (E xj
= L [6.129]
f,() sin (n% xj
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with: M, = _E;z . [6.130]
L IE ( nn )
1+—| ==
SGa\ L
The corresponding normal angular frequency is given by the expression:

2
o, = E(“—“J [6.131]
pS\ L

Let us introduce, as for the study of the influence of rotational inertia, the
relationship ¢, between the normal angular frequencies calculated with and without
secondary effects (here shearing) given by the expressions [6.131] and [6.57]:

[6.132]

We observe that, as for rotational inertia:

— the factor is always weaker than 1 and that, therefore, taking shearing into
account always makes the normal angular frequencies decrease;

—the value 1/SL? is characteristic of the influence of shearing but is amplified by
the ratio E/Ga. . Let us add on this subject that for an isotropic material:

% =2(1+ v)/a

where v is the Poisson’s ratio of material and o is the shearing correction which
depends on the form of the cross-section (see Chapter 3).

Thus, for a steel beam with a circular cross-section, this amplifying factor is
equal to 2.88. For an orthotropic material the amplification is much stronger because
these materials are characterized by a weak shearing modulus. For a composite
material composed of bidirectional fiberglass immersed in resin, the E/Ga. ratio
normally reaches 7. The shearing effect thus acquires a considerable importance for
these materials. With [6.132] and [6.109] we also note that if the shearing and
rotational inertia effects are of the same order of magnitude, shearing dominates.

The shearing effect is greater the higher the rank n of the mode.
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The free vibratory response is obtained by cumulating modal vibratory movements:

nw
O
= L cos (o, 1) + B, sin (o, 1)) [6.133]
WX, 1)) n=1 sin (E Xj

L

where the constants A, and B, are set by the initial conditions. We will not proceed
further with these calculations.

6.7.3.Taking into account shearing and rotational inertia

6.7.3.1. Propagation of waves

In the two preceding sections, we treated the two secondary effects separately.
Here we will consider the case where the two effects are considered simultaneously.
We will limit ourselves to the analysis using only the W vector of the beam, that is,
on the basis of equation [3.57b] from Chapter 3:

o'W O2W  p2l o*W E) o'W
EI +pS +— -pl|1+— =
ox4 oz G ot G ) ox2ot?

[6.134]

The case without shearing is obtained in this form where only the W vector
appears while removing the terms which depend on G in [6.134] (in fact, it is the
limit when G tends towards infinity, which demonstrates that this hypothesis
consists of rigidifying the shearing modulus in an artificial way, thus blocking this
movement). The case without rotational inertia amounts to ignoring the fourth term
of the first member of [6.134]; the standard equation consists of ignoring all these
terms.

For a harmonic movement, we pose:
W(x, 1) = f(x) el

Equation [6.134] becomes:

d4f pZl . 2 | ) E \ d*f
El— (X)) + | — o — pSw x)+ploc|1+—|——=0. 6.135
dX4( ) o p x)+p [ Gajdxz [ ]

The solution of the differential equation [6.135] is standard; we seek the solution
in the form:

f(x) = ekx [6.136]
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where k is determined by the characteristic equation:

E Pl
EIk* + plo? [1_,__)1(2_,_ —o?2-pS|a?=0. [6.137]
Gao Ga

For each frequency « we associate the solutions:

E
K2 =

o
pyes , [6.138]
—pIm2[1+Ej—\/Z
K = 2};& [6.139]
where A is the positive or zero quantity defined by:
E V2
A:pzlzw“[l—aj +4EIpSw?. [6.140]

Let us introduce the angular frequency €. which satisfies k, =0 and delimits
two different vibratory behaviors:

’Sch
Qi =.—. [6.141]
pl

For o < €., there are two pure imaginary wave numbers * jk  resulting from
[6.139] and two real wave numbers +k_ resulting from [6.138]. The solution of the
problem is:

f(x) = Csin (k,x) + D cos (k x) + Esh (kgx) + Fch (k.x) . [6.142]

The expressions of k_ characteristic of the propagation part of the vibrations and
k. characteristic of the vanishing part of the vibrations are provided hereunder:

E
plw? (1+j+\/Z

_ Ga
p 2FI ’

[6.143]
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E
—p1m2(1+j—\/Z
k. = 2E(I3°‘ . [6.144]

(S

For @ > Q. , the four solutions of [6.138] and [6.139] become imaginary and
vibratory movement is composed of four traveling waves:

f(x) = Csin (kpx) + Dcos (kpx) + Esin (kx) + F cos (k.x) . [6.145]

Wave numbers kp and ki, are given respectively by [6.143] and [6.146]:

plw? (1+Ej—\/Z
k, = G .

2E1

[6.146]

We can associate a physical significance to the angular frequency €, . Let us
take the case of a rectangular section to settle the ideas. Equation [6.141] becomes:

Ga 2\/5
Qi = f—— [6.147]
p h

/ Ga . . . .
where | — =cp is the celerity of transverse waves and h is the thickness of the
p
beam.

By introducing the wavelength A, of transverse waves (defined by [6.148]) into
equation [6.147] we obtain the relation [6.149]:

by =2m /@ , [6.148]
P

h= xTﬁ. [6.149]
T

The angular frequency €, is thus characteristic of a shearing wavelength close
to the thickness of the beam. We can thus conclude that at higher frequencies, the
beam hypothesis is no longer well adapted to describe the phenomena.

The calculation of propagation velocities clarifies the physical phenomena; it is
necessary to distinguish the behavior at frequencies higher and lower than Q. .
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For @ < €, , the celerity of the traveling waves is calculated easily thanks to
[6.143]:

2EI
c = . [6.150]

)y
pl| 1+ — |+ |[—
Ga o*

When o tends towards Q. , A tends towards zero and celerity tends towards a
constant value: ¢, .

E 2 Ga 2

This celerity lies between the two values ¢; = | % and cp = }G%

corresponding to the velocities of longitudinal and transversal waves which
characterized the bending waves speeds with either rotational inertia or shearing
alone.

For o > Q. , there are two speeds of propagation associated with the two types
of traveling waves appearing in the solution:

2EI
c = [6.152]

and:

2EI
c. = . [6.153]

e
o1+ |- |2
Go, ot

The analysis at the extremes of these expressions is interesting: if ® tends
towards €, by a higher value, we note that ¢, =c, =¢,,; if ® tends towards
infinity, we have < tending towards ¢; and c, tending towards cy .




Free Bending Vibration of Beams 225

= 67 y :

Figure 6.12.Velocity of the bending waves:
a) pure bending, b) with rotational inertia, c) with shearing

Thus, above “omegalim”, two different types of traveling waves take part in the
vibratory movement. In high frequency approximation, the first are propagated with
the velocity of longitudinal waves, and the second with the velocity of transverse
waves. In fact, they coincide with the high frequency approximations noted in
sections 6.7.1 and 6.7.2 for waves of bending with rotational inertia and waves of
bending with shearing respectively. Thus, at high frequencies, the two secondary
effects are uncoupled.

Figure 6.12 shows the celerity of the waves of bending in the three cases of the
bending equation: fundamental case, with rotational inertia, with shearing; Figure
6.13 has the celerity of the waves of bending when the two secondary effects are
considered. We note that at low frequencies all the theories coincide but that they
deviate from one another at high frequencies.
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[
-

o = ‘/% ®)

Qi

Figure 6.13.Velocity of bending waves with shearing and rotational inertia (a),
with rotational inertia only (b)

6.7.3.2 Vibration modes

The vibration modes of finite beams is traditionally outlined by seeking solutions
of the type [6.142] and [6.145] verifying the boundary conditions. This calculation is
rather long and we will not give it here. We directly give the result obtained in the
simple case of the supported-supported beam.

The normal strains remain identical to the simple case of pure flexing, that is:

£ (x) = sin (HL—” xj .

For a given mode shape f (x) we associate two normal angular frequencies ©,
and o, . The o, angular frequencies are much lower than them o, .

o e

o, = 5
n 21p?

o e

i 21p?
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with:

Ezmr4 Ezmt2
A =p2|1-——| | —=| +(pS)2+2 2SI(1——) (—) .
(- () rosreafi- ][

This unfolding of the normal angular frequencies comes from the existence of a
hidden variable f (x, t) which we excluded to obtain the simple form of the equation
of motion [6.134] which only depends on W(x,t). The apparent simplification of
this procedure, in fact, pays off in the calculation of the response, since the modes of
angular frequency o, and o) are not orthogonal (they have the same mode shape)
which presents a problem for the introduction of boundary conditions. This problem
of non-orthogonality of modes would not appear had we kept equations [6.110] and
[6.111] to solve the problem in a similar fashion to the solution in section 6.7.2.

6.8. Conclusion

This chapter described the vibrations of bending of beams according to the
various hypotheses used to model this problem. We showed, in particular, that the
influence of the secondary effects of shearing and rotational inertia could be
important for high frequencies and for the thicker beams. The anisotropy of material
considerably amplifies the effect of shearing which cannot be neglected even for the
first modes.

The analysis of vibratory phenomena was performed for the beam in pure
bending because the relative simplicity of the equation of motion allows easier
exploitation. Two types of solutions appear during the resolution of the equation of
motion: waves traveling as for longitudinal vibrations so for those of torsion, but
also vanishing waves which acquire their importance at the singularities of the beam
(boundary conditions, excitation, variation of inertia). Traveling waves are
characterized by a propagation velocity which varies with frequency; we then say
that the medium is dispersive. This property marks an important difference with the
vibrating mediums described by the wave equation where the velocity of waves is
constant. The dispersive nature of the solution modifies the space form of a
disturbance during its propagation and prohibits the use of the images method
presented in Chapter 4.

The propagation of a package of waves with very close frequencies reveals the
group speed characterizing the overall displacement of the disturbance.

The vibrations modes of finite beams were presented in various cases and a
summary table was drawn up. Mode shapes were characterized by a different
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behavior according to whether the point of observation is localized in the vicinity of
the boundaries or not. With relation to this, we introduced the concepts of internal
solution and edge effect: the internal solution is generated by traveling waves,
vanishing waves effectively appear only in the edge effect. Finally the relation
between stress and transverse displacement was studied; we may derive the
following tendencies: when the edge effect is present (near the singularities) an
antinode (or a node) of modal displacement corresponds to a node (or an antinode)
of stress; when the internal solution dominates a node (or an antinode) of
displacement corresponds to a node (or an antinode) of stress.



Chapter 7

Bending Vibration of Plates

7.1. Introduction

Vibrations of thin plates constitute a problem that is difficult to solve
analytically; in fact, only a small number of cases make it possible to find analytical
expressions of vibration modes. A first limitation is due to the shape of the plate,
which must be rectangular or circular; in this chapter we mainly study rectangular
plates and give a short example for circular plates. A second limitation comes from
the type of boundary conditions of the plate, which must be particular. Let us
underline that the a priori simple case of the rectangular plate with all of its four
edges clamped does not form part of the cases where an analytical solution of the
vibration modes can be found.

A difference with the vibrations of beams appears when plates are studied; it is
the complexity of calculations, if only at the level of the presentation of problems
and more particularly of the writing of boundary conditions. The first part of this
chapter will consist of a systematic recording of the various boundary conditions
that can be applied to rectangular plates in order to familiarize the reader with the
subject.

We will then determine the modal system in the cases that are treated
analytically and which we will interpret physically. Finally, we develop the edge
effect method which provides the approximated vibration modes for high rank
modes in analytical form.

At the end of the chapter we propose an example of vibrations of a circular plate.
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There are a large number of publications on this area; let us point out that there
are several works which have tabulated the first normal angular frequency and mode
shapes of plates with various boundary conditions and which constitute a
complement to this discussion. We give a non-exhaustive list of these works in the
bibliography.

7.2. Posing the problem: writing down boundary conditions

Our discourse is built on the equation of pure bending which neglects rotational
inertia, that is, on the simplest possible approach. This approach is linked to our
desire to limit as mush as possible the cumbersomeness of calculations, so as to
emphasize the physical aspects.

Let us recall the equation of bending of plates [7.1] stated in Chapter 4 (equation
[4.56]):

02w o'W W oW
+D +2 + =
ot2 oxt ox70x3  0x%

ph 0. [7.1]

p is the density of material, h is the thickness of the plate, D is the bending
rigidity D = Eh3 / 12(1-v2) where E is the Young modulus and v is the
Poisson’s ratio.

Let us consider a rectangular plate with sides a and b as shown in Figure 7.1. To

write the boundary conditions for each edge, it is necessary to define the external
normal n and the tangent s :

- (n - (-n
) n
n; and n, are the direction cosines of the external normal vector. On the edge
x = 0, for example, we have:

()]

All of the normal vectors and tangents are clarified in Figure 7.1.
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-

Figure 7.1.Rectangular plate, normal and tangent vectors at the edges

To consolidate our understanding we will explicitly write the four possible
boundary conditions: clamped, supported, guided and free.

The boundary conditions associated with the equation of motion [7.1] are
provided by the two alternatives [7.2] and [7.3].

either : W(x, ,x, ,t)=0,
[7.2]

or : T(x, %, ,t)=0

and:

either : oW/on(x, ,x, 1) =0,
[7.3]
or : M, x,,H)=0.

In these equations, T is the shearing force and M is the normal bending moment
at the edge of the plate. We recall their general expressions provided in Chapter 4,
equations [4.58] and [4.57], concerning the set-up of the equation of thin plates:
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W 02W
T:i{M}+D3{2[ - J(1+v)nln2

on 0s oxP  0x3
[7.4]
0*W
+2(1-v) (0 -n3)¢,
X10%y
02w 0*W 0*W
M=D{|—+v n? +2(1-v) n n,
ox{ 03 X1 0%y
[7.5]
0?°W  0*W
+|v + n3¢.
ox%  0x3
i 2
The normal and tangent derivatives are by definition equal to:
.= 0 . -
i =n-V,—=s5-V,
on 0Os
that is:
0 0 0 0 0
i=r11—+n2—,—=nl——n2—. [7.6]

onlox,  Cox, 8 lox,  Cox

Using the expressions of these derivatives and those of the direction cosines of
the normal vectors at each edge of the plate we may write down the corresponding
boundary conditions a) at the clamped edge, b) at the supported edge, c) at the
guided edge and d) at the free edge.

Clamped edge conditions, written for the edge x; = 0:
W(0,x,,t)=0,

oW
“Z(0,x,,1) =0.
X
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Condition of support, written for the edge x, = 0:

W(x,,0,) =0,
2W(x,,0,t)  2W(x,,0,1) [7.8]
D +v =0.
0x3 ox?

This boundary condition is simplified a little further because the first condition
02w
W(x,,0,t) = 0implies

o (x1,0,t) = 0; we thus have for the supported edge:
X
1

W(x,,0,) =0,

L 32W(x,,0,t) J [7.9]
D|— "~ |=0.

2
0x5
Condition of guidance, written for the edge x; = a:

aﬂ(a,xz,t):o,
ax1

[7.10]
3W(a, x,, 1) W(a,x, , 1)
Dl————+Q2-v)————|=0
ox{ 0x,0x3
Free condition, written for the edge x, = b:
62W(x] ,b,t) 82W(x1 ,b,t)
D +v =0,
6X% 6x12
[7.11]

B3W(x,,b, 1) B3W(x,,b, 1)
Dl — U -y — |
ox3 Ox,0x}
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7.3. Solution of the equation of motion by separation of variables
7.3.1.Separation of the space and time variables
Let us pose:

W(x;,x,,t) =1{x;,%,) g). [7.12]

Let us inject the form [7.12] in the equation of motion [7.1]. It follows:

d2g o4 04
phf(x1 , Xz) F t)+D [a (x1 , x2) + @ (x1 , Xz)
o4f [7.13]
2@(){1,)(2) g(t) =0.

Let us perform the separation of the variables of space and time in [7.13]:

d’g © /s =-D o'f o' o'f ®..x.)
= =Dl —+—+2—— [(X,,X
a )8 oxi oy Toxjexy )T [7.14]

/ phf(x, ,x,) = constant .

The constant can be negative, nil or positive, thus leading to different solutions.
However, as we saw for beams, the positive constant leads to the trivial solution
when boundary conditions are observed; thus, we exploit only the two cases of zero
and negative constants.

a) Zero constant. In this case, equation [7.14] is reduced to:

d2g
—5 (=0 [7.15]

and:

(a4f o oM

- —+2—
oxf  ox§ Ox70x3

](xl,xz):o. [7.16]
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The solution of these equations does not represent the vibratory movements
themselves but uniform displacements which characterize the rigid movements that
can appear for certain boundary conditions (free plate conditions, in particular). The
general form of rigid movement of the plate is composed of the translation and of
two rotations with respect to axes 1 and 2, i.e.:

W(x,,X,,1) = (At + B) (C + Dx, + Ex,) . [7.17]

b) Negative constant

By posing the constant equal to — ®? we obtain:

d2g
F(t)+u)2g(t)=o [7.18]

and:

2 ph f(x; , x,) + D GNP (x),%,) = 0 [7.19]
- X, X)) +D| —+—+2— | (x,,X,) =0. .
PR ot axd e ) ?

The temporal equation [7.18] is solved very easily. We obtain:
g(t)=Acos(ot)+ Bsin(ot). [7.20]

The equation of space is, however, difficult to solve since it remains a partial
derivative equation. The search for solutions in the form of separate variables is
fruitless in many cases of boundary conditions. In spite of this restrictive aspect, it is
interesting because the only cases where the modal system has an analytical form
are those where the separation of variables is applicable.

7.3.2.Solution of the equation of motion by separation of space variables

Let us suppose that the solution of space can be broken up as follows:

X1, X5) = (X)) 05(x5) - [7.21]
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Using relation [7.21] in equation [7.19] it follows:

d4o d4o d%g, d2%¢
—o?pho, ¢, +D —1(p2+—2(p1+ 1 2 |- [7.22]
dx{ dx} dx? dx3
Let us seek the solutions of equation [7.22] on a basis of exponentials:
— kI xI —_ kZ XZ
P(x) = A e , 05(x)) = Ay e . [7.23]
Making a replacement in [7.22] it follows:
(- o2 ph + D2 + 132 ), MA, % =0, [7.24]

That is, to have a non-trivial solution:

(K2 +Kk3) =+ w/\/g . [7.25]

To each particular value ylz of k12 there correspond two particular values y%
and 83 of k3 verifying [7.25]:

D
(o7 +7v3) = w/ — [7.26]
ph

(G +8) =~ co/ b [7.27]

and:

ph
The solutions for ¢(x;) and ¢,(x,) are then respectively:

X

ox) =a e+ be N [7.28]

3, x

Py(Xy) = a, e 4 bye 2% 4 o 2% dye 272, [7.29]

We can of course find a symmetrical form by inverting the indices 1 and 2.
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It should immediately be noted that the solutions [7.28] and [7.29] will not in
general make it possible to satisfy the boundary conditions for the x;, =0 and
x; = a edges of the plate, since we have two constants of integration in [7.28] and
four boundary conditions to impose. In general, the application of boundary
conditions to the solution obtained in the form of separate variables will lead to the
trivial solution f(x;,x,) = 0. There are, however, certain boundary conditions for
which we obtain non-trivial solutions.

7.3.3.Solution of the equation of motion (second method)

A second method of solving equation [7.19] is possible; it is based on a rewriting
of the following equation in factorized form:

2 02 h 0z 02 h
R P 1N | —of 2 fx.xp) =0, [7.30]
ox?  0x3 D ox?  0x3 D

Let us consider the solutions f*(x;,x,) and f~(x;,x,) of the two equations
built with the differential operators appearing in the product:

o2 o2 ph
—t— |t o, — f+(x1,x2):0 [7.31]
oxP  0x3 D

and:

02 02 ph |
— i — |- 2 - (x.x,) = 0. [7.32]
ox?  0x3 D

We can easily demonstrate that the sum of the two solutions
f*(x;,x,) +f7(x;,X,) is the solution of equation [7.19]. Indeed, to simplify this,
let us note:

b 0?2 02 ph
=|| —+— +(o‘/—
ox}  0x3 D
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and:

In its factorized form, equation [7.30] is written:

L (L-{f})=0.

Replacing f(x;,x,) by the decomposition f* (x;,x,)+{~(x;,X,) it follows:

(il e (e fefen (e )0 -

Taking into account [7.32] we have the relation L~ {f - } =0, from which we

(il )-o.

Inverting the order of derivations we can also write:
(i) )i,

Finally, taking into account [7.31] L* {f*} =0, and we state by grouping all
these results in [7.33]:

L+(L—{f++f—}j:0.

Thus, the sum of f* (x;,x,) and f~(x;,X,) is the solution of the equation of the
vibrations of plates [7.30].
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Let us seek the solution f*(x;,x,) in the traditional form of an exponential
product:

k k
fr(x;,x,) =¢ 1% g2 %

Introducing this form into equation [7.31] leads to the result:

" (x ,xz):(al e +b, e ylX‘) (a2 e'?*2 1b, e YZXZ)

In the same manner we obtain for equation [7.32]:

7 (x ,xz):(al e +b, e le‘) (az %22 +by e 52x2)

with: 8% =—0)1/ %—712 .

This method of resolution leads to the same result as the method used in section
7.2.2. Indeed, the superposition of the two solutions f+(x;,x,) and f~(x;,x,)
clearly coincides with the forms [7.28] and [7.29]:

fx),x5) = (X, X)) + (%, %5) .

The decomposition of the equation of plates vibration into a product equation is
particularly interesting in the case of circular plates, which we consider briefly at the
end of the chapter.

7.4. Vibration modes of plates supported at two opposite edges

7.4.1.General case

This case of boundary conditions makes it possible to find an analytical solution
for the modal system.

We suppose that the two supported edges are the edges x; =0 and x; = a; the
solutions [7.28] and [7.29] are the convenient forms. If these are the edges x, =0
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and x, = b, it is necessary to take the symmetrical form of [7.28] and [7.29] by
inverting the indices 1 and 2.

Let us require the boundary conditions in x; =0 and x; = a to be respected; it
follows:

f(0,%,) = 0= @,(0) = 0,

fla,x,)) =0= @(a) =0,

ot 0,%,) = 0= o 0)=0
L 0.x)=0= oy =0,
o2 dx?
M axp=0= 0
—(a,X,) = ——(@)=0.
ox? 2 dx?

The application of the first two conditions to [7.28] is redundant and leads to:
a; =-b. [7.34]
The third and fourth conditions are also redundant and give:
a eh® +b, e " =0.
By combining the two preceding equations we obtain:
sh(y,2)=0.
Le. there is an infinity of wave numbers vy, solution:

.nm
Yip = J—- [7.35]
a

Using equations [7.34] and [7.35] in the general form [7.28], we associate the
function @, (x,) to each wave number:

¢y, =a,, sin (%”xlj. [7.36]



Bending Vibration of Plates 241

Note that it is the two by two redundancy of the boundary conditions that makes
it possible to have non-trivial solutions for ¢(x;) verifying four boundary
conditions with two integration constants. We conceive that it is an exceptional
situation and is only valid for particular boundary conditions.

For the two other edges x, = 0 and x, = b, we can impose any type of boundary
conditions: supported, clamped, free or guided edge. As an example we will take the

case of two supported edges, which has the advantage of leading to rather short
calculations.

7.4.2.Plate supported at its four edges

The function @,(x,) must verify the other boundary conditions:

dz(Pz dz(Pz
0)=0, 0)=0, —(©0)=0, b)=0.
0,(0) 0,(0) e 0) a2 (b)

With the form [7.29] of @4(x,) it follows for the conditions in x, = 0:
a, +b,+¢c,+d, =0,
y% (a, +by) + 6% (cy +d,)=0.

We can note with [7.26] and [7.27] that:

h
82-12=-20]2 %0,
PR \/D

The linear system has a non-zero determinant and its solution is:
a, =—b, andc, =—d,. [7.37]
Taking into account the preceding relations [7.37], the conditions in b give:

a, sh(y,b) + ¢, sh(3,b) =0,

[7.38]
a, 3 sh(y,b) + ¢, 83 sh(5,b) = 0.
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Non-trivial solutions are obtained if the determinant of the linear system [7.38] is
nil:

(83 = 3) sh(y,b) sh(5,b) =0. [7.39]
The quantity 6% - y% being non-zero equation [7.39] is satisfied if:
sh(y,b)=0 or sh(d,b)=0.

Let us consider these two possibilities:

a) The equation sh(y,b)=0 is verified for an infinite number of vy, values
with:

.7
Yom = J?- [7.40]

Using this result in [7.38], we note that if sh(3,b) # 0, then ¢, =0 and a, is
unspecified. Bringing together all the results, the form ¢, _(x,) solution is given by
[7.41] for each value v, :

Py(Xy) = @, sin [% xzj ,m=1,..,0. [7.41]

The amplitude a,  is arbitrary.

b) The equation sh(3,b) = 0 is verified for an infinite number of values &
with:

2p°

.pn
Sy =37 [7.42]

Using this result in [7.38], we note that if sh(y,b)# 0, then a, =0 and c, is
unspecified. Bringing all the results together, the form (PZp(XZ) solution is given by
[7.43] for each value Vop

. T
(P2p(x2) = ay, sin (p? xzj ,p=1,..,00. [7.43]

The amplitude 2, is arbitrary.
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It should be noted with [7.41] and [7.43] that the two possibilities lead to the
same solutions; it is thus necessary to also recognize here an effect of the
redundancy of the boundary conditions of support. It is enough to consider one of
the two sets of solutions. We take the one with the index m.

The vibration modes of the plate supported at its four edges now stems from the

set of the results obtained. To each pair of indices (n, m) we associate the normal
angular frequency o~ deduced from equations [7.26], [7.35] and [7.42]:

D |(nn 2 mn z

o = |—||—|+—]1 | [7.44]
w =yl (5

The mode shape f, (x;,X,) is calculated using [7.21], [7.36] and [7.43], that is:

£ (x,%,) = sin [% le sin (% x2j . [7.45]

The constants have been normalized to one due to a preoccupation with
simplification. The modal vibratory movement is obtained by multiplying the
solutions of space and of time:

WX %5, 0 = (Anm cos(w, )+ B, sin (conmt))

. (nm . (mm
sin| —x; | sin| — X, |.
a b

Finally, the most general movement is produced by the superposition of modal
movements:

[7.46]

WK%, 0= D0 Y WX, %y, 1). [7.47]

n=1 m=1

The constants of integration A~ and B, are fixed by the initial conditions.

The use of the alternative solutions [7.40] and [7.41] instead of [7.42] and [7.43]
naturally leads to the same modal vibratory movements. However, there appears a
difference in calculation, because the normal angular frequencies are negative in this
case. It is of course just a sleight of hand, because at the level of [7.46], introducing
negative angular frequencies amounts to changing the sign of the constant B, ,
which in any case is arbitrary at this stage of calculation.
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7.4.3.Physical interpretation of the vibration modes

The vibration modes of the rectangular plate supported at its four edges was
provided by [7.44] and [7.45]. We can note that the modes are defined by a double
index with respect to the directions 1 and 2. The mode (1,1)is that of the lower
normal angular frequency ®;, and of the mode shape f},(x;,x,) whose values are
given below:

D((=n T

O =, —
ph |\ a b

. (m . (m
and f,,(x,,Xx,)=sin ;xl sin BXZ

22
2

LR
7 SR

TR
2
e

AL
LR
AR
LA AR
77
7

Figure 7.2a.Mode shape of the mode (1,1) of a supported rectangular plate.
Three-dimensional image

Figure 7.2 presents the mode shape. We note that for this mode of lower normal
angular frequencies, all the points of the plate vibrate in phase. A second
representation is used traditionally, the layout of nodal lines ({ x; ,x,} being such
that £, (x; ,Xx2)=0).
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X

Figure 7.2b.Mode shape of the mode (1,1) of a supported rectangular plate.
Nodal lines (none for this mode)

Let us consider the mode (2,1); its modal characteristics are given by:

D ((2n) (=

Wy = Tl

ph |\ a b
. (2m . (=
and f, (x,,X,)=sin| —x, | sin| —X,
a

This mode is the second in frequency if a >b. It presents a nodal line for

X, = /2 as Figure 7.3b indicates. On both sides of the nodal line, the vibrations
occur in opposition of phase.
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Figure 7.3a.Mode shape of the mode (2,1) of a supported rectangular plate.
Three-dimensional image
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)

X
a2
Figure 7.3b.Mode shape of the mode (2,1) of a supported rectangular plate
Nodal line
Finally, we take the example of a higher order mode, the mode (3,4):

#o ph b
and f,,(x,,x,)=sin (3—nx1] sin [4% XZJ.
a

P ’:’ 5\3\\&
’ \\ l
‘\\\\g‘ :,’,,/t' “s‘\

1"?;\
/] " ) " s\\\\\\ ‘V' l’
\\\‘\""l'l"' i W\\\\Q\"'if” i "' = \\\\\"" ""L»
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Figure 7.4a.Mode shape of the mode (3,4) of a supported rectangular plate
Three-dimensional image
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X3

b/4

b/2

3b/4

X

a/3 2a/3 a

Figure 7.4b.Mode shape of the mode (3,4) of a supported rectangular plate.
Nodal lines

This mode presents two nodal lines in the x, direction (in a/3 and 2a/3) and
three nodal lines in the x, direction (in b/4, b/2 and 3b/4). On both sides of a
nodal line the vibrations are in opposition of phase.

These mode shapes present nodal lines parallel to axes 1 and 2; it is an obligatory
characteristic of the solutions obtained in the form of separate space variables. On
the contrary, we may affirm that the modes of vibration of rectangular plates that do
not have nodal lines parallel to the axes cannot be obtained by separation of space
variables. Figure 7.5 shows the mode shape of a free rectangular plate: the nodal
lines are not parallel to the axes; for this case of boundary conditions the technique
of separation of space variables used in this chapter does not yield a result.

Figure 7.5.Mode shape of the 17" mode of a rectangular plate free at its edges
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7.4.4.The particular case of square plates

This particular case of rectangular plates presents different pairs of normal
modes, which have the same normal angular frequencies. These are the modes (n, m)
and (m, n). The response of a pair of modes follows the general formula [7.46]:

W(x,,Xx,,t) = (Anm cos (o) + B, sin (u)nmt))

sin (n_n le sin (ﬂ XZJ + (Amn cos (o, 1)+ B, sin ((omnt))
a

a
Lty . [ nm
S| —X siIn| —X, |.
a a

and B are nil.

To simplify the analysis, let us suppose that the constants B, | N

Two modes with the same normal angular frequency can be grouped:

W(x,,x,,t) = cos(w,,t) (Anm sin [ﬂ Xl] sin (ﬂ ij

a a

. mm . nm
+ Amn sin| —X; | sin| —X, ||[.
a a

Everything occurs as if there was only one combined mode whose shape is the
linear combination of the mode shapes of the 2 modes (n, m) and (m, n) with the
same normal angular frequency. The effect obtained is rather spectacular when we
visualize the nodal lines of the combined modes. Of course the amplitudes A~ and
A, greatly influence the result; they depend on the initial conditions of the
vibration initiating and can thus vary greatly. Figure 7.6 gives several examples of
results; when one amplitude is large compared to the other, we observe a situation
where only one mode is barely visible, but when the amplitudes are close, the
resulting nodal lines have forms that are very far removed from primitive nodal
lines.
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Figure 7.6a.The two basic mode shapes fl 3 and f31 for a square plate

If the constants B
produces two different combined modes, one is associated with cos (o, ,t) and the
other to sin(w,t) . Strictly speaking, there are no nodal lines, since the lines of zero
displacement over time move away from the nodal lines of a mode combined to

another.

nm

and B are not nil, the combination of the two modes
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Amplitudes of the mode shapes: A13 = 0.703, A31 = 0.707
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Amplitudes of the mode shapes: A13 = 0.5, A31 = 0.86
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Amplitudes of the mode shapes: A13 = 0.38, A31 = 0.92

Figure 7.6b. Combined modes stemming from the combination of the modes (1.3) and (3.1)
for various amplitudes of the two modes

These particular phenomena, associated with simply supported square plates,
remain true when the boundary conditions are identical for the four edges, because
the symmetry of the problem necessarily involves the existence of normal angular
frequency doublets.

7.4.5.Second method of calculation

A second method of calculation of the modal system of plates supported at two
opposite edges can be employed; it is more direct and poses the space solution of the
problem a priori in the form:

f(x, . X,) = i sin [nf x]j h(X,). [7.48]

n=1
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The decomposition into sine offers the double property of defining a functional
base and verifying the boundary conditions of support for x;, =0 and x; =a.

Now it remains to verify, firstly, the equation of space [7.19] and, secondly, the
remaining boundary conditions for x, =0and x, =b.

Let us start with verifying equation [7.19]; injecting [7.48] in [7.19], we obtain:

o d4h 2 d2h 4
Zsin(ﬂxlj n —2(Ej n [Ej _2 P h [=0. [7.49]
a dx‘z‘ a dx% a D

n=1

To uncouple the equations, it is sufficient to use the orthogonality of the sine
functions:

a 0ifn#m
. (nm . (mn

.[sm (_le sin [—xl) dx, =9a . .

0 a b 5 if n=m

Multiplying equation [7.49] by sin [ﬂ Xl] , then integrating it from O to a,
a

it follows:

d4h 2 d2n 4
m_z(ﬂj m (ﬂj EPRY.LN S
dx‘zt a dx% a D

It is a differential equation which is easily integrated. Noting:
2
i (mj v P
a D

. ph (mnjz
and r,, =] |—|—| ,
D a

[7.50]
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we obtain:

h_(x,) = C, sin (1, X,) + D, cos (5, X,)
[7.51]
+E sh(y, x,)+F ch(y, x,).

Let us introduce the boundary conditions for the edges x, =0 and x, =b. All
the boundary conditions for an edge are possible; however, to consolidate our
concepts we consider the clamped edges:

f(x;,0)=0=h_(0)=0,
fx;,b) = 0= h_(b) = 0,

df dh
—(x,,0)=0=—2(0) =0, [7.52]
X X3

df dh
—(x;,b) =0 = —"(b) = 0.
dx, dx,

Using the form [7.51] under the four conditions [7.52], we obtain the
homogenous linear system [7.53]:

0 1 0 1
C 0
Hm 0 Im 0 Dm 0
™= . [7.53]
sin(r,,b) cos(r,,.b)  sh(y, b) ch(r,b) E,
0
F
m

1,cos(t, b) —1, sin(r, b) n_sh(f b) 1 sh(r b)

To obtain non-trivial solutions, it is necessary that the determinant of the system
be nil. Upon some calculation this leads to the characteristic equation:

2n rzm(cos(rzmb) ch(y, b)— 1) = (13, —12) sin(r, b) sh(y b). [7.54]

The solution of this characteristic equation is not trivial and requires
computerized treatment. Let us note, however that 1~ and 1, are not independent
variables but, on the contrary, are connected to the angular frequency ® by equations
[7.50]. Thus, we seek to determine the angular frequencies ® verifying [7.54]. For
each index m we find an infinite number of solutions m =1, ..., o . Each solution is
consequently identified by a double index ® q For a square plate we may draw up
Table 7.1 indicating the first six normal angufar frequencies.
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mode 1.1 2.1 1.2 2.2 3.1 1.3

o a2|Ph
Pq D

Table 7.1.Adimensional normal angular frequencies of the first 6 modes
of a square plate, with a side a. (boundary conditions: all supported (A-A-A-A)
or supported-clamped (A-E-A-E)

28,946 | 54,743 | 69,320 | 94,584 | 102,213 | 129,086 | A-E-A-E

19,739 | 49,348 | 49,348 | 78,956 | 98,696 | 98,696 | A-A-A-A

We may note thanks to Table 7.1 that clamping two edges produces an effect of
stiffness compared to the condition of support, which increases the normal angular
frequencies. This effect is all the more pronounced when the mode is of a low rank.

The calculation of mode shapes requires the resolution of the linear system
[7.53] for each root of the equation. Computerized processing also generally proves
necessary here. In certain particular cases we will be able to find tabulations of mode
shapes in [LEI 93] and [CORN 84]. We may, however, state the technique of
calculation of mode shapes rather simply. Let us consider the mode (n, m) with an
angular frequency . ; thanks to equations [7.50] we associate to it the two wave
numbers 1, and 1, -, which of course give a determinant equal to zero of the
system [7.53]. Consequently, the solution vector of [7.53] is not unique. We may,
nonetheless, choose one of them by normalizing the solution vector.

The mode shape is then provided by:

. (nm .
fnm(x1 s Xz) =sin (: xlj (Cnm s1n(r2nmx2) +Di cos(rZmez)

+ Enm Sh(rlnmXZ) + an Ch(rlnmx2))'

7.5. Vibration modes of rectangular plates: approximation by the edge effect
method

7.5.1.General issues

As we saw previously, the calculation of the vibration modes in analytical form
is impossible in the majority of the cases of boundary conditions. Several techniques
of approximation are possible, most commonly based on the Rayleigh-Ritz method.
A possible choice of the test functions used in this method consists of approximating
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the mode shape (n, m) of the rectangular plate by the product of the mode shapes of
beam of the orders n and m in the directions 1 and 2 respectively. We treat this type
of calculation in Chapters 11 and 12 which deal with the approximation of the modal
system by the Rayleigh-Ritz method.

A different technique suggested by Bolotin is based on a physical property of the
modes which stipulates that the high order modes of homogenous rectangular plates
present different behaviors away from their boundaries and near them. During the
study of beam vibrations we observed this phenomenon linked to vanishing waves
which have real influence only in the vicinity of the boundaries and are
characteristic of the edge effect. Far from the boundaries, the solution stems entirely
from traveling waves; it is the internal solution.

7.5.2.Formulation of the method

We seek an approximate solution of equation [7.19] of the space function
f(x{,X,). The idea of the method consists of using different approximations of the
solution far and near the boundaries, these solutions being based on the one obtained
by separation of space variables [7.28] and [7.29]. The form presumed valid far from
the edges x; =0 and x; = a is:

f(x, , x,) = sin(k; x; + ¢)) h, (x,). [7.55]

This solution supposes that in this part of the plate the solution in direction 1
contains only the internal solution sin(k; x; + @) .

Symmetrically, the form presumed valid far from the edges x, =0 and x, =b
is:
fx;,x,) = sin(k, x, +@,) h; (x)) . [7.56]

These forms of solution [7.55] and [7.56] must, on the one hand, verify the
equation of motion [7.19] and, on the other hand, coincide when the point of
observation is far from the four edges.

Introducing, to begin with, the respect of equation [7.19] by the form [7.56], it
follows:

d*h,

4
dxj

d%h,

h
- 2K2 +(k‘2‘ +%m2jh1 - 0. [7.57]

2
dx;
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Equation [7.57] has as a solution:

h, (x)) = C;sin(s, X, + y)) + D; e S E e % [7.58]
~ ph i 7.59
with : s, = Bm—kz [7.59]
and:
h
5= | P 0+1d [7.60]

D

Performing the same operation with the form [7.55] we obtain:

h, (x,) = C,sin(r, x, + ) + Dye W27 4 7% [7.61]

with: 1, = / ph o-k? [7.62]
D
and:
ph
I = —o+k?. 7.63
0k [7.63

The solutions [7.58] and [7.61] are formed using the same model: they contain
an internal sinusoidal solution and edge effects characterized by decreasing
exponentials when we move away from the boundaries. This conforms well with the
initial hypothesis: far from the boundaries only the internal solution remains. This
hypotheses will be verified all the better the greater the value of the wave number s,

(or ).

In the case of beams in bending vibrations we observed the same structure of
solutions. The zone where the edge effect is important is about a quarter of the
wavelength of natural waves and, therefore, reduces sharply with frequency.
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Let us use the fact that the two forms must coincide far from the boundaries and

that the internal solutions provided by the two forms of solutions must, therefore, be
equal:

C;sin(r, X, + y,) sin(k; x; + @) = C, sin(s, x; + ;) sin(k, X, + @,).

This lead to the identification:

8y = k]
Y =0
1 1
r, =k, . [7.64]
¥ =0,
¢, =¢C=C
2
A

» 1
/ Zone of validity of the \\\ Zone of validity of
W solution [7.55] k \ the solution [7.56]

Figure 7.7.Zones of validity of the solutions of the edge effect method

The internal solution is thus provided by:

Csin(k; x; + @) sin(k, x5 + ¢@,) . [7.65]
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Figure 7.8.Representation of the solutions of the edge effect method
1S: internal solution, EE: edge effect
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Moreover, taking into account [7.59] and [7.62], it follows:

0= |2 02 +K)). [7.66]
ph

That is, with [7.60] and [7.63]:
s = k12 + Zk% , [7.67]
r =k3 +2k?. [7.68]
The two forms of solutions are thus, finally, provided by:
—for x, far from the edges x; = 0 and x; = a:
fx , x,) = Csin(k; x; + @) sin(k, x, + @,)

o) N [7.69]
+D,sin(k; x; + @) ¢ '° 2+ E,sin(k; x; + @) € 2
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— for X,y far from the edges X, =0 and x, =b:

fx , x,) = Csin(k; x; + @) sin(k, X, + ¢,)
[7.70]

s(a—x)

+D;sin(k, X, +9,) e +E sin(k, X, + 9,) € S

7.5.3.The plate clamped at its four edges

It is a question of imposing the respect of the boundary conditions on the four
edges considering the form [7.69] or [7.70] adapted to the selected edge. Let us
consider, to begin with, the edge x, = 0. It is of course the form [7.70] which is
adapted to it. However, it is simplified because the second term of [7.70] represents
the effect edge for x; = a, which is negligible for x; = 0. The approximation of the
solution in the vicinity of the edge x; = 0 is, therefore, reduced to two terms:

S X

f(x,,x,) = Csin(k, x; + ¢)) sin(k, x, +@,) + E;sin(k, X, + ;) e "'.

This form of solution is applicable at the edge, far from the corners because the
edge effect in the second direction becomes important there. On the assumption that
this edge effect decreases sharply when we move away from the boundary, it will
only have influence very locally, very close to the corners, and will not have a very
significant effect on the result.

The application of the boundary conditions of clamped edge provides two
relations:

f0,x,) =0 = Csing, + E; =0, [7.71]
of
K(O,xz) =0= Ck cosp, —E;s; =0. [7.72]

1

Proceeding in a similar way for the edge x; =a we obtain:

f(a,x,) =0 = Csin(k,a+¢)+D; =0, [7.73]

f
a—(a, X,) =0 = Ck;cos(kja+¢@)+D;s =0. [7.74]

X
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Using the linear system formed by equations [7.71] and [7.72] and supposing
that the determinant is nil, we obtain the first line from [7.75]. Proceeding in the
same way with equations [7.73] and [7.74] we draw the second line from [7.75] in
order to obtaining a non-trivial solution:

k,cos @, +s;sing, =0

[7.75]
k,cos(k;a; + @) —s;sin(k;a; +¢) =0
The system of equations [7.75] has the solutions:
o =—k a2, [7.76]
k)
— = tg(k, a/2). [7.77]

S|

Symmetrically for the edges x, =0 and x, =b after all the calculations, we
obtain:

¢, =—k,b/2, [7.78]
k
-2 =tg(k, b/2). [7.79]
I

1

It now remains to determine the angular frequencies which make it possible to
simultaneously verify [7.77] and [7.79]. These angular frequencies are provided by
[7.66] from the moment when the wave numbers k; and k, verify the two
equations:

k
IR [7.80]

k
and —2—=tgk, a/2),
EETERL U

where we have made use of equations [7.67] and [7.68].
The solution of equations [7.80] requires computerized processing, which we

will not perform here. However, to show the quality of the prediction, by way of an
example, in Table 7.2 we give the value obtained for the first mode of a square plate.
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Edge effect method Rayleigh-Ritz method

h
o, a2 /% 35.09 35.99

Table 7.2.Comparison of the values of the first adimensional normal angular frequency of a
clamped square plate, calculated by the edge effect method and by the Rayleigh-Ritz method
(according to [KIN 74])

The result of the table shows an already satisfactory prediction while the edge
effect method converges all the better the higher the wave numbers k; and k, are.
It is this characteristic of better convergence for the higher modes which marks the
specificity of this approach.

7.5.4.Another type of boundary conditions

A similar calculation can be carried out when the plate has other boundary
conditions. For a square plate clamped at two adjacent edges and supported at the
other two edges the first normal angular frequency is given in Table 7.3. In this case
the approximation is still better, because the support does not generate the edge
effect (error of 0.7% instead of 2.6% in the case where all the edges are clamped).

Edge effect method Ritz method

h
o a2 % 26.87 27.06

Table 7.3.Comparison of the values of the first adimensional normal angular frequency,
calculated by the edge effect method and by the Ritz method (according to [KIN 74])

The edge effect method is thus applicable to obtain an approximation of the
normal angular frequencies of rectangular plates, the approximation being better the
higher the ranks of the modes are. There is, however, a limitation to its use when the
boundary conditions leave the transverse displacement of the plate free. This fact is
highlighted in Table 7.4.

We may note that the edge effect method does not predict all the frequencies of
resonance when two opposite edges are free: it is then dangerous to use it even if it
does provide a correct approximation of the normal angular frequencies, which it is
able to predict. This phenomenon is explained by the fact that the hypothesis of an
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edge effect localized at the boundaries is not acceptable when two opposite edges
are free because the plate then presents modes of the beam type.

In the case of boundary conditions where transverse displacement is blocked at
the edges (clamping and supports), the edge effect method gives good results and
more so when the modes have a high rank, as opposed to the methods of traditional
discretization.

Boundary conditions Edge effect method Results from written works
clamped in 26.73 22.17
x;=0 and x, =a 44.56 26.40
67.29 43.6
free in 80.60 612
x;=0and x, =a 88.17 67.2
79.8
87.5
clamped in x; =0 7.78 Lower limit Upper limit
26.27 3.43 3.473
free in 30.06 7.26 8.54
X =a,x, =0 and 5321 20.87 21.30
X =2 26.50 27.29
28.55 31.17
51.50 54.26
60.25 61.28
clamped in 5.866 Lower limit
x;=0and x, =0 25.05 6.958
25.05 24.80
free in 47.13 26.80
x=aand x, =a 63.87 48.05
63.14

Table 7.4.Adimensional normal angular frequencies of square plates
presenting free edges (according to [KIN 74])
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7.5.5.Approximation of the mode shapes

The approximation of mode shape is simple to carry out: let us take the example
of the clamped plate. Each normal mode (n, m) is characterized by wave numbers
Ki,m and k, -, which are the solutions of the characteristic equation [7.80]. From

them with [7.76] and [7.78] we deduce the values of ¢, —and ¢, . :

(olnm:_klnm a/2 and ¢2nm=_k b/2

2nm

Finally, thanks to [7.71] and [7.73], we can express the constants E and

Inm

D

Inm

Elnm =-C SINQ; 5

D =-C sin(klnm a+ (Plnm)'

By symmetry we also draw E,  and D

2nm -

E2nm =-C SINQy,py, 5

Dy =-— C sin(k2nm a+ (p2nm).

It is enough to report these values in the general form [7.69] — [7.70] to obtain
the mode shape f (x,,x,). The constant C is not fixed but traditionally one can
make it equal to the unit.

7.6. Calculation of the free vibratory response following the application of
initial conditions

To reduce the calculations as much as possible, we consider a plate supported at
all its edges. The general form of the vibratory response is then given by [7.47], that
is:

0 0
W(x;,%,,1) = z Z (A, coso t+B sinw t)
n=1 m=l
[7.81]
. nm . mn
sin — x; sin—x,.
a b
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The initial conditions are of the type:

W(Xl s X2 s 0) = dO(Xl s Xz) >

oW
E(Xl » X5, 0) = vy(x),%,) .

With [7.81] we draw from this the two equations:

M
s

. Nn . mn
A, sin : X, sin T X, =dy(x;,X,)

=
0
2
0

and:

. nm . mn
B m ®pm SIN : X; sin T Xy =Vo(X),X,) .

[
[

=
Il
LR
2
I
—

[7.82]

[7.83]

[7.84]

[7.85]

To calculate the modal amplitudes A =~ and B it is necessary to use the

nm °
orthogonality of mode shapes:

. N . I ) . qru
jj Sin— X sm? Xo smm X sm% X, dxdx
a a

00
0 if (n,m)#(p,q)

) af if (nm)=(.a)

Following the classical procedure we obtain:

b
4 &
pq =— II do(xy,x,) sin mxl sinﬂx2 dx,dx,,
ab 00 a b
b
1 4 %
qu = J.I VO(X1 ,x2) sin pTer sin — qar X, dx dx2 .

®pq ab 90 a b

[7.86]

[7.87]
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By way of an example, an excitation through impact at the point (X, X,)
produces initial conditions of the type:

dg(x;,%,) =0

Vo(X1,Xy) =V 8 (x) — X)) 8(x, — X,)
where 'V, is speed at the point of impact.

Using of these expressions in [7.86] and [7.87] leads to the result:

Apg =0
. prw . qm
sin— X, sin — X
_ 4V0 a ! b 2
Pq ab o)

pq

The vibratory movement following the shock is thus:

W(x,,x,,t) =
. nm . mw . nmw . mm
© o N sm?Xl SIHTXZ sm?xl sme2 [7.88]
z Z— sin(w,.t)
n=1 m=1 ab ®nm

We have already studied the calculation of the free response for beams; the case
of the plates is the same and does not introduce any fundamental differences. In
particular, we find the classical tendency: excitation through point impact shock
does not produce a response of a mode if the point of impact coincides with a nodal
line of this mode.

7.7. Circular plates
7.7.1.Equation of motion and solution by separation of variables

This case is not treated in detail like that of the rectangular plates; we present the
method and some sufficiently explicit cases of application so that the reader can

generalize the approach.

Expressing the equation of motion of circular plates in polar co-ordinates has an
obvious interest. We gave the equations within the framework of various hypotheses
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in Chapter 4. Hereafter we will consider the case of the Love-Kirchhoff hypotheses,
and equations [4.79] and [4.76] which we recall below.

2w

ph = +DA {W}=0 [7.89]
t
ol o? o? &*
with: AZZ —2+12+L2—2 —2+12+i2—2 . [790]
ot ror r* 360 or- ror r* 50

To solve this equation we will use separation of variables. First of all, at the level
of the time and variables of space (r, 0):

W(r, 0, 1) = g(t) f(r,0). [7.91]

The introduction of [7.91] in [7.89] with subsequent separation of variables
yields:

d2

- gt)+ 02 gt) =0 [7.92]
and:

— @2 ph f(r, 0) + DA {f(r,0) } = 0. [7.93]

Equation [7.92] admits the traditional solution of the vibratory problems:

g(t) = E cos ot + Fsin ot . [7.94]

To solve equation [7.93] let us once again apply the separation of variables; we
seek a solution in the form of [7.95].

f(r,0) = h (r) s(0). [7.95]

Let us note, moreover, that taking into account the periodicity of the function
s(0), we can break it up into a Fourier series and obtain the general form:

5(0) = Ag + ZAH cosnd + B_ sinn@. [7.96]

n=I
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Let us use the technique of resolution from section 7.3.3, introducing the two,
operators L and L~ :

? 10 1 h

L= — - 10|22, [7.97]
o2 ror  r?2 002 D
2 | o2 h

TP PR NS Wl PN - [7.98]
o2 ror r2 002 D

The solution of [7.93] is the sum of the solutions of [7.97] and [7.98]. Let us first
consider [7.97]. Introducing the form [7.96] for s (0) we obtain:

& 14 ph & ,
By| —+-——+o 3 {h(r)}+Z(Bncosn9+Ansmn6)

drz rdr —~
& h
L L T
dr2  rdr D

Using the orthogonality of the functions sinnf and cosnf, we determine a set
of functions:

[7.99]

h (r)cosn0, [7.100a]
h (r)sinnd, [7.100b]
hy(), [7.100c]

which are solutions of [7.99] if they verify [7.101]:

@ 14 [ph n?
— Yt —— 4o/l —=——|fh M;=0. 7.101
dr2 rdr D 2 { n()} [ ]

Expressions [7.100] define shapes which will characterize the modes of vibration
when boundary conditions are applied.
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We can also write equation [7.101] in a different form by multiplying it by 12 :

d2 h
r2—+ri+mr2/%—n2 {h.(®}=0. [7.102]

dr2  dr

In order to coincide with the standard form of the Bessel equation, let us carry
out the change of variable:

/ h
Noting also that: z = kr with k = ® % , it follows:

22 ¢ PRI S {h (2)}=0 [7.103]
dz2 dz " . .

Equation [7.103] admits two solutions: J (z) and Y| (z): Bessel functions of the
first and second type. Figure 7.9 illustrates the typical behavior of these functions
for orders 0 and 1. The point to be emphasized is the oscillating character of these
functions that can be approximated to the behavior of traveling waves appearing in
the solution in Cartesian co-ordinates. Another characteristic aspect is the singularity
of the Bessel function of second type at the origin; this non-physical characteristic
leads to the suppression of this term in certain problems, as in section 7.7.2.

0.5F

05 . . .
0 5 10 15 20

Figure 7.9a.Bessel function of the first type J(2)
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5 10 15 20

Figure 7.9b. Bessel function of the first type J|(z)
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Figure 7.9c.Bessel function of the second type Y,()
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Figure 7.9d. Bessel function of the second type Y|(2)
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Proceeding in an identical manner for equation [7.98] we arrive at equation
[7.103°], which is the modified Bessel equation:

d2 d
2—+z2——(2+1) |{h (2)}=0. [7.103°]
dz? dz

Equation [7.103°] admits the solutions 1 (z) and K (z) that are the modified
Bessel functions of the first and second types respectively. Figure 7.10 illustrates the
typical behavior of these functions at the order 0 and the order 1. These functions have
a behavior that can be compared to that of vanishing waves of the solution in Cartesian
co-ordinates. The K, (z) functions are singular at the origin and will have to be
removed in the problems of full plates like the one studied in section 7.7.2.

x 10

45

4t

3.5¢

3t

251

0 5 10 15 20

Figure 7.10a.Modified Bessel function of the first type 1,(z)

;
x 10
45

35F

Figure 7.10b.Modified Bessel function of the first type 1,(z)
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Figure 7.10c.Modified Bessel function of the second type K(2)

100
8ot
60}
40

20

.

0 5 10 15 20

Figure 7.10d.Modified Bessel function of the second type K,(z)

The general solution of h (z) is obtained by cumulating the various solutions:
h (z)=AJ,(2)+B,Y,(2) +CI (z) + DK (2). [7.104]

Naturally, it is advisable to fix the value of the constants using boundary
conditions, but we will make this calculation in the following sections.
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7.7.2.Vibration modes of the full circular plate clamped at the edge

The modal system stems from verifying the equation of motion and the boundary
conditions. Using the solutions [7.104] obtained in section 7.7.1, we only have to
verify the boundary conditions:

W(a,6,t)=0=h (a)=0 [7.105]
and:
aﬂ(a,e,t) =0= dn,, (a). [7.106]
or dr

Passing from writing the conditions over W(r,0,t) to those over h,(r) in the
preceding relations once again arises from the use of the properties of orthogonality
of the functions cosn6 and sinnb .

The function h,(x) has four constants of integration and there are two boundary
conditions; therefore, there is an apparent lack of information to calculate the
constants. However, two of the functions of the solution [7.104] are not physical,
since they lead to infinite displacements at the center of the plate and must thus be
removed. We thus consider that:

h, (1) = A J (kr) + C, I, (kr). [7.107]

The application of the boundary conditions leads to the linear system:

L) 1,09 {A } (o) 7108
nl_ 7.

dJ dI C 0

—n ) —D (A n

" ) W @)

with: 4 =ka and k=, %1. [7.109]

To have a non-trivial solution, the linear system must have a zero determinant.
We thus have:

Jn(k)%(X) - di()\) [(A)=0. [7.110]
dz dz
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We can use the known relations for the derivation of the Bessel functions:

x%(x) =n] (W)-AJ_, (L) and A d

In —
3 M =0l () +AL, ()

to rewrite the determinant:
LM LM+ A) T ,,(A)=0. [7.111]

The solution of [7.111] is performed with the aid of a computer. The values have
been tabulated in [LEI 93]; here we draw a short table thereof:

oLy 02)2 03)2 04y
n=0 10.2158 39.771 89.104 158.183
n=1 21.26 60.82 120.08 199.06
n=2 34.88 84.58 153.81 242.71

Table 7.5.First roots of equation [7.111] for various values of n. Normal angular

. . 1 [ D ; , o
[frequencies are given by Oy = — _(7\‘Jn )2 n for circumferential index,

and j for radial index

We obtain the solution for the radial shape thanks to equations [7.107] and
[7.108] by normalizing the constant A, to one:

hir) =1 (ki +Cl 1 (ki) [7.112]
i . j
with: ki =4 and ¢ = TnKn @) [7.113]
a I, (kj a)

In short, the modal movements of clamped circular plates are provided by the
following expressions:

— modes symmetrical in 6:

W) (1,0,t) = (E] coswlt+FJsinwlt) cosnd (J, (kKir)+ClI (kir))
[7.114]

for n=0, ..., ;
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— modes anti-symmetrical in 0:
W/(r,0,t) = (E) cosw!t+F sinwt) sinn® (J, (k'!r)+C!1 (kir))
[7.115]

for n=1, ...,00.

The symmetrical and anti-symmetrical modes have the same normal angular
frequencies given by expression [7.116]:

1 |D .
—— = )
Opi 2\ o (kn)z . [7.116]

The symmetrical and anti-symmetrical mode shapes are in fact identical; we
obtain the anti-symmetrical ones by making the symmetrical ones turn by 90°. Mode
0 is particular, since it does not have a corresponding anti-symmetrical mode.

Mode shapes are provided by the two expressions:
7 sym(T> 6) = cos(nd) (Jn (kflr) +Clr (kglr)) [7.117]
and:
syt 0) = sin00) 1, )+ €, (i) A

Each mode is thus characterized by two indices, j and n. The index n defines the
number of nodal diameters, whilst the index j defines the number of nodal circles
(equal to j—1). Table 7.6 gives the radius of nodal circles for some modes.

i=1 i=2 j=3 j=4

0.191
0.255

n=0 0.379 0.439
0.583

0.688

0.272
0.350

n=1 0.489 0.497
0.640

0.721

0.330
0.414

n=2 0.559 0.540
0.679

0.746

Table 7.6.Radii of nodal circles (R/a), for some modes
of the clamped circular plate
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Figures 7.11 and 7.12 give a visualization of the mode shapes of the modes
(m=1,j=1)and(n=2,j=2).

-17

x 10

4 . . .
-1 -0.5 0 0.5 1

Figure 7.11.Diametrical cross-section of the shape of the first mode n=1. fll sym

-0.4

Figure 7.12.Diametrical cross-section of the shape of the first mode n=2. f22 sym

Let us note, finally, that this technique of calculation can be used for all the types
of boundary conditions: support, free edge, elastic support, guided edge, under the
condition that the boundary condition remains the same in any point of the periphery
of the plate. The difficulty for circular plates is due to the use of the Bessel
functions. The use of tables of values used to be necessary but computers have
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completely eliminated this difficulty since the Bessel functions are now available in
commercial softwares.
7.7.3.Modal system of a ring-shaped plate

We will cover this example very briefly in order to demonstrate the difference
with the full circular plate. We will take the case where the boundary conditions are
expressed in the simplest manner: clamped at the external circle, with a radius a, and

at the internal circle, with a radius b, defining the limits of the plate.

The boundary conditions are thus:
W(a,0,t)=0 , W(b,0,t)=0 , %V(a,e,t) =0 and %N(b,e,t) =0. [7.119]
Again adopting the solutions [7.100], the boundary conditions [7.119] lead to:

h,(a)=0 , h,(b)=0 ,

Ay 2y=0 and o by 0. [7.120]
dr dr

It now remains to replace h (r) by its expression [7.104] which verifies the

equation of motion to obtain the linear system [7.121]. It should be noted that for
ring-shaped plates, the complete solution must be used as opposed to the case of full
circular plates, where the singular functions were to be removed in [7.104] at the
origin.

J (ka) Y, (ka) [(ka) K (ka) A, 0

Jkb) Y, (kb) I(kb) K(kb) ||Ba| |0

Dy gy Yo M Ko gy ||C ] [7.121]
ddirn(kb) dYZ (kb) i(k‘b) (%2“ (kb) O 0

dr dr dr dr

To obtain non-trivial solutions of equation [7.121], it is necessary that the
determinant be nil. This condition provides the characteristic equation, which is
satisfied for certain values of k, that is, for certain values of the angular frequency
since k and ® are connected by the relation of dispersion:

k=0, —. [7.122]
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We provide some results obtained from published works ([LEI 93]), in Table 7.7.

Creumferential modal | pa—0.1 | ba=03 | ba=05 | ba=-07
n=0 273 452 89.2 248
n=1 28.4 46.6 9.2 249
n=2 36.7 51 93.3 251

Table 7.7.Normal adimensional angular frequencies (x)az‘/ % for the first modes with

circumferential indices 0, 1 and 2, according to the ratio
of the internal and external radii of a ring-shaped plate

7.8. Conclusion

In this chapter we have presented vibrations of rectangular and circular plates.
Our discourse has been, however, mainly geared towards rectangular plates.

For rectangular plates, the method of separation of space variables provides
analytical solutions in certain cases of boundary conditions, but only gives the trivial
solution for the majority of cases. The problem of plates is thus of a superior order
of difficulty to that of beams and even in a priori simple cases there is no analytical
solution.

The classical techniques of approximate calculation are based on the
Rayleigh-Ritz method. However, we did not exploit this path in this chapter because
it will be the subject of a specific approach and instead we preferred a lesser known
method of approximation, the edge effects method, which has the effect of better
converging for the modes of a higher rank, as opposed to the methods of traditional
discretization, which converge better for the first modes. This method can lead to
incorrect results when two opposite edges are free; it would, therefore, be advisable
to use it with care.

For circular plates a minor difficulty is due to the fact that the solutions are
expressed by Bessel functions; however, modern data processing means make it
possible to get rid of the tables of values and finally overcome the difficulty of
calculation of these functions. The cases of circular and ring-shaped plates were
demonstrated to highlight the parts of the equation of motion solution to be
preserved in calculation.
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From a general point of view, the vibrations of plates lead to the same
phenomena as for beams: the existence of modes characterized by normal angular
frequency and mode shapes. If the basic phenomena are identical, it is, however,
advisable to note a quantitative difference: the density of modes in a given
frequency band is much stronger for beams than for plates.



Chapter 8

Introduction to Damping:
Example of the Wave Equation

8.1. Introduction

In the previous chapters we have described free vibratory movements of elastic
solids. However, an important parameter was neglected: damping. The object of this
chapter is to show its influence at the level of physical phenomena that it introduces,
as well as at the level of mathematical difficulties that it raises with respect to the
orthogonality of the modes.

The present discourse is based on the wave equation which describes the
vibrations of beams in longitudinal or torsion movement, as well as of cords and
sound pipes. The results naturally extend to more complicated systems, although it
did not appear pertinent to us to present the calculations of complex cases
considering how heavy they are.

Damping of a structure results from a loss of energy arising from several
physical phenomena which are, generally, difficult to apprehend. Certain types of
dissipation do not affect linearity, whereas others, such as solid friction, are strongly
nonlinear. To draw the attention of the reader to the importance of damping for the
free vibratory response of mechanical systems, we propose a small, easily realizable
experiment, which clearly demonstrates the potential uses of dissipation.

We would need two stemmed crystal glasses (more ordinary glasses can be also
used), a small spoon, a bottle of water and a champagne bottle. Fill three-quarters of
the first glass with water, and the second one with champagne, then gently tap the
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two glasses with the spoon. We observe that the glass of water makes a ringing
sound whereas the champagne glass makes a muted noise (Figure 8.1); this is the
acoustic demonstration of very different vibratory states of the two glasses.
Champagne dampens much more and stops the vibrations quickly, causing the
muted noise. The explanation is obvious to anyone who has used a bicycle pump to
inflate a tire. The compression of the volume of air heats up the pump and acts as
thermal dissipation of the mechanical energy. It is the same phenomenon which
explains the damping capacity of liquids with gas bubbles, the vibrations transmitted
to the liquid acting on the bubbles as multiple small pumps. Let us note that if the
reader does not have champagne, any carbonated beverage will be sufficient. A
second characteristic fact must be stressed: heating effects related to damping are
weak, and one would have to tap long and hard to heat the champagne. This
tendency can be generalized to mechanical systems and explains the difficulty in
measuring the loss factors precisely, considering their very low values.

This analysis of the phenomenon of two glasses is anecdotal; its purpose is to
give a simple image of a much more complicated phenomenon. In reality, the
presence of bubbles modifies the propagation velocity of waves, lowering it quite
considerably. The spectrum of the response is modified by a downwards shift of the
of resonance frequencies, which also participates in the modification of the acoustic
output.

In this chapter, we will remain within the framework of linear damping: classical
viscous damping, linear viscoelasticity and dissipation by absorbing limits. These
three mechanisms will lead to the concept of complex normal angular frequency,

characteristic of the vibrations of damped systems. We will then study the properties
of orthogonality of the normal functions and will show how to introduce the initial

conditions.
ﬁ ding... (53 tap IL
~ v

S, £

Figure 8.1.The experiment with two glasses
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8.2. Wave equation with viscous damping

This model of damping is the simplest; it consists of introducing an additional
term, proportional to speed, into the equation of motion. To be more specific, let us
consider a beam in longitudinal vibration, whose equation of motion was provided
in Chapter 3 (equation [3.21]) and let us introduce the term of viscous damping. The
equation becomes:

20 o a0
s LipsUl _gsCl g [8.1]
a2 ot ox2

Introducing the celerity of waves ¢ and the variable U instead of U}, to simplify
the notation, the general equation, which interests us, takes the form:

R L e Sy [8.2]

In this expression, ¢ = E/p is the celerity of longitudinal waves and & is the
damping parameter homogeneous to the inverse of a time.

We solve equation [8.2] by separation of variables:
U(x, t) = f(x) g(t). [8.3]

Introducing [8.3] into [8.2] and separating the variables, it follows:

g ¢
g
—+8-2-K2gt)=0, [8.4]
dt2 dt &)
a2t
22— —K2f =0, [8.5]
dx?

where K2 is a constant.
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Let us solve the temporal equation [8.4] using the traditional method. After all
the calculations it follows:

O =Ae 52t e( [82+4K> Z)t B2t e(— [82+4K> 2)t . (8.6]

A similar calculation leads to the solution of the space equation [8.5]:
f(x) = Ce K¥e 4 pekxle [8.7]

The space-time solution U(x, t) is thus:

Ux, t) = [A Y2t e( 52+4K> 2)t L pe 92t e(—Jm 2)t]

(CefKX/c + DeKX/C) . o

For the moment, the constant K which arises from the separation of variables is
not fixed and may be complex. To determine it, we have to introduce boundary
conditions for the beam. We choose non-dissipative boundary conditions, of the
clamped type at two ends:

U,t)=0 Vt, [8.9a]
UL,t)=0 Vt. [8.9b]

Applying these boundary conditions to the solution [8.8] yields:

C+D=0, [8.10]

CeKLc f DeKLie — . [8.11]

That is, if we are interested in a non-trivial solution:

eKLic _ oKLl — [8.12]

and:

C=-D=0. [8.13]
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Let us consider a complex K of the form:
K=o+ jo. [8.14]

Equation [8.12] becomes:

—COS(EL] sh(EL]—jsin(ng ch(ng:O. [8.15]
C C C C

Separating the real and imaginary parts:

cos(ij sh(“szo and sin(ij ch(“szo. [8.16]
C C C C

If a is different from 0, the system of equations [8.16] does not have a solution.

If o = 0, the system admits an infinity of solutions ® such that:

sin(ng:O@mzwnznTnc,nzl,...,oo. [8.17]
C

In short, respecting non-dissipative boundary conditions [8.9] leads to purely
imaginary values of K:

. . nm
K, =jo, = _]CT. [8.18]

The constants C and D are opposed as indicated by [8.13] but are not defined in
a unique fashion. Grouping all these results, the solution of space [8.7] is
particularized for the mode shapes f,(x) defined for each mode n:

£ (x) = C, sin (“T” xj [8.19]

the constant C_ being arbitrary and non-nil.
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The space-time solution U(x,t) for these boundary conditions is obtained taking
[8.18] into account in [8.8] and regrouping the possible solutions:

U0 =Y g,(t) £,(x). [8.20]
n=1

f (x) is the mode shape of mode n, given by [8.19].
j.[-52+4w2 2t —j[-8+4w? 2
g,(H) =(An e(J T ) +B, e( N )tjewt.

The arbitrary value of the constant C, is not important, since we can incorporate
it in the constants A and B of the temporal solution. This situation makes it
possible to simplify the expression of mode shape adopting C_, =1 without loss of
generality. This is the way in which we will proceed.

For weak damping, which is common in practice:

§ <20, (8.21]

the temporal solution is oscillating with the angular frequency € given in [8.22].

Q =)ol -(527. [8.22]

It is the damped normal angular frequency as opposed to the non-damped normal
angular frequency ®, which characterizes the vibrations when 6 = 0 and equation
[8.2] is reduced to the standard wave equation.

The temporal response of mode n, g (t) can also be expressed in the form:
p p &y
g, (t)=A,e™" +B e ™ [8.23]
with: A, =Q, +j5/2. [8.24]

The quantity A is called the complex normal angular frequency of mode n: the
real part represents the oscillating nature of the solution, while the imaginary part
represents the dissipative character of the movement which weakens over time.
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Note:

—if A is a complex normal angular frequency, then its complex conjugate A% is
also one;

—when 6 =0, i.e. for a non-damped system, complex normal angular frequency
becomes real. The concept of complex normal angular frequency is thus associated
with that of damping;

— for the model of damping considered here, we observe that the imaginary part
of A, given by [8.24] is independent of the mode. That will be different in the
models of damping which we consider hereafter.

Let us examine the vibrations of the damped beam following these initial
conditions:

U(x,0) = d(x)
[8.25]
%J(X,O) =0.

Let us use the general form of the solution [8.20] under the two initial conditions
[8.25]. It follows:

U(x,0) = g(An +B,) sin (n?” XJ = d®x), [8.26]
%U(X,O) - g i(Ah, —A:B,) sin (H—L” xj - 0. [8.27]

To determine the constants A ~and B_, it is enough to use the properties of
orthogonality, which amounts to breaking up initial displacements and speeds into a
Fourier series of sine and to identify then term by term. Equations [8.26] and [8.27]
yield respectively:

L
2 . (nm
A, +B, == [d@) sin (—xj dx., [8.28]
Ly L
A A, =B [8.29]
Relation [8.29] leads to:

A
A =B -0 [8.30]
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From [8.28] we draw:

L
B, =2 [ d(0) sin [n—nx]dx [8.31]
QLY L
and:
ks nm
A, =—n Id(x) sin(—xjdx. [8.32]
QL? L

We note that if d(x) is real, A = Bx; vibratory displacement following the
initial conditions [8.25] is, therefore:

w L
U(x, t) = z e_?’/ZtJ. sin (ﬂ xj 2d&) dx
0

L)L
0 sin(Q, ) | sin (“—” xj.
20 L

The global response is obviously real since it represents true movement, even if
at certain points in the calculation we introduce complex quantities (in particular,
complex normal angular frequency).

n=1

[8.33]

(cos(Qnt) +

Figure 8.2 illustrates the time history of mode n, which is a damped sinusoid
representing a dissipation of energy during movement, which is stronger the larger
O is.

0.6

04F

0.21

Figure 8.2.Time history of mode n
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8.3. Damping by dissipative boundary conditions
8.3.1.Presentation of the problem

This type of dissipation in structures is very often encountered in practice, the
losses at the boundaries often being predominant by comparison to other types of
dissipation. The phenomena of losses at the boundaries result from the coupling with
vibrating systems related to the medium considered. The exact description of these
couplings is very complex; an approximate modeling, which we will examine,
introducing the overall losses by a force of dissipation proportional to the vibratory
speed of the boundaries is often preferred.

Thus, we consider a beam without damping, in longitudinal vibrations,
embedded at 0 and having an absorbing boundary in L (see Figure 8.3).

1
\\\17\\
>

R

Figure 8.3.Beam with a dissipative boundary

The equations which govern the vibratory movement are:

U 82U
pS¥ - Esa—2 =0, [8.34]
X
U(0,t) =0, [8.35]

ou ou
ES—(L,t)+ Z—(L,t) = 0. [8.36]
0x ot
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The real constant Z translates the absorbing property of the boundary at L. It
introduces neither elastic nor mass effects. To take these effects into account it
would be necessary to replace [8.36] by:

ou 22U ou
EST— (L.t) + M—— (L, t) + Z—(L.t) + KU(L.t) = 0 8.37
6X( ) atz( ) at( ) (L,?) [8.37]

with M and K being respectively the mass and the stiffness of the boundary (see
Figure 8.4).

K
Mo
==

V4

T

Figure 8.4.Beam with a boundary condition, with stiffness K, mass M and damping Z

The solution would be very heavy, and thus we will only consider the purely
dissipative boundary condition [8.36], which is sufficient to describe the effect of
damping at the boundaries.

8.3.2.Solution of the problem

The general solution [8.34] obtained by separation of the variables is:

U(x, t) = f(x) g(t) [8.38]
with:

f(x) = Ce K ¥/e 4 DeKx/e [8.39]
and:

g(t) = Ae Kt + BeKt, [8.40]

In these expressions, ¢ = 4/ E/p is the speed of the longitudinal waves and K is
a complex constant.

The boundary condition [8.36] implies:

C--D, [8.41]
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A (ﬁ(eK Lic 4 K L/C)Jr 7 (e—K L/c _ ¢gKL/c )J C=0, [8.42]
C
ES
B (_ (e—K Lic 4 oK L/c)_ 7 (e—K Lic _ KLl )J C=0. [8.43]
C

First we will determine the solutions of [8.42], then those resulting from [8.43];
the total solution will be the sum of all the solutions.

Let us examine equation [8.42]. We have either A =0, C =0, or:

E(e—KL/c + eKL/c)+ Z(e—KL/c _ eKL/c)= 0.
C

The first two possibilities lead to the trivial solution. To discuss the third
possibility, let us pose K = a + jo . It follows:

(ﬁ + z) e~ MlegmiRe 4 (E - zj etlieeiQle _ ¢ [8.44]
C C

By transforming the complex exponential and separating the real and the
imaginary part, we obtain:

cos(QL/c) ((ﬁ + zj e e (ﬁ - zj e“L/Cj =0 [8.45]
C C
and:
sin(QL/c) (— (g + Zj e ke 4 £§ - Zj eaL/cJ =0. [8.46]
C C

There are two possibilities to satisfy [8.45] and [8.46]:
a) First possibility:

cos(QL/c) = 0 [8.47]
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and:

([§ + Zj oalfe _ (ﬁ _ Zj e“L/Cj. [8.48]
C C

Let us consider the case of weak damping, then Z < ES/c and let us trace in

ES ES
Figure 8.5 the two curves (— + ZJ e-@L/c and (— - Zj e*L/c  The intersection
c c

shows that there is a value solving equation [8.48]: o =§/2> 0.

Figure 8.5.Root of equation [8.48]

Equation [8.47] has an infinite number of possible solutions, given by the
relation:

Q£:2n—1
¢ 2

T,

i.e. an infinite number of normal angular frequency:

2n —1
Qn:c n 1.
2 L

[8.49]
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In short, there exists a first set of non-trivial solutions. For n =1, ...,
Ux,t) = A C e—j(Qn—jéS/Z)t (e—j Q-5 xlc ej(Qn—jéS/Z) X/c) [8.50]
4 nn ‘ :

b) Now let us consider the second possibility of solution of [8.45] and [8.46]:

sin(QL/c) = 0 [8.51]

((E_S " zj ke _ _ (E—S - zj e“L/CJ . [8.52]
C C

. . ES
Let us trace in Figure 8.6 the two curves (—+Zj eaLl/c  and
c

and:

ES . . .
- (— - ZJ e*L/c They do not have an intersection, and equation [8.52] cannot be
c

satisfied. This second possibility does not give a solution.

Figure 8.6.Resolution of equation [8.51] (no solution)
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Let us examine the solutions of equation [8.43]. Using an approach similar to the
discussion of equation [8.42], we obtain a range of solutions in the following form
(it is enough to change Z into (- Z) and a into (—a) in the previous discussion):

UGx,t) = B,C, ej (@, +i32)t (e—j @, +jd2)xlc ej (Q,+j5/2) x/c) [8.53]

with Q = given by [8.49].

Combining all of the found solutions, we obtain the general solution (we have
posed A C, =D, and B.C =-E_ )

Ux,t) = Z D, e—j (Q,-j32)t [e—j Q,-j5)xlc ej (Q,-j82) x/c)
=1
) [8.54]

>

+E, o (Q,+j3/2)t (eJ Q,+j¥2)xlc o (@, +jd/2) X/cj
Le.:

0 . .
Ut = > D, e it + By e ' (x). [8.55]

n=l

Once again, as in the case covered in section 8.2, we find the complex normal
angular frequency A and A%, characteristic of the presence of damping .

Xn:Qn+j§ and k;:Qn—j§~
2 2

The imaginary parts of complex normal angular frequency are also independent
of the mode here.

Also let us note that €, the real part of complex normal angular frequency, is
independent of damping at the boundaries; this is a notable difference with the case
of distributed damping covered in section 8.2. There is no damped normal angular
frequency € here differing from the non-damped normal angular frequency .

However, there seems to be a considerable difference by comparison to the
previous case, since the normal deformations f (x) and f*(x), associated with the
normal angular frequency A and A*, are complex conjugate, whereas in the
general solution [8.19] found in section 8.2, mode shapes were real and identical.
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Figure 8.7 presents the real and imaginary parts of mode shape of the 2™ order,
f(x); the imaginary part is weak taking into account the considered case
characteristic of a weak damping (5 =0,02 Q,). Figure 8.8 presents the real and
imaginary parts of the same mode shape when damping is stronger. We note that the
imaginary part adopts a much greater importance.

2.5

) 0.2 04 0.6 0.8 1

Figure 8.7.Real
of the second complex mode. 1 meter long beam,
case of weak damping: 6 =0.02 ()

and imaginary — — — - . part of the mode shape

02 0.4 0.6 0.8 1

Figure 8.8.Real
of the second complex mode. 1 meter long beam,

and imaginary = — — - . part of the mode shape

case of strong damping: 6 =0.2
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What is the physical significance of complex mode shapes? To answer this
question we point out the physical significance of the modes which we have already
highlighted during the study of free vibrations of non-damped systems. A normal
mode represents a state of displacement characterized by movements in the same or
in opposed phase of all the points of the structure. When the modes are complex, the
movement associated with a mode no longer occurs in the same or in opposed phase,
but with a phase shift which could be characterized thanks to the real and imaginary
parts of the mode shape. This phase is variable with the point of the beam
considered; consequently, the nodes of vibration generally no longer exist, except if
the real and imaginary parts of the mode shape are nil at the same points.

8.3.3.Calculation of the vibratory response

The calculation of the vibratory response to initial conditions poses the problem
of orthogonality of the mode shape, which is here quite particular. We will come
back to it in detail in section 8.5 while here we give its properties without
demonstration:

L 7.c2

(5 =1, I £,(0) Fxx) dx + j—f, (L) fx(L) =0, [8.56]
0 ES
L 7.c2

(hy =23 I fx(x) £,00) dx - j—fx(L) £,(L) =0, [8.56°]
0 ES
L . Zcz .

(O + xn)!)'fn(x) f,(x) dx — ]E—an(L) f,L)=0 if A, =%, [8.57]
L ZC2

(5 + x;;)!f;;(x) fx(x)dx + j e fx(L) £3(L) = 0 if A, %4, . [8.57’]

Let us note that the properties [8.56] and [8.56°] are true even if n = p, whereas
[8.57] and [8.57°] are not.

Let us suppose that the initial conditions given at t = 0 are:

U(x,0) = d(x), [8.58]
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U x.0) = vix) [8.59]
at

Let us use the decomposition [8.55] under the initial conditions [8.58] and
[8.591:

i D fx(x) + E f (x) = d(x), [8.60]
n=1
i =D, M x)+E A f (X)) =-jv(x). [8.61]
n=1

To be able to use the properties of orthogonality, it is necessary to proceed in a
rather special manner, as follows. Let us multiply [8.60] by kpfp(x) and [8.61] by

fp x):

Z_‘f anpfp(x) fr(x) + Enkpfp(x) f,(x) = kpfp(x) d(x), [8.62]
i— | DS fp(x) £(x) + E A, fp(x) f(x)=-]j fp(x) v(x) . [8.63]
n=1

Let us add the two equations, then integrate the two members between 0 and L:

0 L L
>'D, (0, -21) J' £,00 f360 dx +E (1, +1,) I £,00 £,(x)dx
n=l 0 0 [8.64]
=%

O —y

L
£00) d(x)dx - jJ'fp(x) v(x) dx.
0

We recognize a part of the properties of orthogonality [8.56] and [8.57]; there
are, however, several terms missing, which we will introduce noting that in x = L,
the initial condition in displacement is verified:

U(L,0) =d(L), [8.65]
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i.e. using the decomposition [8.54]:
D D fL) + E,f (L) = d(L). [8.66]

Zc?
Let us multiply [8.66] by — jE—Sfp(L) and sum up, member by member, with

[8.64]:

e L Zc?
>'p, [(xp —) '<[ L f;;(L)]

n=1

L 7.c2
+E, {(xn +1,) I £,00) £,00) dx - jE f,(L) fn(L)J [8.67]
0

L L ZC2
=, J'fp(x) dx)dx — j J' 00 V0 dx — (L) d(L).
0 0

Using the properties of orthogonality [8.56] and [8.57], it follows:
L 7.c2
pr(x) (kpd(x) - jv(x))dx - jg f(L) d(L)
_0
E, = 7 72 : [8.68]
2, j £2(x) dx — = £2(L)
0

To calculate Dp, it is necessary to proceed in a similar fashion, but multiplying
Zc?

ES

[8.60] by k’lgfg(x), [8.61] by f;(x) and [8.66] by j f;(L). We then use the
properties of orthogonality [8.56] and [8.57] to obtain:

Zc?

L
[ 500 (x; d() + v(x) Jdx + j = B0 )
_0
D, = - — . 8.69]
2 I £2(x) dx + - £2AL)
0
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It now suffices to introduce the expressions of E_ and D_in [8.54] to express
. . . P .
the vibratory response of the beam with damping at the boundaries. We will not
push this very technical calculation further, let us underline, however, that the final
result must give a real displacement if we take real initial displacements and speeds,
despite the appearance of complex calculation intermediaries (normal angular
frequency and mode shapes).

Let us note in conclusion that this model of damping, localized at the boundaries,
brings us to complex mode shape leads to much heavier calculations than distributed
damping studied in section 8.2, which preserved real mode shapes independent of
damping.

8.4. Viscoelastic beam

The hypothesis of linear viscoelasticity is that which provides the best
approximation of internal dissipations in materials. It leads to a heavier formulation
than those presented previously, because the stress-strain relation of material is
defined by a product of convolution (see Chapter 1, equation [1.68]). In the case of a
beam in longitudinal vibrations, the equations representative of the vibrations are the
ones obtained in Chapter 3 (equations [3.21] and [3.12]), which we recall:

82U
- B9 _g [8.70]
ot2 Ox
V_o [8.71]
ox E

For a viscoelastic material, the stress-strain relation [8.71] is modified:
au h 8
Tt = j It - 12 (x,7) dr. 8.72]
0x b ot

This law of viscoelasticity shows that longitudinal strain of the beam observed at
the moment t depends on the state of stress at all prior moments. Thus, viscoelastic
material has a memory effect.

We will seek the vibratory movements of the viscoelastic beam in the form:

U(x, t) = Y(x) e [8.73]
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and:
o(x, 1) = 5(x) e/ [8.74]

As in the previous examples, we will interpret A as a complex normal angular
frequency.

Introducing [8.73] and [8.74] into [8.70] and [8.72], we obtain:

~-A2pSY(x)-S ds x)=0 [8.75]
dx
and:
e~ t
Z_Y(X) M = I I(t - 1) di5(x). [8.76]
X

To push the calculations further, it is necessary to make an assumption on the
form of the function I". We choose:

T(1-¢ ") Y u>0,
T(u) = [8.77]
0 Vux<0.

Note: the viscoelastic stress-strain relation introduces two parameters y and T .
To illustrate the underlying physical properties, let us consider that a state of stress
is applied abruptly at the moment T:

o(x,7) = &(x) H(z - T)

and thus:
0o ~
—x,1)=06(x) 0(t—T).
ot
In these expressions H is the step function and & is the Dirac distribution.

. . . . . ou
The viscoelastic stress-strain relation yields the value of (’5_ :
X

t
%J(x, f) = !o I(t-1) 8(t—T) dt3(x), [8.78]
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ie.

(1 —e_Y(t_T)) Isx) Vt>T,

[8.79]
0 Vt<T.

6—U(x, t)=T(t-T) o(x) =
ox

Figure 8.9 illustrates the phenomenon: non-abrupt strain corresponds to an
abrupt application of stresses — it is the phenomenon of creep, which is more
pronounced the larger y is.

Let us introduce the function defined in [8.77] into equation [8.76]:

7 t
‘Z—Y(x) M = T j (1 e Y“‘T))eJM di5(x), [8.80]
X

—00

that is, after calculation:

T . .
N e =T Gx)el. [8.81]
0x A +y

osb o : : - : ]

0.2k : S e PR -

Figure 8.9.Stress (top graph) and strain (bottom graph) of a viscoelastic beam
in longitudinal vibrations versus time
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Note: in the integral [8.80], the limit at t=-o0 which appears during
integration by parts does not contribute insofar as A has a negative imaginary part,
as we will see later.

Using [8.75] and [8.81] we obtain the system of equations to be solved:

22057 (x) + 5 9% (x) = 0
dx
- [8.82]
dx

o(x) = E* x)

where we introduced the complex Young modulus E* defined by identification in
[8.81]:

_ vy [8.83]
T

E*

The system [8.82] is reduced to the equation:
_ a2y
M pSY(X)+E*S——(x)=0. [8.84]
dx?

This differential equation is easily integrated:
— jA. | p/E* —j\,| p/E*
Vo) = AV X e NI [8.85]

To determine the values of A, we will consider boundary conditions of the type
which is clamped at both ends, that is:

Y(0)=0 and Y(L)=0. [8.86]

The fact that [8.86] is verified by [8.85] leads to an infinite number of solutions
of the form:

P === n=1,.,m, [8.87]
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with:
— . [ nm
Y, (x) = sin (T xj . [8.88]

The relation [8.87] deserves thorough examination since E* depends on A
under the terms of [8.83]. It follows:

2
A2 pT = (“T”j (1+ A, /). [8.89]

Equation [8.89] is polynomial of the second degree:

pT A2 —j(ﬂjzlx —(“—”T -0 [8.90]
n L y n L : '

We deduce its two roots A, and X% :

2

. (nn]z 1 (mtT 1 (nn]z 1

7»“ =] — | ——= |t .|| — —_— | +|— | =

L) 2pTy L 2pTy L) pl

2

. (MT 1 (nnj“ 1 (mf 1
}\.}"]:—_] — | = |*. | — | t| | =
L ) 2ply L 2pTy L) pI

Reintroducing the notations used previously, we will note that the non-damped
normal angular frequency is obtained for values of y tending towards infinity
(which corresponds to abrupt strain when stress is applied abruptly: see Figure 8.9).
In this case it follows:

[8.91]

1
A, = | — = [8.92]
pI' L

This value corresponds to the non-damped normal angular frequency, which is
generally givenas o = _ .

The damped normal angular frequency in its turn is equal to:

Q, =0, |1-(©@,/21? . [8.93]



302 Vibration in Continuous Media

Lastly, the complex normal angular frequency is expressed in the form:

. ©2
A, = Jz—; +Q

Note: expression [8.93] shows that for a fixed value of vy, there will always be a
normal angular frequency, on the basis of which the radical will become imaginary.
Under these conditions, the modal movements will no longer be vibratory but rather
exponentially decreasing, since A, will be purely imaginary. This situation,
characteristic of a super critical damping of the modes, will occur at higher
frequencies the larger v is, signifying that the material will be less dissipative.

In summary, on the basis of [8.73] and of the previous results [8.88] and [8.91],
we obtain the general form of the vibratory movements of the viscoelastic beam as a
combination of all the modal solutions:

U, t) = Z(An M B e‘jxﬁtj sin (n%xj . [8.94]

n=1

It preserves the general form characteristic of damped systems with conjugated
complex normal angular frequencies.

Normal stresses given in [8.88] are real: it is the consequence of a damping
distributed uniformly over the entire beam (damping localized at the ends produced
complex normal deformations).

A second form can be proposed for the vibratory displacement:
2
& _{nt] nn
U =" e " /(A cos(@,t) + By sin(@,) sin (f xj. [8.95]

n=1

It is identical to the form [8.20] obtained for damping proportional to the speed,
but this time the exponential decay of the amplitude over time depends on the mode.
The complex Young modulus introduced in [8.83] can now be calculated taking into
account the values of A, that solve the problem. After all the calculations it follows:

1 2 2
Br=—|1——n 4% ;-0 [8.96]
r 2y y 4y?

It should be noted that for our viscoelastic model, the complex Young modulus
is variable with the mode. Consequently, we will index it.
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In the limit case where y tends towards infinity, we find again an elastic
material; the complex Young modulus becomes purely real, independent of the
mode and equal to:

E= [8.97]

=] —

The existence of an imaginary part for the Young modulus is thus characteristic
of the phenomenon of viscoelastic damping. Very often the loss factor m is
introduced, noting:

E, =E(1+jn,). [8.98]

In our case we obtain with these notations:

1 2
By =x|1- ;”nz [8.99]
y
and:
T
2
Q 4y
nn:—nzzﬁ—z, [8.100]
Jimean | Tolen
292 22

In the case of slightly damped modes o, /y << 1, the Young modulus decreases
as the normal angular frequency of the mode grows; the modal loss factor, close to
o, /y, thus increases with the normal angular frequency of the mode.

8.5. Properties of orthogonality of damped systems

As we saw, the general form of the vibratory response of a damped continuous
medium is:

0 . .
Ut = > D, e it ) + By e ' (x). [8.101]

n=1
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We can write the equations which must satisfy mode shapes f (x) in a general
form introducing each modal movement into the equation of motion and the

boundary conditions of the problem. It follows:

dzf

n

dx?

(x)=-a2f (x) VxeloLl,

df
ad —1-(0) = £ (0),
dx

df
ok d—; (L)y="f(L).

In the problem covered in section 8.2, we can identify the constants:

n

2
A LES 1
a2=[—“j N (1820 N (l%= ?—
In the problem covered in section 8.4:

2
nmn
2 — 0 — L —
an—(Lj ,(xn—O,an—O.

[8.102]

[8.103]

[8.104]

[8.105]

[8.106]

[8.107]

We thus write down the equations associated with [8.102] — [8.104] for the

complex conjugate quantities:

dzfs “
= () =-a2fxx) Vxe Jo.L[,

dfx
0¥ _P — fx*

[8.108]

[8.109]
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, dfx
ak P (L) = fx(L). [8.110]

First property of orthogonality

Let us multiply equation [8.102] by the mode shape f (x) then integrate the two
members between 0 and L ; it follows:

d2f L
i ; x) fp(x) dx = - arz1 ‘([fn(x) fp(x) dx.

Let us integrate the first member by parts and use equation [8.102] for the index p:

L d2f

L
= a2 j £,00 £,(x) dx
0

df, L df, L
+ [ ™ (x) fp(X)L - {d_x (x) fn(X)L -

Using the relations [8.103] and [8.104] and the relations symmetrical in n and p:

k df, —df,
(a2 - a2) i £,00 00 dx = ~P-(1) < (L) (o - )
[8.111]

df
+d—P(0) a, (0) (o) —ad) =0.

Second property of orthogonality

Relation [8.111] is the first property of orthogonality of damped vibrating
systems. There is a second one, which employs the complex conjugate mode shapes.
Let us multiply equation [8.102] by f*(x) then integrate between 0 and L; it
follows:

d&2f L
200 fyx) dx = —a2 Ifn(x) £a(x) dx .
0

Oy
o
>
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Integrating anew the first member by parts, then using the relations [8.108] to
[8.110], after all the calculations, we get:

o dfs df, .
(a2 - a%2) J)' £,(x) 300) dx - di’ LW (ok —oL")

[8.112]

df*  df
+—L(0)—2-(0) (02 — 02" = 0.
dX()dx()(n )

The relation [8.112] is the second property of orthogonality of damped systems.
Let us consider some particular cases:
a) If the constants ug and al are real and independent of the mode, the
relations of orthogonality are reduced to:
L
(a2 - ag) I £ (x) fp(x) dx =0 [8.113]
0
and:

L
(a2 -a%2) I £, f360dx = 0. [8.114]
0

Let us consider the case of two different modes n and p. It follows that a_ # a,
and a_ # as, wherefrom we deduce:

L
jfn(x) £, dx =0 [8.115]
0

and:

L
jfn(x) fi(x)dx = 0. [8.116]
0

Note: it can so happen that for two different modes n and p we have an equality
of a, and a,; it is a situation of degeneration where passing from [8.113] to [8.115] is
no longer possible. We are then in a situation where several normal functions are
associated with the same eigenvalue. However, thanks to Schmidt’s orthogonalization
process, it is always possible to make the mode shapes orthogonal among themselves.
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Let us now consider the case where n = p; the relation [8.113] is automatically
verified, and the relation [8.114] yields:

L

aJIE

0

|dx 0,

ie.:
Im{aﬁ}:o.

The eigenvalues 3121 are purely real, the problems [8.102] — [8.104] and
[8.108] — [8.110] coincide exactly and, consequently:

fx) =1 (x).

This amounts to stating that mode shapes are also purely real. The problems
covered in sections 8.2 and 8.4 are observed in this particular situation

(0 =ak =0).

b) In the case covered in section 8.3 we are dealing with the general situation.
Replacing the various constants with the [8.106] values the two properties of
orthogonality become:

A2 — )2 df ES| A —A
I T jf x) f (x)dx+—p(L) by B8 2% g s

c2 dx dx Z | M,

32 _x*z A+ A
“—jf@) p(L) T e e NI

2 e

P

i.e. after some manipulation:
L zc?

(g + ) gfn(x) B () dx =6y (L) (L) T =0 L if &y 22y [8.119]

and:
2

* R * . ¥ ZC . *
(xn—xp)jfn(x) f,(x)dx—jf (L) fn(L)E—S:O if h, A [8.120]
0
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These are the two properties and their conjugate expressions which we have used
in section 8.3.

Let us note that we can define several other properties of orthogonality
equivalent to [8.119] and [8.120]. It is enough, for example, to replace f, (x) by
1 d*f

n

2
as dx

5 (x) under the terms of the equality [8.102] to obtain another form of the

basic relations [8.111] and [8.112]. We leave it to the reader to look further into this
aspect, taking into account the heaviness of the expressions. Following the problem,
there exists an adapted form of the properties of orthogonality which it would be
necessary to establish. Also, let us recall that these properties of orthogonality are
key in the calculations of vibratory response because they offer the means of
uncoupling the modes and, thus, of calculating the modal amplitudes separately.

8.6. Conclusion

The phenomenon of damping is related to very complex physical mechanisms
which act inside the structures and at the level of their boundaries. They represent a
conversion of mechanical energy into heat or a transfer of mechanical energy of the
structure to its environment. Taking damping into account leads to the appearance of
complex normal angular frequency. The imaginary part introduces the effect of
exponential reduction of the vibratory amplitude over time, while the real part, as for
the purely elastic systems, translates a sinusoidal movement over time. Mode shapes
are in general also complex. They can, however, remain real, if the effect of
damping is proportional to the effects of mass or stiffness. This situation occurs for
distributed damping studied in sections 8.2 and 8.4, but not for damping localized at
the boundaries considered in section 8.3.

Although complex quantities are introduced to characterize damping, the
vibratory response resulting from real initial conditions is also real.

Calculations are considerably weighed down by taking damping into account;
therefore, this study is undertaken only if the case of purely elastic systems is not
sufficient to resolve the problem presented.



Chapter 9

Calculation of Forced Vibrations
by Modal Expansion

9.1. Objective of the chapter

The problems of free vibrations which we have addressed in the previous chapter
study vibratory movements following an initial disturbance of the state of
equilibrium. Here we consider other vibratory movements caused by the application
of a force variable in time. These problems are more complex since they
superimpose the effect of the initial conditions and the application of force. They
will be solved by the method of modal decomposition. This method is general and
makes it possible to treat all types of forces: local or distributed, permanent or
transitory.

The method is formulated on a reference example where the stages of calculation
are well detailed. The amplitude associated with each vibration mode is the solution
of the modal equation, i.e. the equation of a system with a degree of freedom,
characterized by a generalized mass, a generalized stiffness, a generalized damping
and a generalized force.

The difficulties of calculation, on the one hand, lie in the determination of these
generalized quantities in the non-simple cases, in particular when the boundary
conditions do not conform to the traditional cases (some examples will be provided).
On the other hand, solving the modal equation is in itself a difficult problem when
the force has a complicated temporal fluctuation. At this level it is necessary to
break up the excitations into two distinct branches: deterministic forces, known at
any moment, and random forces, known only in the sense of probabilities. Here we
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primarily consider the deterministic efforts, since the random vibrations require a
specific treatment which will only be mentioned.

We outline the calculation in the two basic cases: harmonic excitation and
impulse excitation. We then show how these two responses can be used to solve the
case of any excitation in frequency domain thanks to the Fourier transform and in
time domain by a convolution integral.

The response by modal decomposition is expressed by a series. The question of
convergence of the series, which we study briefly, is then raised. We also provide a
technique to accelerate the convergence of modal series.

The method of modal decomposition is general, which is its strength but also its
weakness in the sense that its generality involves a heavy of calculation. There are
also methods adapted to particular cases which offer faster processing. In Chapter 10
we will see the method of forced waves, which is very powerful in the problems of
beams.

9.2. Stages of the calculation aksponse by modal decomposition
9.2.1.Reference example

The calculation that we are about to perform can be generalized, as shall be seen
later. However, to avoid at least a heavy notation we will consider a rather simple
reference example: a beam in bending supported at its two ends. This case lends
itself particularly well to analytical calculation.

Stage 1. Presenting the problem

It is a matter of writing three groups of equations which completely define the
problem of forced vibrations: the equation of motion, boundary conditions and
initial conditions. Respecting all these equations is necessary to ensure uniqueness
of the solution.

Equation of forced movement of the bending beam:

W W
pSW—FEIW:p(x,t) vxeloL[,t>0. [9.1]

It is the classic equation of bending beams when secondary effects are neglected
(see Chapter 3, section 3.5). The second member represents the excitation: it is
homogenous with force per unit of length and depends on space and time.
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Boundary conditions (simple support at the ends):
02w
W(0,t)=0 Elﬁ(o,t)zo,
2w [9.2]

Initial conditions:

W(x,0) = dy(x),

W [9.3]
H(X,O) = VO(X) .

The quantities d(x) and vy(x) are respectively initial displacement and initial
speed at any point x of the beam.
Stage 2. Calculation of the vibration modes, orthogonality of mode shapes

The calculation of the forced vibratory response is based on the preliminary
knowledge of the vibration modes, that is, of the solution of the problem of free
vibrations.

The normal vibration modes are solutions in the form of (see Chapter 6):
W, (x,t) = (A, coso,t+ B sinwt) f (x). [9.4]

where @, is the normal angular frequency and f (x) is the mode shape of the order
n. W (x,t) is the modal displacement.

Introducing this solution into the equation of free movement (equation [9.1] with
the second member being nil) and for the boundary conditions [9.2], we note that:

, dtf,
~ o} pSf, +El—2=0 xeo,L[, [9.5]

dx
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A2 f,

e [9.6]
d2f

D=0 " (L)=0.

Equations [9.5] and [9.6] are at the origin of the properties of orthogonality of
mode shape.

Let us examine the symmetry of the operators of mass and stiffness of equation
[9.5]. These properties, which we want to establish, are defined by:

Lood4f, d4f

I D fodx = Df dx, [9.7]
o dx4

L L

[pst,f,ax =[pst, £, dx. [9.8]
0 0

Equation [9.8] is obviously verified, the demonstration of [9.7] is carried out by
integration by parts of the second member of [9.7] and taking into account the
boundary conditions [9.6]. Indeed:

L
L d4f L dBf 4qf df
JEI——f, ax = [ Bl—2 S ax+ | BI—P
dx*4 3 dx dx

0

The terms at the boundaries are nil, since mode shapes verify [9.6]. Repeating
integration by parts, it follows:

L d4f L g2 f d? £, d2f
I Pfodx .[EI " x| B 4
dx4 dx2 dx2 dx?2 dx

0

Here the terms at the boundaries are still nil, taking into account [9.6]. Applying
the same procedure once again, it follows:

L
Loogtf L @f df a2f df
[B1—2f, ax =~ D Py 4| EI—L—B
x4 dx dx? dx

0
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The terms at the boundaries are still nil. Finally, a last integration by parts
produces:

L
Loog4f LA &
IEI L dx:IEI f dx —| EI £
dx4 " 0 dx4 P dx3 P
0

It thus suffices to note that the terms at the boundaries are nil in order to declare
the verifying of [9.7].

These properties of symmetry are at the basis of the orthogonality of mode
shapes. Let us note that they are not only related to the operators of mass and
stiffness but also to the boundary conditions. Finally, let us underline that the terms
at the boundaries would disappear for all other cases of standard boundary
conditions (clamped, free end, etc.) and that consequently the properties of
symmetry are identical for all these boundary conditions.

To get to the properties of orthogonality, let us proceed as follows:

Let us multiply equation [9.5] by fp and integrate between 0 and L:

d4f

n
dx4

L L
- o2[pSt, £ dx + [EI——f, dx = 0. [9.9]
0 0

A symmetrical formula is obtained by inverting the indices n and p in equation
[9.9]:

L Lodt
_U%J'psfpfndmj'm =0, [9.10]
0 0

Using the properties of symmetry [9.7] and [9.8] in [9.9] we obtain:

kgt
pST, £, dx+ [BI——2f dx =0,
0

~ o dx4

Oy
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i.e. by subtracting member by member with [9.10]:
L
(mg—mg)jpan £ dx=0.
0

If o, = o, the equation is automatically verified.

If o, # o, the equality to zero implies:

L
Ipanfpdx=O. [9.11]
0

This is the property of orthogonality with respect to the operator of mass. With
[9.9] we immediately deduce from it a second property of orthogonality with respect
to the operator of stiffness:

fodif
if o, #0,= [EI=—2f dx=0. [9.12]
o dx

At this point it is interesting to introduce two quantities which will play an
important part in the calculation of the modal response.

We denote the following integral as generalized mass M, :
L
M, = [pSt2dx. [9.13]
0

We also denote the following integral as generalized stiffness K :

Looddf
K, = [EI . [9.14]
0 X

With [9.5], [9.13] and [9.14] we note that generalized mass and generalized
stiffness enjoy the remarkable property:

JK /M, =0, . [9.15]
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Stage 3. Modal decomposition of the response, modal equations

We can demonstrate that the set of normal functions f (x) is a basis of the
functional space where the solution of the problem defined by equations [9.1], [9.2]
and [9.3] lies. We admit this result without demonstration; the reader may refer to
the work of M. Roseau [ROS 84] for its mathematical aspects. Let us note that this
property has already been exploited for the free response of beams in Chapters 5, 6
and 7, since the response is expressed as a series of normal functions. This is the
idea is used in modal decomposition; we seek the solution of the problem of forced
vibrations in the form:

W(x, t) = f a (t) f,(x). [9.16]

n=1

In expression [9.16] the amplitudes a (t) are unknown and thus need to be
calculated in order to solve the problem. These amplitudes must adapt so that the
modal expansion [9.16] verifies the three groups of equations [9.1], [9.2] and [9.3].

Let us note, first of all, that the modal expansion verify the boundary conditions
[9.2] by construction, since each normal function verifies them separately (equation
[9.6]). Thus, we have, for example:

+00
W(O,t)= Y a,(t) f,(0)=0 (since f,(0)=0 according to [9.6]).

n=1

The same applies to the other three boundary conditions.

Let us now examine the equation of forced movement [9.1] and substitute the
form [9.16] in [9.1]:

+0 +0 d4f
N ; d,(t) £,(x) + EI ; a,(t) dx; (x) = p(x.1). [9.17]

This form is sterile since this equation has an infinite number of unknowns a_ .
The key to the solution consists of uncoupling the modes by using the orthogonality
of normal functions. For that it suffices to multiply equation [9.17] by a normal
function fp(x) and to integrate it between 0 and L; it follows:

L =g L +o0 d4 fn
j oS ; (1) £,(x) £(x) dx + J)' EI ; 3,0~ 09 dx
0 = =

L
- j PCx. O f(x) dx.
0
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Let us invert the summations and the integrals:

& L +00 L d4 fn
> an(t)J pSE,f dx+ Y a0 I EI—2 £(x) dx
n=1 0 n=1 0 dx
. [9.18]
- I p(x. 1) £(x) dx.
0

We recognize the properties of orthogonality with respect to the operators of
mass and stiffness in [9.18], which implies that all the terms of the sums are nil
except for the single index n = p. It follows:

i,(0) My +a () K =F(1). [9.19]

M_ and K_ are respectively the generalized mass and the generalized stiffness
of the mode p, defined by equations [9.13] and [9.14]. Fp(t) is the generalized force
of the mode p given by [9.20]:

L
F (1) = J' p(x, B £,(x) dx . [9.20]
0

Equation [9.18] is the modal equation associated to the mode p; its solution will
provide the unknown for the ap(t) problem. The remarkable point is that this
equation is that of a system vibrating with one degree of freedom (see Figure 9.1),
which, taking into account [9.15], has the same normal angular frequency as the
vibration mode studied.

F,(®

Figure 9.1.System with one degree of freedom, representative of the modal equation
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To ensure the uniqueness of the solution of [9.19], it is necessary to provide this
equation with initial conditions; these will of course stem from equations [9.3]. Let
us use modal decomposition in these equations:

+00

Z a (0) f,(x) = dy(x), [9.21]
n=1
+00
Z a,(0) £,(x) = vy(x) . [9.22]
n=I

To exploit these equations, it is also necessary to uncouple the modes using the
properties of orthogonality: let us use the orthogonality with respect to the operator
of mass, multiplying [9.21] and [9.22] by pS fp(x) and integrating it between 0 and

L. (we could also use orthogonality with respect to stiffness multiplying [9.21] and
b d4 fp )
[9.22] by EI ——).
Y dx4

After using orthogonality we obtain:

L

a,(0) = j PS £,(x) dy(x) dx/M . [9.23]
0
L

3.(0) = J' pS £,() vo(x) dx/M, . [9.24]
0

The solution of the modal equation [9.19] equipped with the initial conditions
[9.23] and [9.24] provides the unknown modal amplitudes. It is enough then to
introduce them into the initial expression [9.16] to find the solution of the problem.
We will provide some examples later on.

9.2.2.0verview

The method which was been highlighted with a reference example can be easily
generalized. Let us consider an equation of forced motion of the type:

W
J — +L(W) =p(x,t) ¥Vxe|0,L[,t>0 [9.25]
t
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where J is the operator of mass and L is the operator of stiffness. J and L are two
differential space operators.

Let us suppose the existence of normal modes verifying the analog of equation
[9.5]:

- ooIZ1 J()+L(f)=0. [9.26]
Finally, let us suppose that the two operators are symmetrical. (The boundary

conditions which we did not write down must be defined so that symmetry is
verified.) We show then, as previously, the properties of orthogonality:

¥ 0 ifn#p
| pr(fn)dx:(Mn e
0 [9.27]
L
(0 ifn=p
,[pr(fn)dX_(Kn ifn=p.
0 [9.28]

Under these conditions, the modal amplitudes associated to the decomposition of
the solution in the form [9.4] are obtained by the solution of modal equations of the
[9.19] type, where the generalized masses and stiffness are provided by [9.27] and
[9.28].

The method of modal decomposition is very generally applicable to problems of
vibration of beams, but also of plates, shells, etc. The procedure is exactly identical
to the one employed in the reference example; the difficulty that can appear in
certain cases is the description of the properties of orthogonality when they are
complicated by non-standard boundary conditions.

Let us take two examples to consolidate our ideas:

a) The non-homogenous bending beam. The equation of forced movement is as
follows:

g 2w 02 W -
+ El =p(x,1). 9.29
P ot2  0x2 0x2 P [-29]
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The generalized mass and the generalized stiffness of mode n are:

L
M, =[S £2 dx
0
30
Lo e, -30]
K, = [ | Bl—" [ax.
o dx? dx2

Standard boundary conditions (support, embedding, free or guided) are assumed.

b) Longitudinal vibrations of a beam with nonstandard boundary conditions.

We consider the vibrations of a non-homogenous beam defined in Figure 9.2. It
is clamped at 0 and attached to a mass M at the L end. It is the mass added at the end
L which makes the problem non-standard.

O,

e

Figure 9.2.Beam studied in case b)

The equation of motion and the boundary conditions are as follows:

U
psﬁ —%(ESZ—S] =px,t) xe]O,L[, [9.31]
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U@0,t) =0
gs Y (L, 1) Ma2U (L, 1) .
—ES—(L,t) =M ——(L,1).

Ox 0t2

Mode shapes verify the following equations:

d df
-2pSf ——|BES—2 =0, 9.33
n P> dx ( dx j [ ]
£,(0)=0
df. [9.34]

ES—1(L) = +w§ f(L)M.
dx

We leave it to the reader to demonstrate the two properties of orthogonality of
our problem:

L

j pSf, £ dx+Mf,(L)f,(L)=0 ifn=p, [9.35]
0

kod (. df , .

j —|ES—2 | £ dx+o? Mf,(L)f,(L)=0 ifn#p, [9.36]
o dx dx

and to deduce from it that the modal equation is of the [9.19] type with generalized
quantities equal to:

L
M, :j pS f2dx + M fX(L), [9.37]
0
Bod( . df
K,= | dA(ES d—nj £ dx + o2 MfXL), [9.38]
0 X X
L
F (1) = I £ p(xt)dx. [9.39]
0

Note: for the calculation of generalized masses and stiffness, it is necessary to
use equation [9.33] and the boundary condition in L [9.34].
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9.2.3.Taking damping into account

The problem that we have treated previously does not take an important
parameter into account: damping. It is an oversimplification since under certain
conditions of excitation damping is the parameter which dominates the forced
vibratory response. It is necessary, therefore, to take it into account in the
calculations. Two methods present themselves: consider an equation of motion or
dissipative boundary conditions (in the case of free vibrations, we have examined
various possibilities in Chapter 8), or pragmatically introduce generalized modal
damping in the modal equation. Although less elegant, it is very often this second
option which is chosen in practice, because it meets two requirements of an
engineer: simplicity and correspondence with the damping measurement technique.

In this chapter we will consider only the introduction of generalized damping A

into the modal equation:

M, d,(t) + A, a,(0) + K a,(t) =F (). [9.40]

It is a viscous type damping modeled in equation [9.40]. Other models can be
considered; the reader will be able to find many descriptions thereof in other works
concerning systems with one degree of freedom, which represent the modal equation
in short form.

A reduced form of the modal equation [9.40] is often introduced:

F (t
a.(t)+2¢, 0 a(t)+oa ()= n®) , [9.41]
Ml’l
Kn
W, = : normal angular frequency, [9.42]
n
&y =4, /2 M, o,: rate of damping . [9.43]

The advantage of this reduced form is that it characterizes damping by the
parameter &, , which in general is slowly variable with the mode. We admit that for
a standard mechanical system g, =0.01, for a very slightly damped mechanical
system ¢, ~0.001, for a heavily damped mechanical system &, =0.1 (such a
strong value requires the use of a sandwich with a highly damped core).
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9.3. Examples of calculation of generalized mass and stiffness
9.3.1.Homogenous, isotropic beam in pure bending

Let us consider a homogenous, isotropic beam in pure bending simply supported
at its ends. We have demonstrated in Chapter 6 that the vibration modes were given

by:
n2 n2
o = |2 , [9.44]
pS 12

f (x) =D, sin (% xj . [9.45]

The constant D is arbitrary and can be fixed at one without losing the
generality of the expression; however, let us preserve it here in calculations.

Generalized mass has the expression:
e nr
M, = [ pSD3sin? (T xj ax | [9.46]
0

i.e. after calculations:
Lo
M, = pSE Dy . [9.47]
Generalized stiffness has the expression:

L d4sin " x -
K, = | D2 EId—4L sin” = xdx. [9.48]
0 X

that is, after calculations:

nfnt L
= [9.49]

K =FEI
| )
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Finally, generalized force is given by:
e nn
E®= I D, sin —x p(x,t) dx.
0 L

If the type of force causing the excitation is not specified, we cannot proceed
further with the calculation of the generalized force.

A first observation must be made: generalized values do not have intrinsic
physical significance, since they depend on the normalization of mode shapes by the
arbitrary factor D, .

For D/ =2 the generalized mass is equal to the mass of the beam, but for
D, =1, 000\/— the generalized mass is a million times more than the real mass.
Therefore, physical significance should not be attached to generalized quantities,
except, however, for the K, /M, ratio, which is independent of normalization and
equal to @2 .

If one takes D =1 for all the modes, as is common in practice, we note that
generalized mass is constant with the mode: it is not a general property but a
characteristic of this particular case. Generalized stiffness increases with the index
of the mode meaning that the dynamic stiffness of the beam increases when the
wavelength of the mode shapes decreases.

9.3.2.Isotropic homogenous beam in pure tding with a rotational inertia effect

It is a slightly more complicated case since the operator of mass has an
additional term by comparison to the previous case:

d2
X
d4
L= EId—4 [9.51]
X

We determined the vibration modes in the case of boundary conditions of the
simple support type in Chapter 6. Mode shapes keep the simple form:

£ (x) = sinnL—“x . [9.52]
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From that we deduce that generalized mass and generalized stiffness given by
[9.13] and [9.14] are equal to:

k ., nm & . nm
M =I pSsin?2 — x — pl —| sin—x || sin—x dx, [9.53]
R L dx2 L L
L d4sin Ty -
K, =J' Bl— L ginCxdx, [9.54]
0 dx4 L

that is, after all calculations:

n2n2 |,
M, =| pS+pl o E, [9.55]
ntnt
K, =Bl [9.56]

Generalized mass increases with the mode owing to the effect of rotational
inertia, which becomes dominating for high ranking modes. Generalized stiffness
remains identical to the case in 9.3.1 (equation [9.49] when D, =1).

9.4. Solution of the modal equation

We will consider the two basic cases: harmonic excitation and impulse
excitation, then we will show how these two cases make it possible to treat the
general case.
9.4.1. Solution of the modal equation for a harmonic excitation

To consolidate our ideas let us consider the example of reference from the
beginning of the chapter, i.e. the vibrations of bending of a simply supported beam.

The generalization of the results which we are going to highlight is rather obvious.

Let us, moreover, consider that the excitation is harmonic of angular frequency :

p(x, 1) = p(x) e/ [9.57]
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The modal equation with damping [9.40] is particularized on the basis of [9.20]
for our excitation to a generalized force of the type:

L
F () = Jﬁ(x) £ (x) dx e, [9.58]
0

thatis, F,(t)=F, e [9.59]

Taking into account the time-space separation [9.57], the temporal form of the
generalized force is identical to that of the excitation.

The modal equation is thus:

F .
() +2¢, 0, a,()+wa ()= M—“elwt : [9.60]

n

It is a second-order differential equation with constant coefficients, which is
integrated in very classical fashion. The solution is the sum of the general solution
of the homogenous equation and of a particular solution of the equation with a
second member.

The general solution of the homogenous equation is given by:

o ¢t

a (t) =(A,sinQ t+B cosQ t) g o [9.61]

where Q =+ 1-¢ . [9.62]
Q_is the damped normal angular frequency. It coincides with the normal
angular frequency o, if damping is nil; in the contrary case it is slightly weaker. In

the standard cases (g, = 0.01), the shift is negligible.

The particular solution is of the type:

a(t)=a_ [9.63]

el

1

n corzl—u)2+2j €, O ®

with @, = [9.64]

<
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The amplitude of the forced response is the product of the amplitude of the
excitation (E, /M,) by a term called frequency response H, () which represents
the amplitude of the vibrating system under unitary excitation. We have:

H (0) =1/(02 —o? +2j&, 0, 0). [9.65]

Joining [9.61] and [9.63] we obtain the desired solution. It is not defined in a
unique manner since the constants A and B, are not fixed. To eliminate the
uncertainty, it is necessary to use the initial conditions [9.21] and [9.22].
Let us adopt initial conditions of rest to reduce calculations, i.e.
do(x)=0 and vy(x)=0 it follows with [9.21] and [9.22]:

a,(0)=0 and a,(0)=0.
The first condition leads to:
B,+a,=0.
The second is more complicated:

-0, g B +Q A +jwa =0,

from which we draw:

n n n == n Q— °
The solution of the problem is thus:

_ jo+o €. - 1
a (t)=a, (_ % sinQ) t—cosQ) t} e bty el [9.66]

n
where a_ is given by [9.64].

This expression of modal amplitude shows several basic phenomena that are
crucial for the comprehension of vibratory phenomena forced by a harmonic
excitation. The modal response breaks up into two parts:

— the transitory state, which stems from the general solution of the equation
without a second member, and which occurs with the damped normal angular
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frequency €, that is completely independent of the excitation and characteristic of
the structure;

— the forced response, which comes from the particular solution of the equation
with a second member, which occurs with the angular frequency of the force.

There is, therefore, a basic difference between these two parts of the solution
since they are carried out at different frequencies — that is the first remarkable
phenomenon. The second is linked to the exponential decay of the transitory state
with time, which is all the stronger the stronger the damping is and the higher the
normal angular frequency is. The transitory state, in fact, only has real importance at
the very beginning of the phenomenon, at the moments immediately after the initial
moment. Figure 9.3 gives an illustration of the phenomenon.

Re(3,)

[\/\f\ .
Vi

—— Transitory state (real part) = Forced response (real part)

Figure 9.3.Transitory and forced responses of the vibratory response

Insofar as we are generally interested in the established response, and that in any
event the initial conditions are often badly known in practice, calculations are
generally limited to the forced response alone. We thus approach the response given
in [9.66]:

o= Jjot
a()~a e .
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The calculation is simplified, since the initial conditions no longer intervene. It
is, in fact, a very good approximation of the modal response as long as the transitory
signal is weakened. For a given damping, this intervenes all the quicker the larger
the normal angular frequency of the mode is. The most slowly weakening mode is,
thus, the first. As an example, if the first normal frequency is 100 Hz and the rate of
damping is 10 >, as is common in mechanics, the exponential decrease after 1

second is given by e~27 . This represents a reduction in the vibratory amplitude by a

factor of 1,86 10 =3 after 1 second.

Let us note that joining the two parts of the solutions together can have a
constructive effect leading to maximum vibratory amplitude at the start of the
phenomenon. In certain borderline cases, this effect leads to the rupture of the
structure at the beginning of the excitation.

The third notable phenomenon is the resonance. It characterizes the amplification
of vibratory amplitude at a particular frequency of excitation. To reveal the
resonance, it suffices to study the factor a given by [9.64], which appears in
calculation as the complex amplitude of the forced response. It is preferable to
introduce the module and the phase associated with this amplitude:

IR 1 [9.67]

3. = :

oM, \/(mrzl—m2+4arzlmrzlm2)
anmnm

(I)n =Arctg ﬁ . [968]
° —

n

The case where damping is nil is interesting because it demonstrates the extreme
limit of the phenomenon of resonance. We note in Figure 9.4 that amplitude tends
towards infinity when o tends towards o, ; it is the phenomenon of resonance
characterized by an amplification of vibratory movement when the angular
frequency of excitation is close to the normal angular frequency of the mode. We
note that the phase ¢, is then equal to /2 . For excitation angular frequencies that
are much weaker than the pulsation of resonance ® << o, , we note with [9.67] and
[9.68] that:

|§n|z|§—"| and ¢, ~0

n
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The vibratory behavior of the generalized vibrating system is dominated by
stiffness, as is the static behavior.

For excitation angular frequency much higher than the angular frequency of
resonance ® >> o, , we note that:

and ¢, =m-

It is a vibratory behavior dominated by the generalized mass of the vibrating
system. The case of non-zero damping is not very different: only the behavior with
resonance is notably modified, the maximum amplitude being reached when the
pulsation of excitation « is equal to the angular frequency resonance ﬁn :

Q =0 J1-262. [9.69]

The frequency of resonance thus depends on the damping of the system which
provokes it. Let us note that the angular frequency of damped resonance is different
from the damped normal angular frequency given by [9.62]: Q_ = ﬁn . This
variation of the frequency of the maximum amplitude is, however, very weak for the
current case (g, = 0.01) . The passing of the phase to zero, on the other hand, always
occurs for ® = o, , whatever the value of damping. This is why we sometimes speak
of Q as the angular frequency of amplitude resonance and of ®  as of the phase

resonance. The amplitude resonance € is given by:

L [9.70]

2 _g2
M, 2w2e \1-¢2

|an| =

The forced vibratory behavior of a vibration mode is dominated by mass or
stiffness as soon as ® moves away from ﬁn; in this case it is impossible to measure
the damping since its effect is masked by those of mass or stiffness. On the other
hand, during resonance, damping dominates the phenomenon as shown by [9.70],
and can thus be measured. This is why the introduction of damping mode by mode
as we did in [9.40] is coherent with the reality of measurements of damping. The
frequency zone where damping dominates is rather weak. In practice, we can show
that the 3dB bandwidth, A_, associated with the peak of resonance, for weak
damping is equal to:

n’

A =0,2¢,. [9.71]
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For modal rate of damping of ¢, =0.01 we have a bandwidth of
A, = 2.10-2 o, . A decrease of 3dB is observed when we deviate by 1% from the
frequency of resonance.

Equation [9.71] provides a means of measuring damping; it is the technique of
the bandwidth.

Let us note, finally, that for very strong damping, unrealistic for normal
mechanical systems, the phenomenon of resonance disappears. Indeed, equation
[9.70] shows that the frequency of the maximum of amplitude is nil
if €, is equal to 1/ xE and the maximum no longer exists if g, > 1/ \/5 .
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Figure 9.4.Normalized amplitude and phase of the response in frequency

of the generalized vibrating system

9.4.2.Solution of the modal equation for an impulse excitation

To consolidate the ideas, let us look again at the example of reference of the
bending beam supported at its ends. The force of excitation per unit of length has the
form:

p(x,t) =p(x) 3(1). [9.72]

The quantity p(x) is the space distribution of the external effort and & (t) is the
Dirac distribution, representing an ideal impulse excitation.
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The generalized force associated with the impulse excitation [9.72] is also an
impulse:

E(t)=FE 3t [9.73]
L
with F, = _[fn (x) p(x) dx.
0
The modal equation takes the form:

a(t)+2e, 0 8 ()+0ia(t)= ;—“8 (t). [9.74]

n

The solution of this equation is simple to obtain. We give the result directly:

0 ift<O0,
a (=1 . [9.75]
e OntlginQt ift>0.

M,y

This solution coincides with the transitory state following an initial condition of
speed:

a(0)=F /M, .

The impulse excitation thus generates a free vibratory state, characterized by the
damped normal angular frequency Q_ and an exponential decrease that is stronger
the stronger ¢, @, is. We can introduce the modal impulse response h (t) as the
particular case of [9.75] where the amplitude of the modal impulse force of equation
[9.74] equals unity:

0 if t<O,

h()=1 [9.76]
— e ™St sinQt ift>0.

o3

This elementary solution will be used as a basis for calculation of the response to
any excitation in section 9.4.4.
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9.4.3.Unspecified excitation, solution in frequency domain

Let us now consider an unspecified excitation p(x, t) that is still sufficiently
regular so that the Fourier transform exists:

P(x,0) = j e IO p(x, t) dt . [9.77]

— 0

We can naturally obtain by inverse transformation:

1 + o0 .
P 0= j P(x, ) e 1t doo . [9.78]
T

The expression [9.78] shows that any excitation can be broken up into a
harmonic sum of excitation whose amplitude with the angular frequency » is equal
to P(x, ®)/2n . From a physical point of view, we conceive that the response will be
the sum of the responses to the various harmonic excitations, since the system is
linear. To give shape to this idea, it is sufficient to use the Fourier transformation of
the modal equation [9.41]:

-0 A (0)+2jo g, 0, A (0)+02A (0) =F(0)/M, [9.79]
where A, (@)= [ a,()e™ dt [9.80]
and:
+o L ) L
F () = J £ (x) p(x, t)dx ¢ It dt = jfn(x) P(x, ®) dx . [9.81]
- 0 0

We can draw the value of A (®) from equation [9.79]:

E () 1

2 _ 2 ; '
0 —0°+2jo g, 0

A (0) = [9.82]

n

In this expression we recognize the frequency response of the mode n, H (o),
characteristic of the harmonic response with the angular frequency ® which we have
introduced in section 9.4.1, equation [9.65].
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1
Hn((’o) = b} b . >
0; -0 +2jo g, O
F (o)
A (o) = ;/I H (w). [9.83]

n

The modal vibratory amplitude is obtained by taking the inverse Fourier
transformation:

a (t) = j %Hn(m)eﬂ“’t do [9.84]

— 00 n n

The expression [9.84] demonstrates that which has been suggested physically by
the linearity of the system: the response a _(t) is equal to the sum of the responses to
harmonic interferences with an amplitude of F (0)/2nM_ .

The first way to solve the modal equation in the case of any excitation consists in
using the Fourier transform, thus, working in frequency domain. The vibrating
system is characterized by its frequency response H (o), the excitation is
characterized by the Fourier transform of the generalized force.

There is a second possibility to calculate the vibratory response working in time
domain. We will set out its form in the next section.
9.4.4.Unspecified excitation, solution in time domain

Let us consider an unspecified excitation p (X, t). The associated generalized
force is F (t) . We have to find the modal response a_(t) verifying:

A () +2¢e, 0,4 (0)+02a ()= ?4(0 . [9.85]

n

Let us suppose, moreover, that the generalized system has the following initial
conditions at the time t:

a (t)) = dy., [9.86]

a(t)) = Vg - [9.87]
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To solve this problem we will use the impulse response h(t) defined by equation
[9.76]. Let us pose the integral I :

+ o0

L= [ (@,0+26,0,4,0+0}a,0) h,c-0 d.

n
— 00

We suppose, moreover, that before the initial moment t,, the system is at rest
and that, therefore:

a (=0 if t<t,.
The integral 1 can thus be written:
+

L= [ (@,0+28,0,4,0+0}a,0) -0 d. [9.88]
t0

Taking into account equation [9.85], we also have:

+o0 F ()
I = h —t) L—=dt. 9.89
, tj (0 [9.89]

0
Let us carry out integration by parts of [9.88]; after all the calculations it follows:

+ o0

L= [ a,0,c-0+26,0,8,c-0+02h,c-)d
Yo [9.90]
a0 +2¢0, 2 ®)h (- t)];‘: ~Ja @b (- t)]‘: .

The expression [9.90] is simplified by taking into account the properties of the
impulse response, which verifies the equation of motion:

h (t-t)+2¢g o h(t—t)+o2h (t-t)=5(t—1).

The integral of [9.90] is thus equal to:

+00

J' a () 5(t—tydt=a (1), [9.91]

-
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Noting, furthermore, that the law of causality implies that the impulse response
is nil before the force is applied, we have:

h (t-t)=0 if t<t.
The terms at the boundaries of [9.90] become:
—(a,(t9) + 2, ©, a,(t) h,(t—t)) +a (tp) h (t—t,) - [9.92]

Finally, gathering [9.89], [9.91] and [9.92], we obtain:

a (1) = j hn(r—t)Flil/I—(t)dt—an(to) h (7 t,)
o 8 [9.93]

+ (én(tO) +2 €n O a'n(tO)) hn(’E - to) .

This expression gives the modal amplitude at any moment t according to the
initial conditions and the force applied between the initial moment and the moment
of observation. The impulse response is given by [9.76], that is:

0 if t<t,
hy(t—t)= 1

Q

[9.94]

-0 € (T-t)

sinQ(t—t) if t<rt.

In many practical cases, the vibrating system is at rest when the force is applied
to it; it follows that:

a (t,)=0 and a(t,)=0.

The expression [9.93] is simplified into:

a (1) = I h (1 — p® 4 [9.95]
tO Ml’l

The [9.95] form of the response has a simple physical explanation. Let us note,
first of all, that h (t—t) is the impulse response at the moment t when the
generalized vibrating system is excited at the moment t. The integral [9.95] indicates
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that the force F (t)/ M, can be broken up into a succession of impulses producing
impulse responses whose superposition gives the total vibration.

Expression [9.95] is very simple but requires going backwards until the moment
of rest to calculate the action of all the forces applied. For numerical calculations
that render the integral [9.95] discrete, the number of calculation steps can be very
large. We may then find it beneficial to carefully use [9.93] taking t, = T — A as the
initial moment where A is the temporal step of calculation.

9.5. Example response calculation
9.5.1.Response of a bending beam excited by a harmonic force
a) Point excitation

First of all, let us present the problem. We consider a homogenous beam in pure
bending with support boundary conditions. The equation of motion and the
boundary conditions are thus:

02w o*W 5( )ju)t
S—— +El——=Po(x—x, ¢,
PY? ox4 0
W(@O,t)=0, W(L,t)=0,

0?W 0°W
y(ont) =0 B E(Lat)zo

The excitation force has an amplitude P, an angular frequency  and is localized
in x
0-

The vibration modes of the beam were calculated in the chapter on free
vibrations of beams in bending. It is given by:

2
EI
fn(x):sinn—nx , 0 = [— [n_n] .
L pS \ L

The vibratory response is, thus, sought in the form of a modal series:

400 o onm
W(x,t) = Z a,(t) sm?x ,

n=l
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modal amplitudes a (t) being solutions of modal equations:

E®

n

a()+2g, 0 a)+oa(t)=

The generalized mass and force are given respectively by:

& nrw L
M, :J- pS sin? (—xj dx = pS—
0 L 2
and:

L
E(t) = J. sin (n% x) P3 (x - XO) dx ' =Psin [n{ xo) el

0

All intermediate calculations were provided in section 9.2.1 since this case
constituted our example of reference. However, we have not given a particular space
form to the excitation force distribution.

The solution of the modal equation has been provided in section 9.4.1. When the
transitory effects are neglected, we have:

_nm
Psin —x,, 1 )
a (t) = L - IOt
pSL2 ol -o?+2js, 0, ®

The forced response is thus provided by:

. nm . nm
1% p sin—x,, sin—x
Wikt =Y L L ot [9.96]
= pSL2 o - +2je, 0, 0

Expression [9.96] clearly shows the influence of a point excitation force. Let us
take, for example, an effort applied in x, = L /2. We observe that the responses of

modes 2, 4, 6... are nil. This result is explained by the fact that the mid-point of the
beam is a vibration node for the even modes. A point transverse force applied to a
vibration node does not get modal response. Conversely, the response of modes 1, 3,

5, ... etc. is maximum since is equal to one when x,=L/2. This

. nm
sin(— x,)
L 0

result is linked to the fact that the mid-point of the beam is an antinode of vibration
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for the odd modes. This constitutes the second remarkable tendency for point
excitation: if the force is applied to an antinode it maximizes the modal response.

A way of reducing modal response is thus to localize the force at one of its
vibration nodes.

Note: the described tendency is very often verified: excitation at a node does not
produce modal response. It is, however, not general; an excitation of transverse
beam vibrations by a localized torque produces exactly the opposite effect and it is
the excitation at an antinode that cancels modal response.

b) Multi-point excitation

Let us consider the excitation force applied at two points:
(s, ) = (P8 (x —x) + P8 (x — X)) .

The forced response of the beam is obtained by applying the principle of
superposition, a simple consequence of the linearity of the problem. Using the
previous calculation (equation [9.96]), it follows:

. W . nm
s 1 Psin —x, + P'sin —x/,

W)= L L gin Dy oot [9.97]
= pSL2 @ - 0? +2jg, 0, ® L

This result shows that the response of a mode can be canceled by adding a
secondary force (P’); for that it suffices to satisfy the reduction:

. nm . nm
Psm—x0 +P's1n—x'0: 0.
L L

We thus have:
. nm
—Psin— X
p'= L
. nm
sin — x
L 0

Canceling the modal response is always possible as long as the point of
application X/, is not at a vibration node.
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The result [9.97] can be generalized to K excitation points in an obvious manner
by summing up the separately calculated responses.

c) Uniformly distributed excitation
Let us take a constant distributed force:
p(x,t) = Bel®
In the previous calculations, only the generalized force is modified and becomes:

L
. 1— .
E (1) = J. Bsin % x dx e/ = B—— 21T Gjot
L nn/L
0
Let us note immediately that generalized force is nil for all the even modes,

which implies a zero response for these modes. Physically this tendency is related to
the symmetry of loading which cannot excite asymmetrical modes. We may also
interpret this result as cancelation of work resulting from the symmetrical force
applied to asymmetric modal deformations. This concept of work of the force
applied to modal deformations gives a physical image of the generalized force; we
may then better understand the reduction of the generalized force of the odd modes
as the order of the mode increases (see Figure 9.5).

To sum up, the vibratory response of the beam is equal to:

. nm
) 1 sin — x .
W= > B L ot [9.98]
n=i3s. /L pSL2 o —@? +2je o, ©

excitation

m mode 2 + mode 1

ﬂ-\ mode 4 + /I\ mode 3

Figure 9.5.Work of a uniform excitation applied to various modes
of a supported-supported beam. Modes 2 and 4: total compensation of positive
and negative work. Mode 3: partial compensation. Mode 1: no compensation

+
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d) Sinusoidally distributed excitation

Let us consider an excitation of the type:

K .
p(x,t) = sin Tnx e/t

The calculation of the generalized force leads to the result:

0if n =Kk,
E ()= ot
(L/2)e"" if n=k.

It follows that the series is reduced to a single non-zero term corresponding to
the index n =k:

| sin " x _
W(x, t) = — L el [9.99]
PS ©f — 0% +2jg, 0 ©

This notable property is linked to the fact that loading coincides with the normal
deformation of the order k. The orthogonality of normal functions leads to the
cancelation of all generalized forces except for a single one for the index n =k .

From a physical point of view, we may interpret this cancelation by the
phenomenon of compensation of generalized forces highlighted in section c). Here
the compensation is complete for all modes n which are different from k.

9.5.2. Response of a beam in longitudinal vibration excited by an impulse force
(time domain calculation)

Let us consider a clamped-free beam in longitudinal vibration, excited by a
shock applied to the point x,,. The presentation of the problem consists of writing
down the three types of equations given below: the equation of motion, boundary
conditions and initial conditions.

Equation of motion:

$IU 2 5(x — x,) f(t)
—  —BS—— =8 (x —x,) f(t).
P ot2 0x2 0
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Boundary conditions:
ou
Ux,0)=0, ES—(L,t)=0.
ox
Initial conditions:
ou
Ux,00=0, —(x,0)=0.
ot

The function f{(t) appearing in the equation of motion is homogenous to a force.
It has constant amplitude, equal to one, during the period of force application T:

0 ift<o0,
f(t)=41 if 0<t<T,

0 ift=>T.

Let us apply the method of modal decomposition to solve this problem. The
modal system of the clamped-free beam has been calculated in Chapter 6:

. _FZn—ln f(x)_sin(2n—1nxj
" VYe 2 L 7" 2 L )

We seek the response in the form of a modal series:

400 2 _ 1
U= a,(t) sin—"x.
n=1 L

Amplitudes are provided by resolving the modal equation:

.. . F (t)
2 Z =0
a () +2e o a()+o;a/ ()

n
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In this equation, the generalized mass and force are given respectively by the two
equations below:

e 2n -
M, = I pS smz[
0

1 L
EX]dx =pS—,
L 2

L NESLN 2n-1n
E@® = f(t)_[ 3 (x — x() sin dx = f(t) sin —X |-
0 2 L 2 L

The modal equation can be resolved using two approaches, time and frequency
domains, described in section 9.4. The one that is more appropriate here is the time
domain approach, which we provide in detail.

The solution is given by [9.95], which leads to two different expressions, during
and after the moment T.

During the shock (t < T):

2 (211—1 n jT 1 _oe@-t
sm —XO j—e non
pSL 2 L 0

sin Q (T —t) dt.

a (o) =

[9.100]

For the moments following the application of shock (t>T), the formula
changes a little, since the force is nil after the moment T:

2 . 2n—-1 =n 1 —w €, ‘: t)
a(t)=——sin —xo j —
pSL

sin Qn ('c - t) dt.

[9.101]

This integral is not difficult to calculate; however, the expression obtained is
very cumbersome, so in order to simplify matters, we will consider the case of a
non-damped beam (g, = 0) . The integral [9.101] then leads to the result:

a,(1) =

“T))=— _
2 cos(con(r )) cosmntsin(2n 1 n j [9.102]

—X .
pSL o2 2 L
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This expression is valid for T > T . For 1 < T, i.e. during the shock, we obtain
from [9.100]:

2 1- 2n -1
a(t) = COSZOJ“ ! sin[ 1 EXOJ . [9.103]
pSL o5 2 L

The vibratory amplitude of the beam is obtained by using these expressions of
a, (1) in the modal decomposition. For example, during the application of the shock,
the vibratory amplitude is given by:

K2 1- t 2n -1
Ux,t) = Z cos (@, Y sin| - Fy
pSL o2 2 L

. (211—1 T J
sin —X |.
2 L

9.5.3.Response of a beam in longitudinal vibrations subjected to an impulse force
(frequency domain calculation)

n=1

[9.104]

We consider the general case of the solution in frequency domain. Modal
vibratory amplitude is provided by equation [9.84] which we recall:

+ o0

E (@)

I e it doy. [9.105]
2nM, C of o+ 2jo g o

ay(t) =

The calculation of the inverse Fourier transform which yields a (t) can be
carried out numerically. In the calculation of the integral, it would then be necessary
to take into account the angular frequencies close to the normal angular frequency
o,,.for which the denominator is very small and, consequently, the integrand takes
its maximum value, which is characteristic of the resonance phenomenon. These
numerical calculations are, however, very long and we can sometimes avoid them by
an integration in the complex plane.
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y
4
Boundary line Y,
I W,€, Iy
[ | » X
-R  -Q, Q R

Figure 9.6.Path of integration (z=x+jy)

Let us consider the path of integration y of the form defined in Figure 9.6 and
calculate the integral:

+R T
If(z)dz: I f(x)dx+If(Rej9) RdO.
Y -R 0

Limits of integrals when R tends towards infinity show that:

+ o M
j fx) dx = j f(z)dz ~ lim I f(R /%) R do.
—
— Y., 0

If we write:

F jzt
) = 1 n(2)e

2 _ 42 1 9; ’
2nM, of —z°+2jzg, o,

we then have:

T
a (t) = j f(z)dz ~ Jim j f(Re® RAO. [9.106]
Ve 770
Applying the residue theorem makes it possible to calculate the first integral of
the second member:
I f(z)dz = 2jnz residues located in the complex half-plane with an

Yo
imaginary positive part.
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Let us suppose that the function F (z) does not have a pole in the field of
integration. The function:

jzt
1 F(2)e"”

2nM, @2 — 722 +2jzg, ©
then has two of them defined by the zeros of the denominators r, andr, :

=Q +jo, g ,5Lb=-Q +jo, ¢ .
These two poles are located in the vicinity of the damped normal angular

frequency € and its opposite (=) .

Damping creates a positive imaginary part with two poles, which are thus both in
the field of integration.

These are two simple poles; the residues are calculated using the two
expressions:

jnt
idue i ; 1 E ()¢
Residuein 1 = lim (z—-1) f(z) =— (1) ’
zoq 2n M, -1

1 F, (1) ej !

Residuein 1, = lim (z-1,) f(z) =—
zo1 2n M, I —q

We thus draw from it the following expression of a_(t):

i FE(r) ejrlt -FE () ejrzt = .
a (t)=-—1 2 — lim J' fRe®) RAO.  [9.107]
M R—w §

20

n n

The simple practical cases are those where the integral of the second member is
nil; we thus have:

J
20, M

n

a ()= e Pntat [Fn(rl) N CE () ¢ I t] [9.108]
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It is a solution of the free modal vibration type, which represents the solution at
the moments when the force is no longer applied and, thus, when the structure
vibrates freely.

We can now apply the result [9.108] to find the solution by temporal calculation
of the problem highlighted to section 9.5.2.

The Fourier transform of the generalized force is given by the integral:

P T 2n-1n
Fn(OJ)=J. e ¢ sm( —xjdt.
0

That is, after calculation:

1—e i oy
E(w) = sin( 1 EXOJ.
jo 2 L

It is enough to introduce this expression into [9.108] to obtain the vibratory
response. In order to compare the results with temporal calculations, we will
consider the borderline case of zero damping. Under these conditions
L = -1, = ®, and equation [9.108] gives:

2n —1
a (b= (— cosm t + cos o, (t - T)) sin( n2 %xoj .

of M,
This expression coincides exactly with [9.102] which gave the vibratory
amplitude for the moments t > T .

On the other hand, the vibratory amplitude during shock [9.103] is not provided
by this result. This is due to the integral which appears in the second member of
[9.107], which is effectively zero in the case of calculations leading to [9.108], but is
no longer nilif t<T.

The expression of the integral appearing in the second member of [9.107] is:

lim R d6.

= 1 elRelf¢ e iR eje(T —t)
R—o>w .[
0

2nM, jRe" (02 -R2e?% 4 2je o Rel)
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The behavior of the integral when R tends to infinity is related to the
exponentials of the numerator; after transformation, the numerator can be written:

_e+JRcose(t—T) e—RsmG(t—T) 4 eJRcoset e—Rsin0Ot

Between 0 and & sin 0 is always positive and the integrand tends towards 0 when
R tends towards infinity, if t > T. The integral is thus null if t > T; it is a
consequence of Jordan’s lemma, since in this case we can affirm that the boundary
of |zf(z)| is nil when R tends towards infinity. If t < T, the preceding property is no
longer verified, which explains why our calculation no longer leads to the result,
since it presumes that the integral is nil. A complete calculation taking the value of
the integral into account is possible; we will not perform this here so as to avoid
weighing down the text.

Generally the application of [9.108] would require the nullity of the integral to
be verified over the half-circle with an infinite radius. The form of [9.108] is
characteristic of a free vibratory response and thus cannot represent the vibratory
state when the force applied is not nil. This expression will thus be interesting for
impulse excitations and will provide the answer after the moment of the shock.

9.6. Convergence ofmodal series

The method of modal decomposition expresses the vibratory response in the
form of a series, which leads to the problem of convergence. We may, of course,
find it beneficial to accumulate the least number of terms possible in order to
accelerate calculations and certain techniques are sometimes used to improve
convergence.

9.6.1.Convergence of modal series indltase of harmonic excitations

Let us consider the case covered in section 9.5.1, point a). We considered a
bending beam excited at the point x, by a harmonic force with the angular
frequency . The vibratory response provided by equation [9.96] was:

. N7
sin — XO

W(x,t) = Z L sin 2% x | efot |
pSL2 @2 —? +2je, © @ L

n=I
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This expression is characteristic of the calculation of response by decomposition
in modal series. To accelerate its convergence it is, therefore, necessary to study the
series of the following type:

& . nm
Z an Sin T X.
n=l

These are series of the Fourier type whose convergence is well-known; if the
amplitude of the term of the order n is in the form of a, = O(1/n") when n — o,
then if r > 1, the series converges, and if r < 1, the series diverges.

or-l'w

We may, moreover, show that the derivative is discontinuous. Thus, the

b

function broken up into series has the following regularity: if r = 2, W(x,t) has a
discontinuity of slope, if r = 1, it has a discontinuity, and if r = 0, it is a Dirac
distribution (the series diverges).

In the case considered here, the normal angular frequency is given by
o, =+ El/pS n2n? /12, the generic term of the series being consequently

proportional to 1/n* when n — oo . The series is thus convergent and the response

continues according to x. The variation of a_ in 1/n% means, in fact, that it is the

third derivative of the function which is discontinuous. On the physical level, this is
quite coherent with our knowledge of bending internal efforts, since a localized

force introduces a discontinuity of the shearing force EI103 W /0 x3 .

For the uniformly distributed excitation studied in section 9.5.1, point c), the
response presents a generic term with an even faster decrease a, = O(1/ n%) . On the
one hand, the series will converge quicker and, on the other hand, the shearing force
will be continuous this time.
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a, = O(l/n2)

o X

\

V\//\ a, =0(1/n)
| .

L

’/\/\ a, =0(1)
| T

L

Figure 9.7.Evolution of the generic term of the modal series according
to the regularity of the response

To sum up, the convergence of the modal series is linked to the regularity of the
force applied, i.e. to the second member of the equation of motion. If the load is
continuous, all the quantities with a physical significance and expressed by
derivation of the displacement will be continuous. In the case of a bending beam
considered in section 9.5.1, point ¢), the bending moment and the shearing force can
be calculated using term by term derivation of the modal series and will converge.

If the load is irregular, in particular, if it is a Dirac distribution, the modal series
giving the displacement will converge and the calculation of its successive
derivatives using term by term derivation of the series is legitimate as long as the
generic term decreases at least in 1/n>. When the decrease is in 1/n, the represented
function is discontinuous, and its term by term derivation within the framework of
the theory of distributions leads to a divergent series. In this case, we may either
work with the distributions, although the functions constructed on the basis of
divergent series do not have local sense, or if we wish to preserve the local sense, we
may no longer carry out term by term derivation but do it in the sense of the
decomposition into a Fourier series of discontinuous functions (the reader may refer
to any good mathematical work on the Fourier series). An example of this type of
behavior is the calculation of the shearing force when the beam is excited by
localized torque. Using term by term derivation of the series representing
displacement, we obtain a divergent series for the shearing force.
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9.6.2.Acceleration of the convergence of modsadries of forced harmonic responses

Once again let us take the calculation performed in section 9.5.1, point a), in the
case of the excitation of a beam bending under a harmonic force with the angular
frequency  localized in x,,. The response is provided by [9.96]. We observe that
the modes can be assembled into three groups:

— those responding in mass; we then have: ®, << ®. Their responses in the first
approximation are given by:

. nm
P s L XO

a_ : [9.109]

S pSL/2 - a?

— resonant modes verifying O, = O. Their responses are given by the general
form:

P sin % X
; [9.110]

a. =
P pSL/2 @} - o? +2jep p ©

— modes responding in stiffness; we then have: ®. >> . Their responses in the
first approximation are of the form:

. I
P S f XO

a, [9.111]

S pSL/2 o

This last category of modes is the most numerous (there is an infinite number of
them) and determines the speed of convergence.

In fact, the amplitude [9.111] is characteristic of static modal response; it is
enough to make ® =0 in the general form [9.110] to obtain it. It is this property
which is at the root of accelerated convergence.
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Let us consider the static problem resulting from the previous case: it is the same
problem, but the angular frequency of excitation is nil. The solution of this problem
noted Wg(x) is given by the expression [9.96] particularized to ® =0, that is,

[9.112]:

. nm
sin — X
P 0 nmn

Wx)=y —— —L sin—x. [9.112]
S ;pSLQ w2 L

T

The displacement Wg(x) verifies equation [9.113] as well as the conditions of

support at the ends:

o4 W

dx

El

=P3(x-x). [9.113]

The acceleration of convergence is achieved by making the static solution Wg(x)
take into account the modes responding in stiffness (see the articles of M.A. Akgiin
[AKG 93] and D. Williams [WIL 45] for more information).

We write [9.114] where W(x) is the dynamic contribution to determine:
W(x, 1) = (Wp(x) + Wy(x)) e, [9.114]

Let us use the [9.114] decomposition of the solution in the equation of motion
(the dependence in e'®" is omitted to simplify matters):

at Wy dtwg
dx4 dx4

— 2 pS(Wp(x) + W(x))+ EI —PS(x-xp). [9.115]

Taking into account [9.113] we obtain:

d*w,

— % pS Wpy(x) + EI—— = 02 pS Wy (x). [9.116]

We return to a standard equation to calculate Wp(x) but the excitation is no
longer the one actually applied but is linked to the static solution. Taking into
account the regularity of W (x) , the calculation leads to a rapid convergence.
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Applying modal decomposition to equation [9.116] we find:

+

0

1 E
Wyx) = — Sn. sin L x [9.117]
=M, 02 - +2jg, 0 ® L
with:
L
B, =o? | pSWx) sin—x d 9.118
Sy = O pS Wy(x) sme X. [9.118]
0

Generally the vibratory solution obtained by traditional modal decomposition is
given by:

+

[e¢]

1 E . NT
Wp = — L sin —Xx
I M, o -0?+2jg 0,0 L

=}
Il

L
with: F, =[ p(x) sin —x dx
. L

where p(x) is the distribution of the excitation force.
Noting that the static solution verifies:

d4 Wy
dx4

EI

=p(x),

we can demonstrate that:

=F —. [9.119]

Thus, we note the acceleration of convergence of the calculation of Wp(x),
since for large n indices, modal amplitudes decrease in l/oaﬁ and not in 1/mr21 as in
the classical solution. The static solution can be obtained in analytical form in many
cases and at any rate can be calculated much more easily than the vibratory solution.
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To illustrate this method, let us take the case from section 9.5.1, point c), that is,
a uniform distributed excitation. The static solution is obtained easily since it is the
solution of the problem:
4
0* Wy
ox4

El =1.

The solution of this equation verifying the boundary conditions of support is
given by:

1
Wo(x) = (x“—ZL)@-i-L3 x). 9.120
Y [5.120]

The dynamic part is now calculated with [9.117]. Using [9.119] in [9.118], we
obtain:

oS 1-(-1n @ 1— (-1
B () @ M
L L

The dynamic response is thus equal to:

R e Ok 1 . nm
Wh(x) = _— sin—x. [9.121]
SM, 02 MM e -e?+2e, 00 L
L

The vibratory response is the joining of Wg(x) and Wp(x) given respectively by
[9.120] and [9.121]. The improvement of convergence is spectacular; for the initial
calculation in section 9.5.1, point c¢), the amplitude of mode n was proportional to
1/n’; for the present case, the amplitude of mode n of the dynamic solution is
proportional to 1/n’ (which is what was indicated by [9.119]).

9.7. Conclusion

This chapter has presented the calculation of the forced vibratory response by
modal decomposition. It is a general method which introduces modal amplitudes as
unknowns. They are determined through the resolution of the modal equation, which
is that of a system with one degree of freedom where the generalized characteristics
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of the mode appear: generalized mass, stiffness and force. Generalized damping is
also introduced at the level of this equation with a viscous model.

The description of the modal equation results from the application of the
properties of orthogonality, which are at the foundation of the decoupling of modes.
In the simple cases, the properties of orthogonality are fairly easy to determine; in
the case of complicated boundary conditions, they may be difficult to pinpoint.

The resolution of the modal equation may be carried out in time domain or
frequency domain. In time domain, the modal impulse response is the basic tool of
calculation, since the modal response is obtained by the product of convolution of
the impulse response and the force. In frequency domain, the modal harmonic
response is used multiplied by the Fourier transform of the force: we obtain the
modal response according to the frequency and then the inverse Fourier transform
yields the time history.

The end of the chapter presents the problem of the convergence of modal series
and especially of its acceleration by using the static response of the vibrating system.

The disadvantage of the modal method is that it expresses the response in the
form of a series which presents convergence problems and leads to heavy
calculations. It should, however, be noted that we can also see an advantage in this
approach, because the answer is split into elementary movements (modes) and can
thus be easily understood, offering a course of action to reduce vibrations.

We can consider another approach, not based on modal decomposition, which in
certain cases makes it possible to obtain the response in analytical form: this will be
discussed in the next chapter.



Chapter 10

Calculation of Forced Vibrations
by Forced Wave Decomposition

10.1. Introduction

In Chapter 9 we provided a method of calculation of the vibratory response of
structures subjected to dynamic stresses by modal decomposition. This method is
general, since it is applicable to any structure and any type of excitation. This
generality, however, costs us, since the response is expressed in the form of a series
which presents problems of calculation related to the convergence of modal series.

The method that we are going to develop is more restrictive, since it is primarily
applicable to mono-dimensional structures, excited at a point by a harmonic force.
Its biggest advantage is that it offers analytical solutions. The fundamental element
of the method is the concept of the forced wave, which is the solution of the
homogenous equation of motion. As we will see, the technique of calculation rests
on a sub-structuring of the vibrating system, the solutions will thus be defined by
parts.

The discourse will be based on some examples: torsion and bending of beams,
the extension of which to more complex cases is quite straightforward. At the end of
the chapter we will present the generalization that can be made for distributed and
non- homogenous excitations, which removes the initial restriction of the method on
harmonic localized excitations.

In short, the method of response calculation by decomposition in forced waves is
applicable to mono-dimensional structures homogenous by parts. It is based on a
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sub-structuring, each section being delimited by two singular points (discontinuity
of structure or point of excitation); the solution is thus provided by parts.

The method extends to plates via semi-modal decomposition of the vibratory
response. At the end of the chapter we present this approach, which, however,
remains of limited use for rectangular or circular plates and for particular boundary
conditions.

10.2. Introduction to the method on the example of a beam in torsion
10.2.1. Example: homogenous beam in torsion

To give form to the method we will consider the simplest case, in order to avoid
the technical difficulties and, thus, to better outline the fundamental idea of
calculation.

The wave equation, representative of the vibrations of torsion of beams (but also
of the longitudinal vibrations of beams, as well as vibrations of the cords and pipes),
will provide the example we are looking for.

The decomposition of the vibratory solutions into forced waves appears naturally
when a harmonic excitation applied to a point is considered. To formulate the
method, let us consider a homogenous beam with a constant cross-section excited at
the point x, by harmonic torque. In the example, the beam is clamped at both ends
(see Figure 10.1).

/ Me jot

-

Pl

FERE RS

b

0 « X L

Figure 10.1. Beam in torsion excited by harmonic torque Me’®" localized in X,

Presenting the problem so as to reveal the decomposition into a forced wave has
its particularities. In fact, it is necessary to sub-structure it so as to have to solve only
homogenous equations of motion. In our case we will divide the beam into two
sections: SS1 and SS2.

The subsystem SS1 is the section of beam defined by the open segment ]0, x, [.
In this part, the unknown representing the angle of torsion will be noted o (x,t).



Calculation of Forced Vibrations by Forced Wave Decomposition 357

The subsystem SS2 is the section of beam defined by the open segment ]x,,L[. In
this part the unknown representing the angle of torsion will be noted o,(x,t) . The
equations that must be satisfied by these two unknowns are:

XE]O,XO[

SS1 [10.1]
92 2

pIO a? (XI(X, t) - GIO 87 OLI(X, t) =0,

X € ] X)) s L[
SS2 [10.2]
02 02

ply 8? 0L(x, t) — Gl 87 0L (%, 1) =0.
The boundary conditions of clamped type are:
0,0, =0, [10.3]
o,(L,t)=0. [10.4]
The conditions of connection to the interface (x = x) are:
— continuity of displacements:
oy (Xg, 1) = 0y(Xg, D) 5 [10.5]

— discontinuity of moments of torsion due to the localized torque applied:

Gl, %(xo .-Gl %(XO 1) = Mel®t | [10.6]

The vibratory movement solution is the superposition of the forced vibration and
the free vibration. Decomposition into forced waves applies only to the forced
vibration and is, therefore, only representative of the response once the transitory

state weakens.

We will thus only seek the forced response, which has the form:

0y (%, ) = Ty (x) /" [10.7]
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0(%, 1) = Ty(x) . [10.8]

The quantities ©(x) and 0(x) represent the complex amplitudes of harmonic
vibratory movements.

Using the expressions [10.7] and [10.8], equations [10.1] —[10.6] become:

2
Ply @2 54(3) + Gly— - =0, x € 10,x,, [10.9]
_ d>a,
Ply 02 @) + Gl —— =0, x € Ix. LI [10.10]
5, (0) =0, [10.11]
L) =0, [10.12]
(%) = Ty(x,) » [10.13]
61, 9% (x )~ 61, % (x ) = M. [10.14]
dx dx

Let us note that it is not necessary to write down the initial conditions, since
those are used only for the calculation of the transitory state, which is not taken into
account here.

10.2.2. Forced waves

The solutions of equations [10.9] and [10.10] can be easily calculated, since we
are dealing with standard differential equations. We obtain:

%(x)= A, e + B I [10.15]

with: k=w/ct and cr =4 G/p; [10.16]
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similarly:
Wy(x) = A, ™ + B, e T [10.17]

These solutions can be interpreted in terms of traveling waves propagating in
both directions: of increasing and decreasing x. They are forced waves in the sense
that the angular frequency ® and, therefore, the wave number k provided in
[10.16] are determined by the force applied.

The equivalent form is often used:

ay(x) = a, sin kx + b; cox kx [10.18]

T,(x) = a, sin kx + b, cox kx . [10.19]

10.2.3. Calculation of the forced response

It suffices to make the solutions defined in each section respect the boundary and
connection conditions. Verifying [10.11] and [10.12] yields:

oy (x) = a; sin kx, [10.20]
a,(x) =a,sink(x —L). [10.21]

Respecting [10.13] and [10.14] leads to the linear system [10.22]:

sinkx, —sin (k(x0 - L)) a 0
- . [10.22]
coskx, —cos (k(x0 - L)) a, M/k GI,,

The solutions are:

M sink(x,—L)

- [10.23]
k GI, det

4

a =

M sin kxo '

[10.24]
kGl, det
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where det, the determinant of the system, is equal to:
det = sin kL . [10.25]

The forced response is obtained immediately replacing a; and a, in [10.20] and
[10.21]. We obtain an expression by substructure:

M sink(x, - L)

on(x) = — sinkx , x€]0,x,[, 10.26

* kGl, sinkL 0 10.26]
M  sinkx

o(x) = — 0 sink(x-L), xe]x,,L[. 10.27

2% kGI, sinkL ( ) I%o. L1 [ ]

As opposed to the method of modal decomposition, the response is obtained in
an analytical form, which does away with the problem of series calculation.
However, the same phenomena are present, in particular, the concept of resonance,
which appears here when the determinant of the linear system [10.22] is nil. That is,

nm o
when k = T and, thus, when the angular frequency of excitation takes the values

o = |8
n pL.

These values correspond to the normal angular frequency of the clamped-
clamped beam. Thanks to the expressions of the response [10.26] and [10.27], we
observe that for these frequencies, vibratory amplitude is infinite. This tendency is
coherent with the fact that the beam is non-damped.

The analytical expression of the forced response, furthermore, highlights the
phenomena that are difficult to identify by modal decomposition. In fact, the effects
of anti-resonance block the response of a section of the beam.

Let us examine the response of the SS1 section. It is nil in any point when:

sink(x, —-L)=0,

i.e. with the angular frequency of excitation:

o, = | S PE
P p L-x,
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These angular frequencies correspond to resonances of the SS2 section clamped
at both ends. Everything occurs as if the SS2 section, which has the ability to vibrate
with great amplitude at these frequencies, absorbed the whole of the excitation, thus
blocking the other section.

Of course, the situation changes with the angular frequency of resonance of the
SS1 section:

G
w, = |-
q pL

10.2.4. Heterogenous beam

Decomposition into forced waves can be used in the case of beams with abruptly
variable heterogenity. Let us take the case of Figure 10.2 to illustrate the method.

Mel®t
e y
e I
X
1
% 7
0 L, &~ % L,

Figure 10.2. Vibrations of torsion of a beam with abruptly variable inertia

Sub-structuring must reveal three sections where three unknown functions are
defined:

a,(x) when xe]0,L,[,
a,(x) when xe]L, .x,[,
a,(x) when xe]x,,L,[.
The three functions verify the following equations of motion:

2@
W) Il(nt)2§1+G1 Il—j]:o, [10.28]
dx
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5 G d2a2 0
p,Lw o, +G, 1 =0,
272 2 272 dX2

dz@
p212m2a3+G212F=0.
X

These three equations have classical solutions of the type [10.18]:

oy (x) = a;sin k;x + b, cos k;x ,
Tl,(x) = a, sin k,X + b, cos k,x ,
04(x) = a3 sin k,x + by cos kX,

G
P

k2=0) &
\' 02

klz(l)

with:

link these solutions:

@(0) =0,
a1(L1) = az(Ll) 5

do, do
Gl d_xl(Ll) =G,l, d_xz(Ll)’
a2(7(0) = a3(’(0) 5

do. do.
Galy =3 (xg) = Gyl 2 (x) = M,
dx dx

%(L,) = 0.

[10.29]

[10.30]

[10.31]

[10.32]

[10.33]

[10.34]

Now it is sufficient to write down the connection and boundary conditions which

[10.35]
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The use of the solutions of the equation of motion under the [10.35] conditions
yields a non- homogenous linear system which when resolved provides the unknown
amplitudes (a;,b;,...,b;) and, thus, the vibratory response in each section with
[10.31]—[10.33]. We leave it to pursue the calculations later on.

Decomposition into forced waves requires sub-structuring aimed at isolating
sections of the homogenous beam with constant inertia whose solution for the
equation of motion is known. The sections would thus be delimited by points of
singularity (discontinuity of structure and applied force); here two singularities give
three sections. Generally, N singularities will give N + 1 sections.

10.2.5. Excitation by imposed displacement

In certain problems we know the amplitude of vibrations at the point of
excitation while the applied force is unknown. The method of decomposition in
forced waves can be used in this case in a completely simple manner. Let us take
once again the case of section 10.2.1. Replacing the excitation by torque by an
imposed angle of torsion:

OLl(X() =7 el
[10.36]

- jot
ocz(xo,t)=yej‘”.

The solution is identical to the case of section 10.2.1. Equations [10.9] — [10.12]
remain unchanged. The conditions of connection are different here; it is necessary to
replace [10.13] and [10.14] by the two conditions:

T(xg) =7 [10.37]
Ty(xg) =7 - [10.38]

Vibratory movement is calculated in a similar way and after all the calculations
we obtain:

o(x) =Y — , [10.39]
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_ _ sink(x - L)
=y 10.40
) =Y sink(x, - L) [10.40]

We can deduce the torque applied to produce this vibratory movement thanks to
the relation [10.14]:

M = GI [dil (xo) —ﬂ(xo)j, [10.41]
dx dx
that is:
M = GIky sin kL : [10.42]
sinkx,, sink(x, — L)

The expression [10.42] makes it possible to highlight two remarkable properties
of torque that have to be applied to a beam to produce a given angle y :

1) the torque that has to be applied tends towards O at the beam’s resonance

. . nmn L
angular frequencies. At these frequencies ®_ =,/ G/p —, the numerator is nil;
! L

2) the torque tends towards infinity at anti-resonance angular frequencies when
the denominator is nil. The angular frequencies of anti-resonance are given by the

. . G ’ G
two following expressions: W, = [ — P and 0, = — ar
P

p L L-x,

Figure 10.3 illustrates the responses of the same structure excited either by an
imposed angular displacement constant with the frequency (equation [10.39]), or by
a localized torque constant with the frequency (equation [10.26]). The curves are
very different, in particular, beam resonances no longer appear as maxima for the
excitation in displacement; in fact, it is at the subsystem anti-resonance angular
frequency that the amplitude is infinite. We see here all the difficulty of
interpretation of frequency response when the excitation is barely known.
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Figure 10.3. Level of vibratory displacement according to the wave number K of a I m long
beam, observed at the 0.3 m point for an excitation of torsion in 0.65 m by:
_____ Constant imposed angular displacement (Y =1)

Constant imposed excitation torque (M/(Gly) = 1)

10.3. Resolution of the problems of bending
10.3.1. Example of an excitation by force

In principle, the problem of bending is not different from that of torsion; at the
technical level, the difficulty is greater since the solution of the equation of motion
contains vanishing waves and because it is possible to excite bending beams in two
distinct ways: by force and by torque.

We will initially consider a clamped-free beam excited by a harmonic transverse
force applied at x,, (see Figure 10.4). We seek the solution of the forced vibration in
the form:

Wl(x)ejwt , XE]O, XO[
W(x, t) = _ [10.43]
W,(x) el | xe ]XO,L[.
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Fejwt

7
%O X L

Figure 10.4. Bending vibrations of a clamped-free beam,
excited by a harmonic force F eIt

It is necessary, of course, to sub-structure the beam into two sections. Vibratory
amplitudes W (x) and W,(x) verify the equations of motions:

W

— 0?2 pS Wi(x) + EI =0, xe]0,x,], [10.44]
ox4
_ W,
— 2 pS W) + El— -2 =0, xe |xg,L[. [10.45]
X

These differential equations are easily integrated:
Wl(x) = A, sinkx + B, coskx + C,; sh(kx) + D, ch(kx), [10.46]

Wz(x) = A, sinkx + B, coskx + C, sh(kx) + D, ch(kx), [10.47]

with: k=JE/ 4 % [10.48]
p

The solutions reveal traveling waves through the sine and cosine, and also
vanishing waves through the hyperbolic sine and cosine.

Writing down the boundary and connection conditions will allow, as previously,
calculating the constants A;,By,...,C,,D, appearing in the solutions [10.46] and
[10.47].
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Boundary conditions:

Wy(0)=0,
W,
—(0) =0,
dx
2w,
- 2 L)=0. [10.49]
dx?
d3 )
El L)=0.
dx3

Conditions of connection:

W, (x0) = W, (xq) continuity of displacements,
dw, dw, .
—(xp) = X continuity of slopes,
™ (x0) ™ (X0) y P
— _ [10.50]
d*w, d*W, . ‘
EIl 3 (xg)=EI 3 (x¢) continuity of bending moments,
dx dx
d*W, W, o .
EI 3 (x¢)—EI 3 (x¢)=F discontinuity of the shearing forces.
dx dx

Introducing solutions [10.46] and [10.47] under the 8 boundary and connection

conditions leads to the calculation of the 8 constants. We will not proceed further
with this extremely heavy calculation, which requires computerized processing. To
give an example, we take the case of a supported-free beam where the point of
excitation is at the x, =L end of the beam. In this case only one section is
necessary and the boundary conditions are:

W,0)=0, [10.51]

2w,

El—(0)=0, [10.52]

dx?
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2w,
El—— (1) =0, [10.53]
3w,
Bl— 31(L)=F. [10.54]
X

The introduction of [10.46] into [10.51] and [10.52] shows that B; =D, = 0.

The conditions [10.53] and [10.54] give:

—sinkL shkL || A1 0
= : [10.55]
—coskL chkL || C, F/ (EIK3)
that is:
—sh(kL
A= sh(kL) F/ (E1K)
sh(kL) cos(kL) — sin(kL) ch(kL)

[10.56]
—sin(kL)

B sh(kL) cos(kL) — sin(kL) ch(kL)

C F / (EIK3)

The vibratory response is thus:

—F/ (EIk3)

Wi(x) =
sh kL cos kL —sin kL ch kL

[sh kL sin kx + sin kL sh kx] . [10.57]

The denominator of [10.57], when equal to zero, corresponds to the
characteristic equation of a supported-free beam; vibratory amplitude will thus tend
towards infinity at angular frequencies of resonance of the supported-free beam,
which satisfy the characteristic equation.

10.3.2. Excitation by torque

Let us once again take the example of Figure 10.4 replacing the excitation force
by a harmonic couple Me’® . The solution of the problem is obtained in a manner
similar to the case of section 10.3.1. Vibratory movements in the two sections have
the general form [10.46] and [10.47], while boundary conditions are those described
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in [10.49]. Conditions of connection are slightly modified, the two last equations of
[10.50] becoming:

d2 W, d2W,
EI (XO) El—— o (xo) M,
. . [10.58]
d3W W,
El (XO) El—— (XO)

To identify the constants appearing in the solutions of the equations of motion
[10.46] and [10.47], we use the 8 boundary and connection conditions.
10.4. Damped media (case of the longitudinal vibrations of beams)
10.4.1. Example

We will consider the longitudinal vibrations of a clamped-free damped beam
excited by a harmonic force localized in x,.

Damping is introduced via a complex Young modulus, since we are dealing with
harmonic movement:

E* = E(1+n),

where 1 is the loss factor of material.

We will sub-structure the beam into two sections where longitudinal
displacements are respectively:

U;(x) when x € ]0,x[
and  U,(x) when x € |xq L[ .

The equations to verify are the following:

@7,

— =0, xe ]0,x,[, [10.59]

pSw? U, +E*S
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d2U

pSw? U, + E*S - 220, xe]x,,L[, [10.60]
X

U0)=0, [10.61]
dU

E*S—2(L)=0, [10.62]
dx

Uj(xo) = Uy(x) [10.63]
dU dU

E*S—2 (x)) - E*S—L(x,) =F. [10.64]
dx dx

The solutions of the equations of motion [10.59] and [10.60] are obtained in a
traditional fashion:

Ux) = A, ™ + B e K™ [10.65]

U,(x) = A, K™ 4 B, e KX, [10.66]

with: k*=w/ [\/Ts ,/1+jnJ. [10.67]

The wave number being complex, the propagation is carried out with a
weakening of amplitude. For weak damping, which generally is the case in practice,
there is the following approximation:

: zw/(ﬁ] (1—j2]=k—jy. [10.68]
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The calculation of vibratory response is straightforward; it suffices to calculate
the integration constants appearing in [10.65] and [10.66] so that they verify the
conditions [10.61] — [10.64]. However, in order to avoid weighing down the
discussion, we will take a simpler case supposing that x, = L, i.e. the excitation is
at the end of the beam. Only one section is necessary; the solution [10.65] must
verify the boundary conditions:

U,(0)=0
[10.69]
and E'S du, (L)=F,
dx
that is:
and [10.70]
jk* (KL 4 ey A = F / (E*S).
Thus, we obtain:
— F/(E*S G ik
U,(x) = /(E*S) A L [10.71]

ik * (&ML 4 eI

Taking damping into account, the denominator of equation [10.71] cannot be
zero; we are therefore witnessing damped resonances.

Taking the damping account into account is done without difficulty, thanks to the
introduction of complex elasticity moduli. The forced waves then present a decrease
during their propagation and the calculation of the vibratory response no longer
reveals any infinite amplitudes at resonance angular frequencies.

10.5. Generalization: distributed excitations and non-harmonic excitations

10.5.1. Distributed excitations

The decomposition in forced waves was established for localized excitations. We
can use these solutions as “solvers” for more complex cases. Let us take, for
example, the case of the torsion of beams from section 10.2.1, but suppose that the

beam is excited by a distributed harmonic moment: m(x) ¢’®" .
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The equation to be satisfied is thus:

d2a
pl, @2 ox) + Gl — = m(x) , x€ |0, L[, [10.72]
dx?
2(0) =0, [10.73]
oL)=0. [10.74]

Let us consider the solution obtained in [10.26] and [10.27], for a localized
excitation by a torque placed in x,. Let us suppose, moreover, that the torque has a
unit amplitude M =1):

_ 1 sink(x,-L) .

X)=— sinkx , xe |0,x,[, [10.75
A kGl, sinkL Joxl :
_ 1 sink(x,)) .

o,(x) = ——— —— X sink(x - L) , xe |x,,L]|. 10.76
2 kGl, sinkL oL Ho-76]

This elementary solution is related to the Green function of the problem and
corresponds to the solution of the problem of torsion of a beam excited by a Dirac
distribution placed in x¢. To show that the solution described by [10.75] and [10.76]
makes it possible to solve the problem defined by equations [10.72], [10.73] and
[10.74], the step is a little long. Let us carry out the integral:

d2 o

I=||pl,®? a(x) +Gl, w2 oy (x) dx
X

o—

[10.77]
L d2a
+ j Py @ () + Gl —— | T(x) dx.

X0

Taking into account [10.72], we have on the one hand:

Xy L
1= I&l(x) m(x) dx + J' Ty(x) m(x) dx . [10.78]
0

Xy
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In addition, let us integrate by parts the expression [10.77]; we obtain:

d? o,

= _[ pl, w2 Ty(x) + Gl ax) dx
0

L d2 o
+ [ ply 023,00 + Gl
XO

a(x) dx
[10.79]

X

d _ Xy d_ 0
{Glof al(x)L —[Glodil Oc(x)}

X 0
L — L
do _ da
+ {GIO— aQ(X)} - [GIO—Z oc(x)} .
dx X, dx X,

Taking into account [10.9] and [10.10], the integrals are nil; taking into account
[10.11] — [10.14], [10.72] and [10.73], the non-nil terms at the boundaries are
summarized by:

1= o(x) {— GIO%(XO) + GIO%(XO)} . [10.80]

When the excitation moment is unitary (M = 1), equation [10.14] indicates with
[10.80] that the term between brackets is equal to unity, and thus:
I'=oux) -

After grouping with [10.78], it follows:
Xy L
axg) = [T meo dx + [a0 mx) dx,
0

Xy

that is:

ouxg) =— sin (kx) dx

’]i’ m(x) sin k(x, - L)
0 kGI0 sin kL
[10.81]
k
J mx) Sk G (kix - 1)) dx
kGI0 sin kL

The response to a localized unitary excitation allows the calculation of the
response to a distributed excitation via the integral equation [10.81].
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To illustrate this expression, let us first consider an excitation torque of the Dirac
distribution type m(x) = 8(x —x') and suppose that x'< x,. The application of
[10.81] leads to:

Xo . .
O(x —x' k -L 1 k -L
oUxg) = — I (x = x') sink(xo = L) sinkx dx = - sink(xo = L) sin kx'.
0 kGIO sin kL kGIO sin kL

We find again the solution [10.75] with notations reversed between x and x'.
If x"> x,,, we obtain:

L

a(xg) = - I

Xy

d(x —x') sinkx,, sin kx dx = — 1 sinkx,
kGI, sinkL kGl sin kL

sink(x'-L).

We also find again the relationship [10.76], still with reversed notations. Thus
the Green function defined by the expressions [10.75] and [10.76] appears as the
response at the point x to a Dirac distribution placed in x,.

Let us now consider an excitation consisting of a set of torque as shown in
Figure 10.5. This excitation corresponds to an approximation of the distributed
moment m(x) :

N
m(x) = Y M(x)) 8(x - x)), [10.82]
i=1

with: M(x;) = m(x;) A; where A, is the length of application of the torque m(x;).

The response at the point x, to these N excitation torques is by linearity the sum
of the responses to each excitation torque. The expression of this response has two
forms depending on whether the point of observation is to the right [10.27] or to the

left point of the excitation [10.26]. Therefore, considering that x i < X0 <Xjyp it
follows:
i .
1 k(x, — L
alxg) = = > M(x;) sink(o =1 gin kx, A,
= kGI,, sin kL
[10.83]

N .
1 k
=) M) —— 0 sink(x; ~ D) A,
i=j+1 kGIO sin kL
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The expression [10.81] is sometimes interpreted as passing to the limit of the
expression [10.83].

The procedure that we have just applied is completely general and consists of
solving a problem using the Green function. The basic tool is the solution of the
problem to a unitary localized excitation, which is the Green function of the
problem. We then proceed as shown to obtain the response to an excitation
distributed by an integral equation. We leave it to the reader to apply this step to
longitudinal and bending vibrations as an exercise; the calculations are heavier in the
latter case.

m(x)

me)

el

W L

> X

Figure 10.5. Approximation of the distributed excitation torque
by a comb of localized torques

10.5.2. Non-harmonic excitations

The method of decomposition into forced waves is based on the harmonic
excitation of structures; we may, however, use it for excitations with unspecified
time variation thanks to the Fourier transformation.

To consolidate our ideas let us once again take the example of the beam in
torsion from section 10.2.1, but for a non-harmonic excitation.
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Equations [10.1] — [10.5] remain unchanged, and the discontinuity of moment of
torsion [10.6] becomes:

GIO%(XO’O_GIO%(XO’O = M(t). [10.84]
ox 0x

Let us take the time Fourier transforms of these equations. Noting the Fourier
transform of the angle of torsion in section i as (X, t):

+ oo
& (x, 0) = I ay(x, ) e 1 dt, [10.85]
it follows:
_ d2 a(x, )
pIOmzocl(x,w)+GIOd—=0 , xe ]0,x,], [10.86]
X
~ d2 6(2()(,(1))
ply 2 G(x,®) + Gly———— =0 , x€]x,,L][, [10.87]
&(0,0) =0, [10.88]
(0, 0) = 0, [10.89]
(%, ®) = Oy(X(, ), [10.90]
da da -
Gly 22 (x4, @) — Gly L (x4 . @) = M(w) , [10.91]
dx dx

where 1\7[(0)) is the Fourier transform of the excitation torque:

+ oo
M(w) = J'M(t) eIt g | [10.92]

— oo

Equations [10.86] — [10.91] are formally identical to equations [10.9] — [10.14]
and, therefore, lead to the same results for &, (x,0) and &,(x,m) as for
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@, (x) and @,(x) obtained for a forced movement harmonic of an angular

frequency m, equations [10.26] and [10.27], that is:

M(o) sink(xo —L)

- sinkx , x € ]O,XO[ ,
kGI, sinkL

8y (x,0) = —

M(w) sin kxg
kGI, sinkL

with: k:u)/ / g
P

It is now possible to obtain the vibrations of torsion taking the inverse Fourier
transform, for example, for o((x, t):

G, (x,0) = - sink(x—L) , x € ]xq.L[, [10.93]

o ) = 1l T _ M(w) sink(xy—L)
! 2m kGI,  sinkL

— oo

sin kx et do . [10.94]

Of course, the Fourier integral is not necessarily easy to calculate and a
numerical problem may arise here.
10.5.3. Unspecified homogenous mono-dimensional medium

The method is applicable to any homogenous mono-dimensional structure whose
harmonic movement is governed by a homogenous differential equation of the type:

N dn U(x)
=0

n=0 " dx"

[10.95]

The quantities B, are constant coefficients, U(x) is the unknown of the problem,
and 2N is the order of derivation of the equation of motion. For example, for the
equation of bending of beams, we have:

N=2,BO=—pSU)2,B1=B2=B3=0,B4=EI.
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The number of boundary conditions associated with this equation is equal to the
order of derivation 2N, that is N conditions at each end. They have the general form
of N alternatives:

i
either —(x)=0,
dx!
oo (10,96
FRINEEY
or PaN-1-j W(X) =0.

These conditions are to be verified at both ends x = 0 and x = L. The excitation
can occur via N types of forces applied to the beam.

Let us take the case of a source point X : the beam is sub-structured into two
sections where vibratory displacement is given respectively by U;(x) and U,(x). The
simultaneous application of N localized forces leads to the discontinuity of the N
quantities:

. d U, dy,
_]—N,,2N—l BJH(XO)_BJdT(XO)ZFJ [10973]
and to the continuity of the N quantities:
i=0,. ,N-I dez( ) de‘( ) [10.97b
]=0,...,N - — (X)) = — (X)) - .97
Y gk :

The two unknown functions U;(x) and U,(x) are solutions of equation [10.95],
ie.:

2N . i
U(x) = Zaf ed*

j=

—_

[10.98]

=]
Z

-
Uy(x) = ) a} &%,
j

Il
—
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where k. are the solutions of the characteristic equation associated with equation
[10.95]:

2N
D B kn=0. [10.99]
n=0

The solutions reveal 2N unknowns per section, that is, 4N unknowns in all, af
and aJ2 . Writing down the 2N boundary conditions [10.96] and the 2N connection
conditions [10.97a] and [10.97b] leads to a linear system 4N X 4N, whose solution
provides the unknowns of the problem.

The method directly extends to the case of structures homogenous by parts as in
section 10.2.2; it is enough to sub-structure it into a sufficient number of sections.

10.6. Forced vibrations of rectangular plates

The method of decomposition into forced waves is adapted to the resolution of
the problem of mono-dimensional vibration; we may, however, apply it to
rectangular plates. The forced response is no longer obtained by an analytical
expression but by a simple series. It is a simplification compared to the classical
modal decomposition, which leads to a double series. Let us take the example of a
rectangular plate with length a and width b and consider that the opposite edges
x; =a and x; =0 are simply supported. The plate is excited at the point (X, X,)
by a harmonic force:

Fe!' 8(x; - X)) 8(x, — X,) . [10.100]
Taking into account the harmonic excitation, the forced response is of the type:
WX, Xy, 1) = W(x, ,X,) e [10.101]

The equations to respect in order to solve this problem are the following:

— the equation of motion for (x,,x,) € ] 0, a[x ] 0, b[:

2 phW( )+D o 2 o o W( )
- X1,X,) +D| —+ +— X, X
P 72 ox{ ox?0x3  0x} 72

N [10.102]
= Fe!™ 8(x; — X)) 8(x, - X,) ;
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— the boundary conditions at the supported edges are given by:

W(0,x,) =0, W(a,x,) =0 [10.103]
and:

0% __ 02 __

—W(@0,x,) =0, —W(a,x,)=0. 10.104

P (0,x,) P (a,x,) [ ]

We will seek the solution of the problem in the form of a series whose each term
verifies the boundary conditions [10.103] and [10.104] at the edges x;, =0 and
Xl =a:

Wix, . x,) = i h, (x,) sin (% xlj. [10.105]

n=1

Let us introduce equation [10.105] into the equation of motion [10.102]:

oo d%h 2 d2h
> | D—Lxy)-2D [“—“J (%)
= dx5 L dx3

4
+ [D [n_”j - phm2] h,(x,) |sin (n_“ xlj [10.106]
L L

= Fd(x; - X)) 8(x, - X,).

. . . . ys .
Let us multiply this equation by sin [p? xlj and integrate the two members

between 0 and L; after having introduced the property of orthogonality [10.107],
equation [10.108] follows:

L

ifn=p: [ sin (ﬂxlj sin (ﬂxJ:E, [10.107a]
o L L 2
L nm pn

if n#p: [ sin (—xlj sin (—x1j=0, [10.107b]
. L L
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d*h, nm ) d%hy n
o2 - 20[ 2 S o2 s g

[10.108]
2 nm
=—Fsin| —X, | 3(x, — X,).
L ( L lj 2 2
Equation [10.108] is of the type that can be solved by the method of forced
waves.

Let us break up the function h_(x,) into two parts:

—for x, € ] 0, Xz[ we introduce the unknown hL(x2) satisfying the equation:

d4n! 2 d2hl
D—"(x)-2D[ 2| —2(x,)
dx} L) dx3

[10.109]
4
+ [D (%) - pSwzJ hl(x)) =0 ;

—for x, € ]X2 ,L[ we introduce the unknown hﬁ(xz) satisfying the equation:

d4h2 2 d2h2
D—"(x) - 2D (ﬂj 2 (xy)
dx5 L dx5

4
+ [D (n—ﬂ - phsz h2(x,) = 0.

To begin with, let us examine the boundary conditions. It is possible to choose
all the configurations: it is necessary to write down the connection conditions at
Xy =X, ‘and the boundary conditions at x, =0 and at x, = L, support, clamped,
free or guided edge.

[10.110]

To consolidate, we choose the conditions of support at both ends. The
displacement of the plate must verify equations [10.111] and [10.112]:

W(x;,0) =0, W(x;,b)=0 [10.111]
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and:
02 __ 02 __
@W(X] ,O)=0 s @W(Xl,b)=0. [10112]

Taking into account the form [10.105] of vibratory displacement, the preceding
equations lead to boundary conditions directly applicable to the unknown functions
hl(x,) and h2(x,):

O O
L©0)=0, h2(®)=0 and —2(0)=0 , —"(b)=0. [10.113]
dX2 dXz

To obtain equations [10.113] we made use of the property of orthogonality
[10.107].

Let us examine the connection of the solutions over the x, = X, interface; for
plates it is necessary to verify the continuity of displacement, its normal derivative at
the line of interface, the bending moment carried by the line of interface and the
discontinuity of the shearing force due to the presence of the excitation effort. The
expressions of the bending moment and the shearing force have been provided in
Chapter 4, equations [4.57] and [4.58].

Another approach consists of reasoning directly using equation [10.108]. We
note that the Dirac distribution produces the discontinuity of the third derivative of
h (x,) . The connection conditions are thus:

hl(X,) = hX(X,), [10.114]
dh! h2
(X)) = dh Xy, [10.115]
dx, Xy
d2h! d2h2
X, = Xy, [10.116]

2 2
dx2 dx2
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d3hl d3h2 )
(X)) - — (X)) =——F sin(n—nxlj. [10.117]
dx% dx% LD L

The calculation of the solutions of equations [10.109] and [10.110] is well
known; we obtain:

hl(x,) = A, sin(k x,) + B, cos(k x,)
[10.118]
+C,,, sh(y,x,) + Dy, ch(y x,),

h2(x,) = A, sin(k, (x, — L))+ By, coslk (x, ~ L))

+C,, sh(y,(x, = 1))+ D, chly, (x, — L)),

hw? 2 hw? 2
with: kn=\/ pD _(%j and yan pD +(“L—“j . [10.120]

These solutions consist of vanishing waves with wave numbers vy, and traveling

[10.119]

2
. T nm D
waves with a wave number k ; this situation is true as long as w>| —| |—.
L ph

For weaker pulsations of excitation, there are four vanishing waves, since the wave
number k is then imaginary.

Applying boundary conditions [10.114] —[10.117] provides the solutions:
hl(x,) = A, sin(k x,) + C,  sh(y x,) [10.121]
and:

h2(x,) = A, sin(k (x, — L))+ C,, shly,(x, — L)). [10.122]
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The constants of integration are given by the solution of the linear system
[10.123].

sink,.L,  shy L, —sink(L,-b) —shy(L,~b)
k cosk L, v.chy L, —k cosk (L,—b) —v cchy (L, —b)
—-kZsink L, y2shy L, k2sink (L,—b) —vy2shy (L, -b)
-k cosk L, yichy L, k3 cosk (L,—b) —ylchy (L, -b)

[10.123]
0
Aln 0
Cin = 0
A
2n 2F . (nm
C2n ——— sin (T le

The vibratory response of the plate is obtained, finally, using [10.121] and
[10.122] in [10.105]:

—for x, € ]O, X2[ we have:

W(x1 ,X,) = z (Aln sin(k x,) + C, sh(ynxz)) sin (% xlj ; [10.124]

n=l
—for x, € ]Xz,b[ we have:

oo

W(x.xp) = Y (A, sin (k,(x, - L)
n=l

[10.125]
+C,, sh(y,(x, — L)) sin (% X, j

This method of calculation of the vibratory response extends to plates the
decomposition into forced waves. The response is expressed as a semi-modal
decomposition: modes in one direction and forced waves in the other. The domain of
application of this approach is quite narrow; in fact, it is necessary that the vibration
modes CIDQ(Xl ,X,) can be expressed by separation of space variables:

D(x1. %) = Fo(x)) Fyo(Xy). [10.126]
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Under these conditions, the calculation of response by modal decomposition can
be expressed in the form:

= =

W% = D0 D a0m0 fio®) o) - [10.127]
nQ=1 mQ=1

Let us introduce the function th(Xz) given by [10.128]:

oo

hoo(®2) = X om0 fmo*2)- [10.128]
1

mQ=

Under these conditions, we may rewrite the modal decomposition [10.127] in the
form of a semi-modal decomposition:

e

W(x,,x,) = ;l hyo(X0) fho(x)). [10.129]

The property [10.126] which the modes must satisfy is very restrictive. In fact,
the shape of the plate is already very limited, rectangular or circular; moreover, the
boundary conditions cannot be unspecified. For rectangular plates, the method
requires that two opposite edges be supported or guided, while the boundary
conditions for the other edges are unspecified subject to being the same for a given
edge.

When the method functions, it offers an unquestionable advantage by limiting
calculations to a mono-dimensional series. For the application to a network of
coupled plates, see [REB 97].

10.7. Conclusion

The method of calculation of response by decomposition into forced waves is
applicable to mono-dimensional structures homogenous by parts. It is based on a
sub-structuring, each section being delimited by two singular points (discontinuity
of structure or point of excitation). The solution is thus provided by parts.

The advantage of the method is to give an analytical expression of the solution.
This avoids the problems involved in the expression in the form of a series of
solutions resulting from modal decomposition.
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The case of damped structures is easily considered via complex moduli of
elasticity.

The technique of calculation naturally reveals resonances, but also anti-resonances.

The method can be generalized to distributed harmonic excitations thanks to the
construction of the Green function by forced waves, which is the solution of the
problem with localized unit excitation.

The method is also widely used for non-harmonic excitations, thanks to the use
of the Fourier transformation of time signals.

Finally, the method can be applied to all the problems of beams homogenous by
parts: it suffices to solve the differential equation of space associated with harmonic
movement; technically the method is weighed down but remains identical in its
principle.

For plates the approach by forced waves is used in the case of a semi-modal
decomposition of the vibratory response. However, in order to be usable, the modes
of the plate must be written down in the shape of the product of two modal
functions, each depending on only one variable of space. This situation occurs, in
particular, for rectangular plates with particular limiting conditions.



Chapter 11

The Rayleigh-Ritz Method based on
Reissner’s Functional

11.1. Introduction

In the majority of cases of elastic solid media vibrations, obtaining exact
analytical solutions is impossible. Therefore, it is necessary to make use of
approximation methods. In this light the Rayleigh-Ritz method is an important
method, because it constitutes the basis for energy methods, such as, for example,
the finite elements method. The goal of this and the following chapters is not to
provide a discourse on numerical methods (there is already an excellent selection of
literature on this subject), but rather to present the groundwork for the energy
method.

As we will see, the Rayleigh-Ritz method uses the variational form of the
equations of the vibrations of the continuous mediums. There are two principal
alternatives, which we have presented in this course: the formulation in
displacements stemming from Hamilton’s functional and the formulation in stresses
and displacements stemming from Reissner’s functional. If the methods are
basically identical, their forms are rather specific and we have chosen to cover them
both. In this chapter we expose the formulation stemming from the two-fields
Reissner’s functional.

The discourse is based on a rather simple example of reference: vibrations of
flexion of beams. This choice aims at revealing the foundations of the method
without weighing down the presentation by abstractions linked to a general case.
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11.2. Variational formulation of the vibrations of bending of beams

We consider Bernoulli’s model of beam characterized by two unknown
functions W(x,t) and o(x,t) that are, respectively, the transverse displacement and
longitudinal stress. Reissner’s functional for this problem was provided in Chapter
3, equation [3.60] (the notation used here is simplified):

I
R(W,r):j lo—— 4+ — o2 | dxdt. [11.1]
: ot 2E

t
1 L pS [ oW jz O2W
2
o 0
In this expression, E is the Young modulus and p is the density of the material,
while S and I are respectively the cross-section and the inertia of bending of the
beam.

Let us note that in equation [11.1], the effect of rotational inertia was not
covered in order to simplify matters.

The solution of the problem of vibration consists of determining the particular
functions W(x,t) and G(x,t) rendering the functional stationary [11.1]. Following
the functional space, where the calculation of extremum is performed, we obtain
solutions corresponding to various boundary conditions.

Let us consider, to begin with, the spaces W and X of the functions W(x, t)
and o(x,t), sufficiently regular so that the integral [11.1] exists, and without any
restrictive conditions at the 0 and L ends. The calculation of the extremum of the
functional, as carried out in Chapter 3, leads to respecting equations [11.2] — [11.7]
at any moment t:

SaZW - 0 Jo,L[ [11.2]

———(1%)=0, xe|o,L][, .

PS—3 ax2( )

Ea2W 5 Jo,L] [11.3]

- =o0,xe|0,L], .
0x?

5(0,) =0, [11.4]

S(L,H)=0, [11.5]



The Rayleigh-Ritz Method based on Reissner’s Functional ~ 389

aa—a(o,t)=o, [11.6]

X

Z—E(L,t):o. [11.7]
X

This case is representative of the free-free beam, and we will note the space W
by WLL

Let us modify the functional space of displacements W(x,t) by restricting
ourselves to the sub-space of the null functions in 0 and L:

W0, =0, [11.8]

W(L,1)=0. [11.9]

This new space of functions, noted WAA | because it leads to the boundary
conditions of support at both ends, is included in the previous space:

WAA — WLL

The calculation of the extremum leads to equations [11.2], [11.3], [11.4] and
[11.5] only, equations [11.6] and [11.7] no longer appear, taking into account the
conditions [11.8] and [11.9] imposed on displacement. A very important aspect of
the variational method appears here: the boundary stress conditions result from
variational calculation and are, therefore, not necessarily imposed a priori by the
choice of the functional space where we search for the extremum.

On the contrary, the boundary displacement conditions are not produced by the
calculation of extremum and need to be imposed a priori by the choice of the
functional space WAA

Equations [11.2] to [11.7] are representative of the beam free at both ends.
Equations [11.2] - [11.5] and [11.8], [11.9] are those of the beam supported at both
ends. Let us give a third example: that of the beam clamped at both ends; the space
WEE to be considered is the sub-space of WLL such that:

W(0,t) =0, [11.10]
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W(L,t) =0, [11.11]
%N(O,t):o, [11.12]
%V(L,t)zo. [11.13]

The calculation of extremum leads only to the respect of the equation of motion
[11.2] and of the stress-strain relation [11.3]. The boundary conditions all are
imposed a priori by the restriction on the functional sub-space WEE

The variational presentation of the problem of free vibrations of beams will thus
be the following (we take the example of a beam on two supports): find the pair
(W(x,t),5(x,t)) €W x3 that returns the extremum of the functional [11.1].
Using a more compact notation:

R(W,5) = NosH R(W, o). [11.14]

We can propose an alternative of the formulation which uses boundary
conditions which the stresses must verify. For example, in the supported case, we
can restrict the functional space of working stresses to the sub-space of constraints
TAA nil at the ends of the beam.

Equations [11.4] and [11.5] are thus verified a priori. The problem of the
supported beam is stated in the following way: find the pair
(W(x,1),6(x,t)) € W xZ* returning the extremum of the functional [11.1].
That is, in compact notation:

R(W,E):WExt R(W,0). [11.15]

AA x S AA

The advantage of [11.15] compared to [11.14] is that it allows improved
convergence in the calculation of the approximate solutions which are sought in a
more restricted ZAA space rather than in T . The disadvantage lies in the difficulty
of construction of the sub-space TAA | taking into account larger requirements of
the conditions to be verified a priori.

In conclusion, the kinematic boundary conditions need to be verified a priori,
whereas their a priori respect is optional for stresses.
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11.3. Generation of functional spaces

The Rayleigh-Ritz method relates to a particular technique of construction of
functional spaces W and X . By decomposition on a functional basis we will write:

W(x,t) = i a (M ¢0,(x), [11.16]
n=1
o(x,t) = ibn(t) Yy(x). [11.17]
n=1

The functions ¢,(x) and vy, (x) constitute functional bases defined a priori; the
amplitudes a (t) and b, (t) are the unknowns of the problem.

Let us take the example of the space WAA ; it will be generated as follows:

WAA={W<m)=ian<t) »(x)/ ¢(0)=0 and ¢n(L>=0} SR
n=1

Let us notice that each basic function must verify the conditions ¢ (0) =0 and
¢,(L) =0. This stems from the fact that any function of the [11.16] type must
verify the boundary conditions [11.8] and [11.9]. The particular function where all
the amplitudes but one, the n™ one, are nil leads to:

a,(t) ¢,(0)=0 VvVt and a,(t) ¢,(L)=0 Vt,
1e.:

¢4 (0)=0 and ¢,(L)=0.

The bases of functions that are usually considered are either of the polynomial
type or of the Fourier series type. We will have the occasion to consider both of
these cases, but in this chapter only the example of polynomial development will be
used.
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11.4. Approximation of the vibratory response

The approximation of the solution of the problem is obtained simply by carrying
out the extremum calculation over the sub-spaces of functional spaces W and X .
In the Rayleigh-Ritz method, the sub-spaces are built by truncating the series
[11.16] and [11.17]. For example, the sub-space of WAA with N elements WA
will be obtained by considering the N first terms of the series:

W$A={W<x,t)=§an(t> 0n(x) / 0,(0)=0 and ¢n(L>=o}- [11.19]
n=I

For the problem of the beam supported at the ends, the search for solutions
approximated using the variational technique will, therefore, consist of finding the pair
(W(x,t) ,5(x,t)) € Wi* x I, returning the extremum of Reissner’s functional:

R(W, ) = Wﬁ\]@\xxt2 R(W,0). [11.20]

M

It is a form identical to [11.14], where functional spaces have a finite dimension.
As we will see in examples later on, using this technique, we construct a discrete
system with N degrees of freedom approximating the vibratory behavior of the
beam.

In [11.20], the functional space X, is the sub-space of X such that:

M
Ty = {c(x, =Y by® \ym(x)}, [11.21]
m=1

where the functions y_(x) constitute a functional base of ;.

Note: we took functional spaces of identical dimensions for W{A and X ; this
is not obligatory, but has the advantage of leading to manipulating square matrices
during computerized processing of the method.

11.5. Formulation of the method

Let us consider the approximations of displacements and stresses, defined in the
previous section:

Z

Wi, = D a,) 6,0, [11.22]

n=1
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N
o(x, 1) = D b(t) W) [11.23]
m=1

The calculation of Reissner’s functional [11.1] after using [11.22] and [11.23]
gives:

t L
R@, b, = | %Z > a0 | pS6,) 0,00 dx
{, nop 0

(x) dx [11.24]

22 a0 byl j \um(X)

1 ko
+§ZZ by(®) by(0) I () vy dx | dt.
m q 0

We may propose a matrix expression of the functional:

j% fafa }t<B){b}+%{b}‘<C>{b} dt [1125]
t
where:
{a}'=(a,t) ay(®) ... a (), [11.26]
{b}' = (b,(®) by(®) oo b,(1), [11.27]
L
(A)=(Ap) with A =] pSo,(x) ¢,(x) dx, [11.28]
0

. L d? ¢,(x)
(B)=(B,,) with Bnp=£wm(x) o dx, [11.29]
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L
(€)= (Cpq) With Cpq =] %wm(x) vy (x) dx. [11.30]
0

The calculation of extremum leads to the matrix relations:

(M) {d}+B){b}=1{0}, [11.31]

B)T {a}=(C){b}. [11.32]
Incorporating the second matrix equation into the first, we obtain:
@ {af+®) (@) {a}={o}. [1133]

This equation is, in fact, the traditional representation of mass-spring vibrating
systems with N degrees of freedom where (A) is the matrix of mass and
(B)(C~1)(B)! is the matrix of stiffness. These two matrices are symmetrical.

We may apply the standard results of the discrete vibrating systems: there are N
modes of vibrations, each characterized by a normal angular frequency ®; and a

normal vector {a,}. The general solution is expressed by the sum of modal
movements:

N
{ a(t) } = z (o cos it + B; sin ;t) {51-}. [11.34]
i=1

The normal angular frequencies are equal to the square roots of the eigenvalues
of the matrix:

(A=hB)(CH(B). [11.35]

The associated normal vectors are orthogonal with respect to the matrices of
mass and stiffness:

{3} @) {a)=0 ifizj. [11.36]

T ®ECH®Y {a}=0 if izj; [11.37]
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finally:
o {af' ®EeHm){a [11.38]
o ErwfE |

These results stemming from the discrete mass-spring system provide an
approximation of the vibratory response of the beam. Using [11.34] in [11.22], we
obtain:

N

W(x, 1) = (o cos (@) + B sin (0,1)) £(x). [11.39]

i=1

The functions fi(x) are the approximated mode shapes. They are given by:

Z,

FOEDY 2, 6,0 [11.40]

n=1

where a_ is the n™ the component of the i" normal vector.

These mode shapes possess the property of orthogonality [11.41]:

p
I pS () fj(x) dx=0 if i#j- [11.41]
0

Indeed, substituting fi(x) and fj(x) by their respective expressions resulting
from [11.40] gives:

P N N L
I PSE() fi(x) dx =" > &, @, j PS 4,(x) §,(x) dx., [11.42]
0 n=l p=I "0

that is, with the notation [11.28]:

L

J' PSE() f(x) dx = i a

0 i

A

M=

p B [11.43]

=

—
I

—_

p
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and in matrix notation:

p
j PSf(x) £x) dx = {Ei}t(A){Ej}. [11.44]
0

With [11.36] we then deduce that the approximated mode shapes f(x) and f j(x)
are orthogonal in the sense of the integral [11.41].

The calculation of stresses is straightforward thanks to the relation [11.32], we
draw the vector { b} knowing the vector {a}:

{bt)}=(CHB) {a®)], [11.45]

that is, with [11.34]:

{b}zi(aicosmit+ﬁisinmit){a} [11.46]

iml
where:
{b}=cHm®{a). [11.47]

After an obvious calculation, we draw:

N
o(x, 1) = Y (a; cos yt + B sin ;) hy(x) . [11.48]
i=1
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The functions h;(x) are the approximated stresses mode shapes given by:
N _
h(x) = b, W (%), [11.49]
n=1

where the quantity Bn_ is the n" the component of the i"" normal vector {Bi }

We leave it to the reader, as an exercise, to demonstrate the two other properties
of orthogonality:

L d® £;(x)

[ i) —5= dx=0 ifix] [11.50]

0 dx

and:

Loy
—h;(x) hi(x)dx=0 ifi#j. [11.51]
E ' J

0

The Rayleigh-Ritz method makes it possible to approximate the vibrations of a
continuous medium by a discrete mass-spring system. The vibration modes of the
mass-spring system later lead to an approximation of the vibratory response of the
continuous medium.

11.6. Application to the vibrations of a clamped-free beam

In this section, we will use a simple case to put the method into practice and we
will show some tendencies characteristic thereof on the basis of calculations of
systems with a low number of degree of freedom.
11.6.1.Construction of a polynomial base

One way of building the functional bases is to use a polynomial decomposition
of the functions W(x,t) and o(x, t) . The general form is of the type:

0

Wi(x,t) = zan(t) XN [11.52]

n=0
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Such a decomposition is suggested by a development in Taylor series:

oW
W0 = WO,0 4 X —= 0,0+ ———- (0,0 +. [11.53]

Let us take the example of the case of a clamped-free beam. Displacement in 0
and its first derivative must be zero to verify the boundary displacement conditions.
From this we deduce that:

x2 0°W x3 O3W

W(X,t) :?y(o,t)"r )+ [1154]

5_8)(3 0,t

that is, introducing the unknowns a_(t) into [11.54]:

0

W(x, t) = Zan(t) X1, [11.55]

n=2

The stress field is left free of any boundary conditions:
o(x, 1) = an(t) X1 [11.56]
n=0

Functional spaces WEL and X,, where the extremum calculations will be
carried out are thus defined by:

N+1
WEL = {W(x,t) =D a,0 xn}, [11.57]

n=2

M-1
Ty = {G(x, =Y b xm}. [11.58]
m=0
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Figure 11.1.Schematic representation of the case treated in the example of reference

11.6.2.Modeling with one degree of freedom

To have a simple approximation of the technique of calculation we will adopt
the maximum restriction of the sub-spaces, i.e. N=M = 1:

W(x,1) =a,(t) x* and o(x, 1) = by [11.59]

It is, of course, a very rough approximation, since it supposes that bending stress
is constant with x.

The calculation of Reissner’s functional leads to:

4 LS
R(a,(), by(t)) = J' %S(az(t))2 20 2500 L
b [11.60]
I
e (bo0 P L} dt.

It is a functional of the rigid body mechanics type, since the only unknown are
functions of time.
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The calculation of its extremum is traditional. Noting the integrand of [11.60] as
F (az(t) , bO(t)) we obtain:

doF_oF_,
dt éa, oa,
F
F o,
aby

that is, after calculation:

pSL?

dy(t) + 2IL by(t) = 0, [11.61]

— 2L ay(t) + % be(®) = 0. [11.62]

Substituting the expression of by(t) stemming from [11.62] in the expression
[11.61], we obtain the equation of a system with one degree of freedom of the
unknown a,(t) :

pSL>

dy(t) + 4ILEay(t) = 0. [11.63]
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(1/5) pSL?

j az(t)

41LE

e e

Figure 11.2.The system with one degree of freedom approximating
the first oscillatory mode of the beam

The solution provides:

a)(t)=Acosot+Bsinot, [11.64]

o, =4.472 E—I4 [11.65]
pSL

We also draw from it:

with:

by(t) = 2EI (A cos @t + Bsin o t), [11.66]
that is, finally, using the expressions [11.59]:

W(x,t) = (Acos,t + Bsino,t) x2, [11.67]

o(x,t) = 2EI(Acoso |t + Bsinw,t). [11.68]



402  Vibration in Continuous Media

An indicator of the quality of the prediction is the value of the normal angular
frequency, because it can be compared with the exact value o {* , which we gave in
Chapter 6 for the bending vibrations of beams.

o™ =3.52 % [11.69]
p

The error committed evaluated expressed as a percentage gives:

o, — X
1 1 =979

@1 [11.70]

This error is large; a finer approximation can be obtained by pushing the
developments further. Let us examine the case of a development with the two terms
of displacement and of bending stress.

11.6.3.Model with two degrees of freedom

Let us consider the displacements W(x,t) and the stresses o(x,t) in the

following form:
W(x,t) = a,(t) x2 + as(t) x3,

o(x, t) = by(t) + by(t) x.

The calculation of Reissner’s functional leads to equation [11.71]:

Y pS IR 16 7
R(azaa3:b0,bl):I 7 a%?+23233?+a%7

t

~1(bya, 2L + b a, [? + byay 312 + b a; 213) [11.71]

! b2 b, b, [ b2L3 d
+— L+ I# +bsf — t.
2E| 0 01 I3
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The four Euler equations resulting from the calculation of extremum are given
below:

L Lo
ps?éz+ps?é3+2ILb0+IL2bl=0, [11.72]
L’ Lo
p8753+p8?52+3IL2b0+21L3 b, =0, [11.73]
2 3112 ILb IL2b 0 11.74
-2ILa, -3Il¥a, + —b, +—Db, =0, .
2 3 E 0 7E 1 [ ]
) 5 1L2b 1L3b
- Il# a, - 2I’ a, + —b, +—b, =0. [11.75]
2 3 IE 0 3E 1

From [11.74] and [11.75] we may draw the relations [11.76]:

by=2Ea, , b =6Ea,. [11.76]

then, replacing in [11.72] and [11.73], there follows the matrix system [11.77],
characteristic of a system with two degrees of freedom:

[> 16
_ .. 2
5 6 ||% AL 6L a 0
S +EI = . [11.77]
6 17 || 4, 612 1213 ||ay| |O
6 7

The solution of this equation is classical and consists of seeking solutions in the
following form:

a,(t) _ a ot
a(t) a,
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The characteristic equation resulting from it is given by:

1 34 EI EI
o +12| —— |=0. [11.78]

ot +
1260 35 pSL4 pSL4

We obtain two solutions corresponding to two normal angular frequencies:

EI
pSL4

W, =34.937 E—I4. [11.80]
pSL

The error for the first normal angular frequency is now much weaker & =0.3%,
while that for the second angular frequency remains very large €, =50%.

o, =3.53273

[11.79]

These results are characteristic of the convergence of the Rayleigh-Ritz method:

— the convergence of a normal angular frequency towards exactitude improves
when we increase the number of terms of the developments describing
displacements and stresses, i.e., on a more physical level, when the number of the
degrees of freedom of the associated discrete system grows;

— for a number of terms of fixed developments, the convergence of normal
angular frequencies worsens when the order of the mode increases. We clearly note
here a much better convergence for mode 1 than for mode 2.

11.6.4.Model with one degree of freedom verifying the displacement and stress
boundary conditions

As we have emphasized earlier, respecting the boundary stress conditions is
optional, since the calculation of the extremum of Reissner’s functional leads to
their verification.

The functional space X, defined by the expression [11.58] has previously been
used with a truncation into one or two terms. It does not a priori observe the
boundary stress conditions and a significant number of terms may be necessary to
approximate them. In a case of this type, the convergence of the method can be
rather slow and it may be interesting to restrict the space of stresses to the sub-space
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of X, a priori verifying the boundary stress conditions to accelerate the
convergence.

To observe this effect, we will use the functional sub-space ;" which respects
the boundary conditions at the free end in x =L, rather than the space X
employed in the preceding examples.

The space Ty is defined by:

N+1
DI {G(X, t) = me(t)(x - L)m}. [11.81]
m=2

The basic functions (x —L)™ for m> 2 are clearly nil and have zero first
derivatives, at point x = L as required by the boundary conditions of the free end
(o(L,t)=0and dc/0ox (L,t) = 0).

We restrict ourselves to the first term of each development so as not to weigh
down the calculations:

W(x,t) =a,(t) x* and o(x,t) = by (x—L). [11.82]

The calculation of Reissner’s functional is straightforward and gives:

t pS IR 3 I 15
R(az,bz):_[ 7(az)z?—zlb2 a2?+g(bz)2? dt . [11.83]

t

The calculation of extremum is immediate and leads to the equations:

L 2113
pS?52+Tb2:O, [11.84]
213 I8
-~y by =0, [11.85]
1.e.:
10 E
b, =——a,, [11.86]
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L 2
P~y + - “TBLa, =0. [11.87]

Equation [11.87] is that of a system with one degree of freedom, its integration
leading to the solution:

a,(t) = Acosot+Bsino,t [11.88]

with ®,, the normal angular frequency of the system with one degree of freedom,
given by:

_ [
® l%sv 0.3333. [11.89]

The relative error for the normal angular frequency g, defined in equation
[11.70], gives:

g =-53% [11.90]

This error is definitely less than 27% obtained with the model with one degree of
freedom in section 11.6.2, which shows the clear interest to observe the boundary
stress conditions a priori.

It as should be noticed as the error with respect to the exact normal angular
frequency can be positive or negative, i.e. the method over-estimates or
underestimates the exact value according to the case. We will reconsider this point
in Chapter 12 where Hamilton’s functional with one field is used instead of
Reissner’s functional.

11.7. Conclusion

The Rayleigh-Ritz method based on Reissner’s functional with two fields makes
it possible to find a discrete mass-spring system whose vibratory characteristics,
normal angular frequencies and vectors, make it possible to give an approximation
of the vibration modes of the continuous medium. Our discourse based on the
example of reference of the beam in bending vibration has revealed the basic aspects
of the method, in particular, related to the choice of functional spaces where the
calculation of extremum is carried out.

The generalization to other cases of continuous media is simple; it may be
summarized to a modification of the functional, which will be representative of the
case considered, for example, the functional [3.10] from Chapter 3 for longitudinal
vibrations, or the functional [4.30] from Chapter 4 for transverse vibration of plates
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(Mindlin’s hypotheses), or the functional [4.44] from Chapter 4 for the Love-
Kirchhoff hypotheses. Each unknown function is then developed on a truncated
functional basis. For example, in the case of a Love-Kirchoff plate, we will have:

N
WI(x,, %, , 1) = z a(t) ¢y(x;,%,),

i
N

S71(X;, X5, 1) = Zbi(t) Vi(X),X,),
i1

N

G%z(xl » Xy, t) = Ci(t) Si(xl > Xz) >
i=1
N

30X 2%y, 1) = Zdi(t) Yi(X,X,).
io

The calculation of extremum of the functional is then performed with respect to
the amplitudes aj(t), bi(t), c;(t) and di(t), which, finally, leads to a matrix problem
with eigenvalues of the [11.33] type and to the solution exhibited in section 11.6 to
obtain the approximate vibration modes of the structure.

We do not develop these very heavy calculations here. In the case of the
Rayleigh-Ritz method based on Hamilton’s functional with one field covered in the
next chapter, we will develop the case of plates.

An important point is the convergence of the approximate solutions; it will be
studied in the case of Hamilton’s functional in the following chapter. We will see
then that the Rayleigh-Ritz method ensures a convergence by a higher value of
normal angular frequencies. Nothing stems from it here, as shown by the results of
section 11.6, where the approximated normal angular frequencies are either higher
or lower than the exact normal angular frequencies towards which they converge.
We will reconsider this point in the following chapter during the study of
convergence.
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Chapter 12

The Rayleigh-Ritz Method based on
Hamilton’s Functional

12.1. Introduction

In this chapter we present the most common Rayleigh-Ritz method: it is based
on Hamilton’s variational formulation of the problems of vibrations of elastic solids.
Our discourse again follows the broad outline of the steps taken in Chapter 11, in
particular, the application of the method to a reference example. The Rayleigh-Ritz
method that we present in this chapter is the most used, because, on the one hand, its
formulation is simpler, but also because it has convergence properties that the
approach of Chapter 11 does not have. These properties of convergence are
examined at the end of the chapter and the link with Rayleigh’s quotient is
established.

12.2. Reference example: bendg vibrations of beams
12.2.1Hamilton’s variational formulation

The Rayleigh-Ritz method uses a variational formulation for support when
calculating the approximated solutions of a vibration problem. In Chapter 11, we

presented the method stemming from Reissner’s functional. Here we develop the
Rayleigh-Ritz method based on Hamilton’s functional.
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The problem of bending of beams resulting from Bernoulli’s hypothesis has
been defined in Chapter 3. It is a matter of finding the field of displacement
W(x,t), returning the extremum of Hamilton’s functional provided by equation
[3.71]:

t

H(W(x, 1)) = {[

2
2 2
EI| 0°W
pS (—J dxdt . [12.1]

7 - =

O"—;l_'

2| 0x?

The functional space where the calculation of extremum must be carried out
depends on the boundary conditions of the beam. The boundary displacement
conditions relate to two quantities: transverse displacement W(x, t) and rotation of

. oW .. .
cross-sections a—(x, t) ; these conditions must be a priori observed.
X

orwW

The force conditions relate to the bending moment EI 3 (x,t) and the

X

PPW
3 (x,t). They do not have to be respected a priori, but as we

shearing force EI

saw with Reissner’s functional with two fields, their respect a priori accelerates
convergence.

Let us take the case of a clamped-free beam to consolidate the ideas. The
functional space where the calculation of extremum must be carried out is the set of
functions that are sufficiently regular for the integral [12.1] to exist and that verify
the two boundary displacement conditions imposed in x = 0:

W(0,t)=0 and al(O,t) =0.
Ox

We will note this functional space as WE-L . The field of displacement W(x, t)
of this functional space, which returns the extremum of the functional H(W(X, t)), is
the one verifying the three equations:

2w 2 2w
+—| EI
otz ox2 0x2

oS —0 VxeloL,Velt.yl, [12.2]
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W
El—(L,)=0 ¥ telty,t[, [12.3]
0 x2
0 Elazw LH=0 Vtelt.t [12.4]
= ) = t et t]. )
ox 0x2 0>t

12.2.2.Formulation of the Rayleigh-Ritz method

In variational terms, the problem of free bending vibrations of clamped-free
beams is stated as follows: find the field of displacement W(x,t) of the functional
space WE-L | returning the extremum of Hamilton’s functional.

H(Wex,0)= Ext H(WG,0).

Note: the solution VNV(X, t) is a particular W(x,t) displacement; however, for
convenience of writing we will note the solution without the tilde, thus confusing at
the notation level the solution of the problem and an unspecified displacement.

The Rayleigh-Ritz method is characterized by a particular technique of
functional space generation obtained by decomposition over a functional basis
¢,(x) verifying the boundary displacement conditions:

0.(0)=0 and 3%20)=0. [12.5]
dx
The approximation of the solution comes from the truncation of the functional
base with N terms:
N
W(x, t) = Z a () o (x) . [12.6]

n=1

The unknowns are the amplitudes a (t), which have to be adjusted in order to
return the extremum of the functional.
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By introducing the approximated expression of displacements [12.6] into the

functional [12.1], after calculation we obtain:

n

g L
Hla, (1)) = j > Z[an i I PS p,(x) 0,(x) dx
i, 3 0

L d2 d2
¢ P
-a,a, EI 1 P

dx2  dx?

We may propose a matrix expression of [12.7]:
bifa))- [ (-} 00 i)} 00 fa}
where:
{a}' = (a,(t), a5(t) .2 (D),

L
M)=M,,) with M, = IpS 0 (X) 9p(x) dx,
0

dz(Pn

dx?

42
d

(PZP (x) dx.
X

L
(K)=(Kp,)  with K,y = [EI x)
0

The calculation of extremum classically leads to the equation:

) {d}+®) {a}={0}.

[12.7]

[12.8]

[12.9]

[12.10]

[12.11]

[12.12]

This equation is to be compared to that of a system with N degrees of freedom,
where (M) is the matrix of mass and (K) is the matrix of stiffness. The traditional
results for the vibrations of discrete systems are, consequently, directly usable.
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The solution of [12.12] is provided by joining N modal movements:
N
{a}zz (o cos .t + P sinmit){ﬁi} [12.13]
i=l1

where o; is the i™ normal angular frequency and {a;} is the associated normal
vector. These quantities are calculated with respect to the matrix (M) (K) whose
eigenvalues are equal to ®? and the normal vectors are {a,}. The constants o; and
B; are fixed by the initial conditions at the origin of the vibratory movement.

There are, moreover, two following properties of orthogonality:

(@) oia,}=0 if i=j. [12.14]

(@} @ia =0 if i=j. [12.15]

Finally, normal angular frequencies verify the relation:

|

{ i}tt(K){ﬁi}

2 = . 12.16
TR (E) el

_&|

Vibratory amplitudes calculated with [12.13] are introduced into the
decomposition [12.6] of the vibratory movement of the beam; after grouping of the
terms of the expression [12.17] of vibratory displacement, we deduce:

N
W(x, ) = D (@, cos oyt + By sin o) fi(x). [12.17]
k=1

In expression [12.17] the function fj(x) is the mode shape of the mode k. It is
given by [12.18] where a,; is the i™ component of k™ normal vector:

Z

£ = ) 0x). [12.18]

i=1



414  Vibration in Continuous Media

The properties of orthogonality [12.14] and [12.15] induce properties of
orthogonality on the mode shape f} (x):

L

[ PSE() fi(x) dx=0 if i#] [12.19]
0

and:
L q%f d’f;
[ Bl—(x) —-(x) dx=0 ifi#j. [12.20]
0 dx dx

The demonstration is straightforward: we replace the normal strains by their
expressions [12.18] in [12.19] and [12.20], and we then use the results [12.14] and
[12.15].

12.2.3.Application: use of a polynomial base for the clamped-free beam
This polynomial base was presented in the preceding chapter in section 11.6. We
adopt it again here without justification; the reader may refer to the previous

discussion for more information on this issue.

The functional space where the calculation of extremum takes place is the one
described by equation [11.57] from Chapter 11:

N+l
WEL = {W(x,t) = Zan(t) xn}. [12.21]
n=2

Each basic function clearly satisfies the boundary displacement conditions in
point 0, but not the stress ones in L.

As an example, we consider the simplest case where N = 1, the displacement of
the beam being approximated by:

W(x, 1) = a(t) x2. [12.22]
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Introducing the expression [12.22] into the functional [12.7], we obtain after all
the calculations:

t
1 LS

H(a,) = .[ p?S ?(a2)2 —2EIL(ay)? | dt. [12.23]
t()

The calculation of extremum is straightforward and leads to the differential
equation [12.24]:

IR
pS?éiz+4EILaz =0. [12.24]

The solution is:

a,(t) = A cosw;t + B sin ot [12.25]

®, = /%4.472. [12.26]
p

with:

1

This result is identical to the previous chapter (equation [11.65]), which was
obtained using the technique with two fields and one degree of freedom. Thus, at
this level there is no decisive advantage in using one or other of the variational
techniques. The method with one field is, however, definitely easier to implement.

Introducing the a priori respect of boundary stress conditions was rather simple
using the technique with two fields; that is an advantage since this would be difficult
to formulate with the functional with one field using a polynomial base. However,
the use of another functional base type which we will encounter later overcomes this
difficulty.

12.3. Functional base of the finite elments type: applicaion to longitudinal
vibrations of beams

The finite elements method uses a different technique to generate the functions
approximating the solution. It is, however, closely linked to the Rayleigh-Ritz
method by the use of the variational method to obtain the approximated solutions.
We do not pretend to provide a total presentation of the finite elements method in
these few lines, but rather to show its connection to the Rayleigh-Ritz method.
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The functional to be considered for the case in point is naturally the longitudinal
vibrations of beams functional provided in Chapter 3, equation [3.26]:

t

1 L 2
1 oy 0
H(W,(x, 1) = ” - (aw ] ——Es(awlj dxdt . [12.27]
L 2" 2 | ax

Generating the functions of approximation is a particular process based on
functions defined piece by piece. Let us cut up the beam into N equal segments with
a length of A (these segments are denoted elements) and introduce the N functions
v, (X, t) defined in [12.28]:

0 if xg[(n-1)A, nA]

O _ o
v, (x,0) = %x +UY + n(Uff{l - Ug)) [12.28]

if xe](n-1)A ,nA].

Figure 12.1 provides the graph of the function y (x,t). These functions, when
reassembled, offer the possibility to approximate the vibratory displacement
W0(x, t) by a continuous line.

N
WO(x, t) = Z v (%, 1) [12.29]
n=1

Figure 12.2 gives an example of approximation resulting from the
decomposition of vibratory movement by [12.29] for N = 5. We may note that the
functions U (t), which represent displacements at point nA of the beam, (or
displacement at node n) constitute the new unknowns of the problem.
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V(X t)
A

U () oo
LOINC) | D /

>» X
mn-1)A nA
Figure 12.1.Function (X, t) at a given moment t
Wl(x, t)
A
I I I I I > X

Figure 12.2.Example of approximated vibratory displacement at a fixed moment t
(case where N=5)

To consolidate our ideas without performing too heavy a calculation, let us take
the case where N = 2. The two functions of approximation are:

Ui©-Uo®

0 x+Ug(t) if x €]0,L/2 [, [12.30]

V1 (Xst) =
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U, ®H-U,®

2 x=Uy()+2U(t) if x e]L/2,L[. [12.31]

V2 (Xat) =

The calculation of the functional is carried out by introducing the approximated
expression of W(x, 1) :

1 toL/2 dy 2
H(Uo(t),Ul(t),Uz(t))=5tj j pS(d—tl(X,t)j

0

t1

d 2 L d 2
~ES (f x, t)j ] dxdt + j/ 2[ps (% x, t)j [12.32]

d 2
-ES (& (x, t)} dxdt.
dx

N | —

t, L

The functions y;(x,t) and y,(x,t) given in [12.30] and [12.31] correspond to
the case of the free beam since displacements U(t) and U,(t) are left free and
represent displacements at the ends of the beam.

To treat the case where the beam is clamped in 0, it is sufficient to write
Uy(t) = 0. The function of approximation ;(x,t) given in [12.30] is then reduced
to:

U, (1)
X, t =17y,
Vi(x, 1) L2

If the beam is clamped in L, we pose U,(t) = 0. The function of approximation
V,(x, t) results from [12.31] in an obvious manner.

Thus, in the case of the beam fixed at its two ends, [12.30] and [12.31] are
reduced to:

TR [12.33]

Wl(xn t)
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Wo(x, 1) = —TT(;)X +2U (). [12.34]

The functional [12.32] then takes the expression [12.35]:

t

H(U)= I|:pS%(Ul(t))2 - ES%(Ul(t))z} dt . [12.35]

ty

The calculation of extremum leads to the equation of a system with one degree
of freedom:

L . 2E
pS— Ul(t)+TS U =0, [12.36]

that is, with the solution:

Uy(t) = (a; cosw; t+P; sin o, t) [12.37]

with the normal angular frequency equal to:

o, :\/E ﬁ [12.38]
p L

We can estimate the quality of this approximation by comparing it with the exact

E
normal angular frequency provided in Chapter 4, (of* = \/j%) Calculation
P

yields a relative error of approximately 10%.

Let us notice that the functions v, (x,t) given in [12.28] could not be used in the
case of the bending of beams. Indeed, taking into account the discontinuity of their
first derivative, these functions are not derivable twice with respect to x as the
functional [12.1] requires. In this case, it would be necessary to consider parabolic
instead of linear functions to ensure the continuity of the first derivative and, thus,
the existence of second derivatives.

With this approximation technique, the sufficient regularity of the used functions
of space is the most important issue. This regularity obviously depends on the
degree of derivation of the functions appearing in the functional.
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The advantage of this method of approximation compared to the traditional
development of the Rayleigh-Ritz method, whose example is provided in section
12.2, lies in the shape of the matrices of mass and stiffness. These matrices are
generally full in the traditional case, whereas they are band matrices in the case of
the finite elements type approximation. This particular property can be detected on
the basis of the functions [12.30] and [12.31] and of the functional [12.32]; indeed,
it is obvious that the variables U((t) and U,(t) do not have direct coupling since
they do not appear in the same element. It follows that the matrix of mass will have
the following tri-band form:

MOO MOI 0
My, M, M, |. [12.39]
0 M12 M22

This property of matrices remains regardless of the number of sections. Thus, it
is possible to use much more powerful adapted numerical algorithms than those
applicable to the general case of full matrices.

12.4. Functional base of the modal typeapplication to plates equipped with
heterogenities

In many problems, the vibrating structure consists of a carrier structure equipped
with various heterogenities. To consolidate, we will consider the case of a
rectangular plate with added mass and distributed springs. This will enable us to
give an example of application to continuous 2D mediums and to use a modal
functional base, which, in fact, constitutes the principal approach used in the
Rayleigh-Ritz method.

Let us take a rectangular plate with the dimensions a by b, supported at the
edges, with an added mass M at the point (xy;,Yy,,) and with a distributed spring
K positioned at the line x = xR. The functional considered is that of the plate
supporting the mass and the distributed spring; its construction is rather simple,
since it uses the property of addition of energies. Let us suppose that the plate has a
transverse movement W(x,y,t) governed by the Love-Kirchhoff hypothesis; the
functional representative of the transverse movement of the plate was provided in
Chapter 4. The functional of the whole system results from joining the energies of
the plate, of the mass and of the spring, that is:
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2 2

: ﬁu(awjz p|[PW] oW
2 2

00 2 21| ox oy

tO at
v+ 2(1—v) dxdy | dt [12.40]
ox2 oy? Ox0y

t 2 b

1 (oW 1

+J' EM(—& (xm,ym,t)j —EJ.K(W(XR,y,t))Zdy dt,
i 0

where p is the mass per unit of area of the plate and D is its bending stiffness.

Vibratory displacement must now be approximated by decomposition on a
truncated functional basis. This functional base has to verify the kinematic boundary
conditions. An interesting way to build this base consists in using the normal modes
of the support plate, which of course verify the kinematic boundary conditions by
construction. Moreover, they verify the boundary conditions with respect to the
forces, which guarantee faster convergence as we saw in the previous chapter.

In the case of the rectangular plate supported at its 4 edges, the normal modes
¢,m(X,y) have a simple analytical expression, which we provided in Chapter 7:

P m(Xs y):sinﬂx sin%y. [12.41]
a

The vibratory response is sought in the form:

N M
Wy, 0= D a0 oy, [12.42]

n=1 m=1

Introducing this decomposition of the response into the functional, after the
calculation of the double integrals over the surface of the plate we find:

tl
oy @)= |5 L) 00 i =5 L) B o D22
t0
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where (M) and (K) are the matrices of mass and stiffness whose generic terms have
the form:

a . nm . mn
Mnmpq = u:f)np qu +M sm?xm smTym

[12.44]
. pm . qm
S ? Xm Sin T ym .

ab . nm
u:oorzlmé 8.+ K sin—xp

nmpq = np mq a

[12.45]

. prm
sin— X, —9o
)

a md

D | n?n2  m2n?
where 9. is the Kronecker symbol and o __ = | — +
1j nm N a2 b2

It should be noted that if M = 0 and K = 0, the matrices of mass and stiffness
become those of the bare plate; under these conditions the matrices of mass and
stiffness are diagonal. This property relates to the fact that the functions @, (x,y)
are the mode shapes of the bare plate.

The calculation of the extremum of the functional [12.43] is classical; it leads to
the matrix system:

o {a, J+ @& {a,, }={0}.

Thus, we have built a discrete mass-spring system, approximating the vibratory
characteristics of the heterogenous plate.

The advantage of the use of the modes of the carrier structure stems from two
aspects which allow a good convergence of the result:

— the functional base verifies the kinematic boundary conditions, as well as the
boundary stress conditions, which ensures accelerated convergence as we saw in the
previous chapter;

— the modal base ¢, (x,y) is the exact solution when heterogenities of mass
and stiffness tend towards zero. We may, therefore, consider that for low
heterogenities, the modal base of the heterogenous plate will be close to ¢ (X,y)
and that, consequently, the developments with a small number of terms will be
sufficient.
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12.5. Elastic boundary conditions
12.5.1.Introduction

In order to be able to apply the Rayleigh-Ritz method with the same functional
base regardless of the boundary conditions, we can employ the concept of elastic
boundary condition. We outline this approach on a very simple case of a beam in
longitudinal vibrations, in order to enable the reader to understand the foundation of
the method. The more complicated cases are treated in a similar way. In fact, it
suffices to adapt the functional to the treated case. On this subject we will provide
some results taken from the works given in the bibliography.

12.5.2.The problem

We consider the longitudinal vibrations of a beam clamped in 0 and assign a
yield stiffness in L.

R
- £
SRR

\

Figure 12.3.Beam clamped in 0 and with yield stiffness in L

The equations of free vibrations governing this case are the following:

2 U(x, 1) 2 U(x, 1)
+ES =

S 0, 12.46
P ot? 0x2 [ ]
U, 1) =0, [12.47]

U —
ESa—(L, t) = KU(L, 1) . [12.48]
X

U(x, t) is the longitudinal displacement solving the problem, p is the density,
E is the Young modulus and S is the section of the beam. Relation [12.48]
translates the elastic boundary condition of stiffness K applied at the end L. It
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makes it possible to treat the cases starting at the free end for K = 0 to the clamped
end for K — o0 .

In variational terms, the problem presents itself in the following light: find
U(x, 1) that verifies:

H(Ux, 1) = Ext { H(U(x. ) }. [12.49]

Hamilton’s functional is obtained by joining the beam and spring functionals:

YL 2
H(U(x, t)):j U pS(%Jj —5@[:] dx —%KUz(L t)} dt. [12.50]

t, \0
The functional base to consider is that of a clamped-free beam, since
displacement is not imposed in L. In the example given here, let us choose a
polynomial base:
0
UEL = Zan(t) XM . [12.51]

n=1

The index n =0 is excluded so that the boundary condition in x = 0 is verified.

12.5.3.Approximation with two terms
We choose a truncated functional base with two terms, that is:

Ux, t) =ay(t) x + a,(t) x2. [12.52]

Introducing this approximation into the functional [12.50] leads to:

W 4 B
(t)a(t) j—pS a—+2aa—+a2
2 ! 2 i 1827 T8

[12.53]

1 IERIE
-— ES[a%L+2ala2L2+a%4—J - —K(a, L +a,17)? |dt.
2 3 2
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The calculation of extremum provides the system with two degrees of freedom
[12.54]. To simplify calculations we take the case of unitary length:

pS/3  pS/4] (.. ES+K ES+K

4 a|_)0

Lt 4ES = : [12.54]
pS/4 pS/5 32 ES+K —3 +K a2 0

The two normal angular frequencies associated to [12.54] are calculated in a
classical fashion. We come to equation [12.55]:

pSES

(MQ§B~%¥FS@S+KNBO+ }+@S+K%E§J=0- [12.55]
240 3

If K is null, the model corresponds to a clamped-free beam, the calculation then
leads to the two normal angular frequencies:

0 = , E 1579 and o, = | E 5.67,
P P

These two values are to be compared with the exact angular frequencies:

En E 3n
o=, ——= and 0= [ ——.
\ p2 p 2

In the case where K tends towards infinity, the model corresponds to a
clamped-clamped beam. The calculation of the two roots of [12.55] leads to an
infinite normal angular frequency and to:

o = | Es16207.
p

This angular frequency is to be approximated to the exact normal pulsation:

’E
O =7 [—.
p
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When the stiffness of the boundary varies from 0 to infinity, the first normal

angular frequency of the model varies from f E 1.579 to } E 3.162, and the
P p

second pulsation varies from | — 5.67 ad infinitum.
p

This approach makes it possible to sweep boundary stiffness to infinity over all
the boundary conditions between the free and the clamped ends without modifying
the functional base, which remains that of the clamped-free beam. The
approximation over the first mode is completely correct; over the second mode it is
worse for the free end and is completely degraded for the clamped end. It should
also be noted that, at the numerical level, using very large rigidities K renders the
matrices ill conditioned and poses numerical problems. Thus, despite an apparent
simplicity, this technique comes up against the choice of the value K that needs to
be chosen to describe a clamped end correctly. Too low a value does not model a
clamped end, while too strong a value creates numerical problems; in fact the value
of K depends on the structure and the eigenfrequency considered, and it requires a
numerical study of the solutions in each considered case.

12.6. Convergence of the Rayleigh-Ritz method
12.6.1.Introduction

The property of convergence of the Rayleigh-Ritz method is important because
it largely explains the success of the method in this field. As we demonstrate,
normal angular frequencies converge by higher values when the functional space,
where the calculation of extremum is performed, grows. On a physical plane, the
reduction in the normal angular frequency when additional movements are allowed
amounts to releasing the system, making it more flexible. Let us note that this
property of convergence is specific to the Rayleigh-Ritz method based on
Hamilton’s functional and is not true if the variational formulation used is
Reissner’s functional.

12.6.2.The Rayleigh quotient

Let us consider Hamilton’s functional [12.1] describing the bending of beams.
To consolidate, let us adopt boundary conditions of clamped type at both ends. The
extremum of the functional is attained for the solution field of displacement
W(x,t) € WEE that verifies:
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H(W(x, 1) = Ext{ H(W(x,0) }.
Let us formulate equation [12.56] where A is a real number:

W(x, t) = W(X, t) + A v(x, 1) . [12.56]

We observe with [12.56] that, if A =0, W(x,t)= W(x,t) and thus that the
calculation of the extremum is provided by the condition:

% (HW + wx0) A =0)=0 Vv(x,1). [12.57]

This amounts to saying that the directional derivative of H is nil in W(x, t).

The calculation of the extremum of the functional [12.1] using [12.57] leads to
the result:

— | dxdt=0 V v(x0). [12.58]

By restricting the functions v(x,t) to verify the two conditions
v(x,ty) = v(x,t) =0, by integration by parts over time, the integral [12.58]
becomes:

t,

2w 2W 02v
v — EI

dxdt=0 Vv(x,t). [12.59]
0x2 0x2 0x2

L
t,0

We know that the solutions of the problem of free vibrations have the form:
W(x,t) = (A cos ot+Bsinot) f(x) [12.60]
where o is the normal angular frequency of mode n and f, (x) is the mode shape.

Let us further restrict the test functions v(x,t) to take the form [12.61], with
g(to) =g(t)=0:

v(x, t) = g(t) y(x). [12.61]
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Taking into account [12.60] and [12.61], the integral [12.59] becomes:

L L dzf d2
®2 St (x x)dx — | EI
“lp"()\v() l —

dx |[K, =0 [12.62]

where:

tI
K, = J(A sinw,t+B sino t) gt)dt,

ty

that is, finally:

L d2 f d2
I EI Y ix
, D dx2  dx2
o =2 Vy(x) . [12.63]
J' pS£ (x) w(x)dx
0

In the particular case where we take w(x)=1f,(x), we obtain the Rayleigh

quotient, which provides the normal angular frequency according to the mode
shape:

Lo(@f
IEI n | gx
0 dx2
=t [12.64]
[pst2ax
0

12.6.3.Introduction to the modal system as an extremum of the Rayleigh quotient

In this section, we present the method of calculation of the modal system
stemming from that of extremum of the Rayleigh quotient. Let us introduce the
functional Q (y(x)), called the Rayleigh quotient associated to the shape function
y(x) .
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Q(yx)=t——~t—. [12.65]
.[ pS y(x)? dx

0

Let us calculate the directional derivative of Q(y) when y(x)=f (x). We

obtain:
dQ(f. +2
g oeo-
[12.66]
L den dZW L R L L d2fn
.([EI o oo .([pS £2(x) dx—.!;pS f (x) y(x) dx I[EI oo | &
L 2
[IpS £2(x) dx]
0
Using the relation [12.63] we can give a simpler form of [12.66]:
dQ(f, +1y) (=0)=
d
[12.67]
L
. L (@ I pST, () y(x) dx
0)% IpS fg(x) dx — J‘EI e dx | 2 T
0 0 j pS £2(x) dx
0

Finally, with [12.64], we note that the directional derivative of Q is nil in
f (x):
n

dQ(f, +Ly)

A =0)= . 12.68
o A=0)=0 VYVy(x) [ ]

The Rayleigh quotient is stationary for each mode shape of the problem and its
value is equal to the corresponding normal angular frequency.
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02 = Bt a(yx) = a(f,x) [12.69]

where Y is the functional space of the admissible y(x) functions.

There arises the additional question of the nature of the extremum. To clear this
point up, it is necessary to calculate the second directional derivative leading to the
following result:

L d2 L
El dx—ooz.l‘pS\u2 dx
2 Q(f, +ry) ! dx? "
—dxz A=0)= T . [12.70]
[ 12 ax
0

Let us take the case of the first vibration mode (f](x) , 0 ):

L d2

L
dx — of J.pS\Vzdx
0

J' El
d? Q(f; + hy) 0 ) dx2

e 0) = [12.71]

L
[ps 2 ax
0

The normal angular frequency considered is the one with the smallest value;
consequently, the function fi(x) is the one returning the smallest possible Rayleigh
quotient and, thus, for any function y(x) we will have:

2
L dzw
J'EI — " ldx
0 dx?
W<l A [12.72]

L
jpS w2 dx
0

The consequence of this inequality for equation [12.71] is:

d2Q(f, + M)

-3 (A=0)20 Vy. [12.73]
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The extremum is thus a minimum for the first mode shape:
of = MM a(y) = 2 (f0). [12.74]

For higher order modes, this property does not apply directly, since the relation
[12.72] which characterizes «, is not true for other modes. It remains true if
functional space where the calculation of extremum is performed excludes the mode
shapes of lower order mode than the considered mode. For example, for mode 2, we
will calculate the extremum in the functional space Y!, excluding mode 1:
Y'=Y-{a f1 (x)} where a is a real number.

We then have:

o3 = 1\{[}1‘1 2 (yx) = 2 (f,x). [12.75]
In general:
Mi
o = YHT Q(yx)=Q(f,(x)) with : Y""'=Y"?~{a f,_,(x)}- [12.76]

Normal angular frequencies thus appear as minima of the Rayleigh quotient
taken in increasingly restricted functional spaces.

12.6.4. Approximation of the normal angular frequencies by the Rayleigh
quotient or the Rayleigh-Ritz method

Let us consider a sub-space of the size N of the space Y defined in section 12.6.3
and write it down as Yy . This sub-space is constructed, as in the Rayleigh-Ritz
method, by the linear combination of N basic kinematically admissible functions.
The calculation of the minimum of the Rayleigh quotient in the sub-space Yy leads
to an approximation u){‘I of the first mode of vibration:

o) = 1\4;“ Q(y(x) =2 (ENw)) [12.77]

where le(x) corresponds to an approximation of the mode shape f(x).
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Let us consider the sub-space of dimension N+1 of the functional space Y built
by adding one base function to the space Yy ; we thus have:

Y,

NCY

N+1-

Under these conditions, the approximation ®N*! obtained by minimizing the
Rayleigh quotient over Yy, is necessarily smaller than 0)}\I , since the minimum is
sought over a larger space containing Yy . We thus have:

oN > eN+1 [12.78]

The convergence of the Rayleigh quotient is thus carried out by a higher value
when we increase the size of the sub-space where the extremum is calculated.
Taking into account the identity of the solutions obtained using the Rayleigh
quotient and using the Rayleigh-Ritz method, the same applies to the latter.

The property is repeated for the higher order modes insofar as YN < YN*1; we
will have oN > oN+1.

We may thus conclude that the normal angular frequency obtained by the
Rayleigh-Ritz method converge by higher values. On the physical plane, this
tendency indicates an increased flexibility of the system when we increase the
number of basic functions. We may also state that limiting the possible movements
of the vibrating continuous medium by restricting the functional spaces where the
solution is sought amounts to blocking the possible movements through an added
stiffness, which leads to normal angular frequencies that are higher the more we
limit the possible movements.

12.7. Conclusion

In this chapter we have presented the most widespread Rayleigh-Ritz method
based on Hamilton’s functional. Compared to the method presented in the preceding
chapter it retains the same basic idea, which consists of building an equivalent
discrete system, although this approach has the advantage of leading to normal
angular frequencies converging by higher value, which is not the case when we use
the Reissner’s functional.
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The procedure consists of expressing vibratory displacements as a linear
combination of functions constituting a subspace of finite dimension of the
admissible functional space. This approach is at the origin of the finite elements
method, which, in fact, amounts to approximating the solutions with particular basic
functions.

We have also provided several simple examples to illustrate the important
aspects of the method and established the link with the Rayleigh quotient.
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