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X l l

(( L'impeto )) doe la propagazione della perturbazione del mezzo o, piu in generale, di un
qualsiasi elemento saliente (( e molto piu veloce che Wacqua, perche molte sono le volte che
Fonda fuggie il locho della sua creatione, e Wacqua non si muove di sito, a ssimilitudine delle
onde fatte il maggio nelle biade dal corso de venti, che ssi vede correre Vonde per le campagnie,
e le biade non si mutano di lor sito )).

(( The impetus )) that is, the propagation of the perturbation of the medium or, more gen-
erally, of any salient element (( is much faster than the water, because many are the times that
the wave escapes the place of its creation, and water stays in place, as the waves made in May
in the corn by the blowing of the wind, so that one can see the running waves in the fields and
the corn does not change place )).

Leonardo da Vinci (Del moto e misura dell'acqua)



Preface

(SECOND EDITION, REVISED AND EXTENDED)

This book presents the fundamentals of wave propagation in anisotropic, anelastic
and porous media. I have incorporated in this second edition a chapter about the analogy
between acoustic waves (in the general sense) and electromagnetic waves. The emphasis
is on geophysical applications for seismic exploration, but researchers in the fields of
earthquake seismology, rock acoustics, and material science, - including many branches
of acoustics of fluids and solids (acoustics of materials, non-destructive testing, etc.) -
may also find this text useful. This book can be considered, in part, a monograph, since
much of the material represents my own original work on wave propagation in anisotropic,
viscoelastic media. Although it is biased to my scientific interests and applications, I have,
nevertheless, sought to retain the generality of the subject matter, in the hope that the
book will be of interest and use to a wide readership.

The concepts of porosity, anelasticity1 and anisotropy in physical media have gained
much attention in recent years. The applications of these studies cover a variety of fields,
including physics and geophysics, engineering and soil mechanics, underwater acoustics,
etc. In particular, in the exploration of oil and gas reservoirs, it is important to predict the
rock porosity, the presence of fluids (type and saturation), the preferential directions of
fluid flow (anisotropy), the presence of abnormal pore-pressures (overpressure), etc. These
microstructural properties and in-situ rock conditions can be obtained, in principle, from
seismic and electromagnetic properties, such as travel times, amplitude information, and
wave polarization. These measurable quantities are affected by the presence of anisotropy
and attenuation mechanisms. For instance, shales are naturally bedded and possess in-
trinsic anisotropy at the microscopic level. Similarly, compaction and the presence of
microcracks and fractures make the skeleton of porous rocks anisotropic. The presence of
fluids implies relaxation phenomena, which causes wave dissipation. The use of modeling
and inversion for the interpretation of the seismic response of reservoir rocks requires an
understanding of the relationship between the seismic and electromagnetic properties and
the rock characteristics, such as permeability, porosity, tortuosity, fluid viscosity, stiffness,
dielectric permittivity, etc.

Wave simulation is a theoretical field of research that began nearly three decades ago,
in close relationship with the development of computer technology and numerical algo-

xThe term anelasticity seems to have been introduced by Zener (1948) to denote materials in which
"strain may lag behind stress in periodic vibrations", in which no permanent deformation occurs and
wherein the stress-strain relation is linear. Viscoelasticity combines the classical theories of elasticity and
Newtonian fluids, but is not restricted to linear behavior. Since this book deals with linear deformations,
anelasticity and viscoelasticity will be synonymous herein.

xiii



xiv PREFACE

rithms for solving differential and integral equations of several variables. In the field of
research known as computational physics, algorithms for solving problems using com-
puters are important tools that provide insight into wave propagation for a variety of
applications.

This book examines the differences between an ideal and a real description of wave
propagation, where ideal means an elastic (lossless), isotropic and single-phase medium,
and real means an anelastic, anisotropic and multi-phase medium. The first realization
is, of course, a particular case of the second, but it must be noted that in general, the
real description is not a simple and straightforward extension of the ideal description.

The analysis starts by introducing the constitutive equation (stress-strain relation)
appropriate for the particular rheology2. This relation and the equations of conservation
of linear momentum are combined to give the equation of motion, a second-order or a
first-order matrix differential equation in time, depending on the formulation of the field
variables. The differential formulation for lossy media is written in terms of memory
(hidden) variables or alternatively, fractional derivatives. Biot's theory is essential to
describe wave propagation in multi-phase (porous) media from the seismic to the ultra-
sonic frequency range, representative of field and laboratory experiments, respectively.
The acoustic-electromagnetic analogy reveals that different physical phenomena have the
same mathematical formulation. For each constitutive equation, a plane-wave analysis
is performed in order to understand the physics of wave propagation (i.e., calculation
of phase, group and energy velocities, and quality and attenuation factors). For some
cases, it is possible to obtain an analytical solution for transient wave fields in the space-
frequency domain, which is then transformed to the time domain by a numerical Fourier
transform. The book concludes with a review of the so-called direct numerical methods
for solving the equations of motion in the time-space domain. The plane-wave theory and
the analytical solutions serve to test the performance (accuracy and limitations) of the
modeling codes.

A brief description of the main concepts discussed in this book follows.

Chapter 1: Anisotropic elastic media. In anisotropic lossless media, the directions
of the wavevector and Umov-Poynting vector (ray or energy-flow vector) do not coincide.
This implies that the phase and energy velocities differ. However, some ideal properties
prevail: there is no dissipation, the group-velocity vector is equal to the energy-velocity
vector, the wavevector is normal to the wave-front surface, the energy-velocity vector is
normal to the slowness surface, plane waves are linearly polarized and the polarization of
the different wave modes are mutually orthogonal. Methods used to calculate these quan-
tities and provide the equation of motion for inhomogeneous media are shown. We also
consider finely layered and anomalously polarized media and the best isotropic approx-
imation of anisotropic media. Finally, the analysis of a reflection-transmission problem
and analytical solutions along the symmetry axis of a transversely isotropic medium are
discussed.

Chapter 2: Anelasticity and wave propagation. Attenuation is introduced in the

2From the Greek peu - to flow, and Xcqoq - word, science. Today, rheology is the science concerned
with the behavior of real materials under the influence of external stresses.
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form of Boltzmann's superposition law, which implies a convolutional relation between
the stress and strain tensors through the relaxation and creep matrices. The analysis
is restricted to the one-dimensional case, where some of the consequences of anelasticity
become evident. Although phase and energy velocities are the same, the group velocity
loses its physical meaning. The concept of centrovelocity for non-harmonic waves is dis-
cussed. The uncertainty in defining the strain and rate of dissipated-energy densities is
overcome by introducing relaxation functions based on mechanical models. The concepts
of memory variable and fractional derivative are introduced to avoid time convolutions
and obtain a time-domain differential formulation of the equation of motion.

Chapter 3: Isotropic anelastic media. The space dimension reveals other properties
of anelastic (viscoelastic) wave fields. There is a distinct difference between the inhomo-
geneous waves of lossless media (interface waves) and those of viscoelastic media (body
waves). In the former case, the direction of attenuation is normal to the direction of
propagation, whereas for inhomogeneous viscoelastic waves, that angle must be less than
TT/2. Furthermore, for viscoelastic inhomogeneous waves, the energy does not propagate
in the direction of the slowness vector and the particle motion is elliptical in general. The
phase velocity is less than that of the corresponding homogeneous wave (for which planes
of constant phase coincide with planes of constant amplitude); critical angles do not exist
in general, and, unlike the case of lossless media, the phase velocity and the attenuation
factor of the transmitted waves depend on the angle of incidence. There is one more
degree of freedom, since the attenuation vector is playing a role at the same level as the
wavenumber vector. Snell's law, for instance, implies continuity of the tangential compo-
nents of both vectors at the interface of discontinuity. For homogeneous plane waves, the
energy-velocity vector is equal to the phase-velocity vector.

Chapter 4: Anisotropic anelastic media. In isotropic media there are two well
defined relaxation functions, describing purely dilatational and shear deformations of the
medium. The problem in anisotropic media is to obtain the time dependence of the
relaxation components with a relatively reduced number of parameters. Fine layering has
an "exact" description in the long-wavelength limit. The concept of eigenstrain allows us
to reduce the number of relaxation functions to six; an alternative is to use four or two
relaxation functions when the anisotropy is relatively weak. The analysis of SH waves
suffices to show that in anisotropic viscoelastic media, unlike the lossless case: the group-
velocity vector is not equal to the energy-velocity vector, the wavevector is not normal
to the energy-velocity surface, the energy-velocity vector is not normal to the slowness
surface, etc. However, an energy analysis shows that some basic fundamental relations
still hold: for instance, the projection of the energy velocity onto the propagation direction
is equal to the magnitude of the phase velocity.

Chapter 5: The reciprocity principle. Reciprocity is usually applied to concentrated
point forces and point receivers. However, reciprocity has a much wider application po-
tential; in many cases, it is not used at its full potential, either because a variety of source
and receiver types are not considered or their implementation is not well understood. In
this chapter, the reciprocity relations for inhomogeneous, anisotropic, viscoelastic solids,
and for distributed sources and receivers are obtained. In addition to the usual relations
involving directional forces, it is shown that reciprocity can also be applied to a variety
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of source-receiver configurations used in earthquake seismology and seismic reflection and
refraction methods.

Chapter 6: Reflection and transmission coefficients. The SH and qP-qSV cases
illustrate the physics of wave propagation in anisotropic anelastic media. In general, the
reflected and transmitted waves are inhomogeneous, i.e., equiphase planes do not coincide
with equiamplitude planes. The reflected wave is homogeneous only when the symmetry
axis is perpendicular to the interface. If the transmission medium is elastic and the in-
cident wave is homogeneous, the transmitted wave is inhomogeneous of the elastic type,
i.e., the attenuation vector is perpendicular to the Umov-Poynting vector. The angle
between the attenuation vector and the slowness vector may exceed 90°, but the angle
between the attenuation and the Umov-Poynting vector is always less than 90°. If the
incidence medium is elastic, the attenuation of the transmitted wave is perpendicular to
the interface. The relevant physical phenomena are not related to the propagation direc-
tion (slowness vector), but rather to the energy-flow direction (Umov-Poynting vector) -
for instance, the characteristics of the elastic type inhomogeneous waves, the existence of
critical angles, and the fact that the amplitudes of the reflected and transmitted waves
decay in the direction of energy flow despite the fact that they grow in the direction of
phase propagation.

Chapter 7: Biot's theory for porous media. Dynamic porous media behavior is de-
scribed by means of Biot's theory of poroelasticity. However, many developments in the
area of porous media existed before Biot introduced the theory in the mid 50s. These in-
clude, for instance, Terzaghi's law, Gassmann's equation, and the static approach leading
to the concept of effective stress, much used in soil mechanics. The dynamical problem is
analyzed in detail using Biot's approach: that is, the definition of the energy potentials
and kinetic energy and the use of Hamilton's principle to obtain the equation of motion.
The coefficients of the strain energy are obtained by the so-called jacketed and unjack-
eted experiments. The theory includes anisotropy and dissipation due to viscodynamic
and viscoelastic effects. A short discussion involving the complementary energy theorem
and volume-average methods serves to define the equation of motion for inhomogeneous
media. The interface boundary conditions and the Green function problem are treated in
detail, since they provide the basis for the solution of wave propagation in inhomogeneous
media. The mesoscopic loss mechanism is described by means of White's theory for plane-
layered media developed in the mid 70s. An energy-balance analysis for time-harmonic
fields identifies the strain- and kinetic-energy densities, and the dissipated-energy densi-
ties due to viscoelastic and viscodynamic effects. The analysis allows the calculation of
these energies in terms of the Umov-Poynting vector and kinematic variables, and the
generalization of the fundamental relations obtained in the single-phase case (Chapter 4).
Measurable quantities, like the attenuation factor and the energy velocity, are expressed
in terms of microstructural properties such as tortuosity and permeability.

Chapter 8: The acoustic-electromagnetic analogy. The two-dimensional Maxwell's
equations are mathematically equivalent to the SH-wave equation based on a Maxwell
stress-strain relation, where the correspondence is magnetic field/particle velocity, electric
field/stress, dielectric permittivity/elastic compliance, resistivity/viscosity and magnetic
permeability/density. It is shown that Fresnel's formulae can be obtained from the re-



PREFACE xvii

flection and transmission coefficients of shear waves. The analogy is extended to three
dimensions. Although there is not a complete correspondence, the material properties
are mathematically equivalent by using the Debye-Zener analogy. Moreover, an electro-
magnetic energy-balance equation is obtained from viscoelasticity, where the dielectric
and magnetic energies are equivalent to the strain and kinetic energies. Other analo-
gies involve Backus averaging for finely layered media, the time-average equation, the
Kramers-Kronig dispersion relations, the reciprocity principle, Babinet's principle, Alford
rotation, and the diffusion equation describing electromagnetic fields and the behaviour
of the Biot quasi-static mode (the second slow wave) at low frequencies.

Chapter 9: Numerical methods. In order to solve the equation of motion by direct
methods, the model (the geological layers in exploration geophysics and seismology) is
approximated by a numerical mesh; that is, the model is discretized in a finite numbers
of points. These techniques are also called grid methods and full-wave equation methods,
since the solution implicitly gives the full wave field. Direct methods do not have restric-
tions on the material variability and can be very accurate when a sufficiently fine grid is
used. They are more expensive than analytical and ray methods in terms of computer
time, but the technique can easily handle the implementation of different strain-stress
laws. Moreover, the generation of snapshots can be an important aid in interpretation.
Finite-differences, pseudospectral and finite-element methods are considered in this chap-
ter. The main aspects of the modeling are introduced as follows: (a) time integration,
(b) calculation of spatial derivatives, (c) source implementation, (d) boundary conditions,
and (e) absorbing boundaries. All these aspects are discussed and illustrated using the
acoustic and SH wave equations. The pseudospectral algorithms are discussed in more
detail.

This book is aimed mainly at graduate students and researchers. It requires a basic
knowledge of linear elasticity and wave propagation, and the fundamentals of numerical
analysis. The following books are recommended for study in these areas: Love (1944),
Kolsky (1953), Born and Wolf (1964), Pilant (1979), Auld (1990a,b), Celia and Gray
(1992), Jain (1984) and Slawinski (2003). At the end of the book, I provide a list of
questions about the relevant concepts, a chronological table of the main discoveries and
a list of famous scientists, regarding wave propagation and its related fields of research.

Slips and errors that were present in the first edition have been corrected in the present
edition. This extends the scope of the book to electromagnetism by including Chapter
8. Other additions to the first edition include: the extension of anomalous polarization
to monoclinic media (Chapter 1), the best isotropic approximation of an anisotropic
elastic medium (Chapter 1), the analysis of wave propagation for complex frequencies
(Chapter 2), Burgers's mechanical model (Chapter 2), White's mesoscopic-attenuation
theory (Chapter 7), the Green function for surface waves in poroelastic media (Chapter
7), a Fortran code for the diffusion equation based on spectral methods, a Fortran code
for the numerical solution of Maxwell's equations, and other minor additions and relevant
recent references. Also, the history of science has been expanded by including researchers
and discoveries related to the theory of light and electromagnetic wave propagation.
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Errata for the first edition may be found on author's homepage, currently at:
http://www.ogs.trieste.it
Errata and comments may be sent to the author at the following:
jcarcione@libero.it
jcarcione@inogs.it
Thank you!
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Basic notation

We denote the spatial variables x, y and z of a right-hand Cartesian system by the
indices i , j , . . . = 1, 2 and 3, respectively, the position vector by x or by r, a partial
derivative with respect to a variable Xi with <%, and a first and second time derivative
with dt and d%t. For clarity in reading and ease in programming, the use of numbers
to denote the subindices corresponding to the spatial variables is preferred. The upper
case indices / , J , . . . = 1, . . . , 6 indicate the shortened matrix notation (Voigt's notation)
where pairs of subscripts (z, j) are replaced by a single number (/ or J) according to the
correspondence (11) -> 1, (22) -> 2, (33) -> 3, (23) = (32) -> 4, (13) = (31) -+ 5, (12)
= (21) —>• 6. Matrix transposition is denoted by the superscript "T" (it is not indicated
in two- and three-components vectors), y/—l by i, complex conjugate by the superscript
"*", the scalar and matrix products by the symbol "•", the vector product by the symbol
"x", the dyadic product by the symbol "(g)", and unit vectors by e ,̂ i = 1, 2, 3 if referring
to the Cartesian axes. The identity matrix in n-dimensional space is denoted by In. The
gradient, divergence, Laplacian and curl operators are denoted by grad [ • ], div [ • ],
A [ • ] and curl [ • ], respectively. The components of the Levi-Civita tensor e ^ are 1 for
cyclic permutations of 1,2 and 3, —1 if two indices are interchanged and 0 if an index is
repeated. The operators Re( • ) and Im( • ) take the real and imaginary parts of a complex
quantity (in some cases, the subindices R and / are used). The Fourier-transform operator
is denoted by T [ • ] or a tilde above the function. The convention is

'OO 1 /»OO

f(u)= I f(t)exp(-\wt)dt, f(t) = — f(v)exp(hjt)dt,
-oo ^ J —oo

where t is the time variable and UJ is the angular frequency. The Einstein convention
of repeated indices is assumed, but the notation / ( / ) or i(i) implies no summation. In
general, we express vectors and column matrices (arrays) by bold and lower case letters
and matrices and tensors by bold and upper case letters.



Glossary of main symbols

XXI

u
V

eij, eij

•&, e
d2

a {au (7i:j), S

P
C (cu)

M

e (ei)

P (Pu)
A/
s
K

k
a
a
r (Tij)

p
G

E
H
D
B
e

A

displacement vector.
particle-velocity vector.
strain components1.
dilatation.
deviator.
strain array (tensor).
stress array (tensor).
density.
elasticity matrix.
relaxation function2.
complex modulus.
relaxation times.
memory variable.
relaxation matrix.
complex stiffness matrix.
eigenstiffnesses.
slowness vector.
real wavenumber vector.
complex wavenumber vector.
attenuation vector3.
attenuation factor.
Kelvin-Christoffel matrix.
Umov-Poynting vector.
Green's function.

electric vector.
magnetic vector4.
electric displacement.
magnetic induction.
dielectric-permittivity tensor5.
conductivity tensor.
magnetic-permeability tensor.

T
V
E
b
Q
vp

V9

Venv

Ve

(j)

V
R

u w
u(/)
u(m)

c
w

KG

Cp

T
Y
ec
eB

n

K
E,

R
T

kinetic energy.
strain energy.
total energy.
rate of dissipated energy.
quality factor.
phase velocity.
group velocity.
envelope velocity.
energy velocity.
porosity.
viscosity.
permeability.
displacement of the solid.
displacement of the fluid.
displacement of the matrix
variation of fluid content.
relative fluid displacement.

a dry-rock moduli.
Gassmann's modulus.
pore compressibility.
tortuosity.
viscodynamic operator.
critical angle.
Brewster angle.

refraction index.
dielectric energy.
conductive energy.
magnetic energy.
internal (hidden) variable.
reflection coefficient.
transmission coefficient6.

j j J'J
2Also used to denote the angle of the energy-velocity vector.
3 Also used to denote the effective-stress-coefficient matrix.
4Also used to denote the propagation matrix.
5 e^ and e??: static and optical components; e0: dielectric permittivity of free space.
6 Also used to denote the kinetic energy.
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Chapter 1

Anisotropic elastic media

About two years since I printed this Theory in an Anagram at the end of my Book of the
Descriptions of Helioscopes, viz.ceiiinosssttuu,ideft, Ut tensio sic vis; That is The Power of any
Spring is in the same proportion with the Tension thereof: That is, if one power stretch[es] or
bend[s] it one space, two will bend it two, and three will bend it three, and so forward...

Heterogeneous motions from without are propagated within the solid in a direct line if they
hit perpendicular to the superficies or bounds, but if obliquely in ways not direct, but different
and deflected, according to the particular inclination of the body striking, and according to the
proportion of the Particles striking and being struck.

Robert Hooke (Hooke, 1678)

The stress-strain law and/or wave propagation in anisotropic elastic (lossless) me-
dia are discussed in several books, notably, Love (1944), Musgrave (1970), Fedorov
(1968), Beltzer (1988), Payton (1983), Nye (1985), Hanyga (1985), Aboudi (1991), Auld
(1990a,b), Helbig (1994) and Ting (1996). Crampin (1981), Winterstein (1990), Mavko,
Mukerji and Dvorkin (1998), Tsvankin (2001) and Cerveny (2001) provide a comprehen-
sive review of the subject with respect to seismic applications. In this chapter, we review
the main features of anisotropy in order to understand the physics of wave propagation
in anisotropic elastic media, and to provide the basis for the theoretical developments
regarding more complex rheologies, discussed in the next chapters.

1.1 Strain-energy density and stress-strain relation

Defining strain energy is the first step in determining the constitutive equations or stress-
strain relations, which provide the basis for the description of static and dynamic defor-
mations of physical media. Invoking the symmetry of the stress and strain tensors1, the
most general form of the strain-energy volume density is

6 6

(1.1)
I J>I

1See Auld (1990a) and Klausner (1991), and Nowacki (1986) for a theory of non-symmetric stress and
strain tensors.
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According to Voigt's notation,

7 = 1 , 2 , 3 , e7 = e^ = djUi + <%Uj, i ^ j (I = 4, 5,6), (1.2)

where itj are the displacement components, and ajj are 21 coefficients related to the
elasticity constants cu as a/(/) = c/(/) and a/j = 2c/j for / ^ J (Love, 1994, p. 100, 159).
Note that the strains in standard use are

7 = 1,2,3, e^ = - e ^ = -e 7 , z ̂  j (I = 4, 5,6). (1.3)

Alternatively, using the Cartesian components, the strain-energy density can be ex-
pressed in terms of a fourth-order elasticity tensor Cijki, as

2V = CijkieijSki, (1.4)

where the symmetries

reduce the number of independent elasticity constants from 81 to 21. The first and second
equalities arise from the symmetry of the strain and stress tensors. The last equality is
obtained by noting that the second partial derivatives of V are independent of the order
of differentiation with respect to the strain components (Auld, 1990a, p. 138, 144; Ting,
1996, p. 32).

The strain tensor can be expressed as e = Yleij ®» ® Gj- Let us consider a medium
that possesses at each point the (x, z)-plane as its plane of symmetry. This medium has
monoclinic symmetry. A reflection with respect to this plane (y —>• —y) should leave the
strain energy unaltered. Such a transformation implies 612 —>• —612 and 623 —>• —623, which
implies Cu = C\Q = C24 = C26 = C34 = c^e = C45 = c§§ = 0 (see Love, 1944, p. 154). The
result is

2V = cue?! + c22e22 + £33633 + 2 c i2ene22 + 2ci3eiie33 +

c66e
2
12 (1.6)

Similar reflections with respect to the other Cartesian planes of symmetry imply that
other coefficients become equal to each other. Thus, the number of coefficients required
to describe a medium possessing orthorhombic symmetry - three mutually orthogonal
planes of symmetry - is reduced. The result is

2V = cueli + c22e22 + £33633

c55e13 + c66e12. (1.7)

If the material possesses an axis of rotational symmetry - as in a transversely isotropic
medium - the strain energy should be invariant to rotations about that axis. Then,

2V = cn(e2
n + e\2) + c33el3 + 2(cn - 2c66)eiie22

(1.8)

(Love, 1944, p. 152-160; Helbig, 1994, p. 87).
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If the medium is isotropic, every plane is a plane of symmetry, and every axis is an
axis of symmetry. Consequently, some of the coefficients vanish, and we obtain

2V = en(e2
n + e2

22 + e\z) + 2(cu - 2c66)(ene22 + eneS3 + e22e33) + c66(e
2
12 + e2

13 + e^), (1.9)

where en = A + 2/i, and C66 = £i, with A and JJL being the Lame constants.
Alternatively, the strain energy for isotropic media can be expressed in terms of in-

variants of strain - up to the second-order. These invariants can be identified in equation
(1.9). In fact, this equation can be rewritten as

2V = cntf2 - 4c66w, (1.10)

where
= en + e22 + e33 (1.11)

and
ei3

or
e12 + e

13

are invariants of strain (Love, 1944, p. 43). These invariants are the coefficients of the
second and first powers of the polynomial in r, det(e — rl3) , where e = J^ eu ®« ® &/•
The roots of this polynomial are the principal strains that define the strain quadric - an
ellipsoid (Love, 1944, p. 41).

We know, a priori, (for instance, from experiments) that a homogeneous isotropic
medium "supports" two pure deformation modes, i.e., a dilatational one and a shear one.
These correspond to a change of volume, without a change in shape, and a change in
shape without a change of volume, respectively. It is, therefore, reasonable to follow the
physics of the problem and write the strain energy in terms of the dilatation # and the
deviator

\AJ \Jun n VAJQ n • I _L • _L TI /

J J ' \ s

where

are the components of the deviatoric strain tensor, with Sij being the components of the
Kronecker matrix. Since,

1 $
d2 = e2

n + e2
2 + e2

3 + - ( e 2
2 + e2

3 + e2
3) - — (1.16)

and w = (# /3) — cr/2, we have the following expression:

2V = (cn - ^cee j $2 + 2c66d
2. (1.17)

This form is used in Chapter 7 to derive the dynamical equations of poroelasticity.
Having obtained the strain-energy expression, we now consider stress. The stresses

are given by
dV

(1.18)
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(Love, 1944, p. 95) or, using the shortened matrix notation,

dV
, 1.19)

where
<T = ((7i,(72,<J3, CT4,Cr5, Og) = (<Tn, (722, ̂ 33, ̂ 23, (7l3, ̂ 12) • (1.20)

Having made use of the standard strain components from the outset, and having calculated
the stresses as â - = dV/deij from equation (1.4), we are required to distinguish between
(ij) and (ji) components (i ^ j). However, the use of Love's notation, to express both
the strain components e^ and the form (1.1), avoids the necessity of this distinction.

Using the Cartesian and shortened notations, we can write Hooke's law for the anisotropic
elastic case as

(1-21)

and
(1.22)

respectively.

1.2 Dynamical equations

In this section, we derive the differential equations describing wave propagation in terms
of the displacements of the material. The conservation of linear momentum implies

\ui (1.23)

(Auld, 1990a, p. 43), where U{ are the components of the displacement vector, p is the
mass density and fi are the components of the body forces per unit volume. Assuming a
volume £1 bounded by a surface S, the volume integral of equation (1.23) is the balance
between the surface tractions on S - obtained by applying the divergence theorem to dj<Jij
- and the body forces with the inertia term pd\tUi. Equations (1.23) are known as Euler's
equations for elasticity, corresponding to Newton's law of motion for particles.

The substitution of Hooke's law (1.21) into equation (1.23) yields

dj(cijfd6kl) + fc = pd%Ui. (1.24)

In order to use the shortened matrix notation, we introduce Auld's notation (Auld,
1990a,b) for the differential operators. The symmetric gradient operator has the following
matrix representation

' i 0 0 0 d3 d2

V = ( 0 d2 0 d3 0 <9i ) . (1.25)
0 0 a3 92 9i 0

The strain-displacement relation (1.2) can then be written as

•Te = V ' • u, (e/ = V/JUJ)> (1.26)
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with

e = (ei, e2, e3, e4, e5, e6)T = (en, e22, e33, e23, ei3, e i 2)T = (en, e22, e33, 2e23,2ei3, 2e i2)T.
(1.27)

The divergence of the stress tensor <%cr̂  can be expressed as V • <r, and equation (1.23)
becomes

V-<r + f = /*%>, (1.28)

where a is defined in equation (1.20), and where

(1.29)

and
(1-30)

Similarly, using the matrix notation, the stress-strain relation (1.22) reads

(1.31)

with the elasticity matrix given by

C =

/ cll C12 C13 C14 C15 Ci6 \

Cl2 C22 C23 C24 C25 C26

Cl3 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

Cl5 C25 C35 C45 C55 C56

Cl6 C26 C36 C46 C56 Cs6

(1.32)

The zero strain state corresponds to static equilibrium with minimum strain energy (V =
0). Because this energy must always increase when the medium is deformed, we have
CIJ^I^J > 0. Mathematically, this expression involving non-zero components ej defines
a positive definite quadratic function, which, by definition, imposes some constraints on
the elasticity constants (stability condition, see Auld, 1990a, p. 147, and Ting, 1996, p.
56); namely, all principal determinants should be greater than zero,

cI(I) > 0, det ( C / ( / ) °IJ ) > 0, . . . det(c/j) > 0. (1.33)
V cu CJ{J) )

Alternatively, the strain-energy density can be expressed in terms of the eigenvalues
of matrix C, namely, A/ , / = 1,...6, called eigenstiffnesses (Kelvin, 1856) (see Section
4.1 in Chapter 4); that is, 2V = A/eJ • ej, wherein ej are the eigenvectors or eigenstrains.
It is clear that a positive strain energy implies the condition A/ > 0 (see Pipkin, 1976).

Equations (1.26), (1.28) and (1.31) combine to give

V • [C • (VT • u)] + f = pdfcu, (1.34)

or
J- \ 7 U. \ 1 — PU++ U.. 1 1 V ? 1 t61 n^ /? — (JU++ Ubo ) . I l . O J J

where
•Tr v = v • c • v •, (rVii = VucuVjj) (i.36)

is the 3 x 3 symmetric Kelvin-Christoffel differential-operator matrix.
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1.2.1 Symmetries and transformation properties

Differentiation of the strain energies (1.6), (1.7) and (1.8), in accordance with equation
(1.18) yields the elasticity matrices for the monoclinic, orthorhombic and transversely
isotropic media. Hence, we obtain

C (monoclinic)

/ en

Cl2

Cl3

0

0

Cl2

C23

0
C25

0

C23

C33

0
C35

0

0
0
0

C44

0
C46

C25

C35

0
C55

0

0 \
0
0

C46

0
C66

(1.37)

C (orthorhombic)

en
C12

Cl3

0
0
0

C12

C22

C23

0
0
0

Cl3

C23

C33

0
0
0

0
0
0

C44

0
0

0
0
0
0

C55

0

0
0
0

C66 j

(1.38)

and

f en
C12

C (transversely isotropic) =

C12

Cll

0
0

V 0

0
0
0

Cl3

Cl3

C33

0
0
0

0
0
0

0
0

0
0
0
0

C55

0

0
0
0
0

C66

2c66 = en - C12, (1.39)

which imply 13, 9 and 5 independent elasticity constants, respectively. In the monoclinic
case, the symmetry plane is the (x, 2;)-plane. A rotation by an angle 9 - with tan(20) =

— C44) - about the y-axis removes C^Q, SO that the medium can actually be
described by 12 elasticity constants. The isotropic case is obtained from the transversely
isotropic case, where en = C33 = A + 2/z, C55 = CQQ = ji and C13 = A, in terms of the
Lame constants. The aforementioned material symmetries are enough to describe most
of the geological systems at different scales. For example, matrix (1.39) may represent a
finely layered medium (see Section 1.5), matrix (1.38) may represent two sets of cracks
with crack normals at 90°, or a vertical set of cracks in a finely layered medium, and
matrix (1.37) may represent two sets of cracks with crack normals other than 0° or 90°
(Winterstein, 1990).

Let us consider the conditions of existence for a transversely isotropic medium accord-
ing to equations (1.33). The first condition implies en > 0, C33 > 0, C55 > 0 and CQQ > 0;
the second-order determinants imply c\x — c\2 > 0 and C11C33 — cf3 > 0; and the relevant
third-order determinant implies (c
can be combined into

2
11

ci2)c33 ~~ 2cf3(cn — C12) > 0. All these conditions

> C12 + Ci2)c33 > C55 > 0 (1.40)

In isotropic media, expressions (1.40) reduce to

3A + 2/x > 0, 2/i > 0, (1.41)
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where these stiffnesses are the eigenvalues of matrix C, the second eigenvalue having a
multiplicity of five.

It is useful to express explicitly the equations of motion for a particular symmetry
that are suitable for numerical simulation of wave propagation in inhomogeneous media.
The particle-velocity/stress formulation is widely used for this purpose. Consider, for
instance, the case of a medium exhibiting monoclinic symmetry. From equations (1.34)
and (1.37), we obtain the following expressions.

Particle velocity:

(1-42)

Stress:

dto22 = ci2divi + c22d2v2

c2Zd2v2 4 .

c25d2v2

d3v2)

where the particle-velocity vector is

= dtu = (dtui, dtu2, dtu3). (1.44)

Symmetry plane of a monoclinic medium

In the (#,z)-plane (d2 = 0), we identify two sets of uncoupled differential equations

(1-45)

and

(1.46)

The first set describes in-plane particle motion while the second set describes cross-plane
particle motion, that is, the propagation of a pure shear wave. Using the appropriate
elasticity constants, equations (1.45) and (1.46) hold in the three symmetry planes of an
orthorhombic medium, and at every point of a transversely isotropic medium, by virtue
of the azimuthal symmetry around the z-axis. The uncoupling implies that a cross-plane
shear wave exists at a plane of mirror symmetry (Helbig, 1994, p. 142).

Equations (1.42) and (1.43) can be restated as a matrix equation

(1.47)
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where
T

1(Ji2i&Z?>i<3'l?>->O\Z-)Oy2) (1-48)

is the 9 x 1 column matrix of the unknown field,

T/rf=(/i , /2,/3,0,0,0,0,0,0)1 (1.49)

and H is the 9 x 9 differential-operator matrix. The formal solution of equation (1.47) is

y(t) = exp(Ht) • y0 + exp(Hi) * f(t), (1.50)

where y0 is the initial condition. A numerical solution of equation (1.50) requires a
polynomial expansion of the so-called evolution operator exp(Hi) in powers of Ht. This
is shown in Chapter 9, where the numerical methods are presented.

It is important to distinguish between the principal axes of the material and the
Cartesian axes. The principal axes - called crystal axes in crystallography - are intrinsic
axes, that define the symmetry of the medium. For instance, to obtain the strain energy
(1.7), we have chosen the Cartesian axes in such a way that they coincide with the
three principal axes defined by the three mutually orthogonal planes of symmetry of the
orthorhombic medium. The Cartesian axes may be arbitrarily oriented with respect to
the principal axes. It is, therefore, necessary to analyze how the form of the elasticity
matrix may be transformed for use in other coordinate systems.

The displacement vector and the strain and stress tensors transform from a system
(x, y, z) to a system (#', y', z') as

/ /-i r-i \

OAA — CLjkCLniOhi, 11.01)

where

cl — I $21 C&22 $23 I (1.52)

is the orthogonal transformation matrix. Orthogonality implies a 1 = aT and a a T = I3;
det(a) = 1 for rotations and det(a) = — 1 for reflections. For instance, a clockwise rotation
through an angle 9 about the z-axis requires an = 022 = cos 9, a\2 = — 021 = s m 05

 a33 = lj
and 013 = 023 = G Î = 032 = 0. The transformations (1.51) provide the tensorial character
for the respective physical quantities - first rank in the case of the displacement vector,
and second rank in the case of the strain and stress tensors.

After converting the stress components to the shortened notation, each component of
equation (1.51) must be analyzed individually. Using the symmetry of the stress tensor,
we have

where
,2 JI

M =

an a12 <2i3

(22i ^22 ^23 2(222^23 2(223(221 2(221 ^22

a31 a32 a33 2a32a33 2a3 3a3 i 2a3ia32

+
\

(1.54)
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(Auld, 1990a, p. 74). Due to the 1/2 factor in e^ (see equation (1.3)), the transformation
matrix for the strain component is different from M. We have

e' = N • e, (1.55)

where

N =

a
a

21
2
31

a
a

12
2
22 a

a
23
2
33

2^22^32

2^32^12

&22&33 + &23a32 &21&33 + 023(231

0,210,22

+

(1.56)
(Auld, 1990a, p. 75). Matrices M and N are called Bond matrices after W. L. Bond who
developed the approach from which they are obtained.

Let us now find the transformation law for the elasticity tensor from one system to
the other. From equations (1.31), (1.53) and (1.55), we have

a1 = C • e', C = M • C • N - i (1.57)

Because matrix a in (1.52) is orthogonal, the matrix N l can be found by transposing all
subscripts in equation (1.56). The result is simply MT , and (1.57) becomes

C = M • C • MT. (1.58)

Transformation of the stiffness matrix

In the current seismic terminology, a transversely isotropic medium refers to a medium
represented by the elasticity matrix (1.39), with the symmetry axis along the vertical
direction, i.e., the z-axis. By performing appropriate rotations of the coordinate system,
the medium may become azimuthally anisotropic (e.g., Thomsen, 1988). An example is
a transversely isotropic medium whose symmetry axis is horizontal and makes an angle
9 with the #-axis. To obtain this medium, we perform a clockwise rotation by TT/2
about the y-axis followed by a counterclockwise rotation by 9 about the new 2;-axis. The
corresponding rotation matrix is given by

a =
cos 9 — sin 0 0

9 cos 0 0
0 0 1

0 0 - 1
0 1 0
1 0 0

0 - s i n 0
0 cos6>
1 0

(1.59)

The corresponding Bond transformation matrix is

M =

0
1
0
0

sin20
COS20

0
0
0

COS20

sin20
0
0
0

\ sin(20)

sin(20)
- sin(20)

0
0
0

-cos (20)

0
0
0
sin0
COS0

0

0

0
0

cos0
- sin0

\

(1.60)
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Using (1.58), we note that the elasticity constants in the new system are

c''n = c33 cos4 0 + |(ci3 + 2c55) sin2 (20) + cn sin4 0
= | [ c n + 6ci3 + C33 - 4c55 - (cn - 2ci3 + C33 - 4c55) cos(40)]ci2 | [ c n + 6 c i 3 + C33

c'13 = C13 cos2 0 + C12 sin2

cie = i[—Cn + c33 + (cn - 2ci3 + C33 - 4c55) €08(20)] sin(20)
C22 — c n c o s 4 ^ + 2 (Cl3 + 2c55) s m 2 (20) + C33 sin4 0
C23 = ci2 c o s 2 ^ + ci3 s m 2 ^

C33 - (cn - 2ci3 + c33 - 4c55) cos(20)] sin(20) (1.61)
33 = CC
33 H

C36 = | ( c i 3 - C i 2 ) s i n ( 2 0 )
C44 = | ( c n - C12) cos2 0 + c55 sin2 0

| ( ) ( )
os 0 + c55 s 0
+ 2c55) sin(20)
in2 0 + c55 cos2 0

+ C33 + 4c55 - (cn

45 | ( n i 2
C55 = | ( c n - ci2) sin2 0

| C33 + 4c55 - (cn - 2ci3 + C33 - 4c55) cos(40)]

and the other components are equal to zero.

1.3 Kelvin-Christoffel equation, phase velocity and
slowness

A plane-wave analysis yields the Kelvin-Christoffel equations and the expressions for the
phase velocity and slowness of the different wave modes. A general plane-wave solution
for the displacement vector of body waves is

u = Uoexp[i(o;t — K • x)], (1.62)

where Uo represents a constant complex vector, u is the angular frequency and K is the
wavenumber vector or wavevector. We recall that when using complex notation for plane
waves, the field variables are obtained as the real part of the corresponding wave fields.
The particle velocity is given by

v = dtu = icou. (1.63)

In the absence of body forces (f = 0), we consider plane waves propagating along the
direction

(1.64)

(or (Zi, l2,13)), where /1, I2 and J3 are the direction cosines. We have

= «(Ji, k, k) = «K, (1.65)

where K, is the magnitude of the wavevector. In this case, the time derivative and the
spatial differential operator (1.25) can be replaced by

dt -> \UJ (1.66)

and
' h 0 0 O / 3 / 2

V -)• - i « ( 0 l2 0 h 0 h I = - i«L, (1.67)
0 0 h h h 0
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respectively.
Substitution of these operators into the equation of motion (1.35) yields

K2T • u = pcu2u, (t^TijUj = pco2Ui), (1.68)

where
= L C LT, (1.69)

is the symmetric Kelvin-Christoffel matrix . Defining the phase-velocity vector as

v = Vpk, vp = - , (1-70)

we find that equation (1.68) becomes an "eigenequation" (the Kelvin-Christoffel equa-
tion),

( r - pv2
ph) • u = 0 (1.71)

for the eigenvalues (pv2)m and eigenvectors (u)m, m = 1,2,3. The dispersion relation is
given by

det(r - pv2l3) = 0. (1.72)

In explicit form, the components of the Kelvin-Christoffel matrix are

Ti l — C n ^ + CQQ12 + C55/3 + 2C56^3 + 2C15/3/1 +

+ cull + C33II + 2c34^3 + 2c35/3/i + 2c45/i/2

l § (C46 + C25)/2^3 + (C14 + £55)

(C45 + C 3 6 ) ^ 3 + (C13 + £55)^1 + (C14 + C56)

(C36 + C45)^3^1 + (C25

The three solutions obtained from considering m = 1,2,3 correspond to the three body
waves propagating in an unbounded homogeneous medium. At a given frequency u,
Vp(h, 1*2, h) defines a surface in the wavenumber space as a function of the direction cosines.
The slowness is defined as the inverse of the phase velocity, namely as

s = - = - . (1.74)
U Vp

Similarly, we can define the slowness surface s(li,l2,h). The slowness vector is closely
related to the wavevector by the expression

s = — = sk.

1.3.1 Transversely isotropic media

Let us consider wave propagation in a plane containing the symmetry axis (z-axis) of a
transversely isotropic medium. This problem illustrates the effects of anisotropy on the
velocity and polarization of the body waves. For propagation in the (x, z)-plane, l2 = 0
and equation (1.71) reduces to

i - pv2 o r1 3

0 r2 2 - pv2
v 0 I • I u2 I = 0, (1.76)2

p
13 v i 3 3 r~vri, o r - 2
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or

culi+ c55ll - pv'j
0

(Cl3 + Cv&)hh

2
3

+
0

0

(Cl3 + C55)Z J 3

w2 0
c 3 3 / 3 + 055^ — /;

= 0. (1.77)

We obtain two uncoupled dispersion relations

+ cbbl\ - pvl){cS3ll + c55/2
(ci3 + C55)2/2/2, = 0,

giving the phase velocities

vp3

| + C55 C
(1.79)

4[(Ci3

From equation (1.77), we see that the first solution has a displacement (or polarization)
given by (0,1*2,0), which is normal to the (x, z)-jAan.e of propagation. Therefore, this
solution describes a pure shear wave - termed SH wave in the geophysical literature -
with H denoting horizontal polarization if the £-axis is oriented in the vertical direction.
Note that the dispersion relation (1.78)i can be written as

p/cm
= 1, (1.80)

where s\ = s^li and 53 = s^^/3, with s^ = \/vpi. Hence, the slowness surface is an
ellipse, with semiaxes P/CQQ and p/c^ along the x- and ^-directions, respectively.

For the coupled waves, the normalized polarizations are obtained from equation (1.76)
by using the dispersion relation (1.78)2- Hence, we obtain

Ui

us
2
V

(1.81)

Using the fact that lf + l% = 1, as well as equations (1.79) and (1.81), we can identify the
wave modes along the x and z axes, which may be written as

x
x

axis (11 = 1), pVp2 = C55,
2 =

u\ = 0, —>• S wave

axis (li = 1), /w2
3 = en, us = 0, ->> P wave

2; — axis (Ji = 0) , /??;22 = C55, w3 = 0, —>• S wave

— axis (li = 0), /w2
3 = c33, u\ = 0, —>• P wave.

These expressions denote pure mode directions for which the polarization of the P wave
coincides with the wavevector direction and the S-wave polarization is normal to this
direction. There exists another pure mode direction defined by

4. 2 n C33 — 2C55 — C13 • / j \
tan 8 = , v = arcsm(/i)

en - 2c55 - c
(1.83)
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(Brugger, 1965), which extends azimuthally about the z-axis. The polarizations along
the other directions are not parallel or perpendicular to the propagation directions, and,
therefore, the waves are termed quasi P and quasi S . The latter is usually called the
qSV wave, with V denoting the vertical plane if the z-axis is oriented in the vertical
direction. The (x, y)-plane of a transversely isotropic medium is a plane of isotropy,
where the velocity of the SV wave is y/c^/p and the velocity of the SH wave is
The velocity of the compressional wave is y/cn/p.

1.3.2 Symmetry planes of an orthorhombic medium

In the symmetry planes of an orthorhombic medium, the physics of wave propagation is
similar to the previous case, i.e., there is a pure shear wave (labeled 1 below) and two
coupled waves.

The respective slowness surfaces are:

(re, ?/)-plane (l\ = sin0, l2 = cosO):

(en/?

(re, z)-plane (l\ = sin 0, l3 = cos 0):

\ll = 0;

+ cull -pv% =
(en/? + c5 5 / | - pv2

p)(c^ll + chhl\ - pv2
p) - (ci3 + cbb)

2l\l\ = 0;

(y, 2;)-plane (I2 = sin#, Z3 = cos#):

=

(C22I2 = 0.

The corresponding phase velocities are:

(re, |/)-plane:

Vpi = yj'(p)-1 (C55/J + C44/2)

c6 6

(1.87)

cm)l2
2 - (en - c66)/?]2 + 4[(ci2

(rr,

C33/I + C55

C55TC

C = V/[(C33 - C55)11 - (en - C55)/?]2 + 4[(ci3

Vp2 =
(1.89)

C = y/[(c33 - C44K3 - (C22 - C44)/|]2 + 4[(C23
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Angle 6 is measured from the y-axis in the (x, y)-plane, and from the z-axis in the (x, z)-
and (y, z)-planes.

The velocities along the principal axes are:

(x, £/)-plane:

v(o°) = ̂ s(o°) =
v ( 9 0 ° ) = vps(90°) =

°) = t)PqS(90°) =

1.3.3 Orthogonality of polarizations

In order to determine if the polarizations of the waves are orthogonal, we consider two
solutions "a" and "b" of the eigensystem (1.71)

T • u0 = /WpOua, T • Uf, = pvlbub, (1.93)

and take the scalar product from the left-hand side with the displacements ub and ua,
respectively,

ub - T • ua = pVpaub • ua, ua • r • ub = pVpbua • u6. (1.94)

Since V is symmetric, we have ub • T • ua = ua • F • u ,̂. Subtracting one equation from the
other, we get

l l Ua = 0. (1.95)

If the phase velocities are different, we have u& • ua = 0 and the polarizations are orthog-
onal. Note that this property is a consequence of the symmetry of the Kelvin-Christoffel
matrix.
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1.4 Energy balance and energy velocity

Energy-balance equations are important for characterizing the energy stored and the
transport properties in a field. In particular, the concept of energy velocity is useful in
determining how the energy transferred by the wave field is related to the strength of the
field, i.e., the location of the wave front. Although, in lossless media, this velocity can be
obtained from "kinematic" considerations - we shall see that the group and the energy
velocities are the same - an analysis of this media provides a basis to study more complex
situations, such as wave propagation in anelastic and porous media.

The equation of motion (1.28) corresponding to the plane wave (1.62) is

• cr = iu;/jv, (1.96)

where we assumed no body forces and used equations (1.66) and (1.67). The scalar
product of —v* and equation (1.96) is

—ACV* • L • cr = uopv* - v. (1-97)

Moreover, the strain-displacement relation (1.26) is replaced by

T= - « L ' -v. (1.98)

The scalar product of the complex conjugate of equation (1.98) and cr gives

-K(TT • LT • v* = UJ(TT • e*. (1.99)

The left-hand sides of equations (1.97) and (1.99) coincide and can be written in terms
of the Umov-Poynting vector2 (or power-flow vector)

-y I Oil 012 013

- I 012 cr22 023 ) -V* (1.100)

023 033

as
(1.101)

and
T _*e*. (1.102)

Adding equations (1.101) and (1.102), we get

T4K • p = w(pv* • v + cr ' • e*), (1.103)

or, using the stress-strain relation (1.31) and the symmetry of C, we obtain

* v + eT4K • p = u(pv* - v + e T • C • e*). (1.104)

For generic field variables a and b, and a symmetric matrix D, the time average over a
cycle of period 2TT/U has the following properties:

T(Re(aT) • Re(b)) = i l le (a T • b*) (1.105)
2Vector of the density of energy flux introduced independently by N. Umov in 1874 and J. Poynting

in 1884 (Alekseev, 1986).
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(Booker, 1992), and

(Re(aT) • Re(D) • Re(a)) = ±Re(aT • D • a*),
(Re(aT) • Im(D) • Re(a)) = ±Im(aT • D a*) l U }

(Carcione and Cavallini, 1993). Using equation (1.105), we obtain the time average of the
real Umov-Poynting vector (1.100), namely

-Re(S)-Re(v) , (1.107)

where

022 023 I 5 (1.108)

013 023 033

IS

(p) = Re(p), (1.109)

which represents the magnitude and direction of the time-averaged power flow.
We identify, in equation (1.104), the time averages of the kinetic- and strain-energy

densities, namely,

(T) = -(Re(v) • Re(v)) = jRe(v* • v) (1.110)

and

(V) = i(Re(eT) • C • Re(e)> = iRe(eT • C • e*). (1-1H)

The substitution of equations (1.110) and (1.111) into the real part of equation (1.104)
yields the energy-balance equation

K • <p) = u{{T) + (V)) = u{(T + V)) = u(E), (1.112)

where (E) is the t ime-averaged energy density.
The wave surface is the locus of the end of the energy-velocity vector multiplied by

one uni t of propagat ion t ime, with the energy-velocity vector defined as the rat io of the
time-averaged power-flow vector (p) to the to ta l energy density (E). Because this is
equal to the sum of the t ime-averaged kinetic- and strain-energy densities (T) and (V) ,
the energy-velocity vector is

<P> < P ) . (1.113)ve =
(E) {T

Using this definition, we note that equation (1.112) gives

-ve = Vp, ( s -v e =

where vp and s are the phase velocity and slowness vector defined in equations (1.70)
and (1.75), respectively. Relation (1.114) means that the phase velocity is equal to the
projection of the energy velocity onto the propagation direction. The wave front is associ-
ated with the higher energy velocity. Since, in the elastic case, all the wave surfaces have
the same velocity - there is no velocity dispersion - the concepts of wave front and wave
surface are the same. In anelastic media, the wave front is the wave surface associated
with the unrelaxed energy velocity.



1.4 Energy balance and energy velocity 17

Equation (1.113) allows further simplifications. Let us calculate the time averages of
the kinetic and strain energies explicitly. The substitution of equation (1.62) into equation
(1.110) yields

(T) = ^puj2\u0\
2. (1.115)

From equations (1.26) and (1.67), we have

T u, (1.116)

which implies
eT • C • e* = «2u • L • C • LT • u* = «2u • T • u*, (1.117)

where we have used equation (1.69). In view of the complex conjugate of equation (1.68),
equation (1.117) can be written as

e T • C • e* = pu2u • u* = pco2\u0\
2. (1.118)

Using this relation, we find that the time-averaged strain-energy density (1.111) becomes

2 2 (1.119)

Hence, in elastic media, the time averages of the strain- and kinetic-energy densities are
equal and the energy-velocity vector (1.113) can be simplified to

(1.120)

It can be shown that for a traveling wave, whose argument is t — s • x - the plane wave
(1.62) is a particular case - the instantaneous kinetic- and strain-energy densities are the
same. On the other hand, an exchange of kinetic and potential energies occurs in forced
oscillators (exercise left to the reader).

1.4.1 Group velocity

A wave packet can be seen as a superposition of harmonic components. In general, each
component may travel with a different phase velocity. This is not the case in homogeneous
elastic media, since the phase velocity is frequency independent (see, for instance, the
transversely isotropic case, equation (1.79)). Following the superposition principle, the
wave packet propagates with the same velocity as each harmonic component. However, the
relation between the group and the energy velocities, as well as the velocity of propagation
of the pulse as a function of the propagation direction, merits careful consideration.

Let us consider two harmonic components "a" and "b" given by

u = Uo[cos(uat — Kax) + cos(a;&t — /c&rc)], (1.121)

and assume that the frequencies are slightly different

(1.122)
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Equation (1.121) can then be written as

u = 2UQ COS - (5u) t — 6k x) cos(wt — KX), (1.123)

where

(1.124)

The first term in equation (1.123) is the modulation envelope and the second term is the
carrier wave, which has a phase velocity equal to u)/R. The velocity of the modulation
wave is equal to 5CU/5K, which, by taking the limit R —» 0, gives the group velocity

duo
vg = (1.125)

Generalizing this equation to the 3-D case, we obtain the group-velocity vector

duo duo
9 gi (1.126)

(Lighthill, 1964; 1978, p. 312)
In general, the dispersion relation u = o;(/Cj) is not available in explicit form. For

instance, using equations (1.65) and (1.70), we note that equation (1.78)2 has the form

- pUO ) - (C i 3 + C55) « ! « , = 0. (1.127)

In general, we have, from (1.71),

2T \ _- pu%) = F(u, Ki) = 0

Using implicit differentiation, we have for each component

(1.128)

duo
= 0, (1.129)

which is obtained by keeping the other components constant. Thus, the final expression
of the group velocity is

dF
duo

- l dF dF
dK,'

dF
du

- i

9
dF

duo

- i dF
(1.130)

1.4.2 Equivalence between the group and energy velocities

In order to find the relation between the group and energy velocities, we use Cartesian
notation. Rewriting the Kelvin-Christoffel matrix (1.69) in terms of this notation, we get

ij — ^ij (1.131)
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We have, from equation (1.68), after using (1.62) and (1.65),

.2
pLO UOi = CijklKjKkUQl- (1.132)

Differentiating this equation with respect to Kj, we obtain

duo
uoi = 2cijklK,kuol, (1.133)

since d(KjKk)/dK,j = K,k + KjSjk — 2«jfc. Taking the scalar product of equation (1.133) and
uj i? and using the definition of group velocity (1.126), we obtain

V93 (1.134)

On the other hand, the Cartesian components of the complex power-flow vector (1.100)
can be expressed as

Pj = -2a3ivi- (1.135)

Using the stress-strain relation (1.21) and v* = —icuu*, we have

(1.136)

The strain-displacement relations (1.2) and (1.3) imply

^ c { d U + dU)u* = --UCjikl(KiUk + KkUt)u*, (1.137)

where we have used the property d\uk = —iniuk (see equation (1.67)). Using the symmetry
properties (1.5) of c%jkh w e n°te that equation (1.137) becomes

ajiVi = -VCijklKlUkUi = -UCijkiKkUiU*. (1.138)

The Cartesian components of the energy velocity (1.120) can be obtained by using equa-
tions (1.62), (1.109), (1.119), (1.135) and (1.138). Thus, we obtain

i_
2 " 'v,4 = — ' — 7T- = -^ 5 ^ , (1.139)

U Q
 l pUO U Q

which, when compared to equation (1.134), shows that, in elastic media, the energy
velocity is equal to the group velocity, namely,

ve = v5. (1.140)

This fact simplifies the calculations since the group velocity is easier to compute than the
energy velocity.
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1.4.3 Envelope velocity

The spatial part of the phase of the plane wave (1.62) can be written as n • x = K{1\X +
hy + hz)- An equivalent definition of wave surface in anisotropic elastic media is given
by the envelope of the plane

(Love, 1944, p. 299), because the velocity of the envelope of plane waves at unit propa
gation time, which we call venv, has the components

Q

and
Venv Z2. (1.143)

To compute the components of the envelope velocity, we need the function vp = vp(li),
which is available only in simple cases, such as those describing the symmetry planes (see
equations (1.87)-(1.89)). However, note that vp = CO/K and ̂  are related by the function
F defined in equation (1.128), since using (1.131) and dividing by «6, we obtain

= det(cijkilkli - pVpSij), (1.144)

and UJ and «i, and vp and U are related by the same function. Hence,

Venv)i = T7T = TT~ = Vgi = Vei (1.145)

from (1.140), and, in anisotropic elastic media, the envelope velocity is equal to the group
and energy velocities.

If we restrict our analysis to a given plane, say the (x, z)-plane (I2 = 0), we obtain
another well-known expression of the envelope velocity (Postma, 1955; Berryman, 1979).
In this case, the wavevector directions can be defined by l\ = sin 6 and 1$ = cos 9, where 9
is the angle between the wavevector and the z-axis. Differentiating equation (1.141) with
respect to 9, squaring it and adding the results to the square of equation (1.141), we get

venv = \ vi + (1.146)

Postma (1955) obtained this equation for a transversely isotropic medium. Although the
group velocity is commonly called the envelope velocity in literature, we show in Chapter
4 that they are not the same in attenuating media. Rather, the envelope velocity is equal
to the energy velocity in isotropic anelastic media. In anisotropic anelastic media, the
three velocities are different.

1.4.4 Example: Transversely isotropic media

The phase velocity of SH waves is given in equation (1.79)i. The calculation of the group
velocity makes use of the dispersion relation (1.78)i in the form

, uS) = C66KI + C55AC3 - pco2 = 0. (1.147)
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From equation (1.130), and using (1.70), we obtain

( / 055/363), (1.148)
pu pvp

and
I 9 79 i 9 79 /-i -i / i ^ \

t/ /I \ / K^CICK « 1 t/KKl/Qt I _L • _L TI t/ /

pvp v
It is rather easy to show that, using the dispersion relation (1.78)i, we obtain the same
result from equations (1.142) and (1.146).

To compute the energy velocity, we use equation (1.120). Thus, we need to calculate
the complex Umov-Poynting vector (1.100), which for SH-wave propagation in the (x,z)-
plane can be expressed as

1 , .
P = - - (1.150)

From equations (1.26) and (1.31), we note that

(1.151)

and using equations (1.62) and (1.67), we have

012 = (1.152)

Since v^ = —iomj and Uqu*2 = |iio |2, we use equation (1.152) to obtain

p = -o;(c66«iei + c5bK3es)u2U2 = - u^ | u o | 2 ( c 6 6 / i e i + 055/363). (1.153)

Substituting equation (1.115) into equation (1.120), and using expressions (1.109) and
(1.153), we get

v e = — ( c 6 6 / i e i + C55/3e3) = vg. (1.154)
pvp

Note that because ve\ = c^h/{pvp) and ves = 0^1$/(pvp), we have

(1.155)

where we have used equation (1.79)i. Hence, the energy-velocity curve - and the wave
front - is an ellipse, with semiaxes c^/p and c^/p along the x- and ^-directions, respec-
tively. We have already demonstrated that the slowness surface for SH waves is an ellipse
(see equation (1.80)).

To obtain the energy velocity for the coupled qP and qS waves, we compute, for
simplicity, the group velocity using equation (1.130) by rewriting the dispersion relation
(1.78)2 as

2J ^. ,2I\ (^ . ^.A i „ . ^ ^ ^. .2i\ /„ i „ \ A . ̂ 2i . ^2iF(KUK$,(jj) = (Ci i«! +C55AC3 - pUJ )(C33/C3 + C 5 5 « 1 - f)U ) - (c13 + C55) /^/Cg = 0. (1.156)

Then, after some calculations,

, k \ (r33 - pV^Cu + ( r n - pV2)chb - (C13 + C 5 5 ) / |
vel = \ — I " / P , P n 2\ (1.157)

j {T + r 2 f )
vpj p(Tn + r33 - 2/w|)
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Figure 1.1: Slowness (a) and group-velocity curves (b) for apatite (en = 167 GPa, c\2 = 13.1 GPa,
c13 = 66 GPa, C33 = 140 GPa, C55 = 66.3 GPa, and p = 3200 kg/m3). This mineral is transversely
isotropic. The curves represent sections of the respective slowness and group-velocity surfaces across a
plane containing the symmetry axis. The polarization directions are indicated in the curves (the SH
polarization is perpendicular to the plane of the page).

(Cl3

VP r3 3

(1.158)

where Fn and F33 are defined in equations (1.76) and (1.77). The phase and energy veloc-
ities of each mode coincide at the principal axes - the Cartesian axes in these examples.

Figure 1.1 shows the slowness (a) and group-velocity curves (b) for apatite (Payton,
1983, p. 3; Carcione, Kosloff and Kosloff, 1988a). Only one quarter of the curves are
displayed because of symmetry considerations. The cusps, folds or lacunas, on the qS
wave are due to the presence of inflection points in the slowness surface. This phenomenon
implies three qS waves around the cusps. One of the remarkable effects of anisotropy
on acoustic waves is the possible appearance of these folds (triplications) in wave fronts.
Frequency slices taken through anisotropic field data exhibit rings of interference patterns
(Ohanian, Snyder and Carcione, 1997). The phenomenon by which a single anisotropic
wave front interferes with itself was reported by Maris (1983) in his study of the effect
of finite phonon wavelength on phonon focusing. The phenomenon by which shear waves
have different velocities along a given direction is termed shear-wave splitting in seismic
wave propagation.

1.4.5 Elasticity constants from phase and group velocities

Elasticity constants can be obtained from five phase velocity measurements. For typical
transducer widths ( ^ 1 0 mm), for which the measured signal in ultrasonic experiments
is a plane wave, the travel times correspond to the phase velocity (Dellinger and Vernik,
1992). Let us consider the (x, z)-plane of an orthorhombic medium. The corresponding
phase velocities are given in equations (1.88) and (1.91). Moreover, using the dispersion
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relations (1.85) with 9 = 45° (h = l3 = l / \ /2 ) , we obtain

= /<p(90°)
C33 = /< P (°°)
C44 = / < H (0°) C 5 5 (0°) = (90°)

C13 = - C 5 5 c33 + 2c55) + (c n c55).

(1.159)
When the signal is not a plane wave but a localized wave packet - transducers less than
2 mm wide - the measured travel time is related to the energy velocity not to the phase
velocity. In this case, ci3 can be obtained as follows. If the receiver is located at 45°,
equation (1.114) implies

vecosip = vecos(9 — 45°) = vp, (1.160)

or
v.

vp (1.161)

where ip is the angle between the ray and propagation directions (see Figure 1.2).

Z

Figure 1.2: Relation between the phase-velocity angle 0 and the group-velocity angle

Now, noting that equations (1.157) and (1.158) for transversely isotropic media are
also the energy velocity components for our case, we perform the scalar product between
{vei:Ves) and (l\, —1$) and use ve± = ves = vecos45° = ve/y/2. Hence, we obtain

r3 3 - = \/2[(r33 -

where

(1.162)

(1.163)n = cnl\ + C55/3, T33 = C55/1 +

By substituting equation (1.161), we can solve equation (1.162) for 9
that l\ + l\ = 1) as a function of the elasticity constants cn, c33 and C55, and ve. Then,

arcsin(Zi) (note

the elasticity constant Ci3 can be obtained from the dispersion relation (1.85) as

1
C13 C55 +

hi,
(1.164)
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1.4.6 Relationship between the slowness and wave surfaces

The normal to the slowness surface F(«J,CJ) = F(si) - use Si = Ki/uJ in equation (1.128)
- is VSF, where Vs = (d/dsi,d/ds2,d/dss). Because K = CJS, this implies that the
group-velocity vector (1.130) and, therefore, the energy-velocity vector, are both normal
to the slowness surface.

On the other hand, since the energy velocity, which defines the wave front, is equal
to the envelope velocity in lossless media (see equation (1.145)), the wave surface can be
defined by the function

W(xi) = KiXi — co, (1.165)

in accordance with equation (1.141), and using (1.70) and «j = KI{. The normal vector to
the wave surface is grad W. But grad W = («i, «2, ̂ 3) = K. Therefore, the wavevector is
normal to the wave surface, a somehow obvious fact, because the wave surface is the en-
velope of the plane waves. A geometrical illustration of these perpendicularity properties
is shown in Figure 1.3.

slowness surface ray surface

Figure 1.3: Relationships between the slowness and the ray (or wave) surfaces (perpendicularity prop-
erties) .

SH-wave propagation

We obtain the slowness and wave surfaces from equations (1.80) and (1.155), namely

and

4 !
/VC66

I)2

- e l 1

2

P/C55

II2

1

1

Taking the respective gradients, and using equation (1.154), we have

(1.166)

(1.167)

2
VSF = -

P
= 2ve, (1.168)
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and

Vv W = Vel

CQQ C44 V

2
- « = 2s,

p

(1.169)

which agree with the statements demonstrated earlier in this section

1.5 Finely layered media

Most geological systems can be modeled as fine layering, which refers to the case where
the dominant wavelength of the pulse is much larger than the thicknesses of the individual
layers. When this occurs, the medium is effectively transversely isotropic. The first to
obtain a solution for this problem was Bruggeman (1937). Later, other investigators
studied the problem using different approaches, e.g., Riznichenko (1949) and Postma
(1955). To illustrate the averaging process and obtain the equivalent transversely isotropic
medium, we consider a two-constituent periodically layered medium, as illustrated in
Figure 1.4, and follow Postma's reasoning (Postma, 1955). We assume that all the stress
and strain components in planes parallel to the layering are the same in all layers. The
other components may differ from layer to layer and are represented by average values.

t Z

rd 1

\d

y

Figure 1.4: Representative volume of stratified medium.

Assume that a stress 033 is applied to the faces perpendicular to the z-axis, and that
there are no tangential components, namely {J13 and 023. This stress does not generate
shear strains. On the faces perpendicular to the #-axis, we impose

[i on medium 1,
^ ̂  on medium 25 (1.170)

and 11 11
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Similarly, on the faces perpendicular to the y-axis, we require

022 on medium 1,

on medium 2, (1.171)22
(2)= e =A (!) (2)

and e22 = e22 =

We also must have

4s = 4 ? = 3̂3- (1-172)

The preceding equations guarantee the continuity of displacements and normal stress
across the interfaces. The changes in thickness in media 1 and 2 are e^d\ and
respectively.

The stress-strain relations of each isotropic medium can be obtained from equations
(1.17) and (1.18). We obtain for medium 1 (/ =1) and medium 2 (I =2),

\i(en + e$) (1-173)

cr33 = Eie$l + Xi(en + e22),

where Ei = Xi + 2///. The average stresses on the faces perpendicular to the x- and ?/-axes
are

rioff + da^ d^ + dai£ . ,
, (1.174)d d

where d = d\ + d2. Eliminating the stresses G\1 and cr2i from equations (1.173) and
(1.174), we obtain

d an = (Ei ) ( )

d G22 = (Eid+E2d2)e22 + (Aidi + X2d2)en + Aidiegg + X2d2ef^ (1.175)

d 0-33 = (Aidi + X2d2)(en + e22) + E^e^ + E2d2e
($.

The strain along the z-axis is the average, given by

(1.176)

Then, we can compute the normal strains along the z-axis by using (1.173)3 and (1.176).
Hence, we obtain

e33 ~~
Ci H/0633 — I'M — ^ 2 J1611 + 699 j^2 (9) & ^ 1 6 3 3 + I Ai — -^2 JI ^11 ~r 622 i ^

J ' X '_ p,\ / 2

(1.177)
Substituting these results into equations (1.175), we obtain a stress-strain relation for an
effective transversely isotropic medium, for which

(1.178)
033 = + +
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where

and

Cl2 = [d2

C33 = d2E1E2D~\

-Xo- -i

-i

- 1 (1.179)

(1.180)

Next, we apply a stress 023 to the faces perpendicular to the z-axis. Continuity of tan-
(1) _ J?) _gential stresses implies <T23 = o23 . The resulting strain is shown in Figure 1.5.

T

d 1

Hh

^23

Figure 1.5: Tangential stress and strain.

We have, in this case

(1.181)

Hence, eliminating e23, we obtain a relation between cr23 and e23. Similarly, we find the
relation between a\s and ei3. Thus, we obtain

^23 — ^44^23, CT13 — 044613, (1.182)

with

c44

.(0

(1.183)

To obtain CQQ, we apply a stress a[2 to the faces perpendicular to the y-axis and note
e\2i because for thin layers the displacement inside a layer cannot differ

greatly from the displacement at its boundaries. Then
that e[2 = e[2 =

(0 (1.184)

and, since the average stress satisfies

(1.185)

we have
(1.186)
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0.8

0.6

co 0.4

0.2

o.o
0.0 0.2 0.4

Si

0.6 0.8

0

0

Figure 1.6: Slowness section (a) and group-velocity section (b) corresponding to the medium long-

wavelength equivalent to an epoxy-glass sequence of layers with equal composition (en = 39.4 GPa, C12

= 12.1 GPa, C13 = 5.8 GPa, c33 = 13.1 GPa, c55 = 3 GPa, and p = 1815 kg/m3). Only one quarter of

the curves are displayed because of symmetry considerations. The polarization directions are indicated

in the curves (the SH polarization is perpendicular to the plane of the page).

where

- 1 (1.187)

Note the relation CQQ = (en — c\2)/2. The equivalent anisotropic media possess four
cuspidal triangles at 45° from the principal axes.

Figure 1.6 shows an example where the slowness and group-velocity sections can be
appreciated (Carcione, Kosloffand Behle, 1991). The medium is an epoxy-glass sequence
of layers with equal composition. We may infer from equations (1.183) and (1.187) that
C44 < c66, and Postma (1955) shows that en > c33/2.

Backus (1962) obtained the average elasticity constants in the case where the single
layers are transversely isotropic with the symmetry axis perpendicular to the layering
plane. Moreover, he assumed stationarity; that is, in a given length of composite medium
much smaller than the wavelength, the proportion of each material is constant (period-
icity is not required). The equations were further generalized by Schoenberg and Muir
(1989) for anisotropic single constituents. The transversely isotropic equivalent medium
is described by the following constants:

Cll

C33
C13

-1) + (C33 ) 1{C33 C13)
_ /^-1\-1

C55 = (C551)

C66 = (C66/5

-1
(1.188)



1.6 Anomalous polarizations 29

where the weighted average of a quantity a is defined as

L

(a) = ̂ PKH, (1.189)
1=1

where pi is the proportion of material I. More details about these media (for instance,
constraints in the values of the different elasticity constants) are given by Helbig (1994,
p. 315).

The dispersive effects are investigated by Norris (1992). Carcione, Kosloff and Behle
(1991) evaluate the long-wavelength approximation using numerical modeling experi-
ments. An acceptable rule of thumb is that the wavelength must be larger than eight
times the layer thickness. A complete theory, for all frequencies, is given in Burridge, de
Hoop, Le and Norris (1993) and Shapiro and Hubral (1999). This theory, which includes
Backus averaging in the low-frequency limit and ray theory in the high-frequency limit,
can be used to study velocity dispersion and frequency-dependent anisotropy for plane
waves propagating at any angle in a layered medium. The extension of the low-frequency
theory to poroelastic media can be found in Norris (1993), Bakulin and Moloktov (1997)
and Gelinsky and Shapiro (1997).

1.6 Anomalous polarizations

In this section3, we show that there are media with the same phase velocity or slowness
surface that exhibit drastically different polarization behaviors. Such media are kinemat-
ically identical but dynamically different. Therefore, classification of the media according
to wave velocity alone is not sufficient, and the identification of the wave type should be
based on both velocity and polarization.

"Anomalous Polarization" refers to the situation where the slowness and wave surfaces
of two elastic media are identical, but the polarization fields are different. Examples of
anomalous polarization have been discussed for transverse isotropy by Helbig and Schoen-
berg (1987), and for orthorhombic symmetry by Carcione and Helbig (2000). In this note
we determine, without prior restriction of the symmetry class, under what conditions the
phenomenon can occur. Since the three slownesses in a given direction are the square
roots of the eigenvalues of the Kelvin-Christoffel matrix, while the polarizations are the
corresponding eigenvectors, the condition for the existence of anomalous polarization can
be formulated as: Two media with different stiffness matrices are "anomalous compan-
ions" if the characteristic equations (1.72) of their respective Kelvin-Christoffel matrices
F and T' are identical, i.e., if det(F — AI3) = det(F' — AI3), where A = pV

1.6.1 Conditions for the existence of anomalous polarization

Without loss of generality we assume that the elastic fourth-rank stiffness tensors (and
the corresponding 6 x 6 stiffness matrices) are referred to a natural coordinate system of
the media. Inspection of the Kelvin-Christoffel dispersion relation

det(r — AI3) — —A + (T11 + T22 + T33j A — ( ^ 2 ^ 3 — r2 3 + r i i r 3 3 — r1 3 + r n r 2 2
3This section has been written in collaboration with Klaus Helbig.
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2
23 12 (1.190)

indicates that two stiffness tensors have identical characteristic equations if for all prop-
agation directions the following three conditions hold:

1. The diagonal terms of the Kelvin-Christoffel matrices T and T' are identical;

2. The squares of their off-diagonal terms are identical; and

3. The products of their three off-diagonal terms are identical.

The second and third conditions can be satisfied simultaneously if all corresponding off-
diagonal terms have the same magnitude, and precisely two corresponding terms have
opposite sign.

Let us consider the three conditions:
1. The diagonal terms of the Kelvin-Christoffel matrices of an anomalous companion

pair are equal for all propagation directions if they share the 15 stiffnesses occurring in
equations (1.73)i, (1.73)2 and (1.73)3, i-e.,

(1.191), C22, C33, C44, C55, C66, C15, c i e , C56, C24, C26, C46, C34, C35 a n d C45.

Two anomalous companion matrices can thus differ only in

C23, C13, C12, c u , c 2 5 a n d c 3 6 . (1.192)

The position of these elasticity constants in the stiffness matrix are

C12

Cl3

C14

Cl2

C23

C25

Cl3

C23

C36

C25

C36

2. Two of the three off-diagonal terms of the Kelvin-Christoffel matrices for an anoma-
lous companion pair must be of equal magnitude but opposite sign for all propagation
directions, thus for these terms all coefficients of the product of direction cosines must
change sign. The off-diagonal terms of the Kelvin-Christoffel matrix are given by equa-
tions (1.73)4, (1-73)5 a n d (1.73)6- The nine stiffnesses C15, Ci6, C24, C26, C34, C35, C45, C^Q
and C56 are listed in equation (1.191), as being equal in both terms, thus they can change
sign only if they vanish. Thus, the off-diagonal terms of the Kelvin-Christoffel matrix in
a pair of companion matrices must have the form

(C23

(1.193)
(C12

and
— ( 23

(1.194)
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with
1 23 — 23 13 —\-r 13

There are eight sign combinations of off-diagonal terms of the Kelvin-Christoffel matrix,
each corresponding to a characteristic equation (1.190) with identical coefficients for the
terms with Am, m = 1, . . . ,3. The condition F^F^F '^ = F23Fi3Fi2 divides the corre-m,
sponding eight slowness surfaces into two classes containing each four elements with the
same product r23ri3ri2 . The two classes share the intersections with the coordinate
planes, but differ outside these planes. The following table shows the sign combinations
for the two sets of four slowness each:

T23

F i 3

Fl2

F23 Fi3 Fi2

+
+
+
+

+

+

+

+
+
+

+
+

+

+

+
+

(1.196)

This table shows that any two anomalous companion media differ in the algebraic signs of
precisely two off-diagonal terms of the Kelvin-Christoffel matrix. Inspection of equations
(1.193)-(1.195) shows that this is possible only if either all three or precisely two of the
three stiffnesses {cu, C25, C36} vanish: if two of these stiffnesses would not vanish, all
three off-diagonal terms would be affected and would have to change sign. The two
slowness surfaces would share the intersections with the coordinate planes, but would
not be identical outside these planes. It follows that anomalous polarization is possible
for any stiffness matrix that can be brought - through rotation of the coordinate system
and/or exchange of subscripts - into the following forms:

i. Medium with an (x, |/)-symmetry plane:

\

en
C12

Cl3

0
0
0

C12

C22

C23

0
0
0

C23

C33

0
0
C36

0
0
0
C44

0
0

0
0
0
0

C55

0

0 \
0

0
0

C66

(1.197)

ii. Medium with an (x, £)-symmetry plane:

\

iii. Medium with a (y, £)-symmetry plane:

\

cu
C\2

Cl3

0
0
0

TTYMTt111111

C\\

Cl2

Cl3

Cu
0
0

Cl2

C22

C23

0
C25

0

It: 11

Cl2

C22

C23

0
0
0

C23

C33

0
0
0

0
0
0
C44

0
0

0
C25

0
0

C55

0

0

0
0
0
0

(1.198)

Cl3

C23

C33

0
0
0

0
0
c44
0
0

0
0
0
0

C55

0

0
0
0
0
0
cm

(1.199)
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The media defined by these matrices have normal polarization in the symmetry plane
and anomalous polarization in the other orthogonal planes.

1.6.2 Stability constraints

In the previous section the formal conditions for the existence of anomalous companion
pairs were derived without regard to the stability of the corresponding media. Only
stable media can exist under the laws of physics. An elastic medium is stable if and
only if every deformation requires energy. This means that all principal minors of the
stiffness matrix must be positive (in this terminology, a "minor" is the determinant of
the corresponding sub-matrix; the main diagonal of the sub-matrix corresponding to a
"principal minor" is a non-empty subset of the main diagonal of the matrix). This is
equivalent with the requirement that the stiffness matrix must be positive definite. The
condition for positive definiteness can be relaxed to "all leading principal minors must
be positive" (see equation (1.33)). The sub-matrix corresponding to a leading principal
minor is contiguous and contains the leading element of the matrix.

Let us consider the matrix defined in (1.199). The first-order principal minors are
positive if

en > 0, c22 > 0, c33 > 0, c44 > 0, c55 > 0, c66 > 0. (1.200)

The second-order principal minors are positive if

C12

The last inequality (constraint on cu) is easily changed to the constraints on C25 and
The leading principal third-order minor

= C11C22C33 + 2Ci2C23Ci3 - C11C23 - C22C13 - C33Ci2 (1.202)

is positive if C23, c\% and c\i satisfy

C11C22C33 C22C33 C11C33 C11C22

The leading principal fourth-order minor is obtained by development about the fourth
column:

D 4 = C44D3 - c2
u(c22css - C23). (1.204)

If inequalities (1.200), (1.201) and (1.203) are satisfied, D4 is positive if and only if

2 -44-^3 / Q 4 ^ 3 / C44D3 /., onp.xci4 < — — ~> -\l— — < cu < \ —~ JT, (1-205)
C22C33 - C23 V C22^33 - C23 V C22^33 ~ ^ 3

with obvious generalizations to the constraints on C25 and

C
25 ^ 9 \ 9

C11C33 - cf3 V C11C33 - cf3 y C11C33

C 5 5 J D V (1-206)

and

C36 < " 2 "^ ~ 1 / " 2 < C36 < W 3 2 • (1-207)
C11C22 - q 2 V C11C22 - q 2 V C11C22 - q 2
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1.6.3 Anomalous polarization in orthorhombic media

It follows from equations (1.193)-(1.195) that for orthorhombic media the off-diagonal
terms of the Kelvin-Christoffel matrices of a pair of companion matrices are

(C23

(ci3 + c55)W3 (1-208)
(C12

and
= (C23

2 ~ (C12

with
r23 = ±r2 3 , n13 = ±r1 3 , r;2 = ±r1 2 , (1.210)

where in the last line precisely two of the minus signs must be taken. We obtain the
elasticity constants of the anomalous companions as:

i. Medium with an (x: y)-symmetry plane

C55 = ~ ( C i 3 + C55) ->• C'13 = - ( C i 3 + 2C 5 5 ) ,

= -(C23 + C44) ->• c23 = ~(C23 + 2c4 4) ;

ii. Medium with an (x, £)-symmetry plane

C66 = ~ (C i2 + CQQ) ->> C'12 = - (C12 + 2 c 6 6 ) , ,

c23 + c44 = - ( c 2 3 + c44) - ) • c23 = - ( c 2 3 + 2c 4 4 ) ;

iii. Medium with a (y, 2;)-symmetry plane

C66 = ~(C12 + C6e) ^ C'12 = - (C12 + 2 c 6 6 ) , ^ 2 1 .

Ci3 + C55 = - ( C 1 3 + C55) - ) • C'13 = - ( C 1 3 + 2C 5 5 ) ,

where the polarization is normal in the symmetry planes.
Only companion pairs where {C23, Ci3, C12} and {c23, c'13, c'12} satisfy the stability con-

ditions are meaningful.

1.6.4 Anomalous polarization in monoclinic media

It follows from equations (1.193)-(1.195) and (1.197) that for monoclinic media with the
(x, ;?/)-plane as symmetry plane, the off-diagonal terms of the Kelvin-Christoffel matrices
of a pair of companion matrices are

r 2 3 = (c23

3 = C36/2/3 + (C13 + C55)/^3 (1-214)
2 = (C12 + C 6 6 ) / i / 2 ,

and
= (C23

(C12

(1-215)
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This is easily satisfied if the orthorhombic "root" medium that is obtained by setting
= 0 has an anomalous companion. Then, (c'23 + C44) = — (C23 + C44) and (c'13 + C55) =
— (C13 + C55), and because the leading third-order minor D3 > 0, the interval (1.207) for
the addition of =Lc36 is not empty.

Therefore, the anomalous companions of monoclinic media are
i. Medium with an (re, y)-symmetry plane:

C36 —

(1.216)
C23

ii. Medium with an (x, 2:)-symmetry plane:

r'G25
/

r'
G23

(1.217)

iii. Medium with a (y, ̂ )-symmetry plane:

C13

I (1.218)

1.6.5 The polarization

The components of the polarization vector, nm , corresponding to propagation direction
and one of the three eigenvalues Â , stand in the same ratio as the corresponding cofactors
of (F — AI3)^ in the development of det(F — AI3) for an arbitrary j , i.e.,

U\ : U2 : Us =

[(r22 - A)(r22 - A) - r | 3 ] : [r23r13 - r1 2(r3 3 - A)]: [r12r23 - r1 3(r2 2 - A)], j = 1,
[r2 3r i3 - r1 2(r3 3 - A)] : [ ( r n - A)(r33 - A) - r? 3 ] : [r12r13 - r 2 3 ( r n - A)], J = 2,
[r i 2r2 3 - r1 3(r2 2 - A)]: [r12r13 - r 2 3 ( r n - A)]: [ ( r n - A)(r22 - A) - r?2], j = 3.

(1.219)
It follows from the expressions for j =1 and j = 3 that

17 "P \V"P \ \ T^ 1 L̂  LZ,^ 10 - z o v - i l AJJ[1 12^23 I l 3 v ^ 2 2 AJJ . o o n \
[(111 - AJ(122 - Aj - 112J - p^-p ^ ^ . ^1.22UJ

1 n — 113 ~ -1 12 ̂  33

After substitution of this equation into (1.219) and division of all three terms by
i — A)][ri2r23 — r i 3 ( r 2 2 — A)], one obtains the symmetric expression

: u2 : n3 =
1 1 (1.221)

A)] [ r i 2 r 2 3 — F i 3 ( r 2 2 — A)] [ r 2 3 Fi 3 — F i 2 ( r 3 3 — A)]

For a pair of companion media with F23 = —F23 and F;
13 = —Fi3 one has

U-\ \ Un ! Mo

1 1 (1.222)
— A)] [ r i 2 r 2 3 — r'13(r22 — A)] [r2 3r '1 3 — F i 2 ( r 3 3 — A)]
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i.e.,

or, since u' u

u'

«2 : t

/

=

1
1

0
0

0
i

0

0
0
1

(1.223)

u (1.224)

1.6.6 Example

We consider an orthorhombic medium. The four polarization distributions corresponding
to the "normal" slowness surface - with the sign combinations (1.196) - are shown in
Figure 1.7. This figure shows the intersections of the slowness surface with the three
planes of symmetry, and the polarization vector for the fastest (innermost) sheet wherever
it makes an angle greater than TT/4 with the propagation vector. The "zones" of anomalous
polarization are clearly visible in Figure 1.7.

In the following example, we assume a simultaneous change of sign of Cyi + CQQ and
C13 + C55. The stiffness matrix of the orthorhombic medium with normal polarization is

/

C =

C12

0
0

V o

C12

C22

C23

0
0
0

Cl3

C23

C33

0
0
0

0
0
0
C44

0
0

0
0
0
0
C55

0

0 \
0
0
0
0

C66

2
1.5
0
0

2
9
1
0
0
0

1.5
1
8
0
0
0

0
0
0
3
0
0

(1.225)

0 1

(normalized by px MPa, where p is the density in kg/m3). Then, according to equation
(1.213), c'12 = - 4 GPa and c'13 = -5.5 GPa.

Figure 1.8 shows the group velocities and corresponding snapshots of the wave field
in the three symmetry planes of the normal and anomalous media. The polarization is
indicated on the curves; when it is not plotted, the particle motion is perpendicular to the
respective plane (cross-plane shear waves). Only one octant is shown due to symmetry
considerations.

As can be seen, a sign change in c\i + CQQ and C13 + C55 only affects the (x,y)- and
(x, z)- planes, leaving the polarizations in the (y, 2:)-plane unaltered. The anomaly is
more pronounced about 45° where the polarization of the fastest wave is quasi-transverse
and the cusp lid is essentially longitudinal. Moreover, the cross-plane shear wave with
polarization perpendicular to the respective symmetry plane can be clearly seen in Figures
1.8c and d. More details about this example and anomalous polarization can be found in
Carcione and Helbig (2001).
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X
Anomalous polarization of the first group:

upper left - A > 0 in all three planes
upper right - A > 0 in 23-plane only
lower left - A > 0 in 13-plane only
Lower right - A > 0 in 12-plane only

Figure 1.7: Distribution of anomalous polarization of the fastest sheet of the slowness surface for

A\2MzMz > 0, where Ai2 = c i2 + c66, -423 = c23 + C44 and A13 = C13 + c55. Polarization vectors

are plotted if they make an angle greater than TT/4 with the propagation direction. Top left: all three

> 0; top right: only A23 > 0, bottom left: only A13 > 0; bottom right: only A i 2 > 0.
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(a)

Figure 1.8: Ray-velocity sections and snapshots of the displacement vector at the symmetry planes of
an orthorhombic medium. Figures (b) and (d) correspond to the anomalous medium. Only one octant
of the model space is displayed due to symmetry considerations.
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1.7 The best isotropic approximation

We address in this section the problem of finding the best isotropic approximation of
the anisotropic stress-strain relation and quantifying anisotropy with a single numerical
index. Fedorov (1968) and Backus (1970) obtained the bulk and shear moduli of the best
isotropic medium using component notation. Here, we follow the approach of Cavallini
(1999), who used a shorter and coordinate-free derivation of equivalent results. The reader
may refer to Gurtin (1981) for background material on the corresponding mathematical
methods.

Let X be any real finite-dimensional vector space, with a scalar product a • b for a, b
in X. The tensor (dyadic) product a (8) b is the linear operator such that

( a ® b ) x = ( b - x ) a (1.226)

for all x in X. The space L(X) of linear operators over X inherits from X a scalar product,
which is defined by

a - b = t r ( a T o b ) fora, binL(X), (1.227)

where tr denotes the trace (the sum of all eigenvalues, each counted with its multiplicity),
and symbol o denotes the composition of maps. We denote by W1 the n—dimensional
Euclidean space. Moreover, Lin is the space of linear operators over R3, Sym is the
subspace of Lin formed by symmetric operators, S is the subspace of Sym formed by all
the operators proportional to the identity operator I3, D is the subspace of Sym formed
by all the operators with zero trace. The operators S (spherical) and D (deviatoric),
defined by

I
s = i
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and
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(1.229)

are orthogonal projections from Sym into S and D, respectively.
We consider the stress-strain relation (1.31), written in tensorial notation instead of

the Voigt matrix notation. Using tensor notation, also termed "Kelvin's notation", the
stress-strain relation reads

\

^33

f
Cl2

Cl2

C22

C23

C23 \/2c24

\/2c16 \

\ V \/2c26

C33

\/2c34

\/2c3 5

\/2c36
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2c44

2c45

2c46

v2c 3 5

2c45

2c55

2c56

\/2c36

2c46

2c56

2c66

en
\

£33
(1.230)

\
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(Mehrabadi and Cowin, 1990; Helbig, 1994, p. 406). The three arrays in equation (1.230)
are true tensors in 6-D space. Using the same symbols for simplicity, equation (1.230) is
similar to (1.31) (cr = C • e) where C : Sym —>> Sym is a linear operator.

Accordingly, isotropy is a special case of anisotropy, and the isotropic stiffness operator
has the form

(1.231)

where K and fi are the bulk and shear moduli, respectively.
The norms of S and D are 1 and y/b, respectively, where the norm has the usual

definition ||x|| = -̂ /x • x. Therefore, S and (l / \ /5) D constitute an orthonormal pair, and
the projector onto the space of isotropic elasticity tensors is4

Pi8O = S<8>S + -D<g>D. (1.232)
0

Thus, given an anisotropic stiffness tensor C, its best isotropic approximation is

Piso C = (S • C)S + i ( D • C)D, (1.233)
0

where we have used equation (1.226). Now, comparing (1.231) and (1.233), the dilata-
tional term is 3/C = S • C = tr(ST o C) = tr(C • l3)/3, according to equations (1.227) and
(1.228). The shear term is obtained in the same way by using equation (1.229). Hence,
the corresponding bulk and shear moduli are

t r ( C I 3 ) and M = -^tr C - ^ t r ( C • I3). (1.234)

In Voigt's notation, we have

to obtain

and

M
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(1.235)

(1.236)

(1.237)

Note that the bulk modulus (1.236) can be obtained by assuming an isotropic strain
state, i.e, en = e22 = e33 = eo, and e23 = e±s = ei2 = 0. Then, the mean stress 0 =
(011 + a22 + a"33)/3 can be expressed as a = 3/Ceo-

The eigenvalues of the isotropic stiffness operator (1.231) are 3/C and 2/x, with corre-
sponding eigenspaces S (of dimension 1) and D (of dimension 5), respectively (see Chapter
4, Section 4.1.2). Then, from the symmetry of the stiffness operator, we immediately get
the orthogonality between the corresponding projectors S and D, as mentioned before.

4In order to get a geometrical picture of the projector PiS0, imagine that S and D represent two
orthonormal unit vectors along the Cartesian axes x and y, respectively. To project a general vector x
onto the x-axis, we perform the scalar product S • x and obtain the projected vector as (S • x)S, which
is equal to (S ® S)x according to equation (1.226).
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In order to quantify with a single number the level of anisotropy present in a material,
we introduce the anisotropy index

where the second identity follows from the n-dimensional Pythagoras' theorem. We ob-
viously have 0 < I A < 1, with IA = 0 corresponding to isotropic materials.

The quantity ||PiSOC||2 that appears in equation (1.238) is easily computed using
equation (1.231) and the orthonormality of the pair {S, ( l / \ /5)D}:

||P i soC||2 = 9/C2 + 20/x2 (1.239)

To compute ||C||2, we need to resort to component notation; for example, in Voigt's
notation we have

Q R. Q R.

IICII2 = E c »+ 4 E c »+ 4 E E c»
J,J=1 J,J=4 7=1 J=4

As an example, let us consider the orthorhombic elastic matrix (1.225) and its corre-
sponding anomalously-polarized medium whose matrix is obtained by using the relations
(1.213). Both media have the same slowness surfaces, but their anisotropy indices are 0.28
(normal polarization) and 0.57 (anomalous polarization). Thus, polarization alone has a
significant influence on the degree of anisotropy. Regarding geological media, Cavallini
(1999) computed the anisotropic index for 44 shales, with the result that the index ranges
from a minimum value of 0.048 to a maximum value of 0.323. The median is 0.17.

A general anisotropic stress-strain relation can also be approximated by symmetries
lower than isotropy, such as transversely isotropic and orthorhombic media. This has
been done by Arts (1993) using Federov's approach.

1.8 Analytical solutions for transversely isotropic me-
dia

2-D and 3-D analytical solutions are available for the Green function - the response to
) - in the symmetry axis of a transversely isotropic medium. This section shows

how these exact solutions can be obtained. The complete Green's tensor for ellipsoidal
slowness surfaces has been obtained by Burridge, Chadwick and Norris (1993).

1.8.1 2-D Green's function

Payton (1983, p. 38) provides a classification of the wave-front curves on the basis of the
location of the cusps. We consider here class IV materials, for which there are four cusps,
two of them centered on the symmetry axis. Let us consider the (re, z)-plane and define

(5 = cn/c55, 7 = 1 + a(3 - (ci3/c55 + 1) , (1.241)

the dimensionless variable

< = < ? ) ' ( £ > • (1-242)
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and

tp = Z
P ts = z p (1.243)

C33 V C55

The following Green's function is given in Payton (1983, p. 78) and is valid for materials
satisfying the conditions
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(1.244)

Figure 1.9: Two-dimensional Green's function (a) and three-dimensional response to Heaviside's func-

tion (b) as a function of time. The source is a ^-directional point force. The medium is apatite and the

source-receiver distance is 8 cm.

Due to a force directed in the ^-direction, the Green function is

Ui(z,t) = 0,

0,

0

0<t<tP,
tp<t<
ts<t<
t>tu

with

4TTZ
1 -

2(a

(1.245)

(1.246)

(1.247)
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2TTZ

c
&-C

where

U = t_s_
rj

and

-1/2

1),

(1.248)

(1.249)

(1.250)

(1.251)

Figure 1.9a shows the Green function for apatite at 8 cm from the source location (see
Figure 1.1 for an illustration of the slowness and group-velocity sections). The singularities
are located at times tp and ti, and the lacuna - due to the cusps - can be seen between
times ts and t\. The last singularity is not present in an isotropic medium because

—>> oo. For more details see Carcione, Kosloff and Kosloff (1988a).

1.8.2 3-D Green's function

In the 3-D case, the response to Heaviside's function H(t) is available (Payton, 1983, p.
108). (Condition (1.244) must be satisfied in the following solution.) Let us consider a
force along the ^-direction, that is

f = (0,0,l)5(x)5(y)5(z)H(t). (1.252)

The solution is
ui(z,t) = u2(z,t) = 0, (1.253)

1 P
4TTZ VC55

0,
MO,
2MC),
1,

o<t<tP,
tP<t<
ts<t<
t>tu

(1.254)

with

(1.255)

where the involved quantities have been introduced in the previous section. The Green
function is the time derivative of (1.254).

Figure 1.9b shows the response to Heaviside's function for apatite at 8 cm from the
source location. A seismogram can be obtained by time convolution of (1.254) with
the time derivative of the corresponding source wavelet. For more details see Carcione,
Kosloff, Behle and Seriani (1992).

1.9 Reflection and transmission of plane waves

An analysis of the reflection-transmission problem in anisotropic elastic media can be
found in Musgrave (1960), Henneke II (1971), Daley and Hron (1977), Keith and Crampin
(1977), Rokhlin, Bolland and Adler (1986), Graebner (1992), Schoenberg and Protazio
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(1992), Chapman (1994), Psencik and Vavrycuk (1998) and Ursin and Haugen (1996).
In the anisotropic case, we study the problem in terms of energy flow rather than ampli-
tude, since the energy-flow direction, in general, does not coincide with the propagation
(wavevector) direction. Critical angles occur when the ray (energy-flow) direction is par-
allel to the interface.

In this section, we formally introduce the problem for the general 3-D case and discuss
in detail the reflection-transmission problem of cross-plane waves in the symmetry plane
of a monoclinic medium (Schoenberg and Costa, 1991, Carcione, 1997a). This problem,
considered in the context of a single wave mode, illustrates most of the phenomena related
to the presence of anisotropy.

Let us consider a plane wave of the form (1.62), incident from the upper medium on
a plane boundary between two anisotropic media. The incident wave generates three re-
flected waves and three transmitted waves. For a welded contact, the boundary conditions
are continuity of displacement (or particle velocity) and stresses on the interface:

u1 (1.256)

(a1 + ofP + <T*S1 + ofS2) • n = « P + <r£sl + <r£S2) • n, (1.257)
where / , R and T denote the incident, reflected and transmitted waves, and n is a unit
vector normal to the interface. These are six boundary conditions, constituting a system
of six algebraic equations in terms of the six unknown amplitudes of the reflected and
transmitted waves.

Snell's law implies the following:

• All slowness vectors should lie in the plane formed by the slowness vector of the
incident wave and the normal to the interface.

• The projections of the slowness vectors on the interface coincide.

Since the slowness vectors lie in the same plane, it is convenient to choose this plane
as one of the Cartesian planes, say, the (x, ̂ )-plane. Once the elasticity constants are
transformed into this system, the slowness vectors have two components. Let the in-
terface be in the ^-direction. The y-component of the slowness vectors is zero, and the
^-components are equal to that of the incident wave,

Sl = SlqP = SlqSl = SlqS2 = SlqP = SlqSl = SlqS2 = Sl- (1.258)

The unknown s3 components are found by solving the dispersion relation (1.72), which
can be rewritten as

det(cijkisksi - pdij) = 0, (1.259)

since s*. = lk/vp. This six-order equation is solved for the upper and lower media. Of the
12 solutions - 6 for the lower media and 6 for the upper media - we should select three
physical solutions for each half-space. The criterion is that the Umov-Poynting vector (the
energy-flow vector) must point into the incidence medium for the reflected waves and into
the transmission medium for the transmitted waves. At critical angles and for evanescent
waves, the energy-flow vector is parallel to the interface. Calculation of the energy-flow
vector requires the calculations of the eigenvectors for each reflected and transmitted wave
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- special treatment is required along the symmetry axes. A root of the dispersion relation
can be real or complex. In the latter case, the chosen sign of its imaginary part must be
such that it has an exponential decay away from the interface. However, this criterion
is not always valid in lossy media (see Chapter 6). It is then convenient to check the
solutions by computing the energy balance normal to the interface.

Our analysis is simplified when the incidence plane coincides with a plane of symmetry
of both media, because the incident wave does not generate all the reflected-transmitted
modes at the interface. For example, at a symmetry plane, there always exists a cross-
plane shear wave (Helbig, 1994, p. 111). An incident cross-plane shear wave generates
a reflected and a transmitted wave of the same nature. Incidence of qP and qS waves
generates qP and qS waves. Most of the examples found in the literature correspond to
these cases. Figure 1.10 shows an example of analysis for normally polarized media. A
qP wave reaches the interface, generating two reflected waves and two transmitted waves.
The projection of the wavevector onto the interface is the same for all the waves, and the
group-velocity vector is perpendicular to the slowness curve.

II

Figure 1.10: Example of analysis using the slowness surfaces of the reflection-transmission problem
between two anisotropic media (I and II). The media are transversely isotropic with the symmetry axes
along the directions perpendicular to the interface. The inner and outer curves are the qP and qS slowness
sections, respectively. Full arrows correspond to the wavevector and empty arrows to the group-velocity
vector.

Strange effects are caused by the deviation of the energy-flow vector from the wavevec-
tor direction. In the phenomenon of external conical refraction, the Umov-Poynting vector
may be normal to the slowness surface at an infinite set of points. If the symmetry axis of
the incidence medium is normal to the interface and the transmission medium is isotropic,
Snell's law implies the existence of a divergent circular cone of transmitted rays (Musgrave,
1970, p. 144).



1.9 Reflection and transmission of plane waves 45

1.9.1 Cross-plane shear waves

Equations (1.46) describe cross-plane shear motion in the plane of symmetry of a mono-
clinic medium. Let us introduce the plane wave

v2 = v = ktmoexp[kj(i — S\X

where «o is a constant complex displacement and S

(1.260)

are the slowness components.
Substitution of this plane wave into equations (1.46) gives the slowness relation

F(si, s3) = + 2c4 6sis3 + C44S3 - p = 0, (1.261)

which, in real (si, S3) space, is an ellipse due to the positive definite conditions

C44 > 0, c66 > 0, c2 =

which can be deduced from equations (1.33).

- cL > 0, (1.262)

P C46

P C46

'66

P C44

'44

P C66

Figure 1.11: Characteristics of the slowness surface corresponding to an SH wave in the plane of

symmetry of a monoclinic medium.

Figure 1.11 illustrates the characteristics of the slowness curve. The group or energy
velocity can be calculated by using equation (1.130),

= (C66S1 + , VeS = (c4 6Si + C44S3)//?. (1.263)

Solving for s\ and 53 in terms of ve\ and ves, and substituting the result into equation
(1.261), we obtain the energy-velocity surface

- 2c46velve3 - c2/p = 0, (1.264)

which is also an ellipse. In order to distinguish between down and up propagating waves
the slowness relation (1.261) is solved for S3, given the horizontal slowness s\. It yields

± — crs (1.265)
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In principle, the + sign corresponds to downward or -\-z propagating waves, while the —
sign corresponds to upward or —z propagating waves.

Substituting the plane wave (1.260) into equations (1.46)2 and (1.46)3, we get

+ C66si), and cr23 = -(C44S3 + c 4 6si) . (1.266)

The Umov-Poynting vector (1.100) is given by

^*. (1.267)

Substituting the plane wave (1.260) and the stress-strain relations (1.266) into equation
(1.267), we obtain

p = icj2|«o|2(A-ei + Ze3), (1.268)

where
X = CQQSI + C46S3, and Z = c^S\ + C44S3. (1.269)

Using equation (1.265), we have

Z = ±\ pcu - c2s\. (1.270)

The particle velocity of the incident wave can be written as

V
1 = ia;exp[ia;(£ — S\X — s^z)], (1.271)

where

where 91 is the incidence propagation angle (see Figure 1.11), and

and

respectively.
Then, continuity of v and (J23 at z = 0 gives

(1.272)

Vp($) = yj (c44 cos2 0 + c66 sin2 9 + c46 sin 29)/p (1.273)

is the phase velocity.

Snell's law, i.e., the continuity of the horizontal slowness,

sf = sj = si, (1.274)

is a necessary condition to satisfy the boundary conditions.
Denoting the reflection and transmission coeflicients by -Rss a n d Tgs, the particle

velocities of the reflected and transmitted waves are given by
R = icoR exp[icj(t Sx sfvR = icoRss exp[icj(t — Six — sfz)] (1.275)

(1.276)

Tss = 1 + #ss (1-277)
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and
Z1 + RSSZ

T = TSSZ
T, (1.278)

which have the following solution:

Z1 — ZT Z1 — ZR

T (1-279)zT -ZR1 T s s ZT -ZR1

where Z is defined in equation (6.10)2. Since both the incident and reflected waves satisfy
the slowness relation (1.261), the vertical slowness sR can be obtained by subtracting

, S3) from F(si, sR) and assuming sR ^ S3. This yields

. (1.280)
C44

Then, using equation (1.278) we obtain

•RZK = -Z1 (1.281)

and the reflection and transmission coefficients (1.279) become

Z1 — ZT 2Z1

Denoting the material properties of the lower medium by primed quantities, we see
that the slowness relation (1.261) of the transmission medium gives sj in terms of s\:

C44
c46si + yjpfdu - c'2sl) , (1.283)

with
- 42- (1-284)

Alternatively, from equation (1.270),

r
c 4 4

(1-285)

Let us consider an isotropic medium above a monoclinic medium, with the wavevector
of the incidence wave lying in the (x, z)-plane, which is assumed to be the monoclinic-
medium symmetry plane. Then, an incident cross-plane shear wave generates only re-
flected and transmitted cross-plane shear waves. This case is discussed by Schoenberg
and Costa (1991).

The isotropic medium has elasticity constants c^ = 0 and C44 = c = /i. The vertical
slowness is

1

(1.286)

and
Z1 = iis[. (1.287)

From equation (1.270), we have

Z1 = ±Jpfdu - c'2si (1.288)
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(a) (b)

s s1

Figure 1.12: The reflection-transmission problem for an SH wave incident on an interface between an
isotropic medium and a monoclinic medium: (a) illustrates the slowness vectors when the transmitted
wave has a downward-pointing slowness vector, and (b) shows the slowness vectors when the transmitted
wave has an upward-pointing slowness vector. The corresponding group-velocity vector (empty arrow) is
normal to the slowness surface and points downwards.

Two different situations are shown in Figure 1.12a-b. The slowness sections are shown,
together with the respective wavevectors (full arrows) and energy-velocity vectors (empty
arrows). In Figure 1.12a, the transmitted slowness vector has a positive value of 53 and
points downwards. In Figure 1.12b, it has a negative value of S3 and points upwards.
However, the energy-velocity vector points downwards and the solution is a valid trans-
mitted wave. The transmitted slowness vector must be a point on the lower section (solid
line) of the slowness surface since there the energy-velocity vector points downwards.

Example: Let us consider the following properties

= 10 GPa, p = 2500 kg/m3,

and
cr

M = 15 GPa, cr
46 = -7 GPa, c'66 = 22 GPa, p' = 2700 kg/m:

The absolute values of the reflection and transmission coefficients versus the incidence
angle are shown in Figure 1.13.

According to equation (1.268), the condition ZT = 0 yields the critical angle 9c- From
equation (1.288), we obtain

0C = arcsin
1

(1.289)

In this case $c = 49°. Beyond the critical angle, the time-averaged power-flow vector
of the transmitted wave is parallel to the interface because Ke(ZT) = 0 (see equation
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Figure 1.13: Absolute values of the reflection and transmission coefficients versus the incidence prop-
agation angle for an SH wave incident on an interface separating an isotropic medium and a monoclinic
medium.

(1.268)) and the wave becomes evanescent. This problem is discussed in more detail in
Chapter 6, where dissipation is considered.

Note that any lower medium with constants C44, C^Q and density p satisfying

P C44 c2 (1.290)

will have the same R$s and Tgs for all s\. If we choose the material properties of the
isotropic medium to satisfy

p/j = p'c'U: \i = c/2 (1.291)

then Z1 = ZT
: Rss = 0 and Tss=l for all si. In such a case, there is no reflected wave,

and, thus, the interface would be impossible to detect using a reflection method based on
cross-plane shear waves.
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Chapter 2

Viscoelasticity and wave propagation

The quantity ET, by which the rate of displacement must be multiplied to get the force, may be
called the coefficient of viscosity. It is the product of a coefficient of elasticity, E, and a time T,
which may be called the "time of relaxation" of the elastic force. In the case of a collection of
moving molecules such as we suppose a gas to be, there is also a resistance to change of form,
constituting what may be called the linear elasticity, or "rigidity" of the gas, but this resistance
gives way and diminishes at a rate depending on the amount of the force and on the nature of
the gas.

James Clerk Maxwell (Maxwell, 1867)

The basic formulation of linear (infinitesimal) viscoelasticity has been developed by
several scientists, including Maxwell (1867), Voigt (1892), Lord Kelvin (William Thomson
(Kelvin, 1875)), Boltzmann (1874), Volterra (1909, 1940) and Graffi (1928). Boltzmann
(1874), in particular, introduced the concept of memory, in the sense that at a fixed point
of the medium, the stress at any time depends upon the strain at all preceding times.
Viscoelastic behavior is a time-dependent, mechanical non-instantaneous response of a
material body to variations of applied stress. Unlike a lossless elastic medium, a vis-
coelastic solid once set into vibration would not continue to vibrate indefinitely. Because
the response is not instantaneous, there is a time-dependent function that characterizes
the behavior of the material. The function embodies the stress or strain history of the
viscoelastic body. The strength of the dependence is greater for events in the most recent
past and diminishes as they become more remote in time: it is said that the material
has memory. In a linear viscoelastic material, the stress is linearly related to the strain
history until a given time. The strain arising from any increment of the stress will add
to the strain resulting from stresses previously created in the body. This is expressed in
mathematical form by Boltzmann's superposition principle or Boltzmann's law.

Notation: Let / and g be scalar time-dependent functions. The time convolution of
/ and g is defined by

JOO

f*g= f(T)g(t-T)dT. (2.1)
— oo

Hooke's law can be expressed in 3-D space or 6-D space depending on whether the stress
and the strain are tensors or column matrices. In the shortened matrix notation, the
definition of convolution may be extended easily to include 6 x 1 column matrices (a)

51
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and 6 x 6 tensors (or matrices) (A):

/'CO

/ * a = / /(r)a(t - r)dr, (2.2)
J — OO

/ A(r) • a(t - r)dr. (2.3)
«/ — oo

A * a =

As a convention, any function f(t) is said to be of the Heaviside type if the past history
of / up to time t = 0 vanishes. That is,

f(t) = f(t)H(t), (2.4)

where H(t) is Heaviside's or step function, and there is no restriction on / . If / and g
are of the Heaviside type, we can write

f*9= [ f{r)g{t-T)dr, (2.5)
Jo

If / is of the Heaviside type, we define the Boltzmann operation as

/ © 9 = f(0)g + (dtfH) * g, (2.6)

corresponding to the time derivative of the convolution between / and g, that is / * (dtg).

2.1 Energy densities and stress-strain relations

In order to obtain the stress-strain relation for anisotropic elastic media, we defined the
strain-energy function (1.1) and used equation (1.21) (or equation (1.22)) to calculate
the stress components in terms of the strain components. In materials with dissipation, a
unique free-energy density function (the strain energy here) cannot be defined (e.g., Morro
and Vianello, 1990). There are cases where the strain energy is unique, such as that of
viscoelastic materials with internal variables based on exponential relaxation functions
(Fabrizio and Morro, 1992, p. 61). The uniqueness holds when the number of internal
variables is less than the number of physical (observable) variables (Graffi and Fabrizio,
1982).

We assume that the properties of the medium do not vary with time (non-aging
material), and, as in the lossless case, the energy density is quadratic in the strain field.
We introduce the constitutive equation as a convolutional relation between stress and
strain, with the assumption of isothermal conditions. However, as stated above, it is
important to note that the form of the strain-energy density is not unique (see Rabotnov,
1980, p. 72). Analogy with mechanical models provides a quite general description of
anelastic phenomena. The building blocks are the spring and the dashpot. In these
elements, it is assumed that energy is "stored" in the springs and "dissipated" in the
dashpots. An arbitrary - series and parallel - connection of these elements provides a
good phenomenological model to describe the behavior of many materials, from polymers
to rocks. Christensen (1982, p. 86), Hunter (1983, p. 542), and Golden and Graham
(1988, p. 12) define appropriate forms of the strain energy in the linear viscoelastic case
(see also Carcione, 1999a).
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A form of the strain-energy density, which can be made consistent with the mechanical
model description, is

•t rt1 / /
V(i) = — / / Gjiktit — Ti, t — T2)dr,ejn(ri)droeki(r2)dTidr2 (2.7)

^ J —oo J —oo

(Christensen, 1982, p. 79; Golden and Graham, 1988, p. 12). As we shall see below,
the general expression of the strain-energy density is not uniquely determined by the
relaxation function.

Differentiation of V yields

dtV = dteij / Gijki(t - r2, 0)dT2eki(r2)dr2

— oo

1 C C
^ J —oo J — oo

We define the stress-strain relation

(2.9)

where ipijki are the components of the relaxation tensor, such that

^Jki(t) = Gm(t,0)H(t)J (2.10)

where H(i) is Heaviside's function. Then,

/ Gijki(t - r2, 0)dT2eki(r2)dr2 = o^ (2.11)
J — oo

and (2.8) becomes
(Jijdtdj = dtV + D, (2.12)

where

1 Cl Cl

D(t) = ~o / / dtGijki(t - r u t - T2)dT1eij(T1)dr2ekl(T2)dT1dT2 (2.13)

is the rate of dissipated-energy density. Note that the relation (2.10) does not determine
the stored energy, i.e., this cannot be obtained from the stress-strain relation. However,
if we assume that

Gijki&n) = rtijkttt + n), (2.14)

such that
^jki{t) = ^jki{t)H{t), (2.15)

this choice will suffice to determine Gijki, and

V(t) = - / ipijki(2t - n - T2)dT1eij(Ti)driekl{T2)dTidT2, (2.16)
^ J J- o o J -oo

(2.17)
—oo ^ —oo



54 Chapter 2. Viscoelasticity and wave propagation

where d denotes differentiation with respect to the argument of the corresponding func-
tion. Equation (2.14) is consistent with the corresponding theory implied by mechanical
models (Christensen, 1982, p. 120; Hunter, 1983, p. 542), i.e., these expressions describe
the energy stored in the springs and the energy dissipated in the dashpots (Cavallini and
Carcione, 1994).

The strain-energy density must be positive; therefore V > 0. Substituting the strain
function Cij(t) = 6ijH(t) into equation (2.7), we obtain the condition Gijki(t,i)tijtki > 0,
which from (2.10) and (2.14) implies

> 0. (2.18)
*

Similarly, since D(i) > 0, the same test implies

dtil>ijki{t)tijhi < 0- (2.19)

The definitions of stored-(free-)energy and energy-dissipation rate are controversial,
both in electromagnetism (Oughstun and Sherman, 1994, p. 31) and viscoelasticity (Cav-
iglia and Morro, 1992, p. 53-57). The problem is particularly intriguing in the time
domain, since different definitions may give the same time-average value for harmonic
fields. Although the forms (2.16) and (2.17) may lead to ambiguous partitions of the rate
of work (equation (2.12) is one of these possibilities), this ambiguity is not present when
the stress-strain relation can be described in terms of springs and dashpots (Hunter, 1983,
p. 542; Cavallini and Carcione, 1994).

2.1.1 Fading memory and symmetries of the relaxation tensor

On the basis of observations and experiments, we may postulate the fading memory
hypothesis, which states that the value of the stress depends more strongly upon the
recent history than upon the remote history of the strain (Christensen, 1982, p. 9). It
is then sufficient that the magnitude of each component of the relaxation tensor be a
decreasing function of time,

=t2> h>h> 0. (2.20)

As in the lossless case, the symmetry of the stress and strain tensors gives

implying 36 independent components. In the shortened matrix notation, the stress-strain
relation (2.9) has the form

a = V* dte, ((7/ = ^udtej), (2.22)

where a and e are defined in equations (1.20) and (1.27), respectively. In general, under
the assumption that the stress-strain relation is given by Boltzmann's law, and without
a precise definition of a strain-energy function, it can be shown that ^ is a symmetric
matrix in the low- and high-frequency limits only, that is

i/>ijki(t = oo) = il>kiij(t = oo), i/>ijki(t = 0) = il>kuj(t = 0), (2.23)
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(Christensen, 1982, p. 86; Fabrizio and Morro, 1992, p. 46). The number of components
of the relaxation matrix can be reduced to 21 if we consider that the matrix is symmetric,
i.e.,

ipu(t) = Mt), (^iw(t) = ^kiij{t)). (2.24)

There is no rigorous demonstration of this property1, and equation (2.24) is generally
assumed to be valid (e.g., Golden and Graham, 1988, p. 37).

2.2 Stress-strain relation for 1-D viscoelastic media

The complex modulus is the key quantity in the following analysis. We determine its
properties - closely related to those of the relaxation function - and its significance in
terms of stored and dissipated energies. To introduce the basic concepts, it is simplest to
start in one dimension.

2.2.1 Complex modulus and storage and loss moduli

Hooke's law in the lossless case is
a = Mee, (2.25)

where Me is the elastic modulus. (Me = A is the Lame constant if we assume \i = 0).
According to equation (2.9), the relaxation function in this case is

= MeH(t), (2.26)

because
a = i\) * dte = dt%l) * e = MeS(t) * e = Mee. (2.27)

In the lossy case,
a = ip * dte, (2.28)

where
ij) = <$H(t). (2.29)

The Fourier transform of equation (2.28) gives

= M(uj)T[e{u)] {a = Me), (2.30)

where T is the Fourier-transform operator, and

•oo

— oo

dtij)(t) exp(-i<jt)tft (2.31)

1The symmetry can be proved if one can show that the Hermitian (H) and antihermitian (A) parts
of the relaxation matrix are even and odd functions, respectively. Any complex matrix can be written as
^u(w) = il>?j(u>) + il>fj(w), where ipfj = \[^u{u) + ^}j(w)] and ipfj = \[ij>ij{u)) - tyjiip)]. Moreover,
since ^U(OJ) is the Fourier transform of a real quantity, it must satisfy the reality condition ^JJ(UJ) =
ipjj(-uj). The first statement implies ipfj(-uj) = ij)fj(uj) and ipfj(-uj) = —ipfj(uj). Combining these
relations into one by using the reality condition implies ipu(u)) = I/JJI(OJ). Melrose and McPhedran (1991,
p. 83) justify the first statement for the dielectric-permittivity tensor by invoking the time-reversal
invariance of the equation of motion, under certain transformations of the field variables (Onsager's
relations).
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is the complex modulus. Since dtij) = 8{t)ip + dttjjH(t),

(2.32)/

because ^(0) = ^(0 + ) . Equation (2.32) becomes

M(LO) = ^(oo) + ice; / [^(t) - ^(oo)] exp(-iut)dt, (2.33)
Jo

since ip(t) = ^(t) for t > 0. (To demonstrate (2.33) it is convenient to derive (2.32) from
(2.33) using integration by parts2).

We decompose the complex modulus into real and imaginary parts

M(u) = Mi (a;) + iM2(a;), (2.34)

where

dtip(t) cos(cot)dt = ^(oo) + cc; / [^(t) - ^(oo)] sin(a;t)dt, (2.35)

Jo

or,
'OO

= u I i/)(i) sm(u)t)dt (2.36)
Jo

is the storage modulus, and

/

OO /•OO

dtip(t) sin(ut)dt = u / \ip(t) — ̂ (oo)! cos(ut)dt (2.37)
Jo

is the loss modulus. To obtain equation (2.36), we have used the property
OO

sm(ut)dt = 1 (2.38)
o

(Golden and Graham, 1988, p. 243).
In the strain-stress relation

e = x * dta, (2.39)
the function x is referred to as the creep function. Since

a = dttl> * e = dtip * {dtx * a) = (dttl> * dtx) * o, (2.40)

we have
(2-41)

and
M(u)J(u) = 1, (2.42)

where
J(w) = ^[a ( X] (2.43)

is the complex creep compliance.
2Proof: \w J™[ip{t) - tl>(oo)]exp(-iut)dt = - J™[t/)(t) - ip(oo)]dexp(-iut) = -

exp(—icot)\tZ
(^' + Jo°° exp(—vjjt)dip = —[^(oo) — ?/;(oo)] exp(—icjoo) + [^(0) — ̂ (cx))] exp(—i

°° exp(—icjt)dt = ^(0) — ̂ >(oo) + /0°° dtip(t) exp(—\ojt)dt.
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2.2.2 Energy and significance of the storage and loss moduli

Let us calculate the time-averaged strain-energy density (2.16) for harmonic fields of the
form [ • ] exp(iu;t). The change of variables T\ —±t — T\ and r2 —>> £ — r2 yields

v{t) = x
»OO

o Jo
+ T2)de(t - n)de(t - T-^dndr^ (2.44)

We now average this equation over a period 2TT/U using the property (1.105) and obtain

(de(t - n)de{t - r2)) = ^

Then, the time average of equation (2.44) is

- n)[de(t - r2)]*} = i (2.45)

|

(V) = -u
4

OO

/ /
o Jo

r2) cos[a;(ri - (2.46)

A new change of variables C = r i + r2 and c = T\ — r^ gives

(V) = o'
'o ^ - c

Using equation (2.36), we finally get

i r

7^le!2 /
4 Jo

(2.47)

1
(2.48)

A similar calculation shows that

(I)) = ]-u)\e\
2M2. (2.49)

These equations justify the terminology used for the storage and loss moduli M\ and M2.
Moreover, since the time-averaged strain and dissipated energies should be non-negative,
it follows that

>0 , M2(cc;)>0. (2.50)

2.2.3 Non-negative work requirements and other conditions

The work done to deform the material from the initial state must be non-negative

1 fl

- / a(r)dre(r)dr > 0
t Jo

(2.51)

(Christensen, 1982, p. 86). Let us consider oscillations in the form of sinusoidally time
variations

e(r) = eosin(cc;r), (2.52)

and let t = 2TT/UJ be one period, corresponding to a cycle. Using equation (2.31) (see
equations (2.36) and (2.37)), we note that the stress-strain relation (2.28) becomes

a(t) = e0

Jo
- r)]dr = eo[Mi si M2cos(u;t)]. (2.53)
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Substitution of (2.53) into the inequality (2.51) gives

J2 Mi I sm(u)r) cos(u)r)dr-\-M2 / cos (cor)
o Jo

^Q 1V±\ I Oil l lUy/ J I/UOIU// JU// ~T -LV-L'Z I t U O I KJU I I UJT -^_ U . (i.04J
Zit\

We now make use of the primitive integral f cos2(ax)dx = (x/2) + [sin(2ax)/(4a)]. The
first integral vanishes, and the second integral is equal to TT/CO. The condition is then

^ " ° > 0, or M2 > 0, (2.55)

as found earlier (equation (2.50)2). This result can also be obtained by using complex
notation and the time-average formula (1.105).

We have shown, in addition, that (crdte) = (D), if we compare our results to equation
(2.49). From equation (2.12), this means that the time average of the strain-energy rate,
(dtV), is equal to zero.

Equation (2.37) and condition (2.55) imply that

i/>(t) - ^(00) > 0. (2.56)

Then,
(2.57)

Note that from (2.33), we have

M(u = 0) = ij){t = 00), (2.58)

i.e., a real quantity. Moreover, from (2.33) and using ia;jF[/(t)] = f(t = 0), for u —>> 00
(Golden and Graham, 1988, p. 244), we have

= 00) = if>(t = O), (2.59)

also a real quantity. We then conclude that M2 = 0 at the low- and high-frequency limits,
and

M(u = 00) > M(CJ = 0). (2.60)

(As shown in the next section, the validity of some of these properties requires |M(u;)| to
be a bounded function).

Additional conditions on the relaxation function, based on the requirements of positive
work and positive rate of dissipation, can be obtained from the general conditions (2.18)
and (2.19),

ij)(t) > 0, (2.61)

dtij){t) < 0. (2.62)

2.2.4 Consequences of reality and causality

Equation (2.28) can also be written as

a = ip * e, (2.63)
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where
i) = dtij. (2.64)

Note that M = J7^] (equation (2.31)). Since ^(t) is real, M(u) is Hermitian (Bracewell,
1965, p. 16); that is

M(u) = M*(-w), (2.65)

or
M2(u) = -M2{-u). (2.66)

• * •

Furthermore, ij) can split into even and odd functions of time, ^e and i/;o, respectively, as

m = ]p{t) + V>H)] + ]p(t) - ij(-t)} = 4 + i>o- (2-67)
* * •

Since ij) is causal, ij)o(t) = sgn(t)^e(t), and

^(t) = [1 + sgn(t)]4(t), (2.68)

whose Fourier transform is

^ ( t ) ] = Mi (a;) - (—) * Mi (a;), (2.69)
\7TUJJ

because F[ipe] = Mx and J^[sgn(t)] = -I/(TTUJ) (Bracewell, 1965, p. 272). Equation (2.69)
implies

M2 = -(±)*Ml = -Ipv f M l ( " W (2-70)
TTO; / 7T ./_oo o; - a;'

Similarly, since

^(t) = [sgn(t) + l]ipo{t) (2.71)
*

and since ^[tpo] = 1M2, we obtain

= f M2 = ipv r M*W. (2.72)
TT J LJ - cvfTT J_OO LJ - cv

Equations (2.70) and (2.72) are known as Kramers-Kronig dispersion relations (Kronig,
1926; Kramers, 1927). In mathematical terms, Mi and M2 are Hilbert transform pairs
(Bracewell, 1965, p. 267-272). Causality also implies that M has no poles (or is analytic)
in the lower half complex c^-plane (Golden and Graham, 1988, p. 48). In the case of
dispersive lossless media, Mi(u) can depend on u only through functions of u whose
Hilbert transform is zero.

Equations (2.70) and (2.72) are a consequence of linearity, causality and square-
integrability of M(u) along the real axis of the u;-plane, i.e.,

•00

\M(oo)\2duj<C, (2.73)
—c©

where C is a constant (Weaver and Pao, 1981). Square-integrability is equivalent to
M(UJ) —y 0, for |o;| —y 00 (TT > arg(o;) > 0). In most cases, the square-integrability
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condition cannot be satisfied, but rather the weaker condition that |M(u;)| is bounded
is satisfied, i.e., |M(CG>)|2 < C is bounded. A lossless medium and the indexNiMaxwell-
Maxwell and Zener models satisfy this weak condition (see Section 2.4.1, equation (2.147),
and Section 2.4.3, equation (2.170)), but the elvin-Voigt and constant-Q models do not
(see Section 2.4.2, equation (2.161), and Section 2.5, equation (2.212)). For models satis-
fying the weak condition, we may construct a new function

H(oo) =
M(oo) - M(oo0)

00 — OOQ
Im(oo0) > 0. (2.74)

This function is square-integrable and has no poles in the upper half plane, and, hence,
satisfies equations (2.70) and (2.72). Substituting H(oo) as defined above for M(oo) in
equations (2.70) and (2.72) and taking OOQ to be real, we obtain

MI(CJ) =
00 — OOQ

+ I 1 PV
7T

•oo
Im

— oo

M(oof) - M(oo0)

00f —

duo'

u —
(2.75)

M2(oo) = M2(oo0) -
'OO

pv / Re
— oo

M{oo') - M(oo0) duo'

u — uo'
(2.76)

(Weaver and Pao, 1981). These are known as dispersion relations for M(oo) with one
subtraction. Further subtractions may be taken if M(oo) is bounded by a polynomial
function of oo.

2.2.5 Summary of the main properties

Relaxation function

1. It is causal.

2. It is a positive real function.

3. It is a decreasing function of time.

Complex modulus

1. It is an Hermitian function of oo.

2. Its real and imaginary parts are greater than zero, since the strain-energy density
and the rate of dissipated-energy density must be positive.

3. Its low- and high-frequency limits are real valued and coincide with the relaxed and
instantaneous (unrelaxed) values of the relaxation function.

4. Its real and imaginary parts are Hilbert-transform pairs.

5. It is analytic in the lower half complex ct;-plane.
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2.3 Wave propagation concepts for 1-D viscoelastic
media

We note that the frequency-domain stress-strain relation (2.30) has the same form as the
elastic stress-strain relation (2.25), but the modulus is complex and frequency dependent.
The implications for wave propagation can be made clear if we consider the displacement
plane wave

u = UQ exp[i(ut — kx)]j (2.77)

where k is the complex wavenumber, and the balance between the surface and inertial
forces is

dxo = pdlu (2.78)

(see equation (1.23)). Assuming constant material properties, using e = d\U and equations
(2.28) and (2.31), we obtain the dispersion relation

Mk2 = pJ1, (2.79)

which, for propagating waves (k complex, u real), gives the complex velocity

Expressing the complex wavenumber as

k = K-ia, (2.81)

we can rewrite the plane wave (2.77) as

u = UQ exp(—ax) exp[i(o;t — KX)], (2.82)

meaning that K is the wavenumber and a is the attenuation factor. We define the phase
velocity

Vn = -= Re I -
vc

the real slowness

(2.83)

SR = - = Re (-) , (2.84)

vp \vcj

and the attenuation factor

a = -wlm( — V (2.85)
We have seen in Chapter 1 (equation (1.125)) that the velocity of the modulation wave is
the derivative of the frequency with respect to the wavenumber. In this case, we should
consider the real wavenumber K,

- iduo ( 3 K \

\dco J

- i

(2.86)
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Let us assume for the moment that u(t) is not restricted to the form (2.77). Since the
particle velocity is v = dtu, we multiply equation (2.78) on both sides by v to obtain

vdl(j = pvdtv. (2.87)

Multiplying d\V = dte by o and using equation (2.28), we have

odxv = (dt*l) * e)dte. (2.88)

In the lossless case, tp = MeH(t) and

= Meedte. (2.89)

Adding equations (2.87) and (2.89), we obtain the energy-balance equation for dynamic
elastic fields

—dip = dt(T + V) = dtE, (2.90)

where
p = -crv (2.91)

is the Umov-Poynting power flow,

T = -pv2 (2.92)

is the kinetic-energy density, and

V = l-Met
2 (2.93)

is the strain-energy density.
The balance equation in the lossy case is obtained by adding equations (2.87) and

(2.88),
-hp = fyT + (dtil> * e)dte. (2.94)

In general, the partition of the second term in the right-hand side in terms of the rates
of strain and dissipated energies is not unique (Caviglia and Morro, 1992, p. 56). The
splitting (2.12) is one choice, consistent with the mechanical-model description of vis-
coelasticity - this is shown in Section 2.4.1 for the Maxwell model. A more general
demonstration is given by Carcione (1999a) for the Zener model and Hunter (1983, p.
542) for an arbitrary array of springs and dashpots. We then can write

(2.95)

where, from equations (2.16) and (2.17),

[V(t) = i f [ #(2t - n - r2)c>rie(r1)^2e(r2)dr1^r2, (2.96)
— oo «/ —oo

/ • * / • * -

D(t) = — / / dip(2t — T\ — T2)drie(ri)dT2e(T2)dridr2. (2.97)
J —oo J —oo

Let us consider again the form (2.77) for the displacement field. In order to compute
the balance equation for average quantities, we obtain the complex versions of equations
(2.87) and (2.88) by multiplying (2.78) by v* and (9^)* = (dte)* by a. We obtain

(2.98)
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. (2.99)

Because for the harmonic plane wave (2.77), dt —»• io; and d\ —> —ik1 we can use equation
(2.30) - omitting the tildes - to obtain

- h v * <J = u p \ v \ 2 , (2.100)

and
-k*av* =uM\e\2. (2.101)

Now, using equations (1.105) and (1.106), we introduce the complex Umov-Poynting
energy flow

P = -\cV, (2.102)

the time-averaged kinetic-energy density

(T) = liplReiv)}2) = \pRe{™') = \PW\ (2-103)

the time-averaged strain-energy density

(V) = -(Re(e)Re(M)Re(e)) = ^Re(eMe*) = ]\e\2Mu (2.104)

and the time-averaged rate of dissipated-energy density

(D) = a;(Re(e)Im(M)Re(e)> = -wIm(eMe*) = -o;|e|2M2, (2.105)
ZJ LI

in agreement with equations (2.48) and (2.49). We can, alternatively, define the time-
averaged dissipated-energy density (D) as

(D) = UJ-1{D), o ; > 0 (2.106)

(there is no loss at zero frequency). Thus, in terms of the energy flow and energy densities,
equations (2.100) and (2.101) become

kp = 2cv(T)1 (2.107)

and
k*p = 2u)(V)+i(D). (2.108)

Because the right-hand side of (2.107) is real, kp is also real. Adding equations (2.107)
and (2.108) and using k + k* = 2K (see equation (2.81)), we have

KP = UJ(E)+1-(D), (2.109)

where
(E) = (T + V) (2.110)

is the time-averaged energy density. Separating equation (2.109) into real and imaginary
parts, we obtain

K(P)=U(E)
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and

where

K Im(p) = i

(p) = Re(p)

is the time-averaged power-flow density. The energy velocity is defined as

(P)

(2.112)

(2.113)

vP = (2.114)

Now, note from equations (2.102)-(2.104) that

(p) = Re(p) = - ^

= ~Re[(-iwu*)(-ikMu)] = -u;|ti|2Re(£;M),
Li Z

and

= (T)
1 1

4
1
4

1
4

(2.115)

(2.116)

Substituting these expression into equation (2.114) and using (2.80), we obtain

2Re(Mv~1)\v
(2.117)

Because Mi = Re(M), M = /w2, and using properties of complex numbers (in particular,
[Re(vc)f = (\vc\

2 + Re(v2)]/2), we finally obtain

vP = v, '[Re{vc)]-L = v (2.118)

where vp is the phase velocity (2.83). We then have the result that the energy velocity is
equal to the phase velocity in 1-D viscoelastic media. (Note that this result confirms the
relation (2.111)). In the next chapter, we show that this is also the case for homogeneous
viscoelastic plane waves in 2-D and 3-D isotropic media. We have seen in Chapter 1 that
phase and energy velocities differ in anisotropic elastic media, and that the group velocity
is equal to the energy velocity. This result proved very useful in the computation of the
wave-front surfaces. However, the group velocity loses its physical meaning in viscoelastic
media due to the dispersion of the harmonic components of the signal. We investigate
this in some detail in Section 2.6 (1-D case), and Section 4.4.5, where we discuss wave
propagation in anisotropic viscoelastic media.

Dissipation can also be quantified by the quality factor Q1 whose inverse, Q~l
1 is called

the dissipation factor. Here, we define the quality factor as twice the time-averaged strain-
energy density divided by the time-averaged dissipated-energy density (2.106). Hence, we
have

2{V)
Q =

which, by virtue of equations (2.80), (2.104) and (2.105) becomes

(2.119)

Q =
Re(M) _ Re
Im(M) ~

(2.120)



2.3 Wave propagation concepts for 1-D viscoelastic media 65

Another form of the quality factor can be obtained from the definition of complex velocity
(2.80). It can be easily shown that

Since k2 = K? — a2 — 2i^a, it follows from (2.85) and (2.121) that the quality factor is
related to the magnitudes of the attenuation factor and the wavenumber by

a= (yQ2 + 1 _ Q ^ (2.122)

For low-loss solids, it is Q ̂ > 1, and using (2.83) and / = o;/(27r), we note that a Taylor
expansion yields

Another common definition of quality factor is

Q = Ify (2-124)

(Buchen, 1971a). It can be easily shown that this definition leads to a relation similar to
(2.123), without approximations; that is a = 7rf/(Qvp).

2.3.1 Wave propagation for complex frequencies

The analysis of wave propagation can also be performed for complex frequencies and real
wavenumbers. Let us consider the 1-D case and the displacement plane wave

u = Uoexp[i(Qt — KX)], (2.125)

where Q = u + IUJJ is the complex frequency, and K is the real wavenumber. It is clear
that the phase velocity is equal to CV/K.

The balance between the surface and inertial forces is given by

dl(j = pdttu, (2.126)

where a is the stress. Since a = Me = Md\U^ where e is the strain, we obtain the
dispersion relation

MK2 = ptt2, (2.127)

which gives the complex velocity

p

The phase velocity is

(2.128)

V<n — — — 1LCI VCj ' \£j.i-£j\j)

rv rv
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In order to compute the balance equation for average quantities, we note that

(2.130)

and
—KV a = il M e , (z.131)

where the asterisk indicates complex conjugate. These equations were obtained by mul-
tiplying (2.126) by if and (div)* = (dte)* by a, respectively.

We introduce the complex Umov-Poynting energy flow

P= (2.132)

the time-averaged kinetic-energy density

(T) = \(p[Re(v)f) = ipReivv*) = \p\v (2.133)

the time-averaged strain-energy density

(V) = i(Re(e)Re(M)Re(e)) = ^

and the time-averaged dissipated-energy density

^ \Re(M) = \\e\2Mu (2.134)

(D) = (Re(e)Im(M)Re(e)> = -Im(eMe*) = -|e|2Im(M) = -\e\2M2.
£i ZJ ZI

(2.135)

Thus, in terms of the energy flow and energy densities, equations (2.130) and (2.131)
become

KV = 2(T) (2.136)

and

Adding these equations, we have
tt*

(2.137)

where

1

(E) = (T + V)

(2.138)

(2.139)

is the time-averaged energy density.
Separating equation (2.138) into real and imaginary parts and using equation (2.113),

the energy velocity is given by

(E)

- i

Re I -
- 1

(2.140)

i.e., the energy velocity has the same expression as a function of the complex velocity,
irrespective of the fact that the frequency is complex or the wavenumber is complex. On
the contrary, the phase velocity is given by equation (2.83) for real frequencies and by
equation (2.129) for real wavenumbers and complex frequencies.
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Figure 2.1: Creep function of aluminum and typical relaxation spectrum (after Zener, 1948).



68 Chapter 2. Viscoelasticity and wave propagation

2.4 Mechanical models and wave propagation

A typical creep function versus time, as well as a dissipation factor versus frequency are
shown in Figure 2.1. These behaviors can be described by using viscoelastic constitutive
equations based on mechanical models. To construct a mechanical model, two types of
basic elements are required: weightless springs - no inertial effects are present - that
represent the elastic solid, and dashpots, consisting of loosely fitting pistons in cylinders
filled with a viscous fluid. The simplest are the Maxwell and Kelvin-Voigt models. The
Maxwell model was introduced by Maxwell (1867) when discussing the nature of viscosity
in gases. Meyer (1874) and Voigt (1892) obtained the so-called Voigt stress-strain relation
by generalizing the equations of classical elasticity. The mechanical model representation
of the Voigt solid (the Kelvin-Voigt model) was introduced by Lord Kelvin (Kelvin, 1875).

The relaxation function can be obtained by measuring the stress after imposing a
rapidly constant unit strain in a relaxed sample of the medium, i.e., e = H(t), such that
(2.28) becomes

a(t) = dtil>{t) * H(t) = ij)(t) * 6{t) = ij){t). (2.141)

A constant state of stress instantaneously applied to the sample (a = H(t)), with the
resulting strain being measured as a function of time, describes the creep experiment.
The resulting time function is the creep function. That is

e{t) = dtxit) * H{t) = Xit) * 5(t) = X(t). (2.142)

There are materials for which creep continues indefinitely as time increases. If the limit
dtx(t = oo) is finite, permanent deformation occurs after the application of a stress field.
Such behavior is akin to that of viscoelastic fluids. If that quantity is zero, the material
is referred to as a viscoelastic solid. If x increases indefinitely, the relaxation function tp
must tend to zero, according to (2.41). This is another criterion to distinguish between
fluid and solid behavior: that is, for fluid-like materials ip tends to zero; for solid-like
materials, ij) tends to a finite value.

2.4.1 Maxwell model

The simplest series combination of mechanical models is the Maxwell model depicted in
Figure 2.2. A given stress a applied to the model produces a deformation e± on the
spring and a deformation e2 on the dashpot. The stress-strain relation in the spring is

o = Mud, (2.143)

where My is the elasticity constant of the spring (Me in equation (2.25)). The subindex
U denotes "unrelaxed". Its meaning will become clear in the following discussion. The
stress-strain relation in the dashpot is

o = rjdte2, n > 0, (2.144)

where r\ is the viscosity. Assuming that the total elongation of the system is e = ei + 62,
the stress-strain relation of the Maxwell element is

v r\
d (2.145)
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Figure 2.2: Mechanical model for a Maxwell material. The force on both elements is the same, but the
elongation (strain) is different.

The Fourier transform of equation (2.145), or equivalently, the substitution of a harmonic
wave [ • ] exp(iu;£), yields

o = Me, (2.146)

where

is the complex modulus, with

UJT]

UT — 1

r =
u

being a relaxation time.
The corresponding relaxation function is

= Muexp(-t/r)H(t).

This can be verified by performing the Boltzmann operation (2.6),

dtij) = $ 0 5 = MuS(t) - — exp(-t/r)H(t),
T

and calculating the complex modulus (2.31),

A4 urj

-oo 1 + \(JOT (JOT — i

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

The complex modulus (2.147) and the relaxation function (2.149) can be shown to satisfy
all the requirements listed in Section 2.2.5. Using equations (2.41) and (2.42), we note
that the creep function of the Maxwell model is

(2.152)

The creep and relaxation functions are depicted in Figure 2.3a-b, respectively. As
can be seen, the creep function is not representative of the real creep behavior in real
solids. Rather, it resembles the creep function of a viscous fluid. In the relaxation
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Figure 2.3: Creep (a) and relaxation (b) functions of the Maxwell model (Mv = 2.16 GPa, r = 1/(2TT/),

/ = 25 Hz). The creep function resembles the creep function of a viscous fluid. The system does not
present an asymptotical residual stress as in the case of real solids.

experiment, both the spring and the dashpot experience the same force, and because it
is not possible to have an instantaneous deformation in the dashpot, the extension is
initially in the spring. The dashpot extends and the spring contracts, such that the total
elongation remains constant. At the end, the force in the spring relaxes completely and
the relaxation function does not present an asymptotical residual stress, as in the case of
real solids. In conclusion, the Maxwell model appears more appropriate for representing
a viscoelastic fluid. We can see from Figure 2.3a that MJJ represents the instantaneous
response of the system, hence, the name unrelaxed modulus.

We have seen in Section 2.3 that the partition of the second term in the right-hand
side of equation (2.94) in terms of the rate of strain-energy density and rate of dissipated-
energy density is, in general, not unique. We have claimed that the splitting (2.12)
is consistent with the mechanical-model description of viscoelasticity. As an example,
we verify the correctness of the general form (2.16) (or (2.96)) for the Maxwell model.
Substituting the relaxation function (2.149) into that equation, we obtain

V(t) =
2M,

Mv exp[-(t - n)/T]dT1 e(n)dn} =
— OO

2 M;

oo

— oo u u
(2.153)

But this is precisely the energy stored in the spring, since, using (2.143) and the form
(2.93), we obtain

(2.154)

Note that because ip = ipH, the second term in the right-hand side of (2.94) can be
written as

(dtil> * e)dte = ijj($)edte + ( $ $ * e)dte. (2.155)
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This is one possible partition and one may be tempted to identify the first term with
the rate of strain-energy density. However, a simple calculation using the Maxwell model
shows that this choice is not consistent with the energy stored in the spring.

The wave propagation properties are described by the phase velocity (2.83), the at-
tenuation factor (2.85) and the quality factor (2.120). The quality factor has the simple
expression

Q(w) = ur. (2.156)
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Figure 2.4: Phase velocity (a) and dissipation factor (b) of the Maxwell model (MJJ = pc2, p = 2.4
gr/cm3, c = 3 km/s, r = 1/(2TT/), / = 25 Hz). The system acts as a high-pass filter because low-frequency
modes dissipate completely. The velocity for lossless media is obtained at the high-frequency limit. At
low frequencies there is no propagation.

The phase velocity and dissipation factors are shown in Figures 2.4a-b, respectively.
When u —»> 0, then vp —> 0, and u —> oo implies vp —>> y/Mu/p1 i.e., the velocity in the
unrelaxed state. This means that a wave in a Maxwell material travels slower than a wave
in the corresponding elastic material - if this is represented by the spring. The dissipation
is infinite at zero frequency and the medium is lossless at high frequencies.

2.4.2 Kelvin-Voigt model

A viscoelastic model commonly used to describe anelastic effects is the Kelvin-Voigt stress
strain relation, which consists of a spring and a dashpot connected in parallel (Figure 2.5)

The total stress is composed of an elastic stress

= MRe, (2.157)

where MR is the spring constant - the subindex R denotes "relaxed" - and a viscous
stress

(2.158)

where e is the total strain of the system. The stress-strain relation becomes

o = Gi + a2 = MRe + rjdte. (2.159)
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<J '

1
(Jo

Figure 2.5: Mechanical model for a Kelvin-Voigt material. The strain on both elements is the same,
but the forces are different.

The Fourier transform of (2.159) yields

a = (2.160)

which identifies the complex modulus

= M
R

(2.161)

The relaxation and creep functions are

= MRH{t)+r,5{t),

and
i

M

(2.162)

(2.163)
R

where r = r]/MR.
The calculation of the relaxation function from (2.159) is straightforward, and the

creep function can be obtained by using (2.41) and (2.42) and Fourier-transform methods.
The two functions are represented in Figure 2.6a-b, respectively.

The relaxation function does not show any time dependence. This is the case of pure
elastic solids. The delta function implies that, in practice, it is impossible to impose
an instantaneous strain on the medium. In the creep experiment, initially the dashpot
extends and begins to transfer the stress to the spring. At the end, the entire stress
is on the spring. The creep function does not present an instantaneous strain because
the dashpot cannot move instantaneously. This is not the case of real solids. The creep
function tends to the relaxed modulus MR at infinite time.

The quality factor (2.120) is
Q{UJ) = (LOT)-1. (2.164)

Comparing this equation to equation (2.156) shows that the quality factors of the Kelvin-
Voigt and Maxwell models are reciprocal functions.
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Figure 2.6: Creep (a) and relaxation (b) functions of the Kelvin-Voigt model (MR = 2.16 GPa, r =
l/(2vr/), / = 25 Hz). The creep function lacks the instantaneous response of real solids. The relaxation
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Figure 2.7: Phase velocity (a) and dissipation factor (b) of the Kelvin-Voigt model (MR = pc2, p = 2.4
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The phase velocity and dissipation factor are displayed in Figure 2.7a-b.
The Kelvin-Voigt model can be used to approximate the left slope of a real relaxation

peak (see Figure 2.1). The phase velocity vp —>• \/MR/p for co —> 0, and vp —> oo for
u —>• oo, which implies that a wave in a Kelvin-Voigt material travels faster than a wave
in the corresponding elastic material.

2.4.3 Zener or standard linear solid model

A series combination of a spring and a Kelvin-Voigt model gives a more realistic repre-
sentation of material media, such as rocks, polymers and metals. The resulting system,
called the Zener model (Zener, 1948) or standard linear solid, is shown in Figure 2.8. This
model was introduced by Poynting and Thomson (1902).

<j
kI

AAAA

k2

1

<T

Figure 2.8: Mechanical model for a Zener material.

The stress-strain relations for the single elements are

a = k\€i,
= rjdte2, (2.165)

with k\ > 0, k2 > 0 and r\ > 0. Moreover,

e = e1-\-e2.

The solution of these equations for a and e gives the stress-strain relation

(2.166)

a = MR(e + T€dte),

where

MR =
k2'

(2.167)

(2.168)

is the relaxed modulus, and

V V
—
k2

>Ta (2.169)
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are the relaxation times.
As in the previous models, the complex modulus is obtained by performing a Fourier

transform of the stress-strain relation (2.167),

= M

The relaxed modulus MR is obtained for UJ = 0, and the unrelaxed modulus

(2.170)

T,
> MR) (2.171)

(7

for UJ —> oo.
The stress-strain and strain-stress relations are

a = tp * e = x * dt<r, (2.172)

where the relaxation and creep functions are

= M
R T,(7

Hit) (2.173)

and

x(t) =
1

Mj
1 - 1 - H(t). (2.174)

(As an exercise, the reader may obtain the complex modulus (2.170) by using equations
(2.31) and (2.173)). Note that by the symmetry of the strain-stress relation (2.167),
exchanging the roles of ra and r€ and substituting MR for M^1 in equation (2.173), the
creep function (2.174) can be obtained.
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Figure 2.9: Creep (a) and relaxation (b) functions of the Zener model (MR = 2.16 GPa, Mv = 29A
GPa, T0 = l/(2vr/), / = 25 Hz). The creep function presents an instantaneous response and a finite
asymptotic value as in real solids. The relaxation function presents an instantaneous unrelaxed state,
and at the end of the process, the system has relaxed completely to the relaxed modulus MR. The curve
in (a) is similar to the experimental creep function shown in 2.1.
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The relaxation and creep functions are represented in Figure 2.9a-b, respectively.
In the creep experiment, there is an instantaneous initial value x(0+) — ̂ t / \ a Rd an
asymptotic strain x(oo) = M^1, determined solely by the spring constants. After the
first initial displacement, the force across the dashpot is gradually relaxed by deformation
therein, resulting in a gradual increase in the observed overall deformation; finally, the
asymptotic value is reached. Similarly, the relaxation function exhibits an instantaneous
unrelaxed state of magnitude Mv. At the end of the process, the system has relaxed
completely to the relaxed modulus MR. Such a system, therefore, manifests the general
features of the experimental creep function illustrated in Figure 2.1a. The relaxation
function and complex modulus can be shown to satisfy all the requirements listed in
Section 2.2.5.

The quality factor (2.120) is

Q{u>) =

where we have used equation (2.170).

(2.175)
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Figure 2.10: Phase velocity (a) and dissipation factor (b) of the Zener model. {MR = pcR, p = 2.4
gr/cm3, cR = 3 km/s, Mv = pc2

v, cv = 3.5 km/s, r0 = 1/(2TT/), / = 25 Hz).

The phase velocity and dissipation factor Q~x are shown in Figure 2.10a-b. The model
has a relaxation peak at co0 = 1/TQ, where

= vrcr,e' a-
(2.176)

The phase velocity increases with frequency. (The same happens for the Maxwell and
Kelvin-Voigt models). The type of dispersion in which this happens is called anoma-
lous dispersion in the electromagnetic terminology. In electromagnetism, the index of
refraction - defined as the velocity of light in a vacuum divided by the phase velocity -
decreases with frequency for anomalously dispersive media (Born and Wolf, 1964, p. 18;
Jones, 1986, p. 644).

The Zener model is suitable to represent relaxation mechanisms such as those illus-
trated in Figure 2.8b. Processes such as grain-boundary relaxation have to be explained
by a distribution of relaxation peaks. This behavior is obtained by considering several
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Zener elements in series or in parallel, a system which is described in the next section.
The phase velocity ranges from ^/MR/p at the low-frequency limit to \fMjjj' p at the
high-frequency limit, and the system exhibits a pure elastic behavior {Q~l = 0) at both
limits.

2.4.4 Burgers model

A unique model to describe both the transient and steady-state creep process is given by
the Burgers model, which is formed with a series connection of a Zener element and a
dashpot, or equivalently, a series connection of a Kelvin-Voigt element and a Maxwell ele-
ment (Klausner, 1991). The model is shown in Figure 2.11, and the constitutive equations
of the single elements are

= k2e2

— ^2^t^2 — 1UJT]2€2

a =
a =

where a time Fourier transform is implicit.

(2.177)

k2

kI
(7 a

r

Figure 2.11: Burgers's viscoelastic model. The response of the Burgers model is instantaneous elasticity,
delayed elasticity (or viscoelasticity) and viscous flow, the latter described by the series dashpot. On
removal of the perturbation, the instantaneous and delayed elasticity are recovered, and it remains the
viscous flow. The viscoelastic creep - with steady-state creep - of rocksalt can be described by the
Burgers model which includes the transient creep of the Zener model, which does not exhibit steady-state
creep, and the steady-state creep of a Maxwell model. (Carcione, Helle and Gangi, 2006).

Since

a = ai +a2,

we have
(7 = ox + o2 = (k2 + \ujr\2)t2

(2.178)

(2.179)
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and

where

e = e2 + e3 = k

J(u;) = = 1 + J_ +
k

(2.180)

(2.181)
M{UJ)

is the complex creep compliance (2.43).
An inverse Fourier transforms of (2.181) and a time integration of the result leads to

dtx(t) = + ^ + - exp(-t/re)H(t) (2.182)

and

X{t) = H(t), (2.183)

where re is given by equation (2.169)2- Equation (2.183) can also be obtained by adding
the creep functions of the Maxwell (M) and Kelvin-Voigt (KV) models (equations (2.152)
and (2.163), respectively), because e2 = XKV * dtcr and ei + €3 = %M * dtcr.

The calculation of the relaxation function is more tricky. The model obeys a time-
domain differential equation, which can obtained by combining equations (2.177) and
(2.178):

dto + 1 1 ] dta -\ a = kidte -\ ate. (2.184)

The relaxation function ip(t) = a(t) is obtained for e(t) = H(t). Then, factorizing the
left-hand side, equation (2.184) can be rewritten as

- 5') * (LO25 -5')*i; = hSf + —6,
mm

(2.185)

where 5' = dt5, and

,2 = -b± \/b2 -

Hence, the relaxation function is

(2.186)

- 5')-1 * (u;2S - 5')-1 *
1 ++ m

(2.187)

where here ( ) - 1 denotes the inverse with respect to convolution. Since

(<JI)2<J - S')-1 = - exp{uli2t)H(t),

we finally obtain

where

= [Ai exp(- t /n) - A2 exp{-t/T2)]H{t),

1
 A A hk2 +

d Ari,2 =
A A h

and A1:2 =
3Equation (2.188) is equivalent to

which is identically true.

(2.188)

(2.189)

(2.190)

, i.e, (CJI)2 — dt)[— exp(cji^t)H(t)] = 5,
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The models studied in the previous sections are limiting cases of the Burgers model.
The Maxwell creep function (2.152) is obtained for &2 —> oo and r/2 —> 0, where Mv = fc1?

r = 77i/A;i and r€ = 0. The Kelvin-Voigt creep function (2.163) is obtained for k\ —»• oo
and 7/i —>• oo, where M# = k2 and r = r€. The Zener creep function (2.174) is obtained
for r]i —>• oo, where T\ = oo, r2 = TV, ̂ 4I = M# and A2 = MR(re/ra — 1).

An example of the use of the Burgers model to describe borehole stability is given in
Carcione, Helle and Gangi (2006).

2.4.5 Generalized Zener model

As stated before, some processes, as for example, grain-boundary relaxation, have a dissi-
pation factor that is much broader than a single relaxation curve. It seems natural to try
to explain this broadening with a distribution of relaxation mechanisms. This approach
was introduced by Liu, Anderson and Kanamori (1976) to obtain a nearly constant quality
factor over the seismic frequency range of interest. Strictly, their model cannot be rep-
resented by mechanical elements, since it requires a spring of negative constant (Casula
and Carcione, 1992). Here, we consider the parallel system shown in Figure 2.12, with L
Zener elements connected in parallel. The stress-strain relation for each single element is

= MRl{e + Tddte)1 Z = 1 , . . . , L , (2.191)

where the relaxed moduli are given by

Mm = ll 2l , (2.192)
k\i + k2i

and the relaxation times by

According to (2.170), each complex modulus is given by

(2.194)
/

The total stress acting on the system is a = Yli=iai- Therefore, the stress-strain
relation in the frequency domain is

o =

We can choose MRi = MR/L, and the complex modulus can be expressed as

(2.196)

thereby reducing the number of independent constants to 2L + 1.
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Figure 2.12: Mechanical model for a generalized Zener material.

The relaxation function is easily obtained from the time-domain constitutive equation

(2.197)

where ipi has the form (2.173), and

= M
R

-iv i- H(t).

The unrelaxed modulus is obtained for t = 0,

1
L M L

R ST^ Tel

L

(2.198)

(2.199)

The relaxation function obtained by Liu, Anderson and Kanamori (1976) lacks the factor
1/L.

Nearly constant Q

In oil prospecting and seismology, constant-Q models are convenient to parameterize
attenuation in rocks, since the frequency dependence is usually not known. Moreover,
there is physical evidence that attenuation is almost linear with frequency - therefore Q
is constant - in many frequency bands (McDonal, Angona, Milss, Sengbush, van Nostrand
and White, 1958). The technique to obtain a nearly constant Q over a given frequency
range is to consider equispaced relaxation mechanisms in a log (a;) scale (Liu, Anderson
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and Kanamori, 1976). We show, in the following discussion, how to obtain a constant-Q
model for low-loss solids by using a simple algorithm, without curve fitting of the Q factor.

A more physical parameterization of a single Zener element can be obtained with the
center frequency UJQ = TQ"1, and the value of the quality factor at this frequency,

Qo =
2r,o

TV — TV

The quality factor (2.175) becomes

(2.200)

= Q
o

(2.201)
o

Solving for ra and re in equations (2.176) and (2.200), we obtain

TV =
Q

and ra =
0 Q0

Ql + i- (2.202)

Now, the problem is to find a set of relaxation times T>J and ra\ that gives an almost
constant quality factor Q in a given frequency band centered at CJO™ = l/r0m- This is
the location of the mechanism situated at the middle of the band, which, for odd L, has
the index m = L/2 — 1. As mentioned above, single relaxation peaks should be taken
equidistant in a log(co>) scale. The quality factor of the system is

Re(M)
Im(M)

f=1 MJ)
(2.203)

where Mi is given in equation (2.196)2- Since Qi = Re(M^)/Im(M^) is the quality factor
of each element, equation (2.203) becomes

Q(w) =
f=1 QjIm(M,)

(2.204)

where
+

— Voi (2.205)

Using equation (2.200) and assuming the low-loss approximation (rai , we have

MR

L 1 + <T( J

MR

L
01 MR (2.206)

We now choose Qo/ = Qoi and substitute equation (2.206) into equation (2.204) to obtain

Q M = LQ0

L

Z

- 1
20JTt01 (2.207)

1=1

We choose TQI regularly distributed in the log(o;) axis, and Q(coom) = Q1 the desired value
of the quality factor.
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Figure 2.13: Phase velocity (a) and dissipation factor (b) of the generalized Zener model.

Thus, the choice
^ L

Qo = v (2.208)

gives a constant Q (equal to Q), as can be verified by substitution of (2.208) into (2.207).
Figure 2.13 shows the phase velocity (a) and the dissipation factor (b) versus frequency,

for five dissipation mechanisms - each with a quality-factor parameter Qo = 15, such that
Q = 30. The dotted curves are the quality factor of each single mechanism, and the
vertical dotted line indicates the location of the third relaxation peak. The relaxation
function of the nearly constant-Q model is shown in Figure 2.14.
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Figure 2.14: Relaxation function of the generalized Zener model.

2.4.6 Nearly constant-Q model with a continuous spectrum

A linear and continuous superposition of Zener elements, where each element has equal
weight, gives a continuous relaxation spectrum with a constant quality factor over a given
frequency band (Liu, Anderson and Kanamori, 1976; Ben-Menahem and Singh, 1981, p.
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911). The resulting relaxation function exhibits elastic (lossless) behavior in the low- and
high-frequency limits. Its frequency-domain form is

M{i0) = MR (2.209)

where T\ and T<I are time constants, with T<I < Ti, and Q defines the value of the quality fac-
tor, which remains nearly constant over the selected frequency band. The low-frequency
limit of M is MRl and we can identify this modulus with the elastic modulus. Alterna-
tively, we may consider

M(v) = 1 + ^ l n
+ ico

- i

(2.210)

whose high-frequency limit is the elastic modulus Mu. These functions give a nearly con-
stant quality factor in the low-loss approximation. Figure 2.15 represents the dissipation
factor Q~l = Im(M)/Re(M) for the two functions (2.209) and (2.210) (solid and dashed
lines, respectively).
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Log[o;(Hz)]

Figure 2.15: Dissipation factors for the nearly constant-Q model, corresponding to the two functions
(2.209) and (2.210) (solid and dashed lines, respectively). The curves correspond to Q = 40, n = 1.5 s
and T2 = 8 xlO~5 s. The dotted line represents Q~1.

2.5 Constant-Q model and wave equation

A perfect constant-Q model can be designed for all frequencies. Bland (1960), Caputo
and Mainardi (1971), Kjartansson (1979), Miiller (1983) and Mainardi and Tomirotti
(1998) discuss a linear attenuation model with the required characteristics, but the idea
is much older (Nutting, 1921; Scott Blair, 1949). The so-called Kjartansson's constant-Q
model - in seismic prospecting literature - is based on a creep function of the form t21',
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where t is time and 7 <C 1 for seismic applications. This model is completely specified
by two parameters, i.e., phase velocity at a reference frequency and Q. Therefore, it
is mathematically much simpler than any nearly constant Q, such as, for instance, a
spectrum of Zener models (Carcione, Kosloff and Kosloff, 1988b,c,d). Due to its simplicity,
Kjartansson's model is used in many seismic applications, mainly in its frequency-domain
form.

The relaxation function is

t

where Mo is a bulk modulus, T is Euler's Gamma function, to is a reference time and 7 is
a dimensionless parameter. The parameters Mo, to and 7 have precise physical meanings
that will become clear in the following analysis.

Using equation (2.31) and after some calculations, we get the complex modulus,

2 7

(2.212)

where UJQ = I/to is the reference frequency.

2.5.1 Phase velocity and attenuation factor

The complex velocity is given by equation (2.80),

Vr = , (2.213)

and the phase velocity can be obtained from equation (2.83),

Vp = CQ

7

(2.214)

with

Co =
P

cos V 2 ) \

- 1
(2.215)

The attenuation factor (2.85) is given by

f sgn(o;) — (2.216)

and the quality factor, according to equation (2.120), is

Q = ( 2 - 2 1 7 )

Firstly, we have from equation (2.214) that CQ is the phase velocity at UJ = UJQ (the reference
frequency), and that

(^). (2.218)



2.5 Constant-Q model and wave equation 85

Secondly, it follows from equation (2.217) that Q is independent of frequency, so that

(2.219)

parameterizes the attenuation level. Hence, we see that Q > 0 is equivalent to 0 < 7 <
1/2. Moreover, vp —> 0 when UJ —> 0, and vp —> 00 when UJ —»• 00. It follows that very
high frequencies of the signal propagate at almost infinite velocity, and the differential
equation describing the wave motion is parabolic (e.g., Priiss, 1993).

2.5.2 Wave equation in differential form. Fractional derivatives.

Let us consider propagation in the (x, z)-plane and a 2-D wave equation of the form

(2.220)

where w{x^z1t) is a field variable, j3 is the order of the time derivative, b is a positive
parameter, A is the 2-D Laplacian operator

A = d\ + d\ , (2.221)

and fw is a forcing term. Consider a plane wave

- kxx - ksz)], (2.222)

where UJ is real and (^1,^3) is the complex wavevector. Substitution of the plane wave
(2.222) in the wave equation (2.220) with fw = 0 yields the dispersion relation

+ bk2 = 0 , (2.223)

where k = \Jk\ + k\ is the complex wavenumber. Equation (2.223) is the Fourier trans-
form of equation (2.220). The properties of the Fourier transform when it acts on fractional
derivatives are well established, and a rigorous treatment is available in the literature (e.g.,
Dattoli, Torre and Mazzacurati, 1998). Since k2 = pu;2/M, a comparison of equations
(2.223) and (2.212) gives

P = 2 - 2 7 , and b = (—] LOQ2J . (2.224)

Equation (2.220), together with (2.224), is the wave equation corresponding to Kjar-
tansson's stress-strain relation (Kjartansson, 1979). In order to obtain realistic values of
the quality factor, which correspond to wave propagation in rocks, 7 < 1 and the time
derivative in equation (2.220) has a fractional order.

Kjartansson's wave equation (2.220) is a particular version of a more general wave
equation for variable material properties. The convolutional stress-strain relation (2.28)
can be written in terms of fractional derivatives. In fact, it is easy to show, using equations
(2.212) and (2.224), that it is equivalent to

d2~Pe
r (2-225)
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Coupled with the stress-strain relation (2.225) are the momentum equations

= p8%.uu (2.226)

= pd2
ttu^ (2.227)

where u\ and u^ are the displacement components. By redefining

e = 9 lWl + d3u3 (2.228)

as the dilatation field, differentiating and adding equations (2.226) and (2.227), and sub
stituting equation (2.225), we obtain

d2e

where
A o —1 o I o —1 o /o oon \

= 0/1/? ai + (A P <TV (z.zoU

Multiplying by (io;)^~2 the Fourier transform of equation (2.229), we have, after an inverse
Fourier transform, the inhomogeneous wave equation

= Ap (pbe) + U , (2.231)

where we included the source term fe. This equation is similar to (2.220) if the medium
is homogeneous.

A more general stress-strain relation is considered by Miiller (1983), where the qual-
ity factor is proportional to o;a, with — 1 < a < 1. The cases a = — 1, a = 0 and a
= 1 correspond to the Maxwell, Kelvin-Voigt and constant-Q models, respectively (see
equations (2.156), (2.164) and (2.217)). Miiller derives the viscoelastic modulus using
the Kramers-Kronig relations, obtaining closed-form expressions for the cases a = dzl/n,
with n a natural number. Other stress-strain relations involving derivatives of fractional
order are the Cole-Cole models (Cole and Cole, 1941; Bagley and Torvik, 1983, Caputo;
1998; Bano, 2004), which are used to describe dispersion and energy loss in dielectrics
(see Section 8.3.2), anelastic media and electric networks.

Propagation in Pierre shale

Attenuation measurements in a relatively homogeneous medium (Pierre shale) were made
by McDonal, Angona, Milss, Sengbush, van Nostrand and White (1958) near Limon,
Colorado. They reported a constant-Q behavior with attenuation a = 0.12/, where a is
given in dB per 1000 ft and the frequency / in Hz. Conversion of units implies a (dB/1000
ft) = 8.686 a (nepers/ 1000 ft) = 2.6475 a (nepers/km). For low-loss solids, the quality
factor is, according to (2.123),

avp

with a given in nepers per unit length (Toksoz and Johnston, 1981). Since c is approx-
imately 7000 ft/s (2133.6 m/s), the quality factor is Q ~ 32.5. We consider a reference
frequency /0 = CJO/(2TT) = 250 Hz, corresponding to the dominant frequency of the seismic
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source used in the experiments. Then, 7 = 0.0097955, j3 = 1.980409, and CQ = y/M0/p =
2133.347 m/s. The phase velocity (2.214) and attenuation factor (2.216) versus frequency
/ = CG>/2TT are shown in Figures 2.16a-b, respectively, where the open circles are the ex-
perimental points. Carcione, Cavallini, Mainardi and Hanyga (2002) solve the wave equa-
tion by using a numerical method and compute synthetic seismograms in inhomogeneous
media. (The dotted and dashed lines in Figures 2.16a-b correspond to finite-difference
approximations of the differential equations.) This approach finds important applications
for porous media as well, since fractional derivatives appear in Biot's theory, which are
related to memory effects at seismic frequencies (Gurevich and Lopatnikov, 1995; Hanyga
and Seredyriska, 1999).
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Figure 2.16: Phase velocity and attenuation factor versus frequency in Pierre shale (solid line). The
open circles are the experimental data reported by McDonal, Angona, Milss, Sengbush, van Nostrand
and White (1958).

2.6 The concept of centrovelocity

The velocity of a pulse in an absorbing and dispersive medium is a matter of controversy.
The concept of velocity, which is relevant in the field of physics of materials and Earth
sciences, has been actively studied under the impetus provided by the atomic theory on the
one hand, and by radio and sound on the other (Eckart, 1948). In seismology, the concept
of velocity is very important, because it provides the spatial location of an earthquake
hypocenter and geological strata (Ben-Menahem and Singh, 1981). Similarly, ground-
penetrating-radar applications are based on the interpretation of radargrams, where the
travel times of the reflection events provide information about the dielectric permittivity
and ionic conductivity of the shallow geological layers (Daniels, 1996; Carcione, 1996c).

The three velocities, strictly defined for a plane harmonic wave, are the phase velocity
(2.83), the group velocity (2.86) and the energy velocity (2.114). As we have seen in Sec-
tion 2.3, the latter is equal to the phase velocity in 1-D media. Sommerfeld and Brillouin
(Brillouin, 1960) clearly show the breakdown of the group-velocity concept, which may
exceed the velocity of light in vacuum and even become negative. They introduced the
concept of signal velocity, which has been analyzed in detail for the Lorentz model. For
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non-periodic (non-harmonic) waves with finite energy, the concept of centrovelocity has
been introduced (Vainshtein, 1957; Smith, 1970; Gurwich, 2001). Smith (1970) defines
the centrovelocity as the distance travelled divided by the centroid of the time pulse, van
Groesen and Mainardi (1989), Derks and van Groesen (1992) and Gurwich (2001) define
the centrovelocity as the velocity of the "mass" center, where the integration is done over
the spatial variable instead of the time variable. That is, on the "snapshot" of the wave
field instead of the pulse time history. Unlike the phase (energy) and group velocities,
the centrovelocity depends on the shape of the pulse, which changes as a function of time
and travel distance. Therefore, an explicit analytical expression in terms of the medium
properties cannot be obtained.

In order to investigate the concept of wave velocity in the presence of attenuation, we
consider a 1-D medium and compare the energy (phase) and group velocities of a harmonic
wave to the velocity obtained as the distance divided by the travel time of the centroid
of the energy, where by energy we mean the square of the absolute value of the pulse
time history. This concept is similar to the centrovelocity introduced by Smith (1970), in
the sense that it is obtained in the time domain. Smith's definition is an instantaneous
centrovelocity, as well as Gurwich's velocity (Gurwich, 2001), which is defined in the space
domain. The travel times corresponding to the "theoretical" energy and group velocities
are evaluated by taking into account that the pulse dominant frequency decreases with
increasing travel distance. Thus, the dominant frequency depends on the spatial variable
and is obtained as the centroid of the power spectrum. A similar procedure is performed
in the spatial domain by computing a centroid wavenumber.

2.6.1 1-D Green's function and transient solution

The 1-D Green's function (impulse response) of the medium is

G{u) = exp(-iA;x) (2.232)

(e.g., Eckart, 1948; Pilant, 1979, p. 52), where k is the complex wavenumber and x is the
travel distance. We consider that the time history of the source is

Ao ; 2 ( t - t 0 ) 2

/ ( t) = exp

whose frequency spectrum is

cos[u(t — (2.233)

F(u) =
Au exp

U + U X "
exp

u — u x

ACJ
(2.234)

where to is a delay, u is the central angular frequency, and 2Au is the width of the pulse,
such that F(u =b Au) = F(u)/e. (Au = u/2 in the example below).

Then, the frequency-domain response is

U(u) = F(u)G(u) = F(u) exp(-i/cz) (2.235)

and its power spectrum is

P(OJ) =
7T

Au2 exp
u + u x

AUJ
+ exp

UJ — ux

Au
exp(—2ax),

(2.236)
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where we have used equations (2.80) and (2.81), and a is given by equation (2.85). A
numerical inversion by the discrete Fourier transform yields the desired time-domain (tran-
sient) solution.

2.6.2 Numerical evaluation of the velocities

In this section, we obtain expressions of the energy and group velocities and two different
centrovelocities.

The energy of a signal is defined as
•OO -1 /»OO

E= I \u{t)\2dt=— I \U{uj)\2du, (2.237)
Jo 2?r J-OO

where u(t) is the Fourier transform of U(w), and Parseval's theorem has been used
(Bracewell, 1965, p. 112).

We define "location of energy" as the time tc corresponding to the centroid of the
function \u\2 in the time domain (time history) (Bracewell, 1965, p. 139). That is

x f™tu(x,t)\2dt
= roe ; \L . • (2-238)Jo°° \u(x,t)\2dt

Then, the first centrovelocity, defined here as the mean velocity from 0 to x, is

ci{x) = - ^ - . (2.239)
tc(x)

Smith's centrovelocity is

(Smith, 1970).
The group and energy velocities (2.86) and (2.114) are evaluated at the centroid UJC of

the power spectrum. Since the medium is lossy, frequency UJC depends on the position x1',
where 0 < x' < x. We have

ujP(uj,x')duj f^°u\F\2exp(—2axf)duj
^ j I J o I I ^ v / 2 2411— rOQ — roo

Jo P{uj,x')duj Jo |Fpexp(—2ax')doj
where we have used equations (2.235) and (2.236).

The energy and group travel times are then obtained as

Ux) = / r , A1 and tqlx) = / r , A1, (2.242)

and the respective mean velocities are

X and vQ(x) = ^—. (2.243)
tg{x)

We define a second centrovelocity as the mean velocity computed from the snapshots of
the field, from 0 to time t,

c2(t) = ^ # , (2.244)
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where the "location of energy" is

:,t)\2dx

Jo°° \u(x,t)\2dx
(2.245)

i.e., the centroid of the function \u\2 in the space domain (snapshot). Gurwich's centrov-
elocity is

c2(t) = (2.246)

(Gurwich, 2001). In this case, it is possible to compute the energy and group velocities if
we assume a complex frequency Q = UJ + icjj and a real wavenumber, as in Section 2.3.1.
The dispersion relation is given by equation (2.128). Generally, this equation has to be
solved numerically for Q to obtain UJ(K) = Re(Q). Then, the energy and group velocities
are evaluated at the centroid KC of the spatial power spectrum. As before, the centroid
wavenumber KC depends on the snapshot time £', where 0 < t' < t. We have

0 =
°°

o

2.247

where P(ft, t') is the spatial power spectrum obtained by an inverse spatial Fourier trans-
form. The phase, energy and group locations are then obtained as

Xp[t)~Jo
dt'

))Y Xe[t) ~ Jo
dt'

a n d
dt'

(2.248)
where

VP[U)(K)] =
K

, VC[U;(K)] =

- 1

and

(2.249)
An energy velocity that differs from the phase velocity arises from the energy balance (see
Section 2.3.1). The respective mean velocities are

L L
and (2.250)

In the next section, we consider an example of the first centrovelocity concept (equation
(2.239)).

2.6.3 Example

We consider a Zener model whose complex modulus is given by equation (2.170), and we
use equations (2.200) and (2.202). We assume UQ = I/TO = 157/s and MJJ = pc^, with
Cu = 2 km/s. (The value of the density is irrelevant for the calculations.)

Figure 2.17 shows the energy and group velocities as a function of frequency (a), the
initial spectrum (dashed line) and the spectrum at x = 50 m (solid line) (b), and the
absolute value of the pulse in a lossless medium (dashed line) and for Qo = 5 (solid line)
(c) (the travel distance is x = 1 km). The group velocity is greater than the energy
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(phase) velocity, mainly at the location of the relaxation peak. The amplitude of the
spectrum for Qo = 5 is much lower than that of the initial spectrum, and the dominant
frequency has decreased. From (c), we may roughly estimate the pulse velocity by taking
the ratio travel distance (1 km) to arrival time of the maximum amplitude. It gives 2
km/s (1 km/0.5 s) for Qo = oo (dashed-line pulse) and 1.67 km/s (1 km/0.6 s) for Qo =
5. More precise values are obtained by using the centrovelocity.
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Figure 2.17: (a) Energy (solid line) and group (dashed line) velocities as a function of frequency for Qo

= 5. (b) Initial spectrum (dashed line) and spectrum for x = 50 m (solid line), (c) Absolute value of the
normalized displacement in a lossless medium (dashed line) and pulse for Qo = 5 (the travel distance is
x = 1 km). The relation between the pulse maximum amplitudes is 194. The relaxation mechanism has
a peak at UJQ = 157/s (/o = CJO/2TT = 25 Hz) and the source (initial) dominant frequency is Q = 628/s

= Q/2ir = 50 Hz).

The comparison between the energy and group velocities (see equation (2.243)) to the
centrovelocity C\ (equation (2.239)) is shown in Figure 2.18. In this case Qo = 10. The
relaxation mechanism has a peak at /o = 25 Hz and (a) and (b) correspond to source
(initial) dominant frequencies of 50 Hz and 25 Hz, respectively. As can be seen, the cen-
trovelocity is closer to the group velocity at short travel distances, where the wave packet
keeps its shape. At a given distance, the centrovelocity equals the energy velocity and
beyond that distance this velocity becomes a better approximation, particularly when the
initial source central frequency is close to the peak frequency of the relaxation mechanism
(case (b)). The problem is further discussed in Section 4.4.5.
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Figure 2.18: Centrovelocity (solid line), and energy (dashed line) and group (dotted line) velocities as
a function of travel distance and QQ = 10. The relaxation mechanism has a peak at /o = 25 Hz and the
source (initial) dominant frequency is / = 50 Hz (a) and / = 25 Hz (b).

2.7 Memory variables and equation of motion

It is convenient to recast the equation of motion for a viscoelastic medium in the particle-
velocity/stress formulation. This allows the numerical calculation of wave fields without
the explicit differentiation of the material properties, and the implementation of boundary
conditions, such as free-surface boundary conditions. Moreover, the equation of motion is
more efficiently solved in the time domain, since frequency-domain methods are expensive
because they involve the solutions of many Helmholtz equations.

In order to avoid the calculation of convolutional integrals, which can be computation-
ally expensive, the time-domain formulation requires the introduction of additional field
variables. Applying the Boltzmann operation (2.6) to the stress-strain relation (2.28), we
have

+ tp * e), (2.251)

where <p is the response function, definedas

(p = (2.252)

2.7.1 Maxwell model

For the Maxwell model (see equation (2.149)),

exp(-£/r)

and

Equation (2.251) yields

= — exp(—t/r).
T

(2.253)

(2.254)

(2.255)
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where
e = (p*e (2.256)

is the strain memory variable. (The corresponding stress memory variable can be defined
as M\je - the term memory variable to describe hidden field variables in viscoelasticity
being introduced by Carcione, Kosloff and Kosloff (1988b,c,d)). Note that the response
function obeys the following first-order equation

dt(p = —0. (2.257)
T

If we apply the Boltzmann operation to equation (2.256), we obtain a first-order differen-
tial equation in the time variable,

dte = (p(0)e + (dt<pH) * e = cp{O)e - -cp * e, (2.258)

or,

The equation of motion (2.78), including a body-force term fui can be rewritten as

(2.259)

f, (2.260)
P

where we used dtu = v. Differentiating (2.255) with respect to the time variable and using
e = diu, we obtain

dta = Mu{d1v + e1), (2.261)
where e\ = dte obeys equation (2.259), that is

dtd = --(div + ex). (2.262)
T

Equations (2.260), (2.261) and (2.262) can be recast as a first-order matrix differential
equation of the form

d ty = H-Y + f, (2.263)

where
v = (^,a,ei)T (2.264)

is the unknown field 3 x 1 array,

f = ( / « , 0 , 0 ) T (2.265)

is the source 3 x 1 array, and

0 p~1d1 0 \
H 0

v -r~ld1 0 - r - 1 J
(2.266)

In this case, the memory variable can be avoided if we consider equations (2.259) and
(2.260), and the stress-strain relation (2.261):

Y=(v,a)T, (2.267)

f=( /« ,0) T (2.268)

as well as
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2.7.2 Kelvin-Voigt model

In the Kelvin-Voigt model, the strain e plays the role of a memory variable, since the
strain-stress relation (2.39) and the creep function (2.163) yield

e = (pff * <j, (2.270)

(note that x(0+) = 0), with

^ (2.271)

Then, as with the Maxwell model, there is no need to introduce an additional field variable.
To express the equation as a first-order differential equation in time, we recast equation
(2.260) as

dtdiv = dip^dKT + dju = Apa + dju, Ap = d^du (2.272)

and redefine
ei = fa. (2.273)

Noting that d\V = ei, and using the stress-strain relation (2.160), we obtain

ftei = Ap(MRe + rjej + dju. (2.274)

The matrix form (2.263) is obtained for

Y=(€1,e)T, (2.275)

f=(9i/«,0)T (2.276)

and

H = ( Af A^* ) . (2.277)
Another approach is the particle-velocity/stress formulation. Using v = dtu, the time
derivative of the stress-strain relation (2.160) becomes

dtcr = MRdiV + rjdr dtv. (2.278)

Substituting (2.260) into (2.278) yields

d t a = M R d x v + 770! - d i a + f u ) . (2.279)
\P )

This equation and (2.260) can be recast in the matrix form (2.263), where

v = (^,cr)T, (2.280)

f= (0,7?di/w)T (2.281)
and

H = ( ° X - i V )• (2-282)

Carcione, Poletto and Gei (2004) generalize this approach to the 3-D case and develop a
numerical algorithm to solve the differential equation for isotropic inhomogeneous media,
including free-surface boundary conditions. The modeling simulates 3-D waves by using
the Fourier and Chebyshev methods to compute the spatial derivatives along the horizon-
tal and vertical directions, respectively (see Chapter 9). The formulation, based on one
Kelvin-Voigt element, models a linear quality factor as a function of frequency.
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2.7.3 Zener model

The stress-strain relation (2.251) is based on the relaxation function (2.173) and, after
application of the Boltzmann operation (2.6), becomes

(2.283)

where Mv is given by equation (2.171),

e = if * e, (2.284)

is the strain memory variable, and

0 = — (1 - — ] exp(-t/ra). (2.285)

Equation (2.285) obeys a differential equation of the form (2.257). The memory variable
satisfies

e 1
dte = <p(O)e =

T,(7
1 - — e + e (2.286)

First-order differential equations of the form (2.286) were introduced by Day and Minster
(1984) to simulate wave propagation in anelastic media. Defining ei = dte and differenti-
ating (2.283) and (2.286) with respect to the time variable, we obtain

= Mu{d1v + e^ (2.287)

and
1

Tn

T,
1 - I d\v + (2.288)

These equations and the equation of motion (2.260) can be written in the matrix form
(2.263), with y and f given by equations (2.264) and (2.265), and

0 p~1dl 0
H = [ Mudl 0 Mv | . (2.289)

0 - r - 1

2.7.4 Generalized Zener model

In this case, the stress-strain relation (2.251) (see (2.198)) is expressed in terms of L
memory variables e/,

X^J , (2.290)

which, after defining ey = dt^i and differentiating with respect to the time variable,
becomes

$Su) . (2.291)

The memory variables satisfy

(2.292)
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with

1
- i

/-^/
1 - (2.293)

The matrix differential equation (2.263) has

Y =
T

f = ( / w , 0 , 0 , 0 , . . . , 0 ) T

(2.294)

(2.295)

and

H

/ 0 0
0
0
0

0
Mu

0

0 \

0 - i
cr2

0
0

0 0 0

(2.296)

\ ¥L\V)Ul U U U . . . -TaL I

This formulation for the generalized Zener model is appropriate to simulate wave prop-
agation in inhomogeneous viscoelastic media, with a general dependence of the quality
factor as a function of frequency.

Alternatively, we can solve for the dilatation field (the strain e in 1-D space) or the
pressure field (—a in 1-D space). These formulations for the viscoacoustic equation of mo-
tion are convenient for 3-D problems where memory storage is demanding. We substitute
the stress-strain relation (2.290) into equation (2.272) to obtain

L

= A,

where ei = dte. Then, the unknown field in equation (2.263) is

(2.297)

Y = (e, e i , e i ,

the force term is

and

H

£=(0,9i/ t t,0,0,...,0)

^ 0 1 0 0

Pi(0) 0 -T- / 0̂

0 0 —r

T

(2.298)

(2.299)

0

- 1
0
0

V o 0 -T<TL I

(2.300)

where Ap = dip xdi in 3-D space (Carcione, Kosloff and Kosloff, 1988d).
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Isotropic anelastic media

When the velocity of transmission of a wave in the second medium, is greater than that in
the first, we may, by sufficiently increasing the angle of incidence in the first medium, cause
the refracted wave in the second to disappear [critical angle]. In this case, the change in the
intensity of the reflected wave is here shown to be such that, at the moment the refracted wave
disappears, the intensity of the reflected [wave] becomes exactly equal to that of the incident wave.
If we moreover suppose the vibrations of the incident wave to follow a law similar to that of the
cycloidal pendulum, as is usual in the Theory of Light, it is proved that on farther increasing the
angle of incidence, the intensity of the reflected wave remains unaltered whilst the phase of the
vibration gradually changes. The laws of the change of intensity, and of the subsequent alteration
of phase, are here given for all media, elastic or non-elastic. When, however, both the media
are elastic, it is remarkable that these laws are precisely the same as those for light polarized in
a plane perpendicular to the plane of incidence.

George Green (Green, 1838)

The properties of viscoelastic plane waves in two and three dimensions are essentially
described in terms of the wavevector bivector. This can be written in terms of its real and
imaginary parts, representing the real wavenumber vector, and the attenuation vector,
respectively. When these vectors coincide in direction, the plane wave is termed homoge-
neous; when these vectors differ in direction, the plane wave is termed an inhomogeneous
body wave. Inhomogeneity has several consequences that make viscoelastic wave behav-
ior particularly different from elastic wave behavior. These behaviors differ mainly in the
presence of both inhomogeneities and anisotropy, as we shall see in Chapter 4.

In the geophysical literature, the main contributors to the understanding of wave
propagation in isotropic viscoelastic media are Buchen (1971a,b), Borcherdt (1973, 1977,
1982), Borcherdt, Glassmoyer and Wennerberg (1986), and Krebes (1983a,b). The ther-
modynamical and wave-propagation aspects of the theory are briefly reviewed by Minster
(1980) and Chin (1980), respectively. Bland (1960), Beltzer (1988), Christensen (1982),
Pipkin (1972), Leitman and Fisher (1984), Caviglia and Morro (1992) and Fabrizio and
Morro (1992) provide a rigorous treatment of the subject. In this chapter, we follow the
"geophysical" approach to develop the main aspects of the theory of viscoelasticity.

97
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3.1 Stress-strain relation

Let us denote the dimension of the space by n and consider n = 2 and n = 3 in the
following. By n = 2 we strictly mean a two-dimensional world and not a plane-strain
problem in 3-D space. Therefore, most of the equations lose their tensorial character and
should be considered with caution.

The most general isotropic representation of the fourth-order relaxation tensor (2.10)
in n-dimensional space is

ipfjtit) SijSki + il>n(t)(5ik5ji + 5ii5jk), (3.1)
n J

where ifijc and ̂  are independent relaxation functions. Substitution of equation (3.1)
into the stress-strain relations (2.9) gives

2 \
iftu I * vtekkOij H~ 2/0» * dtCij. (3-2)

n )
Taking the trace on both sides of this equation yields

On the other hand, computing the deviatoric components of stress and strain gives

s^ = 2ijj^ * dtdij, (3-4)

where
1

O o n (Jo n Ofa faO'iin l O . Q J

n
and

1
dij = eij 'doij (3-6)

n
are the components of the deviatoric strain. It is clear that ipjc describes dilatational
deformations, and ̂  describes shear deformations; ipjc is the generalization of the bulk
compressibility in the lossless case, and ip)c — 2 ^ / n and ip^ play the role of the Lame
constants A and \i.

3.2 Equations of motion and dispersion relations

The analysis of wave propagation in homogeneous isotropic media is simplified by the
fact that the wave modes are not coupled, as they are in anisotropic media. Applying the
divergence operation to equation (1.23), and assuming constant material properties and
fi = 0, we obtain

lti, (3.7)

where

$ = djUi = en = div u (3.8)
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is the dilatation field defined in equation (1.11). Using (3.2), we can write the left-hand
side of (3.7) as

V ) * didi'd + 2<%Vv * 9*9^-. (3.9)

Because 2didj€n = didjdjUi + didjdiUj = 2didjdjUi = 29^9^ - with the use of (1.2) and
(3.8) - we obtain for equation (3.7),

+ 2^u [ 1 - -
n

(3.10)

or
*A$ = pd?+'d, (3.11)

where A = didi is the Laplacian, and

( ^) (3-12)

is the P-wave relaxation function that plays the role of A + 2ji.
Applying the curl operator to equation (1.23), and assuming constant material prop-

erties and fi = 0, we obtain
% (3.13)

where
ft = tukdiUiek = curl u (3.14)

and cuk are the components of the Levi-Civita tensor. Substitution of the stress-strain
relation (3.2) gives

* eukdidjCijek = ptifcl. (3.15)

Because 2elikdldjeij ek = eukdidj(diuj + djUi) ek = eUkdidi'dek + djdj(enkdiui) ek =
(since eukdidi'd = curl § = curl grad u = 0), we finally have

(3.16)

Fourier transformation of (3.11) and (3.16) to the frequency domain gives the two Helmholtz
equations

, .2 , .2

2 = 0, (3.17)
^ v%

where

P ^ P = J-\OtW£\ = -T^~5 P^^ = *r\utWu\ — —nr, (3.18)

with Vp and Vs being the complex and frequency-dependent P-wave and S-wave velocities,
and kp and ^5 being the corresponding complex wavenumbers.

The fact that the P- and S-wave modes satisfy equations (3.17) implies that the
displacement vector admits the representation

u = grad $ + curl 0 , div 0 = 0, (3.19)
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where <1> and 0 are a scalar and a vector potential, which satisfy (3.17)i and (3.17)2,
respectively:

o 9

These equations can be easily verified by substituting the expression of the displacement
into the equation of motion (1.23). The rigorous demonstration for viscoelastic media is
given by Edelstein and Gurtin (1965) (cf. Caviglia and Morro, 1992, p. 42).

Let us introduce the complex moduli as in the 1-D case (see equations (2.31), (2.36)
and (2.37)),

where

°° ̂  = UJ J0°°fe(t) -^yc(O)] cos(wt)dt,

Using (3.12) and (3.18), we define S and ji as

£ = T[dt^e] = pv2
P = K + 2fi (1 - - j , // = /w|. (3.23)

Then, the complex dispersion relations are

l ^ . (3.24)

3.3 Vector plane waves

In general, plane waves in anelastic media have a component of attenuation along the
lines of constant phase, meaning that their properties are described by two vectors -
the attenuation and propagation vectors, which do not point in the same direction. We
analyze in the following sections, the particle motion associated with these vector plane
waves.

3.3.1 Slowness, phase velocity and attenuation factor

We consider the viscoelastic plane-wave solution

$ = $ 0 exp[i(o;t - k • x)], (3.25)

where
k = K — i a = KK, — \adi (3.26)

with K being the real wavevector and a, being the attenuation vector. They express the
magnitudes of both the wavenumber K and the attenuation factor a, and the directions
of the normals to planes of constant phase and planes of constant amplitude.

Figure 3.1 represents the plane wave (3.25), with 7 indicating the inhomogeneity angle.
When this angle is zero, the wave is called homogeneous. We note that

k = (K — ia)k = kk, (3.27)
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Figure 3.1: Inhomogeneous viscoelastic plane wave. The inhomogeneity angle 7 is less than 90°.

only for 7 = 0, i.e., for homogeneous waves. Defining the complex wavenumber

k = —, (3.28)

where vc is the complex velocity defined in (3.18), the wavenumber and the attenuation
factor for homogeneous waves have the simple form

(3.29)

and
1

Vc

(3.30)

as in the 1-D case (see equations (2.83) and (2.85)). Substitution of the plane-wave
solution (3.25) into equation (3.20)i, and the use of (3.18)i yields

where

k • k = kl
P = kz = R e ( r ) ( l - \Q-H

l),

Re(/c2)

(3.31)

(3.32)
Im(£;2)

is the quality factor for homogeneous plane waves (Section 3.4.1). This quantity is an
intrinsic property of the medium. For inhomogeneous plane waves, the quality factor
also depends on the inhomogeneity angle 7, which is a characteristic of the wave field.
Separating real and imaginary parts in equation (3.31), we have

= —Im(A;2) =
(3.33)
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Solving for K, and a, we obtain

2AC2 = Re(k2) + ^[Re(k2)]2 + [Im(&;2)]2sec27,
2a2 = —Re(A;2) + ^/[Re(A;2)]2 + [Im(&;2)]2sec27,

or,

[ }

= Re(^2) I 1 + J\ + Q-2sec2
7 I ,

> , \ (3-35)
2a2 = Re{k2) - 1 + Jl + Q^2sec27 .

We first note that if Im(&;2) = 0 (Q# —»• oo), a = 0, and 7 = TT/2. This case corresponds to
an inhomogeneous elastic wave propagating in a lossless material, generated by refraction,
for instance. In a lossy material, 7 must satisfy

0 < 7 < TT/2. (3.36)

We may include the case 7 = TT/2, keeping in mind that this case corresponds to the limit
of a lossless medium.

The phase-velocity and slowness vectors for inhomogeneous plane waves are

vp = (-) k, sR = (-) k, (3.37)
VAC/ \UJJ

and the attenuation vector a is implicitly defined in (3.26). For homogeneous plane waves,
equation (3.29) implies

Re ( -
v.c

- 1 1
V

(3.38)
c

where vc represents the P-wave velocity Vp defined in (3.18)i. We can infer, from equations
(3.35) and (3.37)i, that the phase velocity and attenuation factor of an inhomogeneous
plane wave tend to zero and 00, respectively, as 7 approaches TT/2, and that they are less
than and greater than the corresponding quantities for homogeneous plane waves.

3.3.2 Particle motion of the P wave

Equation (3.19) implies that the P-wave displacement vector can be expressed in terms
of the scalar potential (3.25) as

u = grad $ = Re{-i$okexp[i(a;t - k • x)]}. (3.39)

Using equation (3.26) and <l>o& = |$o&| exp[i arg(^o^)]3
 w e obtain

u = -

where
q(t) =ut- « • x + arg(^>o^). (3.41)

Equation (3.28) has been used (vc represents the P-wave complex velocity Vp defined in
equation (3.18)i). We introduce the real vectors £x and £2>

 s u c n ^na^

( ^ ) p ) (3.42)

r / v \ 1
e x p ( - a • x) Re if —Jkexp(k) , (3.40)
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where
k>£i — VRK + via, u£2 = VIK — VRCX, (3.43)

and vR and Vj denote the real and imaginary parts of vc. Now,

• £2 = VIVR(K2 - a2) + (vj - V2
R)K • a , (3.44)

which, using equations (3.28) and (3.33), implies

£1 • £2 = vivRRe ( — ) + -{vj - 4 ) I m ( — ) oc VjvflRe(vf) + -lm{vf)(vj - v2
R) = 0.

(3.45)
Thus, the vectors are orthogonal,

€1 • €2 = 0- (3.46)

Moreover,
w2te2 - ?|) = («2 - a 2 ) ( 4 - V/

2) + AVRVI(K • oc). (3.47)

Again, using equations (3.28) and (3.33), we obtain

& ~ fl = Re ( ±) (v2
R - vj) - 2vRvIlm

—r (?4 - ^ ) + 4vlv? = T(V% + ^?)2 = 1; (3.48)

that is
= 1. (3.49)

Since £1 > 0 and £2 > 0, equation (3.49) implies £1 > £2- Substitution of equation (3.42)
into equation (3.40) gives

u = —

or

e x p ( - a • x)Re [i(^ + i£2) exp(k)], (3.50)

u = £/0[£i s ine+ £2 cose], (3.51)

with
Uo = \$ok\ e x p ( - a • x). (3.52)

We write the following definition:

TJ - u " ^ r; - u
1 ~ ^TT' 2 ~ '

and eliminate e from (3.51) to obtain

(3-54)
SI S2

Equation (3.54) indicates that the particle motion is an ellipse, with major axis £x and
minor axis £2. The sense of rotation is from K to a and the plane of motion is defined by
these vectors (see Figure 3.2). The cosine of the angle between the propagation direction
and the major axis of the ellipse is given by K • £ i /
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i U2

Kl\a '1

Figure 3.2: Particle motion of an inhomogeneous P wave in an isotropic viscoelastic medium. The
ellipse degenerates into a straight line for a homogeneous plane wave.

This means that the particle motion of an inhomogeneous plane P wave is not purely
longitudinal. When 7 = 0 (i.e., an homogeneous plane wave),

^£2 =
 &{VIK — VR&), (3.55)

according to equations (3.27) and (3.43)2- But from equations (3.29) and (3.30), we have

vRa = VTKH - vRaH = uo vTRe I — ) + i^Im I —
v,

= 0. (3.56)

Hence, £2 = 0> a n d the particle motion is longitudinal.

3.3.3 Particle motion of the S waves

We can define two types of S waves, depending on the location of the particle motion,
with respect to the (K, a)-plane. Let us consider a plane-wave solution for type-I S waves
of the form

0 = Re{Bonexp[i(a;t - k • x)]}, (3.57)

where Bo is a complex constant and n is a unit vector perpendicular to the («, a)-plane.
This is a consequence of equation (3.19)2, which implies k • fi = 0. Orthogonality, in this
case, should be understood in the sense of complex vectors (see Caviglia and Morro, 1992,
p. 8, 46), and the condition k • n = 0 does not imply that the polarization Re(u) (see
equation (3.60) below) is perpendicular to the real wavenumber vector K.

The solution for type-II S waves is obtained by considering a plane wave,

0 = Re{(0iei + 6>3e3) exp[i(o;t - k • x)]}, (3.58)
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with #1 and 63 being complex valued. Moreover, let us assume that the («, a)-plane coin-
cides with the {x1 z)-plane, implying <92[ • ] = 0. From equation (3.19)i, the displacement
field for such a wave is given by

u = Re{P0 exp[i(cut - k • x)]}e2, Po = (6>3ei - 6>ie3) • (a + i«), (3.59)

and (3.19)2 implies 9i(pt + in) • ei = —63(a + in) • e3. Equation (3.59) indicates that the
particle motion is linear perpendicular to the («, a)-plane.

K

X

Figure 3.3: Linear particle motion of a type-II S wave (SH wave).

Figure 3.3 shows the particle motion of the type-II S wave. Type-I and type-II S
waves are denoted by the symbols SV and SH in seismology (Buchen, 1971a,b; Borcherdt,
1977).

The particle motion of the type-I S wave shows similar characteristics to the P-wave
particle motion. From (3.19), its displacement vector can be expressed in terms of vector
0 as

u = curl 0 = Re{—i6o(ii x k) exp[i(o;t — k • x)]}, (3.60)

which lies in the plane of K and a.
For simplicity, we use the same notation as for the P wave, but the complex ve-

locity vc is equal here to v,s, defined in (3.18)2. Using equation (3.26) and B0/c =
exp[i arg(Bofc)], we get

u = — |B0A;| exp(—OL • x)Re if — ) (h x k) exp(i^)v, (3.61)

where
s(i) = cut — K • x + arg(Bo^). (3.62)

As before, Vck/cu can be decomposed into real and imaginary vectors as in equation
(3.42). Let us define

(3.63)

where
C i = n x { l 5 C2 = n x (3.64)
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since £x and £2, defined in equation (3.43), lie in the («, a)-plane. On the basis of
equations (3.46), (3.49) and (3.64), these vectors have the properties

= 1. (3.65)

Substituting (3.63) into equation (3.61) gives

with

u = C/o [Ci sin (? + C2 cos

exp(—a • x).

(3.66)

(3.67)

The particle motion is an ellipse, whose major and minor axes are given by £i and £2,
and whose direction of rotation is from K to Q . The cosine of the angle between the
propagation direction and the major axis of the ellipse is given by K • Ci/{KCi) (Buchen,
1971a).

Figure 3.4: Particle motion of an inhomogeneous S wave in an isotropic viscoelastic medium. The
ellipse degenerates into a straight line for a homogeneous plane wave.

Figure 3.4 shows a diagram of the S-wave particle motion. For a homogeneous plane
wave, the ellipse degenerates into a straight line.

3.3.4 Polarization and orthogonality

We have seen in Section 1.3.3 that the polarizations of the three wave modes are orthogonal
in anisotropic elastic media. Now, consider the case of anelastic isotropic media. From
equations (3.40) and (3.61), the P and S-I polarizations have the form

Up = and us = Re(6n x (3.68)
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respectively, where a and b are complex quantities, and the indices P and S indicate that
K and a for P and S waves differ. The general form (3.68) implies that the P and S
polarizations are not orthogonal in general, that is, when the plane waves are inhomo-
geneous. For homogeneous waves, GL = k, and if the propagation directions coincide,
equation (3.68) simplifies to

up = Re(a') k and u s = Re(fr') n x k, (3.69)

where ar and b' are complex quantities. These two vectors are orthogonal, since n is
perpendicular to k.

3.4 Energy balance, energy velocity and quality fac-
tor

To derive the mechanical energy-balance equation, we follow the same steps as we did to
obtain equation (2.95) in the 1-D case. Using dtUi = Vi (dtu = v) and performing the
scalar product of equation (1.23) with v on both sides, we get

(3.70)

where we assumed fa = 0. Contraction of djVi + djVj = 2dtCij with a^ yields

aijdteij = -crij(djVi + d{Vj) = (?ijdjVh (3-71)

using the symmetry of the stress tensor. Adding equations (3.70) and (3.71) and substi-
tuting the stress-strain relation (3.2), we obtain the energy-balance equation, equivalent
to (2.94),

2
-diPi = dtT * (3.72)

n
where

Pi = -VjGij (3.73)

are the components of the Umov-Poynting vector, and

T = \pViVi (3.74)

is the kinetic-energy density.
The second term in the right-hand side is then partitioned in terms of the rate of

strain and dissipated energies on the basis of expressions (2.16) and (2.17). We obtain

(3.75)

where, defining r' = 2t — T\ — T<I and using (3.1), we have that the strain energy is

— oo «/ —oo

2
Mr1) ~ - ){5ik5j
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(3.76)

Equation (3.76) becomes

1 [
= 9 /

— oo «/ —oo

/7
«/ —co «/ —

— CO «/ —OO "'
(3.77)

where we used the symmetry of the strain tensor. In terms of the deviatoric components
of strain (3.6), equation (3.77) becomes

—oo J —oo^ «/—oo « / -

/ • /
«/ —co «/ —oo

To obtain the last equation, we must be careful with terms of the form
when i ^ j , since they come in pairs; e.g., dTlei2(ri)^2^12(^2)+

Similarly, the rate of dissipated-energy density can be expressed as

"* /"*
d^K{Tt)dT1eii{Tl)dT2ekk{T2)dT1dT2

(3.78)

/ /
—00 J—00

[ [
—00 J—00

where ^ denotes the derivative with respect to the argument.

(3.79)

3.4.1 P wave

In this section, we obtain the mechanical energy-balance equation for P waves. The
complex displacement and particle-velocity components are from (3.39)

and

exp[i(co>£ — k • x)]

exp[i(o;t — k • x)],

(3.80)

(3.81)

with k = kp in this case.
The time-averaged kinetic-energy density (3.74) can be easily calculated by using

equation (1.105),

(T) = i
1
4

k*)exp(-2a-x)

= 7/oo;2|$o|2exp(-2a-x)( K; (3.82)
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where equation (3.26) was used. By virtue of (3.34), we can recast the kinetic-energy
density in terms of the inhomogeneity angle 7,

(T) = -\ I 4 (3.83)

Let us now consider the strain-energy density (3.78). From equations (3.19) and (3.25),
we have

dteu = diVi = -iujk2® (3.84)

and
•.h. n-le I CD 1*3 8^1

Since r ; = 2t — ri — T2, the change of variables T\ —> t — T\ and r2 —> t — r2 in equation
(3.78) yields

I f°°

'CO /»CO

- T2)dridr2

(3.86)
0

Averaging over a period 2TT/LO by using (1.105), we note that

(deu(t - n)dekk(t - r2)) = ^ - r2)]*} = cos[o;(r2 -

where equation (3.84) has been used. Similarly, using (3.85), we obtain
(3.87)

1
- Ti)ddi:j(t - r2)) = -us

1

n
(3.88)

where implicit summation is assumed in the square of the absolute modulus. Now, by a
new change of variables similar to the one used to obtain equation (2.47), we have

'CO

{V) = i
0

- Oijrv

n J [
Jo

CO

(3.89)

Substituting the expressions of the real moduli (3.22) into equation (3.89), we obtain

|fc|4/cfl

where equations (3.25) and (3.26) were used. But,

n
(3.90)

n
n

= (k • k*)2 - i
2 2 2 (3.91)

sec2 7 - ±
= {[Re(fc2)]2 + [Im(fc2)2]} (1 - i ] +

[Im(A;2)]2}
tan2 7,
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where we have used (3.24) and (3.34). Substituting expression (3.91) into equation (3.90),
we have

(V) = 1|<DO|2 exp ( -2a • x) <j {[Re(k2)]2 + [lm(k2)]2}

+2/iK[Im(A:2)tan7]2}. (3.92)

From equation (3.23),

n )
pco2Re(k2)

(3.93)

such that (3.92) becomes

(V) = \ (3.94)

where k must be replaced by kp. This can be written in terms of the medium properties
by using equation (3.24). Expression (3.94) is obtained by Buchen (1971a).

Note, from equation (3.33), that

Re(/c2) = K2 - or

and
[lm(k ) tan7] = 4K a sin 7 = 4\K X OL

(3.95)

(3.96)

Therefore, equation (3.94) can be rewritten as

OL K x a | 2] . (3.97)

This form is obtained by Borcherdt (1973), but with the factor 4 in the second term,
instead of the factor 8. This and other discrepancies have given rise to a discussion
between Krebes (1983a) and Borcherdt (see Borcherdt and Wennerberg, 1985) regarding
the preferred definitions of strain and dissipated energies. As pointed out by Caviglia and
Morro (1992, p. 57), in the general case, the ambiguities remain, even though the time
averages are considered. We should emphasize, however, that the ambiguity disappears
when we consider energy densities compatible with mechanical models of viscoelastic
behavior, as in the approach followed by Buchen (1971a). This discrepancy does not occur
for homogeneous waves, because K X a = 0, but may have implications when calculating
the reflection and transmission coefficients at discontinuities, since inhomogeneous waves
are generated.

The same procedure can be used to obtain the time-averaged rate of dissipated-energy
density. (The reader may try to obtain the expression as an exercise). A detailed demon-
stration is given by Buchen (1971a):

(D) = - (3.98)

or, in terms of the wavenumber and attenuation vectors, time-averaged dissipated-energy
density is

(D) = K x a | 2] , (3.99)
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where we have used equations (2.106), (3.33)2 and (3.96).
We now note the following properties. Since (V) in (3.97) must be a positive definite

quantity, it follows that Re(kj>) > 0, and from (3.24),

Re(£) = £R > 0. (3.100)

In addition,
> 0. (3.101)

Also, since (D) must be non-negative, it follows that Im(&;f>) < 0 - this can also be
deduced from (3.33), since K • a > 0 - or

Im(£) = Si > 05 (3.102)

according to (3.24). Furthermore, since K • a > 0,

fii > 0. (3.103)

The time average of the total energy density, from (3.82) and (3.97), is

(E) = {T + V) = ^ 0 | 2 e x p ( - 2 a - x ) [ p o ; 2 | « | 2 + 4/ iK |«x a |2] . (3.104)

When the motion is lossless (Im(k^) = 0), the time-averaged kinetic- and strain-energy
densities are the same

(T) = (V) = -|$o|2exp(-2a-x)po;2A:2,. (3.105)

Let us calculate now the time-averaged energy flow, or the time average of the Umov-
Poynting vector. From equations (1.105) and (3.73), we have

(Pi) = -^Re(w;o-y). (3.106)

From (3.2) and (3.21) and using the relation K = S — 2/i(l — 1/n) (see (3.23)), we write
the stress-strain relation as

fi\ ekk6ij + 2fi€ij = SekkSij + 2/i(e^- - ekk6ij). (3.107)

The following expressions are obtained for the plane wave (3.25),

v* = uj<5>lh* exp[-i(u;£ - k* • x)] = ujk*§\ (3.108)

ekk = -k2® (3.109)

and
eij = -kikj®. (3.110)

Substituting these expressions into equations (3.106) and (3.107) yields

i A;2^ + 2fj,k*(kikj - /c2%)], (3.111)
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or, using (3.24), we have

2/j,k*(kikj - (3.112)

We can now write

7 \ i j i ' i * i

(K - K + a • a)fcj — (K • K — a • a — 2ia • K,)k*
K • n(ki - k*) + a • ct(ki + A:*) + 2ia • K fc?

+ 2a • a Re(fcj) + 2ia • K k\

or, in vector form

vector = — 2i(/s • K)OL + 2(a • OL)K + 2i(a •
= 2^[a • (i« + a)] - 2a[« • (irc + a)]
= 2(i« + a) x (« x a) = —2(« x a) x

+ ia)

K + a),
(3.114)

where we have used the property a x (b x c) = (a • c)b — (a • b)c (Brand, 1957, p. 31).
Substituting equation (3.114) into equation (3.112) and taking the real part, we obtain

the final form of the time-averaged power flow, namely,

(p) = - exp(—2a • x)[puj2K + 4(« x a) x (3.115)

We can infer that the energy propagates in the plane of K and a, but not in the direction
perpendicular to the wave surface, as is the case with elastic materials and homogeneous
viscoelastic waves, for which K X a = 0.

Let us perform the scalar product of the time-averaged energy flow (p) with the
attenuation vector a. The second term contains the scalar triple product [(K, X a ) X (i« +
a)]-a (see equation (3.114)). Using the property of the triple product (axb)-c = (bxc)-a
(Brand, 1957, p. 33), we have

K x a) x (IK + a)] • a = [(m + a) x a] • (K X a) = i|« x a

Using this equation, we obtain

(3.116)

(3.117)

or
(D) = 2{p) • a , (3.118)

where (D) is the time-averaged rate of dissipated energy (3.99). Moreover, since

2(p) .& = {£>) = -(div p), (3.119)

we can infer from equations (3.75) and (3.104) that the mean value of the rate of total
energy density vanishes

(dtE) = 0. (3.120)

On the other hand, if we calculate the scalar product between the time-averaged energy-
flow vector (p) and the wavenumber vector rc, we obtain \K X a|2 for the corresponding
triple product. Using this fact, we obtain the following relation

UJ(E) = (3.121)
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As in the 1-D case (equation (2.114)) and the lossless anisotropic case (equation (1.113)),
we define the energy-velocity vector as the ratio of the time-averaged energy-flow vector
to the time-averaged energy density,

ve = M (3.122)

Combining (3.121) and (3.122), we obtain the relation

(3.123)

where vp and s# are the phase velocity and slowness vector introduced in (3.37). This can
be interpreted as the lines of constant phase traveling with velocity ve in the direction of
(p). This property is satisfied by plane waves propagating in an anisotropic elastic medium
(see equation (1.114)). Here, the relation also holds for inhomogeneous viscoelastic plane
waves. For homogeneous waves, 7 = 0, K X OL = 0, equations (3.104) and (3.115) become

(p) = -u;|<l>o|2 exp( -2a • X)/XJ2K, (3.125)

and we have ve = vp.

(E) = - |$o | 2exp(-2a-x)pu; 2 | t t | 2 (3.124)

and
(p) =

As in the 1-D case (equation (2.119)), we define the quality factor as

Q = ̂ p (3-126)

where
(D)=UJ-1(D) (3.127)

is the time-averaged dissipated-energy density. Substituting the time-averaged strain-
energy density (3.97) and the time-averaged rate of dissipated-energy density (3.99), and
using equations (3.18) and (3.33), we obtain

/ c 2 - a 2 Re(fc2) Refog)
Im(F) " Im(«2)' l '

where we assumed homogeneous waves (7 = 0). As in the 1-D case, we obtain the relation

Trf
a=-L- (3.129)

Qvp

for Q ^> 1 and homogeneous plane waves. On the other hand, definition (2.124) and
equations (3.118), (3.122) and (3.127) imply

^ ) ^ (3.130)
(D) (D) \(p)-a) 2ve-a

For homogeneous waves, this equation implies the relation

(3.131)

which holds without requiring the condition Q ̂ $> 1.
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3.4.2 S waves

The results for the type-I S wave have the same form as those for the P wave, while the
results for the type-II S wave are similar, but differ by a factor of 2 in the inhomogeneous
term. We have

(p) = \ix [i
]

(T) = \puo2

{V) = \ So

So
I—i

) 2 exp(—2a • x)[pu2K
So

 2 exp(—2a • X ) ( | K
c JvJJ 1 ZCt J\.\\pLU I n ,

pvnI Q/^/ • Y l rt//l l<Tt; AJJ1 ZiCc J\.J\pUJ r\j

PYT11 V / ^ • Y l /^/1) ( §<C

CA.JJ 1 ZiCl J\^)\fJUJ 1 f t

+ a(
2 +

2 _
t

2 + c
•a)

c

a

+

x a) x
' ) ,
2) + 2a

; K X Q

ajii K x

/<J //r7-

K X Q
2 ] ,
a 2 ] ,

(3.132)

where Eo = $ 0
 a n d a = 4 for P waves, So — ©0 a n d a = 4 for type-I S waves, and

So = r o / (k-k*) and a = 2 for type-II S waves (see equations (3.25), (3.57) (3.59)). Some
details of the preceding equations can be found in Buchen (1971a) and Krebes (1983a),
and in Caviglia and Morro (1992, pp. 57-60), where an additional correction term is
added to the time-averaged energy-flow vector of the type-I S wave. Moreover, relations
(3.120), (3.123) and (3.118) are valid in general, as are the expressions for the energy
velocity and quality factor (3.122) and (3.128), respectively. The extension to isotropic
poro-viscoelastic media is given by Rasolofosaon (1991).

3.5 Boundary conditions and SnelPs law

A picture illustrating the reflection-transmission phenomenon is shown in Figure 3.5,
where the vectors K, a and fi need not be coplanar.

R

Figure 3.5: The reflection-transmission problem in viscoelastic media.

Depending on the nature of the incident waves, four or two waves are generated at
the interface, corresponding to the P-SV (P-(S-I)) and SH/SH ((S-II)-(S-II)) scattering
problems. If the two media are in welded contact, the boundary conditions are the
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continuity of the displacements (or particle velocities) and normal stresses across the
interface, that is continuity of

Ui and cTijTij (3.133)

(Auld, 1990a, p. 124). This implies that the complex phase k • x at any point of the
interface is the same for all the waves involved in the process, that is

k7 • x = kR • x = kT • x, x • n = 0, (3.134)

or

k7 x n = kR x fi = kT x n. (3.135)

In terms of the complex wavevector k and slowness vector s = k/o;, and identifying the
interface with the plane z = 0, we have

K-i —— K-i —— K-i a n Q /Co ~~ n/o ~~ 2 ' ( O . l O D )

s\ = s? = s and 4 = S2 = 4- (3.137)

This general form of Snell's law implies the continuity at the interface of the tangen-
tial component of the real and imaginary parts of the complex wavevector (or complex-
slowness vector) and, therefore, the continuity of the tangential components of K and a .
This condition can be written as

K1 sin 91 = KR sin 6R = KT sin 6T

= aTsin(6>T - 7
T ) .

It is not evident from this equation that the reflection angle is equal to the incidence
angle for waves of the same type. Because k2 is a material property independent of the
inhomogeneity angle (see equation (3.24)), the relation

kj = k2 - (k2 + k\) (3.139)

and equation (3.136) imply k{ = kR . Since the z-components of the incident and
reflected waves should have opposite signs, we have

kR = -kR. (3.140)

This relation and equation (3.136) imply K,1 = KR and a1 = aR, and from (3.138)

6R = eI and 7jR = 7 / . (3.141)

Therefore, the reflected wave is homogeneous only if the incident wave is homogeneous.
More consequences from the viscoelastic nature of Snell's law are discussed in Section 3.8,
where we solve the problem of reflection and transmission of SH waves1.

1Note that to obtain Snell's law we have not used the assumption of isotropy. Thus, equations (3.138)
are also valid for anisotropic anelastic media.
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3.6 The correspondence principle

The correspondence principle allows us to obtain viscoelastic solutions from the corre-
sponding elastic (lossless) solutions. The stress-strain relation (3.2) can be rewritten as

* dtdij7 (3.142)

where d^ is defined in equation (3.6).
Note that the Fourier transform of the stress-strain relations (3.142) is

(3.143)

where
K{UJ) = F[dtMt)] and ,I{UJ) = T[dt%{t)\ (3.144)

are the corresponding complex moduli. The form (3.143) is similar to the stress-strain
relation of linear elasticity theory, except that the moduli are complex and frequency
dependent. Note also that Euler's differential equations (1.23) are the same for lossy and
lossless media. Therefore, if the elastic solution is available, the viscoelastic solution is
obtained by replacing the elastic moduli with the corresponding viscoelastic moduli. This
is known as the correspondence principle2. We show specific examples of this principle in
Section 3.10. Extensions of the correspondence principle are given in Golden and Graham
(1988, p. 68).

3.7 Rayleigh waves

The importance of Rayleigh waves can be noted in several fields, from earthquake seismol-
ogy to material science (Parker and Maugin, 1988; Chadwick, 1989). The first theoretical
investigations carried out by Lord Rayleigh (1885) in isotropic elastic media showed that
these waves are confined to the surface and, therefore, they do not scatter in depth as do
seismic body waves.

Hardtwig (1943) was the first to study viscoelastic Rayleigh waves, though he erro-
neously restricts their existence to a particular choice of the complex Lame parameters.
Scholte (1947) rectifies this mistake and verifies that the waves always exist in viscoelas-
tic solids. He also predicts the existence of a second surface wave, mainly periodic with
depth, whose exponential damping is due to anelasticity and not to the Rayleigh character
- referred to later as v.e. mode. Caloi (1948) and Horton (1953) analyze the anelastic
characteristics and displacements of the waves considering a Voigt-type dissipation mech-
anism with small viscous damping, and a Poisson solid. Borcherdt (1973) analyzes the
particle motion at the free surface and concludes that the differences between elastic and
viscoelastic Rayleigh waves arise from differences in their components: the usual inho-
mogeneous plane waves in the elastic case, and viscoelastic inhomogeneous plane waves
in the anelastic case, which allow any angle between the propagation and attenuation
vectors.

2 Although the principle has been illustrated for isotropic media, its extension to the anisotropic case
can be obtained by taking the Fourier transform of the stress-strain relation (2.22), which leads to equation
(4.4).
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A complete analysis is carried out by Currie, Hayes and O'Leary (1977), Currie and
O'Leary (1978) and Currie (1979). They show that for viscoelastic Rayleigh waves: (i)
more than one wave is possible, (ii) the particle motion may be either direct or retrograde
at the surface, (iii) the motion may change sense at many or no levels with depth, (iv) the
wave energy velocity may be greater than the body waves energy velocities. They refer
to the wave that corresponds to the usual elastic surface wave as quasi-elastic (q.e.), and
to the wave that only exists in the viscoelastic medium as viscoelastic (v.e.). This mode
is possible only for certain combinations of the complex Lame constants and for a given
range of frequencies. Using the method of generalized rays, Borejko and Ziegler (1988)
study the characteristics of the v.e. surface waves for the Maxwell and Kelvin-Voigt solids.

3.7.1 Dispersion relation

Since the medium is isotropic, we assume without loss of generality that the wave propa-
gation is in the (x, £)-plane with z = 0 being the free surface. Let a plane-wave solution
to equation (1.23) be of the form

u = Uexp[i(u;£ - k • x)]. (3.145)

For convenience, let m =1 denote the compressional wave and m = 2 the shear wave. We
rewrite the dispersion relations (3.24) as

k^ = ̂  . ? = - , vl = ̂  (3.146)
< P P

where £{ui) = A (a;) + 2JJL(U).

A general solution is given by the superposition of the compressional and shear modes,

u = U W exp[i(a;t - k<m> • x)], (3.147)

where
= f/ok

(1), U(2>-k(2> = 0. (3.148)

At the free surface [z = 0), the boundary conditions are

C33 = \d\U\ + (A + 2/j)d3Us = 0, and au = /i(9iw3 + d$Ui) = 0. (3.149)

These boundary conditions imply that the horizontal wavenumber is the same for each
mode,

k^ = kf] = A* = «i - iai. (3.150)

From equations (3.147) and (3.150), the displacement components are

Ul = F(z) exp[i(ujt - hx)], F(z) = U[m)

= G(z) exp[i(u;£ — h\x)], G(z) = U^ exp(—i
- T T { m ) m r . , ( m ) s (3.151)

where the vertical wavenumbers are

lAm) _ ,Arn) (3.152)
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From equations (3.146), (3.148) and (3.150),

and
U3

(2)

U
where

(3.155)

is the Rayleigh-wave complex velocity. The boundary conditions (3.149) and equations
(3.154) imply

U{2) v2

W = ̂ ~^A (3-156>
and

2t7|

1.(1)1.(2)

+ ^ - ^ - = 0. (3.157)

The squaring of (3.157) and reordering of terms gives a cubic equation for the complex
velocity,

24-16^,7-16 1 - 3 =0, «=3- (3-158)V(
which could, alternatively, be obtained by using the correspondence principle (see Section
3.6) and the elastic Rayleigh-wave dispersion relation. The dispersion relation (3.158),
together with equation (3.157), may determine one or more wave solutions. The solution
of the q.e. surface wave is always possible, since it is the equivalent of the elastic Rayleigh
wave. The other surface waves, called v.e. modes, are possible depending on the frequency
and the material properties (Currie, 1979).

3.7.2 Displacement field

The amplitude coefficients may be referred to U[ ' = 1 without loss of generality. Thus,
from equations (3.154) and (3.156),

iV (3-159)

From these equations, the displacements (3.151) become

= [exp(—i&g 'z) + ^4exp(—i/̂ 3 'z)\
(Q 1 -̂JO\

jk\) exp(—ik{
3
L)z) + A~l exp(—\k\A)z) exp[i(o;t — k\x)].

These displacements are a combination of compressional and shear modes, with the phase
factors

z)]}exp[ {OLIX + a1 z)] ra = l ,2, (3.161)
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given by virtue of equations (3.150) and (3.152). It is clear, from the last equation, that to
have attenuating waves, a physical solution of equation (3.158) must satisfy the following
conditions:

ai > 0, c4m) > 0, «i > 0. (3.162)

The last condition imposes wave propagation along the positive x-direction. In terms of
the complex velocities, these conditions read

-.Im(i)>0, -Im (y-1 - l j > 0, o,Re(i)>0. (3.163)

Also, equation (3.157) must be satisfied in order to avoid spurious roots.

3.7.3 Phase velocity and attenuation factor

The phase velocity in the x-direction is defined as the frequency divided by the x-
component of the real wavenumber

Vr> = = Re - (3.164)

From equation (3.161), the phase velocities associated with each component wave mode
are

vpm = UJ — 5 and vpm = I — I ei, (lossless case). (3.165)

In the elastic (lossless) case, there is only a single and physical solution to equation
(3.158). Moreover, because the velocities are real and vc < V2 < v\, k% and k$ are
purely imaginary and K^ = 0. Hence, vpm = vp, and equation (3.161) reduces to

(3.166)

with K\ = k\ and a% = ik^1 . In this case, the propagation vector points along the
surface and the attenuation vector is normal to the surface. However, in a viscoelastic
medium, according to equation (3.165)i, these vectors are inclined with respect to those
directions.

The attenuation factor in the x-direction is given by

a = -uo Im f — ) > 0. (3.167)

Each wave mode has an attenuation vector given by

+ «3 £3, and a^ e% (lossless case). (3.168)

Carcione (1992b) calculates the energy-balance equation and shows that, in contrast to
elastic materials, the energy flow is not directed along the surface and the energy velocity
is not equal to the phase velocity.
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3.7.4 Special viscoelastic solids

Incompressible solid

Incompressibility implies A —»• oo, or, equivalently, V\ —> oo. Hence, from equation (3.158),
the dispersion relation becomes

qs - 8g2 + 24q - 16 = 0. (3.169)

The roots are qx = 3.5437 + i 2.2303, q2 = 3.5437 - i 2.2303 and q3 = 0.9126. As shown
by Currie, Hayes and O'Leary (1977), two Rayleigh waves exist, the quasi-elastic mode,
represented by #3, and the viscoelastic mode, represented by <?i, which is admissible if
Im(^|)/Re(^|) > 0.159, in order to fulfill conditions (3.162). In Currie, Hayes and O'Leary
(1977), the viscoelastic root is given by q2, since they use the opposite sign convention to
compute the time-Fourier transform (see also Currie, 1979). Carcione (1992b) shows that
at the surface, the energy velocity is equal to the phase velocity.

Poisson solid

A Poisson solid has A = //, so that v\ = V3v2 and, therefore, equation (3.158) becomes

3q3 - 24<?2 + 56<? - 32 = 0. (3.170)

This equation has three real roots: q\ = 4, q2 = 2 + 2 / y^, and q3 = 2 — 2 / \/3. The last
root corresponds to the q.e. mode. The other two roots do not satisfy equation (3.157)
and, therefore, there are no v.e. modes in a Poisson solid. As with the incompressible
solid, the energy velocity is equal to the phase velocity at the surface.

Hardtwig solid

Hardtwig (1943) investigates the properties of a viscoelastic Rayleigh wave for which
Re(A)/Re(/i) = Im(A)/Im(/i). In this case, the coefficients of the dispersion relation
(3.158) are real, ensuring at least one real root corresponding to the q.e. mode. This
implies that the energy velocity coincides with the phase velocity at the surface (Carcione,
1992b). A Poisson medium is a particular type of Hardtwig solid.

3.7.5 Two Rayleigh waves

Carcione (1992b) studies a medium with p = 2 gr/cm3, and complex Lame constants

A = (-1.15 - i 0.197) GPa, /i = (4.91 + i 0.508) GPa

at a frequency of 20 Hz. The P-wave and S-wave velocities are 2089.11 m/s and 1573
m/s, respectively. Two roots satisfy equations (3.157) and (3.158): q\ = 0.711 — i 0.0046
corresponds to the q.e. mode, and q2 = 1.764 — i 0.0156 corresponds to the v.e. mode.

Figure 3.6 shows the absolute value of the horizontal and vertical displacements, \ui
and |w3|, as a function of depth, for the q.e. Rayleigh wave (a) and the v.e. Rayleigh
wave. Their phase velocities are 1326 m/s and 2089.27 m/s, respectively. The horizontal
motion predominates in the v.e. Rayleigh wave and its phase velocity is very close to
that of the P wave. For higher frequencies, this wave shows a strong oscillating behavior
(Carcione, 1992b).
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Figure 3.6: Absolute value of the horizontal and vertical displacements, |iti| (dashed line) and \us
(solid line) versus depth, at a frequency of 20 Hz; (a) corresponds to the quasi-elastic Rayleigh wave, and
(b) to the viscoelastic Rayleigh wave.

3.8 Reflection and transmission of cross-plane shear
waves

The reflection-transmission problem in isotropic viscoelastic media is addressed by many
researchers (for example, Cooper (1967), Buchen (1971b), Schoenberg (1971) and Stovas
and Ursin (2001)). Borcherdt, Glassmoyer and Wennerberg (1986) present theoretical and
experimental results and cite most of the relevant work carried out by R. Borcherdt on the
subject. E. Krebes also contributes to the solution of the problem, mainly in connection
with ray tracing in viscoelastic media (for example, Krebes, 1984; Krebes and Slawinski,
1991). A comprehensive review of the problem is given in Caviglia and Morro (1992).

In order to illustrate the main effects due to the presence of viscoelasticity, we analyze
in some detail the reflection-transmission problem of SH waves at a plane interface, follow-
ing Borcherdt (1977). The P-SV problem for transversely isotropic media (the symmetry
axes are perpendicular to the interface) is analyzed in detail in Chapter 6.

The reflection and transmission coefficients for SH waves have the same form as the
coefficients for lossless isotropic media, but they are not identical because the quantities
involved are complex. Consequently, we may apply the correspondence principle (see
Section 3.6) to the expressions found for perfect elastic media (equation (1.282)). We set
C46 = 0, replace C44 and CQQ by //, and c44 and c'm by ji'. We obtain

ZJ-ZT 2Z1

(3.171)z1 z1

where
/ sl = (3.172)
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ZT = ±//pvyV/M' - si (3.173)
and

where pv denotes the principal value of the complex square root. (For the principal
value, the argument of the square root lies between —TT/2 and +TT/2). AS indicated by
Krebes (1984), special care is needed when choosing the sign in equation (3.173), since a
wrong choice may lead to discontinuities of the vertical wavenumber as a function of the
incidence angle. Unlike the elastic case, the amplitude of the scattered waves can grow
exponentially with distance from the interface (Richards, 1984). Thus, the condition of
an exponentially decaying wave is not sufficient to obtain the reflection and transmission
coefficients. Instead, the signs of the real and imaginary parts of sj should be chosen
to guarantee a smooth variation of sj versus the incidence angle. Such an analysis is
illustrated by Richards (1984).

Let us assume that the incident and transmitted waves are homogeneous. Then,
k = K — \a (see equation (3.27)), 7 = 0 and from Snell's law (3.138), we have that

kT<2 s in 2 01
K sin V

is a real quantity (we have omitted the superscript / in the wavenumber of the incident
wave). This equation also implies the condition

s i n 2 0 7 < ^ — . (3.175)

Let us denote the quality factor of the homogeneous plane wave by QH, as defined in
equation (3.32). As for P waves, the quality factor of homogeneous SH waves is given
by equation (3.128). In this case, QH = Re(v2)/Im(v2) = Re(/i)/Im(/i) = \1RJ\1I. We
deduce from equation (3.31) that if Q'H = QH, then kT /k2 is real and vice versa, and
from (3.24)2, (3.37)i, and (3.38)i, we note that

(3.176)
T *

Then, we may state a theorem attributed to Borcherdt (1977):
Theorem 1: If the incident SH wave is homogeneous and not normally incident, then

the transmitted SH wave is homogeneous if and only if

(3.177)k2 \pj V/4/ vpH

Let us analyze now the reflection coefficient when Q'H = QH. We can write

+ iQ- 1 ) = fj,RW, fir = fi'RW. (3.178)

Let us evaluate the numerator and denominator of R in equation (3.171) for precritical
incidence angles (sinfl7 < VPH/V^H). Using (3.172) and (3.173), we have

(3.179)= !,
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For a homogeneous wave si = smO1 /vc, where vc = y/ii/ p is the complex shear-wave
velocity. Using this relation and (3.178), equation (3.179) becomes

^ c o s 6 > 7 ± V ' M a / 1 - I ^ ( s i n 2 ^ . (3.180)z1 ± zT = Vw <

Because W, which is the only complex quantity, appears as a multiplying factor in both
the numerator and the denominator of R (see equation (3.171)), we obtain the expression
of the elastic reflection coefficient (as if QH

l = Q'H~ = 0 ) . It can also be proved that for
supercritical angles, the transmission coefficient is that of the lossless case. (See Krebes
(1983b), or the reader can check these statements as an exercise). Note that there is no
low-loss approximation, only the condition Q'H = QH-

For lossless materials QH = Q'H = °°? a n d if vpn/VpH < 1, we have the well-known
result that the transmitted wave is homogeneous if and only if smO1 < VPH/V^H < 1,
with the equal sign corresponding to the critical angle (see equation (3.177)). Another
consequence of Theorem 1 is that a normally incident homogeneous wave generates a
homogeneous transmitted wave perpendicular to the interface. The most important con-
sequence of Theorem 1 is that the transmitted wave will be, in general, inhomogeneous
since in most cases QH ^ Q'H- This implies that the velocity and the attenuation of the
transmitted wave will be less than and greater than that of the corresponding homoge-
neous wave in the same medium. Moreover, the direction of energy flow will not coincide
with the direction of phase propagation, and the velocity of the energy will not be equal
to the phase velocity (see equation (3.123)).

The phase velocity of the transmitted wave is

2 2
T 2 UJ UJ

where, from Snell's law
% (3.182)

= ±Re (w\JkT2 - kfj = ±Re hv^kT<2 - kA . (3.183)

For equation (3.183), we have assumed propagation in the x-direction, without loss of
generality. Hence, unlike the lossless case, the phase velocity of the transmitted wave
depends on the angles of incidence and on the inhomogeneity of the incident wave. From
(3.138), the angle of refraction of the transmitted wave is

4 (3-184)

which depends on the angles of incidence. Moreover, the dependence of the frequency
of all these quantities through k2 and kT implies that an incident wave composed of
different frequencies will transmit a fan of inhomogeneous waves at different angles. In
the lossless case, each wave of different frequency is transmitted at the same angle.

Another important result, given below, is related to the existence of critical angles
(Borcherdt, 1977).
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Theorem 2: If the incidence medium is lossless and the transmission medium is
anelastic, then there are no critical angles.

If 61 is a critical angle, then 6T = TT/2. Because the incidence medium is elastic, by
Snell's law, the attenuation vector in the transmission medium is perpendicular to the
interface and, hence, to the direction of propagation. However, since the transmission
medium is anelastic, such a wave cannot exist (see condition (3.36) and equation (3.118)).

The analysis about the existence of critical angles and the energy flow and dissipation
of the different waves is given in detail in Chapter 6, where the reflection-transmission
problem of SH waves in the symmetry planes of monoclinic media is discussed. The
main results are that critical angles in anelastic media exist only under very particular
conditions, and that interference fluxes are not present in the lossless case (see Section
6.1.7). Some researchers define the critical angle as the angle of incidence for which the
propagation angle of the transmitted wave is TT/2, i.e., when the wavenumber vector K is
parallel to the interface (e.g., Borcherdt, 1977; Wennerberg, 1985, Caviglia, Morro and
Pagani, 1989). This is not correct from a physical point of view. In Chapter 6, we adopt
the criterion that the Umov-Poynting vector or energy-flow direction is parallel to the
interface, which is the criterion used in anisotropic media. The two definitions coincide
only in particular cases, because, in general, the phase-velocity and energy-velocity di-
rections do not coincide. Theorem 2 is still valid when using the second criterion since
the attenuation and Umov-Poynting vectors can never be perpendicular in an anelastic
medium (see equation (3.118)).

3.9 Memory variables and equation of motion

The memory-variable approach introduced in Section 2.7 is essential to avoid numerical
calculations of time convolutions when modeling wave propagation in the time domain.
With this approach, we obtain a complete differential formulation. The relaxation func-
tions in the stress-strain relation (3.142) for isotropic media have the form (2.198). We
set

(t) =
1 (1)

\ exp(-t/r«)

L-2

r

al

(2)

H(t), (3.185)

,?
1=1

(2)
alT

H(t), (3.186)

where r6/' and ^ ; are relaxation times corresponding to dilatational (y = 1) and shear
(y = 2) attenuation mechanisms. They satisfy the condition (2.169), rej > r^\ with the
equal sign corresponding to the elastic case.

In terms of the Boltzmann operation (2.6), equation (3.142) reads

0 (3.187)

or, Ll

Giq K>u + ,(!) (3.188)
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where
Td .. Moc

- 1 - 7 -1 / T ^ 1 1 ^ " / T /

and
6; — G9i/ * Ckki If — I-) • • « i L] (3 .190)

and
(ji) 7 7 -I 7" / r ) -1 pv-l \

eijl = ^2Z * Uij-> t = 1, . . . , 1/2 ^O. ly l J

are sets of memory variables for dilatation and shear mechanisms, with

1

i=i

As in the 1-D case (see equation (2.292)), the memory variables satisfy

e(1) e-2)

= ¥ll(fytkk 7TT, 6-7 = (P2l{fydij l-Lr. (3.193)

For n = 2 and say, the (re, z)-plane, we have three independent sets of memory variables.
In fact, since d\\ = — 0̂33 = (en — €33)/2, then en\ = cp2i * <̂ n = —^21 * ̂ 33- The other two
sets are e\ ' = ipu * ê ^ and e\%\ = ^ * £13- In 3-D space (n = 3), there are six sets of

(2) (2) (2)memory variables, since dn + G?22 + c/33 = 0 implies en^ + e^/ + e ^ = 0, and two of these

sets are independent. The other four sets are e\ = (pn*tkki &231 = ^21^^23, e[s\ = ^2^*^13

and ejai = ^21 * £12-

The equation of motion in 3-D space is obtained by substituting the stress-strain
relation (3.188) into Euler's differential equations (1.23),

+ A)
= p - 1 (9K712 + ^2^22 + %^23 + /2) (3-194)

and making use of the strain-displacement relations (1.2)

In 2-D space and in the (x, 2;)-plane, all the derivatives &2 vanish, u2 is constant, and we
should consider the first and third equations in (3.194). Applications of this modeling
algorithm to compute the seismic response of reservoir models can be found in Kang and
McMechan (1993), where Q effects are shown to be significant in both surface and offset
vertical seismic profile data.

Assuming L\ = L2 and grouping the memory variables in the equation for each dis-
placement component, the number of memory variables can be reduced to 2 in 2-D space
and 3 in 3-D space (Xu and McMechan, 1995). Additional memory-storage savings can
be achieved by setting r^ = r^ (Emmerich and Korn, 1987). To further reduce storage,
only a single relaxation time can be assigned to each grid point if a direct method is used
to solve the viscoacoustic equation of motion (Day, 1998). A suitable spatial distribution
of these relaxation times simulates the effects of the full relaxation spectrum.
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3.10 Analytical solutions

Analytical solutions are useful to study the physics of wave propagation and test numer-
ical modeling algorithms. They are essential in anelastic wave simulation to distinguish
between numerical dispersion - due to the time and space discretization - and physical
velocity dispersion. As stated in Section 3.6, if the elastic solution is available in explicit
form in the frequency domain, the viscoelastic solution can be obtained by using the
correspondence principle, that is, replacing the elastic moduli or the wave velocities by
the corresponding complex viscoelastic moduli and velocities. The time-domain solution
is generally obtained by an inverse Fourier transform and, therefore, is a semi-analytical
solution. In very simple cases, such as the case of wave propagation in a semi-infinite
rod represented by a Maxwell model, a closed-form time-domain solution can be obtained
(Christensen, 1982, p. 190).

3.10.1 Viscoacoustic media

We start with the frequency-domain Green's function for acoustic (dilatational) media
and apply the correspondence principle. To obtain the Green function G(x, z, XQ, Z0, t) for
a 2-D acoustic medium, we need to solve the inhomogeneous scalar wave equation

AG - \d\tG = -4TT5(X - xo)5(z - zo)S(t), (3.196)
CCa

where x and z are the receiver coordinates, Xo and zo are the source coordinates, and ca

is the acoustic-wave velocity. The solution to equation (3.196) is given by

G ( x , z , x o , z o , t ) = 2 H ( * - - ) [ t 2 - ^ ] , (3.197)
caj\ c

a

where
r = V(x-xo)

2 + {z-zoy, (3.198)

and H is Heaviside's function (Morse and Feshbach, 1953, p. 1363; Bleistein, 1984, p.
65). Taking a Fourier transform with respect to time, equation (3.197) gives

/•oo / r2\-l/2

G(x, z, x0, zo,w) = 2 [t2 - — exp(-hjt)dt. (3.199)
Jr/ca \ C2aJ

By making a change of variable r = ca(t/r), equation (3.199) becomes

oo /

(r2 - 1)"1 /2 exp f r j dr. (3.200)

This expression is the integral representation of the zero-order Hankel function of the
second kind (Morse and Feshbach, 1953, p. 1362):

G(x, z,Xo, ZQ^UJ) = —ITTHQ M — J . (3.201)
\Ca /



3.10 Analytical solutions 127

Using the correspondence principle, we replace the acoustic-wave velocity ca by the com-
plex velocity vc(u), which is equivalent to replacing the acoustic bulk modulus p(?a by the
complex modulus M(uS) = pv2

c{uj). Then, the viscoacoustic Green's function is

G(x, z, XQ7 ZQ, U) = —I
(2) (3.202)

yc(u)_

We set
G(-OJ) = G*(CJ). (3.203)

This equation ensures that the inverse Fourier transform of the Green function is real.
For the dilatational field, for instance (see Section 2.7.4), the frequency-domain solu-

tion is given by
e{w) = G(u)F(u), (3.204)

where F(ui) is the time Fourier transform of the source wavelet.
A wavelet representative of typical seismic pulses is given by equations (2.233) and

(2.234). Because the Hankel function has a singularity at u = 0, we assume G = 0 for uo =
0, an approximation that has no significant effect on the solution. (Note, moreover, that
F(0) is small). The time-domain solution e(t) is obtained by a discrete inverse Fourier
transform. We have tacitly assumed that e and dtc are zero at time t = 0.

3.10.2 Constant-Q viscoacoustic media

Let us consider the Green function problem in anelastic viscoacoustic media, based on the
constant-Q model (Section 2.5). Equation (2.220) can be solved in terms of the Green
function, which is obtained from

AG - ^-r-G = -4TTS(X - xo)S(z - z0). (3.205)
b '

Let us define the quantity
O — —\(v,)\P/2 (1 90F>)

Expressing equation (3.205) in terms of this quantity gives the Helmholtz equation

A G + ( — ] G = -47TS(X-XO)5{Z-ZO). (3.207)

The solution to this equation is the zero-order Hankel function of the second kind (Morse
and Feshbach, 1953, p. 1362),

G(x, z, x0, ZQ, U) = -i7r#o ( -Jf ) ' (3.208)

where r is given in equation (3.198). An alternative approach is to use the correspondence
principle and replace the elastic wave velocity ca in equation (3.201) by the complex
velocity (2.213). When (3 = 2, we obtain the classical solution for the Green function in
an acoustic medium (equation (3.201)). We require the condition (3.203) that ensures a
real Green's function. The frequency-domain solution is given by

(3.209)
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where F is the Fourier transform of the source. As before, we assume G = 0 for UJ = 0 in
order to avoid the singularity. The time-domain solution w(i) is obtained by a discrete
inverse Fourier transform.

We have seen in Section 2.5.2 that constant-Q propagation is governed by an evolu-
tion equation based on fractional derivates. Mainardi and Tomirotti (1997) obtained the
fundamental solutions for the 1-D version of equation (2.220) in terms of entire functions
of the Wright type. Let us consider this equation and define /3 = 2r]. Mainardi and
Tomirotti (1997) define the signalling problem as

d2r]w
= bd%w, w(x,0+) = 0, (x > 0); w(0+, t) = S(t), w(+oo, t) = 0, (t > 0). (3.210)

The corresponding Green's function can be written as

where
CO

X
C O _ j U

kl
k=0

q>-l, r > 0 (3.212)

is the Wright function (Podlubny, 1999). The exponential and Bessel functions are partic-
ular cases of the Wright function (e.g., Podlubny, 1999). For instance, Wo,i(#) = exp(^).

3.10.3 Viscoelastic media

The solution of the wave field generated by an impulsive point force in a 2-D elastic
medium is given by Eason, Fulton and Sneddon (1956) (see also Pilant, 1979, p. 59). For
a force acting in the positive ^-direction, this solution can be expressed as

/ Fa \ TZ
« iM) = hr 2" 1 -5-[Gi(r,*) +G3(r,i)], (3.213)

u3(r,t) = ( A j l[z2Gi(r,t) - x2G3(r,t)], (3.214)

where Fo is a constant that gives the magnitude of the force, r = yjx2 + z2,

G1(r,t) = ±.(f-TJ,)-V*H{t-Tp)+±Jt* - 4 H{t-TP)~Jt* - r | H(t-TS) (3.215)
C T " T "

and

f l) - rs) + i ^ _ T2 ff(t _ Tp) _ i_ / ; 2 _ T|
(3.216)

where
7* = — (3.217)

C
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and Cp and Cs are the compressional and shear phase velocities. To apply the correspon-
dence principle, we need the frequency-domain solution. Using the transform pairs of the
zero- and first-order Hankel functions of the second kind,

'CO -I

( t 2 -

-r2H(t - T)

- T)

[2)
H[2)(CJT),

— oo

17T

2

(3.218)

(3.219)

we obtain

(3.220)

(3.221)

where

17T

2

Lcp cpj_

cs cP

, (3.222)

(3.223)

Using the correspondence principle, we replace the elastic wave velocities in (3.220) and
(3.221) by the viscoelastic wave velocities vp and vs defined in (3.18). The 2-D viscoelastic
Green's function can then be expressed as

(3.224)

and

K }

Multiplication with the source time function and a numerical inversion by the discrete
Fourier transform yield the desired time-domain solution (Gi and G3 are assumed to be
zero at UJ = 0).

3.11 The elastodynamic of a non-ideal interface

In seismology, exploration geophysics and several branches of mechanics (for example,
metallurgical defects, adhesive joints, frictional contacts and composite materials), the
problem of imperfect contact between two media is of particular interest. Seismological
applications include wave propagation through dry and partially saturated cracks and
fractures present in the Earth's crust, which may constitute possible earthquake sources.
Similarly, in oil exploration, the problem finds applications in hydraulic fracturing, where a
fluid is injected through a borehole to open a fracture in the direction of the least principal
stress. Active and passive seismic waves are used to monitor the position and geometry of
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the fracture. In addition, in material science, a suitable model of an imperfect interface
is necessary, since strength and fatigue resistance can be degraded by subtle differences
between microstructures of the interface region and the bulk material.

Theories that consider imperfect bonding are mainly based on the displacement discon-
tinuity model at the interface. Pyrak-Nolte, Myer and Cook (1990) propose a non-welded
interface model based on the discontinuity of the displacement and the particle velocity
across the interface. The stress components are proportional to the displacement discon-
tinuity through the specific stiffnesses, and to the particle-velocity discontinuity through
the specific viscosity. Displacement discontinuities conserve energy and yield frequency
dependent reflection and transmission coefficients. On the other hand, particle-velocity
discontinuities imply an energy loss at the interface and frequency-independent reflection
and transmission coefficients. The specific viscosity accounts for the presence of a liquid
under saturated conditions. The liquid introduces a viscous coupling between the two
surfaces of the fracture (Schoenberg, 1980) and enhances energy transmission. However,
at the same time, energy transmission is reduced by viscous losses.

3.11.1 The interface model

Consider a planar interface in an elastic and isotropic homogeneous medium; that is, the
material on both sides of the interface is the same. The non-ideal characteristics of the
interface are modeled through the boundary conditions between the two half-spaces. If
the displacement and the stress field are continuous across the interface (ideal or welded
contact), the reflection coefficient is zero and the interface cannot be detected. However,
if the half-spaces are in non-ideal contact, reflected waves with appreciable amplitude can
exist. The model is based on the discontinuity of the displacement and particle velocity
fields across the interface.

Let us assume in this section the two-dimensional P-SV case in the (x1 z)-plane, and
refer to the upper and lower half-spaces with the labels / and / / , respectively. Then, the
boundary conditions for a wave impinging on the interface (z = 0) are

= (Vl)n - (vi)/ = fa * 9t<Ji3, (3-226)

= ^3 * 0t<733, (3.227)

i, (3-228)

I, (3-229)

where v\ and v3 are the particle-velocity components, cr13 and cr33 are the stress com-
ponents, and fa and ̂ 3 are relaxation-like functions of the Maxwell type governing the
tangential and normal coupling properties of the interface. The relaxation functions can
be expressed as

fa(t) = - exp (-t/n)H{t), Ti = ̂  i = 1, 3, (3.230)
Vi Pi

where H(t) is Heaviside's function, pi(x) and ps(x) are specific stiffnesses, and rji(x) and
T]^(x) are specific viscosities. They have dimensions of stiffness and viscosity per unit
length, respectively.
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In the frequency domain, equations (3.226) and (3.227) can be compactly rewritten

as
[vi]=Miai3, i = l ,3 , (3.231)

where

^ (3.232)
Pi +

(see equation (2.147)) is a specific complex modulus having dimensions of admittance
(reciprocal of impedance).

The characteristics of the medium are completed with the stress-strain relations. In
isotropic media, stresses and particle velocities are related by the following equations:

= IP
2dlVl + {Ip2 - 2I2)d3v3, (3.233)

= (IP2 - 2Is
2)d1v1 + IP

2d3v3, (3.234)

pdt(Ji3 = Is2 {d\v3 + d3vi), (3.235)

where Ip = pep and Is = pes are the compressional and shear impedances, with cp and
denoting the elastic wave velocities, respectively.

Boundary conditions in differential form

The boundary equations (3.226) and (3.227) could be implemented in a numerical solution
algorithm. However, the evaluation of the convolution integrals is prohibitive when solving
the differential equations with grid methods. In order to circumvent the convolutions, we
recast the boundary conditions in differential form. From equations (3.226) and (3.227),
and using convolution properties, we have

i] = dt^pi * oi3. (3.236)

Using equation (3.230) and after some calculations, we note that

[vi] = ^«(0)(Jj3 ^i * <7«3- (3.237)
n

Since [vi] = 9*[wg], where ui is the displacement field, we can infer from equation (3.236)
that

[v>i] = fa * Vis- (3-238)

Then, equation (3.237) becomes

( [\) (3.239)

Alternatively, this equation can be written as

i] = oi3. (3.240)

Note that Pi = 0 gives the displacement discontinuity model, and rji = 0 gives the particle-
velocity discontinuity model. On the other hand, if rji —> oo (see equation (3.239)), the
model gives the ideal (welded) interface.
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3.11.2 Reflection and transmission coefficients of SH waves

The simplicity of the SH case permits a detailed treatment of the reflection and trans-
mission coefficients, and provides some insight into the nature of energy loss in the more
cumbersome P-SV problem. We assume an interface separating two dissimilar materials
of shear impedances 7 | and 7|7. The theory, corresponding to a specific stiffness p2 and
a specific viscosity r]2, satisfies the following boundary conditions:

(v2)n - O2)/ = 1P2 * 0t<723, (3.241)

(<723)i = (^3)// , (3.242)

where
p(723 = I2

sd3u2, (3.243)

and u2 is the displacement field. The relaxation function ip2 has the same form (3.230),
where i = 2.

In half-space J, the displacement field is

112)1 = exp[iftJ(x sin 9 + z cos 9)] + Rss exp[ift7(x sin 9 — z cos 9)], (3.244)

where K,1 is the real wavenumber and Rss is the reflection coefficient. In half-space 77,
the displacement field is

112)11 = Tssexp[i^7/(^sin 5 + zcostf)], (3.245)

where T$s is the transmission coefficient and

( K1 \
5 = arcsin I —-- ] sin#,

according to Snell's law. For clarity, the factor exp(—\wt) has been omitted in equations
(3.244) and (3.245).

Considering that v2 = — icj^? the reflection and transmission coefficients are obtained
by substituting the displacements into the boundary conditions. This gives

YT -Yn + Z 2YT

*** ~ Y + Y + Z* TsS " Y + Y + Z*

where
YI = II

scos0 and y / J = / | 7cos*, (3.247)

Z(UJ) = YIYIIM2{-u), (3.248)

and the relation K^^Ig ' = puj has been used.
Since

M2(u>) = 1~. , (3.249)
p 2 + ILOT]2

the reflection and transmission coefficients are frequency independent for p2 = 0 and,
moreover, there are no phase changes. In this case, when r]2 —>• 0, Rss —>• 1 and Tss —>• 0,
and the free-surface condition is obtained; when r]2 —>• 00, Rss —> 0 and Tss —> 1, the ideal
(welded) interface is obtained
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Energy loss

In a completely welded interface, the normal component of the time-averaged energy flux
is continuous across the plane separating the two media. This is a consequence of the
boundary conditions that impose continuity of normal stress and particle velocity. The
normal component of the time-averaged energy flux is proportional to the real part of
023^5. Since the media are elastic, the interference terms between different waves (see
Section 6.1.7) vanish and only the fluxes corresponding to each single beam need be
considered. After normalizing with respect to the incident wave, the energy fluxes of the
reflected and transmitted waves are

reflected wave -> |i?ss|2, (3.250)

y
transmitted wave —>> T ^ | T S S | 2 . (3.251)

The energy loss at the interface is obtained by subtracting the energies of the reflected
and transmitted waves from the energy of the incident wave. The normalized dissipated
energy is

2 ^ 2 - (3.252)
/

Substituting the reflection and transmission coefficients, we note that the energy loss
becomes

V = I7\i+7V (3-253)

where ZR and Z/ are the real and imaginary parts of Z1 given by

_ UJ2'
2 1 9 2 ' 7 ~~ 2 1 9 2

pi + u2m pi + v m

If p2 = 0, then Zi = 0, ZR = YIYII/r(21 and the energy loss is frequency independent.
When 772 —>• 0 (complete decoupling) and 7/2 —>• 00 (welded contact), there is no energy
dissipation. If p2 = 0, the maximum loss is obtained for

At normal incidence and in equal lower and upper media, this gives 772 = i s /2 , and a
(normalized) energy loss V = 0.5, i.e., half of the energy of the normally incident wave is
dissipated at the interface.

3.11.3 Reflection and transmission coefficients of P-SV waves

Consider an interface separating two half-spaces with equal material properties, where
the boundary conditions are given by equations (3.226)-(3.229). Application of Snell's
law indicates that the angle of the transmitted wave is equal to the angle of the incident
wave, and that

sin 9 = &s sin a,
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where Kp and Ks are the real compressional and shear wavenumbers, and 0 and a are the
respective associated angles. The boundary conditions do not influence the emergence
angles of the transmitted and reflected waves.

In terms of the dilatational and shear potentials 0 and ip, the displacements are given
by

ui = d\(f) — d^ip, and u% = d^(f) + diip, (3.256)

(Pilant, 1979, p. 45) and the stress components by

I2

—
P

(3.257)

and
I2 2/2

(3.258)
P P

Consider a compressional wave incident from half-space / . Then, the potentials of the
incident and reflected waves are

cj)1 = sin 0 + z cos #)],

M<t> = sin# — zcos0)],

and
R = -Rps exp[i/^^(x sin a — z cos a)]

In half-space / / , the potentials of the transmitted wave are

(3.259)

(3.260)

(3.261)

(j)T = T p P sin 0 + z cos ^)], (3.262)

and
TipT = TPS exp[ifts(a; sin a + 2; cos a)]. (3.263)

Considering that v\ = — iuui and 1*3 = —\UJU$, the solution for an incident P wave is

sin a (1 + 27! JSP cos 0)
—73 cos 2a — cos 0

2/Sp sin a cos 0

\ — cos 2a

cos a + 71 cos 2a
sin 0 + 73 sin 2a

cos 2a
sin 2a

— sin a
— cos 0

2/SP sin a cos
cos 2a

cos a \

— cos 2a
sin 2a j

/ \

\ \

— sin a (1 — 27!/Sp cos 0) \
73 cos 2a — cos 0
2/Sp sin a cos 0

cos 2a j

(3.264)

where JSP = Is/Ip,

' T ' T

71 = ISMI(-UJ) = and 73 = IPM3(-UJ) =
P3

(3.265)

and the following relations have been used:

(3.266)
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and
nn = I2 n\ = I2 - 2I2 (3.267)

Equations (3.264), which yield the potential amplitude coefficients, were obtained by Car-
cione (1996a) to investigate the scattering of cracks and fractures. Chiasri and Krebes
(2000) obtain similar expressions for the displacement amplitude coefficients. The multi-
plying conversion factor from one type of coefficient to the other is 1 for PP coefficients
and Is/Ip for PS coefficients (Aki and Richards, 1980, p. 139).

The reflection and transmission coefficients for a P wave at normal incidence are

1 + — ) (3.268)
73/

and

(3-269)

respectively. If 773 = 0, the coefficients given in Pyrak-Nolte, Myer and Cook (1990) are
obtained. If, moreover, p3 —y 0, i?PP —y — 1 and TPP —y 0, the free-surface condition is
obtained; when 773 —y 00, i?PP —y 0 and TPP —y 1, we get the solution for a welded contact.
On the other hand, it can be seen that 773 = 0 and p3 = uIp/2 gives |i?pp |2 = 1/2. The
characteristic frequency uP = 2p3/IP defines the transition from the apparently perfect
interface to the apparently delaminated one.

The reflection and transmission coefficients corresponding to an incident SV wave can
be obtained in the same way as for the incident P wave. In particular, the coefficients of
the normally incident wave, R$s a n d TSs, have the same form as in equations (3.268) and
(3.269), but 71 is substituted for 73.

Energy loss

Following the procedure used to obtain the energy flow in the SH case, we get the following
normalized energies for an incident P wave:

2reflected P wave —y \Rpp
i M t a n 9 9

reflected S wave —y \Rps "
tana 2transmitted P wave —y |TPP

i m t an# _ 9transmitted S wave —y TPs
tan a

(3.270)

Hence, the normalized energy loss is

V = 1 - \RFP\2 - |Tpp|2 - ^ ( | t f p S | 2 + |TPS|2). (3.271)
tanaa

It can be easily shown that the amount of dissipated energy at normal incidence is

v - w+^y (3-272)

where the subindices R and / denote real and imaginary parts, respectively. If p% = 0,
the maximum loss is obtained for 773 = Ip/2. Similarly, if pi = 0, the maximum loss for
an incident SV wave occurs when 771 = Is/2.
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Figure 3.7: Non-ideal interface in a homogeneous medium. Normal incidence reflection coefficient Rpp

(a) and normalized energy loss V (b) at 9 = 0 versus normalized specific viscosity r]s/Ip. Only the

particle-velocity discontinuity (^3 = 0) has been considered. As 773 —> 0, complete decoupling (free-

surface condition) is obtained. As 773 —> 00, the contact is welded. The maximum dissipation occurs for

773 = IP/2.

Examples

The following example considers a crack in a homogeneous medium bounded by a free
surface. The medium is a Poisson solid with compressional and shear velocities cp = Ip/p
= 2000 m/s and cs = Is/P = 1155 m/s, respectively, and density p = 2 g/cm3. Figure 3.7
represents the normal incidence reflection coefficient Rpp (a) and the normalized energy
loss (b) versus the normalized specific viscosity ^ / / p , with p3 = 0. As can be seen, the
limit 773 —>• 0 gives the complete decoupled case, and the limit 773 —>• 00 gives the welded
interface, since Rpp —>> 0. The maximum dissipation occurs for 773 = Ip/2. Similar plots
and conclusions are obtained for an incident SV wave, for which the maximum loss occurs
when 771 = Is/2. It can be shown that, for any incidence angle and values of the specific
stiffnesses, there is no energy loss when 773 —>- 0 and 773 —>> 00.

In the second example, we consider two different cases. The first case has the pa-
rameters 771 = Is/2 and 773 = Ip/2 and zero specific stiffnesses. Figure 3.8 represents
the reflection and transmission coefficients for an incident compressional wave (a) and
the energy loss (b) versus the incidence angle (equation (3.264)). As can be seen, the
dissipated energy is nearly 50 % up to 80°.

The second case has the following parameters: p\ = TT/O/S, p$ = TT/O/P, 771 = /5/IOO
and 773 = Jp/100, where /o = 11 Hz. The model is practically based on the discontinuity
of the displacement field. Figure 3.9 represents the reflection and transmission coefficients
for an incident compressional wave versus the incidence angle. In this case, the energy
loss is nearly 2 % of the energy of the incident wave.

Figure 3.10 shows a snapshot of the vertical particle velocity v3 when the crack surface
satisfies stress-free boundary conditions. Energy is conserved and there is no transmis-
sion through the crack. Two Rayleigh waves, traveling along the crack plane, can be
appreciated.
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Figure 3.8: Non-ideal interface in a homogeneous medium. Reflection and transmission coefficients (a)

and normalized energy loss V (b) versus incidence angle 9 for a fracture defined by the following specific
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Figure 3.9: Reflection and transmission coefficients versus incidence angle 9 for a non-ideal interface

defined by the following specific stiffnesses and viscosities: p± = irfols and ps = vr/o/p, and r\i = Is/100

and 773 = /p/100, where /o = 11 Hz.
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t = 1.4 ms

Figure 3.10: Vertical surface load radiation and crack scattering. The snapshot shows the ^-component
at 1.4 ms. "R" denotes the Rayleigh wave, "P" the compressional wave, "S" the shear wave, and "dP"
and "dS" the compressional and shear waves diffracted by the crack tips, respectively. The size of the
model is 75 x 30 cm, and the source central frequency is 110 kHz. The crack is at 14.6 cm from the
surface and is 14.4 cm in length. The specific stiffnesses and viscosities of the crack are zero, implying a
complete decoupling of the crack surfaces (Carcione, 1996a).



Chapter 4

Anisotropic anelastic media

. . . a single system of six mutually orthogonal types [strains] may be determined for any homo-
geneous elastic solid, so that its potential energy when homogeneously strained in any way is
expressed by the sum of the products of the squares of the components of the strain, according
to those types, respectively multiplied by six determinate coefficients [eigenstiffnesses]. The six
strain-types thus determined are called the Six Principal Strain-types of the body. The coefficients
. . . are called the six Principal Elasticities of the body. If a body be strained to any of its six
Principal Types, the stress required to hold it so is directly concurrent with [proportional to] the
strain.

Lord Kelvin (Kelvin, 1856)

The so-called Neumann's principle (Neumann, 1885; Nye, 1987, p. 20) states, roughly
speaking, that the symmetry of the consequences is at least as high as that of the causes.
This implies that any kind of symmetry possessed by wave attenuation must be present
within the crystallographic class of the material. This symmetry principle was clearly
stated in 1884 by Pierre Curie in an article published in the Bulletin de la Societe
Mineralogique de France.

The quality factor or the related attenuation factor, which can be measured exper-
imentally by various techniques (Toksoz and Johnston, 1981), quantifies dissipation in
a given direction. Most experimental data about anisotropic attenuation are obtained
in the laboratory at ultrasonic frequencies, but are not usually collected during seismic
surveys. This lack of actual seismic data constitutes a serious problem because, unlike
the slownesses, the attenuation behavior observed at ultrasonic frequency ranges cannot
be extrapolated to the sonic and seismic ranges, since the mechanisms of dissipation can
differ substantially in different frequency ranges.

Hosten, Deschamps and Tittmann (1987) measure the dependence of attenuation with
propagation direction in a carbon-epoxy composite. They find that, in a sense, attenu-
ation is more anisotropic than slowness, and while shear-wave dissipation is larger than
longitudinal dissipation in the isotropy planes, the opposite behavior occurs in planes
containing the axis of rotational symmetry. Arts, Rasolofosaon and Zinszner (1992) ob-
tain the viscoelastic tensor of dry and saturated rock samples (sandstone and limestone).
Their results indicate that attenuation in dry rocks is one order of magnitude lower than
attenuation in saturated samples. Moreover, the attenuation is again more anisotropic
than the slowness, a fact that Arts, Rasolofosaon and Zinszner interpret as attenuation

139
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having lower symmetry than the slowness, or, alternatively, a consequence of experimental
error. According to Baste and Audoin (1991), the elastic stiffnesses are quite adequate
to describe the closing of cracks - provided that the proper experimental techniques are
employed. On the other hand, laboratory data obtained by Yin (1993) on prestressed
rocks suggest that attenuation may be more sensitive to the closing of cracks than the
elastic stiffnesses, and that its symmetry is closely related to the type of loading. Yin
finds a simple relation between wave amplitude and loading stress, and concludes that
accurate estimates of wave attenuation can be used to quantify stress-induced anisotropy.

Since attenuation can be explained by many different mechanisms, it is difficult, if not
impossible, to build a general microstructural theory. A phenomenological theory, such
as viscoelasticity, leads to a convenient model. Although such a model does not allow us
to predict attenuation levels, it can be used to estimate the anisotropy of attenuation.
The problem is the determination of the time (or frequency) dependence of the relaxation
tensor - 21 components in triclinic media. Most applications use the Kelvin-Voigt consti-
tutive law, based on 21 independent viscosity functions (Lamb and Richter, 1966; Auld,
1990a, p. 101), corresponding to complex constants in the frequency domain. Occasion-
ally, it has been possible to estimate all these constants satisfactorily (Hosten, Deschamps
and Tittmann, 1987). This chapter presents alternative models based on fewer param-
eters, which are not the imaginary elasticity constants in themselves, but real quality
factors - often more readily available in seismic practice. Moreover, we give a detailed
description of the physical properties and energy associated with wave propagation in
anisotropic anelastic media.

4.1 Stress-strain relations

Attenuation is a characteristic associated with a deformation state of the medium (e.g.,
a wave mode) and, therefore, a small number of parameters should suffice to obtain the
relaxation components. In isotropic media, two - dilatational and shear - relaxation
functions completely define the anelastic properties. For finely layered media, Backus
averaging is a physically sound approach for obtaining the relaxation components of a
transversely isotropic medium (referred to below as model 1; Carcione (1992c)). Two
alternative constitutive laws (Carcione and Cavallini, 1994b, 1995d), not restricted to
layered media, as is the Backus approach, relate waves and deformation modes to anelastic
processes, using at most six relaxation functions. These laws are referred to as models 2
and 3.

We have seen in Section 2.1 (see equation (2.9)) that the stress-strain relation for an
isothermal, anisotropic viscoelastic medium can be written as

(4.1)

Using the shortened Voigt's notation, we note that

o- = * * dte (4.2)

((equation (2.22)). Time-harmonic fields are represented by the real part of

[.]exp(L;t), (4.3)
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where [ • ] represents a complex vector that depends only on the spatial coordinates.
Substituting the time dependence (4.3) into the stress-strain relations (4.2), we obtain

= P - e , (a/ =

where

Pu =

/'CO

J — oo
exp(—lu;t)dt

(4.4)

(4.5)

are the components of the stiffness matrix P(x, uS). For anelastic media, the components
of P are complex and frequency dependent. Note that the anelastic stress-strain relation
discussed by Auld (1990a, p. 87) is a particular case of (4.4). Auld introduces a viscosity
matrix rj such that P(u;) = C + icurj, with C being the low-frequency limit elasticity
matrix. This equation corresponds to a Kelvin-Voigt stress-strain relation (see equation
(2.161)).

We can use any complex moduli, satisfying the conditions listed in Section 2.2.5, to
describe the anelastic properties of the medium. The simplest realistic model is a single
Zener element (see Section 2.4.3) describing each anelastic deformation mode (identified
by the index v\ whose (dimensionless) complex moduli can be expressed as

+ 1 - 1 + (4.6)

where the parameterization (2.200) and (2.202) is used. We shall see that depending on
the symmetry class, the subscript v goes from 1 to 6 at most. The quality factor QU1

associated with each modulus, is equal to the real part of Mu divided by its imaginary
part (see equation (2.120)). At UJQ = l/r0 , the curve Qv(uS) has its lowest value: QV(UJQ)

= Qov The high-frequency limit corresponds to the elastic case, with Mv —»• 1. Other
complex moduli, other than (4.6), may also be appropriate, depending on the desired
frequency dependence of attenuation1.

Let us denote by CJJ the elastic (or unrelaxed) stiffness constants. Then, pu(u)
oo) = CIJ. Hooke's Law can be written either in the Voigt's notation as

\
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or in "Kelvin's notation" - required by model 2 below - as

\
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(4.7)

V

2^44

2^45

2^46
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2^55

2^56

2^46

2^56

2^66

•

( 611

622

633

\/2e22

>/2eia
\/2e12

\

! /

, (4.8)

1Use of the Kelvin-Voigt and constant-Q models require us to define the elastic case at a reference
frequency, since the corresponding phase velocities tend to infinite at infinite frequency.
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(Mehrabadi and Cowin, 1990; Helbig, 1994, p. 406), where thep/ j are functions of c/j and
Mv. The three arrays in equation (4.8) are true tensors in 6-D space, while in equation
(4.7) they are just arrays (Helbig, 1994, p. 406).

4.1.1 Model 1: Effective anisotropy

In Section 1.5, we showed that fine layering on a scale much finer than the dominant
wavelength of the signal yields effective anisotropy (Backus, 1962). Carcione (1992c) uses
this approach and the correspondence principle (see Section 3.6) to study the anisotropic
characteristics of attenuation in viscoelastic finely layered media. In agreement with the
theory developed in Sections 3.1 and 3.2, let each medium be isotropic and anelastic with
complex Lame parameters given by

and ii(u)) = pVg M2(u), (4.9)

(see Section 1.5), or

/C = A + |JLI, and £ = £ + -//, (4.10)

where Mi and M2 are the dilatational and shear complex moduli, respectively, cp and
cs are the elastic high-frequency limit compressional and shear velocities, and p is the
density. (In the work of Carcione (1992c), the relaxed moduli correspond to the elastic
limit.) According to equation (1.188), the equivalent transversely isotropic medium is
defined by the following complex stiffnesses:

(4.11)

Pm =

where ( • ) denotes the thickness weighted average. In the case of a periodic sequence of
two alternating layers, equations (4.11) are similar to those of Postma (1955).

4.1.2 Model 2: Attenuation via eigenstrains

We introduce now a stress-strain relation based on the fact that each eigenvector (called
eigenstrain) of the stiffness tensor defines a fundamental deformation state of the medium
(Kelvin, 1856; Helbig, 1994, p. 399). The six eigenvalues - called eigenstiffnesses -
represent the genuine elastic parameters. For example, in the elastic case, the strain
energy is uniquely parameterized by the six eigenstiffnesses. From this fact and the
correspondence principle (see Section 3.6), we infer that in a real medium the rheological
properties depend essentially on six relaxation functions, which are the generalization of
the eigenstiffnesses to the viscoelastic case. The existence of six or less complex moduli
depends on the symmetry class of the medium. This theory is developed in the work of
Carcione and Cavallini (1994b). According to this approach, the principal steps in the
construction of a viscoelastic rheology from a given elasticity tensor C are the following:
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1. Decompose the elasticity tensor, i.e., expressed in Kelvin's notation, as

6

/ e/<g>e/, (4.12)
/ ^

where A/ and e/ are the eigenvalues and normalized eigenvectors of C, respectively;
A/ and e/ are real, because C is a symmetric matrix.

2. Invoke the correspondence principle to obtain a straightforward viscoelastic gen-
eralization of the above equation for time-harmonic motions of angular frequency
UJ.5

6

Z—/
(4.13)

where Mj(u) are complex moduli, for instance, of the form (4.6). By construction,
the eigenstiffnesses of P are complex, but the eigenstrains are the same as those of
C and, hence, real.

The eigenstiffness and eigenstrains of materials of lower symmetry are given by Mehrabadi
and Cowin (1990). The eigentensors may be represented as 3 x 3 symmetric matrices
in 3-D space; therein, their eigenvalues are invariant under rotations and describe the
magnitude of the deformation. Furthermore, their eigenvectors describe the orientation
of the eigentensor in a given coordinate system. For instance, pure volume dilatations
correspond to eigenstrains with three equal eigenvalues, and the trace of an isochoric
eigenstrain is zero. Isochoric strains with two equal eigenvalues but opposite signs and a
third eigenvalue of zero are plane shear tensors. To summarize, the eigentensors identify
preferred modes of deformation associated with the particular symmetry of the material.
An illustrative pictorial representation of these modes or eigenstrains has been designed
by Helbig (1994, p. 451).

A given wave mode is characterized by its proper complex effective stiffness. This can
be expressed and, hence, defined in terms of the complex eigenstiffnesses. For example, let
us consider an isotropic viscoelastic solid. We have seen in section 1.1 that the total strain
can be decomposed into the dilatational and deviatoric eigenstrains, whose eigenstiffnesses
are related to the compressibility and shear moduli, respectively, the last with multiplicity
five. Therefore, there are only two relaxation functions (or two complex eigenstiffnesses)
in an isotropic medium: one describing pure dilatational anelastic behavior and the other
describing pure shear anelastic behavior. Every eigenstress is directly proportional to its
eigenstrain of identical form, the proportionality constant being the complex eigenstiffness.

For orthorhombic symmetry, the characteristic polynomial of the elasticity matrix,
when in Kelvin's form, factors into the product of three linear factors and a cubic one.
Therefore, eigenstiffnesses are found by resorting to Cardano's formulae. For a trans-
versely isotropic medium, the situation is even simpler, as the characteristic polynomial
factors into the product of two squared linear factors and a quadratic one. A straightfor-
ward computation then yields the independent entries of the complex stiffness matrix, in
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Voigt's notation, namely,

p n = A(")(2 + o2)-1 + A^(2 + 62)"1 + A ^
Pi2 = Pn ~ A4

P33 — tt Ax (Z + a ) -\- 0 A2 (z + D J

P!3 = aA?> (2 + a2)"1 + b^> (2 + 62)"1 ( 4 1 4 )

P55 = AW/2

P66 =

where
4 c i 3 i. 4 c i 3 //i i * \

a = = , 6 = = , (4.15)
en + C12 - c33 - Vc cn + C12 - c33 + y e

and AJ(U)J I = 1 , . . . , 4 are the complex and frequency-dependent eigenstiffnesses, given
by

Al] = |(C11 + C12 + C33 +
] + C12 + C33 " (4.16)

4"; = 2c55M3
- c12)M4,

with
c = 8c?3 + (cn + C12 - c33)2. (4.17)

The two-fold eigenstiffnesses A3 and A4 are related to pure "isochoric" eigenstrains, i.e.,
to volume-preserving changes of shape only, while the single eigenstiffnesses Ai and A2

are related to eigenstrains that consist of simultaneous changes in volume and shape. For
relatively weak anisotropy, Ax corresponds to a quasi-dilatational deformation and A2 to a
quasi-shear deformation. Moreover, A3 and A4 determine the Q values of the shear waves
along the principal axes. This stress-strain relation can be implemented in a time-domain
modeling algorithm with the use of Zener relaxation functions and the introduction of
memory variables (Robertsson and Coates, 1997). At each time step, stresses and strain
must be projected on the bases of the eigenstrains. These transformations increase the
required number of computations compared to the approach presented in the next section.

4.1.3 Model 3: Attenuation via mean and deviatoric stresses

We design the constitutive law in such a way that Mi is the dilatational modulus and
M2, M3 and M4 are associated with shear deformations. In this stress-strain relation
(Carcione, 1990; Carcione and Cavallini, 1995d), the mean stress (i.e., the trace of the
stress tensor) is only affected by the dilatational complex modulus Mi. Moreover, the
deviatoric-stress components solely depend on the shear complex moduli, denoted by M2,
M3 and M4. The trace of the stress tensor is invariant under transformations of the
coordinate system. This fact assures that the mean stress depends only on Mi in any
system.

The complex stiffnesses for an orthorhombic medium are given by

Pi(i) = cm -£ + KM1 + -fiM6, I = 1, 2, 3, (4.18)
o
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Pu = cu-E + KMl + 2 p ( l - ^MA , / , J = 1, 2, 3; / ^ J, (4.19)

P44 = C44M2, p55 = C55M3, p66 = C66M4, (4.20)

where

£ = £ - ^ (4.21)

and
1 3 1 6

£=o^c/7, ft=-^2cn. (4.22)
1=1 7=4

The index 5 can be chosen to be 2, 3 or 4. Transverse isotropy requires M4 = M3 = M2

and p66 = c66 + /Z(M2 - 1).
The mean stress a = o^/3 can be expressed in terms of the mean strain e = e^/3 and

strain components (1.2) as

^ = o (c^i + c^2 + cj3)ej + 3^(Mi - l)e, (4.23)

which only depends on the dilatational complex modulus, as required above. Moreover,
the deviatoric stresses are

\) 2p{Ms - l)(ej - e), I< 3, (4.24)
K=l V 6 J

and
3 6

°i = YlCljej + Yl cuMj-^Ji I > 3' (4-25)
J=l J^4

which depend on the complex moduli associated with the quasi-shear mechanisms. This
stress-strain relation has the advantage that the stiffnesses have a simple time-domain
analytical form when using the Zener model. This permits the numerical solution of
the visco-elastodynamic equations in the space-time domain (see Section 4.5). Examples
illustrating the use of the three stress-strain relations are given in Carcione, Cavallini and
Helbig (1998).

4.2 Wave velocities, slowness and attenuation vector

The dispersion relation for homogeneous viscoelastic plane waves has the form of the elas-
tic dispersion relation, but the quantities involved are complex and frequency dependent.
The generalization of equation (1.68) to the viscoelastic case, by using the correspondence
principle (Section 3.6), can be written as

k2T • u = pu;2u, (k2TijUj = pLJ2Ui), (4.26)

where
= L P LT, (ry = lupuljj). (4.27)
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The components of the Kelvin-Christoffel matrix F are given in equation (1.73), with
the substitution of pu for CJJ. As in the isotropic case (see Section 3.3.1), the complex
velocity is

(4.28)uo
k

and the phase velocity is

UO

_Re(A:)_
K = — = Re[ - (4.29)

Equation (4.26) constitutes an eigenequation

(F - pv%) • u = 0 (4.30)

for the eigenvalues (pv^)m and eigenvectors (u)m , m = 1, 2, 3. The dispersion relation is
then

det{T- pv%) = 0, (4.31)

or, using (4.28) and hi = kli,
F(klik2ih,uo) = 0. (4.32)

The form (4.32) holds also for inhomogeneous plane waves.
The slowness, defined as the inverse of the phase velocity, is

vp

1
(4.33)

i.e., its magnitude is the real part of the complex slowness l/vc.
According to the definition (3.26), the attenuation vector for homogeneous plane waves

is

a = - Im(k) = -UJ Im ( — ] k. (4.34)
\VcJ

The group-velocity vector is given by (1.126). Because an explicit real equation of the
form u = o;(«i, «2, K3) is not available in general, we need to use implicit differentiation
of the dispersion relation (4.32). For instance, for the x-component,

duo

)

- 1

\dco
(4.35)

or, because KI =
duo

Re
duo

- 1

(4.36)

Implicit differentiation of the complex dispersion relation (4.32) gives

'9F
—
duo

5u)
dF
- -
dk\

= 0. (4.37)

Then,
dkx

duo
dF/duo
dF/dh'

(4.38)



4.3 Energy balance and fundamental relations 147

and similar results are obtained for the k<i and k% components. Substituting the partial
derivatives in equation (1.126), we can evaluate the group velocity as

[dF/dh

- 1

(
\dF/dk

- 1
/ 9 ^

\dF/dk

- 1

e3, (4.39)

which is a generalization of equation (1.130).
Finally, the velocity of the envelope of homogeneous plane waves has the same form

(1.146) obtained for the anisotropic elastic case, where 0 is the propagation - and atten-
uation - angle.

4.3 Energy balance and fundamental relations

The derivation of the energy-balance equation or Umov-Poynting theorem is straight-
forward when using complex notation. The basic equations for the time average of the
different quantities involved in the energy-balance equation are (1.105) and (1.106). We
also need to calculate the peak or maximum values of the physical quantities. We use the
following property

[Re(a ) • Re(b)]peak = -[\ak\\bk\ cos(arg(aA;) -

cos(arg(a/c) + arg(bA) - arg(a^) + arg(bj))], (4.40)

where \a^\ is the magnitude of the /^-component of the field variable a, and implicit
summation over repeated indices is assumed (Carcione and Cavallini, 1993). When, for
every k, arg(a^) = 4>a and arg(b^) = 0&, i.e., all the components of each variable are in
phase, equation (4.40) reduces to

[Re(a ) -Re(b)]peak = \ak\\bk cos (4.41)

and if, moreover, a = b, then

[Re(a') • Re(b)]peak = 2(Re(a') • Re(a)) (4.42)

When all the components of a are in phase,

(Re(a') • Re(D) • Re(a))peak = 2(Re(a') • Re(D) • Re(a)> (4.43)

(Carcione and Cavallini, 1993, 1995a).
For time-harmonic fields of angular frequency CJ, the strain/particle-velocity relation

(1.26) and the equation of momentum conservation (1.28) can be expressed as

io;e = V • vT

and
V • a = iujpv — f,

where v is the particle-velocity vector.

(4.44)

(4.45)
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To derive the balance equation, the dot product of the equation of motion (4.45) is
first taken with — v* to give

-v* • V • a = -iupv* • v + v* • f. (4.46)

On the other hand, the dot product of — aT with the complex conjugate of (4.44) is

-aT • VT • v* = IUJO1 • e*. (4.47)

Adding equations (4.46) and (4.47), we get

-v* • V • a - <TT • VT • v* = -\upv* • v + \ujaT • e* + v* • f. (4.48)

The left-hand side of (4.48) is simply

-v* • V • a - aT • VT • v* = -div(S • v*), (4.49)

where £ is the 3 x 3 stress tensor defined in equation (1.108). Then, equation (4.48) can
be expressed as

- - d i v ( E • v*) = -iw-pv* • v + IUJ-<TT • e* + -v* • f. (4.50)
Z Z Z Z

After substitution of the stress-strain relation (4.4), equation (4.50) gives

1 , 1
= 2iu; - - p v * - v + - R e ( e ' • P • e*)

4' 4
^v*-f. (4.51)
z

The significance of this equation becomes clear when we recognize that each of its terms
has a precise physical meaning on a time-average basis. For instance, from equation
(1.105),

1 *. v = -p(Re(v) • Re(v)) = (T) (4.52)

is the time-averaged kinetic-energy density; from (1.106)

^Re(eT • P • e*) = -(Re(eT) • Re(P) • Re(e)) = (V) (4.53)
T: Z

is the time-averaged strain-energy density, and

- Im(e T • P • e*) = -(Re(eT) • Im(P) • Re(e)) = (D) (4.54)
z z

is the time-averaged rate of dissipated-energy density. Because the strain energy and the
rate of dissipated energies should always be positive, Re(P) and Im(P) must be positive
definite matrices (see Holland, 1967). These conditions are the generalization of the
condition of stability discussed in Section 1.2. If expressed in terms of the eigenvalues
of matrix P (see Section 4.1.2)), the real and imaginary parts of these eigenvalues must
be positive. It can be shown that the three models introduced in Section 4.1 satisfy the
stability conditions (see Carcione (1990) for a discussion of model 3).

The complex power-flow vector or Umov-Poynting vector is defined as

p = -^£-v* (4.55)
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and

Ps = \v* • f (4.56)

is the complex power per unit volume supplied by the body forces. Substituting the
preceding expressions into equation (4.51), we obtain the energy-balance equation

div p - 2iu;«V> - (T» + (D) = p8. (4.57)

The time-averaged energy density is

(E) = (T) + (V) = ^[/>v* • v + Re(eT • P • e*)]. (4.58)

In lossless media, (D) = 0, and because in the absence of sources the net energy flow into
or out of a given closed surface must vanish, div p = 0. Thus, the average kinetic energy
equals the average strain energy. As a consequence, the average stored energy is twice
the average strain energy.

By separating the real and imaginary parts of equation (4.57), two independent and
separately meaningful physical relations are obtained:

-Re(div p) + Re(ps) = (D) (4.59)

and
-Im(div p) + lm{ps) = 2u((T) - (V)). (4.60)

For linearly polarized fields, the components of the particle-velocity vector v are in
phase, and the average kinetic energy is half the peak kinetic energy by virtue of equation
(4.42). The same property holds for the strain energy if the components of the strain
array e are in phase (see equation (4.43)). In this case, the energy-balance equation reads

div p - iu;«y)peak - (T)peak) + (D) = psi (4.61)

in agreement with Auld (1990a, p. 154). Equation (4.61) is found to be valid only for
homogeneous viscoelastic plane waves, i.e., when the propagation direction coincides with
the attenuation direction, although Auld (1990a, eq. 5.76) seems to attribute a general
validity to that equation. Notably, it should be pointed out that for inhomogeneous
viscoelastic plane waves, the peak value is not twice the average value. The same remark
applies to Ben-Menahem and Singh (1981, p. 883).

4.3.1 Plane waves. Energy velocity and quality factor

A general solution representing inhomogeneous viscoelastic plane waves is of the form

• ]exp[i(u;£-k-x)], (4.62)

where [ • ] is a constant complex vector. The wavevector is complex and can be written
as in equation (3.26), with K • a strictly different from zero, unlike the interface waves in
elastic media. For these plane waves, the operator (1.25) takes the form

V - • - i K , (4.63)
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where
A* 0 0 0 k3 k2 \

K = 0 k2 0 k3 0 fci
0 0 ks k2 kr 0

(4.64)

with /?i, /̂ 2 and ^3 being the components of the complex wavevector k. Note that for the
corresponding conjugated fields, the operator should be replaced by iK*.

Substituting the differential operator V into equations (4.46) and (4.47) and assuming
f = 0, we obtain

v* • K • <T = -u;pv* • v* (4.65)

and
<rT . K*T • v* = -UJ(TT • e*, (4.66)

respectively. From equation (4.4), the right-hand side of (4.66) gives

1 • e* = -ueT • P • e*, (4.67)

since P is symmetric. The left-hand sides of (4.65) and (4.66) contain the Umov-Poynting
vector (4.55) because K • a = £ • k and K* • cr = £ • k*; thus

2k • p = upv* - v (4.68)

and
- P - e * . (4.69)

In terms of the energy densities (4.52), (4.53) and (4.54),

k - p = 2cc;(T) (4.70)

and
k* -p = 2uj(V)+i{D). (4.71)

Because the right-hand side of (4.70) is real, the product k • p is also real. For elastic
(lossless) media, k and the Umov-Poynting vectors are both real quantities.

Adding equations (4.70) and (4.71) and using k* + k = 2K, with K being the real
wavevector (see equation (3.26)), we obtain

K-p = uJ(E)+1-(D), (4.72)

where the time-averaged energy density (4.58) has been used to obtain (4.72). Splitting
equation (4.72) into real and imaginary parts, we have

n • (p) = u){E) (4.73)

and

ie.Im(p) = i<£>>, (4.74)

where
(p) = Re(p) (4.75)



4.3 Energy balance and fundamental relations 151

is the average power-flow density. The energy-velocity vector is defined as

v- = W) = <rTio' (476)

which defines the location of the wave surface associated with each Fourier component,
i.e., with each frequency u. In lossy media, we define the wave front as the wave surface
corresponding to infinite frequency, since the unrelaxed energy velocity is greater than
the relaxed energy velocity.

Since the phase velocity is

vP = ( - ) ft, (4.77)

where k defines the propagation direction, the following relation is obtained from (4.73):

k • ve = vp. (4.78)

This relation, as in the lossless case (equation (1.114)) and the isotropic viscoelastic case
(equation (3.123)), means that the phase velocity is the projection of the energy velocity
onto the propagation direction. Note also that equation (4.74) can be written as

= vp, (4.79)

where v^ is a velocity defined as

2o;Im(p)

and associated with the rate of dissipated-energy density. Relations (4.78) and (4.79) are
illustrated in Figure 4.1.

K

Figure 4.1: Graphical representation of equations (4.78) and (4.79). The projection of the energy-
velocity vector onto the propagation direction gives the phase velocity. The same result is obtained by
the projection of a pseudo-velocity vector related to the dissipated energy.
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Another important relation obtained from equation (4.73) is

-
10

(4.81)

which means that the time-averaged energy density can be computed from the component
of the average power-flow vector along the propagation direction.

Subtracting (4.71) from (4.70), we get

- 2 a •p = 2i (4.82)

which can also be deduced from the energy-balance equation (4.57), since for plane waves
of the form (4.62), div p = —2a • p. Taking the real part of (4.82), we have

(D) = 2a • (p), (4.83)

which states that the time average of the rate of dissipated-energy density can be obtained
from the projection of the average power-flow vector onto the attenuation direction. Re-
lations (4.81) and (4.83) are illustrated in Figure 4.2.

2 a

Figure 4.2: Graphical representation of equations (4.81) and (4.83). The time-averaged energy density
can be calculated as the component of the average power-flow vector onto the propagation direction,
while the time average of the rate of dissipated-energy density depends on the projection of the average
power-flow vector onto the attenuation direction.

We define the quality factor as in the 1-D and isotropic cases (equations (2.119) and
(3.126), respectively); that is

1 (i84)
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where
1 ^ (<j>0) (4.85)

is the time-averaged dissipated-energy density. Substituting the time-averaged strain-
energy density (4.53) and the time-averaged dissipated energy (4.85) into equation (4.84)
and using (4.54), we obtain

^ Re(e T -P -e* ) , 4 .
Q = ) L (4.86)

Im(eT • P • e*) K J

This equation requires the calculation of eT • P • e*.

For homogeneous plane waves and using equation (1.26), we obtain

e = -i/cLT • u (4.87)

and
e* = i/c*LT • u*, (4.88)

where L is defined in equation (1.67). Replacing these expressions in eT • P • e*, we get

e T - P e * = | /c | 2 u-r .u* , (4.89)

where T is the Kelvin-Christoffel matrix (4.27). But from the transpose of (4.30),

u • r = pv2
cu. (4.90)

Therefore, the substitution of this expression into (4.89) gives

e T • P • e* = p\k\2v2 u • u* = p\k\2v2
c\u\2. (4.91)

Consequently, substituting this expression into equation (4.86), the quality factor for
homogeneous plane waves in anisotropic viscoelastic media takes the following simple
form as a function of the complex velocity:

Q =

The relation (3.128) and the approximation (3.129), obtained for isotropic media, are also
valid in this case. Similarly, because for a homogeneous wave k2 = K2 — a2 — 2maJ it
follows from (4.34) and (3.126) that the quality factor relates to the wavenumber and
attenuation vectors as

a = (V<22 + 1 - O) «• (4-93)

For low-loss solids, the quality factor is Q ̂ > 1, and a Taylor expansion yields

a = ±K, (4.94)

which is equivalent to equation (3.129).
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4.3.2 Polarizations

We have shown in Section 3.3.4, that in isotropic media the polarizations of P and S-
I homogeneous planes waves can be orthogonal under certain conditions. In anisotropic
anelastic media, the symmetry of the Kelvin-Christ off el matrix F (equation (4.27)) implies
the orthogonality - in the complex sense - of the eigenvectors associated with the three
homogeneous plane-wave modes. (This can be shown by using the same steps followed in
Section 1.3.3). Let as assume that F has three distinct eigenvalues and denote two of the
corresponding eigenvectors by ua and u&. Orthogonality implies

ua • ub = 0, (4.95)

or
Re(ua) • Re(u&) - Im(ua) • Im(u6) = 0. (4.96)

This condition does not imply orthogonality of the polarizations, i.e., Re(ua) -Re(u&) ^ 0.
The real displacement vector of an inhomogeneous plane wave can be expressed as

Re(u) = f/0Re{Uexp[i(cc;t - k • x)]}, (4.97)

where £/0 is a real quantity, and U can be normalized in the Hermitian sense; that is

U • U* = 1. (4.98)

Decomposing the complex vectors into their real and imaginary parts and using k = K—ia,
we obtain:

Re(u) = t / 0 exp( -a -x) [Re(U)cos^- Im(U)s in^] , (4.99)

where
q = ut-K-x.. (4.100)

The displacement vector describes an ellipse homothetic2 to the ellipse defined by

w = Re(U) cos c - Im(U) sin <;. (4.101)

Let us consider two displacement vectors wa and w& associated with two different wave
modes at the same time and at the same frequency. The scalar product between those
displacements is

wa • w& = Re(Ua) • Re(U&) cos(<;a) COS(Q,) + Im(Uo) • Im(U6) sin(^a) si

-Im(Ua) • Re(U6) sinfo) cosfe) - Re(Ua) • Im(U6) cosfo) sinfo). (4.102)

Using the condition (4.95), which holds for homogeneous waves, equation (4.102) simplifies
to

wa • wb = Re(Ua) • Re(U&) cos(^a - ^) + Re(Ua) • Im(U&) sin(^a - ^ ) , (4.103)

but it is not equal to zero. In general, the planes of the three elliptical polarizations are
not mutually perpendicular. See Arts (1993) for an analysis of the characteristics of the
elliptical motion associated with (4.101).

2Two figures are homothetic if they are related by an expansion or a geometric contraction.
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4.4 The physics of wave propagation for viscoelastic
SH waves

We have seen in Chapter 1 that in anisotropic lossless media, the energy, group and enve-
lope velocities coincide, but the energy velocity is not equal to the phase velocity. On the
other hand, in dissipative isotropic media, the group velocity loses its physical meaning,
and the energy velocity equals the phase velocity only for homogeneous viscoelastic plane
waves. In this section, we investigate the relations between the different velocities for SH
homogeneous viscoelastic plane waves. Moreover, we study the perpendicularity proper-
ties - shown to hold for elastic media (see Section 1.4.6) - between slowness surface and
energy-velocity vector, and between wave or ray surface and slowness vector.

4.4.1 Energy velocity

Let us first obtain the relation between the energy velocity and the envelope velocity,
as defined in equation (1.146) for the (x, z)-p\sme. Differentiating equation (4.78) with
respect to the propagation - or attenuation - angle 01 squaring it and adding the result
to the square of equation (4.78), we obtain

dk \ , A A N

) ( 4 1 0 4 )

where we have used the relations dk/d6 = (Z3, —Zi), l\ + l\ =1, and l\ = sin# and Z3 = cos#
are the direction cosines.

The dispersion relation for SH propagation in the symmetry plane of a monoclinic
medium can be expressed as

*W? + P44/3 - We = 0, (4-105)

where vc is the corresponding complex velocity. Since the complex-slowness vector for
homogeneous plane waves is s = k/o; = (SI,SS)K, equation (4.105) generalizes equations
(1.261) to the lossy case - an appropriate rotation of coordinates eliminates the stiffness
p46. The solution of equation (4.105) is

(4.106)

The displacement field has the following form

u = e2t/o exp[i(o;t — k\x — faz)], (4.107)

or
u = e2[/o exp(—a • x) exp[ia;(t — s^ • x)], (4.108)

where UQ is a complex quantity, k\ and A;3 are the components of the complex wavevector
k, and s# = K/UJ is the slowness vector.

The associated strain components are

e4 = d3u = -ik3U0 exp[i(vt - k • x)],
e$ = d\U = —ikiUo exp[i(o;t — k • x)],
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and the stress components are

< T 4 = exp[i(o;t — k • x)],
exp[i(o;t - k • x)j.

(4.110)

From equation (4.55), the Umov-Poynting vector is

%^ )P = - -
z

+ = —u2\U0\
2(hpue3 +

Zvc

exp(-2a-x) , (4.111)

where v = icon is the particle velocity. Note that for elastic media, the Umov-Poynting
vector is real because vc, pu and PQQ become real valued.

The time-averaged kinetic-energy density is, from equation (4.52),

(T) = Jpv* • v = -Apuo2\UQ\2exp(-2a • x),

and the time-averaged strain-energy density is, from equation (4.53),

(4.112)

1 1
(V) = -7Re(p44|e4| +p66\e6\ ) = -pu \U{4 '0

Re(«c
2)

V,
exp(—2a • x), (4.113)

where equations (4.28) and (4.106) have been used. Similarly, the time average of the
rate of dissipated-energy density (4.54) is

(b) = -pto3\uQ
V,

exp(—2a • x). (4.114)

As can be seen from equations (4.112) and (4.113), the two time-averaged energy densities
are identical for elastic media, because vc is real. For anelastic media, the difference
between them is given by the factor Re(^)/ |v c |2 in the strain-energy density. Since the
property (4.42) can be applied to homogeneous plane waves, we have Tpeak = 2(T) and
Vpeak = 2(V).

Substitution of the Umov-Poynting vector and energy densities into equation (4.76)
gives the energy velocity for SH waves, namely,

v
ve =

V ,,,._» f ,.,, , /3Re I — ] e3 . (4.115)
Re(vc) I \pvcj \PvcJ

Note the difference from the energy velocity (1.154) in the elastic case, for which vc = vp.

4.4.2 Group velocity

Using equation (4.28) and noting that k\ = kl\ and k% = kls for homogeneous plane
waves, we can rewrite the complex dispersion relation (4.105) as

= 0. (4.116)

The group velocity (4.39) can be computed using this implicit relation between u and the
real wavenumber components K\ and ^3. The partial derivatives are given by

dF dF
(4.117)
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and
dF

duo
(4.118)

where the subscript UJ denotes the derivative with respect to UJ. Consequently, substituting
these expressions into equation (4.39), we get

= - 2 Z i Re
d

- l

- 2/ Re
d

- 1

(4.119)

where

d = wipwjl + Pujl) ~ 2pv2
c. (4.120)

Comparison of equations (4.115) and (4.119) indicates that the energy velocity is not
equal to the group velocity for all frequencies. The group velocity has physical meaning
only for low-loss media as an approximation to the energy velocity. It is easy to verify
that the two velocities coincide for lossless media.

4.4.3 Envelope velocity

Differentiating the phase velocity (4.29) (by using equation (4.106)), and substituting the
result into equation (1.146), we obtain the magnitude of the envelope velocity:

^env —

n 2

Re (4.121)

If the medium is isotropic, PQQ = ^44, and the envelope velocity equals the phase velocity
and the energy velocity (4.115). For lossless media pu = CJJ (the elasticity constants)
are real quantities, vp = vc, and

1
'9

pvp

a 72
-44^3̂3 (4.122)

(see equation (1.149)).

4.4.4 Perpendicularity properties

In anisotropic elastic media, the energy velocity is perpendicular to the slowness surface
and the wavevector is perpendicular to the energy-velocity surface or wave surface (see
Section 1.4.6). These properties do not apply, in general, to anisotropic anelastic media
as will be seen in the following derivations. The equation of the slowness curve can be
obtained by using the dispersion relation (4.105). Dividing the slowness SR = 1/Re(vc)
by SR and using SRI = SRII and SRS = SRIS, we obtain the equation for the slowness curve,
namely,

= Re
-1/2

P/P '44
- 1 = 0. (4.123)

A vector perpendicular to this curve is given by

ds = — v
R3

p
ZiRe

\PVc)
/3Re Pu

e3 (4.124)
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It is clear from equation (4.115) that ve and VSRQ are not collinear vectors; thus, the
energy velocity is not perpendicular to the slowness surface. However, if we consider the
limit cv —>> oo - the elastic, lossless limit by convention - for which prj —>• cu, we may state
that in this limit, the energy-velocity vector is perpendicular to the unrelaxed slowness
surface. The same perpendicularity properties hold for the static limit (u —> 0).

Similarly, the other perpendicularity property of elastic media, i.e., that the slowness
vector must be perpendicular to the energy-velocity surface, is not valid for anelastic
media at all frequencies. By using equation (4.29), and differentiating equation (4.78)
with respect to 91 we obtain

dn
~dB

dve dn

dO dO dcp
(4.125)

where g = dcj)/dO, with
vel Re[p66/vc(9)]

tan (p = — = ——-——^z tan 0
R [ ( 9 \ve3

(4.126)

(from equation (4.115))

z

K

= V
P cos y/

wave surface

x

Figure 4.3: Relation between the energy velocity and the phase velocity in terms of the propagation
and energy angles.

Figure 4.3 shows the relation between the propagation and energy angles. It can
be shown that g is always different from zero, in particular g = 1 for isotropic media.
Since dnjdd is tangent to the slowness surface - recall that K = c^s^ - and ve is not
perpendicular to it, the first term in equation (4.125) is different from zero. Since dve/d(j)
is tangent to the wave surface, equation (4.125) implies that the real wavevector K is not
perpendicular to that surface. In fact, taking into account that K(0) = [u/vp(9)](sm(9)ei-\-
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cos(#)e3), and after a lengthy but straightforward calculation of the first term of equation
(4.125), we have

ve =
(Pee - Pu) / I 1

pvc

(4.127)

For lossless media, vc is real and equation (4.127) is identically zero; in this case, the
perpendicularity properties are verified:

and from equation (4.104) the envelope velocity equals the energy velocity. In lossless
media or at the unrelaxed and static limits in lossy media, the wavevector is perpendicular
to the wave surface - the wave front in the unrelaxed case.

Perpendicularity for all frequencies in anelastic media holds between the slowness
surface and the envelope-velocity vector, as well as the surface determined by the envelope-
velocity vector and the slowness vector. Using equations (1.142), (4.29) and (4.106), we
obtain the components of the envelope velocity,

( -^r] and v)3 = ^ / 3 Re ( - ^ | ]venv)i = vlhRQ ( -^r] , and venv)3 = ^ / 3 Re ( - ^ | ] . (4.129)

The associated vector is collinear to VSi?^ for all frequencies (see equation (4.124)). More-
over, since the expression of the envelope of plane waves has the same form as in the
elastic case (equation (1.165)), the same reasoning used in Section 1.4.6 implies that the
real wavenumber vector and the slowness vector are perpendicular to the surface defined
by the envelope velocity.

4.4.5 Numerical evaluation of the energy velocity

Let us compare the different physical velocities. Figure 4.4 compares a numerical evalua-
tion of the location of the energy (white dots) and the theoretical energy velocity (solid
curve). The energy velocity is computed from the snapshot by finding the baricenter of
u|2 along the radial direction. Attenuation is modeled by Zener elements for which the

characteristic frequency coincides with the source dominant frequency.
This comparison is represented in a linear plot in Figure 4.5, where the envelope and

group velocities are also represented. While the envelope and energy velocities practically
coincide, the group velocity gives a wrong prediction of the energy location. More de-
tails about this comparison are given in Carcione, Quiroga-Goode and Cavallini (1996).
Carcione (1994a) also considers the qP-qS case.

It is important to note here that there exist conditions under which the group velocity
has a clear physical meaning. The concept of signal velocity introduced by Sommerfeld
and Brillouin (Brillouin, 1960; Mainardi, 1983) describes the velocity of energy transport
for the Lorentz model. It is equal to the group velocity in regions of dispersion without
attenuation (Felsen and Marcuvitz, 1973; Mainardi, 1987; Oughstun and Sherman, 1994).
This happens, under certain conditions, in the process of resonance attenuation in solid,
liquid and gaseous media. The Lorentz model describes dielectric-type media as a set of
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Figure 4.4: Comparison between a numerical evaluation of the energy location (white dots) and the
theoretical energy-velocity curve (solid line). The former is computed by finding the center of gravity of
the energy-like quantity |u|2 along the radial direction.

Numerical

Energy

Group

Envelope

2.4n

1.4

6 (degrees)

Figure 4.5: Same comparison as in Figure 4.4, but here the envelope and group velocities are also
represented. The dotted line corresponds to the numerical evaluation of the energy velocity and 6 is the
propagation angle.
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neutral atoms with "elastically" bound electrons to the nucleus, where each electron is
bound by a Hooke's law restoring force (Nussenzveig, 1972; Oughstun and Sherman, 1994).
The atoms vibrate at a resonance frequency under the action of an electromagnetic field.
This process implies attenuation and dispersion, since the electrons emit electromagnetic
waves which carry away energy.

Garret and McCumber (1970) and Steinberg and Chiao (1994) show that the group
velocity describes the velocity of the pulse for electromagnetic media such as, for example,
gain-assisted linear anomalous dispersion in cesium gas. Basically, the conditions imply
that the group velocity remains constant over the pulse bandwidth so that the light pulse
maintains its shape during the propagation. These theoretical results are confirmed by
Wang, Kuzmich and Dogariu (2000), who report a very large superluminal effect for laser
pulses of visible light, in which a pulse propagates with a negative group velocity without
violating causality.

However, the classical concepts of phase, energy and group velocities generally break
down for the Lorentz model, depending on the value of the source dominant frequency and
source bandwidth compared to the width of the spectral line. Loudon (1970) has derived
an expression of the energy velocity which does not exceed the velocity of light. It is based
on the fact that when the frequency of the wave is close to the oscillator frequency, part
of the energy resides in the excited oscillators. This part of the energy must be added to
the electromagnetic field energy.

4.4.6 Forbidden directions of propagation

There is a singular phenomenon when inhomogeneous plane waves propagate in a medium
with anisotropy and attenuation. The theory predicts, beyond a given degree of inho-
mogeneity, the existence of forbidden directions (forbidden solutions) or "stop bands"
where there is no wave propagation (not to be confused with the frequency stop bands
of periodic structures (e.g., Silva, 1991; Carcione and Poletto, 2000)). This phenomenon
does not occur in dissipative isotropic and anisotropic elastic media. The combination
of anelasticity and anisotropy activates the bands. These solutions are found even in
very weakly anisotropic and quasi-elastic materials; only a finite value of Q is required.
Weaker anisotropy does not affect the width of the bands, but increases the threshold of
inhomogeneity above which they appear; moreover, near the threshold, lower attenuation
implies narrower bands.

This phenomenon was discovered by Krebes and Le (1994) and Carcione and Cavallini
(1995a) for wave propagation of pure shear inhomogeneous viscoelastic plane waves in
the symmetry plane of a monoclinic medium. Carcione and Cavallini (1997) predict the
same phenomenon in electromagnetic media on the basis of the acoustic-electromagnetic
analogy (Carcione and Cavallini, 1995b). Figure 4.6a-b represents the square of the phase
velocity as a function of the propagation angle, where the dashed line corresponds to
the homogeneous wave (7 = 0); (a) and (b) correspond to strong and weak attenuation,
respectively. Observe that in the transition from 7 = 60° to 7 = 68°, two "stop bands"
develop (for 7 > 70 ~ 64°) where the wave does not propagate (Figure 4.6a). Note that
the stop bands exist even for high values of Q, as is the case in Figure 4.6b. The behavior
is such that these stop bands exist for any finite value of Q, with their width decreasing
with increasing Q.
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Cerveny and Psencik (2005a,b) have used a form of the sextic Stroh formalism (Ting,
1996; Caviglia and Morro, 1999) to re-interpret the forbidden-directions phenomenon by
using a different inhomogeneity parameter, instead of angle 7. The new approach involves
the solution of a 6 x 6 complex-valued eigensystem and the parameterization excludes
the forbidden solutions.

-10-1

Figure 4.6: "Stopbands" for propagation of inhomogeneous viscoelastic plane waves in anisotropic
anelastic media. The figure shows the square of the phase velocity as a function of the propagation angle
for different values of the inhomogeneity angle 7. In (a) the medium has strong dissipation and in (b)
the dissipation is weak.

4.5 Memory variables and equation of motion in the
time domain

As in the isotropic viscoelastic case (Section 3.9), we obtain, in this section, the memory-
variable differential equations, which allow us to avoid numerical calculations of time
convolutions when modeling wave propagation.

We define the reference elastic limit in the unrelaxed regime (u —> 00 or t —> 0), and
denote the unrelaxed stiffnesses by cLj. The following equations correspond to the 3-D
case, but the space dimension is indicated by n instead of 3 to facilitate the particulariza-
tion to the 2-D case (n=2). Using model 3 of Section 4.1.3, the time-domain relaxation
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matrix for a medium with general anisotropic properties (a triclinic medium) has the
following symmetric form

* ( * ) =

C15

^ 2 2 ^ 2 3

^ 3 3

V

We may express the components as

C24

C34

^44

C35

C45

\

C26

C36

C46

y

(4.130)

= cm
= 1,2,3, (4.131)

where

1

n

^44 = C44X2,

T — 1 9 T J,

= C55X3, ^66 = C6 6X4,

(4.132)

(4.133)

(4.134)

M

(1/)

1=1 Tal

- 1

r.
iy)

r

with r^i and r ^ being relaxation times satisfying >

, z^ 1 , . . . , 4t5

(4.135)
Moreover, ^ = 1 for ^ =

0 and re£ = T^i . The index S can be chosen to be 2, 3 or 4 (see Section 4.1.3).
The complex modulus is the time Fourier transform of d{xvH)/dt. It yields

- l

r

+
(4.136)

(see equation (2.196)), which has the property Mv —»• 1 for a; —>• oo.
The relaxation functions (4.135) are sufficiently general to describe any type of fre-

quency behavior of attenuation and velocity dispersion.

4.5.1 Strain memory variables

The time-domain stress-strain relation can be expressed as

* dtej (4.137)

(see equation (2.22)), where oj and ej are the components of the stress and strain 6 x 1
arrays - equations (1.20) and (1.27), respectively.
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Applying the Boltzmann operation (2.6) to equation (4.137), we obtain

eM (4.138)
1=1

where the A's and the £?'s are combinations of the elasticity constants cUl and

% =(Pi*ej J = l 6 / = l . . , L l / , i/ = l , . . . , 4 (4.139)

are the componen t s of the 6 x 1 s t ra in memory ar ray e^ , wi th

1=1 Tal

being the response function corresponding to the /-th dissipation mechanism. In 3-D
space, the strain memory array is a symmetric tensor given by

/ » » M \

(4.141)

V e33/ y

corresponding to the /-th dissipation mechanism of the relaxation function \v This
tensor contains the past history of the material due to that mechanism. In the elastic
case (r^i —>• r e ^) , 0w -^ 0 and the strain memory tensor vanishes. As the strain tensor,
the memory tensor possesses the unique decomposition

e{"> = d}"> + - t r C e ^ ' ) ^ , tr(d (
M) = 0, (4.142)

I bI b

where the traceless symmetric tensor dj is the deviatoric strain memory tensor. Then,
the dilatational and shear memory variables can be defined as

e i i =tr (e ;
( 1 ) ) and e $ = (d (

M ) , (4.143)

respectively, where v = 5 for i = j , v = 2 for ij = 23, ^ = 3 for ij = 13, and v = 4 for r/
= 12.

In explicit form, the stress-strain relations in terms of the strain components and
memory variables are

U en + 2/Z ^
(72 = c2Jej + /C E f E

K
c44

C55 Z^/=l e i 3 /
V^-^4 (4)C66

 V

where, as stated before,
(4.145)
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are the unrelaxed elasticity constants. In the work of Carcione (1995), the memory
variables are multiplied by relaxed elasticity constants. This is due to a different definition
of the response function (4.140). For instance, in the 1-D case with one dissipation
mechanism (see equations (2.283) and (2.285)), the difference is the factor T€/ra.

The terms containing the stress components describe the instantaneous (unrelaxed)
response of the medium, and the terms involving the memory variables describe the
previous states of deformation. Note that because of* is traceless, e[^ + e ^ + e ^ = 0,
and the number of independent variables is six, i.e., the number of strain components.
The nature of the terms can be easily identified: in the diagonal stress components, the
dilatational memory variables are multiplied by a generalized bulk modulus K, and the
shear memory variables are multiplied by a generalized rigidity modulus j2.

4.5.2 Memory-variable equations

Application of the Boltzmann operation (2.6) to the deviatoric part of equation (4.141)
gives

dtd[u) = <pvl(0)d + {dtVriH) * d, (4.146)

where d is the deviatoric strain tensor whose components are given in equation (1.15).

Because dt<pui = ~(Pvi/Tl'i'? equation (4.146) becomes

- 4rd*(I/)> diu) = v* *d' u =2'3'4- (4-147)4
Similarly, applying the Boltzmann operation to tr(e| ), we obtain

'I

The explicit equations in terms of the memory variables are

= nipu(0)e - 7tryeiz> / = 1 , . . . , Li

I — 1 , . . . , L§

tr(e/
(1)). (4.148)

Tal

(4.149)
(2
al

(37613/, I = 1 , . . . , L3

Tal

where e = en/n. The index 5 can be chosen to be 2, 3 or 4 (see Section 4.1.3).
Two different formulations of the anisotropic viscoelastic equation of motion follow.

In the displacement formulation, the unknown variables are the displacement field and
the memory variables. In this case, the equation of motion is formulated using the strain-
displacement relations (1.2), the stress-strain relations (4.144), the equations of momen-
tum conservation (1.23) and the memory-variable equations (4.149). In the particle-
velocity/stress formulation, the field variables are the particle velocities, the stress com-
ponents and the time derivative of the memory variables, because the first time derivative
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of the stress-strain relations are required. The first formulation is second-order in the time
derivatives, while the second is first-order. In the particle-velocity/stress formulation case,
the material properties are not differentiated explicitly, as they are in the displacement
formulation. A practical example of 3-D viscoelastic anisotropic modeling applied to an
exploration-geophysics problem is given by Dong and McMechan (1995).

2-D equations of motion - referred to as SH and qP-qSV equations of motion - can
be obtained if the material properties are uniform in the direction perpendicular to the
plane of wave propagation. Alternatively, the decoupling occurs in three dimensions in a
symmetry plane. This situation can be generalized up to monoclinic media provided that
the plane of propagation is the plane of symmetry of the medium. In fact, propagation in
the plane of mirror symmetry of a monoclinic medium is the most general situation for
which pure shear waves exist at all propagation angles.

Alternative methods for simulating wave propagation in anisotropic media - including
attenuation effects - are based on ray-tracing algorithms. Gajewski, and Psencik (1992)
use the ray method for weakly anisotropic media, and Le, Krebes and Quiroga-Goode
(1994) simulate SH-wave propagation by complex ray tracing.

4.5.3 SH equation of motion

Let us assume that the (x, z)-plane is the symmetry plane of a monoclinic medium and
d2 = 0. The cross-plane assumption implies that the only non-zero stress components
are c\2 and 0-23. Following the same steps to obtain the 3-D equation of motion, the
displacement formulation of the SH-equation of motion is given by

i) Euler's equation (1.46)i.
ii) The stress-strain relations

CM/.ti-ail, (4 1 5 0 )

= c46e4 + Cee^e + c66 '

iii) Equations (4.149)4 and (4.149)6.
See Carcione and Cavallini (1995c) for more details about this wave equation.

4.5.4 qP-qSV equation of motion

Let us consider the two-dimensional particle-velocity/stress equations for propagation in
the (xy z)-plane of a transversely isotropic medium. In this case, we explicitly consider
a two-dimensional world, i.e., n = 2. We assign one relaxation mechanism to dilata-
tional anelastic deformations (y = 1) and one relaxation mechanism to shear anelastic
deformations [y = 2). The equations governing wave propagation can be expressed by

i) Euler's equations (1.45) 1 and (1.45)2:

+ ^3^13 + A = pdtvu (4.151)

+ d3a33 + h = pdtvs, (4.152)

where /1 and fs are the body-force components,

ii) Stress-strain relations:
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+ c13d3v3 +
+ c33d3v3 +

dtan = CndiVi + c13d3v3 + JCei + 2c55e2,

- 2c5 5e2 ,

- e 3 ] ,

where ei, e2 and e3 are first time derivatives of the memory variables
;, respectively), and

K = £ - c55, £ = - (en + c33).

(4.153)

(4.154)

(4.155)

dte22 and

(4.156)

As in the 3-D case, the stress-strain relations satisfy the condition that the mean stress
depends only on the dilatational relaxation function in any coordinate system - the trace
of the stress tensor should be invariant under coordinate transformations. Moreover, the
deviatoric stresses solely depend on the shear relaxation function.

iii) Memory-variable equations:

1 r (i)

7TT - 1 \ ( 9 i ^ i

1

1

((2)

- d3v3) - 2e2

div3) - e3

(4.157)

(4.158)

(4.159)

Transforming the memory-variable equations (4.157), (4.158) and (4.159) to the u-
domain (e.g., dtei —>> icjei), and substituting the memory variables into equations (4.153),
(4.154) and (4.155), we obtain the frequency-domain stress-strain relation:

10;

V +

Pll Pl3 0

^33 = Pl3 P33 0
/ \ 0 0 P55 J \

where
= d i - £ + /CMi + c55M2

= C33 — £ + ^C^l + C55M2

P13 = ci3 - £ + /CMx + c55(2 - M2)

P55 = c55M2

are the complex stiffnesses, and

(4.160)

(4.161)

\U)Tt
i?)

v = 1,2 (4.162)

are the Zener complex moduli. Note that when u —>• 00, p/ j —>•
The relaxation times can be expressed as (see Section 2.4.5)

Qlv + 1 + 1 K and
a Oi/

QL + 1 - 1 , (4.163)

where TQ is a relaxation time such that 1/TQ is the center frequency of the relaxation peak
and QQV are the minimum quality factors.
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4.6 Analytical solution for SH waves in monoclinic
media

The following is an example of the use of the correspondence principle to obtain a transient
solution in anisotropic anelastic media, where an analytical solution is available in the
frequency domain.

In the plane of mirror symmetry of a lossless monoclinic medium, say, the (x, £)-plane,
the relevant stiffness matrix describing wave propagation of the cross-plane shear wave is

C = ( °u C46 ^ . (4.164)
V C46 0)6 )

Substitution of the stress-strain relation based on (4.164) into Euler's equation (1.46)i
gives

V • C • Vu - pd2
ttu = /„, (4.165)

where u is the displacement field, j u — —J2 is the body force, and, here,

v =

For a homogeneous medium, equation (4.165) becomes

\u = fu. (4.167)

We show below that it is possible to transform the spatial differential operator on the
left-hand side of equation (4.167) to a pure Laplacian differential operator. In that case,
equation (4.165) becomes

{dydy + dvdv)u - pd2
ttu = / , (4.168)

where x' and z' are the new coordinates. Considering the solution for the Green function
the right-hand side of (4.168) is Dirac's function in time and space at the origin - and

transforming the wave equation to the frequency domain, we obtain

+ dvdv)g + pu?g = -47r5(x')5(z'), (4.169)

where g is the Fourier transform of the Green function, and the constant —4TT is introduced
for convenience. The solution of (4.169) is

g(x',z',co) = -mHf\^pu)r'), (4.170)

(see Section 3.10.1), where HQ } is the Hankel function of the second kind, and

r = + z'2 = \ / x / T • xr, (4.171)

with xr = (z'^x'). We need to compute (4.170) in terms of the original position vector
x = (z,x). Matrix C may be decomposed as C = A • A • A T , where A is the diagonal
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matrix of the eigenvalues, and A is the matrix of the normalized eigenvectors. Thus, the
Laplacian operator in (4.165) becomes

(4.172)

where A = fi2, and
V = n • A T • V. (4.173)

Recalling that ft is diagonal and A T = A"1, we get

x' = ft1 A T x. (4.174)

The substitution of (4.174) into equation (4.171) squared gives

r'2 = x • A • fll • fl1 • A T • x = x • A • A"1 • A T • x. (4.175)

Since A • A"1 • A T = C"1, we finally have

r'2 = x • C"1 • x"1 = (CQQZ2 + cux
2 - 2c46xz)/c, (4.176)

where c is the determinant of C.
Then, substituting (4.176) into equation (4.170), we note that the elastic Green's

function becomes
g(x, z, UJ) = -mH^ (ujy/x • pC~l • x) . (4.177)

Application of the correspondence principle (see Section 3.6) gives the viscoelastic Green's
function

(g{x, z, u) = -ITTH^ (uy/x-pP-1-*} , (4.178)

where P is the complex and frequency-dependent stiffness matrix. When solving the
problem with a band-limited wavelet /(£), the solution is

^ ^ x ) , (4.179)

where / is the Fourier transform of / . To ensure a time-domain real solution, when UJ > 0
we take

tt(x, UJ) = #"(x, -UJ), (4.180)

where the superscript * denotes the complex conjugate. Finally, the time-domain solu-
tion is obtained by an inverse transform based on the discrete fast Fourier transform.
An example where dissipation is modeled with Zener models can be found in Carcione
and Cavallini (1994a). Other investigations about anisotropy and loss of SH waves are
published by Le (1993) and Le, Krebes and Quiroga-Goode (1994).



This page intentionally left blank



Chapter 5

The reciprocity principle

The reciprocal property is capable of generalization so as to apply to all acoustical systems what-
ever capable of vibrating about a configuration of equilibrium, as I proved in the Proceedings of
the Mathematical Society for June 1873 [Art. XXI], and is not lost even when the systems are
subject to damping...

John William Strutt (Lord Rayleigh) (Rayleigh, 1899a)

The reciprocity principle relates two solutions in a medium where the sources and
the field receivers are interchanged. The principle for static displacements is credited to
Betti (1872). Rayleigh (1873) extended the principle to vibrating bodies and included
the action of dissipative forces1(see Rayleigh, 1945, vol. 1, p. 157f). Lamb (1888) showed
how the reciprocal theorems of Helmholtz - in the theory of least action in acoustics and
optics - and of Lord Rayleigh - in acoustics - can be derived from a formula established
by Lagrange in the Mechanique Analytique (1809), thereby anticipating Lagrange's theory
of the variation of arbitrary constants (Fung, 1965, p. 429).

In this century, the work of Graffi (1939, 1954, 1963) is notable. Graffi derived the first
convolutional reciprocity theorem for an isotropic, homogeneous, elastic solid. Extension
to inhomogeneous elastic anisotropic media was achieved by Knopoff and Gangi (1959).
Gangi (1970) developed a volume integral, time-convolution formulation of the reciprocity
principle for inhomogeneous anisotropic linearly elastic media. This formulation permits
the use of distributed sources as well as multi-component sources (i.e., couples with and
without moment). Gangi also derived a representation of particle displacement in terms
of Green's theorem.

de Hoop (1966) generalized the principle to the anisotropic viscoelastic case. It is worth
mentioning the work of Boharski (1983), who distinguished between convolution-type
and correlation-type reciprocity relations. Recently, de Hoop and Stam (1988) derived
a general reciprocity theorem valid for solids with relaxation, including reciprocity for
stress, as well as for particle velocity (see also de Hoop, 1995). Laboratory experiments
of the reciprocity principle were performed by Gangi (1980b), who used a granite block
containing a cylindrical brass obstacle to act as a scatterer, and piezoelectric transducers
to act as vertical source and vertical receiver. A direct numerical test of the principle in
the inhomogeneous anisotropic elastic case was performed by Carcione and Gangi (1998).

1A reciprocity relation when the source is a dipole rather a monopole has been derived by Lord
Rayleigh in 1876.
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Useful applications of the reciprocity principle can be found in Fokkema and van den Berg
(1993).

5.1 Sources, receivers and reciprocity

Reciprocity is usually applied to concentrated point forces and point receivers. However,
reciprocity has a much wider application potential; in many cases, it is not used at its
full potential, either because a variety of source and receiver types are not considered or
their implementation is not well understood.

Reciprocity holds for the very general case of an inhomogeneous anisotropic viscoelas-
tic solid, in the presence of boundary surfaces satisfying Dirichlet and/or Neumann bound-
ary conditions (e.g., Lamb's problem, (Lamb, 1904)) (Fung, 1965, p. 214). However, it
is not clear how the principle is applied when the sources are couples (Fenati and Rocca,
1984). For instance, Mittet and Hokstad (1995) use reciprocity to transform walk-away
VSP data into reverse VSP data, for offshore acquisition. Nyitrai, Hron and Razavy
(1996) claim that the analytical solution to Lamb's problem - expressed in terms of par-
ticle displacement - for a dilatational point source does not exhibit reciprocity when
the source and receiver locations are interchanged. Hence, the following question arises:
what, if any, source-receiver configuration is reciprocal in this particular situation? In
order to answer this question, we apply the reciprocity principle to the case of sources of
couples and demonstrate that for any particular source, there is a corresponding receiver-
configuration that makes the source-receiver pair reciprocal.

We obtain reciprocity relations for inhomogeneous anisotropic viscoelastic solids, and
for distributed sources and receivers. We show that, in addition to the usual relations
involving directional forces, the following results exist: i) the diagonal components of the
strain tensor are reciprocal for dipole sources (single couple without moment), ii) the off-
diagonal components of the stress tensor are reciprocal for double couples with moments,
iii) the dilatation due to a directional force is reciprocal to the particle velocity due to a
dilatation source, and iv) some combinations of the off-diagonal strains are reciprocal for
single couples with moments.

5.2 The reciprocity principle

Let us consider a volume £7, enclosed by a surface 5, in a viscoelastic solid of density
p(x) and relaxation tensor ^ ^ ( x , £), where x = (x,y,z) denotes the position vector. In
full explicit form, the equation of motion (1.23) and the stress-strain relation (2.9) can be
written as

(5.1)

(5.2)

A reciprocity theorem valid for a general anisotropic viscoelastic medium can be de-
rived from the equation of motion (5.1) and the stress-strain relation (5.2), and can be
written in the form

[u;(x, t) * //(x, t) - /i(x, t) * wj(x, t)]dn = 0 (5.3)
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(Knopoff and Gangi, 1959; de Hoop, 1995). Here Ui is the i-th component of the dis-
placement due to the source f, while v!i is the i-th component of the displacement due
to the source f. The derivation of equation (5.3) assumes that the displacements and
stresses are zero on the boundary S. Zero initial conditions for the displacements are
also assumed. Equation (5.3) is well known and can conveniently be used for deriving
representations of the displacement in terms of Green's tensor (representation theorem,
see Gangi, 1970).

Assuming that the time Fourier transform of displacements and sources exist, equation
(5.3) can be transformed into the frequency domain and written as

= 0. (5.4)
n

Equation (5.4) can also be expressed in terms of the particle velocity i5j(x, u) = iuui(x,u)

by multiplying both sides with iu,

U ' l x ( j ) f ( x C J ) — f i x c j i v ( x c j j l d f i = 0 (5.5)
n

In the time domain, equation (5.5) reads

/ [vi(x,t) * //(x,t) - /i(x,t) * uj(x,t)]dfi = 0. (5.6)
Jn

In the special case that the sources fi and // have the same time dependence and can be
written as

(5-7)

equation (5.5) reads

= 0. (5.8)
o

In the time domain equation (5.8) reads

= 0. (5.9)

5.3 Reciprocity of particle velocity. Monopoles

In the following discussion, the indices m and p indicate either re, y or z. The spatial part
gi of the source fi is referred to as the body force. To indicate the direction of the body
force, a superscript is used so that the i-th component g™ of a body force acting at x = x0

in the m-direction is specified by

; x0) = <*(x - x o )^ m , (5.10)

where 5(x) and 6im are Dirac's and Kronecker's delta functions, respectively. The i-th
component ^ of a body force acting at x = XQ in the p-direction is, similarly, given by

g\(x; x0) = S{x - x'0)^p. (5.11)
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We refer to body forces of the type given by equations (5.10) and (5.11) as monopoles.
In the following formulation, we use a superscript on the particle velocity to indicate the
direction of the corresponding body force. Then, v™ indicates the i-th component of the
particle velocity due to a body force acting in the m-direction, while vf indicates the
z-th component of the particle velocity due to a body force acting in the p-direction. In
addition, we indicate the position of the source in the argument of the particle velocity. A
complete specification of the i-ih component of the particle velocity due to a body force
acting at x0 in the m-direction is written as vj"(x,t;x0). Similarly, we have vf(x, t;x'o)
for the primed system.

Using the above notation, we can write the reciprocity relation (5.9) as

[Uj ^X, C, XgJy^X, XgJ — y^ ^X, Xo^C'^X, t, XoJJCiii — U. ya.lZij

n

Substituting equations (5.10) and (5.11) into equation (5.12), we obtain

•j- • ^ ^ I >\ I -\r -\r \ /\ , >\ I -\r -\r \ >\ . /j i-f I ^ ^ -J- • ^ ^ I w I I II I ^ I \ I

• 1/* -^-Q / \J \ -^- "^^0 / ^ IT) *~* \ "^" "^^0 / 7777 •?* \ "^^^ l "^^0 / ^* /" ̂  *-* • I U» 1 0 /

o

Recalling the properties of Dirac's and Kronecker's functions, we note that equation (5.13)
implies

^ , t; x'o). (5.14)

This equation reveals a fundamental symmetry of the wave field. In any given experiment,
the source and receiver positions may be interchanged provided that the particle-velocity
component indices and the force component indices are interchanged. Note that this
equation only applies to the situation where the source consists of a simple body force. In
order to illustrate the interpretation of equation (5.14), Figure 5.1 shows three possible
2-D reciprocal experiments.

5.4 Reciprocity of strain

For more complex sources than a body force oriented along one of the coordinate axes, the
reciprocity relation will differ from equation (5.14). Equation (5.9) is, however, valid for
an arbitrary spatially distributed source and can be used to derive reciprocity relations
for couples of forces. A review of the use of couples for modeling earthquake sources can
be found in Aki and Richards (1980, p. 50) and Pilant (1979, p. 356).

5.4.1 Single couples

We consider sources consisting of force couples where the i-th component of the body
force takes the particular form

n. (5.15)

Here the double superscript mn indicates that the force couple depends on the m- and
n-directions. Similarly, in the primed system, the source components are specified by

(5.16)
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Figure 5.1: 2-D reciprocal experiments for single forces.

The corresponding particle velocities are expressed as v™n(x.,t;xo) and vf9(x, t;x[j), re-
spectively. Following Aki and Richards (1980, p. 50), the forces in equations (5.15) and
(5.16) may be thought of as composed of a simple (point) force in the positive m-direction
and another force of equal magnitude in the negative m-direction. These two forces are
separated by a small distance in the n-direction. The magnitude of the forces must be
chosen such that the product of the distance between the forces and the magnitude is
unity. This is illustrated by the examples in Figures 5.2 and 5.3. The source in the top
left experiment of Figure 5.2 can be obtained from equation (5.15) by setting x0 = 0 and
m = n = 1. Then, g\l = g\l = 0 and

01
11 (5.17)

Consider now the source in the top left experiment of Figure 5.3. Using equation
(5.15) and assuming m = 1 and n = 3, we have g^3 = g\3 = 0 and

K). (5.18)

This body force possesses a moment around the |/-axis, in contrast to the source considered
in Figure 5.2, which has zero moment around the y-axis. Whenever m = n, the body
force is referred to as a couple without moment, whereas when m ^ n the corresponding
body force is referred to as a couple with moment.
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Figure 5.2: 2-D reciprocal experiments for couples without moment.
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Substituting equations (5.15) and (5.16) into equation (5.9), we obtain the reciprocity
relation for couple forces,

xi)]. (5.19)

The interpretation of equation (5.19) is similar to that of equation (5.14), except that
the spatial derivatives of the particle velocity are reciprocal rather the particle velocities
themself. The following cases are most relevant.

Single couples without moment

When m = n and p = q in equation (5.19), the derivatives are calculated along the force
directions. The resulting couples have orientations depending on those directions. This
is illustrated in Figure 5.2 for three different experiments.

Single couples with moment

This situation corresponds to the case m ^ n and p ^ q in equation (5.19). The resulting
couples have moments. Three cases are illustrated in Figure 5.3.

5.4.2 Double couples

Double couple without moment. Dilatation.

Two perpendicular couples without moments constitute a dilatational source. Such cou-
ples have the form

; x0) = diS(-x - x0), (5.20)

and

; x'o) = diS{K - x'o). (5.21)

The respective particle-velocity components are i^(x, £;x0) and Vj(x, t;x!0)
Substituting equation (5.20) and (5.21) into (5.9), we obtain

= 0, (5.22)
n

or

(5.23)

where

(5.24)

(see equation (1.11)). Equation (5.23) indicates that for a dilatation point source (ex-
plosion), the time derivative of the dilatation fields are reciprocal when the source and
receiver are interchanged.
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Double couple without moment and monopole force

Let us consider a double couple without moment (dilatation source) at x = x0,

; x0) = (5.25)

and a monopole force at x = xo

; x'o) = (5.26)

where go is a constant with dimensions of 1/length. The respective particle-velocity
components are Vj(x,t;x0) and f™(x, t;x'o). Substituting equation (5.25) and (5.26) into
(5.9), we have

, t; , t; = 0. (5.27)
n

Integration of (5.27) implies

'o, t; (x0, t; x0) = 0, (5.28)

which can be written as

'o, t; x0) = (5-29)

where

(5.30)

Equation (5.29) indicates that the particle velocity and time derivative of the dilatation
field must be substituted when the source and receiver are interchanged. The case g^v^ =
$3 is illustrated in Figure 5.4 (top).

The question posed by Nyitrai, Hron and Razavy (1996) regarding reciprocity in
Lamb's problem (see Section 5.1) has then the following answer: the horizontal (vertical)
particle velocity due to a dilatation source is reciprocal with the time derivative of the
dilatation due to a horizontal (vertical) force.

Double couple without moment and single couple

Let us consider a double couple without moment at x = x0,

; x0) =

and a single couple at x = x0,

The particle-velocity components are Vj(x, £;x0) and ̂ n ( x , i;x0), respectively.
Substituting equation (5.31) and (5.32) into (5.9), we obtain

(5.31)

(5.32)

, t; , t; x'o = 0,
n

(5.33)
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Integration of (5.33) implies

, t; , t\ x'o) = 0, (5.34)

which can be written as

0; ̂  x o) = (5.35)

where

mn
— Q.v

mn
(5.36)

In this case, the time derivative of the dilatation is reciprocal with the derivatives of
the particle velocity. Two examples are illustrated in Figure 5.4 (middle and bottom
pictures).

Experiment
Source Receiver

y

y

y

y\

dl9l+ $303 1 ^3
* X *

y

X

y

* X f

X

X

\d1g3

X

Reciprocal experiment
Receiver Source

y

y

y

y\o / , o / J /
uiv\ + o3Vo 4 On

y

div[-\- dsvf
3 '

X

y
f\ l . r\ f

dig's
X

\digf
3

1
[ X

Figure 5.4: 2-D reciprocal experiments for double couples without moment and single couples

5.5 Reciprocity of stress

A proper choice of the body forces fi and f[ leads to reciprocity relations for stress. This
occurs for the following forces:

fmn( y.. \ _ , t)djS{x - yL0)SkmSin] * h(t) (5.37)
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and

ff9(x, t- x'o) = [^(x 'o> t)dj6(x - x'0)8kp5lq] * h(t). (5.38)

The associated particle-velocity components are Vj(x, t;x0) and i^(x, t;x0), respectively,
where we have omitted the superscripts for simplicity. The corresponding components
of the stress tensor are denoted by a™n(x, t;x0) and of/(x, £;x0). Substituting equation
(5.37) and (5.38) into (5.6), we obtain

, t; x0) * [tpijkii^ t)dj5{x. - x.'0)dkp5iq] * h(t)
n

-Ui(x, t; x0) * [ipijkifai, t)dj5(x - xo)£m^Zn] * h(t)}dQ = 0. (5.39)

Integrating this equation, we obtain

, t; x0) * [^yw(x0, *)5mfc^n] * /i(t) = 0. (5.40)

We now use the symmetry properties (2.24), to rewrite equation (5.40) as

^, t; x0) * divk(-x'o, t; xo)^p5jj * h{t)

-[ipijki(-x0, t; x'o) * divk(x0, 0, t; x;
0)^m(5in] * h(t) = 0, (5.41)

or

T • ^ r I / \ / \ , I > L * / ^ l ~ h \ / T I ^ < ^ .̂ i • ^ « ^ I / i . / i • I ' A ' r l i l l ^ ^ ^ I I I ^ \ /\ J I

Q ? 6 , • ^ • O / ^ i p ^ 7 ( 7 I ^ '^V / — L 77 V 0 ? ^5 0 / ^i?Ti ^777,1 ^ '"\") ^ 5 I J . ^ Z )

where the stress-strain relation (5.2) and the relation ipijki * (dkvi + d\vk) = 2ipijki * dkvi
have been used. Contraction of indices implies

* , *; xj) * /i^) = 0. (5.43)

If /i is such that h satisfying h *h = 5 exists, it is easy to show that equation (5.43) is
equivalent to

^ 7 ( x i , f, x0) = <«B(xo, t; x'o). (5.44)

The interpretation of equation (5.44) follows. The pq stress component at x'o due to a
body force with i-th component given by f-7171 at x0 equals the mn stress component at
x0 due to a body force with ?-th component given by ffq and applied at XQ.

Figure 5.5 illustrates the source and receiver configuration for an experiment corre-
sponding to reciprocity of stress. The sources of the experiments are

A (x, t; x0) = fe * h(t)d3S(x - x0), /3 (x, t\ x0) = fe * h(t)di5(x. - x0),

and

{s(x, t; x'o) = fe * M W ( x - x0), /3^(x, t; x'o) = fe * ̂ (t)935(x - x0),
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Experiment
Source Receiver

55 * fe *
y y

x
55 * ^3/3

X
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Reciprocal experiment
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55 *
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33 #3 * / a

y

a;
13 * f[

Figure 5.5: Source and receiver configuration for reciprocal stress experiments.

where ipu are the relaxation components in the Voigt's notation. In this case, a\\ is equal
to off when the source and receiver positions are interchanged.

We then conclude that for many types of sources, such as, for example, dipoles or ex-
plosions (dilatations), there is a field that satisfies the reciprocity principle. An example
of the application of the reciprocity relations can be found, for instance, in offshore seismic
experiments, since the sources are of dilatational type and the hydrophones record the
pressure field, i.e., the dilatation multiplied by the water bulk modulus. In land seismic
acquisition, an example is the determination of the radiation pattern for a point source
on a homogeneous half-space (Lamb's problem). The radiation pattern can be obtained
by using reciprocity and the displacements on the half-space surface due to incident plane
waves (White, 1960). The reciprocity relations can be useful in borehole seismic exper-
iments, where couples and pressure sources and receivers are employed. An example of
how not to use the reciprocity principle is given by Gangi (1980a). It is the case of an
explosive source in a bore that is capped so that the explosion is a pressure source, and
displacements are measured on the surface using a vertical geophone. An explosion at
the surface and a vertical geophone in the borehole will not necessarily provide the con-
figuration that is reciprocal to the first experiment. The correct reciprocal configuration
involves a hydrophone in the well and a directional vertical source at the surface. A set of
numerical experiments confirming the reciprocity relations obtained in this chapter can
be found in Arntsen and Carcione (2000).
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Chapter 6

Reflection and transmission of plane
waves

If a pencil of WHITE light polarised by reflexion is incident at the polarising angle upon any
transparent surface, so that the plane of the second reflexion is at right angles to the plane of
its primitive polarisation, a portion of the pencil consisting of the mean refrangible rays will
lose its reflexibility, and will entirely penetrate the second surface, while another portion of the
beam, composed of the blue and red rays, will not lose its reflexibility, but will suffer reflexion
and refraction like ordinary light.

David Brewster (Brewster, 1815)

The reflection and transmission problem at an interface between anisotropic anelastic
media is a complex phenomenon. A general approach has, in this case, the disadvantage of
limiting the depth to which we can study the problem analytically and precludes us from
gaining further physical insight into the nature of the problem. In this chapter, the main
physical results are illustrated by considering relatively simple cases, that is, propagation
of SH waves in the plane of symmetry of monoclinic media, and propagation of qP-qSV
waves in a plane containing the axes of symmetry of transversely isotropic media. In both
cases, the refracting boundary is plane and perpendicular to the symmetry planes.

The problem of reflection and transmission at an interface between two anelastic
transversely isotropic media whose symmetry axes are perpendicular to the interface has
a practical application in the exploration for hydrocarbon reservoirs using seismic waves.
The interface may separate two finely layered formations whose contact plane is parallel
to the stratification. Anelastic rheology models the different attenuation mechanisms
resulting from the presence of cracks and fluid saturation.

We have seen in Chapters 3 and 4 that the most relevant difference from the elastic
case is the presence of inhomogeneous waves which have a body-wave character, in con-
trast to the inhomogeneous waves of the elastic type, which propagate along interfaces.
For viscoelastic inhomogeneous waves, the angle between the propagation and attenuation
vectors is strictly less than 90°, unlike inhomogeneous waves in elastic media. In addition,
depending on the inhomogeneity of the wave, its behavior (e.g., phase velocity, attenua-
tion, particle motion) may also differ substantially. Moreover, as we have seen in Chapter
1, in the anisotropic case, the energy-flow direction, in general, does not coincide with
the propagation (wavevector) direction, and critical angles occur when the ray (energy-
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184 Chapter 6. Reflection and transmission of plane waves

flow) direction is parallel to the interface. The theoretical developments presented in this
chapter follow from Carcione (1997a,b).

6.1 Reflection and transmission of SH waves

The cross-plane shear problem is one of relative mathematical simplicity and includes
the essential physics common to more complicated cases, where multiple and coupled
deformations occur (Horgan, 1995). In this sense, analysis of the reflection and transmis-
sion of cross-plane shear waves serves as a pilot problem for investigating the influence
of anisotropy and/or anelasticity on solution behavior. As is well known, propagation in
the plane of mirror symmetry of a monoclinic medium is the most general situation for
which cross-plane strain motion exists in all directions - the corresponding waves are also
termed type-II S and SH in the geophysical literature (Borcherdt, 1977; Helbig, 1994).

Besides the work of Hayes and Rivlin (1974), who considered a low-loss approximation,
the study of wave propagation in anisotropic viscoelastic media is a relatively recent topic.
In the following discussion, we consider two monoclinic media with a common mirror plane
of symmetry in contact along a plane perpendicular to the symmetry plane. The incidence
and refraction planes are assumed to be coincident with this plane of symmetry. Then,
an incident cross-plane shear wave will generate reflected and transmitted shear waves
without conversion to the coupled quasi-compressional and quasi-shear modes.

The physics of the problem may differ depending on the values of the elasticity con-
stants and the anisotropic dissipation of the upper and lower media. For this reason, we
follow a general treatment and, simultaneously, consider a numerical example including
the essential physical aspects. In this way, the analysis provides further insight into the
nature of the reflection and transmission problem.

6.1.1 Symmetry plane of a homogeneous monoclinic medium

Assume a homogeneous and viscoelastic monoclinic medium with the vertical (a;, 2;)-plane
as its single symmetry plane. Then, cross-plane shear waves with particle velocity v =
v(x, z)e2 propagate such that

v = iuuo exp[kt;(t — s\x — s^z)], (6.1)

where S\ and S3 are the components of the complex-slowness vector, u is the angular
frequency satisfying UJ > 0, and UQ is a complex quantity. The slowness and attenuation
vectors are given by

(6.2)

and
a = -6j(Im(si), Im(s3)), (6.3)

respectively, such that the complex-slowness vector is s = s# — \{OL/UJ).

The cross-plane assumption implies that O\2 and o32 are the only non-zero components
of stress that satisfy the stress-strain relations

and \UJG32 = p^d3v + p^div, (6.4)
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where pu are the complex stiffnesses (see Sections 4.1 and 4.6). These complex stiffnesses
equal the real high-frequency limit elasticity constants CJJ in the elastic case.

The complex-slowness relation has the following simple form:

F(sus3) =— _ Jl - p = 0. (6.5)

(See the elastic version in equation (1.261).)
Let us assume that the positive z-axis points downwards. In order to distinguish

between down and up propagating waves, the slowness relation is solved for s3, given the
horizontal slowness S\. It yields

1
S3± = ±

where
p2 =

(6.6)

(6.7)

and pvy/w denotes the principal value of the square root of the complex number w. In
principle, the + sign corresponds to downward or +z propagating waves, while the — sign
corresponds to upward or — z propagating waves.

We recall that, as shown in Section 1.4.2, the group velocity equals the energy velocity
only when there is no attenuation. Therefore, analysis of the physics requires explicit
calculation of the energy velocity, since the concept of group velocity loses its physical
meaning in anelastic media (see Section 4.4.5). The mean energy flux or time-averaged
Umov-Poynting vector (p) is the real part of the corresponding complex vector

P = - (6.8)

(equation (4.111)). Substituting the plane wave (6.1) and the stress-strain relations (6.4)
into equation (6.8), we obtain

p = (6.9)

where
X = PQQSI + P46-S3, and Z = pmsx + P44S3. (6.10)

For time harmonic fields, the time-averaged strain- and dissipated-energy densities, (V)
and (D), can be obtained from a complex strain-energy density <£>. This can be deduced
from equations (4.53), (4.54), (4.85) and (6.4). Hence, we have

1
$ = - e1 - P - e * ,

which for SH waves propagating in a monoclinic medium is given by

(6.11)

P44
d3v
iu

2

+ P66
div

+ 2p46Re
d3v (6.12)

(The demonstration is left to the reader.) Then,

(V) = ^ (D) = (6.13)
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Substituting the plane wave (6.1) into (6.12), we find that the energy densities become

(V) = -u2\u0\
2 exp{2u[lm(si)x -\-Im(ss)z]}Re(g) (6.14)

and

(D) = -co2\uo\2 exp{2u)[lm(si)x -\-lm(ss)z]}lm(g)^ (6.15)

where

Q = PMISSI ~\~P6G\SI\ + 2p4QHe(slss). (6.16)

From equation (4.52), we obtain the time-averaged kinetic-energy density, namely,

1 , 2 1
(T) = -p\v2\ = -pu2\u0\

2 exp{2u[Im(si)x + Im(s3)z]}. (6.17)

6.1.2 Complex stiffnesses of the incidence and transmission me-
dia

A realistic viscoelastic model is the Zener model (see Section 2.4.3). It satisfies causality
and gives relaxation and creep functions in agreement with experimental results (e.g.,
aluminum (Zener, 1948) and shale (Johnston, 1987)).

We assign different Zener elements to pu and PQQ in order to define the attenuation (or
quality factor) along the horizontal and vertical directions (x- and z-axes), respectively.
Hence, the stiffnesses are

= CQQM2, P46 = C46, (6.18)

where
1+ iu)Teu \

l 2 (6.19)

are the complex moduli (see Section 2.4.3). The relaxation times are given by

TO

where To is a characteristic relaxation time and Qou is a characteristic quality factor. An
alternative form of the complex modulus is given by equation (4.6). It can be shown from
equations (2.201), (4.92) and (4.106), that the quality factors for homogeneous waves
along the axes are

t1^^) • (6-21)

Then, 1/ro is the angular frequency for which the quality factor has the minimum value
Qoi/- The choice To = s/r€iTai = y/r^r^ implies that the maximum dissipation for both
mechanisms occurs at the same frequency. As u —> oo, Mv —> 1 and the complex stiffnesses
Pu approach the unrelaxed elasticity constants
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In the reflection-transmission problem, the upper medium is defined by the properties
j Qov and To, and the lower medium is defined by the corresponding primed properties
, Q'Ou and TQ. The numerical example assumes

c44 = 9.68 GPa, Q01 = 10,
c66 = 12.5 GPa, Q02 = 20, ( ,
c'u = 19.6 GPa, Q0 1 = 20, l ]

dm = 25.6 GPa, Q0 2 = 30.

Moreover,
1

C46 = - ^ V C 4 4 C 6 6 , C46 = ^

and
= 2 gr/cm3, // = 2.5 gr/cm3. (6.24)

The characteristic relaxation time is taken as To = TQ = ^TT/O)"1 , i.e., the maximum
attenuation occurs at a frequency /Q. The above parameters give horizontal and vertical
(elastic or unrelaxed) phase velocities of 2500 m/s and 2200 m/s, respectively, for the
upper medium, and 3200 m/s and 2800 m/s, respectively, for the lower medium.

Several subcases treated in the analysis make use of the following limiting situations:

elastic : QOu = Q'Ou = oo (reu = TUV, T[V = r ^ ) or Mv = M'y = 1,
isotropic : p u = p m = /i, pfu = p'm = yl', p 4 6 = p ' m = 0, (6.25)
transversely isotropic : p^ = p'AQ = 0.

Note, however, that the condition p46 = pf
m = 0 does not necessarily mean that the

media are transversely isotropic (see Section 1.2.1).
The analysis of the problem is carried out at the frequency /o and, therefore, its value

is immaterial, because UTO = 1 Moreover, at a fixed frequency, the analysis does not
depend on the viscoelastic model.

6.1.3 Reflection and transmission coefficients

Let us assume that the incident, reflected and transmitted waves are identified by the
superscripts / , R and T. The solution to the problem parallels those of the anisotropic
elastic case (Section 1.9.1) and isotropic viscoelastic case (Section 3.8).

The particle velocity of the incident wave can be written as

v
1 = iuexp[iu;(t — six — sT

3z)], (6.26)

where, for simplicity, the superscript / in the horizontal slowness has been omitted here
and in all the subsequent analysis.

Inhomogeneous viscoelastic plane waves have the property that equiphase planes -
planes normal to the slowness vector - do not coincide with equiamplitude planes - planes
normal to the attenuation vector. When the directions of propagation and attenuation
coincide, the wave is called homogeneous. For a homogeneous wave (see Section 4.2),

Sl = sin O^VciO1), s{ = cos 01/v^O1), (6.27)
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where 9 is the incidence propagation - or attenuation - angle (see Figure 6.1), and

vc{9) = yj(pu cos2 9 + PQQ sin2 9 + p4e sin 29)/p (6.28)

is the complex velocity, according to the dispersion relation (6.5) and equations (4.28)
and (4.33).

As in the isotropic viscoelastic case (Section 3.8), the boundary conditions - continuity
of v and 032 - give the reflection and transmission coefficients. Snell's law, i.e., the
continuity of the horizontal complex slowness,

sR = s{ = su (6.29)

(see Section 3.5) is a necessary condition for the existence of the boundary conditions.
Denoting the reflection and transmission coefficients by R$s and Tss, we express the

particle velocities of the reflected and transmitted waves as

vR = IUJRSS exp[ia;(£ — s±x — sRz)] (6.30)

and
vT = iu;Tss exp[iu;(£ — s\x — s^z)], (6.31)

respectively.
Then, continuity of v and a32 at z = 0 gives

Tss = 1 + #ss (6.32)

and
%i + RSS^T = Tss^r, (6.33)

which have the following solution:

Z1 — ZT Z1 — ZR

#SS = ZT _ ZR' T s S = ZT - ZR'

Since both the incident and reflected waves satisfy the slowness relation (6.5), the vertical
slowness sR can be obtained by subtracting F(si, sT

3) from F(s\, sR) and assuming sR ^ s^.
This yields

sf = - U + ^%) . (6.35)
V P )

Then, using equation (6.10), we obtain

ZR = -Z1, (6.36)

and the reflection and transmission coefficients (6.34) become

71 7T 9 71

s s ~ Z1 + ZT' S ~ZT' S ~ Z1 + ZT

where
Z1 = PA&8\ + P4453 and ZT = p'^si + pf

usj. (6.38)
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The slowness relation (6.5) of the transmission medium gives s^ in terms of s±:

with

1 (
P'u\

p'2 =

;5i+pv^

: P44P66 ~

Jp'Pu -

1 2
-P46 •

- P'2s\

Alternatively, from equation (6.10),

1

P44

(6.39)

(6.40)

(6.41)

Figure 6.1 represents the incident (/), reflected (R) and transmitted (T) waves at a
boundary between two linear viscoelastic and monoclinic media. The angles 01 5 and i\)
denote the propagation, attenuation and Umov-Poynting vector (energy) directions. Note
that the propagation and energy directions do not necessarily coincide. Moreover, \9 — S\
may exceed 90° in anisotropic viscoelastic media, while \9 — S\ is strictly less than 90° in
isotropic media (see equation (3.36)).

P44P66P46P

Figure 6.1: Incident (/), reflected (R) and transmitted (T) waves at a boundary between two linear
viscoelastic and monoclinic media. The angles 9, 5 and ip denote the propagation, attenuation and
Umov-Poynting vector (energy) directions. The reflection angle is negative as shown.
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(a)

Figure 6.2: Limiting rays for the fan of incidence angles, (a) 61 = 24.76° and (b) Q1 = 58.15° (23.75°
and 60.39°, respectively, in the elastic case). They are determined by the condition that the energy
propagation direction is downwards (+z) and to the right (+x), i.e., 0 < I/J1 < 90°. The larger curve
is the slowness for homogeneous waves in the incidence medium and the other curve is the slowness for
homogeneous waves in the transmission medium.

6.1.4 Propagation, attenuation and energy directions

The fan of incident rays is determined by the condition that the energy propagation di-
rection is downwards (+z) and to the right (+x). The limiting rays for the numerical
example are represented in Figures 6.2a (01 = 24.76°) and 6.2b (01 = 58.15°) (23.75° and
60.39°, respectively, in the elastic case). The larger curve is the slowness for homogeneous
waves in the incidence medium, and the other curve is the slowness for homogeneous
waves in the transmission medium. As we have seen in Section 4.4.4, the energy direc-
tion is not perpendicular to the corresponding slowness curve for all frequencies. The
perpendicularity property is only verified in the low- and high-frequency limits.

Given the components of the complex-slowness vector, the propagation and attenua-
tion angles 0 and 5 for all the waves are

Re(si)

Re(s3)
(6.42)

and

tan S = (6.43)
Im(s3)

These equations can be easily verified for the incident wave (6.26), for which S1 = 01, by
virtue of equation (6.27).

Moreover, from equations (6.30) and (6.35), the reflection propagation and attenuation
angles are

tan6^ = - -—— ——-,—r (6.44)- l
» i )
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and

(6.45)

respectively. Unlike the isotropic case, the reflected wave is, in general, inhomogeneous.
Theorem 1: If the incident wave is homogeneous and not normally incident, the

reflected wave is homogeneous if and only if Im(p46/p44) = 0.
Proof: Assume that the reflected wave is homogeneous. Then, from equations (6.44)

and (6.45), tan 6^ = tan 5R implies that Im[s*(s3 + 2p46p44
1si)] = 0. Assuming 61 ^ 0 and

using equation (6.27), we obtain Im(p46/p44) = 0. The same reasoning shows that this
condition implies a homogeneous reflected wave. £

A corollary of Theorem 1 is
Corollary 1.1: If the upper medium has p^ = 0, the reflected wave is homogeneous.

This follows immediately from Theorem 1.
In the elastic case, all the quantities in equation (6.44) are real, and the incidence and

reflection angles are related by

cot 6R = - (cot 61 + 2 ^ . (6.46)
V C44 /

From equation (6.31), the transmission propagation and attenuation angles are

and
T ^ % | (6.48)

respectively. In general, the transmitted wave is inhomogeneous.
Theorem 2: If the transmission medium is elastic and the incidence is non-normal,

the attenuation and Umov-Poynting vectors of the transmitted wave are perpendicular,
i.e., \ipT -5T\ =90°.

Proof: In the first place, otT must be different from zero at non-normal incidence,
because the incident wave is homogeneous, and, therefore, Snell's law requires a non-
zero component of the attenuation vector. The time-averaged dissipated-energy density
for cross-plane inhomogeneous waves in the plane of symmetry of a monoclinic medium
is given by equation (6.15) (see also Krebes and Le, 1994; and Carcione and Cavallini,
1995a). For the transmitted wave, it is

(DT) = -a;2|Tss|
2exp{2a;[Im(s1)x + Im(s3r)z]}Im(^T), (6.49)

Zj

where

Since the medium is elastic (p'u —> c'u), gT is real and (DT) = 0. On the other hand,
equations (4.83) and (4.85) imply that an inhomogeneous wave satisfies

(DT) = -<xT • ( p T ) . (6.51)
CO
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Since the energy loss is zero, it is clear from equation (6.51) that OLT is perpendicular to
the average Umov-Poynting vector (pT). •

The existence of an inhomogeneous plane wave propagating away from the interface
in elastic media, is not intuitively obvious, since it is not the usual interface wave with its
attenuation vector perpendicular to the boundary. Such body waves appear, for instance,
in the expansion of a spherical wave (Brekhovskikh, 1960, p. 240).

Corollary 2.1: Theorem 2 implies that, in general, the attenuation direction of the
transmitted wave is not perpendicular to the propagation direction. That is, OLT • s^ ^ 0,
or

Re(si)Im(si) + R e ( 4 ) I m ( 4 ) ^ 0, (6-52)

which implies \m(s\ + s^ ) = 0. The orthogonality property only applies in the isotropic
case (Romeo, 1994). Assume, for simplicity, transverse isotropy. Using (6.52) and the
slowness relation (6.5), we obtain

Im( S ?) (4 -4 ) = 0! (6.53)

which gives Cg6 = c44, that is, the isotropic case.
Proposition 1: If the incidence medium is elastic, the attenuation of the transmitted

wave is perpendicular to the interface.
This result follows immediately from equation (6.48), since Si real (see equation (6.27))

implies 5T = 0. £
The expressions for the time-averaged Umov-Poynting vectors of the reflected and

transmitted waves, are obtained from equation (6.9), with ii0 = Rss and Uo = Tgg, re-
spectively. Then, the angles of the reflection and transmission energy vectors are obtained
from

| g (6.54)

Hg (6-55)
and

fe4 (6'56)
respectively. From equations (6.10) and (6.35) ZR = — Z1 and XR = X1 —
therefore,

R 2Re(p4Qp^lZ) j
tan ip = tan ip . (6.57)

Le(^ JJ
In the elastic case p^ and p^ are real and

tan ipR = 2— - tan ^ . (6.58)
c44

In the evaluation of each angle, particular attention should be given to the choice of the
branch of the arctangent.

Figure 6.3 represents the propagation, attenuation and energy angles for the fan of
incident rays. Note that the energy angle of the incident wave satisfies 0° < ip1 < 90°
and that the inhomogeneity angles of the reflected and transmitted waves - \9R — SR\ and
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Figure 6.3: Propagation, attenuation and energy angles for the incident, reflected and transmitted
waves versus the incidence angle 01.

6T — 5T\, respectively - never exceed 90°. However, consider a transmission medium with
stronger dissipation, for instance, Q'O1 = 2 and Qf

02 = 3. In this case, \9T — 5T\ > 90° for
61 > 50.46°, meaning that the amplitude of the transmitted wave grows in the direction of
phase propagation. A physical interpretation of this phenomenon is given by Krebes and
Le (1994) who show that the amplitude of an inhomogeneous wave decays in the direction
of energy propagation, i.e., in our case, |^T — 5T\ is always less than 90°. Indeed, since
the energy loss is always positive, equation (6.51) implies that the magnitude of the angle
between a T and (pT) is always strictly less than 90°.

Proposition 2: There is an incidence angle 6Q such that the incidence and reflection
propagation directions coincide, i.e., 6Q — 6R = 180°.

The angle can be found by equating (6.42) (for the incident wave) with (6.44) and
using equation (6.10). This yields

= 0, (6.59)

whose solution is #Q = 58.15°, which corresponds to Figure 6.2b. In the elastic case, we
obtain

0Q = — arctan(c44/c46), (6.60)

whose solution is 0Q = 60.39°. The angle is 90° in the isotropic case. £
Proposition 3: There is an incidence angle 6[ such that the reflection and transmis-

sion propagation directions coincide, i.e., 6T — 6R = 180°.
The angle is obtained from equations (6.44) and (6.47) and the solution is 6[ = 33.40°,

with 9R = — 74.46°. There is an explicit expression in the elastic case that can be obtained
from equations (6.27), (6.28), (6.39), (6.44) and (6.47). It is

[ = ( - 6 - V 6 2 - 4 a c ) / ( 2 a ) , (6.61)
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where
« = ft Cm ~ PC66 +
b = 2(//c46 +
c = //c4 4 - pc'M.

- 2/?c46c44/c44), (6.62)

The solutions are 9[ = 34.96° and 6R = — 73.63°. In the isotropic case, a = c, 6 = 0 and
there is no solution.

Figure 6.4: At the incidence angle 6[ = 33.40°, the reflection and transmission propagation directions
coincide. However, note that the Umov-Poynting vector of the transmitted wave (empty arrow) points
downward.

This situation is shown in Figure 6.4, where the Umov-Poynting and attenuation
vectors of the reflected wave point upward and downward, respectively, while the Umov-
Poynting and attenuation vectors of the transmitted wave point downward and upward,
respectively. Thus, there is no contradiction since the energy of the transmitted wave is
actually pointing to the lower medium.

Proposi t ion 4: There is an incidence angle Q\ such that the propagation direction of
the incident wave coincides with the corresponding Umov-Poynting vector direction, i.e.,
01 = if)1 = QT

2. This angle is associated with the symmetry axis of the incidence medium,
which is a pure mode direction where the waves behave as in isotropic media.

From equations (6.42) and (6.54), we note that this proposition is verified when

= MX1) . ,
Re(Z')' ^ '

Using equations (6.10) and (6.27), and after some algebra, we obtain an approximation
for QOv

{Re(p66 - p44) - 4[Re(p46)]
2} /[2Re(p«)]. (6.64)
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The solution is Q\ = 36.99° (the exact solution is 37.04°). In the isotropic case, ip1 = 61

for all incident rays. X
Proposition 5: There is an incidence angle 6{ such that the propagation direction

of the reflected wave coincides with the corresponding Umov-Poynting vector direction,
i.e., 0R = ipR. From equations (6.44) and (6.55), we note that this proposition is verified
when

Re( g ) Re(X*)
[ }Re(sR) Re{ZR)'

The solutions are 0{ = 26.74° and 0R = - 53.30°.
In the elastic case,

tan0| = (-b- Vb2-4ac)/(2a), (6.66)

where
(2d i >\ h C 4 4 (a ai\

a = c46 -o 1 I , o= — a - c66, c = - c 4 6 , (6.67)
\C44 / C46

with
d = C44C66 - 2 ^ . (6.68)

The corresponding reflection angle is obtained from equations (6.44) and (6.55), and given
by

tan 0R =R
3 ~ C44 + y (C66 - C44)2 + /(2c46). (6.69)

The solutions are 0{ = 27.61° and 6>f = - 52.19°. In the isotropic case, i;R = 6R for all
incident rays. $

Proposition 6: An incident wave whose energy-flux vector is parallel to the interface
(Re(ZI) = 0, see (6.9)) generates a reflected wave whose energy-flux vector is parallel to
the interface (Re(ZR) = 0). Moreover, in the lossless case and beyond the critical angle,
the energy-flux vector of the transmitted wave is parallel to the interface, i.e., Re(ZT) =
0 .

This first statement can be deduced from equation (6.36). Moreover, from equations
(6.39) and (6.41) ,

ZT = pvyV^i " cf2sl (6.70)

Beyond the critical angle, the horizontal slowness Si is greater than \Jp'd^Jd, where
cf = C'UCQQ — c^. Therefore, the quantity inside the square root becomes negative and
Re{ZT) = 0. *

6.1.5 Brewster and critical angles

In 1815, David Brewster, basing his observations on an experiment by Malus, noted the
existence of an angle (0B) such that: if light is incident under this angle, the electric vector
of the reflected light has no component in the plane of incidence (Born and Wolf, 1964,
p. 43). When this happens, 9B + 0T = 90° and the reflection coefficient of the wave with
the electric vector in the plane of incidence vanishes. Here, we define the Brewster angle
as the incidence angle for which R$s = 0 (in elastodynamics, 6B + 9T ^ 90° in general).

From equation (6.34), this occurs when Z1 = ZT
1 or from (6.10), when

(6.71)
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Using (6.27), (6.28) and (6.39), we see that equation (6.71) yields the following solution

cotOB = (-b ± /(2a),

where

and

(6.72)

(6.73)

(6.74)

In general, cot OB is complex and there is no Brewster angle. In the elastic limit of the
example, the Brewster angle is OB = 32.34° (see Figure 6.5).

a:

I I I I I I I I I I

30 35 40

Angle (degrees)

Figure 6.5: Absolute values of the reflection and transmission coefficients versus the incidence angle for
the elastic (dotted line) and viscoelastic (solid line) cases (0P= 31.38°, 9B = 32.34° and 6C= 36.44°).

In the isotropic viscoelastic case, the solution is

cot OB = ±pv
' - p''

(6.75)

which is generally complex. The Brewster angle exists only in rare instances. For example,
cot OB is real for Im(/i///)=0. In isotropic media, the complex velocity (6.28) is simply
vc = y/w/p- Thus, the quality factor (4.92) for homogeneous waves in isotropic media is
Q — QH = Re(/i)/Im(/i). The condition Im(/i///) = 0 implies that the Brewster angle
exists when QH = Q'H, where Q'H = Re(//)/Im(//).

In the lossless case and when p = //, the reflected and transmitted rays are perpen-
dicular to each other at the Brewster angle, i.e., 0B + 0T = 90°. This property can be
proved by using Snell's law and equation (6.75) (this exercise is left to the reader). On
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the basis of the acoustic-electromagnetic mathematical analogy (Carcione and Cavallini,
1995b), the magnetic permeability is equivalent to the material density and the dielectric
permittivity is equivalent to the reciprocal of the shear modulus (see Chapter 8). There is
then a complete analogy between the reflection-transmission problem for isotropic, loss-
less acoustic media of equal density and the same problem in electromagnetism, where
the media have zero conductivity and their magnetic permeability are similar (perfectly
transparent media, see Born and Wolf (1964, p. 38)).

In anisotropic media, two singular angles can be defined depending on the orientation
of both the propagation and the Umov-Poynting vectors with respect to the interface.
The pseudocritical angle Op is defined as the angle of incidence for which the transmitted
slowness vector is parallel to the interface. In Auld (1990b, p. 9), the critical angle phe-
nomenon is related to the condition s£ = 0, but, as we shall see below, this is only valid
when the lower medium has p46 = 0 (e.g., transversely isotropic). The correct interpreta-
tion was given by Henneke II (1971), who defined the critical angle 0c as the angle (s) of
incidence beyond which the Umov-Poynting vector of the transmitted wave is parallel to
the interface (see also Rokhlin, Bolland and Adler (1986)). From equations (2.113), (6.9)
and (6.10), this is equivalent to Re(ZT) = 0. We keep the same interpretation for vis-
coelastic media. Actually, the pseudocritical angle does not play any important physical
role in the anisotropic case.

The condition Re(ZT)=0 in equation (6.56) yields the critical angle #c, because ipr =
TT/2. Using equation (6.10), this gives

= 0, (6.76)

or, from (6.39) and (6.41),

= 0 . (6.77)

Since for a complex number g, it is [R^^/g)]2 = [|#|+Re(g)]/2, equation (6.77) is equivalent
to

lm{prpf
u-p

f2s2
1) = 0. (6.78)

For the particular case when //p44 — pt2s\ = 0 and using (6.28), the following explicit
solution is obtained:

( J ^ / ) • (6.79)

There is a solution if the right-hand side of equation (6.79) is real. This occurs only in
very particular situations.

In the isotropic case (see (6.25)), a critical angle exists if

cot 0c = \\-,— - l (6.80)
V p p

is a real quantity. This is verified for pr/p real or QH = Q'H and ppr > p'p. Then, p'/p
= Re(p')/Re(p) and

(6.81)
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(Borcherdt, 1977). The last equality holds since p46 = 0 implies Re(s^) = 0 from equation
(6.76).

Figure 6.5 shows the absolute values of the reflection and transmission coefficients
versus the incidence angle for the elastic (dotted line) and viscoelastic (solid line) cases,
respectively, with 0P= 31.38°, OB = 32.34° and 0c= 36.44°. The directions of the slowness
and Umov-Poynting vectors, corresponding to the critical angle 9c, can be appreciated in
Figure 6.6, which illustrates the elastic case.

T

Figure 6.6: Directions of the slowness and Umov-Poynting vectors, corresponding to the critical angle
Qc = 36.44° for the elastic case. At the critical angle and beyond, the Umov-Poynting vector of the
transmitted wave is parallel to the interface. Moreover, the transmitted wave becomes evanescent.

According to Proposition 6, at the critical angle and beyond, the Umov-Poynting
vector of the transmitted wave is parallel to the interface and the wave becomes evanescent.
A geometrical interpretation is that, in the elastic case, critical angles are associated with
tangent planes to the slowness surface that are normal to the interface (see Figure 6.6).
Snell's law requires that the end points of all the slowness vectors lie in a common normal
line to the interface. We get the critical angle when this line is tangent to the slowness
curve of the transmission medium. Beyond the critical angle, there is no intersection
between that line and the slowness curve, and the wave becomes evanescent (Henneke II,
1971; Rokhlin, Bolland and Adler, 1986; Helbig 1994, p. 241).

In the lossless case, the Umov-Poynting vector is parallel to the boundary beyond the
critical angle. Moreover, since ZT is purely imaginary, equations (6.39) and (6.70) imply
that Re(s^) = — c46si/c44. Finally, using equation (6.47), we obtain the propagation angle
of the transmitted wave, namely,

0 = -arctan(c4 4/c4 6). (6.82)
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This angle takes the value 9T = 119.75° (ipT = 90°) and remains constant for 61 > 9c-
This phenomenon does not occur in the anelastic case.

As can be seen in Figure 6.5, there is no critical angle in the viscoelastic case and the
reflection coefficient is always greater than zero (no Brewster angle). As in the isotropic
case (Borcherdt, 1977), critical angles exist under very particular conditions.

Theorem 3: If one of the media is elastic and the other is anelastic, then there are
no critical angles.

Proof: Suppose there exists a critical angle; that is, the Umov-Poynting vector of the
transmitted wave is parallel to the interface. Assume first that the incidence medium is
elastic. Proposition 1 implies that the attenuation of the transmitted wave is normal to the
interface. However, since the transmission medium is anelastic, such an inhomogeneous
wave - associated with elastic media - cannot propagate, otherwise (DT) = 0 (see equation
(6.51)).

Conversely, assume a homogeneous plane wave, non-normal incidence and that the
transmission medium is elastic. Since the incidence medium is anelastic, Snell's law
requires a transmitted inhomogeneous wave of the viscoelastic type (a • (p) ̂  0) in the
transmission medium. However, this wave cannot propagate in an elastic medium (see
equation (6.51)). £

A special case: Let us consider that both media are transversely isotropic and that M2

= M[ = M'2 = Mi. This case is similar to the one studied by Krebes (1983b) in isotropic
media. Equation (6.78) gives the solution

(6.83)

and §i = y/' p*'/P'QQ, which implies s£ = 0. The critical angle for this case is 9C = 47.76°.
It can be shown from equations (6.27), (6.32), (6.34), (6.35) and (6.39) that the reflection
and transmission coefficients are identical to those for perfect elasticity. However, beyond
the critical angle, there is a normal interference flux (see Section 6.1.7) towards the bound-
ary, complemented by a small energy flow away from the boundary in the transmission
medium. This means that 9c is a "discrete critical angle", i.e., the Umov-Poynting vector
of the transmitted wave is parallel to the boundary only for the incidence angle 9c- (In
the elastic case this happens for 91 > 9C-) Since s^ = 0 at the critical angle, this occurs
when the normal to the interface with abscissa Re(si) is tangent to the slowness curve
of the transmitted wave and, simultaneously, the normal to the interface with abscissa
Im(si) is tangent to the attenuation curve of the same wave.

6.1.6 Phase velocities and attenuations

The magnitude of the phase velocities can be obtained as the reciprocal of the slownesses.
From equations (6.2) and (6.27), the phase velocity of the incident wave is simply

v
J
p = {[Re(Sl)]

2 + [Re(4)]2}"1/2 = [Re^"1)]"1. (6.84)

The phase velocity of the reflected wave is obtained from equation (6.30) and written as

v? = {[Re(5l)]
2 + [Re(sf )]2}"1/2, (6.85)
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or, using equations (6.10), (6.27) and (6.35), as

When the Umov-Poynting vector of the incident wave is parallel to the interface (Z1 =
0), or when the upper medium is transversely isotropic (p^Q = 0), vR equals v^. In the
elastic case, equation (6.86) reduces to

cos6>7]}~1/2. (6.87)

Similarly, the phase velocity of the transmitted wave is obtained from equation (6.31)
and written as

< = {[Re(Sl)]
2 + [Re(4)]2}-1/2- (6.88)

The phase velocities of the incident, reflected and transmitted waves, versus the inci-
dence angle, are represented in Figure 6.7, where the dotted line corresponds to the elastic
case. The velocity in the elastic case is always higher than the velocity in the viscoelastic
case, since the former case is taken at the high-frequency limit.
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Figure 6.7: Phase velocities of the incident, reflected and transmitted waves versus the incidence angle.
The elastic case is represented by a dotted line.

By virtue of equations (6.3), (6.27) and (6.30), the magnitudes of the attenuation
vectors of the incident and reflected waves are given by

a1 =

and

aR =

(6.89)

(6.90)

or, using equations (6.10), (6.27) and (6.35),

aR = )2 + 4u;2sin((9)Im (6.91)
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In the transversely isotropic case {p^ = 0), aR = a1. The magnitude of the attenuation
vector of the transmitted wave is obtained from equation (6.31), and written as

aT = (6.92)
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Figure 6.8: Attenuations of the incident, reflected and transmitted waves versus the incidence angle.

The attenuations are represented in Figure 6.8. The high attenuation value of the
transmitted wave can be explained as follows. Figure 6.3 indicates that, at approximately
the elastic-case critical angle and beyond, the energy angle of the transmitted wave ipT

is close to vr/2 and that the attenuation vector is almost perpendicular to the interface.
In practice, this implies that the transmitted wave resembles an evanescent wave of the
elastic type. This effect tends to disappear when the intrinsic quality factors of the lower
and/or upper media are lower than the values given in Section 6.1.2.

6.1.7 Energy-flux balance

In order to balance energy flux at an interface between two isotropic single-phase media,
it is necessary to consider the interaction energy fluxes when the media are viscoelastic
(Borcherdt, 1977; Krebes, 1983b). In the incidence medium, for instance, the interaction
energy fluxes arise from the interaction of the stress and velocity fields of the incident and
reflected waves. A similar phenomenon takes place at an interface separating two porous
media when the fluid viscosity is different from zero. Dutta and Ode (1983) call these
fluxes interference fluxes and show that they vanish for zero viscosity.

In a welded interface, the normal component of the average Umov-Poynting £3 • (p)
is continuous across the interface. This is a consequence of the boundary conditions that
impose continuity of normal stress (732, and particle velocity. Then, according to equation
(4.111), the balance of power flow at the interface can be expressed as

(6.93)
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Using equations (6.9) and (6.36), equation (6.93) is of the form

(Pi) + (P?) + (piH) = (Pi),

where
1

(Pi) = -

(6.94)

(6.95)

is the flux of the incident wave,

(6.96)

is the reflected flux,

exp[2a;Im(si)a;] (6.97)

is the interference between the normal fluxes of the incident and reflected waves, and

(Pi) = - I (6.98)

is the flux of the transmitted wave. In the elastic case, Z1 is real and the interference flux
vanishes.
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Figure 6.9: Normalized fluxes (energy coefficients) versus the incidence angle. The fluxes are normalized
with respect to the flux of the incident wave. The elastic case is represented by a dotted line.

The normalized normal fluxes (energy coeflicients) versus the incidence angle are
shown in Figures 6.9, with the dotted line representing the elastic case. Beyond the
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critical angle, the normal component of the Umov-Poynting vector of the transmitted
wave vanishes and there is no transmission to the lower medium. The energy travels
along the interface and, as stated before, the plane wave is evanescent. In the viscoelastic
case, these effects disappear and the fluxes of the reflected and transmitted waves have
to balance with a non-zero interference flux. Since the flux of the transmitted wave is
always greater than zero, there is transmission for all the incidence angles.

6.1.8 Energy velocities and quality factors

The energy velocity ve is the ratio of the average power-flow density (p) = Re(p) to the
mean energy density (T + V) (see equation (4.76)). For the incident homogeneous wave,
substitution of (6.27) into (6.16) and use of (6.28) gives g1 = pv2/\vc\

2. Then, equations
(6.14) and (6.17) imply

2 Re(v2
c) + 1 exp{2o;[Im(s1)x + Im^)* ]} - (6.99)

4

Using the relation [Re(^c)]
2 = [\vc\

2 + Re(^) ] /2 , equation (6.99) becomes

I r~rt I T / A 2 / V\—1 T o I~T ( \ I T ( •*• \ A\ H? ( \ (d 1 OO^
\ -L | V j — pUJ I L/~J ) e.X. U i ZJUJ J-lll I 6]^ IX I J-lil I o o I Z\ i JTve I c/g J, IVJ-J-V/VJ)

where vT
p is the phase velocity (6.84). Finally, combining (6.9) and (6.100), we obtain

v1

^ R ( X ^ ^ J ) (6-101)

The energy velocity of the reflected wave is obtained from equations (6.9), (6.14), (6.16)
and (6.17), and written as

2Re(X"62Re(X61 + ZH>)
p + Re{gR) ' [ '

where gR = g{sR). If the upper medium has p46 = 0 (e.g., transverse isotropy), XR = X1

and 0^ = pv2/\vc\
2. After some algebra, it can be shown, using (6.35) and (6.36), that

Similarly, the energy velocity of the transmitted wave is

2Re(XTe! + ZTe3)T

where gT = g(sj).
An alternative expression for the energy velocity is obtained from the fact that, as in

the elastic case, the phase velocity is the projection of the energy-velocity vector onto the
propagation direction. This relation is demonstrated in Section 4.3.1 (equation (4.78))
for inhomogeneous waves propagating in a general anisotropic viscoelastic medium. For
cross-plane shear waves, we have

ve = vp/ costy - 6). (6.104)
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In terms of the tangents defined in Section 6.1.4,

(1 + tan ip tan 9)
Vn. (6.105)

The energy velocities of the incident, reflected and transmitted waves, versus the
incidence angle, are represented in Figures 6.10, with the dotted line corresponding to the
elastic case.
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Figure 6.10: Energy velocities of the incident, reflected and transmitted waves, versus the incidence
angle. The elastic case is represented by a dotted line.

Comparison of Figures 6.7 and 6.10 indicates that the energy velocity in anisotropic
viscoelastic media is greater or equal than the phase velocity - as predicted by equation
(6.104).

The quality factor is the ratio of twice the average strain-energy density (6.14) to the
dissipated-energy density (6.15). For the incident homogeneous wave it is simply

QH =

while for the reflected and transmitted waves,

QR =

Rejg1) _ Re{v2
c)

(6.106)

lm(gR)
(6.107)

and

QT =
Re(gT)

lm(e
T)'

respectively. When p46 = 0 and using (6.35), gR = pv^/\vc\
2, and QR equals Q1.

(6.108)
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Let us consider the incident homogeneous wave. From equation (6.28), pv2
c = ^44 along

the z-axis. Substitution of (6.18) into (6.106) and the use of (6.19) gives equation (6.21).
Then, the quality factor along the vertical direction is QOi at the reference frequency /0 .
Similarly, it can be shown that Q02 is the quality factor along the horizontal direction.

In Chapter 8, we demonstrate that the equations describing propagation of the TM
(transverse magnetic) mode in a conducting anisotropic medium are completely analogous
- from the mathematical point of view - to the propagation of viscoelastic cross-plane
shear waves in the plane of symmetry of a monoclinic medium. This equivalence identifies
the magnetic field with the particle velocity, the electric field with the stress components,
and the compliance components pjj with the complex dielectric-permittivity components.
Therefore, the present reflection-transmission analysis can be applied to the electromag-
netic case with minor modifications.

6.2 Reflection and transmission of qP-qSV waves

A review of the literature pertaining to the reflection-transmission problem in anisotropic
elastic media and isotropic viscoelastic media is given in Sections 1.9 and 3.8, respectively.
The time-domain equations for propagation in a heterogeneous viscoelastic transversely
isotropic medium are given in Chapter 4, Section 4.5.

6.2.1 Propagation characteristics

A general plane-wave solution for the particle-velocity field v = (^1,^3) is

v = icjUexp [icu(t — s\x — s^z)], (6.109)

where Si and 53 are the components of the complex-slowness vector, and U is a complex
vector. The real-valued slowness and attenuation vectors are given by

(6.110)

and
a = —cj(Im(s1),Im(s3)), (6.111)

respectively. The complex-slowness vector is then

2 \ l
u

(6.112)

The dispersion relation can be obtained from equation (1.78)2, by using (1.74), s\ =
sh, 53 = 5/3, and the correspondence principle ((Section 3.6) (cu —>• pu)). Hence, we
have

F(su s3) = (Pnsj +P55S3 - p)(P33sj +P55S? - p) ~ (Pis +Ptt)2s\sl = 0, (6.113)

which has two solutions corresponding to the quasi-compressional (qP) and quasi-shear
(qS) waves. The form (6.113) holds for inhomogeneous plane waves in viscoelastic media.
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Let us assume that the positive z-axis points downwards. In order to distinguish
between down and up propagating waves, the slowness relation equation (6.113) is solved
for s3, given the horizontal slowness Si. This yields

S3 = ± - s \ / # i T pvA/^2 - 4#2#3, (6.114)

where
P13

LP33
1 / . . _2 x TS .2 P

pn i,

P33 P55

The signs in 53 correspond to

(+, —) downward propagating qP wave
(+, +) downward propagating qS wave
(—, —) upward propagating qP wave
(—, +) upward propagating qS wave.

The plane-wave eigenvectors (polarizations) belonging to a particular eigenvalue can be
obtained from the qP-qS Kelvin-Christoffel equation by using equation (1.81) and the
correspondence principle. We obtain

\ (6.115)

where U$ is the plane-wave amplitude and

q + sj) - 2P

and

(6.116)

-L. / Pusj+P^sj- p
= zbpvw 5 5 —T, ^ —. (6.117)

In general, the + and — signs correspond to the qP and qS waves, respectively. However
one must choose the signs such that £ varies smoothly with the propagation angle. In
the elastic case, the qP eigenvectors are orthogonal to the qS eigenvectors only when the
respective slownesses are parallel. In the viscoelastic case, this property is not satisfied.
From equations (6.109), (6.116) and (6.117), and using (6.110) and (6.111), the particle-
velocity field can be written as

v = iuUo I . I exp{a;[Im(s1)x + Im(s3)^]}exp {iu[t — Re(si)x — Re(s3)z]}. (6.118)

The mean flux or time-averaged Umov-Poynting vector (p) is the real part of the
corresponding complex vector (see equation (4.55)),

P = ~2 K^n^i + ^13^3)^1 + (^13^ + a33^)e3]. (6.119)
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Substituting the plane wave (6.118) and the stress-strain relation (4.160) into equation
(6.119), we obtain

p = — Co?21tTo|2 ( o*w p*7 ) exp{2u;[Im(si);E + Im(s3)z]}, (6.120)

where
W = PBB(^SI + /3ss), (6.121)

X = /3pnSi + CPi353? (6.122)

Z = PpisSi + ^3353 (6.123)

and the strain-displacement relations (1.2) have been used.

6.2.2 Properties of the homogeneous wave

For homogeneous waves, the directions of propagation and attenuation coincide and

Sl = sin9/vc{9), s3 = cos9/vc(9), (6.124)

where 9 is the propagation angle, measured with respect to the z-axis, and vc = 1/s is
the complex velocity that can be obtained from the slowness relation (6.113). Hence, we
have

We = ^(P55 + Pn sin2 9 + p33 cos2 9 ± C), (6.125)

with

C = V [(P33 " P55) cos2 0 - (p n - p55) sin2 9f + (p13 + p55)2 sin2 20. (6.126)

The + sign corresponds to the qP wave, and the — sign to the qS wave.
Combining (6.110), (6.111) and (6.124) yields

s^ = Re ( — j (sin0, cos0), (6.127)
\vcj

and

a = -a;Im ( — j (sin 0, cos 0). (6.128)
\vcj

The quality factor is

Q = ̂ T 4 V (6-129)

(see equation (4.92)). For instance, for model 3 (for the 2-D case, see Sections 4.1.3 and
4.5.4, equation (4.161)) we point out the following properties. At the symmetry axis
(0 = 0), for qP waves, v2 = pp33, and at the isotropy plane (0 = TT/2), V2 = ppn. Then,
the relation between Q factors is

Q(symmetry axis) c33 - a - - (**yo<\\
—— - = , a = c — JCRe(Mi) — c55Re{M2). (6.130)
Q (isotropy plane) en — a x
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We can verify that a > 0, a < c\\ and a < C33, for most realistic materials - in the
elastic case, a = 0 (Mi = M2 = 0, see equation (4.156)). This implies that, whatever the
ratio C33/C11, the ratio between Q factors is farther from unity than the elastic-velocity
ratio y/css/cu. It follows that attenuation is a better indicator of anisotropy than elastic
velocity. Similarly, it can be shown that the ratio between the viscoelastic phase velocities
Re(l/s/pu)/Re(1/y/p^) is closer to one than the Q ratio.

Another important property is that, when en > C33 (e.g., finely layered media, see
Section 1.5), the qP wave attenuates more along the symmetry axis than in the plane of
isotropy. Note that we do not use an additional relaxation function to model Q anisotropy
of the qP wave. It is the structure of the medium - described by the stiffnesses - that
dictates the Q ratio between different propagation directions.

On the other hand, the quality factor of the shear wave at the symmetry axis is equal
to the quality factor in the plane of isotropy, since v\ = pp^ in both cases. This is so,
since any kind of symmetry possessed by the attenuation should follow the symmetry of
the crystallographic form of the material (Neumann's principle, see Nye, 1987, p. 20).
A qS wave anisotropy factor can be defined as the ratio of the vertical phase velocity to
the phase velocity at an angle of 45° to the axis of symmetry. Again, it can be shown
that, for most realistic materials, this factor is closer to one than the ratio between the
respective quality factors.

6.2.3 Reflection and transmission coefficients

The upper layer is denoted by the subscript 1 and the lower layer by the subscript 2. For
clarity, the material properties of the lower medium are primed and the symbols P and S
indicate the qP and qS waves, respectively. Moreover, the subscripts / , R and T denote
the incident, reflected and transmitted waves. Using symmetry properties to define the
polarization of the reflected waves, the particle velocities for a qP wave incident from
above the interface are given by

= vP / + VPR + VSR, (6.131)

v2 = v ? T + V 5 T , (6.132)

where
vP / =\w(pPl,€p1)exp[hj(t- six- s3Plz)], (6.133)

VPR = hjRPp(pPl, -£Pl) exp [\u{t - six + s3Plz)], (6.134)

VSR = ivRpsiPsn -£si) exp [iu(t - sxx + s35lz)], (6.135)

VPT = iu;Tpp(/3p2, £p2) exp [iw(t - sxx - s3P.2z)], (6.136)

and
VST = ivTps{Ps2,€s2) e xP [^{t - six - s3S.2z)]. (6.137)

The boundary conditions (continuity of the particle velocity and normal stress compo-
nents) give Snell's law, i.e., the continuity of the horizontal complex slowness si. The
vertical slownesses s3p and s3s, as well as fiPj ps, £,p and £5, follow respectively the
(+, —) and (+, +) sign sets given in equation (6.114). The choice UQ = 1 implies no loss
of generality.
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The boundary conditions require continuity of

vi, ^3 , ^33, and <7i3. (6.138)

The stresses are obtained by the substitution of equations (6.131) and (6.132) into the
stress-strain relation (4.160). The boundary conditions generate the following matrix
equation for the reflection and transmission coefficients:

/

v wPl wSl wP2

\ \

\ \ y

(6.139)

where VF and Z are given by equations (6.121) and (6.123), respectively.
The steps to compute the reflection and transmission coefficients are the following:

1. The horizontal slowness si is the independent parameter. It is the same for all
the waves (Snell's law for viscoelastic media). For an incident homogeneous wave,
the independent variable becomes the incidence angle 0, and s± is obtained from
equation (6.124).

2. Compute S3P15 s^Sn S3B2
 a n d Sss2 from equation (6.114), where the first sign is

positive. For an incident homogeneous wave, Ssp1 can be calculated either from
equation (6.114) or from equation (6.124).

3. Compute f3p1, /?s1? /3p2, /3s2, £p17 ^ 1 7 £,p2 and £ 2̂ from equations (6.116) and (6.117).

4. Compute VFp15 Ws13 Wp2 and Ws2 from equation (6.121), and Zp1, Zs^ Zp2 and
Zs2 from equation (6.123).

5. Compute the reflection and transmission coefficients by numerically solving equation
(6.139).

The reflection and transmission coefficients Rsp, Rss, T$p and Tss for an incident qS
wave have the same 4 x 4 scattering matrix as the qP incident wave, but the vector in
the right-hand side of (6.139) is

(6.140)

6.2.4 Propagation, attenuation and energy directions

Figure 6.1 illustrates the convention used to define the propagation, attenuation and
energy angles. The propagation direction is perpendicular to the plane-wave front. Given
the components of the complex-slowness vector, the propagation and attenuation angles
for all the waves can be obtained and expressed as

tan# =
Re(si)

Re(s3)'
and tan 5 =

Im(s3)'
(6.141)

By hypothesis (see equation (6.124)), SPl = 0Pn and by symmetry, 0PR = — 0Pl and
SpR = 6pR. Hence, the reflected qP wave is homogeneous.
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The complex vertical slowness component of the reflected qS wave is —s^Sn following
the (—,+) sign in equation (6.114). Then, the propagation and attenuation angles 9sR

and SsR are obtained from (6.141) with the substitution s3 = —sssx- In general 0sR ̂  8sR

and the wave is inhomogeneous. Analogously, the angles of the transmitted qP wave (9pT

and SpT) and the transmitted qS wave (9sT and 6sT) are given by (6.141) when 53 = s^p2

and 53 = $3s2, respectively. The transmitted waves are, in general, inhomogeneous.
The expressions of the time-averaged Umov-Poynting vectors of the reflected and

transmitted waves are given by equation (6.120). Then, the angles of the energy vectors
of the incident, reflected and transmitted waves are obtained from

By symmetry, we have ippR = —

6.2.5 Phase velocities and attenuations

The magnitude of the phase velocities can be obtained as the reciprocal of the slownesses.
From equation (6.110), the phase velocity of the incident and reflected waves is simply

vp = {[Re(Sl)]2 + [Re(s3)]2}-1/2. (6.143)

Since the incident wave is homogeneous, the use of equation (6.124) yields

vpp = [ R e ^ 1 ) ] " , (6.144)

where vc\ is the complex velocity for homogeneous waves in the incidence medium (equa-
tion (6.125)). By symmetry (see also Section 3.5), the phase velocity of the reflected qP
wave vpp equals vpp .

The velocities vPs , vPp and vPs are obtained from (6.143) by replacing s3 by —
, Pp

and S3s2, respectively.The magnitude of the attenuation vectors is given by

a = u{[Im{Sl)]
2 + [Im(53)]2}-1/2. (6.145)

The incident and qP reflected waves have the same value:

= — co Im(v^1), (6.146)

while the attenuations asR, &pT and asT are obtained from (6.145) by replacing s3 by
-S3S1, ssp2 and s3s2, respectively.

6.2.6 Energy-flow balance

We have seen in Section 6.1.7 that to balance energy flux at an interface between two
isotropic single-phase media, it is necessary to consider the interaction energy fluxes when
the media are viscoelastic. In the incidence medium, for instance, these fluxes arise from
the interaction of the stress and particle-velocity fields of the incident and reflected waves.
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In a welded interface, the normal component of the average Umov-Poynting £3 • (p)
is continuous across the interface. This is a consequence of the boundary conditions that
impose continuity of normal stresses and particle velocities. Then, using equation (6.119),
the balance of power flow implies the continuity of

where each component is the sum of the components of the respective waves, e.g., v\ =
ViPj + VIPR + VisR in the incidence medium and a33 = a33pT + a33sT in the transmission
medium. Denoting by F the vertical component of the energy flux (equation (6.147)), we
obtain

F
PR

F
PIPR

F
PlsR

F
PRSR

= F
PT

(6.148)

where

v lPi
Re (O13P

Re (<J13SR V*1SR

Re (a13Pl

v 3Pl

G33PR V$

a33SR V*3SR

a13PR { a33Pl V*3PR O33PR

(733SRVIPI) (6.149)

-2F
PT = v

For instance, FPl is the energy flux of the incident qP wave and FpjPR is the interference
flux between the incident and reflected qP waves. In the elastic limit, it can be shown
that the interference fluxes vanish. Further algebra implies that the fluxes given in the
preceding equations are proportional to the real parts of

FPl <x /3*PlWPl+ePlZPl

F
PIPR

FPRS
RSR

FPT

FST

FPTST

<X

-(P*PlWPl + CPiZPl)\RPP

-({3*SlWSl + ?SlZSl)\RPS

-2i{pPiwPl - cPlzP

CX -[(fi*SlWPl

Cs2ZS2)\TPS

(6.150)

(f3P2WP2WS2

where the proportionality factor is |CG>2.

We define the energy reflection and transmission coefficients as

Pi Pi
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and the interference coefficients as

r _ FPIPR T _ FPiSR j _ FPRSR

JPJPR - —^—j 1PISR - —^—, 1PRSR - —^—, B
rpj rpj rpj rpj

to obtain the following energy-balance equation:

1 + ERPP + ERPS + IpjpR + IpjSR + IpRsR = ̂ ^pp + ^ ^ P S + IpTsT' (6.153)

We have chosen the square root of the energy ratio (Gutenberg, 1944) since it is more
nearly related to the response, in terms of particle velocities and displacements.

6.2.7 Umov-Poynting theorem, energy velocity and quality fac-
tor

The energy-balance equation or Umov-Poynting theorem for the propagation of time
harmonic fields in anisotropic viscoelastic media is given in Section 4.3.1, equation (4.82).
For inhomogeneous viscoelastic plane waves, it is

- 2 a • p = 2iu;[(V) - (T)} - UJ{D), (6.154)

where (V) and (T) are the time-averaged strain- and kinetic-energy densities, respectively,
and (D) = (D)/UJ is the time-averaged dissipated-energy density.

The energy velocity ve is defined as the ratio of the average power-flow density (p) to
the mean energy density (E) = (V + T) (equation (4.76)). Fortunately, it is not necessary
to calculate the strain and kinetic energies explicitly, since, using equation (4.73) and
usR = K,

(6.155)

Then, the energy velocity can be calculated as

Ve = - ^ 7 - T - (6-156)
s (p)

Using equations (6.110) and (6.120), we find that the energy velocity is

Re(s3)Re(p*W + f*Z)' l " }

which, by (6.142) becomes

ve = [Re(si + 53 cot ̂ )]~lei + [Re(si t a n ^ + s^)]~le^. (6.158)

An alternative expression for the energy velocity is obtained from the fact that, as in the
elastic case, the phase velocity is the projection of the energy velocity onto the propagation
direction (equation (4.78)). Thus, we have

ve = vp/cos(ip — 9). (6.159)
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In terms of the tangents defined in equations (6.141) and (6.142), the magnitude of the
energy velocity is

vp. (6.160)
(1 + tan tp tan 9)

The quality factor, as defined in equation (4.84), is twice the ratio of the average strain-
energy density and the average dissipated-energy density, and is written as

From equation (4.92), the quality factor of the incident homogeneous wave is simply

Re(v2
cl)

lm(v2
cl)

For the reflected and transmitted waves, we make use of the following fundamental rela-
tions derived in Section 4.3.1 (equations (4.83) and (4.71), respectively):

(D) = -a • (p) (6.163)

and

^ (6.164)

where we have used UJSR = K and (D) = (D)/u. Substitution of these relations into
equation (6.161), and the use of equation (6.110) yields

or, using equation (6.120),

Thus, we have an expression for the quality factor in terms of the complex slowness and
Umov-Poynting vector, which, unlike equation (6.162), holds for inhomogeneous plane
waves.

6.2.8 Reflection of seismic waves

We consider the reflection and transmission of seismic waves and compare the results
with the elastic case, i.e., the case where both media are elastic. To begin, we briefly
consider the following two special cases and the implications of the theory. Firstly, if the
incidence medium is elastic and the transmission medium anelastic, the theory imposes
that the attenuation vectors of the transmitted waves are perpendicular to the interface.
Secondly, if the incidence medium is anelastic, the incident wave is homogeneous, and
the transmission medium is elastic, then the transmitted waves are inhomogeneous of the
elastic type, i.e., the angle between the Umov-Poynting vector and the attenuation vector
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is TT/2 (Theorem 2 of Section 6.1.4 considers the cross-plane wave case). The interpretation
for the isotropic case is given by Krebes and Slawinski (1991).

The elastic or unrelaxed stiffnesses of the incidence medium are given by

c i3 = 3.906 GPa,

where

CP(TT/2) = 2.79 km/s, cP(0) = 2.24 km/s, cs = 1.01 km/s, p = 2700 kg/m3.

It is assumed that the medium has two relaxation peaks centered at /0 = 12.625 Hz
(TO = 1/2TT/O), with minimum quality factors of Qoi — 20 and Q02 = 15, corresponding
to dilatation and shear deformations, respectively.

On the other hand, the unrelaxed properties of the transmission medium are

JJ 2 (TT/2), C'33 = p'c'P
2(O), = P'c's2, c'13 = 28.72 GPa,

where

CP(TT/2) = 4.6 km/s, Cp(0) = 4.1 km/s, c^ = 2.4 km/s, p = 3200 kg/m3.

As before, there are two relaxation peaks centered at the same frequency, with QOi = 60
and Q02 = 35.

Figure 6.11: Reflected (qPR and qSfi) and transmitted (qPT and qST) plane waves for an incident qP
wave with 9px = 25°. The slowness curves for homogeneous waves of the upper and lower medium are
represented, with the inner curves corresponding to the quasi-compressional waves. The lines coincide
with the propagation direction and the convention for the attenuation and energy vectors is that indicated
in Figure 6.1.

The slowness curves for homogeneous waves are represented in Figure 6.11, where
the inner curve corresponds to the qP wave. The figure also shows the attributes of the
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incident, reflected and transmitted waves for an incidence angle 0p7 = 25°. In the anelastic
case, the Umov-Poynting vectors (empty arrows) of the incident and reflected qP waves
are almost perpendicular to the slowness surface. The perpendicularity property is only
verified in the elastic case. The transmitted waves show a high degree of inhomogeneity
- i.e., the propagation and attenuation vectors do not have the same direction. This is
true, in particular, for the qP wave, whose attenuation vector is almost perpendicular to
the direction of the energy vector.

Figure 6.12 represents the absolute value of the amplitude coefficients versus the in-
cidence propagation angle for the elastic (a) and viscoelastic (b) cases. If the two media
are elastic, there is a critical angle at approximately 27°, which occurs when the Umov-
Poynting vector of the transmitted qP wave becomes parallel to the interface. If the lower
medium is anelastic or both media are anelastic, the energy vector of the transmitted qP
wave points downwards for all the incidence propagation angles. Thus, there is no critical
angle. This can be seen in Figure 6.13, where the absolute values of the energy coefficients
are displayed as a function of BpI (a) and ipPj (b). Since ETPP is always strictly greater
than zero, the Py Umov-Poynting vector is never parallel to the interface.

The propagation, energy and attenuation angles, as a function of the incidence angle,
are represented in Figure 6.14. By symmetry, the propagation and energy angles of the
reflected P# wave are equal to #p7 and ippn respectively. For viscoelastic plane waves
traveling in an anisotropic medium, \9 — S\ may exceed 90°. However, the difference
\ip — 5\ must be less than 90°. Indeed, since the energy loss is always positive, equation
(6.163) implies that the magnitude of the angle between oc and (p) is always strictly less
than TT/2. This property is verified in Figure 6.14. Moreover, this figure shows that, at
approximately the elastic critical angle and beyond, the P T energy angle is close to TT/2
and that the attenuation vector is almost perpendicular to the interface. This indicates
that, practically, the transmitted qP wave behaves as an evanescent wave of the elastic
type beyond the (elastic) critical angle.

Figure 6.15 displays the phase shifts versus incidence propagation angle, indicating
that there are substantial differences between the elastic (a) and the anelastic (b) cases.
The phase velocities are represented in Figure 6.16. They depend on the propagation
direction, mostly because the media are anisotropic, but, to a lesser extent, also because
of their viscoelastic inhomogeneous character. Despite the fact that there is no critical
angle, the phase velocity of the transmitted qP wave shows a similar behavior - in quali-
tative terms - to the elastic phase velocity. Beyond the elastic critical angle, the velocity
is mainly governed by the value of the horizontal slowness, and finally approaches the
phase velocity of the incidence wave. The attenuation curves (see Figure 6.17) show that
dissipation of the S# and P^ waves is very anisotropic. In particular the P^ attenuation
is very high after the elastic critical angle, due to the evanescent character of the wave.

Figure 6.18 shows the energy velocity of the different waves. The difference between
energy and phase velocities is due solely to the anisotropy, since they coincide in isotropic
media. The quality factors are represented in Figure 6.19. Below the critical angle, the
higher quality factor is that of the VT wave, in agreement with its attenuation curve dis-
played in Figure 6.17. However, beyond that angle, the quality factor seems to contradict
the attenuation curve of the other waves: the very strong attenuation is not reflected in
the quality factor. This apparent paradox means that the usual relation a w USR/2Q

(equation (4.94)) is not valid for evanescent-type waves traveling closer to interfaces, even
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Figure 6.12: Absolute values of the reflection and transmission amplitude coefficients versus incidence
propagation angle corresponding to the elastic (a) and viscoelastic (b) cases.
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Figure 6.13: Absolute values of the reflection and transmission energy coefficients versus incidence
propagation angle (a) and ray (energy) angle (b) corresponding to the viscoelastic case.
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Figure 6.14: Energy (a) and attenuation (b) angles versus incidence angle for the incident, reflected
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Figure 6.15: Phase angles versus incidence propagation angle for the incident, reflected and transmitted
waves corresponding to the elastic (a) and viscoelastic (b) cases.
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Figure 6.16: Phase velocities of the incident, reflected and transmitted waves versus the incidence
propagation angle for the viscoelastic case.

if Q ^> 1. Finally, Figure 6.20 shows the square root of the interference coefficients versus
the incidence propagation angle. It indicates that much of the energy is lost due to in-
terference between the different waves beyond the elastic critical angle. The interference
between the Py and ST waves is particularly high and is comparable to ETPP around 30°
incidence. Note that these coefficients vanish in the elastic case.

The reflection-transmission problem can be solved for transient fields by using the
equations given in Section 4.5.4. A wave modeling algorithm based on the Fourier pseu-
dospectral method is used to compute the spatial derivatives, and a fourth-order Runge-
Kutta technique to compute the wave field recursively in time (see Chapter 9). The
numerical mesh has 231 x 231 points with a grid spacing of 20 m. The source is a Ricker-
type wavelet located at 600 m above the interface, and has a dominant frequency of 12.625
Hz, i.e., the central frequency of the relaxation peaks. In order to generate mainly qP
energy, the source is a discrete delta function, equally distributed in the stress components
an and a33 - a mean stress perturbation. Figure 6.21 shows a snapshot at 800 ms, which
covers the incidence ray angles from 0° to approximately 62°. In the upper medium, the
primary waves are the qP wave followed by the qS wave, which shows high amplitude
cuspidal triangles despite the dilatational nature of the source. Moreover, the P# and S#
are traveling upwards, away from the interface. Near the center of the mesh, the events
are mainly related to the reflection of the cuspidal triangles. In the lower medium, the
FT wave is followed by the ST wave, which resembles a continuation of the incident qP
wave, since both events have similar velocities (see Figure 6.11). In principle, Figure 6.21
should be interpreted by comparison with Figure 6.13. However, Figure 6.21 displays the
vertical particle velocity v$, and Figure 6.13b the square root of the normal power flow.
Moreover, the interpretation must take into account that the source has a non-isotropic
radiation pattern, and that the incidence wave is also affected by anisotropic attenuation
effects. Despite these considerations, a qualitative interpretation can be attempted. First,
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Figure 6.17: Attenuations of the incident, reflected and transmitted waves versus the incidence propa-
gation angle. Figure 6.17b corresponds to the transmitted quasi-compressional wave.
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Figure 6.18: Energy velocities of the incident, reflected and transmitted waves versus the incidence
propagation angle for the viscoelastic case.
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Figure 6.19: Quality factors of the incident, reflected and transmitted waves versus the incidence
propagation angle for the viscoelastic case.
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Figure 6.20: Square root of the interference coefficients versus the incidence propagation angle.

Figure 6.21: Snapshot of the vertical particle-velocity component vs, corresponding to the viscoelastic
reflection-transmission problem at 800 ms.
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the amplitudes of the SR and ST waves are very low at normal incidence, as predicted
by the ERp$ and ETp$ curves, respectively. In particular, the amplitude of the ST wave
increases for increasing ray angle, in agreement with ETp$. In good agreement also, is the
amplitude variation of the Py wave compared to the ETPP curve. Another event is the
planar wave front connecting the reflected and transmitted qP waves. This is a conical or
head wave that cannot be entirely explained by the plane-wave analysis. Despite the fact
that a critical angle does not exist, since ippr never reaches TT/2 (see Figure 6.14a), some
of the FT energy disturbs the interface, giving rise to the conical wave.

6.2.9 Incident inhomogeneous waves

In the previous section, we assumed incident homogeneous waves. Here, we consider the
more realistic case of inhomogeneous plane waves, illustrated with a geophysical exam-
ple. In offshore seismic exploration, the waves transmitted at the ocean bottom have a
particular characteristic. Assuming that water is lossless and using Snell's law (Section
3.5), their attenuation vectors are perpendicular to the ocean-bottom interface. This fact
affects the amplitude variations with offset (AVO) of reflection events generated at the
lower layers.

Winterstein (1987) investigates the problem from a "kinematic" point of view. He ana-
lyzes how the angle between propagation and maximum attenuation varies in an anelastic
layered medium, and shows that departures from elastic wave ray paths can be large. In
addition, compressional-wave reflection coefficients for different incidence inhomogeneity
angles are compared by Krebes (1984). He shows that the deviations from the elastic case
can be important at supercritical angles.

Here, we study the AVO response for an inhomogeneous wave generated at the ocean
bottom and incident at a lower interface separating two viscoelastic transversely isotropic
media. Unlike the analysis performed by Krebes (1984), the inhomogeneity angle is not
constant with offset, but is equal to the incidence angle, since the interface is assumed to
be parallel to the ocean bottom (see Figure 6.22). The interface may separate two finely
layered formations whose contact plane is parallel to the stratification, or two media with
intrinsic anisotropic properties, such as shale and limestone.

The consistent 2-D stress-strain relation for qP-qS propagation is given in Section
4.5.4, based on model 3 (see Section 4.1.3). The convention is to denote the quasi-
dilatational and quasi-shear deformations with v = 1 and v = 2, respectively. The complex
stiffnesses relating stress and strain for a 2-D transversely isotropic medium (4.161) can
be expressed as
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The elasticity constants Cu1 I,J = 1,...,6 are the unrelaxed or high-frequency limit
stiffnesses, and MV(UJ) are dimensionless complex moduli. For one Zener mechanism, Mv

is given in equation (4.6). The form of Mv(uS) for L Zener models connected in parallel is
given in equation (2.196). In the lossless case (uo —> 00), Mv —> 1.
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Ocean

Shale

Chalk

Figure 6.22: Snell's law for a plane wave incident on the ocean-bottom interface. The diagram shows
the continuity of the horizontal component of the complex-slowness vector. In the ocean, this vector is
real, since water is assumed to be lossless. In the shale layer the attenuation vector is perpendicular to
the ocean bottom.

Generat ion of inhomogeneous waves

Let us assume that the positive z-axis points downwards. A general solution for the
particle-velocity field v = (^1,^3) is

v = iu;Uexp[iu(t — six — ssz)], (6.168)

where si and 53 are the components of the complex-slowness vector and U is a complex
vector. The slowness vector

s# = (Re(si), Re(§3)) (6.169)

and the attenuation vector
OL = — o;(Im(si), Im(s3)), (6.170)

in general, will not point in the same direction. Figure 6.22 depicts a transmitted inhomo-
geneous wave generated at the ocean bottom. As mentioned before, since the attenuation
vector of waves propagating in the water layer is zero, the viscoelastic Snell's law implies
that the attenuation vector of the transmitted wave is perpendicular to the ocean bottom.
Note that the inhomogeneity angle is equal to the propagation angle 9.

The complex-slowness components below the ocean bottom are

(6.171)53 =

where SR and a are the magnitudes of s# and a , respectively. For a given angle 9,
and a can be computed from the dispersion relation (6.113). Then, the substitution
of these quantities into equation (6.171) yields the slowness components of the incident
inhomogeneous wave. However, this method requires the numerical solution of two fourth-
degree polynomials. A simpler approach is the following:
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1. Assume a given propagation angle OH for a hypothetical transmitted homogeneous
wave below the ocean bottom. Then, according to equation (6.125), the complex
slowness is

s = y/2p (p55 + pn sin2 0H + Pss cos2 9H ± C)~1/2, (6.172)

where p is the density and C is given by equation (6.126) with 0 = 0H.

2. Choose Si for the inhomogeneous wave equal to Re(s)sin##, a real quantity -
according to Snell's law - since the projection of a on the interface is zero.

3. Compute 53 from the dispersion relation (6.113).

4. Compute the incidence propagation angle 0 for the inhomogeneous wave from sin 0 =
as

0 = arcsin
[Re(s3)]

(6.173)

In this way, a vector (si,s3), satisfying equation (6.113) and providing input to the
reflection-transmission problem, can be obtained for each incidence angle 6. The price we
pay for this simplicity is that the ray angle does not reach 90°, but this is not relevant
since the offsets of interest in exploration geophysics are sufficiently covered.

Ocean bottom

The material properties of the incidence and transmission media - shale and chalk, re-
spectively - are given in Table 6.1, where VJJ =

Table 6.1. Material properties

ROCK

shale
chalk

(m/s)
3810
5029

(m/s)
3048
5029

(m/s)
1402
2621

(m/s)
1828
3414

Qoi

10
100

5
70

P
(g/cm3)
2.3
2.7

The unrelaxed velocities are indicated in the table, and attenuation is quantified by the
parameters Q$u = Re(M1/)/Im(MI/) at the reference frequency. Wright (1987) calculates
the reflection coefficients for the elastic case, which is obtained in the unrelaxed limit.

The comparison between the absolute values of the qP wave reflection coefficients,
together with the corresponding phase angles, is shown in Figure 6.23. In the figure,
"E" corresponds to the elastic case (i.e., elastic shale), "H" to an incident viscoelastic
homogeneous wave, and "I" to an incident inhomogeneous wave with the characteristics
indicated in Figure 6.22 - the chalk is assumed anelastic in the three cases. In the
elastic case, i.e., shale and chalk both elastic (Wright, 1987), there is a critical angle
between 40° and 50°. It can be shown that the energy vector of the transmitted qP wave
points downwards for all incidence angles. Thus, there is no critical angle in the strict
sense. However, the shape of the E and I curves indicates that a quasi-evanescent wave
propagates through the interface. This character is lost in the H curve. In the near-offsets
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Figure 6.23: Comparison between the absolute values of the Rpp reflection coefficients together with
the corresponding phase angles, where "E" corresponds to the elastic case (i.e., elastic shale), "H" to
an incident viscoelastic homogeneous wave, and "I" to an incident inhomogeneous wave exhibiting the
characteristics indicated in Figure 6.22.
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- up to 20° - the three coefficients follow the same trend and are very similar to each
other. The difference between this case and the elastic case (E) is due to the anelastic
properties of the shale. Beyond 30°, the differences are important, mainly for the incident
homogeneous wave. These can also be observed in the phase where the H curve has the
opposite sign with respect to the other curves. A similar effect is reported by Krebes
(1984). More details and results about this problem are given by Carcione (1999b).

6.3 Reflection and transmission at fluid/solid inter-
faces.

Fluid/solid interfaces are important in seismology and exploration geophysics, particularly
in offshore seismic prospecting, where the ocean bottom is one of the main reflection
events. We consider this problem by assuming an incident homogeneous P wave.

6.3.1 Solid/fluid interface

A general plane-wave solution for the particle-velocity field v = (^1,^3) is

v = icjUexp [iu(t — S\X — s3z)], (6.174)

where U is a complex vector of magnitude U. For homogeneous waves,

S\ = sin 0/vp1, (6.175)

where 6 is the propagation angle measured with respect to the z-axis, and vp1 is the
complex velocity, in this case, the complex P-wave velocity of the solid. Let us denote
the complex S-wave velocity of the solid by vsx and the complex P-wave velocity of the
fluid by vp2.

The upper viscoelastic medium (the solid) is denoted by subscript 1 and the viscoa-
coustic medium (the fluid) by subscript 2. The symbol P indicates the compressional wave
in the fluid or the P wave in the upper layer, and S denotes the S wave in this medium.
As before, the subscripts / , R and T denote the incident, reflected and transmitted waves.
Using symmetry properties to define the polarization of the reflected waves and using the
fact that Snell's law implies the continuity of the horizontal slowness si (see Section 3.5),
we note that the particle velocities for a P wave incident from the upper medium are
given by

, (6.176)

(6.177)

where
exp [iu;(t - sxx - s3Plz)], (6.178)

exp [iuj(t - sxx + s3Plz)], (6.179)

VSR = iuRpsiPsi, - f s i ) exp [iu(t - sxx + s3Slz)]. (6.180)

exp [iu(t - sxx - s3p2z)], (6.181)
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and the choice U = 1 implies no loss of generality. If we assume an isotropic solid, the
slownesses and vertical slowness components are

s3Sl =

Sp2 =

pv

pv

pv

sPi s]

(6.182)

Sp2 S]

and the polarizations are

si = , m = 1, 2.
m m

(6.183)

The boundary conditions require continuity of

, a33, and a13(= 0). (6.184)

These conditions generate the following matrix equation for the reflection and transmission
coefficients:

f
 €PI £si £p2

ry ry ry

\ WP\ Wsx 0 \

(6.185)
W:Pi

where, for Pi or 5i

Z = &z + Pl(v
2

Pl - 2v2
Sl)/3su W = PiV2

Sl{f3s3 + (6.186)

for the upper medium - depending on the wave type, the subindex of £, (3 and s3 is Pi or
Si - and

Zp2 = p2vl2(£p2s3p2 + /?P25I), P^P2 = 0 (6.187)

for the fluid.

6.3.2 Fluid/solid interface

In this case, the fluid is denoted by the subscript 1 and the lower layer by the subscript
2. The particle velocities for a P wave incident from the fluid are given by

= VF j

v2 =

where

VST =

exp

exp

exp

exp

- s3Plz)],

+ s3Plzj\,

- s3P.2z)],

- s3S.2z)].

(6.188)

(6.189)

(6.190)

(6.191)

(6.192)

(6.193)
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The boundary conditions (6.184) generate the following matrix equation for the reflection
and transmission coefficients:

\
ry ry
ZJPI —Zjp2

0 WP2

\

\

\
(6.194)

where PP1 , /?p2, j3s2, ^ , £p25 £s25 ^Pi•> %Pi> %s2> Wp2
 a n ^ ^ ^ 2 a r e ob ta ined from equat ions

(6.183), (6.186) and (6.187), with the material indices interchanged.
The reflection and transmission equations for an anisotropic viscoelastic solid are

similar to equations (6.185) and (6.194), but use the appropriate expressions for the /?'s,
£'s, Z's and the W's. (This exercise is left to the reader.)

6.3.3 The Rayleigh window

In this section, we use the reflection-transmission theory to explain a phenomenon that
cannot be modeled with a lossless stress-strain relation. Brekhovskikh (1960, p. 34) ob-
served that the amplitude reflection coefficient measured for a water-steel interface was
not consistent with that predicted by the elastic theory. Beyond the elastic S critical
angle, there is reduction in amplitude of the reflected P wave in a narrow window. Be-
cause this occurs for an angle where the apparent phase velocity of the incident wave is
near that of the Rayleigh surface wave, the phenomenon is called the "Rayleigh window".
The corresponding reflection coefficient was measured experimentally by F. Becker and
R. Richardson, and their ultrasonic experiments were verified with an anelastic model in
a later paper (Becker and Richardson, 1972). Borcherdt, Glassmoyer and Wennerberg
(1986) compared theoretical and experimental results corresponding to the same experi-
ment, and show that the same phenomenon takes place at ocean-bottom interfaces. They
find that the anelastic Rayleigh window should be observable in appropriate sets of wide-
angle reflection data and can be useful in estimating attenuation for various ocean-bottom
reflectors. The presence of inhomogeneous viscoelastic waves accounts for the existence
of the anelastic Rayleigh window.

The scattering equations involved in this problem are given in Section 6.3.2. The
complex velocity of the fluid - a viscoacoustic medium - is

. =
\A2o + 1 + 1 + iu

(6.195)

where Cpx is the unrelaxed wave velocity of water, and M is a dimensionless complex
modulus. At 6J0 = I/TO, the quality factor of water has the lowest value Qo (see Section
4.1 and equation (4.6)).

The complex Lame constants for steel are given by

£2 = P2 and / i 2 = p2C2
s.2M2, (6.196)

where cP2 and cS2 are the unrelaxed P- and S-wave velocities of steel, and Mi and M2 are
dimensionless complex moduli, defined in equation (4.6).

The properties of water are cPl = 1490 m/s, pi = 1000 kg/m3, and QQ1 = 0.00012 at
/o = 10 MHz (/o = 1/2TTTO). The unrelaxed velocities of steel are cp2 = 5761 m/s, and cs2
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= 3162 m/s, respectively, the density is p2 = 7932 kg/m3 and the dissipation factors at 10
MHz are Q^1 = 0.0037 and Q^1 = 0.0127. We recall that Qoi is a quality factor associated
with dilatational deformations and not with the compressional wave. These properties
give the homogeneous P- and S-wave dissipation factors and phase velocities indicated in
Table 1 of Borcherdt, Glassmoyer and Wennerberg (1986), for a frequency of 10 MHz.
Figure 6.24 represents the reflection coefficient (solid line), compared to the experimental
values (open circles). The dashed line corresponds to the elastic case. This experiment
and its theoretical prediction is a demonstration of the existence of inhomogeneous body
waves.
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Figure 6.24: Amplitude reflection coefficient predicted for the anelastic Rayleigh window by a vis-
coelastic model (solid line), compared to the experimental values (open circles) (Becker and Richardson,
1972) for a water-stainless steel interface. The dashed line corresponds to the elastic case.

6.4 Reflection and transmission coefficients of a set
of layers

The propagation of waves in solid layers has numerous applications in acoustics and
optics. In seismology, for instance, a plane layered system can be a good representation
of a stratified Earth. Let a plane wave, with horizontal complex slowness Si, be incident
on the symmetry plane of an orthorhombic medium, as shown in Figure 6.25. Inside
the layer, the particle-velocity field is a superposition of upgoing and downgoing quasi-
compressional (P) and quasi-shear waves (S) of the form

v = Up

P.p exp(—i + u: exp[i<j(t- (6.197)
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where U are upgoing-wave amplitudes, U+ are downgoing-wave amplitudes, and /3 and
£ are the polarization components, given in equations (6.116) and (6.117), respectively.
The vertical slowness components s^p and s^s are given in equation (6.114). Normal
stresses and strains are related by

ia;o"33 = pi3<9i^i +^33^3^3, (6.198)

(6.199)

half-space
(isotropic)

x

Pi3
P33 P55

P
layer

(orthorhombic)

P2

half-space
(isotropic)

Figure 6.25: Diagram showing an orthorhombic layer embedded between two isotropic half-spaces.

Using equations (6.197), (6.198) and (6.199), the particle-velocity/stress array, inside
the layer at depth z, can be written as

where

T(z) = IUO

(

\

t(z) =
IV1)

C33
= T(2) •

uP\
Usut

\US /

V

- z P
WP

p(iu;s
0
0
0

Ps
-is
-Zs

Ws

SPZ)

PP

£P
- z P

-WP

0
exp(ia;s3

0
0

Ps \
is

-Zs

-Ws )

sz)
C A

0
0

0

0
0
0

(6.200)

(6.201)
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with W and Z given in equations (6.121) and (6.123), respectively.
Then, the fields at z = 0 and z = h are related by the following equation:

t(0) = B • t(h), B = T(0) • T~\h), (6.202)

which plays the role of a boundary condition. Note that when h = 0, B is the identity
matrix.

Let us denote by the subscript 1 the upper half-space and by the subscript 2 the
lower half-space. Moreover, the subscripts / , R and T denote the incident, reflected and
transmitted waves. Using symmetry properties to define the polarization of the reflected
waves, the particle velocities for a P wave incident from above the layer are given by

vi = vP/ + VPR + VSR, (6.203)

V2 = V P T + V S T , (6.204)

where the particle velocities of the right-hand side have the same form as equations
(6.133)-(6.137), where, here,

with

v Hi v\
(6.206)

where vp{ and vg{ are the complex compressional and shear velocities, respectively. On
the other hand, the W and Z coefficients for the isotropic half-spaces are

WPi =

ZP. =

WSi =

ZSi = -

- s\)vSi, (6.207)

i (6.208)

where A« = Ei — 2^ and ^ are complex Lame constants. Using equations (6.203) and
(6.133)-(6.137), the particle-velocity/stress field at z = 0 can be expressed as

t(0) =

where

r = , iJPS, TPP, TPS)T,

, -ZPlJ-WPl)
T,

(6.209)

(6.210)

(6.211)

and

(6.212)

o o\
! 0 0

-ZPl -ZSl 0 0
V wPl wSl o o /

Using equations (6.204) and (6.133)-(6.137), the particle-velocity/stress field at z = /i can
be expressed as

t(h) = A 2 - r , (6.213)
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where

A9 = ico

\

0
0
0
0

0
0
0
0

f3p2 exp(—i(joszp2h)
£p2exp(-iu;s3p2h)

—Zp2 exp(—iu;s3P2h)
—Wp2 exp(—iujssp2h)

fis2

-Zs2

-WS2

(6.214)

Combining equations (6.202), (6.209) and (6.213) yields a matrix equation for the reflection-
and transmission-coefficient array r:

(Ai - B • A2) • r = - i P . (6.215)

The reflection and transmission coefficients Rsp, Rss, Tsp and Tss for an incident S wave
have the same scattering matrix as the P incident wave, but the array ip is replaced by

iQ = iu)(3e £e -ZQ -WQ ) T (6 216)

In the absence of layer, h = 0, B is the identity matrix, and we get the system of equations
obtained in Section 6.2.3. When the upper and lower half-spaces are the same medium, it
can be shown that the absolute value of the PP-reflection coefficient at normal incidence
is given by

(6.217)
l exp(-ikh) — exp(ikh) |'

where

k =
U)

VP

and

vP =

pvP - p1vPl

with index 1 denoting the upper and the lower half-spaces. It is straightforward to gen-
eralize this approach for computing the seismic response of a stack of viscoelastic and
anisotropic layers. We consider TV layers with stiffnesses pua, density pai each of them
with thickness hai such that the total thickness is

ja- (6.218)
a=l

By matching boundary conditions at the interfaces between layers, it is easy to show that
the matrix system giving the reflection and transmission coefficients is

TV

• r = — (6.219)

where ip(s) is the incidence P(S) array, and

Ba = T(0) • T " 1 ^ ) , a = 1 , . . . , TV. (6.220)

This recursive approach, which is the basis of most reflectivity methods, dates back to
Thomson (1950), and is illustrated by Brekhovskikh (1960, p. 61) for a stack of isotropic
and elastic layers. An example of the application of this approach can be found in Car-
cione (2001b), where amplitude variations with offset (AVO) of pressure-seal reflections
are investigated. Ursin and Stovas (2002) derive a second-order approximation for the re-
flection and transmission coefficients, which is useful for the inversion of seismic reflection
data.
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Biot's theory for porous media

In Acoustics, we have sometimes to consider the incidence of aerial waves upon porous bodies,
in whose interstices some sort of aerial continuity is preserved...

The problem of propagation of sound in a circular tube, having regard to the influence of
viscosity and heat-conduction, has been solved analytically by Kirchhoff, on the suppositions
that the tangential velocity and the temperature-variation vanish at the walls. In discussing the
solution, Kirchhoff takes the case in which the dimensions of the tube are such that the immediate
effects of the dissipative forces are confined to a relatively thin stratum in the neighborhood of the
walls. In the present application interest attaches rather to the opposite extreme, viz. when the
diameter is so small that the frictional layer pretty well fills the tube. Nothing practically is lost
by another simplification which it is convenient to make (following Kirchhoff) - that the velocity
of propagation of viscous and thermal effects is negligible in comparison with that of sound.

John William Strutt (Lord Rayleigh) (Rayleigh, 1899b)

Biot's theory describes wave propagation in a porous saturated medium, i.e., a medium
made of a solid matrix (skeleton or frame), fully saturated with a fluid. Biot (1956a,b)
ignores the microscopic level and assumes that continuum mechanics can be applied to
measurable macroscopic quantities. He postulates the Lagrangian and uses Hamilton's
principle to derive the equations governing wave propagation. Rigorous approaches for
obtaining the equations of motion are the homogenization theory (e.g., Burridge and
Keller, 1985) and volume-averaging methods (e.g., Pride, Gangi and Morgan, 1994; Pride
and Berryman, 1998), both of which relate the microscopic and macroscopic worlds. We
follow Biot's approach, due to its simplicity.

Sound attenuation in air-filled porous media was investigated by Zwikker and Kosten
(1949). They considered dilatational waves and described the physics of wave propagation
by using the concept of impedance. Biot's theory and related theories of deformation and
wave propagation in porous media are discussed in several reviews and books, notably,
Rice and Cleary (1976), Johnson (1986), Bourbie, Coussy and Zinszner (1987), Cristescu
(1986), Stoll (1989), Zimmermann (1991), Allard (1993), Coussy (1995), Corapcioglu and
Tuncay (1996), Mavko, Mukerji and Dvorkin (1998), Wang (2000), Cederbaum, Li, and
Schulgasser (2000), Santamarina, Klein and Fam (2001), and King (2005).

Extensions of Biot's theory, from first principles, are given by Brutsaert (1964) and
Santos, Douglas and Corbero (1990) for partial saturation - one solid and two fluids - (see
simulations in Carcione, Cavallini, Santos, Ravazzoli and Gauzellino (2004)); Leclaire,

235



236 Chapter 7. Biot 's theory for porous media

Cohen-Tenoudji and Aguirre-Puente (1994) for frozen media; Carcione, Gurevich and
Cavallini (2000) for shaley sandstones; Carcione and Seriani (2001) for frozen sediments -
two solids and one fluid - (see simulations in Carcione, Santos, Ravazzoli and Helle (2003));
and Berryman and Wang (2000) for a double-porosity dual-permeability medium. The
extension to non-isothermal conditions, to account for the effects of thermal expansion of
both the pore fluid and the matrix, are given, for instance, in McTigue (1986). In a porous
medium saturated with a fluid electrolyte, acoustic and electromagnetic waves are coupled
(see Section 8.15). The extension of Biot's theory to describe this phenomenon is given
in Pride (1994) and Pride and Haartsen (1996) (electro-seismic wave propagation). An
important reference are the collected papers of M. A. Biot resulting from the conference
held in his memory in Louvain-la Neuve (Thimus, Abousleiman, Cheng, Coussy and
Detournay, 1998).

The main assumptions of the theory are:

1. Infinitesimal transformations occur between the reference and current states of de-
formation. Displacements, strains and particle velocities are small. Consequently,
the Eulerian and Lagrangian formulations coincide up to the first-order. The con-
stitutive equations, dissipation forces, and kinetic momenta are linear. (The strain
energy, dissipation potential and kinetic energy are quadratic forms in the field
variables.)

2. The principles of continuum mechanics can be applied to measurable macroscopic
values. The macroscopic quantities used in Biot's theory are volume averages of the
corresponding microscopic quantities of the constituents.

3. The wavelength is large compared with the dimensions of a macroscopic elementary
volume. This volume has well defined properties, such as porosity, permeability and
elastic moduli, which are representative of the medium. Scattering effects are thus
neglected.

4. The conditions are isothermal.

5. The stress distribution in the fluid is hydrostatic. (It may be not completely hydro-
static, since the fluid is viscous.)

6. The liquid phase is continuous. The matrix consists of the solid phase and discon-
nected pores, which do not contribute to the porosity.

7. In most cases, the material of the frame is isotropic. Anisotropy is due to a prefer-
ential alignment of the pores (or cracks).

Our approach is based on energy considerations. We define the strain, kinetic and
dissipated energies, and obtain the equation of motion by solving Lagrange's equations.
In the following discussion, the solid matrix is indicated by the index "TO", the solid by
the index "s" and the fluid phase by the index "/' •
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7.1 Isotropic media. Strain energy and stress-strain
relations

The displacement vectors and strain tensors of the frame and the fluid are macroscopic
averages, well defined in the macroscopic elementary volume. The stresses are forces
acting on the frame or the fluid per unit area of porous material. The stress components
for the fluid are

ff j, (7-1)
where pf is the fluid pressure and <j> is the porosity.

Taking into account equation (1.17), and since the fluid does not "support" shear
stresses, we express the strain energy of the porous medium as

Bd2
m

where A, B, C and D are elasticity coefficients to be determined as a function of the solid
and fluid properties, as well as by the microstructural properties of the medium. Note
the coupling term between the solid and the fluid represented by the coefficient C. The
stress components are given by

where a^ = —(f>Pf. Using these equations, the stress-strain relations are

(7.4)

and
(7.5)

In order to obtain the elasticity coefficients in terms of known properties, we consider three
ideal experiments, under static conditions (Biot and Willis, 1957). First, the material is
subjected to a pure shear deformation (#m = $/ = 0). In this case, it is clear that B is
the shear modulus of the frame, since the fluid does not contribute to the shearing force.
Let us denote

B = fj,m, (7.6)

as the dry matrix shear modulus.
The other two experiments are described in the following sections.

7.1.1 Jacketed compressibility test

In the second ideal experiment, the material is enclosed in a thin, impermeable, flexible
jacket and then subjected to an external hydrostatic pressure p. The pressure of the fluid
inside the jacket remains constant, because the interior of the jacket is exposed to the
atmosphere by a tube (see Figure 7.1). The pore pressure remains essentially constant
and a^ = 0. From equations (7.4) and (7.5), we obtain

(7.7)
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P

P

Figure 7.1: Porous material is enclosed in a thin impermeable jacket and then subjected to an external
hydrostatic pressure p. The pressure of the fluid inside the jacket remains constant, because the inside
of the jacket is exposed to the atmosphere by a tube of small cross-section.

and
0 = C$m + 2D$f. (7.8)

In this test, the entire pressure is transmitted to the frame. Therefore,

, (7-9)

where Km is the bulk modulus of the frame, also called the drained modulus. Combining
equations (7.7), (7.8) and (7.9), we obtain

7.1.2 Unjacketed compressibility test

In the third ideal experiment, the sample is immersed in the saturating fluid to which a
pressure pf is applied. The pressure acts both on the frame part 1 — </>, and the fluid part
(j) of the surfaces of the sample (see Figure 7.2).

Therefore, from equations (7.4) and (7.5)

(7.11)

and
+ 2D&f. (7.12)

In this experiment, the porosity does not change, since the deformation implies a change
of scale. In this case,

= -pf/'dmi and Kf = -pf/'&f, (7.13)

where Ks is the bulk modulus of the elastic solid from which the frame is made, and
is the bulk modulus of the fluid. Since the solid frame is compressed from the inside also,
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Figure 7.2: Configuration of the unjacketed experiment. The sample is immersed in a saturating fluid
to which a pressure pf is applied. The pressure acts both on the frame part and the fluid part.

in contrast to the jacketed experiment, the involved elastic modulus is that of the solid
material.

Combining equations (7.11), (7.12) and (7.13), we get

and

2A C

2D C

(7.14)

(7.15)

Solving equations (7.10), (7.14) and (7.15), we obtain

( 1 -
K = 2A =

K, + 6-^Kn

-<j>- Km/Ks
1W ,

C =
1 - r/> - Km/K, + 4>KS/Kf

and

2D =
- 4> - Km/Ks + 4>KS/Kf

where P, N, Q, and R is Biot's notation1 (Biot, 1956a; Biot and Willis, 1957).
We may recast the stress-strain relations (7.4) and (7.5) as

and

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)
1Readers should not confuse Q with the quality factor defined in previous chapters.
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In deriving the preceding equations, we have assumed that the material of the frame is
homogeneous. There are cases where the grains are cemented with a material of different
properties, or where two different materials form two interpenetrating rock frames. On
the basis of Biot's theory, those cases can be treated with different approaches (Brown
and Korringa, 1975; Berryman and Milton, 1991; Gurevich and Carcione, 2000; Carcione,
Gurevich and Cavallini, 2000).

7.2 The concept of effective stress

The stress-strain relations (7.19) and (7.20) can be interpreted as a relation between
incremental fields, where stress and strain are increments with respect to a reference
stress and strain - the case of wave propagation - or, as relations between the absolute
fields. The last interpretation is used to illustrate the concept of effective stress.

Effective stress and effective pressure play an important role in rock physics. The use
of this concept is motivated by the fact that pore pressure, py, and confining pressure, pc,
tend to have opposite effects on the acoustic and transport properties of the rock. Thus, it
is convenient to characterize those properties with a single pressure, the effective pressure
pe. Terzaghi (1936) proposed pe = pc — (f)pf, but his experiments, regarding the failure
of geological materials, indicated that pe = pc — pj. Let us analyze Biot's constitutive
equations to obtain the effective-stress law predicted by this theory.

The total stress is decomposed into an effective stress, which acts on the frame, and
into a hydrostatic stress, which acts on the fluid. In order to find this relation, we need
to recast the constitutive equation in terms of the total stress

«J

and the variation of fluid content

), (7.22)

where u^) and u(m) are the displacement vectors of the fluid and solid matrix, respectively,
and we have assumed that (f) is constant in this derivation - this condition will be removed
later. The variation of fluid content is a measure of the amount of fluid that has flowed
in and out of a given volume of porous medium.

First, note that the modulus K defined in equation (7.16) can be written as

K = Km + M(a - 0)2, (7.23)

where

M = (7.24)

and

a = 1 — — . (7.25)
K

2 Readers should not confuse M and o; with the complex modulus and attenuation factor defined in
previous chapters.
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Note the relation

Substituting equation (7.23) into equation (7.19) and using the expression of the deviatoric
strain for the frame (see equation (1.15)), yields

[M[a ~

+ [M(a - (f))2$m + CfiftSij, (7.27)

where
7<^ /# I R. . A , , _ L / i ( / ? . , A . , _ L A W A . 7 ) ( 7 9 S ]
-LYm o f*m I uijukl * rJ'Tn\uikujl * utlujk) ^ i . ^ c j y

3 /

is the elastic tensor of the frame. The total stress is then obtained by substituting (7.27)
into equation (7.21), using (7.1), that is,

(7.29)

equation (7.20), and the relations a — <j> = C/R and M = R/(f>2. We obtain

SJ.. — r(
m)f(

m) _ fy<nffi- — In r / m ) 4- K
°ij — cijkl kl LXPfutj — ̂ H"mu>ij i r^m

Furthermore, using equations (7.29) and (7.22), and the relations

(7.31)

equation (7.20) can be written as

(7-32)

An alternative form of the total-stress components is obtained by substituting pj into
equation (7.30),

i, (7-33)

where
cf)Km {Ks/Kf - 1)

M = : mJzK s ;\r, (7.34)Km/Ks + (pKs/Kf

is a saturation (or undrained) modulus, obtained for ( = 0 ("closed system"). Equation
(7.34) is known as Gassmann's equation (Gassmann, 1951), which, as shown in Section
7.7.1 (equation (7.286)), gives the low-frequency bulk modulus as a function of the frame
and constituent properties. The dry-rock modulus expressed in terms of Gassmann's
modulus is

_{4>KslKl + \-4>)KG-Ks

(j>KJK, + Ka/K5 -
A generalization of Gassmann's equation for two porous frames are given by Berryman
and Milton (1991), Gurevich and Carcione (2000) and Carcione, Gurevich and Cavallini
(2000). The case of n minerals is given in Carcione, Helle, Santos and Ravazzoli (2005).
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The effective-stress concept means that the response of the saturated porous medium
is described by the response of the dry porous medium with the applied stress replaced
by the effective stress. Thus, we search for a modified stress <jj • which satisfies

- Jj) im)
j — cijkl6kl

Comparison of equations (7.30) and (7.36) allows us to identify the Biot effective stress

,, (7.37)

The material constant a - defined in equation (7.25) - is referred to as the "Biot effective-
stress coefficient". It is the proportion of fluid pressure which will produce the same strains
as the total stress.

7.2.1 Effective stress in seismic exploration

Hydrocarbon reservoirs are generally overpressured. This situation can, in principle, be
characterized by seismic waves. To this end, the dependence of the P-wave and S-wave
velocities on effective stress plays an important role. It is well known from laboratory
experiments that the acoustic and transport properties of rocks generally depend on "ef-
fective pressure", a combination of pore and confining pressures.

"Pore pressure" - in absolute terms - also known as formation pressure, is the "in situ
pressure of the fluids in the pores. The pore pressure is equal to the "hydrostatic pressure"
when the pore fluids only support the weight of the overlying pore fluids (mainly brine). In
this case, there is communication from the reservoir to the surface. The "lithostatic" or
"confining pressure" is due to the weight of overlying sediments, including the pore fluids3.
A rock is said to be overpressured when its pore pressure is significantly greater than the
hydrostatic pressure. The difference between confining pressure and pore pressure is called
"differential pressure".

Figure 7.3 shows a typical pressure-depth relation, where the sediment of the transition
zone is overpressured. Various physical processes cause anomalous pressures on an under-
ground fluid. The most common causes of overpressure are disequilibrium compaction
and "cracking", i.e., oil to gas conversion.

Let us assume a reservoir at depth z. The lithostatic pressure for an average sediment
density p is equal to pc = pgz, where g is the acceleration of gravity. The hydrostatic pore
pressure is approximately pn — Pw9^-> where pw is the density of water. As stated above,

= pH if there are no permeability barriers between the reservoir and the surface, or
when the pressure equilibration is fast - high overburden permeability. Taking the trace
in equation (7.30), we get

-on = Km$m - apf. (7.38)

Identifying the left-hand side with minus the confining pressure and i^m$m with minus
the effective pressure pei we obtain

Pe=Pc~ ®Pf- (7.39)
3Actually, a rock in the subsurface is subjected to a non-hydrostatic state of stress: in general, the

vertical stress is greater than the horizontal stress, and this situation induces anisotropy in an otherwise
isotropic rock.
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Figure 7.3: Typical pressure-depth plot, where the different pressure definitions are illustrated.

Terzaghi's equation (Terzaghi, 1925, 1943) is obtained for an incompressible solid material,
Ks —> oo. Then, from equation (7.25), a —>• 1, and the effective pressure, predicted by
Biot's theory, is equal to the differential pressure.

Let us consider now an undrained test, that is, £ = 0. Then, the elimination of $m in
equations (7.32) and (7.33) gives

Pf = Bpe, (7.40)

where

B =
aM

K,G
(7.41)

is called the Skempton coefficient (Skempton, 1954). In this experiment, the fluid pressure
depends linearly on the confining pressure. Measuring the Skempton coefficient allows us
to calculate the two poroelasticity constants a and M,

a =
1

~B
1 -

K
m

K
and M =

B2K G

G Ka-K,
(7.42)

G m

Actually, each acoustic or transport property of the medium, such as wave velocity and
permeability, has a different effective-stress coefficient. For instance, Gangi and Carlson
(1996) show that the wave velocities depend on the effective pressure, which can be written
as where

Pe=Pc~ nvpf (7.43)
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where nv: the effective-stress coefficient, is a linear function of the differential pressure.
This dependence of nv versus differential pressure is in good agreement with the ex-
perimental values corresponding to the compressional velocity obtained by Prasad and
Manghnani (1997). It is shown in Section 7.2.2 that the effective-stress coefficient for the
porosity is 1.

Pore-volume balance

The case of disequilibrium compaction is that in which the sedimentation rate is so rapid
that the pore fluids do not have a chance to "escape". Balancing mass and volume
fractions in the pore space yields the pore pressure, the saturations and the porosity
versus time and depth of burial. Thermal effects are also taken into account. The pore
pressure, together with the confining pressure, determines the effective pressure which, in
turn, determines the dry-rock moduli.

For a constant sediment burial rate, 5, and a constant geothermal gradient, G, the
temperature variation of a particular sediment volume is

T = To + Gz, z = St, (7.44)

where t is here the deposition time and To the surface temperature4. Typical values of
G range from 10 to 30 °C/km, while S may range between 0.05 and 3 km/m.y. (m.y. =
million years) (Mann and Mackenzie, 1990).

Assuming only liquid hydrocarbon and water in the pore space

, (7.45)

where Qp is the pore volume, and Mo and Mw are the volumes of the hydrocarbon and
water in the pore space, respectively. We have

, T, Mp) = dno(Pf, T, Mo) + dnw(Pf, T, Mw), (7.46)

where Mo and Mw are the masses of the hydrocarbon and water phases and Mv is the
total mass in the pore space.

If no mass (of the hydrocarbon or the water) leaves the pore space, (and there is no
"phase" conversion), then dMp = 0 = dM0 = dMw and we have

dpf +\W + ^r) dT- {7A7)

We define

dpep dpe Uo dpf Uw

the compressibilities for the pore space, hydrocarbon and water, and

np dT' a° no dT' aw nw
]

4 Readers should not confuse T with the kinetic energy.
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the corresponding thermal-expansion coefficients. Let us assume that the compressibilities
of hydrocarbons and water are independent of pressure and temperature. That this is the
case can be seen from the results given by Batzle and Wang (1992), in their Figures 5
and 13, where they show that the density is almost a linear function of temperature and
pressure. This means that the mentioned properties are approximately constant (see also
their Figure 7, where the oil compressibility remains almost constant when going from
low temperature and low pressure to high temperature and high pressure). Moreover, let
us assume that the rock compressibility Cp is independent of temperature but depends
on pressure. We consider the following functional form for Cp as a function of effective
pressure:

Cp = C™ + /?exp(-p e /y), (7.50)

where C£°, /? and p* are coefficients obtained by fitting experimental data. Assume that
at time t{, corresponding to depth z\, the volume of rock behaves as a closed system. That
is, if the rock is a shale, its permeability is extremely low, and if the rock is a sandstone,
the permeability of the sealing faults and surrounding layers is sufficiently low so that the
rate of pressure increase greatly exceeds the dissipation of pressure by flow. Pore-pressure
excess is measured relative to hydrostatic pressure.

Integration of (7.48) and (7.49) from pfi (pei) to pf (pe) and T{ to Tt + AT, where AT
= T-Ti, yields

= Qoi[exp(-CoApf + aoAT)], (7.51)

= nwi[exp(-CwApf + awAT)], (7.52)

and
Qp(pf, T) = ttpi{exp[E(Apf) + apAT}}, (7.53)

where (see equation (7.50))

E(Apf) = -C™Ape + Pp*[exp(~Pe/p*) -

Ape =pe- Pei and Apf =Pf~ Pfi.
Assuming a linear dependence of the effective-stress coefficient, n, versus the differen-

tial pressure, pd = pc — p/:

n = n0- nipd, (7.54)

where no and n\ are constant coefficients, the effective pressure can be written as

Pe=Pc~ {no - nipc)pf - nip*. (7.55)

Using equation (7.47), the pore volume at pore pressure pf and temperature T is given
by

apAT]} = Qwi[exp(-CwApf + awAT)}

+noi[exp(-CoApf + a0AT)]. (7.56)

Since the initial saturations are

V /

equation (7.56) becomes

exp[E(Apf) + apAT] = Swi[exp(-CwApf + awAT)]
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+(1 - Swi)[exp{-C0Apf + Q 0 A T ) ] . (7.58)

The solution of equation (7.58) gives the pore pressure pf as a function of depth and
deposition time t, with AT = T — T^ = G(z — Z{) = GS(t — ti) for a constant geothermal
gradient and a constant sediment burial rate. The excess pore pressure is

Acoustic properties

In order to obtain the acoustic properties, such as wave velocity and attenuation factor,
versus pore and confining pressures, the dry-rock bulk and rigidity moduli Km and /xm

should be evaluated as a function of the effective pressure. Then, an appropriate model,
like Biot's theory, can be used to obtain the properties of the saturated porous medium.
Those moduli can be obtained from laboratory measurements in dry samples. If Vpo
and vso are the experimental dry-rock compressional and shear velocities, the moduli are
approximately given by

Km(pc) =
4

VP0 (Pc) ~ -Z
.2 = (1 - (f>)psV2s0(Pc)- (7-59)

These are rock moduli at almost zero pore pressure, i.e., the case when the bulk modulus
of the pore fluid is negligible compared with the frame bulk modulus, as, for example, air
at room conditions.

The procedure is to fit the experimental data, say Km, by functions of the form

aPc + bexp(-pc/p*), (7.60)

where K™, a, b and p* are fitting coefficients. Knowing the effective-stress coefficients
for Km and \xmi it is possible to obtain the wave velocities for different combinations of
the pore and confining pressures, since the property should be constant for a given value
of the effective pressure. This is achieved by simply replacing the confining pressure by
the effective pressure (7.55) in equations (7.60), where n corresponds either to Km or to
fim. An example of the application of this approach can be found in Carcione and Gangi
(2000a,b), where the effects of disequilibrium compaction and oil to gas conversion on the
seismic properties are investigated.

Use of high-frequency (laboratory) data to make predictions in the seismic - low-
frequency - band should be considered with caution. The fluid effects on wave velocity
and attenuation depend on the frequency range. At low frequencies, the fluid has enough
time to achieve pressure equilibration (relaxed regime) and Gassmann's modulus properly
describes the saturated bulk modulus. At high frequencies, the fluid cannot relax and
this state of unrelaxation induces pore pressure gradients. Consequently, the bulk and
shear moduli are stiffer than at low frequencies (White (1975), Mukerji and Mavko, 1994;
Dvorkin, Mavko and Nur, 1995). This attenuation mechanism is discussed in Section
7.10.

7.2.2 Analysis in terms of compressibilities

The fact that there are two independent volumes and that two independent pressures can
be applied to a porous medium implies four different compressibilities. Let us denote
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p and flb as the solid, pore and bulk volumes, respectively. The porosity and the void
ratio are, respectively, defined by

/ ^ p i ^ p ^ p Y (7 f{~\\

il i l m ilb — i Ip 1 — (p

The two pressures are the confining and the pore-fluid pressures. Following the work of
Zimmerman (1991, p. 3), the compressibilities are defined as

r

9Pf ' Pc

SM , (7-64)
p re / pf

and
i on

(7.65)
Pc

The first compressibility can be obtained with the jacketed compressibility test described
in Section 7.1.1, and the last compressibility is the pore compressibility (see below).
The different signs imply that all the compressibilities will be positive, because positive
confining pressures decrease the volumes ftp and Qb, while positive pore pressures increase
those volumes. The other, intrinsic, compressibilities are the solid material and fluid
compressibilities,

1, and Cf = Kj1, (7.66)

respectively.
In order to obtain the relationships between the compressibilities, we need to perform

a series of ideal experiments consisting of different pressure changes (dpc, dpf). The bulk
volume changes due to the stress increment (0, dp) are equal to the differences between
the volume changes resulting from the stress increments (dp, dp) and (dp, 0). The first of
these experiments corresponds to that described by equation (7.13)i, and the second to
the jacketed experiment (Section 7.1.1). Since, in general, dQ = ±CQdp, with C being
the corresponding compressibility, we have

CbpQbdp = -CsQbdp - (-CbcQbdp) = (Cbc - Cs)Qbdp, (7.67)

then
= Cbc — Cs. (7.68)

Let us consider now the pore volume changes and the same stress decomposition as before.
The stress increment (dp, dp) generates a change of scale, implying that the change in
pore volume is, in this case, given by —CsQ,pdp. This can be interpreted as follows. The
straining produced by (dp, dp) can be obtained by filling the pores with the solid material
and applying a confining stress dp. Thus, a uniform straining in the solid results in the
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same straining of the pore space, and the local dilatation is everywhere given by —Csdp.
We obtain

CppQpdp = —CsQpdp — (—CpcQpdp) = (Cpc — Cs)Qpdp, (7.69)

which implies
p = Cpc — Cs. (7.70)

A third relation can be obtained by invoking Betti-Rayleigh's reciprocal theorem (Fung,
1965, p. 5): in a linear elastic-solid, the work done by a set of forces acting through the
corresponding displacements produced by a second set of forces is equal to the work done
by the second set of forces acting through the corresponding displacements produced by the
first set of forces. Hence, if the two forces F\ and F2 act on an elastic body, the work done
by F\ acting upon the displacements due to F2 is equal to the work done by F2 acting
upon the displacements due to F\. Let F\ and F2 be the stress increments (dp, 0) and
(0, dp), respectively. Then, the first work is

= -dp(cbpnbdP) = -cbpnb(dP)2,

where the minus sign is due to the fact that the confining pressure decreases the bulk
volume. The second work is

W2 = dp(-CpcQpdp) = -CpSlp{dpf. (7.72)

Here the sign is positive, since the pore pressure tends to increase the pore volume.
Applying Betti-Rayleigh's theorem and using equation (7.61)i, we get

Cbp = (j>Cpc (7.73)

(see also Mavko and Mukerji, 1995). Equations (7.68), (7.70) and (7.73) allow us to
express three compressibilities in terms of 0, Ks and Km:

(7.74)
K;

_\_( 1 1
pc

-t^m ^s
(7.75)

and

PP
-L^m ^ 5

(7.76)

Let us now obtain Gassmann's undrained modulus in terms of the above compressibilities.
In an undrained compression, the fluid is not free to move into or out of the pore space.
Such a situation is relevant to rapid processes such as wave propagation. The bulk and
pore strains can be expressed in terms of the compressibilities as

deb = -Cbcdpc + Cbpdpf, (7.77)

and
dep = -CpCdpc + Cppdpf, (7.78)
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The signs guarantee that decreasing confining pressure or increasing pore pressure imply
positive strain increments. Now note that if the fluid completely fills the pore space and
the mass of fluid is constant within the pore, we also have

dep = —Cfdpf. (7.79)

The ratio — deb to dpc is the undrained compressibility. Combining equations (7.77), (7.78)
and (7.79), we get Gasmmann's compressibility,

deb CbpCbpCpc

dpc Cpp + Cf G

which, by virtue of equations (7.62), and (7.74)-(7.76) gives Gasmmann's compressibility,
i.e., the inverse of Gasmmann's undrained modulus obtained in Section 7.2 (equation
(7.34)) by setting the variation of fluid content C equal to zero.

Different effective-stress coefficients must be used for the various properties of the
medium (Zimmerman, 1991, p. 32-40). Let us consider, for instance, the porosity. Equa-
tion (7.61) implies ln0 = \nflp — ln^V Differentiating, we obtain

= dcp — dcb
p

Using equations (7.77) and (7.78), we have

—r = (Cbc - Cpc)dpc - (Cbp - Cpp)dpf, (7.82)

and substituting equations (7.74), (7.75) and (7.76), we note that the change in the
porosity becomes

£> d { P c ~Pf) = ~ OKr) d { P c - (7.83)

where a is given by equation (7.25). The incremental porosity depends on the differential
pressure, since its effective-stress coefficient is equal to 1. The term in parentheses is al-
ways positive, and this implies that the porosity is a decreasing function of the differential
pressure.

It is found experimentally that the effective-stress coefficients depend on pore and
confining pressures. In principle, this may invalidate the whole concept of effective stress.
However, if one assumes that the differentials deb and dep in equations (7.77) and (7.78)
are exact differentials, the effective-stress coefficient for bulk deformations can be shown
to depend on the differential pressure pa = pc — Pf- The demonstration follows. If a
differential is exact, the Euler condition states that the two mixed partial derivatives are
equal; that is

deb a fdq,\ dCbc

dpfdpc dpf \dpcj dpf '

d2eb d fdeb\ dCbp d(Cbc-Cs) dCbc

dpcdpf dpc \dpfj dpc dpc dp,
(7.85)
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where equations (7.62), (7.63) and (7.68) have been used. Then

dCbc dCbc dCbc
= —*—'

Opc

where we assumed that the solid compressibility Cs is independent of pressure. Similarly,
the application of the Euler condition to ep yields

dpf dpc

The form of the differential equations (7.86) and (7.87) for Cbc(pc,pf) and Cpc(pc,pf)
implies that these compressibilities depend on the pressures only through the differential
pressure,

Cbc = Cbc(pd), and Cpc = Cpc(pd). (7.88)

Effective-stress coefficients for transport properties are obtained by Berryman (1992).
For instance, the permeability effective-stress coefficient is found to be less than one, in
contrast with experimental data for clay-rich sandstones. This is due to the assumption
of microscopic homogeneity. Using a two-constituent porous medium, the theory predicts,
in some cases, a coefficient greater than one.

7.3 Anisotropic media. Strain energy and stress-strain
relations

Porous media are anisotropic due to bedding, compaction and the presence of aligned
microcracks and fractures. In particular, in the exploration of oil and gas reservoirs,
it is important to estimate the preferential directions of fluid flow. These are closely
related to the permeability of the medium, and consequently to the geometrical charac-
teristics of the skeleton. In other words, an anisotropic skeleton implies that permeability
is anisotropic and vice versa. For instance, shales are naturally bedded and possess in-
trinsic anisotropy at the microscopic level. Similarly, compaction and the presence of
microcracks and fractures make the skeleton anisotropic. Hence, it is reasonable to begin
with the theory for the transversely isotropic case, which can be a good approximation
for saturated compacted sediments. The extension to orthorhombic and lower-symmetry
media is straightforward.

We assume that the solid constituent is isotropic and that the anisotropy is solely
due to the arrangement of the grains (i.e., the skeleton is anisotropic). Generalizing the
single-phase strain energy (1.8), we can write

2V = c i i ^ u + e\2) + c33e33 + 2(cn - 2c66)ene22 + 2c13(en + e22)e33

?3 ) + cme\2 + 2Ci(en + e22)tf; + 2C3e33tf/ + 2F&f (7.89)

(Biot, 1955), where the strains e^ correspond to the frame (The superscript (m) has been
omitted for clarity). The last three terms are the coupling and the fluid terms, written in
such a way as to exploit the invariance under rotations about the z-axis.
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The stress-strain relations can be derived from equations (7.3). We get

ll — c l l e l l + l c l l "~ ^C66je22 + ^3633
(m) (m) . / o \ (m) i (m)
\ = cne + (en - 2c66)e

K
u + Ci3e33

(7.90)
(m)(m) r> (m

cr13 — z c 4 4 e 1 3
(m) o (m)()

(7 1 2 —

In order to obtain the elasticity coefficients in terms of known properties, we require eight
experiments, since there are eight independent coefficients. Let us first recast the stress-
strain relations in terms of the variation of fluid content, the total stress and the fluid
pressure. Use of equation (7.22) implies $/ = $m — (/</>, and equation (7.90)7 can be
expressed, in analogy with (7.32), as

(7.91)

where

a = | 0 (7.92)

with

(7.93)

and
M' = F/<j)2. (7.94)

Using the shortened matrix notation, we alternatively write5

Ta = (ai, ai, as, 0, 0,0) , (7.95)

where the components are denoted by a/.
Let us consider equation (7.90)i, and compute the total stress according to equation

(7.21) to obtain a form similar to equation (7.30). Using equation (7.29), $/ = $m —
and equations (7.91) and (7.93), we obtain

(m) , / o \ (m) , (ra) , ^ 0 ^ 1 imi / ^ n ^ \
- " ^v + (en - 2c66)e22 + ci3e33 + Ci^m - — ^ 4 - cup/. (7.96)

Rearranging terms, we rewrite

an = (en + d - Ciai/0)eg° + (c12

+(ci3 (7.97)
5Readers should not confuse a with the attenuation vector.
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where C12 = Cn — 2CQQ. From (7.90), we obtain - using the shortened matrix notation (see
equations (1.20) and (1.27)) - an equation of the form

(m) (m)(m) (m) /* n o \
= c}/e> -otipf, (7.98)

where
c(m) = c

= C12 ( /0)

C3(l -
()

C33 =
(m) (ra)

C44 — C5 5 — C44
(ra)

C66 — C66-

For a drained condition (jacketed test), in which pf is zero, we have

e (7.100)

Thus, the coefficients c\y are identified as the components of the drained frame. Since
there are five dry-rock moduli, five experiments are required to measure these moduli.

Three other experiments are required to obtain a\, a3 and M'. These experiments are
unjacketed tests, where measurements in the plane of isotropy and in the axis of symmetry
are performed. As in the isotropic case, the unjacketed compression test requires o^' =
— (1 — (j))pf5ij, and a^ = —<jypf (see equations (7.11) and (7.12)). Then, from equation
(7.21), the total stress is <7̂ - = —pfSij. The first three components of equation (7.98)
become

e11 c l l "•" C12 e22
<n (ry — -\\ — ^ ( m U m ) _U ̂ ( m L( m ) _L ~(mL(m) (7 1 DI^
U f \ C - c i -L J — 0 - 1 o t i i ~ T ~ O i i t o o ~ T ~ ^ 1 Q C Q Q I I . i u i J

•L J \ s \-ZJ -L J. J. J_ ZJZJ 1 O O O ^ '

(ra) . (ra)\ , (ra)
n ~\ Coo i "T~ U ^ t o q

Because the loading corresponds to a change of scale for the porous medium, the
resulting strain components are related to the bulk modulus of the solid by

(m)

•' 3KS '

assuming that the solid material is isotropic. Then, the effective-stress coefficients are
given by

(m) . (m) (m)J
12 ^ C13

1 /O

= 1 - (2c\3

Similar expressions for OL\ and a3 are given by Thompson and Willis (1991) in terms of
Skempton coefficients (Skempton, 1954).

The last unjacketed test involves equation (7.91), and is expressed as

M I\J- / (m) . (m)\ (m)i f>-7-tr\A\

[C-aifcii + 4 2 ) -«3e33 1' (7.104)

with

K ,
(7.105)
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according to equation (7.13). Substituting equations (7.102) and (7.105) into equation
(7.104), we obtain

M' = KS
K *

-6 1 -
K. T V K

(7.106)

where

K* = (7.107)

is the generalized drained bulk modulus. Expression (7.106) is similar to (7.24), with Km

replaced by K*.
The coefficients of the strain-energy density (7.89) can now be derived from equations

(7.99). Using equation (7.93) and (7.94), we obtain

en = cg° + (ai - <t>?M'
Cl2 = c^ + (ax - 2

C33 = 4 ? + (<*3 - 0)2M'
(77l)

C44 C44
/ \

C66 = 4iS = (CH - Ci 2 ) /2

(7.108)

= (f)2M'.

Furthermore, from equation (7.91) pf = M'(( — OLIVJ ), equation (7.98) becomes

M'a/C, (7.109)

where
cu

u = 47} + M'OHOLJ (7.110)

are the components of the undrained-modulus matrix Cu, obtained for f = 0, which is
the equivalent of Gassmann's equation (7.34) (for instance, c^ — 4 ^ / 3 is equivalent to
KG).

As in equation (7.37), the effective stress can be expressed as

0J = (71 + OLiPf. (7.111)

Unlike the isotropic case, an increase in pore pressure also induces shear stresses.
Skempton coefficients are obtained in an undrained test. Let us denote the undrained-

compliance matrix by
)- 1 , (7.112)

and its components by sjj. When £ = 0, equation (7.109) gives

ro) =4 ro ) = »?,<#°. (7.113)

Since, from equation (7.91), pf = —M'aiej, we obtain

pf = - B ^ (7.114)
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where
Bj = (7.115)

are the components of Skempton's 6 x 1 array. Unlike the isotropic case (see equation
(7.40)), pore pressure can be generated by shear as well as normal stresses. The Skempton
array for transversely isotropic media is

T
b =(BU £ i , £ 3 , 0 , 0 , 0 ) ' , (7.116)

where

B3 =
(7.117)

7.3.1 Effective-stress law for anisotropic media

We follow Carroll's demonstration (Carroll, 1979) to obtain the effective-stress law for
general, anisotropic porous media. The stress-strain relation for a dry porous medium,
obtained from equation (7.98) by setting pf = 0, is

(m) (m)
ST. . /->V fu*3 ~ Hjkfikl '

(m) (m)
S

where s-S denotes the compliance tensor, satisfyingijkl

(m) (m) (XX i X
CiiklSklrs ~ ~^\°ir°js "T Ois

(7.118)

(7.119)

S0

sp

Figure 7.4: Sample of porous material, where SQ and Sp are the outer boundaries of the sample and
the pore boundaries, respectively.

Consider now a representative sample of a saturated porous medium (Figure 7.4). It
is bounded by the outer surface So and by the inner surface Sp (pore boundaries). Let us
consider the loading

on SQ, and t{ = —p/rii on Sp, (7.120)
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where rij are the components of a unit vector perpendicular to the respective bounding
surfaces 6. This loading can be treated as a superposition of two separate loadings

on So, and tj = —pffij on Sp (7.121)

and
+ Pftii on So, and ti = 0 on Sp. (7.122)

The first loading gives rise to a hydrostatic pressure pf in the solid material - it corre-
sponds to a change of scale for the porous medium (see Figure 7.2).

The resulting strain is related to the compliance tensor of the solid \jkl

(7-123)

The second loading corresponds to the jacketed experiment (see Figure 7.1). It is related
to the compliance tensor of the dry rock, since pf = 0,

(7-124)

The total strain is then given by

(ro) _ (1) , (2) _ (m) , / (m) (a)
6 ^ 6 S a k l T Pf{S S

The effective-stress law is obtained by substituting equation (7.125) into equation (7.36),
and written as

klmn° mn ^ Pf\bklmm bklmm)h

o, using (7.119),

'ijfcZ klmm

This equation provides the effective-stress coefficients a$7- in the anisotropic case:

~ CijklSklmm) = aij + Pfaij- (7-127)

CiiklSklmmm (7.128)

If the solid material is isotropic,
00 _ _hi_ (7 1 2 Q N

6 / c / m m " o r / ' {1.14V)

and
(7.130)

which is a generalization of equations (7.103).

7.3.2 Summary of equations

The stress-strain relations for a general anisotropic medium are (see also Cheng, 1997):
6As noted by Thompson and Willis (1991), such a load cannot be applied to the fluid parts of So,

since the fluid can sustain only hydrostatic stress. Carroll's approach is, thus, strictly valid if none of the
pores intersect the outer boundary.
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Pore pressure

(m) (7.131)

Total stress
(m) (m)

= CU eJ <*lPf
_ Jm)(m) (7.132)

(ra) u (7.133)

Effective stress

(7.134)

Skempton relation

= Msu
uaj (7.135)

Undrained-modulus matrix

ru — cyy + (7.136)

M =

K* = -
1

9
(ra)
11

K.
(1-K*/Ks)-(I>(1-Ks/Kfy

(m)
33 12

(m) . (m)
• C13 23

(7.137)

(7.138)

= 1 + 4? +

(Note that J > / in the preceding equations).

(7.139)

7.3.3 Brown and Korringa's equations

An alternative derivation of the stress-strain relation for saturated porous anisotropic
media is attributed to Brown and Korringa (1975), who obtained expressions for the
components of the undrained-compliance tensor,

ijkl ^ijkl

(m)
ijnn ijnn

(s)\( (m) _ (s) x
) \aklnn klnn/

(ra)
Smmnn - ca)

(7.140)
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where the superscripts "u", "m" and "s" denote undrained (saturated), matrix (dry rock),
and solid (solid material of the frame), and Cf and Cs are the compressibilities of the fluid
and solid material, respectively (see equation (7.66))7. Equations (7.136) and (7.140) are
equivalent. They are the anisotropic versions of Gassmann's undrained modulus.

Transversely isotropic medium

In order to illustrate how to obtain the compliance components from the stiffness compo-
nents and vice versa, we consider a transversely isotropic medium. The relation between
the stiffness and compliance components are

. S 3 3 1 S l 3 S l 1 + S l 2 1 C7 1A1\
C11+C12 = — , C11-C12 = , C13 = , c33 = , c44 = — , (7.141)

S S — S12 S S S44

where
s = 533(511 + 512) -

(Auld, 1990a, p. 372). Moreover, s66 = 2(sn — S12). Equations for converting C to S are
obtained by interchanging all c's and s's. The components of the corresponding undrained
matrices transform in the same way. Let us consider the component s"133 = s"3. Then,
the different quantities in equation (7.140) are given by

M — j ) 1 Jj) 1 Sm) Jjn) — Jjn) 1 o > ) Ss) — M
llnn — 611 ~r 612 "r *13 5 633nn ~~ 633 ~r Z613 i b\\nn ~ 633nn

m) _ <ylm) i cyim) > (m) , (m)
bmmnn — Zbll ^ LbYl

The value obtained for §5f3 by substituting these quantities into equation (7.140) should
coincide with the value obtained from equations (7.136) and (7.141). That is,

u G13 (7.143)

7.4 Kinetic energy

Let us denote the macroscopic particle velocity by vf' = dtuf , p = m or / , and the
microscopic particle velocity by w\p . In the microscopic description, the kinetic energy is

\f Mf)^dQ (7.144)

where pf and ps are the densities of the fluid and solid material, respectively, and
(1 — 0)fi&, £lf = <j>Qb, with Oj being the volume of the elementary macroscopic and
representative region of porous material. In the macroscopic description, the kinetic
energy cannot be obtained by the summation of two terms, since the involved particle
velocities are not the true (microscopic) velocities, but average velocities. We postulate
a quadratic form with a coupling term, namely,

T = hb(pnvt}4m) + 2p,2«jmM/) + P22 W ) - (7-145)
7The solid material is isotropic. Note that in the isotropic case, Smrnnn — Cs = 1/KS and cmmnn
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This hypothesis assumes statistical isotropy. (In the anisotropic case, terms of the form
vlf vi ) * ¥" J contribute to the kinetic energy.)

We need to find expressions for the density coefficients as a function of the densities
of the constituents and properties of the frame. Assuming that the density of the solid
and fluid constituents are constant in region ^5, the kinetic energy (7.144) becomes

where ( . ) denotes the average over the region occupied by the respective constituent.
Equating the microscopic and macroscopic expressions for the kinetic energy, we obtain

p22vi ^ — {i. — <p)Ps\wi wi )rn-\-(ppf

The linear momenta of the frame and the fluid are

(m) _ 9T _ n ( n Jm) , n Jf)

and
dT

), (7.149)

respectively. The inertial forces acting on the frame and on the fluid are the rate of the
respective linear momentum. An inertial interaction exists between the two phases. If,
for instance, a sphere is moving in a fluid, the interaction creates an apparent increase in
the mass of the sphere. In this case, the induced mass is p\2. When no relative motion
between solid and fluid occurs, there is no interaction. The material moves as a whole
(vi = vl ) a n d the macroscopic velocity is identical to the microscopic velocity. In this
case, we obtain the average density from equation (7.147) and write it as

p = (1 — S)ps + 4>Pf = pu + 2pi2 + P22- (7.150)

The linear momenta of the frame and the fluid, from equation (7.146), are

dT"° =
and

m dT
7r>/j = — — = nb<f)pfwlJ). (7.152)

A comparison of equations (7.148) and (7.149) with (7.151) and (7.152) yields

Pn + P12 = (1 - 4>)ps, (7.153)

and
P22 + P12 = <j>Pf- (7.154)

Substituting pu and p22 in terms of pi2 into equation (7.147), we obtain the following
expression for the induced mass:
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(Nelson, 1988). Thus, the induced mass is given by the difference between the mean square
particle velocities and the square of the corresponding macroscopic particle velocities,
weighted by the constituent densities. Since 0 < (f) < 1, the induced mass is always
negative.

Alternatively, rearranging terms in equation (7.155), we obtain

pu = - ( 1 - ra

{v\J)-v\ (m)
- 1

-<t>pf

We now define the tortuosities

(m)

{v\J)-v\ (m)
- 1 (7.156)

7" =
(m) (7.157)

and

r = (m) (m)
(7.158)

and the induced mass can be expressed as

Pl2 = " ( I - <f>)Ps(Tm ~ 1) - <f>Pf{T~ 1). (7.159)

The tortuosity of the solid is the mean square deviation of the microscopic field of the solid
from the fluid mean field, normalized by the square of the relative field between the fluid
and solid constituents. The preceding statement is also true if "fluid" is substituted for
"solid" in every instance, and vice versa. For a nearly rigid porous frame, the microscopic
field is approximately equal to the macroscopic field, Tm ~ 1, and

Pu = -<f>Pf(T- 1), (7.160)

which is the expression given by Biot (1956a). If the ratio w\'/v\' = l/L, where / is the
tortuous path length between two points and L is the straight line distance between those
points, the tortuosity (7.158) is simply

(7.161)

where we assumed that the frame is nearly rigid. This assumption implies that the
tortuosity is related to the square of the relative path length.

A simple expression for the tortuosity can be obtained if we interpret pu as the
effective density of the solid moving in the fluid, namely,

Pn (7.162)

where rpf is the induced mass due to the oscillations of the solid particles in the fluid.
Using equations (7.153), (7.160), and (7.162), we obtain

(7.163)
0

where r = 1/2 for spheres moving in a fluid (Berryman, 1980)
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7A.I Anisotropic media

Let us consider two different approaches to obtain the kinetic energy in anisotropic media.
In the first approach, the general form of the kinetic energy is assumed to be

, (7.164)

where Q (<?#), R(?"y) and T(ty) are 3 x 3 mass matrices, with R being the induced mass
matrix. Let us assume that the three matrices can be diagonalized in the same coordinate
system, so that

= diag(ri,r2,r3) (7.165)

We shall see the implications of this assumption later. The kinetic energy in the micro-
scopic description is given by equations (7.144) or (7.146). Equating the microscopic and
macroscopic expressions of the kinetic energy, we obtain

) Jplp. (7.166)

The linear momenta of the frame and the fluid are

(m) 01 f^ / (m)

dv\(m)
(7.167)

and

7T> = (7.168)

where the subindex (i) means that there is no implicit summation. As in the isotropic
case, to compute the relation between the different mass coefficients, we assume no relative
motion between the frame and the fluid and equate the momenta (7.167) and (7.168) to
the momenta (7.151) and (7.152). This gives

( 7 1 6 9 )

Eliminating qt and t\ in equation (7.166), we see that

— -1J-- <Ws I \^i Wi )m-Vi Vi )-(()pf[{Wi Wi )f-Vi

which is the equivalent anisotropic relation of equation (7.155). With the use of equations
(7.169), the kinetic energy (7.164) becomes

1 — Ylb[\*- — (p)PsVi v{ -ri[vi -vi ) +<f>pfVi vt J.

Note that in the absence of relative motion, the average density (7.150) is obtained. The
induced mass coefficients 7*1, r^ and r^ are used as fitting parameters, as the tortuosity T
in the isotropic case.
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Let us define the displacement of the fluid relative to the solid frame,

261

(7.172)

such that the variation of fluid content (7.22) is

= -div w. (7.173)

The field variable
w = dtw = 0(v ( / ) - v (m)) (7.174)

is usually called the filtration velocity, which plays an important role in Darcy's law. In
terms of vector w, the kinetic energy (7.171) can be rewritten as

+ 2pfvlm)dtWi + rmdtWidtWi), (7.175)

where
= ((j>pf - ri)/(f>2. (7.176)

The second approach assumes that the relative microvelocity field of the fluid relative
to the frame can be expressed as

(v = a • w), (7.177)

where matrix a depends on the pore geometry (Biot, 1962).
The kinetic energy is

T = (7.178)

where the integration is taken on the fluid volume. The volume integral is

nf

(m) i o (m) i \ JO (<-r -\ i-rn\

v\ '+ 2v\ JVi + ViVi)dtt. (7.179)

We have

(7.180)

From the relation (7.177), we obtain

akiakjdQ. (7.181)

After the substitution of equations (7.180) and (7.181), the kinetic energy (7.178) becomes

T = ^nb(pvlm) vlm) + 2pfvt)dtwi + rriijdtWidtWj), (7.182)

Equations (7.175) and (7.182) are equivalent if

(7.183)
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or
(7.184)

that is, if the three Cartesian components of the fluid motion are uncoupled, or â -, i
are small compared to the diagonal components. This is a strong restriction. Alterna-
tively, we may consider an orthorhombic medium and choose the coordinate axes to lie in
the planes of symmetry - recall that such a medium has three mutually orthogonal planes
of mirror symmetry. In this case, the diagonalization is performed in the macroscopic
domain (Biot, 1962).

7.5 Dissipation potential

Dissipation in mechanical models, consisting of springs and dashpots, is described by the
constitutive equation of the dashpots, which relates the stress with the first time derivative
of the strain. The strain energy is stored in the springs and a dissipation potential accounts
for the dashpots. In Biot's theory, attenuation is caused by the relative motion between
the frame and the fluid. Thus, the dissipation potential is written in terms of the particle
velocities as

\ ^ y ) t ) P , (7.185)
where b is a friction coefficient. A potential formulation, such as equation (7.185), is only
justified in the vicinity of thermodynamic equilibrium. It also assumes that the fluid flow
is of the Poiseuille type, i.e., low Reynolds number and low frequencies.

The coefficient b is obtained by comparing the classical Darcy's law with the equation
of the force derived from the dissipation potential. The dissipation forces are derived from
a potential ^£> as

. (7-186)

such that

— m ~~ —77T- (7.187)

Then,

du)
(7.188)

Darcy's law (Darcy, 1856; Coussy, 1995, p. 71) relates the filtration velocity of the fluid,
<j>[v\ — v\ ) (see equation (7.174)) to the pressure gradient, cy?/, as

= dtWi = --diPf, (7.189)

where R is the global permeability and 77 is the viscosity of the fluid 8. Since Fi is a force
per unit volume of fluid material, F{ = ~4>diPf. Comparing equations (7.188) and (7.189),
we obtain the expression of the friction coefficient, namely

(7.190)

8 Note that permeability is defined by K and the magnitude of the real wavenumber vector is denoted
by K.
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7.5.1 Anisotropic media

The most general form of the dissipation potential in anisotropic media is

(7.191)

where bij are the components of a symmetric friction matrix b. Onsager's symmetry
relations ensure the symmetry of b, and a positive-definite quadratic potential (Biot,
1954; de Groot and Mazur, 1963, p. 35; Nye, 1985, p. 207).

The potential (7.191) can be written in terms of the relative fluid displacement (7.172)
as

I
i ^ d d (7.192)

where
(7.193)

is the permeability matrix (see equation (7.189).
Darcy's law takes the form

dtw = -R, • grad(p/). (7.194)

For orthorhombic media, the friction matrix can be recast in diagonal form, in terms
of three principal friction coefficients 6̂ , and, hence

tt«

The dissipation forces are derived as

• <T> "'"' (7.196)
dvy> • •

In terms of the three principal permeability components Ri and the filtration velocity
(7.174), we have

= -—dtwidtwi = -—Wiibi. (7.197)

7.6 Lagrange's equations and equation of motion

The equation of motion can be obtained from Hamilton's principle. The Lagrangian
density of a conservative system is defined as

L = T-V. (7.198)

The motion of a conservative system can be described by Lagrange's equation, which is
based on Hamilton's principle of least action (Achenbach, 1984, p. 61). The method
can be extended to non-conservative systems if the dissipation forces can be derived
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from a potential as in equation (7.186). Lagrange's equations, with the displacements as
generalized coordinates, can be written as

a dL

dv (p)

dL

_d{dju<*))_ du)(p) dv)(p)
(7.199)

where p = m for the frame and p = f for the fluid. These equations are equivalent to
Biot's classical approach

dv (p) dv (P)
(7.200)

(P)where q) are the generalized elastic forces, given by

(p) _ dL dV
(7.201)

because L does not depends explicitly on
from equations (1.2) and (7.3),

dV

(dL/du^ = 0) (Biot, 1956b). Note that

dV
(m)

(7.202)

and

Qi — aiaii — (7.203)

According to equations (7.148)-(7.149), the generalized linear momenta per unit volume
acting on the frame and on the fluid are

dT

dv)(m)
M (7.204)

and
dT

dv)
("0 (7.205)

^
Then, the equation of motion, from (7.200), is

F>p) = div (7.206)

where are the dissipation forces.
From the expression (7.185) for the dissipation potential, we have, for isotropic media,

(7.207)

and
(7.208)

where the sign of the friction terms are chosen to ensure attenuated propagating waves.
Equations (7.207) and (7.208) hold for constant porosity (Biot, 1956a,b).
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7.6.1 The viscodynamic operator

Adding equations (7.207) and (7.208) and using equations (7.21) and (7.29), we obtain

+ Pi2)dlu^ + (p12 + P22)d2
uu

{P. (7.209)

Using equations (7.153) and (7.154), substituting the relative fluid displacement (7.172)
into equations (7.208) and (7.209), and considering equation (7.190), we obtain the low-
frequency equations of motion

+ Pfd&Wi, (7.210)

and
+ mdfowi + -dtwh (7.211)

where p is the average density (7.150), W{ are the components of vector w, and

m = p22/cf)2 = Pfr/(/>, (7.212)

according to equations (7.154) and (7.160). Equations (7.210) and (7.211) hold for inho-
mogeneous porosity (Biot, 1962). The demonstration and the appropriate expression of
the strain-energy density is obtained in Section 7.8.

Equation (7.211) can be rewritten as

= pfdlu\m) + Y * dtWi, (7.213)

where
Y(t) = mdtS(t) + -5{t), (7.214)

is the low-frequency viscodynamic operator, with 5 being Dirac's function.
In order to investigate the frequency range of validity of the viscodynamic operator

(7.214) and find an approximate operator for the high-frequency range, we evaluate the
friction force per unit volume in, say, the ̂ -direction for a simple pore geometry. According
to equations (7.186) and (7.187), the friction or dissipation force is given by

FU) = -d^D/dv[f) = b(v[f) - v[m)) = bvu (7.215)

where V\ = v[ — v^1 is the average macroscopic velocity of the fluid relative to the
frame. Then, the friction coefficient is given by

(7.216)

i.e., it is the friction force per unit macroscopic velocity. To this end, we solve the problem
of fluid flow between two parallel boundaries (see Figure 7.5).

7.6.2 Fluid flow in a plane slit

We consider that the fluid motion is in the ̂ -direction and that the boundaries are located
at y = ±a, where a plays the role of the pore radius. The displacement only depends on
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y = + a

X

= w^f) - VjM

y = -a

Figure 7.5: Two-dimensional flow between parallel walls.

the variable y: and we neglect pressure gradients and velocity components normal to the
boundaries. The shear stress in the fluid is

(7.217)12

where w^ is the microscopic particle velocity of the fluid. The viscous force is the
divergence of the shear stress. Then, Euler's equation of motion for the viscous fluid is

—dip/ +

Defining the microscopic relative fluid velocity,

pfdtw[ . (7.218)

(7.219)

where V™ = dtv>i is the macroscopic particle velocity of the solid, we have

' + j]d2d2vi = pfdtvi,

where we have neglected the term rjd2d2Vi . If we consider that

(7.220)

-dip/ - = pfF (7.221)

is equivalent to an external volume force, equation (7.220) becomes

F, v = (7.222)

where v is the dynamic viscosity. Assuming a harmonic wave with a time dependence
, the solution to this equation is

F
= \- c cosh

KJ

\UJ

V
y (7.223)

requiring that the function v\ be symmetric in y. The condition v\ = 0 at the boundaries
allows us to determine the constant c. We obtain the solution

F
\u

cosh
1 -

cosh ( \J\ijjjva
(7.224)
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When u —> 0, equation (7.224) becomes

F
(7.225)

and the velocity profile is parabolic, corresponding to the Poiseuille flow
The average (filtration) velocity W\ (see equation (7.174)) is

1
W\ =

2a

+a

—a \UJ a \UJ
tanh a

\ v
(7.226)

since the averaging is performed in the fluid section (i.e., an effective porosity equal to 1).
Defining the dimensionless variable as

q = a
V

(7.227)

the average velocity becomes

W\ =
PfFa'

rjq2
1 tanh(g)

q
(7.228)

The combination of equations (7.221) and (7.228) yields

iPf ~
(ra)
\ =

\AJ

q
1 - (1 /q)tanh(q) _

(7.229)

A comparison of equations (7.213) and (7.229) reveals that the viscodynamic operator of
the plane slit for harmonic waves is

Y = T[Y{q)] =
a

q
1 -

(7.230)

Using equation (7.224), the viscous stress at the walls is

[2riF\
r = r]d2vi(y = +a) + r]d2vi(y = -a) = 2j]d2vi{y = —a) = I I q tanh(g). (7.231)

y 1UJQ, J

A generalized b proportional to the viscous stress can be obtained. Since b should be
equal to the total friction force per unit average relative velocity and unit volume of bulk
material (i.e., the porosity 0), the friction force per unit area of the fluid is obtained by
multiplying the stress r by <f>/2a. Then

b =
2aw\

(7.232)

where
q tanh(g)

(7.233)
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(Fi(O) = 1) . At high frequencies, F\ —>• q/3; that is,

Fl(oo) = IV 7 ' (7'234)

and the friction force increases as the square root of the frequency.
Consider the case of low frequencies. Expanding the expression (7.230) in powers of

q2, and limiting the expansion to the first term in q2 gives

(7.235)
a' "

Comparing the time Fourier transform of equation (7.214) with equation (7.235), we find
that at low frequencies,

m = (6/5)p/. (7.236)

Now note that Y/q2 —>• ij/a2 in equation (7.230) at the high-frequency limit, i.e., when
q —>• oo. In this limit, the viscous contribution should vanish and the result should give
the expression of the inertial term iwm/q2. Since icj/q2 = v/a2, we obtain

m = pf (7.237)

at high frequencies (Biot, 1962).
The operator (7.230) can be recast as the sum of an inertial term iujm and a viscous

term fj/fi as

Y(u) = iujm(uj) + - ^ , (7.238)

where
(7.239)

and m depends on frequency.
It turns out that the viscodynamic operator for pores of a circular cross-section can

be obtained from F\ by substituting a by 3r/4, where r is the radius of the tubes:

Fi(a) -f Fx ( | ) . (7.240)

Alternatively, this is equivalent to a scaling in the frequency u —>• 9o;/16. Thus, for a
general porous medium, we may write

) , (7.241)

where (5 is a structural factor that depends on the geometry of the pores; f3 = 1 for slit-like
pores, and /? = 9/16 for a tube of a circular cross-section. The best value of (5 is obtained
by fitting experimental data.

Johnson, Koplik and Dashen (1987) obtain an expression for the dynamic tortuosity
J ) , which provides a good description of both the magnitude and phase of the exact

should not be confused with the dissipation forces defined in (7.186). The notation is consistent
with Biot (1956b).
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dynamic tortuosity of large networks formed from a distribution of random radii. The
dynamic tortuosity and dynamic permeability are

T(CJ) = T + \xF and K(LJ) =
- i

x
(7.242)

respectively, where

xA2(f> ' x = (7.243)

In equation (7.243), «o is the global permeability, T is the tortuosity defined in (7.158)
and A is a geometrical parameter, with 2/A being the surface-to-pore volume ratio of the
pore-solid interface. The following relation between T, fto> &nd A can be used:

0A2 = 1, (7.244)

where f = 12 for a set of canted slabs of fluid, and £ = 8 for a set of non-intersecting
canted tubes. Function F plays the role of function F\ in the previous analysis. Figure
7.6 compares the real (a) and imaginary (b) parts of F and i*\ (solid and dashed lines,
respectively) versus the frequency / , for R,o = 1 Darcy (10~12 m2), rj = 1 cP, pf = 1040
kg/m3, (f) = 0.23, T = 2, a = 20 /mi, f = 2 and /? = 0.6. Since Johnson, Koplik and
Dashen (1987) use the opposite convention for the sign of the Fourier transform, we
represent F(—u).

Q)

O 1

0
1

(a)

6 7 8

Log[f(Hz)]

O

1 6 7 8

Log[f(Hz)]

Figure 7.6: A comparison of function F\ for a plane slit (with /? = 0.6) and function F proposed by
Johnson, Koplik and Dashen (1987) to model the dynamic tortuosity.

The viscodynamic operator (7.214) derived from the Lagrangian approach is valid up
to frequencies where the Poiseuille flow breaks down. According to equation (7.224) the
complex wavenumber of the oscillations is

k =
UJ

(7.245)
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The quarter wavelength of the boundary layer is

(7.246)

If we assume that the Poiseuille flow breaks down when A4 is of the order of the pore size
2a, the limit frequency is

«, = g . (7.247)
If we consider that the permeability of slit-like pores is

R = ^ , (7.248)

in agreement with equations (7.190), (7.232) and (7.238), the limit frequency can be
expressed as

(£ —• (7-249)
Up, y '

In a general porous medium, we may assume that the transition occurs when inertial and
viscous forces are of the same order, i.e., when icom = rj/ft, (see equation (7.238)). This
relation defines another criterion, based on the limit frequency

(*>', = —. (7.250)
mR

Using equation (7.212), we rewrite equation (7.250) as

« ( 7 - 2 5 1 )

These frequencies define the limit of validity of the low-frequency Biot's theory.

7.6.3 Anisotropic media

The equation of motion for anisotropic media has the form (7.206)

(7.252)

considering the pore pressure and stress components (7.131) and (7.133), the linear mo-
menta (7.167) and (7.168), and the dissipation forces (7.196). We assume for simplicity,
an orthorhombic medium, and that the elasticity, permeability and induced mass matrices
are diagonal in the same coordinate system.

Explicitly, we obtain

r/"i J . \ 1 o2 [TH) - <~\2 (/ J i L / \Tfi) \t)\ (i~? o r o \
I T̂  / rS ' (% ) ^ff ^ Q *^ ' ( 2 ) ̂ ff ^ Q *^ "% V U q ^ A I I I .Z iUO J

and
= r(fla»«jm) + ( M - r w ) ^ « j f l - 6,^1"" - ^ f l ) . (7.254)
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In terms of the relative fluid displacement, these equations are similar in form to equations
(7.210) and (7.211), namely,

jGij = pd%.u\m) + pfSfcwi, (7.255)

and
= Pfdttu\m) + rriidfowi + —dtwh (7.256)

where mi is given in equation (7.176). Introducing the viscodynamic matrix

Y = (7.257)

with components Yi = Y ^ - ) ^ , we see that equation (7.256) becomes

-dipf = Pfdlu\m) + Yt * dtWi, (7.258)

where
+ — S. (7.259)

Equations (7.255) and (7.256) hold for inhomogeneous porosity.

7.7 Plane-wave analysis

The characteristics of waves propagating in a porous medium can be obtained by "prob-
ing" the medium with plane waves. Because, in isotropic media, the compressional waves
are decoupled from the shear waves, the respective equations of motion can be obtained
by taking divergence and curl in equations (7.207) and (7.208).

7.7.1 Compressional waves

Let us consider first the lossless case (b = 0 in equation (7.207) and (7.208)). Firstly,
applying the divergence operation to equation (7.207), and assuming constant material
properties, we obtain

W i + Pi2^/, (7.260)

and $/ = diu\where $m = diii^ and $/ = diu\ . From equation (7.19) and using (1.15), we have

(7.261)

\ = dddir™1' + dddU = 2dddu\m'Because 2didje\j = didjdjir™1' + didjdiUj = 2didjdju\m' = 2c^'#m , we obtain from
(7.260),

K + jfim) dA^ + Cdidi'df = pndl$m + pi2dl#f. (7.262)

Secondly, the divergence of equation (7.208) and the use of (7.20) gives

+ Rdidi'df = pndltim + Pnd&tif. (7.263)
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Let us consider, without loss of generality - because the medium is isotropic - propagation
in the ^-direction, and assume the plane waves

o exp[i(cj£ - KX)], (7.264)

], (7.265)

where K, is the real wavenumber. Substituting these expressions into equations (7.262)
and (7.263), we find that

B tf = v2
p D tf, (7.266)

where
vp = - (7.267)

is the phase velocity, and

), (^ £ (
/0 / V C R ) \ Pl2 P22

(7.268)

Equation (7.266) constitutes an eigenvalue/eigenvector problem whose characteristic equa-
tion is

det(D"1 • B - v\ I2) = 0. (7.269)

The solution of this second-order equation in v2 has two roots, corresponding to two
compressional waves. Let us denote the respective velocities by vp±, where the signs
correspond to the signs of the square root resulting from the solution of equation (7.269).
Now, let us consider the two eigenvectors # + and #_ and the respective equations resulting
from (7.266),

i l . (7.270)

Multiplying the first by #_ and the second by $+ from the left-hand side, we get

_ • B • tf+ = ^+tf_ • D • tf+, 0+ • B • tf_ = v2
p_'d+ • D -•&_. (7.271)

Since matrices B and D are symmetric and vp+ ^ vp-, we obtain two orthogonality
conditions, namely,

_ • B • tf+ = 0, 0_ • D • 0+ = 0. (7.272)

In explicit form, the first condition is

{K = 0. (7.273)

Because the elasticity constants are positive, this relation shows that if the amplitudes
for one mode, say rdmo+ and $/o+ have the same sign, #mo_ and $/o- have opposite signs.
This means that there is a wave for which the solid and the fluid move in phase and
another in which they are in counterphase. Moreover, the following relation holds

• B • tf+ = v2
p+-&+ • D • tf+, tf_ • B • tf_ = vl_^- D • #_ , (7.274)

implying

2 ( * (7.275)
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Considering the relative signs between the components and that p\2 is the only negative
coefficient (see equation (7.160)), we deduce that the higher velocity has amplitudes in
phase and the lower velocity has amplitudes in opposite phase. The last wave is called
the slow wave or the wave of the second kind (Biot, 1956a).

Let us consider now the lossy case, starting from equations (7.210) and (7.213), where
the last equation is intended in general, i.e., describing both the high and the low-
frequency ranges. Applying the divergence operation to equation (7.210), using (7.172),
and assuming constant material properties, we obtain

(7.276)

From equation (7.33) and using (1.15), we have

M KG - ^ m ~ <f)®M (7.277)

and (7.276) becomes

4

3
(7.278)

where we used the relation 2didjt^ = 2didi$m and equation (7.150).
Now consider equation (7.213). The divergence of this equation and the use of (7.22)

and (7.32) gives

= M[a - + = pfd
2

tt{>m - (j)Y * dt$m + 4>Y * dt$f. (7.279)

Let us consider, without loss of generality, the plane waves

- kx)], (7.280)

(7.281)

where k is the complex wavenumber. Substituting the expressions (7.280) and (7.281)
into equations (7.278) and (7.279), we obtain

= $f0 exp[\(ut — kx)],

4

3
- v 2

c ( l - + <j)(aM - = 0, (7.282)

M(a - - v pf + M + -Yvz
c ) $fo = 0, (7.283)

where Y is given by equation (7.238) and

vc = -
CO

~k
(7.284)

is the complex velocity. The dispersion relation is obtained by taking the determinant of
the system of equations (7.282) and (7.283) equal to zero; that is

4
- f i m - <j>aM -v2

c(l- M + -viY
uo
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-(aM-pfv
2

c) M(a -</>)-
1

= 0. (7.285)

Multiplying this equation by u and taking the limit u —>• 0, we get Gassmann's velocity,
regardless of the value of the viscodynamic operator,

vG = (7.286)

Reordering terms in equation (7.285), we obtain

UJ

4

3
M{2apf - p)

4

3
= 0,

(7.287)
where equation (7.34) has been used. The solution of this second-order equation in v\ has
two roots, corresponding to the fast and slow compressional waves obtained earlier. Let
us denote the respective complex velocities by vc±, where the signs correspond to the signs
of the square root resulting from the solution of equation (7.287). The phase velocity vp

is equal to the angular frequency u divided by the real part of the complex wavenumber
k: that is

- l M - lvp± = [Re(vc±)] (7.288)

and the attenuation factor a is equal to minus the imaginary part of the complex wavenum-
ber; that is

a± = -u\hn(v^)]. (7.289)

The high-frequency velocity, say i ^ , of the low-frequency theory is obtained by taking
the limit iY/u —>• —m in equation (7.238) - this is equivalent to considering r] = 0, since
the inertial effects dominate over the viscosity effects. Equation (7.287) then becomes

(rap — mi K,G - - M(2apf - p) + M ( Km + ̂ = 0, (7.290)

where v^ is real-valued. Using (7.34) and defining the dry-rock P-wave modulus as

4
(7.291)

we note that equation (7.290) becomes

(mp — - [m(Em + a2M) - M(2apf - + MEm = 0. (7.292)

It can be verified that 1*00+ > vG.

Relation with Terzaghi's law and the second P wave

Terzaghi's law, used in geotechnics (Terzaghi, 1925), can be obtained from Biot's theory
if a = </), Kf <C Km and T —>• 1. The result is a decoupling of the solid and fluid phases
(Bourbie, Coussy and Zinszner, 1987, p. 81). Let us consider the first two conditions.
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Then, M = Kf/</> from equation (7.26), Em + o?M ~ Em, M(2pfa - p) < £ m , and the
solution of equation (7.292) is

mEm ± Jm2E2
n - 4(mp - p2

f)MEm

*4 = i L -57 2̂  " • (7-293)
2(mp- pj)

Due to the second condition, M <C Km, and the second term inside the square root is
much smaller than the first term. The fast-wave velocity is

E
voo+ — (7.294)

and a Taylor expansion of the square root in (7.292) gives

(7.295)

where equation (7.212) has been used. Note that Therzaghi's law requires T —>• 1, which
implies 1*00+ = {Em/[(1 — (f>)ps\\~1^2 and v^- = y/Kf/pf. Thus, the fast wave travels
in the skeleton and the slow wave in the fluid. The latter has the fluid velocity divided
by the factor A / T > 1, because of the tortuous nature of the pore space. Use of the
superfluid 4He, which is two orders of magnitude more compressible than water, makes
equation (7.295) very accurate (Johnson, 1986). In this case, the slow wave is identified
with the fourth-sound phenomenon. Measurements of the fourth-sound velocity give us
the tortuosity T.

To our knowledge, the first observation of the second (slow) P wave is attributed
to Plona (1980). He used water-saturated sintered glass beads (see Bourbie, Coussy
and Zinszner (1987, p. 88)). However, Oura (1952a,b) measured the slow-wave velocity
in snow, and seems to have grasped its nature before Biot's theoretical prediction in
1956 (Biot, 1956a). Oura states "... the sound wave is propagated mainly by air in
snow and its icy structure only interferes with the propagation." (See Johnson (1982) for
an interpretation using Biot's theory.) Observations of the slow wave in natural media
are reported by Nakagawa, Soga and Mitchell (1997) for granular soils and Kelder and
Smeulders (1997) for Nivelsteiner sandstone (see Section 7.13).

Actually, the slow wave has been predicted by Biot before 1956. Biot (1952) obtained
the velocity of the tube wave (Scholte wave) in a fluid-filled circular borehole. This velocity
in the low-frequency limit is given by

Vf
(7.296)

where Kf is the fluid bulk modulus, Vf = y/Kf/pf is the fluid sound velocity, pf is the
fluid density, and JIS is the formation shear modulus. Norris (1987) shows that the tube
wave is a limiting case of the slow wave when the bore is considered as an isolated pore
in a homogeneous porous medium. A typical borehole radius is 10 cm, and considering
an acoustic logging frequency of 1 kHz and water, the viscous skin depth is on the order
of 100 /im. If the borehole is considered to be a pore, the case of zero viscosity has to be
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considered, i.e., the viscosity effects are negligible compared to the intertial effects. The
tube wave follows from Biot's theory, by taking the limit of vanishing porosity, using a
tortuosity T = 1 and a dry-rock modulus Km = /xs, where fis is the grain shear modulus
in Biot's theory.

The diffusive slow mode

Let us consider equations (7.278) and (7.279) at very low frequencies, when terms propor-
tional to UJ2 can be neglected (i.e., terms containing second-order time derivatives). Using
equation (7.214) and denoting the Laplacian <9^ by A, we can rewrite those equations as

KG + -Mm - (fxy-M J Atfm + <j>aMMf = 0 (7.297)

and

Apf = M(a - (7.298)

Eliminating $m and $/, and defining V = Ap, we obtain the diffusion equation

d AV = dtV, (7.299)

where, using equation (7.34),

(7.300)

is the corresponding hydraulic diffusivity constant. Because we have neglected the accel-
eration terms, we have obtained the differential equation corresponding to the diffusive
slow mode (Chandler and Johnson, 1981). Shapiro, Audigane and Royer (1999) apply
the anisotropic version of this theory for estimating the permeability tensor from induced
microseismic experiments in a borehole.

7.7.2 The shear wave

Before deriving the shear-wave properties, let us recall that the curl operation requires a
vector product between the Cartesian unit vectors; that is, ê  x e^ = e ^ e^, where
is the Levi-Civita tensor. Then, the curl of a vector u is ê  di x e^ Uj = e^kdjUj e&. We
define

= curl u (m), O ( / ) = curl u ( / ) . (7.301)

Applying the curl operator first to equation (7.210), using equation (7.172), and assuming
constant material properties, we obtain

. (7.302)crij ek =

Using equations (7.33) and (1.15), we have

ek = (7.303)
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where the terms containing the dilatations $m and $/ disappear, because the curl of the
gradient of a function is zero. Because 2enkdidjt-j ek = eukdidj(diUj + dju-m') e& =

ek + ^ ( e ^ d / w f ^ ) ek = djdjfl{rn\ we finally obtain

(7-304)

where we used equation (7.150).
Consider now equation (7.213). The curl of this equation gives

o = Pfd2
tin

{m) -cf)Y* dtnSm) + cf)Y * dtn
{f). (7.305)

Let us consider, without loss of generality, plane waves traveling in the ^-direction and
polarized in the ^-direction; that is fi^ = (0, 0, di?4 ) (p = m or / ) . Let us define

and QW = d^/l Then

Q exp[i(cj* - ifex)], (7.306)

exp[i(a;t - ^ ) ] , (7.307)

where k is the complex wavenumber. Substituting these plane-wave expressions into
equations (7.304) and (7.305), we obtain

-v2
c{l- <j))ps] nm0 - (fipfV^Qfo = 0, (7.308)

Pf

where vc = uj/k is the complex shear-wave velocity. The solution is easily obtained as

p — iujpjY
(7.310)

The phase velocity vp is equal to the angular frequency u divided by the real part of the
complex wavenumber k; that is,

vp = [Re(v;l)]~\ (7.311)

and the attenuation factor is equal to the imaginary part of the complex wavenumber;
that is,

a = u[Im(v-1)}. (7.312)

At low frequencies, Y = \uom + rj/R, (see equation (7.214)) and equation (7.310) becomes

p — p2f[m — if] I(LU K)] 1

In the absence of dissipation (rj/R, = 0) or when u —>• oo,

p — p'jm-1 y p - pf(f)T~l'
(7.314)
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and

fyo = I 1 -cf)m mO (7.315)

from equations (7.212) and (7.309). Since the quantity in parentheses is positive, because
T > 1, the rotation of the solid and the fluid are in the same direction. At zero frequency

and there is no relative(a; —> 0), vc —y \Zfim/p and, from equation (7.309), Qmo =
motion between the solid and the fluid. Note that because m > 0, the velocity (7.314) is
higher than the average velocity \J[imjp.

Fast P wave
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o
o
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Figure 7.7: Phase velocities versus frequency of the fast P wave, shear wave and slow P wave in water

saturated sandstone. The medium properties are Ks = 35 GPa, ps = 2650 kg/m3, Km = 1.7 GPa, (im

= 1.855 GPa, (f) = 0.3, R = 1 Darcy, T = 2, Kf = 2.4 GPa, pf = 1000 kg/m3, and r] = 1 cP (Carcione,

1998).

Figure 7.7 shows the phase velocities of the different wave modes (equations (7.288)
and (7.311) as a function of frequency). The medium is water-saturated sandstone and
the curves correspond to the low-frequency theory (i.e, Y = \ujm + (rj/R,)). The vertical
dashed line is the frequency / / = o;J/(27r) (equation (7.251)), which indicates the upper
limit for the validity of low-frequency Biot's theory. The slow wave has a quasi-static
character at low frequencies and becomes overdamped due to the fluid viscosity. If we
replace water by oil (say, r\ = 260 cP), this behavior then corresponds to higher frequencies.
This phenomenon precludes the observation of the slow wave at seismic frequencies. The
presence of clay particles in the pores is an additional cause of attenuation of the slow
wave (Klimentos and McCann, 1988).

7.8 Strain energy for inhomogeneous porosity

The Lagrangian formulation developed by Biot in his 1956 paper (Biot, 1956a) holds
for constant porosity. He uses the average displacements of the solid and the fluid as
Lagrangian coordinates, u\ and u\ , and the respective stress components, cr™ and

as conjugate variables. The equations for variable porosity are developed in Biot
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(1962) and compared in detail to the 1956 equations. In his 1962 work, he proposes,
as generalized coordinates, the displacements of the solid matrix and the variation of
fluid content £ defined in equation (7.22). In this case, the corresponding conjugate
variables are the total-stress components, <T ,̂ and the fluid pressure, pf. It is shown in
this section that the 1962 equations are the correct ones for describing propagation in an
inhomogeneous porous medium. They are consistent with Darcy's law and the boundary
conditions at interfaces separating media with different properties. Two approaches are
developed in the following sections. The first is based on the complementary energy
theorem under small variations of stress, and the second is based on volume-averaging
methods. An alternative demonstration, not given here, has been developed by Rudnicki
(2000, personal communication), in terms of thermodynamic potentials.

7.8.1 Complementary energy theorem

Let us consider an elementary volume Q& of porous material bounded by surface S. As
sume that Qf, is initially in static equilibrium under the action of surface forces

f(™) _ /T(m)T1 f(/) _
Ji — aij nv Ji —-

where rii are the components of the outward unit vector perpendicular to S. Assume that
the system is perturbed by 5f\ and 5f\ and let V(5fi ,6f\ ) be the strain-energy
density, and

V*= [ Vdtt - [(rtm)u\m) + f\f)u{P)dS (7.317)
Jnb Js

be the complementary energy. Strictly, V should be the complementary strain-energy
density; however, for linear stress-strain relations, V is equal to the strain-energy density
(Fung, 1965, p. 293 and 295). The complementary energy theorem states that of all
sets of forces that satisfy the equations of equilibrium and boundary conditions, the actual
one that is consistent with the prescribed displacements is obtained by minimizing the
complementary energy (Fung, 1965, p. 294). Then

5V* = 0 = f SVdQ - [(6f^m)u\m) + 8flf)u{P)dS (7.318)
J J s

or
SVdn = f(6f^m)u\m) + 6f^f)u\f))dS. (7.319)

Js
We have

and 5f\s) = -<t>5pfnu (7.320)

where we have used equations (7.21) and (7.29). Equation (7.318) becomes

SV* = 0= f SVdSl- ((uf^doijUj - WiSpfni)dS, (7.321)
Jnb Js

where W{ are the components of vector w defined in equation (7.172). Applying Green's
theorem to the surface integral, we obtain

SV* = 0=1 SVdQ- I [djiuf^Sa^-diiwiSpf^dVL. (7.322)
nb
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Because the system is in equilibrium before and after the perturbation, and the fluid
pressure is constant in Q&, the stress increments must satisfy

= 0, and di(6pf) = 0, (7.323)

and we can write

= 0 = f SVdtt - f (e^fSdij + C%)dfi, (7.324)

where £ = —diWi is the variation of fluid content (equation (7.22)), and e\j is of the
form defined in equation (1.3). To obtain the fluid term C$Pfi w e used the fact that the
porosity is locally constant, i.e., it is constant in the elementary volume Q&, but it may
vary point to point in the porous medium. Moreover, the symmetry of the stress tensor
has been used to obtain the relation dju\m'Saij =

We finally deduce from equation (7.324) that

SV = e^fSaij + C Spf, (7.325)

where evidently V has the functional dependence V((jy,p/), because upon taking the
total derivative, we obtain

dV dV
dV = ——dan + ——dpf. (7.326)

da dpf

Comparing the last two equations, we can identify the strain-stress relations

(7.327)

For linear stress-strain relations, we have

2V = e^'cTij + C Pf- (7 .328)

Simi la r ly , u n d e r s m a l l v a r i a t i o n s of d i s p l a c e m e n t s V = V(e\j, C)

SV = S^f'aij + 5( Pf. (7.329)

The stress-strain relations are

pf = OV/dC- (7.330)

These stress-strain relations, valid for non-uniform porosity, are given in equations (7.131)
and (7.133); see Biot (1962) for an equivalent demonstration of equation (7.329) for small
variations of displacements.

7.8.2 Volume-averaging method

We follow Pride and Berryman's approach (Pride and Berryman, 1998) to find the ap-
propriate strain-energy density. Consider a volume fi& = Qs + 0 / (£l8

 = ^m) of porous
medium - Qp = Qf for a fully saturated medium - and the weight function W(r — r') = 1
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for r' inside flf, and W(r — r') = 0 for r' outside £1&, where r is the position vector. The
averages of a generic field tp for points in the solid material and in the fluid are defined as

W{r- r ' ) V ^ ' , (7.331)

and

(7.332)

respectively. We define the microscopic stress tensor in the solid material by r̂ - , and the
microscopic fluid pressure by T/. The equilibrium conditions imply that the respective
perturbations satisfy

= 0, and di(Srf) = 0. (7.333)

Then, Srf = Sff = Spf in the fluid region. The region defined by r^ is bounded by surface
S of which Ss corresponds to the solid material and Sf to the fluid part. Moreover, denote
Si as the solid material/fluid interface contained inside fi&. Since d[r'j = Sij and 8r^ (r)
does not depend on r',

^^VW (7.334)

where, for brevity, we omit, hereafter, the increment symbol S on the stresses. Integrating
this quantity over the region f2s, we obtain

f
ns

 lLb Jn
(7.335)

because fls = (1 —
On the other hand, the same quantity can be expressed in terms of surface integrals

by using Green's theorem,

ATi-'rAdil = 7 7 - 1 nyr>/r,dS + —- / nl'rL'rAS , (7.336)

where nk
8' is the outward unit vector normal to the surfaces Ss and 5^. Now, in 5$, we

have the boundary condition n^ r^f = — p/rtf . Using this fact and equation (7.335),
we get

(1 - 0a« = i- f ^r'jdS' -iff n^r'jdS'. (7.337)

The equivalent relation for the fluid is

pr'
s

^JV;.d5" + ^ / nXW'jdS', (7.338)
/

where we used the fact that n\ = —nf on S{. Adding equations (7.337) and (7.338),
we get the total average stress (jy,

W - 4-PfS.i = ±- [ r^r^dS' - El f ^r'.dS'. (7.339)
/
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To obtain the macroscopic strain energy, we will consider the jacketed experiment, in
which a porous sample is sealed in a very thin and flexible jacket and immersed in a
reservoir providing a spatially uniform confining stress T^C\ AS in the jacketed test illus-
trated in Figure 7.1, a small tube connects the interior of the sample with an external
fluid reservoir at pressure p/ ; Q& is the volume of the sample, S = Ss + Sf is the external
surface with Ss and Sf denoting the solid and fluid parts of the sample's exterior surface,
and ST is the surface of the small tube (Sf includes ST)- Because the cross-section of the
tube is negligible compared to 5, we may assume that T^ is equal to the macroscopic
stress <J. The variation of fluid content is the volume of fluid that enters (or leaves) the
sample through the tube. Since the tube is moving with the jacket, the variation of fluid
content is given by

C = ~ f nPw^dS', (7.340)
*h JsT

where n\ ' is the outward normal to the tube cross-section and w\ ' is the microscopic
fluid displacement10. Note that, in principle, the application of Green's theorem leads
to the more familiar equation (7.22). However, the identification f = —div w, according
to equations (7.22) and (7.172) requires certain conditions. Pride and Berryman (1998)
demonstrate that equation (7.22) holds if the center of the grain distribution in the av-
eraging volume coincides with the center of this volume. Biot (1956a) assumes that the
surface porosity across an arbitrary cross-section of a sample and the volume porosity cf)
are the same. This assumption is almost equivalent to Pride and Berryman's condition.
For highly heterogeneous or highly anisotropic materials, it is possible that the above
relation needs to be modified and an additional parameter, modeling the surface porosity,
should be introduced (Pride and Berryman, 1998).

The strain-tensor components of the frame are given by

(7.341)

where n\ ' is the outward normal to the jacket surface and vn ' is the microscopic dis-
placement of the jacket surface. Note that

(7.342)

The strain-energy density is the sum of the average solid-material and fluid energy den-
sities. We can express these densities by

2Vsolid = a (7.343)

and

I rfd[w\f)dQ!, (7.344)

with
V = Vsohd + VMid. (7.345)

10This notation is consistent with that used in Section 7.4. The microscopic displacement w\ ' should
not be confused with the macroscopic displacement of the fluid relative to the solid, defined in (7.172).
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Since the fluid pressure is uniform inside the jacket, this implies T/ = Pf, and using the
boundary conditions n\ w) = —nfw) on Si, we have

2Ffluid = - £ H / n\f)w\f)dS'- I nFwF'dS' ) . (7.346)
'6 \Jsf

In the case of the solid, due to the equilibrium condition (7.333), r^jd^Wj = d[{T^ 'w\
we have

J- / (s) (s) (m) iOi Pf I (s) (m) irtt /<-, nA<-?\
T / ni Tij w) dS ~ n / ni wi dS » (7.347)

M J M JMb Js

where the boundary condition nf T^V = —nfpf was used on Si. Adding equations (7.346)
and (7.347) gives

In light of the jacketed experiment, the second integral can be partitioned between an
integral on the fluid surface plus an integral on the tube cross-section. Then, using
equation (7.340), we have

1 1 1 10. iff. imi / i i n i n / i ,

SfJ

where Sfj is the surface of fluid in contact with the jacket. The energy balance on the
surface of the jacket implies that the first term of the right-hand side can be expressed as

p,
"SS JSfj J "6 JS

r-(c)

, (7.350)
s

because rf^ is spatially uniform. Using the fact that r̂ - = â - and equation (7.341), we
find that the strain energy (7.349) becomes

2V = Eyr'aij + C Pf, (7.351)

which can be conducted to equation (7.328) if we consider that the rotational part of the
strain tensor E^m\ namely,

-w\J)n{p)dS' (7.352)
b JS

does not contribute to the work required to deform the sample, since no stress moments
are applied.
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7.9 Boundary conditions

The phenomena describing the reflection, refraction and diffraction of waves are related to
the presence of inhomogeneities and interfaces. Knowledge of the corresponding boundary
conditions is essential to correctly describe these phenomena. In fluid/fluid contacts in
porous materials, we should expect fluid flow across the interface when a wave passes,
and as we have mode conversion from P to S energy in single-phase media, we may
expect mode conversion between the three waves propagating in a porous medium. In the
developments that follow, we derive the appropriate boundary conditions for the different
CclSGS!

1. Porous medium/porous medium.

2. Porous medium/viscoelastic (single-phase) medium.

3. Porous medium/viscoacoustic medium (lossy fluid).

4. Free surface of a porous medium.

7.9.1 Interface between two porous media

We consider two different approaches used to derive the appropriate boundary conditions
for an interface between two porous media. The first follows in part the demonstra-
tion of Deresiewicz and Skalak (1963) and the second is that developed by Gurevich
and Schoenberg (1999), based on a method used to obtained the interface conditions in
electromagnetism. The conditions, as given here, also hold for the anisotropic case.

Deresiewicz and Skalak's derivation

Let us consider a volume £lf, of porous material bounded by surface 5, and let us calculate
the rate of change of the sum of the kinetic- and strain-energy densities, and dissipation
potential; that is, dtT + dtV + &D = P , where P is the power input. First, note that the
substitution of equations (7.131) and (7.133) into equation (7.328) gives

2V = cfadfe^ - 2Maije$)C + M(2, (7.353)

and that

Or) V — D(ru cym) Mrv /~\fle[-rn)-Lr)M(/~ rv *{rn)\r) t — 9/Vr f) ^m) -1- n , f) f\ (7 1^A\

where we have used cfjkl = cj!K •. Using these equations and the expressions for the kinetic
and dissipated energies (7.175) and (7.197) (per unit volume) and integrating these energy
densities on fi&, we obtain

= dtT + dtV

(7.355)
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where we have used the relation aijdte\j = o^d^vf1'. Since Oijdjvf1' = dj{uijvfn') —

djOijvf1' and pfdidtWi = di(pfdtWi) — diPfdtWi, we apply the divergence theorem to the
terms in the last parentheses on the right and get

P = f [(pdtvt] +

, (7.356)

where rij are the components of the outer normal to S. In this equation, we can identify
the differential equations of motion (7.255) and (7.256), such that the volume integral
vanishes, and

P = (7.357)

quantifies the rate of work done on the material by the forces acting on its surface.
We now consider two different porous media in contact with volumes Qi and Q2 and

bounding surfaces 5i and 52, respectively, with a common boundary 5C, as shown in
Figure 7.8. Let us define the power per unit area as

k = 1,2. (7.358)

Figure 7.8: Two different porous media in contact with volumes Vt\ and 0,2 and bounding surfaces
and 52, respectively, with a common boundary 5C.

The respective power inputs are

Pi= [ PidS+ [ PldS,
JSi J Sc

P2= f p2dS + / p2dS.
Js2 Jsc

(7.359)

The power input of the combined system should satisfy

P= p2dS. (7.360)f
S2
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Conservation of energy implies P = Pi + P2, and, therefore,

PidS + / p2dS = 0, (7.361)
Sc " Sc

or, using the fact that in the common boundary rij = —rij ' =

which can be satisfied if we require the continuity across the interface of the power input
per unit area, namely,

{(JijV^ - Pf6ijdtwi)nj. (7.363)

This condition can be fulfilled by requiring the continuity of

jj f (7.364)

that is, eight boundary conditions.
The first condition requires that the two frames remain in contact at the interface.

Note that continuity of u\ rii instead of wirii also guarantees the continuity of the power
input per unit area. However, this is in contradiction with the conservation of fluid mass
through the interface. The second condition (7.364) implies perfect fluid flow across the
interface. If the interface is perpendicular to the z-axis, equation (7.364) implies continuity
of

\m\ dtw3, ai3, pf. (7.365)

If there is not perfect communication between the two media, fluid flow results in a
pressure drop through the interface according to Darcy's law

pf - pf ——dtWifii, (7.366)

where R8 is the hydraulic permeability (per unit length) of the interface, or

pf - p{f] = ^dtw3, (7.367)
K,s

for rii = 5i3.
The second condition (7.364) is obtained for Rs —>• oo. The choice Rs = 0 corresponds

to a sealed interface (dtWiUi = 0). A rigorous justification of equation (7.366) can be
obtained by invoking Hamilton's principle (Bourbie, Coussy and Zinszner, 1987, p. 246).

Gurevich and Schoenberg's derivation

Gurevich and Schoenberg (1999) derive the boundary conditions directly from Biot's
equation of poroelasticity by replacing the discontinuity surface with a thin transition layer
- in which the properties of the medium change rapidly but continuously - and then taking
the limit as the layer thickness tends to zero. The method considers the inhomogeneous
equations of motion and assumes that the interface is described by a jump in the material
properties of the porous medium. Let A be a point on the discontinuity surface, and
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-d/2 d/2 x

Figure 7.9: Transition zone at the interface between two porous media.

consider a Cartesian system with its origin at point A and its rc-axis perpendicular to the
discontinuity surface (Figure 7.9).

Following Feynman, Leighton and Sands (1964, p. 33-4 to 33-7), we substitute the
discontinuity by a thin transition layer of thickness d, in which the material properties
change rapidly but continuously. The thickness d is small enough to ensure that the
derivatives with respect to x of the material properties are much larger than the derivatives
with respect to y and z.

According to the arguments discussed in Section 7.8, Biot's differential equation for an
inhomogeneous anisotropic poroelastic medium are given by equations (7.131), (7.133),
(7.255) and (7.258). Denoting the particle velocities by v^ and Wi = dtWi, and using
equations (7.172) and (7.173), the equations of motion can be expressed in a particle-
velocity/stress form as

pdtv\

iPf =
dtpf =

(7.368)

where

.(m) = d

e2 =
m)

== d
(m)

m)
=

m)
=

(7.369)

We take the limit d —> 0 and neglect all the terms containing the derivatives 82 and
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We obtain the following eleven equations:

Mdlwl

+ C5/dit>3 + CQjdiv^1 + Maidiibi = (9(1), I = 1 , . . . , 6.

Equations (7.370)3 a n d (7.370)4 are satisfied if and only if

= O{1), diWi = O{1). (7.371)

As indicated in Figure 7.9, the jump at the interface of a material property and field
variable denoted by f is f+ — f~. Substituting each derivative d\f by the corresponding
finite-difference value (f+—f~)/d, multiplying both sides of each of the equations (7.370)i,
(7.370)2 and (7.371) by d, and taking the limit d —>• 0, yields

(7 372)
= 0 , t = 1,2,3,

f = 0;

that is, eight independent boundary conditions. These conditions are equivalent to the
open-pore boundary conditions (7.364) of Deresiewicz and Skalak (1963). This means that
Deresiewicz and Skalak's model of partially permeable contact when the pores of the two
media do not match at the interface is highly unlikely to occur. A different interpretation
is provided by Gurevich and Schoenberg (1999). They consider a thin poroelastic layer
of thickness d with permeability proportional to d, and open-pore boundary conditions
at both sides of the layer. They show that the boundary condition (7.366) holds for low
frequencies, but for high frequencies the hydraulic permeability Rs should be frequency
dependent. The solution of the reflection-transmission problem of plane waves for this
boundary condition is given by Deresiewicz and Rice (1964), Dutta and Ode (1983),
Santos, Corbero, Ravazzoli and Hensley (1992), Denneman, Drijkoningen, and Wapenaar
(2002) and Sharma (2004).

de la Cruz and Spanos (1989) obtain an alternative set of boundary conditions, based
on volume-average arguments. They interpret the contact between the porous media as
a transition region. An interesting discussion regarding these boundary conditions and
those of Deresiewicz and Skalak (1963) is provided by Gurevich (1993).

7.9.2 Interface between a porous medium and a viscoelastic
medium

In this case, the viscoelastic medium, say, medium 2, is impermeable (^1^3 = 0), and its
porosity should be set equal to zero. These conditions require

or 4m ) ( 1 ) = v[m) (7.373)

and the continuity of
\ \ (7.374)

The solution of the reflection-transmission problem of plane waves for this boundary
condition is given by Sharma, Kaushik and Gogna (1990).
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7.9.3 Interface between a porous medium and a viscoacoustic
medium

The viscoacoustic medium, say, medium 2, is a fluid, and therefore has porosity equal to
1. Hence there is free flow across the interface (KS = oo), and the filtration velocity of the
a -A • a (2) (2) (™>)(1) rpi •
fluid is otw\ ' = v lJ — v\ A '. I his requires

(2) (m)(l) (1) _ (2) (1) _ (2) (1) _ (1) _
v V 5 Pf —Pf j ^33 — ~Pf > ^ °

An example is given in Santos, Corbero, Ravazzoli and Hensley (1992).

7.9.4 Free surface of a porous medium

There are no constraints on the displacements since the medium is free to move. For this
reason, the stress components and pore pressure vanish. The natural conditions are

= 0, ^ 1 } = 0. (7.376)

The solution of the reflection-transmission problem of plane waves for this boundary
condition is given by Deresiewicz and Rice (1962).

7.10 The mesoscopic loss mechanism. White model

A major cause of attenuation in porous media is wave-induced fluid flow, which occurs
at different spatial scales. The flow can be classified as macroscopic, mesoscopic and
microscopic. The attenuation mechanism predicted by Biot's theory has a macroscopic
nature. It is the wavelength-scale equilibration between the peaks and troughts of the P
wave. Geertsma and Smit (1961) showed that the dissipation factor 1/Q of the fast P
wave, obtained as Im(^) /Re(^ ) in analogy with viscoelasticity (see equation (3.128)),
can be approximated by that of a Zener model for Q > 5. They obtain the expression
(2.175):

M TnQ (7.377)
+UJ2T€Ta \Voo+J V

where voo+ is the P-wave velocity at the high-frequency limit (see equation (7.292)),
is given by equation (7.286) and X — pfT/(p4>) — {pf/p)2- We have seen in Section 2.4.3
that the location of the Zener relaxation peak is UB = l/y/raTe (see equation (2.176)).
Then, fB = LUB/ZK and using (7.377) we get

J 2TTXK,P ZirXKp 27TK,pf{pT — 4>pf)

This equation shows that the relaxation peak moves towards the high frequencies with
increasing viscosity and decreasing permeability. This means that, at low frequencies,
attenuation decreases with increasing viscosity (or decreasing permeability). This is in
contradiction with experimental data (e.g., Jones, 1986). Another apparent drawback
of Biot's theory is that the macroscopic-flow mechanism underestimates the velocity dis-
persion and attenuation in rocks (e.g., Mochizuki, 1982; Dvorkin, Mavko and Nur, 1995;
Arntsen and Carcione, 2001).
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It is common to invoke "non-Biot" attenuation mechanisms to explain low-frequency
(seismic and sonic) attenuation in rocks. These mechanisms are the so-called local fluid
flow, or "squirt" flow absorption mechanisms, which have been extensively discussed in the
literature (O'Connell and Budiansky, 1974; Dvorkin, Mavko and Nur, 1995; Mavko, Muk-
erji and Dvorkin, 1998). In this mechanism, fluid-filled microcracks respond with greater
fluid-pressure changes than the main pore space. The resulting flow at this microscopic
level is the responsible for the energy loss. These models have the proper dependence
on viscosity with the center frequency of the attenuation peak inversely proportional to
fluid viscosity. However, it has been shown that this mechanism is incapable of describ-
ing the measured levels of dissipation at seismic frequencies (Diallo, Prasad and Appel,
2003). Pride, Berryman and Harris (2004) have shown that attenuation and velocity
dispersion measurements can be explained by the combined effect of mesoscopic-scale
inhomogeneities and energy transfer between wave modes. We refer to this mechanism
as mesoscopic loss. The mesoscopic-scale length is intended to be much larger than the
grain sizes but much smaller than the wavelength of the pulse. For instance, if the fluid
compressibility varies significantly from point to point, diffusion of pore fluid between
different regions constitutes a mechanism that can be important at seismic frequencies.
White (1975) and White, Mikhaylova and Lyakhovitskiy (1975) were the first to introduce
the mesoscopic loss mechanism based on approximations in the framework of Biot's theory.
They considered gas pockets in a water-saturated porous medium and porous layers al-
ternately saturated with water and gas, respectively. These are the first so-called "patchy
saturation" models. Dutta and Ode (1979a,b) and Dutta and Seriff (1979) solved the
problem exactly by using Biot's theory and confirmed the accuracy of White's results.11

To illustrate the mesoscopic loss mechanism, we compute the P-wave complex mod-
ulus of a layered medium in the direction perpendicular to the layering. We follow the
demonstration by White (1975) and White, Mikhaylova and Lyakhovitskiy (1975) and,
in this case, the result is exact.

Figure 7.10 shows alternating layers composed of two fluid-saturated porous media,
where, by symmetry, the elementary volume is enclosed by no-flow boundaries. In order
to obtain the P-wave complex modulus, we apply a tension aoexp(iu;£) on the top and
bottom of the elementary volume and compute the resulting strain eexp(io;t). Then, the
complex modulus is given by the ratio

£ = —. (7.379)

The strain e is obtained in two steps by computing the strains eo and e/ without and with
fluid flow across the interfaces separating the two media.

If there is no fluid flow, the strain is

e0 = ^ , (7.380)

where the composite modulus is given by equation (1.179)4 as

(7.381)

n Dut ta and Seriff (1979) point out a mistake in White (1975), where White uses the P-wave modulus
instead of the bulk modulus to derive the complex bulk modulus.



7.10 The mesoscopic loss mechanism. White model 291

d,

Figure 7.10: Alternating layers composed of two fluid-saturated porous media.

(see also equation (1.188)2), with pi = di/(d\ + c^), I = 1, 2,

4

3
(7.382)

where /^G, are the Gassmann moduli of the porous media (equation (7.34)) and fj,mi are
the respective dry-rock shear moduli.

The displacements in the x- and y-directions are zero under the application of the
normal stress <To, and e^™ = e2™ = 0. Moreover, at low frequencies, fluid and solid move
together and £ = 0 in equation (7.33). Under these conditions and using equation (1.15)
we have at each medium

GO= m
l ) _
e33 — (7.383)

On the other hand, equation (7.32) implies —pf = aM9m =
with (7.383) gives

which combined

= r, (7.384)

where M and a are given by equations (7.24) and (7.25), respectively. Then, for each
medium, it is

-p+=nG0, 1 = 1,2, (7.385)

where the plus sign indicates that the fluid pressure is that of the fast compressional wave.
According to this equation, there is a fluid-pressure difference at the interfaces, and this
difference generates fluid flow and slow (diffusion) waves traveling into each medium. As
fluid flows, the matrix expands in the ^-direction and 033 = 0. In this case, £ does not
vanish and equation (7.33) implies

o = - aM(. (7.386)
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Combining this equation with (7.32) gives the effective bulk modulus

S
(7.387)

where we have used equations (7.34) and (7.291). Another result from equation (7.386)
is the expansion coefficient

= r. (7.388)

At low frequencies, when the acceleration terms can be neglected, equations (7.213)
and (7.214) give Darcy's law

w3 = —d 3 p f , or d3w3 = —d3pf. (7.389)
7] V

On the other hand, equations (7.173), (7.174) and (7.387) imply

d3w3 = -j^dtpf. (7.390)

The two preceding equations yield

RK E

The solution is
= [Aexp(az) + B exp(-az)] exp(ia;t), (7.392)

where

a2 = ^ - , (7.393)
MM J a m • i

and, from equation (7.389),

K(1

= \Aexp(az) — Bexp(—az)]exp(iujt). (7.394)

Since, by symmetry, there is no fluid flow across the center of any layer, w3 = 0 at
z = di/2 (z = —0̂ 2/2) requires that B = Aexp(adi) (B = Aexp(—a^)). Then, the
relation between the fluid pressure pf (equation (7.392)) and the filtration velocity w
(equation (7.394)) at z = 0 is

p~h = / iw 3) i , and p~h = - / 2 w 3 )2 , (7.395)

where

= 1, 2, (7.396)

are the impedances looking into medium 1 and medium 2 from the interface (with a\ given
by (7.393)), and the superscript minus sign indicates that the fluid pressure corresponds
to the diffusive mode.

According to equation (7.385), there is a fluid-pressure difference between the porous
media, but the total pressure p~t + p~j and w3 should be continuous at the interface.
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Continuity of pore pressure is achieved by the generation of a slow P wave which diffuses
away from the interface. These conditions, together with equations (7.385) and (7.395),
imply that the fluid particle velocity at the interface is

- • (T11±\
 aiMl 1 1 O /"7QO^

v = w3 = ao, ri = - = — , I = 1, 2. (7.397)
I + / &

As fluid flows out of medium 1, for instance, the thickness of layer 1 decreases while that
of medium 2 increases. According to equation (7.388), the matrix displacement due to
the fluid flow is ujj = —r[w^/(iu)]. Therefore, the displacement fields related to this
"unloading" and "loading" motions are

u\ = u\ ')i = — -— and u^ = u\ 'U = -—, (7.398)
100 \UJ

respectively. The sum of the displacements divided by the thickness of the elementary
volume is the strain due to the fluid flow

o / " i+M 2(r2-r1)
2a0

' U + * / ™(di + d2)(h + h)' { '

where we have used equations (7.385), (7.397) and (7.398). The total strain is e = eo +
and equations (7.379), (7.380) and (7.399) yield the P-wave complex modulus

£ =
2(r2-n)

(7.400)

The approximate transition frequency separating the relaxed and unrelaxed states
(i.e., the approximate location of the relaxation peak) is

(Dutta and Seriff, 1979), where the subindex 1 refers to water for a layered medium
alternately saturated with water and gas. At this reference frequency, the Biot slow-
wave attenuation length equals the mean layer thickness or characteristic length of the
inhomogeneities (Gurevich and Lopatnikov, 1995) (see next paragraph). Equation (7.401)
indicates that the mesoscopic loss mechanism moves towards the low frequencies with
increasing viscosity and decreasing permeability, i.e., the opposite behaviour of the Biot
relaxation mechanism whose peak frequency is given by equation (7.378).

The mesoscopic loss mechanism is due to the presence of the Biot slow wave and the
diffusivity constant is d = RKE/rj, according to equation (7.391). Note that the same
result has been obtained in Section 7.7.1 (equation 7.300)). The critical fluid-diffusion
relaxation length L is obtained by setting \az\ = \aL\ = 1 in equation (7.394). It gives
L = yjd/uj. The fluid pressures will be equilibrated if L is comparable to the period of
the stratification. For smaller diffusion lengths (e.g., higher frequencies) the pressures will
not be equilibrated, causing attenuation and velocity dispersion. Notice that the reference
frequency (7.401) is obtained when for a diffusion length L = d\/4.
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Let us assume that the properties of the frame are the same in media 1 and 2. At
enough low frequencies, the fluid pressure is uniform (isostress state) and the effective
modulus of the pore fluid is given by Wood's equation (Wood, 1955):

Kf K
Pi P2

h K h
(7.402)

It can be shown (e.g., Johnson, 2001) that £{u = 0) is equal to Gassmann's modulus
(7.34) for a fluid whose modulus is Kf. On the other hand, at high frequencies, the
pressure is not uniform but can be assumed to be constant within each phase. In such a
situation Hill's theorem (Hill, 1964) gives the high-frequency limit £(LU = oo) = So. As
an example, Figure 7.11 shows the phase velocity and dissipation factor as a function of
frequency for a finely layered medium saturated with water and gas.
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Figure 7.11: Phase velocity (a) and dissipation factor (b) as a function of frequency for a finely layered
medium saturated with water and gas. The frame is the same for media 1 and 2, with <j) = 0.3, Km

= 1.3 GPa, fxm = 1.4 GPa and R — 1 Darcy; the grain properties are Ks — 33.4 GPa and ps — 2650
Kg/m3; the fluid properties are Kh = 2.2 GPa, ph = 975 Kg/m3, r?i = 1 cP, Kh = 0.0096 GPa, ph =
70 Kg/m3 and 772 = 0.15 cP. The gas saturation is Sg = P2 = 0.1 and the period of the stratification is

+ 6,2 = 0.4 m (White, Mikhaylova and Lyakhovitskiy, 1975).

The mesoscopic loss theory have been further refined by Norris (1993), Gurevich and
Lopatnikov (1995), Gelinsky and Shapiro (1997), Johnson (2001), Pride, Berryman and
Harris (2004) and Miiller and Gurevich (2005). Johnson (2001) developed a generalization
of White model for patches of arbitrary shape. This model has two geometrical parame-
ters, besides the usual parameters of Biot's theory: the specific surface area and the size of
the patches. Patchy saturation effects on acoustic properties have been observed by Mur-
phy (1982), Knight and Nolen-Hoeksema (1990) and King, Marsden, and Dennis (2000).
Cadoret, Marion and Zinszner (1995) investigated the phenomenon in the laboratory at
the frequency range 1-500 kHz. Two different saturation methods result in different fluid
distributions and give two different values of velocity for the same saturation. Imbibition
by depressurization produces a very homogeneous saturation, while drainage by drying
produces heterogeneous saturations at high water saturation levels. In the latter case, the
experiments show considerably higher velocities, as predicted by White model.
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Carcione, Helle and Pham (2003) performed numerical-modeling experiments based
on Biot's equations of poroelasticity (Carcione and Helle, 1999) and White model of reg-
ularly distributed spherical gas inclusions. They showed that attenuation and velocity
dispersion measurements can be explained by the combined effect of mesoscopic-scale in-
homogeneities and energy transfer between wave modes. By using computerized tomogra-
phy (CT) scans it is possible to visualize the fluid distribution and spatial heterogeneities
in real rocks (Cadoret, Marion and Zinszner, 1995). Fractal models, such as the von
Karman correlation function, calibrated by the CT scans, were used by Helle, Pham and
Carcione (2003) to model heterogeneous rock properties and perform numerical exper-
iments based on Biot's equations of poroelasticity. These simulations show that Biot's
theory gives correct attenuation levels when using heterogeneous models.

The mesoscopic loss mechanism indicates that information about the permeability
of the rock - an important properties in hydrocarbon exploration -, is present in the
seismic amplitudes (the diffusion length is proportional to y/fi). Therefore, measurements
of the quality factor at low (seismic) frequencies may provide useful information about
the structure of the host reservoir rock.

7.11 Green's function for poro-viscoacoustic media

Green's functions for poroelastic media are studied by several authors: Deresiewicz and
Rice (1962), Burridge and Vargas (1979), Norris (1985, 1994), Boutin, Bonnet and Bard
(1987), Pride and Haartsen (1996) and Sahay (1999). Boutin, Bonnet and Bard apply
the theory of Auriault, Borne and Chambon (1985) and compute semi-analytical transient
solutions in a stratified medium. Bonnet (1987) obtains a solution by applying the anal-
ogy between the poroelastic and thermoelastic equations (Norris, 1994), and Kazi-Aoual,
Bonnet and Jouanna (1988) extend the solution of Boutin, Bonnet and Bard (1987) to
the transversely isotropic case.

Here, we obtain an analytical transient solution for propagation of compressional waves
in a homogeneous porous dissipative medium. The solution, based on a generalization of
Biot's poroelastic equations, holds for the low- and high-frequency ranges, and includes
viscoelastic phenomena of a general nature, besides Biot's relaxation mechanism. We
consider the poroacoustic version of Biot's equations, i.e., with the rigidity of the matrix
equal to zero12. These equations may describe wave motion in a colloid that can be
considered either an emulsion or a gel. On one hand, it is an emulsion since shear waves
do not propagate. On the other hand, since the "frame" modulus is different from zero, the
"solid" component provides a sufficient structural framework for rigidity, and, therefore,
can be considered as a gel.

7.11.1 Field equations

The poro-viscoacoustic model is dilatational, which implies no shear deformations. No
shear deformations are obtained by setting fim = 0 in equation (7.19). Moreover, using
equations (7.22) and (7.32), we can write the stress-strain relations as

p = mm - CC, (7.403)
12In principle, this medium is an idealization since the bulk modulus should also vanish in this case.



296 Chapter 7. Biot 's theory for porous media

and
pf = -Q$m + MC (7.404)

where p = —an/3 is the bulk pressure, H = K + R + 2C and C = Q M , with K: R and M
defined in equations (7.16), (7.18) and (7.24), respectively. Equations (7.403) and (7.404)
can be seen as the stress-strain relation in the frequency domain. Thus, invoking the
correspondence principle (see Section 3.6), the stiffnesses become complex and depend on
the angular frequency UJ. Let us assume that H: C and M are appropriate complex moduli
describing viscoelastic behavior, such that the expressions given in equations (7.16), (7.18)
and (7.24) correspond to the high-frequency (lossless) limit

It is convenient to express equations (7.403) and (7.404) in matrix form as

- 4 1 ) • (*•
or, in compact notation,

P = P • e, (7.406)

where P is the complex stiffness matrix.
The dynamical equations (7.210) and (7.213), restricted to the viscoacoustic case and

considering a general viscodynamic operator Y, are

-V(p - sb) = pdlu^ + Pf%w (7.407)

and
- V ( p / - Sf) = p,c|u<"» + Y * dtw, (7.408)

where u^m^ is the average displacement of the solid, and w is the average displacement of
the fluid relative to the solid (7.172). The quantities s& and Sf are body forces acting on
the bulk material and on the fluid phase, respectively.

For harmonic oscillations, equations (7.407) and (7.408) can alternatively be written
as

V ( p - s) = -UJ2T • ^ _ w

where
s = (sb, sf) (7.410)

and

r=

is the viscodynamic matrix, and Y is the Fourier transform of Y.

(7.4H)

7.11.2 The solution

Taking the divergence in equation (7.409) and assuming a homogeneous medium, we can
write

A(p - s) = -UJ2T • e, (7.412)

where
/ 79

c (7.413)
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and A is the Laplacian operator. Substituting the constitutive law (7.406), we have that
equation (7.412) becomes

A(p - s) + co2B • p = 0, (7.414)

where
(7.415)

Note that D is a complex function of the frequency and does not depend on the position
vector since the medium is homogeneous. This matrix may be decomposed as D =
A • A • A"1 , where A is the diagonal matrix of the eigenvalues, and A is a matrix whose
columns are the right eigenvectors. Thus, substituting this decomposition into equation
(7.414) and multiplying by A"1 from the left-hand side, we get

A(y - f) + a;2 A • y = 0, (7.416)

where
(7.417)

and
(7.418)

From (7.416), we get the following Helmholtz equations for the components of y:

(A + u,2\v)vv = Afu, i/ = 1,2, (7.419)

where Ai and A2 are the eigenvalues of D. They are related to the complex velocities of
the fast and slow compressional waves. In fact, let us assume that a solution to equation
(7.414) is of the form

= p o exp( - ik -x ) , (7.420)

where x is the position vector and k is the complex wavevector. Putting this solution into
equation (7.414) with zero body forces, and setting the determinant to zero, we obtain
the dispersion relation

det D -
7 ^ 2

k

UJ
= 0. (7.421)

Since u/k = vc is the complex velocity, the eigenvalues of D are A = 1/v2. Because D
is a second-rank matrix, two modes, corresponding to the fast and slow waves, propagate
in the medium. A simplified expression for the eigenvalues is

Ai(2) = ^ p (U ± VU2 - 4 det P det r ) , (7.422)

where
U = 2pfC - pM- H(Y/kj). (7.423)

The phase velocities (7.288) calculated with the solutions (7.422) correspond to the solu-
tion of equations (7.287) with \im — 0, and equation (7.290) if, in addition, 77 = 0.

Considering that the solution for the Green function (i.e., the right-hand side of
(7.419)) is a space delta function at, say, the origin, both equations have the form

(A + u)2\)g = -8J(x) , (7.424)
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where S is Dirac's function. The 2-D solution (line source) of equation (7.424) is

(7.425)

(Pilant, 1979, p. 55), where HQ ' is the Hankel function of the second kind, and

r = yjx2 + z2. (7.426)

The 3-D solution (point source) of (7.424) is

(Pilant, 1979, p. 64), where
r =

9

TIT
exp

|- -|
-\ujrJ\(uj) (7.427)

(7.428)

The solutions (7.425) and (7.427) as given by Pilant (1979) hold only for real arguments.
However, by invoking the correspondence principle (Section 3.6), complex, frequency-
dependent material properties can be considered. For instance, the poroelastic equations
without the Biot mechanism (i.e, r\ = 0) have a real D matrix, whose eigenvalues are
also real - the velocities are real and frequency independent, without dispersion effects.
The introduction of the Biot mechanism, via the correspondence principle, implies the
substitution m —>• —Y(LJ)/ILJ. In the same way, viscoelastic phenomena of a more general
nature can be modeled.

The solution of equation (7.419), with the band-limited sources / i and /2, is then
/\

vv = (7.429)

where
G(\v) = -[u2\vg(\v) + 8J(x)], (7.430)

and equation (7.424) has been used. In equation (7.429), we introduced the source vector

o): (7.431)

where

s = (sb, sf) (7-432)

is a constant vector and h(u) is the frequency spectrum of the source.
The vector p is obtained from equation (7.417) and written as

p(r, u) = A(u)v{r, u). (7.433)

From the form of v\ and v^ in equation (7.429) and using (7.431), we can explicitly write
the solution as

= A

Using D = A • A • A"1 , and from the theory of functions of matrices (Lancaster and
Tismenetsky, 1985, p. 311), equation (7.434) becomes

p = G(D) • s/i, (7.435)
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where G(D) can be viewed as the evolution operator (or Green's function) of the system.
An effective numerical implementation of the evolution operator is obtained by decom-
posing it into its Lagrange interpolator (Lancaster and Tismenetsky, 1985, p. 308). This
yields

^ ) - G(A2)]D + [AiG(A2) - A2G(A1)]I2}. (7.436)

This expression avoids the calculations of the eigenvectors of D (i.e., of matrix A). Using
equation (7.430) and the complex velocities vcu = 1/A/A^, V = 1, 2, we note that equation
(7.436) becomes

LO2
G W) = V2 _ V2 {lv*9M ~ <2<?M]D + [g{vcl) - g(vc2]I2} - 8<J(x)I2. (7.437)

In the absence of viscoelastic dissipation and with the Biot mechanism deactivated (zero
fluid viscosity), only the Green functions (7.425) and (7.427) are frequency dependent -
the eigenvalues of D are real. Let us denote the phase velocities of the fast and slow
waves as Voo+ and VQQ-, respectively (as in equation (7.290)). Then, the explicit frequency
dependence of the evolution operator is

,). (7.438)
1 - i

In this case, the solution can be obtained in closed form since the Green functions (7.425)
and (7.427) can be Fourier transformed analytically to the time domain (Norris, 1985).

To ensure a time-domain real solution in the general viscoelastic case, we take

I, (7.439)

for u) < 0, where the superscript * denotes the complex conjugate. Finally, the time
domain solution is obtained by an inverse Fourier transform.

An example is shown in Figure 7.12 (see Carcione and Quiroga-Goode (1996) for
details about the material properties and source characteristics). When the fluid is viscous
enough, the slow wave appears as a quasi-static mode at the source location. This behavior
is predicted by the analytical solution, where snapshots of the solid and fluid pressures
due to a fluid volume injection are represented. The frequency band corresponds to the
sonic range.

7.12 Green's function at a fluid/porous medium in-
terface

The Rayleigh wave in a porous medium is composed of the fast P wave, the shear wave and
the slow P wave. The physics has been studied by Deresiewicz (1962), who found that the
Rayleigh wave is dissipative and dispersive due to losses by mode conversion to the slow
wave (e.g., Bourbie, Coussy and Zinszner, 1987). Surface waves at liquid-porous media
interfaces classify into three kinds. A true surface wave that travels slower than all the
wave velocities (the generalization of the Scholte wave), a pseudo Scholte wave that travels
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(a) Solid pressure

(b) Fluid pressure

Figure 7.12: Snapshots of the solid pressure (a) and fluid pressure (b) for a porous medium saturated
with a viscous fluid. The source dominant frequency is at the sonic range. The event at the source
location is the slow "wave", which behaves as a quasi-static mode at those frequencies.
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with a velocity between the shear-wave velocity and the slow-wave velocity (leaking energy
to the slow wave), and a pseudo Rayleigh wave, which becomes the classical Rayleigh wave
if the liquid density goes to zero (Feng and Johnson, 1982a,b; Holland, 1991; Edelman and
Wilmanski, 2002). For sealed-pore conditions the true surface wave exists for all values
of material parameters. Nagy (1992) and Adler and Nagy (1994) observed this surface
wave in alcohol-saturated porous sintered glass and natural rocks. The conditions are a
highly compressible fluid (e.g., air), a closed surface (sealed pores due to surface tension
in Nagy's experiments) and negligible viscosity of the saturating fluid.

According to equation (7.375), the boundary conditions at an interface between a
porous medium and a fluid are

v(2)-v(l) - — &w, a(1) - -v{2) <J(1) - a(1) - 0
Pf Pf — - utw3^ ^33 "" Pf ? a 13 "" a 23 "" U 's

(7.440)
where we have considered the general case given by equation (7.367). The two limiting
cases are equation (7.375) (open pores) and Rs = 0, which corresponds to sealed pores.
In this case, there is no relative flow across the interface and the boundary conditions are

( / ) ( ) _ ( ) ( ) (1) _ _ (2) (1) _ (1) _
3 3 i °3 — °3 •> a 33 ~~ Pf ' a 13 ~~ a 23 "~

Feng and Johnson (1982b) obtained the high-frequency 2-D Green's function using the
Cagniard-de Hoop technique. The source is a radial and uniform impulsive line source
(a pressure source Sf in the fluid). If we assume that the upper medium is the fluid,
the locations of the source and receiver are (0, z$) and (x, z) above the interface, in the
overlying fluid half-space. The Green function is

G(x, z,t) =

0, —oo <t

Im [ , j
/^-7: | , th<t<tb,

(7.442)

Re I _ Rf}») 1 , t>tb,
b

where Rf is the reflection coefficient

= ^ - ^ V ^ , (7.443)
x2 + (z + zoy

= tt + K + z.WF^
x2 + (z + zoy

X / 1 1
( )J -, (7.445)

and
tb = y^x2 + (z + zo)2/vf (7.446)

is the wave-velocity of the fluid, Voo+ is the high-frequency fast P-wave velocity, a
solution of equation (7.292), Sh and s^ are slownesses corresponding to the head and body
wave, and th and £& are the respective arrival times).
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Figure 7.13: Calculated 2-D Green's functions for the water/water saturated fused glass beads planar

interface system; the source and receivers are ideally located on the surface {z = ZQ — 0) and x — 10

cm. In (a) Rs — oo, corresponding to open pores, and in (b) Rs = 0, corresponding to sealed pores. The

medium properties are Ks = 49.9 GPa, ps = 2480 kg/m3, Km = 6.1 GPa, fim = 3.4 GPa, cf) = 0.38, T

= 1.79, Kf = 2.25 GPa, and pf = 1000 kg/m3. The labels indicate the fast P wave ("Fast"), the sound

wave in the fluid ("Fluid"), the shear wave ("Shear"), the pseudo Scholte wave ("Ps Scholte"), the slow

P wave ("Slow"), and the true surface wave ("True surface").
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The expression of the reflection coefficient is

Rf{s) = ̂ 4 4 ' A^ = det N> Ao = det D> (7-447)
. \ .-™13and, using our notation, the components of matrix D(s) are

Dn = 2fims2 + (aMF+ - EG)/vl^
DV2 = 2u,ms2 + (aMF_ - E(

IZi / l i b \ ^

Du = Pf
. + M/v2

00+)F+ -

3 = <J>2s/(RsT)

24 =

Z? 3 2 =

•D.34 = - 7 /

•D42 = S 7 -

D43 = s2 - l/(2-t.|)

i>44 = 0,

where Vg is the high-frequency S-wave velocity (7.314), («,_ is the high-frequency slow
P-wave velocity, a solution of equation (7.292),

7., = y/l/v? - s\ U = / , (oo+), (oo-), 5), (7.449)

[(1 - <P)Ps + # / ( T - 1)]?4+ - g m - (a - 4>)2M

and

F "

The elements of N are the same of D except JV34 = 7/.
Figure 7.13 shows the Green functions for open (a) and sealed (b) pores. Note the

presence of the slow surface wave, observed by Nagy (1992) at approximately 1.1 /xs in
the sealed-pore case.

7.13 Poro-viscoelasticity

Viscoelasticity can be introduced into Biot's poroelastic equations for modeling attenua-
tion mechanisms related to the strain energy (stiffness dissipation) and the kinetic energy

13_Dn = 2fims2 — (a,MF+ — EQ)/V^+ in Feng and Johnson (1982b). Instead, the sign of the second
term should be + (D. L. Johnson, personal communication).



304 Chapter 7. Biot's theory for porous media

(viscodynamic dissipation). In natural porous media such as sandstones, discrepancies be-
tween Biot's theory and measurements are due to complex pore shapes and the presence
of clay. This complexity gives rise to a variety of relaxation mechanisms that contribute
to the attenuation of the different wave modes. Stoll and Bryan (1970) show that attenu-
ation is controlled by both the anelasticity of the skeleton (friction at grain contacts) and
by viscodynamic causes. Stiffness dissipation is described in the stress-strain relation, and
viscodynamic dissipation is a dynamic permeability effect due to the frequency-dependent
interaction between the pore fluid and the solid matrix (Biot, 1956b; Johnson, Koplik and
Dashen, 1987).

Let us consider, as an example, the 2-D stress-strain relations for an isotropic poroe-
lastic medium in the (x, £)-plane. From equations (7.32) and (7.33), and using (7.22), we
can rewrite the stress-strain relations as

+ (Em - 2/im)dsvim) + aMe + Sl

dta33 = (Em - 2nm)div^m) + Emdsv^m) + aMe + s3

A) *3 (7-452)
= -Me +

e =

where v\m' and Wi = dtWi are the components of the particle velocities of the solid and
fluid relative to the solid (see equation (7.172)), s\, S3, S13 and Sf are external sources of
stress for the solid and the fluid, respectively, and M, a and Em are given in equations
(7.24), (7.25) and (7.291).

The 2-D poroelastic equations of motion can be obtained from (7.210) and (7.211):

i) Biot-Euler's dynamical equations:

o (m) , o •
= pdtv\ + pfdtw3

ii) Dynamical Darcy's law:

+ mdtwi + b * dtwi,
+ mdtw3 + b * dtw$,

where m = Tpf/cj) (equation (7.212)), with T denoting the tortuosity, and b(t) a relaxation
function. At low frequencies b = H(t)rj/fi, where H is Heaviside's function, and we obtain
(7.211) (Carcione, 1998, Arntsen and Carcione, 2001).

The stiffnesses Em, [im and M are generalized to time-dependent relaxation functions,
which we denote, in general, by ip(t). We assume that ip(0) = ipo equals the respective
Biot modulus, i.e., we obtain Biot's poroelastic stress-strain relations at high frequencies.
Assume, for example, that the relaxation functions are described by a single Zener model,

T, Te

H(t), (7.455)

where re and ra are relaxation times (see Section 2.4.3).
We introduce viscoelasticity by replacing the products of the elastic moduli and field

variables in equations (7.452) with time convolutions. For instance, in equations (7.452)i
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and (7.452)2, these products are Em(d\Vi + ĉ Vg ), Hmd^™' and Me. We replace
them with ip * dtu, where ip denotes the relaxation function corresponding to Em, fim

or M, and u denotes d\Vi + c^i^ , nmv$ or e. It is important to point out that
this approach is purely phenomenological. As in the single-phase viscoelastic case (see
Section 2.7), we introduce memory variables to avoid the time convolutions. Then, the
terms ip * dtu are substituted by ipou + e, where e is the memory variable. There are five
stress memory variables related to the stress-strain relations, which satisfy the following
differential equation:

dte = ̂ 0(-- — )u-—. (7.456)

Two additional memory variables are introduced via viscodynamic dissipation, due to
the time-dependent relaxation function b(t). Hence,

K

TV

r.
- 1 exp(-*/7v)

a
H(t), (7.457)

the terms b * dtu are replaced by b(O)u + e, and the memory-variable equations have the
form

1
dte = -

r.a
- 1 w +

K \T.a
(7.458)

In the frequency domain, the time convolution ip * u is replaced by ipu. We obtain,
from (7.455),

(TA (1±^) , (7.459)
Te

and each complex modulus is denoted by Em, jim and M.
Each set of relaxation times can be expressed in terms of a Q factor Qo and a reference

frequency /o as

rc = (2./oQo)-1(v
/^TT+l),

r , = (27T/0Q0)-1 (yM+1- l

On the other hand, the frequency-domain viscodynamic operator has the form

- = V

The functional dependence of b on UJ is not that predicted by models of dynamic fluid
flow. Appropriate dynamic permeability functions are given in Section 7.6.2. Here, we
intend to model the viscodynamic operator in a narrow band about the central frequency
of the source. The advantage of using equation (7.461) is the easy implementation in
time-domain numerical modeling.

The results of a simulation with Biot's poroelastic theory are plotted in Figure 7.14b,
and compared to the experimental microseismograms obtained by Kelder and Smeulders
(1997), illustrated in Figure 7.14a. The discrepancies with the experimental results are
due to the presence of non-Biot attenuation mechanisms. Figure 7.14c shows the poro-
viscoelastic microseismograms. The relative amplitudes observed are in better agreement
with the experiment than those predicted by Biot's theory without viscoelastic losses.
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Figure 7.14: Microseismogram obtained by Kelder and Smeulders (1997) for Nivelsteiner sandstone as
a function of the angle of incidence 9 (top picture), and numerical microseismograms obtained from Biot's
poroelastic theory (a) and Biot's poro-viscoelastic theory (b). The events are the fast compressional wave
(FP), the shear wave (S), the first multiple reflection of the fast compressional wave (FFP) and the slow
wave (SP).
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In many cases, the results obtained with Biot (two-phase) modeling are equal to those
obtained with single-phase elastic modeling, mainly at seismic frequencies (Gurevich,
1996). A correct equivalence is obtained with a viscoelastic rheology that requires one
relaxation peak for each Biot (P and S) mechanism. The standard viscoelastic model,
that is based on the generalization of the compressibility and shear modulus to relaxation
functions, is not appropriate for modeling Biot complex moduli, since Biot's attenuation
is of a kinetic nature - i.e, it is not related to bulk deformations. The problem can be
solved by associating relaxation functions with each wave moduli. However, in a highly
inhomogeneous medium, single-phase viscoelastic modeling is not, in principle, equivalent
to porous-media modeling, due to substantial mode conversion from fast wave to quasi-
static mode. For instance, if the fluid compressibility varies significantly from point to
point, diffusion of pore fluid among different regions constitutes a mechanism that can be
important at seismic frequencies (See Section 7.10).

7.14 Anisotropic poro-viscoelasticity

Anisotropic poroelasticity was introduced by Biot (1955, 1956) and Biot and Willis (1957)
in terms of bulk parameters of total stress and strain. To our knowledge, Brown and
Korringa (1975) were the first to obtain the material coefficients in terms of the properties
of the grain, pore-fluid and frame (see Section 7.3.3). Later, Carroll (1980), Rudnicki
(1985) and Thompson and Willis (1991) presented further micromechanical analysis of
the stress-strain relations. Cheng (1997) related the Hookean constants to the engineering
constants - obtained from laboratory measurements - including explicit relations for the
orthorhombic and transverse isotropy material symmetries. Cheng's theory assumes that
the solid constituent is isotropic and that anisotropy is due to the arrangements of the
grains - i.e., the frame is anisotropic. Recently, Sahay, Spanos and de la Cruz (2000) used
a volume-averaging method to obtain the stress-strain relations. Their approach include
a differential equation for porosity, which describes the changes in porosity due to varying
stress conditions.

Complete experimental data for anisotropic media is scarce. New propagation ex-
periments on real rocks can be found in Lo, Coyner and Toksoz (1986) and Aoki, Tan
and Bramford (1993). Wave propagation in anisotropic poroelastic rocks is investigated
by Norris (1993), Ben-Menahem and Gibson (1993), Parra (1997), and Gelinsky and
Shapiro (1997) and Gelinsky, Shapiro, Miiller and Gurevich (1998), who study plane lay-
ered systems and the effects of anisotropic permeability. Numerical simulations of wave
propagation for the transversely isotropic case - in rocks and synthetic materials - are
given in Carcione (1996b), and a complete analysis in terms of energy is given by Carcione
(2001a). The developments in this section follow the last reference (i.e., Carcione, 2001a).

We have shown in Section 4.3.1 that in single-phase anisotropic viscoelastic media,
the phase velocity is the projection of the energy-velocity vector onto the propagation di-
rection. We have also generalized other similar relations valid in the isotropic viscoelastic
case. Here, those relations are further extended for anisotropic poro-viscoelastic media
for the following reasons. Firstly, they provide a simple and useful means for evaluating
the time-averaged kinetic-, strain- and dissipated-energy densities from the wavenumber,
attenuation and energy-flow vectors. Secondly, they can be used to verify the kinematic
and dynamic properties - in terms of energy - of complex porous materials. For instance,
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the above relation between phase and energy velocities has immediate implications for
ultrasonic experiments. If a pulse of acoustic energy is radiated by a plane-wave trans-
ducer, the wave front travels along the wavenumber direction, which is normal to the
transducer surface, but the wave packet modulation envelope travels in the direction of
the energy velocity. This means that the receiving transducer must be offset in order
to intercept the acoustic pulse, and the corresponding angle is the angle between the
wavenumber and energy-velocity vectors. Although that relation between the velocities
is well known for anisotropic lossless media (e.g., Auld, 1990a, p. 222; equation (1.114)),
it is not immediately evident that it holds for poro-viscoelastic and anisotropic media.

In our example later in this chapter, we consider wave propagation in one of the
planes of mirror symmetry of an orthorhombic material (human femoral bone). Bulk
viscoelasticity is modeled by using the concept of eigenstrain (see Section 4.1) and the
low-frequency viscodynamic operator is used to model Biot-type dissipation.

7.14.1 Stress-strain relations

The stress-strain relations (7.131) and (7.133) can be rewritten in matrix form as

= Cu • e, (7.462)

where
T

= (011, 022, CT33, <T23, 013, 012, ~Pf) , (7.463)

is the stress array,
e = (e'">, e f » , e j " ' , e f >, e<™>, e<TO>, -(V, (7.464)

is the strain array, with ej denoting the strain components of the porous frame and
the variation of fluid content.

Cu =

u
13
u
14

12
,u
22
,u
23
,u
'24
,u
'25
,u
'26

23
u
33
u
34
n
35

\
36

Ma3

*
14
,u
'24
,u
'34
,u
'44
*u
'45
,u
'46

15

'25
>u
'35
>u
'45
>u
'55

'56

C

C

26
n
36
u
46

56
;66

Ma2

Ma5

(7.465)

MOIA Ma* Ma6 M I
where djj are the components of the elasticity matrix of the undrained porous medium
(7.136).

The time rate of the strain can be written as
Tdte = V ' • y, (7.466)

where
/ (m) (m) (m) T (7.467)

and

V =

0
0
0
0

Vo

0 0
0

0
0 0
0 0
0 0

0 a
0

o
o
o

o
o
o

0
0
0
0

0 x

0
0

d

(7.468)
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The form (7.466), relating the particle velocities to the strain components, as well as the
differential operator (7.468) are generalizations of those used by Auld (1990a).

Biot (1956c) developed a generalization of the stress-strain relations to the viscoelas-
tic case by invoking the correspondence principle and using relaxation functions based
on mechanical models of viscoelastic behavior. Dissipation is due to a variety of anelas-
tic mechanisms. An important mechanism is mesoscopic loss discussed in Section 7.10.
Another mechanism is the squirt-flow (Biot, 1962; Dvorkin, Nolen-Hoeksema and Nur,
1994) by which a force applied to the area of contact between two grains produces a dis-
placement of the surrounding fluid in and out of this area. Since the fluid is viscous, the
motion is not instantaneous and energy dissipation occurs. Other important attenuation
mechanisms are discussed by Biot (1962). Using the correspondence principle (see Sec-
tion 3.6), we generalize to relaxation functions the elements of matrix CM, and equation
(7.462) becomes

a = * * dte, (7.469)

where \I/ is the relaxation matrix. Matrix Cu is obtained from \I/ when t —>• 0 if we
consider that Biot's poroelastic theory corresponds to the unrelaxed state.

7.14.2 Biot-Euler's equation

In matrix form, equations (7.255) and (7.258) can be written as

V • a- = R • dty + f, (7.470)

where
f =(/i,/2,/3,0,0,0,0)T (7.471)

is a body force array, and

R =

P
0
0

Pf
0
0

0

p
0
0

pf
0

0
0

p
0
0

Pf

pf
0
0

0
0

0

pf
0
0

0
0

pf
0
0

(7.472)

0

is the density matrix operator. We refer to (7.470) as Biot-Euler's equation

7.14.3 Time-harmonic fields

Let us consider a time-harmonic field exp(ia;t), where u is the angular frequency. The
stress-strain relation (7.469) becomes

<x = P • e, P = (7.473)

where P is the complex and frequency-dependent stiffness matrix, and the operator
denotes time Fourier transform. Equation (7.466) becomes

= V T • v. (7.474)
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Substituting equation (7.474) into (7.473), we obtain

T= P- (V • Y)

For time-harmonic fields, Biot-Euler's equation (7.470) becomes

(7.475)

V • a = i y + f, (7.476)

where

I
R =

P
0
0

Pf
0
0

0 0
p 0
0 p
0 0

Pf 0
0 pf

pf
0
0

0

pf
0
0

0
0

0
0

Pf
0
0

(7.477)

0 )

and Y{ are given in equation (7.238), provided that the correction (7.241) is used for high
frequencies, or the specific operator is obtained by experimental measurements.

The derivation of the energy-balance equation is straightforward when using complex
notation. The procedure given in Section 4.3.1 for single-phase media is used here. The
dot product of the complex conjugate of equation (7.474) with —<rT gives

T—<x • V • Y = I
T - e * (7.478)

TOn the other hand, the dot product of —Y* with equation (7.476) is

-r~

• < T = — l c u v - R - v — v - i .T (7.479)

Adding equations (7.478) and (7.479), we get

T
—cr - V -Y — Y • V • <J = i

The left-hand side is simply

T * *T-e — \UJY — Y •f. (7.480)

-<rT • V T • Y* - Y*T • V • a = 2 div p, (7.481)

where
i / ^11 ^12 013

2 ' aU

013 023 033

•Pf

0
0

0
.* (7.482)

is the complex Umov-Poynting vector. Using (7.481) and the stress-strain relation (7.473),
we find that equation (7.480) gives

T *T *T2 div p = icue • P • e* — icov* • R • Y — Y* • f, (7.483)

where we used the fact that P is a symmetric matrix. Equation (7.483) can be rewritten
as

div p = 2io; -Re(e ' • P • e*) - 7Re(Y* R Y)
4

+2OJ -ilm(eT • P • e*) + i
4 4

R Y)
*T •f. (7.484)
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The significance of this equation becomes clear when we recognize that each of its terms
has a precise physical meaning on a time average basis. When using complex notation for
plane waves, the field variables are obtained as the real part of the corresponding complex
fields.

In the following derivation, we use the properties (1.105) and (1.106). Using these
relations, we identify

-Re(eT • P • e*) = -<Re(eT) • Re(P) • Re(e)> = (V) (7.485)

as the strain-energy density,

^Re(y*T R y) = i(Re(y*T) • Re(R) • Re(y )) = (T) (7.486)

as the kinetic-energy density,

--u Im(eT •P-e*) + -u Im(y*T R y) =

TIm(P) • Re(e)> + o;<Re(yT) • Im(R) • Re(y )) = -(Dv) - (DT) (7.487)

as minus the rate of dissipated strain-energy density (—(Dv), the first term) minus the*
rate of dissipated kinetic-energy density (—(DT), the second term), and

--y*T-f = Ps (7.488)

as the complex power per unit volume supplied by the body forces.
We may define the corresponding time-averaged energy densities (Dv) and {DT) by

the relations

(Dv) = UJ(DV) and (DT) = u{DT). (7.489)

Substituting the preceding expressions into equation (7.484), we obtain the energy-balance
equation,

div p - 2KJ((V> - (T» + u(D) = P81 (7.490)

where

(D) = (Dv) + (DT) (7.491)

is the total time-averaged dissipated-energy density.
The total stored energy density is

(E) = (V) + (T). (7.492)

If there is no dissipation ({D) = 0) and, since in the absence of sources (P8 = 0) the net
energy flow into or out of a given closed surface must vanish, div p = 0. Thus, the average
kinetic energy equals the average strain energy. As a consequence, the stored energy is
twice the strain energy.
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7.14.4 Inhomogeneous plane waves

A general plane-wave solution for the particle velocity (7.467) is

Y = y0 exp[i((j£ — k • x)], (7.493)

where Yo represents a constant complex vector and k is the wavevector. This is, in general,
complex and can be written as

k = K - i a = (fci, k2,ks), (7.494)

where n and a are the real wavevector and attenuation vector, respectively. They indicate
the directions and magnitudes of propagation and attenuation. In general, these directions
differ and the plane wave is called inhomogeneous. For inhomogeneous viscoelastic plane
waves, the operator (7.468) takes the form

V -> - i K , (7.495)

where

(

K =

fcl
0
0
0
0
0

0
k2

0
0
0
0

0
0

h
0
0
0

0

h
k2

0
0
0

ks
0

0
0
0

k2

hi
0
0
0
0

0 >
0
0

kl
k2

ks J

(7.496)

When the operator is applied to a conjugated field, V should be replaced by iK*.
Substituting the differential operator into equations (7.478) and (7.479) and assuming

zero body forces, we get
-<rT • K*T • y* = LU(TT • e* (7.497)

and
* \ TV * * Ti—v • K • cr = bo\ • K • v (7.498)

respectively. The left-hand sides of equations (7.497) and (7.498) contain the complex
Umov-Poynting vector (7.482). In fact, by virtue of equation (7.494), equations (7.497)
and (7.498) become

2k* • p = tv(TT • e* (7.499)

and
2k- p = T

•R-Y, (7.500)

respectively. Adding (7.499) and (7.500), and using equation (7.494) (k* + k = 2«), we
obtain

4K - p = T
* Te* + Y*T • R • Y (7.501)

Using equation (1.105), the time average of the real Umov-Poynting vector (7.482)

- R e
CT12 013

0"12 022 0"23

013 023 033

•Pf 0 0
0 -pf 0
0 0 -pf

Re(Y), (7.502)
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is

(p> = Re(p), (7.503)

which gives the average power flow.
As in the previous section, the time average of the strain-energy density

(V) = -Re(aT) • Re(e) (7.504)

IS

(V) = jRe{crT • e*) = ^Re(e*T P e). (7.505)

Similarly, the time-averaged kinetic-energy density is

1
(T) = -Re (y*T • R • Y) , (7.506)

and the time-averaged strain and kinetic dissipated-energy densities are

^ I ( * T

and

(LV) = -Im(e*' P e), (7.507)

(DT) = --lm (v*T • R • Y) , (7.508)

respectively. The last two quantities represent the energy loss per unit volume due to
viscoelastic and viscodynamic effects, respectively. The minus sign in equation (7.508)
is due to the fact that Im(F//io;) < 0 (see equation (7.477)). It can be shown that the
dissipated energies should be defined with the opposite sign if an exp(—\ut) kernel is used.
This is the case for the dissipated kinetic energy in the work of Carcione (1996b).

Substituting equations (7.503), (7.505) and (7.506) into the real part of equation
(7.501), we obtain

(7.509)

where (E) is the stored energy density (7.492). Furthermore, the imaginary part of
equation (7.501) gives

2 K • Im p = u((Dv) - (DT)). (7.510)

The wave surface is the locus of the end of the energy-velocity vector multiplied by one
unit of propagation time, with the energy velocity defined as the ratio of the average
power-flow density (p) to the total energy density {E). Since this is equal to the sum of
the average kinetic- and strain-energy densities (K) and (V), the energy velocity is

ve (7.511)

Dissipation is quantified by the quality factor, which can be defined as

Q = ^ - (7.512)

Using the definition of the energy velocity and equation (7.509), we obtain

(7.513)
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where vp = U/K, is the phase velocity, and s# = k/vp is the slowness vector. Relation
(7.513), as in a single-phase medium (see equation (4.78)), means that the phase velocity
is simply the projection of the energy velocity onto the propagation direction.

Finally, subtracting equation (7.499) from (7.500) and using (7.494) yields the energy-
balance equation

- 2 a • p = 2kd((V) - (T» - u{D). (7.514)

Taking the real part of (7.514), we get

2a-<p) =u(D). (7.515)

This equation is the generalization of equation (4.83) for viscoelastic single-phase media,
stating that the time-averaged dissipated energy can be obtained as the projection of the
average power-flow density onto the attenuation direction.

7.14.5 Homogeneous plane waves

For homogeneous waves, the propagation and attenuation directions coincide and the
wave vector can be written as

k = (K — \a)k = kk, (7.516)

where
(7.517)

0 l2 0 h 0 h 0

defines the propagation direction through the directions cosines /i, l<i and £3. For homo-
geneous waves

/ k 0 0 0 k k 0 \
I /~\ 7 /~\ 7 /~\ 7 /~\ I

O O O O O O / i ' (7.518)

O O O O O O / 2
\ 0 0 0 0 0 0 / 3

where k is the complex wavenumber. Using (7.495), we see that equations (7.475) and
(7.476) give

(R- 1 • T - v%) • Y = 0, (7.519)

where
T= L • P • L ' (7.520)

is the Kelvin-Christoffel matrix, and

(7.521)

is the complex velocity.
Making zero the determinant, equation (7.519) gives the following dispersion relation:

det(R" i • T - v2
cl6) = 0. (7.522)

The eigensystem formed by equations (7.519) and (7.522) gives six eigenvalues and the
corresponding eigenvectors. Four of them correspond to the wave modes, and the others
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equal zero, since it can be shown that two rows of the system matrix are linearly depen-
dent. These modes correspond to the fast and slow quasi-compressional waves, and the
two quasi-shear waves.

The slowness and attenuation vectors for homogeneous waves can be expressed in
terms of the complex velocity as

sR = Re
1

K
V.

(7.523)

and

a = — culm.
1

v.
(7.524)

respectively. (Note that (l/vc) is the reciprocal of the phase velocity.)
The average strain-energy density (7.505) can be written, using equations (7.474),

(7.495) and (7.518)-(7.521), in terms of the density as matrix R

V.
- 2 T

R-Y*), (7.525)

where we used the fact that R and T are symmetric matrices.
Equation (7.525) is formally similar to the strain-energy density in anisotropic vis-

coelastic media, where (V) = \p8\vc\~
2'Rje(v^)\'v\2 (see Section 4.3.1). In a single-phase

medium, every particle-velocity component is equally weighted by the density. Note that,
when the medium is lossless, vc is real and the average strain-energy density equals the
average kinetic energy (7.506).

From equations (7.505) and (7.506) and using the property y T • R • y* = y*T • R • y
(because R is symmetric), we note that the stored energy density (7.492) becomes

(E) = -Re 1 +
v T

V,
R v (7.526)

When the medium is lossless, vc and R are real, and (E) is equal to twice the average
kinetic energy (7.506).

For calculation purposes, the Umov-Poynting vector (7.482) can be expressed in terms
of the eigenvector y and complex velocity vc. The average power flow (7.503) can be
written as

^ , (7.527)<P> = - ^
T

• crT) • y*

where e* is the unit Cartesion vector and the Einstein convention for repeated indices is
used; IP are 6 x 7 matrices with most of their elements equal to zero, except C/^, U^,
C/35, E/47, UIQ, £/f2, t/34, C/|7, Uf5: f/|4, f/33 and f/|7, which are equal to 1. Substitution
of the stress-strain relation (7.473) into (7.527) and the use of equations (7.474), (7.495)
and (7.518)-(7.521) yields the desired expression

TP (ei\JiT) • y (7.528)

To obtain the quality factor (7.512), we follow the same steps that led to equation
(7.525) and note that the dissipated energy (7.491) can be written as

(D) = - Imx ' 2
v:
V,

-1 T R v (7.529)
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Using equation (7.525), we obtain

2{V) RefaV-R-y)
(X/) z l m (v ) r(,e (v v • JrC • v )

If there are no losses due to viscosity effects (R is real and (DT) = 0), Y T • R- • Y* is real
and

Q = ̂ p J ' (7-531)
as in the single-phase case (see Section 4.3.1).

7.14.6 Wave propagation in femoral bone

Let us consider propagation of homogeneous plane waves in human femoral bone (or-
thorhombic symmetry), investigated by Carcione, Cavallini and Helbig (1998) using a
single-phase theory for anisotropic viscoelastic media. (See Cowin (1999) for a survey of
the application of poroelasticity in bone mechanics.). A similar application for rocks is
given by Carcione, Helbig and Helle (2003), where the effects of pore pressure and fluid
saturation are also investigated.

To introduce viscoelastic attenuation, we use a stress-strain relation based on model
2 of Section 4.1. Each eigenvector (or eigenstrain) of the stiffness matrix defines a fun-
damental deformation state of the medium. The six eigenvalues (or eigenstiffnesses) rep-
resent the genuine elastic parameters. In the elastic case, the strain energy is uniquely
parameterized by the six eigenstiffnesses. These ideas date back to the middle of the 19th
century when Lord Kelvin introduced the concept of "principal strain" (eigenstrain in
modern terminology) to describe the deformation state of a medium (Kelvin, 1856).

We assume that the bone is saturated with water of bulk modulus Kf = 2.5 GPa,
density pf = 1000 kg/m3 and viscosity r\ = 1 cP; the grain bulk modulus is Ks = 28 GPa,
the grain density is ps = 1815 kg/m3, the porosity is <j> = 0.4, the tortuosities are 7i = 2,
7i = 3 and % = 3.6, and the matrix permeabilities are K\ = 1.2 x 10~12 m2, R2 = 0.8 x
10~12 m2 and % = 0.7 x 10~12 m2. The stiffness matrix of the drained porous medium
in Voigt's notation (CM, see Section 7.3) is

\

18
9.98
10.1

0
0
0

9.98
20.2
10.7

0
0
0

10.
10.
27.

0
0
0

1
7
6

6

0
0
0
.23
0
0

5

0
0
0
0
.61
0 4

0
0
0
0
0
.C )

in GPa. The components of this matrix serve to calculate the elements of matrix Cu by
using equation (7.136). This matrix corresponds to the high-frequency (unrelaxed) limit,
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whose components are

Cn =

f 19 .8
11.7
11.5

0
0
0

i 3.35

11.7
21.8
12.03

0
0
0

3.14

11.5
12.03
28.7

0
0
0

2.59

0
0
0

6.23
0
0
0

5

0
0
0
0
.61
0
0

0
0
0
0
0

4.01
0

3.35
3.14
2.59

0
0
0

6.12

\

in GPa. In order to apply Kelvin's formulation, Hooke's law has to be written in tensorial
form. This implies multiplying the (44), (55) and (66) elements of matrix Qu by a factor 2
(see equation (4.8)) and taking the leading principal submatrix of order 6 (the upper-left
6 x 6 matrix). This can be done for the undrained medium, for which the variation of
fluid content f is equal to zero (closed system) (Carcione, Helbig and Helle, 2003). Let
us call this new matrix (tensor) Cu. This matrix can be diagonalized to obtain

Cu = Q A QT (7.532)

where A = diag(Ai, A2, A3, A4, A5, A6)T is the eigenvalue matrix, and Q is the matrix
formed with the eigenvectors of Cu , or more precisely, with the columns of the right
(orthonormal) eigenvectors. (Note that the symmetry of Cu implies Q"1 = QT.) Hence,
in accordance with the correspondence principle and its application to equation (7.532),
we introduce the viscoelastic stiffness tensor

C = Q A{v) QT , (7.533)

where is a diagonal matrix with entries

1 = 1 , . . . , 6 (7.534)

The quantities Mj are complex and frequency-dependent dimensionless moduli. We de-
scribe each of them by a Zener model, whose relaxation frequency is equal to u (see
equation (4.6)). In this case, we have

(7.535)

where Qi is the quality factor associated with each modulus. (We note here that if
an exp(—iut) kernel is used, \Qj should be replaced by —iQj, and the dissipated strain
energy should be defined with the opposite sign.) To recover the Voigt's notation, we
should divide the (44), (55) and (66) elements of matrix C by a factor 2. This gives the
complex matrix P .

In orthorhombic porous media, there are six distinct eigenvalues, and, therefore, six
complex moduli. We assume that the dimensionless quality factors are defined as Qj =
(A//A6)Q6, / = 1 , . . . , 6, with QQ = 30. This choice implies that the higher the stiffness,
the higher the quality factor (i.e., the harder the medium, the lower the attenuation).
Matrix P is then given by
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P =

19.6 + i0.26
i0.002
i0.001

0
0
0

3.35

21.5
12.0

i0.002
i0.26
i0.001

0
0
0

3.14

12.0
28.4

0
0
0
i0.13

0
0
0

iO.OOl
iO.OOl
i0.26

0
0
0

2.59

0
0
0
0

5.48 + i0.13
0
0

0
0
0
0
0

3.88 + 10.13
0

3.35 \
3.14
2.59

0
0

6.12 )

in GPa.
Polar representations of the attenuation factors (7.524) and energy velocities (7.511)

are shown in Figure 7.15 and 7.16, respectively, for the (x, z) principal plane of the medium
(I2 = 0). Only one quarter of the curves are displayed because of symmetry considerations.
The Cartesian planes of an orthorhombic medium are planes of symmetry, and, therefore,
one of the shear waves, denoted by S, is a pure cross-plane mode. The tickmarks in Figure
7.16 indicate the polarization directions (v 1,0,^3), with the points uniformly sampled as
a function of the phase angle. The curves are plotted for a frequency of / = UJ/(27T)

= 10 kHz, smaller than the characteristic frequency fc = 77^/(73^/^3) = 15 kHz, which
determines the upper limit of the low-frequency theory.

The strong dissipation of the slow qP wave is due to the Biot mechanism, i.e, the
viscodynamic effect. On the other hand, it can be shown that (Dy) and (DT) are com-
parable for the qP, qS and S waves. Anisotropic permeability affects the attenuation of
the slow qP wave. According to Biot's theory, the lower the permeability, the higher the
attenuation. In fact, the vertical attenuation factor is higher than the horizontal attenu-
ation factor. Anisotropic tortuosity mainly affects the velocity of the slow qP wave. This
is (approximately) inversely proportional to the square root of the tortuosity. Hence, the
vertical velocity is smaller than the horizontal velocity.

The three faster waves propagating in the (x, z)-plane of a single-phase orthorhombic
medium have the following velocities along the coordinate axes:

Vqp

vs(0) =

VqP (90)
vs(90) =

(7.536)

where 0 corresponds to the z-axis and 90 to the x-axis, and cu are the complex stiffnesses.
The velocities (7.536) do not correspond exactly to the velocities in the porous case,
since here the density is a matrix, not a scalar quantity. For instance, the densities
corresponding to the S and qS waves along the z-axis are p — p'j/H^ and p — 'j
where R44 and R55 are components of matrix R defined in equation (7.477). However, the
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Figure 7.15: Polar representation of the attenuation factors in one of the planes of mirror symmetry of
human femoral bone saturated with water, where (a) illustrates the fast quasi-compressional wave qP, the
quasi-shear wave qS, and the pure cross-plane shear wave S, and (b) shows the slow quasi-compressional
wave. The frequency is 10 kHz.
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Figure 7.16: Polar representation of the energy velocities in one of the planes of mirror symmetry
of human femoral bone saturated with water, where qP is the fast quasi-compressional wave, qS is the
quasi-shear wave, S is the pure cross-plane shear wave, and slow qP is the slow quasi-compressional wave.
The tickmarks indicate the polarization directions (i>i, 0, vs) for the qP, slow qP and qS waves, while the
polarization of the S wave is (0,1,0). The curves correspond to a frequency of 10 kHz.
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velocities (7.536) can be used to qualitatively verify the behavior of the energy-velocity
curves. On the basis of these equations, Figure 7.16 is in agreement with the values
indicated above for matrix P .



Chapter 8

The acoustic-electromagnetic
analogy

Mathematical analysis is as extensive as nature itself; it defines all perceptible relations , mea-
sures times, spaces, forces, temperatures; this difficult science is formed slowly, but it preserves
every principle, which it has once acquired; it grows and strengthens itself incessantly in the
midst of the many variations and errors of the human mind. Its chief attribute is clearness; it
has no marks to express confined notions. It brings together phenomena the most diverse, and
discovers the hidden analogies which unite them.

Joseph Fourier (Fourier, 1822).

Many of the great scientists of the past have studied the theory of wave motion.
Throughout this development there has been an interplay between the theory of light
waves and the theory of material waves. In 1660 Robert Hooke formulated stress-strain
relationships which established the elastic behavior of solid bodies. Hooke believed light
to be a vibratory displacement of the medium, through which it propagates at finite
speed. Significant experimental and mathematical advances came in the nineteenth cen-
tury. Thomas Young was one of the first to consider shear as an elastic strain, and defined
the elastic modulus that was later named Young's modulus. In 1809 Etienne Louis Malus
discovered polarization of light by reflection, which at the time David Brewster correctly
described as "a memorable epoch in the history of optics". In 1815 Brewster discovered
the law that regulated the polarization of light. Augustus Jean Fresnel showed that if
light were a transverse wave, then it would be possible to develop a theory accommodat-
ing the polarization of light. George Green (Green, 1838; 1842) made extensive use of
the analogy between elastic waves and light waves, and an analysis of his developments
illustrates the power of the use of mathematical analogies.

Later, in the second part of the nineteenth century, James Clerk Maxwell and Lord
Kelvin used physical and mathematical analogies to study wave phenomena in elastic
theory and electromagnetism. In fact, the displacement current introduced by Maxwell
into the electromagnetic equations is analogous to the elastic displacements. Maxwell
assumed his equations were valid in an absolute system regarded as a medium (called
the ether) that filled the whole of space. The ether was in a state of stress and would
only transmit transverse waves. With the advent of the theory of relativity, the concept
of the ether was abandoned. However the fact that electromagnetic waves are transverse
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waves is important. This situation is in contrast to a fluid, which can only transmit
longitudinal waves. A viscoelastic body transmits both longitudinal waves and transverse
waves. It is also possible to recast the viscoelastic equations into a form that closely
parallels Maxwell's equations. In many cases this formal analogy becomes a complete
mathematical equivalence such that the same equations can be used to solve problems in
both disciplines.

In this chapter, it is shown that the 2-D Maxwell's equations describing propagation
of the TEM mode in anisotropic media is completely analogous to the SH-wave equa-
tion based on the Maxwell anisotropic-viscoelastic solid. This equivalence was probably
known to Maxwell, who was aware of the analogy between the process of conduction (static
induction through dielectrics) and viscosity (elasticity). Actually, Maxwell's electromag-
netic theory of light, including the conduction and displacement currents, was already
completed in his paper "On physical lines of force" published in two parts in 1861 and
1862 (Hendry, 1986). On the other hand, the viscoelastic model was proposed in 1867
(Maxwell, 1867, 1890). He seems to have arrived to the viscoelastic rheology from a com-
parison with Thomson's telegraphy equations (Bland, 1988), which describe the process
of conduction and dissipation of electric energy through cables. We use this theory to
obtain a complete mathematical analogy for the reflection-transmission problem.

Furthermore, the analogy can be used to get insight into the proper definition of energy.
The concept of energy is important in a large number of applications where it is necessary
to know how the energy transferred by the electromagnetic field is related to the strength
of the field. This context involves the whole electrical, radio, and optical engineering,
where the medium can be assumed dielectrically and magnetically linear. Energy-balance
equations are important for characterizing the energy stored and the transport properties
in a field. However, the definition of stored (free) energy and energy dissipation rate is
controversial, both in electromagnetism (Oughstun and Sherman, 1984) and viscoelas-
ticity (Caviglia and Morro, 1992). The problem is particularly intriguing in the time
domain, since different definitions may give the same time-average value for harmonic
fields. This ambiguity is not present when the constitutive equation can be described
in terms of springs and dashpots. That is, when the system can be defined in terms of
internal variables and the relaxation function has an exponential form. In Chapter 2 we
gave a general expression of the viscoelastic energy densities which is consistent with the
mechanical model description. In this chapter, the electric, dielectric and magnetic ener-
gies are defined in terms of the viscoelastic expressions by using the analogy. The theory
is applied to a simple dielectric-relaxation process - the Debye model - that is mathe-
matically equivalent to the viscoelastic Zener model. The Debye model has been applied
to bio-electromagnetism in the analysis of the response of biological tissues (Roberts and
Petropolous, 1996), and to geophysics in the simulation of ground-penetrating-radar wave
propagation through wet soils (Turner and Siggins, 1994, Carcione, 1996c).

The 3-D Maxwell's equations are generalized to describe realistic wave propagation by
using mechanical viscoelastic models. A set of Zener elements describe several magnetic
and dielectric-relaxation mechanisms, and a single Kelvin-Voigt element incorporates the
out-of-phase behaviour of the electric conductivity (any deviation from Ohm's law). We
assume that the medium has orthorhombic symmetry, that the principal systems of the
three material tensors coincide and that a different relaxation function is associated with
each principal component. A brief derivation of the Kramers-Kronig dispersion relations
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by using the Cauchy integral formula follows, and the equivalence with the acoustic case
is shown. Moreover, the averaging methods use in elasticity (Backus, 1962) can be used
in electromagnetism. We derive the constitutive equation for a layered medium, where
each single layer is anisotropic, homogeneous and thin compared to the wavelength of the
electromagnetic wave. Assuming that the layer interfaces are flat, we obtain the dielectric-
permittivity and conductivity matrices of the composite medium. Other mathematical
analogies include the high-frequency time-average and CRIM equations, the reciprocity
principle, Babinet's principle and Alford rotation. Finally, a formal analogy can be es-
tablished between the diffusion equation corresponding to the slow compressional wave
described by Biot's theory (see Section 7.7.1) and Maxwell's equations at low frequencies.
A common analytical solution is obtained for both problems and a numerical method is
outlined in Chapter 9.

The use of mathematical analogies is extensively used in many fields of physics (e.g.,
Tonti, 1976). For instance, the Laplace equation describes different physical processes
such as thermal conduction, electric conduction and stationary irrotational flow in hy-
drodynamics. On the other hand, the static constitutive equations of poroelasticity and
thermoelasticity are formally the same if we identify the pore-fluid pressure with the
temperature and the fluid compression with entropy (Norris, 1991, 1994).

The analogy can be exploited in several ways. In first place, existing acoustic modeling
codes can be easily modified to simulate electromagnetic propagation. Secondly, the set
of solutions of the acoustic problem, obtained from the correspondence principle, can be
used to test electromagnetic codes. Moreover, the theory of propagation of plane harmonic
waves in acoustic media also applies to electromagnetic propagation.

8.1 Maxwell's equations

In 3-D vector notation, Maxwell's equations are

V (8.1)

and
V x H = P + J' (8.2)

(Born and Wolf, 1964, p. 1), where E, H, D, B, J ' and M are the electric vector, the
magnetic vector, the electric displacement, the magnetic induction, the electric-current
density (including an electric-source current) and the magnetic-source current density,
respectively. In general, they depend on the Cartesian coordinates (x, y, z) and the time
variable t.

Additional constitutive equations are needed to relate D and B to the field vectors.
For anisotropic lossy media including dielectric relaxation and magnetic loss, D and B
can be written as,

D = e * ftE (8.3)

and
B = ft * 3 tH, (8.4)

where e(x, t) is the dielectric-permittivity tensor and /x(x, t) is the magnetic-permeability
tensor. The electric-current density is given by the generalized Ohm's law

J' = & * 3 tE + J, (8.5)
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where <x(x, t) is the conductivity tensor; the convolution accounts for out-of-phase com-
ponents of the conduction-current density with respect to the electric vector, and J is the
electric-source current density1. Substituting the constitutive equations (8.3) and (8.4)
and the current-density (equation (8.5)) into (8.1) and (8.2), and using properties of the
convolution, gives

V x E = -fi * dlH + M (8.6)

and
V x H = (T * 3 tE + e * <9t

2
tE + J, (8.7)

which are a system of six scalar equations in six scalar unknowns.
The time-dependent tensors, which are symmetric and positive definite, describe var-

ious electromagnetic relaxation processes of the material, like dielectric relaxation and
out-of-phase behavior of the conduction current at high frequencies. The time depen-
dence is not arbitrary; it is assumed for each tensor that its eigenvectors are invariant in
time, so that in a coordinate system coincident with these fixed eigenvectors, the time
dependence of the tensor is fully specified by three time functions on the main diagonal
which serve as the time-dependent eigenvalues of the matrix. These equations also include
paramagnetic losses through the time-dependent magnetic-permeability tensor ft.

In lossless media, the material tensors are replaced by

&(x,t) -> &(x)H(t) (8.8)
e(x)H{t),

where H(t) is Heaviside's function, and the classical Maxwell's equations for anisotropic
media are obtained from equations (8.6) and (8.7):

V x E = -jj, • <9tH + M (8.9)

and
V x H = <T • E + e • <9tE + J. (8.10)

In general, each of the 3 x 3 symmetric and positive definite tensors /x, e and & have a set
of mutually perpendicular eigenvectors. If there is no eigenvector in common for all three
tensors, the medium is said to be triclinic. If there is a single eigenvector common to all
three tensors, the medium is said to be monoclinic and has a mirror plane of symmetry
perpendicular to the common eigenvector.

8.2 The acoustic-electromagnetic analogy

In order to establish the mathematical analogy between electromagnetism and acoustics,
we recast the acoustic equations in the particle-velocity/stress formulation. The conser-
vation equation (1.28) and use of (1.44) give

(8.11)
xNote the difference between magnetic permeability, dielectric permittivity and conductivity (/x, e and

&) and shear modulus, strain and stress (//, e and cr) defined in previous chapters.
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and equations (1.26) and (1.44) combine to give the relation between strain and particle
velocity

T (8.12)

Auld (1990a, p. 101) establishes the acoustic-electromagnetic analogy by using a 3-D
Kelvin-Voigt model:

(8.13)

where C and rj are the elasticity and viscosity matrices, respectively. (Compare this
relation to the 1-D Kelvin-Voigt stress-strain relation in equation (2.159)). Taking the
first-order time derivative of (8.13), multiplying the result by C"1, and using equation
(8.12), we get

VT • v + CT1 • 77 • V T • dtv = CT1 • dt<r. (8.14)

Auld establishes a formal analogy between (8.11) and (8.14) with Maxwell's equations
(8.9) and (8.10), where cr corresponds to E and v corresponds to H.

A better correspondence can be obtained by introducing, instead of (8.13), a 3-D
Maxwell constitutive equation:

d t e = C T 1 • dtcr + r f 1 • cr. (8.15)

(Compare this relation to the 1-D Maxwell stress-strain relation (2.145).) Eliminating
the strain, by using equation (8.12), gives an equation analogous to (8.10):

T _ . — 1 i t~\—1V ' • v = rfl • cr + C 1 • dta. (8.16)

Defining the compliance matrix
S = CT1 (8.17)

and the fluidity matrix
r = rj-\ (8.18)

equation (8.16) becomes
V T • v = r • cr + S • dttr. (8.19)

In general, the analogy does not mean that the acoustic and electromagnetic equations
represent the same mathematical problem. In fact, cr is a 6-D vector and E is a 3-D vector.
Moreover, acoustics involves 6x6 matrices (for material properties) and electromagnetism
3 x 3 matrices. The complete equivalence can be established in the 2-D case by using the
Maxwell model, as can be seen in the following.

A realistic medium is described by symmetric dielectric-permittivity and conductivity
tensors. Assume an isotropic magnetic-permeability tensor

A = AIs (8.20)

and

• \ (8.21)

and

& = (8.22)
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where I3 is the 3 x 3 identity matrix. Tensors (8.21) and (8.22) correspond to a monoclinic
medium with the y-axis perpendicular to the plane of symmetry. There always exists a co-
ordinate transformation that diagonalizes these symmetric matrices. This transformation
is called the principal system of the medium, and gives the three principal components
of these tensors. In cubic and isotropic media, the principal components are all equal. In
tetragonal and hexagonal materials, two of the three parameters are equal. In orthorhom-
bic, monoclinic, and triclinic media, all three components are unequal.

Now, let us assume that the propagation is in the (x, z)-plane, and that the material
properties are invariant in the y-direction. Then, E\, E3 and H2 are decoupled from E2l

Hi and H3. In the absence of electric-source currents, the first three fields obey the TM
(transverse-magnetic) differential equations:

- d3E1 = jjdtH2 + M2, (8.23)

-d3H2 = a11E1 + a13E3 + e11dtE1 + €13^3 , (8.24)

&33E3 + e^dtE-i + e33dtE3, (8.25)

where we have used equations (8.7) and (8.10). On the other hand, in acoustics, uniform
properties in the y-direction imply that one of the shear waves has its own (decoupled) dif-
ferential equation, known in the literature as the SH-wave equation (see Section (1.2.1)).
This is strictly true in the plane of mirror symmetry of a monoclinic medium. Propagation
in this plane implies pure cross-plane strain motion, and it is the most general situation
for which pure shear waves exist at all propagation angles. Pure shear-wave propagation
in hexagonal media is a degenerate case. A set of parallel fractures embedded in a trans-
versely isotropic formation can be represented by a monoclinic medium. When the plane
of mirror symmetry of this medium is vertical, the pure cross-plane strain waves are SH
waves. Moreover, monoclinic media include many other cases of higher symmetry. Weak
tetragonal media, strong trigonal media and orthorhombic media are subsets of the set of
monoclinic media.

In a monoclinic medium, the elasticity and viscosity matrices and their inverses have
the form (1.37). It is assumed that any kind of symmetry possessed by the attenuation
follows the symmetry of the crystallographic form of the material. This statement, which
has been used in Chapter 4, can be supported by an empirical law known as Neumann's
principle (Neumann, 1885).

The SH-wave differential equations equivalent to equations (1.46), corresponding to
the Maxwell viscoelastic model represented by equation (8.15), are

d3a23 = pdtv2 - /2, (8.26)

-83V2 = -T44O23 - T46Cri2 - SUdt(J23 - 5460*012, (8.27)

(8.28)

where

744 = ri66/f], r66 = W ? 7 , r46 = - W ? 7 > V = ^44^66 - ^!6, (8-29)

and
S44 = CQQ/C, SQQ = C44/C, S46 = -C46/C, C = C^CQQ - C%, (8.30)
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where the stiffnesses cu and the viscosities rjij, (/, J = 4, 6) are the components of
matrices C and r], respectively.

Equations (8.23)-(8.25) are converted into equations (8.26)-(8.28) and vice versa, un-
der the following substitutions:

s =
-M2 (8.32)

r46

r46

. (8.33)
^33

(8.34)

p ^ (L, (8 .35 )

w h e r e S a n d T a r e r e d e f i n e d h e r e a s 2 x 2 m a t r i c e s for s i m p l i c i t y . I n t r o d u c i n g t h e 2 x 2
st i f fness a n d v i s c o s i t y m a t r i c e s

C = ( °U C46 ) and 77 = ( Vu me ) , (8.36)
1 C46 C66 / y 7/46 ^66

we obtain the 2-D identities S = C" 1 and r = rj1, which are similar to the 3-D equations
(8.17) and (8.18), respectively. Then, the SH-wave equation for anisotropic media, based
on a Maxwell stress-strain relation, is mathematically equivalent to the TM equations
whose "forcing term" is a magnetic current.

The mathematical analogy also holds for the TE equations under certain conditions.
If we consider the dielectric permittivity an scalar quantity, the conductivity tensor equal
to zero, and the magnetic permeability a tensor, we obtain the following TE differential
equations:

) = eOtE2 + J2, (8 .37)

d3E2 = (iiidtHi + A13CW3, (8.38)

-diE2 = Ai3<9t#i + fadtH3. (8.39)

Then, the TM equations (8.23)-(8.25) and the preceding TE equations are equivalent
for the following correspondence: H2 <=> —E2, Ei •&• Hi, E$ •&• H%, M2 <^ J2, A ^ c>
en ^ An 5 £13 <^ A13 a n d £33 •& A33- I n the frequency domain, the zero conductivity
restriction can be relaxed and the correspondence for the properties becomes A ̂  a + io;e,
<7n+io;eii <̂> An? <5"i3+î £i3 <f=> A13 a n d <3"33+io;e33 <̂> A335 where UJ is the angular frequency.

To get a more intuitive idea of the analogy, and to introduce the concept of quality
factor, we develop the following considerations, which lead to Figures 8.1 and 8.2. For in-
stance, equation (8.28) with C46 = rf^ = 0 can be constructed from the model displayed in
Figure 8.1, where 71 and j 2 are the strains on the dashpot and on the spring, respectively.
In fact,

Ol2 = 77440*71 a n d °12 = C4472,

and

+72) =
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12

n44 c44

Figure 8.1: Maxwell viscoelastic model corresponding to the xy-component of the stress-strain con-
stitutive equation, with C\Q = CQQ = 0. The strains acting on the dashpot and spring are 71 and 72,
respectively.

imply (8.28); indeed, if c^ = ??46 = 0, then s44 = I/C44 and T44 = I/7744.
Obtaining a pictorial representation of the electromagnetic field equations is not so

easy. However, if, instead of the distributed-parameter system (8.24) and (8.25), we
consider the corresponding lumped-parameter system (electric circuit), then such an in-
terpretation becomes straightforward. Indeed, if we consider, for example, equation (8.24)
and assume, for simplicity, that 013 = £13 = 0, then its right-hand side becomes

+
or, in terms of circuit elements,

1 dV

which corresponds to a parallel connection of a capacitor and a resistor as shown in Figure
8.2, where R and C are the resistance and the capacitor, respectively, V is the voltage (i.e.,
the integral of the electric field) and I\ and Ii are the electric currents (V/R corresponds
to aE).

An important parameter of the circuit represented in Figure 8.2 is the loss tangent of
the capacitor. The circuit can be considered as a real capacitor whose losses are modeled
by the resistor R. Under the action of a harmonic voltage of frequency LJ, the total current
/ is not in quadrature with the voltage, but makes an angle TT/2 — S with it (/1 is in phase
with V, while I2 is in quadrature). As a consequence, the loss tangent is given by

P h ICOS(TT/2-5)
tan£ = — = ——.

I2 isin(7r/2 — 0)
(8.40)

Multiplying and dividing (8.40) by V gives the relation between the dissipated power in
the resistor and the reactive power in the capacitor

tan 6 =
VICOS(TT/2-5) V2/R 1

CJCV2 uCR
(8.41)

The quality factor of the circuit is the inverse of the loss tangent. In terms of dielectric
permittivity and conductivity it is given by

Q a
(8.42)
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Figure 8.2: Electric-circuit equivalent to the viscoelastic model shown in Figure 8.1, where R and C
are the resistance and capacitor, V is the voltage, and I\ and I2 are the electric currents. The analogy
implies that the energy dissipated in the resistor is equivalent to the energy loss in the dashpot, and the
energy stored in the capacitor is equivalent to the potential energy stored in the spring. The magnetic
energy is equivalent to the elastic kinetic energy.

The kinetic- and strain-energy densities are associated with the magnetic- and electric-
energy densities. In terms of circuit elements, the kinetic, strain and dissipated energies
represent the energies stored in inductances, capacitors and the dissipative ohmic losses,
respectively. A similar analogy, used by Maxwell, can be established between particle
mechanics and circuits (Hammond, 1981).

8.2.1 Kinematics and energy considerations

The kinematic quantities describing wave motion are the slowness, and the phase-velocity
and attenuation vectors. The analysis is carried out for the acoustic case, and the elec-
tromagnetic case is obtained by applying the equivalence (8.31)-(8.35). For a harmonic
plane wave of angular frequency a;, equation (8.11) - in absence of body forces - becomes

V • (T — \LOpV = 0. (8.43)

On the other hand, the generalized Maxwell stress-strain relation (8.15) takes the form

cr = P • e,

where P is the complex stiffness matrix given by

(8.44)

- 1

P = I S - - r (8.45)

All the matrices in this equation have dimension six. However, since the SH mode is pure,
a similar equation can be obtained for matrices of dimension three. In this case, the stress
and strain simplify to

& = (<732, and (d3u2, d1u2), (8.46)

respectively, where u2 is the displacement field.
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The displacement associated to a homogeneous viscoelastic SH plane wave has the
form (4.107):

u = M2G2, U2 = UQ exp[i(o;£ — k • x)], (8.47)

where x = (x,z) is the position vector and

k = (« — ia)k = kk (8.48)

is the complex wavevector, with k = (h,ls)T, defining the propagation direction through
the direction cosines l\ and Z3. Replacing the stress-strain equation (8.44) into equation
(8.43) yields the dispersion relation

Peril + 22W1/3 + Pulj -P(J) = °' (8-49)

which is equivalent to equation (6.5). The relation (8.49) defines the complex velocity
(see equation (4.28)),

k (8.50)vc=- =
k y P

The phase-velocity, slowness and attenuation vectors can be expressed in terms of the
complex velocity and are given by equations (4.29), (4.33) and (4.34), respectively. The
energy velocity is obtained by the same procedure used in Section 4.4.1. We obtain

Vn f _ ( 1 r , . M A , \ ) /o r i \
+ P46*3)el + (P44'3 + | W l ) e 3 I ( •, (8.51)

Re{vc) { \pvc

which generalizes equation (4.115). The quality factor is given by equation (4.92).
From equation (8.45), in virtue of the acoustic-electromagnetic equivalence (8.31)-

(8.35), it follows that P corresponds to the inverse of the complex dielectric-permittivity
matrix e, namely:

P " 1 <^ e = e - - a . (8.52)
UJ

Then, the electromagnetic phase velocity, slowness, attenuation, energy velocity and qual-
ity factor can be obtained from equations (4.29), (4.33), (4.34), (8.51) and (4.92), respec-
tively, by applying the analogy.

In orthorhombic media, the 46-components vanish; therefore the complex stiffness
matrix is diagonal, with components

)"1 (8-53)

in the acoustic case, where / = 4 or 6, and

(8.54)

in the electromagnetic case, where i = 1 or 3. In isotropic media, where 44-components
equal the 66-components, the complex velocity becomes

v, (8.55)
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in the acoustic case, and

v, (e - \uj-ld)jl] 1 / 2 , (8.56)

in the electromagnetic case, where [i is the shear modulus.
In the isotropic case, the acoustic and electromagnetic quality factors are

Q = ^ (8.57)

and equation (8.42), respectively. If 77 —>• 0 and o —>• 00, then the behaviour is diffusive;
while conditions 77 —>• 00 and o —>• 0 correspond to the lossless limit. Note that 77/// and
e/<7 are the relaxation times of the respective wave processes.

The analogy allows the use of the transient analytical solution obtained in Section 4.6
for the electromagnetic case (Ursin, 1983). The most powerful application of the analogy
is the use of the same computer code to solve acoustic and electromagnetic propagation
problems in general inhomogeneous media. The finite-difference program shown in Section
9.9.2 can easily be adapted to simulate electromagnetic wave propagation based on the
Debye model, as we shall see in Section 8.3.2. Examples of simulations using the acoustic-
electromagnetic analogy can be found in Carcione and Cavallini (1995b).

8.3 A viscoelastic form of the electromagnetic energy

The electromagnetic Umov-Poynting theorem can be re-interpreted in the light of the
theory of viscoelasticity in order to define the stored and dissipated energy densities in the
time domain. A simple dielectric-relaxation model equivalent to a viscoelastic mechanical
model illustrates the analogy, that identifies electric field with stress, electric displacement
with strain, dielectric permittivity with reciprocal bulk modulus, and resistance with
viscosity.

For time-harmonic fields with time dependence exp(icot), equations (8.1) and (8.2)
read

V x E = -icjB, (8.58)

V x H = icuB + J', (8.59)

respectively, where E, D, H and B are the corresponding time-harmonic fields and we
have neglected the magnetic source. For convenience, the field quantities, source and
medium properties are denoted by the same symbols, in both, the time and the frequency
domains.

For harmonic fields, the constitutive equations (8.3), (8.4) and (8.5) read

(8.60)

(8.61)

and
J' = T[dt&] -E + J = <r-E + J, (8.62)

where T\ • ] is the Fourier-transform operator.
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8.3.1 Umov-Poynting's theorem for harmonic fields

The scalar product of the complex conjugate of equation (8.59) with E, use of div (ExH*)
= (V x E) • H* — E • (V x H*), and substitution of equation (8.58) gives Umov-Poynting's
theorem for harmonic fields

div p = i
2

• E - ZED* - -B H
4 4

(8.63)

where
p = - E x HH 2

(8.64)

is the complex Umov-Poynting vector.
Without loss of generality regarding the energy problem, we consider an isotropic

medium, for which, e = e I3, (1 = p, I3 and & = a I3. Then, substitution of the
constitutive equations (8.60), (8.61) and (8.62) into equation (8.63) yields

div p = 2io; - t E
4

1
4

H (8.65)

where

e = e a (8.66)

and we have assumed J = 0. Each term has a precise physical meaning on a time-average
basis:

1
= (Ee) (8.67)

is the time-averaged electric-energy density,

(8.68)

is the time-averaged rate of dissipated electric-energy density,

2 _ (8.69)

is the time-averaged magnetic-energy density, and

UJ 2 _ (8.70)

is the time-averaged rate of dissipated magnetic-energy density. Substituting the preced-
ing expressions into equation (8.65), yields the energy-balance equation

div p - - {Em}) + {De) + {Dm) = 0. (8.71)

This equation is equivalent to (4.57) for viscoelastic media, and, particularly, to (7.490)
for poro-viscoelastic media, since the magnetic-energy loss is equivalent to the kinetic-
energy loss of Biot's theory. The minus sign in equation (8.70) and the condition that
u{Dm) = (Dm) > 0, where (Dm) is the time-averaged dissipated-energy density, implies
Im(/i) < 0.
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Using (8.66), equation (8.71) can be rewritten in terms of the dielectric and conductive
energies as

div p - 2ico((E€ + Ea) - (Em)) + (D€) + (Da) + {Dm) = 0, (8.72)

where

4

1
4 = (Ee) (8.73)

is the time-averaged dielectric-energy density,

-Im(e*) E
2 v ' ~2

2 _ (8.74)

is the time-averaged rate of dissipated dielectric-energy density,

= {Ea)

is the time-averaged conductive-energy density, and

= {Da)

is the time-averaged rate of dissipated conductive-energy density, with

(Ee) = (Ee) + (Ea) and (De) = (De) + (Da).

(8.75)

(8.76)

(8.77)

The Umov-Poynting theorem provides a consistent formulation of energy flow, but this
does not preclude the existence of alternative formulations. For instance, Jeffreys (1993)
gives an alternative energy balance, implying a new interpretation of the Umov-Poynting
vector (see also the discussion in Robinson (1994) and Jeffreys (1994)).

8.3.2 Umov-Poynting's theorem for transient fields

As we have seen in the previous section, time-averaged energies for harmonic fields are
precisely defined. The definition of stored and dissipated energies is particularly contro-
versial in the time domain (Oughstun and Sherman, 1984), since different definitions may
give the same time-averaged value for harmonic fields (Caviglia and Morro, 1992). We
present in this section a definition, based on viscoelasticity theory, where energy can be
separated between stored and dissipated in the time domain. The energy expressions are
consistent with the mechanical-model description of constitutive equations.

Let us consider an arbitrary time dependence and the difference between the scalar
product of equation (8.1) with H and (8.2) with E. We obtain the Umov-Poynting
theorem for transient fields:

-div p = J ' E + E <9tD + H dtB. (8.78)

Since dielectric energy is analogous to strain energy, let us consider a stored dielectric-
(free-) energy density of the form (2.7),

Ee(t) = \ K(t-n,t- T2)d71-D(r1) (8.79)
— OO */ —OO
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Note that the electric displacement D is equivalent to the strain field, since the electric
field is equivalent to the stress field and the dielectric permittivity is equivalent to the
compliance (see equations (8.31)-(8.35)). The underlying assumptions are that the dielec-
tric properties of the medium do not vary with time (non-aging material), and, as in the
lossless case, the energy density is quadratic in the electric field. Moreover, the expression
includes a dependence on the history of the electric field.

Differentiating Ee yields

dtEe = dtD- K{t - r2,
J — OO

/ dtK(t — Ti,t — T2)<9T 1D(TI) • 9T2D(r2)rfri0?r2. (8.80)
J — oo—oo </ —oo

The constitutive equation (8.3) for isotropic media can be rewritten as

(8.81)

where j3(t) is the dielectric-impermeability function, satisfying

°* dtP = 6(t), e 0 0 ^ = e°A) = 1, i(w)P(w) = 1, (8-82)

with the subindices oo and 0 corresponding to the limits t —> 0 and t —>• oo, respectively.
If /3(t) has the form

j3(t) = K(t,0)H{t), (8.83)

where H(t) is Heaviside's function, then,

f K{t - r2,0)dT2T>(r2)dr2 = E(*), (8.84)
J—oo

and (8.80) becomes
E • dtD = dtE€ + D£, (8.85)

where

(8.86)
—oo J —oo

is the rate of dissipated dielectric-energy density. Note that the relation (8.83) does not
determine the stored energy, i.e., this can not be obtained from the constitutive equation.
However, if we assume that

$ , (8.87)

such that P is defined by the relation

= P(t)H(t), (8.88)

this choice will suffice to determine K, and

Ee(t) = \ [ [ P(2t - n - T2)dT1B(ri) • ̂ D(r2)dridr2 , (8.89)
—oo J —oo
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De(t) = - dj3(2t - ri - (8.90)
—oo «/ — oo

where d denotes differentiation with respect to the argument of the corresponding func-
tion. Equation (8.87) is consistent with the theory implied by mechanical models (Chris-
tensen, 1982). Breuer and Onat (1964) discuss some realistic requirements from which
K(t, Ti) must have the reduced form P(t + Ti).

Let us calculate the time average of the stored energy density for harmonic fields
using equation (8.89). Although D(—oo) does not vanish, the transient contained in
(8.89) vanishes for sufficiently large times, and this equation can be used to compute the
average of time-harmonic fields. The change of variables T\ —>• t — T\ and r2 —>• t — r2

yields
Ee(t) = g / I ^1+ T2)dT>(t - Ti) ' dB(t - T2)dTXdT2. (8.91)

0 JO

Using (1.105), the time average of equation (8.91) is

{Ee) = \
OO /»OO

0 JO
T2) - T2)]dTidT2. (8.92)

A new change of variables u = T\ + r2 and v = T\ — r2 gives

(Ee) = -
OO PU

o
Piu) cosiujv)dudv = —

-U

oo

/3(u) &m(uju)du. (8.93)

From equation (8.88) and using integration by parts, we have that

Re \T [dtp]} =
\J

oo
w w

sin(o;t)^. (8.94)
o

Using the property

u
/•OO

/ sm(ut)dt = 1,
Jo

(8.95)

we obtain
oo

Rje[P(cj)] = UJ I Pit) sin(ujt)dt.
o

Substituting (8.96) into equation (8.93), and using E = /?(o;)D (P(UJ)

equation (8.81)), and equation (8.82), we finally get

(8.96)

F[dtp{t% see

(8.97)

which is the expression (8.73). A similar calculation shows that (D€) is equal to the
expression (8.74).

Similarly, the magnetic term on the right-hand side of equation (8.78) can be recasted
as

H dtB = dtEm + Dm, (8.98)

where

Em(t) = \ I [ 7(2* - n - r2)dT1B(r1) • dvtB(T2)dT1dr2,
^ J — oc J — oo

(8.99)
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- n - T2)d71B(r1) • ̂ B ^ J d r i d r a , (8.100)
— OO t/ —OO

are the stored magnetic-energy density and rate of dissipated magnetic-energy density,
respectively, such that

= >y(t)H(t), (8.101)

with 7 the magnetic-impermeability function.
The rate of dissipated conductive-energy density can be defined as

Da{i) = - / &{2t - n - r2)aTlE(ri) • dT2E(r2)dTldT2. (8.102)
— OO t/ —OO

Formally, the stored energy density due to the electric currents out-of-phase with the
electric field, Ea, satisfies

dtEa = J ' • E - Da, (8.103)

where
J' = a * ftE, a(t) = &(t)H(t). (8.104)

In terms of the energy densities, equation (8.78) becomes

-div p = dt(Ee + Ea + Em) + De + Da + Dm, (8.105)

which is analogous to equation (2.95). The correspondence with time-averaged quantities
are given in the previous section.

Note that (J' • E) is equal to the rate of dissipated energy density (Da), and that

(dtEe) = 0. (8.106)

The same property holds for the stored electric- and magnetic-energy densities.
There are other alternative time-domain expressions for the energy densities whose

time-average values coincide with those given in Section 8.3.1, but fail to match the energy
in the time domain. For instance, the following definition

E'e = - E • D, (8.107)

as the stored dielectric-energy density, and

D'e = - (E • dtD - D • dtE) (8.108)

as the rate of dissipation, satisfy equation (8.105) and (E'e) = (Ee) and (D'e) = (D€).
However, E'€ is not equal to the energy stored in the capacitors for the Debye model
given in the next section (see equations (8.120) and (8.122)). In the viscoelastic case (see
Chapter 2), the definition of energy is consistent with the theory of mechanical models.
In electromagnetism, the theory should be consistent with the theory of circuits, i.e., with
the energy stored in the capacitors and the energy dissipated in the resistances.
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The Debye-Zener analogy

It is well known that the Debye model used to describe the behaviour of dielectric materials
(Hippel, 1962) is mathematically equivalent to the Zener or standard-linear-solid model
used in viscoelasticity (Zener, 1948). The following example uses this equivalence to
illustrate the concepts presented in the previous section.

Let us consider a capacitor C2 in parallel with a series connection between a capacitor
C\ and a resistance R. This circuit obeys the following differential equation:

U + TudtU =

where U = dV/dt, I is the current, V is the voltage,

(8.109)

C = d + C2, n = CXR. (8.110)

From the point of view of a pure dielectric process, we identify U with E and / with D
(see Figure 8.3).

82

If
8 1 G

D

E

Figure 8.3: This electric circuit is equivalent to a purely dielectric-relaxation process, where e\ and €2
are the capacitors, o is the conductivity, E is the electric field, and D is the electric displacement.

Hence, the dielectric-relaxation model is

E + = - (D + rvdtD),-0

where
>o r£

1

<7

1 1 - 1

rv = ei/cr.

(8.111)

(8.112)

with a the conductivity. Note that e° is the static (low-frequency) dielectric permittivity
and e°° = ^TS/T-D = e2 < e° is the optical (high-frequency) dielectric permittivity.



338 Chapter 8. The acoustic-electromagnetic analogy

We have that

e(t) = eo 1 - 1 - T£_

TV
exp(-t/rv) (8.113)

/?(*) = P(t)H(t) =

and

1 - (l - ^ ) expi-t/re)

\

H(t) (8.114)

\UJTV

(8.115)

Equation (8.115) can be rewritten as

(8.116)

The dielectric permittivity (8.116) describes the response of polar molecules, such as
water, to the electromagnetic field (Debye, 1929; Turner and Siggins, 1994).

Substituting (8.114) into equation (8.81) and defining the internal variable

£(t) = 4>exV(-t/r£)H(t) * D(*),
1

1 - (8.117)

yields

E =
OO

(8.118)

where ^ satisfies

(8.119)

The dielectric-energy density is that stored in the capacitors

2ei
• D2, (8.120)

where Di and D2 are the respective electric displacements. Since D2 = e2E, D = Di
and e°° = e2, we obtain

(8.121)

where equation (8.118) has been used. Note that the internal variable £ is closely related to
the electric field acting on the capacitor in series with the dissipation element. Substitution
of Di and D2 into equation (8.120) and after some calculations yields

E* = (8.122)

Let us verify that equation (8.122) is in agreement with equation (8.89). From equations
(8.114) and (8.117) we have

1
= ^ - (f>r£exp(-t/T£).-0

(8.123)
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Replacing (8.123) into equation (8.89) and after some algebra yields

E€ = ^ D • D - ±07* [exp(-t/r£)H(t) * dtT>(t)]2 , (8.124)

where the exponent 2 means the scalar product. Using equations (8.117) and (8.119) gives

(8.125)Ee = - ^ D • D -

Since e°°ri> = e°r^, and a few calculations show that the expression in (8.125) is equal to
the stored energy density (8.122). This equivalence can also be obtained by avoiding the
use of internal variables. However, the introduction of these variables is a requirement to
obtain a complete differential formulation of the electromagnetic equations. This formu-
lation is the basis of most simulation algorithms (Carcione, 1996c; Xu and McMechan,
1997).

The rate of dissipated dielectric-energy density is

D€ = ^rdtB1 - dtBu (8.126)
a

which from equation (8.119) and (8.121) becomes

(
O \T£

(8.127)

Taking into account the previous calculations, it is easy to show that substitution of
equation (8.123) into (8.90) gives equation (8.127).

The Zener model has been introduced in Sections 2.4.3 and 2.7.3. In this case, the
free (stored) energy density can be uniquely determined (Cavallini and Carcione, 1994).
The relaxation function and complex modulus are given in equations (2.173) and (2.170),
respectively:

= MR exp(-t/7v) H(t), (8.128)

and

M(u) = MR

where M#, r€ and ra are defined in equations (2.168) and (2.169), respectively. Equation
(8.129) can be rewritten as

M 1 M j l , (8.130)
\U)Te

where My = MRTe/ra. The memory variable is given in equation (2.283):

= (po[exp(-t/Ta)H(t)\ * e(t), (p0 = —- 11 - — j , (8.131)

and the field variables satisfy equation (2.283),

(8.132)
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and equation (2.286),

- —. (8.133)

Assuming that the strain energy is stored in the springs, we have that

V = ^(hel + k2e
2

2), (8.134)

where e\ and e2 are the dilatations of the springs (see Figure 2.8), and k\ and k2 can be
expressed from equations (2.168) and (2.169) as

and k2 = ^—^. (8.135)

Since o = k\€i and e = ei + e2, and using (2.283), we obtain

and e2 = — ^ - . (8.136)
M

and e2 ^
MJJ MJJ

Note that the memory variable £ is closely related to the dilatation on the spring that is
in parallel with the dashpot. Substitution of the dilatations into equation (8.134) yields

v = ^L
u

(8.137)

which, after some calculations, can be rewritten as

1
V = l-MRe2 - -^—((p^e - 02. (8.138)

I 2(pT

On the other hand, the rate of energy density dissipated in the dashpot of viscosity rj is

\ (8.139)

which from equations (8.133) and (8.136) becomes

(8.140)

The mathematics of the viscoelastic problem is the same as for the dielectric re-
laxation model previously introduced, since equations (8.114)-(8.119) are equivalent to
(8.128)-(8.133) and equations (8.125) and (8.127) are equivalent to (8.138) and (8.140),
respectively. The mathematical equivalence identifies electric vector E with stress a and
electric displacement D with strain e. The complete correspondence between the dielectric
and the viscoelastic models is

Fields Properties
E <^ a 6°
D <£> e e°°

E, ~ - ? - - <8-141)

2 W 62 62 W l%2

where some of the symbols can be identified in Figures 2.8 and 8.3.
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The Cole-Cole model

Equation (8.116) can be generalized as

6°
(8.142)

where q = m/n, with m and n positive, integer and prime, and m < n. This model
has been introduced by Cole and Cole (1941). The corresponding frequency- and time-
domains constitutive equations are

D =
q

+ E (8.143)

and

where r | = e^r^/e0 , and dq/dtq is the fractional derivative of order q (see Section 2.5.2).
Equation (8.144) is a generalization of (8.111).

The rational power of the imaginary unit (i)q in equations (8.142) and (8.143) is a
multi-valued function and implies a number n of different physically accepted values of
the dielectric permittivity. As a consequence, a time-harmonic wave is split into a set
of waves with the same frequency and slightly different wavelengths which interfere and
disperse (Caputo, 1998; Belfiore and Caputo, 2000). The expression (8.142) is also called
the generalized Debye form of the dielectric permittivity, and the Debye-Zener analogy
(8.141) can also be applied to the Cole-Cole model.

The fractional derivative is a generalization of the derivative of natural order by using
Cauchy's well-known formula. For a given function /(£), the fractional derivative is given
by

= f(t) •«_ , (* ) , where *,(*) = ̂ , (•"' = { J ' 1 \ > J (8.145)

and P is Euler's Gamma function (Caputo and Mainardi, 1971). If $_j = 8V'(t), j =
0,1,2, . . . , where 8 is Dirac's function, equation (8.145) gives the j-order derivative of
fit). Caputo and Mainardi (1971) have shown that

e(t) = {e° + (e°° - t°)Eq{-(t/TD)q]}H(t), (8.146)

where
oo

is the Mittag-Leffler function of order q, introduced by Gosta Mittag-Leffler in 1903 (note
the similarity with the Wright function (3.212)). It is a generalization of the exponential
function, with E\(T) = exp(r) (e.g., Podlubny, 1999). Equation (8.146) becomes equation
(8.113) for q =1 .
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8.4 The analogy for reflection and transmission

In this section, we obtain a complete parallelism for the reflection and refraction (transmis-
sion) problem, considering the most general situation, that is the presence of anisotropy
and attenuation — viscosity in the acoustic case and conductivity in the electromagnetic
case (Carcione and Robinson, 2002). The analysis of the elastic-solid theory of reflection
applied by George Green to light waves (Green, 1842), and a brief historical review of
wave propagation through the ether, further illustrate the analogy.

Let us assume that the incident, reflected and refracted waves are identified by the
superscripts / , R and T. The boundary separates two linear viscoelastic and monoclinic
media. The upper medium is defined by the stiffnesses pu and density p and the complex
permittivities e^ and magnetic permeability /}. The lower medium is defined by the cor-
responding primed quantities. Let us denote by 9 and 5 the propagation and attenuation
angles, and by ip the Umov-Poynting vector (energy) direction, as indicated in Figure 6.1.
The propagation and energy directions do not necessarily coincide.

The analogy can be extended to the boundary conditions at a surface of discontinuity,
say, the (x, ̂ )-plane, because according to equation (8.31) continuity of

a32 and v2 (8.148)

in the acoustic case, is equivalent to continuity of

and H2 (8.149)

in the electromagnetic case. The field variables in (8.149) are precisely the tangential
components of the electric and magnetic vectors. In the absence of surface current densi-
ties at the interface, the boundary conditions impose the continuity of those components
(Born and Wolf, 1964, p. 4).

The SH reflection-transmission problem is given in Section 6.1, where the Zener model
is used to describe the attenuation properties. In the case of an incident inhomogeneous
plane wave and a general stiffness matrix P , the relevant equations are summarized in
the following section.

8.4.1 Reflection and refraction coefficients

The particle velocities of the reflected and refracted waves are given by

v2 = ico R exp[iuj (t — Six — s^z)] (8.150)

and
v2 (8.151)

respectively, and the reflection and refraction (transmission) coefficients are

Z1 — ZT 2Z1

where
Z1 = p465i + P44S3, ZT = p ^ s i + p 4 4 5^, (8.153)
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with
sR = s^ = s[ = s1 (Snell's law), (8.154)

RS (8.155)

and

T
P44

with

+ Wx/p'p'u-P'2^) , (8.156)

/2 • (8.157)

(For the principal value, the argument of the square root lies between — TT/2 and +TT/2.)

As indicated by Krebes (1984), special care is needed when choosing the sign, since a
wrong choice may lead to discontinuities of the vertical wavenumber as a function of the
incidence angle.

Propagation, attenuation and ray angles

For each plane wave,

n^y M^r R^)' (8-l58)

where
X1 =pms1 +P46S3

(8.159)

The ray angle denotes the direction of the power-flow vector Re(p), where p is the Umov-
Poynting vector (6.9).

Energy-flux balance

The balance of energy flux involves the continuity of the normal component of the Umov-
Poynting vector across the interface. This is a consequence of the boundary conditions
that impose continuity of normal stress o^i &nd particle velocity v<i- The balance of power
flow at the interface, on a time-average basis, is given in Section 6.1.7. The equation are

(PR) + (PIR) = (PT>, (8.160)

where

/ R ( | 4 * ) = -cj2Re(Z7) exp[2cjlm(si)x] (8.161)
Z

is the incident flux,

(8.162)

is the reflected flux,

(pIR) = --Re^yf + G*V{*) = co2lm(R)lm(ZT) exp[2LuIm(Sl)x] (8.163)
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is the interference between the incident and reflected normal fluxes, and

T T* 2 T (8.164)

Iis the refracted flux. In the lossless case, Z is real and the interference flux vanishes.

8.4.2 Application of the analogy

On the basis of the solution of the SH-wave problem, we use the analogy to find the
solution in the electromagnetic case. For every electromagnetic phenomenon — using the
electromagnetic terminology — we analyze its corresponding mathematical and physical
counterpart in the acoustic case. Maxwell (1891, p. 65), who used this approach, writes:
The analogy between the action of electromotive intensity in producing the displacement
of an elastic body is so obvious that I have ventured to call the ratio of electromotive
intensity to the corresponding electric displacement the coefficient of electric elasticity of
the medium.

Refraction index and Fresnel's formulae

Let us assume a lossless, isotropic medium. Isotropy implies C44 = CQQ = \i and c^ = 0
and en = 633 = e, and 613 = 0. It is easy to show that, in this case, the reflection and
refraction coefficients (8.152) reduce to

R =
cos 6 > J - cos 6>T

pjJ COS 91 + COS 9T Pp> COS 91 + COS 9T '

respectively. From the analogy (equation (8.33)) and equation (8.30) we have

e, (8.166)

The refraction index is defined as the velocity of light in vacuum, Co, divided by
the phase velocity in the medium, where the phase velocity is the reciprocal of the real
slowness. For lossless, isotropic media, the refraction index is

(8.167)

where s = y/Jie is the slowness, and Co = l/VAo^o? with eo = 8.85 10 12 F/m and
= 4TT 10~7 H/m, the dielectric permittivity and magnetic permeability of free space.

In acoustic media there is not a limit velocity, but using the analogy we can define a
refraction index

(8.168)

where v is a constant with the dimensions of velocity. Assuming p = p' in (8.165) and
using (8.166), the electromagnetic coefficients are

R =
cos91 - \fecos9T

j= r=
e' cos 91 + v e cos 9T

and 1 =
2\/icos9 T

ye1 cos 91 + ye cos 9T
(8.169)
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In terms of the refraction index (8.167) we have

„ n' cos 91 — n cos 9T , m 271COS01 ,n „ ,
R=~, TTT Trr a n d T = ~, m Trr' 8 - 1 7 0

n' cos v1 +n cos v1 n cos v1 + n cos t/J

Equations (8.170) are Fresnel's formulae, corresponding to the electric vector in the plane
of incidence (Born and Wolf, 1964, p. 40). Hence, Fresnel's formulae are mathematically
equivalent to the SH-wave reflection and transmission coefficients for lossless, isotropic
media, with no density contrast at the interface.

Brewster (polarizing) angle

Fresnel's formulae can be written in an alternative form, which may be obtained from
(8.170) by using Snell's law

ri
smt/J y p! na V e n

It yields
tan(6>7 - 9T) 2 sin 0T cos 91

~ tan(^ + 9T) ~ s in(^ + 9T) cos(0' - 0T)' { }

The denominator in (8.172)i is finite, except when 91 + 0T = TT/2. In this case the reflected
and refracted rays are perpendicular to each other and R = 0. It follows from Snell's law
that the incidence angle, 6B = 91', satisfies

Un9B = cot9T = x[^- = ^ = i / | = - . (8.173)
y p! na V e n

/
The angle 9B is called the Brewster angle, first noted by Etienne Malus and David Brew-
ster (Brewster, 1815)(see Section 6.1.5). It follows that the Brewster angle in elasticity
can be obtained when the medium is lossless and isotropic, and the density is constant
across the interface. This angle is also called polarizing angle, because, as Brewster states,
When a polarised ray is incident at any angle upon a transparent body, in a plane at right
angles to the plane of its primitive polarisation, a portion of the ray will lose its property
of being reflected, and will entirely penetrate the transparent body. This portion of light,
which has lost its re flexibility, increases as the angle of incidence approaches to the po-
larising angle, when it becomes a maximum. Thus, at the polarizing angle, the electric
vector of the reflected wave has no components in the plane of incidence.

The restriction about the density can be removed and the Brewster angle is given by

tan 9B = x I
 P^' , f, (8.174)

but 91 + 9T ^ TT/2 in this case. The analogies (8.34) and (8.35) imply

( 8 ' 1 7 5 )
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in the electromagnetic case.
In the anisotropic and lossless case, the angle is obtained from

cot9B = (-b±Vb2 -4ac)/(2a), (8.176)

where
a = c44(/)C44 - p'c'u)/p, b = 2ac46/c44, (8.177)

and
c = c2

46- c'J - c'u(p'c66 - pc'66)/p (8.178)

(see Section 6.1.5). If c46 = c46 = 0, we obtain

(8.179)

or, using the analogy,
C44

(8.180)

the Brewster angle is given by

:
//€33

8

In the lossy case, tan 9B is complex, in general, and there is no Brewster angle. However
let us consider equation (8.175) and incident homogeneous plane waves. According to the
correspondence (8.52), its extension to the lossy case is

The Brewster angle exists if t is proportional to e, for instance, if the conductivity of the
refraction medium satisfies o' = (e'/e)<7 (?/ = (////x)?y in the acoustic case). This situation
is unlikely to occur in reality, unless the interface is designed for this purpose.

Critical angle. Total reflection

In isotropic, lossless media, total reflection occurs when Snell's law

sin0T =
p'fj,

(8.183)

does not give a real value for the refraction angle 9T. When the angle of incidence exceeds
the critical angle 9c defined by

py! na V /ie n
( 8 . 1 8 4 )
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all the incident wave is reflected back into the incidence medium (Born and Wolf, 1964,
p. 47). Note from equations (8.173) and (8.184) that tan## = sin9c when p' = p and
LAJ — LJJ •

The critical angle is defined as the angle of incidence beyond which the refracted
Umov-Poynting vector is parallel to the interface. The condition Re(ZT)=0 (see Section
6.1.5) yields the critical angle 9c- For the anisotropic, lossless case, with c^ = cf46 = 0,
we obtain

(8.185)
pd66 - p'c66

where we have used the correspondence (8.180).
In the isotropic and lossy case we have

fie — pit
(8.186)

The critical angle exists if t is proportional to e, i.e., when the conductivity of the refrac
tion medium satisfies a' = (e'/e)<r.

Example: The acoustic properties of the incidence and refraction media are

C44 = 9.68 GPa, CQQ = 12.5 GPa, rju = 20 044/0;, 7766 = 7744, p = 2000 k g / m

and
C44 = 25.6 GPa, c'66 = c44, rj'u = r}'66 = 00, p = 2500 k g / m ,

respectively, where u = 2TT/, with / = 25 Hz. The refraction medium is isotropic and
lossless. The absolute value of the acoustic reflection and refraction coefficients - solid and
dashed lines - are shown in Figure 8.4 for the lossless (a) and lossy (b) cases, respectively.
The Brewster and critical angles are 9B = 42.61° and 9c = 47.76° (see Figure 8.4a), which
can be verified from equations (8.179) and (8.185), respectively.

The electromagnetic properties of the incidence and refraction media are

en = 3 €0, e33 = 7 e0, au = <r33 = 0.15 S/m, p, = 2/}0

and

respectively, where we consider a frequency of 1 GHz. The refraction medium is vacuum.
We apply the analogy

- 1
C44 ^

- 1 ,
C66 ^

- 1 ,

1

p <£

> en

• \

^ ^33

> p ,

(8.187)

and use the same computer code used to obtain the acoustic reflection and refraction
coefficients. The absolute value of the electromagnetic reflection and refraction coefficients
- solid and dashed lines - are shown in Figure 8.5 for the lossless (a) and lossy (b) cases,
respectively. The Brewster and critical angles are 9B = 13.75° and 9c = 22.96°, which
can be verified from equations (8.181) and (8.185), respectively.
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Figure 8.4: Reflection and transmission coefficients (solid and dashed lines) for elastic media: (a)
lossless case and (b) lossy case.
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Figure 8.5: Reflection and transmission coefficients (solid and dashed lines) for electromagnetic media:
(a) lossless case and (b) lossy case.
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Reflectivity and transmissivity

Equation (8.160) is the balance of energy flux across the interface. After substitution of
the fluxes (8.161)-(8.164), we obtain

Re(Z7) = -Re(ZR)\R\ - 2Im(ZI)Im{R). (8.188)

Let us consider the isotropic and lossy case and an incident homogeneous plane wave.
Thus, 4̂6 = 0, P44 = PQQ = /x, where \i is complex, and equations (6.10)2 and (6.28) imply
Z = ^/p/IcosO. Then, equation (8.188) becomes

cos 91 = \R\2Re cos 01 + |T|2Re pv

cos (8.189)

where we have used equations (6.36) and (8.153)-(8.157). For lossless media, the interfer-
ence flux — the last term on the right-hand side — vanishes, because /1 is real. Moreover,
using Snell's law (8.183) we obtain

(8.190)

where

1Z= R2 and T =
cos 9T

pfl COS07
T (8.191)

are called the reflectivity and transmissivity, respectively. Using the analogy (8.166) and
assuming p = p' and jl' = /t, we obtain

< c o s j F 2 = nf_cos9T ^ 2
?ia cos 01 n

(8.192)

(Born and Wolf, 1964, p. 41), where n and na are defined in equations (8.167) and (8.168),
respectively.

Dual fields

The reflection and refraction coefficients that we have obtained above correspond to the
particle-velocity field or, to be more precise, to the displacement field (due to the factor
ico in equations (8.150) and (8.151)). In order to obtain the reflection coefficients for the
stress components, we should make use of the constitutive equations, which for the plane
wave are

= —Xv2, and a32 = -Zv2 (8.193)

(see equations (6.4)), where Z and X are defined in equations (8.153) and (8.159), re-
spectively. Let us consider the reflected wave. Combining equation (8.150) and (8.193)
we obtain

af2 = R12
R r> f U R M

0-32 = K32 exp[i(j(r — S\X — S3 z)\,
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where
2 = -\UJXRR and R32 = -\uZRR (8.195)

are the stress reflection coefficients.
In isotropic and lossless media, we have

R12 = — ico y/pjl sin 01 R and R32 = iui \/pj~i cos 01 R. (8.196)

where we have used equations (8.153)i, (8.159)2, si = sin01 \J pj \i (see equation (6.27)i),
and ZR = —Z1 (see equation (6.36)).

The analogies (8.31), (8.35) and (8.166) imply

= -iujJ^sm9IR and Ex =-ioo J ^ cos 01 R (8.197)

(Born and Wolf, 1964, p. 39).

Sound waves

There is a mathematical analogy between the TM equations and a modified version of the
acoustic wave equation for fluids. Denoting the pressure field by p, the modified acoustic
equations can be written as

+ d3v3 = -Kfdtp, (8.198)

—dip = 7^i + pfyvi, (8.199)

-d3p = 7 ^ + pdtv3, (8.200)

where Kf is the fluid compressibility, and 7 = 0 yields the standard acoustic equations of
motion. Equations (8.198)-(8.200) correspond to a generalized density of the form

(8.201)

where H(t) is Heaviside's function and I(t) is the integral operator. The acceleration
term for, say, the ^-component is

+ pdtvx = dt~p{t) * dtVL (8.202)

Equations (8.198)-(8.200) are mathematically analogous to the isotropic version of the
electromagnetic equations (8.23)-(8.25) for the following correspondence

TM ^ Fluid

~P

-v3 (8.203)
e O p
a <5 7

AC/,

where M2 = 0 has been assumed. Let us assume a lossless electromagnetic medium, and
consider Snell's law (8.183) and the analogy between the SH and TM waves. That is,
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transform equation (8.165) to the TM equations by using the analogies \i l &• e and
p <^ ft. In order to apply the mathematical analogies correctly, we need to recast the
reflection coefficients as a function of the material properties and incidence angle. We
obtain

— \ -1

fie
e V e y file1 I I V e

(8.204)
If Kfl = pc2, where c is the sound-wave velocity, application of the analogy (8.203) to
equation (8.204) implies

(8.205)R = ^ ^
/ / C COS B1 + yOC COS

where we have used Snell's law for acoustic media

d
(8.206)

If we assume p = p' and use Snell's law again, we obtain
T

which is the reflection coefficient for light polarized perpendicular to the plane of incidence
(the electric vector perpendicular to the plane of incidence), as we shall see in the next
section. Note that we started with the TM equation, corresponding to the electric vector
lying in the plane of incidence.

8.4.3 The analogy between TM and TE waves

The TE (transverse-electric) differential equations for an isotropic and lossless medium
are

E2, (8.208)

d3E2 = f&tHu (8.209)

. (8.210)

The isotropic version of equations (8.23)-(8.25) and (8.208)-(8.210) are mathematically
analogous for the following correspondence

TM <£> TE
—E2

Hi
(8.211)

From equation (8.204), and using the analogy (8.211) and Snell's law (8.183), the TE
reflection coefficient is

e' \ I I 2 I 2' \
R= [ J^cosf l 7 - J4-cos0T) I W-^cos^ + W ^ c o s ^ ) . (8.212)

V V i*' / v V M V M
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Assuming /}' = fi and using again Snell's law, we obtain

This is the reflection coefficient for the electric vector-component £2, i-e., light polarized
perpendicular to the plane of incidence. Note that R for H<2 (equation (8.172)) and R for
E2 (equation (8.213)) have different functional dependences in terms of the incidence and
refraction angles.

From equation (8.175) and using the analogy (8.211), the TE Brewster angle is

In the case of non-magnetic media, ft = jl' = 1, there is no TE Brewster angle.

Green's analogies

On December 11, 1837, Green read two papers to the Cambridge Philosophical Soci-
ety. The first paper (Green, 1838) makes the analogy between sound waves and light
waves polarized in the plane of incidence. To obtain his analogy, we establish the follow-
ing correspondence between the acoustic equations (8.198)-(8.200) and the TE equations
(8.208)-(8.210):

TE ^ Fluid

~P
V3 (8.215)

e

A
where we have assumed that 7 = 0. Using Snell's law (8.183), the TE reflection coefficient
(8.212) can be rewritten as

R =
^1 l - sin

- 1

(8.216)
If we apply the analogy (8.215) to this equation and Snell's law (8.206), we obtain equation
(8.205). Green obtained the reflection coefficient for the potential field, and assumed

= K' or
pc_

(8.217)

Using this condition, Snell's law (8.206) and equation (8.205), we obtain

_ sin 91 cos 91 - sin 0T cos 9T _ tan(<97 - 0T)

sin 91 cos 01 + sin 0T cos 6T ~ tan(6>7 + 6T)' ( ^

which is the same ratio as for light polarized in the plane of incidence. Green (1838) has
the opposite convention for describing the polarization direction, i.e., his convention is
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to denote R as given by equation (8.218) as the reflection coefficient for light polarized
perpendicular to the plane of incidence.

Conversely, he considers the reflection coefficient (8.207) to correspond to light polar-
ized in the plane of incidence. This is a convention dictated probably by the experiments
performed by Malus, Brewster (1815) and Faraday, since Green did not know that light is
a phenomenon related to the electric and magnetic fields - a relation that was discovered
by Maxwell nearly 30 years later (Maxwell, 1865). Note that different assumptions lead
to the different electromagnetic reflection coefficients. Assuming p = //, we obtain the
reflection coefficient for light polarized perpendicular to the plane of incidence (equation
(8.207)), and assuming Kf = «*, we obtain the reflection coefficient for light polarized in
the plane of incidence (equation (8.218)).

Green's second paper (Green, 1842) is an attempt to obtain the electromagnetic reflec-
tion coefficients by using the equations of elasticity (isotropic case). Firstly, he considers
the SH-wave equation (Green's equations (7) and (8)) and the boundary conditions for
the case ji = p! (his equation (9)). He obtains equation (8.165)i for the displacement
reflection coefficient. If we use the condition (8.217) and Snell's law (8.206), we obtain
precisely equation (8.207). i.e., the reflection coefficient for light polarized perpendicular
to the plane of incidence - in the plane of incidence according to Green.

Secondly, Green considers the P-SV equation of motion in terms of the potential fields
(Green's equations (14) and (16)), and makes the following assumptions

pc2
P = p ' c ' P \ pc2

s = p ' c ' s
2

: (8.219)

that is, the P- and S-wave moduli are the same for both media. This condition implies

^ (8.220)

which means that both media have the same Poisson ratio. Conversely, relation (8.220)
implies that the P- and S-wave velocity contrasts are similar:

= % = w. (8.221)

Green is aware — on the basis of experiments — that light waves with polarization per-
pendicular to the wave front were not observed experimentally. He writes: But in the
transmission of light through a prism, though the wave which is propagated by normal
vibrations were incapable itself of affecting the eye, yet it would be capable of giving rise
to an ordinary wave of light propagated by transverse vibrations.... He is then constrained
to assume that Cp ^> c,?, that is, according to his own words, that in the luminiferous
ether, the velocity of transmission of waves propagated by normal vibrations, is very great
compared with that of ordinary light. The implications of this constraint will be clear
below.

The reflection coefficient obtained by Green (1842), for the shear potential and an
incident shear wave, has the following expression using our notation:

2 s2

(8.222)
S3S
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(Green's equation (26)), where Sg5 and sjs are the vertical components of the slowness
vector corresponding to the S wave. On the basis of the condition cp ^$> cs, Green assumed
that the vertical components of the slowness vector corresponding to the incident, reflected
and refracted P waves satisfy

= -isR
P = islp = si. (8.223)

These relations can be obtained from the dispersion relation sf + s2. = co/cp of each wave
assuming cp —> oo. This assumption gives an incompressible medium and inhomogeneous
P waves confined at the interface. The complete expression for the SS reflection coefficients
are given, for instance, in Pilant (1979, p. 137) 2. He defines a = cs/cp and c = cs/c'P.
Green's solution (8.222) is obtained for a = c = 0.

The vertical components of the shear slowness vector are given by

(8.224)

However, equation (8.222) is not Fresnel's reflection coefficient. To obtain this equation,
Green assumed that w « 1; in his own words: When the refractive power in passing from
the upper to the lower medium is not very great, w (\i using his notation,) does not differ
much from 1. The result of applying this approximation to equation (8.222) is

If 91 is the incidence angle of the shear wave and 0T is the angle of the refracted shear
wave, equation (8.221), Snell's law and the relation

T
3S_ _ cot eT

s|^ ~ cot<97

(which can be obtained by using equation (8.224) and Snell's law), yield

(8.226)

- l
sin2 91 cot 0T W sin2 91 cot 0T \ sin 261 - sin 20T tan(6>7 - 6T)

) + )sin20T co t0V Vs in 2 ^ cotO1 J sin 201 + sin 20T tan(6>7 + 9T)'
(8.227)

which is the reflection coefficient for light polarized in the plane of incidence. Green
considers that equation (8.227) is an approximation of the observed reflection coefficients.
He claims, on the basis of experimental data, that the intensity of the reflected light
never becomes absolutely null, but attains a minimum value. Moreover, he calculates the
minimum value of the reflection coefficient and obtains

r, (8.228)

which using the approximation w ~ 1 gives zero reflection coefficient. This minimum
value corresponds to the Brewster angle when using the Fresnel coefficient (8.227). Green

2Note a mistake in Pilant's equation (12-21): the (43)-coefficient of matrix A s should be

-2sin0S iVc 2 - sin2 0Si/(b
2d) instead of -2sm0SiVa2 -sin2 0Si/(b

2d).
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assumed w = 4/3 for the air-water interface. The absolute values of the reflection coeffi-
cient R given by equations (8.222) and (8.227) are shown in Figure 8.6. The dashed line
correspond to equation (8.222). We have assumed cs = 30 cm/ns and c's = cs/w. At the
Brewster angle (9 = atan(w)), Green obtained a minimum value Rm{n = 0.08138.
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Figure 8.6: Green's reflection coefficient for light polarized in the plane of incidence (dashed line) and

corresponding Fresnel's reflection coefficient (solid line).

The non-existence of the Brewster angle (zero reflection coefficient), can be explained
by the presence of dissipation (ionic conductivity effects), as can be seen in Figure 8.5.
Green attributes this to the fact that the refraction medium is highly refracting. Quoting
him: This minimum value [Rmin] increases rapidly, as the index of refraction increases,
and thus the quantity of light reflected at the polarizing [Brewster] angle, becomes consid-
erable for highly refracting substances, a fact which has been long known to experimental
philosophers (Green, 1842). For instance, fresh water is almost lossless and is a less
refracting medium than salt water, which has a higher conductivity.

8.4.4 Brief historical review

We have seen in the previous section that Green's theory of refraction does not provide
an exact parallel with the phenomenon of light propagation. MacCullagh (Trans. Roy.
Irish. Acad., xxi, 1848; Whittaker, 1987, p. 141) presented an alternative approach to the
Royal Irisih Academy in 1839. He devised an isotropic medium, whose potential energy
is only based on rotation of the volume elements, thus ignoring pure dilatations from the
beginning. The result is a rotationally elastic ether and the wave equation for shear waves.
The corresponding reflection and refraction coefficients coincide with Fresnel's formulae.

Green (1842) assumed the P-wave velocity to be infinite and dismissed a zero P-wave
velocity on the basis that the medium would be unstable (the potential energy must be
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positive). Cauchy (Comptes Rendus, ix (25 Nov. 1839), p. 676, and (2 Dec. 1839), p.
726; Whittaker, 1987, p. 145), neglecting this fact, considered that P waves have zero
velocity, and obtained the sine law and tangent law of Fresnel. He assumed the shear
modulus to be the same for both media. Cauchy's ether is known as the contractile or
labile aether. It corresponds to an elastic medium of negative compressibility. The P-
wave dispersion relation for this medium is s\-\- s\ = 0, which leads to an infinite vertical
slowness. This condition confines the propagation direction of the compressional waves
to be normal to the interface. The energy carried away by the P waves is negligible, since
no work is required to generate a dilatational displacement, due to the negative value
of the compressibility. If we assume the shear modulus of both media to be the same
(the differences depend on density contrasts only), we obtain Fresnel's formulae. The
advantage of the labile ether is that it overcomes the difficulty of requiring continuity of
the normal component of the displacement at the interface. Light waves do not satisfy
this condition, but light waves plus dilatational vibrations, taken together, do satisfy the
condition.

8.5 3-D electromagnetic theory and the analogy

We cannot establish a complete mathematical analogy in three-dimensional space, but we
can extend Maxwell's equations to include magnetic and dielectric-relaxation processes
and out-of-phase electric currents using viscoelastic models. The approach, based on
the introduction of memory or hidden variables, uses the analogy between the Zener
and Debye models (see Section 8.3.2), and a single Kelvin-Voigt element to describe the
out-of-phase behaviour of the electric conductivity (any deviation from Ohm's law). We
assume that the medium is orthorhombic; i.e., that the principal systems of the three
material tensors coincide and that a different relaxation function is associated with each
principal component. The physics is investigated by probing the medium with a uniform
(homogeneous) plane wave. This analysis gives the expressions of measurable quantities,
like the energy velocity and the quality factor, as a function of propagation direction and
frequency.

In orthorhombic media, /x, e and <x have coincident eigenvectors. Rotating to a
coordinate system defined by those common eigenvectors, allows the tensors to be written
as

0
0

0

0

0
0

M3

0 0 \ / <7i 0 0
e = ( 0 e2 0 and & = 0 a2 0 | . (8.229)

0 0 e, / V O O

The following symmetries are embraced by the term orthotropy: i) Orthorhombic, for
which there are no two eigendirections for which all three tensors have equal eigenvalues.
Crystals of this kind are said to be optically biaxial; ii) Transverse isotropy, for which there
are two eigendirections, and only two, for which all three tensors have equal eigenvalues,
e.g., if the two directions are the x- and y-directions, then jli = /}2, ei = e2 and d\ =
&2- This electromagnetic symmetry includes that of hexagonal, tetragonal and trigonal
crystals. These are said to be optically uniaxial; iii) Isotropy, for which all three tensors
have three equal eigenvalues, i.e., they are all isotropic tensors. Crystals of cubic symmetry
are electromagnetically isotropic.
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For the sake of simplicity in the evaluation of the final equations, we consider a Carte-
sian system that coincides with the principal system of the medium. The electromagnetic
equations (8.6) and (8.7) in Cartesian components are

d2Ex

d2H3

= jl\ * _

- d3Ex = fa* d2
ttH2 + M2

- dxE2 = fa * d2
ttH3 + M3

- d%H2 = o"i * dtE\ + 61 * + Jx
(8.230)

= <72 * dtE2 + e2 * d%E2 + J2

= <73 * a t^3 + h *

8.5.1 The form of the tensor components

The principal components of the dielectric-permittivity tensor can be expressed as

o(t) = et H(t), i = 1 , . . . ,3 , (8.231)

where ê  is the static dielectric permittivity, Â  and TU are relaxation times (A^ < )
and Li is the number of Debye relaxation mechanisms. The condition Â  < TU makes the
relaxation function (8.231) analogous to the viscoelastic creep function corresponding to
Zener elements connected in series (see Section 2.4.5 and Casula and Carcione (1992)).
The optical (or high-frequency) dielectric permittivity

0

Li1

il

1=1

(8.232)

is obtained as t —> 0. Note that e?° < e9.
Similarly, the principal components of the magnetic-permeability tensor can be written

as

w = o 1 Ni
1%%n

n = l

exp(-t/ein)
zn

H(t), n = 1,..., 3, (8.233)

where $ is the static permeability, ju and On are relaxation times (7^ < 9u), and Ni is
the number of Debye relaxation mechanisms.

On the other hand, the conductivity components are represented by a Kelvin-Voigt
mechanical model (see Section 2.4.2):

0
L — _L . • . O, (8.234)

where <3f is the static conductivity, Xi is a relaxation time and 5(t) is Dirac's function.
The out-of-phase component of the conduction current is quantified by the relaxation
time Xi- This choice implies a component of the conduction current 90° out-of-phase with
respect to the electric field.
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8.5.2 Electromagnetic equations in differential form

Equations (8.230) could be the basis for a numerical solution algorithm. However, the nu-
merical evaluation of the convolution integrals is prohibitive when solving the differential
equations with grid methods and explicit time-evolution techniques. The conductivity
terms pose no problems, since conductivity does not involve time convolution. To cir-
cumvent the convolutions in the dielectric-permittivity and magnetic-permeability com-
ponents, a new set of field variables is introduced, following the same approach as in
Section 3.9.

The dielectric internal (hidden) variables, which are analogous to the memory variables
of viscoelastic media, are defined as

e n = <l>ii * (8.235)

where i = 1, . . . , 3, and

H(t)
exp(-t/Tu), = 1,..., (8.236)

Similarly, the magnetic hidden variables are

din
 = ~~

l

Vi
* I — 1 , . . . , 1V^ (8.237)

in

where

<Pin(t) =
H(t)

1 - 7*in exp(-t/0in), (8.238)
in

(there is no implicit summation in equations (8.235)-(8.238)).
Following the same procedure as in Section 3.9, the electromagnetic equations in

differential form become

03E2 - d2E3 = i ^0
— 1 uln

-1 a2n

-1 ^3n

Mi

(8.239)

?

- d2Hx =

where
€ei — ei

0
Xi (8.240)

and

ez (8.241)

are the effective optical dielectric-permittivity and conductivity components, respectively,
with

Li

= V= ^ (fin (0) and = 2-*« (°) •
Z = l

(8.242)
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The first two terms on the right side of the last three of equations (8.239) correspond
to the instantaneous response of the medium, as can be inferred from the relaxation
functions (8.231) and (8.234). Note that the terms containing the conductivity relaxation
time Xi a r e m phase with the instantaneous polarization response. The third terms in
each equation involve the relaxation processes through the hidden variables.

The set of equations is completed with the differential equations corresponding to the
hidden variables. Time differentiation of equations (8.235) and (8.237), and the use of
convolution properties, yield

dteu = [eu + (f>u{0)Ei], I = 1 , . . . , Lh (8.243)
Til

and

dtdin = —r- [din + (finifyHi], n = 1 , . . . , N{. (8.244)
"in

Equations (8.239), (8.243) and (8.244) give the electromagnetic response of a con-
ducting anisotropic medium with magnetic and dielectric-relaxation behaviour and out-
of-phase conduction currents. These equations are the basis of numerical algorithms for
obtaining the unknown vector field

= [Hi, H 2 , H%, E i , E 2 , E 3 , { e u } , {din}] , i = l , . . . , 3 , 1 = 1 , . . . , L i , n = l , . . . , N i .
(8.245)

8.6 Plane-wave theory

The plane-wave analysis gives the expressions of measurable quantities, such as the slow-
ness vector, the energy-velocity vector and the quality factor as a function of frequency.
Assume non-uniform (inhomogeneous) harmonic plane waves with a phase factor

exp[kj(t-s-x)] , (8.246)

where s is the complex slowness vector. We use the following correspondences between
time and frequency domains:

V x - > — iu;s x and dt —>• io;. (8.247)

Substituting the plane wave (8.246) into Maxwell's equations (8.6) and (8.7), in the
absence of sources, and using (8.247) gives

s x E = £1 H, (8.248)

and
s x H = - e E, (8.249)

where
(8.250)

and

T [dte] - -T [dt&] ->• e - -& = e. (8.251)
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For convenience, the medium properties are denoted by the same symbols, in both the
time and frequency domains.

Note that e can alternatively be written as

e = ee- - & e , (8.252)

where

ee = Re(e) + -Im(<r) (8.253)

and
&e = Re(<7) - cjlm(e) (8.254)

are the real effective dielectric-permittivity and conductivity matrices, respectively. The
components of e and & from equations (8.231) and (8.234) are

* i i \

(8.255)
1 + I

and
(8-256)

The dielectric-permittivity component (8.255) can be rewritten as equation (8.116:

— 2
i — ei

1 J^i ^0 POO

i + ~ ^~T~

where e^ = e^Xu/ru is the infinite-frequency (optical) dielectric permittivity of the l-th
relaxation mechanism. A similar expression is used in bio-electromagnetism (Petropoulos,
1995).

Similarly, from equation (8.233),

( 8 ' 2 5 8 )

1 n=l

Since Â  < TU implies Im(e^) < 0 and Re(<Ji) > 0, the two terms on the right side of
equation (8.254) have the same sign and the wave propagation is always dissipative. The
importance of the effective matrices ee and &e is that their components are the quantities
that are measured in experiments. The coefficients multiplying the electric field and the
time derivative of the electric field in equations (8.239) correspond to the components of

and e^°, respectively.
Taking the vector product of equation (8.248) with s, gives

s x (jj, l • s x E) = s x H, (8.259)

which, with equation (8.249), becomes

- is x (ft'1 • s x E) + e • E = 0, (8.260)
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for three equations for the components of E. Alternatively, the vector product of equation
(8.249) with s and use of (8.248) yields

S X s x H] + (i H = 0, (8.261)

for three equations for the components of H.
From equation (8.260), the equivalent of the 3 x 3 Kelvin-Christoffel equations (see

Sections 1.3 and 4.2), for the electric-vector components, are

-i
> 7 — 1 3 (8.262)

where e ^ are the components of the Levi-Civita tensor.
Similarly, the equations for the magnetic-vector components are

^ \ - l (8.263)

Both dispersion relations (8.262) and (8.263) are identical. Getting one relation from the
other implies an interchange of e^ and faj and vice versa.

So far, the dispersion relations correspond to a general triclinic medium. Consider
the orthorhombic case given by equations (8.229). Then, the analogue of the Kelvin-
Christoffel equation for the electric vector is

r • E = o, (8.264)

where the Kelvin-Christoffel matrix is

r =

2 2
S2 • g 3

M3 M2

h

A2
S2S3

(8.265)

A2 M2 Mi

= £3fa 3

After defining
i, (8.266)

the 3-D dispersion relation (i.e. the vanishing of the determinant of the Kelvin-Christoffel
matrix), becomes,

^1^1 i ^2^2 ~*~ 3 3 / vMl^l ' M2^2 ~*~ M3^3/ — v / l S l ^ l ~r '/2S2^2 "^ ' /3^3^3/ "•" 'Il'l2'l3 — U. ^O.ZD / J

There are only quartic and quadratic terms of the slowness components in the dispersion
relation of an orthorhombic medium.

8.6.1 Slowness, phase velocity and attenuation

The slowness vector s can be split into real and imaginary vectors such that cjRe(t — s • x)
is the phase and — cjlm(s-x) is the attenuation. Assume that propagation and attenuation
directions coincide to produce a uniform plane wave, which is equivalent to a homogeneous
plane wave in viscoelasticity. The slowness vector can be expressed as

s =
T _ (8.268)
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where s is the complex slowness and s = ( h,l2,h)T is a real unit vector, with ^ the
direction cosines. We obtain the real wavenumber vector and the real attenuation vector
as

= Re(s) and a = —a;Im(s), (8.269)

respectively. Substituting equation (8.268) into the dispersion relation (8.267) yields

As* - Bs2 + ??i77277s = 0, (8.270)

where
A = (eJl + €2*1 + l + Ml + Ml)

and

In terms of the complex velocity v
attenuation vectors are

= 1/s, the magnitudes of the phase velocity and

vp Re
v,

- 1

and a = —o;Im (8.271)

respectively.
Assume, for instance, propagation in the (x, y)-plane.

relation (8.270) is factorizable, giving
Then, I3 = 0 and the dispersion

i + e2® - + = 0. (8.272)

These factors give the TM and TE modes with complex velocities

l\ I

ei
(8.273)

and

(8.274)

In the TM (TE) case the magnetic (electric) vector is perpendicular to the propagation
plane. For obtaining the slowness and complex velocities for the other planes, simply
make the following subindex substitutions:

from the (x, y)—plane to the (x, z)—plane
from the (x,y)— plane to the (y, z)— plane

( 1 , 2 , 3 ) —>•

(1,2,3) —v
(3,1, 2),
(2,3,1).

The analysis of all three planes of symmetry gives the slowness sections represented in
Figure 8.7, where the values on the axes refer to the square of the complex slowness.
There exists a single conical point given by the intersection of the TE and TM modes, as
can be seen in the (x, £)-plane of symmetry. The location of the conical point depends
on the values of the material properties. At the orthogonal planes, the waves are termed
ordinary (circle) and extraordinary (ellipse). For the latter, the magnitude of the slowness
vector is a function of the propagation direction. The result of two waves propagating
at different velocities is called birefringence or double refraction (e.g., Kong, 1986), This
phenomenon is analogous to shear-wave splitting in elastic wave propagation (see Section
1.4.4).
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Figure 8.7: Intersection of the slowness surface with the principal planes. The corresponding waves are
either transverse electric (TE) or transverse magnetic (TM). The values at the axes refer to the square
of the complex slowness.

8.6.2 Energy velocity and quality factor

The scalar product of the complex conjugate of equation (8.249) with E, use of the relation
2Im(s) • (E x H* ) = (s x E) • H* + E • (s x H)* (that can be deduced from div (E x H*) =
(V x E) • H* - E • (V x H*) and equation (8.247)), and substitution of equation (8.248),
gives Umov-Poynting's theorem for plane waves

-2Im(s) • p = 2i((Ee) - (Em)) - (De) - (Dm) (8.276)

where

P = -ExH*
2

(8.277)

is the complex Umov-Poynting vector

(Ee) = j (e • E)*]

is the time-averaged electric-energy density.

<£>.> = - Im[E • (e • E)«]

is the time-averaged rate of dissipated electric-energy density,

(8.278)

(8.279)

{Em) = j H*] (8.280)
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is the time-averaged magnetic-energy density and

] (8.281)

is the time-averaged rate of dissipated magnetic-energy density. These expressions are
generalizations to the anisotropic case of the equations given in Section 8.3.1.

The energy-velocity vector, ve, is given by the energy power flow, Re(p), divided by
the total stored energy density,

R e ( p ) (8.282)V- =
(Ee + Em)

As in the acoustic case, the relation (4.78) holds, i.e., s • ve = vp, where s and vp are
defined in equations (8.268) and (8.271)i, respectively.

The quality factor quantifies energy dissipation in matter from the electric-current
standpoint. As stated by Harrington (1961, p. 28), the quality factor is defined as the
magnitude of reactive current density to the magnitude of dissipative current density.
In visco-elastodynamics, a common definition of quality factor is that it is twice the
ratio between the averaged strain energy density and the dissipated energy density. The
kinetic and strain energy densities are associated with the magnetic- and electric-energy
densities. Accordingly, and using the acoustic-electromagnetic analogy, the quality factor
is defined here as twice the time-averaged electric-energy density divided by the time-
averaged dissipated electric-energy density, where we consider the dissipation due to the
magnetic permeability, as in poroelasticity we consider the dissipation due to the kinetic
energy (see Sections 7.14.3 and 7.14.4). Then,

Q = mfh> (8-283)
where

(De)=u-1{De) and (Dm) = u~l (Dm) (8.284)

are the time-averaged electric and magnetic dissipated-energy densities, respectively.
Consider the TE mode propagating in the (#, y)-plane. Then,

TE = £0(0,0,1)T exp(-is • x), (8.285)

where Eo is a complex amplitude. By equation (8.248),

/ / / \ T

H = / T 1 • s x E = s£0 A , - ^ - , 0 exp(-is • x), (8.286)

where we have assumed uniform plane waves. Substituting the electric and magnetic
vectors into the energy densities (8.278)-(8.281) yields

(Ee) = iRe(e3) |£o|2exp(-2a -x), (8.287)

(Em) = -Re I e 3 ^ ) \E0\
2exp(-2a • x), (8.288)
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0.) = ~ x)

and
UJ

(Dm) = - I m e3 v* E'o|2exp(-2a -x),

where the complex velocity vc is given by equation (8.274).
Summing the electric and magnetic energies gives the total stored energy

(Ee + Em) — -
v

x),
p

where vp is the phase velocity (8.271)i. The TE power-flow vector is

Re(p) = ^
h

e2
fix

£'o|2exp(-2a • x)

(8.289)

(8.290)

(8.291)

(8.292)

From equations (8.291) and (8.292), we obtain the energy velocity for TE waves propa-
gating in the (x, ?/)-plane as

ve(TE) =
vp

Re(e3vc)
/\ + (8.293)

Performing similar calculations, the energy densities, power-flow vector (8.277) and energy
velocity for TM waves propagating in the (x, y)-plane are

(Ee) = ^Re
v.
V* R0 x), (8.294)

(Em) = -Re(A3) |#o|2exp(-2a (8.295)

UJ
(De) = glm

V.
i/0|2exp(-2a • x)

and
u

(Dm) = --Im(p,s)\H0\ exp(-2a • x),

where the complex velocity vc is given by equation (8.273).
The TM total stored energy and power-flow vector are

(Ee + Em) = -Re
v,
v

.£/o|2exp(-2a • x)
p

and

Re(p) = ^ h
v.

e2— H0\
2exp(—2a • x),

and the energy velocity is

Ve(TM) =
Vp 1

e2

(8.296)

(8.297)

(8.298)

(8.299)

(8.300)
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Calculation of the total time-averaged rate of dissipated energy for the TE and TM waves
yields

(De + Dm)(TE) = ^Re (e3avc) | £ 0 | 2 exp( -2a . x) (8.301)

and
(De + ZU(TM) = ^Re (fi3avc) \H0\

2 exp(-2a • x), (8.302)

where we have used equations (8.287)-(8.290) and (8.294)-(8.297).
Let us consider the TE mode. Substitution of (8.287) and (8.301) into equations

(8.283) and (8.284) gives

Q = «^SL. (8.303)cdm(e3

If we neglect the magnetic losses, for instance, by assuming that jj, is real, we obtain

Re(e3) _ Re(«c)Q ~ ~M^) " h^fy (8'304)

which is the viscoelastic expression (e..g. see equation (4.92)).
Another definition of quality factor, which considers the total energy, is a generaliza-

tion of equation (2.124),

Q = 7 Z T T # ? (8-305)

In this case, the quality factor takes the simple form

Q = -^—- (8-306)

The form (8.306) coincides with the relation between quality factor and attenuation for
low-loss media (see equation (2.123)), although we did not invoke such a restriction here.

The quality factor (8.283) for TM waves is

ujRe(fi3vc/v*)
—5 [Q.6\J()

and Q has the same form (8.306) but using the phase velocity and attenuation factor
corresponding to the TM wave.

An application of this theory to ground-penetrating-radar wave propagation is given
in Carcione and Schoenberg (2000).

8.7 Analytical solution for anisotropic media

We can derive a closed-form frequency-domain analytical solution for electromagnetic
waves propagating in a 3-D lossy orthorhombic medium, for which the dielectric-permittivity
tensor is proportional to the magnetic-permeability tensor. Although this solution has
limited practical value, it can be used to test simulation algorithms.

Maxwell's equations (8.6) and (8.7) for a time-harmonic magnetic field propagating
in an inhomogeneous anisotropic medium can be written as

V x (e"1 • V x H) - UJ2JJL • H = V x (e"1 • J) , (8.308)
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where the dielectric-permittivity tensor e is given by equation (8.251). Maxwell's equa-
tions are symmetric by interchanging H and E. The equivalence — or duality — is given
by

H & E, J <£> - M , e & -A , A ^ - c - (8.309)

The equivalent of the vector equation (8.308) is

V x (A • V x E) - u2e • E = V x (A • M) . (8.310)

We assume now that the medium is homogeneous. However, note that even in this
situation, the tensors e~l and jjT1 do not commute with the curl operator. We further
assume that the medium is orthorhombic and that its principal system coincides with the
Cartesian system where the problem is solved. In orthorhombic media, the eigenvectors of
the material tensors coincide, allowing these tensors to have a diagonal form (see equation
(8.229)). In Cartesian coordinates, the vector term V x (e"1 • V x H) consists of three
scalar terms:

1 \ 1 ^ , (8.311)

(8.312)

and
- d2d3H2). (8.313)

In the absence of magnetic-current densities, we have V • B = 0, where B = A • H, and
then

ji3d3H3 = 0. (8.314)

Using (8.311)-(8.314) and multiplying the three components of (8.308) by —e2es: —
and —6162, respectively, yields

e^H + e2d2Hx + e3d3Hi - ( e3 - —e2 1 did3H3 + u ^ie2e3Hi = e3d3J2 - e2d2J3,V )
(8.315)

Mi
l3d\E2 - ( e3 - -^ei 1 d2d3H3

(8.316)

l ( d2d3H2
Mi V Mi /

(8.317)
The system of equations (8.315)-(8.317) can be solved in closed form by assuming tha t the
general dielectric permit t ivi ty tensor is proportional to the magnetic-permeabili ty tensor:

e oc A- (8.318)

This part icular class of orthorhombic media satisfies

(8.319)

This assumption is similar to one proposed by Lindell and Olyslager (1997). Using these
relations, equations (8.315)-(8.317) become three Helmholtz equations,

= e3d3J2 - e2d2J3, (8.320)
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A€H2 + UJ2TJH2 = eiflih ~ hdzJu (8-321)

AeH3 + UJ2TJH3 = e2d2h - eidi J2, (8-322)

where
77 = Ai^2^3 (8.323)

and
Ae = exdl + t2d\ + e3d3

2. (8.324)

The equations for the electric-vector components can be obtained from equations
(8.320)-(8.322) using the duality (8.309):

LJ2
XE1 = jl2d2M3 - fi3d3M2, (8.325)

= ji3d3M1 - AiftM3, (8.326)

, (8.327)

where

u, — M l ^ l ' M2^2 "•" M3^3 ^O.oZoJ

and
X = eiA2A3- (8.329)

Note that the relations (8.319) are not modified by duality.

8.7.1 The solution

The following change of coordinates

x —> OL\JT\, y —> py/^2, z —>• jy/is (8.330)

transforms Ae into a pure Laplacian differential operator. Using equation (8.330)i, equa-
tion (8.320) becomes

A LJ _i_ , ,2 TJ f=~"o T Pz~P\ T (Q QQ1 \
LXIIQ, -\- Lu T/IIQ, — \/£3UjJft — \/£2UflJ™: yo.ool)

where
A = d2

a + d\ + d2 (8.332)

and analogously for equations (8.321) and (8.322).
Consider equation (8.331) for the Green function

(8.333)

whose solution is
1

9(p) = -7—- e xP(~ i a ; /V^)> (8.334)
Anp

where
p = y/a2 + (32 + -f2 (8.335)

(Pilant, 1979, p. 64). The spatial derivatives of the electric currents in (8.331) imply the
differentiation of the Green function. Assume, for instance, that the electric currents
and J7 are delta functions: Jp = Jp8(p) and J7 = ,J75(p). Since the solution of (8.331) is
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the convolution of the Green function with the source term, it can be obtained as the /3
spatial derivative of the Green function. Then, for impulsive electric currents, the solution
is

Ha = - (VhJpd7g - V^J-rfyg) • (8.336)
We have that

J dg dg lJ p d 1 g = l - j dpg: (8.337)

where

dpg = - (I + hjy/jjj g. (8.338)

In terms of Cartesian coordinates, the solution is

- + ivy/rj ) exp(-icjpv/?7), (8.339)
p )

where
z2

p=\ - + - + - • (8.340)
e e3

Similarly, the other components are given by
1 \

Ho = (x<Js — zj\) [ —V itO\/rj exp(—icup /̂rj) (8.341)
4irp2 \p J

and
1 (I \

" 3 — ~i—ITT WU\ — %U2l I "T ~r \UJ\ITi I 6XDI—\U0O\/T1). (o.o4Z)
47T/9Z \ /9 /

The three components of the magnetic vector are not functionally independent, since they
must satisfy equation (8.314). When solving the problem with a limited-band wavelet
source /(£), the frequency-domain solution is multiplied by the Fourier transform F(u).
To ensure a real time-domain solution, we consider an Hermitian frequency-domain so-
lution. Finally, the time-domain solution is obtained by an inverse transform. Examples
illustrating this analytical solution can be found in Carcione and Cavallini (2001).

8.8 Finely layered media

The electromagnetic properties of finely plane-layered media can be obtained by using
the same approach used in Section 1.5 for elastic media. Let us consider a plane-layered
medium, where each layer is homogeneous, anisotropic and thin compared to the wave-
length of the electromagnetic wave. If the layer interfaces are parallel to the (x, y)-plane,
the properties are independent of x and y and may vary with z.

We follow Backus's approach (Backus, 1962) to obtain the properties of a finely layered
medium. Let w(z) be a continuous weighting function that averages over a length d. This
function has the following properties:

w(z) > 0
iu(iboo) = 0

' (8.343)
f00 z'w(z')dz' = 0

z'2w(z')dz' = d2
—oo
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Then, the average of a function / over the length d around the location z is

oo

</>(*)= / w(z'-z)f(z')dz'. (8.344)
— OO

The averaging removes the wavelengths of / which are smaller than d. An important
approximation in this context is

(/</} = /(</>, (8-345)

where / is nearly constant over the distance d and g may have an arbitrary dependence
as a function of z.

Let us consider first the dielectric-permittivity properties. The explicit form of the
frequency-domain constitutive equation is obtained from equation (8.60),

Ex
hi e22 e23 I I E2 | , (8.346)

£23 £33 / \ E3

where the dielectric-permittivity components are complex and frequency dependent. The
boundary conditions at the single interfaces impose the continuity of the following field
components

L>3, Eu and E2 (8.347)

(Born and Wolf, 1964, p. 4), which vary very slowly with z. On the contrary, D\, D2 and
E$ vary rapidly from layer to layer. We express the rapidly varying fields in terms of the
slowly varying fields. This gives

A = (en -1P\E1 + (e12 - ^ ) E2 + ̂ D3, (8.348)
^ ^ / 633

D2 =[i12- ^P^- )E1+[e22--^)E2 + ̂ D3 (8.349)
633 / V 633 / ^33

and

{ - e23E2). (8.350)
£33

These equations contain no products of a rapidly varying field and a rapidly variable
dielectric-permittivity component. Then, the average of equations (8.348)-(8.350) over
the length d can be performed by using equation (8.345). We obtain

e12 - ^)E2 + ( ^ V (8.351)
^ / \ e33 /

(D2) = U2 -\ e33
(8.352)

and

(8.353)
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Expressing the average electric-displacement components in terms of the averaged electric-
vector components gives the constitutive equations of the medium,

D3 I \ ^13 ^23 £33

C^l) \ / SH £12 S13
£12 2̂2 2̂3 I I E2 I , (8.354)

where

(8.355)
£33

» » »

- 1

(8.356)
/N

3̂3 / \ 3̂3

-1

(8.357)

) ( Y (8.358)
633 / \ ^

. e33

and

(8.359)

£33

- 1

(8.360)

For isotropic layers, 612 = 613 = 623 = 0, en = 622 = 633 = e, and we have

= £22 = <c>, (8.361)

- 1

(8.362)

a n d £12 = £13 = £23 = 0.

The acoustic-electromagnetic analogy between the TM and SH cases is e ^ fi~l (see
equation (8.33)), where fi is the shear modulus. Using the preceding equations, we obtain
the following stiffness constants

- 1

(8.363)

and
c66 = (//), (8.364)

respectively. These equations are equivalent to equations (1.188)5 and (1.188)4 for isotropic
layers, respectively.

The same functional form is obtained for the magnetic-permeability and conductivity
tensors of a finely layered medium if we apply the same procedure to equations (8.61)
and (8.62), with J = 0. In this case, continuity of Bs , Hi, H2 and J3, Ei, E2 is required,
respectively.
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8.9 The time-average and CRIM equations

The acoustic and electromagnetic wave velocities of rocks depends strongly on the rock
composition. Assume a stratified model of n different media, each having a thickness hi
and a wave velocity Vi. The transit time t for a wave through the rock is the sum of the
partial transit times:

n

where h = $^"=1 hi and v is the average velocity. Defining the material proportions as
, the average velocity is

» = > - • (8-366)

For a rock saturated with a single fluid, we obtain the time-average equation:

v = ( 1 + ^_L ) (8.367)
\vf vs j

where (j> is the porosity3, Vf is the fluid wave velocity and vs is the wave velocity in the
mineral aggregate (Wyllie, Gregory and Gardner, 1956).

The electromagnetic version of the time-average equation is the CRIM equation (com-
plex refraction index model). If p>i(uj) and li(uj) are the magnetic permeability and dielec-
tric permittivity of the single phases, the respective slownesses are given by 1/vi = \ / / 5 ^ -
Using equation (8.366), the equivalent electromagnetic equation is

n

(bj\/UjCi, (8.368)

t = l

where ft and e are the average permeability and permittivity, respectively. The CRIM
equation is obtained for constant magnetic permeability. That is

(8.369)

where ee and ae are the real-valued effective permittivity and conductivity, respectively
(see equation (8.252)). A useful generalization is the Lichtnecker-Rother formula:

e = (8-37°)
where 7 is a fitting parameter (e.g., Gueguen and Palciauskas, 1994).

While Backus averaging yields the low-frequency elasticity constants, the time-average
and CRIM equations are a high-frequency approximation, i.e., the limit known as geo-
metrical optics.

3 Note that (f> is the linear porosity, which is equal to the volume porosity, (f>v, for planar pores (or
cracks). For three intersecting, mutually perpendicular, planar cracks, the relation is 0y = 1 — (1 — 3

with cf>v ~ 30 for ̂ < 1.
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8.10 The Kramers-Kronig dispersion relations

The Kramers-Kronig dispersion relations obtained in Section 2.2.4 for anelastic media
were first derived as a relation between the real and imaginary parts of the frequency-
dependent dielectric-permittivity function (Kramers, 1927; Kronig, 1926). Actually, the
relations are applied to the electric susceptibility of the material,

J) = e(uj) - eo = €i(uj) + \€2{UJ) - e0, (8.371)

where e\ and £2 are the real and imaginary parts of the dielectric permittivity, and, here,
eo is the dielectric permittivity of free space. Under certain conditions, the linear response
of a medium can be expressed by the electric-polarization vector

~ t')dE{t')dt' (8.372)
— OO

(Born and Wolf, 1964, p. 76 and 84), where d denotes the derivative with respect to the
argument. A Fourier transform to the frequency domain gives

P(w) = xMEfw), (8.373)

where x(oo) stands for T[dtx(t)] to simplify the notation. The electric-displacement vector
is

= e0E(o;) + P(u>) = [e0 + xM]E(w) = e»E(u ; ) , (8.374)

according to equation (8.371). The electric susceptibility x(u) is analytic and bounded
in the lower half-plane of the complex frequency argument. This is a consequence of the
causality condition, i.e., x(t — if) = 0 for t < if (Golden and Graham, 1988, p. 48).

An alternative derivation of the Kramers-Kronig relations is based on Cauchy's integral
formula applied to the electric susceptibility. Since this is analytic in the lower half-plane,
we have

/ (8.375)
ITT J U U '—oo

where pv is the principal value. Separating real and imaginary parts and using equation
(8.371), we obtain the Kramers-Kronig relations,

- 1 £

60 + -pv / ^^-du' (8.376)
7T J U J U J '_oo

and

7T '

The acoustic-electromagnetic analogy (8.33) implies the mathematical equivalence be-
tween the dielectric permittivity and the complex creep compliance defined in equation
(2.43), i. e., e <=> J = J\ + 1J2. Hence, we obtain

1 r°° T (i;)
- p v / ^^-duo' (8.378)
7T J . ^ UJ - U*
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and

J2(oo) = - - p v / l^L±du)\ (8.379)
7T J U U J '

which are mathematically equivalent to the Kramers-Kronig relations (2.70) and (2.72),
corresponding to the viscoelastic complex modulus. The term equivalent to eo is zero
in the acoustic case, since there is not an upper-limit velocity equivalent to the velocity
of light (M and J can be infinite and zero, respectively). Analogous Kramers-Kronig
relations apply to the complex magnetic-permeability function.

8.11 The reciprocity principle

The reciprocity principle for acoustic waves is illustrated in detail in Chapter 5. In this
section, we obtain the principle for electromagnetic waves in anisotropic lossy media.

We suppose that the source currents J i and J2 give rise to fields Hi and H2, respec-
tively. These fields satisfy equation (8.308):

V x (e-1 • V x Hi) - u2fi • Hx = V x (e"1 • J i) (8.380)

and
V x (e"1 • V x H2) - u>2jj, • H2 = V x (e"1 • J2) . (8.381)

The following scalar products are valid:

H2 • V x (e"1 • V x Hi) - a;2H2 ji • Hi = H2 V x (e"1 • J i) (8.382)

and
Hi • V x (e"1 • V x H2) - ^ 2 Hi • /x-H 2 = H 1 V x (e"1 • J2) . (8.383)

The second terms on the left-hand-side of equations (8.382) and (8.383) are equal if
the magnetic-permeability tensor is symmetric, i.e., if (i = jj,T. The first terms can be
rewritten using the vector identity B • V x A = V • (A x B) + A • (V x B). For instance,
Hi • V x (e-1 • V x H2) = V • [(e"1 • V x H2) x Hi] +(e~x • V x H2) • (V x Hi). Integrating
this quantity over a volume Q bounded by surface S, and using Gauss's theorem, we
obtain

[(e"1 • V x H 2 ) x H 1 ] - n ^ + f (e"1 • V x H2) • (V x Hi) dfi, (8.384)
Jn

where n is a unit vector directed along the outward normal to S. The second term on the
right-hand side of equation (8.384) is symmetric by interchanging H2 and Hi if e = eT.
Regarding the first term, we assume that the medium is isotropic and homogeneous when
S —>• oo, with a dielectric permittivity equal to e. Furthermore, the wave fields are plane
waves in the far field, so that V —> — ik, where k is the complex wavevector. Moreover,
the plane-wave assumption implies k x H = 0. Hence

(e-1 • V x H2) x Hi = ik (cJ-^Ha • Hi) (8.385)

(Chew, 1990). Thus, also the first term on the right-hand side of equation (8.384) is
symmetric by interchanging H2 and Hi.



8.12 Babinet 9s principle 375

Consequently, a volume integration and subtraction of equations (8.382) and (8.383)
yields

H2 • V x (e"1 • J i ) - Hi • V x (e"1 • J2)] dQ = 0. (8.386)
n

Using the vector identity indicated above, with A = e~1 • J and B = H, and using
Maxwell's equation V x H = iue • E, we obtain H • V x (e"1 • J) = io;E • J. Hence,
equation (8.386) becomes

+ Ei • J2) dn = 0. (8.387)

This equation is equivalent to the acoustic version of the reciprocity (equation (5.3)). It
states that the field generated by J i measured by J2 is the same field generated by J2

measured by J i . Note that the principle holds if the magnetic permeability and dielectric
permittivity are symmetric tensors.

8.12 Babinet's principle

Babinet's principle was originally used to relate the diffracted light fields by complemen-
tary thin screens (Jones, 1986). In electromagnetism, Babinet's principle for infinitely
thin perfectly conducting complementary screens implies that the sum, beyond the screen
plane, of the electric and the magnetic fields (adjusting physical dimensions) equals the
incident (unscreened) electric field. A complementary screen is a plane screen with opaque
areas where the original plane screen had transparent areas. Roughly speaking, the prin-
ciple states that behind the diffracting plane, the sum of the fields associated with a screen
and with its complementary screen is just the field that would exist in the absence of any
screen; that is, the diffracted fields from the two complementary screens are the negative
of each other and cancel when summed. The principle is also valid for electromagnetic
fields and perfectly conducting plane screens or diffractors (Jones, 1986).

Consider a screen S and its complementary screen C and assume that the total field
in the presence of S is v$ and that related to C is v o Babinet's principle states that the
total fields on the opposite sides of the screens from the source satisfy

(8.388)

where v0 is the field in the absence of any screen. Equation (8.388) states that the diffrac-
tion fields for the complementary screens will be the negative of each other. Moreover,
the total fields on the source side must satisfy

= 2v0 + vfl, (8.389)

where v# is the reflected field by a screen composed of S and C.
Carcione and Gangi (1998) have investigated Babinet's principle for acoustic waves

by using a numerical simulation technique. In elastodynamics, the principle holds for the
same field (particle velocity or stress), but for complementary screens satisfying different
types of boundary conditions, i.e, if the original screen is weak (stress-free condition), the
complementary screen must be rigid. On the other hand, if the original screen is rigid,
the complementary screen must be weak.
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Babinet's principle holds for screens embedded in anisotropic media, both for SH and
qP-qS waves. The simulations indicate that Babinet's principle is satisfied also in the case
of shear-wave triplications (qS waves). Moreover, the numerical experiments show that
Babinet's principle holds for the near and far fields, and for an arbitrary pulse waveform
and frequency spectrum. However, as expected, lateral and interface waves (e.g., Rayleigh
waves) do not satisfy the principle.

Babinet's principle is of value since it allow us to obtain the solution of the comple-
mentary problem from the solution of the original problem without any additional effort.
Moreover, it provides a check of the solutions for problems that are self-complementary
(e.g., the problem of a plane wave normally incident on a half-plane). Finally, it adds to
our knowledge of the complex phenomena of elastic wave diffraction.

8.13 Alford rotation

The analogy between acoustic and electromagnetic waves also applies to multi-component
data acquisition of seismic and ground-penetrating-radar (GPR) surveys. Alford (1986)
developed a method, subsequently referred as to "Alford rotation", to determine the main
axis of subsurface seismic anisotropy. Alford considered four seismic sections acquired
by using two horizontal (orthogonal) sources and two orthogonal horizontal receivers.
If we denote source and receiver by S and R and in-line and cross-line by / and C,
respectively, the four seismic sections can be denoted by: SIRI, SiRc, ScRi and ScRc-,
where "line" refers to the orientation of the seismic section. Alford observed that the
seismic events in the cross-component sections (SiRc and ScRi) were better than those
of the principal components sections (SIRI and ScRc)- The reason for this behavior is
shear-wave splitting, which occurs in azimuthally anisotropic media (see Section 1.4.4);
for instance, a transversely isotropic medium whose axis of symmetry is horizontal and
makes an angle TT/2 — 9 with the direction of the seismic line. If 9 = 0, the seismic energy
in the cross-component sections should be minimum. Thus, Alford's method consist in
a rotation of the data to minimize the energy in the cross-component surveys, obtaining
in this way the orientation of the symmetry axis of the medium. An application is to
find the orientation of a set of vertical fractures, whose planes are perpendicular to the
symmetry axis. In addition, Alford rotation allows us to obtain the reflection amplitudes
for every angle of orientation of transmitter and receiver without having to collect data
for all configurations.

The equivalent acquisition configurations in GPR surveys are shown in Figure 8.8,
where the xx-, xy-, yx and ^-configurations correspond to the seismic surveys <S/.Rj,
SjRci ScRi and ScRc, respectively. In theory, the xy- and ^-configurations should
give the same result because of reciprocity.

We consider the 1-D equations along the vertical ^-direction and a lossless transversely
isotropic medium whose axis of symmetry is parallel to the surface ((x,y)-p\a,ne). In this
case, the slower and faster shear waves SI and S2 waves, whose velocities are y/c^/p (SI)
and \fcmjp (S2), are analogous to the TM and TE waves, whose velocities are
(TM) and \jy/{i\ti (TE) (see Section 1.3.1 for the acoustic case and the (x, z)-plane of
Figure 8.7 for the lossless electromagnetic case). A rigorous seismic theory illustrating
the physics involved in Alford rotation is given by Thomsen (1988).

When the source radiation directivities (seismic shear vibrators or dipole antennas)
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Principal component
Cross-component

xx (end-fire)
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Figure 8.8: Different GPR transmitter-receiver antenna configurations, where S is transmitter and R
is receiver. The survey line is oriented along the x-direction.

are aligned with the principal axes of the medium, the propagation equations can be
written as

0
0

L22

un

0
0 S(z)f(t) 0

0 5(z)f(t)
1 0
0 1

(8.390)

where the L^ are differential propagation operators, the u\j are the recorded wave fields,
and f(t) is the source time history. The source term, in the right-hand side of equation
(8.390), defines a set of two orthogonal sources aligned along the principal coordinates
axes of the medium, such that the solutions un and U22 correspond to the seismic sections
S1R1 and ScRc OT to the GPR configurations xx and yy, respectively.

Equation (8.390) can be expressed in matrix form as

L • U = S • Io = S. (8.391)

The rotation matrix is given by

R =
cos 9 sin 9

— sin 9 cos 9
R T (8.392)

Right-multiplying equation (8.391) by R rotates the sources counter-clockwise through
an angle 9:

L [U R] = S R. (8.393)

The term in square brackets is the solution for the new sources in the principal coordinates
of the medium. The following operation corresponds to a counter-clockwise rotation of
the receivers through an angle 9:

TL R [R' U • R] = S R, (8.394)
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where we have used equation (8.392).
Denoting by primed quantities the matrices in the acquisition coordinate system,

equation (8.394) reads
1/ • U' = S', (8.395)

where 1/ = L R, S' = S R, and

U' = R T U R. (8.396)

This equation allows the computation of the solutions in the principal system in terms of
the solutions in the acquisition system:

U = I Un Ul2 ) = R • U' • RT , (8.397)

where
= u'n cos2 9 + u22 sin2 9 + 0.5(w21 + u'12) sin 29

u12 = u'12 cos2 9 — u21 sin2 9 + 0.5(«22 — u'n) sin 20 . ,
a i - 2/1 i n c/ / / \ • oz) (o.o98j

1Z V ZZ 1 1 /

u22 = u22 cos2 ̂  + u'u sin2 ^ — 0.5(w'21 + u'12) sin 2^.

Minimizing the energy in the off-diagonal sections (u\2 and w2i) as a function of the angle
of rotation, we obtain the main orientation of the axis of symmetry. An example of
application of Alford rotation to GPR data can be found in Van Gestel and Stoffa (2001).

8.14 Poro-acoustic and electromagnetic diffusion

Diffusion equations are obtained in poroelasticity and electromagnetism at low frequencies
and under certain conditions, by which the inertial terms and displacement currents are
respectively neglected. In this section, we derive the equations from the general theories,
study the physics and obtain analytical solutions.

8.14.1 Poro-acoustic equations

The quasi-static limit of Biot's poroelastic equations, to describe the diffusion of the
second (slow) compressional mode, is obtained by neglecting the accelerations terms in the
equations of momentum conservation (7.210) and (7.211), and considering the constitutive
equations (7.131) and (7.132), and Darcy's law (7.194). We obtain

jf1 (8.399)

(m) (m) / o Ann\
cijkieki ~ oiijPf, (8.400)

= —dtWi (8.401)

and
ij = 0, (8.402)
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where i,j = 1, . . . ,3, and the parenthesis in (8.401) indicates that there is no implicit
summation. Using f = —d\Wi (see equation (7.173)), doing the operation dt on (8.399),
substituting (8.401) into the resulting equation, and combining (8.400) and (8.402) gives

+ otijdtti^ = dfdi I —pf J (8.403)

and
(m) = 0

These equations and the strain-displacement relations e\j = (c^tq + dju\ )/2 is a set

of four partial differential equations for u^1 , i4 , ^4 and pf. Equation (8.404) can be
differentiated, and summing the three equations, we obtain

In the isotropic case, equations (8.403) and (8.405) become

+ adtem = A (-p^ (8.406)

and
— n/r>A-\-2c)f)( ii fK '\ — D (R 407)

where
2

= Km- - / /m , (8.408)

and we have used equation (7.28), A = didi, 9m = e\™ , Ri = «, and a^ = aSij. If we
assume an homogeneous medium and use the property djdie\™ = 0m, we obtain

+ aft^m = - Ap/ (8.409)

and

EmAem - aApf = 0, (8.410)

where Em is given by equation (7.291). Equation (7.299) is obtained if we take the
Laplacian of equation (8.409) and combine the result with (8.410). An alternative diffusion
equation can be obtained by doing a linear combination of equations (8.409) and (8.410),

+ a0m j = dA (-^pf + a6m J , (8.411)

where d is the hydraulic diffusivity constant defined in equation (7.300). Then, it is the
quantity M~lpf + a9m and not the fluid pressure, which satisfies the diffusion equation
in Biot's poroelastic theory.
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8.14.2 Electromagnetic equations

Maxwell's equations (8.9) and (8.10), neglecting the displacement-currents term e *
and redefining the source terms, can be written as

V x E = -ft • ft(H + M) (8.412)

and
(8.413)

These equations can be expressed in terms of the electric vector or in terms of the magnetic
vector as

ftE = -a'1 • V x (/T1 • V x E) - &'1 - ft(V x M) - dt3, (8.414)

and
<9tH = -p,1 - V x (o-"1 • V x H) - <9tM + / i " 1 - V x J , (8.415)

respectively. Assuming a homogeneous and isotropic medium, equation (8.414) can be
rewritten as

ftE = -(A • o-^IVCV • E) - AE] - dtJ = (A • oO^AE - ftJ, (8.416)

where we have considered a region free of charges (V • E = 0) and have neglected the
magnetic source. Note that only for an isotropic medium, the tensors jj,1 and &~l

commute with the curl operator. In this case, (A • o*)"1 =
Similarly, equation (8.415) can be written as

= (A • o-)"1 AH + A"1 • V x J. (8.417)

Equation (8.417) is a diffusion equation for H, which is analogous to equation (8.411).

The TM and TE equations

If the material properties and the sources are invariant in the y-direction, the propagation
can be described in the (x, z)-plane, and Ei, E% and H2 are decoupled from E2, Hi and
i?3, corresponding to the TM and TE equations, respectively.

Writing equations (8.414) and (8.415) in explicit Cartesian form, we obtain the TM
equations

(8.418)
and

Afti?2 = di(cr-1diH2) + d^a^dsH^ - fldtM2 + (<93Ji - ftJ3). (8.419)

The respective TE equations are

GOfh/o = OALJL v\hjo) + <7q III u^tio) — oAo<\M\ — O\M<\) — aOfJo 8.420)

and

H
M1

M3
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Phase velocity, attenuation factor and skin depth

Let us consider an homogeneous isotropic medium. Then, the Green function correspond-
ing to equation (8.416) and a source current

x,y1z,t) = i6(x)6(y)6(z)[l-H(t)], (8.422)

is the solution of
<9tE = aAE + i6(x)6(y)6(z)6(t), (8.423)

where i defines the direction and the strength of the source, and

a = i . (8.424)

In the frequency domain, the diffusion equation can then be written as a Helmholtz
equation

/ \ 2

AE + [ — ] E = -U/a)6(x)6(y)6(z), (8.425)
\vcj

where

( 1 i ) ( 8 ' 4 2 6 )

is the complex velocity. The same kinematic concepts used in wave propagation (acoustics
and electromagnetism) are useful in this analysis. The phase velocity and attenuation
factor can be obtained from the complex velocity as

vp Refv"1)] and a = -u\m{v~l), (8.427)

respectively. The skin depth is the distance d for which exp(—ad) = 1/e, where e is
Napier's number, i.e., the effective distance of penetration of the signal. Using equation
(8.426) yields

vp = 2irfd, and a = 1/d, (8.428)

(8.429)

where / = u)/2ir is the frequency.

Analytical solutions

Equation (8.423) has the following solution (Green's function):

E(r, t) = ( ^ ) exp[-r2/(4at)], (8.430)

where
r = y ^ 2 + V2 + z2 (8.431)

(Carslaw and Jaeger, 1959; Polyanin and Zaitsev, 2004). The time-domain solution for a
source F(t), e.g., equation (2.233), is obtained by a numerical time convolution between
the expression (8.430) and F(t).
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Equation (8.423) corresponding to the initial-value problem is

= aAE. (8.432)

Assume for each component Ei the initial condition £^0 = Ei(x,y,z,0) = 5(x)5(y)5(z).
A transform of (8.432) to the Laplace and wavenumber domains yields

1
fa, fa,p) = —— 2 2 2 , (8.433)

p + a(kf + k% + fcg)

where p is the Laplace variable, and the properties dtEi —> pEi — E0(ki,k2,k3) and
Eio(ki,k2,ks) = 1 have been used.

To obtain £^(£4, k2, fa,t), we compute the inverse Laplace transform of (8.433),

1 pc-\-ioo ( j . \ J

, &2, fa, t) = — I ——,1O , J9 , IO., ( 8 . 4 3 4 )

where c > 0. There is one pole,

p0 = -a[k\ + k2
2 + k\). (8.435)

Use of the residue theorem gives the solution

k2, &3, t) = exp[-a{kl + k\ + A;|)t]i7(t). (8.436)

The solution for a general initial condition EiO(k\, k2, k%) is given by

, k2i fa, t) = Ei0(ku fa, fa) exp[-a(A;? + k\ + k2
3)t]H(t), (8.437)

where we have used equation (8.436). In the space domain the solution is the spatial
convolution between the expression (8.436) and the initial condition. The effect of the
exponential on the right-hand side is to filter the higher wavenumbers. The solution in the
space domain is obtained by a discrete inverse Fourier transform, using the fast Fourier
transform. The three components of the electric vector are not functionally independent,
since they must satisfy V • E = 0 (in a region free of electric charges). These analyti-
cal solutions also describe the diffusion of the slow compressional mode, since equations
(8.411) and (8.432) are mathematically equivalent.

8.15 Electro-seismic wave theory

The acoustic (poroelastic) and electromagnetic wave equations can be coupled to describe
the so-called electro-seismic phenomenon. In porous materials, the grain surfaces have an
excess (bound) charge that is balanced by free ions diffusing in the fluid layers. The bound
and diffusive charges are called the "electric double layer". Acoustic waves generate a force
which transports the diffuse charge of the double layer relative to the bound charge on
the grain surfaces, resulting in a "streaming" electric current. This phenomenon is known
as electro-filtration. On the other hand, an electric field induces a conduction current -
according to Ohms's law - and a body force on the excess charge of the diffuse double
layer, resulting in fluid filtration. This phenomenon is known as electro-osmosis.
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There is experimental evidence that earthquake triggering is associated with fluid pres-
sures gradients (Mizutani, Ishido, Yokokura and Ohnishi, 1976). The related fluid flow
produces the motion of the fluid electrolyte and creates an electric field (electrokinetic
effect) (Sill, 1983; Pride and Morgan, 1991). It has been reported that anomalous elec-
tromagnetic emissions were observed hours before the occurrence of major earthquakes
and volcanic eruptions (Yamada, Masuda and Mizutani, 1989). Similarly, the electroki-
netic phenomenon may play an important role in predicting rock fracturing in mines, and
locating water and oil reservoirs (Wurmstich and Morgan, 1994).

The basic electro-seismic theory involves the coupling between Maxwell's equations
and Biot's equations of dynamical poroelasticity. Frenkel (1944) was the first to have
developed a theory to describe the phenomenon. Pride and Garambois (2005) analyzed
Frenkel's equations and point out an error in developing his effective compressibility co-
efficients, preventing him to obtain a correct expression for Gassmann's modulus. A
complete theory is given by Pride (1994), who obtained the coupled electromagnetic and
poroelastic equations from first principles.

The general equations describing the coupling between mass and electric-current flows
are obtained by including coupling terms in Darcy's and Ohm's laws (7.194) and (8.5),
respectively. We obtain

dtw = —R, * dt[grad(pf)] + L * <9tE, (8.438)
7]

J' = - L * ft[grad(p/)] + & * <9tE + J, (8.439)

where pf is the pore pressure, E is the electric field, r\ is the fluid viscosity, n[t) is
the global-permeability matrix, &(t) is the time-dependent conductivity matrix, J is an
external electric source, and L(t) is the time-dependent electrokinetic coupling matrix.
We have considered time-dependent transport properties (Pride, 1994); equations (7.194)
and (8.5) are obtained by substitution of R,(t) and ~L(t) with R,H(t) and ~LH(t), where the
time dependence is only in the Heaviside step function. For an electric flow deriving from
a streaming potential U (Sill, 1983; Wurmstich and Morgan, 1994), E = — grad(£7), and
the electromagnetic equations reduce to quasistatic equations similar to those describing
piezoelectric wave propagation, i.e., the acoustic field is coupled with a quasi-static electric
field.

The complete time-domain differential equations for anisotropic (orthorhombic) me-
dia are given by the poroelastic equations (7.255) and (7.256), and the electromagnetic
equations (8.1)-(8.5), including the coupling terms according to equations (8.438) and
(8.439). We obtain

l ^ + pfdlwi, (8.440)

-diPf = pfd^u\m) + rmd&Wi + rjxi * [dttwi - (L * dtE)J , (8.441)

V x E = -dtB + M (8.442)

and
+ & * <9tE + J, (8.443)

where there is no implicit summation in the last term of equation (8.441). Note the
property dtRi(t) * dtXi(t) = S(t), according to equation (2.41). Pride (1994) obtained
analytical expressions for the transport coefficients as well as for the electric conductivity
as a function of frequency.
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Chapter 9

Numerical methods

In those pieces of [scientific] apparatus I see not only devices to make the forces of nature ser-
viceable in new ways, no, I view them with much greater respect; I dare say that I see in them
the true devices for unveiling the essence of things.

Ludwig Boltzmann (1886) (commenting on Lord Kelvin's idea to found a mathematical
institute for computations (Broda, 1983)).

Seismic numerical modeling is a technique for simulating wave propagation in the
earth. The objective is to predict the seismogram that a set of sensors would record,
given an assumed structure of the subsurface. This technique is a valuable tool for seismic
interpretation and an essential part of seismic inversion algorithms.

To solve the equation of motion by direct methods, the geological model is approxi-
mated by a numerical mesh; that is, the model is discretized in a finite numbers of points.
These techniques are also called grid methods and full-wave equation methods, since the
solution implicitly gives the full wave field. Direct methods do not have restrictions on
the material variability and can be very accurate when a sufficiently fine grid is used.
Although they are more expensive than analytical and ray methods in terms of com-
puter time, the technique can easily handle the implementation of different rheologies.
Moreover, the generation of snapshots can be an important aid in interpretation.

Finite-differences (FD), pseudospectral (PS) and finite-element (FE) methods are con-
sidered in this chapter. The main aspects of the modeling are introduced as follows: (a)
time integration, (b) calculation of spatial derivatives, (c) source implementation, (d)
boundary conditions, and (e) absorbing boundaries. All these aspects are discussed and
illustrated in the next sections, using the acoustic and SH equations of motion.

9.1 Equation of motion

Consider the lossless acoustic and SH equations of motion which describe propagation of
compressional and pure shear waves, respectively.

The pressure formulation for inhomogeneous media can be written as

-L2p + / = d2
ttP, -L2 = pc2di (p-'di) (9.1)

where X{, i = 1, 2, 3 are Cartesian coordinates, p(xi) is the pressure, c(xi) is the velocity

385
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of the compressional wave, p(xi) is the density and f(xi,t) is the body force. Repeated
indices imply summation over the number of spatial dimensions.

The propagation of SH waves is a two-dimensional phenomenon, with the particle
velocity, say v2, perpendicular to the plane of propagation. Euler's equation and Hooke's
law yield the particle-velocity/stress formulation of the SH equation of motion,

(9.2)

where
T

f = ( / , 0 , 0 ) ' , (9.3)

H Y = A <9IY + B <93Y, (9.4)

- i

A = | 0 0 0 | , B = I fjt 0 0 I , (9.5)
H 0 0

a denotes stress and /i is the shear modulus (see Chapter 1). The form (9.2) is represen-
tative of most of the equations of motion used in seismic wave propagation, regardless of
the stress-strain relation. The solution to equation (9.2) subject to the initial condition
Y(0) = Yo is formally given by

v(t) = exp(tH) • Yo + / exp(rH) • f(t — r)dr, (9.6)
Jo

where exp(tH) is called the evolution operator, because application of this operator to the
initial condition array (or to the source array) yields the solution at time t. We refer to
H as the propagation matrix. The SH and acoustic differential equations are hyperbolic
(Jain, 1984, p. 251; Smith, 1985, p. 4), since the field has a finite velocity.

The standard variational formulation used in finite-element methods is written in
terms of the pressure. To obtain the variational formulation, consider a volume O bounded
by a surface S. The surface S is divided into Sp: where pressure boundary conditions are
defined, and Sdp-> where normal accelerations (or pressure fluxes) are given. Assume a small
pressure variation 5p that is consistent with the boundary conditions. The variational
principle is obtained by multiplying equation (9.1) by 5p, and integrating over the volume

and by parts (using the divergence theorem),

f dSd dQ = - f ^dlp dtt+ [ ^ dft + f —diprii dS, (9.7)
n P Jn pc2 Jn pc2 Jsdp P

where rii are the components of the normal to the surface S. This formulation is equivalent
to a Galerkin procedure (Zienkiewicz, 1977, p. 70; Hughes, 1987, p. 7).

9.2 Time integration

The numerical solution of the equation of motion requires the discretization of the time
variable using finite differences. (An exception to this is the spectral methods discussed
later). The basic idea underlying FD methods is to replace the partial derivatives by
approximations based on Taylor-series expansions of functions near the point of interest.
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Forward and backward difference approximations of the time derivatives (Smith, 1985, p.
7) lead to explicit and implicit FD schemes, respectively. Explicit means that the wave
field at a present time is computed from the wave field at past times. On the other hand,
in implicit methods the present values depend on past and future values. Unlike explicit
methods, implicit methods are unconditionally stable, but lead to extensive computations
due to the need to carry out large matrix inversions. In general, the differential formu-
lation of the equation of motion is solved with explicit algorithms, since the time step is
determined by accuracy criteria rather than by stability criteria (Emmerman, Schmidt
and Stephen, 1982)

Equations of motion used in seismic exploration and seismology can be expressed as
dtv = H • y, where H is the propagation matrix containing the material properties and
spatial derivatives (e.g., equations (1.47) and (9.2)). Assume constant material properties
and a plane-wave kernel of the form exp(ik • x — iu;ct), wherein k is the real wavenumber
vector, x is the position vector and uc is a complex frequency. Substitution of the plane-
wave kernel into the equation of motion yields an eigenvalue equation for the eigenvalues
A = — uoc. For the acoustic and SH equations of motion, these eigenvalues lie on the
imaginary axis of the A-plane. For instance, in 1-D space, the eigenvalues corresponding
to equation (9.2) are A = ±i&c, where c is the shear-wave velocity.

In seismic modeling, there are other equations of interest in which eigenvalues might lie
in the left-hand A-plane. We describe some of these below. Consider an anelastic medium
described by a viscoelastic stress-strain relation. Wave attenuation is governed by material
relaxation times, which quantify the response time of the medium to a perturbation.
(Lossless (elastic) solid materials respond instantaneously, i.e., the relaxation time is
zero.) For a viscoelastic medium with moderate attenuation, the eigenvalues have a small
negative real part, meaning that the waves are attenuated. In addition, when solving the
equations in the time domain, there are eigenvalues with a large negative part and close to
the real axis that are approximately given by minus the reciprocal of the relaxation times
corresponding to each attenuation mechanism. Then, the domain of the eigenvalues has
a T shape (see Tal-Ezer, Carcione and Kosloff, 1990). If the central frequency of these
relaxation peaks is close to the source frequency band, or equivalently, if the related
eigenvalues are close to the imaginary axis of the A-plane, an explicit scheme performs
very efficiently.

In order to determine the efficiency of an explicit scheme applied to porous media, it
is critical to understand the roles of the eigenvalues. For porous media, the eigenvalue
corresponding to the slow wave at seismic frequencies (a quasi-static mode) has a very
large negative part, which is related to the location of the Biot relaxation peaks, usually
beyond the sonic band for pore fluids like water and oil (Carcione and Quiroga-Goode,
1996). When the modulus of the eigenvalues is very large compared to the inverse of the
maximum propagation time, the differential equation is said to be stiff (Jain, 1984, p. 72;
Smith, 1985, p. 198). Although the best algorithm would be an implicit method, the
problem can still be solved with explicit methods (see below).

Denote the discrete time by t = ndt, where dt is the time step, and n is a non-
negative integer. Time and space discretization of the equation of motion with an explicit
scheme - forward time difference only - leads to an equation of the form y n + 1 = G • vn ,
where G is called the amplification matrix. The Neumann condition for stability requires

< 1, where Qj are the eigenvalues of G (Jain, 1984, p. 418). This condition does
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not hold for all dt when explicit schemes are used, and we note that implicit schemes
do not have any restrictions on the time step. For instance, explicit fourth-order Taylor
and Runge-Kutta methods require <i£|Amax| < 2\/2 (Jain, 1984, p. 71), implying very
small time steps for very large eigenvalues. Implicit methods are A-stable (Jain, 1984,
p. 118), meaning that the domain of convergence is the left open-half A-plane. However,
stability does not mean accuracy and, therefore, the time step must comply with certain
requirements.

9.2.1 Classical finite differences

Evaluating the second time derivative in equation (9.1) at (n + l)dt and (n — l)dt by a
Taylor expansion, and summing both expressions, we obtain

dt2
77 + 1 . rt — 1 - - - x ^

1=2
(2/)! dt21 (9.8)

The wave equation (9.1) provides the high-order time derivatives, using the following
recursion relation

^21—2^.71 ptll—2 fn
= -I2- P- + - L- (99)

dt21 dt2l~2 dt2l~2 ' { }

This algorithm, where high-order time derivatives are replaced by spatial derivatives,
is often referred to as the Lax-Wendroff scheme (Jain, 1984, p. 415; Smith, 1985; p.
181; Dablain, 1986; Blanch and Robertsson, 1997). A Taylor expansion of the evolution
operator exp(dt H) is equivalent to a Lax-Wendroff scheme.

The dispersion relation connects the frequency with the wavenumber and allows the
calculation of the phase velocity corresponding to each Fourier component. Time dis-
cretization implies an approximation of the dispersion relation, which in the continuous
case is UJ = ck for equations (9.1) and (9.2). Assuming constant material properties and
a 1-D wave solution of the form exp(iA;^ — itondt), where k is the wavenumber and u is
the FD angular frequency, we obtain the following dispersion relation

\

2 . (udt .
, sm = ck

dt V 2 .
i=2

(ckdt)21-2

(9.10)

The FD approximation to the phase velocity is c = u/k. Using (9.10) with second-order
accuracy (neglect O(dt2) terms), we find that the FD phase velocity is

c =
sinc(0)

9 = fdt, (9.11)

where u = 2nf and sinc(0) = sin(7r0)/(7T0). Equation (9.11) indicates that the FD
velocity is greater than the true phase velocity. Since u should be a real quantity, thus
avoiding exponentially growing solutions, the value of the sine function in (9.10) must
be between —1 and 1. This constitutes the stability criterion. For instance, for second-
order time integration this means ckdt/2 < 1. The maximum phase velocity, cmax, and
the maximum wavenumber (i.e. the Nyquist wavenumber, vr/<ixmin) must be considered.
Then, the condition is

^ < s ( rzfEfi ) 5 5 = _. (9.i2)
7Tmax
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A rigorous demonstration, based on the amplification factor, is given by Smith (1985,
p. 70; see also Celia and Gray, 1992, p. 232). In n-D space, s = 2/(7Ti/n), and for a
fourth-order approximation (L=2) in 1-D space, s = 2y/3/n. Equation (9.12) indicates
that stability is governed by the minimum grid spacing and the higher velocities.

Let us consider the presence of attenuation. As we have seen in previous chapters,
time-domain modeling in lossy media described by viscoelastic stress-strain relations re-
quires the use of memory variables, one for each relaxation mechanism. The introduction
of additional differential equations for these field variables avoids the numerical compu-
tation of the viscoelastic convolution integrals. The differential equation for a memory
variable e in viscoelastic modeling has the form

de
— = ae-be: b > 0, (9.13)

(see Section 2.7), where e is a field variable, for instance, the dilatation, and a and b are
material properties - b is approximately the central angular frequency of the relaxation
peak. Equation (9.13) can be discretized by using the central differences operator for the
time derivative {dt(de/dt)n = e

n+1 /2_ e^-1 /2) a n c i the mean value operator for the memory
variable (2en = en+1/2 + en~1/2). The approximations are used in the Crank-Nicolson
scheme (Smith, 1985, p. 19). This approach leads to an explicit algorithm

(2m\ en_1/2
\2 + bdtJ v '2 + bdt \2 + bdt

(Emmerich and Korn, 1987). This method is robust in terms of stability, since the coef-
ficient of en~1//2, related to the viscoelastic eigenvalue of the amplification matrix, is less
than 1 for any value of the time step dt. The same method performs equally well for wave
propagation in porous media (Carcione and Quiroga-Goode, 1996).

9.2.2 Splitting methods

Time integration can also be performed using the method of dimensional splitting, also
called Strang's scheme (Jain, 1984, p. 444; Bayliss, Jordan and LeMesurier, 1986; Mufti,
1985; Vafidis, Abramovici and Kanasewich, 1992). Let us consider equation (9.2). The
1-D equations dtY = A • d\Y and dtY = B • d$Y are solved by means of one-dimensional
difference operators Li and L3, respectively. For instance, Bayliss, Jordan and LeMesurier
(1986) use a fourth-order accurate predictor-corrector scheme and the splitting algorithm
y.n+2 = L : . L3 . L3 . L1 . y«5 where each operator advances the solution by a half-step.
The maximum allowed time step is larger than for unsplit schemes, since the stability
properties are determined by the 1-D schemes.

Splitting is also useful when the system of differential equations is stiff. For instance,
Biot's poroelastic equations can be partitioned into a stiff part and a non-stiff part, such
that the evolution operator can be expressed as exp(Hr + Hs)t, where r indicates the
regular matrix and s the stiff matrix. The product formulas exp(Hrt) • exp(Hs£) and
exp(|Hs£) • exp(Hr£) • exp(|H s t) are first- and second-order accurate, respectively. The
stiff part can be solved analytically and the non-stiff part with a standard explicit method
(Carcione and Quiroga-Goode, 1996; Carcione and Seriani, 2001). Strang's scheme can be
shown to be equivalent to the splitting of the evolution operator for solving the poroelastic
equations.
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9.2.3 Predictor-corrector methods

Predictor-corrector schemes of different orders find wide application in seismic modeling
(Bayliss, Jordan and LeMesurier, 1986; Mufti, 1985; Vafidis, Abramovici and Kanasewich,
1992; Dai, Vafidis and Kanasewich, 1995). Consider equation (9.2) and the first-order
approximation

y"+l = Y
n + dtH • yn, (9.15)

known as the forward Euler scheme. This solution is given by the intersection point be-
tween the tangent of y at t = ndt and the line t = (n+l)dt. A second-order approximation
can be obtained by averaging this tangent with the predicted one. Then the corrector is

dt
,,n+l ,.n . C m ,,n , TT ,,«+l\ /Q -I r?\
y — y H——(^rl-y + r i • y-̂  J. ^y.loj

This algorithm is the simplest predictor-corrector scheme (Celia and Gray, 1992, p. 64). A
predictor-corrector MacCormack scheme, second-order in time and fourth-order in space,
is used by Vafidis, Abramovici and Kanasewich (1992) to solve the elastodynamic equa-
tions.

The Runge-Kutta method

The Runge-Kutta method is popular because of its simplicity and efficiency. It is one of
the most powerful predictor-correctors methods, following the form of a single predictor
step and one or more corrector steps. The fourth-order Runge-Kutta approximation for
the solution of equation (9.2) is given by

yn+l = Y + ^
0

where
i = Hyn + f

A3 = H (Y» + ̂ A 2 ) + f+1 /2

maxThe stability region extends to Amax = — 2.78 on the negative real axis and A
±i(2\/2) on the imaginary axis, where A = — \uc are the eigenvalues of matrix H (Jain,
1984, p. 71). Hence, the time step is determined by the relation oft|Amax| < 2 \/2.

9.2.4 Spectral methods

As mentioned before, a Taylor expansion of the evolution operator exp(c^H) is equivalent
to a Lax-Wendroff scheme. Increasing the number of terms in equation (9.8), allows one
the use of a larger time step with high accuracy. However, Taylor expansions and Runge-
Kutta methods are not the best in terms of accuracy. The evolution operator in equation
(9.6) can be expanded in terms of Chebyshev polynomials as

M

k=o
Yo,
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where Co = 1 and Ck = 2 for k ^ 0, J& is the Bessel function of order k, and Qk are
modified Chebyshev polynomials. R should be chosen larger than the absolute value of
the eigenvalues of H (Tal-Ezer, Kosloff and Koren, 1987). This technique allows the
calculation of the wave field with large time steps. Chebyshev expansions are optimal
since they require the minimum number of terms. The most time consuming part of a
modeling algorithm is the evaluation of the terms —L2p in equation (9.1) or H • y in
equation (9.2), due to the computation of the spatial derivatives. A Taylor-expansion
algorithm needs N = tmax/dt of such evaluations to compute the solution at time tmax.
On the other hand, the number of evaluations using equation (9.18) is equal to the number
of terms in the Chebyshev expansion. Numerical tests indicate that M is comparable to N
for second-order finite differencing, but the error of the Chebyshev operator is practically
negligible for single-precision programming (Tal-Ezer, Kosloff and Koren, 1987). This
means that there is no numerical dispersion due to the time integration.

When the wave equation is second-order in time as in equation (9.1), the REM method
(rapid-expansion method) is twice as efficient since the expansion contains only even order
Chebyshev functions (Kosloff, Queiroz Filho, Tessmer and Behle, 1989). A similar algo-
rithm for the viscoelastic wave equation is developed by Tal-Ezer, Carcione and Kosloff
(1990).

The Chebyshev expansion can also be used for solving parabolic equations (Tal-Ezer,
1989). Let us consider the 2-D electromagnetic diffusion equation (8.419). This equation
has the form (9.2) with y = H2, H = / T ^ i a " 1 ^ + ^ a " 1 ^ ) and f = -fidtM2 + (dsJi -
d\Js). The eigenvalue equation in the complex A-domain (A = —\LJC), corresponding to
matrix H, is

( ^ ± M (9.19)

The eigenvalues are therefore zero and real and negative, and the maximum (Nyquist)
wavenumber components are k\ = n/dx and k$ = ir/dz for the grid spacings dx and dz.

The evolution operator in equation (8.419) can be expanded in terms of Chebyshev
polynomials as

M

y(t) = yCkexp(-bt)Ik(tR)Qk(F) • y0, (9.20)
k=0

where

(H + H), (9.21)

b is the absolute value of the largest eigenvalue of H, and Ik is the modified Bessel function
of order k. The value of b is equal to (TT2/'fur) (1 /dx2 + 1/dz2). As Tal-Ezer (1989) has
shown, the polynomial order should be O(Vbi) (his equation (4.13)). It can be shown
that M = Qy/bi is enough to obtain stability and accuracy (Carcione, 2006). The main
code (Fortran 77) for solving equation (8.419) is given in the appendix (Section 9.9.1).
The spatial derivatives are calculated with the staggered Fourier method (see Section
9.3.2). The complete computer program can be downloaded from http://software.seg.org
(Carcione, 2006).

These methods are said to have spectral accuracy, in the sense that the error of
the approximation tends exponentially to zero when the degree of the approximating
polynomial increases.
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9.2.5 Algorithms for finite-element methods

In the FE method, the field variables are evaluated by interpolation from nodal values
For a second-order isoparametric method (Zienkiewicz, 1977, p. 178; Hughes, 1987, p
118), the interpolation can be written as

Tp(xi) = * ' p, (9.22)

where p is a column array of the values p(xi) at the nodes and 3>T is a row array of spatial
interpolation functions, also referred to as shape and basis functions. The approximation
to (9.7) is obtained by considering variations 5p according to the interpolation (9.22).
Since 8p = <frT • £p, and 8p is arbitrary, the result is a set of ordinary differential equations
at the nodal pressures p (Zienkiewicz, 1977, p. 531; Hughes, 1987, p. 506):

K • p + M • dip + S = 0, (9.23)

where K is the stiffness matrix, M is the mass matrix, and S is the generalized source
matrix. These matrices contain volume integrals that are evaluated numerically. The
matrix M is often replaced by a diagonal lumped mass matrix, such that each entry equals
the sum of all entries in the same row of M (Zienkiewicz, 1977, p. 535). In this way, the
solution can be obtained with an explicit time-integration method, such as the central
difference method (Seron, Sanz, Kindelan and Badal, 1990). This technique can be used
with low-order interpolation functions, for which the error introduced by the algorithm
is relatively low. When high-order polynomials - including Chebyshev polynomials - are
used as interpolation functions, the system of equations (9.23) is generally solved with
implicit algorithms. In this case, the most popular algorithm is the Newmark method
(Hughes, 1987, p. 490; Padovani, Priolo and Seriani, 1994; Seron, Badal and Sabadell,
1996)

Finally, numerical modeling can be performed in the frequency domain. The method
is very accurate but expensive when using differential formulations, since it involves the
solution of many Helmholtz equations (Jo, Shin and Suh, 1996). It is more often used
in FE algorithms (Marfurt, 1984; Santos, Douglas, Morley and Lovera, 1988; Kelly and
Marfurt, 1990).

9.3 Calculation of spatial derivatives

The algorithm used to compute the spatial derivatives usually gives its name to the
modeling method. The following sections briefly review these algorithms.

9.3.1 Finite differences

Finite-differences methods use the so-called homogeneous and heterogeneous formula-
tions to solve the equation of motion. In the first case, the motion in each homogeneous
region is described by the equation of motion with constant acoustic parameters. For this
method, boundary conditions across all interfaces must be satisfied explicitly. The het-
erogeneous formulation implicitly incorporates the boundary conditions by constructing
finite-difference representations using the equation of motion for heterogeneous media.
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The homogeneous formulation is of limited used, since it can only be used efficiently for
simple geometries. Conversely, the heterogeneous formulation makes it possible to assign
different acoustic properties to every grid point, providing the flexibility to simulate a
variety of complex subsurface models, e.g., random media, velocity gradients, etc.

In general, staggered grids are used in heterogeneous formulations to obtain stable
schemes for large variations of Poisson ratio (Virieux, 1986). In staggered grids, groups of
field variables and material properties are defined on different meshes separated by half
the grid spacing (Fornberg, 1996, p. 91). The newly computed variables are centered
between the old variables. Staggering effectively divides the grid spacing in half, thereby
increasing the accuracy of the approximation.

Seismic modeling in inhomogeneous media requires the calculation of first derivatives.
Consider the following approximation with an odd number of points, suitable for staggered
grids:

i - pi) + ... + wt(pl+i - p _ j i ) , (9.24)
dx

with I weighting coefficients wi. The antisymmetric form guarantees that the derivative
is zero for even powers of x. Let us test the spatial derivative approximation for p = x
and p = xs. Requiring that equation (9.24) be accurate for all polynomials up to order
2, we find the approximation (pi — p_i)/dx, while for fourth-order accuracy (the leading

error term is O(dxA)) the weights are obtained from w0 + 3iui = 1/dx and Wo + 27wi = 0,
giving w0 = 9/(8dx), and w\ = —l/(24dx) (Fornberg, 1996, p. 91).

To obtain the value of the derivative at x = jdx, substitute subscript 0 with j , I + \
with j + 1 + \ and — / — \ with j — I — | . Fornberg (1996, p. 15) provides an algorithm
for computing the weights of first and second spatial derivatives for the general case,
i.e., approximations which need not be evaluated at a grid point such as centered and
one-sided derivatives. He also shows that the FD coefficients wi in equation (9.24) are
equivalent to those of the Fourier PS method when / + 1 approaches the number of grid
points (Fornberg, 1996, p. 34).

Let us now study the accuracy of the approximation by considering the dispersion
relation. Assuming constant material properties and a 1-D wave solution of the form
exp(ikjdx — iutf), the second-order approximation gives the following FD dispersion rela-
tion and phase velocity:

.2 _27;2 - _ 2oo = c k sine (̂ >), c = c|sinc(^)|, i\) = Kdx, (9.25)

where k = 2TTK. The spatial dispersion acts in the sense opposite to temporal dispersion
(see equation (9.11)). Thus, the FD velocity is smaller than the true phase velocity.

Staggered grids improve accuracy and stability, and eliminate non-causal artifacts
(Madariaga, 1976; Virieux, 1986; Levander, 1988; Ozdenvar and McMechan, 1997; Car-
cione and Helle, 1999). Staggered grid operators are more accurate than central differences
operators in the vicinity of the Nyquist wavenumber (e.g., Kneib and Kerner, 1993). The
particle-velocity/stress formulation in staggered grids constitutes a flexible modeling tech-
nique, since it allows us to freely impose boundary conditions and is able to directly yield
all the field variables (Karrenbach, 1998).

However, there is a disadvantage in using staggered grids for anisotropic media of
symmetry lower than orthorhombic. Staggering implies that the off-diagonal stress and
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strain components are not defined at the same location. When evaluating the stress-strain
relation, it is necessary to sum over a linear combination of the elasticity constants (cu,
I,J = 1, . . .6) multiplied by the strain components. Hence, some terms of the stress
components have to be interpolated to the locations where the diagonal components
are defined (Mora, 1989). The elasticity constants associated with this interpolation
procedure are CJJ, I = 1, 2 ,3 , J > 3, C45, c±§ and c$§.

A physical criterion is to compute the weights wi in equation (9.24) by minimizing
the relative error in the components of the group velocity vg = duo/dk. This procedure,
combined with grid staggering and a convolutional scheme, yields an optimal differential
operator for wave equations (Holberg, 1987). The method is problem dependent, since
it depends on the type of equation of motion. Igel, Mora and Riollet (1995) obtain
high accuracy with operators of small length (eight points) in the anisotropic case. The
treatment of the P-SV case and more details about the finite-difference approximation
can be found in Levander (1989).

The modeling algorithm can be made more efficient by using hybrid techniques, for
instance, combining finite differences with faster algorithms such as ray tracing meth-
ods (Robertsson, Levander and Holliger, 1996) and integral-equation methods (Kummer,
Behle and Dorau, 1987). In this way, modeling of the full wave field can be restricted
to the target (e.g., the reservoir) and propagation in the rest of the model (e.g., the
overburden) can be simulated with faster methods.

Irregular interfaces and variable grid spacing are easily handled by FE methods, since,
in principle, grid cells can have any arbitrary shape. When using FD and PS algorithms,
an averaging method can be used to reduce spurious diffractions arising from an inap-
propriate modeling of curved and dipping interfaces (the so-called staircase effect). Muir,
Dellinger, Etgen and Nichols (1992) use effective media theory based on Backus averaging
to find the elasticity constants at the four grid points of the cell. The modeling requires an
anisotropic rheological equation. Zeng and West (1996) obtain satisfactory results with
a spatially weighted averaging of the model properties. Similarly, algorithms based on
rectangular cells of varying size allow the reduction of both staircase diffractions and the
number of grid points (Moczo, 1989; Oprsal and Zahradnik, 1999). When the grid points
are not chosen in a geometrically regular way, combinations of 1-D Taylor series cannot
be used and 2-D Taylor series must be applied (Celia and Gray, 1992, p. 93).

A finite-differences code (Fortran 77) for solving the SH-wave equation of motion for
anisotropic-viscoelastic media is given in the appendix (Section 9.9.2) and a program
for solving Maxwell's equations is given in Section 9.9.3. The latter is based on the
acoustic-electromagnetic analogy. Both codes use a fourth-order staggered approximation
for computing the spatial derivatives. The error of this approximation is 3 ob4/64O,
compared to dx^/QO for the approximation on a regular grid (Fornberg, 1996, p. 91).

9.3.2 Pseudospectral methods

The pseudospectral methods used in forward modeling of seismic waves are mainly based
on the Fourier and Chebyshev differential operators. Gazdag (1981), first, and Kosloff and
colleagues, later, applied the technique to seismic exploration problems (e.g., Kosloff and
Baysal, 1982; Reshef, Kosloff, Edwards and Hsiung, 1988). Mikhailenko (1985) combined
transform methods with FD and analytical techniques.
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The sampling points of the Fourier method are Xj = xmax, j = 0 , . . . , iVi, where £
is the maximum distance and N\ is the number of grid points. For a given function /
with Fourier transform /(&i) , the first and second derivatives are computed as

max

Kf = ikf, d&f = -k2f, (9.26)

where k is the discrete wavenumber. The transform / to the wavenumber domain and the
transform back to the space domain are calculated by the fast Fourier transform (FFT) .
Staggered operators tha t evaluate first derivatives between grid points are given by

Dff = V ikexp(±ikdx/2)f(k)exp(ikx), (9.27)
A;=0

where k(Ni) = ir/dx is the Nyquist wavenumber. The standard differential operator is
given by the same expression, without the phase shift term exp(±ikdx/2). The standard
operator requires the use of odd-based FFT's, i.e., Ni should be an odd number. This
is because even transforms have a Nyquist component which does not possess the Her-
mitian property of the derivative (Kosloff and Kessler, 1989). When fix) is real, f(k) is
Hermitian (i.e., its real part is even and imaginary part is odd). If Ni is odd, the discrete
form of k is an odd function; therefore, ikf(k) is also Hermitian and the derivative is real
(see the appendix (Section 9.9.4)).

On the other hand, the first derivative computed with the staggered differential op-
erator is evaluated between grid points and uses even-based Fourier transforms. The
approximation (9.27) is accurate up to the Nyquist wavenumber. If the source spectrum
is negligible beyond the Nyquist wavenumber, we can consider that there is no significant
numerical dispersion due to the spatial discretization. Hence, the dispersion relation is
given by equation (9.10), which for a second-order time integration can be written as

(9.28)

Because k should be real to avoid exponentially growing solutions, the argument of the
inverse sine must be less than one. This implies that the stability condition km&xcdt/2 <
1 leads to a = cdt/dx < 2/?r, since kmax = ir/dx (a is called the Courant number).
Generally, a criterion a < 0.2 is used to choose the time step (Kosloff and Baysal, 1982).
The Fourier method has periodic properties. In terms of wave propagation, this means
that a wave impinging on the left boundary of the grid will return from the right boundary
(the numerical artifact called wraparound). The Fourier method is discussed in detail in
the appendix (Section 9.9.4).

The Chebyshev method is mainly used in the particle-velocity/stress formulation to
model free-surface, rigid and non-reflecting boundary conditions at the boundaries of
the mesh. Chebyshev transforms are generally computed with the FFT, with a length
twice that used by the Fourier method (Gottlieb and Orszag, 1977, p. 117). Since the
sampling points are very dense at the edges of the mesh, the Chebyshev method requires
a one-dimensional stretching transformation to avoid very small time steps (see equation
(9.12)). Because the grid cells are rectangular, mapping transformations are also used to
model curved interfaces to obtain an optimal distribution of grid points (Fornberg, 1988;
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Carcione, 1994b) and model surface topography (Tessmer and Kosloff, 1994). The Fourier
and Chebyshev methods are accurate up to the maximum wavenumber of the mesh that
corresponds to a spatial wavelength of two grid points - at maximum grid spacing for the
Chebyshev operator. This fact makes these methods very efficient in terms of computer
storage - mainly in 3-D space - and makes Chebyshev technique highly accurate for
simulating Neumann and Dirichlet boundary conditions, such as stress-free and rigid
conditions (Carcione, 1994b). Examples of its use in domain decomposition is given
in Carcione (1996a) and Carcione and Helle (2004) to model wave propagation across
fractures and at the ocean bottom, respectively. The Chebyshev method is discussed in
detail in the appendix (Section 9.9.5).

9.3.3 The finite-element method

The FE method has two advantages over FD and PS methods, namely, its flexibility in
handling boundary conditions and irregular interfaces. On the basis of equation (9.22),
consider the 1-D case, with uniform grid spacing dx, and an element whose coordinates
are X\ and X% (X2 — X\ = dx) and whose nodal pressures are P\ and Pi- This ele-
ment is mapped into the interval [—1,1] in a simplified coordinate system (the reference
Z-system). Denote the physical variable by x and the new variable by z. The linear
interpolation functions are

i \ z). (9.29)

If the field variable and the independent (physical) variable are computed using the same
interpolation functions, one has the so-called isoparametric method (Hughes, 1987, p.
20). That is,

P = <PiPi + <hPi, x = (f)1Xl + ̂ X^ (9.30)

Assembling the contributions of all the elements of the stiffness matrix results in a central
second-order differencing operator if the density is constant. When the density is variable,
the stiffness matrix is equivalent to a staggered FD operator (Kosloff and Kessler, 1989).

FE methods have been used to solve problems in seismology, in particular, propagation
of Love and Rayleigh waves in the presence of surface topography (Lysmer and Drake,
1972; Schlue, 1979). FE applications for seismic exploration require, in principle, more
memory and computer time than the study of surface waves (soil-structure interaction).
In fact, the problem of propagation of seismic waves from the surface to the target (the
reservoir) involves the storage of large matrices and much computer time. During the 70s
and the 80s, efforts were made to render existing low-order FE techniques efficient rather
than proposing new algorithms. In the 90s, Seron, Sanz, Kindelan and Badal (1990)
and Seron, Badal and Sabadell (1996) further developed the computational aspects of
low-order FE to make them more efficient for seismic exploration problems.

When high-order FE methods are used, we must be aware that besides the physical
propagation modes, there are parasitic modes (Kelly and Marfurt, 1990). These parasitic
modes are non-physical solutions of the discrete dispersion relation obtained from the
Neumann stability analysis. For instance, for a 2D cubic element grid, there are ten modes
of propagation - two corresponding to the P and SV waves, and eight parasitic modes of
propagation. High-order FE methods became more efficient with the advent of the spectral
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element method (SPEM) (Seriani, Priolo, Carcione and Padovani, 1992; Padovani, Priolo
and Seriani, 1994; Priolo, Carcione and Seriani, 1994; Komatitsch and Vilotte, 1998;
Komatitsch, Barnes and Tromp, 2000). In this method, the approximation functional
space is based on high-order orthogonal polynomials having spectral accuracy; that is,
the rate of convergence is exponential with respect to the polynomial order. Consider the
2-D case and the acoustic wave equation. The physical domain is decomposed into non-
overlapping quadrilateral elements. On each element, the pressure field p(zi,Z2), defined
on the square interval [—1,1] x [—1,1] in the reference system Z, is approximated by the
following product

TV N

p(z1,z2) = ̂ 2^2 Pij(()i(z1)(f)j(z2), (9.31)
t=0 j=0

where P -̂ are the nodal pressures, and <j>i are Lagrangian interpolants satisfying the rela-
tion 4>i(C,k) = $ik within the interval [—1,1] and identically zero outside. Here Sik denotes
the Kronecker delta and C, stands for z\ and z<z- The Lagrangian interpolants are given by

2 N

T7
1 V

n=0

(9-32)

where Tn are Chebyshev polynomials, Q are the Gauss-Lobatto quadrature points, and
= 0, cn = 1 for 1 < n < N. The Chebyshev functions are also used for the

mapping transformation between the physical world X and the local system Z. Seriani,
Priolo, Carcione and Padovani (1992) use Chebyshev polynomials from eighth-order to
fifteenth-order. This allow up to three points per minimum wavelength without generating
parasitic or spurious modes. As a result, computational efficiency is improved by about
one order of magnitude compared to low order FE methods. If the meshing of a geological
structure is as regular as possible (i.e., with a reasonable aspect ratio for the elements),
the matrices are well conditioned and an iterative method such as the conjugate gradient
uses less than eight iterations to solve the implicit system of equations.

9.4 Source implementation

The basic seismic sources are a directional force, a pressure source, and a shear source,
simulating, for instance, a vertical vibrator, an explosion, or a shear vibrator. Complex
sources, such as earthquakes sources, can be represented by a set of directional forces
(e.g., a double couple (Aki and Richards, 1980, p. 82)).

Consider the so-called elastic formulation of the equation of motion, that is, P and S
wave propagation (Kosloff, Reshef and Loewenthal, 1984). A directional force vector has
components fa = a(xi)h(t)5im, where a is a spatial function (usually a Gaussian), h(t) is
the time history, 6 denotes the Kronecker delta function, and m is the source direction. A
pressure source can be obtained from a potential of the form <f> = a(xi)h(t) as fa = <%</>. A
shear source is of the form f = curl A, where A is a vector potential. In the (x, y)-plane
A = (0,0, .4) with A = a(xi)h(t). In particle-velocity/stress formulations, the source can
be introduced as described above or in the stress-strain relations, such that a pressure
source implies equal contributions to <7n, 022 and cr33 at the source location, and shear
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sources result from a stress tensor with zero trace (e.g., Bayliss, Jordan and LeMesurier,
1986).

Introducing the source in a homogeneous region by imposing the values of the analyti-
cal solution should handle the singularity at the source point. Many FD techniques (Kelly,
Ward, Treitel and Alford, 1976; Virieux, 1986) are based on the approach of Alterman
and Karal (1968). The numerical difficulties present in the vicinity of the source point are
solved by subtracting the field due to the source from the total field due to reflection, re-
fraction and diffractions in a region surrounding the source point. This procedure inserts
the source on the boundary of a rectangular region. The direct source field is computed
analytically.

On the other hand, when solving the particle-velocity/stress formulation with pseu-
dospectral (PS) algorithms and high-order FD methods (Bayliss, Jordan and LeMesurier,
1986), the source can be implemented in one grid point in view of the accuracy of the
differential operators. Numerically (in 1-D space and uniform grid spacing), the strength
of a discrete delta function in the space domain is 1/dx, where dx is the grid size, since
each spatial sample is represented by a sine function with argument xjdx. (The spatial
integration of this function is precisely dx.) The introduction of the discrete delta will
alias the wavenumbers beyond the Nyquist (ir/dx) to the lower wavenumbers. However,
if the source time-function h{t) is band-limited with cut-off frequency /max, the wavenum-
bers greater than A;max = 27r/max/cmjn will be filtered, where cmjn is the minimum wave
velocity in the mesh. Moreover, since the equation of motion is linear, seismograms with
different time histories can be implemented by convolving h(t) with only one simulation
using S(t) as a source - a discrete delta with strength 1/dt.

The computation of synthetic seismograms for simulating zero-offset (stacked) seismic
sections requires the use of the exploding-reflector concept (Loewenthal, Lu, Roberson
and Sherwood, 1976) and the so-called non-reflecting wave equation (Baysal, Kosloff and
Sherwood, 1984). A source proportional to the reflection coefficients is placed on the
interfaces and is initiated at time zero. All the velocities must be divided by two to
get the correct arrival times. The non-reflecting condition implies a constant impedance
model to avoid multiple reflections, which are, in principle, absent from stacked sections
and constitute unwanted artifacts in migration processes.

9.5 Boundary conditions

Free-surface boundary conditions are the most important in seismic exploration and seis-
mology. They also play an important role in the field of non-destructive evaluation for
the accurate sizing of surface breaking cracks (Saffari and Bond, 1987). While in FE
methods the implementation of traction-free boundary conditions is natural - simply do
not impose any constraint at the surface nodes - FD and PS methods require a special
boundary treatment.

Some restrictions arise in FE and FD modeling when large values of the Poisson ratio
occur at a free surface. Consider first the free-surface boundary conditions. The classical
algorithm used in FD methods (e.g., Kelly, Ward, Treitel and Alford, 1976) includes a
fictitious line of grid points above the surface, uses one-sided differences to approximate
normal derivatives, and employs central differences to approximate tangential derivatives.
This simple low-order scheme has an upper limit of cp/cs < 0.35, where cp and cs are the
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P-wave and S-wave velocities. The use of a staggered differential operator and radiation
conditions of the paraxial type (see below) is effective for any variation of Poisson ratio
(Virieux, 1986).

The traction-free condition at the surface of the earth can be achieved by using the
Fourier PS method and including a wide zone on the lower part of the mesh contain-
ing zero values of the stiffnesses - the so-called zero-padding technique (Kosloff, Reshef
and Loewenthal, 1984). While for small angles of incidence this approximation yields
acceptable results, for larger angles of incidence, it introduces numerical errors. Free-
surface and solid-solid boundary conditions can be implemented in numerical modeling
with non-periodic PS operators by using a boundary treatment based on characteristics
variables (Kosloff, Kessler, Queiroz Filho, Tessmer, Behle and Strahilevitz, 1990; Kessler
and Kosloff, 1991; Carcione, 1991; Tessmer, Kessler, Kosloff and Behle, 1992; Igel, 1999).
This method is proposed by Bayliss, Jordan and LeMesurier (1986) to model free-surface
and non-reflecting boundary conditions. The method is summarized below (Tessmer,
Kessler, Kosloff and Behle, 1992; Carcione, 1994b).

Consider the algorithm for the SH equation of motion (9.2). Most explicit time in-
tegration schemes compute the operation H • y = (y)° where H is defined in equation

(9.2). The array (y) is then updated to give a new array (y) that takes the bound-
ary conditions into account. Consider the boundary z = 0 (e.g., the surface) and that the
wave is incident on this boundary from the half-space z > 0. Compute the eigenvalues of
matrix B: i y / x / p = =Lc and 0 (see equation (9.4)). Compute the right eigenvectors of
matrix B, such that they are the columns of a matrix R. Then, B = R • A • R"1, with
A being the diagonal matrix of the eigenvalues. If we define the characteristics array as
c = R 1 • y, and consider equation (9.2) corresponding to the ^-direction:

dtc = A • <93c, (9.33)

the incoming and outgoing waves are decoupled. Two of the characteristics variables,
components of array c, are i;2 + 032/1 and V2 — 032/-^ with / = pc. The first variable is
the incoming wave and the second variable is the outgoing wave. Equating the new and
old outgoing characteristics and assuming stress-free boundary conditions (cr32 = 0), the
update of the free-surface grid points is

new / _ ^ T_i \ / \ old
1
0
0

0
1
0

/ - 1 >
0
o >

\ / v

' V ^32

(9.34)

It can be shown that this application of the method of characteristics is equivalent to a
paraxial approximation (Clayton and Engquist, 1977) in one spatial dimension. Roberts-
son (1996) presents a FD method that does not rely on mapping transformations and,
therefore, can handle arbitrary topography, although it must have a staircase shape. The
free-surface condition is based on the method of images introduced by Levander (1986).
This method is accurate and stable for high values of the Poisson ratio. An efficient
solution to the staircase problem is given by Moczo, Bystricky, Kristek, Carcione, and
Bouchon (1997), who propose a hybrid scheme based on the discrete-wavenumber, FD and
FE methods. These modeling algorithms include attenuation based on memory-variable
equations (Emmerich and Korn, 1987; Carcione, Kosloff and Kosloff, 1988d).
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9.6 Absorbing boundaries

The boundaries of the numerical mesh may produce non-physical artifacts that disturb
the physical events. These artifacts are reflections from the boundaries or wraparounds
as in the case in the Fourier method. There are two main techniques used in seismic
modeling to avoid these artifacts: the sponge method and the paraxial approximation.

The classical sponge method uses a strip along the boundaries of the numerical mesh,
where the field is attenuated (Cerjan, Kosloff, Kosloff and Reshef, 1985; Kosloff and
Kosloff, 1986). Considering the pressure formulation, we can write equation (9.1) as a
system of coupled equations as

/ <- i \ / „ \ / n \

(9.35)
q J V ~L " f J V Q J V /

where £ is an absorbing parameter. The solution to this equation is a wave traveling with-
out dispersion, but whose amplitude decreases with distance at a frequency-independent
rate. A traveling pulse will, thus, diminish in amplitude without a change of shape. An
improved version of the sponge method is the perfectly matched-layer method or PML
method used in electromagnetism and interpreted by Chew and Liu (1996) as a coordinate
stretching. It is based on a - non-physical - modification of the wave equation inside the
absorbing strips, such that the reflection coefficient at the strip/model boundary is zero.
The improvement implies a reduction of nearly 75 % in the strip thickness compared to
the classical method.

The sponge method can be implemented in FE modeling by including a damping
matrix D in equation (9.23),

K • p + D • dtp + M • dip + S = 0, (9.36)

with D = cvM + /?K, where a and (3 are the damping parameters (e.g., Sarma, Mallick
and Gadhinglajkar, 1998).

The paraxial approximation method is another technique used to avoid undesirable
non-physical artifacts. One-way equations and the method based on characteristics vari-
ables discussed in the previous section are particular cases. For approximations based on
the one-way wave equation (paraxial) concept, consider the acoustic wave equation on
the domain x > 0. At the boundary x = 0, the absorbing boundary condition has the
general form

f J 1
p = 0, (9.37)

where \ctj\ < TT/2 for all j (Higdon, 1991). Equation (9.37) provides a general represen-
tation of absorbing boundary conditions (Keys, 1985; Randall, 1988). The reason for
the success of equation (9.37) can be explained as follows. Suppose that a plane wave is
hitting the boundary at an angle a and a velocity c. In 2-D space, such a wave can be
written as p(x cos a + z sin a + ct). When an operator of the form (cos a)dt — cdi is applied
to this plane wave, the result is zero. The angles aj are chosen to take advantage of a
priori information about directions from which waves are expected to reach the boundary.

Consider now the approach based on characteristics variables and apply it to the SH
equation of motion (9.2) in the plane z = 0. The outgoing characteristic variable is
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V2 —032/'I (see the previous section). This mode is left unchanged (new = old), while the
incoming variable V2 + 032// is set to zero (new = 0). Then, the update of the boundary
grid points is

new / 1 _ r _ i \ / \ old

3̂2 / V I 0 1 / V a32

These equations are exact in one dimension, i.e., for waves incident at right angles. Ap-
proximations for the 2-D case are provided by Clayton and Engquist (1977).

9.7 Model and modeling design — Seismic modeling

Modeling synthetic seismograms may have different purposes - for instance, to design a
seismic experiment (Ozdenvar, McMechan and Chaney, 1996), to provide for structural
interpretation (Fagin, 1992) or to perform a sensitivity analysis related to the detectability
of a petrophysical variable, such as porosity, fluid type, fluid saturation, etc. Modeling
algorithms can also be part of inversion and migration algorithms.

Designing a model requires the joint collaboration of geologists, geophysicists and log-
analysts when there is well information about the study area. The geological modeling
procedure generally involves the generation of a seismic-coherence volume to define the
main reservoir units and the incorporation of fault data of the study area. Seismic data
require the standard processing sequence and pre-stack depth migration supported by
proper inversion algorithms when possible. A further improvement is achieved by includ-
ing well-logging (sonic- and density-log) information. Since the logs have a high degree of
detail, averaging methods are used to obtain the velocity and density field at the levels
of seismic resolution.

In planning the modeling with direct methods, the following steps are to be followed:

1. From the maximum source frequency and minimum velocity, find the constraint on
the grid spacing, namely,

dx < - ^ - . (9.39)

The equal sign implies the maximum allowed spacing to avoid aliasing; that is, two
points per wavelength. The actual grid spacing depends on the particular scheme.
For instance, 0(2,4) FD schemes require 5 to 8 grid points per minimum wavelength.

2. Find the number of grid points from the size of the model.

3. Allocate additional wavelengths for each absorbing strip at the sides, top and bottom
of the model. For instance, the standard sponge method requires four wavelengths,
where the wavelength is Â  = 2cmax//d and fd is the dominant frequency of the
seismic signal.

4. Choose the time step according to the stability condition (9.12) and accuracy cri-
teria. Moreover, when possible, test the modeling algorithm against the analytical
solutions and perform seismic-reciprocity tests to verify its correct performance.

5. Define the source-receiver configuration.
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Figure 9.1: Geological model.

Consider the model shown in Figure 9.1 with the properties indicated in Table 9.1.
The low velocities and low quality factors of medium 7 simulate a sandstone subjected
to an excess pore pressure. All the media have a Poisson ratio equal to 0.2, except
medium 7 which has a Poisson ratio of 0.3, corresponding to an overpressured condition.
The modeling algorithm (Carcione, 1992a) is based on a fourth-order Runge-Kutta time-
integration scheme and the Fourier and Chebyshev methods, which are used to compute
the spatial derivatives along the horizontal and vertical directions, respectively. This
allows the modeling of free-surface boundary conditions. Since the mesh is coarse (two
points per minimum wavelength), Zeng and West's averaging method (Zeng and West,
1996) is applied to the slownesses to avoid diffractions due to the staircase effect - the
density and the relaxation times are arithmetically averaged. The mesh has 135 x 129
points, with a horizontal grid spacing of 20 m, and a vertical dimension of 2181 m with a
maximum vertical grid spacing of 20 m. Stress-free and non-reflecting boundary conditions
of the type (9.34) and (9.38) are applied at the top and bottom boundaries, respectively. In
addition, absorbing boundaries of the type (9.35) of length 18 grid points are implemented
at the side and bottom boundaries. The source is a vertical force (a Ricker wavelet) applied
at 30 m depth, with a maximum frequency of 40 Hz. The wave field is computed by using
a time step of 1 ms with a maximum time of 1 s - the total wall-clock time is 120 s in an
Origin 2000 with 4 CPU's. The seismogram recorded at the surface is shown in Figure 9.2,
where the main event is the Rayleigh wave (ground-roll) traveling with velocities between
the shear velocities of media 1 and 2, approximately. The reflection event corresponding
to the anticlinal structure can be clearly seen between 0.6 s and 0.8 s.
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Medium

1
2
3
4
5
6
7
8
9
10

cp
(km/s)
2.6
3.2
3.7
4
4.3
4.5
3.2
4.6
4.8
5.4

cs
(km/s)
1.6
1.96
2.26
2.45
2.63
2.75
1.7
2.82
2.94
3.3

Qp

80
100
110
115
120
125
30
150
160
220

Qs

60
78
85
90
92
95
25
115
120
170

P
g/cm3

2.1
2.3
2.3
2.4
2.5
2.6
2.3
2.6
2.7
2.8

Table 9.1. Material properties
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Figure 9.2: Seismogram of the vertical particle velocity.

Forward numerical modeling is a powerful method to aid in the interpretation of
seismic surveys. Carcione, Finetti and Gei (2003) use ray tracing, the non-reflecting wave
equation and the exploding-reflector approach to interpret low signal-to-noise ratio deep-
crust seismic sections. Synthetic seismograms are useful to recognize patterns associated
with different types of structures, and predicting some of the drawbacks when interpreting
migrated and unmigrated sections of a given complex structure.
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Another useful application is seismic characterization. Carcione and Gei (2003) use
rock physics, seismic theory and numerical modeling of wave propagation to analyze the
seismic response of an antarctic subglacial lake. Optimal seismic surveys can be planned
on the basis of this type of investigations.

9.8 Concluding remarks

The direct methods discussed in this chapter (finite-difference, pseudospectral methods
and finite-element methods) do not impose restrictions on the type of stress-strain re-
lation, boundary conditions or source-type. In addition, they allow general material
variability. For instance, the numerical solution of wave propagation in an anisotropic
poro-viscoelastic medium - appropriate for reservoir environments - is not particularly
difficult in comparison with simple cases, such as the acoustic wave equation describing
the propagation of dilatational waves. Many of the complex stress-strain relations han-
dled by direct methods cannot be solved by integral-equations or asymptotic methods
without simplifying assumptions. However, direct methods for solving these equations
are certainly more expensive in terms of computer time and storage.

Finite differences are simple to program and are efficient when compared to alternative
methods, under fairly mild accuracy requirements. In this sense, a good choice can be
a second-order in time, fourth-order in space FD algorithm. Pseudospectral methods
can be more expensive in some cases, but guarantee higher accuracy and relatively lower
background noise when staggered differential operators are used. These operators are also
suitable when large variations of Poisson ratio are present in the model (e.g., a fluid/solid
interface). In three dimensions, pseudospectral methods require a minimum of grid points,
compared to finite differences, and can be the best choice when limited computer storage
is available. However, if a dense grid is required for physical reasons (e.g., fine layering,
scattering inhomogeneities, etc.) the FD algorithm can be more convenient.

Without a doubt, the best algorithm to model surface topography and curved inter-
faces is the finite-element method. With the use of spectral interpolators, this algorithm
can compete with earlier techniques with respect to accuracy and stability. However, this
approach may prove to be unstable for large variations of the Poisson ratio. Finite-element
methods are best suited for engineering problems where interfaces have well defined geo-
metrical features, in contrast with geological interfaces. Moreover, model meshing is not
intensively required as is the case in seismic inversion algorithms. Use of non-rectangular
grids, mainly in 3-D space, is one of the main disadvantages of finite-element methods,
because of the topological problems to be solved when constructing the model. Finite-
element methods are, however, preferred for seismic problems involving the propagation
of surface waves in situations of complex topography.



9.9 Appendix 405

9.9 Appendix

9.9.1 Electromagnetic-diffusion code

The following Fortran-77 computer program implements the simulation of the initial-value
problem corresponding to the TM equation (8.419) using the expansion (9.20) and the
Fourier PS method (equation (9.27)). The same program can be used for the TE equation
(8.420) if the conductivity is interchanged with the magnetic permeability and vice versa.

The model is homogeneous, but the properties are defined as arrays, so the program
can be used for a general inhomogeneous medium. The first-order spatial derivative com-
puted with the staggered differential operator uses even-based Fourier transforms. The
spectral coefficients of the Fourier expansion are computed by the Fast Fourier Transform
(FFT) using the algorithm introduced by Temperton (1988), requiring the number of grid
points be composed of prime factors formed with 2, 3, 4, 5, 7, 8, 9, 11, 13, 16 and 17.

The routine for the modified Bessel functions is taken from Zhang and Jin (1996),
who provide a floppy disk with the program. This code exceeds the dynamic range of the
computer (Origin 300) for arguments larger than 700, but a small modification allows the
calculation of exp(—bt)Ik(bt), which poses no difficulties. The main equations describing
the algorithm are indicated in the comments.

c Electromagnetic diffusion equation - Magnetic field
c
c Section 8.10.2 : Differential equation (8.419)
c Section 8.10.2 : Analytical solution (equation (8.437))
c Section 9.2.4 : Time integration (equation (9.20))
c Section 9.3.2 : Spatial derivatives (equation (9.27))
c

parameter (nxt=120, nzt=120, nbes=5000, na=20)
dimension Hy(nxt,nzt),Hyl(nxt,nzt),Hyt(nxt,nzt)
dimension Ex(nxt,nzt),Ez(nxt,nzt)
dimension bk(nbes)
dimension ifaxx(10),akx(nxt),cox(nxt),six(nxt)
dimension ifaxz(10),akz(nzt),coz(nzt),siz(nzt)
real*8 btd,Ik(0:nbes),Ikp(0:nbes),Kk(0:nbes),Kkp(0:nbes)
real mu(nxt,nzt),kbar
dimension sigma(nxt,nzt),wx(na),wz(na)
common/rec/b,fac
data pi/3.14150265/

c
open(4,file='SNP')

c
c INPUT DATA
c Number of grid points
c (These numbers should be even and composed of primes factors)

nx=nxt
nz=nzt

c Grid spacings
dx=10.
dz=dx

c Initial-condition parameters
kbar=0.1
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Dk=0.5*kbar
c Model
c Reference magnetic permeability and conductivity

amuO=4.*pi*l.e—7
s0=0.001
amx=0.
do 1 i=l,nx
do 1 j=l,nz

mu(i,j)=amuO
sigma(i,j)=sO
a=l./(mu(ij)*sigma(ij

I amx=amaxl(amx,abs(a
a=amx

c Propagation time
t=3.e—6

c If iab=l apply absorbing boundaries
iab=l

c
c INITIAL CONDITION

x0=0.5*nx*dx
z0=0.5*nz*dx
do 5 i=l,nx
do 5 j=l,nz

x=(i—l)*dx
z=a-l)*dz
arg=-0.25*Dk*Dk*((x-x0)**2+(z-z0)**2)
argl=kbar * (x—xO)
arg2=kbar* (z—zO)

5 Hy(i,j)=exp(arg)*cos(argl)*cos(arg2)
c
c Wavenumber components and phase shifts for staggering

call wn(akx,cox,six,nx,dx)
call wn(akz,coz,siz,nz,dz)

c Vector-FFT factors
call spfal7(ifaxx,nx)
call spfal7(ifaxz,nz)

c
c ABSORBING BOUNDARIES

if(iab.eq.l) then
nab=18
gam=l.e+6
alp=0.1

c Weights for the absorbing strips
call wgtfwx,nab,gam,alp)
call wgt(wz,nab,gam,alp)

c Define properties of the bottom strip
do 10 i=l,nx
do 10 j=nz—nab+l,nz

mu(ij)=mu(i,l)
10 sigma(ij)=sigma(i,l)

endif
c

do 11 i=l,nx
do 11 j=l,nz

Hyl(ij)=0.
II Hyt(ij)=0.
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b=a*pi*pi*(L/dx/dx+l./dz/dz)
bt=b*t

c
c EXPANSION COEFFICIENTS

M=6.*sqrt(bt)
btd=bt

c Ik = exp(-bt) Ik(bt)
callIKNA(M,btd,NM,Ik,Ikp,Kk,Kkp)
bk(l)=Ik(0)
bk(2)=2.*Ik(l)
do 15 k=3,M+l

k l = k - l
15 bk(k)=2.*Ik(kl)
c
c TIME EVOLUTION
c First two terms

fac=l.
call cheb(Hy,Hyl,rnu,sigma,nx,nz,

& ifaxx,akx,cox,six,
& ifaxz,akz,coz,siz,
& wx,wz,nab,iab)

c
do 20 i=l,nx
do 20 j=l,nz

** Eq. (9.20) **
20 Hyt(ij)=Hyt(ij)+bk(l)*Hy(ij)+bk(2)*Hyl(ij)
c
c Terms 2,..,M

fac=2.
do 25 k=3,M+l

call cheb(Hyl,Hy,mu,sigma,nx,nz,
& ifaxx,akx,cox,six,
& ifaxz,akz,coz,siz,
& wx,wz,nab,iab)

c
do 30 i=l,nx
do 30 j=l,nz

Hyt(iJ)=Hyt(i,j)+bk(k)*Hy(i,j)
hh=Hyl(ij)
Hyl(ij)=Hy(ij)

30 Hy(ij)=hh
c
25 continue
c
c COMPUTE ELECTRIC FIELD
c
c Spatial derivatives: Dx(+) and Dz(+)

call difx(Hyt,Ez,+l,0,ifaxx,akx,cox,six,nx,nz)
call difz(Hyt,Ex,+l,0,ifaxz,akz,coz,siz,nx,nz)
do 35 i=l,nx
do 35 j=l,nz

Ex(ij)=-Ex(ij)/sigma(ij)
35 Ez(ij)=Ez(ij)/sigma(ij)
c
c WRITE SNAPSHOTS

write(4,*)nx,nz

407
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do 40 i=l,nx
40 write(4,*)(Hyt(ij),Ex(ij),Ez(ij)j=l,nz)
c

write(6,100)t*l.e+6
100 format (lx,'Propagation time: ',F4.0,' microsec.')

write(6,101)bt
101 format (lx,'Argument of Bessel functions, bt: ',F5.0)

write(6,102)M
102 format(lx,'Chebyshev polynomial degree, M: ',14)

write(6,103)bk(M)/bk(l)
103 format(lx,'ratio bM/b0: ',E15.7)
c

stop
end

c End of main program
c
c SUBROUTINES
c
c SPATIAL DERIVATIVES AND RECURSION EQUATION
c

subroutine cheb(Hy,Hyl,mu,sigma,nx,nz,
& ifaxx,akx,cox,six,
& ifaxz,akz,coz,siz,
& wx,wz,nab,iab)

dimension Hy(nx,nz),Hyl(nx,nz)
dimension al(nx,nz),a2(nx,nz),a3(nx,nz)
dimension ifaxx(10),akx(nx),cox(nx),six(nx)
dimension ifaxz (10) ,akz (nz) ,coz (nz) ,siz (nz)
dimension sigma(nx,nz),wx(nab),wz(nab)
real mu(nx,nz)
common/rec/b,fac

c
c Spatial derivatives: Dx(+) and Dz(+) *** Eq. (9.27) **

call difx(Hy,al,+l,0,ifaxx,akx,cox,six,nx,nz)
call difz(Hy,a2,+1,0,ifaxz,akz,coz,siz,nx,nz)

c
do 5 i=l,nx
do 5 j=l,nz

( ) ( ) / g ( )
5 a2(i,j)=a2(i,j)/sigma(i,j)
c
c Spatial derivatives: Dx(-) and Dz(-) *** Eq. (9.27) **

call difx(al,a3,—I,0,ifaxx,akx,cox,six,nx,nz)
call difz(a2,a3,—1,1,ifaxz,akz,coz,siz,nx,nz)

c a3 = ((1/sigma) Hy,x),x + ((1/sigma) Hy,z),z
c

do 10 i=l,nx
do 10 j=l,nz

10
c
c Apply absorbing boundaries

if(iab.eq.l) then
call ab(a3,Hy,wx,wz,nab,nx,nz)

endif
c Recursion equation

do 15 i=l,nx
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do 15 j=l,nz
GN=a3(i,j)

** Eq. (9.21) **
FN=(GN+b*Hy(i,j))/b

15 Hyl(i,j)=fac*FN-Hyl(i,j)
c

return
end
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c
c Subroutines
c
c
c Modified Bessel functions (Zhang and Jin, 1996)
c subroutine IKNA(n,x,nm,bi,di,bk,dk)
c
c Wavenumber components and phase shifts for staggering
c subroutine wn(ak,co,si,n,d)
c
c x-derivative
c subroutine difx(al,a2,isg,iopt,ifaxx,akx,cox,six,nx,nz)
c z-derivative
c subroutine difz(al,a2,isg,iopt,ifaxz,akz,coz,siz,nx,nz)
c
c Vector FFT (Temperton, 1988)
c subroutine spfal7(ifax,n)
c subroutine pfal7(a,b,ifax,inc,jump,n,lot,isign,ierr)
c
c Absorbing boundaries (Kosloff and Kosloff, 1986)
c subroutine wgt(w,nab,gam,alp)
c subroutine ab(al,a2,wx,wz,nab,nx,nz)
c
c The complete computer program can be downloaded
c from http://software.seg.org

9.9.2 Finite-differences code for the SH-wave equation of mo-
tion

The following Fortran program solves the inhomogeneous anisotropic and viscoelastic SH-
wave equation of motion, which is given in Section 4.5.3. The time discretization of Euler's
equation (1.46)i has second-order accuracy, and it is based on equation (9.8) (the first
three terms on the right-hand side):

/2
n, (9.40)

where dtii2 = V2, && = <J\i and 04 = 023. The strain components are obtained as

e4 = D^U2, and e^ = D^U2, (9-41)

where D~ and D+ represent staggered spatial-derivative operators of order 4. The differ-
ent signs imply a shift of half the grid size, to obtain the acceleration at the same points
of the displacement (Carcione, 1999c).

The discretization of the memory-variable equations (4.149)4 and (4.149)6 is based on
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equation (9.14). For example, the first equation is

n+1/2 _
:23 —

2 dt ^ 2

dt
23 (9.42)

where e23 denotes the memory variable, and cf2 = (r€ ) * — (ri ) 1.
On a regular grid, the field components and material properties are represented at

the same grid points. On a staggered grid, variables and material properties are defined
at half-grid points, as shown by Carcione (1999c). Material properties at half-grid points
should be computed by averaging the values defined at regular points (not implemented
in this program). The averaging is chosen in such a way to reduce the error between
the numerical solution corresponding to an interface aligned with the numerical grid and
the equivalent solution obtained with a regular grid. Minimum ringing amplitudes are
obtained for the arithmatic average of the density and relaxation times, and the geometric
average of the shear moduli.

In particular, the program solves the reflection-transmission problem of Section 6.1,
for a source of 25 Hz central frequency. The mesh has 120 x 120 points and a grid spacing
of 10 m. A snapshot of the displacement u^ at 250 ms is shown in Figure 9.3.

Figure 9.3: Snapshot of the SH-wave displacement, corresponding to the reflection-transmission problem
studied in Section 6.1. The star indicates the location of the source.

The comments in the program indicate the different equations used in the simulation.

c Anisotropic, viscoelastic SH-wave propagation
c
c Section 4.4 : Plane-wave analysis
c Section 4.5.3 : Differential equations
c Section 4.6 : Analytical solution
c Section 6.1 : Reflection-transmission problem
c Section 8.2.1 : Time integration
c Section 8.3.1 : Spatial derivatives
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c 0(2,4) finite-difference scheme
c

parameter (nxt=120, nzt=120, nstept=500)
c field variables
c u2: displacement
c e4 and e6: strain components
c s4 and s6: stress components
c e23 and el2: memory variables

dimension u2(nxt,nzt),u(nxt,nzt),s4(nxt,nzt),s6(nxt,nzt)
dimension e23(nxt,nzt),el2(nxt,nzt)

c material properties
dimension ts2(nxt,nzt),phi2(nxt,nzt),ts4(nxt,nzt),phi4(nxt,nzt)
dimension c44(nxt,nzt),c66(nxt,nzt),c46(nxt,nzt),rho(nxt,nzt)

c
dimension seis(nxt,nstept)
dimension ab(30)
dimension f(1000)

c
open(10,file='SNAP')
open(15,file='SEIS')

dx=10.
dz=10.
dt=0.001
nx=120
nz=120
nstep=250
pi=3.14159265

c snapshots every nsp steps
nsp=nstep

c source location and central frequency
ix=60
iz=60
freq=25.

c MODEL
c central frequency of relaxation peaks

fO=25.
tau=l./(2.*pi*fO)
do i=l,nx
do j=l,nz

c upper layer
Eqs. (6.

rho
c44
c66
c46

22

\i
(a 24") **

=2000.
=9.68e+9
=12.5e+9
=-0.5*sqrt(c44(ij)*c66(ij))

c loss in vertical direction
Q2=30.

** Eq. (6.20)) **
ts2(i,j)=(tau/Q2)*(sqrt(Q2*Q2+l.)-l.)
te2=(tau/Q2)*(sqrt(Q2*Q2+l.)+l.)
Phi2(ij)=l./te2-l./ts2(ij)

c loss in horizontal direction
Q4=40.

ts4(ij)=(tau/Q4)*(sqrt(Q4*Q4+l.)-l.)
te4=(tau/Q4)*(sqrt(Q4^Q4+l.)+l.)
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Phi4(ij)=l./te4-l./ts4(ij)
c lower layer

**
if(j.ge.8O) then

Eqs. (6.22
rho
c44
c66
c46 i j

**-(6.24)
=2500.
=19.6e+9
=25.6e+9
=0.5*sqrt(c44(i,j)*c66(i,j))

c loss in vertical direction
Q2=60.

ts2(i,j)=(tau/Q2)*(sqrt(Q2*Q2+l.)-l.)
te2=(tau/Q2)*(sqrt(Q2*Q2+l.)+l.)
phi2(i,j)=l./te2-l./ts2(i,j)

c loss in horizontal direction
Q4=80.

ts4(iJ)=(tau/Q4)*(sqrt(Q4*Q4+l.)-l.)
te4=(tau/Q4)*(sqrt(Q4*Q4+l.)+L)
Phi4(i,j)=l./te4-l./ts4(i,j)

endif
end do
end do

c
do i=l,nx
do j=l,nz
u2(ij)=0.
u(ij)=0.
end do
end do
do n=l,nstep
f(n)=0.
end do

c absorbing parameters
r=0.99
nab=12
do i=l,nab

ab(i)=l.
end do

c source's wavelet
** Eq. (2.233) **

call wavelet(f,freq,nw,dt)
c finite-differences weights
** Eq. (9.24) **

xl=9./(8.*dx)
x2=-l./(24.*dx)
zl=9./(8.*dz)

c TIME STEPPING
do 10 n=l,nstep
if(mod(n,10).eq.0) print *,n

c apply absorbing boundaries
c horizontal strips

do 11 j=l,nab

j 3 = n z - j - l
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sab=ab(nab+l— j)
do 11 i=3,nx—2
u2(i,j2)=u2(i,j2)*sab
u2(i,j3)=u2(iJ3)*sab

c vertical strips
do 12 i=l,nab
i2=i+2
i3=nx—i—1
sab=ab(nab+l—i)
do 12 j=3,nz-2
u2(i2,j)=u2(i2,j)*sab

12 u2(i3,j)=u2(i3,j)*sab
c

do 13 i=3,nx—2
do 13 j=3,nz—2

c strains
** Eqs. (9.24) and (9.41) **
c i—3/2 ->• i-2
c i—1/2 ->• i -1
c i+1/2 -)• i
c i+3/2 -)- i+1

e4=zl*(u2(ij)-u2(ij-l))+z2*(u2(ij+l)-u2(ij-2))
e6=xl*(u2(ij)-u2(i-lj))+x2*(u2(i+lj)-u2(i-2,j))

c memory-variable equations
fl=2.*ts2(ij)-dt
f2=2.*ts2(i,j)+dt
ee=e23(i,j)

** Eqs. (4.149)4 and (9.42) **
e23(ij)=(2.*dt*ts2(ij)*phi2(ij)*e4+fl*e23(ij))/f2
e23(i,j)=0.5*(e23(i,j)+ee)

fl=2.*ts4(ij)-dt
f2=2.*ts4(ij)+dt
ee=el2(ij)

** Eqs. (4.149)6 and (9.42) **
el2(ij)=(2.*dt*ts4(ij)*phi4(ij)*e6+fl*el2(ij))/f2
el2(ij)=0.5*(el2(ij)+ee)

c stresses
** Eq. (4.150) **

s4(ij)=C44(ij)*(e4+e23(ij))+c46(ij)*e6
S6(i,j)=c66(i,j)*(e6+el2(i,j))+c46(i,j)*e4

13 continue
do 14 i=3,nx-2
do 14 j=3,nz-2

** Eq. (9.24) **
c i—3/2 -^ i -1
c i—1/2 -)• i
c i+1/2 -)- i+1
c i+3/2 -)• i+2

ds4=zl*(s4(ij+l)-s4(ij))+z2*(s4(ij+2)-s4(ij-l))
ds6=xl*(s6(i+lj)-s6(ij))+x2*(s6(i+2j)-s6(i-lj))

c acceleration
acc=(ds4+ds6) /rho (i,j

c source
source=0.
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if (n.le.nw.and.i.eq.ix.and.j .eq.iz) source=f (n)
c Euler's equation
** Eqs. (1.46)i and (9.40) **

u(i,j)=2.*u2(i,j) — u(i,j)+dt*dt*acc+source
14 continue
c update of displacement

do 15 i=3,nx—2
do 15 j=3,nz—2
uu=u2(i,j)

u(i,j)=uu
15 continue

c write snapshot
if(mod(n,nsp).eq.O) then
print *,'write snapshot',n
write(10,*)nx,nz,dx,dz
do i=l,nx
write(10,*)(u2(i,j),j=l,nz)
end do
endif

c load seismogram at j=25
do i=l,nx
seis(i,n)=u2(i,25)
end do

10 continue
c write seismogram

write(15,*)nx,nstep,dx,dt
do i=l,nx
write(15,*)(seis(i,j),j=l,nstep)
end do
close(lO)
close (15)
stop
end

c
c WAVELET

subroutine wavelet(f,fb,nw,dt)
dimension f(nw)

** Eq. (2.233) **
pi=3.14159265
wb=2.*pi*fb
tO=6./(5.*fb)
Dw=0.5*wb
nw=2.*tO/dt
do n=l,nw
t=(n-l)*dt
D=t-tO
f(n)=exp(-Dw*Dw*D*D/4.)*cos(wb*D)
end do
return
end
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9.9.3 Finite-differences code for the SH-wave and Maxwell's
equations

The following Fortran program can be used to solve the SH-wave and Maxwell's equations
in inhomogeneous media. The SH-wave differential equations for isotropic media, based
on Maxwell's viscoelastic model, can be rewritten from equations (8.26)-(8.28) in the
particle-velocity/stress formulation:

dtv2 = - (diau + d3a23 + h)

(9.43)

V

where C44 = CQQ = ji is the shear modulus, T44 = TQQ = I/77, and 77 is the shear viscosity.
On the other hand, the TM Maxwell's equations are

1
- ^ i ) = T [dsH2 - ai-Ei)] (9-44)

where in = 633 = i is the dielectric permittivity, and <Tn = (733 = a is the conductivity.
Equations (9.43) and (9.44) are mathematically analogous for the following correspon-

dence:
v2 & H2

ai2 ~ y\ (9-45)

P
h <* -M2.

The program is written by using the field variables and material properties of the
SH-wave equation. Maxwell's equation can easily be solved by using the correspondence
(9.45). The time discretization has fourth-order accuracy, and it is based on the Runge-
Kutta approximation (9.17), while the spatial derivatives are computed with the fourth-
order staggered operator (9.24). In terms of the staggered operators, equations (9.43)
become

h)
P \~ '

(9.46)

where D~ and D+ represent staggered spatial-derivative operators of order 4. The differ-
ent signs imply a shift of half the grid size, to obtain the acceleration at the same points
of the particle velocity (Carcione, 1999c). The averaging of the material properties is
performed as indicated in Carcione (1999c).

The program solves the isotropic version of the reflection-transmission problem illus-
trated in Section 6.1. The mesh has 120 x 120 points and a grid spacing of 10 m. A
snapshot of the particle velocity v2 at 250 ms is shown in Figure 9.4.
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Figure 9.4: Snapshot of the SH-wave particle velocity, corresponding to the reflection-transmission
problem studied in Section 6.1. The star indicates the location of the source.

c Isotropic, viscoelastic SH-wave propagation
c
Section 4.4 : Plane-wave analysis
Section 4.5.3 : Differential equations

: Analytical solution
: Reflection-transmission problem

Section 4.6
Section 6.1
Section 9.2.3 : Time integration
Section 9.3.1 : Spatial derivatives
c
c TM Maxwell's equations

Section 8.2.1
Section 8.2
Section 4.6
Section 8.4
Section 9.2.3
Section 9.3.1

Plane-wave analysis
Differential equations
Analytical solution
Reflection-transmission problem
Time integration
Spatial derivatives

c Acoustic-electromagnetic analogy
c
** Eq. (9.45) **
c v2 < -> H2
c s23=s32 < - > - E l
c sl2 < - > E3
c mu < - > inverse of the permittivity
c rho < - > magnetic permeability
c eta < - > inverse of the conductivity
c
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c Electromagnetic example (units: cm and ns)
c
c Velocity: 20 cm/ns (light velocity = 30 cm/ns)
c Dielectric permittivity (vacuum): 8.85 l.e—12
c Magnetic permeability (vacuum): 4 pi l.e+23
c Conductivity: 0.001*l.e+21 (0.001 S/m)
c Frequency: 0.2 (200 MHz)
c dx: 10 (10 cm)
c dz: 10 (10 cm)
c
c 0(4,4) finite-difference scheme
c
parameter (nxt=120, nzt=120, nstept=500)
c field variables
c v2: particle velocity
c sl2 and s23: stress components

dimension v2(nxt,nzt),sl2(nxt,nzt),s32(nxt,nzt)
dimension v2a(nxt,nzt),sl2a(nxt,nzt),s32a(nxt,nzt)
dimension v2t(nxt,nzt),sl2t(nxt,nzt),s32t(nxt,nzt)

c material properties
c mu: shear modulus
c rho: density
c eta: Maxwell viscosity

dimension mu(nxt,nzt),rho(nxt,nzt),eta(nxt,nzt)
common/fd-weights/xl ,x2 ,zl ,z2
real mu

c
dimension ab(30)
dimension f(nstept)

417

open(10,file='SNAP')
dx=10.
dz=10.
dt=0.001
nx=120
nz=120
nstep=250
pi=3.14159265

c snapshots every nsp steps
nsp=nstep

c source location and central frequency
ix=60
iz=60
freq=25.

c MODEL
do i=l,nx
do j=l,nz

c upper layer
** Eqs. (6.22)-(6.24) **

rho(i,j)=2000.
mu(i,j)=9.68e+9

c quality factor at source central frequency
** Eqs. (8.42) and (8.57) **

Q=5.
eta(ij)=Q*mu(ij)/(pi*freq)

c lower layer
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if(j.ge.8O) then
rho(i,j)=2500.
mu(i,j)=19.6e+9
Q=iq.
eta(ij)=Q*mu(ij)/(pi*freq)
endif
end do
end do

do i=l,nx
do j=l,nz
v2(ij)=0.
sl2(ij)=0.
s32(ij)=0.
end do
end do
do n=l,nstept
f(n)=0.
end do

c absorbing parameters
r=0.99
nab=12
do i=l,nab
ab(i)=r**i
ab(i)=l.
end do

c source's wavelet
** Eq. (2.233) **

call wavelet (f,freq,nw,dt)
c finite-differences weights
** Eq. (9.24) **

xl=9./(8.*dx)
x2=-l./(24.*dx)
zl=9./(8.*dz)
z2=-l./(24.Mz)

c TIME STEPPING
do 10 n=l,nstep
if(mod(n,10).eq.0) print *,n

c apply absorbing boundaries
c horizontal strips

do 11 j=l,nab

j 3 = n z - j - l
sab=ab(nab+l — j)
do 11 i=3,nx—2
v2(ij2)=v2(ij2)*sab

11 v2(i,j3)=v2(i,j3)*sab
c vertical strips

do 12 i=l,nab

12

i3=nx—i—1
sab=ab(nab+l—i)
do 12 j=3,nz-2
v2(i2,j)=v2(i2,j)*sab
v2(i3j)=v2(i3j)*sab
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c Runge-Kutta method
** Eq. (9.17) **

do 13 i=l,nx
do 13 j=l,nz
v2t(ij)=v2(ij)
sl2t(ij)=sl2(ij
s32t(ij)=s32(ij
v2a(ij)=v2(ij)
sl2a(ij)=sl2fij
s32a(ij)=s32(ij

13 continue
** Eq. (9.4) **

call H(v2a,sl2a,s32a,mu,rho,eta,nx,nz)
c
c Dl

do 14 i=l,nx
do 14 j=l,nz
v2t(ij)=v2t(ij)+dt*v2a(ij)/6.
sl2t(ij)=sl2t(ij)+dt*sl2a(ij)/6.
s32t(ij)=s32t(ij)+dt*s32a(ij)/6.
v2a(ij)=v2(ij)+0.5*dt*v2a(ij)
sl2a(ij)=sl2(ij)+0.5*dt*sl2a(ij
s32a(ij)=s32(ij)+0.5*dt*s32a(ij

14 continue
if(n.le.nw) then
v2t(ix,iz)=v2t(ix,iz)+dt*f(n)/6.
v2a(ix,iz)=v2a(ix,iz)+0.5*dt4:f(n)
endif

c
call H(v2a,sl2a,s32a,mu,rho,eta,nx,nz)

c
c D2

do 15 i=l,nx
do 15 j=l,nz
v2t(ij)=v2t(ij)+dt*v2a(ij)/3.
sl2t(i,j)=sl2t(i,j)+dt*sl2a(i,j)/3.
s32t(ij)=s32t(ij)+dt*s32a(ij)/3.
v2a(i,j)=v2(i,j)+0.5*dt*v2a(i,j)
sl2a(ij)=sl2(ij)+0.5*dt*sl2a(ij
s32a>(i,j)=s32(i,j)+0.5*dt*s32a(i,j

15 continue
if(n.le.nw) then
v2t(ix,iz)=v2t(ix,iz)+dt*f(n+l)/3.
v2a(ix,iz)=v2a(ix,iz)+0.5*dt*f(n+l)
endif

c
call H(v2a,sl2a,s32a,mu,rho,eta,nx,nz)

c
cD3

do 16 i=l,nx
do 16 j=l,nz
v2t(ij)=v2t(ij)+dt*v2a(ij)/3.
sl2t(ij)=sl2t(ij)+dt*sl2a(ij)/3.
s32t(ij)=s32t(ij)+dt*s32a(ij)/3.
v2a(ij)=v2(ij)+dt*v2a(ij)
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sl2a(ij)=sl2(ij)+dt*sl2a(i,j
s32a(ij)=s32(ij)+dt*s32a(ij

16 continue
if(n.le.nw) then
v2t (ix,iz) = v2t (ix,iz)+dt * ( )
v2a(ix,iz)=v2a(ix,iz)+dt*f(n+l)
endif

c
call H(v2a,sl2a,s32a,mu,rho,eta,nx,nz)

c
cD4

do 17 i=l,nx
do 17 j=l,nz
v2t(ij)=v2t(ij)+dt*v2a(ij)/6.
sl2t(ij)=sl2t(i,j)+dt*sl2a(i,j)/6.
s32t(ij)=s32t(ij)+dt*s32a(ij)/6.

17 continue
if(n.le.nw) then
v2t(ix,iz)=v2t(ix,iz)+dt*f(n+2)/6.
endif

c
do 18 i=l,nx
do 18 j=l,nz
v2(ij)=v2t(ij)
sl2(ij)=sl2t(ij
s32(ij)=s32t(ij

18 continue
c
c write snapshot

if(mod(n,nsp).eq.O) then
print *,'write snapshot',n
write(10,*)nx,nz,dx,dz
do i=l,nx
write(10,*)(v2(ij)j=l,nz)
end do
endif

10 continue
close(lO)
stop
end

c
subroutine H(v2,sl2,s32,mu,rho,eta,nx,nz)

dimension v2(nx,nz) ,sl2(nx,nz) ,s32(nx,nz)
dimension mu(nx,nz),rho(nx,nz),eta(nx,nz)
dimension v2a(nx,nz)
common/fd-weights/xl ,x2 ,zl ,z2
real mu

c
do 1 i=l,nx
do 1 j=l,nz
v2a(ij)=0.

1 continue
c
** Eq. (9.4) **
c

do 2 i=3,nx-2
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do 2 j=3,nz—2
v2a(ij)=v2(ij)

c momentum conservation
** Eqs. (9.24) and (9.46)i **

/
( )

c i—3/2 -̂  i-1
c i—1/2 ->• i
c i+1/2 -)• i+1
c i+3/2 -)- i+2

ds4=zl*(s32(ij+l)-s32(ij))+z2*(s32(ij+2)-s32(ij-l))
ds6=xl*(sl2(i+lj)-sl2(ij))+x2*(sl2(i+2j)-sl2(i-lj))

c acceleration
** Eq. (9.46)i **

v2(i,j)=(ds4+ds6)/rho(i,j)
2 continue
c

do 3 i=3,nx—2
do 3 j=3,nz—2

c strains and stresses
** Eqs. (9.24), and (9.46)2 and (9.46)3 **
c i—3/2 ->• i - 2
c i—1/2 ->• i - 1
c i+1/2 -)- i
c i+3/2 -)• i+1

e4=zl*(v2a(ij)-v2a(ij-l))+z2*(v2a(ij+l)-v2a(ij-2))
e6=xl*(v2a(ij)-v2a(i-lj))+x2*(v2a(i+lj)-v2a(i-2j))
s32(ij)=mu(ij)*(e4-s32(ij)/eta(ij))
sl2(ij)=mu(ij)*(e6-sl2(ij)/eta(ij))

3 continue
c

return
end

c WAVELET
subroutine wavelet(f,fb,nw,dt)
dimension f(nw)

** Eq. (2.233) **
pi=3.14159265
wb=2.*pi*fb
tO=6./(5.*fb)
Dw=0.5*wb
nw=2.*tO/dt
do n=l,nw
t=(n-l)*dt
D=t-tO
f(n)=exp(-Dw*Dw*D*D/4.)*cos(wb*D)
end do
return
end



422 Chapter 9. Numerical methods

9.9.4 Pseudospectral Fourier Method
The Fourier PS method is a collocation technique in which a continuous function u(x) is
approximated by a truncated series

N-l

UN(X) = V^w r0 r(x) (9.47)
r=0

of known expansion functions 0 r , wherein the spectral (expansion) coefficients are chosen
such that the approximate solution UN coincides with the solution u(x) at a discrete set

_i of sampling or collocation points,...,

UN(XJ) = U(XJ), j = 0,..., N — 1. (9.48)

The collocation points are defined by equidistant sampling points

= jdx, (9.49)

where dx is the grid spacing. The expansion functions are defined by

(f)r(x) = exp(ikx), (9.50)

with
27T7*

(9.51)

being the wavenumber. Thus,

(f)r(xj) = exp(27rirj/N). (9.52)

Since the functions (j) are periodic, the Fourier PS method is appropriate for problems
with periodic boundary conditions - for example, a wave which exits the grid on one side,
and reenters it on the opposite side. The coefficients ur are implicitly defined by

J V - l

U(XJ) = ^2ur exp(2nirj/N) j = 0, ...N - 1. (9.53)
r=0

The sequence of U(XJ) is the inverse discrete Fourier transform of the sequence of ur. This
set of equations is equivalent to

N-l

ur = — ̂ ^ u(xj) exp(27rirj/AT) r = 0 , . . . , N - 1. (9.54)
j=o

The computation of differential operators by the Fourier method conveniently reduces to
a set of multiplications of the different coefficients uri with factors ikr, since

d\4>r(x) = ikr(f)r(x), (9.55)

so that
N-l

\krur(j)r(x). (9.56)
r=0

The spectral coefficients ur are computed by the Fast Fourier Transform (FFT). Examples
of efficient algorithms are the mixed-radix FFT (Temperton, 1983) and the prime factor
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FFT (Temperton, 1988). The steps of the calculation of the first partial derivative are as
follows:

U(XJ) -)- FFT -)- ur —y ikr ur ->- FFT"1 - • ftu^). (9.57)J
The method is infinitely accurate up to the Nyquist wavenumber, which corresponds to a
spatial wavelength of two grid points. This means that if the source is band-limited, the
algorithm is free of numerical dispersion provided that the grid spacing is chosen dx <
Cmm/(2/max) with /m a x being the cut-off frequency of the source and Cmin the minimum
phase velocity in the mesh. The wavenumber can be expressed in the more convenient
form

I £ * ( ^ " ) for

where for N odd, JV/2 represents truncation to the closest integer, and &Nyq = ir/dx is
the Nyquist wavenumber. For example, N = 5 has wavenumbers

2 4
(9.59)

and N = 6 has wavenumbers

4 2 \ 7 .

6' "e j ^^ (9-60)

We see that when N is even, the wavenumber operator contains the Nyquist wavenumber;
hence, kv is an odd function in the periodic sense only for N odd, since kv = —k^-u. When
N is even, the Nyquist wavenumber breaks the antisymmetry.

We shall see now that when computing first-order derivatives, the number of grid
points must be odd. Indeed, it is well known that when u(x) is real, its continuous
Fourier transform u{k) is Hermitian, i.e. its real part is even and its imaginary part is
odd (Bracewell, 1965, p. 16), and vice versa, if u(k) is Hermitian, its inverse transform is
real. Similar properties hold for discrete Fourier transform. Indeed, for N odd,

u(k) = even + i odd. (9.61)

Then,
\ku(k) = i odd + even (9.62)

is also Hermitian, and d±u is real. Conversely, when N is even, \ku(k) is not Hermitian
because of the Nyquist wavenumber.

We now give some numerical tricks when using the FFT for computing partial deriva-
tives.

1. It is possible to compute the derivatives of two real functions d\f and dig by two
complex FFT's in the following way: put / into the real part and g into the imaginary
part and compute the direct FFT at kr:

E#
3

!• + f- + i(9ei + 9fj\ (cos 9jr - i sin 9jr): (9.63)

where summations go from 0 to N — 1. The functions have been split into even and odd
parts (e and o, respectively), and 9jr is an abbreviation of krXj. Terms like ^2 f° cos9jr

vanish since summation of an odd function is zero - note that the cosine is even and the
sine is odd. Then, equation (9.63) reduces to

fj cos 9jr + g0, sin 9jr + i (g| cos 9jr — f? sin 9jr) . (9.64)
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Now, multiply by ikr: and transform back to the space domain. At point x^ this gives

2_\ / cos 0jr + g° sin 9jr + i (gj cos 9jr — f° sin 9jr) (cos 9ir + i sin 9{r). (9.65)

Since many of the terms vanish, the result is

s m Qjrcos sin 9ir cos sin 9jr cos sin9ir cos9jr) ^

(9.66)
By applying the same arguments to each single function, it can be easily shown that the
real and imaginary parts of (9.66) are the derivatives of / and g at X{ respectively.

2. It is possible to compute two FFT's from one complex FFT, where, by real and
imaginary FFT's, we mean

h = Y^ fj cos 9jr, (9.67)

and
/ / = Z) / i sin (9-68)

As before, we take a complex FFT of F = f + i#, which gives

- fi) . (9.69)

Since / and g are real functions, their transforms are Hermitian; hence

fR{k) = fn(-k) ~gR(k) = ~gR(-k)

9i(k) = -9i(-k)

Using these properties, we note that

\ FR(-k) + FR(k)] = fR,

and

i.e, the two desired real transforms.

=gR,

(9.70)

(9.71)

(9.72)

(9.73)

9.9.5 Pseudospectral Chebyshev Method
When a function is not periodic, the Fourier method is not convenient for implementing
free-surface and rigid boundary conditions. The reason is that the basis functions of
the Fourier expansion are periodic. Satisfactory results are obtained with orthogonal
polynomials, such as Chebyshev or Legendre polynomials. We consider the Chebyshev
basis, because, as we shall see later, the derivative can be computed by using the FFT
routine. The function u(f),—1 < C ̂  1 is expanded into Chebyshev polynomials ( )
as

TV

(9.74)
n=0
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where
Tn(Q = cosn%, (9.75)

with

^j — cu& Uj, Uj — , ^ — u , . . . , i v , ^ y . / u ;

denoting the Gauss-Lobatto collocation points. ^ ' halves the first and last terms. The
partial derivative of order q is given by

AT

V^ a^T (C) (9 77)

(Gottlieb and Orszag, 1977, p. 117), where

n+1 (9.78)

with Co = 2, cn = 1 (n > 0). Hence, defining an = G4 and bn = ah , the first-order
derivative is equal to

AT '

(9 79)
^ n=0

nTn

where
J_J_ = 6n+i + 2nan, n = N,..., 2, fr/v+i = &AT = 0. (9.80)

We consider the domain [0, zmSLX] and want to interpolate u (z) in this domain. The
transformation

%• = ^ = (0 + 1) (9.81)

maps the domain [—1,1] onto the physical domain [0, ̂ m a x ] . The Gauss-Lobatto points
have maximum spacing at the center of the numerical grid, with

dz™^ = —•— < cos I — — I — cos'max
JV W
y + 1hv (9.82)

Note that ofCmax — sin(7r/AT). In wave problems, we determine the maximum grid spacing
according to the Nyquist criterion, dz < cmm/(2/max). The spatial derivative is

du = dud(^ _ _^_du _ 1 3jn(
7r)du (983)

dz d(dz ZmaxdC Gtemax \NJ d('

This is a transformation from the physical domain to the Chebyshev domain.
Now, let us see how to calculate du/dC,. The expansion of u{Q and its coefficients can

be written as
N ' / -\

(9.84)
• N

n=0

and

2
(O)cosl^). (9.85)

3=0
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The coefficients an can be evaluated by using a FFT routine. Let us define N' = 27V and
u (Q = 0 for j = 1 + JV'/2,. . . , N' - 1. Then

(G) (9.86)

is a real Fourier transform that can be calculated by complex FFT's as described in the
previous section. Afterwards, we get the 6n's from the an 's by using the recursion equation
(9.78) and again, the calculation of (9.79) is carried out with a real Fourier transform.
However, the Chebyshev method, as presented so far, is impractical, because the grid
spacing at the extremes of the domain is very fine. When the number of grid points is
doubled, the grid spacing decreases by a factor of two. Hence, when solving the problem
with an explicit time marching scheme, the conventional Chebyshev differential operator
requires time steps of the order O(N~2). A new algorithm developed by Kosloff and Tal-
Ezer (1993), based on a coordinate transformation, allows time steps of order O(N~l),
which are those required also by the Fourier method. The new N sampling points are
defined by

j = 0,...,7V, (9.87)

where g(() is a grid stretching function that stretches the very fine Chebyshev grid near
the boundary in order to have a minimum grid size of the order O(N~1), thus requiring
a less severe stability condition. A suitable stretching function is

9(0 = ~ (9.88)

where p = 0.5a 2(f3 2 + 1) — 1, and q = 0.5a 2(f3 2 — 1). Since

dg_
d(

1
(9.89)

it can be seen that the amount of grid stretching at (" = —1 is dg/dC, = a, and that the
stretching at z = 1 is dg/dQ = a(3. The spatial derivative is

du du
dz DC, dz Zmax

V l + <?C + pC2 du
(9.90)

In many cases, we need to sample the function at the equidistant points

.(C) _ A
z

Az =

The corresponding points in the Chebyshev domain are, from (9.87),

(9.91)

- 1 (9.92)

The values of the function at equidistant points in the physical space are given by

u{zf) = u(Q.
To obtain these values, we compute the spectral coefficients an of u(Q), and then

N '

u \z\' ) = > a,

(9.93)

(9-94)
n=0



Examinations

The careful study of the precise answers to the following questions will prove helpful in
preparing for examination in the subjects developed in this book. Numbers in parentheses
refer to pages on which pertinent information can be found.

1. Describe the common crystal symmetries of geological systems. How many inde-
pendent elasticity constants are there in each case? Provide the interpretation in
terms of fractures, cracks and fine layering (2,3,6).

2. Consider a transversely isotropic medium whose symmetry axis is horizontal and
makes an angle 0 with the x-axis. If cu denotes the elasticity constants in the
principal system and dI3 are the elasticity constants in the system of coordinates,
express d33 in terms of the C/j's (9,10).

3. Which is the relation between the energy-velocity vector and the slowness vector?
(16,64,113,151,343).

4. Discuss the conditions by which the group velocity is equal to the energy velocity
(19,157).

5. Discuss the relation between slowness surface and energy-velocity vector and slow-
ness vector and ray surface (24,157-159).

6. Give the features of waves in planes of mirror symmetry (7,12-14,168-169).

7. What is a cusp? When is it present? Which type of waves have cusps? (22,28,223).

8. What is the shape of the slowness curve for SH waves propagating in a plane of
symmetry? for the group-velocity curve? (12,21,157).

9. Consider fine layering in the long-wavelength limit. Explain the physics and com-
ment on the location of the cusps (25-29,142,369-371).

10. Can C66 < C55 in a long-wavelength equivalent medium of a layered medium? (28).

11. What is anomalous polarization? Explain (29-37).

12. Explain why the polarizations are orthogonal in anisotropic elastic media? (14,15).

13. Describe the method to obtain the best isotropic approximation of a general anisotropic
medium (38-40).

14. Define critical angle (44,49,195).

15. Is the strain (dielectric) energy unique in anelastic (electromagnetic) media? (52-
54,70,333-340).

16. Is the relaxation tensor symmetric? (55).

427
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17. How are strain and dissipated energies related to complex modulus? (57).

18. Explain the physical meaning of the Kramers-Kronig relations. Express them in
convolutional form (58-60,373-374).

19. List the properties of the relaxation function and complex modulus (60).

20. How are the energy and phase velocities related in 1-D anelastic media? (58).

21. Explain the concept of centrovelocity (88-92).

22. What is a memory (hidden) variable? Explain (92-96,124-125,162-166,338,358-
359,410).

23. Explain the properties of the Zener model: relaxation function and phase veloc-
ity and quality factor versus frequency. How do you obtain a nearly constant-Q
medium? (74-77,80-82).

24. Is there a perfect constant-Q model? What is the corresponding equation of motion?
Comment on the phase velocity versus frequency (83-87).

25. Is the energy velocity equal to the phase velocity in isotropic viscoelastic media?
(113).

26. How many Rayleigh waves may propagate in a viscoelastic medium? What can you
say about the propagation velocity? (116-121).

27. Given the slowness vector and the time-averaged energy-flow vector, is it possible
to compute the time-averaged energy density? (112,152,313).

28. Consider Lamb's problem; a dilatation source (an explosion for instance), and a
receiver measuring the vertical component of the particle velocity. Discuss the
reciprocal experiment (178).

29. What is the Rayleigh window? (230-231).

30. Explain the properties of an inhomogeneous body wave, and the physics involved in
wave propagation in an anelastic ocean bottom (140-154).

31. Which requirements are necessary to have forbidden bands? (161-162).

32. Describe the polarization of inhomogeneous body waves (154).

33. What is the relation among the phase, group, energy and envelope velocities in
the following rheologies, i) isotropic elastic, ii) isotropic anelastic , iii) anisotropic
elastic, and iv) anisotropic anelastic. Consider the distinction between homogeneous
and inhomogeneous waves (19,20,64,155-157).

34. What happens with the Brewster and critical angles in viscoelastic media? (124,195-
199).

35. How many relaxation functions are there in isotropic media? How many, at most,
in triclinic media? (142-145).

36. Explain the physics of the slow wave. When is it present as a wave, and why?
(274-278).

37. Describe Lord Kelvin's approach for anisotropic elastic media and its extension to
describe viscoelastic behavior (142-144,316-320).
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38. How do you compute the Green function for viscoelastic media from the elastic
Green's function? (126-129,168-169).

39. What is the direction of the attenuation vector with respect to the interface when
the incidence medium is elastic? (225).

40. What are the interference fluxes? (201-203,223).

41. Describe the three experiments used to obtain the expression of the poroelastic
moduli (237-240).

42. Can the transmitted ray be parallel to the interface when the incidence medium is
lossless and the transmission medium is lossy? (192).

43. Describe the boundary conditions of a fracture? Explain the physics (129-138).

44. What is the nature of Biot's attenuation mechanism? (262-263).

45. Comment on the stiffness of Biot's differential equations and its physical reason
(389).

46. What are confining, hydrostatic and pore pressures? When is there overpressure?
(242-244).

47. What are the main causes of overpressure? Comment on its effects on the acoustic
and transport properties of the rock? (242-246).

48. Explain Snell's law in viscoelastic media (114-115).

49. Explain the correspondence principle (116).

50. Discuss the boundary conditions at interfaces separating porous media (284-289,299-
303).

51. How many wave modes are there in an anisotropic porous medium? Does the number
present depend on frequency? (318-320).

52. Represent the Burgers viscoelastic model, obtain its creep function and those of the
Maxwell, Kelvin-Voigt and Zener models as limiting cases (77-79).

53. Describe the nature of the mesoscopic loss mechanism (289-295).

54. How many surface waves propagate on the surface of a porous medium, with open-
pore and sealed-pore boundary conditions? (299-303).

55. Establish the mathematical analogy between Maxwell's equations and the elastic
wave equation (324-329).

56. Indicate the electromagnetic analogue of the elastic kinetic and strain energies (329).

57. Write the Debye dielectric permittivity by using the analogy with the Zener relax-
ation function (337-340).

58. Indicate the acoustic-electromagnetic analogy for the boundary condition at an in-
terface, and the analogy between TM and TE waves in isotropic media (342,351-
352).

59. Find a mathematical analogy between the TM equations and a modified equation
for sound waves (350-351).
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60. Explain how George Green obtained Fresnel's reflection coefficient from the equa-
tions describing wave propagation in an elastic medium (352-355).

61. Indicate how the analogy can be used in 3-D space. Design the electromagnetic
slowness curves across the three symmetry planes of an orthorhombic medium (356-
363).

62. Write the acoustic-electromagnetic analogy for Backus averaging of isotropic layers
(369-371).

63. List other possible mathematical analogies between acoustic and electromagnetic
waves (372-378).

64. Write the diffusion equation in terms of the electric vector (380).

65. What is a direct method in numerical modeling of wave propagation? (385).

66. How do you plan a numerical modeling simulation? (401).



Chronology of main discoveries

... it is of course necessary to make some supposition respecting the nature of that medium,
or ether, the vibrations of which constitute light, ... Now, if we adopt the theory of
transverse vibrations, ... we are obligued to suppose the existence of a tangential force in
the ether, ... In consequence of the existence of this force, the ether must behave, so far
as regards the luminous vibrations, like an elastic solid.

... / have assumed, as applicable to the luminiferous ether in vacuum, the known
equations of motion of an elastic medium, such as an elastic solid. These equations
contain two arbitrary constants, depending upon the nature of the medium. The argument
which Green has employed to shew [show] that the luminiferous ether must be regarded
as sensibly incompressible, in treating of the motions which constitute light (Camb. Phil.
Trans., Vol. VII, p. 2) appears to me of great force. The supposition of incompressibility
reduces the two arbitrary constants to one; ...

George Gabriel Stokes (Stokes, 1856)

As early as the 17th century it was known that light waves and acoustic waves are of
a similar nature. Hooke believed light to be a vibratory displacement of a medium (the
ether), through which it propagates at finite speed. Later, in the 19th century, Maxwell
and Lord Kelvin made extensive use of physical and mathematical analogies to study
wave phenomena in acoustics and electromagnetism. In many cases, this formal analogy
becomes a complete mathematical equivalence such that the problems in both fields can be
solved by using the same analytical (or numerical) methodology. Green (1842) made the
analogy between elastic waves in an incompressible solid (the ether) and light waves. One
of the most remarkable analogies is the equivalence between electric displacements and
elastic displacements (Hooke's law) used by Maxwell to obtain his famous electromagnetic
equations. Therefore, the study of acoustic wave propagation and light propagation are
intimately related, and this fact is reflected in the course of scientific research.

The task of describing the principal achievements in the field of wave propagation
is a difficult one, since many important scientists have been involved in the subject,
contributing from different fields of research. Dates reveal connections and parallels; they
furnish us with a basis for comparisons, which make historical studies meaningful and
exciting. The following chronological table intends to give a brief glimpse of "evolution"
and "causes and results" of the main scientific developments and ideas1.

Sources: Cajori (1929); Love (1944); Asimov (1972); Goldstine (1977); Ben-Menahem and
Singh (1981); Cannon and Dostrovsky (1981); Pierce (1981); Rayleigh (1945); the web sites
www.britannica.com, http://asa.aip.org and www.cartage.org.lb/en/themes, and the web site of the Uni-
versity of St. Andrews, Scotland (www-history.mcs.st-andrews.ac.uk/history).
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600 BC, ca. Thales of Miletus discovers that amber (elektron in Greek) rubbed with fur
attracts light bodies.

580 BC, ca. Pythagoras makes experiments on harmony and musical intervals. He relates
the length of vibrating strings to the pitch.

325 BC, ca. Euclid describes the law of reflection in his Optica.
60, ca. Heron writes his Catoptrica, where he states that light rays travel with

infinite velocity.
139, ca. Ptolemy measures angles of incidence and refraction, and arranges them

in tables. He found those angles to be proportional (small-angle
approximation).

990, ca. al-Haythan writes his Optics. He shows that Ptolemy was in error, and
refers for the first time to the "camera obscura".

1210, ca. Grosseteste writes De Natura Locorum and De hide.
1268, ca. Bacon writes The Communia Naturalium and The Communia Mathematicae.

He attributes the rainbow to the reflection of sunlight from single raindrops.
1269, ca. Petrus Peregrinus writes Epistola de Magnete.
1270, ca. John Peckham (died 1292) writes the treatise on optics Perspectiva Communis.
1270, ca. Witelo writes Perspectivorum Libri, where he interprets the rainbow as

reflection and refraction of light.
1307, ca Dietrich of Freiberg gives the first accurate explanation of the rainbow.
1480 Leonardo da Vinci makes the analogy between light waves and sound.
1558 Delia Porta publishes Magia Naturalis, where he analyzes magnetism.
1560 ca. Maurolycus writes Photismi de Lumine et Umbra, about photometry.
1581 V. Galilei (Galileo's father) studies sound waves and vibrating strings.
1600 Gilbert writes De Magnete, and shows that the Earth is a magnet.
1608 Lippershey constructs a telescope with a converging objective lens and a

diverging eye lens.
1611 De Dominis explains the decomposition of colors of the rainbow and the tides.
1611 Kepler publishes his Dioptrica, where he presents an empirical expression of

the law of refraction. He discovers total internal reflection.
1620, ca. Snell obtains experimentally the law of refraction, although the

discovery is attributed to Harriot.
1629 Cabeo writes Philosophia Magnetica, where he investigates electrical repulsion.
1636 Mersenne publishes his Harmonie Universelle, containing the first correct

account of the vibrations of strings, and the first determination of the
frequency of an audible tone (84 Hz).

1637 Descartes publishes Snell's law in his La Dioptrique, without mentioning Snell.
1638 Galileo publishes Discorsi e Dimostrazioni Matematiche, intorno a due Nuove

Scienze, including a discussion of the vibration of bodies.
1641 Kircher writes Magnes, De Arte Magnetica. It contains the first use of the

term "electro-magnetism".
1646 Browne introduces the term "electricity".
1646 Leibniz introduces the idea of internal tension.
1656 Borelli and Viviani measure the sound velocity in air and obtain 350 m/s.
1660 Boyle demonstrates from vacuum experiments that sound propagates in air.
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1660 Hooke states his law: Ut tensio sic vis (The Power of any Spring is in the
same proportion with the Tension thereof), published in 1678.

1661, ca. Fermat demonstrates Snell's law using the principle of least time.
1665 Hooke publishes his Micrographia, where he proposes a theory of light as

a transverse vibrational motion, making an analogy with water waves.
(Mariotte enunciates the same law independently in 1680.)

1666 Grimaldi discovers the phenomenon of diffraction (in Physico Mathesis
of Lumine).

1666 Newton performs his experiments on the nature of light, separating white
light into a band of colours - red, orange, yellow, green, blue, and violet.
He uses the corpuscular assumption to explain the phenomenon.

1669 Bartholinus observes double refraction in Iceland spar.
1675 Newton is against the assumption that light is a vibration of the ether.
1675 Boyle writes Experiments and Notes about the Mechanical Origin or

Production of Electricity.
1675 Newton develops the theory of finite differences and interpolation,

previously introduced by Harriot and Briggs.
1675 Newton argues that double refraction rules out light being ether waves.
1676 Romer measures the speed of light by studying Jupiter's eclipses of its

four larger satellites.
1678 Huygens proposes the wave nature of light in his Traite de la Lumiere

(first published in 1690). He assumes the vibrations in the ether to be
longitudinal. He also exposes the principle of wave-front construction.
(A wave theory of light had been proposed earlier by Ango and Pardies.)

1678 Huygens provides a theoretical basis for double refraction.
1682 Pierre Ango publishes his L'optique.
1687 Newton publishes his Principia. He provides a theoretical deduction for

the velocity of sound in air, and finds 298 m/s. The relation wavelength
times frequency equal velocity is given.

1700, ca. Sauveur introduces the terms "nodes", "harmonic tone", "fundamental
vibration", and suggests the name "acoustics" for the science of sound.

1704 Newton publishes his Opticks.
1713 Taylor obtains a dynamic solution for the vibrating string (Philosophical

Transactions).
1727 Euler proposes a linear relation between stress and strain.
1728 Bradley discovers the phenomenon of stellar aberration.
1729 Gray shows that electricity can be transferred with conducting wires.
1740 Bianconi shows that the velocity of sound in air increases with temperature
1743 d'Alembert publishes his Traite de Dynamique.
1744 Euler introduces the concept of strain energy per unit length for a beam.
1744-51 D. Bernoulli and Euler obtain the differential equation and the dispersion

relation for lateral vibrations of bars.
1745 Nollet writes Essai sur VElectricite des Corps.
1747 d'Alembert derives the one-dimensional wave equation for the case of a

vibrating string, and its solution for plane waves.
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1750 Michell writes A Treatise on Artificial Magnets.
1752 Euler introduces the idea of compressive normal stress as the pressure in

a fluid.
1755 D. Bernoulli proposes the principle of "coexistence of small oscillations"

(the superposition principle).
1759 Euler derives the wave equation for sound. He develops the method of

images.
1759 Aepinus publishes An Attempt of a Theory of Electricity and Magnetism.
1759 Lagrange solves the problem of the vibrating string.
1760 Laplace introduces the first version of the "divergence theorem", later

enunciated by Gauss in 1813.
1762 Canton demonstrates that water is compressible.
1764 Euler derives the "Bessel equation" in an analysis of vibrations of

membranes.
1772 Cavendish writes An attempt to explain some of the Principal Phenomena

of Electricity by means of an Elastic Fluid.
1773-79 Coulomb applies the concept of shear stress to failure of soils and

frictional slip.
1776 Euler publishes the so-called "Euler's equation of motion" in its general form
1776 Soldner calculates the deflection of light by the sun (0.85 arc-seconds),

rederived later by Cavendish and Einstein.
1777 Lagrange introduces the concept of scalar potential for gravitational fields.
1782 Laplace derives the so-called "Laplace equation".
1785 Coulomb uses the torsion balance to verify that the electric-force law is

inverse square.
1787 Chladni visualizes - experimentally - the nodes of vibrating plates.
1788 Lagrange publishes his Mecanique Analytique.
1799 Laplace publishes his Traite du Mecanique Celeste.
1799 Volta invents the electric battery.
1801 Ritter discovers the ultraviolet radiation.
1801 Young revives the wave theory of light. He introduces the principle of

interference.
1802 Chladni publishes his Die Akustik.
1802 Chladni investigates longitudinal and torsional vibrations of bars

experimentally.
1806 Young defines his modulus of elasticity and considers shear as an elastic

strain.
1808 J. B. Biot measures the velocity of sound in iron.
1808 Chladni studies the vibrations of strings and plates, and longitudinal and

torsional vibrations in rods.
1808 Laplace proposes a corpuscular theory of double refraction.
1808 Malus discovers polarization of light.
1808 Poisson publishes his memoir on the theory of sound.
1809 Young proposes a dynamic (wave) theory of light in crystals.
1811 Poisson publishes his Traite de Mecanique.
1811 Arago shows that some crystals alter the polarization of light.
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1812 J. B. Biot shows that some crystals rotate the plane of polarization of light.
1813 Poisson derives the so-called "Poisson equation" as a relation between

gravitational potential and mass density.
1814 Fraunhofer discovers the dark line spectrum. Light waves reveal the

presence of specific elements in celestial bodies (Kirchhoff and Bunsen's
paper, 1859).

1815 Brewster investigates the "Brewster angle" on the basis of his experiments
and those of Malus.

1816 Fresnel establishes the basis for the "Fresnel-Kirchhoff theory of diffraction".
1816 Laplace shows that the adiabatic elasticit constant should be used to calculate

the sound velocity in air.
1816 Young suggests the transversality of the vibrations of light, based on the fact

that light of differing polarization cannot interfere. This solves many of the
difficulties of the wave theory.

1820 Poisson solves the problem of propagation of compressional waves in a
three-dimensional fluid medium.

1820 Oersted notes the relation between electricity and magnetism.
1820 Ampere models magnets in terms of molecular electric currents (electrodynamics)
1820 Biot and Savart deduce the formula for the magnetic strength generated by a

segment of wire carrying electric current.
1821 Davy shows that the resistance of a long conductor is proportional to its length

and inversely proportional to its cross-sectional area.
1821 Fresnel interprets the interference of polarized light in terms of transverse

vibrations.
1821 Navier derives the differential equations of the theory of elasticity in terms

of a single elasticity constant.
1822 Seebeck discovers the thermoelectric effect.
1822 Cauchy introduces the notion of stress (strain) by means of six component

stresses (strains). He also obtains an equation of motion in terms of the
displacements and two elasticity constants.

1822 Fourier publishes his Analytical Theory of Heat, where he introduces the infinite
series of sines and cosines (mathematical form of the superposition principle).

1823 Fresnel obtains his formulae for reflection and refraction of light.
1824 Hamilton publishes his first paper On Caustics.
1825 Ampere publishes his law, known also as "Stokes theorem".
1825 Weber publishes his book Wellenlehre.
1826 Airy publishes his Mathematical Tracts on Physical Astronomy.
1826 Colladon and Sturm measure the speed of sound in water, obtaining 1435 m/s.
1826 Hamilton publishes his Theory of Systems of Rays. He introduces the

characteristic function for optics.
1827 Ohm obtains the relation between electric current and resistance.
1828 Cauchy extends his theory to the general case of aeolotropy, and finds

21 elasticity constants - 15 of them are true elasticity constants (the
"rari-constant" theory).

1828 Green introduces the concept of potential in the mathematical theory of
electricity and magnetism. He derives "Green's theorem".
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1828 Poisson predicts the existence of compressional and shear elastic waves.
His theory predicts a ratio of the wave velocities equal to y/S/1, and
Poisson ratio equal to 1/4.

1830 Cauchy investigates the propagation of plane waves in crystalline media.
1830 Savart measures the minimum and maximum audible frequencies

(8 and 24000 vibrations per second, respectively).
1831 Faraday shows that varying currents in one circuit induce a current in a

neighboring circuit.
1832 Henry independently discovers the induced-currents effect.
1832 Gauss independently states Green's theorem.
1833 Hamilton introduces the concept of "eikonal equation", the term eikonal being

introduced into optics by Bruns.
1833 Hamilton develops the basic geometric concepts of slowness surfaces for

anisotropic media. He predicts conical refraction, that is verified experimentally
by Lloyd .

1834 Hamilton publishes his On a General Method in Dynamics. The Hamiltonian
concept for dynamics is introduced .

1835 Gauss formulates "Gauss law".
1835 MacCullagh and Neumann generalize Cauchy's theory to anisotropic media.
1836 Airy calculates the diffraction pattern produced by a circular aperture.
1837 Green discovers the boundary conditions of a solid/solid interface.
1837 Green derives the equations of elasticity from the principle of conservation

of energy. He defines the strain energy, and finds 21 elasticity constants in
the case of aeolotropy (the "multi-constant" theory).

1837 Faraday introduces the concept of the dielectric permittivity.
1838 Faraday explains electromagnetic induction, showing that magnetic and electric

induction are analogous.
1838 Airy develops the theory of caustics.
1838 Green solves the reflection-refraction problems for a fluid/fluid boundary and for

a solid/solid boundary (the ether) and applies the results to light propagation.
1839 Cauchy proposes an elastic ether of negative compressibility.
1839 Green, like Cauchy in 1830, investigates crystalline media and obtains the

equations for the propagation velocities in terms of the propagation direction.
1839 MacCullagh proposes an elastic ether without longitudinal waves, based on the

rotation of the volume elements.
1839 Lord Kelvin finds a mechanical-model analogue of MacCullagh's ether.
1842 Doppler discovers the "Doppler effect".
1842 Mayer states that work and heat are equivalent. His paper is rejected in the

Annalen der Physik.
1842 Lord Kelvin uses the theory of heat to obtain the continuity equation of electricity.
1844 Scott Russell discovers the solitary wave.
1845 Faraday discovers the magnetic rotation of light. He introduces the concept of field
1845 Neumann introduces the vector potential. The next year, Lord Kelvin shows that

the magnetic field can be obtained from this vector.
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1845 Stokes identifies the modulus of compression and the modulus of rigidity,
as corresponding to resistance to compression and resistance to shearing,
respectively.

1846 Faraday publishes Thoughts on Ray Vibrations in Philosophical Magazine.
He suggests the electromagnetic nature of light.

1846 Weber combines electrostatics, electrodynamics and induction, and proposes
an electromagnetic theory.

1847 Helmholtz writes a memoir about the conservation of energy. The paper
is rejected for publication in the Annalen der Physik.

1848 Kirchhoff generalizes Ohm's law to three dimensions.
1849 Meucci invents the telephone.
1849 Stokes shows that Poisson's two waves correspond to irrotational dilatation

and equivoluminal distortion.
1849 Fizeau confirms Fresnel's results using interferometry.
1850 Foucault measures the velocity of light in water to be less than in air.

Newton's emission theory - which predicts the opposite - is abandoned.
1850 Stokes introduces a (wrong) concept of anisotropic inertia to explain wave

propagation in crystals.
1850 Lord Kelvin states Stokes's theorem without proof and Stokes provides a

demonstration.
1853 Lord Kelvin gives the theory of the RLC circuit.
1854 Lord Kelvin derives the telegraphy equation without the inductance (a diffusion

equation).
1855 Lord Kelvin justifies Green's strain-energy function on the basis of the first

and second laws of thermodynamics.
1855 Palmieri devises the first seismograph.
1855 Weber and Kohlrausch find an electromagnetic velocity equal to \/2 the light

velocity.
1856 Lord Kelvin introduces the concepts of eigenstrain ("principal strain") and

eigenstiffness ("principal elasticity").
1857 Kirchhoff derives the telegraphy equation including the inductance. He finds a

velocity close to the velocity of light.
1861 Riemann modifies Weber's electromagnetic theory.
1861 Kirchhoff derives the theory of the black body.
1863 Helmholtz introduces the concept of "point source".
1863 Helmholtz publishes his Lehre von den Tonemfindgungen about the theory

of harmony.
1864 Maxwell obtains the equations of electromagnetism. The electromagnetic

nature of light is demonstrated.
1867 Maxwell introduces the "Maxwell model" to describe the dynamics of gases.
1867 Lorenz develops the electromagnetic theory in terms of retarded potentials.
1870 Christiansen discovers anomalous dispersion of light in solutions.
1870 Helmholtz shows that Weber's theory is not consistent with the conservation of

energy.
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1870 Helmholtz derives the laws of reflection and refraction from Maxwell's equations,
which were the subject of Lorentz's thesis in 1875.

1871 Rankine publishes equations to describe shock waves (later also published by
Hugoniot in 1889).

1871 Rayleigh publishes the so-called "Rayleigh scattering theory", which provides the
first correct explanation of why the sky is blue.

1872 Betti states the reciprocity theorem for static fields.
1873 Maxwell publishes his Treatise on Electricity and Magnetism.
1873 Rayleigh derives the reciprocity theorem for vibrating bodies.
1874 Boltzmann lays the foundations of hereditary mechanics ("Boltzmann's

superposition principle").
1874 Cornu introduces the "Cornu spiral" for the solution of diffraction problems.
1874 Oskar Emil Meyer introduces the "Voigt solid".
1874 Umov introduces the vector of the density of energy flux.
1875 Kerr discovers the "Kerr effect". A dielectric medium subject to a strong electric

field becomes birefringent.
1876 Pochhammer studies the axial vibrations of cylinders.
1877 Christoffel investigates the propagation of surfaces of discontinuity in

anisotropic media.
1877 Rayleigh publishes The Theory of Sound.
1879 Hall discovers the "Hall effect".
1880 Pierre and Jacques Curie discover piezoelectricity.
1880 Kundt discovers anomalous dispersion in the vapor of sodium.
1881 Michelson begins his experiments to detect the ether.
1884 Poynting establishes from Maxwell's equations that energy flows and can be

localized.
1885 Lamb and Heaviside discover the concept of skin depth.
1885 Somigliana obtains solutions for a wide class of sources and boundary

conditions.
1885 Lord Rayleigh predicts the existence of the "Rayleigh surface waves".
1887 Voigt performs experiments on anisotropic samples (beryl and rocksalt).

The "multi-constant" theory - based on energy considerations - is confirmed.
The "rari-constant" theory - based on the molecular hypothesis - is dismissed.

1887 Heaviside writes Maxwell's equations in vector form. He invents the modern
vector calculus notation, including the gradient, divergence and curl of a vector.

1887 Voigt, investigating the Doppler effect in the ether, obtains a first version of the
"Lorentz transformations".

1888 Hertz generates radio waves, confirming the electromagnetic theory. He
discovers the photoelectric effect and predicts a finite gravitational velocity.

1889 Fitzgerald suggests that the speed of light is an upper bound.
1889 Reuber-Paschwitz detects P waves in Potsdam generated by an earthquake in

Japan. Global seismology is born.
1890 Hertz replaces potential by field vectors and deduces Ohm's, Kirchhoff's and

Coulomb's laws.
1893 Pockels discovers the "Pockels effect", similar to the Kerr effect.
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1894 Korteweg and de Vries obtain the equation for the solitary wave.
1894-901 Runge and Kutta develop the Runge-Kutta algorithm.
1895 Lorentz gives the "Lorentz transformations" to first order in the normalized

velocity.
1896 Rudzki applies the theory of anisotropy to seismic wave propagation.
1897 Marconi's first wireless-telegraphy patent.
1899 Knott derives the equations for the reflection and transmission of elastic

plane waves at plane interfaces.
1900 Marconi's second wireless-telegraphy patent.
1902 Poynting and Thomson introduce the "standard linear solid" model,

referred to here as the Zener model.
1903 Love develops the theory of point sources in an unbounded elastic space.
1904 Lamb obtains the Green function for surface Rayleigh waves.
1904 Volterra publishes his theory of dislocations based on Somigliana's solution.
1904 Volterra introduces the integro-differential equations for hereditary problems.
1905 Einstein investigates the photoelectric effect and states that light is discrete

electromagnetic radiation.
1906 Oldham (1906) discovers the Earth's core by using P-wave amplitudes.
1908 Mie develops the "Mie scattering" theory, describing scattering of spherical

particles.
1909 Cosserat publishes his theory of micropolar elasticity (Cosserat and

Cosserat, 1909).
1909 Mohorovicic discovers the "Moho" discontinuity on the basis of seismic waves.
1911 Debye introduces the ray series or "Debye expansion".
1911 Love discovers the "Love surface waves".
1912 L. F. Richardson patents the first version of sonar.
1912 Sommerfeld introduces the "Sommerfeld radiation condition".
1915 Galerkin publishes his finite-element method.
1919 Mintrop discovers the seismic head wave.
1920-27 The WKBJ (Wentzel, Kramers, Brillouin, Jeffreys) approximation is

introduced in several branches of physics.
1923 de Broglie proposes the model by which tiny particles of matter, such as

electrons, display the characteristics of waves.
1924 Stoneley (1924) publishes his paper about "Stoneley interface waves".
1925 Walter Elsasser describes electron diffraction as a wave property of matter.
1926 Born develops the "Born approximation" for the scattering of atomic

particles.
1926 Jeffreys establishes that the outer Earth's core is liquid by using S waves.
1926 Schrodinger works out the mathematical description of the atom called

"wave mechanics", based on Hamilton's principle.
1926 Klein-Fock-Gordon equation: a relativistic version of the Schrodinger wave

equation.
1927 Paul Dirac presents a method to represent the electromagnetic field as quanta.
1928-35 Graffi studies hereditary and hysteretic phenomena based on

Volterra's theory.
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1928 Nyquist introduces the sampling theorem.
1928 Sokolov proposes an ultrasonic technique to detect flaws in metals.
1932 Debye and Sears observe the diffraction of light by ultrasonic waves.
1934 Frenzel and Schultes (1934) discover sonoluminescence

(Born and Wolf, 1964, p. 594).
1935 Richter and Gutenberg invent the Richter magnitude scale.
1936 Lehmann discovers the Earth's inner core on the basis of P waves

generated by the 1929 New-Zealand earthquake.
1937 Bruggeman shows that finely layered media behave as anisotropic media.
1938 S. M. Rytov develops the ray theory for electromagnetic waves.
1939 Walter Elsasser states that eddy currents in the liquid core, due to the Earth's

rotation, generate the observed magnetic field.
1939 Cagniard (1939) publishes his method for solving transient elastic wave propagation
1939 Graffi extends the reciprocal theorem of Betti to dynamic fields, although the

concept dates back to Helmholtz (1860) and Rayleigh (1973)
1940 Firestone develops an ultrasonic pulse-echo metal-flaw detector.
1941 Biot publishes the theory of consolidation.
1941 K. T. Dussik makes the first attempt at medical imaging with ultrasound.
1941 Kosten and Zwikker (1941) propose a scalar theory, predicting the existence of

two compressional waves.
1943 Terzaghi publishes his Theoretical Soil Mechanics.
1944 Frenkel publishes his paper on the dynamics of porous media and the seismoelectric

effect. The equations are nearly identical to Biot's poroelastic equations.
1944 Peshkov observes second (thermal) sound in liquid helium II.
1947 Scholte identifies the interface wave traveling at liquid-solid interfaces.
1948 Feynman develops the path-integral formulation.
1948 Gabor describes the principle of wave-front reconstruction, the basis of

holography.
1949 Kyame (1949) publishes his theory about waves in piezoelectric crystals.
1949 Mindlin publishes the Hertz-Mindlin model to obtain the rock moduli as

a function of differential pressure.
1951 Gassmann derives the "Gassmann modulus" for a saturated porous medium.
1952 Lighthill (1952) publishes the aeroacoustics equation.
1953 Haskell (1953) publishes his matrix method for wave propagation.
1953 Kornhauser (1953) publishes the ray theory for moving fluids.
1956 Biot publishes the dynamic theory of porous media and predicts the slow

compressional wave.
1958 de Hoop develops the Cagniard-de Hoop technique.
1958 McDonal, Angona, Milss, Sengbush, van Nostrand, and White publish field

experiments indicating constant Q in the seismic frequency band.
1959 Knopoff and Gangi develop the reciprocity principle for anisotropic media.
1962 Backus obtain the transversely-isotropic equivalent medium of a finely layered

medium.
1963 Deresiewicz and Skalak obtain the boundary conditions at an interface

between porous media.



441

1963 Hashin and Shtrikman obtain bounds for the elastic bulk and shear moduli of a
composite.

1964 Brutsaert presents a theory for wave propagation in partially saturated soils.
The theory predicts three P waves.

1964 Hess (1964) provides evidence of the seismic anisotropy of the uppermost mantle.
1965 Shapiro and Rudnik (1965) observe fourth sound in helium II.
1966 de Hoop develops the reciprocity principle for anisotropic anelastic media.
1966 King performs laboratory experiments on partially-saturated rocks.
1968 Alterman and Karal use finite differences to compute synthetic seismograms.
1968 McAllister (1965) invents the Sodar.
1969 Waterman (1969) introduces the T-matrix formulation for acoustic scattering.
1971 Buchen investigates the properties of plane waves in viscoelastic media.
1971 First observational evidence that the inner core is solid

(Dziewonski and Gilbert, 1971).
1971 O'Doherty and Anstey obtain their formula to describe stratigraphic filtering.
1972 Becker and Richardson explain the "Rayleigh window" phenomenon using

viscoelastic waves .
1972 Lysmer and Drake simulate seismic surface waves with finite-elements methods.
1975 Brown and Korringa obtain the elasticity tensor for anisotropic porous media.
1975 White develops the theory describing the mesoscopic loss mechanism.
1977 Currie, Hayes and O'Leary predict additional Rayleigh waves in viscoelastic

media.
1977 Domenico performs laboratory experiments on unconsolidated reservoir sands.
1979 Allan M. Cormack and Godfrey N. Hounsfield receive the Nobel Prize for

developing computer axial tomography (CAT).
1979 Burridge and Vargas obtain the Green function for poroelasticity.
1980 Plona observes the slow compressional wave in synthetic media.
1981 Gazdag introduces the Fourier pseudospectral method to compute synthetic

seismograms.
1981 Masters and Gilbert (1981) observe spheroidal mode splitting in the inner code,

indicating anisotropy.
1982 Feng and Johnson predict a new surface wave at a fluid/porous medium interface.
1984 Day and Minster use internal variables (memory variables) to model anelastic

waves .
1990 Santos, Douglas, Corbero and Lovera generalize Biot's theory to the case of one

rock matrix and two saturating fluids. The theory predicts a second slow P wave.
1994 Leclaire, Cohen-Tenoudji and Aguirre-Puente generalize Biot's theory to the case

of two rock matrices and one saturating fluid. The theory predicts two additional
slow P waves and a slow S wave.

1994 Helbig introduces Kelvin's theory of eigenstrains in seismic applications.
2004 Pride, Berryman and Harris show that the mesoscopic loss is the dominant

mechanism in fluid-filled rocks at seismic frequencies.
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Leonardo's manuscripts

Leonardo da Vinci (1452-1519)

"Leonardo perceived intuitively and used effectively the right experimental method a
century before Francis Bacon philosophised about it inadequately, and Galileo put it into
practice (Dampier, 1961).

Description of wave propagation, interference and Huygens' principle (1678):

Everything in the cosmos is propagated by means of waves... (Manuscript H, 67r, Institut
de Prance, Paris.) / say: if you throw two small stones at the same time on a sheet of
motionless water at some distance from each other, you will observe that around the two
percussions numerous separate circles are formed; these will meet as they increase in size
and then penetrate and intersect one another, all the while maintaining as their respective
centres the spots struck by the stones. And the reason for this is that water, although
apparently moving, does not leave its original position, because the openings made by the
stones close again immediately.. Therefore, the motion produced by the quick opening and
closing of the water has caused only a shock which may be described as tremor rather than
movement. In order to understand better what I mean, watch the blades of straw that
because of their lightness float on the water, and observe how they do not depart from
their original positions in spite of the waves underneath them caused by the occurrence of
the circles. The reaction of the water being in the nature of tremor rather than movement,
the circles cannot break one another on meeting, and as the water is of the same quality all
the way through, its parts transmit the tremor to one another without changing position.
(Manuscript A, 61r, Institut de Prance, Paris.)

Description of the effect discovered by Doppler in 1842:

If a stone is flung into motionless water, its circles will be equidistant from their centre.
But if the stream is moving, these circles will be elongated, egg-shaped, and will travel with
their centre away from the spot where they were created, following the stream. (Manuscript
I, 87, Institut de France, Paris.)

Description of Newton's prism experiment (1666):

/ / you place a glass full of water on the windowsill so that the sun's rays will strike
it from the other side, you will see the aforesaid colours formed in the impression made
by the sun's rays that have penetrated through that glass and fallen in the dark at the foot
of a window and since the eye is not used here, we may with full certainty say that these
colours are not in any way due to the eye. (Codex Leicester, 19149r, Royal Library, Windsor.)

2Sources: White (2000); http://www.gutenberg.org/
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Leonardo's scientific approach to investigate the refraction of light:

Have two trays made parallel to each other... and let one by 4/5 smaller than the
other, and of equal height. Then enclose one in the other and paint the outside, and leave
uncovered a spot the size of a lentil, and have a ray of sunlight pass there coming from
another opening or window. Then see whether or not the ray passing in the water enclosed
between the two trays keeps the straightness it had outside. And form your rule from that.
(Manuscript F, 33v, Institut de France, Paris.)

Description of atmospheric refraction, discovered by Brahe in the 16th century:

To see how the sun's rays penetrate this curvature of the sphere of the air, have two
glass spheres made, one twice the size of the other, as round as can be. Then cut them
in half and put one inside the other and close the fronts and fill with water and have the
ray of sunlight pass as you did above [here he is referring to his earlier simpler refraction
experiment]. And see whether the ray is bent. And thus you can make an infinite number
of experiments. And form your rule. (Manuscript F, 33v, Institut de France, Paris.)

Explanation of the blue sky, before TyndalPs 1869 experiments and Rayleigh's 1871
theory:

I say that the blue which is seen in the atmosphere is not given its own colour, but is
caused by the heated moisture having evaporated into the most minute and imperceptible
particles, which the beams of the solar rays attract and cause to seem luminous against
the deep, intense darkness of the region of fire that forms a covering among them. (Codex
Leicester, 4r Royal Library, Windsor.)

Statement about light having a finite velocity, before Romer's conclusive measurement
in 1676:

It is impossible that the eye should project the visual power from itself by visual rays,
since, as soon as it opens, that front [of the eye] which would give rise to this emanation
would have to go forth to the object, and this it could not do without time. And this being
so, it could not travel as high as the sun in a month's time when the eye wanted to see it.
(Ashburnham I & II, Biblioatheque Nationale, Paris.)

Description of the principle of the telescope:

It is possible to find means by which the eye shall not see remote objects as much
diminished as in natural perspective... (Manuscript E, 15v, Institut de France, Paris.) The
further you place the eyeglass from the eye, the larger the objects appear in them, when
they are for persons fifty years old. And if the eye sees two equal objects in comparison,
one outside of the glass and the other within the field, the one in the glass will seem
large and the other small. But the things seen could be 200 ells [a little over 200 m] from
the eye... (Manuscript A, 12v, Institut de France, Paris.) Construct glasses to see the Moon
magnified. (Codex Atlanticus, 190r,a, Ambrosiana Library, Milan.)

A statement anticipating Newton's third law of motion (1666):

As much pressure is exerted by the object against the air as by the air against the body.
(Codex Atlanticus, 381, Ambrosiana Library, Milan.)
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The principle of least action, stated before Fermat in 1657 and Hamilton in 1834:

Every action in nature takes place in the shortest possible way. (Quaderni, IV, 16r.)

Leonardo described fossil shells as the remains of ancient organisms and put forward a
mass/inertia theory to describe seabed and continent up- and down-lifting as mountains
eroded elsewhere on the planet. The evolution and age of the Earth and living creatures,
preceding George Cuvier (1804) and Charles Lyell (1863), and plate tectonics, anticipating
Wegener (1915):

That in the drifts, among one and another, there are still to be found the traces of the
worms which crawled upon them when they were not yet dry. And all marine clays still
contain shells, and the shells are petrified together with the clay. From their firmness and
unity some persons will have it that these animals were carried up to places remote from
the sea by the deluge. Another sect of ignorant persons declare that Nature or Heaven
created them in these places by celestial influences, as if in these places we did not also
find the bones of fishes which have taken a long time to grow; and as if, we could not
count, in the shells of cockles and snails, the years and months of their life, as we do in
the horns of bulls and oxen, and in the branches of plants that have never been cut in any
part...

And within the limits of the separate strata of rocks they are found, few in number and
in pairs like those which were left by the sea, buried alive in the mud, which subsequently
dried up and, in time, was petrified...

Great rivers always run turbid, being coloured by the earth, which is stirred by the
friction of their waters at the bottom and on their shores; and this wearing disturbs the
face of the strata made by the layers of shells, which lie on the surface of the marine mud,
and which were produced there when the salt waters covered them; and these strata were
covered over again from time to time, with mud of various thickness, or carried down to
the sea by the rivers and floods of more or less extent; and thus these layers of mud became
raised to such a height, that they came up from the bottom to the air. At the present time
these bottoms are so high that they form hills or high mountains, and the rivers, which
wear away the sides of these mountains, uncover the strata of these shells, and thus the
softened side of the earth continually rises and the antipodes sink closer to the centre of
the earth, and the ancient bottoms of the seas have become mountain ridges...

The centre of the sphere of waters is the true centre of the globe of our world, which
is composed of water and earth, having the shape of a sphere. But, if you want to find the
centre of the element of the earth, this is placed at a point equidistant from the surface
of the ocean, and not equidistant from the surface of the earth; for it is evident that this
globe of earth has nowhere any perfect rotundity, excepting in places where the sea is, or
marshes or other still waters. And every part of the earth that rises above the water is
farther from the centre. (Codex Leicester, Royal Library, Windsor.)

The theory of evolution, stated before Maupertuis (1745) and Charles Darwin (1859):

Nature, being inconstant and taking pleasure in creating and making constantly new
lives and forms, because she knows that her terrestrial materials become thereby aug-
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merited, is more ready and more swift in her creating than time in his destruction.
(Codex Leicester, Royal Library, Windsor.)

The coffee cup caustic. The bright line seen in a coffee cup on a sunny day is a caustic. Consider the

Sun as a point source of light and constructs rays according to geometrical optics. Parallel rays reflected

in the inner surface generate a curved surface (caustic), which is the envelope of the rays. The caustic has

a cusp at its center (paraxial focus). Note that the surface is brighter below the caustic (e.g., Nye, 1999).

This phenomenon has been described by Bernoulli (1692) and Holditch (1858). Leonardo has predicted

the phenomenon. He is arguing that in concave mirrors of equal diameter, the one which has a shallower

curve will concentrate the highest number of reflected rays on to a focal point, and as a consequence,

it will kindle a fire with greater rapidity and force (Codex Arundel, MS 263, f.86v-87, British Library,

London). Seismic reflections from a geological syncline produce these types of caustics.



A list of scientists

L 'ere nouvelle commence a Galilee, Boyle et Descartes, les fondateurs de la Philosophie
experiment ale; tous trois consacrent leur vie a mediter sur la nature de la lumiere, des
couleurs et des forces. Galilee jette les bases de la Mecanique, et, avec le telescope a
refraction, celles de VAstronomie physique; Boyle perfectionne Vexperimentation; quant a
Descartes, il embrasse d'une vue penetrante Vensemble de la Philosophie naturelle.

Alfred Cornu (Cornu, 1900)

The following scientists have contributed to the understanding of wave propagation
from different fields - optics, music, rheology, electromagnetism, acoustics, ray and field
theory, differential calculus, seismology, etc. This list includes scientists born during and
before the 19th century3.

Thales of Miletus
Pythagoras
Aristotle
Euclid of Alexandria
Chrysippus of Soli
Vitruvius
Heron of Alexandria
Ptolemy, Claudius
Boethius, Anicius Manlius Severinus
Ibn al—Hay than
al-Ghazzali, Abu Hamid Muhammad
Grosseteste, Robert
Bacon, Roger
Petrus Peregrinus
Witelo
Dietrich of Freiberg
Buridan, Jean
Pacioli, Luca

ca.
ca.
ca.
Ccl.

Ccl.

Cc

634 BC
560 BC
384 BC
325 BC
279 BC

i. 25 BC
ca. 10
ca. 85

ca. 480
ca. 965

1058
1168
1214

ca. 1220
ca. 1230

1250
ca. 1295

1445

ca.
ca.
ca.
Ccl.

Ccl.

546 BC
480 BC
322 BC
265 BC
207 BC

ca. 75
ca. 165
ca. 525

ca. 1040
1111
1253
1294

ca. 1270
ca. 1275

1310
1358
1514

Greece
Greece
Greece
Egypt

Greece
Rome
Egypt
Egypt
Rome

Iraq
Iran

England
England

France
Poland

England
England

Italy
3The sources are the Dictionary of Scientific Biography, Gillispie, C. C., Ed., Charles

Scribner's Sons (1972), the web site of the University of St. Andrews, Scotland (www-
history.mcs.st-andrews.ac.uk/history), the web site of Eric Weisstein's Treasure Trove of Scien-
tific Biography (www.treasure-troves.com), the web site of the University of Florence, Italy
(www.math.unifi.it/matematicaitaliana), the web site of the University of Gottingen, Germany (www.uni-
geophys.gwdg.de), www.asap.unimelb.edu.au (Bright Spares), www.encyclopedia.com, www.explore-
biography.com, www.bookrags.com, www.univie.ac.at, and www.sparkmuseum.com. Names in bold font
appear in the chronology. The place of birth is indicated
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Leonardo da Vinci
Agricola, Georgius Bauer
Maurolycus, Franciscus
Galilei, Vincenzo
Cardano, Girolamo
Delia Porta, Giambattista
Risner, Friedrich
Gilbert, William
Brahe, Tycho
De Dominis, Marco Antonio
Harriot, Thomas
Bacon, Francis
Briggs, Henry
Galilei, Galileo
Lippershey, Hans
Kepler, Johannes
Scheiner, Christoph
Snel van Royen (Snellius) Willebrord
Cabeo, Nicolo
Mersenne, Marin
Gassendi, Pierre
Descartes, Rene
Cavalieri, Bonaventura
Fermat, Pierre de
Guericke, Otto von
Kircher, Athanasius
Browne, Thomas
Borelli, Giovanni
Divini, Eustachio
Wallis, John
Grimaldi, Francesco Maria
Mariotte, Edme
Picard, Jean
Viviani, Vincenzo
Bartholinus, Erasmus
Cassini, Giovanni Domenico
Morland, Samuel
Boyle, Robert
Huygens, Christiaan
Hooke, Robert
Par dies, Ignace Gaston
Gregory, James
Ango, Pierre
Newton, Isaac
Romer, Olaf
Flamsteed, John

1452
1490
1494
1520
1501
1535

1544
1546
1560
1560
1561
1561
1564
1570
1571

ca. 1573
1580
1585
1588
1592
1596
1598
1601
1602

ca. 1602
1605
1608
1610
1616
1618

ca. 1620
ca. 1620

1622
1625
1625
1625
1627
1629
1635
1636
1638
1640
1642
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Man cannot have an effect on nature, cannot adapt any of her forces, if he does not
know the natural laws in terms of measurement and numerical relations. Here also lies
the strength of the national intelligence, which increases and decreases according to such
knowledge. Knowledge and comprehension are the joy and justification of humanity; they
are parts of the national wealth, often a replacement for those materials that nature has all
too sparsely dispensed. Those very peoples who are behind in general industrial activity,
in application of mechanics and technical chemistry, in careful selection and processing of
natural materials, such that regard for such enterprise does not permeate all classes, will
inevitably decline in prosperity; all the more so where neighboring states, in which science
and the industrial arts have an active interrelationship, progress with youthful vigor.

Alexander von Humboldt (Kosmos, I 1845, 36).
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A-stability, 388
absorbing boundary, 400, 402
air-filled porous media, 235
Alford rotation, 376
amplification

factor, 389
matrix, 387

analogy
acoustic-electromagnetic, 161, 196, 197,

324
boundary conditions, 342
Debye-Zener, 337, 340
electric circuit, 328
poroelastic-electromagnetic, 378
poroelastic-thermoelastic, 295
reflection-transmission problem, 342
SH and TM equations, 327
TE and sound-wave equations, 352
TM and sound-wave equations, 350
TM and TE equations, 327, 351

anisotropic
electromagnetic media, 356

conductivity, 357
dielectric permittivity, 357
magnetic permeability, 357
Maxwell's equations, 357
plane-wave theory, 359

poro-viscoelastic media, 307
homogeneous wave, 314
inhomogeneous wave, 312
time-harmonic field, 309

porous media
dissipation potential, 263
effective stress, 254, 256
effective-stress coefficient, 256
equation of motion, 270
kinetic energy, 260
pore pressure, 255
Skempton relation, 256
strain energy, 250
total stress, 256
undrained-modulus matrix, 256

anomalous polarization

monoclinic media, 33
orthorhombic media, 33
polarization vector, 34
stability constraints, 32

apatite
cusps, 22, 42
Green's function, 42
group velocity, 22
slowness, 22

attenuation factor
constant-Q model, 84
electromagnetic diffusion, 381
homogeneous wave, 101

anisotropic electromagnetic media,
362

anisotropic viscoelastic media, 146
isotropic viscoelastic media, 113

one-dimensional lossy media, 61, 65
porous media, 274, 277
Rayleigh wave, 119
reflection-transmission problem

qP-qSV waves, 210
SH wave, 200

attenuation vector
anisotropic poro-viscoelastic media, 315
anisotropic viscoelastic media, 153
homogeneous qP-qSV waves, 207
inhomogeneous qP-qSV waves, 225
isotropic viscoelastic media, 100
Rayleigh wave, 119

AVO, 224, 234

Babinet's principle, 375
Backus averaging

elastic media, 29, 140, 394
electromagnetic media, 369

basis functions, 392
best isotropic approximation, 38

anisotropy index, 40
bulk and shear moduli, 39

Betti-Rayleigh reciprocal theorem, 248
Biot relaxation peaks, 387
Biot-Euler's equation, 304, 309
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birefringence, 362, 376
bivector, 97
Boltzmann operation, 52, 69, 92, 93, 95,

124, 164, 165
Boltzmann's law, 51, 54
Bond matrices, 9
borehole

stability, 79
wave, 276

boundary conditions, 114, 209, 229, 230,
398

free surface, 117, 402
layered media, 233
non-ideal interface, 130, 131
open-pore, 288, 301
porous media, 284, 286, 288, 301
power balance, 285
sealed interface, 286, 301

Brewster angle, 195, 196, 199, 345, 352
Brown and Korringa's equations, 256
bulk modulus, generalized, 165
Burgers model, 77
burial rate, 244

Cagniard-de Hoop technique, 301
causality

condition, 58, 161, 373
centroid, 89
centrovelocity, 87, 89, 90
chalk, 226
characteristics variables, 399
Chebyshev

expansion
hyperbolic equations, 391
parabolic equations, 391

method, 395, 402
stretching function, 426

Cole-Cole model, 86, 341
collocation points

Chebyshev method, 425
Fourier method, 422

complementary energy theorem, 279
complex moduli

dilatational, 142
shear, 142

complex velocity
anisotropic poro-viscoelastic media, 314

anisotropic viscoelastic media, 146
constant-Q model, 84
electromagnetic diffusion, 381
fluid, 230
isotropic porous media, 273
isotropic viscoelastic media, 99
one-dimensional lossy media, 61, 65
poro-viscoacoustic media, 297
Rayleigh wave, 118
SH wave, 155, 188
TE wave, 362
TM wave, 362

compliance tensor, 254, 256
compressibility, 244, 247, 248
compressional wave

isotropic viscoelastic media, 108
porous media, 271

conductivity, 324
effective, 358, 360

conical refraction, 44
conjugate-gradient method, 397
constant Q, 60, 83

nearly, 80, 82
constitutive equations for electromagnetic

media, 323
correspondence principle, 116, 127, 129,

142, 143, 145, 168, 169, 206, 298,
309

couple
double without moment, 177, 178
single, 174, 178

with moment, 177
without moment, 177

Courant number, 395
crack, 6, 129, 135, 136, 183
cracking, 242, 246
Crank-Nicolson scheme, 389
creep compliance, 56, 78
creep function, 68

Burgers model, 78
Kelvin-Voigt model, 72
Maxwell model, 69
Zener model, 75

CRIM equation, 372
critical angle

anisotropic elastic media, 43
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anisotropic viscoelastic media
qP-qSV waves, 215, 224, 226
SH wave, 195, 197-199, 201, 203

electromagnetic media, 346
isotropic viscoelastic media, 123, 197

cross-plane shear wave (SH wave)
anisotropic elastic media, 7, 45
anisotropic viscoelastic media, 155, 168
isotropic viscoelastic media, 104
reflection-transmission problem, 45, 121,

132, 184
crystal axes, 8
crystals

biaxial, 356
uniaxial, 356

cusps, 22, 220
effective anisotropy, 28

cylindrical pores, 268

damping matrix, 400
Darcy's law, 261-263, 279, 286, 383

dynamical, 292, 304
density matrix operator, 309
deviator, 3
dielectric

impermeability, 334, 338
permittivity, 323

Cole-Cole model, 341
complex, 330
Debye model, 338
effective, 358, 360

diffusion equation, 276
electromagetic media, 380
porous media, 378
TE wave, 380
TM wave, 380

diffusion length, 293
diffusive slow mode, 276
dilatation, 3

reciprocity of, 177, 179, 181
dimensional splitting, 389
direction cosines, 10
directional force, 397
discrete delta function, 398
disequilibrium compaction, 242, 244, 246
dispersion relation

anisotropic elastic media, 11, 18, 43

anisotropic electromagnetic media, 362
anisotropic poro-viscoelastic media, 314
anisotropic viscoelastic media, 146, 155,

330
constant-Q model, 85
isotropic viscoelastic media, 100
numerical methods, 388, 393, 395
one-dimensional lossy media, 61, 65
orthorhombic media, 13
poro-viscoacoustic media, 297
porous media, 273
Rayleigh wave, 118
transversely isotropic media, 12

displacement
anisotropic viscoelastic media, 330
discontinuity model, 130
formulation, 165
vector

anisotropic elastic media, 10
anisotropic viscoelastic media, 155
Rayleigh wave, 117, 118

dissipated energy, see energy
dissipation

factor, 68
Kelvin-Voigt model, 72, 73
Maxwell model, 71
nearly constant Q, 82
one-dimensional lossy media, 64

force, 262-265
potential

anisotropic porous media, 263
isotropic porous media, 262

double porosity, 236
downgoing wave, 232
dry-rock

bulk modulus, 238, 241, 246
elasticity constants, 252
P-wave modulus, 274
shear modulus, 237, 246

dual fields, 349
dynamic viscosity, 266

earthquake, 116, 129, 174
effective anisotropy

elastic media, 26
poroelastic media, 29, 307
viscoelastic media, 142
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effective-stress coefficient
anisotropic media, 255
isotropic media, 242
permeability, 250
porosity, 249
velocity, 243

eigenstiffness, 5, 142, 144, 316
eigenstrain, 5, 142, 316

isochoric, 143, 144
elasticity

constants, 2, 10, 22
effective anisotropy, 28
unrelaxed, 165

matrix, 141
anisotropic poro-viscoelastic media,

308
monoclinic media, 6
orthorhombic media, 6
transversely isotropic media, 6

tensor, 2, 143
electric

displacement, 323
vector, 323

electric susceptibility, 373
electric-polarization vector, 373
electro-seismic wave propagation

electro-filtration, 382
electro-osmosis, 382
electrokinetic coupling, 383

electro-seismic wave theory, 236, 382
electromagnetic duality, 367
energy

anisotropic elastic media, 16
anisotropic poro-viscoelastic media, 311
anisotropic viscoelastic media, 149, 152
coefficients, 202
complementary, 279
conductive

isotropic electromagnetic media, 333
dielectric

Debye model, 338
isotropic electromagnetic media, 333

discrepancies, 110
dissipated

anisotropic electromagnetic media,
364

anisotropic poro-viscoelastic media,
311, 313

anisotropic viscoelastic media, 153
isotropic electromagnetic media, 332
isotropic viscoelastic media, 113
one-dimensional lossy media, 63, 66

electric
anisotropic electromagnetic media,

363
isotropic electromagnetic media, 332
TE wave, 364
TM wave, 365

homogeneous waves
anisotropic poro-viscoelastic media,

315
isotropic viscoelastic media, 113

isotropic electromagnetic media, 331
isotropic viscoelastic media, 111
kinetic

anisotropic elastic media, 16, 17
anisotropic poro-viscoelastic media,

311, 313
anisotropic porous media, 260, 261
anisotropic viscoelastic media, 148
isotropic elastic media, 111
isotropic porous media, 257
isotropic viscoelastic media, 107
one-dimensional lossy media, 62, 63,

66
P wave, 108

magnetic
anisotropic electromagnetic media,

364
isotropic electromagnetic media, 332,

336
TE wave, 364
TM wave, 365

one-dimensional lossy media, 63
rate of dissipated

anisotropic poro-viscoelastic media,
311

anisotropic viscoelastic media, 53,
148, 152

Debye model, 339
homogeneous SH wave, 156
isotropic electromagnetic media, 332-
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334, 336
isotropic viscoelastic media, 108
one-dimensional lossy media, 63
P wave, 110
S waves, 114
TE wave, 365, 366
TM wave, 365, 366
Zener model, 340

S waves, isotropic viscoelastic media,
114

strain
anisotropic elastic media, 16, 17
anisotropic poro-viscoelastic media,

311, 313
anisotropic porous media, 250
anisotropic viscoelastic media, 53,

148
elastic, 1
homogeneous SH wave, 156
homogeneous waves, 315
inhomogeneous porosity, 278
isotropic elastic media, 111
isotropic media, 3
isotropic porous media, 237
isotropic viscoelastic media, 107
Maxwell model, 70
monoclinic media, 2
one-dimensional lossy media, 57, 62,

63, 66
orthorhombic media, 2
P wave, 110
porous media, 280, 283
transversely isotropic media, 2
uniqueness, 52, 54
Zener model, 340

energy balance
anisotropic elastic media, 15, 16
anisotropic electromagnetic media, 363
anisotropic poro-viscoelastic media, 314
anisotropic viscoelastic media, 147, 149
isotropic electromagnetic media, 331,

333
isotropic viscoelastic media, 107
one-dimensional lossy media, 62, 66
P wave, viscoelastic media, 108
Rayleigh wave, 119

reflection-transmission problem
qP-qSV waves, 210
SH wave, 201, 343

energy coefficient, 211
energy flux (flow)

see Umov-Poynting vector, 133
energy loss

non-ideal interface
P-SV waves, 135
SH wave, 133

energy velocity
anisotropic elastic media, 16, 17, 19,

20
anisotropic electromagnetic media, 364
anisotropic poro-viscoelastic media, 313
anisotropic viscoelastic media, 151
homogeneous SH wave, 155, 156
isotropic elastic media, 113
one-dimensional lossy media, 64, 66,

87
reflection-transmission problem

qP-qSV waves, 212
SH wave, 203

relaxed, 151
TE wave, 365
TM wave, 365
unrelaxed, 16, 151

envelope velocity
anisotropic elastic media, 20
anisotropic viscoelastic media, 147
homogeneous SH wave, 155, 157

equation of motion
see Euler's equations, 4
anisotropic porous media, 270
isotropic viscoelastic media, 124
Maxwell model, 93
plane wave, 15
poro-viscoacoustic media, 296
porous media, 265

Euler scheme, 390
Euler's equations, 4, 125, 386
evolution operator, 8, 386
expansion functions

Chebyshev method, 424
Fourier method, 422

exploding-reflector concept, 398, 403
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fading memory hypothesis, 54
femoral bone, 308, 316
FFT, 422, 426
filtration velocity, 261-263, 267, 289
finely layered media, 183, 208

elastic media, 6, 25
electromagnetic media, 369
porous media, 29, 307
viscoelastic media, 142

finite-difference method, 385
explicit, 387
implicit, 387

finite-element method, 385
fluid/solid interface, 228
forbidden directions, 161
Fortran codes

anisotropic, viscoelastic SH-wave equa-
tion, 410

diffusion equation, 405
isotropic, viscoelastic SH-wave equa-

tion, 415
Maxwell's equation, 415

Fourier method, 220, 394, 402, 422
fractional derivative, 85

electromagnetic media, 341
porous media, 87

fracture, 129, 135, 250
free energy, 52
frequency, complex, 65
Fresnel's formulae, 344, 351
friction coefficient, 262, 263, 265
frictional contact, 129
frozen porous media, 236

Galerkin procedure, 386
Gassmann's

compressibility, 249
equation, 241
modulus, 241, 248, 257, 291, 383
velocity, 274

gel, 295
geothermal gradient, 244
Green's analogies, 352
Green's function

anisotropic electromagnetic media, 366
constant-Q media, 127
diffusion equation, 381

one-dimensional, 88
poro-viscoacoustic media, 295, 299
SH wave

anisotropic elastic media, 169
anisotropic viscoelastic media, 169

surface waves in porous media, 299
three-dimensional

anisotropic elastic media, 42
anisotropic electromagnetic media,

369
two-dimensional

anisotropic elastic media, 40
viscoacoustic media, 126
viscoelastic media, 128

ground-penetrating radar, 87, 366
ground-roll, 402
group velocity

anisotropic elastic media, 18-20
anisotropic viscoelastic media, 147
anomalous polarization, 35
homogeneous SH wave, 157
negative, 161
numerical modeling, 394
one-dimensional lossy media, 61, 87

Hamilton's principle, 235, 263, 286
Hardtwig solid, 120
head wave, 224
Heaviside-type function, 52
Helmholtz equation, 99, 392, 398

constant-Q media, 127
electromagnetic diffusion, 381
electromagnetic media, 367
poro-viscoacoustic media, 297

heterogeneous formulation, 392
homogeneous formulation, 392
homogeneous wave, 97, 100, 361
homogenization theory, 235
Hooke's law, 317, 386

anisotropic elastic media, 4
anisotropic viscoelastic media, 141
one-dimensional lossless media, 55

hybrid modeling scheme, 399
hydraulic diffusivity constant, 276
hydrocarbon, 244
hyperbolic differential equation, 386
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incoming wave, 399
incompressible solid, 120, 354
induced mass, 258, 259
inhomogeneity angle, 100, 102
inhomogeneous wave, 97, 100, 359
interference coefficient, 212
interference flux, 124, 199, 201, 202, 211,

344
internal (hidden) variable, 338, 358
interpolation functions, 392
isoparametric method, 392, 396

jacketed experiment, 237, 247, 252, 282

Kelvin's notation, 38, 141, 143
Kelvin-Christoffel

differential-operator matrix, 5
dispersion relation, 11, 30
equation

anisotropic elastic media, 11
anisotropic electromagnetic media,

361
transversely isotropic media, 11

matrix
anisotropic elastic media, 11, 18
anisotropic electromagnetic media,

361
anisotropic poro-viscoelastic media,

314
anisotropic viscoelastic media, 146

Kelvin-Voigt model, 60, 68, 71, 94, 141,
325

kinetic energy, see energy
Kjartansson model, 83
Kramers-Kronig dispersion relations, 59

constant-Q model, 60, 86
electromagnetic media, 373
Kelvin-Voigt model, 60
Maxwell model, 60
Zener model, 60

Lagrangian, 235, 263, 269, 278
Lamb's problem, 172, 178, 181
Lame constants, 98

complex, 116, 120, 142, 230, 233
elastic media, 3, 6, 55

Lax-Wendroff scheme, 388

Lichtnecker-Rother formula, 372
limestone, 139, 224
limit frequency, 270
linear momenta

anisotropic porous media, 260
isotropic porous media, 258

Love wave, 396
low-loss media, 65, 81, 83, 86, 123, 153,

157, 184

MacCormack scheme, 390
magnetic

impermeability, 336
induction, 323
permeability, 323, 360
vector, 323

mass matrix, 392
Maxwell model, 60, 62, 68, 92, 325

non-ideal interface, 130
Maxwell's equations, 323

isotropic media, 415
memory tensor

dilatational, 164
shear, 164
strain, 164

deviatoric, 164
memory variable, 92

anisotropic viscoelastic media, 162
computer storage, 125
differential equation

anisotropic viscoelastic media, 165
finite-difference approximation, 389,

410
isotropic viscoelastic media, 125
Zener model, 95

dilatational mechanisms, 125
equation of motion

poro-viscoelastic media, 305
generalized Zener model, 95
isotropic viscoelastic media, 124
Kelvin-Voigt model, 94
poro-viscoelastic media, 305
shear mechanisms, 125
strain

Maxwell model, 93
Zener model, 95, 339

stress, 305
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Maxwell model, 93
mesoscopic loss mechanism, 289
microseismogram, 305
modulus

complex, 56, 141, 186
analyticity, 59
conditions, 111
constant-Q model, 84
generalized Zener model, 79
isotropic viscoelastic media, 100
Kelvin-Voigt model, 72
Maxwell model, 69
nearly constant Q, 83
non-ideal interface, 131
properties, 60
Zener model, 339

elastic, 55
loss, 56, 57
relaxed, 60

generalized Zener model, 79
Kelvin-Voigt model, 71
Zener model, 74

storage, 56, 57
unrelaxed, 60

generalized Zener model, 80
Maxwell model, 68, 70
Zener model, 75

monopole, 174, 178

Neumann stability analysis, 396
Neumann's principle, 139, 208
Newmark method, 392
non-aging material, 52
non-ideal interface, 129
non-reflecting wave equation, 398, 403
non-uniform plane wave, 359
numerical modeling, porous media, 305,

389
Nyquist

criterion, 425
wavenumber, 388, 395, 398, 423

ocean bottom, 224, 228
Ohm's law, 323, 383
one-way wave equation, 400
Onsager's relations, 55, 263
orthogonal transformation matrix, 8

outgoing wave, 399
overpressure, 242, 402

P-SV waves, non-ideal interface, 133
parabolic differential equation, 85
parasitic modes, 396
paraxial approximation, 399
Parseval's theorem, 89
particle motion

anisotropic viscoelastic media, 154
elliptical, 103, 106
isotropic viscoelastic media

P wave, 102
S wave, 104

particle-velocity/stress formulation
anisotropic viscoelastic media, 166
monoclinic elastic media, 7
symmetry plane, 7

peak value, 147, 149
permeability, 262

dynamic, 269
matrix, 263

perpendicularity properties
anisotropic elastic media, 24
anisotropic viscoelastic media, 157, 158,

190
phase velocity

anisotropic elastic media, 11
anisotropic viscoelastic media, 151
complex frequency, 66
complex wavenumber, 61
constant-Q model, 84
electromagnetic diffusion, 381
finite difference, 388
homogeneous waves

anisotropic electromagnetic media,
362

anisotropic viscoelastic media, 146
isotropic viscoelastic media, 102

inhomogeneous waves, isotropic vis-
coelastic media, 102

isotropic porous media, 274
Kelvin-Voigt model, 72
Maxwell model, 71
nearly constant Q, 82
one-dimensional lossy media, 61, 87
orthorhombic elastic media, 13
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porous media, 277
Rayleigh wave, 119
reflection-transmission problem

qP-qSV waves, 210
SH wave, 199

Terzaghi's approximation, 275
transversely isotropic media, 12
Zener model, 76

Pierre shale, 86
plane of symmetry, 7
plane slit, 265
plane wave

anisotropic elastic media, 10
anisotropic electromagnetic media, 359
anisotropic poro-viscoelastic media, 312
anisotropic viscoelastic media, 149, 205
isotropic porous media, 277
isotropic viscoelastic media, 100
one-dimensional lossy media, 61, 65
porous media, 273
Rayleigh wave, 117

PML method, 400
Poiseuille flow, 262, 267, 269, 270
Poisson

ratio, 353, 393, 399, 402, 404
solid, 120, 136, 353

polarization, 229
anisotropic viscoelastic media, 154
anomalous, 29, 40
elliptical, 154
isotropic viscoelastic media, 106
orthogonality, 14
transversely isotropic media, 12

pore compressibility, 245, 247
pore-volume balance, 244, 245
poro-acoustic equations, 378
poro-viscoelasticity

anisotropic media, 307
isotropic media, 114, 303

porous media
anisotropic poro-viscoelasticity, 307
boundary conditions, 284
compressibilities, 246
compressional wave, 271
dissipation potential, 262
effective stress, 240

Green's function, 295, 299
jacketed experiment, 237
kinetic energy, 257
Lagrange's equations, 263
numerical modeling, 305
shear wave, 276
strain energy, 237, 250, 278
stress-strain relations, 237, 250
unjacketed experiment, 238
viscodynamic operator, 265
viscoelastic, 303

power flow (flux), see Umov-Poynting vec-
tor

predictor-corrector scheme, 390
pressure

confining, 242
differential, 242
effective, 240, 242, 246
fluid, see pore pressure
hydrostatic, 242
lithostatic, 242
pore, 240, 242

pressure formulation, 385
pressure source, 397
pressure-seal reflections, 234
principal axes, 8
propagation matrix, 386, 387
pseudocritical angle, 197
pseudospectral method, 385
pure mode direction, 12

qP wave, elastic media, 13
qP-qSV waves

attenuation angle, 209
attenuation vector, 205
complex-slowness vector, 205
dispersion relation, 205
energy angle, 209
homogeneous, 207
polarization, 206
propagation angle, 209
reflection-transmission problem, 205
slowness vector, 205
Umov-Poynting vector, 206

qP-qSV, equation of motion, 166
qS wave, elastic media, 13
quality factor, 186
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anisotropic electromagnetic media, 364
anisotropic poro-viscoelastic media, 313
anisotropic viscoelastic media, 152
Biot relaxation, 289
constant-Q model, 84
homogeneous wave, 101, 207, 316

anisotropic viscoelastic media, 153
isotropic viscoelastic media, 113, 331

isotropic electromagnetic media, 328
isotropic viscoelastic media, 113
Kelvin-Voigt model, 72
Maxwell model, 71
one-dimensional lossy media, 64
reflection-transmission problem

qP-qSV waves, 213
SH wave, 204

TE wave, 366
TM wave, 366
Zener model, 76, 289

quasi-static mode, 278, 299, 300, 307, 387

rate of dissipated energy, see energy
ray tracing, 121, 166
Rayleigh wave, 116, 396, 402

non-ideal interface, 136
porous media, 301
quasi-elastic, 117, 118, 120
viscoelastic, 117, 118, 120

Rayleigh window, 230
reality condition, 55, 58
reciprocity

borehole seismics, 181
hydrophones, 181
of strain, 174
of stress, 179

reciprocity principle
elastodynamics, 171
electromagnetism, 374

reflection coefficient
inhomogeneous wave, 226
Rayleigh window, 231

reflection matrix, 8
reflection-transmission problem

anisotropic elastic media, 42
anisotropic viscoelastic media, 183, 342
fluid/solid interface, 229
isotropic viscoelastic media, 121

layered media, 231
non-ideal interface, 132, 133
solid/fluid interface, 228

reflectivity, 349
reflectivity method, 234
refraction index, 344
relaxation

frequency
Biot relaxation peak, 289
White model, 293

function, 68, 98
Burgers model, 78
conditions, 58
constant Q, 84
generalized Zener model, 79
isotropic viscoelastic media, 124
Kelvin-Voigt model, 72
Maxwell model, 69
nearly constant Q, 82
P-wave, 99
properties, 60
Zener model, 75, 339

matrix
anisotropic poro-viscoelastic media,

309
anisotropic viscoelastic media, 163
symmetry, 55

peak, Zener model, 76
tensor, 98

symmetries, 55
times, 81, 167, 186, 305, 387

generalized Zener model, 79
Kelvin-Voigt model, 72
Maxwell model, 69
Zener model, 75

REM method, 391
representation theorem, 173
response function, 92

Maxwell model, 93
rigidity, generalized, 165
rotation matrix, 8, 9
Runge-Kutta method, 220, 388, 390, 402

S waves, viscoelastic media
type-I (SV wave), 104
type-II (SH wave), 104

sandstone, 139, 236, 250, 278, 306, 402
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scattering, 135, 404
Scholte wave in porous media, 299
seismic exploration, 224, 242, 394, 396
seismic pulse, 127
seismogram, 402
SH wave

anisotropic elastic media
energy velocity, 21
group velocity, 21
reflection-transmission problem, 43
slowness surface, 24
Umov-Poynting vector, 21
wave surface, 24

anisotropic viscoelastic media
attenuation angle, 190
attenuation vector, 184
dissipated energy, 186, 191
energy angle, 192
energy velocity, 156, 330
envelope velocity, 157
group velocity, 157
kinetic energy, 186
propagation angle, 190
reflection-transmission problem, 184,

188, 342
slowness relation, 185
slowness vector, 184
strain energy, 186
stress-strain relation, 184
Umov-Poynting vector, 185, 191, 193-

195
elastic media, 12
equation of motion

anisotropic viscoelastic media, 166,
409

isotropic elastic media, 386
isotropic viscoelastic media, 415
Maxwell model, 326

homogeneous
anisotropic viscoelastic media, 155,

184
isotropic viscoelastic media, 122

non-ideal interface, 132
reflection-transmission problem, 45, 121,

132, 184
shale, 86, 186, 224, 226, 236, 250

shaley sandstone, 236
shape functions, 392
shear source, 397
shear wave, porous media, 276
shear-wave splitting, 22, 362, 376
Skempton coefficient, 243, 252, 253
skin depth, 381
slow wave, 273, 275, 278, 293, 318, 387
slowness curve, SH wave, 157
slowness surface, orthorhombic elastic me-

dia, 13
slowness vector

anisotropic elastic media, 11
anisotropic poro-viscoelastic media, 315
anisotropic viscoelastic media, 146
inhomogeneous wave, 225
isotropic viscoelastic media, 102
qP-qSV waves, 207
SH wave, 155

slowness, one-dimensional lossy media, 61
SnelPs law, 188, 191, 199, 208, 228, 351

anisotropic elastic media, 43
non-ideal interface, 133
SH wave, 122
viscoelastic media, 114

specific stiffness, 130
specific viscosity, 130
spectral accuracy, 391
spectral-element method, 396
sponge method, 400
squirt-flow mechanism, 309
stability condition

anisotropic elastic media, 5, 6
anisotropic viscoelastic media, 148
numerical modeling, 388
Runge-Kutta method, 390

staggered
grid, 393
spatial derivative, 391, 394, 395, 399,

404, 409, 415
staircase effect, 394, 402
standard linear solid model, 74
stiff differential equation, 387
stiffness

complex, 142, 224
constants
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orthorhombic media, 144
unrelaxed, 141

matrix, 141, 327, 329
finite-element method, 392

unrelaxed, 214
stop bands, 161
strain

anisotropic poro-viscoelastic media, 308
components, 2
energy, see energy
homogeneous SH wave, 155
invariants, 3
quadric, 3
reciprocity of, 174

strain-displacement relations, 4
strain-stress relation, 56

anisotropic elastic media, 5
Strang's scheme, 389
stress

anisotropic poro-viscoelastic media, 308
components, 3
deviatoric components, 98, 144
effective, 240-242, 253, 255
homogeneous SH wave, 156
isotropic porous media, 237
mean, 144
reciprocity of, 179
total, 240

stress-strain relation
anisotropic poro-viscoelastic media, 309
anisotropic porous media, 251, 308
anisotropic viscoelastic media, 53, 54,

140, 164
constant-Q model, 85
generalized Zener model, 79
isotropic porous media, 237, 239
isotropic viscoelastic media, 98
Kelvin-Voigt model, 71
Maxwell model, 68
one-dimensional lossy media, 55
porous media, 280
Zener model, 74, 75

structural factor, 268
superfluid, 275
surface topography, 395, 396

Taylor method, 388

TE (transverse-electric) equations, 327
Terzaghi's

equation, 242
law, 274

thermal-expansion coefficient, 244
time average over a cycle, 15
time-average equation, 372
TM (transverse-magnetic) equations, 326
tortuosity, 259, 304, 318

dynamic, 268
transducers, 23
transmissivity, 349
tube wave, 275

Umov-Poynting theorem, see energy bal-
ance

Umov-Poynting vector
anisotropic elastic media, 15, 16
anisotropic electromagnetic media, 363
anisotropic poro-viscoelastic media, 310,

312
anisotropic viscoelastic media, 148
electric, TE wave, 365
homogeneous SH wave, 156
homogeneous waves, 113, 315
isotropic elastic media, 112
isotropic viscoelastic media, 107
one-dimensional lossy media, 62, 66
P wave, 111
S waves, 114
TM wave, 365

undrained-modulus matrix, 253
uniform plane wave, 361
unjacketed experiment, 238, 252
unrelaxed velocity, 226
upgoing wave, 232

variation of fluid content, 240, 249, 251,
261, 279, 280, 282, 308

variational formulation, 386
viscodynamic

matrix, 271, 296
operator, 265, 267-269

low frequency, 265
viscoelastic fluid, 70
viscosity, 262

matrix, 141, 327
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viscous losses, 130
Voigt's notation, 141
volume-averaging method, 235, 280

wave
evanescent, 49, 198, 201, 203, 215
front, 16

anisotropic viscoelastic media, 151
homogeneous, 100
inhomogeneous, 97, 224, 225

elastic, 102
surface

anisotropic elastic media, 16
anisotropic poro-viscoelastic media,

313
anisotropic viscoelastic media, 151

traveling, 17
wave equation, constant-^ model, 86
wavenumber

complex, 61
homogeneous waves, 101, 314
P wave, 99
S wave, 99

real, homogeneous waves, 101
vector

anisotropic elastic media, 10
anisotropic porous media, 312
anisotropic viscoelastic media, 150
isotropic viscoelastic media, 100

weighting coefficients, 393
White model, 289

P-wave complex modulus, 293
Wood's equation, 294
wraparound, 395

Zener model, 60, 74, 95, 167, 317, 339
generalized, 79, 95

zero-padding technique, 399
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