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Preface

orrelation risk is the risk that the correlation between two or more

financial variables changes unfavorably. Correlation risk was highlighted
in the global financial crisis in 2007 to 2009, when correlations between
many financial variables such as the default correlation between debtors or
the default correlation between a debtor and an insurer increased dramati-
cally. This led to huge unexpected losses for many financial institutions,
which in part triggered the global financial crisis.

This book is the first to address financial correlation risk in detail. In
Chapter 1, we introduce the basic properties of correlation risk, before we
show in Chapter 2 how correlations behave in the real world. We then discuss
whether correlation risk can be quantified using standard statistical correla-
tion measures such as Pearson’s p, Spearman’s rank correlation coefficient,
and Kendall’s 7 in Chapter 3. We address specific financial correlation
measures in Chapter 4, and discuss whether the copula correlation model
is appropriate to measure financial correlations in Chapter 5. Often, as in the
Basel III framework, a shortcut to the Gaussian copula is applied, such as the
one-factor Gaussian copula (OFGC) model. This approach, which is applied
in the Basel framework to derive credit risk, is discussed in Chapter 6. In
Chapter 7 we address a fairly new correlation family, the elegant but
somewhat coarse top-down correlation models. Chapter 8 discusses stochas-
tic correlation models, which are a new and promising way to model financial
correlations. In Chapters 9 and 10, we introduce new concepts to quantify
market and credit correlation risk. In Chapter 11 we address the challenging
task of hedging correlation risk. Chapter 12 evaluates the proposed correla-
tion concepts in the Basel III framework, which are designed to mitigate
correlated credit and market risk. Chapter 13 deals with the future of
correlation modeling, which may include neural networks, fuzzy logic,
genetic algorithms, chaos theory, and combinations of these concepts.

Figure P.1 gives an overview of the main correlation models that will be
addressed in this book. We will discuss the conceptual, mathematical, and
computational properties of the models and evaluate their benefits and
limitations for finance.

Xii
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Correlation Models
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FIGURE P.1 Main Statistical and Financial Correlation Models

TARGET AUDIENCE

This book should be valuable to anyone who is exposed to financial correla-
tions and financial correlation risk. So it should be of interest to upper
management, risk managers, analysts, traders, compliance departments, model
validation groups, controllers, reporting groups, brokers, and others. The book
contains questions and problems at the end of each chapter, which should
facilitate using the book in a classroom. The answers to the problems are
available to instructors; please e-mail gunter@dersoft.com.

BASEL Il

This book addresses new risk measures, especially the new correlation risk
measures of the Basel III accord. We discuss the Basel-applied value at risk
(VaR) concept, which includes correlated market risk, in the introductory
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Chapter 1, section 1.3.3. We address the one-factor Gaussian copula (OFGC)
correlation model, which underlies the Basel credit correlation framework, in
Chapter 6. We revisit the VaR concept for a multi-asset portfolio in Chapter
9, section 9.4. In Chapter 12, we discuss the Basel III correlation framework
in detail, deriving credit value at risk (CVaR) and required capital (RC). In
particular, we address credit value adjustment (CVA) with general and
specific wrong-way risk (WWR), which includes the correlation between
general market factors as well as the correlation between specific entities.

ADDITIONAL MATERIALS

This book comes with 26 supporting spreadsheets, models, and documents.
They can be downloaded at www.wiley.com/go/correlationriskmodeling;
password: gunter123.

The supporting documents can also be downloaded from the author's
website www.dersoft.com/correlationbook/downloads.

Below is a breakdown of the supporting documents by file.
For a general refresher on the basics of mathematical finance:

B Math refresher.docx

Chapter 1

m 2-asset VaR.xlsx

® Matrix primer.xlsx

m Exchange option.xls

B Quanto option.xls

m Dependence and Correlation.xIsm
m Log returns.xlsx

Chapter 2

m Correlation fitting.docx
Chapter 3

® Lookback option.xls
Chapter 4

B GBM path with jumps.xIsm
m 2-asset default time Copula.xIsm

Chapter 5

® CDO Gauss educational.xlsm
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Chapter 6

B OFGC educational.xls

m Base correlation generation.xIsm
Chapter 7

m Base correlation generation.xlsm

Chapter 8

® GBM path with jumps.xlsm
m Stochastic correlation.xlsx

Chapter 9

B VaR educational.xlsm

B VaR n asset cora gora.xlsm
m Exchange option cora.docx
® Math refresher.docx

Chapter 10

m CDS with default correlation.xlsm
m CDS three correlated entities pricing code.docx

Chapter 11

m CDS with default correlation.xIsm
m Option on the better of two.xlsm

m Correlation swap.xls

m Interest rate swap pricing model.xls

Chapter 12

® CVAR.xlsm
® Basel double default.xlsm

I welcome feedback. If you have a suggestion or comment, or if you spot
an error, please email me at gunter@dersoft.com. There is an errata page at
www.dersoft.com/correlationbook/errata.docx.
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1

Some Correlation Basics:
Properties, Motivation,
Terminology

Behold, the fool saith, “Put not all thine eggs in the one basket.”
—Mark Twain

n this chapter we introduce the basic concepts of financial correlations and

financial correlation risk. We show that correlations are critical in many
areas of finance such as investments, trading, and risk management, as well as
in financial crises and in financial regulation. We also show how correlation
risk relates to other risks in finance such as market risk, credit risk, systemic
risk, and concentration risk.

1.1 WHAT ARE FINANCIAL CORRELATIONS?

Heuristically (meaning nonmathematically), we can define two types of
financial correlations: static and dynamic.

Static financial correlations measure how two or more financial assets
are associated within a certain time period.

Examples are:
m The classic value at risk (VaR) model. It answers the question: What is the

maximum loss of correlated assets in a portfolio with a certain proba-
bility for a given time period? This time period can be 10 days as Basel III
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requires, as well as shorter or longer (see Chapter 1, section 1.3.3 and
Chapter 9, section 9.4 for more on VaR and correlation).

m The original copula approach for collateralized debt obligations (CDOs).
It measures the default correlations between all assets in the CDO for a
certain time period, which is typically identical to the maturity date of the
CDO (see Chapter 5 for details).

m The binomial default correlation model of Lucas (1995), which is a
special case of the Pearson correlation model. It measures the probability
of two assets defaulting together within a short time period (see Chapter
3 for details).

Besides the static correlation concept, there are dynamic correlations:

Dynamic financial correlations measure how two or more financial assets
move together in time.

Examples are:

m In practice, pairs trading, a type of statistical arbitrage, is performed.
Let’s assume the movements of assets x and y have been highly correlated
in time. If now asset x performs poorly with respect to y, then asset x is
bought and asset y is sold with the expectation that the gap will narrow.

m Within the deterministic correlation approaches, the Heston 1993 model
correlates the Brownian motions dz; and dz, of assets 1 and 2. The core
equation is dzi(t) =p dza(t) + /(1 — p?) dz3(¢) where dz; and dz, are
correlated in time with correlation parameter p. See Chapter 3 for details.

m Correlations behave randomly and unpredictably. Therefore, it is a good
idea to model them as a stochastic process. Stochastic correlation
processes are by construction time dependent and can replicate correla-
tion properties well. See Chapter 8 for details.

Suddenly everything was bighly correlated.
—Financial Times, April 2009

1.2 WHAT IS FINANCIAL CORRELATION RISK?

Financial correlation risk is the risk of financial loss due to adverse move-
ments in correlation between two or more variables.

These variables can comprise any financial variables. For example, the
positive correlation between Mexican bonds and Greek bonds can hurt
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Mexican bond investors if Greece bond prices decrease, which happened in
2012 during the Greek crisis. Or the negative correlation between commodity
prices and interest rates can hurt commodity investors if interest rates rise. A
further example is the correlation between a bond issuer and a bond insurer,
which can hurt the bond investor (see the example displayed in Figure 1.1).

Correlation risk is especially critical in risk management. An increase in
the correlation of asset returns increases the risk of financial loss, which is
often measured by the value at risk (VaR) concept. For details see section
1.3.3 and Chapter 9, sections 9.4 and 9.5. An increase in correlation is
typical in a severe systemic crisis. For example, in the Great Recession from
2007 to 2009, financial assets and financial markets worldwide became
highly correlated. Risk managers who had in their portfolios assets with
negative or low correlations suddenly witnessed many of them decline
together; hence asset correlations increased sharply. For more on systemic
risk, see section 1.3.4, “The Global Financial Crisis of 2007 to 2009 and
Correlation,” as well as Chapter 2, which displays empirical findings
of correlations.

Correlation risk can also involve variables that are nonfinancial, such
as economic or political events. For example, the correlation between the
increasing sovereign debt and currency value can hurt an exporter, as
occurred in Europe in 2012, where a decreasing euro hurt U.S. exporters.
Geopolitical tensions as, for example, in the Middle East can hurt airline
companies due to increasing oil prices, or a slowing gross domestic
product (GDP) in the United States can hurt Asian and European export-
ers and investors, since economies and financial markets are correlated
worldwide.

Let’s look at correlation risk via an example of a credit default swap
(CDS). A CDS is a financial product in which the credit risk is transferred
from the investor (or CDS buyer) to a counterparty (CDS seller). Let’s assume
an investor has invested $1 million in a bond from Spain. He is now worried
about Spain defaulting and has purchased a credit default swap from a French
bank, BNP Paribas. Graphically this is displayed in Figure 1.1.

The investor is protected against a default from Spain, since in case
of default, the counterparty BNP Paribas will pay the originally invested
$1 million to the investor. For simplicity, let’s assume the recovery rate and
accrued interest are zero.

The value of the CDS, i.e., the fixed CDS spread s, is mainly determined
by the default probability of the reference entity Spain. However, the spread s
is also determined by the joint default correlation of BNP Paribas and Spain.
If the correlation between Spain and BNP Paribas increases, the present
value of the CDS for the investor will decrease and he will suffer a paper loss.
The worst-case scenario is the joint default of Spain and BNP Paribas, in
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Fixed CDS spread s

Counterparty ¢
€ mmmm e (i.e., credit default
swap seller,
BNP Paribas)

Investor and
credit default

swap buyer i Payout of $1 million

in case of default of r

$1 million coupon k

Reference asset
of reference
entity  (Spain)

FIGURE 1.1 An Investor Hedging His Spanish Bond Exposure with a CDS

which case the investor will lose his entire investment in the Spanish bond
of $1 million.

In other words, the investor is exposed to default correlation risk between
the reference asset 7 (Spain) and the counterparty ¢ (BNP Paribas). Since both
Spain and BNP Paribas are in Europe, let’s assume that there is a positive
default correlation between the two. In this case, the investor has wrong-way
correlation risk or short wrong-way risk (WWR). Let’s assume the default
probability of Spain and BNP Paribas both increase. This means that the
exposure to the reference entity Spain increases (since the CDS has a higher
present value for the investor) and it is more unlikely that the counterparty
BNP Paribas can pay the default insurance. We will discuss wrong-way risk,
which is a key term in the Basel II and IIT accords, in Chapter 12.

The magnitude of the correlation risk is expressed graphically in
Figure 1.2.

From Figure 1.2 we observe that for a correlation of —0,3 and higher, the
higher the correlation, the lower the CDS spread. This is because an
increasing p means a higher probability of the reference asset and the
counterparty defaulting together. In the extreme case of a perfect correlation
of 1, the CDS is worthless. This is because if Spain defaults, so will the
insurance seller BNP Paribas.

We also observe from Figure 1.2 that for a correlation from —1 to
about —0.3, the CDS spread increases slightly. This seems counterintuitive
at first. However, an increase in the negative correlation means a higher
probability of either Spain or BNP Paribas defaulting. In the case of Spain
defaulting, the CDS buyer will get compensated by BNP Paribas. However,
if the insurance seller BNP Paribas defaults, the CDS buyer will lose his
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CDS Spread with Respect to Correlation
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FIGURE 1.2 CDS Spread s of a Hedged Bond Purchase (as Displayed in Figure 1.1)
with Respect to the Default Correlation between the Reference Entity 7 and the
Counterparty ¢

insurance and will have to repurchase it. This may have to be done at a
higher cost. The cost will be higher if the credit quality of Spain has
decreased since inception of the original CDS. For example, the CDS
spread may have been 3% in the original CDS, but may have increased
to 6% due to a credit deterioration of Spain. For more details on pricing
CDSs with counterparty risk and the reference asset—counterparty correla-
tion, see Chapter 10, section 10.1, as well as Kettunen and Meissner (2006).

We observe from Figure 1.2 that the dependencies between a variable
(here the CDS spread) and correlation may be nonmonotonous; that is, the
CDS spread sometimes increases and sometimes decreases if correlation
increases. We will also encounter this nonmonotony feature of correlation
when we discuss the mezzanine tranche of a CDO in Chapter 5.

1.3 MOTIVATION: CORRELATIONS AND
GORRELATION RISK ARE EVERYWHERE IN FINANCE

Why study financial correlations? That’s an easy one. Financial correlations
appear in many areas in finance. We will briefly discuss five areas: (1) invest-
ments and correlation, (2) trading and correlation, (3) risk management
and correlation, (4) the global financial crisis and correlation, and (5) regu-
lation and correlation. Naturally, if an entity is exposed to correlation,
this means that the entity has correlation risk (i.e., the risk of a change in
the correlation).
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1.3.1 Investments and Correlation

From our studies of the Nobel Prize-winning capital asset pricing model
(CAPM) (Markowitz 1952; Sharpe 1964) we remember that an increase in
diversification increases the return/risk ratio. Importantly, high diversifica-
tion is related to low correlation. Let’s show this in an example. Let’s assume
we have a portfolio of two assets, X and Y. They have performed as in
Table 1.1.

Let’s define the return of asset X at time ¢ as x;,, and the return of asset Y at
time ¢ as y,. A return is calculated as a percentage change, (S; — S;_1)/S;_1,
where S is a price or a rate. The average return of asset X for the time frame
2009 t0 2013 is px = 29.03%; for asset Y the average return is py = 20.07%.
If we assign a weight to asset X, wy, and a weight to asset Y, wy, the portfolio
return is

Hp =wx lx + Wy py (1.1)

where wx + wy = 1.
The standard deviation of returns, called volatility, is derived for asset X
with equation (1.2):

1 n
ox= |- Zlm—uxﬂ (1.2)
t=

where x, is the return of asset X at time ¢ and # is the number of observed
points in time. The volatility of asset Y is derived accordingly. Equation 1.2
can be computed with =stdev in Excel and std in MATLAB. From our
example in Table 1.1, we find that ox = 44.51% and oy = 47.58%.

Let’s now look at the covariance. The covariance measures how two
variables covary (i.e., move together). More precisely, the covariance

TABLE 1.1 Performance of a Portfolio with Two Assets

Year Asset X Asset Y Return of Asset X Return of Asset Y
2008 100 200

2009 120 230 20.00% 15.00%
2010 108 460 —10.00% 100.00%
2011 190 410 75.93% -10.87%
2012 160 480 —15.79% 17.07%
2013 280 380 75.00% -20.83%

Average 29.03% 20.07%
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measures the strength of the linear relationship between two variables. The
covariance of returns for assets X and Y is derived with equation (1.3):

1 n
Covxy = n—_lzg(xt—ux)(yt—uﬂ (1.3)
t=
For our example in Table 1.1 we derive Covyxy = —0.1567. Equation

(1.3) is = Covariance.S in Excel and cov in MATLAB. The covariance is not
easy to interpret, since it takes values between —oo and +oco. Therefore, it is
more convenient to use the Pearson correlation coefficient pxy, which is a
standardized covariance; that is, it takes values between —1 and +1. The
Pearson correlation coefficient is:

COny

Pxy = (1.4)

O0x0y
For our example in Table 1.1, pxy = —0.7403, showing that the returns of
assets X and Y are highly negatively correlated. Equation (1.4) is ‘correl’ in
Excel and ‘corrcoef’ in MATLAB. For the derivation of the numerical examples
of equations (1.2) to (1.4) and more information on the covariances, see
Appendix 1A and the spreadsheet “Matrix primer.xlsx,” sheet “Covariance
matrix,” at www.wiley.com/go/correlationriskmodeling under “Chapter 1.”
We can calculate the standard deviation for our two-asset portfolio P as

Gp::\/%&0%<+lU§0%%—2udeyCOny (1.5)

With equal weights, i.e., wx = wy=10.5, theexamplein Table 1.1 results inop =
16.66%.

Importantly, the standard deviation (or its square, the variance) is
interpreted in finance as risk. The higher the standard deviation, the higher
the risk of an asset or a portfolio. Is standard deviation a good measure of
risk? The answer is: It’s not great, but it’s one of the best we have. A high
standard deviation may mean high upside potential, so it penalizes possible
profits! But a high standard deviation naturally also means high downside
risk. In particular, risk-averse investors will not like a high standard
deviation, i.e., high fluctuation of their returns.

An informative performance measure of an asset or a portfolio is the
risk-adjusted return, i.e., the return/risk ratio. For a portfolio it is pp/op,
which we derived in equations (1.1) and (1.5). In Figure 1.3 we observe one
of the few free lunches in finance: the lower (preferably negative) the
correlation of the assets in a portfolio, the higher the return/risk ratio.
For a rigorous proof, see Markowitz (1952) and Sharpe (1964).
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np/op with Respect to Correlation p
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FIGURE 1.3 The Negative Relationship of the Portfolio Return/Risk Ratio pp/op
with Respect to the Correlation p of the Assets in the Portfolio (Input Data are from
Table 1.1)

Figure 1.3 shows the high impact of correlation on the portfolio return/
risk ratio. A high negative correlation results in a return/risk ratio of close to
250%, whereas a high positive correlation results in a 50% ratio. The
equations (1.1) to (1.5) are derived within the framework of the Pearson
correlation approach. We will discuss the limitations of this approach in

Chapter 3.

Only by great risks can great results be achieved.
—Xeres

1.8.2 Trading and Gorrelation

In finance, every risk is also an opportunity. Therefore, at every major
investment bank and hedge fund correlation desks exist. The traders try to
forecast changes in correlation and attempt to financially gain from these
changes in correlation. We already mentioned the correlation strategy
“pairs trading.” Generally, correlation trading means trading assets whose
prices are determined at least in part by the comovement of one or more
asset in time. Many types of correlation assets exist.
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1.3.2.1 Multi-Asset Options A popular group of correlation options are
multi-asset options, also termed rainbow options or mountain range options.
Many different types are traded. The most popular ones are listed here. S; is
the price of asset 1 and S, is the price of asset 2 at option maturity. K is the
strike price, i.e., the price determined at option start, at which the underlying
asset can be bought in the case of a call, and the price at which the underlying
asset can be sold in the case of a put.

m Option on the better of two. Payoff = max(Sy, S>).

m Option on the worse of two. Payoff = min(Sy, S5).

m Call on the maximum of two. Payoff = max[0, max(S;, S,) — K].

m Exchange option (as a convertible bond). Payoff = max(0, S, — S;).
m Spread call option. Payoff = max[0, (S, — S;) — K].

m Option on the better of two or cash. Payoff = max(Sy, S5, cash).

m Dual-strike call option. Payoff = max(0, S; — Ky, S — K3).

m Portfolio of basket options. Payoff = [211%5" - K, 0} , where #; is the
weight of assets i. .

Importantly, the prices of these correlation options are highly sensitive to
the correlation between the asset prices S; and S,. In the list above, except for
the option on the worse of two, the lower the correlation, the higher the
option price. This makes sense since a low, preferable negative correlation
means that if one asset decreases, on average the other increases. So one of the
two assets is likely to result in a high price and a high payoff. Multi-asset
options can be conveniently priced using closed form extensions of the Black-
Scholes-Merton 1973 option model; see Chapter 9 for details.

Let’s look at the evaluation of an exchange option with a payoff of max(0,
S — 81). The payoff shows that the option buyer has the right to give away asset
1 and receive asset 2 at option maturity. Hence, the option buyer will exercise
her right if S, > S;. The price of the exchange option can be derived easily. We
first rewrite the payoff equation max(0, S — ;) = §; max[0, (S»/S;) — 1].
We then input the covariance between asset S; and S, into the implied volatility
function of the exchange option using a variation of equation (1.5):

O'E:\/O'%\—FO'%} —2Covap (1.5a)

where o is the implied volatility of S,/S;, which is input into the standard
Black-Scholes-Merton 1973 option pricing model.

For an exchange option pricing model and further discussion, see
Chapter 9, section 9.2.2 and the model “Exchange option.xls” at www.wiley
.com/go/correlationriskmodeling, under “Chapter 1.”
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Exchange Option Price with Respect to Correlation
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FIGURE 1.4 Exchange Option Price with Respect to Correlation of the Assets in
the Portfolio

For details on an exchange option as pricing and correlation risk management, see
Chapter 9, section 9.2.2.

Importantly, the exchange option price is highly sensitive to the correla-
tion between the asset prices S; and S,, as seen in Figure 1.4.

From Figure 1.4 we observe the strong impact of the correlation on
the exchange option price. The price is close to 0 for high correlation and
$15.08 for a negative correlation of —1. As in Figures 1.2 and 1.3, the
correlation approach underlying Figure 1.4 is the Pearson correlation model.
We will discuss the limitations of the Pearson correlation model in Chapter 3.

1.3.2.2 Quanto Option Another interesting correlation option is the quanto
option. This is an option that allows a domestic investor to exchange his
potential option payoff in a foreign currency back into his home currency at
a fixed exchange rate. A quanto option therefore protects an investor against
currency risk. For example, an American believes the Nikkei will increase, but
she is worried about a decreasing yen, which would reduce or eliminate her
profits from the Nikkei call option. The investor can buy a quanto call on the
Nikkei, with the yen payoff being converted into dollars at a fixed (usually
the spot) exchange rate.

Originally, the term quanto comes from the word quantity, meaning that
the amount that is reexchanged to the home currency is unknown, because it
depends on the future payoff of the option. Therefore the financial institution
that sells a quanto call does not know two things:

1. How deep in the money the call will be, i.e., which yen amount has to be
converted into dollars.
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2. The exchange rate at option maturity at which the stochastic yen payoff
will be converted into dollars.

The correlation between (1) and (2) i.e., the price of the underlying S and
the exchange rate X, significantly influences the quanto call option price. Let’s
consider a call on the Nikkei §” and an exchange rate X defined as domestic
currency per unit of foreign currency (so $/1 yen for a domestic American) at
maturity.

If the correlation is positive, an increasing Nikkei will also mean an
increasing yen. That is favorable for the call seller. She has to settle the payoff,
but only needs a small yen amount to achieve the dollar payment. Therefore,
the more positive the correlation coefficient, the lower the price for the quanto
option. If the correlation coefficient is negative, the opposite applies: If the
Nikkei increases, the yen decreases in value. Therefore, more yen are needed to
meet the dollar payment. As a consequence, the lower the correlation
coefficient, the more expensive the quanto option. Hence we have a similar
negative relationship between the option price and correlation as in Figure 1.2.

Quanto options can be conveniently priced closed form applying an
extension of the Black-Scholes-Merton 1973 model. For a pricing model and
a more detailed discussion on a quanto option, see the “Quanto option.xls”
model at www.wiley.com/go/correlationriskmodeling under “Chapter 1.”

1.3.2.3 Correlation Swap The correlation between assets can also be
traded directly with a correlation swap. In a correlation swap a fixed (i.e.,
known) correlation is exchanged with the correlation that will actually occur,
called realized or stochastic (i.e., unknown) correlation, as seen in Figure 1.5.

Paying a fixed rate in a correlation swap is also called buying correlation.
This is because the present value of the correlation swap will increase for the
correlation buyer if the realized correlation increases. Naturally the fixed rate
receiver is selling correlation.

The realized correlation p in Figure 1.5 is the correlation between the
assets that actually occurs during the time of the swap. It is calculated as:

2
Prealized = 75— Z Pij (1.6)
i>j

Fixed percentage (e.g., p = 10%)

»
>

Correlation Correlation
fixed rate it fixed rate
payer Realized p receiver

FIGURE 1.5 A Correlation Swap with a Fixed 10% Correlation Rate
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where p; ; is the Pearson correlation between asset i and j, and 7 is the number
of assets in the portfolio.

The payoff of a correlation swap for the correlation fixed rate payer
at maturity is:

N (prealized - pfixed) (17)

where N is the notional amount. Let’s look at an example of a correlation swap.

Correlation swaps can indirectly protect against decreasing stock prices.
As we will see in this chapter in section 1.4, as well as in Chapter 2, when
stocks decrease, typically the correlation between the stocks increases.
Hence a fixed correlation payer protects himself indirectly against a stock
market decline.

EXAMPLE 1.1: PAYOFF OF A CORRELATION SWAP

What is the payoff of a correlation swap with three assets, a fixed
rate of 10%, a notional amount of $1,000,000, and a 1-year maturity?
First, the daily log returns In(S,/S,_;{) of the three assets are
calculated for 1 year.! Let’s assume the realized pairwise correlations
of the log returns at maturity are as displayed in Table 1.2.
The average correlation between the three assets is derived by
equation (1.6). We apply the correlations only in the shaded area from

. . . . _ 2
Table 1.2, since these satisfy i > j. Hence we have pieajized = 3775

(0.5+0.3+0.1)=0.3. Following equation (1.7), the payoff for
the correlation fixed rate payer at swap maturity is $1,000,000 x
(0.3 — 0.1) = $200,000.

TABLE 1.2 Pairwise Pearson Correlation Coefficient at Swap Maturity

Sj—1 Sj— Si—3

Si—1 1 0.5 0.1

Si—2 1 0.3
Si—3 1

1. Log returns In(S1/Sy) are an approximation of percentage returns (S; — So)/So. We
typically use log returns in finance since they are additive in time, whereas percentage
returns are not. For details see Appendix 1B.
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Currently, year 2013, there is no industry-standard valuation model for
correlation swaps. Traders often use historical data to anticipate pealized. In
order to apply swap valuation techniques, we require a term structure of
correlation in time. However, no correlation term structure currently exists.
We can also apply stochastic correlation models to value a correlation
swap. Stochastic correlation models are currently emerging and will be
discussed in Chapter 8.

1.3.2.4 Buying Call Options on an Index and Selling CGall Options on Individual
Components Another way of buying correlation (i.e., benefiting from an
increase in correlation) is to buy call options on an index such as the Dow
Jones Industrial Average (the Dow) and sell call options on individual stocks
of the Dow. As we will see in Chapter 2, there is a positive relationship
between correlation and volatility. Therefore, if correlation between the
stocks of the Dow increases, so will the implied volatility* of the call on
the Dow. This increase is expected to outperform the potential loss from the
increase in the short call positions on the individual stocks.

Creating exposure on an index and hedging with exposure on individ-
ual components is exactly what the “London whale,” JPMorgan’s London
trader Bruno Iksil, did in 2012. Iksil was called the London whale because
of his enormous positions in credit default swaps (CDSs).> He had sold
CDSs on an index of bonds, the CDX.NA.IG.9, and hedged them by buying
CDSs on individual bonds. In a recovering economy this is a promising
trade: Volatility and correlation typically decrease in a recovering economy.
Therefore, the sold CDSs on the index should outperform (decrease more
than) the losses on the CDSs of the individual bonds.

But what can be a good trade in the medium and long term can be
disastrous in the short term. The positions of the London whale were so large
that hedge funds short-squeezed him: They started to aggressively buy
the CDS index CDX.NA.IG.9. This increased the CDS values in the index
and created a huge (paper) loss for the whale. JPMorgan was forced to buy
back the CDS index positions at a loss of over $2 billion.

2. Implied volatility is volatility derived (implied) by option prices. The higher the
implied volatility, the higher the option price.

3. Simply put, a credit default swap (CDS) is an insurance against default of an
underlying (e.g., a bond). However, if the underlying is not owned, a long CDS is a
speculative instrument on the default of the underlying (just like a naked put on a stock
is a speculative position on the stock going down). See Meissner (2005) for more.
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1.3.2.5 Paying Fixed in a Variance Swap on an Index and Receiving Fixed on
Individual Components A further way to buy correlation is to pay fixed in a
variance swap on an index and to receive fixed in variance swaps on
individual components of the index. The idea is the same as the idea with
respect to buying a call on an index and selling a call on the individual
components: If correlation increases, so will the variance. As a consequence,
the present value for the variance swap buyer, the fixed variance swap payer,
will increase. This increase is expected to outperform the potential losses from
the short variance swap positions on the individual components.

In the preceding trading strategies, the correlation between the assets was
assessed with the Pearson correlation approach. As mentioned, we will
discuss the limitations of this model in Chapter 3.

1.3.3 Risk Management and Correlation

After the global financial crisis from 2007 to 2009, financial markets
have become more risk averse. Commercial banks, investment banks, as
well as nonfinancial institutions have increased their risk management efforts.
As in the investment and trading environment, correlation plays a vital part in
risk management. Let’s first clarify what risk management means in finance.

Financial risk management is the process of identifying, quantifying, and,
if desired, reducing financial risk.

The three main types of financial risk are:

1. Market risk.
2. Credit risk.
3. Operational risk.

Additional types of risk may include systemic risk, liquidity risk, volatility
risk, and the topic of this book, correlation risk. We will concentrate in this
introductory chapter on market risk. Market risk consists of four types of risk:
(1) equity risk, (2) interest rate risk, (3) currency risk, and (4) commodity risk.

There are several concepts to measure the market risk of a portfolio, such
as value at risk (VaR), expected shortfall (ES), enterprise risk management
(ERM), and more. VaR is currently (year 2013) the most widely applied risk
management measure. Let’s show the impact of asset correlation on VaR.*

First, what is value at risk (VaR)? VaR measures the maximum loss of
a portfolio with respect to a certain probability for a certain time frame.
The equation for VaR is:

VaRp=o0p ay/x (1.8)

4. We use a variance-covariance VaR approach in this book to derive VaR. Another
way to derive VaR is the nonparametric VaR. This approach derives VaR from
simulated historical data. See Markovich (2007) for details.
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where VaRp is the value at risk for portfolio P, and « is the abscise value of
a standard normal distribution corresponding to a certain confidence level.
It can be derived as =normsinv(confidence level) in Excel or norminv
(confidence level) in MATLAB. « takes the values —o0 < o <400, x is
the time horizon for the VaR, typically measured in days; op is the volatility
of the portfolio P, which includes the correlation between the assets in the
portfolio. We calculate op via

op=/B,CB, (1.9)

where (3, is the horizontal 3 vector of invested amounts (price time quantity),
8, is the vertical 8 vector of invested amounts (also price time quantity),” and
C is the covariance matrix of the returns of the assets.

Let’s calculate VaR for a two-asset portfolio and then analyze the impact
of different correlations between the two assets on VaR.

EXAMPLE 1.2: DERIVING VaR OF A TWO-ASSET
PORTFOLIO

What is the 10-day VaR for a two-asset portfolio with a correlation
coefficient of 0.7, daily standard deviation of returns of asset 1 of 2%,
of asset 2 of 1%, and $10 million invested in asset 1 and $5 million
invested in asset 2, on a 99% confidence level?

First, we derive the covariances (Cov):

Covii =py; 0101 =1 x0.02 x 0.02 =0.0004°

Covia=p1y 01 02=0.7 X 0.02 x 0.01 =0.00014 (1.10)
Cova1 =py; 0201 =0.7 x0.01 x 0.02=0.00014
Covay =pyy 0202=1x0.01 x 0.01=0.0001

(continued)

5. More mathematically, the vector (3, is the transpose of the vector 3,, and vice versa:

B8, =B, and 8,7 = B,. Hence we can also write equation (1.9) as op=1/8,C3,".

See the spreadsheet “Matrix primer.xls,” sheet “Matrix Transpose,” at www.wiley.com/
go/correlationriskmodeling, under “Chapter 1.”

6. The attentive reader realizes that we calculated the covariance differently in
equation (1.3). In equation (1.3) we derived the covariance from scratch, inputting
the return values and means. In equation (1.10) we are assuming that we already know
the correlation coefficient p and the standard deviation o.
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(conlt_llnuez) , wrixcis C— [ 0-0004 0.00014
€nce our covariance matrix 1S = 0.00014 0.0001

Let’s calculate op following equation (1.9). We first derive 3,C

10 % 0.0004 + 5 x 0.00014 10 x 0.00014

0.0004 0.00014):(
+5x0.0001)=(0.0047 0.0019)

(103) ( 0.00014  0.0001

and then (3,C)3,=(0.0047 0.0019)(10> =10x0.0047+5 x 0.0019
7 5
=5.65%
Hence we have op=/8,C8, =Vv/5.65% =23.77%.

We find the value for o in equation (1.8) from Excel as = normsinv
(0.99) = 2.3264, or from MATLAB as norminv(0.99) = 2.3264.

Following equation (1.8), we now calculate the VaRp as 0.2377 x
2.3264 x /10 = 1.7486.

Interpretation: We are 99% certain that we will not lose more than
$1.75486 million in the next 10 days due to market price changes of
asset 1 and 2.

The number $1.7486 million is the 10-day VaR on a 99% confidence
level. This means that on average once in a hundred 10-day periods (so once
every 1,000 days) this VaR number of $1.7486 million will be exceeded. If we
have roughly 250 trading days in a year, the company is expected to exceed
the VaR about once every four years. The Basel Committee for Banking
Supervision (BCBS) considers this to be too often. Hence, it requires banks,
which are allowed to use their own models (called internal model-based
approach), to hold capital for assets in the trading book® in the amount of at
least 3 times the 10-day VaR (plus a specific risk charge for credit risk).
In example 1.2, if a bank is granted the minimum of 3 times the VaR, a VaR

7. The spreadsheet “2-asset VaR.xlsx,” which derives the values in example 1.2, can
be found at www.wiley.com/go/correlationriskmodeling, section under “Chapter 1.”
8. Assets that are marked-to-market, such as stocks, futures, options, and swaps, are
in the trading book. Some assets, such as loans and certain bonds, which are not
marked-to-market, are in the banking book.
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FIGURE 1.6 VaR of the Two-Asset Portfolio of Example 1.2 with Respect to
Correlation p between Asset 1 and Asset 2

capital charge for assets in the trading book of $1,7486 million x 3 =
$5.2539 million is required by the Basel Committee.”

Let’s now analyze the impact of different correlations between the asset 1
and asset 2 on VaR. Figure 1.6 shows the impact.

As expected, we observe from Figure 1.6 that the lower the correlation,
the lower the risk, measured by VaR. Preferably the correlation is negative.
In this case, if one asset decreases, the other asset on average increases,
hence reducing the overall risk. The impact of correlation on VaR is strong.
For a perfect negative correlation of —1, VaR is $1.1 million; for a perfect
positive correlation, VaR is close to $1.9 million.

9. In a recent Consultative Document (May 2012), the Basel Committee has indicated
that it is considering replacing VaR with expected shortfall (ES). Expected shortfall
measures tail risk (i.e., the size and probability of losses beyond a certain threshold).
See www.bis.org/publ/bcbs219.pdf for details. Loosely speaking, VaR answers the
question: “What is the maximum loss in good times?” Expected shortfall answers the
question: “What is the loss in bad times?”
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There are no toxic assets, just toxic people.

1.8.4 The Global Financial Crisis of 2007 to 2009
and Correlation

Currently, in 2013, the global financial crisis of 2007 to 2009 seems almost
like a distant memory. The U.S. stock market has recovered from its low in
March 2009 of 6,547 points and has more than doubled to over 15,000.
World economic growth is at a moderate 2.5%. However, the U.S.
unemployment rate is stubbornly high at around 8% and has not decreased
to pre-crisis levels of about 5%. Most important, to fight the crisis,
countries engaged in huge stimulus packages to revive their faltering
economies. As a result, enormous sovereign deficits are plaguing the world
economy. The European debt crisis, with Greece, Cyprus, and other
European nations virtually in default, is a major global economic threat.
The U.S. debt is also far from benign with a debt-to-GDP ratio of over 80%.
One of the few nations that is enjoying these enormous debt levels is China,
which is happy buying the debt and taking in the proceeds.

A crisis that brought the financial and economic system worldwide to a
standstill is naturally not monocausal, but has many reasons. Here are the
main ones:

m An extremely benign economic and risk environment from 2003 to
2006 with record low credit spreads, low volatility, and low interest
rates.

m Increasing risk taking and speculation of traders and investors who
tried to benefit in these presumably calm times. This led to a bubble in
virtually every market segment, such as the housing market, mortgage
market (especially the subprime mortgage market), stock market, and
commodity market. In 2007, U.S. investors had borrowed 470% of the
U.S. national income to invest and speculate in the real estate, financial,
and commodity markets.

m A new class of structured investment products, such as collateralized debt
obligations (CDOs), CDO-squareds, constant-proportion debt obliga-
tions (CPDOs), constant-proportion portfolio insurance (CPPI), as well
as new products like options on credit default swaps (CDSs), credit
indexes, and the like.

m The new copula correlation model, which was trusted naively by many
investors and which could presumably correlate the n(n — 1)/2 assets in
a structured product. Most CDOs contained 125 assets. Hence there
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are 125(125 — 1)/2 = 7,750 asset correlation pairs to be quantified and
managed. For details see Chapters 5 and 6.

m A moral hazard of rating agencies, which were paid by the same
companies whose assets they rated. As a consequence, many structured
products received AAA ratings and gave the illusion of little price and
default risk.

m Risk managers and regulators who lowered their standards in light of the
greed and profit frenzy. We recommend an excellent (anonymous) paper
in the Economist: “A Personal View of the Crisis, Confessions of a Risk
Manager.”

The topic of this book is correlation risk, so let’s concentrate on the
correlation aspect of the crisis. Around 2003, two years after the Internet
bubble burst, the risk appetite of the financial markets increased, and invest-
ment banks, hedge funds, and private investors began to speculate and invest in
the stock markets, commodity markets, and especially the real estate market.

In particular, residential mortgages became an investment object. The
mortgages were packaged in collateralized debt obligations (CDOs; see
Chapter 5 for a detailed discussion), and then sold off to investors nationally
and internationally. The CDOs typically consist of several tranches; that is,
the investor can choose a particular degree of default risk. The equity tranche
holder is exposed to the first 3% of mortgage defaults, the mezzanine tranche
holder is exposed to the 3% to 7% of defaults, and so on. The new copula
correlation model derived by Abe Sklar in 1959 and transferred to finance by
David Li in 2000 could presumably manage the default correlations in the
CDOs (see Chapters 5 and 6 for details).

The first correlation-related crisis, which was a forerunner of the major
one to come in 2007 to 2009, occurred in May 2005. General Motors was
downgraded to BB and Ford was downgraded to BB+, so both companies
were now in junk status. A downgrade to junk status typically leads to a sharp
bond price decline, since many mutual funds and pension funds are not
allowed to hold junk bonds.

Importantly, the correlation of the bonds in CDOs that referenced
investment grade bonds decreased, since bonds of different credit qualities
are typically lower correlated. This led to huge losses of hedge funds, which
had put on a strategy where they were short the equity tranche of the CDO
and long the mezzanine tranche of the CDO. Figure 1.7 shows the dilemma.
Hedge funds had shorted the equity tranche'® (0% to 3% in Figure 1.7) to

10. Shorting the equity tranche means being short credit protection or selling credit
protection, which means receiving the (high) equity tranche contract spread.
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FIGURE 1.7 CDO Tranche Spread with Respect to Correlation

collect the high equity tranche spread. They had then presumably hedged"’
the risk by going long the mezzanine tranche'? (3% to 7% in Figure 1.7).
However, as we can see from Figure 1.7, this hedge is flawed.

When the correlations of the assets in the CDO decreased, the hedge
funds lost on both positions.

1. The equity tranche spread increased sharply; see arrow 1. Hence the
fixed spread that the hedge funds received in the original transaction
was now significantly lower than the current market spread, resulting
in a paper loss.

2. In addition, the hedge funds lost on their long mezzanine tranche
positions, since a lower correlation lowers the mezzanine tranche spread;
see arrow 2. Hence the spread that the hedge funds paid in the original
transactions was now higher than the market spread, resulting in another
paper loss.

As a result of the huge losses, several hedge funds, such as Marin Capital,
Aman Capital, and Baily Coates Cromwell, filed for bankruptcy. It is
important to point out that the losses resulted from a lack of understanding
of the correlation properties of the tranches in the CDO. The CDOs

11. To hedge means to protect or to reduce risk. See Chapter 11, section 11.1, for
details.
12. Going long the mezzanine tranche means being long credit protection or buying
credit protection, which means paying the (fairly low) mezzanine tranche contract
spread.
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themselves can hardly be blamed or be called toxic for their correlation
properties.

From 2003 to 2006 the CDO market, mainly referencing residential
mortgages, had exploded, increasing from $64 billion to $455 billion. To fuel
the CDOs, more and more questionable subprime mortgages were given,
named NINJA loans, standing for “no income, no job or assets.” When
housing prices started leveling off in 2006, the first mortgages started to
default. In 2007 more and more mortgages defaulted, finally leading to a real
estate market collapse. With it the huge CDO market collapsed, leading to the
stock market and commodity market crash and a freeze in the credit markets.
The financial crisis spread to the world economies, creating a global severe
recession, now called the Great Recession.

In a systemic crash like this, naturally many types of correlations
increase (see also Figure 1.8). From 2007 to 2009, default correlations of
the mortgages in the CDOs increased. This actually helped equity tranche
investors, as we can see from Figure 1.7: If default correlations increase,
the equity tranche spread decreases, leading to an increase in the value of
the equity tranche. However, this increase was overcompensated by a strong
increase in default probability of the mortgages. As a consequence, tranche
spreads increased sharply, resulting in huge losses for the equity tranche
investors as well as investors in the other tranches.

Correlations between the tranches of the CDOs also increased during the
crisis. This had a devastating effect on the super-senior tranches. In normal
times, these tranches were considered extremely safe since (1) they were
AAA rated and (2) they were protected by the lower tranches. But with the
increased tranche correlation and the generally deteriorating credit market,
these super-senior tranches were suddenly considered risky and lost up to
20% of their value.

To make things worse, many investors had leveraged the super-senior
tranches, termed leveraged super-senior (LSS) tranches, to receive a higher
spread. This leverage was typically 10 to 20 times, meaning an investor paid
$10,000,000 but had risk exposure of $100,000,000 to $200,000,000.
What made things technically even worse was that these LSSs came with
an option for the investors to unwind the super-senior tranche if the spread
had widened (increased). Many investors started to purchase the LSS
spread at very high levels, realizing a loss and increasing the LSS tranche
spread even further.

In addition to the overinvestment in CDOs, the credit default swap (CDS)
market also exploded from its beginnings in the mid-1990s from about
$8 trillion in 2004 to almost $60 trillion in 2007. CDSs are typically used as
insurance to protect against default of a debtor, as we explained in Figure 1.1.
No one will argue that an insurance contract is toxic. On the contrary, it is the
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principle of an insurance contract to spread the risk to a wider audience and
hence reduce individual risk, as we can see from health insurance or life
insurance contracts.

CDSs, though, can also be used as speculative instruments. For example,
the CDS seller (i.e., the insurance seller) hopes that the insured event (e.g.,
default of a company or credit deterioration of the company) will not occur.
In this case the CDS seller keeps the CDS spread (i.e., the insurance premium)
as income, as American International Group (AIG) tried to do in the crisis. A
CDS buyer who does not own the underlying asset is speculating on the credit
deterioration of the underlying asset, just like a naked put option holder
speculates on the decline of the underlying asset.

So who is to blame for the 2007-2009 global financial crisis? The quants,
who created the new products such as CDSs and CDOs and the models to
value them? The upper management and the traders, who authorized and
conducted the overinvesting and extreme risk taking? The rating agencies,
who gave an AAA rating to many of the CDOs? The regulators, who
approved the overinvestments? The risk managers, who allowed the excessive
risk taking?

The entire global financial crisis can be summed up in one word: Greed!
It was the upper management, the traders, and the investors who engaged in
excessive trading and irresponsible risk taking to receive high returns, huge
salaries, and generous bonuses. For example, the London unit of AIG had
sold close to $500 billion in CDSs without much reinsurance! Their main
hedging strategy seemed to have been: Pray that the insured contracts don’t
deteriorate. The investment banks of the small Northern European country
of Iceland had borrowed 10 times Iceland’s national GDP and invested it.
With this leverage, Iceland naturally went de facto into bankruptcy in 2008,
when the credit markets deteriorated. Lehman Brothers, before filing
for bankruptcy in September 2008, reported a leverage of 30.7 (i.e.,
$691 billion in assets and only $22 billion in stockholders’ equity). The
true leverage was even higher, since Lehman tried to hide the leverage
with materially misleading repo transactions.' In addition, Lehman had
1.5 million derivatives transactions with 8,000 different counterparties on
its books.

Did the upper management and traders of hedge funds and investment
banks admit to their irresponsible leverage, excessive trading, and risk
taking? No. Instead they created the myth of the toxic asset, which is absurd.

13. Repo stands for repurchase transaction. It can be viewed as a short-term
collateralized loan.
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It is like a murderer saying, “I did not shoot that person. It was my gun!”
Toxic are not the financial products, but humans and their greed.

Most traders were well aware of the risks that they were taking. In the
few cases where traders did not understand the risks, the asset itself cannot
be blamed; rather, the incompetence of the trader is the reason for the loss.
While it is ethically disappointing that the investors and traders did not admit
to their wrongdoing, at the same time it is understandable. If they admitted to
irresponsible trading and risk taking, they would immediately be prosecuted.

Naturally, risk managers and regulators have to take part of the blame
for allowing the irresponsible risk taking. The moral hazard of the rating
agencies, being paid by the same companies whose assets they rate, also needs
to be addressed.

We will discuss the role of financial models, their benefits, and their
limitations at the beginning of Chapter 3.

1.3.5 Regulation and Gorrelation

Correlations are critical inputs in regulatory frameworks such as the Basel
accords, especially in regulations for market risk and credit risk. We will
discuss the correlation approaches of the Basel accords in this book. First,
let’s clarify.

1.3.5.1 What Are Basel I, Il, and II? Basel I, implemented in 1988; Basel II,
implemented in 2006; and Basel III, which is currently being developed and
implemented until 2018, are regulatory guidelines to ensure the stability of
the banking system.

The term Basel comes from the beautiful city of Basel in Switzerland,
where the honorable regulators meet. None of the Basel accords has legal
authority. However, most countries (about 100 for Basel II) have created
legislation to enforce the Basel accords for their banks.

1.3.5.2 Why Basel I, I, and l1? The objective of the Basel accords is to
“provide incentives for banks to enhance their risk measurement and
management systems” and “to contribute to a higher level of safety and
soundness in the banking system.” In particular, Basel III is being developed
to address the deficiencies of the banking system during the financial crisis
of 2007 to 2009. Basel III introduces many new ratios to ensure liquidity
and adequate leverage of banks. In addition, new correlation models will
be implemented that deal with double defaults in insured risk transactions
as displayed in Figure 1.1. Correlated defaults in a multi-asset portfolio
quantified with the Gaussian copula, correlations in derivatives transac-
tions termed credit value adjustment (CVA), and correlations in what is
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called wrong-way risk (WWR) are currently being discussed. We devote
the entire Chapter 12 to addressing the benefits and limitations of these
correlation approaches in Basel III.

1.4 HOW DOES CORRELATION RISK FIT INTO THE
BROADER PICTURE OF RISKS IN FINANCE?

As already mentioned in section 1.3.3, we differentiate three main types
of risks in finance:

1. Market risk
2. Credit risk
3. Operational risk

Additional types of risk may include systemic risk, concentration risk,
liquidity risk, volatility risk, legal risk, reputational risk, and more. Correla-
tion risk plays an important part in market risk and credit risk, and is closely
related to systemic risk and concentration risk. Let’s discuss it.

1.4.1 Correlation Risk and Market Risk

Correlation risk is an integral part of market risk. Market risk, comprised of
equity risk, interest rate risk, currency risk, and commodity risk. Market risk
is typically measured with the value at risk (VaR) concept. VaR has a
covariance matrix of the assets in the portfolio as an input. So market
risk implicitly incorporates correlation risk, i.e., the risk that the correlations
in the covariance matrix change. We have already studied the impact of
different correlations on VaR in section 1.3.3, “Risk Management and
Correlation.”

Market risk is also quantified with expected shortfall (ES), also termed
conditional VaR or tail risk. Expected shortfall measures market risk for
extreme events, typically for the worst 0.1%, 1%, or 5% of possible future
scenarios. A rigorous valuation of expected shortfall naturally includes the
correlation between the asset returns in the portfolio, as VaR does.'

14. Unfortunately, different authors use different definitions (and notation) for ES. To
study ES, we recommend the original ES paper by Artzner et al. (1997), an educational
paper by Yamai and Yoshiba (2002), as well as Acerbi and Tasche (2001) and McNeil,
Frey, and Embrechts (2005).
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1.4.2 Correlation Risk and Credit Risk

Correlation risk is also a critical part of credit risk. Credit risk is comprised of
(1) migration risk and (2) default risk. Migration risk is the risk that the credit
quality of a debtor decreases, i.e., migrates to a lower credit state. A lower
credit state typically results in a lower asset price, so a paper loss for the
creditor. We already studied in section 1.2 the effect of correlation risk of an
investor who has hedged his bond exposure with a CDS. We derived that the
investor is exposed to the correlation between the reference asset and the
counterparty, the CDS seller. The higher the correlation, the higher the CDS
paper loss for the investor and, importantly, the higher the probability of a
total loss of the investment.

The degree to which defaults occur together (i.e., default correlation) is
critical for financial lenders such as commercial banks, credit unions, mort-
gage lenders, and trusts, which give many types of loans to companies and
individuals. Default correlations are also critical for insurance companies,
which are exposed to credit risk of numerous debtors. Naturally, a low
default correlation of debtors is desired to diversify the credit risk. Table 1.3
shows the default correlation from 1981 to 2001 of 6,907 companies, of
which 674 defaulted.

The default correlations in Table 1.3 are one-year default correlations
averaged over the time period 1981 to 2001. We will see how to calculate
default correlations in Chapter 4, especially in section 4.2, “The Binomial
Correlation Measure” (Lucas 1995).

From Table 1.3, we observe that default correlations between indus-
tries are mostly positive with the exception of the energy sector. This
sector is typically viewed as a recession-resistant, stable sector with little
or no correlation to other sectors. We also observe that the default
correlation within sectors is higher than between sectors. This suggests
that systematic factors (e.g., a recession or structural weakness such as the
general decline of a sector) have a greater impact on defaults than do
idiosyncratic factors. Hence if General Motors defaults, it is more likely
that Ford will default, rather than Ford benefiting from the default of
its rival.

Since the intrasector default correlations are higher than intersector
default correlations, a lender is advised to have a sector-diversified loan
portfolio to reduce default correlation risk.

Defaults are binomial events, either default or no default. So principally
we can use a simple correlation model such as the binomial model of Lucas
(1995) to analyze them, which we will do in Chapter 4, section 4.2. However,
we can also analyze defaults in more detail and look at term structure of
defaults. Let’s assume a creditor has given loans to two debtors. One debtor is



TABLE 1.3 Default Correlation of 674 Defaulted Companies by Industry

One-Year U.S. Default Correlations—Non-Investment-Grade Bonds 1981-2001

Auto Cons Ener Fin Build Chem HiTech Insur Leis Tele Trans Util
Auto 3.80% 1.30% 1.20% 0.40% 1.10% 1.60% 2.80% -0.50% 1.00% 3.90% 1.30% 0.50%
Cons 1.30% 2.80% —-1.40% 1.20% 2.80% 1.60% 1.80% 1.10% 1.30% 3.20% 130% 1.90%
Ener 1.20% —-1.40% 6.40% —-2.50% —-0.50% 0.40% -0.10% -1.60% —-1.00% -1.40% -0.10% 0.70%
Fin 040% 1.20% —2.50% 520% 2.60% 0.10% 230% 3.00% 1.60% 3.70% 1.50% 4.50%
Build 1.10% 2.80% —0.50% 2.60% 6.10% 1.20% 2.30% 1.80% 230% 6.50% 4.20% 1.30%
Chem 1.60% 1.60% 0.40% 0.10% 1.20% 3.20% 1.40% -1.10% 1.10% 2.80% 1.10% 1.00%
HiTech 2.80% 1.80% -0.10% 0.40% 2.30% 1.40% 3.30% 0.00% 1.10% 2.80% 1.10% 1.00%
Insur  —0.50% 1.10% —1.60% 3.00% 1.80% —1.10% 0.00% 5.60% 120% —2.60% 2.30% 1.40%
Leis 1.00% 1.30% -1.00% 1.60% 2.30% 1.10% 1.40% 1.20% 2.30% 4.00% 230% 0.60%
Tele 3.90% 3.20% —-1.40% 3.70% 6.50% 2.80% 4.70% -2.60% 4.00% 10.70% 3.20% -—0.80%
Trans 1.30% 2.70% —-0.10% 1.50% 4.20% 1.10% 1.90% 230% 2.30% 3.20% 4.30% —-0.20%
Util 0.50% 1.90% 0.70% 4.50% 1.30% 1.00% 1.00% 1.40% 0.60% —0.80% -0.20% 9.40%

Correlations above 5% are bold.

Source: Standard & Poor’s (S&P) 500.
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TABLE 1.4 Term Structure of Default Probabilities for an A-Rated Bond and a
CC-Rated Bond in 2002

Year

1 2 3 4 5 6 7 8 9 10

A 0.02% 0.07% 0.13% 0.14% 0.15% 0.17% 0.18% 0.21% 0.24% 0.25%
CC 23.83% 13.29% 1031% 7.62% 5.04% 5.13% 4.04% 4.62% 2.62% 2.04%

Source: Moody’s.

A rated, and one is CC rated. A historical default term structure these bonds is
displayed in Table 1.4.

For most investment grade bonds, the term structure of default proba-
bilities increases in time, as we see from Table 1.4 for the A-rated bond. This is
because the longer the time horizon, the higher the probability of adverse
internal events such as mismanagement, or adverse external events such as
increased competition or a recession. For bonds in distress, however, the
default term structure is typically inverse, as seen for the CC-rated bond in
Table 1.4. This is because for a distressed company the immediate future is
critical. If the company survives the coming problematic years, the probabil-
ity of default decreases.

For a creditor, the default correlation of her debtors is critical. As
mentioned, a creditor will benefit from a low default correlation of her
debtors, which spreads the default correlation risk. We can correlate the
default term structures in Table 1.4 with the famous (now infamous) copula
model, which will be discussed in Chapter 4. This will allow us to answer such
questions as: “What is the joint probability of debtor 1 defaulting in year 3
and debtor 2 defaulting in year 5?7

Correlations always increase in stressed markets.
—John Hull

1.4.3 Correlation Risk and Systemic Risk

So far, we have analyzed correlation risk with respect to market risk and
credit risk and have concluded that correlations are a critical input when
quantifying market risk and credit risk. Correlations are also closely related
to systemic risk, which we define here.
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SYSTEMIC RISK

The risk of a financial market or an entire financial system collapsing.

An example of systemic risk is the collapse of the entire credit market in
2008. At the height of the crisis in September 2008, when Lehman Brothers
filed for bankruptcy, the credit markets were virtually frozen with essentially
no lending activities. Even as the Federal Reserve guaranteed interbank loans,
lending resumed only very gradually and slowly.

The stock market crash starting in October 2007 with the Dow Jones
Industrial Average at 14,093 points and then falling by 53.54% to 6,547
points by March 2009 is also a systemic market collapse. All but one of the
Dow 30 stocks had declined. Walmart was the lone Dow stock that was up
during the crisis. Of the S&P 500 stocks, 489 declined during this time frame.
The 11 stocks that were up were:

1. Apollo Group (APOL), educational sector; provides educational pro-
grams for working adults and is a subsidiary of the University of Phoenix.
2. AutoZone (AZO), auto industry; provides auto replacement parts.
3. CF Industries (CF), agricultural industry; provides fertilizer.
4.DeVry Inc. (DV), educational sector; holding company of several
universities.
5. Edward Lifesciences (EW), pharmaceutical industry; provides products
to treat cardiovascular diseases.
6. Family Dollar (FDO), consumer staples.
7. Gilead Pharmaceuticals (GILD), pharmaceutical industry; provides HIV,
hepatitis medications.
8. Netflix (NFLX), entertainment industry; provides Internet subscription
service.
9. Ross Stores (ROST), consumer staples.
10. Southwestern Energy (SWN), energy sector.
11. Walmart (WMT), consumer staples.

From this list we can see that the consumer staples sector (which provides
such basic necessities as food and household items) fared well during the
crisis. The educational sector also typically thrives in a crisis, since many
unemployed seek to further their education.

Importantly, systemic financial failures such as the one from 2007 to
2009 typically spread to the economy, with a decreasing GDP, increasing
unemployment, and therefore a decrease in the standard of living.
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FIGURE 1.8 Relationship between the Dow (graph with triangles, numerical values
on left axis) and Correlation between the Stocks in the Dow (numerical values on
right axis)

Systemic risk and correlation risk are highly dependent. Since a systemic
decline in stocks involves almost the entire stock market, correlations between
the stocks increase sharply. Figure 1.8 shows the relationship between the
percentage change of the Dow Jones Industrial Average, short “Dow,” and the
correlation between the stocks in the Dow before the crisis from May 2004 to
October 2007 and during the crisis from October 2007 to March 2009.

In Figure 1.8 we downloaded daily closing prices of all 30 stocks in the
Dow and put them into monthly bins. We then derived monthly 30 x 30
correlation matrices using the Pearson correlation measure and averaged the
matrices. We then smoothed the graph by taking the one-year moving
average.

From Figure 1.8 we can observe a somewhat stable correlation from 2004
to 2006, when the Dow increased moderately. In the time period from January
2007 to February 2008 we observe that the correlation in the Dow increases
when the Dow increases more strongly. Importantly, in the time of the severe
decline of the Dow from August 2008 to March 2009, we observe a sharp
increase in the correlation from noncrisis levels of on average 27% to over
50%.In Chapter 2, we will observe empirical correlations in detail, and we will
find that at the height of the crisis in February 2009 the correlation of the stocks
in the Dow reached a high of 96.97%. Hence, portfolios that were considered
well diversified in benign times experienced a sharp increase in correlation and
hence unexpected losses due to the combined, highly correlated decline of many
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stocks during the crisis. We will quantify this correlation risk and its associated
potential losses in detail in Chapters 9 and 10.

1.4.4 Correlation Risk and Concentration Risk

Concentration risk is a fairly new risk category and therefore not yet uniquely
defined. We provide a sensible definition.

GONCENTRATION RISK

The risk of financial loss due to a concentrated exposure to a particular
group of counterparties.

Concentration risk can be quantified with the concentration ratio. For
example, if a creditor has 10 loans of equal size, the concentration ratio
would be 1/10 = 0.1. If a creditor has only one loan to one counterparty, the
concentration ratio would be 1. Naturally, the lower the concentration ratio,
the more diversified is the default risk of the creditor, assuming the default
correlation between the counterparties is smaller than 1.

We can also categorize counterparties into groups, for example sectors. We
can then analyze sector concentration risk. The higher the number of different
sectors a creditor has lent to, the higher is the sector diversification. High sector
diversification reduces default risk, since intrasector defaults are more highly
correlated than counterparties in different sectors, as seen in Table 1.3.

Naturally, concentration risk and correlation risk are closely related.
Let’s verify this in an example.

EXAMPLE 1.3: CONCENTRATION RATIO
AND CORRELATION

CASE A

The commercial bank C has lent $10,000,000 to a single company, W.
So C’s concentration ratio is 1. Let’s assume company W has a default
probability (Py) of 10%. Hence the expected loss (EL) for bank C is
$10,000,000 x 0.1 = $1,000,000 (see Figure 1.9).
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FIGURE 1.8 Probability Space for the Default Probability of a
Single Loan to W

CASE B

The commercial bank C has lent $5,000,000 to company X and
$5,000,000 to company Y. Let’s assume both X and Y have a 10%
default probability. So C’s concentration ratio is reduced to %.

If the default correlation between X and Y is bigger than 0 and
smaller than 1, we derive that the worst-case scenario [i.e., the default
of Xand Y, P(X N Y), with a loss of $1,000,000] is reduced, as seen in
Figure 1.10.

The exact joint default probability P(X N Y) depends on the corre-
lation model and correlation parameter values, which will be discussed in
Chapters 3 to 8. For any model, though, if default correlation between
X and Yis 1, then there is no benefit from the lower concentration ratio.
The probability space would have the form as in Figure 1.9.

PXNY)

Px= ) P, =
10% 10%

Q

FIGURE 1.10 Probability Space for Loans to Companies X and Y
(continued)




32

CORRELATION RISK MODELING AND MANAGEMENT

(continued)
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FIGURE 1.11 Probability Space for Loans to Companies X, Y, and Z

CASE C

If we further decrease the concentration ratio, the worst-case scenario
(i.e., the expected loss of 10%) decreases further. Let’s assume the
lender C gives loans to three companies, X, Y, and Z, of $3.33 million
each. Let’s assume that the default probabilities of X, Y, and Z are 10%
each. Therefore the concentration ratio decreases to /3. The probabili-
ties are displayed in Figure 1.11.

Hence from Figures 1.9 to 1.11 we observe the benefits of a lower
concentration ratio. The worst-case scenario, an expected loss of
$1,000,000, reduces with a decreasing concentration ratio.

A decreasing concentration ratio is closely related to a decreasing
correlation coefficient. Let’s show this. The defaults of companies X
and Y are expressed as two binomial variables, which take the value 1
if in default, and 0 otherwise. Equation (1.11) gives the joint proba-
bility of default for the two binomial events:

P(X N Y)=pxyV/Px (1 — Px)Py (1 — Py)+ PxPy (1.11)

where pyy is the correlation coefficient and

Px (1 - Px) (1.12)

is the standard deviation of the binomially distributed variable X.
Let’s assume again that the lender C has given loans to X and Y of

$5,000,000 each. Both X and Y have a default probability of 10%.

Following equation (1.12), this means that the standard deviation for X

and Yis /0.1 x (1—0.1)=0.3.
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Let’s first look at the case where the default correlation is pxy = 1.
This means that X and Y cannot default individually. They can only
default together or survive together. The probability that they default
together is 10%. Hence the expected loss is the same as in case A:
EL = ($5,000,000 + $5,000,000) x 0.1 = $1,000,000. We can verify
this with equation (1.11) for the joint probability of two binomial
events,

P(XNY)=1x+/01({T =01 x01(T=01)+0.1x0.1=10%. The
probability space is graphically the same as Figure 1.9 with Px = Py =
10% as the probability event.

If we now decrease the correlation coefficient, we can see from
equation (1.11) that the worst-case scenario, the joint default probability
of X and Y, P(X N Y), will decrease. For example, pxy = 0.5 results in
P(X N Y)=5.5%,and pxy= 0 resultsin P(X N Y)=1%. Interestingly,
even a slightly negative correlation coefficient can result in a positive joint
default probability if the standard deviation of the binomial events is
fairly low and the default probabilities are high. In our example, the
standard deviation of both entities is 30% and a default probability of
both entities is 10%. Together with a negative correlation coefficient
of —0.1, following equation (1.11), this leads to a joint default proba-
bility of 0.1%. We will discuss the binomial correlation model in more
detail in Chapter 4, section 4.2.

In conclusion, we have shown the beneficial aspect of a lower
concentration ratio, which is closely related to a lower correlation
coefficient. In particular, both a lower concentration ratio and a lower
correlation coefficient reduce the worst-case scenario for a creditor, the
joint probability of default of his debtors.

In Chapter 12, section 12.2, we will verify this result and find that a
higher (copula) correlation between assets results in a higher credit value
at risk (CVaR). CVaR measures the maximum loss of a portfolio of
correlated debt with a certain probability for a certain time frame. Hence
CVaR measures correlated default risk and is analogous to the VaR
concept for correlated market risk, which we discussed in section 1.3.

1.5 A WORD ON TERMINOLOGY

As mentioned in section 1.3.2, “Trading and Correlation,” we find the terms
correlation desks or correlation trading in trading practice. Correlation
trading means that traders trade assets or execute trading strategies whose
value is at least in part determined by the comovement of two or more assets
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in time. We already mentioned pairs trading, the exchange option, and the
quanto option as examples of correlation trading. In trading practice, the
term correlation is typically applied quite broadly, referring to any comove-
ment of asset prices in time.

However, in financial theory, especially in recent publications, the term
correlation is often defined more narrowly, referring only to the linear
Pearson correlation model, as in Cherubini, Luciano, and Vecchiato
(2004), Nelsen (2006), or Gregory (2010). These authors refer to other
than Pearson correlation coefficients as dependence measures or measures of
association. However, in financial theory the term correlation is also often
applied generally to describe dependencies, as in the terms credit correlation,
default correlation, or volatility-asset return correlation, which are quantified
by non-Pearson models as in Heston (1993), Lucas (1995), or Li (2000).

In this book, we will refer to the Pearson coefficient, discussed in Chapter 3,
section 3.1, as correlation coefficient and the coefficients derived by non-
Pearson models as dependency coefficients. In accordance with most literature,
we will refer to all methodologies that measure some form of dependency as
correlation models or dependency models. Ordinal dependence measures,
discussed in sections 3.2 and 3.3, which are related to the Pearson correlation
approach, will be termed rank correlation measures.

1.6 SUMMARY

There are two types of financial correlations: (1) Static correlations measure
how two or more financial assets are associated within a certain time period,
for example a year. (2) Dynamic financial correlations measure how two or
more financial assets move together in time.

Correlation risk can be defined as the risk of financial loss due to adverse
movements in correlation between two or more variables. These variables can
be financial variables such as correlated defaults of two debtors or non-
financial such as the correlation between political tensions and an exchange
rate. Correlation risk can be nonmonotonous, meaning that the dependent
variable, for example the CDS spread, can sometimes increase and sometimes
decrease when the correlation parameter value increases.

Correlations and correlation risk are critical in many areas in finance,
such as investments, trading, and especially in risk management, where
different correlations result in very different degrees of risk. Correlations
also play a key role in a systemic crisis, where correlations typically increase
and can lead to high unexpected losses. As a result, the Basel III accord has
introduced several correlation concepts and measures to reduce correlation
risk (see Chapter 12 for details).
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Correlation risk can be categorized as its own type of risk. However,
correlation parameters and correlation matrices are critical inputs and hence
a part of market risk and credit risk. Market risk and credit risk are highly
sensitive to changing correlations. Correlation risk is also closely related to
concentration risk, as well as systemic risk, since correlations typically
Increase in a systemic crisis.

The term correlation is not uniquely defined. In trading practice,
correlation is applied quite broadly and refers to the comovements of
assets in time, which may be measured by different correlation concepts.
In financial theory, the term correlation is often defined more narrowly,
referring only to the linear Pearson correlation coefficient. Non-Pearson
correlation measures are termed dependence measures or measures of
association.

APPENDIX 1A: DEPENDENCE AND CORRELATION

Dependence

In statistics, two events are considered dependent if the occurrence of one
affects the probability of another. Conversely, two events are considered
independent if the occurrence of one does not affect the probability of
another. Formally, two events, A and B, are independent if and only if
the joint probability equals the product of the individual probabilities:

P(A N B) = P(A)P(B) (1A.1)
Solving equation (1A.1) for P(A), we get

P(AN B
Hmziﬂ%l

P(ANB)

Following the Kolmogorov definition P(5) = P(A|B), we derive

_PANB)

P(A) P(B)

= P(A|B) (1A.2)

where P(A|B) is the conditional probability of A with respect to B. P(A|B)
reads “probability of A given B.” In equation (1A.2), the probability of A,
P(A), is not affected by B, since P(A) = P(A|B); hence the event A is
independent from B.
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From equation (1A.2) we also derive

_PANB)

P(B) D]

=P(B|A) (1A.3)

Hence from equation (1A.1) it follows that A is independent from B and
B is independent from A.

Example of Statistical Independence The historical default probability of
company A is P(A) = 3%, the historical default probability of company B
is P(B) = 4%, and the historical joint probability of default is 3% x 4% =
0.12%. In this case P(A) and P(B) are independent. This is because from
equation (1A.2), we have

P(AN B 3% x 4%
P(A):%:P(A|B):3%:T:3%

Since P(A) = P(A|B), the default probability of company A is independent
from the default probability of company B. Using equation (1A.3), we can do
the same exercise for the default probability of company B, which is
independent from the default probability of company A.

Correlation

As mentioned in section 1.5, the term correlation is not uniquely defined.
In trading practice, the term correlation is used quite broadly, referring to
any comovement of asset prices in time. In statistics, correlation is typically
defined more narrowly and typically refers to the linear dependency derived
in the Pearson correlation model. Let’s look at the Pearson covariance
and relate it to the dependence discussed earlier.

A covariance measures how strong the linear relationship between two
variables is. These variables can be deterministic (meaning their outcome is
known), as the historical default probabilities in equation 1A.1. For random
variables (variables with an unknown outcome such as flipping a coin), the
Pearson covariance is derived with expectation values:

Cov(X,Y)=E[(X — E(X))(Y — E(Y))|=E(XY) — E(X)E(Y) (1A.4)
where E(X) and E(Y) are the expected values of (X) and (Y) respectively, also

known as the mean, and E(XY) is the expected value of the product of the
random variables X and Y.
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The covariance in equation (1A.4) is not easy to interpret. Therefore,
often a normalized covariance, the correlation coefficient, is used. The Pearson
correlation coefficient p(XY) is defined as

Cov(X,Y)

p(X,Y)= S (X)o(Y)

(1A.5)
where o(X) and o(Y) are the standard deviations of X and Y, respectively.
While the covariance takes values between —oo and +oo, the correlation
coefficient conveniently takes values between —1 and +1.

Independence and Uncorrelatedness

From equation (1A.1) above we find that the condition for independence of
two random variables is E(XY) = E(X) E(Y). From equation (1A.4) we see
that E(XY) = E(X) E(Y) is equal to a covariance of zero. Therefore, if two
variables are independent, their covariance is zero.

Is the reverse also true? Does a zero covariance mean independence?
The answer is no. Two variables can have a zero covariance even when
they are dependent! Let’s show this with an example. For the parabola
Y = X?, Y is clearly dependent on X, since Y changes when X changes.
However, the correlation of the function Y = X? derived by equations
(1A.4) or (1A.5) is zero! This can be shown numerically and algebraically.
For a numerical derivation, see the simple spreadsheet “Dependence and
Correlation.xlsm,” sheet 1, at www.wiley.com/go/correlationriskmodeling,
under “Chapter 1.”

Algebraically, we have from equation (1A.4):

Cov(X,Y)=E(XY)— E(X)E(Y)
Inputting Y = X2, we derive

Cov(X,Y) = E(X X?)— E(X)E(X?)
= E(X?) - E(X)E(X?)

Let X be a uniform variable bounded in [—1, +1]. Then the mean E(X) is zero
and we have

Cov(X,Y) = 0—0E(X?)
=0

For a numerical example, see the spreadsheet “Dependence and
Correlation.xIsm,” sheet 2, at www.wiley.com/go/correlationriskmodeling
under “Chapter 1.”


http://www.wiley.com/go/correlationriskmodeling
http://www.wiley.com/go/correlationriskmodeling
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In conclusion, the Pearson covariance or correlation coefficient can give
values of zero; that is, it tells us that the variables are uncorrelated, even if
the variables are dependent! This is because the Pearson correlation concept
measures only linear dependence. It fails to capture nonlinear relationships.
This shows the limitation of the Pearson correlation concept for finance,
since most financial relationships are nonlinear. See Chapter 3 for a more
detailed discussion on the Pearson correlation model.

APPENDIX 1B: ON PERCENTAGE AND
LOGARITHMIC CHANGES

In finance, growth rates are expressed as relative changes, (S, — S,_1)/S;_1,
where S; and S,_1 are the prices of an asset at time ¢ and ¢ — 1, respectively.
For example, if S; = 110, and S,_; = 100, the relative change is (110 — 100)/
100 = 0.1 = 10%.

We often approximate relative changes with the help of the natural
logarithm:

(St_St—l)/St—l ~ In (St/st—l) (1B.1)

This is a good approximation for small differences between S; and S;_;.
Ln(S/S;_1) is called a log return. The advantage of using log returns is that
they can be added over time. Relative changes are not additive over time.
Let’s show this in two examples.

Example 1: A stock price at ¢y is $100. From #g to #y, the stock increases
by 10%. Hence the stock increases to $110. From t; to t, the stock increases
again by 10%. So the stock price increases to $110 x 0.1 = $121.
This increase of 21% is higher than adding the percentage increases of
10% + 10% = 20%. Hence percentage changes are not additive over time.

Let’s look at the log returns. The log return from ¢ to #; is In(110/100) =
9.531%. From #; to #, the log return is In(121/110) = 9.531%. When adding
these returns, we get 9.531% + 9.531% = 19.062%. This is the same as the
log return from ¢; to t,; thatis, In(121/100) = 19.062%. Hence log returns are
additive in time."?

Let’s now look at another, more extreme example.

Example 2: A stock price in o is $100. It moves to $200 in ¢; and back to
$100in #,. The percentage change from o to t1 is ($200 — $100)/$100 = 100%.

15. We could also have solved for the absolute value 121, which matches a logarithmic
growth rate of 9.531%: In(x/110) = 9.531%, or In(x) — In(110) = 9.531%, or In(x) =
In(110) + 9.531%. Taking the power of e, we get e = x = ((IN(110+0.09531) _ 177
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The percentage change from #; to ¢, is ($100 — $200)/(200) = —50%. Adding
the percentage changes, we derive +100% — 50% = 4+50%, although the
stock has not increased from 7, to #,! Naturally, this type of performance
measure is incorrect and not allowed in accounting.

Log returns give the correct answer: The log return from ¢, to #; is In(200/
100) = 69.31%. The log return from #; to #, is In(100/200) = —69.31%.
Adding these log returns in time, we get the correct return of the stock price
from ty to £, of 69.31% — 69.31% = 0%.

These examples are displayed in the simple spreadsheet “Log returns.xlsx”
at www.wiley.com/go/correlationriskmodeling, under “Chapter 1.”

PRACTICE QUESTIONS AND PROBLEMS

. What two types of financial correlations exist?
. What is wrong-way correlation risk or short wrong-way risk?
. Correlations can be nonmonotonous. What does this mean?
. Correlations are critical in many areas in finance. Name five.
. High diversification is related to low correlation. Why is this considered
one of the few free lunches in finance?
. Create a numerical example and show why a lower correlation results in a
higher return/risk ratio.
. What is correlation trading?
. What is pairs trading?
. Name three correlation options in which a lower correlation results in a
higher option price.
10. Name one correlation option where a lower correlation results in a higher
option price.
11. Create a numerical example of a two-asset portfolio and show that a
lower correlation coefficient leads to a lower VaR number.
12. Why do correlations typically increase in a systemic market crash?
13.In 2005, a correlation crisis with respect to CDOs occurred that led to
huge losses for several hedge funds. What happened?
14. In the global financial crisis of 2007 to 2009, many investors in the
presumably safe super-senior tranches got hurt. What exactly happened?
15. What is the main objective of the Basel III accord?
16. The Basel accords have no legal authority. Why do most developed
countries implement them?
17. How is correlation risk related to market risk and to credit risk?
18. How is correlation risk related to systemic risk and to concentration
risk?

2 N bW =
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19. How can we measure the joint probability of occurrence of a binomial
event as default or no default?

20. Can it be that two binomial events are negatively correlated but they have
a positive probability of joint default?

21. Whatis value at risk (VaR) and credit value at risk (CVaR)? How are they
related?

22. Correlation risk is quite broadly defined in trading practice, referring to
any comovement of assets in time. How is the term correlation defined in
statistics?

23. What do the terms measure of association and measure of dependence
refer to in statistics?
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Empirical Properties of
Correlation: How Do Correlations
Behave in the Real World?

Anything that relies on correlation is charlatanism.
—Nassim Taleb

I n this chapter we show that, contrary to common beliefs, financial correla-
tions display statistically significant and expected properties. We show that
correlation levels as well as correlation volatility are generally higher in
economic crises, which should be taken into consideration by traders and risk
managers. We also find strong mean reversion in correlations as well as
expected behavior of autocorrelation. The distribution of correlations is
typically not normal or lognormal.

2.1 HOW DO EQUITY CORRELATIONS BEHAVE
IN A RECESSION, NORMAL ECONOMIC PERIOD,
OR STRONG EXPANSION?

In our study, we observed daily closing prices of the 30 stocks in the Dow
Jones Industrial Average (Dow) from January 1972 to October 2012.
This resulted in 10,303 daily observations of the Dow stocks and hence
10,303 x 30 = 309,090 closing prices. We built monthly bins and derived
900 correlation values (30 x 30) for each month, applying the Pearson
correlation approach (see Chapter 3 for details). Since we had 490 months in
the study, all together we derived 490 x 900 = 441,000 correlation values.
We eliminated the unity correlation values on the diagonal of each correlation

43
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1.2

Monthly Correlation Levels of the Stocks in the Dow
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FIGURE 2.1 Average Correlation of Monthly 30 x 30 Dow Stock Bins

The light gray background represents an expansionary economic period, the medium
gray background a normal economic period, and the dark gray background a
recession. The horizontal line shows the polynomial trend line of order 4.

matrix and derived 441,000 — (30 x 490) = 426,300 correlation values
as inputs.

The composition of the Dow is changing in time, with successful stocks
being put into the Dow and unsuccessful stocks being removed. Our study is
comprised of the Dow stocks that represent the Dow at each particular point
in time.

Figure 2.1 shows the 490 monthly averaged correlation levels from 1972 to
2012 with respect to the state of the economy. We differentiate three states: an
expansionary period with gross domestic product (GDP) growth rates of 3.5%
or higher, a normal economic period with growth rates between 0% and
3.49%, and a recession with two consecutive quarters of negative growth rates.

Figure 2.2 shows the volatility of the averaged monthly correlations. For
the calculation of volatility, see Chapter 1, section 1.3.1.

From Figures 2.1 and Figures 2.2 we observe the somewhat erratic
behavior of Dow correlation levels and volatility. However, Table 2.1 reveals
some expected results.

From Table 2.1 we observe that correlation levels are lowest in strong
economic growth times. The reason may be that in strong growth periods
equity prices react primarily to idiosyncratic, not macroeconomic factors.
In recessions, correlation levels typically increase, as shown in Table 2.1.
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Monthly Correlation Volatility of the Stocks in the Dow
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FIGURE 2.2 Correlation Volatility of the Average Correlation of Monthly 30 x 30
Dow Stock Bins with Respect to the State of the Economy. The horizontal line shows
the polynomial trend line of order 4.

In addition, we have already displayed in Chapter 1, section 1.4, Figure 1.8,
that correlation levels increased sharply in the Great Recession from 2007 to
2009. In a recession, macroeconomic factors seem to dominate idiosyncratic
factors, leading to a downturn of multiple stocks.

A further expected result in Table 2.1 is that correlation volatility is
lowest in an economic expansion and highest in worse economic states. We
did expect a higher correlation volatility in a recession compared to a normal
economic state. However, it seems that high correlation levels in a recession
remain high without much additional volatility. Generally, correlation vola-
tility is high, as we can also observe from the somewhat erratic correlation
function in Figure 2.1. We will analyze whether the correlation volatility is an
indicator for future recessions in section 2.5. Altogether, Table 2.1 displays
the higher correlation risk in bad economic times, which traders and risk
managers should consider in their trading and risk management.

TABLE 2.1 Correlation Level and Correlation Volatility with Respect to the State of
the Economy

Correlation Level Correlation Volatility
Expansionary period 27.46% 71.17%
Normal economic period 32.73% 83.40%

Recession 36.96% 80.48%
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Scatter Plot of Correlation Level-Correlation Volatility
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FIGURE 2.3 Dositive Relationship between Correlation Level and Correlation
Volatility with a Polynomial Trend Line of Order 2

From Table 2.1 we observe a generally positive relationship between
correlation level and correlation volatility. This is verified in more detail
in Figure 2.3.

2.2 DO EQUITY CORRELATIONS EXHIBIT
MEAN REVERSION?

Mean reversion is the tendency of a variable to be pulled back to its long-term
mean. In finance, many variables, such as bonds, interest rates, volatilities,
credit spreads, and more, are assumed to exhibit mean reversion. Fixed
coupon bonds, which do not default, exhibit strong mean reversion: A bond is
typically issued at par, for example at $100. If the bond does not default, at
maturity it will revert to exactly that price of $100, which is typically close to
its long-term mean.

Interest rates are also assumed to be mean reverting: In an economic
expansion, typically demand for capital is high and interest rates rise. These
high interest rates will eventually lead to a cooling off of the economy,
possibly leading to a recession. In this process, capital demand decreases and
interest rate decrease from their high levels towards their long-term mean,
eventually falling below their long-term mean. Being in a recession, eventually
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economic activity increases again, often supported by monetary and fiscal
policy. In this reviving economy, demand for capital increases, in turn
increasing interest rates to their long-term means.

2.2.1 How Can We Quantify Mean Reversion?

Mean reversion is present if there is a negative relationship between the
change of a variable, S; — S,_1, and the variable at # — 1, S;_ . Formally, mean
reversion exists if

IS¢ — S¢-1)
FI <0 (2.1)

where

Sy price at time ¢
S;_1: price at the previous point in time ¢ — 1
0d: partial derivative coefficient

Equation (2.1) tells us: If S;_; increases by a very small amount, S; — S, 4
will decrease by a certain amount, and vice versa. This is intuitive: If S,_; has
decreased and is low at t — 1 (compared to the mean of S, i), then at the
next pointin time ¢, mean reversion will pull up S,_4 to pgand therefore increase
S; — ;1. If S;_1 has increased and is high in ¢ — 1 (compared to the mean of
S, ns), then at the next point in time #, mean reversion will pull down S;_; to pg
and therefore decrease S; — S;_ 1. The degree of the pullis the degree of the mean
reversion, also called mean reversion rate, mean reversion speed, or gravity.

Let’s quantify the degree of mean reversion. Let’s start with the discrete
Vasicek 1977 process, which goes back to Ornstein-Uhlenbeck 1930:

S, =S 1=aus—S;_1)At +ogeV At (2.2)
where

Sy price at time ¢

S;_1: price at the previous point in time ¢ — 1

a: degree of mean reversion, also called mean reversion rate or gravity,
0<a<1

ps: long-term mean of §

os: volatility of S

e: random drawing from a standardized normal distribution at time ¢,
e(t): m ~ (0,1)
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We can compute € as =normsinv(rand()) in Excel/VBA and norminv
(rand) in MATLAB.

We are currently interested only in mean reversion, so for now we will
ignore the stochasticity part in equation (2.2), ogeV/At.

For ease of explanation, let’s assume A¢ = 1. Then, from equation (2.2) we
see that a mean reversion parameter of @ = 1 will pull S;_; to the long-term
mean pg completely at every time step. For example, if S,_{ is 80 and pg is 100,
thena (pg — S;—1) =1 x (100 — 80) =20, so the S,_; of 80 is mean reverted up
to its long-term mean of 100. Naturally, a mean reversion parameter a of
0.5 will lead to a mean reversion of 50% ateach time step, and a mean reversion
parameter a of 0 will result in no mean reversion.

Let’s now quantify mean reversion. Setting At to 1, equation (2.2)
without stochasticity reduces to

St =S 1=a(pg— St-1) (2.3)
or
St - St,1 =apug — ﬂSt,1 (24)

To find the mean reversion rate a, we can run a standard regression
analysis of the form

Y=a+BX

Following equation (2.4), we are regressing S, — S;_ 1 with respect to S;_1:

St =81 =apg —aS;q (2.5)
Y BX
o (

Importantly, from equation (2.5), we observe that the regression
coefficient 3 is equal to the negative mean reversion parameter a.

We now run a regression of equation (2.5) to find the empirical mean
reversion of our correlation data. Hence S represents the 30 x 30 Dow stock
monthly average correlations from 1972 to 2012. The regression analysis is
displayed in Figure 2.4.

The regression function in Figure 2.4 displays a strong mean reversion of
77.51%. This means that on average in every month, a deviation from the
long-term correlation mean (34.83 % in our study) is pulled back to that long-
term mean by 77.51%. We can observe this strong mean reversion also by
looking at Figure 2.1. An upward spike in correlation is typically followed
by a sharp decline in the next time period, and vice versa.

Let’s look at an example of modeling correlation with mean reversion.
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Correlation mean reversion of Dow stocks
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FIGURE 2.4 Regression Function (2.5) for 490 Monthly Average Dow Correlations
from 1972 to 2012

EXAMPLE 2.1: EXPECTED GORRELATION

The long-term mean of the correlation data is 34.83%. In February
2012, the averaged correlation of the 30 x 30 Dow correlation
matrices was 26.15%. From the regression function from 1972 to
2012, we find that the average mean reversion is 77.51%. What is the
expected correlation for March 2012 following equation (2.3) or (2.4)?

Solving equation (2.3) for S, we have S;=a (ng— S;—1) + S¢—1-
Hence the expected correlation in March is

S;=0.7751 x (0.3483 — 0.2615) + 0.2615 = 0.3288

As a result, we find that the mean reversion rate of 77.51%
increases the correlation in February 2012 of 26.15% to an expected
correlation in March 2012 of 32.88%."

1. Note that we have omitted any stochasticity, which is typically included when
modeling financial variables, as shown in equation (2.2).
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2.3 DO EQUITY CORRELATIONS EXHIBIT
AUTOCORRELATION?

Autocorrelation is the degree to which a variable is correlated to its past values.
Autocorrelation can be quantified with the Nobel Prize-winning autoregres-
sive conditional heteroscedasticity (ARCH) model of Robert Engle (1982) or its
extension, generalized autoregressive conditional heteroscedasticity (GARCH)
by Tim Bollerslev (1986), see Chapter 8, section 8.3, for more details. However,
we can also regress the time series of a variable to its past time series values to
derive autocorrelation. This is the approach we will take here.

In finance, positive autocorrelation is also termed persistence. In mutual
fund or hedge fund performance analysis, an investor typically wants to know
if an above-market performance of a fund has persisted for some time (i.e., is
positively correlated to its past strong performance).

The question whether autocorrelation exists is an easy one. Autocorrelation
is the “reverse property” to mean reversion: The stronger the mean reversion (i.
e., the more strongly a variable is pulled back to its mean), the lower the
autocorrelation (i.e., the less it is correlated to its past values), and vice versa.

For our empirical correlation analysis, we derive the autocorrelation
(AC) for a time lag of one period with equation (2.6):

B Cov(p;; py_1)
AC(ps; ppm1) = o) (2.6)

where

AC: autocorrelation

ps: correlation values for time period ¢ (in our study the monthly average
of the 30 x 30 Dow stock correlation matrices from 2/1/1972 to
12/13/2012, after eliminating the unity correlation on the diagonal)

ps_1: correlation values for time period ¢ — 1 (i.e., the monthly correlation
values starting and ending one month prior than period #)

Cov: covariance; see equation (1.3) for details.

Equation (2.6) is algebraically identical with the Pearson correlation
coefficient equation (1.4) in Chapter 1. The autocorrelation just uses the
correlation values of time period ¢ and time period ¢ — 1 as inputs.

Following equation (2.6), we find the one-period lag autocorrelation of
the correlation values from 1972 to 2012 to be 22.49%. As mentioned
earlier, autocorrelation is the opposite property of mean reversion. Therefore,
not surprisingly, the autocorrelation of 22.49% and the mean reversion in
our study of 77.51% (see previous section 2.2) add up to 1.

Figure 2.5 shows the autocorrelation with respect to different time lags.
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FIGURE 2.5 Autocorrelation of Monthly Average 30 x 30 Dow Stock Correlations
from 1972 to 2012. The time period of the lags is months.

From Figure 2.5 we observe that time lag 2 autocorrelation is highest, so
autocorrelation with respect to two months prior produces the highest
autocorrelation. Altogether we observe the expected decay in autocorrelation
with respect to time lags of earlier periods.

2.4 HOW ARE EQUITY CORRELATIONS
DISTRIBUTED?

The input data of our distribution tests are daily correlation values between
all 30 Dow stocks from 1972 to 2012. This resulted in 426,300 correlation
values. The distribution is shown in Figure 2.6.

From Figure 2.6, we observe the mostly positive correlations between the
stocks in the Dow. In fact, 77.23% of all 426,300 correlation values were
positive.

We tested 61 distributions for fitting the histogram in Figure 2.6,
applying three standard fitting tests: (1) Kolmogorov-Smirnov, (2) Anderson-
Darling, and (3) chi-squared. Not surprisingly, the versatile Johnson SB
distribution with four parameters, v and & for the shape, p for location,
and o for scale, provided the best fit. Standard distributions such as normal
distribution, lognormal distribution, or beta distribution provided a poor fit.

We also tested the correlation distribution between the Dow stocks for
different states of the economy. The results were slightly but not significantly
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FIGURE 2.6 Histogram of 426,300 Correlations between the Dow 30 Stocks from
1972 t0 2012
The continuous line shows the Johnson SB distribution, which provided the best fit.

different; see the file “Correlation Fitting.docx” at www.wiley.com/go/
correlationriskmodeling, under “Chapter 2.”

2.5 18 EQUITY CORRELATION VOLATILITY
AN INDICATOR FOR FUTURE RECESSIONS?

In our study from 1972 to 2012, six recessions occurred:

. A severe recession in 1973-1974 following the first oil price shock.

. A short recession in 1980.

. A severe recession in 1981-1982 following the second oil price shock.

. A mild recession in 1990-1991.

. A mild recession in 2001 after the Internet bubble burst.

. The Great Recession from 2007 to 2009 following the global financial
crisis.

AN nNhh WN =


http://www.wiley.com/go/correlationriskmodeling
http://www.wiley.com/go/correlationriskmodeling

Empirical Properties of Correlation: How Do Correlations Behave in the Real World? 93

TABLE 2.2 Decrease in Correlation Volatility Preceding a Recession

% Change in Correlation Severity of Recession

Volatility before Recession (% Change of GDP)
1973-1974 —7.22% —11.93%
1980 -10.12% -6.53%
1981-1982 —4.65% -12.00%
1990-1991 0.06% —4.05%
2001 -5.55% -1.80%
2007-2009 —2.64% —-14.75%

The decrease in correlation volatility is measured as a six months change of six-month
moving average correlation volatility. The severity of the recession is measured as the
total GDP decline during the recession.

Table 2.2 displays the relationship of a change in the correlation volatility
preceding the start of a recession.

From Table 2.2 we observe the severity of the 2007-2009 Great Reces-
sion, which exceeded the severity of the oil price shock—induced recessions in
1973-1974 and 1981-1982.

From Table 2.2 we also notice that, except for the mild recession in
1990-1991, before every recession a downturn in correlation volatility
occurred. This coincides with the fact that correlation volatility is low in
an expansionary period (see Table 2.1), which often precedes a recession.
However, the relationship between a decline in volatility and the severity of
the recession is statistically nonsignificant. The regression function is almost
horizontal and the R? is close to zero. Studies with more data, going back to
1920, are currently being conducted.

2.6 PROPERTIES OF BOND CORRELATIONS AND
DEFAULT PROBABILITY GORRELATIONS

Our preliminary studies of 7,645 bond correlations and 4,655 default proba-
bility correlations display properties similar to those of equity correlations.
Correlation levels were higher for bonds (41.67 %) and slightly lower for default
probabilities (30.43%) compared to equity correlation levels (34.83%). Cor-
relation volatility was lower for bonds (63.74%) and slightly higher for default
probabilities (87.74%) compared to equity correlation volatility (79.73%).

Mean reversion was present in bond correlations (25.79%) and in
default probability correlations (29.97%). These levels were lower than
the very high equity correlation mean reversion of 77.51%.
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The default probability correlation distribution is similar to the equity
correlation distribution (see Figure 2.4) and can be replicated best with
the Johnson SB distribution. However, the bond correlation distribution
shows a more normal shape and can be best fitted with the generalized
extreme value distribution and quite well with the normal distribution.
Some fitting results can be found in the file “Correlation Fitting.docx” at
www.wiley.com/go/correlationriskmodeling, under “Chapter 2.” The
bond correlation and default probabilities results are currently being
verified with a larger sample database.

2.7 SUMMARY

The following are the main findings of the empirical correlation analysis.

m Our study confirmed that the worse the state of the economy, the higher
are equity correlations. Equity correlations were extremely high in the
Great Recession of 2007 to 2009 and reached 96.97% in February 2009.

m Equity correlation volatility is lowest in an expansionary period and higher
in normal and recessionary economic periods. Traders and risk managers
should take these higher correlation levels and higher correlation volatility
that markets exhibit during economic distress into consideration.

m Equity correlation levels and equity correlation volatility are positively
related.

m Equity correlations show very strong mean reversion. The Dow correla-
tions from 1972 to 2012 showed a monthly mean reversion of 77.51%.
Hence, when modeling correlation, mean reversion should be included in
the model.

m Since equity correlations display strong mean reversion, they display low
autocorrelation. Autocorrelations show the typical decrease with respect
to time lags.

m The equity correlation distribution showed a distribution that can be
replicated well with the Johnson SB distribution. Other distributions
such as normal, lognormal, and beta distributions did not provide a
good fit.

m First results show that bond correlations display properties similar to
those of equity correlations. Bond correlation levels and bond correlation
volatilities are generally higher in bad economic times. In addition, bond
correlations exhibit mean reversion, although lower mean reversion than
equity correlations exhibit.

m First results show that default correlations also exhibit properties seen in
equity correlations. Default probability correlation levels are slightly
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lower than equity correlations levels, and default probability correlation
volatilities are slightly higher than equity correlations. Studies with more
data are currently being conducted.

PRACTICE QUESTIONS AND PROBLEMS

. In which state of the economy are equity correlations the highest?

. In which state of the economy is equity correlation volatility high?

. What follows from questions 1 and 2 for risk management?

. What is mean reversion?

. How can we quantify mean reversion? Name two approaches.

. What is autocorrelation?

. For equity correlations, we see the typical decrease of autocorrelation
with respect to time lags. What does that mean?

. How are mean reversion and autocorrelation related?

. What is the distribution of equity correlations?

10. When modeling stocks, bonds, commodities, exchange rates, volatilities,

and other financial variables, we typically assume a normal or lognormal

distribution. Can we do this for equity correlations?

N Kb W =

\O 0

REFERENGES AND SUGGESTED READINGS

Ang, A., and J. Chen. 2002. “Asymmetric Correlations of Equity Portfolios.” Journal
of Financial Economics 63:443-494.

Barndorff-Nielsen, O. E., and N. Shephard. 2004. “Econometric Analysis of Realized
Covariation: High Frequency Covariance, Regression and Correlation in
Financial Economics.” Econometrica 72:885-925.

Bekaert, G., and C. R. Harvey. 1995. “Time-Varying World Market Integration.”
Journal of Finance 50:403-444.

Bollerslev, Tim. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.”
Journal of Econometrics 31(3): 307-327.

De Santis, G., B. Litterman, A. Vesval, and K. Winkelmann. 2003. “Covariance
Matrix Estimation.” In Modern Investment Management: An Equilibrium
Approach, by Bob Litterman and the Quantitative Resources Group, Goldman
Sachs Asset Management, 224-248. Hoboken, NJ: John Wiley & Sons.

Engle, R. 1982. “Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of UK Inflation,” Econometrica 50:987-1008.

Erb, C., C. Harvey, and T. Viskanta. 1994. “Forecasting International Equity
Correlations.” Financial Analysts Journal, November/December: 32-45.

Goetzmann, W. N., L. Li, and K. G. Rouwenhorst. 2005. “Long-Term Global Market
Correlations.” Journal of Business 78:1-38.



96 CORRELATION RISK MODELING AND MANAGEMENT

Ledoit, O., P. Santa-Clara, and M. Wolf. 2003. “Flexible Multivariate GARCH
Modeling with an Application to International Stock Markets.” Review of
Economics and Statistics 85:735-747.

Longin, F., and B. Solnik. 1995. “Is the Correlation in International Equity Returns
Constant: 1960-19902” Journal of International Money and Finance 14(1):
3-26.

Longin, F., and B. Solnik. 2001. “Extreme Correlation of International Equity
Markets.” Journal of Finance 56:649-675.

Moskowitz, T. 2003. “An Analysis of Covariance Risk and Pricing Anomalies.”
Review of Financial Studies 16:417-457.

Uhlenbeck, G. E., and L. S. Ornstein. 1930. “On the Theory of Brownian Motion.”
Physical Review 36:823-841.



Statistical Correlation Models—
Gan We Apply Them to Finance?

Great achievements involve great risk.
—Dalai Lama

c orrelation models measure the degree of association between two or more
variables. In this chapter we discuss three popular statistical correlation
measures:

1. The Pearson correlation measure.

2. The Spearman rank correlation.
3. The Kendall .

We will analyze the properties of these correlation measures and evaluate
whether it is appropriate to apply them to financial variables.
Let’s first generally assess the role of models in finance.

Models are not perfect. That doesn’t mean they are not useful.
—Robert Merton

3.1 A WORD ON FINANGIAL MODELS

The financial reality is extremely complex, with thousands of investors,
who may behave irrationally, and numerous markets such as equity, fixed
income, commodities, foreign exchange, real estate, and more, which are

97
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correlated. In addition, numerous financial institutions and a great number
of financial products such as stocks, bonds, indexes, exchange-traded funds
(ETFs), structured products, and derivatives exist. Naturally, there is no
financial model that can replicate the immense complexity of these financial
systems and their products. In the 1980s and 1990s, econometricians
actually tried to replicate this complexity by models with hundreds of
equations and variables. However, these models have failed to produce
convincing results.

Does this mean financial modeling is senseless? No. Financial models are
useful tools to help us understand the financial system. The value at risk
(VaR) model, for example (discussed in Chapters 1 and 9), can give us a good
estimate about our market risk. The copula model (which will be discussed in
this chapter and Chapter 6 and which is applied in the Basel framework) can
give us a good estimate about the credit value at risk (CVaR) of a portfolio.
The Black-Scholes-Merton (BSM) model can give us a good idea about the
value of an option.

Importantly, however, we have to be constantly aware of the limitations
of any financial model. In this respect, there are three main aspects to
consider.

3.1.1 The Financial Model Itself

In physics we have models and relationships that are accurate and constant in
time. For example, the relationship E = mc” is true and will be true in the
future in normal physical environments. However, financial models such as
VaR, CVaR, and BSM are models that depend on market prices as inputs.
These market prices are determined by human beings and can therefore
behave randomly and unexpectedly. (That’s why we often use random
models in financial modeling, since we believe they can better replicate
random human behavior; see Chapter 8.) Therefore, we always have to be
aware that any financial model is at best an approximation of reality and
should never be trusted uncritically.

We also have to assess whether the model actually has problems with
respect to approximating reality. The VaR model, for example, assumes a
normal distribution of asset returns. However, in reality we find that asset
returns have fat tails, so it would be better to use a model with higher kurtosis.
The Black-Scholes-Merton (BSM) option pricing model assumes a constant
volatility for all strikes. However, it is well known that traders apply a
volatility smile in currencies markets (i.e., higher volatility for out-of-the-
money calls and puts) and a volatility skew in equity markets (i.e., higher
volatility for out-of-the-money puts). Risk managers and traders have to
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critically observe whether a model should be applied to price and hedge, or
the model risk is too high; that is, the application of the model to replicate
reality is not feasible.

In rare cases, a financial model has mathematical inconsistencies. For
example, this is the case when pricing up-and-out calls and puts and down-
and-out calls and puts on the BSM model. If the knock-out strike KO is
equal to the strike K and the interest rate r equals the underlying asset
return g, the model is insensitive to changes in implied volatility. In the case
of KO = K and r = g = 0, the model is insensitive to changes in volatility
and option maturity. Similarly, lookback options cannot be valued on a
standard extension of the BSM model if the interest rate is equal to the
return (i.e., 7 = gq). In this case, a new algorithm must and can be found.
For details, see the model, “Lookback option.xls,” at www.wiley.com/go/
correlationriskmodeling under “Chapter 3.” Naturally, traders and risk
managers have to be aware of mathematical inconsistencies of their models
to avoid incorrect pricing and hedging.

3.1.2 The Calibration of the Model

Calibrating a model means finding the values for the parameters of the model,
so that the model can produce the prices that are found in the market. Once
we find those parameter values, the model can then be applied to value
products for which few or no market prices are available. A critical issue is
what time frame should be observed when calibrating the parameter values.
This was a significant problem in the 2007-2009 global financial crisis. Risk
managers fed their VaR, CVaR, and collateralized debt obligation (CDO,
discussed in Chapters 5 and 6) models the benign volatility and correlation
data from noncrisis years, especially from 2003 to 2006. Hence the risk
numbers that came out of the models significantly underestimated the
catastrophic events from 2007 to 2009. Naturally, no model can produce
realistic outputs when it is fed unrealistic inputs. In programming terminol-
ogy: Garbage in, garbage out!

Models also need to be stress-tested. This means that extreme scenarios
such as economic recessions and systemic market crashes are simulated. This
can give risk managers and traders a good estimate of the risks of their
portfolios in distressed times. Not surprisingly, Basel III and the U.S. Federal
Reserve are requiring financial institutions to perform stress tests. In 2012,
15 of 19 financial institutions passed the Fed’s required stress tests, i.e.,
“had enough capital to withstand a severe recession.” See www.nytimes.com/
2012/03/14/business/jpmorgan-passes-stress-test-raises-dividend.html for
more details.


http://www.wiley.com/go/correlationriskmodeling
http://www.wiley.com/go/correlationriskmodeling
http://www.nytimes.com/2012/03/14/business/jpmorgan-passes-stress-test-raises-dividend.html
http://www.nytimes.com/2012/03/14/business/jpmorgan-passes-stress-test-raises-dividend.html

60 CORRELATION RISK MODELING AND MANAGEMENT

3.1.3 Mindfulness ahout Models

As mentioned earlier, no financial model is or will ever be able to replicate
exactly the complexity of the financial system. Therefore we have to con-
stantly be aware of the limitations of financial models. These limitations were
ignored in the crisis of 2007 to 2009, when many traders and risk managers
blindly trusted the new copula correlation model. When real estate prices
declined sharply in 2007 to 2009, and structured products such as CDOs,
which referenced mortgages, declined by 50% or more, the losses were not
anticipated by the copula model for two reasons:

1. The correlation assumptions of the copula model were violated in the
systemic crash. The copula model assumes a negative correlation
between the equity tranche and senior tranches, as we already saw in
Figure 1.3. However, correlation increased sharply during the crisis, and
equity tranche values and senior tranche values both declined.

2. In addition, the copula models were calibrated with the benign data from
low-risk periods, as mentioned previously.

In conclusion, there needs to be human judgment when the outputs of
models are assessed. The outputs have to be viewed in consideration of the
limitations of any financial model. As David Li, who transferred the copula
model to finance, put it: “The most dangerous thing is when people believe
everything that comes out of it [the copula model].”

We will now address correlation models used in statistics, which measure
associations between two or more variables, and discuss their usefulness in
finance.

3.2 STATISTICAL CORRELATION MEASURES

In the following section, we analyze the most widely applied correlation
concept in science, the Pearson correlation model. We find that the Pearson
correlation model, despite its popularity, has severe limitations when applied
in financial analysis.

3.2.1 The Pearson Correlation Approach and
Its Limitations for Finance

From our Statistics 101 class we all remember the Pearson product moment
correlation coefficient or Pearson correlation coefficient p. The Pearson
approach measures the strength of the linear association between two
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variables. In fact, we have already applied the Pearson approach numerous
times in this book, for example in Chapter 1 when discussing correlations in
investments, trading, and market risk management. Let’s now look at the
Pearson correlation model in detail. The Pearson correlation coefficient p is

defined:

Cov(X,Y)
o(X,Y)= s (X)o(Y) (3.1)
where X and Y are sets X = {xq, ..., x,,} and Y = {yy, ..., y,,} with the elements
X1y ey X, and yy,..., ¥, € R.

In section 1.3, we already used this equation with x, being the asset
returns of asset X at time ¢ and y, being the asset returns of asset Y at time ¢.
o(X) and o(Y) in equation (3.1) are the standard deviation of X and Y,
respectively. The covariance in equation (3.1) is defined as in equation (3.2):

1 n
I Z (Xy = )Y — py) (3.2)
t=1

Cov(X,Y)=

n—

If we deal with random sets (whose outcome is unknown, such as rolling a
die), the covariance is quantified with expectation values. Hence the covariance
is E[(X — E(X))(Y — E(Y))] = E(XY) — E(X)E(Y), where E(X) is the expected
value of X and E(Y) is the expected value of Y. E(XY) is the expected value of
the product of the random variables X and Y. Also, the variances of X and Y are
0% = E(X?) — E(X)* and 03 = E(Y?) — E(Y)?, respectively. Hence for random
sets equation (3.1) assumes the equivalent form

E(XY) - E(X)E(Y)
VEX?) - (EX?E(Y?) - (E(Y)?

pl(X7 Y) =

The application of the Pearson correlation coefficient and the related
least squares linear regression analysis is a standard statistical tool in
finance; see for example Fitch (2006), who regresses correlations between
asset returns with sector specific regional factor loadings. Das et al. 2006
linearly regress the mean probability of default with market volatility and
debt to asset ratios. Altman et al. (2005) apply the Pearson correlation
approach and its extensions to verify the negative correlation between
default rates and recovery rates.
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However, the limitations of the Pearson correlation approach in finance
are evident for five reasons:

1. Linear dependencies, which are evaluated in equations (3.1) and (3.3), do
not appear often in finance. We have already seen in Figures 1.2 to 1.4
and 1.6 to 1.8 that financial relationships are typically nonlinear.

2. Zero correlation derived in equations (3.1) and (3.3) does not necessarily
mean independence. This is because only the first two moments, mean
and standard deviation, are considered in equations (3.1) and (3.3). For
example, the parabola Y = X* will lead to p = 0, which is arguably
misleading. See Appendix 1A of Chapter 1 for details.

3. Linear correlation measures are natural dependence measures only if the
joint distribution of the variables is elliptical." However, only a few
distributions such as the multivariate normal distribution and the multi-
variate Student’s ¢ distribution are special cases of elliptical distributions,
for which linear correlation measure can be meaningfully interpreted.”

4. The variances of the sets X and Y have to be finite. However, for
distributions with strong kurtosis, for example the Student’s # distribu-
tion with v < 2, the variance is infinite.

5. In contrast to the copula approach discussed in Chapters 5 and 6, which
is invariant to strictly increasing transformations, the Pearson correlation
approach is typically not invariant to transformations. For example, the
Pearson correlation between pairs X and Y is in general different from
the Pearson correlation between the pairs In(X) and In(Y). Hence the
information value of the Pearson correlation coefficient after data trans-
formation is limited.

For these reasons, the application of the Pearson correlation concept in
finance is questionable. The linear Pearson correlation coefficient can at best
serve as an approximation for the typically nonlinear relationship between
financial variables.

Let’s now discuss two ordinal correlation measures and evaluate their
usefulness for financial applications.

3.2.2 Spearman’s Rank Correlation

Ordinal correlation measures such as Spearman’s rank correlation and
Kendall’s T have gained popularity in finance in the recent past. Let’s discuss
them both and then assess whether they are applicable to finance.

1. An elliptical distribution is a generalization of multivariate normal distributions.
2. See Embrechts, McNeil, and Straumann (1999) and Bingham and Kiesel (2002) for
details.
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TABLE 3.1 Performance of a Portfolio with Two Assets

Asset X Asset Y Return of Asset X Return of Asset Y

2008 100 200

2009 120 230 20.00% 15.00%

2010 108 460 —10.00% 100.00%

2011 190 410 75.93% —10.87%

2012 160 480 —-15.79% 17.07%

2013 280 380 75.00% —20.83%
Average 29.03% 20.07%

The Spearman’s rank correlation concept is an ordinal correlation
measure. This means that the numerical values of the elements in a set are
not relevant for deriving the correlation, just the order of the elements. The
Spearman’s correlation coefficient is sometimes referred to as the Pearson
correlation coefficient for ranked variables. It will result in a perfect correla-
tion coefficient of 1 if an increase in the elements x; is always accompanied by
an increase in y;, regardless of the numerical increase, and vice versa. The
Spearman correlation approach is nonparametric in the sense that it can be
applied without requiring knowledge of the joint distribution of the variables.

Let’s look at the example in section 1.3.1 in Chapter 1. We have two
assets, which have performed as in Table 3.1.

We had derived the Pearson correlation coefficient for the assets’ returns
in Table 1.1 as —0.7403. Let’s now derive the Spearman rank correlation
coefficient.

1. We first have to order the return set pairs of X and Y with respect to the

set X. This is done in columns 2 and 3 of Table 3.2.
2. We then derive the ranks of X; and Y,. This is done in columns 4 and S.

TABLE 8.2 Ranked Asset Returns to Derive the Spearman Correlation Coefficient

Ranked Return  Assigned (same year) Rank Rank

of X; Return of Y; of X; ofY; d; d?
2012 —15.79% 17.07% 1 4 -3 9
2010  —10.00% 100.00% 2 5 -3 9
2009 20.00% 15.00% 3 3 0 0
2013 75.00% —20.83% 4 1 3 9
2011 75.93% -10.87% 5 2 3 9

Sum = 36
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3. We now derive the difference of the ranks in column 6 and square the
difference in column 7.

The Spearman rank correlation coefficient pg is defined as

6idf
i=1

pr— (3.4)

ps=1-

For our example in Table 3.2, we derive pg=1 — 5(65);3_61) = —0.8. Since

the Spearman correlation coefficient is defined between —1 and +1, we find
that the returns of assets X and Y are highly negatively correlated according
to the Spearman rank correlation concept. The —0.8 Spearman correlation is
similar to the Pearson correlation coefficient of —0.7403, which we had
derived in Chapter 1. Before we evaluate the usefulness of the Spearman
correlation coefficient for finance, let’s discuss another rank correlation
measure.

3.2.3 Kendall's T

Kendall’s 7 is a further, fairly popular ordinal correlation measure applied
in finance. As with the Spearman’s correlation coefficient, the Kendall T is
nonparametric and will result in a perfect correlation coefficient of 1 if an
increase in the variable x is always accompanied by an increase in vy,
regardless of the numerical increase, and vice versa. In most other cases,
the two rank correlation measures are not equal.

The Kendall 7 is defined as

ne—nyg

= 12 (3.5)

T

where 7. is the number of concordant data pairs and 7, is the number of
discordant pairs.

A concordant pair is defined as any pair of observations where x; > y,and
Xpe > Ypr OF Xp < ¥ and xp+ < Y+, where ¢ # t*.

A discordant data pair is where x; > y; and x < yg or x; > y; and x«
< yp, where t # t*.

A pair is neither concordant nor discordant if x; = y; or xs = ys.

Let’s calculate the Kendall T for our example in Table 3.2. We have five
observation pairs and therefore 5 x (5 — 1)/2 = 10 combinations of pairs to
evaluate. We have the two concordant pairs {(1,4),(2,5)}, {(4,1),(5,2)} and the
four discordant pairs {(1,4),(4,1)}, {(1,4),(5,2)}, {(2,5),(4, 1)}, {(2,5),(5,2)}.
The pairs {(1,4),(3,3)}, {(2,5),(3,3)}, {(3,3),(4,1)}, and {(3,3),(5,2)} are neither
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concordant nor discordant. From equation (3.5), we derived the Kendall

T= 5<52:14)/2 = —0.2. Since Kendall’s T is defined between —1 and +1, we

can interpret the —0.2 as: The association between the returns of assets X and
Y is slightly negative when calculated by the Kendall 7 concept.

3.3 SHOULD WE APPLY SPEARMAN’S RANK
GORRELATION AND KENDALL'S + IN FINANGE?

Rank correlation measures have been popular in analyzing rating categories
(i.e., the categories AAA, AA, A, ..., to D), since these are ordinal. Cherubini
and Luciano (2002) apply Spearman’s rank correlation and Kendall’s T to
analyze the dependence of market prices and counterparty risk measured by
rating categories in a copula setting. Burtschell, Gregory and Laurent (2008)
compare Kendall’s T to various copulas and find significant difference in the
correlation approaches when inferring CDO tranche spreads. Anderson
(2010) analyzes CDS correlations and finds that Spearman’s rank correla-
tions for CDS spreads more than doubled during the financial crisis from July
2007 to March 2009.

Ordinal rank correlation measures are an appropriate tool if the obser-
vations are ordinal. The problem with applying ordinal rank correlations to
cardinal observations is that ordinal correlation are less sensitive to outliers.
To show this, let’s double the outliers of the returns of asset X in Table 3.2.
We derive Table 3.3.

The values in Table 3.3 result in an increase of the Pearson correlation
coefficient from —0.7402 to —0.6108 in Table 3.2, which will increase risk
when input into VaR. However, since the numerical value of outliers in the
rank correlations Spearman and Kendall are irrelevant, the correlations in the
rank correlation measures do not change. This is an unwelcome property,
especially in risk management. For example, a severe loss that may have

TABLE 3.3 Table 3.2 but with Increased Outliers for Asset X

Ranked Return  Assigned (same year) Rank Rank

of X; Return of Y; ofX; ofY; d; d?
2012 —31.58% 17.07% 1 4 -3 9
2010 —10.00% 100.00% 2 S -3 9
2009 20.00% 15.00% 3 3 0 0
2013 75.00% -20.83% 4 1 3 9
2011 151.86% —10.87% S 2 3 9

Sum = 36
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occurred in the past is not numerically assessed. This can lead to the illusion of
less risk than is actually present!

A special problem with the Kendall T is when many nonconcordant and
many nondiscordant pairs occur, which are omitted in the calculation. This
may lead to only a few concordant and discordant pairs, which can distort the
Kendall T coefficient. To a certain degree this is the case in our example of
Table 3.2. Of the 10 observation pairs, four are neither concordant nor
discordant, leaving just six pairs to be evaluated.

We can conclude that the application of statistical correlation measures
to assess financial correlations is limited. The main concern with the Pearson
correlation coefficient is that it evaluates linear relationships. However,
financial variables are mostly nonlinear. In addition, the limited interpreta-
tion for nonelliptical data is problematic; see point 3, section 3.2.1. Statistical
rank correlation measures should not be applied to cardinal financial var-
iables, especially since the sensitivity to outliers is low. These outliers, for
example high losses, are critical when evaluating correlations and risk.
Statistical rank correlation measures are appropriate only if the financial
variables are ordinal as, for example, rating categories.

Since the application of the statistical correlation concepts is limited in
finance, quants have developed specific financial correlation measures, which
we will discuss in Chapter 4.

3.4 SUMMARY

In this chapter, we first generally assessed the value of financial modeling.
The financial reality is extremely complex, with numerous markets,
complex products, and—most critically—investors who can behave
irrationally. No financial model will ever be able to replicate this complex
financial reality perfectly. However, this does not mean financial models are
useless. Financial models can give a good approximation of the reality and
help us better understand the behavior of financial processes. They can
further help us forecast future crises and help us understand and manage
financial risk.

In this chapter we also discussed statistical correlation approaches and
investigated whether they are appropriate for financial modeling. By far the
most widely applied correlation concept in statistics is the Pearson correlation
model. The reason for the popularity of the Pearson model is its mathematical
simplicity and high intuition. The Pearson correlation model is widely applied
in finance. But should we actually apply it to financial modeling? The answer
is “not really,” especially not for complex financial correlations, as, for
example, correlations in a CDOj see Chapter 4.
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The Pearson approach suffers from a variety of problems: most impor-
tantly, it measures only /inear relationships. However, most financial corre-
lations are nonlinear. As a result, zero correlation derived by the Pearson
approach does not necessarily mean independence (see also Appendix 1A of
Chapter 1), so the Pearson correlation outcome can be quite misleading. The
Pearson correlation approach can at best serve as a good approximation of
the mostly nonlinear financial correlations found in practice. When applying
the simple, linear Pearson correlation model to financial correlations, we
should constantly be aware of its severe limitations.

Ordinal or rank correlations measures such as Spearman’s rank correla-
tion and Kendall’s T do not consider numerical values but just the order of the
elements (i.e., higher or lower) when deriving correlations. For financial
variables that are ordinal, such as rating categories, ordinal correlation
measures are appropriate. However, the application of ordinal correlation
measures to cardinal data is not appropriate, since ordinal correlation measures
ignore the extreme values of outliers. This can give the illusion of less risk than
is present.

PRACTICE QUESTIONS AND PROBLEMS

1. Discuss briefly why financial modeling is useful.

2. What are the general limitations of financial modeling?

3. How do models in physics and models in finance differ?

4. Name three critical aspects that have to be considered when applying
financial models in reality.

5. What problems with financial modeling occurred in particular in the
Great Recession of 2007 to 2009?

6. What is the main limitation of the Pearson correlation approach?

7. Name three other limitations of the Pearson correlation approach.

8. Does a Pearson correlation coefficient of zero mean independence?

9. In the Pearson correlation model, what values do covariances take, and
what values does the correlation coefficient take?

10. Should we apply the Pearson correlation model to finance?

11. What is the main difference between cardinal correlation measures such
as the Pearson model and ordinal correlation measures such as Spear-
man’s rank correlation and Kendall’s 7?

12. What is a severe limitation when applying Spearman’s rank correlation
and Kendall’s T to finance?

13. When should we apply Spearman’s rank correlation and Kendall’s T in
financial modeling?
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Financial Correlation Modeling—
Bottom-Up Approaches

Fortune sides with bim who dares.
—Virgil

n this chapter we address correlation models, which were specifically

designed to measure the association of financial variables. We will
concentrate on bottom-up correlation models, which collect information,
quantify it, and then aggregate the information to derive an overall
correlation result.

4.1 CORRELATING BROWNIAN MOTIONS
(HESTON 1993)

One of the most widely applied correlation approaches used in finance was
generated by Steven Heston in 1993. Heston applied the approach to
negatively correlate stochastic stock returns dS(¢)/S(¢) and stochastic volatility
o(2). The core equations of the original Heston model are the two stochastic
differential equations (SDEs):

% =udt+o(t)dz1(2) (4.1)
and
do?(t) = a[m? — o*(t)] dt + € o(t) dza(t) (4.2)
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where

S: variable of interest, e.g. a stock price

u: growth rate of S

o: volatility of S; hence o is the variance rate of S

dz: standard Brownian motion, ie. dz(t) =c(t)Vdt, e(t) is iid.
(independently and identically distributed). In particular (¢) is a
random drawing from a standardized normal distribution at time ¢,
g(t) = n ~(0, 1). We can compute ¢ as =normsinv(rand()) in Excel/
VBA and norminv(rand) in MATLAB

a: mean reversion rate (gravity), i.e. degree with which ¢ at time
t, o?(t), is pulled back to its long term mean m?. a can take the
values 0 < a < 1 (see Chapter 2, section 2.2 for details)

m?: long-term mean of o~

&: volatility of the volatility o.

In equation (4.1), the variable S follows the standard geometric Brownian
motion (GBM), which is also applied in the Black-Scholes-Merton option
pricing model (which, however, assumes a constant volatility o). For a model
that generates the GBM in equation (4.1), and equation (4.1) with random
jumps, see the model “GBM path with jumps.xlsm” at www.wiley.com/go/
correlationriskmodeling, under “Chapter 4.” Equation (4.2) models the sto-
chastic variance rate with the mean-reverting Cox-Ingersoll-Ross (CIR) process;
see Cox, Ingersoll, and Ross (1985).

Importantly, the correlation between the stochastic processes (4.1) and
(4.2) is introduced by correlating the two Brownian motions dz; and dz,. The
instantaneous correlation between the Brownian motions is

Corr|dzy (t), dza(t)] = p dt (4.3)
The definition (4.3) can be conveniently modeled with the identity
dzi(t)=/pdz(t) + /1 —pdzs(t) (4.4)

where dz,(t) and dz;(t) are independent, and dz(¢) and dz(¢’) are independent,
t#t.

Equation (4.4) only allows a positive correlation between dz; and dz,
(since the correlation parameter p is input as a square root). We can rewrite
equation (4.4) to allow negative correlation by applying ,/p; = a. Equation
(4.4) then changes to

dZ1( Ocdzz H+v1-— 0L2d23 (4.5)

From equation (4.5) we observe that for a dependence coefficient of
o = 1, the critical Brownian motions dz(#) and dz,() are equal at every time
t. For a = 0, the Brownian motions dz;(¢) and dz,(#) are not correlated since
dz(t) = dz3(t). For o = —1, dz;(¢) and dz,(t) have an inverse correlation.


http://www.wiley.com/go/correlationriskmodeling
http://www.wiley.com/go/correlationriskmodeling
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FIGURE 4.1A Positive Correlation between the Brownian Motions dz; and dz»
Derived by Equation (4.5) with a« = 0.7

Equations (4.4) and (4.5) are mathematically and computationally
convenient. If dz, and dz; are standard normal, it follows by construction
that dz; will also be standard normal for any value of -1 <,/p=a<1.

Figure 4.1a and Figure 4.1b show the correlation between dz; and dz, for
different dependence parameters o.

The Heston correlation approach is a dynamic, versatile, and mathemat-
ically rigorous correlation model. It allows us to positively or negatively
correlate stochastic processes and permits dynamic correlation modeling
since dz(#) is a function of ¢. Hence it is not surprising that the approach
is an integral part of correlation modeling in finance.

Correlation between dz, and dz, for « = -0.7
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FIGURE 4.1B Negative Correlation between the Brownian Motions dz; and dz,
Derived by Equation (4.5) with a = —0.7
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4.1.1 Applications of the Heston Model

One prominent application of the Heston model is in the stochastic alpha beta
rho (SABR) model of Hagan et al. (2002), where stochastic interest rates and
stochastic volatility are correlated to derive realistic volatility smiles and
skews. For extensions of the SABR model, see West (2005), Henry-Labordere
(2007), Kahl and Jaeckel (2009), and Benhamou, Gobet, and Mohammed
(2009) as well as Chapter 9, section 9.2.1. Huang and Yildirim (2008) use the
Heston approach to correlate the volatility of the inflation process and the
volatility of the nominal discount bond process to value Treasury inflation-
protected security (TIPS) futures. Langnau (2009) combines the Heston
approach with the local volatility model of Dupire (1994). The result is a
dynamic local correlation model (LCM), which matches the implied volatility
skew of equity index options well.

In credit risk modeling, Zhou (2001) derives analytical equations for joint
default probabilities in a Black-Cox first passage time framework applying
Heston correlations. Zhou’s equations help to explain empirical default
properties, such as (1) default correlations and asset price correlations are
positively related, and (2) default correlations are small over short time
horizons. They typically first increase in time, then plateau out, and then
gradually decline, as found by Lucas (1995). Brigo and Pallavicini (2008) apply
two Heston correlations. The first correlates two factors that drive the interest
rate process, while the second correlates the interest rate process with the
default intensity process. Meissner, Rooder and Fan (2013) apply the Heston
approach in a reduced form framework. They correlate the Brownian motion
of a LIBOR market model (LMM) modeled reference asset and an LMM
modeled counterparty, and investigate the impact on the CDS spread. They find
that just correlating the LMM processes results in a rather low impact on the
CDS spread; that is, it leads to higher CDS spreads than correlating the default
processes directly. See Chapter 10, section 10.1 for details.

A variation of the Heston approach will be discussed in Chapter 8,
section 8.5.

4.2 THE BINOMIAL CORRELATION MEASURE

A further popular correlation measure, mainly applied to default correlation,
is the binomial correlation approach of Douglas Lucas (1995). Let’s assume
we have two entities (individuals, companies, or sovereigns) X and Y. We
define the binomial events

Ix =14 <1y (4.6)
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and
ly=1,<1} (4.7)

where Tx is the default time of entity X and Ty is the default time of entity Y.
1x is the indicator variable of entity X.

We read the equation (4.6) as: If entity X defaults before or at time T (i.e.,
Tx < T), then 1x takes the value 1 and the value 0 otherwise. The same applies
to entity Y.

Furthermore, let P(X) and P(Y) be the default probability of X and Y
respectively, and P(XY) is the joint probability of default. The standard

deviation of a one-trial binomial event is \/P(X) — (P(X))*, where P is the

probability of outcome X. Hence, modifying the Pearson correlation equa-
tion (3.3), we derive the joint default dependence coefficient of the binomial
events 1g, <1y and 1y, <1y as

P(XY)—- P(X)P(Y)

(4.8)
(P(X) — (PX)\/(P(Y) — (P(Y))?

P(Lry <ty Lry <)) = \/

By construction, equation (4.8) can only model binomial events, for
example default and no default. With respect to equation (3.3), we observe
that in equation (3.3) X and Y are sets of i = 1,..., n variates, with i € fR.
P(X) and P(Y) in equation (4.8), however, are scalars, for example the default
probabilities of entities X and Y for a certain time period T, respectively, 0 < P
(X) < 1, and 0 < P(Y) < 1. Hence the binomial correlation approach of
equation (4.8) is a limiting case of the Pearson correlation approach of
equation (3.3). As a consequence, the significant shortcomings of the Pearson
correlation approach for financial modeling apply also to the binomial
correlation model.

4.2.1 Application of the Binomial
Correlation Measure

The binomial correlation approach [equation (4.8)] had been applied by
rating agencies to value collateralized debt obligations (CDOs); for a discus-
sion see Bank for International Settlements (2004) and Schonbucher (2004).
However, the rating agencies have replaced the binomial correlation
approach with a structural Merton-based model in combination with Monte
Carlo (see Meissner, Garnier, and Laute 2008). Hull and White (2001) apply
the binomial correlation measure to price CDSs with counterparty risk. They
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find that the impact of the counterparty risk on the CDS is small if the
binomial correlation between the reference asset and the counterparty is
small. The impact increases if the binomial correlation increases and the
creditworthiness of the counterparty declines.

Numerous studies have applied the binomial correlation measure to
analyze historical default correlations. Most of the studies show little statis-
tical evidence of default correlation. Erturk (2000) finds no statistically
significant evidence of default correlation for less than one-year intervals
for 1,500 investment grade entities in the United States. Similarly, Nagpal and
Bahar (2001) find low binomial correlation coefficients within 11 sectors in
the United States from 1981 and 1999. Li and Meissner (2006) study
intrasector and intersector default correlations of 10,348 U.S. companies
from 1981 to 2003. Intersector default correlations show 80.76% positive
default dependencies. However, only 8.97% of these were statistically
significant at a 5% level. Intersector default correlations increased to
100% positive in recessionary periods. Of these, again 8.97% were statisti-
cally significant at the 5% level.

4.3 COPULA CORRELATIONS

A fairly recent and famous as well as infamous correlation approach applied
in finance is the copula approach. Copulas go back to Abe Sklar (1959).
Extensions are provided by Schweizer and Wolff (1981) and Schweizer and
Sklar (1983). One-factor copulas were introduced to finance by Oldrich
Vasicek in 1987. More versatile, multivariate copulas were applied to finance
by David Li in 2000.

When flexible copula functions were introduced to finance in 2000, they
were enthusiastically embraced but then fell into disgrace when the global
financial crisis hit in 2007. Copulas became popular because they could
presumably solve a complex problem in an easy way: It was assumed that
copulas could correlate multiple assets, for example the 125 assets in a CDO,
with a single (although multidimensional) function. We will devote the entire
Chapter § to discussing the benefits and limitations of the Gaussian copula for
valuing CDOs. Let’s first look at the math of the copula correlation concept.

Copula functions are designed to simplify statistical problems. They
allow the joining of multiple univariate distributions to a single multivariate
distribution. Formally, a copula function C transforms an n-dimensional
function on the interval [0, 1] into a unit-dimensional one:

C:1[0,1]" —[0,1] (4.9)
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More explicitly, let Gj(u;) € [0, 1] be a univariate, uniform distribution
with #; = uy,..., u,, and i € N. Then there exists a copula function C
such that

ClGi(m1), ..., Gultty)] = F, [FT {Gr(m1)), ..., F; ((Gulun));0p]  (4.10)

where G;(u;) are called marginal distributions, F,, is the joint cumulative
distribution function, F,”' is the inverse of F;, and pp is the correlation
structure of F,,.

Equation (4.10) reads: Given are the marginal distributions G(#;) to
G,(u,). There exists a copula function that allows the mapping of the
marginal distributions G (1) to G,,(u,,) via F~ ' and the joining of the (abscise
values) F~(G,(u;)) to a single, n-variate function F, [Ffl(Gl(ul)), cey
F; 1(G,,(u,,))] with correlation structure of pg.

If the mapped values F,~'(G,(u;)) are continuous, it follows that C is
unique. For detailed properties and proofs of equation (4.10), see Sklar
(1959) and Nelsen (2006). A short proof is given in the Appendix 4B.

Numerous types of copula functions exist. They can be broadly catego-
rized in one-parameter copulas as the Gaussian copula’ and the Archime-
dean copula family, the most popular being Gumbel, Clayton, and Frank
copulas. Often cited two-parameter copulas are Student’s #, Fréchet, and
Marshall-Olkin. Figure 4.2 shows an overview of popular copula functions.

FIGURE 4.2 Popular Copula Functions in Finance

1. Strictly speaking, only the bivariate Gaussian copula is a one-parameter copula, the
parameter being the copula correlation coefficient. A multivariate Gaussian copula
may incorporate a correlation matrix, containing various correlation coefficients.
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4.3.1 The Gaussian Copula

Due to its convenient properties, the Gaussian copula Cg is among the most
applied copulas in finance. In the n-variate case, it is defined

ColGi(u1), ..., Gultty)] = My [N (G (1)), ..., NN (Gultt)); 0] (4.11)

where M,, is the joint, n#-variate cumulative standard normal distribution with
pum, the 7 X n symmetric, positive-definite correlation matrix of the #-variate
normal distribution M,,. N~ ! is the inverse of a univariate standard normal
distribution.

If the G.(,) are uniform, then the N~ (G, (u,)) are standard normal
and M,, is standard multivariate normal. For a proof, see Cherubini et al.
2004.

It was David Li (2000) who transferred the copula approach of equation
(4.11) to finance. He defined the cumulative default probabilities O for entity
i at a fixed time #, Q;(¢) as marginal distributions. Hence we derive the
Gaussian default time copula Cgp,

ConlQi(t), -+, O, (] =M, [N"HQ;(2),...,N"HQ,)spp]  (4.12)

Equation (4.12) reads: Given are the marginal distributions, that is, the
cumulative default probabilities O of entities i = 1 to # at times £, Q;(%).
There exists a Gaussian copula function Cgp, which allows the mapping of
the marginal distributions Q;(t) via N~ ' to standard normal and the joining
of the (abscise values) N~ 'Q,(t) to a single n-variate standard normal
distribution M,, with the correlation structure p;.

More precisely, in equation (4.12) the term N~' maps the cumulative
default probabilities O of asset i for time ¢, Q;(t), percentile to percentile a
univariate standard normal distribution. So the 5th percentile of Q;(¢) is
mapped to the 5th percentile of the standard normal distribution, the
10th percentile of Q;() is mapped to the 10th percentile of the standard
normal distribution, and so forth. As a result, the N~ '(Q;(#)) in equation
(4.12) are abscise (x-axis) values of the standard normal distribution. For
a numerical example, see example 4.1 and Figure 4.3. The N, 1(Q(t)) are
then joined to a single n-variate distribution M,, by applying the correla-
tion structure of the multivariate normal distribution with correlation
matrix pp. The probability of 7 correlated defaults at time ¢ is given
by M,,.

We will now look at the Gaussian copula in an example.
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EXAMPLE 4.1: DERIVING THE JOINT PROBABILITY
OF DEFAULT OF TWO ENTITIES WITH THE
GAUSSIAN COPULA

Let’s assume we have two companies, B and Caa, with their estimated
default probabilities for year 1 to 10 as displayed in Table 4.1.

TABLE 4.1 Default Probability and Cumulative Default Probability of
Companies B and Caa

Company B Company Caa
Cumulative Cumulative
Company B Default Company Caa Default
Default  Default Probability Default Probability
Time # Probability Os(?) Probability Ocaalt)
1 6.51% 6.51% 23.83% 23.83%
2 7.65% 14.16% 13.29% 37.12%
3 6.87% 21.03% 10.31% 47.43%
4 6.01% 27.04% 7.62% 55.05%
5 5.27% 32.31% 5.04% 60.09%
6 4.42% 36.73% 5.13% 65.22%
7 4.24% 40.97% 4.04% 69.26%
8 3.36% 44.33% 4.62% 73.88%
9 2.84% 47.17% 2.62% 76.50%
10 2.84% 50.01% 2.04% 78.54%

Default probabilities for investment grade companies typically
increase in time, since uncertainty increases with time. However, in
Table 4.1 we have two companies currently in distress. For these
companies the next few years will be the most difficult. If they survive
these next years, their default probability will decrease.

Let’s now find the joint default probabilities of the companies B
and Caa for any time ¢ with the Gaussian copula function (4.12). First
we map the cumulative default probabilities Q(#), which are in columns
3and 5 in Table 4.1, to the standard normal distribution via N~ (O(t)).
Computationally this can be done with = normsinv(Q(t)) in Excel or
norminv(Q(t)) in MATLAB. Graphically the mapping N~'(O(#)) can
be represented in two steps, which are displayed in Figure 4.3. In the

(continued)
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(continued)

Cumulative Normal Distribution
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FIGURE 4.3 Graphical Representation of the Copula Mapping N~ (O(2))

lower graph of Figure 4.3, the cumulative default probability of asset B,
Q,(1), is displayed. We first map these cumulative probabilities
percentile to percentile to a cumulative standard normal distribution

in the upper graph of Figure 4.3 (up arrows). In a second step the
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TABLE 4.2 Cumulative Default Probabilities and Corresponding Standard
Normal Percentiles of Companies B and Caa

Company B Company B Company Caa  Company Caa

Cumulative Cumulative Cumulative Cumulative
Default Standard Normal Default Standard Normal

Default Probability Percentiles Probability Percentiles
Time ¢ QB(t) N_I(QB(t)) QCaa(t) N_l(QCaa(t))
1 6.51% —1.5133 23.83% —0.7118
2 14.16% —1.0732 37.12% —0.3287
3 21.03% —0.8054 47.43% —0.0645
4 27.04% —-0.6116 55.05% 0.1269
5 32.31% —0.4590 60.09% 0.2557
6 36.73% —0.3390 65.22% 0.3913
7 40.97% —0.2283 69.26% 0.5032
8 44.33% —0.1426 73.88% 0.6397
9 47.17% —0.0710 76.50% 0.7225
10 50.01% 0.0003 78.54% 0.7906

abscise (x-axis) values of the cumulative normal distribution are found
(down arrows).

The same mapping procedure is done for company Caa; the
cumulative default probabilities of company Caa, which are displayed
in Table 4.1 in column 5, are mapped percentile to percentile to a
cumulative standard normal distribution via N~'(Q,, ().

We have now derived the percentile to percentile mapped cumulative
default probability values of our companies to a cumulative standard
normal distribution. These values are displayed in Table 4.2, columns 3
and 5.

We can now use the derived N_l(QB(t)) and N_l(QCM(t)) and
apply them to equation (4.12). Since we have only # = 2 companies B
and Caa in our example, equation (4.12) reduces to

M [N~Y(O5(t)), N~ (O cua(t))s 0] (4.13)

From equation (4.13) we see that since we have only two assets in
our example, we have only one correlation coefficient p, not a correla-
tion matrix pp.

(continued)
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(continued)

Bivariate Normal

0.05 1

bo

FIGURE 4.4 Bivariate (Noncumulative) Normal Distribution M,

Importantly, the copula model now assumes that we can apply the
correlation structure py or a single p of the multivariate distribution (in
our case the Gaussian multivariate distribution M) to the transformed
marginal distributions N~!(Qp(t)) and N~ (Q¢,,(#)). This is done for
mathematical and computational convenience.

The bivariate normal distribution M, is displayed in Figure 4.4.

The code for the bivariate cumulative normal distribution M can
be found on the Internet. It is also displayed at “2-asset default
time Copula.xlsm,” at www.wiley.com/go/correlationriskmodeling,
under “Chapter 4” in Module 1.

We now have all necessary ingredients to find the joint default
probabilities of our companies B and Caa. For example, we can answer
the question: What is the joint default probability O of companies B
and Caa in the next year assuming a one-year Gaussian default
correlation of 0.4? The solution is:

Otp<1Ntcu<1)=M(xp< —1.5133 N x¢u,
< —0.7118,p=0.4) =3.44% (4.14)

where t3 is the default time of company B and ¢, is the default time of
company Caa. xp and xc,, are the mapped abscise values of the
bivariate normal distribution, which are derived from Table 4.2.
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In another example, we can answer the question: What is the joint
probability of company B defaulting in year 3 and company Caa
defaulting in year 52 It is

O(tp <3 Nt <S)=M(xp <—-0.8054 N x¢uy <0.2557,
p=0.4)=16.93% (4.15)

Equations (4.14) and (4.15) show why this type of copula is also
called default time copula. We are correlating the default times of two
or more assets #;. A spreadsheet that correlates the default times of
two assets can be found at “2-asset default time Copula.xIsm,” at www
.wiley.com/go/correlationriskmodeling, under “Chapter 4.” The
numerical value of 3.44% of equation (4.14) is in cell Q17.

4.3.2 Simulating the Correlated Default Time for
Multiple Assets

The preceding example considers only two assets. We will now find the
default time for an asset that is correlated to the default times of all other
assets in a portfolio using the Gaussian copula.

To derive the default time T of asset i, T, which is correlated to the default
times of all other assets i = 1,..., n, we first derive a sample M,(-) from a
multivariate copula [r.h.s. of equation (4.13) in the Gaussian case],
M,,(-) € [0,1]. This is done via Cholesky decomposition, which is explained
in Appendix 4A. The sample includes the default correlation via the default
correlation matrix py; of the n-variate standard normal distribution M,,. An
example of a default correlation matrix was displayed in Chapter 1 in Table
1.3. We equate the sample ( - ) from M,,, M,,( - ) with the cumulative individual
default probability O of asset 7 at time T, Q;(1;). Therefore,

M,(+)=Q;(r3) (4.16)
or
=0 (Myu(+)) (4.17)

There is no closed-form solution for equations (4.16) or (4.17). To find
the solution, we first take the sample M,,( - ) and use equation (4.16) to equate
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Q(t)
60.00%
50.00%
40.00%
_—

30.00% /
20.00% /
10.00%

0.00%

1 2 3 4 5 6 7 8 9 10
Years

FIGURE 4.5 Finding the Default Time T of 5.5 Years from Equation (4.16) for a
Random Sample of the #-Variate Normal Distribution M,,(-) of 35%
Source: CDO mapping explained.xls.

it to Qj(1;). This can be done with a search procedure such as Newton-
Raphson. We can also use a simple lookup function in Excel.

Let’s assume the random drawing from M,,( - ) was 35%. We now equate
35% with the market given function Q;(1;) and find the expected default time
of asset i, T;. This is displayed in Figure 4.5, where T; = 5.5 years. We repeat
this procedure numerous times, for example 100,000 times, and average each
7, of every simulation to find our estimate for 7. Importantly, the estimated
default time of asset 7, 7;, includes the default correlation with the other assets
in the portfolio, since the correlation matrix is an input of the n-variate
standard normal distribution M,,.

4.3.3 Finding the Correlated Default Time
in a Continuous Time Framework Using
Survival Probabilities

In the idealized intensity model framework, we admit a continuous expo-
nential default intensity function \;(¢). The default intensity for entity i is the
default probability of entity i for a future time period, assuming the default of
the entity i has not occurred until the beginning of the future period. For
example, the default intensity from the end of year 6 to the end of year 7 (the
seventh year) is the default probability for that time period, conditional on no
default until the end of year 6. The default intensity from the end of year 6 to
the end of year 7 is higher than the forward default probability for that time
period, since when standing at the end of year 6, defaulting in year 7 is higher.
Let’s look at a numerical example.
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EXAMPLE 4.2: FORWARD DEFAULT PROBABILITY
AND DEFAULT INTENSITY

Let’s assume that the 6-year default probability Qg of entity 7 is 36.73%
and the 7-year default probability Q5 of entity i is 40.97%. What is
forward default probability in year 7 and what is the default intensity in
year 7?

The forward default probability, which is viewed today at time 0, is

9(0)s7=0(7) — O(6) =40.97% — 36.73% =4.24%
The forward default intensity, viewed at the end of time 6, is
N6)s7=(Q7 = Q4)/(1 = Q)

=40.97% — 36.73%/(1 — 36.73%)
=6.70%

(1 — Qg) represents the survival probability until the end of year 6.

We can find the probability of survival of entity i until ¢, Pr[T; > t] as the
area under the given default intensity function for which the default time 7; is
bigger than ¢. This is displayed in Figure 4.6.

The default intensity function in Figure 4.6 is similar to the default
probability curve of our bond B in Table 4.1, column 2. However, default
intensity functions can have different shapes. For investment grade bonds,

Default Intensity as a Function of Time

2i(t)

FIGURE 4.6 Survival Probability of Entity , Pr[t; > #], which is the Striped Area
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they typically increase in time, since uncertainty and therefore default
probabilities increase in time.
Formally, we can approximate the survival probability Pr[t; > #] in

Figure 4.6 as
Pr[T; > ] :exp{—/ki(t)dt} (4.18)

where T; is the default time of asset 7, which we are looking for. In equation
(4.18) we are discounting with the default intensity X\; to find the survival
probability. This methodology was derived by Lando (1998), and Duffie and
Singleton (1999). They found that the present value of a risky claim (as a risky
bond) can be derived by discounting with the default-adjusted rate. For
example, if a Treasury bond is discounted with the risk-free rate r, a risky
bond can be discounted with » + A, where )\ is the default intensity, see Lando
(1998) and Dulffie and Singleton (1999) for details.

To find 1;, we first draw a random sample ( - ) from the n-variate standard
normal distribution (M,,), (M,,(-). We then equate the survival probability
with the barrier M,,(-); that is,

exp{ - /)\i(t)dt} =M,(-) (4.19)

0

or

i

/ A()dt = —In[M,( - )] (4.20)

0

and solve numerically for ;. In the case of a constant default intensity \;
equation (4.20) simplifies and we find the correlated default time closed
form as

—In[M,,(-)]

¥ (4.21)

Ti=

Importantly, the derived default time of entity i, 7,, is correlated to the
default times of the other assets in the portfolio, since the barrier M, (")
includes the default correlation via the default correlation matrix of M,,, pas;
see equation (4.11).
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4.3.4 Copula Applications

There are numerous applications of copula functions in finance.

m One prominent copula application is the valuing of structured products
such as CDOs. We will devote a whole chapter, Chapter 5, to the topic of
valuing CDOs with copulas.

m A further prominent application of the multivariate Gaussian copula is
the modeling of credit rating changes by CreditMetrics. First, a copula
dependence coefficient is derived for all asset pairs. This is often derived
from equity correlation. A correlated sample from the bivariate copula
equation (4.13) is then derived. The sample is then compared to the
historical rating percentile to determine whether a rating change
occurs. Monte Carlo simulation is conducted to derive the entire rating
distribution. This approach has to be applied to all company pairs in
question. Hence it is computationally quite intensive. For details see
Finger (2009).

m Copulas are also popular tools to model CDSs with counterparty risk.
Typically the bivariate Gaussian copula is applied to model the default
correlation between the CDS seller and the reference asset; see Kim and
Kim (2003), Hamp, Kettunen, and Meissner (2007) and Brigo and
Chourdakis (2009).

m Recently copula functions have also been applied outside the credit risk
framework. Copulas have been applied to constant maturity spread
options, foreign exchange cross options, and basket options; see Qu
(2005). Outside of finance, copulas are applied in civil engineering,
meteorology, and medicine.

4.3.9 Limitations of the Gaussian Copula

As with any model, the Gaussian copula has limitations with respect to its
application to financial reality. The main limitations are discussed next.

4.3.5.1 Tail Dependence In a crisis, correlations typically increase, as studies
by Das et al. (2007) and Duffie et al. (2009) show and as we derived in
Figure 1.3 in Chapter 1 and in the empirical Chapter 2. Hence it would be
desirable to apply a correlation model with high comovements in the lower
tail of the joint distribution. Following the tail dependence definition of Joe
(1999), a bivariate copula has lower tail dependence if

limy, y0,,10P[(T1 < Ny '(y)|(T2 < N3 1(3,)] >0 (4.22)



86 CORRELATION RISK MODELING AND MANAGEMENT

where 7, is the default time of asset 7, y; is the marginal distribution of asset i,
and N~ is the inverse of the standard normal distribution. Equation (4.22)
reads: If the functions y; and y, both approach 0 from above, tail dependence
exists if the following holds: The probability of T, being smaller than
N 1(yl), given that T, is smaller than N5 1(y2), is bigger than 0. However,
it can be easily shown that the Gaussian copula has no tail dependence for any
correlation parameter p: limy, 10y, 0P[(T1 < Nfl(y1)|(72 < N{l(yz)] =0,
p € {-1, 1}. In contrast, the Student’s ¢ copula, equation (4.10) with F,
being the n-variate Student’s ¢ distribution and F~' being the inverse of F,
satisfies equation (4.22) for any p € {1, 1}. Hence it may be more desirable
to apply the Student’s ¢ copula in financial crisis modeling. Figure 4.7 (a) to (d)
shows several copula scatter plots.

-0.6

(d 1

41 05 0 05 1 1 05 0 05 1

FIGURE 4.7 Scatter Plots of Different Copula Models: (a) Bivariate Gaussian
Copula with p = 0.5; (b) Bivariate Student’s ¢ Copula with p = 0.5, dof Degrees
of Freedom = 1; (c) Bivariate Gumbel Copula with o« = 4; (d) Bivariate Clayton
Copula with o = 5
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As seen in Figure 4.7 (c), the Gumbel copula exhibits high tail depen-
dence, especially for negative comovements. Since correlations typically
increase when asset prices decrease, as we verified in Chapter 2, the Gumbel
copula might also be a good correlation approach for financial modeling.

4.3.9.2 Calibration A further criticism of the Gaussian copula is the difficulty
to calibrate it to market prices. In practice, typically a single correlation
parameter (not a correlation matrix) is used to model the default correlation
between any two entities in a CDOj see Chapter 6 for details. Conceptually
this correlation parameter should be the same for the entire CDO portfolio.
However, traders randomly alter the correlation parameters for different
tranches in order to derive desired tranche spreads. Traders increase the
correlation for extreme tranches such as the equity tranche or senior tranches,
referred to as the correlation smile. This is similar to the often cited implied
volatility smile in the Black-Scholes-Merton model. Here traders increase the
implied volatility, especially for out-of-the-money puts but also for out-of-
the-money calls, to increase the option price. We will discuss this limitation
further in Chapter 6, especially section 6.6.

Another criticism of the Gaussian copula is that for certain parameter
constellations it may not be possible to imply a market CDO tranche spread
for a correlation parameter between 0 and 1. Kherraz (2006) tests the large
homogeneous portfolio (LHP) version of the Gaussian copula (see Chapter 6,
section 6.1, and Chapter 7, section 7.1) and finds that the lowest 40% and
highest 20% of losses of the equity tranche cannot be explained by the model.
However, Kherraz uses a fairly high default probability of 40% in his study
and does not mention the frequency or timing of the occurrences. Finger
(2009) tests the calibration of the LHP model with base correlation, a
correlation with zero attachment point, which is bootstrapped from the
implied correlation (see JPMorgan 2004 for details on base correlation).
Finger finds calibration failures for just 20 days for the iTraxx and 21 days
for the CDX indes before July 2007. He finds no calibration failures after
July 2007.

Several other studies, such as Hull and White (2004), Andersen and
Sidenius (2004), and Burtschell, Gregory, and Laurent (2008), test the one-
factor Gaussian copula as well as other copulas such as Marshall-Olkin,
Clayton, or double-z. None of the studies finds any calibration failures for
these copulas.

4.3.5.3 Risk Management A further criticism of the copula approach is that
the copula model is static and consequently allows only limited risk man-
agement; see Finger (2009) or Donnelly and Embrechts (2010). The original
copula models of Vasicek (1987) and Li (2000) and several extensions of the



88 CORRELATION RISK MODELING AND MANAGEMENT

models such as Hull and White (2004) or Gregory and Laurent (2004) do
have a one-period time horizon (i.e., are static). In particular, there is no
stochastic process for the critical underlying variables default intensity and
default correlation. However, even in these early copula formulations, back-
testing and stress-testing the variables for different time horizons can give
valuable sensitivities; see Whetten and Adelson (2004) and Meissner, Hector,
and Rasmussen (2008).

In addition, the copula variables can be made a function of time as in Hull
et al. (2005). However, this still does not create a fully dynamic stochastic
process with drift and noise, which allows flexible hedging and risk
management.

In the following section we discuss further bottom-up financial correla-
tion models, the contagion correlation approach.

4.4 CONTAGION CORRELATION MODELS

The basic idea in contagion correlation modeling is that the default intensity
of an entity is a function of the default of another entity. Hence contagion
default modeling incorporates counterparty risk (i.e., the direct impact of a
defaulting entity on the default intensity of another entity).

Contagion default modeling was pioneered by Davis and Lo (1999,
2001) and Jarrow and Yu (2001). Davis and Lo model the latent variable Z of
entity i, Z; with equation

n
- [I (1-XKy)
i—1
i %)

Zi=Xi+(1-X,) (4.23)

where

Z;: binomial default indicator variable of entity i

X; and X;: Bernoulli random variable® of entity i and j, respectively

Kj;: contagion variable (i.e., the degree of with the default of j impacts the
default intensity of entity i)

Let’s understand equation (4.23). Z; is a binomial default indicator
variable of entity 7. This means if Z; = 1, entity 7 defaults, and if Z; = 0,

2. A Bernoulli random variable can take values of 0 and 1 with certain probabilities for
each value. See http://mathworld.wolfram.com/BernoulliDistribution.html for details.
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entity i survives. Entity 7 can default directly, when it is not being affected by
entity j. In this case the Bernoulli random variable X; = 1. Entity i can also
default indirectly (i.e., when it is affected by the default of entity j). In this
case, the Bernoulli random variable X; = 1. The degree of infection is modeled
with the Bernoulli random contagion variable Kj;. Formally,

Pr(X;=1) = p
Pr(X;=1) = ¢ (4.24)
P]T(K,’,‘ = 1) =7

where p, ¢, and r and input parameters that are € [0, 1]. In a dynamic setting,
the persistence of the contagion variable K;; may be modeled as an exponen-
tially decreasing function of time . A parameter g(¢) (gravity) determines the
degree of decreasing contagion in #; that is, K;(z) = e ¢“" where g(#) > 0 and
dg/at < 0.

Jarrow and Yu (2001) introduce default intensity contagion with a set of
linear equations:

M) =ar+ar 1, <y (4.25)

Xg(t)=b1+b; 1{7A§t} (4.26)

where My is the default probability of X, and a1, a», b1, and b, are parameters
that are bigger than zero and have to be calibrated. Tx is the default time of
entity X. In equation (4.25) 1is an indicator variable. 1 takes the value 1 if the
default time of entity B, T3, is smaller than a certain time . We can simulate T3
randomly, for example with a copula model, which we have done in
equations (4.14) or (4.17). Multiple sampling will result in many outcomes
of the experiment T < ¢. For example, if 10% of the outcomes are that T < ¢,
then the probability of T3 < # (i.e., the probability of the entity B defaulting
before t) is 10%. From equation (4.25) we see that the higher the probability
of 11, <4, the higher the default probability of A, X4, The same logic applies
to equation (4.26).

Introducing symmetric contagion among all entities creates the prob-
lem of circularity, which Jarrow and Yu (2001) call “looping defaults.” In
this case, the construction of a joint distribution is rather complex. Jarrow
and Yu solve the problem by introducing the concept of asymmetric
dependence; that is, the default of primary entities impacts the default
intensity of secondary entities, but not vice versa. In this case, the joint
default distribution conveniently becomes the product of the individual
primary default times.
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Contagion correlation modeling can be combined with conditionally
independent default (CID) correlation modeling. These combinations are
discussed in Chapter 6, section 6.5.

4.5 SUMMARY

In this chapter, we evaluated correlation approaches that were especially
designed to model financial correlations. We concentrated on bottom-up
approaches, which collect information, quantify it, and then aggregate the
information to derive an overall correlation result.

One of the most widely applied correlation concepts is correlating
Brownian motions, introduced by Steven Heston (1993). In the Heston
model, the Brownian motions of two variables are correlated with a simple
equation. The model was originally designed to replicate the negative
correlation between stock returns and volatility. However, the model has
been applied to other financial relationships such as stochastic interest rates
and stochastic volatility, as in the popular stochastic alpha beta rho (SABR)
model; to stochastic interest rates and stochastic default intensities; and to
many more relationships. Altogether, the Heston approach is mathematically
rigorous, dynamic, and flexible. Therefore it is one of the most valuable and
applied correlation models in finance.

The binomial correlation model of Douglas Lucas (1995) models by
design binomial events, for example default or no default. The binomial
model is a special limiting case of the Pearson correlation model. Whereas in
the Pearson model the inputs are sets of variables, in the binomial model the
inputs are scalars. Since the binomial correlation model is a special case of the
Pearson correlation model, the significant shortcomings of the Pearson
correlation approach for financial modeling also apply to the binomial
correlation model.

Copula correlations were first enthusiastically embraced, but then fell
into disgrace when the global financial crisis hit in 2007. Copulas go back to
Abe Sklar in 1959 and were introduced to finance by Oldrich Vasicek (1987)
and David Li (2000). Copula functions simplify statistical problems. They
allow the joining of multiple univariate distributions to a single multivariate
distribution. In this way copulas can evaluate 7 correlation functions with a
single (although n-dimensional) function. Many different types of copulas
and extensions exist. The Gaussian copula is the most popular one due to its
simplicity and convenient programming.

The bottom line is that copulas are rigorous statistical approaches that
can have value in finance. However, severe limitations of copulas for finance
exist: (1) Most copulas, especially the Gaussian copula, have low tail
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dependence. (2) Calibration to market prices is problematic, especially for
one-factor copulas. (3) Copulas are principally static; however, they can be
extended to be dynamic such as in Hull and White (2005) and Albanese et al.
(2011).

Contagion correlation modeling, pioneered by Davis and Lo (1999,
2001) and Jarrow and Yu (2001), is based on the idea that the default of
one entity impacts the default intensity of another entity. The degree of the
impact can be modeled with an exponentially decreasing function of time.
However, introducing symmetric contagion among all entities creates the
problem of circularity. In this case, the construction of a joint distribution is
rather complex. One solution is to model asymmetric dependence; that is, the
default of primary entities impacts the default intensity of secondary entities,
but not vice versa.

APPENDIX 4A: CGHOLESKY DECOMPOSITION

The Gaussian copula model creates a multidimensional normal distribution
from standard normal marginal distributions. Monte Carlo simulations
derive samples from the distribution, which are compared with the default
threshold. The standard procedure to derive correlated samples from a
multivariate normal distribution is Cholesky decomposition. We will outline
the method here.

Given is the #-dimensional correlation matrix .

We decompose ¥ into ¥ = M M7, where M is a special symmetric,
positive definite, lower triangular matrix, and M is the transpose of M*:

3. The reader may study some basic matrix algebra at the spreadsheet “Matrix
primer.xlsx,” at www.wiley.com/go/correlationriskmodeling, under “Chapter 1.”
4. The matrix transpose AT is the matrix obtained by exchanging A’s rows and
columns. Hence if we have a matrix A = [a” 12 } , it follows that AT = {a“ a2 } .
a1 an a2 ap
See the spreadsheet “Matrix primer.xlsx,” sheet “Matrix Transpose,” at www.wiley
.com/go/correlationriskmodeling, under “Chapter 1.”
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C11 €C12...Cin m11 0 ...0 mi1 M2 ...Myy
1 €2...Cp _ my1 mjy ... 0 % 0 myp ... My,
Cul Cn2 - Cun Myl My ... My, 0 0 ...m,,

From the decomposed matrix, we can find equations for m; (see the
following example). We then generate uncorrelated random samples from
a standard normal distribution ¢, [¢ = normsinv(rand()) in Excel and
norminv(rand) in MATLAB] and find correlated random values x; from
X;i= M Ej.

Let’s look at an example of Cholesky decomposition for three assets.

Example: Cholesky Decomposition for Three Assets

Given is the correlation matrix ¥ with elements c¢q; to ¢33, which we
decompose into = = M M7,

i1 c12 C3 myp 0 0 my My M3
1 ¢ 3| =|my myp 0 | x| 0 my m3p
€31 €3 €33 m31 M3y M33 0 0 ms3

We can find the equations for #2;; from matrix multiplication:

C11 =mi1 XMy —>MmM11 =4/C11
Co1 =mpy X myy —my = ca1 /My
2
Cop =mpy X myy +mpy X My —>myy =1/ — (M)
€31 =m31 X My —m3 =c31/m
C32 =m31 X myy +m3y X myy — m3zy = (c32 — m31 X my1)/my

2 2
€33 =m31 X m31 +m33 X m3p +m33 X Mm33 = —>m33 = \/633 — (m31)" — (m32)

We now generate uncorrelated random samples from a standard normal
distribution € (¢ = normsinv(rand()) in Excel) and find correlated random
values x; from x; = Mg¢;

X1 m11 0 0 €1
X2 | = | mp1 my) 0 X 1€
X3 m31  m3zy  mM33 €3
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Hence the values for the three correlated random samples x; are

X1 =m11 X €1
Xy =my1 X E1+mpy X&)
X3 =m31 XE1+m3) X ey +m33 XeE3

We can now apply Monte Carlo simulation (i.e., simulate the equations
for x; multiple times to derive robust values for the x;).

Try to solve the numerical Cholesky decomposition end-of-chapter
problem, number 16.

APPENDIX 4B: A SHORT PROOF OF THE GAUSSIAN
DEFAULT TIME COPULA

Given are the cumulative default probabilities O of entities i = A, B,...,n at
various times #, Q4(t;). There exists a copula function C:

ClO4(ta), Op(tB), ..., O, (tn)] = My(ta, tg, . .., 1,) (4B.1)
where M,, is an n-dimensional Gaussian distribution function.

Proof:
Let R;, i = A, B,..., n be a uniform random variable. We define

Pr[Ra < Q4(ta), Rp < Qplts). ... Ry < O, (1) (4B.2)
Applying R; < O,(t;) = Q;” '(R;) <t; to equation (4B.2), we derive
Pr(Q; '(Ra)<ta,Qp '(Rp)<tp,...,Q, ' (Ry) <t,] (4B.3)
Let T; be the abscise value of the default distribution Q;” Y(R;). Hence
Pr[Ta<ta,Ta<tp,...,T,<t,] (4B.4)
For the n-dimensional Gaussian distribution M,,, equation (4B.4) is

Mn(tA;th .- 7tn)

PRACTICE QUESTIONS AND PROBLEMS

1. The original Heston (1993) model correlates the Brownian motion of
which two financial variables? What is the most significant result of the
original Heston model?
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[\

10.

11.

12.

13.
14.
15.
16.

. To create negative correlation between asset 1 and asset 2 in the Heston
(1993) model, what value does the correlation coefficient o take in
equation dzi(t) = adz(t) + V1 — o?dz3(t)?

. The Heston model is one of the most widely applied correlation models in
finance. Why?

. What is the difference between the Pearson correlation model and the
binomial correlation model of Lucas (1995)?

. What are the limitations of the binomial correlation model of Lucas (1995)?

. What is the basic principle of the copula correlation model?

. Why is the Gaussian copula model the most popular copula model in
finance?

. What does “In the copula mapping process, the marginal distributions are
preserved” mean?

. Given are the marginal default probabilities 5% for asset 1 and 7% for

asset 2. If the Gaussian correlation coefficient is 0.3, what is the joint

probability of default, assuming asset 1 and asset 2 are jointly bivariately
distributed?

Given are the 5-year default probability of entity i of 40% and the 6-year

default probability of entity i of 45%. What is the forward default

probability in year 6 and what is the default intensity in year 6?

What are the limitations of the Gaussian copula for financial

applications?

Since the Gaussian copula has low tail dependence, which other copulas

seem more suitable to model financial correlations?
Can the copula model be blamed for the great recession of 2007 to 2009?
What is the basic idea in contagion correlation models?
Name the limitations of contagion models.
Derive correlated samples x1, x5, and x3 from the correlation matrix
1 02 03

=102 1 0.4 | applying Cholesky decomposition (see Appendix
03 04 1

4A for details).
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Valuing CD0Os with the Gaussian
Gopula—What Went Wrong?

Take risks: if you win, you will be happy; if you lose, you will
be wise.
—Author Unknown

hen the global financial crisis hit in 2007 to 2009, the Gaussian copula

was widely blamed for the crisis, especially when applied to valuing
collateralized debt obligations (CDOs); see “Recipe for Disaster: The
Formula That Killed Wall Street” (Wired, 2009), “Wall Street Wizards
Forgot a Few Variables” (New York Times, 2009), or “The Formula That
Felled Wall Street” (Financial Times, 2009). In this chapter we analyze the
pricing methodology of CDOs and evaluate whether the Gaussian copula is
to blame. Let’s first look at some CDO basics.

9.1 CDO BASIGS—WHAT IS A CDO? WHY CDOs?
TYPES OF CDOs

Before we evaluate whether the Gaussian copula is to be blamed for the global
financial crisis of 2007 to 2009, let’s first discuss some basic properties
of CDOs.

5.1.1 What Is a CD0?

A collateralized debt obligation (CDO) is a financial structure in which the
credit risk from a pool of securities is transferred from one counterparty,
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the originating bank, to another, the investor. The investor can invest in
different CDO tranches. Each tranche has a different degree of credit risk.
The credit risk is distributed with a waterfall principle: If losses accumulate
and the detachment level of a tranche is breached, additional credit losses
flow into the adjacent higher tranche. A CDO is typically arranged by a
special purpose vehicle (SPV), which is AAA rated to minimize counter-
party risk.

9.1.2 Why CDOs?

There are three main parties in a CDO:

1. The originator (or protection buyer), who transfers the credit risk.
2. The investor, who assumes the credit risk.
3. The special purpose vehicle (SPV), which manages the CDO.

The motivation for the originator is naturally to transfer the credit risk,
which improves his credit rating, frees credit lines, reduces regulatory capital,
and lowers funding cost. The motivation for the investor is to receive high
yields. The motivation for the SPV is fee income.

CDOs include several sound financial properties:

m Diversification. Since typically 125 assets are in a CDO, a skilled
originator will choose assets with a low correlation to achieve high
diversification benefits (see Chapter 1, section 1.3.1, “Investments and
Correlation”).

m Subordination. This means that mezzanine and higher tranches are
protected by lower tranches, since lower tranches absorb default losses
from the underlying basket of credits first.

m Overcollateralization. Typically the assets in a CDO have a higher value
than the liabilities that the SPV owes to the investors. This overcollater-
alization adds an additional element of protection for investors.

The drawback of CDOs lies in their relative pricing complexity. We have
to find the default probability function with respect to time of 125 assets
for the duration of the CDO, which can be up to 10 years. This alone is
difficult to estimate. Furthermore, we have to correlate the default functions
of the 125 assets! This is where the copula function comes in.

First let’s have a look at where the CDO market is today.

From Table 5.1 we observe that the CDO market is recovering nicely
since 2009; however, the CDO issuance is far below the record 2006
levels.
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TABLE 5.1 Global CDO Issuance in USD Millions

Total CDO Issuance
Year (in USD millions)
2003 86,629.8
2004 157,820.7
2005 251,265.3
2006 520,644.6
2007 481,600.7
2008 61,886.8
2009 4,336.0
2010 8,665.1
2011 31,131.3
2012 45,399.8
until 7/15/2013 44,403.0

Source: www.Sifma.com.

5.1.3 Types of CDOs

There are three main types of CDOs, which are displayed in Figure 5.1.

In a cash CDO, the originating bank sells assets to the SPV, which then
creates tranches. Each tranche is exposed to a certain degree of default risk.
The first losses from asset defaults flow into the equity tranche. Further losses
flow into the next higher mezzanine tranche, and so on. Figure 5.2 shows the
cash flows of a typical cash CDO.

In a synthetic CDO, assets are not sold from the originating bank to the
SPV, but the SPV assumes the credit risk via selling credit default swaps
(CDSs). The SPV receives the CDS spreads from the originating bank and the
cash from the investor, and invests these cash flows into risk-free assets. A
synthetic CDO is displayed in Figure 5.3.

CDOs I

Synthetic
CDOs

Unfunded
CDOs
(iTraxx, CDX)

Cash CDOs

FIGURE 5.1 Main Types of CDOs
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Senior Tranche
(exposed to next
88% of defaults)

Mezzanine Tranche
- (exposed to next
Initial Cash 2.25% of defaults)

Originating |«—— Investment
SPV
- 5 o,
Asses Tranche Spread  |Mezzanine Tranche

(exposed to next
2.75% of defaults)

Equity Tranche
(exposed to first
7% of defaults)

%/_/

Investor
(sells protection)

FIGURE 5.2 A Cash CDO

A third type of CDOs are unfunded CDOs such as the family of CDX
indexes or the iTraxx indexes, also called credit default swap indexes. The
most popular CDX index is the CDX.NAL.IG, which references 125 invest-
ment grade CDSs in North America. The most popular iTraxx index is the
iTraxx Europe, which references 125 investment grade CDSs in Europe.
Importantly, the CDX and iTraxx indexes are unfunded; therefore no initial
principal amount is exchanged between the buyer (investor) and the seller.
Hence the trading of the CDX and iTraxx indexes is similar to buying and
selling futures contracts. The cash flows of an unfunded, tranched CDO are
displayed in Figure 5.4.
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Super-Senior Tranche
(exposed to next
87.5% of defaults)

Risk-Free
Asset
Seller .

Senior Tranche
(exposed to next

Initial Cash Investment

+ CDS Spread Coupons 3.75% of defaults)
CDS Spread Initial Cash .
—_— ) Investment Mezzanine Tranche
Protection | «—— SPV (exposed to next
Buyer Payment in Case - 2.25% of defaults)
of Default Tranche Spread <

Mezzanine Tranche
(exposed to next
2.75% of defaults)

Equity Tranche
(exposed to first
3.75% of defaults)

%[_/

Investor
(sells protection)

FIGURE 5.3 A Synthetic CDO

9.2 VALUING CDOs

There are three main input factors when valuing a CDO:

1. The default probability of each of the 125 assets.
2. The default correlation between the 125 assets in the portfolio.
3. The recovery rate in case of default.

Let’s discuss briefly how to derive the default probability function before
we concentrate on the most significant element, the default correlation.
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Super-Senior Tranche \
(exposed to
12% to 22% of defaults)

Nonfunded CDOs

(e.g., CDX, iTraxx) Senior Tranche

(exposed to
9% to 12% of defaults)

Mezzanine Tranche Tranches as
. exposed to
Payout in Case o ( o European
of Default 6% to 9% of defaults) iTraxx
4—
Buyer
(buys protection)
Spread Mezzanine Tranche

(exposed to
3% to 6% of defaults)

Junior Tranche
(exposed to
first 3% of defaults) /

\ J
Y

Seller

(sells protection)

FIGURE 5.4 A Tranched, Nonfunded CDO Such as the iTraxx

5.2.1 Deriving the Default Probability for
Each Asset in a CDO

Most investment banks, hedge funds, and SPVs use an extension of the
seminal Merton 1974 model to derive the default probability for each asset in
a CDO. Let’s calculate this default probability.

In 1973, Fischer Black and Myron Scholes, and separately Robert
Merton, created their famous Black-Scholes-Merton (BSM) option pricing
model. The well-known equation for a call is

C=S8yN(d;) —Ke ""N(d>) (5.1)
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So 02
11‘1 <K67T> + 7 T

oV'T

where d; = and d, =dy —ov/T

C: call price

So: current stock price

N: cumulative standard normal distribution

K: strike price

r: continuously compounded risk-free interest rate
T: option maturity, measured in years

o: implied volatility of S

One year later, in 1974, Robert Merton transferred the option frame-
work of equation (5.1) to corporate finance. He applied the equation
Equity = Assets — Liabilities, and argued that the equity value of a company
has similar properties as a call: If the asset value of a company increases,
equity increases with unlimited upside potential. In addition, the value of
equity is asymmetric, since it can only go to zero. This is the case when the
asset value drops below the debt value, which is the case of default. With this
rationale, Merton derived

E=VyN(di)—De "TN(d,) (5.2)

n
with d1 = and d2 =d1 — O'\/T

Vo: current asset value of the company
D: debt of the company

o: implied volatility of V

T: time to maturity of debt D

Other variables are defined as in equation (5.1).

Note that equations (5.1) and (5.2) are mathematically identical. Just the
variables are redefined.

The asymmetric payoff of equity implies, as is the case with a call, that
there is time value of equity, as seen in Figure 5.5.

Figure 5.5 outlines the relationship between a company’s equity value
and its asset value at a certain point in time before debt maturity. If we assume
that the asset value grows with a certain rate r, we derive the probability of
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Value of
equity E

Time value

Intrinsic value
max(V - D, 0)

Asset
D value V

FIGURE 5.5 Equity Value with Respect to Asset Value in the Merton 1974 Model

default as the probability of the asset value being smaller than the value of
debt at debt maturity T, as seen in Figure 5.6.

In Figure 5.6, using the terminology of Moody’s KMV, EDF is the
expected default frequency (i.e., the default probability), and DD is the
distance to default, which is a representation of the risk-neutral d, of equation
(5.2). DD is the difference between the expected asset value and debt value at
debt maturity T. There is an inverse relationship between EDF and DD.

Importantly, in equation (5.1) the probability of exercising a call option
at option maturity T is Prob(Syt > K) = N(d,). The probability of not
exercising the call option is 1 — N(d,) = N(—d;). In analogy, the probability
of the asset value V being smaller than the debt value D at time T, which
means default at T, follows from the Merton 1974 model of equation (5.2) as
N(—d;). Hence, the default probability in the Merton model is derived
conveniently with a closed form solution as N(—d,).!

The ingenious Merton 1974 model outlines the principles of a company’s
default using structural properties such as asset and debt. The main limita-
tions of the model are that only one form of debt D is modeled and that
default can occur only at debt maturity T. Naturally, numerous extensions of
the model have been created to bring the model in line with the complexities
of reality. In particular:

m The first passage time models of Black and Cox (1976); Kim,
Ramaswamy, and Sundaresan (1993); Longstaff and Schwartz (1995);

1. For an analysis of this property, see Meissner (2007).
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Asset value V Cumulative
4 asset return
distribution N

LIDD =d,
A
Debt D /‘< N(~d,) = EDF

Y » Time
T

FIGURE 5.6 Default Probability EDF = N(—d,) in the Merton Model for Asset Value
V < Debt D

and Briys and de Varenne (1997) evaluate the default probability before
debt maturity T by introducing an exogenous, continuous default bar-
rier. Once the asset value falls below the barrier, default occurs. Hence
the first time passage models effectively turn the European-style model of
equation (5.2) into an American-style model.

m The asset return distribution at debt maturity T does not grow with the
risk-free rate 7 and is not assumed normally distributed (see Figure 5.6).
Instead a real-world historical asset growth rate and asset distribution is
applied. For example, Moody’s KMV database contains 30 years of
information on over 6,000 public and 150,000 private company default
events.

m The debt value is not considered constant as in Figure 5.6. Instead,
empirical data is used to project a realistic increase or decrease in debt.

m Other default criteria besides asset and debt value are taken into
consideration, such as liquidity risk and systemic risk, as well as
company-specific data (product line, competition, quality of manage-
ment, etc.).

The Merton model, which we just discussed, is called a structural
approach, since it uses the capital structure of the entity as inputs to derive
the default probability. A different way to determine the default probability
of an entity is the reduced form approach. Here market prices such as bond
prices or credit default swap prices are the inputs to derive the default
probabilities; see Jarrow and Turnbull (1995); Jarrow, Lando, and Turnbull
(1997); and Duffie and Singleton (1999). The approach is called reduced form
since it does not apply the capital structure of an entity as inputs.

Let’s now discuss the critical aspect of the Gaussian copula with respect
to valuing CDOs.
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5.2.2 Deriving the Default Correlation of the
Assets in a CDO

In the previous section, we derived the individual default probability X of
each asset 7, \;, in the CDO. The probability of default of an asset \; is now
mapped via

N~'(O\) (5.3)

where N1 is the inverse of a standard normal distribution (=normsinv(};)
in Excel, norminv(};) in MATLAB). Equation (5.3) maps the default proba-
bilities to a standard normal distribution. For example, if \; = 5%, then
N~10.05) = —1.645, which is the x-axis value of the Sth percentile of a
standard normal distribution.? This procedure allows a comparison of the
default probabilities with samples from an n-variate normal asset distribu-
tion M,,.

We will now determine the default threshold. This is the value that, when
breached, will constitute default of the entity or asset in question. To derive
the threshold, typically the popular Gaussian copula model is applied.
We slightly rewrite the right side of equation (4.12) and derive the default
threshold as

M, [N~ 1), .o, N7 ) pp] (5.4)

M,, is the n-variate Gaussian distribution, N~ ' is again the inverse of a
standard normal distribution, and #, is a uniform random vector «, ¢ [0, 1];
=rand() in Excel/VBA or randn() in MATLAB. py is the asset correlation
matrix. An example of an asset correlation matrix is shown in Table 5.2.

We now look at a certain time frame # and derive the mapped default
probability of asset i at time ¢, Nfl(ki,t), following equation (5.3). We also
derive M,, in equation (5.4) for a certain time ¢, M,, ;, and then derive a sample
M,,+(-) using Cholesky decomposition, which was explained in Appendix 4A
of Chapter 4. If the mapped individual default probability N™'(\;,) is
bigger than the threshold sample M,, (), default of asset i occurs and vice
versa. Formally:

Tit = 1{N71(>\i.t)>Mn-t(')} <55)

In equation (5.5), 1 is an indicator variable. That is, 1 assumes the value 1
if N"'(\i;) > M,.(-) and zero otherwise. We now perform Monte Carlo
simulations; that is, we derive multiple results (e.g., 100,000) of equation
(5.5) and average those results. This gives us a certain probability of default of

2. See Chapter 4, section 4.3 for details of copula mapping.
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TABLE 5.2 (Fictitious) Asset Correlation Matrix Underlying Figure 5.7

Asset Correlation Matrix

1 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05
0.15 1 0.15  0.15 0.15  0.05 0.05 0.05 0.05 0.05
0.15  0.15 1 0.15 0.15 0.15 0.15 0.05 0.05 0.05
0.15 0.15 0.15 1 0.15 0.15 0.05 0.05 0.05 0.05
0.15  0.15 0.15 0.15 1 0.15 0.15 0.05 0.05 0.05
0.15  0.05 0.15 0.15 0.15 1 0.15 0.05 0.05 0.05
0.05  0.05 0.15  0.05 0.15 0.15 1 0.15 0.05 0.05
0.05  0.05 0.05  0.05 0.05  0.05 0.15 1 0.15 0.05
0.05  0.05 0.05  0.05 0.05  0.05 0.05 0.15 1 0.05

0.05  0.05 0.05  0.05 0.05  0.05 0.05 0.05 0.05 1

asset i at time t. For example, if the average result of equation (5.5) for a
certain asset 7 in the CDO is 0.1, then the default probability of this asset is
10% at time #. We apply equation (5.5) for all 7 assets in the CDO. This gives
us the correlated default distribution of all assets in the CDO. The defaults in
the distribution are correlated since the threshold M,,(-) includes the
correlation of the defaults via the correlation matrix py. Figure 5.7 shows
a possible default distribution generated by the Gaussian copula model.

In Figure 5.7, the defaults are put into 10% bins. We observe that there
is approximately a 19% probability that 10% of the assets default,

CDO Total Default Distribution
30%

25%
20% -
15% -
10% -

5% -

0% - T — - . )
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Default

FIGURE 8.7 A Loss Distribution of the Gaussian Copula Model

Inputs are: 10 assets, default probability of every asset 5%, recovery rate 5%,
correlations as in Table 5.2. See the model “CDO Gauss educational.xlsm” at www
.wiley.com/go/correlationriskmodeling, under “Chapter 3,” for the generation of the
loss distribution.

Probability
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FIGURE 5.8 Mapping of the Default Distribution to Tranches

approximately a 26 % probability that 20% of the assets default, and so forth.
We see that the loss distribution is somewhat lognormal; however, other
simulations display other shapes.

We now map the default distribution to the tranches of the CDO.
Assuming a continuous default distribution, the mapping is shown in
Figure 5.8.

Figure 5.8 gives us the correlated default probability of each tranche. The
tranche spread s, which is effectively a coupon that the tranche investor
receives (see Figures 5.2 to 5.4) is directly related to the default probability X
via equation (5.6):

s=X1—-R) (5.6)

where R is the recovery rate.

Equation (5.6) is also called the “credit triangle,” since three parameters
are involved and two parameters are necessary to derive the remaining third.
If the recovery rate is already included in the loss distribution, we have s = X.
This relationship is intuitive since the default probability X is the risk that the
investors take, and they should be compensated for this risk by receiving a
similar amount, the spread s. The relationship s = X\ (1 — R) was formally
derived by Lando (1998) with R = 0 and by Duffie and Singleton (1999) with
R # 0.

Once we have derived the correlated default probability distribution X,
we can derive the loss distribution L via

L=EADX (1 —R) (5.7)
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where EAD is the exposure at default, which for a CDO is the invested
amount in the tranche. Equation (5.7) assumes that the default probability
distribution of X\ does not include the recovery rate R.

The model “CDO Gauss educational.xlsm” that derives the default
distribution and loss distribution in a Gaussian copula framework can be
found at www.wiley.com/go/correlationriskmodeling, under “Chapter 5.”

9.2.3 Recovery Rate

The default probability of the assets in the CDO and the default correlation of
the assets are the critical inputs when valuing a CDO. A third input is the
recovery rate in case the asset defaults. However, the recovery rate is not as
critical an input as the default probability and the default correlation.

Generally, recovery rates depend on the type of security, seniority,
country, and state of the economy. The United States enjoys one of the
highest recovery rates due to its lenient Chapter 11 bankruptcy law, whereas
recovery rates in Japan are among the lowest. Several studies find that
recovery rates are higher in an economic expansion than in a recession
(Altman 2002; Doshi 2011).

Recovery rates are often approximated using historical recovery rates of
defaulted companies. Interestingly, the rating agency Fitch assigns a lower
recovery rate to higher-rated entities. The logic is that higher-rated entities
will only default in a recession, in which recovery rates are lower. Lower-
rated entities are assigned a higher recovery rate, since they can also default in
an economic expansion. Fitch refers to this concept as “tiered recovery rates.”
This is in line with S&P’s model to forecast recovery rates with respect to
ratings, as seen in Figure 5.9.

In addition, the thinner the tranche, the higher the loss severity, since
thinner tranches can be wiped out more quickly. Equity and junior mezzanine
tranches are typically thinner than senior tranches. Hence, some rating
agencies typically assign lower ratings and in some cases lower recovery
rates to equity and junior tranches.

In the standardized iTraxx and CDX indexes, the assumed recovery rates
range from 20% to 35%, depending on the credit quality of the index; see
www.markit.com/en/products/data/indices/credit-and-loan-indices/itraxx/
news.page for details.

9.3 CONCLUSION: THE GAUSSIAN COPULA AND
CDOs—WHAT WENT WRONG?

As mentioned in the beginning of this chapter, the Gaussian copula is
occasionally blamed for the global financial crisis of 2007 to 2009. Let’s
get the facts straight.


http://www.wiley.com/go/correlationriskmodeling
http://www.markit.com/en/products/data/indices/credit-and-loan-indices/itraxx/news.page
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FIGURE 5.9 Recovery Rates from S&P’s 3.2 Beta Model
Source: Ghetti and Cheng (2006).

5.3.1 Complexity of CDOs

As mentioned in section 5.1, CDOs are useful financial products since they
include sound financial principles such as diversification, subordination, and
overcollateralization. However, from a valuation perspective CDOs are
complex instruments. Generating the default probabilities of 125 assets
for the maturity of a CDO, typically 5 to 10 years, is not an easy task.
This is because many variables such as future economic environment, sector-
specific developments, products, changing competition, and changing com-
pany management are difficult to predict. In addition, typically the assets in
the CDO have never defaulted before, so empirical data of analogous
companies has to be analyzed.

Even more difficult is finding the default correlation between all the 125
assets in a CDO, which principally requires us to generate a 125-by-125
default correlation matrix. In addition, these correlations are typically quite
unstable, as we have seen in Chapter 2.

5.3.2 The Gaussian Copula Model to Value CDOs

The Gaussian copula model is a mathematically rigorous and adequate model
to value a CDO. The copula model allows the joining of # default probability
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functions to a single n-variate distribution. The correlation structure of the
newly created n-variate distribution is then applied.

Naturally the Gaussian copula has its limitations. We discussed some of
those limitations in Chapter 4, section 4.3. They include low tail dependence,
difficulties in calibration, and traders violating correlation assumptions by
using their own tranche-specific correlation inputs. In addition, the original
copula function is static; that is, it has a one-period time horizon. However,
default probability functions and correlation matrices can be derived for
different time horizons. This does not create a truly stochastic process with
drift and noise, but it gives valuable information for different times #. One-
factor copulas can be made dynamic such as in Hull, Presdescu, and White
(2005). However, the one-factor copulas, which assume a single correlation
value for all assets in a CDO, are simplistic and should not be applied when
valuing complex CDOs.

The main problem in 2007 and 2008 when valuing CDOs with the
Gaussian copula was inadequate calibration. Benign default probability
functions were applied and low default correlations between the assets in
the CDO were input in correlation matrices. When data from noncrisis
periods are input into a model, it cannot be expected that the model will
produce correct outputs in a crisis! In programming terminology: Garbage in,
garbage out. In the future, crisis scenarios have to be tested; that is, default
probabilities and default correlations from crisis periods have to be applied.
Basel III and the U.S. Federal Reserve have adopted this approach by
requiring financial institutions to stress-test their models. In conclusion,
“Don’t blame the models; blame the people who misuse them.”

9.4 SUMMARY

In this chapter we discussed the Gaussian copula correlation model and its
application for valuing collateralized debt obligations (CDOs). Several non-
quantitative articles have blamed the copula model for the global financial
crisis of 2007 and 2009.

There are three main types of CDOs: (1) cash CDOs, (2) synthetic CDOs,
and (3) unfunded CDOs such as the iTraxx or CDX indexes. However, many
variations of these three basic types exist. The three main players in a CDO
are (1) the originator (or protection buyer), who tranfers the credit risk; (2)
the investor, who assumes the credit risk; and (3) the special purpose vehicle
(SPV), which manages the CDO. CDOs have been misleadingly deemed
toxic, especially by those who do not want to take responsibiliy for their
incompetence and trading losses. CDOs include sound financial principles
such as diversification, subordination, and overcollateralization.
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The drawback of CDOs lies in their relative pricing complexity, espe-
cially with respect to correlation. If the CDO has 125 assets, we have to
evaulate a 125 x 125 asset correlation matrix. Here is where the copula
function comes in. It allows the joining of 7 (for example 7 = 125) univariate
distributions to one, however, n-dimensional distribution. Cholesky decom-
position lets us easily sample from this distribution (see Appendix 4A of
Chapter 4). This sample serves as a default threshold: If the individual default
probability of an asset is equal to or exceeds the threshold, default of the asset
occurs. Monte Carlo simulations are then conducted, and the average of the
outcomes constitutes the default probability of the asset. Conveniently, the
default correlation of the assets is included in the default probability, since
they are incorporated in the threshold.

Naturally, as with every model, the Gaussian copula has its limitations,
such as low tail dependence, problems in calibration, and its principally
static nature. However, the main problem in the 2007 to 2009 crisis was
the overinvestment in CDOs, the lack of hedging, and, importantly, the
data feed. Benign default probabilities and default correlation data from
noncrisis periods were input into the model. Of course, it cannot be
expected that this non-crisis data can realistically value the behavior of
a financial structure like a CDO in a severe crisis. This is why the central
banks and the Basel IIl Committee for Banking Supervision have required
all financial institutions to perform stress tests to evaluate the risks under
extreme crisis scenarios.

PRACTICE QUESTIONS AND PROBLEMS

1. What is the basic idea of a CDO?

. Name the three main types of CDOs.

. Which are the three main players in a CDO? Why is the SPV typically

AAA rated?

4. Name the motives of these three players to enter into a CDO.

5. Name the three financial principles that are incorporated in a CDO, and
explain them briefly.

6. What is the default probability of an entity based on the Merton 1974
model, if the current asset value Vy = $4,000,000, the debt value
D = $3,000,000, the maturity T of the debt is in 1 year, the risk-free
interest rate r is 2%, and the volatility of the assets o is 20%? (A simple
model that derives the answer is available upon request.)

7. In the Merton 1974 model, there is a closed form solution for the default
probability. What is it?

W N
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8. The elegant Merton 1974 model principally serves as a basis for more
realistic extensions. What are the limitations of the Merton 1974 model?

9. The Merton 1974 model is the basis for all structural models. Why is the
Merton model called structural? Why are reduced form models called
reduced form?

10. When valuing the default probability in a CDO, why do we map the
default probability of asset i, \; to standard normal via N~ ()\;)?

11. The multivariate copula function M,, serves as the default threshold. How
is the default of asset i derived in the copula model?

12. The credit triangle is s = X\ (1 — R), where s is the credit spread, X is the
default intensity, and R is the recovery rate. When R = 0, we have s = \.
Explain the intuition of s = \.

13. The recovery rate is often modeled as being higher, the lower the credit
rating of an asset. This seems counterintuitive. But why is it rational?

14. Can the Gaussian copula be blamed for the global financial crisis of 2007
to 2009?

15. What were the main reasons for the misevaluation of CDOs before and
during the crisis?
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The One-Factor Gaussian Gopula
(OFGC) Motlel—Too Simplistic?

Make everything as simple as possible, but not simpler.
—Albert Einstein

n Chapter 5 we discussed the standard copula model. It joins 7 marginal

distributions to a single n-variate distribution. The #» marginal distributions
are correlated in a correlation matrix. This matrix is # X 7 dimensional,
so if the collateralized debt obligation (CDO) has 125 assets, the matrix is
125 x 125 dimensional. This is mathematically and computationally quite
challenging. Often financial institutions take a shortcut, putting the assets
into sectors and correlating the different sectors. This reduces the dimension
of the correlation matrix.

A further shortcut is to assume that all assets in the portfolio have the
same pairwise correlation. This seems simplistic, and it is. However, if the
assets in the portfolio are homogeneous, i.e., they are very similar, e.g., they
have the same or similar credit ratings and/or they belong to the same sector,
this assumption may be tolerable.

If we simplify further, we can also assume that the default probability of
all assets in the portfolio is the same. This again seems simplistic, and again it
is. However, if the assets in the portfolio are homogeneous, for example they
have the same or similar credit rating and/or they belong to the same sector,
this simplification may be adequate.

A model in which the correlations and the default probabilities are
assumed to be the same for all assets is called homogeneous, or a large
homogeneous portfolio (LHP). In 1987 Oldrich Vasicek developed a meth-
odology to price the credit risk for such an LHP, called the one-factor
Gaussian copula (OFGC) model. The OFGC is a special type of the

119
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conditionally independent default (CID) correlation approach, which we will
explain in this chapter.

Let’s just look at some basics that are necessary to evaluate the credit risk
in a portfolio. We need three main inputs.

1. Default intensity. As explained in Chapter 4, example 4.2, default inten-
sity for period #to ¢ + 1 is the default probability from ¢ to ¢ + 1 conditional
on no default until period ¢. If # = 0 (i.e., we look at a time period starting
today), default intensity and default probability are identical.

2. Default correlation, which measures the likelihood that two or more
assets will default together. The standard copula model discussed in
Chapter 4 includes a default correlation matrix of the assets in the
portfolio (displayed in Table 1.3). The OFGC applies a conditionally
independent default (CID) correlation approach, which includes a single
correlation coefficient, i.e., it assumes the same pairwise correlation
between all assets in the portfolio.

3. Recovery rate. This can be modeled as explained in the previous chapter
(section 5.2.3) or derived by historical data.

Let’s look at the evolution of the one-factor Gaussian copula, which is
displayed in Table 6.1.

TABLE 6.1 Large Homogeneous Portfolio (LHP) Valued by the One-Factor
Gaussian Copula (OFGC) Model and Extensions

Default Intensity Correlation Recovery
PN Coefficient p Rate R
Vasicek’s 1987 LHP,
) valued on OFGC ; Same for Same for all Same for all
(used in Basel I to calculate credit il ezt Y ——
value at risk CVaR, see Chapter 12)
Extension of LHP: Different X\, for each
OFGC with different \; asset 7, Same for all Same for all
(used to value homogeneous \i can be a assets i assets §
CDOs) function of #, \{¢)
Multivariate Gaussian . ¢ 0
Copula . . ! erent- o-r cac Different for
David Li (2000) \is a function asset pair since a cach asset
g ] g fiand z, \;(?) correlation matrix
is typically applied to value CDOs, o o N
(is typically app pum is applied s

see Chapter 3)
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6.1 THE ORIGINAL ONE-FACTOR GAUSSIAN
GOPULA (OFGC) MODEL

We first define a variable 4, i = 1,..., n. The variable i represents a certain
company i, whose asset is part of a portfolio, for example a CDO. We
then derive an auxiliary default indicator variable x; for every company 1.
x; can be thought of as the overall strength of company i. The x; are
derived by

xi=/pM++/1—pZ, (6.1)

where

p: default correlation parameter between the assets in the portfolio,
0 < p < 1; p is assumed identical and constant for all asset pairs
in the portfolio.

M: systematic market factor, which impacts all companies. M can be
thought of as the general economic environment, for example the
return of the S&P 500. M is a random drawing from a standard
normal distribution, formally M = n ~ (0, 1). M is the same as € in
Chapter 4, section 4.1.

Z;: the idiosyncratic factor of company i. Z; expresses ith company’s
individual strength, possibly measured by company #’s stock price
return. Just like M, Z; is a random drawing from a standard normal
distribution.

x;: the value for x; results from equation (6.1) and is interpreted as a
default indicator variable for company i. The lower x; is, the earlier is
the default time T for company i. x; is by construction standard
normally distributed.

The variables M, Z;, and the resulting x; in equation (6.1) are sometimes
referred to as latent variables or frailty variables, because the lower M or Z; is,
the lower is x; and hence the earlier is the default time of company i.
Equation (6.1) is the key equation in the OFGC. It can be graphically
represented with Figure 6.1.

Although equation (6.1) is rather simple, it includes three important
properties:

1. The key property of equation (6.1) is that we do not model the default
correlation between the assets 7 in the portfolio directly, but instead we
condition defaults on M. We assume that p is identical for all asset pairs.
Therefore, we have the same relationship between every asset i and M: If p
is one, every asset i has a perfect correlation with M; hence all assets are
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° X1 = f(M)
\)

Common
Market
° _Xe=fM) Factor
M

xg=fM

FIGURE 6.1 Graphical Representation of the Correlation Concept of Equation (6.1)
for n = 3 Entities

The x; are not directly correlated, but indirectly correlated by conditioning on the
common factor M.

perfectly correlated. If p is zero, all assets i depend only on their
idiosyncratic factor Z;; hence the assets are independent. For a p of
0.7071 (and therefore ,/p=0.5), all x; are determined equally by M and
Z;. Importantly, once we have determined M (by a random drawing from
a standard normal distribution), the assets i are conditionally (on M)
independent. Therefore we name this approach conditionally indepen-
dent (CID) correlation modeling.

. Since M and Z; are random drawings from a standard normal distribu-

tion, it conveniently follows that x; is standard normal.

. The higher x;, the higher the default time #; hence the later the default of

asset 1.

We will now derive how the OFGC can evaluate the spreads of the

tranches in a CDO.

6.2 VALUING TRANCHES OF A CDO WITH THE OFGC

The road map for deriving the fair spread of each tranche consists of the
following six steps. They are displayed in Table 6.2.

The six steps to derive the fair spread of a CDO tranche are:

. Drawing random samples for M and Z; and deriving x;:

We start with drawing random samples from a standard normal
distribution [=normsinv(rand()) in Excel or norminv(rand) in MATLAB].
For every simulation we draw one sample M and one sample for each asset
i, Z;, (Table 6.2, columns 2 and 3). Together with a (market given) p we
derive x; from equation (6.1) for every asset ¢ (Table 6.2, column 4).
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TABLE6.2 A Sample-Simulation for Deriving the Correlated Default Time of Five
Assets (see last column)

Correlated Years to Default
M Z; x; N(x;)=P; 1-P; Default in Year
Asset 1 —0.5560 —1.6454 0.0499 0.9501 1.00 1
Asset 2 0.3338 —1.0162  0.1548 0.8452 3.28 4
Asset3 —1.7710 1.3042 -0.3300 0.3707 0.6293 9.03 No default
Asset 4 0.7198 -0.7433  0.2287 0.7713 5.06 No default
Asset 5 —0.5345 —1.6302 0.0515 0.9485 1.03 2

Default intensity X for all assets 5%, copula correlation coefficient p = 0.5, maturity
4 years. See the spreadsheet at “Ofgceducational.xls” at www.wiley.com/go/correlation
riskmodeling under “Chapter 6.”

2. Converting the x; into probabilities P;:
Next we convert the x;, which are —co < x; < oo, to cumulative
probabilities P; using the cumulative standard normal distribution
N [=normsdist(x;) in Excel, normcdf(x;) in MATLAB], hence N(x,) =
P, 0 < P; <1 (Table 6.2, column 5). The usage of standard normal
distributions for M and Z; and the resulting cumulative normal distribu-
tion via N(x;) is why the approach is called the Gaussian copula. Our
simulated default probabilities P; are uniform [=rand() in Excel, rand
in MATLAB]|, since we just reversed =normsinv(rand()) from step 1.
Graphically this is displayed in Figure 6.2.
3. Deriving market survival thresholds 1 — P
We calculate market thresholds 1 — P; (Table 6.2, column 6). From
step 2 we see that the 1 — P;are calculated in the same way for every asset 7.
However, the numerical values of each 1 — P; differ, since they depend on
the random drawing for every asset 4, Z; (the 1 — P; in each simulation will
be identical only if the random drawings Z; are identical by coincidence
and/or in the case of p = 1).
4. Deriving individual survival probabilities of asset i, s;:
m Constant (flat) default intensity curve X in time:
In this case we take the market given default intensity X for asset 7,
N, at time # and derive the survival probability s for asset i at time # via
(1—h;)' =st.!
B Default intensity is a function of time X\(z):

1. We do this because it is easy to work with survival probabilities. For example, if the
survival probability for year 1 is 90% and the survival probability for the second year
is also 90%, the survival probability from time O to the end of year 2 is 90% x 90% =
81%, assuming the survival probabilities are independent.
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FIGURE 6.2 A Sample Simulation, Which Transforms x; to a Cumulative Default
Probability N(x;) = P,
Source: Meissner (2008).

If we have a market given nonconstant default intensity curve for
each company 7 with respect to time, we have to derive the idiosyn-
cratic survival curve for every asset i. We take the annual, market
given default probability curve p,(¢) for every asset i. We derive the
default intensity (also called hazard rate) at a specific time T, X\(T),

from h;(T) = %, t = 1,..., T. \(T) is the default probability

t=1
from time T to time T + 1, assuming no default until time T. We find
the annual survival probabilities s;(2) = 1 — \;(¢). We derive the cumu-
lative survival time S;(T) = HtT: 1i(2). A curve of S;(¢) is shown in
Figure 6.3. It is generated from default probabilities of 5% in year 1
to 14% in year 10, linearly increasing.

5. Deriving the correlated default time # (Table 6.2, column 7):

m Constant (flat) default intensity curve \:

We derive the default time 7 of asset 7 by equating asset i’s (market
given) survival probability at ¢, st with the market survival threshold
1 - P,, which we derived in steps 2 and 3

Sﬁ =1- Pl‘ (6-2)
We solve equation (6.2) for the default time ¢ of asset 7, ;> We then

use Monte Carlo simulation to derive many default times ¢ for an asset
i. We average the default times ¢ for each i. Note that the default time ¢

2. We solve equation (6.2) for ¢ by taking the natural logarithm of both sides:
Inst=In(1 —P;) or ¢ In(s;) = In(1 — P;) or t = In(1 — P,;)/In(s;).
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FIGURE 6.3 Derivation of the Correlated Default Time # When the Default Intensity
Curve Is Nonconstant
Source: Meissner (2008).

includes the default time correlation of all assets in the portfolio, since
1 — P; includes the default correlation.
m Default intensity as a function of time X\(¢):

We relate the simulated survival probabilities from step 3, 1 — P;,
to asset i’s idiosyncratic cumulative survival probability curve S,
generated in step 4. We find the default time of asset i with a lookup
function; see Figure 6.3.

We then use Monte Carlo simulation to derive many default times
t for an asset i and average the default times ¢ for each i.

The fact that we find the default time ¢ by equating the idio-
syncratic survival probability S; with the simulated survival threshold
1 — P;, relates to the standard Gaussian copula, which we discussed in
Chapter S. In the standard Gaussian copula the default of an asset at
time T was determined by equating the inverse of the default intensity
with a market threshold; see equation (5.5).

In Table 6.2, M = —1.7710. M can be interpreted as the economic
environment. M is a random drawing from a standard normal distribution
and takes values —0o < M < co. So in the displayed simulation in Table 6.2,
M = —1.7710 means that we have a somewhat negative economic
environment. This is why several of the names in Table 6.2 default. In
particular, assets 1, 2, and 5 default, since their Z; are also relatively low.
Asset 1’s Z; is the lowest; therefore it defaults earliest (i.e., in year 1).

6. Deriving the tranche spread:
Once we have derived the average default time for each asset , it is easy
to find the fair tranche spread. Each tranche of a CDO consists of a portfolio
of credit default swaps (CDSs), as displayed in Figure 6.4. The number of
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Spread s on outstanding notional (ON)

Tranche Tranche
Buyer Seller

Payout of the losses
of the tranche

FIGURE 6.4 Cash Flows of a CDO Tranche

CDSs in a certain tranche is determined by the attachment and detachment
point. For example, the equity tranche of the iTraxx and CDX indexes
contains 0% to 3% of defaults of the 125 assets. Hence 3% x 125 =3.75 of
all defaults fall into the equity tranche (so the fourth default falls to 75%
into the equity tranche and to 25% into the next higher tranche).

Since we have derived the expected default time of every asseti (step 5),
we also know the losses atany time . From the losses of every asset i, we can
find the outstanding notional (ON) of the CDO at any time ¢. With this
outstanding notional in hand, we can price the tranche.

Each CDO tranche is evaluated with simple swap valuation techniques.
The present value (PV) of the spread leg of tranche j is

V(Spread tranche;) = Spread; E (2 e‘”ON,-(t)) (6.3)

t=1

where E stands for expected value, ONj(¢) is the outstanding notional of
tranche j at time #, and 7 is the continuously compounded risk-free interest
rate. The present value of the payout leg of tranche j is

PV (Payout leg;) = (2 e "(ONj(t — 1) — ON;(#))(1 — R)> (6.4)

where R is the recovery rate.
Equating (6.3) and (6.4), setting to zero and solving for Spread; gives the
fair market spread of tranche j:

E (Z e~"(ON;(t — 1) — ON;(£))(1 — R)>

t=1
E <Z e‘”ON,(t))
t=1

For an educational model showing steps 1 to 6, see “Ofgc educational.xls”
at www.wiley.com/go/correlationriskmodeling, under “Chapter 6.”
Let’s derive the fair tranche spread in a numerical example.

Spread; = (6.5)
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EXAMPLE 6.1: DERIVING THE FAIR TRANCHE
SPREAD OF A CDO WITH THE ONE-FACTOR
GAUSSIAN COPULA (OFGC) MODEL

Let’s look at a CDO with a 3-year maturity. The starting notional is
$1,000,000,000, with 125 equally weighted companies. Hence each
asset has a notional of $8,000,000.

Next assume that the spread payments and payouts are annually in
arrears. The recovery rate for every asset is 40%. Interest rates are
constant at 10%. We consider an equity tranche with a detachment
point of 3%. Hence the equity tranche has a starting notional of
$30,000,000.

Let’s also assume that from our analysis of steps 1 to 5, we derive
that one asset defaults after 1.5 years and one asset defaults in
2.5 years. Hence the starting notional of $30,000,000 reduces to
$22,000,000 for #, (end of year 2) and to $14,000,000 for #; (end of
year 3).

From equation (6.5), the numerator is

e 011 % 0% 0.6 4+ e7%1%2 x ($30,000,000 — $22,000,000) x 0.6
+e70123 % ($22,000,000 — $14,000,000) x 0.6 = $8,782,153

From equation (6.5), the denominator is

e 11 % $30,000,000 + e~ %2 x $22,000,000
+e7 %123 x $14,000,000 = $55,528,654
Hence the fair equity tranche spread, paid annually in arrears, is
$8,782,153/$55,528,654 =15.82%

Note that we abstracted from any accrued interest on the bond of the
asset. Furthermore, we have abstracted from any accrued interest on
the spread premium.

6.2.1 Randomness in the OFGC Model

The reader might be surprised by all the randomness in generating the default
time ¢. Since both M and Z; are random drawings from a normal distribution,
does it matter what value p has in equation (6.1)? A similar question is: Since
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all P; are random, uniform probabilities [=rand() in Excel], why don’t we just
start the process at step 2 and derive uniform drawings; hence P; = rand()?

The answer is that p in equation (6.1) represents the default correlation
between the assets in the CDO. We generate one M for every asset i and a
unique Z for every asset i in each Monte Carlo simulation. Hence p serves
as a weighting factor between M and Z;. The higher p, the more the x;
depend on the common factor M, hence the higher the default correlation
of the assets in the CDO, and vice versa. This is discussed in detail in the
following section.

6.3 THE CORRELATION CONCEPT IN
THE OFGC MODEL

As mentioned previously, a key property of the OFGC model is that the
default correlation between the assets in the CDO is not modeled directly, but
instead indirectly by conditioning the defaults on a common market factor M.

The higher p in equation (6.1), the higher is the dependence of each asset i
on the factor M, hence the higher the correlation between the assets. This
is expressed in the standard deviation of the simulated survival probabilities
1 — P,. The higher p is, the lower is the standard deviation of the 1 — P/sin a
simulation, hence the higher is the probability that the assets default together.

Figure 6.5 shows the idiosyncratic survival curves of two assets i = 1 and
i = 2.1If p is high (close to 1), the 1 — P;’s of each asset i will have a low
standard deviation in each simulation (i.e., will have similar values). Since the
simulated 1 — P;s are quite similar, the probability of the assets defaulting
together is high, as seen in Figure 6.5.

9 100% -

80% -
60% ,

|
40% - i
20% i
0% SN & S

1 2 3 4 5 6 7 8 9 10
Default Time (in years)

FIGURE 6.5 A High Correlation, Resulting in Similar Default Times of Assets i = 1
andi=2
Source: Meissner (2008).
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In the extreme case of p = 1, each simulation will generate the same 1 — P;
for every asset i (since the x; and the resulting 1 — P; depend only on the
common factor M). If additionally the hazard rates of every asset i are
identical, the OFGC will generate the same default time for every asset i.

For a low correlation, e.g., p = 0.035, it follows from equation (6.1), that
the x;, P;, and 1 — P; are mainly determined by the idiosyncratic Z;. In this
case the survival times 1 — P; in each simulation have a high standard
deviation; that is, they are quite different (unless by coincidence the random
drawings Z; are similar). Therefore, the OFGC model typically generates
quite different default times, as seen in Figure 6.6.

6.3.1 The Loss Distribution of the OFGC Model

As seen in section 6.2, deriving the fair tranche spread with the OFGC model,
there are two main input factors that determine the price of a CDO. One is the
default probability of the assets in the CDO. Naturally, the higher the default
probability, the higher the spread of the tranches in the CDO. The second
crucial input factor is the default correlation of the assets in the CDO.

Figure 6.7 shows the loss distribution with respect to correlation of a
10-asset CDO with a 2-year maturity and a 10% hazard rate.

As seen in Figure 6.7, for zero correlation, the OFGC model displays a
somewhat lognormal distribution of losses. For medium correlation, the
losses are more evenly distributed and descending. For very high correlation,
the probability of extreme events increases. Hence, there is a high
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FIGURE 6.6 A Low Correlation, Resulting in Quite Different Default Times for
Assetsi=1andi=2
Source: Meissner (2008).
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Frequency

Defaulted Assets

FIGURE 6.7 Loss Distribution of a 10-Asset CDO with Respect to Default
Correlation of the Assets in the CDO
Source: Meissner (2008).

probability of zero losses and an increased probability that all assets default.
For a model deriving the loss distribution of the OFGC, see “Base correla-
tion generation.xlsm” at www.wiley.com/go/correlationriskmodeling,
under “Chapter 6.”

6.3.2 The Tranche Spread-Correlation
Relationship

From Figure 6.8 we can deduct the tranche spread—correlation relationship in
the OFGC model. Interestingly, the equity tranche spread is negatively related
to default correlation, whereas the senior tranche is positively related.

The negative relationship between the equity tranche spread and default
correlation is intuitive: The higher the default correlation of the companies in
the CDO, the higher the probability of extreme events; that is, the probability
of many or no defaults is high. The high probability of no defaults reduces the
riskiness and hence reduces the equity tranche spread. The high probability of
many defaults at the same time increases the riskiness of the equity tranche,
which increases the equity tranche spread. However, this effect does not
impact the equity tranche significantly, since the losses are capped at the
detachment level.

The opposite logic applies to the senior tranche: If default correlation is
high, many defaults may occur at the same time. Therefore, the senior tranche
may be impacted; hence the riskiness and the spread are high.


http://www.wiley.com/go/correlationriskmodeling

The One-Factor Gaussian Copula (OFGC) Model—Too Simplistic? 131

Tranche Spread

First-to-default or
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FIGURE 6.8 Relationship between Tranche Spread and Default Correlation in the
OFGC Model

It should be mentioned that the relationship between tranche spread and
correlation in Figure 6.8 is a specific result of the OFGC model. Other models
with different distribution assumptions and correlation approaches derive a
different spread-correlation relationship, e.g., a positive relationship between
equity spread and correlation.’

6.4 THE RELATIONSHIP BETWEEN THE OFGC
AND THE STANDARD COPULA

The core equation of the OFGC was displayed in equation 6.1.
X =/PM+/1—pZ; (6.1)

By construction, x; in equation (6.1) is standard normal. Therefore, we can
easily create the cumulative standard normal distribution of the x;:

N(x;) (6.1a)

where N is the one-dimensional cumulative standard normal distribution.
Importantly, N(x;) includes the default correlation between the i = 1,..., n
assets via the correlated x;, derived in equation (6.1).

3. See R. Jarrow and D. van Deventer, “Synthetic CDO Equity: Short or Long
Correlation Risk?” The Journal of Fixed Income, 17 (2008): 4.
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In comparison, the #-dimensional cumulative standard normal distribu-
tion M, was generated in the standard Gaussian copula framework by
equation (4.12):

M,u[N"HQ;(#), -, N™H(Q,(1); pu] (4.12)

where Q;(¢) is the cumulative default distribution of asset i with respect to ¢
and pyy is the correlation matrix of the assets in the portfolio.

Let’s look at four differences between the OFGC of equations (6.1) and
(6.1a) and the standard copula of equation (4.12).

1. The correlations between the assets i in equation (6.1) are modeled
indirectly by conditioning the auxiliary variable of asset 7, x;, on a
common factor M. In contrast, equation (4.12) applies the typical
correlation matrix ppr (for an example, see Chapter 1, Table 1.3).

2. As a consequence, in the OFGC all asset pairs in the portfolio have the
same correlation. The standard Gaussian copula is richer, as it can model
asset pair correlation individually in the correlation matrix.

3. The cumulative normal distribution in equation (6.1a), which includes the
correlation between the assets i via x;, is conveniently one-dimensional.
The cumulative normal distribution in equation (4.12) is #-dimensional.

4. The bivariate case of the standard Gaussian copula is equivalent with the
OFGC: Sampling from equation (4.12) is achieved by Cholesky decom-
position (as explained in Appendix 4A of Chapter 4). In the bivariate
case, Cholesky sampling of two correlated variables x; and x, from
equation (4.12) reduces to

X1=¢1
x2=,/pe1+v/1—-pe2

where g1 and ¢, are independent samples from 7 ~ (0, 1). This is equivalent to
samples 7/ = 1, 2 from equation (6.1).

6.5 EXTENSIONS OF THE OFGC

The OFGC is principally static, i.e. has a one period time horizon. However,
the static property of the OFGC can be relaxed, as in Hull, Presdescu, and
White (2005), who apply a dynamic OFGC model. Hence they modify
equation (6.1) and model

dzi(t) =~/p(t) dM(t) + /1 — p(t)dZi(t) (6.6)
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where dM(z) and dZ,(¢t) are n ~ (0,1) and independent. It follows from
equation (6.6) that dz,(¢) is also n ~ (0,1). The dependence on M(t) again
determines indirectly the correlation between assets i. For example, if p(£) = 1,
dz;(t) depends only on dM(t); hence all assets i have the same Brownian
motion at time ¢. If p(¢) = 0, dz,(t) = dZ,(t); hence the Brownian motions of
assets i are uncorrelated at time ¢.

Furthermore, more common factors M can be modeled. In this case
equation (6.1) generalizes to

5= Y BaMc+ 2 Y
k=1 k=1

. . m
and the correlation between x; and x; is Zk: VPikbik

Numerous further extensions of the OFGC approach exist. One of the
most popular is the one-factor Student’s ¢ copula.

X =/pM+ /1 —pZ (6.7)

where M and Z; are independent and 7 ~ (0,1). x; =X,/ W where W follows
an inverse gamma distribution. It follows that the latent variable x; is
Student’s ¢ distributed.

Another popular extension of the OFGC in equation (6.1) is the double-z
copula. It is defined as

Xi=+/pMs+ /1 —pZs; (6.8)

where Mg and Zg ; are independent and follow a Student’s ¢ distribution. Since
the Student’s ¢ distribution is not stable under convolution, the latent variable x;
in equation (6.8) is not Student’s # distributed.

Another extension of the OFGC is integrating a binomial representa-
tion of stochastic correlation. Burtschell et al. (2008) model the latent
variable x; as

xi =Bi(y/piM+ /1 =p1Zi) + (1 = Bi)(y/poM+ /1 =p,Z))

where M and Z; are defined as in equation (6.1). B; is a Bernoulli random
variable. We define a Bernoulli cutoff B* € [0, 1] and model

0 if r< B*
11 if r>B*
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where ris a random drawing from a uniform distribution n € [0, 1]. If we set
p1 > P2, the cutoff level B* can be set low to model high correlation in
distressed times.

A further extension of the OFGC is creating a local correlation model
(LCM) [see Turc et al. (2005)], where the correlation is state-dependent. In
particular, Turc et al. assume that the correlation p is dependent on the state
of the economy M. Hence the OFGC changes to

xi= — /p(M)M+ /1 —p(M)Z;

The approach is similar in nature to the local volatility model of Dupire
(1994), where volatility at time ¢, o,, is a function of the state of the underlying
S at time ¢ and #, o/S;, ). Whereas Dupire is able to model the implied
volatility skew and smile in the equity option market well, the local correla-
tion model is able to reproduce the implied correlation smile of CDO tranches
spreads quite accurately. As a result, the marked-to-market and hedge ratios
of the local correlation model outperform those of the original OFGC.

A further extension of the OFGC is by Schonbucher and Schubert (2001),
who integrate stochastic dynamics into the Gaussian copula model. Andersen
and Sidenius (2004/2005) introduce randomness to the factor M with their
random factor loading (RFL) model, allowing default correlation to be higher
in a recession. Andersen (2006) adds jumps in both factors and residuals to
the RFL model. Willeman (2005) applies lognormal jumps, and Baxter
(2006) uses Brownian variance-gamma jumps to model the credit process.

6.5.1 Further Extensions of the OFGC Model:
Hybrid CID-Contagion Modeliny

As derived in section 6.1, the OFGC applies a conditionally independent
default (CID) correlation approach. CID models offer realistic correlation
features such as default clustering. For example, if the correlation coefficient p
is high and the market environment M is negative [see equation (6.1)], many
entities will default together.

As mentioned in Chapter 4, section 4.4, contagion correlation ap-
proaches can model counterparty default contagion. Hence it is not surpris-
ing that several models incorporate the CID common factor feature as well as
contagion properties. In these models, typically a contagion term is simply
added to the CID process. Schonbucher and Schubert (2001), Frey and
Backhaus (2003), Giesecke and Weber (2004), and Yu (2007) propose

N=aM+Zi+ Y By N, (6.9)
jFi
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where M and Z; are defined as in equation (6.1). 3, ; is a function that models
the contagion of firm i to a default of firm j, and N; is a default counting

process N; = z - 1¢7j< s where Tj is the stopping time (i.e., default time)
i

of firm j. A special case of equation (6.9) is derived by Giesecke and Weber
(2006) with Z; = 0 and o;M = ¢;. Hence the deterministic function c;, which
models the base intensity, may not incorporate a systematic factor M.

Alternatively, Schonbucher (2004), Giesecke and Goldberg (2004), and
Duffie, Eckner, Horel, and Saita (2009) suggest

N=oM+Z;+3U

where £3; is a deterministic function and U is a common factor, which is
unobservable. However, the factor U is transformed into an observable
process U= E(U,|F,), where F, is the filtration, which contains all events.
The filtered process U is updated with observable information, in particular
information about default events, which constitutes the contagion of firm 7 on
defaults of other firms ;.

6.6 CONCLUSION—IS THE OFGC T0O SIMPLISTIC
TO EVALUATE CREDIT RISK IN PORTFOLIOS?

Let’s answer this question by first looking at the benefits and limitations of the
OFGC model.

6.6.1 Benefits of the OFGC Model

The OFGC model is simple. Similar to the Black-Scholes-Merton model,
the OFGC model has high intuition and is easy to implement. More
complex approaches such as nonfactor copulas have to use multivariate
methods such as Gaussian quadrature or recursion techniques (Andersen,
Sidenius, and Basu 2003; Hull and White 2004); inverse fast Fourier
transforms (Laurent and Gregory 2003); or saddle point approximations
(Martin et al. 2005) to generate the cumulative loss distribution. However,
the OFGC model uses a simple univariate function N(x;) to generate
the simulated loss distribution, since the x; already include the
correlation. The default time of an asset can be derived easily by equating
the market survival threshold with individual survival probability; see
equation (6.2).
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CDX Tranche Implied Correlation
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FIGURE 6.9 CDX Implied Correlation, Also Called Compound Correlation, Backed
Out of the OFGC Model, November 2004

6.6.2 Limitations of the OFGC Model

The OFGC model is simple. It is essentially static, with no underlying
stochastic process.* Hence dynamic delta and gamma hedging are difficult
to implement.

The most significant drawback is that traders do not seem to agree with
the model. Just as option traders increase the implied volatility to derive
higher prices for out-of-the-money puts and calls in the Black-Scholes-Merton
model, CDO traders alter the crucial input factor correlation in the OFGC.
The often cited correlation smile is shown in Figure 6.9.

However, there is a crucial difference between the volatility smile of
options and the correlation smile of CDOs. Whereas an increase in the
implied correlation increases the senior tranche spread, an increase in
the implied correlation decreases the equity tranche spread. This is because
the equity tranche spread has a negative dependence on implied correlation;
see Figure 6.8. Hence CDO traders arbitrarily decrease the equity tranche
spread and arbitrarily increase the senior tranche spread.

In practice traders do not like to work with implied correlation. It does
not allow easy interpolation (e.g., the pricing of an off-the-run tranche as for
example the 2% to 8% tranche). Hence traders typically derive a base
correlation curve, which has an attachment point of zero and the detachment
points of the standard tranches, hence 0%-3%, 0%-7%, 0%-10%,
0%-15%,and 0%-30% in the case of the CDX. The derived base correlation

4. See Schonbucher and Schubert 2001 for integrating stochastic dynamics into the
Gaussian copula model.
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CDX Tranche Base Correlation
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FIGURE 6.10 CDX Base Correlation, Backed Out of the OFGC Model, November
2004

curve is typically upward sloping and allows easier interpolation of off-the-
run tranches, as seen in Figure 6.10.

The transformation of forward implied correlation to spot base correla-
tion reminds us of the calculation of spot rates from Eurodollar future rates in
the interest rate market. For a model that bootstraps the base correlation
curve from CDO tranche spreads, see “Base correlation generation.xIsm” at
www.wiley.com/go/correlationriskmodeling, under “Chapter 6.”

In conclusion, the OFGC is an elegant, simple, and intuitive model that
traders like. It bears benefits and limitations similar to those of the Black-
Scholes-Merton model. Similar to the Black-Scholes-Merton model, the
benefits are simplicity and intuition. One limitation of the OFGC with respect
to application is that traders violate the assumptions of the model. They
randomly alter the crucial input factor correlation to derive desired tranche
spreads.

While traders like simplicity, simplicity comes at a cost. The critical
question is whether the assumptions of the OFGC, i.e., the same default
probability of all assets in the portfolio and the same correlation between all
asset pairs in the portfolio are too simplistic to derive the credit risk of that
portfolio. The answer is: Only in rare cases, if the assets in the portfolio are
very homogeneous, i.e., they have similar default probabilities and similar
default correlations, is the OFGC an adequate model. Most portfolios of
investment banks, however, are highly diversified with assets from different
sectors and different geographical regions and hence have different default
probabilities and default correlations. In this case the OFGC is an
inappropriately simplistic model. It is a bit surprising that the Basel IIl accord
applies the OGFC to evaluate credit risk for the portfolios of financial
institutions. For more details, see Chapter 12, “Correlation and Basel II
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and III,” especially section 12.2, “Basel II and III’s Credit Value at Risk
(CVaR) Approach.”

6.7 SUMMARY

In this chapter we discussed a shortcut of the Gaussian copula function: the
one-factor Gaussian copula (OFGC). We evaluated whether it is too simplis-
tic, especially with respect to valuing CDOs.

The OFGC was created by Oldrich Vasicek in 1987. The OFGC makes
the following strong simplistic assumptions: (1) All assets in a portfolio
have the same default probability, (2) all assets in a portfolio have the same
pairwise default correlation, and, less critically, (3) all assets in the portfolio
have the same recovery rate. These assumptions constitute a large homo-
geneous portfolio. In fact, the simplistic assumptions of the OFGC are
justifiable only if the portfolio in question is very homogeneous; for
example, it contains assets of the same sector with the same or similar
credit ratings.

The OFGC applies the conditionally independent default (CID) correla-
tion approach. In this approach, the assets are not correlated directly, but
indirectly by conditioning on a common factor that is shared by all assets. For
example, all assets depend on the current state of the economy. The higher the
dependence of the assets on the state of the economy, the higher is also the
correlation between the assets. For example in the extreme case, if all assets’
dependence on the common factor is 1, all assets are perfectly correlated. If
the dependence on the common factor is 0, the assets are uncorrelated. For
dependence values on the common factor between 0 and 1, naturally there is a
partial correlation between the assets.

The correlated default time of an asset is derived in a similar fashion as in
the standard Gaussian copula: A threshold is created that contains the default
correlations of the assets in the portfolio. This threshold is equated with the
survival probability of the asset, and in the case of a constant default
probability function, this equation can be solved for the default time z. In
case of a nonconstant default probability function, a search procedure finds
the default time. Monte Carlo simulations are applied to derive numerous
default times, and the result is averaged to determine the final default time.
The default times of the different tranches are then mapped to the tranches of
the CDO to find the tranche spread.

Since the OFGC is simplistic, many extensions exist that attempt to bring
the OFGC closer to reality. A dynamic OFGC model can be created, multiple
common factors can be introduced, or different distributions for the latent
variables can be applied.
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In conclusion, the OFGC is a simple, intuitive model that traders like.
However, simplicity comes at a cost. The assumptions of identical default
probability of all assets and identical default correlation between all assets in
the portfolio are justifiable only for a portfolio with highly homogeneous
assets, possibly in the same sector and with similar credit ratings. For the
heterogeneous portfolios of most investment banks the OFGC is too simplis-
tic. In addition, as with the Black-Scholes-Merton option pricing model,
traders seem to disagree with the OFGC: They randomly alter the tranche
correlations to derive desired tranche spreads; this violates the basic principle
of the OFGC, which assumes a constant CDO-wide, tranche-nonspecific
default correlation.

PRACTICE QUESTIONS AND PROBLEMS

1. Name the three strongly simplistic assumptions of the one-factor Gaus-
sian copula (OFGC) model.

2. For which portfolios are those assumptions justifiable?

3. The correlation concept of the OFGC is incorporated in the simple
equation (6.1) x;=./pM++/1 —pZ;. Explain the correlation concept
with this equation.

4. Equation (6.1) applies the conditionally independent default (CID)
correlation approach. Explain the term conditionally independent.

5. Why are the variables M, Z;, and the resulting x; in equation (6.1) called
“latent” and “frailty” variables?

6. In equation (6.1), the x; are standard normally distributed. How are the x;
transformed into probabilities?

7. Inequation (6.2), s =1 — P;, s} is the survival probability of asset 7 at time
t,and 1 — P;is the default threshold, which includes the correlation. Solve
equation (6.2) for the default time ¢ of asset i. What is the default time of
asset 7 if st =80% and P, = 50%?

8. Calculate the fair equity tranche spread of a CDO for the following CDO
with a three-year maturity: The starting notional is $2,000,000,000, with
125 equally weighted companies. Hence each asset has a notional value of
$16,000,000.

Let’s assume spread payments and payouts are annually in arrears.
The recovery rate for every asset is 30%. Interest rates are constant at
5%. We consider an equity tranche with a detachment point of 3%.
Hence the equity tranche has a starting notional value of $60,000,000.

Let’s assume that we have derived that one asset defaults after
1.5 years and one asset defaults at 2.5 years. Hence the starting notional
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of $60,000,000 reduces to $44,000,000 for #, (end of year 2) and to
$28,000,000 for #5 (end of year 3).
What is the equity tranche spread derived by the OFGC?

9. The tranche spread of the equity tranche and the senior tranche behave
very differently with respect to changes in the correlation of the assets in
the CDO. Draw a graph showing the tranche spread—correlation depen-
dence for the equity tranche and a senior tranche.

10. Explain the graph that you created in problem 9.

11. Name the main differences between the standard Gaussian copula and the
OFGC.

12. The OFGC is a first, simplistic approach to derive the tranche spread in
a CDO and the credit risk in portfolios. Name three extensions of
the OFGC.

13. Should we apply the OFGC to value CDOs? Should we apply the OFGC
to value credit risk in portfolios?

14. Why do “traders seem to disagree with the OFGC”?

15. Explain the correlation smile that traders apply to derive tranche spreads.
How is the correlation smile related to the volatility smile when pricing
options?
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7

Financial Correlation Motels—
Top-Down Approaches

Imagination is more important than knowledge.
—Albert Einstein

Financial credit models, which derive correlated default risk, can be

characterized by the way the portfolio default intensity distribution is

derived. In the bottom-up models of Chapters 4, 5, and 6, the distribution of

the portfolio intensity is an aggregate of the individual entities’ default intensity.

In a top-down model the evolution of the portfolio intensity distribution is

derived directly, i.e., abstracting from the individual entities’ default intensities.
Top-down models are typically applied in practice if:

m The default intensities of the individual entities are unavailable or
unreliable.

m The default intensities of the individual entities are unnecessary. This may
be the case when evaluating a homogeneous portfolio such as an index of
homogeneous entities.

m The sheer size of a portfolio makes the modeling of individual default
intensities problematic.

Top-down models are typically more parsimonious and computationally
efficient, and can often be calibrated better to market prices than bottom-up
models. Although seemingly important information such as the individual
entities’ default intensities is disregarded, a top-down model can typically
capture properties of the portfolio such as volatility or correlation smiles
better than a bottom-up model. In addition, the individual entities’ default
information can often be inferred by random thinning techniques.

143
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In this chapter we analyze the correlation modeling of several top-down
approaches. In particular we revisit Vasicek’s 1987 one-factor Gaussian
copula (OFGC) model, and we discuss the Markov chain models of Hurd
and Kuznetsov (2006a, 2006b) and Schonbucher (2006), as well as the top-
down contagion model of Giesecke, Goldberg, and Ding (2011). Top-down
models are mathematically somewhat more complex than bottom-up models
are. So readers who are not mathematically well equipped may take this
chapter with caution. We hope mathematicians will like it.

7.1 VASICGEK'S 1987 ONE-FACTOR GAUSSIAN
GOPULA (OFGC) MODEL REVISITED

The one-factor Gaussian copula model can be considered a top-down
correlation model, since it abstracts from the individual default intensities
of each asset i. Rather, one default intensity is assumed for all assets in the
portfolio.

We devoted the entire Chapter 6 to the one-factor Gaussian copula model
(OFGC), where we discussed properties and practical applications such as
valuing CDOs. In this more theoretical chapter, we briefly show that a
realistic default distribution can be derived with the OFGC.

Vasicek 1987 assumes (1) a constant and identical default intensity of all
entities in a portfolio and (2) the same default correlation between the entities.
These two conditions constitute a large homogeneous portfolio (LHP), which
is evaluated with the one-factor Gaussian copula (OFGC) framework.

The OFGC model allows creating a loss distribution to find &k = 1,..., n
defaults of a basket of 7 entities at time T. We start with the core equation:

x;=/pM++/1—pZ, (6.1)

where variables are defined as in Chapter 6, section 6.1.

We now map the cumulative default probabilities Q(T), which are
identical for all entities in the portfolio, to standard normal via N~ 1(Q(T)),
where N~ is the inverse of the cumulative standard normal distribution. We
equate the N~ (Q(T)) with the correlated market frailty variable x; of equation
(6.1); hence x; = N~ '(Q(T)). This equation satisfies the OFGC property that
Prob(x; < x) = Prob(T; < T); that is, the frailty variable x; (which includes the
default correlation) is mapped percentile to percentile to default times T}.!

1. For more on the copula mapping, see Chapter 4, section 4.3.
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Inputting x; = N~ '(Q(T)) into equation (6.1) and solving for Z,, we
derive
N YO(T) - P M

Q) - yF o)

I-p

The correlation between the i = 1,..., n entities is modeled indirectly by
conditioning on M. Once we determine the value of M (by a random drawing
from a standard normal distribution), it follows that defaults of the entities
are mutually independent. In particular, the cumulative default probability of

the idiosyncratic factor Z;, N(Z;) can be expressed as the cumulative default
probability dependent on M, Q(TIM). Hence we have

N-YO(T)) - /pM
S ) 72)

Zi=

Q(TM)=N<

Equation (7.2) gives the cumulative default probability conditional on
the market factor M. We now have to find the unconditional default
probabilities. We do this by first discretely integrating over M. Since M is
standard normal, this is computationally easy; we can use the discrete
Gaussian quadrature (Norm (x) — Norm (x — 1)) in MATLAB. We now
have to derive all possible k = 0,..., # default combinations. We do this by
applying the binomial distribution B, hence B(k; n, O(TIM)) and weighing it
with the piecewise integrated units of M. The result is a distribution of the
number of defaults until T, as shown in Figure 7.1.

Default Distribution

14.00% 1
12.00% 1
10.00% 1
8.00% -
6.00% -
4.00% A
2.00% A
0.00%

Probability

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
# of Defaults

FIGURE 7.1 Unconditional Default Distribution Derived from the OFGC Model
Parameters Q(T) = 7.3%, p = 10%, portfolio size 125 entities, recovery rate 40%.
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A spreadsheet that derives the default distribution in the OFGC frame-
work can be found at “Base correlation generation.xIsm” at www.wiley.com/
go/correlationriskmodeling under “Chapter 7.”

7.2 MARKOV CHAIN MODELS

In this section, we discuss two models that generate correlation in the Markov
chain framework.

7.2.1 Inducing Correlation via Transition
Rate Volatilities

Philipp Schonbucher (2006) generates different transition and default corre-
lation properties via different transition rate’ volatilities in a time-
inhomogeneous, finite-state Markov chain® framework. The model is
inspired by the Heath-Jarrow-Morton (HJM) (1992) interest rate model.
Whereas the HIM model generates an interest rate term structure at future
times £, Schonbucher creates a stochastic evolution of transition rates to
derive the loss distribution at future times #. In analogy to the HJM model,
Schoénbucher applies the current (time 0) term structure of transition rates as
inputs. Hence the model does not require any calibration.

Specifically, the model consists of a time-inhomogeneous, hypothetical
Markov chain of cumulative losses L(t), ¢t > 0 with discrete states {0, 1, 2,..., I} of
the I entities of the portfolio. The generator matrix* A(,T), £ < T, of transition
probabilities satisfies the usual conditions; see Jarrow et al. (1997) on deriving
the risk-neutral generator matrix for continuous and discrete time. Integrating

the Kolmogorov differential equations dPyT’T) > (tlT) = A(T), we find the transi-

tion probability matrix A(z,T), which reproduces the loss distribution p(#,T) =
(po(t,T),..., p1(t,T)). The components of the loss distribution, the probabilities
p.(t,T), are set so that

Pu(t, T) = PIL(T) =nl|F,] (7.3)

2. Transition rates are probabilities to move from one credit state to another.

3. A Markov chain is a stochastic “memoryless” process. This means that only the
present information, not the past, is relevant. A discrete Markov process is referred to
as a Markov chain, although occasionally authors (such as Jarrow et al. 1997) use
continuous time when referring to a Markov chain.

4. A generator matrix is a “starting matrix,” which serves as a basis to derive matrices
at future times. In our context the matrices are transition matrices.
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That is, p,(t,T) represents the probability of exactly 7 losses in the
portfolio, viewed at time ¢ for maturity T. F, is the filtration, which contains
all events.

In order to create a no-arbitrage framework and a unique correspon-
dence of transition probabilities to the loss distribution, Schonbucher
initially allows only one-step transitions (i.e., only to the next lower rating
class). Therefore, the transition probability matrix at time ¢ for maturity T,
A(t,T), contains only zero entries, except on the diagonal and directly
adjacent higher nodes:

a1l aip 0 .. 0 0

0 aray aysz .. 0 0

A(t,T) = . : :
0 0 0 . ar—11-1 ar-1g

0 0 0o . 0 0

where a;;, 0 < i <Iis the probability of staying in the same state and 4;;, 0 <
< I is the transition probability of moving from state i to state j.
The transition probabilities evolve stochastically in time to reproduce the
arbitrage-free term structure of loss distributions p(#,T) at future times ¢ with
maturity T. In particular, the transition probability of entity 7, seen at time ¢
for maturity T, a,(¢,T), 0 < n < I, follows a standard generalized Wiener
process; that is,

da,(t,T)=p, (t,T)dt+o,,(t, T)dz (7.4)

where p, is the drift rate of a,, and o,, is the volatility of a,. Equation
(7.4) brings us to the correlation properties of the model. Default correla-
tion is induced by the dynamics of the transition volatility o, (¢, T).
Schonbucher specifies a parameter constellation in which an increase in
the factor loading of the transition rates a,, increases the volatility of a,,,
and vice versa. Importantly, in this framework, a higher volatility of 4,
means a higher transition rate of all entities # to a lower state, hence a
higher default correlation; conversely, a lower volatility of 4, means a
lower transition rate of all entities 7 to a lower state, hence lower default
correlation. The model can also replicate local correlation by specifying a
higher volatility, hence higher correlation only for a short period of time

(i.e., dq"a—(ttT) = x for the current time ) and a lower correlation for a future
time t + dt W =1y, where x > y.
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7.2.2 Inducing Correlation via Stochastic
Time Change

To the best of our knowledge, it was Peter Clark (1973) who first applied
stochastic time processes to financial modeling. Clark proposed a stochastic
time process T(t) with independent increments drawn from a lognormal
distribution. T(¢) is a directing process, a stochastic clock that determines the
speed of the evolution of the stock price process S(t), forming the new process
S(T(z)). This new process S(T(t)) serves as a subordinator process for the stock
price process S(t). Clark finds that the subordinated distributions can explain
future cotton prices better than alternative standard distributions.

The variance-gamma model of Dilip Madan, Carr, and Chang (1998)
applies stochastic time change to option pricing, generalizing previous work
by Madan and Seneta (1990) and Madan and Milne (1991). The model
consists of a standard Brownian motion, whose drift p, however, is evaluated
at random time changes ¢, which are modeled by a gamma process. The model
has the same subordinated structure as Clark (1973):

S(t;p,0,0) =p(#1,v) + odz (T(#1,0)) (7.5)

with variables as defined in equation (7.4), and I'(;1,v) is a gamma distribu-
tion with unit mean and variance v. By controlling the skew via p and the
kurtosis via v, the model is able to match volatility smiles in the market well.
Further models that apply stochastic time change to option pricing are
Geman, Madan, and Yor (2001), Carr et al. (2003), and Cont and Tankov
(2004).

The stochastic time models just discussed help to explain certain phe-
nomena in financial practice. In the following, we discuss Hurd and Kuz-
netsov (2006a, 2006b), who were the first to induce correlation via stochastic
time change. Their time-homogeneous Markov chain model of K discrete
rating classes Y; € {1, 2,..., K) assumes that transition and default intensities
are identical for entities in the same rating category. Hence the model does not
directly reference individual transition and default intensities, and therefore it
qualifies primarily as top-down.

At the core of the model is a continuous-time, time-homogeneous
Markov chain with time-constant generator matrix Ly:

lia lis Ly . hk
L s Ly . hLk
Ly= : : : . :
Ikcin k-1 Ike1s o Ikeik

0 0 0 y 0
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where K is the absorbing bankruptcy state. This means that once an entity has
defaulted, it stays in default. This is not necessarily the case in the United
States, where many companies emerge from bankruptcy. Hence the model
could be extended to include a nonabsorbing bankruptcy state. The [;;, i € {1,
2,..,K—1),;=€{1,2,..., K), are the instantaneous transition intensities of
migrating from rating class 7 to j under the historical (real-world or reference)
measure P.
Hurd and Kuznetsov further introduce a vector-valued process:

Xt:{rtvutaxt} (7.6)

where 7, is the risk-free interest rate, the recovery rate is R, =e ™ and,
importantly, \; is the stochastic migration intensity process. The vector X;
captures macroeconomic data and represents a common factor that affects all
entities. The credit migration process of the rating classes Y, € {1, 2,..., K} is
conditioned on the vector X,. Hence the Y, are conditionally independent,
applying the conditionally independent default (CID) approach, discussed in
Chapter 6. Hence X; has an interpretation similar to that of the scalar M in
equation (6.1), x; = \/pM ++/1 — pZ;. The main motivation for this approach
is again to reduce complexity.

More specifically, the correlation dynamics of the model can be derived
by a probability measure change. From the generator matrix Ly we have

E'(Yoqr=j|Y=i)=1lydt (7.7)

where P is the historical probability measure. Hurd and Kuznetsov now
introduce a time-changed process, a stochastic clock T;, which may have
continuous components and jump components. T, is a function of X,

t

= /xs ds (7.8)

0

Under the Girsanov theorem (see Neftci 1996 for an intuitive discussion),
we can define a new stochastic process under the risk-neutral measure Q with
the changed drift (and jump) but constant volatility:

EQ(Y, g =j|Y:=i)=1;\ dt (7.9)
Since \; is an element of the conditioning market factor X; [see equation

(7.6)], the migration processes Y, in the new process under Q are now
dependent. Importantly, from equations (7.8) and (7.9) we observe that



150 CORRELATION RISK MODELING AND MANAGEMENT

default correlation is induced by the speed of the stochastic clock T,. An
increase in the speed of the clock increases the speed of migration of all
entities and hence increases the probability of simultaneous defaults. If the
stochastic clock jumps, the probability of simultaneous defaults is even
higher.

We find that the induction of correlation via volatility changes
(Schonbucher 2006) and the induction of correlation via stochastic time
change have a similar interpretation. An increase in transition volatility as
well as an increase in the stochastic clock both increase the migration within
the transition matrix and hence increase the probability of simultaneous
defaults, and vice versa.

7.3 CONTAGION DEFAULT MODELING IN
TOP-DOWN MODELS

In a popular credit risk model applied in financial practice, Giesecke,
Goldberg, and Ding (2011) derive a random thinning process, which allo-
cates the portfolio intensity to the sum of the individual entities’ intensities.
Giesecke et al. show that this process uniquely exists and can be realized
analytically. More formally, the thinning process Z* under the reference
measure . is predictable and has the form

)\/e

k
z X

(7.10)

where X is the portfolio default intensity and X\* is the default intensity of
entity k, k = 1,..., m and X\ = X' +...4 \". The model has the property that

the thinning processes add up to one, Z:ﬁlzk =1 and that immediately

after entity k defaults, the thinning process of this entity k& drops to zero,
Zk.=0.
The thinning process and a resulting basic default dependence can be

explained with an 7 = 2 entity portfolio with an assumed loss distribution
N of

(.) for n=0
P(Nr=n)=¢ 1—¢T forn=1 (7.11)
1—e T—Te T forn=2

where P is an integrable probability measure, 7 is the number of entities
defaulting with the associated probability in (7.11), and N is a Poisson
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process with stopping time T2. The thinning process can be parameterized
with a nonnegative constant g*'.

N gk for t<T!
Zk = Tt =9 1_p for T < t<T? (7.12)
' 0 for T> <t

From equation (7.12) we observe that the thinning process Z* equals g*'
before or at time T" and equals 1 if the first entity defaults before or at T" since

Z:’ 1Zk =1 and Zlf,H: 0, as can be seen above. The parameter ¢*! governs

the joint default dependence structure via P(r!<TNT<T)=
1—eT—(1—g")Te T. From this equation and equation (7.11), we see
that the extreme values of g*' = 1 and g*' = 0 generate the probability of
exactly one default or two defaults, respectively. The name of the entity that
defaults is revealed at the default time, highlighting the fact that random
thinning allocates the portfolio intensity to the individual entities.

To incorporate a more rigorous joint default dependency, Giesecke et al.
(2009) suggest that the joint default distribution is governed by the portfolio
intensity \. In particular, Giesecke et al. suggest that the process of the
portfolio default intensity X has an exponentially mean-reverting drift with a
stochastic jump component, which models default contagion:

dh =g\ —N)+8d], (7.13)

where | is the jump with magnitude & > 0 at default of an entity. The jump
elevates the level of the portfolio default intensity \ (i.e., the default
intensity of all entities). After the jump, the contagion reverts exponentially
at rate g > 0 (gravity) to its long-term noncontagious mean \;.

In Chapter 4, section 4.4, we discussed contagion default modeling in a
bottom-up framework. In this framework, the contagion is modeled at an
individual entity level; that is, the default of entity i directly impacts the
default intensity of entity j. This had led to problems of circularity, which
significantly complicates the derivation of a joint default distribution. In the
top-down environment, the default contagion is modeled conveniently at a
portfolio level, circumventing the problem of circularity.

Calibrating the parameters in equation (7.13) and those of the thinning
process to the CDX high yield index during the crisis in September 2008,
Giesecke et al. (2009) find that their model outperforms copula-based
hedges. In addition, the mean profit is higher than when using the copula
approach.
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In an extension to an early version of the Giesecke et al. (2009) model,
Giesecke and Tomecek (2005)° incorporate a stochastic time change. How-
ever, in contrast to Hurd and Kuznetsov (2006a, 2006b), where stochastic
time change is applied to induce correlation, Giesecke and Tomecek 2005
utilize the stochastic time change to transform a standard Poisson into a
counting process N of default arrival times T,. The counting process is
represented by a standard Poisson process of the form

N, = Z (s, <) (7.14)
k=1
where .,
=YV, (7.15)
i=1

and the V; are independent and identically distributed (i.i.d.); in particular the
V; are exponential random variables.
The continuous process G(t):/txsds defines the time change. G is

0

adapted to the filtration G = (G,)t > 0, where G, represents all information
available at time ¢. Hence the process G(z) is predictable.

The Poisson process (7.14) is mapped to arrival times T,, by the inverse of
the time change process G. Hence,

T,=G7(S,) (7.16)

For a rigorous proof, see Giesecke et al. (2009). Equation (7.16) implies
that the Poisson arrivals S,, serve as a Merton-style barrier to derive the arrival
times T,

T,=G '(S,)=inf{t: G(t)>S,} = inf{t: / Aeds > sn} (7.17)
0

Since G(t) and S,, are generated independently, the model has the form of
a doubly stochastic process.

We observe that generating the default time in the copula approach,
which we derived in Chapter 5, equation (5.5) 7, = 1{N*‘(/\,‘,)>Mn_,(-)}’ is
conceptually similar to equation (7.17). However, in equation (5.5), the
default time is modeled individually for each entity i with respect to the

5. The first version of Giesecke et al. (2009) model was published in 2004.
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entities” default intensity function \;. In the top-down approach (7.17),
the intensity X\ is modeled at a portfolio level. A further difference is that
in equation (5.5) the default correlation is elegantly incorporated in the
barrier M, z(-). In the approach (7.17), the default correlation is
modeled separately in the core equation (7.17). One benefit of the model
(7.17) is that by construction the default times T, are ordered; that is,
T: = min(Ty) and T,, = max(Ty), k = 1,..., m. In the copula model the
default distribution is built by numerical integration over unordered default
times; refer back to section 7.1.

7.4 SUMMARY

A fairly new, mathematically quite intensive class of correlation models are
top-down approaches. In this framework, the evolution of the portfolio
intensity distribution is derived directly (i.e., abstracting from the individual
entities’ default intensities). Top-down models are typically applied if:

m The default intensities of the individual entities are unavailable or
unreliable.

m The default intensities of the individual entities are unnecessary. This may
be the case when evaluating a homogeneous portfolio such as an index of
homogeneous entities.

m The sheer size of a portfolio makes the modeling of individual default
intensities problematic.

Vasicek’s large homogeneous portfolio (LHP) can be considered a top-
down model, since it assumes (1) a constant and identical default intensity of
all entities in a portfolio and (2) the same default correlation between the
entities. The model is a one-factor version of the Gaussian copula. The model
is currently (year 2013) the basis for credit risk management in the Basel 11
and IIT accords. The benefits of the model are simplicity and intuition. One of
the main shortcomings of the model is that traders randomly alter the
correlation parameter for different tranches to achieve desired tranche
spreads. Conceptually, however, the correlation parameter should be identi-
cal for the entire portfolio.

Within the top-down framework, Philipp Schonbucher (2006) creates a
time-inhomogeneous Markov chain of transition rates. Default correlation is
introduced by changes in the volatility of transition rates. For certain
parameter constellations, higher volatility means faster transition to lower
states such as default, and hence implies higher default correlation (and vice
versa). Similarly, Hurd and Kuznetsov (2006a; 2006b) induce correlation by
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a random change in the speed of time. A faster speed of time means faster
transition to a lower state, possibly default, and hence increases the default
correlation (and vice versa).

In conclusion, top-down models are attractive, elegant, and mathemati-
cally rigorous correlation models. They can be applied if a portfolio is highly
homogeneous with respect to default probabilities and default correlation.
The models do depend on reliable transition data as inputs and come at the
cost of relatively high mathematical and computational complexity.

PRACTICE QUESTIONS AND PROBLEMS

1. What is the difference between bottom-up and top-down correlation
models?

2. For which types of portfolios are top-down correlation models
appropriate?

3. Why can the one-factor Gaussian copula (OFGC) be considered a top-
down model?

4. Markov processes are “memoryless.” What does this mean? Give an
example.

5. What is a transition rate?

6. Why does a higher transition rate volatility mean higher default correla-
tion in the Schonbucher 2006 model?

7. Why does an increase in stochastic time change mean a higher default
correlation in the Hurd-Kuznetsov 2006 model?

8. What is the random thinning process in top-down models, and what does
it accomplish?
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Stochastic Correlation Models

I think correlation modeling is basically at the stage volatility
modeling was about 15 years ago.
—Vladimir Piterbarg

I n finance, many variables such as equities, bonds, commodities, exchange
rates, interest rates, volatility, and more are often modeled with a stochas-
tic process. In addition, from our empirical Chapter 2 we derived that
financial correlations behave somewhat erratically and randomly. Therefore
it seems like a good idea to model financial correlations with a stochastic
process.

The modeling of financial correlation with a stochastic process is fairly
new, but several promising approaches exist. Let’s discuss them. But before
we do, let’s look at some basics.

8.1 WHAT IS A STOCHASTIC PROCESS?

The reader, who made it all the way to this Chapter 8, hopefully has a
good idea what a stochastic process is. But let’s have a closer look. Let’s
start with a deterministic process. A deterministic process is a process with
a known outcome. For example, counting numbers by one, or the move-
ment of the sun are deterministic processes. The opposite of a deterministic
process is a stochastic process, also called a random process. Hence,
heuristically (which means nonmathematically), we can define a stochastic
process.

197
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STOCHASTIC PROCESS

A process with an unknown outcome.

Examples of a stochastic process are the flipping of a coin or the rolling of
a die. Most stochastic processes display the Markov property, meaning they
are “memoryless.” For example, even if the last three rolls of a die all resulted
in a 6, the probability of rolling a 6 again is still 1/6.

The formal definition of a stochastic process is not overly enlightening. A
stochastic process is simply defined as a collection of ordered random
variables X at time #:

{X,,t €T} (8.1)

where

X state of the random variable at time ¢ (for example heads or tails when
flipping a coin)
T: points in time; for a discrete stochastic process, T € N = {0, 1, 2, 3...}.

For a nice rigorous paper on stochastic processes, see Nualart (2008) or
Lamberton and Lapeyre (1996).

The terms stochastic process and stochastic model are often used syn-
onymously, or a stochastic process can be part of a stochastic model.

In finance, one popular stochastic model is the geometric Brownian
motion (GBM), which we discussed in Chapter 4, equation (4.1). The stock
price in the famous Black-Scholes-Merton 1973 option pricing model follows
a GBM. Slightly rewriting equation (4.1), we have

%:udﬂrodz (8.2)

where

S: variable that follows the GBM, for example a stock price
u: expected growth rate of S
o: expected volatility of S
dz: Wiener process or Brownian motion dz =« dt, where ¢ is a random
drawing from a standard normal distribution with a mean of 0 and a
standard deviation of 1; formally, ¢ = n ~ (0,1)
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Therefore, stochasticity enters equation (8.2) via ¢. For a model that
generates the GBM in equation (8.2), and equation (8.2) with random
jumps, see “GBM path with jumps.xlsm” at www.wiley.com/go/correlation
riskmodeling, under “Chapter 8.”

In the recent past, several stochastic correlation models have been
suggested. Let’s discuss them.

8.2 SAMPLING CORRELATION FROM A
DISTRIBUTION (HULL AND WHITE 2010)

A simple way to model correlation as a stochastic variable is to sample it from
a statistical distribution. In finance, we often sample from a standard normal
distribution. For example, the ¢ in the dz term of equation (8.1) is such a
sample. However, in some research, samples from other distributions are
taken. In the variance-gamma model, introduced by Madan, Carr, and
Chang (1998) and briefly discussed in Chapter 7, section 7.2.2, a value
from the gamma distribution is sampled at random times ¢ to create a
stochastic drift rate of the underlying variable.

Hull and White (2010) extend their dynamic OFGC model, which we
discussed in Chapter 6, section 6.5. The core equation is

dzi(t) = \/p(t)dM(r) + /1 — p(t)dZi(t) (8.3)

where

p: Asset correlation parameter for the assets of the companies in the
portfolio, 0 < p < 1. p is assumed identical and constant for all
company pairs in the portfolio.

M: Systematic market factor, which impacts all companies in the portfo-
lio. M can be thought of as the general economic environment, for
example, the return of the S&P 500. M is a random drawing from a
standard normal distribution, formally M = »n ~ (0, 1). M is the same
as ¢ in Chapter 4, section 4.1.

Z;: Idiosyncratic factor of asset i. Z; expresses ith company’s individual
strength, possibly measured by company #’s stock price return. Z; is a
random drawing from a standard normal distribution.

zi: Results from equation (8.3) and is interpreted as a “Default indicator
variable” for company i. The higher z;, the less likely is the default of
company i at a certain time T. Hence, z; is also interpreted as the asset
value of company i. z; is by construction standard normal.
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Replacing +/p(¢) = «(¢) in equation (8.3) to allow for negative correlation
between M(t) and z(¢), we derive

dzi(t) = ci(t)dM(t) + /1 — o?(2)d Zi(t) (8.4)

Hull and White now introduce stochastic correlation by sampling o(#)
from a beta distribution. This sample serves to create a dependency between
a(f) and dM(t). To match empirical credit default index (CDX) prices, they
choose the dependency to be —+/0.5. This creates a positive relationship
between o and default probability: If a increases, the market environment dM
decreases. This increases the default probability of company i.

The asset correlation between companies i and j is ; o (see Chapter 12,
section 12.6 for details). A higher o; or o; means a higher asset correlation
between i and j, and, as derived above, it means a higher joint default probability.
This relationship of higher asset correlation and higher default probability was
empirically verified by Servigny and Renault (2002) and Das et al. (2006).

Therefore it is not surprising that the approach with the stochastic
correlation sample o(#) in the model of equation (8.4) is able to match
empirical CDX prices in most cases significantly better than is the case
without stochastic correlation; see Hull and White (2010) for details.

8.3 DYNAMIC CONDITIONAL CORRELATIONS
(DCCs) (ENGLE 2002)

In equation (3.3) we had defined the Pearson correlation coefficient for a
random variable as

E(XY) — E(X)E(Y)

\/E \/E Y?) -

Assuming the variables X and Y have a mean of zero [i.e., E(X) = E(Y) = 0],
equation (3.3) reduces to

p(X,Y)=

(3.3)

E(XY)
X,Y)= ——— 8.5
p(X,Y) EXE(YY) (8.5)

In 2002 Robert Engle introduced dynamic conditional correlations
(DCCs) in a model developed by Tim Bollerslev in 1990. The correlation
at time #, p,, is conditioned on the information given in the previous period
t—1. Hence equation (8.5) changes to

E_q(r, 172 t)

\/Et 1 Tlt)Et 1(7’2t)

pir1,12) = (8.6)
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where 7 is the variable of interest. 71 , may be the return of asset 1, and 7, ,
may be the return of asset 2 at time #. See Chapter 1, section 1.3.1
on returns.

Conditional correlation is a concept within the Nobel Prize-rewarded
autoregressive conditional heteroscedasticity (ARCH) framework (Engle
1982), which was extended to generalized autoregressive conditional heter-
oscedasticity (GARCH) by Bollerslev (1986).

In the ARCH framework, the variable of interest, the return 7, is defined
as the product of its standard deviation and an error term.

Tit =0i€i (8.7)
where

7;4 return of asset i at time ¢

o0, standard deviation of the return of asset i at time # (also called
volatility)

g, random drawing of a standard normal distribution for asset i and
time ¢, ¢ = n ~ (0,1)

The variance o or the standard deviation o in equation (8.7) is modeled
with an ARCH process (or one of many extensions such as GARCH,
NGARCH, EGARCH, TGARCH,' and more) of the form

0F=ag+a10;_1gf_ 1 + ... +ag0r_ Ef_ (8.8)

q q

where ag > 0, a; > 0, so that o is positive and ¢ € N.

From equation (8.8) we can observe that the variance is a function of
past error terms €. The error term e is typically derived from a linear
regression of the underlying variable of interest, which in equation (8.7) is
the return of asset i. The critical idea in equation (8.8) is that if the past error
terms ¢,_, are high, so will be the future variance at time ¢, 02. The model of
equation (8.8) and extensions of the model have been successfully tested;
see for example Enders (1995) and Hacker and Hatemi-J (2005). The main
contribution of the ARCH and GARCH approach is that the empirical
persistence or clustering of volatility can be modeled: In reality, high
volatility often persists for a certain period of time, and low volatility
often persists for a certain period of time.

1. The N in NGARCH stands for nonlinear, the E in EGARCH stands for exponen-
tial, and the T in TGARCH stands for truncated. See Bollerslev (2008) for a nice
overview of all ARCH extensions.
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Ei(rim.)
Effl(r%.t)E’*l(r%.z)
on information given at time ¢ — 1. Given certain assumptions, the correlation
can be expressed purely in error terms e. Let’s show this. We express the
variance of returns as a function of the return, given the information in the
previous period.

The correlation at time ¢ in equation p,(r1,72) = depends

o7, =Ei1(r},) (8.9)

Assuming the return 7 is standard normal, we have E,_1(r?,) =1, and
from equation (8.9) 07, = 1. Hence from equation (8.7) we derive that the
return 7 is just the error term e, and together with E;_1(r2,) =1, equation (8.6)
reduces to

pt(rlvrz):Etfl(gl‘tvgz,t) (810)

The conditional correlation expressed in equations (8.6) and (8.10)
correlates just two assets, 1 and 2. The model can be generalized to include
multiple assets. In this case, we derive the conditional correlation matrix R,
which contains the pairwise conditional correlations p,(7;;) between the 7 asset
returns. Formally, from equation (8.10) we have

Ei_1(cis gj1) =R (8.11)

where R: conditional correlation matrix containing the pairwise conditional
correlations of the returns of the assets i = 1,..., 7.

In equation (8.11), the correlation matrix R;; is constant. The approach
can be made dynamic; that is, R;; can be time varying, R;(t). This constitutes
dynamic conditional correlations (DCCs), as suggested by Engle (2002).
Parameterization of the dynamic conditional correlation matrix Ry(t) in a
GARCH framework can be achieved by exponential smoothing, with certain
parameter constellations allowing mean reversion of the matrix process. See
Engle (2002) for details.

8.4 STOCHASTIC CORRELATION—
STANDARD MODELS

In this section, we introduce three approaches that model stochastic correla-
tion. The three models are quite closely related.
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8.4.1 The Geometric Brownian Motion (GBM)

The geometric Brownian motion, whose basic idea was derived by the
biologist Robert Brown in 1827, has already been mentioned several
times in this book; see Chapter 4, equation (4.1), and in this Chapter 8,
equation (8.2). In finance, variables such as stocks, bonds, commodities,
interest rates, and volatility are often modeled with the GBM. When
modeling correlation with the GBM, we derive

%:udwroe\/% (8.2)

where

p: correlation between two or more variables

s expected growth rate of p

o: expected volatility of p

g: random drawing from a standard normal distribution; formally,
e=n~ (0,1)

We can compute € as =normsinv(rand()) in Excel/VBA and norminv(rand) in
MATLAB.

Dullmann, Kill, and Kunisch (2008) model correlation with equa-
tion (8.2). They study whether stock prices or default rates can better
estimate asset correlations. Applying stochastic asset correlation in equa-
tion (8.2) rather than constant asset correlation, they find that the
stochastic correlation model weakens but does not reject the result that
stock prices are superior for estimating asset correlations compared to
default rates.

Is the GBM in equation (8.2) a good approach to model correlation? It
actually has two limitations:

1. Equation (8.2) is not bounded, meaning correlation p can take values
bigger than 1 and smaller than —1. From equation (8.2) we see that a
value of p > 1 is more likely to happen when the growth rate p is high, if
the volatility o is high, and if we have a high value of ¢ in a simulation.

2. It was actually the Dutch biologist Jan Ingenhousz who first published papers in
German and French in 1784 and 1785 on the dispersion of charcoal particles in
alcohol. Therefore, he should be credited for what is known today as the Brownian
motion.
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FIGURE 8.1 Sample Correlation Path for 10 Time Steps for Equation (8.12)
The parameter values are p = 1%, 0 = 30%, and Az = 1. Starting value in #; is 0.1.

Conversely, values of p < -1 are more likely to occur for low values of p
and high values of ¢ and ¢.

2. Mean reversion (i.e., the tendency of correlation to revert back to its
mean) is not modeled with equation (8.2). In the empirical Chapter 2, we
derived that financial correlations exhibit strong mean reversion.

For computational purposes, we discretize equation (8.11). With dp =
Pre1 — Pr, We derive

Prp1 =Py pp RAL+p, 05V At (8.12)

Figure 8.1 shows a sample path of the GBM.

In Figure 8.1, at each time step, equation (8.12) is applied. The
different values for correlation at each time step occur since the random
drawing ¢ is different at each t.> For details, see the spreadsheet “Stochas-
tic correlation.xlsx” at www.wiley.com/go/correlationriskmodeling, under
“Chapter 8.”

3. Although the correlation values at #; and # are both 0.13, € in #; and #;( are
different since p increases from t; to #; from 0.1 to 0.13 and decreases from ¢y to t1q
from 0.14 to 0.13.
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8.4.2 The Vasicek 1977 Model

Another approach to model stochastic correlation is what is known as the
Vasicek 1977 model, which, however, should be credited to Uhlenbeck and
Ornstein (1930). The model is

dp=a(m, —p,)dt + o, e,V dt (8.13)

where a is the mean reversion speed (gravity) (i.e., degree with which the
correlation at time ¢, p;, is pulled back to its long-term mean #1,); a can take the
values 0 < a < 1. m, is the long-term mean of the correlation p. Other
variables are defined as in equation (8.2).

Equation (8.13) is an improvement to the GBM in equation (8.2) since it
includes mean reversion, the tendency of a variable to be pulled back to its
long-term mean. We derived in Chapter 2 that financial correlations exhibit
strong mean reversion.

The limitation of the Vasicek 1977 model with respect to modeling
correlation is that the model is not bounded; correlation values bigger than 1
and smaller than —1 can occur. These values are more likely to occur when
mean reversion a is low and volatility op is high.

For computational reasons, we again discretize. With dp = p,1 — ps,
equation (8.13) then becomes:

Pra1 =Py +almy, —p) At + 0,8V At (8.14)

Figure 8.2 shows a sample path of the Vasicek model.

Comparing Figures 8.1 and 8.2, we observe the higher volatility in
Figure 8.2. This is mainly because the relative change dp/p is modeled in
Figure 8.1, whereas the absolute change dp is modeled in Figure 8.2;
compare equations (8.2) and (8.13).

8.4.3 The Bounded Jacohi Process

The two approaches that we have introduced so far, the geometric Brownian
motion and the Vasicek model, both have the limitation that correlation
values can become bigger than 1 and smaller than —1. This is an undesired
property if the correlation is modeled in the Pearson correlation framework,
where the correlation coefficient is bounded between -1 and +1.

A model that can comply with correlation bounds is the bounded Jacobi
process.* Applying the bounded Jacobi process to correlation, we derive

dp=a(m, — p,)dt +o,\/ (b — p,)(p; — fleVdt (8.15)

4. For a nice paper on the Jacobi process, see Gourieroux and Valery (2004).
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Vasicek 1977 Model
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FIGURE 8.2 Sample Correlation Path for 10 Time Steps for Equation (8.14)

The mean reversion parameter a = 30%, and the long-term mean 2, = 10%. The
other parameter values are the same as in Figure 8.1: Volatility 0 = 30% and At = 1.
Starting value in ¢ is 0.1.

where b is the upper boundary level, and f is the lower boundary level (i.e.,
b > p > ). Other variables are defined as in equations (8.2) and (8.13).
With equation (8.15) the user can choose specific upper and lower
boundaries. For correlation modeling in the Pearson framework, these
boundaries are » = +1 and f = -1. In this case equation (8.15) reduces to

dp=a(m, —p,)dt +o,\/(1 — p?)eVdt (8.16)

Equation (8.15) requires correlation values within a lower bound f and
an upper bound b (otherwise the term /(b — p,)(p, — f) cannot be evaluated).
Equation (8.16) requires correlation values within the bounds -1 to +1
(otherwise the term /(1 — p?) cannot be evaluated). However, for low mean
reversion levels a and high volatility op, it can happen that the model
generates correlation levels smaller than —1 and higher than +1. Therefore
we have to introduce boundary conditions. These boundary conditions for
equation (8.15) are

L oith=1)/2

A
= =) (8-17)
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for the lower bound f and

o*(h—1f)/2

for the higher bound 5.
Applying the boundary levels f = -1 and b = +1, we derive the boundary
levels for equation (8.16) as

0.2

> .
a> 1) (8.19)
for the lower bound f and
2
o
oz A —my) (8.20)

for the higher bound b.

From equations (8.17) to (8.20) we observe the intuitive feature that the
bounds are more likely to be satisfied for high values of mean reversion g and
low values of volatility 6. See Emmerich (2006) and Wilmott (1998) for the
derivation of the boundaries.

Ma (2009) applies the bounded Jacobi process to value correlation
dependent quanto options and multi-asset options. This inclusion of
stochastic correlation in the Black-Scholes-Merton model improves the
valuation of these options compared to the standard Black-Scholes-Merton
model.

Discretizing equation (8.16), again applying dp = p;;1 — ps» we derive

Pri1 =P +alm, —p) At +0p4 /(1 — p7)erV At (8.21)

Figure 8.3 shows a sample path of the equation (8.21).

Comparing Figures 8.2 and 8.3, we observe somewhat minor differ-
ences between the correlation modeling with Vasicek in equation (8.14)
and the bounded Jacobi process in equation (8.21). The correlation models
introduced so far in this chapter can be found in the spreadsheet
“Stochastic correlation.xlsx” at www.wiley.com/go/correlationriskmodel-
ing, under “Chapter 8.”
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Bounded Jacobi Process
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FIGURE 8.8 Sample Correlation Path for 10 Time Steps for Equation (8.21)
As in Figures 8.1 and 8.2, the mean reversion parameter a = 30%, volatility
o = 30%, the long-term mean 2, = 10%, and At = 1. Starting value in Z, is 0.1.

8.5 EXTENDING THE HESTON MODEL WITH
STOCHASTIC CORRELATION (BURASCHI ET AL.
2010; DA FONSEGA ET AL. 2008)

In Chapter 4, section 4.1, we had analyzed and praised the Heston 1993
correlation model. It is a mathematically rigorous, dynamic correlation
model, which is widely applied in finance.

Slightly rewriting the equations in Chapter 4.1, the Heston model
consists of three main equations.

ds
?:udtjuotdzl (8.22)

do? =a(m? — o?)dt + €0, dza (8.23)
where

S: variable of interest e.g., a stock price

u: growth rate of S

o: volatility of S

dz: Brownian motion or Wiener process with e: random drawing from of
standard normal distribution with a mean of 0 and a standard
deviation of 1. Formally, ¢ = n ~ (0,1)
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a: mean reversion rate (gravity), i.e., degree with which o at time ¢, 02, is
pulled back to its long-term mean 2. a can take the values 0 < a < 1

m?: long-term mean of the variance rate o*

¢: volatility of the volatility o.

The stochastic process of S in equation (8.22) and the stochastic variance
rate of S, o* in equation (8.23) are correlated with the identity

dzi(t) = /p1dza(t) + /1 — pdz3(t) (8.24)

where dz(t) and dz3(t) are independent, and dz(#) and dz(#) are independent,
t#t.

Buraschi, Porchia, and Trojani (2010) (the first version of the paper
appeared in 2006) and Da Fonseca, Grasselli, and Ielpo (2008) extend the
Heston 1993 model with a more rigorous correlation structure. The model is
based on the Wishart affine stochastic correlation (WASC) model, introduced
by Bru (1991) and extended by Gourieroux and Sufana (2010).

The model is presented as an n-dimensional stochastic process of
covariance matrices.” For ease of exposition, we will concentrate on 7 =
2 assets. In this case, S in equation (8.22) expands to a price vector of two
assets, S1 and S,, formally S = (S, S,)7, where T stands for transpose. The
stochastic process for S is

ds, =Ipdt+/%,dZ)) (8.25)

where

Is = Diag[Sy, S;], i.e. a diagonal 2 x 2 matrix, with entries of equation
(8.25) on the diagonal and zero entries otherwise
u: growth rate of the two-dimensional vector S
dZ,: 2-dimensional Brownian motion
Y),: covariance matrix of the returns of asset §; and S,

In our two-asset case, the covariance matrix Y, takes the form

DL
= (8.26)
el Ve

5. We will use some matrix algebra in the following. See “Matrix primer.xlsx”
at www.wiley.com/go/correlationriskmodeling, under “Chapter 1,” for some basic
matrix operations.


http://www.wiley.com/go/correlationriskmodeling

170 CORRELATION RISK MODELING AND MANAGEMENT

where Ztnand Efz are the variances of the returns of asset 1 and asset 2,
respectively, and ¥}2and X! are the covariances of the returns of assets 1 and
2. Note that the covariance of a single asset is equal to its variance; that is,
Covariance(i,i) = Variance(i). Therefore, a covariance matrix has variances
on its main diagonal and is therefore also called variance-covariance matrix.
Also note that the covariance of two assets is commutative; that is,
Covariance(ij) = Covariance(ji); hence in the matrix (8.26) 232 = thl.

At the core of the model, the covariance matrix (8.26) follows a
stochastic process of the form

ds, = (QQ7 + M, + S MD)dt + /S dW,0 + QT (dW,) TS (8.27)
where

Q: volatility of co-volatility matrix 1/%;, corresponding to £ in equation
(8.23)

M: negative semidefinite matrix,® which controls the degree of mean
reversion of ¥,, corresponding to a in equation (8.23)

Q: related to the long-term mean of the covariance matrix %, corre-
sponding to 722 in equation (8.23)

W: two-dimensional Brownian motion

In the original Heston model, the stochastic process for the underlying
asset S and the stochastic process of the variance rate o> are correlated by
correlating the Brownian motions of these processes; see equation (8.24).
Accordingly, the Brownian motions of equations (8.25) and (8.27) are

correlated:
dZ(t)=pdW(t) + /1 —pTpdB(t (8.28)

where dW(t) and dB(t) are independent, and dZ(¢) and dZ(¢') are indepen-
dent, t # ¢.

Equation (8.28) correlates the Brownian motions of equations (8.25) and
(8.27). Conveniently, the model admits a closed form solution for the
correlation between the underlying return assets S and their variance X.
For asset 1 we have

Corr(dIn Sy, ds!) = P11 £ Q1 (8.29)

\/ Q%l + Q%l

6. See “Matrix primer.xlsx” at www.wiley.com/go/correlationriskmodeling, under
“Chapter 1,” for details.
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For asset 2,

Corr(dIn Sy, dx2?) — P12+ 02 Q) (8.30)

\/ QL+ Q5

If we assume that there is no correlation between the volatility of asset 1
and the volatility of asset 2, then O, = Q1 = 0. In this case the matrix Q is
diagonal and equation (8.29) reduces to

Corr(d In S1,d2!) =p, (8.31)

Equation (8.30) reduces to

Corr(dIn Sy, d¥??) =p, (8.32)

In reality we observe a negative relationship between returns S and their
variance ¥, sometimes called leverage.” This can be modeled for asset 1 with
p1 < 0 and for asset 2 with p, < 0.

Buraschi et al. (2010) assume a rather simple correlation structure,
setting p; = 1 and p, = 0. The negative relationship between the returns S
and their variance X is then generated with negative values of Q1> = Q,1; see
equations (8.29) and (8.30) (O and Q,; are by definition positive). Da
Fonseca (2008) applies a more flexible correlation structure; that is, it allows p
€ (-1,1) for all p.

8.5.1 Critical Appraisal of the Buraschi et al.
(2010) and Da Fonseca et al. (2008) Model

The model presented in section 8.5 has numerous parameters and can therefore
replicate financial reality well. Especially the negative relationship between
returns and volatility (sometimes called leverage) and the higher correlationina
recession (sometimes referred to as asymmetric correlation), which we also
found in the empirical Chapter 2, can be modeled. In addition, volatility skews
(i.e., higher volatility when returns are negative) and the right balance between
correlation persistence and correlation mean reversion can be modeled. Note

7. Unfortunately, the term leverage has many meanings in finance. In corporate
finance, leverage typically refers to the debt/equity ratio. In derivatives, leverage is
the relative change of the value of a derivative with respect to the relative change of
underlying. If the derivative is a call C and the underlying is a stock S, the leverage is

aC/C/3S/s.
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that the higher the persistence, the lower the mean reversion, and vice versa (for
details see Chapter 2). Buraschi et al. (2010) also find evidence that part of the
hedge fund industries’ alpha (i.e., achieving higher returns than the market) can
be attributed to hedge funds’ exposure to correlation risk.

The drawback of the model lies in its relative mathematical and compu-
tational complexity. This may limit its application in reality.

8.6 STOCHASTIC CORRELATION, STOCHASTIC
VOLATILITY, AND ASSET MODELING (LU AND
MEISSNER 2012)

In a recent paper, Lu and Meissner build a stochastic volatility—stochastic
correlation model. Whereas in the Heston 1993 model, extended by Buraschi
et al. (2010) and Da Fonseca (2008) (see section 8.5), stochastic returns and
stochastic volatility are correlated, Lu and Meissner correlate stochastic
volatility and stochastic correlation. Therefore the core equations of the
model are

do =ag(mg — 0,)dt +v,\/odun (8.33)
dp=a,(m, — o;)dt +v,\/1 — p?dw; (8.34)
dw1 = pwdu/z +4/1— pidug (8.35)

where

o : volatility of the variable of interest, the S&P 500, modeled by the
VIx®
m, : long-term mean of the S&P 500
a, : mean reversion of the S&P 500
v, : volatility of volatility o of the S&P 500
p : correlation between an individual stock and the S&P 500
m,, v, : mean reversion, long-term mean, and volatility of the correlation p,
respectively
p. : correlation coefficient, which correlates the Brownian motions duw
and dw,

ap,

8. The VIX (the Market Volatility Index of the Chicago Board Options Exchange)
measures the implied volatility of the S&P 500 (i.e., the volatility implied by S&P 500
index options prices).
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FIGURE 8.4 (a) Empirical Relationship between Implied Volatility (VIX) of the S&P
500 and the Correlation between Chevron Corporation and the S&P 500; (b) Time
Series Plot of the Empirical VIX and Empirical Correlation between CVX and the
S&P 500; (c) Histogram of VIX; (d) Histogram of the Correlation Coefficient

Data: 01/03/2000 to 07/27/2011.

Equation (8.33) models stochastic volatility with the Cox-Ingersoll-Ross
(CIR) (1981) model. Equation (8.34) models stochastic correlation with a
modified Jacobi process. The term /1 — p? bounds correlation between -1
and +1. However, as discussed in section 8.4, for low mean reversion levels a,
and high volatility v,, it can happen that the model generates correlation
levels smaller than -1 and higher than +1. Therefore we have to introduce
boundary conditions. These boundary conditions are as displayed in equa-
tions (8.19) and (8.20).

The model of equations (8.33) to (8.35) intends to replicate real-world
volatility-correlation properties. Figure 8.4 shows some real-world correlation-
volatility relationships.

The real-world relationships displayed in Figure 8.4 can be replicated
well by the model of equations (8.33) to (8.35), as displayed in Figure 8.5.

Of special interest is the relationship between volatility o (of the S&P 500
in the example, modeled by the VIX) and the correlation p (between a
particular stock, Chevron, and the S&P 500 in the example), displayed in
the top left chart of Figures 8.4 and 8.5. We observe that the relationship is
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FIGURE 8.5 Simulation Results of the Model of Equations (8.33) to (8.35)

somewhat triangular; that is, (1) it is positive, and (2) the correlation volatility
v, decreases if the volatility o (represented by the VIX) increases.

The positive relationship between correlation p and o in Figure 8.4 is
replicated if p,, in equation (8.35) is positive. In addition, the decreasing
correlation volatility v, as a function of the increase in o (the VIX) is
incorporated in the model: If o increases, p increases (if p,, is positive).
From the term v,/1 — p? it follows that if p increases, the volatility of p,
v, decreases. Hence it follows that if o (represented by the VIX) increases, v,
decreases as displayed in Figure 8.5, top left.

8.6.1 Asset Modeliny

The model of equations (8.33) and (8.35) can be applied to model assets. Asset
modeling is often done with geometric Brownian motion (GBM), which we
discussed in equations (4.1), (8.2), and (8.22). Here is the GBM once again:

% =w; dt+o;dz (8.36)
where

S;: asset price of a particular asset i
p,: drift of S;,
o volatility of §;
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FIGURE 8.6 Probability Density Function (PDF) for Coca-Cola Corporation (KO)
Model data are derived with equations (8.33) to (8.35) and equation (8.37).

Lu and Meissner now expand the GBM and model

% =y, dt+ o, dz+03; podw (8.37)

where $3; is constant with 0 < 3; < 1, and p is the correlation between an
individual stock and the market, represented by the S&P 500; p is modeled as
a stochastic process by equation (8.34). ¢ is the volatility of the market,
represented by the VIX of the S&P 500, which is modeled by equation (8.33).
The Brownian motions of p and o are correlated via equation (8.35). dw is the
Brownian motion of the market component.

Equation (8.37) has a capital asset pricing model (CAPM) interpretation.
The first two terms on the right side of equation (8.37) represent the
idiosyncratic stock component. The term o dw represents the systematic
market risk factor, which is shared by all stocks. The impact magnitude of the
systematic component on the stock is 3; p.

In Figure 8.6, the performance of the model of equations (8.33) to (8.35)
and equation (8.37) is compared to the standard GBM of equation (8.35).

From Figure 8.6 we observe that the model of equations (8.33) to (8.35)
and equation (8.37) outperforms the standard GBM in equation (8.36).
This is verified by standard statistics. The chi-square goodness-of-fit test
shows a p-value of 0.8164 (chi® = 5.986) between the model distribution and
the empirical distribution, while the p-value is 0.054 (chi* = 19.411) between
the GBM-normal distribution and the empirical distribution. The model gives
similar results for other stocks that were tested.

Lu and Meissner (2012) extend the model to include correlation between
individual stocks in a portfolio approach, applying the conditionally inde-
pendent default (CID) correlation concept, which we discussed in Chapter 6.
This improves the performance of the model further.
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8.7 CONCLUSION: SHOULD WE MODEL FINANCIAL
GORRELATIONS WITH A STOCHASTIC PROCESS?

Many assets in finance are modeled with a stochastic process. Assets that are
assumed to have little or no mean reversion, such as stocks, exchange rates, or
real estate values, are modeled with a non-mean-reverting stochastic process
such as the GBM, displayed in equations (4.1), (8.2), and (8.22), or they
can be modeled with no-arbitrage, non-mean-reverting models such as the
Ho-Lee (1986) model.

Assets that display a certain degree of mean reversion such as bonds,
interest rates, or default probabilities are typically modeled with a stochastic
process, which includes mean reversion such as the Vasicek 1977 model
displayed in equation (8.13), or with mean-reverting no-arbitrage models
such as Hull and White (1990) or the Black-Derman-Toy (1990) model. The
continuous-time, mean-reverting Heath-Jarrow-Morton (HJM) 1990 model
and its discrete version, the LIBOR market model (LMM) of 1997 (credited to
three groups of authors: Brace, Gatarek, and Musiela; Miltersen, Sandmann,
and Sondermann; and Jamshidian) are generalized models and include the
aforementioned models as special cases.

Since many financial assets are successfully modeled with a stochastic
process, should we also model financial correlations with a stochastic
process? This is mainly an empirical question: Do financial correlations in
the real world behave in a way that can be captured with a certain stochastic
model? The research in this area has just started, but the first results are
promising.

We discussed the conditional correlation modeling approach of
Bollerslev (1990), generalized by Engle (2002); sampling correlation values
from a stochastic distribution (Hull and White 2010); the Vasicek model
applied by Duellman et al. (2008); modeling correlation with a modified
Jacobi process (Ma 2009); the Wishart affine stochastic correlation (WASC)
model applied by Buraschi et al. (2010; first version 2006); and an extension
by Da Fonseca et al. (2008); as well as the approach by Lu and Meissner
(2012). All these approaches show that when applying a certain form of
stochasticity for financial correlations, correlation properties in reality can be
replicated quite well. In addition, the valuation of correlation-dependent
structures such as multi-asset options or quanto options (Ma 2009) can be
improved if correlation is modeled with a stochastic process.

In conclusion, while stochastic correlation modeling is still in its infancy,
first results are promising. Just as other financial variables such as stocks,
bonds, interest rates, commodities, volatility, and more are modeled with a
stochastic process, it can be expected that in the near future financial
correlations will also typically be modeled with a stochastic process.
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8.8 SUMMARY

The modeling of financial correlations with a stochastic process is fairly new,
but several promising approaches exist. We discussed them in this chapter.

Hull and White (2010) find a simple way to address stochastic correla-
tion. They create a dynamic version of the one-factor Gaussian copula
(OFGC) model (see Chapter 6 for details). Hull and White then sample
the critical correlation parameter, which indirectly correlates the variables
with a beta distribution. The model matches empirical CDX prices in most
cases better than a comparable model without stochastic correlation.

In 2002 Robert Engle introduced a dynamic conditional correlation
(DCC) concept within the ARCH and GARCH framework. The correlation
depends on expectations given at a previous point in time. In addition, the
correlation matrix can be made a function of time, constituting a dynamic
stochastic correlation model.

A further way to model financial correlations is to use the standard
geometric Brownian motion (GBM), which is often applied to model other
financial variables such as stocks, exchange rates, commodities, and more.
However, the standard GBM suffers from two drawbacks: (1) Mean rever-
sion, a critical property of financial correlations as we derived in Chapter 2, is
not incorporated in the GBM, and (2) the model is not bounded, meaning
correlation values larger than 1 and smaller than —1 can occur.

An improvement of the GBM for modeling financial correlations is the
Vasicek 1977 model, which incorporates mean reversion, or the bounded
Jacobi process, which incorporates mean reversion and is also bounded (i.e., the
correlation values lie between —1 and +1 if boundary conditions are imposed).

A rigorous, mathematically quite intensive approach to model financial
correlations is based on the Wishart affine stochastic correlation (WASC)
model. Here a stochastic covariance matrix follows a stochastic process,
which is—as in the Heston 1993 model—correlated with the stochastic
process of the underlying price matrix. The model has numerous parameters
and is able to model several real-world correlation properties well.

In the related stochastic correlation model of Lu and Meissner (2012),
which correlates stochastic correlation with stochastic volatility, it is shown
that asset modeling can be improved compared to the standard GBM.

PRACTICE QUESTIONS AND PROBLEMS

1. What is a deterministic process? Name two examples.
2. What is a stochastic or random process? Name two examples.
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3. Why does it seem like a good idea to model financial correlations as a
stochastic process? Name two reasons.

4. How is stochasticity modeled in the dynamic conditional correlation
(DCC) concept?

5. The geometric Brownian motion (GBM) is applied to model many
financial variables such as stock prices, commodities, and exchange rates.
What are two limitations of the GBM model financial correlations?

6. The Vasicek model is an improvement over the GBM to model financial
correlations? Why?

7. The bounded Jacobi process seems like a good choice to model financial
correlations. What advantage does it have over the GBM and the Vasicek
model?

8. In the Buraschi, Porchia, and Trojani (2010) stochastic correlation model,
which two stochastic processes are correlated?

9. In the Buraschi, Porchia, and Trojani model, which financial properties
can be replicated? Name two.

10. Should we model correlation with a deterministic or a stochastic process?
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Quantifying Market
Correlation Risk

The [financial] industry is more technical than ever, and there is as
much need to understand the risks of the system as ever.
—Robert Merton

In this chapter we discuss and quantify the correlation risk of financial
products whose primary focus is market risk. Let’s just clarify what market
risk is.

MARKET RISK

The risk of financial loss due to an unfavorable change in the price of a
financial security.

We typically differentiate four main types of markets in which market
risk can occur: (1) the equity market, (2) the fixed income market, (3) the
commodity market, and (4) the foreign exchange rate market. However,
other markets can be categorized, such as the energy market, real estate
market, weather market, economic variables, and so on. A financial
security is a tradable asset in one of these markets, such as stocks, bonds,
commodities, exchange rates, and real estate, or futures, options, and
swaps on these securities.
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9.1 THE CORRELATION RISK PARAMETERS
GORA AND GORA

In Chapters 3 and 4 we discussed models to quantify the correlations between
one or more financial variables. We will now discuss how to quantify
correlation risk (i.e., the risk that the correlations change). We introduce a
correlation risk parameter, which we will call Cora.

GORA

A measure of how much a dependent variable changes if the correla-
tion between two or more independent variables changes by an
infinitesimally small amount.

Formally,

Cora= ————~ (9.1)

where Vis the value of a dependent financial variable and p(x; _ 1, _,) is
the correlation or correlation matrix of the independent variables

Xi=1,..n

So Cora tells us how sensitive a variable V is to changes in correlation p.
We typically calculate Cora for a portfolio of assets. In this case V can be

m The return/risk ratio pp/op of the portfolio. We already derived Cora for
the return/risk ratio pp/op in the introductory Chapter 1 in section 1.3
for a two-asset portfolio. This was displayed in Figure 1.3, where Cora is
the slope of the pp/op function.

m The risk of a portfolio, measured by the standard deviation of asset
returns.

m The risk of a portfolio measured by the value at risk (VaR) concept. We
already derived the Cora in Chapter 1 in section 1.3.3 for a two-asset
portfolio. Hence in this case V in equation (9.1) is the VaR. The result
was displayed in Figure 1.6. In this chapter we will generalize the
result for a portfolio of # > 2 assets.

V in equation (9.1) can also be a type of correlation option, or a
correlation swap. We already discussed the impact of correlation on the
risk of these products in the introductory Chapter 1, section 1.3.2. V can also
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be a standard option that is valued on a model that includes correlations; see
section 9.2.1.

V in equation (9.1) can also be the price of a credit product such as a
credit default swap (CDS) or a structured product such as a collateralized
debt obligation (CDO). This is because the market price of a CDS or CDO
changes when correlation changes; hence there is market price risk. This
shows the close relationship between market risk and credit risk: When the
market price of an asset decreases (possibly due to a recession), typically the
default risk increases, and vice versa, if the default risk of an asset increases
(maybe due to bad management), typically the market price decreases.

We already discussed the dependence of a CDS with respect to
the correlation between the reference entity and the counterparty in
Chapter 1.2, displayed in Figure 1.1. Graphically Cora is the slope of the
CDS function. We will discuss correlation risk with respect to credit products
in Chapter 10.

In a portfolio context, the x; in equation (9.1) are the returns of the assets
in the portfolio, which are correlated in a correlation matrix p(x;,...,x,) (see
example 9.1). We can calculate Cora for all asset returns, but we can also
analyze how the risk changes for a single pairwise change in the correlation
matrix. We will call this Gap-Cora in analogy to the gap analysis in interest
rate risk management, where a single interest rate is bumped up or bumped
down by a certain amount to see the impact on the present value or on risk.

From Figures 1.2, 1.3, 1.4, 1.6, and 1.7 in Chapter 1 we can see that Cora
can be positive or negative. Cora can also be positive and negative within the
same function as in Figure 1.2, where Cora is positive for correlation values
of —1 to about —0.3 and negative for correlation values of about —0.3 to 1.
Conceptually Cora can take values between —oo and +oo.

We can also look at the sensitivity of Cora, i.e., how much Cora changes.
We will call this Gora.

GORA

A measure of how much Cora changes if the correlation between two
or more independent variables changes by an infinitesimally small
amount. Formally,

Gora= : = (9.2)

where variables are defined as in equation (9.1).
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So Gora tells us how sensitive Cora is to changes in correlation p.
Mathematically, Gora is the first partial derivative of the Cora function or
the second partial derivative of the original function V with respect to
correlation. That is, Gora measures the curvature of a function with respect
to correlation. As Cora, Gora can take values between —co and +oo.

9.2 EXAMPLES OF CORA IN FINANCIAL PRACTICE

Let’s first look at a specific type of Cora that is already established in the
option markets.

9.2.1 Option Vanna

Measuring the impact of changes in correlation is not totally new. It is already
formalized in option theory and called Vanna. It was introduced in the
famous stochastic alpha, beta, rho (SABR) model by Hagan et al. (2002).
The core equations of the model are

dF
o =odW (9.3)
d—c =adZ (9.4)
o
and
Corr(dW,dZ)=p dt (9.5)

This model is named after its parameters, o, which is the volatility of
volatility; 8, which determines the skew of the volatility (i.e., how lopsided
or asymmetric the volatility function is); and p, which determines the
correlation between the Brownian motions dW and dZ of the forward
rate F and the volatility o of forward rate F. The model of equations (9.3) to
(9.5) reduces to the zero-drift Brownian motion for o =3 = 0. The model is
identical to the constant variance of elasticity (CEV) model of John Cox
(1975) for o = 0.

The model includes the correlation between the forward rate or price F
and volatility o via equation (9.5). This correlation influences the call price C
and put price P, since the call and put prices are functions of F and o.



Quantifying Market Correlation Risk 185

We derive the sensitivity of the option price V* with respect to correlation.
Hence, we have

A%

Vanna = 3n(F. )

(9.6)

From equations (9.1) and (9.6), we see that Vanna is a special case of Cora,
with the dependent variable being the option price V* and the correlated
variables being the forward price or rate F and the volatility of F, 5. We can
replace the functional relationship p(F,o) in equation (9.6) and write

o (2
F ) 'V

do " 9Fdo

Vanna = (9.7)

From equation (9.7), we see that Vanna calculates how much the delta 4-

changes if volatility o changes. The term aF Y= of equation (9.7) tells us that
Vanna is a second-order mathematical derivative: The option price V* is
partially differentiated with respect to F and with respect to o.

9.2.2 Option Cora and Gora

The model of equations (9.6) to (9.7) shows that even when pricing plain-
vanilla options, we can include correlations, which determine the option
value. Naturally, especially for correlation options (i.e., options whose payoff
is at least in part determined by the correlation of two or more variables),
correlations are critical. In the introductory Chapter 1, in section 1.3.2,
“Trading and Correlation,” we already discussed several correlation options.
Let’s derive Cora for an exchange option.

An exchange option E is the right to exchange asset S; for asset S, (i.e.,
the right to give away asset S; and receive asset S, at option maturity).
Therefore, an exchange option has the payoff = max(0, S — S1). The pricing
formula is:

SzefqlT

Sle*QJT

\/cr% +0% —-2p olozx/T

1
( )-i——(c%—l—c%—Zpolcz)T
E=S8,e"%TN 2

Sye T 1
= ) (c%—i—c%—meoz)T

ln(f - =
—S1e TN Siema? 2
\/0% + 0% —2p Olozﬁ

(9.8)
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where

¢>: return of asset 2

q1: return of asset 1

o1: volatility of asset Sy

o3 volatility of asset S,

p: correlation coefficient for assets §; and S,

N(x): cumulative standard normal distribution of x

Note that a distinction between a call and a put is not sensible with an
exchange option. Interestingly, an interest rate is not an input parameter in
equation (9.8). This is because in a risk-neutral framework, both asset S; and
asset S are expected to grow with the risk-neutral interest rate 7, and hence »
cancels out.

Differentiating equation (9.8) partially with respect to the correlation
parameter p requires some stamina, but it can be done. The result is the Cora
of an exchange option E:

—q,T
In [ﬂ} lT(O'% —2p0102 +03)
Sie=nT| * 2
EiquﬁSZO'lO'zf’l !
\/T\/O'% — 2po10; —|—0%

E
Corag = 9F = -

\/O’% — 2po10; + 0%
(9.9)

where n(x) is the standard normal distribution of x. For the derivation of
equation (9.9), see problem 11 in the questions and problems section at the
end of this chapter.

Equation (9.9) tells us how much the exchange option price E changes
if the correlation p between the assets §; and S, changes by a very small
amount.

From equation (9.9) we observe that the Cora of an exchange option is
negative, since all terms in equation (9.9) are positive and there is a negative
sign in front of the right term. The negative Cora makes sense, since the lower
the correlation between the assets S; and S, measured by p, the higher is the
expected payoff max(0, S, — S;) and the higher the exchange option price E.
We already observed Cora in Figure 1.4 in Chapter 1 and saw that the slope
of E with respect to p (i.e., the Cora) is negative. For a model that calculates
Cora of an exchange option, see “Exchange option.xls” at www.wiley.com/
go/correlationriskmodeling, under “Chapter 1,” cell J19.


http://www.wiley.com/go/correlationriskmodeling
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Differentiating equation (9.9) again with respect to p gives us the Gora
that we defined in equation (9.2). It measures the curvature of the option
function. In addition, Gora tells us how sensitive Cora is to changes in p. In
other words, it tells us how instable the correlation hedge is. The higher the
Gora, the more often we have to adjust the correlation hedge.

A normal distribution n(x) is conveniently differentiated by using

a’g(;) = —x n(x). Applying the product rule and chain rule to equation (9.9),

we derive the Gora as:

dCorag
dp

Gorag=

S -q,T 2
SZZ—qlT} +T(O’%*2p0’10’2+0%) (4+TU%2T[)0'10'2+T0'%)>
1

e TS, 0202 ( 4In [

__ S,e~2T] 1
= ln[ﬁ} +£T(U%—2p0'1(72+(7%)

\ﬁ, / O’% —2;)01(72-5—(7%
/ (4\/T(a%—2palaz+a§)5/ 2) (9.10)

The programmed Gora of equation (9.10) is in cell J20 of the model
“Exchange option.slx” at www.wiley.com/go/correlationriskmodeling,
under “Chapter 1.”

9.3 CORA AND GORA IN INVESTMENTS

In Chapter 1, section 1.3.1, “Investments and Correlation,” we had already
briefly discussed the relationship between investments and correlation. We
found that a decrease in correlation enhances the effects of diversification
(i.e., increases the return/risk ratio of a portfolio). We displayed this in
Figure 1.3. We will now formalize this finding. We define the Cora of the
return/risk ratio, also called risk-adjusted return of a portfolio, Corap, as

p(xi=1,..) (9.11)

Corap =

where pp is the portfolio return mean and op is the standard deviation of the
portfolio returns.


http://www.wiley.com/go/correlationriskmodeling
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The x; in equation (9.11) are the pairwise correlations of the returns
of the assets in the portfolio. Hence equation (9.11) tells us how much the
risk-adjusted return of a portfolio pp/op changes if all pairwise correlations of
all n asset returns in the portfolio p(x;—;__,) change by an infinitesimally
small amount.

For a two-asset portfolio, the mean of the portfolio value pp is derived
by equation (1.1) as pp = wy pa + wp pg. The standard deviation op
of the two-asset portfolio return is derived in equation (1.5) as op=

\/wici + w}oZ + 2wawgCovag.

For a two-asset portfolio, we can derive Corap in equation (9.11) as

(%)

—11
) (wapa-+ios )y (AR Fdod 2wawncodp) " 2wawsodo)

However, typically we have more than two assets in a portfolio. In
this case, we can use equation pp= Zn Wik and equation (1.9)
i=

op=+/8,CpB,. If we have more than two assets in a portfolio, we have to
simulate an increase in every pairwise correlation of the assets’ returns and
observe the impact on the risk-adjusted return pp/op of the portfolio.
The magnitude of the simulation can range from a small number such
as +1% to a much higher number to stress-test the correlation impact.
We can also analyze the impact of correlation on just the risk of a
portfolio, measured by the standard deviation of asset returns, op,

aO'p
ap(xz'—L ;

Cora*p = (9.12)

To derive the Cora*p in equation (9.12) for a two-asset portfolio, we

can use equation (1.5), op= \/wioi +wiod + 2wawgoiogp, and differenti-

. . . dop __ 1 2 2 2 2
ate partially with respect to p. We derive T;—Z(WA0A+WBUB+

2wAwB0%0§p)_%(2wAwBaicr%).

Calculating the portfolio return standard deviation op gives some infor-
mation of the risk of a portfolio. However, op is part of the VaR concept,
which includes a time frame and a confidence level and is therefore a more
informative risk measure. Calculating Cora for the VaR concept is done in
the next section, “Cora in Market Risk Management.”

We can also look at the sensitivity of Cora to changes in the correlation p
of a portfolio; that is, we can calculate the Gora of a portfolio.

#(2)
Gorap = 9(Corap) = or (9.13)

ap(-":izl,...,n) apz(xizl,”..n)
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Equation (9.13) tells us how much the Cora of a portfolio

)
Corap = % changes if correlation of all assets in the portfolio changes
i=15+9n

by an infinitesimally small amount. So the Gora of a portfolio tells us how
stable the correlation hedge is (see Chapter 11 for correlation hedging). The
higher the Gora, the more frequently we have to change the hedge if
correlation changes. Graphically, Gora is the curvature of the original pp/
op function of Figure 1.3.

9.4 CORA IN MARKET RISK MANAGEMENT

Arguably the most important application of Cora and Gora is in risk
management. In the introductory Chapter 1, section 1.3.3, we already out-
lined the basic relationship between correlation and risk. We found that a
lower correlation reduces portfolio risk measured by value at risk (VaR),
which was displayed in Figure 1.6. VaR measures the maximum loss of a
portfolio with respect to a certain probability for a certain time frame. VaR is
the most widely applied risk management concept in financial practice. It can
be calculated with equation (9.14):

VaRPZO'POL\/D_C (9.14)

where VaRp is the value at risk for portfolio P, and « is the abscise value of a

standard normal distribution, corresponding to a certain confidence level. It

can be derived as =normsinv(confidence level) in Excel or norminv(confi-

dence level) in MATLAB. o takes the values —00 < o < +00. x is the time

horizon for the VaR, typically measured in days. op is the volatility of the

portfolio P, which includes the correlation between the assets in the portfolio.
We calculate op via equation (9.15):

or=1/8,CB, (9.15)

where B, is the horizontal 3 vector of invested amounts (price times quantity;
“position” in Table 9.1 in example 9.1). B, is the vertical 8 vector of invested
amounts (also price times quantity, “position” in Table 9.1).! C is the
covariance matrix of the returns of the assets (Table 9.4).

1. More mathematically, the vector (3, is the transpose of the vector 3,, and vice versa:
B,T =B, and 8,7 =B,,. Hence we can also write equation (9.15) as 6, = \/B), CB,T. See
the spreadsheet “Matrix primer.xls,” sheet “Matrix Transpose,” at www.wiley.com/
go/correlationriskmodeling, under “Chapter 1” for details.
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EXAMPLE 9.1: DERIVING VaR, CORAy,z, AND
GORAy, FOR A 10-ASSET PORTFOLIO

What are the VaR, Coray,r, and Goray,r of a 10-asset portfolio of
unequally weighted stocks AT&T, Citi, Ford, GE, GM, HPQ, IBM,
JPM, MSFT, and P&G for a 1-year time horizon for a 99% confidence
level? This example and the following results are displayed in the
spreadsheet “Var educational.xIsm” at www.wiley.com/go/correlation
riskmodeling, under “Chapter 9.”

A model that calculates VaR, Coray,r, and Goray,r for =
assets can be found at “Var n asset cora gora.xlsm” at www
.wiley.com/go/correlationriskmodeling, under “Chapter 9.”

Table 9.1 shows the numerical values of this example.

We first downloaded the stocks’ daily closing prices (for example
from Yahoo! Finance, http:/finance.yahoo.com) from August 1,
2011, to July 31, 2012. We then calculated the daily returns for
stock price S as R = In(S,/S,_1).> We now correlate the daily returns
for all 10 stock pairs to find the correlation coefficient p for all stock

Y (s=F)0i-3)
3 =y ()

where x is the return of asset X and y is the return of asset Y, and ¥
and y are the means of the asset returns of assets X and Y,
respectively. Computationally we can use Excel’s Correl function
or MATLAB?’s corrcoef function to find p. This gives us n(n — 1)/2 =
10 x 9/2 = 45 correlation pairs. Table 9.2 shows the correlation
matrix.

From Table 9.2 we observe that the return correlations of the 10
stocks are mostly positive.

We now derive the daily standard deviation o of the stock returns R

pairs. Mathematically this is done by equation

via equation (1.2) og =, /15 2, which are displayed in
Table 9.3.

We now build the covariance matrix by using Covag = 04 05 pap-
Table 9.4 shows the result.

2. See Appendix A2 of Chapter 1 why we rather use In(S,/S,_1) instead of (S;,—S,_1)/
S;_1 to calculate returns.


http://finance.yahoo.com
http://www.wiley.com/go/correlationriskmodeling
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TABLE 8.1  Stock Portfolio of 10 Unequally Weighted Stocks, in $ Thousands

Portfolio AT&T Citi Ford GE GM HPQ IBM eM Microsoft P&G
Spot Price $26.88 $72.50 $10.79 $15.12 $27.05 $58.10 $174.40 $35.58 $24.52 $58.89
Number of Shares
Position (price x $23,513.82  $2,123.52  $870.00 $1.079.00 $1,360.80 $1,027.90 $4,764.20 $3,488.00 §$1,245.30 $3,432.80 §4,122.30
quantity)
Weight (%) 9% 4% 5% 6% 4% 20% 15% 5% 15% 18%

TABLES.2 Correlation Matrix p between Returns of 10 Stocks from August 1, 2011, to July 31,2012

AT&T Citi Ford GE GM HPQ IBM JPM Microsoft P&G
1.00 0.06 0.49 0.65 0.00 0.50 -0.10 0.52 0.50 —0.02
0.06 1.00 0.01 —0.04 —0.14 0.04 —0.06 —0.01 0.01 —0.16
0.49 0.01 1.00 0.68 0.03 0.64 0.02 0.71 0.61 0.11
0.65 —0.04 0.68 1.00 —0.06 0.70 -0.12 0.75 0.65 0.03
0.00 -0.14 0.03 —0.06 1.00 0.02 0.58 —0.01 0.08 0.46
0.50 0.04 0.64 0.70 0.02 1.00 —0.05 0.64 0.60 0.05

—0.10 —0.06 0.02 -0.12 0.58 —0.05 1.00 —0.05 —0.02 0.53
0.52 —0.01 0.71 0.75 —0.01 0.64 —0.05 1.00 0.57 0.05
0.50 0.01 0.61 0.65 0.08 0.60 —0.02 0.57 1.00 0.02

—0.02 -0.16 0.11 0.03 0.46 0.05 0.53 0.05 0.02 1.00

(continued)
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(continued)

TABLE 9.3 Standard Deviations of Daily Returns

Stocks in the Portfolio

Standard Deviation o

AT&T

Citi

Ford

GE
GM

HPQ
IBM

JPM
Microsoft
PG

1.02%
3.19%
2.08%
1.69%
2.73%
3.00%
1.42%
2.65%
1.43%
1.00%

TABLE9.4 Covariance Matrix for the Portfolio in Table 9.1 with the Correlation Matrix of Table 9.2 and Standard Deviation

in Table 9.3

AT&T Citi Ford GE GM HPQ 1IBM M Microsoft P&G
0.0001031 0.0000182  0.0001026 0.0001113 0.0000013 0.0001529  —0.0000148 0.0001405 0.0000726  —0.0000018
0.0000182 0.0010178 0.0000060 —0.0000212 —0.0001209 0.0000344 —0.0000287 —0.0000123 0.0000025 —0.0000508
0.0001026 0.0000060  0.0004332 0.0002378 0.0000153 0.0004002 0.0000053 0.0003897 0.0001822 0.0000239
0.0001113 —0.0000212  0.0002378 0.0002847  —0.0000258 0.0003546  —0.0000294 0.0003344 0.0001564 0.0000048
0.0000013 —0.0001209  0.0000153  —0.0000258 0.0007477 0.0000142 0.0002234  —0.0000079 0.0000304 0.0001260
0.0001529 0.0000344  0.0004002 0.0003546 0.0000142 0.0009015  —0.0000232 0.0005058 0.0002590 0.0000146

—0.0000148 —0.0000287  0.0000053  —0.0000294 0.0002234  —0.0000232 0.0002006  —0.0000192  —0.0000043 0.0000753
0.0001405 —0.0000123  0.0003897 0.0003344  —0.0000079 0.0005058  —0.0000192 0.0007032 0.0002155 0.0000133
0.0000726 0.0000025  0.0001822 0.0001564 0.0000304 0.0002590  —0.0000043 0.0002155 0.0002059 0.0000034

—0.0000018 —0.0000508  0.0000239 0.0000048 0.0001260 0.0000146 0.0000753 0.0000133 0.0000034 0.0001009
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0.0001031 0.0000182 0.0001026 0.0001113 0.0000013  0.0001529 —0.0000148 0.0001405 0.0000726 —0.0000018

0.0000182  0.0010178 0.0000060 —0.0000212 —0.0001209 ~ 0.0000344 —0.0000287 —0.0000123  0.0000025 —0.0000508 | (2:124 13
0.0001026  0.0000060 0.0004332  0.0002378 ~ 0.0000153  0.0004002  0.00000S3 ~ 0.0003897 00001822 0.0000239 || | 2;(7) E‘fz
0.0001113 —0.0000212 0.0002378 ~ 0.0002847 —0.0000258  0.0003546 —0.0000294  0.0003344  0.0001564  0.0000043 | [ 1’350 340
0.0000013 —0.0001209 0.0000153 —0.0000258  0.0007477 ~ 0.0000142  0.0002234 —0.0000079  0.0000304  0.0001260 | [ 1,027 | [ 2.11
0.0001529  0.0000344 0.0004002  0.0003546  0.0000142  0.0009015 —0.0000232  0.0005058  0.0002590  0.0000146 | [ 4,764 | | 7.08
~0.0000148 —0.0000287 0.0000053 —0.0000294  0.0002234 —0.0000232  0.0002006 —0.0000192 —0.0000043  0.0000753 | [ 3:438 oo
00001405 —00000123 00003897  0.0003344 —0.000607¢  0,0005058 —0.0000192  0.0007032  0.0002155  0.0000133 ;iﬁ Zg
00000726 00000025 00001822  0.0001564  0.0006304  0.0002590 —0.0000043  0.0002155  0.0002059  0.0000034 | \ 412> 0.89

—0.0000018 —0.0000508 0.0000235  0.0000048  0.000126¢  0.0000146  0.0060753  0.0000133  0.0000034  0.0001609

(continued)
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(continued)

Now we are ready to derive the portfolio standard deviation. We
use equation (9.14) op = /3, C3,, which we already used in Chapter 1
for a two-asset portfolio.

We first derive C B,, as done on page 193.

We then calculate 3, (C 3,):

1.59
0.63
4.16
3.40
2.11
7.08
1.00
5.17
2.81
0.89

Hence we have op=1/72,141=268.59. We are considering a
99% confidence level. Hence o« = normsinv(0.99) = 2.3263. We
have about 252 trading days in a year. It follows that the portfolio
VaR is

(2,124 870 1,079 1,360 1,027 4,764 3,488 1,245 3,432 4,122) =72,141

VaRp=o0p a VX =268.59 x 2.3263 x v/252=9,918.97

Interpretation: We are 99% sure that we will not lose more than
$9,918,970 (since numbers are in units of $1,000) in the next year due
to price changes of the stocks in our portfolio. Note that this VaR
number includes the correlation between the stocks via op.

Simulation: We now simulate changes in the correlation matrix of
Table 9.2 to derive Coray,g. Cora is defined for an infinitesimally small
change in correlation, as we can see from equation (9.1). However, even if
we increase the correlation by a larger amount, we will derive the exact
value in VaR, since we are performing a numerical simulation. This is
different to option theory, where we can apply closed form mathematical
derivatives. For example, the delta of an option V with the underlying S,
0V /a8, is the first mathematical derivate of V with respect to S. For larger
increases in S, the change in V, 0V, derived by the closed form solution will
be imprecise, since the option function V is nonlinear with respect to S.

Figure 9.1 shows the impact of a simulated change in correlation
on the VaR, i.e., Coray,r.

From Figure 9.1 we observe that the higher the increase in the
pairwise correlations, the higher VaR is. The impact of a correlation is
strong. VaR increases by over 60% for high correlations.
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Change in VaR with Respect to Correlation Change
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FIGURE 9.1 Coray,g, the Change in VaR for a Change in All Pairwise Asset
Return Correlations in the Portfolio

With respect to Gora, we observe from Figure 9.1 that for small
changes in the pairwise correlation, Gora (the change in the slope in
Figure 9.1) is quite small. In our example Gora is just =0.11% when
calculated for a Cora from 0% to 1% asset correlation change
compared to a Cora for 10% to 11% asset correlation change. For
higher pairwise asset correlation levels, Gora increases on an absolute
level (since the slope of the function in Figure 9.1 changes more).
However, correlations are capped at 100%. Therefore, once a correla-
tion has reached 100% it cannot increase further, which caps further
increases in the VaR function.

Naturally, VaR has some limitations, especially slim tails and non-
additivity. For more on VaR, we recommend Jorion (2006) and Hull (2011).

We will now quantify correlation risk with a real-world example with
respect to VaR. We can write

d(VaR)

o) ©-16)

Coray,r =

where the x; are the pairwise correlations between all asset returns in the
portfolio. Equation (9.16) measures how much VaR changes for an infin-
itesimally small change in all pairwise correlations of all asset returns in the
portfolio. There is no closed form solution for equation (9.16), so we have to
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simulate the change in correlation, possibly with a 1% increase in all pairwise
correlations. Let’s do this in a real-world example. We first calculate VaR and
then Coravy,r.

9.4.1 Gap-Cora

In Figure 9.1 we observe a change in correlation of all pairwise correlations in
the correlation matrix of Table 9.2. We may also be interested in deriving the
correlation exposure of a single asset in our portfolio. In analogy to interest
rate risk management, we will call this gap analysis, or Gap-Cora. We can
derive two types of Gap-Cora.

The first is Gap-Cora; p of a single asset i with respect to all other assets in
the portfolio P. Formally,

d(VaR)

_— 9.17
0p(Xij=1,..n) ( )

Gap-Cora; p=

Equation (9.17) reads: How much does VaR change if the correlation
between asset i and all other j = 1,..., 7 assets in the portfolio P changes by an
infinitesimally small amount? We can approximate Gap-Cora; p with a 1%
increase. For our portfolio, if asset i is AT&T, Gap-Cora; p = $12,364. We
interpret this number as: If the correlations between AT&T and
all other assets in the portfolio increase by 1%, VaR increases by
$12,364. The interested reader can confirm this number in the spreadsheet
at “Var educational.xlsm” at www.wiley.com/go/correlationriskmodeling,
under “Chapter 9.”

We can also stress-test Gap-Cora; p. For example, we can increase the
correlation by a random number, for example by one standard deviation of
the vector of correlations between AT& T and the other assets in the portfolio,
which comes out to 35.74%. In this case Gap-Corasrsrp = $432,752.
We interpret this number as: If the correlation between AT&T and all other
assets in the portfolio increases by 35.74%, VaR increases by $432,752.

We can also derive the exposure of the correlation between a single asset
with respect to another single asset. Formally,

d(VaR)

9.18
dp(axij) -18)

Gap-Cora;j =

Equation (9.18) reads: How much does VaR change, if the correlation
between asset i and asset j changes by an infinitesimally small amount?
We can approximate Gap-Cora;; with a 1% increase. For our portfolio,
if asset i is AT&T, and asset j is Citi, Gap-Cora;; = $823. We
interpret this number as: If the correlation between AT&T and Citi
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increases by 1%, VaR increases by $823. The interested reader can
confirm this number in the spreadsheet “Var educational.xlsm” at www
.wiley.com/go/correlationriskmodeling, under “Chapter 9.”

We can also stress-test Gap-Cora; ;. For example, we can increase the
correlation between AT&T and Citi by a random number. We could
calculate the historical correlation of AT&T and Citi and derive the
standard deviation of this historical correlation. Let’s assume this standard
deviation is 50%. In this case Gap-Corasrect,cii = $41,051. We interpret
this number as: If the correlation between AT&T and Citi increases by
50%, VaR increases by $41,051. The interested reader can again confirm
this number with the spreadsheet “Var educational.xlsm” at www.dersoft
.com/vareducational.xIsm.

9.5 GORA IN MARKET RISK MANAGEMENT

As defined in equation (9.2), Gora is the second partial derivative of a
function with respect to correlation. For VaR we define

dCoravy,r 9* (VaR)
Goray,r = = 9.19
VR it ) 0Pt ) 19

Equation (9.19) reads: How much does Cora of VaR change if the
correlation of all assets in the portfolio changes, or what is the curvature of
the original VaR function?

From Figure 1.6 in Chapter 1 and Figure 9.1 we observe that the
curvature of the VaR function is negative (since the slope decreases for
increasing correlation). Hence Gora of VaR is negative. Let’s derive Gora of
VaR numerically and interpret the result.

There are several ways to simulate Gora for market risk.

We can calculate the change in VaR for a y% increase between the
correlation of all assets in the portfolio and a y% decrease between
the correlation of all assets in the portfolio and then take the average. Formally,

[VaR(+y% inp(xi=1._,)) — VaR] 4 [VaR(—y% in p(x;=1

2

GoraVaR ~ < n)) — VaR])

(9.20)

For our example 9.1, Goray,r for a y = 10% simulation comes out to

Goray,g ~ (1.053A6O+(2—1,179A78)) — _63.09.
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Since this number is in units of $1,000, we interpret it as follows. As an
approximation, for a 1% increase in all correlations in the portfolio, the Cora
will reduce by $6,309; hence we have to reduce our correlation hedge by this
amount. The reader can verify this number in the spreadsheet “Var
educational.xlsm” at www.wiley.com/go/correlationriskmodeling, under
“Chapter 9,” cell P19 on sheet “Portfolio VAR simulation.”

We can also simulate Gora of VaR by comparing different Coras. For
example, we could calculate Cora for an increase in correlation from 10%
to 11%, and Cora for an increase in correlation from 0% to 1%, and then
look at the difference. Formally, Gora g = Corav.r (p=10% —p=11%) —
Coraygr (p=0% —p=1%), where p is the pairwise correlation of all assets in
the portfolio. We expect Gora¥,r to be negative since the slope of Cora for an
increase in correlation from 10% to 11% is lower than Cora for an increase in
correlation from 0% to 1%, as we can see in Figure 9.1. For our example 9.1,
we derive Gora¥,gr =99.84 —110.34= —10.5. Since this number is again in
units of $1,000, we can interpret this as: Approximately, if all correlations in
the portfolio increase by 10%, we have to reduce our correlation hedge by
$10,500. The reader can verify this number in the spreadsheet “Var
educational.xlsm” at www.wiley.com/go/correlationriskmodeling, under
“Chapter 9,” cell T17 on sheet “Portfolio VAR simulation.”

9.6 SUMMARY

In this chapter we discussed how to quantify market correlation risk. Market
risk is the risk of an unfavorable change in the market price or rate in four
main markets: (1) equity market, (2) fixed income market, (3) commodity
market, and (4) foreign exchange market. However, other markets such as
real estate, energy, and weather can be categorized. Market correlation risk is
the risk that the correlations between the prices in one market or between
these markets change.
We can quantify market correlation risk with two measures.

1. Cora measures how much a dependent financial variable changes if the
correlation between independent variables changes. For example,
Cora can measure how much value at risk (VaR) in a portfolio
changes if the correlation of the assets in the portfolio changes.
However, the dependent financial variable can be any financial varia-
ble that is exposed to correlation risk: the return/risk ratio of a
portfolio, the price of an option, a credit default swap (CDS), a
collateralized debt obligation (CDO), and many more. Graphically,
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Cora is the slope of the variable’s function with respect to correlation.
If we hedge correlation risk, Cora tells us the magnitude of the
correlation hedge.

2. Gora measures how much Cora changes. Hence it tells how much we
have to adjust our correlation hedge. Mathematically, Gora is the second
mathematical derivative of the variable’s function with respect to
correlation.

Arguably, Cora and Gora are most critical in risk management. We find
that one of the most widely applied market risk measures of a portfolio, value
at risk (VaR), is highly sensitive to Cora; that is, VaR is highly sensitive to
changes in correlation of the assets in the portfolio. The sensitive of VaR to
Gora is only moderate.

Cora and Gora can be extended in numerous ways: We can calculate
Cora not only for a correlation change of all assets in the portfolio, but for a
change in (1) the correlation between one particular asset with all other assets
or (2) the correlation between two specific assets. This provides the risk
manager with the correlation risk of specific assets, possibly critical assets in
the portfolio. The same exercise can be done for Gora.

Cora and Gora can also be applied to stress testing. In this case, we can
simulate the correlation change between the independent variables by a large
amount to observe correlation risk in crisis scenarios.

PRACTICE QUESTIONS AND PROBLEMS

1. When we talk about market risk, which four markets are typically
included?

2. Name several other markets not included in the four markets mentioned
in question 1.

3. What is market correlation risk?

4. We can measure market correlation risk with Cora. What information
does Cora give us?

5. What is Cora mathematically?

6. Name three applications of Cora in finance.

7. Measuring correlation risk is not totally new. In option theory, a Vanna
exists. What information does Vanna give us?

8. What is the relationship between Vanna and Cora?

9. What information does Gora give us?

10. What is Gora mathematically?
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11. Okay, here is a tough one: Differentiate the price function of an exchange
option

2

1 <Sze_q2T> 1
E :SzeiquN
0% + G% —2po VT

(24 o2 —
n ST + (01405 —2por02)T

2
\/O’% +0% —2p o100VT

Sye~ T 1
ln(ﬁ) — (02 +05—2p0102)T
—§e1TN e

with respect to the correlation coefficient p. Try doing this yourself first.
After rearranging, you can just use the chain rule. If you give up, look at
“Exchange option cora.docx” at www.wiley.com/go/correlationrisk
modeling, under “Chapter 9,” for the answer.

12. Arguably, the most important application of correlation risk manage-
ment is in risk management. In practice, the risk of a portfolio is often
measured with the value at risk (VaR) concept. Is VaR sensitive to
changes in the correlation of the assets in the portfolio? That is, what
is the Cora of VaR?

13. What is the Gora of VaR?

14. Cora and Gora can be extended in many ways. Name two.
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10

Quantifying Credit
Correlation Risk

A key aspect of any credit risk VaR model is credit correlation.
—John Hull

In this chapter we discuss and quantify the correlation risk of financial
products whose primary focus is credit risk. Let’s just clarify what credit
risk is.

GREDIT RISK

The risk of a financial loss due to an adverse change in the credit
quality of a debtor.

There are principally two types of credit risk: (1) migration risk and (2)
default risk. Figure 10.1 gives an overview of credit risk.

In Figure 10.1, migration risk refers to a migration from one credit state to
another, for example a downward migration from AAA to B. An upward
migration from B to AAA can also hurt an investor, if she is short a bond or if the
investor is paying fixed in a credit default swap (CDS); see Figure 10.2. Default
risk is a special case of migration risk for a migration of the debtor into the
default state. Default risk exists only for a long credit position, for example
being long a bond or long a tranche in a collateralized debt obligation (CDO).

However, migration risk and default risk have different dynamics. For
example, if a bond migrates to a lower state for example from B to CCC, the

201
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Credit Risk

Default
Risk
(only for long
credit position)

Migration
Risk

FIGURE 10.1 Types of Credit Risk

bond investor just suffers a paper loss and will receive his principal invest-
ment back at maturity if the bond does not default. However, if a bond
defaults and stays in default, the bond investor will not receive his principal
investment back, just the recovery rate of the bond.

What is credit correlation risk?

GREDIT CORRELATION RISK

The risk that credit quality correlations between two or more
counterparties change unfavorably.

CDS spread s
paid periodically y

A

Investor and D LLC T EEEFEPEE Counterparty c,

CDS Buyer i $N(1 - RR, — RR,a) CDS Seller

in case of default
of reference asset

$N Coupon k

r
r

Reference Asset
of Reference
Entity r

FIGURE 10.2 A CDS Used as Insurance to Hedge the Credit Risk of the Reference Asset
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All loan portfolios of financial institutions as well as all structured
products such as collateralized debt obligations (CDOs) and mortgage-
backed securities (MBSs) are exposed to credit correlation risk. In addition,
all portfolios that apply derivatives as a hedge also include credit correlation
risk. Let’s explain credit correlation risk with a portfolio of a bond and a
credit default swap (CDS) that is used as a hedge.

10.1 CREDIT CORRELATION RISK IN A CDS

Let’s just clarify what a credit default swap (CDS) is.

GREDIT DEFAULT SWAP (CDS)

A financial product in which the credit risk of an underlying asset is
transferred from the CDS buyer to the CDS seller.

We have already briefly discussed some aspects of credit correlation risk
of CDSs in the introductory Chapter 1, section 1.1. We will expand this
discussion now. In a CDS, often the CDS buyer owns the underlying reference
asset. In this case, the CDS can be viewed as insurance against the credit risk
of the underlying asset: If the reference asset » defaults, the counterparty ¢
(CDS seller) will compensate the investor and default swap buyer i. Fig-
ure 10.2 displays this graphically.

Figure 10.2 shows the CDS in the case of cash settlement. N is the
notional amount, RR, is the recovery rate of the reference asset, and RR,a is
the accrued interested of the reference asset from the time of default to the
next coupon date.

Let’s outline the credit correlation risk between these entities.

1. Credit correlation between the counterparty ¢ and the reference asset 7.
We briefly discussed this critical correlation in the introductory
Chapter 1, section 1.2. We found that the credit correlation between

1. We see from Figure 10.2 that the accrued interest RR,a is deducted from the
settlement amount. This is because it is assumed that the coupon of the reference bond
will be paid from the reference entity at the next coupon date. This may not happen
though, since the reference asset is in a state of default. Hence, in some CDS contracts,
the accrued interest is excluded.
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the counterparty and the reference asset significantly influences the CDS
price; see Figure 1.2. We will discuss the counterparty—reference asset
correlation relationship in detail in section 10.2.

N

Credit correlation between the investor i and the reference entity 7, and

the impact for the counterparty c.

This case is relevant if the investor pays the CDS spread s periodi-
cally, which is typically the case in practice. If the investor paid the CDS
spread up front, the counterparty would have no credit risk with the
investor and hence no correlation exposure with respect to the correla-
tion between the investor and the reference entity. When the CDS spread
is paid periodically, we have four cases:

a. The credit correlation between the investor i and the reference entity 7 is
negative with the credit quality of the investor decreasing and the credit
quality of the reference asset increasing. This is the worst-case scenario
for the counterparty: An increase in the credit quality of the reference
entity increases the present value of the CDS for the counterparty since
the counterparty is now receiving an above-market spread (this is
beneficial from a profit perspective but negative from a risk perspective
since a higher present value means more credit exposure). In addition,
the decrease in the credit quality of the investor means higher credit risk
for the counterparty with respect to the investor.

b. The credit correlation between the investor i and the reference entity »
is negative with the credit quality of the investor increasing and the
credit quality of the reference asset decreasing. From a risk perspec-
tive, this is the best-case scenario for the counterparty because an
increasing credit quality of the investor means a higher probability
that the investor can pay the credit spread s. In addition, a lower credit
quality of the reference asset means the present value of the CDS
decreases (possibly getting negative). Hence the credit exposure of the
counterparty with respect to the investor will decrease.
The credit correlation between the investor i and the reference entity r
is positive with the credit quality of the investor increasing and the
credit quality of the reference asset also increasing. In this scenario
there is a compensation effect: A higher credit quality of the investor
makes future payments of the credit spread s more likely. However,
the higher credit quality of the reference asset increases the present
value of the CDS for the counterparty, which increases the counter-
party’s credit exposure to the investor.

The credit correlation between the investor i and the reference entity r

is positive with the credit quality of the investor decreasing and the

credit quality of the reference asset also decreasing. In this scenario

e

o
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there is again a compensation effect: A lower credit quality of the
investor makes future payments of the credit spread s less likely.
However, a lower credit quality of the reference asset increases the
present value of the CDS for the counterparty, which increases the
counterparty’s credit exposure to the investor.

In conclusion, the correlation between the investor and the reference
asset should be included when deriving a CDS spread, since it impacts the
credit exposure of the counterparty. For more details, see section 10.3.1,
especially the last figure in that section, captioned “CDS Spread Depen-
dence on Investor—Reference Asset Default Intensity Correlation.”

3. The correlation between the investor ¢ and the counterparty c.

The default correlation between the investor i and the counterparty ¢
is not a critical correlation to be considered in the default swap pricing
process. If the investor goes into bankruptcy, he does not have to be too
concerned if the counterparty also enters bankruptcy. The same logic
applies to the counterparty with respect to the investor. For more details
on the correlation between the investor i and the counterparty ¢ (see
section 10.3.1.5, “Results,” point 4).

In the following section we discuss how to derive the CDS spread,
including the critical default correlation between the reference entity r and
the counterparty c.

10.2 PRICING CDSs, INCLUDING REFERENGE
ENTITY-COUNTERPARTY CREDIT CORRELATION

The most critical credit correlation for pricing CDSs is the one between the
reference entity r and the counterparty c. See Figure 10.2 for the role the
reference entity 7 and the counterparty ¢ play in a CDS. The correlation
between the counterparty and the reference asset has received quite a bit of
media attention recently, since financial institutions had sold CDSs on their
own home countries; see, for example, Risk (2010) and European Central
Bank (2009). In this case the counterparty—reference asset credit correlation
should be high and consequently the CDS spread s low. In the following pages
we derive a closed form solution for the CDS spread s, including reference
asset—counterparty credit correlation.”

2. The following is a short version of the 2013 paper by G. Meissner, S. Rooder, and
K. Fan, “The Impact of Different Correlation Approaches on Pricing CDS with
Counterparty Credit Risk,” Journal of Quantitative Finance, March 2013.
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We use the following notation:

N\y: default intensity of reference entity 7, during time ¢ to # + 1 (hence
N\y: the default probability of 7 from ¢ to ¢ + 1 conditional on survival
until #).

A7: cumulative default probability of reference entity  until z.

AT, time between nodes ¢t — 1 and ¢, expressed in years.

sz annual default swap spread to be paid at time ¢.

T4 time between time 0 and time #, expressed in years.

Td,: time of default, measured between time t — 1 and default time,
expressed in years.

N: notional amount of the swap.

7, risk-free interest rate from time 0 to time ¢ + 1.

RR,: exogenous recovery rate of the reference entity.

S¢(T4): fair value of the default swap from the time the CDS was issued
until the time of reference asset default without the possibility of
counterparty default. S{T) includes the notional amount N.

a: accrued interest on the reference asset from the last coupon date until the
default date, hence a = k T4, where k = coupon of the reference asset.

As displayed in Figure 10.2, we assume that the obligation that the
counterparty has in case of default of the reference entity ris N(1 — RR, —
RR,a), where N is the notional amount of the swap, RR, is the recovery
rate of the reference asset issuer of the reference bond, and RR,a is the accrued
interest of the reference bond from the last coupon date until default.

In analogy of the default intensity of the reference asset 7, \;, we define the
default intensity of the counterparty \; as:

N\;: default intensity of counterparty (i.e., default swap seller) ¢, during
time # to £ 4+ 1 (hence X{ is the default probability of ¢ from zto ¢ + 1
conditional on survival until z).

A7: cumulative default probability of counterparty ¢ until z.

RR_: exogenous recovery rate of the counterparty.

10.2.1 The Model

We now build a quadruple CDS payoff tree and a quadruple CDS premium
tree, and then use swap evaluation techniques to find the fair CDS spread s. In
both trees we have four scenarios:

1. Both counterparty ¢ and reference entity » default, \(r N ¢).
2. Both counterparty ¢ and reference entity 7 do not default, \ (7 N ¢).
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3. The reference entity r defaults but not the counterparty ¢, X\ (r N ¢).
4. The reference entity r survives but the counterparty ¢ defaults, X (¢ N 7).

We now build the payoff tree and the CDS spread tree and assign cash
flows to each of these four scenarios.

10.2.1.1 The CDS Payoff Tree The payoff is the amount of cash that the
counterparty ¢ pays to the investor i in case of default of the reference entity »
(see Figure 10.2 for the role of these three entities in a CDS).

We assume that if both the reference entity and the counterparty default,
X N ¢), the standard payoff in case of default of the reference entity will be
reduced by the recovery rate of the counterparty. Hence the payoff will be N
(1 — RR, — RR,a)RR.. There will be no payoff if neither the reference entity
nor the counterparty default, X\ (7 N ¢). There will be the standard payoff
N(1 — RR, — RR,a) if only the reference entity defaults, X (» N ). We assume
that if only the counterparty defaults, X (¢ N 7), the counterparty will pay the
time ¢ fair value of the default swap, SAt), without counterparty default risk,
multiplied by the recovery rate of the counterparty, hence SA#) RR.. Graphi-
cally we derive Figure 10.3.

From Figure 10.3 we observe that the payoff tree continues only if
both the reference asset and the counterparty survive, \(r N ¢). In all
other cases the CDS terminates. Including discount factors e ', we derive

N(1 - RR, - RR,a)RR,

N(1 - RR, - RR,a)RR,

N(1 - RR, - RR,a)

A (FNC)
N(1 - RR, - RR,a)

Ao(me) SH2)RR,

SRR,

Time t=0 t=1 t=2

FIGURE 10.83 Two-Period Payoff Tree of a Default Swap, Including Counterparty
Default Risk
Source: Meissner et al. (2013).



208 CORRELATION RISK MODELING AND MANAGEMENT

from Figure 10.3 the present value of the payoff of a two-period default
swap as

No(r N ¢)N(1 — RR, — RR,a)RR. + X\o(F N )NO +Xo(r N &)N(1 — RR,
— RR,a)+ X (¢ N AS;(1)RR Je "™
+20(F N Ei(r N )N(1 — RR, — RR,a)RR. + X1 (F N E)NO

+X\1(r N EN(1 — RR, — RR,a) + N\i(c N 7)(SF(2)RR,)]e "1™
(10.1)

Generalizing equation (10.1) for T periods, we derive

T
3 {1 (rNN(1 = RR, — RR,a)RR,+ N 1(r NE)N(1 — RR, — RR,a)

t=1

t—2
+Xr—1(cN7)Se(¢)RR Je~ "1™ f_[oxu(? ne)} (10.2)

Equation (10.2) requires the critical inputs default intensity of the
reference asset, \,, and default intensity of the counterparty, \.. These can
be derived with a structural Merton (1974) based model (see Chapter 3,
section 5.2.1), which requires the inputs asset value and debt value. Alterna-
tively, we can derive X\, and \. with a reduced form model, which abstracts
from asset and debt values of the underlying entity and uses market prices as
bonds or swaps in a stochastic model to derive the default probabilities \,
and \.. Alternatively, \, and X\, can be derived with a term structure model as
the LIBOR market model (LMM),? which requires the inputs forward default
intensity and default volatility. In the model presented here, X\, and X, are
simulated with an LMM model.

10.2.1.2 The CDS Spread Tree In most credit default swap contracts, the CDS
spread s is paid in arrears (i.e., at the end of each period). In case of default,
the default swap buyer typically has to pay the accrued spread amount from
the last spread payment date to the default date. In addition, the solvent party
still has to honor its obligations to the defaulting party. Hence we associate
the following spread payments for the four default scenarios:

1. If both the reference asset and the counterparty default, \(r N ¢), the
default swap buyer will make a final accrual payment, which is capped at

3. For an intuitive explanation of the LMM model, see Hull (2011, Chapter 31).
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the payoff level in default: min[s N At Td, N(1 — RR, - RR,a)RR_]. This
scenario nets the obligations in the case of s N At Td > N(1 - RR, -
RR,a)RR.and gives a payoff of N(1 - RR,—-RR,a)RR.—s N At Td in the
case of N(1 — RR, — RR,a)RR. > s N At Td. This guarantees that the
investor does not pay more CDS premium s than she receives as a payoff
in the case of both r and ¢ defaulting.

. If both the reference asset and the counterparty survive, \ (7 N ¢), the
spread payment will be the standard s N At. Only in this case will the
spread payment tree continue.

. If the reference asset defaults but not the counterparty, X\ (r N ¢), the
spread payment will be s N At Td.

. If the reference asset survives but the counterparty defaults, X (¢ N 7), the
spread payment s N At Td will be capped at the fair value of the swap
times the recovery value: min[s N At Td,, S{t)RR_]. This again guaran-
tees that the investor does not pay more CDS premium s than he receives
as a payoff in case the counterparty ¢ defaults.

Applying these cash flows, we derive the swap spread payment tree as

seen in Figure 10.4.

From Figure 10.4 we get for the present value of the CDS spread

payments

min[s,NAT,Td,,
min[s;NATTd,, N1 -RR, ~ RR,a)RR]
N(1 —RR,—RR,a)RR_]
s,NAT,Td,
s,NAt,Td,
s;NAYTd, M(rno)
Ay(rnce)
min[s,NAT,Td,, S;(2)RR ]
min[s;NAT,Td}, Sf(1)RR]
Time t=0 t=1 =2

FIGURE 10.4 Two-Period CDS Spread Tree s of a Default Swap, Including
Counterparty Default Risk
Source: Meissner et al. (2013).
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{MNo(r N ¢)min[sNAT;Tdy,N(1 — RR, — RR,a)RR.] + X\o(7 N T)s1NAT,
Tdy +No(r N C)siNAT; Tdi 4 No(c N 7)min[sNATTdy, S¢(1)RR ]}e™"™
20 N O (r N minfsyNAT: Tda, N(1 — RR, — RR,a)RR,]

+ X7 NE)saNAT, Tdy + N (r N E)saNAT, Tdy + No(c N 7)min[s, N
Aty Tdy, Sp(2)RR J}e "™

Assuming a constant swap spread s (i.e., s; = s, = s3,...), generalizing
for T periods, and simplifying the notation by using min[s N At,Td,, N(1 -
RR, — RR,a)RR.] = min[x,] and min[s N A1,Td,, SAt)RR.] = min[y,], we
derive

T
2{[xt,1 (rN c)minx;]+N_1(FNE)sN AT, Td,+N_1(rNE)sN At,Td,
t=1
. t—2
+N-1(cN7)min(y,Jle”" 1™ [] \u(F N 2)} (10.3)
u=0

As mentioned before, the default intensity of reference entity 7, X}, and
default intensity of counterparty c (i.e., default swap seller), \;, are inputs that
will be modeled with a LIBOR market model (LMM) process.

10.2.1.3 Gombhining the CDS Payoff Tree and the CDS Spread Payment Tree We
derive the value of the CDS from the viewpoint of the CDS buyer by
subtracting equation (10.3) from equation (10.2):

T
> {v-1(rNeIN(1— RR, — RR,a)RR+N_1(rNEN(1 ~ RR, — RR,a)
t=1

+N—1(cN7)Sp(t)RR Je "1™ t]:[2>\u(7 neo)}
u=0
T
— Z{D\t,l (r N ¢)(min[x;]

t=1

(10.4)

+>\171 (? ﬂ E)SNAT[ Tdt+>\171 (1’ m E)SNATtTdt

=2
+XNe—1(cNF)minfy,|le ™™ T[] \(FNC)}
u=0

Setting equation (10.4) to zero and solving for the fair default swap
spread s, which gives the credit default swap a value of zero, we derive
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T
Z N_1(rN¢)N(1 —RR, — RR,a)RR . +X;_1(rNE)N(1 — RR, — RR,a)
t=1

t—2
N1 (e NASHORR e 1™ T] \(F N 0)}
=0
S =

T
Z Ne—1(rNe)minfx;]/s+X—1(FTN )N AT, Td; +N—1(r NE)N A1, Td,

+X\—1(c N7)minly,]/s]e 1T z]:[2)\”(7' ne)}
u=0
(10.5)

Equation (10.5) is a convenient and practical result. It is a closed form
solution for valuing a CDS, including counterparty default risk and the
correlation between reference asset and counterparty default. In addition,
equation (10.5) is versatile in excluding counterparty default risk, as well as
counterparty-reference asset correlation. This enables the user to isolate both
counterparty risk and counterparty—reference asset correlation.

m To exclude counterparty default risk, we can apply equation (10.5) and
set the default intensity of the counterparty \° to zero. In this case all
terms except N\,—1(r N €)N(1 — RR, — RR,a) and N_1(r N )N At;_4
drop out, and \(7 N ¢) becomes \(7).

m To include counterparty default risk, which is, however, not correlated to
the reference asset, we apply equation (10.5) and set the dependence
parameter of the particular correlation approach p to zero.*

m To use the full version of the model (i.e., include counterparty risk, which
is correlated to the reference asset), we use equation (10.5) with \° # 0
and apply a correlation concept and p # 0.

10.2.1.4 Testing the Impact of Different Dependence Approaches on the CDS
Spread Besides )\, and )., which are modeled with an LMM process,
equation (10.5) also requires the critical input joint default correlation
Xr N ¢). We can use different dependence approaches, which we have
already discussed in this book, to derive the joint default probability. We
will test the impact of five different dependency approaches and apply them to
equation (10.5) to study the impact on the CDS spread. The five dependency
approaches are discussed next.

4. An exception is the Student’s . Here tail dependence exists, even for p = 0.
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1. Correlating Brownian motions via the Heston (1993) model.
We discussed this model in Chapter 4, section 4.1. In the Heston
model the Brownian motions dz; and dz; are correlated by the identity

dz1 =/p1 dz2 ++/1 —pdz;3 (4.4)

where dz, and dz; are n ~ (0, 1) and independent.

In this model we will correlate the Brownian motions dz; and dz» of
two LIBOR market model (LMM) processes. One LMM process models
the default intensity of the reference asset \,, one LMM process models
the default intensity of the counterparty ..

2. The binomial correlation approach of Lucas (1995), which we analyzed
in Chapter 4, section 4.2.

Here a variable takes the value 1 if entity » defaults and 0 otherwise.
Equally, a variable takes the value 1 if entity ¢ defaults and 0 otherwise.
Applying the binomial approach to entities » and ¢, hence rewriting
equation (4.8), we have

Nr N o) =NN + pz\/ IV — (NN = ()] (4.8a)°

3. The one-factor copula approach by Vasicek 1987, which we discussed in
Chapter 6.
We will test three different versions.
a. The one-factor Gaussian copula. The core equation is

xi=/pM++/1-pZ (6.1)

where M and Z; are independent and 7 ~ (0,1). As a result, the latent
variable x; is # ~ (0,1).
b. The Student’s ¢ copula. The core equation is

X =pM++/1-pZ (6.7)

where M and Z; are independent and # ~ (0,1). x; =%,/ W where W
follows an inverse gamma distribution. It follows that the latent
variable x; is Student’s ¢ distributed.

5. In Chapter 4 we used the notation of Lucas (1995), where P(XY) is the joint default
probability of X and Y. In this chapter we use a more statistical notation, i.e., \(r N ¢)
is the joint default probability of r and c.
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c. The double-# copula. The core equation is

xXi=\pMs++/1—-pZs (6.8)

where M, and Z; s are independent and follow a Student’s ¢ distri-
bution. Since the Student’s ¢ distribution is not stable under convo-
lution, the latent variable x; in equation (6.8) is not Student’s #
distributed.

Once we have generated \, and X\, with an LMM process, and \(r N ¢) by

one of the dependency approaches 1 to 3¢, we can find the other dependency
inputs of equation (10.5) via basic statistics:

XrnNe) =XN-=XrnNg)

XecN7) =X =X\rNg)

NFNT) = 1-XNrUc)=1—[N+X=X\({rNc

10.2.1.5 Results We now present the results when applying different depen-
dence approaches to equation (10.5). We first do a naive comparison of the
dependency approaches; that is, we plot the dependence parameter of each
approach on the abscise and derive the CDS spread.

Figure 10.5 displays the resulting CDS spread for a relatively low default
environment. Figure 10.5 shows the very different CDS prices that result from
different dependence parameters of a particular correlation approach. Hence
dependence parameters cannot be compared directly, but must be viewed
within their correlation context.

From Figure 10.5 we observe that just correlating the noise terms of the
LMM processes in a low volatility environment has no noticeable effect on
the CDS spread. The binomial approach displays the strongest correlation;
that is, it results in the lowest CDS spread relative to its dependence
parameter. Of the three one-factor copula approaches, the Student’s # exhibits
the highest correlation. The double-# correlation is lower (i.e., it produces a
higher spread) than the Student’s ¢ since the ¢-distribution for the idiosyn-
cratic factor Z; in the double-t generates fatter tails for Z,. Hence the
dependence of x; on the idiosyncratic factor Z; increases, reducing correlation
between the entities i.
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CDS Spread (Low Volatility)
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FIGURE 10.5 Three-Year CDS Spread Derived by Equation (10.5) with Respect to
Different Correlation Approaches

The default probabilities X\, and X\, are derived with an LMM model (forward
reference entity volatility 2% and 3%, forward counterparty volatility 3% and 4%
for year 2 and 3 respectively, reference entity default intensity constant at 2%,
counterparty default intensity constant at 4%); 100,000 simulations per dependency
parameter, which takes about 25 seconds on a Core i5 PC. Upper and lower 95%
confidence intervals are below 1.5%.

LMM

Figure 10.6 displays the CDS spread in a high volatility environment to
show how the models compare in a stressed market environment.

Figure 10.6 shows a slight impact of higher correlation in the LMM
approach on the CDS spread. The high volatility also smooths the binomial
correlation function, similar to the effect that higher volatility has on the delta
function of an option. The nonzero CDS spread for 100% correlation is due
to the fact that sampling from the LMM process in case of high volatility
produces some simulations in which the reference asset default rates are
higher than counterparty default rates. This means that if the reference asset
defaults, the counterparty can survive. Hence the CDS has some value and the
CDS spread is nonzero.

For a model that derives the CDS spread, including reference
asset—counterparty default correlation, see “CDS with default correla-
tion.xlsm” at www.wiley.com/go/correlationriskmodeling, under “Chap-
ter 10.”
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CDS Spread (High Volatility)
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FIGURE 10.6 Three-Year CDS Spread with Respect to Different Correlation

Approaches

Forward volatility for the reference entity and counterparty 50% for years 2 and 3
respectively (reference entity default intensity constant at 5%, counterparty default
intensity constant at 7%); 100,000 simulations per dependency parameter. Upper

and lower 95% confidence intervals are below 1.5%.

10.3 PRICING CDSs, INCLUDING THE CREDIT
GORRELATION OF ALL THREE ENTITIES

From Figure 10.2, we observe the three entities in a CDS:

1. The investor and default swap buyer i.
2. The counterparty or default swap seller c.
3. The reference entity r that issued the reference asset.

In section 10.1 we outlined the correlation properties between the three
entities in a CDS. We concluded that the credit correlation between the
counterparty ¢ and the reference asset r is critical. In addition, the credit
correlation between the investor i and the reference asset 7 is important to the
counterparty c. The correlation between the investor i and the counterparty cis
less critical, but can be included in the valuation of the fair CDS spread s.

We will now present a model that includes the credit correlation between all
three entities in a CDS. The only other study to include the default correlation of
all three entities to value a CDS is Brigo and Capponi (2008). They apply a
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trivariate copula function in a reduced from, continuous time setting to evaluate
the CDS spread s. The approach presented here is more practical since it is a
discrete time model, in which the user can alter the cash flows if desired.

In the following pages we outline this model, which is an extension of the
model presented in section 10.2.1.°

In analogy to the definitions of the reference asset 7 and the counterparty
¢ in section 10.2.1, we define:

Ni: default intensity of investor (i.e., default swap buyer) 7; hence X! is the
~ default probability of i from ¢ to ¢ + 1 conditional on survival until z.
Aj: cumulative default probability of counterparty i until #.
RR;: exogenous recovery rate of the investor.

10.3.1 The Model

In the following we will build a CDS payoff tree and a CDS spread tree, and
then use swap evaluation techniques to find the fair CDS spread s. The trees
will include the correlation between all three entities in the CDS.

10.3.1.1 The CDS Payoff Tree We assume that if both reference entity and the
counterparty default but the investor survives, \(r N ¢ N i), the standard
payoff in case of default of the reference asset N(1 — RR, — RR,a) will be
reduced by the recovery rate of the counterparty. Hence the payoff will be
N(1-RR,-RR,a)RR_. There will be the standard payoff N(1 - RR, - RR,a)
if only the reference entity defaults and the counterparty and the investor
survive, \ (r N ¢ N i). We assume that if only the counterparty defaults,
X(c N7 Ni), the counterparty will pay the time ¢ value of the default
swap, SAt), multiplied by the recovery rate of the counterparty, hence SAz)
RR_. If no entity defaults, \ (F N € N i), there will be no payoff. Only in this
case will the CDS stay alive and enter into the second-period octuple tree.

This brings us to Figure 10.7.

Displaying Figure 10.7 mathematically for multiple points in time #, we get

T
3 Dulr e NAN(1 - RR, — RR,a)RR,)
t=1
+N(r N e N )(N(1 - RR, — RR,a)) (10.6)

- t—2 -
+ X7 N e N a)(Se(6)RR,)]Je™ 1™ ] Nu(F N € N 1)
u=0

6. Here we present a short version of the 2012 paper by G. Meissner, D. Mesarch, and
0. Olkov, “The Valuation of Credit Default Swaps (CDSs) Including Investor-
Counterparty-Reference Entity Default Correlation,” forthcoming in the Journal of
Risk.
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FIGURE 10.7 Two-Period CDS Payoff Tree with Associated Cash Flows

where T is the maturity date of the CDS and (¢ + 1) — ¢ is the length of each
time step.

Equation (10.7) assumes a zero payoff in many default scenarios. A user
can easily adjust payoffs in Figure 10.7 and equation (10.6) if the CDS
contract specifies otherwise.

10.3.1.2 The CDS Spread Payment Tree We apply in our model that in most
CDS contracts the CDS spread is paid in arrears (i.e., at the end of each
period). In addition, in case of default, the default swap buyer typically has to
pay the accrued spread amount a from the last spread payment date to the
default date. Also, the U.S. bankruptcy law requires that the solvent party still
has to honor its obligations to the defaulting party. Hence we associate the
following spread payments for the four specific default scenarios:

1. If the investor survives but both the reference asset and the counterparty
default,\(r N ¢ N i),the CDS buyerwillmakeafinal accrual spread payment,
which is capped at the payoff level in default: min[s N At Td, N(1 - RR, -
RR,a)RR_]. This guarantees that the investor will not pay more CDS spread
than the payout she receives. Specifically, this scenario nets the obligations in
case of sN At Td > N(1-RR,—RR,a)RR_.and gives a payoff of N(1-RR, -
RR,a)RR,.—s N At Td in case of N(1 - RR, - RR,a)RR. > s N At Td.

2. If all three entities survive, \(7 N ¢ N ), the spread payment with be the
standard s N Ar. Only in this case will the CDS spread payment tree
continue.
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3. If the reference asset defaults but the counterparty and investor survive,
N N ¢ N i), the spread payment will be s N At Td.

4. If the counterparty defaults but the reference asset and the investor
survive, X (¢ N 7 N i), the spread payment s N At Td will be capped at the
fair value of the swap times the recovery value: min[s N A1, Td,, SAt)
RR_]. This guarantees, as in scenario 1, that the investor will not pay
more CDS spread than the payout she receives.

Applying these cash flows, we derive the swap spread payment tree as
seen in Figure 10.8.
Displaying Figure 10.8 mathematically for multiple ¢, we derive

T
Z (7 N e N i)min(sNAtTd,, N(1 — RR, — RR,a)RR,)
t=1
+2N(F N ENDSNAL) + M(r N E N i)sNALTd,) (10.7)

- t—2 -
+Xe(F N ¢ N i)min(sNAtTd;, S¢(t)RR.)]e™ "1™ T[] N\u(F N € N 7)
u=0
wheret=1,..., Tare the CDS spread payment points in time, and (¢ + 1) —¢is the
length of each time period between spread payments s according to the CDS
contract.
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FIGURE 10.8 Two-Period CDS Spread Tree with Associated Cash Flows



Quantifying Credit Correlation Risk 219

We have again assumed that in many default scenarios the CDS spread
payment is zero. The user can easily alter this in case the CDS contract
specifies otherwise.

10.3.1.3 Combining the CDS Payoff Tree and the CDS Spread Payment Tree We
derive the value of the CDS from the viewpoint of the CDS buyer by
subtracting equation (10.7) from equation (10.6).

T
3 n(r N e N i)(N(1 = RR, — RR,a)RR,)
t=1

+X(r N eNi)(N(1 — RR, — RR,a))

M N DSORR T TEMF NN )

u=0
T
Z (7 N ¢ N i)min(sNAtTd;, N(1 — RR, — RR,a)RR,)
+XNF N TN DSNALD) +N(r N TN D) (sNALTd,) (10.8)

+ N (7 N ¢ N i)min(sNAtTd;, S¢(t)RR,)]e "1™ ]:[ N7 NeN 2)}
u=0

Setting equation (10.8) to zero and solving for the CDS spread s, which
gives the CDS a value of zero, we derive

e(r N ¢ NH)(N(1 - RR, — RR,a)RR.)

M=

(r NN 7N(1—RR, — RR,a))

H
>/>/H

(70 e NS ORR e ™ T wlF N e 7

\(r N ¢ N ))min(sNA#Td,, N(1 — RR, — RR,a)RR.)/s

M~

t=1

(7 N ENHNAL) + M\(r N E N )NAT,)

- t—2 -
+0(F N ¢ N )min(sNALTdy, S(t)RR,)/sle™" 1™ [ \uF N E N 7)

u=0

(10.9)
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Equation (10.9) is a closed form solution for valuing a CDS, including
default correlation of all involved parties: the investor i (CDS buyer),
counterparty ¢ (CDS seller), and reference asset r.

Underlying equation (10.9) is the set of basic probability equations:

=1T—\#)+Nc)+XE) —XNrNe)=XNrNi)—XNcNi+XrNcnNi)
(10.10)

Equation set (10.10) can be graphically displayed as shown in
Figure 10.9.

The equation set (10.10) is quite versatile. We can eliminate the default
risk of an entity by simply setting the default intensity of that entity \(-) to
zero. We can include the default intensity of the entities but without default
correlation between two of the entities by setting the joint correlation
coefficient p of the specific correlation approach to zero. The same logic
applies to any of the three entities: We can include their default intensities
(- ) in the CDS valuation without correlating them by setting the entries in
the correlation matrix py; to zero.

Reference
entity r

Counterparty Investor
c i

FIGURE 10.9 Graphical Representation of Equation Set (10.10)
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10.3.1.4 Input Parameters of the Model The critical input variables that the
model requires, X\(r), X(c), \(Z), XN(rNc), N(rNi), X(cNi), and X(rNcNi), can be
derived from historical data and input into the model. However, we can also
model X\(r), \c), and \(7) with a term structure approach such as Cox-
Ingersoll-Ross (CIR), Heath-Jarrow-Morton (HJM), or the LIBOR market
model (LMM). For details see Meissner et al. (2012).

In addition, different approaches to model the joint probabilities can be
applied. The bivariate default probabilities \(rNc¢), X\(rNi), and X\(cNi) can be
modeled by the binomial correlation model (Lucas 1995) or the Heston
model (1993) approach, which correlates Brownian motions. We can also
apply a bivariate copula to model \(rNc), X\(rNi), and X\(cNi) and a trivariate
copula to model \(rNcNi) as done in Brigo and Pallavicini (2008).

10.3.1.5 Results We display four main results with respect to the CDS
spread s.

1. We first investigate the impact of the default intensity of the investor \(i)
on the CDS spread, which is displayed in Figure 10.10.

CDS Spread (in %) with Respect to Investor Rating Class
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FIGURE 10.10 CDS Spread for Different Investor Rating Classes Derived by
Equation (10.9)

CDS maturity: 5 years; rating class reference asset: B, which in 2011 represented
N(r) = 5.27%; rating class counterparty: Aa, which in 2011 represented X\(c) = 0.1%;
rating class investor: abscise of Figure 10.10; default correlation between entities: 3%;
recovery rate of reference asset, counterparty, and investor: 20%; coupon of reference
asset: 9%; coupon frequency: semiannual; interest rates constant at 3%. For the
LMM process: forward volatility of default intensity of all entities: constant at 15%;
forward volatility of interest rates: constant at 9%.

Source: Meissner et al. (2013).
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Figure 10.10 shows an expected result. The lower the rating class of
the investor, the higher the CDS spread that the investor has to pay. This
is because the counterparty will incur a loss if the investor defaults and
the present value of the CDS is positive for the counterparty. The model
also displays little difference between the CDS spreads when the input
parameters are input directly (non-LMM) or when the input parameters
are being modeled by an LMM process.

2. The most critical correlation in a CDS is the default intensity correlation
between reference asset » and the counterparty ¢, \(rMNc). We discussed
this relationship already in Chapter 1, section 1.2, Figure 1.1. We
concluded that the CDS spread is highly sensitive to the default intensity
correlation \(rNc). This correlation risk also constitutes wrong-way risk
(WWR). Wrong-way risk means that if the exposure (to the reference
entity r) increases, it is more unlikely that the insurance provider (the
counterparty) can honor its obligation; see Chapter 12, sections 12.4 and
12.5 on wrong-way risk.

3. Another important correlation of the CDS is the correlation between
the investor 7 and the reference asset r, X\(iNr). Regarding this correla-
tion, we discussed the four possible scenarios in section 10.1. We
concluded that a negative credit correlation with credit quality of
the reference entity » increasing and the credit quality of the investor i
deteriorating (case 2a), is the worst-case scenario for the counterparty c. A
negative credit correlation, however, can also mean best-case scenario if
credit quality of the reference entity r decreases and the credit quality of
the investor i increases (case 2b). For a positive credit correlation
between the reference entity r investor i, there are offsetting effects
(cases 2¢ and 2d).

The model of equation (10.10) derives the sensitivity of the CDS
spread with respect to investor-reference asset counterparty default
intensity correlation: X\(rNi) as shown in Figure 10.11.

From Figure 10.11 we observe a slightly negative dependence of the
CDS spread with respect to the investor-reference asset default intensity
correlation. This is due to the fact that the worst-case scenario 2a (see
preceding point) for the counterparty can occur for high negative
correlation and the counterparty wants to be compensated for this
risk with a higher CDS spread.

4. The model shows that the CDS spread has close to zero sensitivity with
respect to investor i—counterparty ¢ default intensity correlation, \(cNji).
This is because the possible effects net:

m For negative correlation, \(i) may increase, while X\(c) can decrease.
Both effects tend to increase s. A decrease in \(¢) and an increase in \(c)
both tend to decrease s.
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CDS Spread (in %) with Respect to
Investor-Reference Asset Default Intensity Correlation
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FIGURE 10.11 CDS Spread Dependence on Investor-Reference Asset Default
Intensity Correlation

Rating class investor: Baa; all other input parameters as in Figure 10.10.
Source: Meissner et al. (2013).

m For positive correlation, both \(i) and \(c) may increase. An increase in
\(7) tends to increase s, whereas an increase in \(c) tends to decrease s.
For positive correlation both \(i) and X\(c) may also decrease. Whereas a
decrease in \(7) tends to decrease s, a decrease in \(c) tends to increase s.
Since both the investor and the counterparty have credit risk with respect
to each other, these effects net.

It is generally questionable whether an entity should consider its own
default intensity and subsequently its own default correlation with other
entities. This bilateral counterparty risk or debt value adjustment (DVA) is
appealing from a mathematical perspective since it creates congruence and
symmetry in pricing. However, if company a takes into account its own default
intensity, the debt value of company a decreases since in the case of its own
default, company a pays only the recovery rate on its debt. This arguably
artificially increases the debt/equity ratio and can possibly increase a’s credit
rating. We will discuss the aspect of DVA in detail in Chapter 12, section 12.7.

A code that prices a CDS with the default intensity correlation between
all three entities can be found at “LMM pricing code.docx,” at www.wiley
.com/go/correlationriskmodeling, under “Chapter 10.”

10.3.2 Cora for CDSs

As discussed in section (9.1), Cora measures how much a dependent variable
changes if the correlation between one or more independent variables


http://www.wiley.com/go/correlationriskmodeling
http://www.wiley.com/go/correlationriskmodeling

224 CORRELATION RISK MODELING AND MANAGEMENT

changes. For a CDS, we have four Coras. The most critical Cora is the change
in the CDS value for a change in the reference asset—counterparty default
correlation:

dCDS
CDSCOI'31 = m (1011)

Equation (10.11) reads: How much does the value of a CDS change if the
default intensity correlation between the reference asset  and the counter-
party ¢, \(rNc), changes by a very small amount? For the role 7 and ¢ play in a
CDS, see again Figure 10.2. We already analyzed this correlation in the
introductory Chapter 1, Figure 1.2. We concluded that the impact of the
default correlation between the reference entity » and the counterparty ¢ on
the CDS is significant. For the extreme case of the defaultcorrelation \(rNc) =1,
the CDS is worthless, since if the reference entity defaults, so will the insurance
seller ¢.”

We can derive a second Cora for a CDS as displayed in equation (10.12):

dCDS
CDSCOra2: m (1012)

Equation (10.12) reads: How much does the value of CDS change if the
default correlation between the reference asset  and the investor i, \(rNi),
changes by a very small amount? The CDSCora, function is displayed in
Figure 10.11. We observe that CDSCora, values are in a relatively narrow
range from 7 to 7.6 percent of the notional amount. Therefore the counter-
party does not have to change her correlation hedge much if the correlation
between the reference entity r and the investor i, X\(rNi), changes.

We can derive a third function of the Cora in a CDS.

dCDS
CDSCOI'332 m (10.13)

7. There is one exception, though. If the default intensity of the counterparty c is
smaller than the default intensity of the reference entity 7, X\(c) < \(r), then even in the
case of perfect default intensity correlation, some Monte Carlo simulations will result
in the reference entity defaulting but the counterparty surviving. (The reader should
keep in mind that we are correlating default intensities, not actual defaults.) In this case
the CDS has some value. This is especially the case of high default intensity volatility.
The reader can verify this with the model “CDS with default correlation.xlsm,” at www
.wiley.com/go/correlationriskmodeling, under “Chapter 10.”


http://www.wiley.com/go/correlationriskmodeling
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However, we concluded in subsection 10.3.1.5, point 4 that CDSCorajs is
close to 0, since the effects of a change in the correlation between the investor i
and the counterparty c net.

Last, we can derive the sensitivity of the CDS value with a change in the
joint default correlation of all entities in a CDS. This is expressed in equation
(10.14).

dCDS
CDSCOI'a4 = m (10.14)

Equation (10.14) reads: How much does the value of CDS change if the
default correlation between the reference asset 7, the counterparty ¢, and the
investor i, AN(rMNcNi) changes by a very small amount? The default intensity
correlation N(rMcNi) can be simulated by a trivariate copula as in Brigo and
Pallavicini (2008) or can be derived by Monte Carlo simulation. The
numerical values for CDSCora, are complex and depend on the default
intensity input parameter values \(r), \(c), and \(i); the volatilities of \(r),
X(c), and \(i); and the correlation \(rMcNi). Different sensitivities of the CDS
spread result for different combinations of the input parameters.

10.3.3 Gora for CDSs

In section 9.1 and equation (9.2) we defined Gora as the changes of Cora for a
small change in the correlation of two or more variables. Since we have four
different Coras for a CDS, we have four different Goras. The most critical
Cora for a CDS is CDSCora; in equation (10.11). Therefore the most critical
Gora is the Gora with respect to CDSGora;. Hence we derive

2
CDSGora; = dCDSCora;  9°CDS (10.15)

ONrNc)  Nrn o)

Equation (10.15) reads: How much does the Cora of a CDS change if the
default intensity correlation between the reference asset  and the counter-
party ¢, \(rNc), changes by a infinitesimally small amount? From the last term
in equation (10.15) we see that CDSGora; is the curvature of the original
CDS function with respect to the default intensity correlation \(rMc).
CDSGora tells us how stable the correlation hedge of the CDS is. The higher
CDSGora is, the higher is the change of Cora and the more often we have to
adjust the correlation hedge.

There is no closed form solution for the CDSGora;. However, we can
easily simulate it by numerically differentiating the CDS spread function,
which we displayed in Figure 1.2 twice with respect to correlation. Doing so,
we derive Figure 10.12.
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CDSGora, with Respect to Correlation
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FIGURE 10.12 CDSGora; with Respect to the Default Intensity Correlation between
the Reference Entity r and the Counterparty ¢, \(rNc)
Source: Meissner et al. (2013).

From Figure 10.12 we observe that CDSGora; is slightly positive and
slightly decreasing for correlation values from —0.9 to about —0.55. This
means that in this area the necessity to change the hedge reduces (see Chapter
11 for hedging correlation risk). At about a correlation value of —0.55 the
value of the CDSGora is close to zero, so the investor does not have to adjust
the correlation hedge much. For a correlation of —0.55 to +0.3, we observe
that CDSGora; decreases. This means that the investor is more exposed to
changes in the reference asset—counterparty correlation and has to adjust the
hedge often. For an increasing correlation in the range of about +0.2 to +1,
CDSGora increases and approaches zero. This means that the investor is less
exposed to changes in correlation and has to adjust the correlation hedge less
often for changes in correlation.

There are also the CDSGoras resulting from the CDSCoras in equations
(10.12) to (10.14). From equation (10.12) we derive

_ 9CDSCora,  9*CDS

= = 10.1
CDSGora; N ) ) (10.16)

Equation (10.16) reads: How much does the Cora of a CDS change if the
default intensity correlation between the reference asset 7 and the investor i,
\(rNi), changes by a infinitesimally small amount? From the last term in
equation (10.16) we see that CDSGora, is the curvature of the original CDS
function with respect to the default intensity correlation \(rNi). We have
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displayed the CDSCora, in Figure 10.11. We observe that CDSCora,
decreases for increasing correlation. Therefore the counterparty has to
increase his correlation hedge if the default intensity correlation X\(rNi)
increases. Since the CDSCora, function in Figure 10.11 is quite monoto-
nously decreasing (i.e., has fairly low curvature), the counterparty does not
have to change the degree of his correlation hedge much if the default
intensity correlation \(rNi) increases.

In the previous section we concluded in the CDSCorajs function that there
is no significant influence of the correlation X\(rNi) on the CDS spread; that is,
the CDSCora; function is close to horizontal. Therefore the CDSGora;
function is close to zero.

With respect to CDSCoray, we concluded that the numerical values for
CDSCoray are complex and depend on the default intensity input parameter
values \(r), \(c), and X\(i); the volatilities of \(r), X\(c), and \(i); and the
correlation X\(rMNcNi). Different combinations of input parameters result in
sensitivities. Therefore, CDSGora, values are also complex and give different
results for different input parameter values.

10.4 CORRELATION RISK IN A COLLATERALIZED
DEBT OBLIGATION (CDO)

In Chapters 5 and 6 we discussed the valuation of CDOs in detail. Here we
will derive the correlation risk parameters Cora and Gora in a one-factor
Gaussian copula (OFGC) framework. The underlying CDO will be a syn-
thetic CDO. The tranches are the same as in the U.S. CDX index.

In Figure 10.13 we recognize the three parties in a CDO: The protection
buyer buys CDSs typically to hedge credit exposure. The special purpose
vehicle (SPV) is an intermediary that manages the CDO. The investor invests
in a particular tranche and assumes the credit risk.

10.4.1 Types of Risk in a CDO

There are two main factors that determine the value of a CDO: the default
probability of assets in the CDO and the default correlation between the
assets. Consequently, the two main risks when hedging CDOs are credit risk
and correlation risk, as shown in Figure 10.14.

Correlation risk in a CDO tranche is the risk that the correlation between
the assets in a CDO tranche and consequently the value of the CDO tranche
changes unfavorably. We will now discuss correlation risk, which is meas-
ured by Cora and Gora.
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10.4.2 GCora of a CDO

We already displayed the dependency of the tranche spreads in a CDO with
respect to correlation in Chapter 1, Figure 1.7. We display it again here.

From Figure 10.15, we observe that the investor in the 0%-3% equity
tranche investor is long correlation. This means that as the correlation
between the assets increases, so does the present value of the equity tranche
for the investor. This is because the investor receives a fixed spread of the
tranche, for example LIBOR + 500 basis points. When the market equity
tranche spread decreases with increasing correlation, the investor then
receives a spread that is higher than the market spread.

Formally, the Cora of a tranche x in a CDO is displayed in equation
10.17:

ds(Tranche x)

Cora(Tranche x) = 9

(10.17)

Equation (10.17) reads: How much does the spread s of tranche x change
if the correlation between all assets p in the CDO changes by an infinitesimally
small amount?

Differentiating the functions in Figure 10.15 gives the Cora of the
tranches in a CDO, which is displayed in Figure 10.16.

Tranche Spread with Respect to Correlation
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FIGURE 10.15 Tranche Spread with Respect to Correlation in the One-Factor
Gaussian Copula (OGFC) Model; 125 Credits, 1% Default Intensity Rate, 5-Year
Maturity, 30,000 Monte Carlo Simulations

Source: Meissner et al. (2013).
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FIGURE 10.16 Cora for Different Tranches in a CDO; 125 Credits, Default Intensity
1%, 5-Year Maturity, 30,000 Monte Carlo Simulations
Source: Meissner et al. (2013).

From Figure 10.16 we observe that Cora is fairly constant and close to
zero for the 3%-7%, 7%-10%, 10%-15%, and 15%-30% tranches.
Therefore the investor in these tranches has little correlation risk and
consequently does not have to hedge correlation risk much. However, the
0%-3% equity tranche is highly sensitive to correlation changes: If correla-
tion increases, the value of Cora decreases (on an absolute basis), and the
investor can reduce his correlation hedge. Conversely, if correlation
decreases, the value of the Cora increases (on an absolute basis), and the
investor has to increase the correlation hedge.

10.4.3 Gora of a CDO

Differentiating the tranche functions in Figure 10.17 gives the Gora for
tranches in the CDO. Formally,

2
Gora(Tranche x) = 6C0ra(1;)r;nche x) = 9 (Tr(?;;he x) (10.18)

Equation (10.18) reads: How much does the Cora of tranche x change if
the correlation between all assets p in the CDO changes by an infinitesimally
small amount? From the last term in equation (10.18) we see that the Gora of
a tranche is the curvature of the original tranche functions (displayed in
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Figure 10.15) with respect to the correlation coefficient p. Graphically, the
Goras of the tranches in the CDO are displayed in Figure 10.17.

From Figure 10.17 we observe that the Gora of the 3%-7%, 7%-10%,
10%-15%, and 15%-30% tranches is close to zero. Therefore, the investor
does not have to change his correlation hedge much. This is sensible since in
Figure 10.16 we observed a Cora of close to zero for these tranches; hence
there is little need to hedge correlation risk at all. However, the 0%-3%
equity tranche shows a high Gora, which means a high necessity to change the
hedge amount Cora. In particular, Gora is high for low correlation levels.
This means that for low correlation levels the investor has to adjust the
correlation hedge often for changes in the level of correlation.

10.5 SUMMARY

In this chapter we discussed how to quantify credit correlation risk. Credit
risk is the risk of financial loss due to an adverse change in the credit quality of
a debtor. There are two main types of credit risk: (1) migration risk, which is
the risk of an unfavorable change in the credit quality of a debtor, and (2)
default risk, which is a special case of migration risk and occurs only if an
investor is long credit (i.e., has bought a bond or is receiving fixed in a CDS).

Credit correlation risk is the risk that credit quality correlations between
two or more counterparties change unfavorably.

All loan portfolios of financial institutions, as well as all structured
products such as collateralized debt obligations (CDOs) and mortgage-
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backed securities (MBSs), are exposed to credit correlation risk. In addi-
tion, all derivatives used as a hedge also include credit correlation risk. For
example, a credit default swap (CDS) used as a hedge includes three
parties: (1) the CDS buyer, (2) the CDS seller (counterparty), and (3) the
underlying asset.

Therefore, there are three types of credit correlation risk in a CDS: (1) If
the default correlation between the counterparty and the reference asset
increases, the CDS value will decrease, with a paper loss for the investor; (2) if
the default intensity of the underlying asset decreases and the default intensity
of the investor increases, the counterpart will have higher credit risk expo-
sure; and (3) the default intensity correlation between the investor and the
counterparty is of minor importance, because the investor and the counter-
party do not care too much if they themselves default at the same time their
counterparty defaults.

Models that value a CDS, including the reference asset—counterparty
default correlation risk, can be derived in a rigorous way. In addition, models
that include the default intensity correlation of all three entities in a CDS are
available.

Formally, Cora and Gora of a CDS measure the sensitivity of a CDS value
change with respect to changes in correlation between two entities in a CDS.
Since we have three entities in a CDS, principally three Coras and three Goras
for a CDS exist. We can also derive the Cora and Gora of a CDS for the
default intensity correlation of all three entities in a CDS.

The correlation risk of CDOs has received great attention during the
global financial crisis of 2007 to 2009. CDOs and their correlation properties
were called toxic. However, once understood, the correlation risk in a CDO is
quite intuitive. In addition, the correlation risk can be quantified with Cora
and Gora and hedged accordingly.

PRACTICE QUESTIONS AND PROBLEMS

1. What is credit risk?
2. Which two types of credit risk exist? What is the relationship between
these two types of credit risk?

. What is credit correlation risk?

. Name three financial products that are exposed to credit correlation risk.

5. A CDS that is used as a hedge has three parties: (1) the investor (CDS
buyer), (2) the counterparty (CDS seller), and (3) the underlying asset.
The default correlation between which two entities is most significant for
the valuation of a CDS?

S W
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6. For the counterparty, the default correlation between the investor and the
underlying asset is also of importance. Which is the worst-case scenario
for the counterparty from a risk perspective?

7. When valuing a CDS, we can also include the default intensity correlation
between all three entities. Draw a Venn diagram that displays the default
intensity correlation’s properties.

. What information does the Cora of a CDS give us?

9. Since there are three entities in a CDS, there are principally three Coras.
Name them and interpreted them. Which one is the most critical?

10. What does the Gora of a CDS tell us?

11. What are the two main risks in a CDO?

12. Thevalue ofa CDO and its tranches depends critically on the correlation of the
assets in the CDO. Draw a graph showing the equity tranche value, mezzanine
tranche value, and a senior tranche value with respect to correlation.

13. What does the Cora of a tranche in a CDO tell us?

14. Which tranche in a CDO has the highest correlation risk (i.e., the highest
Cora)?

15. CDOs and their correlation properties are sometime termed “toxic.” Do
you agree with this view?

o]
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Hedging Gorrelation Risk

Only if it was possible to delta-hedge correlation risk...would it
make sense to use a full-blown stochastic correlation model.
—Lorenzo Bergomi

In this chapter we discuss why hedging financial correlation risk is more
challenging than hedging other financial risks such as market risk or credit
risk. However, we will show two methods that can be applied to hedge
financial correlation risk. At the end of the chapter, we will discuss in which
situations it is better to hedge with options and in which situations it is better
to hedge with futures.

11.1 WHAT IS HEDGING?

Let’s first clarify what hedging is.

HEDGING

Reducing risk. More precisely, entering into a second trade to reduce
the risk of an original trade.

If the original trade is a simple transaction such as being long a bond,
there are three main ways to hedge the market risk (risk of an unfavorable
change in the price) and the credit risk (migration risk and default risk) (see

235
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FIGURE 11.1  An Investor Hedging a Long Bond Position (Dashed Line) with a Put
Option (Dotted Line). The Overall Payoff Is the Covered Put Buying Line.

Figure 10.1). Let’s assume that an investor has bought a bond of Greece. To
reduce the risk, she can:

1.

Simply sell the bond. This is beneficial since all types of risk such as
market risk, credit risk, operational risk, liquidity risk, and correlation
risk with other assets are then eliminated. The severe drawback, though,
is that the investor may have to sell at a low price. Any loss realized will
not be recovered if the Greek bond price improves at a later point in time.

. Hedge the bond with a derivative such as a forward, future, or swap,' or

an option. Let’s look at an example of a hedge for the long bond position
with a put option. The investor has bought a bond at $100. She is now
worried about a possible price deterioration and buys a put option with a
strike of $100 as insurance, paying a premium of $10. This is also
referred to as covered put buying or a married put. The overall payoff is
displayed in Figure 11.1.

1. Forwards, futures, and swaps are closely related. A forward is the agreement
between two parties to conduct a trade at a certain price in the future. A swap is just a
series of forward contracts. Forwards and swaps are typically traded over the counter
(OTC), not on an exchange. A future trades on an exchange and is just a standardized
forward (i.e., the maturity date, notional amount, underlying, etc. are standardized).
See Hull (2011) or Meissner (1997) for more on derivatives.
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The investor has now limited her downside risk to a loss of $10 (the
premium cost). The catch is the reduced upside potential, which is
lowered by the put premium of $10.

3. The investor can also hedge the long Greek bond position by selling a
product that is correlated with the price movement of the Greek bond.
For example, let’s assume that historically the correlation between
Spanish bonds and Greek bonds has been positive. The investor decides
to sell a bond of Spain to offset the price risk of the long Greek bond.
However, in this case the investor has correlation risk, in particular the
risk that the correlation between Greek bonds and Spanish bonds is not
positive in the future. It could happen that the Greek bond declines in
price and the Spanish bond increases in price, leading to a loss in both the
underlying and the hedge.

In the second case we applied a derivative, an option, to hedge a
nonderivative, a bond position. In trading practice, the reverse operation
of case 2 is also applied. We can hedge the risk of an option using a
nonderivative. Let’s discuss this case.

Typically when hedging a derivative such as an option, the underlying
asset is bought or sold to offset an unfavorable change in the option value. For
example, if a trader has bought a call option on the Apple (AAPL) stock, the
trader is vulnerable to a price decline in AAPL, since in this case the call value
decreases. To hedge this risk, the trader typically sells the underlying AAPL
stock, or more precisely, the trader sells the delta amount of AAPL. This delta
is given from a model, for example the Black-Scholes-Merton option pricing
model. Let’s look at an example of a delta hedge.

EXAMPLE 11.1: DELTA HEDGING

An option trader at Goldman Sachs buys a call on IBM. The call option
premium is $10,000 (e.g., the trader is buying 1,000 calls with a call
premium of Cy = $10). IBM trades at Sy = 100. The trader decides to
delta hedge the IBM price risk of the option. The delta, derived from an
option pricing model such as the Black-Scholes-Merton model, comes
out to 51%. Formally:

9C _ 0.51 Ty

Ap= — =~
TS 1

where

Ac: delta of the call
(continued)
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(continued)
C: call price

S: price of the underlying stock IBM
d: partial derivatives operator

Equation (11.1) reads: How much does the call price C change if
S changes by an infinitesimally small amount, assuming all other
variables influencing the call price are constant? For practical pur-
poses, the change in S can be approximated by a change of 1, as done
in equation (11.1).

How much IBM stock does the option trader have to sell to stay
delta neutral, meaning the option trade has no price risk with respect to
the IBM stock?

The option trader has to sell IBM stock in the delta amount, hence
51% of the option premium of $10,000. Therefore the option trader
sells 51 shares at $100 each and receives $5,100. The option trader
now has no IBM price risk.” Let’s show this.

If IBM increases by 1%, following equation (11.1) the call price
increases by 0.51%. Therefore the profit on the call is

C; x 1,000 — Cp x 1,000 =$10.051 x 1,000 — $10 x 1,000 = $51
The loss on the hedge is
S1x51—89x51=9$101 x 51 — $100 x 51 =$51

Hence the option trade is hedged against price risk of IBM. What
the option trader gains on the call is lost on the hedge, and vice versa.

11.2 WHY IS HEDGING FINANCIAL CORRELATIONS
CHALLENGING?

Hedging correlation risk is more difficult than hedging a bond, a stock, or an
option, for two main reasons.

1. Hedging correlation risk involves two or more assets, since the correla-
tion is measured between at least two assets.

2. This is true for small changes in the IBM price. If the IBM price changes by a large
amount, the delta changes and has to be adjusted.
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2. Hedging financial correlation risk is challenging because there is princi-
pally no underlying instrument that trades in the market and that can be
bought or sold as a hedge.

However, the correlation market is evolving. We have already discussed
four ways to trade correlation in Chapter 1, section 1.3.2, “Trading and
Correlation.” We will now discuss how to use the correlation products,
which already exist in financial practice, to hedge correlation risk.

11.3 TWO EXAMPLES TO HEDGE
GORRELATION RISK

In the following, we present two methods for hedging financial correlation
risk. The first method is to hedge with correlation-dependent options, and the
second is to hedge with a correlation swap.

11.3.1 Hedging CDS Counterparty Risk with a
Correlation-Dependent Option

Any financial product can be used for two main purposes:

1. Speculation (i.e., trying to generate a profit).
2. Hedging (i.e., reducing risk).

In Chapter 1, section 1.3.2, “Trading and Correlation,” we discussed the
speculative aspect of correlation options and showed how the correlation influ-
ences the prices of certain assets such as exchange options and quanto options.

These correlation-dependent options can also be used to hedge correla-
tion risk. Let’s show how the counterparty credit risk in a credit default swap
(CDS) can be hedged with an option whose value depends on correlation.

EXAMPLE 11.2: HEDGING CDS COUNTERPARTY
RISK WITH AN OPTION ON THE BETTER OF TWO

Let’s start with an investor who has invested in a Spanish bond and has
decided to hedge the default risk of Spain with a credit default swap
(CDS) from BNP Paribas. We have already discussed this CDS in
Chapter 1, section 1.2, and a similar CDS in Chapter 10, section 10.2.

(continued)
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(continued)
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FIGURE 11.2 An Investor Hedging Spanish Bond Exposure with a CDS from
BNP Paribas

The investor in the CDS of Figure 11.2 has default correlation risk
between the reference entity (Spain) and the CDS seller (BNP Paribas).
As discussed in Chapter 1, section 1.3.2, the higher the default
correlation between the reference entity (Spain) and the CDS seller
(PNB Paribas), the lower the CDS spread s for the investor. The worst-
case scenario for the investor is the default of both the reference entity
and the counterparty. In this case the investor loses his entire invest-
ment. The higher the default correlation is, the more likely it is that the
reference entity and the counterparty default together, hence the lower
the CDS spread is. This is displayed in Figure 11.3.

For a model that derives the CDS spread s, including reference
entity—counterparty default correlation, see “CDS with default corre-
lation.xIsm” at www.wiley.com/go/correlationriskmodeling, under
“Chapter 11.” How can we hedge this correlation risk? We could
use one of many existing correlation dependent options, such as:

m Option on the better of two. Payoff = max(S;, S,).
m Option on the worse of two. Payoff = min(Sq, S,).
m Call on the maximum of two. Payoff = max[0,(max(Sy, S,)) — K].
m Exchange option (as a convertible bond). Payoff = max(0, S, - S;).

m Spread call option. Payoff = max[0, (S, — S;) — K].
(continued)
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FIGURE 11.8 CDS Spread s of a Hedged Bond Exposure Displayed in
Figure 11.2 with Respect to Default Correlation between the Reference Entity
(Spain) and the Counterparty (BNP Paribas)

m Option on the better of two or cash. Payoff = max(Sy, S5, cash).
m Dual-strike call option. Payoff = max(0, S; — Ky, S, — K5).

m Portfolio of basket option. Payoff = {Z" n;S; — K, O] , where 7;
is the weight of assets i. =1

All of these options are candidates for hedging correlation risk, since
their values are dependent upon the correlation between the underlying
variables. Let’s look at an “option on the better of two,” with a payoff of
max(S1,S,). As the payoff shows, in this option the investor can choose to
receive either the underlying S; or S, at option maturity. The lower the
correlation between S; and S,, the more valuable is an option on the
better of two. If the correlation between S and S, would be 1, this would
just be a zero-strike call option on the underlying with the higher starting
value. For a model that derives the value of an option on the better of two,
see “Option on the better of two.xIsm” at www.wiley.com/go/correlation-
riskmodeling, under “Chapter 11.” Figure 11.4 shows the value of an
option on the better of two.

In Figure 11.4, the option price is standardized; that is, a zero
correlation is set to a zero option value. Figure 11.4 shows the strong
impact of correlation on the option price. The option price fluctuates by
about 12% for correlation levels from —0.9 to +0.9. Figure 11.4 shows

(continued)
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(continued)
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FIGURE 11.4 The Relative Change of the Value of a Long Position in an
“Option on the Better of Two” with Respect to Correlation between the
Underlying Assets S; and S,

a long position of an option on the better of two. In this case the trader
is short correlation (i.e., benefits if correlation decreases). A trader who
wants to be long correlation has to sell an option on the better of two.
In this case, the payoff reverses and we have an option function as
displayed in Figure 11.5.

From Figures 11.4 and 11.5, we observe that the profit of the
option buyer is the loss of the option seller with respect to correlation
changes, and vice versa.

We can now use the short option position in Figure 11.5 to hedge
the long correlation risk of the CDS displayed in Figure 11.3. Ideally,
S1 and S, in the short option on the better of two are the default
probabilities of Spain and BNP Paribas. These could quite well be
approximated with the CDS spread of Spain and BNP Paribas. If we
combine Figures 11.3 and 11.5, we derive Figure 11.6.

From Figure 11.6 we observe that one of the main objectives is
achieved. The low value of the original position (graph with no squares
in Figure 11.6) for high correlation is increased. However, there are
very few free lunches in finance.® The cost of the hedge is the lower

(continued)

3. One of these free lunches is diversification, which is related to low correlation of the
assets in a portfolio. This increases the return/risk ratio as discussed in Chapter 1,
section 1.3.1.
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FIGURE 11.5 The Relative Change of the Value of a Short Position in an
“QOption on the Better of Two” with Respect to Correlation between the
Underlying Assets S; and S,

Hedged Bond-CDS Correlation Risk
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FIGURE 11.8 CDS Correlation Exposure (from Figure 11.3), and Hedged
Exposure (i.e., Added Figures 11.3 and 11.5) (Function with Squares)

value of the hedged position (graph with squares) for negative correla-

tion values.

If the investor wants to further increase the overall value for high
correlation, he can increase the notional amount of the option on the
(continued)
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(continued)

Hedged Bond-CDS Correlation Risk
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FIGURE 11.7 CDS Correlation Exposure (from Figure 11.3), and Hedged
Exposure (i.e., Added Figures 11.3 and 11.5) (Function with Triangles) with
Twice the Notional Amount in the Hedge

better of two hedge. This leads to an overall position as displayed in
Figure 11.7.

From Figure 11.7 we observe that for high correlation values, the
value of the overall hedged position (graph with triangles) is higher
than in Figure 11.6. The catch is the now lower value of the overall
hedged position for negative correlation compared to Figure 11.6.

11.3.2 Hedyging VaR Gorrelation Risk with a Correlation Swap

We discussed correlation swaps in Chapter 1, section 1.3.2; see equations
(1.6) and (1.7). Let’s now apply correlation swaps to hedge value at risk
(VaR) correlation risk. We analyzed VaR correlation risk in Chapter 1,
section 1.3.3, and in more detail in Chapter 9, section 9.4. Let’s hedge the
VaR correlation risk of the 10-asset portfolio in example 9.1. We derived
VaR as a function of the pairwise correlation of the assets in the portfolio
in Figure 9.1.

We can now hedge this VaR correlation risk with a correlation swap. The
dependence of a correlation swap with respect to the pairwise change in
correlation of the assets is displayed in Figure 11.8.
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Correlation Swap (pay fixed, receive realized)

80%
70% —
60% /

50% /

40% /

30% /

20% /

10% /

0% T T T ‘ ‘ T ‘ T T ‘
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Value Change

Change in Pairwise Correlation

FIGURE 11.8 Change in Value of a Long Correlation Swap (Pay Fixed and Receive
Realized; See Figure 1.5 for Details) with Respect to Pairwise Change in the
Correlation between All Assets in a 10-Asset Portfolio. The Returns and
Consequently the Correlation between the Returns of the 10 Assets in the

Portfolio are the Same as in the VaR Example 9.1.

The fixed rate in the correlation swap in Figure 11.8 is set at 23.14%.
This is the actual correlation of the assets in the portfolio following equa-
tion (16) Prealized = ﬁ Zi>[
showing the present value of a correlation swap, see the spreadsheet
“Correlation swap” at www.wiley.com/go/correlationriskmodeling, under
“Chapter 11.” A model valuing interest rate swaps, which can be applied to
correlation swaps if a correlation term structure is available, can be found at
“Interest rate swap.xls”; see www.wiley.com/go/correlationriskmodeling,
under “Chapter 11.” In order to hedge the VaR correlation risk in Figure
9.1, we have to reverse the swap in Figure 11.8 (i.e., receive fixed and pay
realized). This is displayed in Figure 11.9.

From Figure 11.8 and 11.9 we observe that the present values of the long
correlation swap and the short correlation swap are reversed. Hence, what
the correlation buyer (who is long correlation) gains, the correlation seller
loses for a change in correlation, and vice versa.

We can now hedge the VaR correlation risk in Figure 9.1 with the short
correlation swap in Figure 11.9. We derive Figure 11.10.

From Figure 11.10 we see that VaR correlation risk is eliminated
for small changes in the all pairwise correlations of the assets in the portfolio.

p;; and example 9.1. For a simple spreadsheet
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FIGURE 11.9 Change in Value of a Short Correlation Swap (Receive Fixed and Pay
Realized; See Figure 1.5 for Details) with Respect to Pairwise Change in the
Correlation of a 10-Asset Portfolio. The Returns and Consequently the Correlation
between the Returns of the 10 Assets in the Portfolio Are the Same as in the VaR
Example 9.1, in Chapter 9.

For larger changes, the hedged VaR now has a negative dependence on
correlation. This means as correlations increase strongly, the hedged VaR
actually decreases. This hedge can be fine-tuned: A lower or higher notional
can be applied in the correlation swap hedge or a different fixed rate in the

VaR and Hedged VaR Correlation Risk
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FIGURE 11.10 VaR with Respect to Correlation (from Figure 9.1), and Hedged VaR
(Graph with Squares, which is a Combination of Figures 9.1 and 11.9)
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correlation swap can be used. This will lead to a slightly different overall
hedge function.

11.4 WHEN TO USE OPTIONS AND WHEN TO USE
FUTURES TO HEDGE

Two key aspects have to be considered when choosing whether to hedge with
an option or a futures contract.”

1. We have to analyze which contract matches the price function of the
underlying instrument. For example, in Figure 11.9 we observed that
hedging VaR correlation risk can be achieved well with a correlation
swap. The overall correlation risk function is close to zero and only
decreases for high correlation levels. Therefore a correlation swap is a
good hedging instrument for VaR correlation risk, at least in our given,
real-world example.

2. In contrast to an option, which has an option premium, a futures contract
has no up-front premium. One benefit of a long option position is that
the loss is limited to the option premium, which is typically quite
low. However, in a futures contract the loss can be significant if the
underlying has moved strongly in the undesired direction. Let’s look at
the implication of this in an example. Let’s assume an investor wants to
hedge a long Greek bond position. When should the investor use a swap
such as a credit default swap (CDS), and when should the investor use a
put option?

m If the investor is quite certain that the Greek bond will decline further
(but she does not want to sell and realize a loss), she can hedge with a
swap or a future. This way no option premium is wasted.

m The investor wants to hedge her Greek bond price risk, but is
somewhat uncertain about whether the Greek bond price will
actually decline. In this case a long put option is warranted, since
a profit is generated if the Greek bond increases in price; see
Figure 11.1.

In conclusion, the more confident an investor is that the undesirable event

will occur (a price decline of the Greek bond in the preceding example), the
more appropriate it is to hedge with a future or a swap. The less confident an

4. See footnote 1 for the close relationship of futures, forwards, and swaps.
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investor is that the undesirable event will occur, the more appropriate it is to
hedge with an option.

11.5 SUMMARY

In finance, hedging means reducing risk or, more precisely, entering into a
second trade to reduce the risk of an original trade. In this chapter we
discussed ways to hedge correlation risk. Hedging can be principally done in
three ways:

1. Close the original position (e.g., if a bond was purchased, sell the bond).
The drawback is that if the position has created a paper loss, this paper
loss is realized.

2. Use a derivative to hedge the position. This is an efficient way to hedge.
Typically the hedge amount has to be adjusted when the underlying price
changes, called dynamic delta hedging.

3. Enter into a position that is negatively correlated with the original trade.
Here the investor has correlation risk, though: the risk that both the
original trade and the hedge create a loss.

Hedging correlation risk is more difficult than hedging equity risk, bond
price risk, or the risk of a derivatives position, for two reasons: (1) Hedging
correlation risk involves two or more assets, since the correlation is measured
between at least two assets. (2) There is principally no underlying instrument
that trades in the market and that can be bought or sold as a hedge.

However, the correlation market is evolving. There are numerous prod-
ucts that are sensitive to correlation, such as correlation options, correlation
swaps, and options on correlation swaps. Each of them can be used to hedge
correlation risk. An investor who wants to hedge his correlation risk will
have to find the correlation hedge that matches the correlation exposure of
the original trade best.

A general question with respect to hedging is when to use a future or
forward (or swap, which is just a series of forwards) and when to use options.
Let’s assume an investor has a CDS and is exposed to correlation risk with
respect to the reference entity and the counterparty. The investor should use a
forward (or a swap such as a correlation swap) if she is very certain—as certain
as she can be—that the hedge is needed. This way no option premium is
wasted. However, the investor should use options in the hedge (e.g., an option
on a correlation swap) if the investor wants to hedge the correlation risk, but
is not that certain that the correlation risk will occur. If the correlation risk
does not occur, the loss on the hedge is just the option premium.
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PRACTICE QUESTIONS AND PROBLEMS

. What is hedging?
. Name the three main ways to hedge.
.Name two reasons why it is more difficult to hedge correlation risk
compared to equity risk or currency risk.
4. Can it be a good idea not to hedge an exposure as a correlation exposure?
5.In a delta hedge, the delta amount of the exposure is sold or bought. Give
an example of delta hedging.
6. Delta hedges are typically not constant. Give an example of dynamic delta
hedging.
7. Name several instruments that can hedge correlation risk.
8. How can we determine whether a certain correlation hedge is a good
hedge?
9. When an investor has a perfect hedge, doesn’t this mean that the profit
potential is zero?
10. Generally, when should we hedge with forwards, futures, and swaps, and
when should we hedge with options?

W N =
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GCorrelation and Basel Il and

Bank supervisors play an important role in encouraging the proper
balance of risk-taking by developing prudent standards and
enforcing sound practices at banks.

—Alan Greenspan

n this chapter, we discuss the correlation concepts in the Basel accord,

which are designed to address the risk management failures that led to
the Great Recession of 2007 to 2009. In particular, we address credit
value at risk (CVaR), which derives the correlated maximum loss due to
credit risk.

We also address a key topic in today’s financial markets, credit value
adjustment (CVA). CVA is an adjustment to mitigate credit counterparty risk
and includes two types of correlations: (1) general wrong-way risk and (2)
specific wrong-way risk.

In addition, we address the new concepts of debt value adjustment (DVA)
and funding value adjustment (FVA) and their implementation in the Basel
accord.

First, let’s look at some basics.

12.1 WHAT ARE THE BASEL I, 1l, AND il
ACCORDS? WHY DO MOST SOVEREIGNS
IMPLEMENT THE ACCORDS?

We briefly introduced the Basel accords in Chapter 1, section 1.3.5. We expand
the discussion in this chapter, especially the correlation aspects of the accords.

The Basel accords are developed by the Basel Committee for Banking
Supervision (BCBS), which is a subcommittee of the Bank for International

251
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Settlements (BIS). The Basel I accord was implemented in 1988; the Basel II
started developmentin 1999 and was implemented in 2006. The Basel Ill accord
was initiated in 2008 and is intended to be implemented by 2018. Basel III is
designed to particularly address the banking failures in the global financial crisis
02007 to 2009. The objective of the accords is to “improve the banking sector’s
ability to absorb shocks arising from financial and economic stress” and “to
reduce the risk of spillover from the financial sector to the real economy.”’

The Basel accords do not have international legal authority. However,
most sovereigns (about 100 for Basel II) have implemented legislation to
enforce the accords. The reason for the implementation of the accords is
simple: It increases the creditworthiness of the country and its banking
system, which leads to a higher credit rating by the agencies Moody’s,
Standard & Poor’s, and Fitch. This in turn leads to an increase in interna-
tional trade and capital flows at a lower cost of capital.

One of the most critical aspects of the new Basel Ill accord is the way credit
value at risk (CVaR) is calculated, since sharp increases in credit risk and
consequently defaults were one of the main reasons of the global financial crisis
of 2007 to 2009. Correlations play a key role in the derivation of portfolio
credit risk. Let’s discuss how the Basel accords quantify portfolio credit value at
risk (CVaR) and which correlation concept the Basel accord applies.

12.2 BASEL 11 AND 1lI's CREDIT VALUE AT RISK
(CVaR) APPROACH

In Chapter 1, section 1.3.3, and Chapter 9, section 9.4, we defined market
value at risk (VaR). It measures the maximum loss of a portfolio with respect
to market risk with a certain probability for a certain time frame. Analo-
gously, we can define credit value at risk (CVaR).

GREDIT VALUE AT RISK (CVaR)

The maximum loss of a portfolio due to credit risk with a certain
probability for a certain time frame.

Credit risk can be considered the most critical of all types of risk. It is
estimated that financial institutions allocate about 60% of the regulatory capital
to credit risk, about 15% to market risk, and about 25% to operational risk.

1. BCBS, “Basel III: A Global Regulatory Framework for More Resilient Banks and
Banking Systems,” June 2011, 1, www.bis.org/publ/bcbs189.htm.
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We defined credit risk in Chapter 10 as the risk of a financial loss due to
an adverse change in the credit quality of a debtor, and mentioned the two
types of credit risk: (1) migration risk and (2) default risk.

To value CVaR, it is tempting to just take the market VaR equation (1.8)
VaRp = op a y/x and transfer it to CVaR. However, there are two main
problems when using equation (1.8) for CVaR:

1. The portfolio variance, defined in equation (1.9), op = +/3,C3,, would
require input data as standard deviations of relative credit rating changes,
and the correlation coefficient between the changes. However, these data
for credit risk are rare, since credit rating changes for most entities rarely
occur, often only once a year or even not at all.

2. The value for « in equation (1.8) would assume a normal distribution of
relative credit rating changes. However, credit rating changes are typi-
cally not normally distributed and depend on the current credit rating,
past credit rating changes, country, sector, seniority, coupon, yield, and
so on. See Meissner (2005) for a further discussion.

Since credit data are much scarcer than market data, in practice a much
more granular approach is used to derive CVaR. Basel II uses the one-factor
Gaussian copula (OFGC) model, which we discussed in detail in Chapter 6
for valuing CDO tranches. Let’s apply the OFGC to value CVaR.

We start with the core equation of the OFGC, which we discussed in
Chapter 6,

xi=/pM+ /1= pZ: (12.1)
where

p: Default correlation parameter for the companies in the portfolio, 0 <
p < 1.pis assumed identical and constant for all company pairs in the
portfolio.

M: Systematic market factor, which impacts all companies in the port-
folio. M can be thought of as the general economic environment, for
example, the return of the S&P 500. M is a random drawing from a
standard normal distribution, formally M = n ~ (0, 1). M is the same
as ¢ in Chapter 4, section 4.1.

Z;: Idiosyncratic factor of asset i. Z; expresses ith company’s individual
strength, possibly measured by company #’s stock price return.
As M, Z; is also a random drawing from a standard normal
distribution.
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x;: The value for x; results from equation (12.1) and is interpreted as a
“Default indicator variable” for company i. The lower i, the earlier is
the default time T for company i. x; is by construction standard
normal.

Solving equation (12.1) for Z;, we derive

7. Xi— \/ﬁM
1 /—1 — p
Taking cumulative values, we get
Xi— \/ﬁM
N(Z;) = N(7> (12.2)
V1=p

where N(x) is the cumulative standard normal distribution at x. Since we use
the standard normal cumulative distribution N, this approach is called
Gaussian copula.

We now equate the individual default probability of entity 7 at time T,
PD,(T), which is given or estimated from the market data with the model-
simulated barrier N(x;), which includes the default correlation via the
x;: PD(T) = N(x;). Solving for x;, we derive x; = N~ '(PD,(T)), where
N~ is the inverse of N. See Chapter 4, Figure 4.3 for details of the mapping
procedure N~ Y(PDy(T)). Inputting x; = N~ (PD,(T)) into equation (12.2),
we get

N~'[PD/(T)] - /oM
N(Z)=N 12.3
(Zi) ( NiET (12.3)

Now the strong assumption is made that all entities i have the same
default probability PD at a certain time T. Hence we can drop the index i
and get

(12.4)

NPRVCEL LBy

v1-p

For a large homogeneous portfolio (LHP) with identical pairwise corre-
lation p and identical default correlation PD(T), the right side of equation
(12.4) is approximately the percentage of entities in the portfolio defaulting
at T. For example, if there is no correlation between the entities (i.e., p = 0),
then equation (12.4) reduces to N[N~ '(PD(T))] = PD(T). In this case, if the
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individual default probability is PD(T) = 10%, we can assume that approxi-
mately 10% of the entities will default by T.

We now replace the market factor M with a confidence level X. M is
standard normal. Therefore, for a certain abscise value N~ !(Y) of M, we have:

N~'(v)
Pr(M <N~ YY) = /n(M)dM:N(N‘l(Y)):Y (12.5)

—00

Equation (12.5) reads: The probability of M being smaller than or equal
to N™1(Y) is the surface of a normal distribution from —oo to N™(Y), where
n(M) is the normal distribution of M. This can be written as N(N~(Y)), since
N(N~Y(Y)) is the cumulative normal distribution from —oo to N~ '(Y). N is
the inverse of N™'; therefore N(N~(Y)) = Y.

Graphically, we can express this as shown in Figure 12.1.

Replacing M in equation (12.4) with N™(Y), we get

N7'[PD(T)] - /AN~ 1(Y)
N 12.6
( VI—p (12.6)

The term (12.6) tells us the probability Y of the percentage of defaults in

'[PD(T)] = VAN (Y)
1-p

the portfolio being bigger than N (N ) . We are interested in

probability of defaults smaller than Y. Thisis 1 — Y. Let’sset 1 — Y = X,

n(m)
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FIGURE 12.1 Graphical Representation of a Normally Distributed Default
Distribution with Pr(N~!(Y)) < M = Y, and the Confidence Level X
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where X is a certain confidence level. Replacing Y with 1 — X, and using
N Y1 - X) = =N 4X), we derive

N~'[PD(T)] +/pN"1(X)
V1-p

CVaR(X, T) :N( (12.7)

where

CVaR(X,T): credit value at risk for the confidence level X for the time
horizon T

N: cumulative normal distribution

N~ inverse of the cumulative normal distribution

PD(T): average probability of default of the assets in the portfolio for the
time horizon T

p: pairwise correlation coefficient of the assets in the portfolio (p is
assumed constant for all asset pairs)

Equation (12.7) reads: We are X% certain that regarding our loan

portfolio we will not lose more than N(Nl[PD(T)] +\/5N1(X)) due to (corre-

Vi

lated) default risk, for the time horizon T.

Equation (12.7) is an important result, which was first published by
Vasicek in 1987.7 It is derived from the one-factor Gaussian copula (OFGC)
model of equation (12.1); see above. Equation (12.7) is currently used in the
Basel II accord as the basis to value credit risk in a portfolio. It takes into
consideration default risk, not migration risk (see Figure 10.1). CVaR is also
called credit at risk or worst-case default rate (WCDR).

Let’s look at an example of equation (12.7).

EXAMPLE 12.1: CALCULATING CREDIT VALUE
AT RISK (CVaR)

Suppose JPMorgan has given loans to several companies in the amount
of $100,000,000. The average 1-year default probability of the compa-
nies is 1%. The copula default correlation coefficient between the
companies is 5%. What s the 1-year CVaR ona 99.9% confidence level?

(continued)

2. O. Vasicek, “Probability of Loss on a Loan Portfolio,” KMV Working paper, 1987.
Results published in Risk magazine with the title “Loan Portfolio Value,” December
2002.



Correlation and Basel Il and Il 257

It is

-1 -1
CVaR(O.999,1)N<N (0.01)++/0.05 N (0.999)>4'67%

v1-0.05

We can derive N~ !(x) via Excel’s =normsinv(x) or MATLAB’s
norminv(x) function. N(x) is =normsdist(x) in Excel and normdist(x)
in MATLAB.

Interpretation: JPMorgan is 99.9% sure that it will not lose more
than 4.67% of its loan exposure of $100,000,000 due to (correlated)
default risk of its debtors for a 1-year time horizon. In dollar amounts
and including a recovery rate of 40%, we derive that JPMorgan is
99.9% sure that it will not lose more than $100,000,000 x 0.0467 x
(1 —0.4) = $2,802,000.

12.2.1 Properties of Equation (12.7)

Equation (12.7) has some interesting properties.

m We observe that for zero default correlation between the debtors in the
portfolio p = 0, it follows that CVaR = PD(T). So for a 99.9% confidence
level, we are 99.9% sure that we will not lose more than the average default
rate PD(T). This is reasonable because there is no effect from correlation
and the maximum loss is just the average default probability of the debtors.

m CVaR is a function of the default probability PD for the time horizon T,
the confidence level X, and the pairwise default correlation p. T is
typically set to one year and the confidence level used is typically
99.9%. In this case we get a relationship between CVaR and PD(T)
and p as displayed in Figure 12.2.

From Figure 12.2 we observe that CVaR is a positive function with
respect to PD(T) and p. The positive relationship between CVaR and PD(T),

(fpcDV(aR) > 0 is obvious: The higher the default probability PD(T), the higher is

the maximum loss CVaR. The positive relationship between CVaR and the
default correlation between the debtors p, aCV‘*R >0, is also plausible: The
higher the default correlation, the higher is the probablhty that many debtors
default and the higher is the maximum loss CVaR. This is especially the case
for high default probability PD(T). For value of PD(T) higher than 20% and p
close to or higher than 80%, the maximum loss CVaR is close to 100% of the
total loan exposure; see Figure 12.2.
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CVaR as a Function of PD(T) and p
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Correlation 1% 3%

P Default Probability PD(T)

FIGURE 12.2 CVaR as a Function of the Default Probability PD(T) where T = 1 and
the default correlation between the debtor’s asset p. The confidence level is X = 99.9%.
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For a model that displays the CVaR, see “CVaR.xIsm” at www.wiley
.com/go/correlationriskmodeling, under “Chapter 12.”

12.3 BASEL II's REQUIRED CAPITAL (RC)
FOR CREDIT RISK

Basel II uses equation (12.7) as a basis to calculate the capital charge for
credit risk. However, the capital charge is reduced by the expected loss,
which is measured by PD(T). The rationale is that banks cover the expected
loss with their own provisions as the interest rate that they charge. (Natu-
rally, low-rated debtors have to pay a higher interest rate on their loans than
highly rated debtors.) Therefore the required capital RC for credit risk in the
Basel I accord is

RC=EAD x (1 — R) x [CVaR — PD(T)] (12.8)
where

RC is the required capital by Basel II for credit risk in a portfolio
EAD is the exposure at default (for loans EAD is equal to the loan amount)


http://www.wiley.com/go/correlationriskmodeling
http://www.wiley.com/go/correlationriskmodeling
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R is the recovery rate (rate that is recovered from the defaulted loan)

CVaR is the credit value at risk derived by equation (12.7)

PD(T) is the average probability of default of the debtors in the portfolio
for time horizon T

Let’s look at equation (12.8) in an example. Let’s expand example 12.1.

EXAMPLE 12.2: CALCULATING REQUIRED GAPITAL
(RC) FOR CREDIT RISK

Suppose JPMorgan has given loans to several companies in the
amount of $100,000,000. The average 1-year default probability
PD of the companies is 1%. The copula default correlation coefficient
between the companies is 5%. What is the 1-year capital charge of
Basel IT on a 99.9% confidence level assuming the recovery rate is
40%?

Answer:

We had already derived CVaR in example 12.1 as CVaR = 4.67%.
Following equation (12.8), the required capital charge of Basel II is

RC=$100,000,000 x (1 — 0.4) x (4.67% — 1%) = $2,202,000

Credit value at risk CVaR is typically calculated for a 1-year time
horizon. If a different time horizon is used, Basel Il adds a maturity adjust-
ment (MA). In this case the equation (12.8) changes to

RC=FAD x (1 — R) x [CVaR — PD(T)] x MA (12.8a)

where MA = W and M is the maturity date. b is a constantsetat b =

[0.11852 — 0.05478 x In(PD(T))]*.

12.3.1 The Default Probability-Default
Correlation Relationship

Interestingly, the correlation coefficient p is not an exogenous input in
equations (12.8) or (12.8a), but p is a function of the default probability
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PD(T), p = fAPD(T)). In particular, the Basel accord sets®

1 —exp(—50 x PD(T))
1 —exp(—350) )

—exp(—=50 x PD(T))

1
—0.12
P 1— exp(—50)

+0.24 (1 -
(12.9)

Equation (12.9) can be approximated well with equation (12.9a), as Hull
(2012) points out:

p=0.12[1 + exp(—50 x PD(T))] (12.9a)

Indeed, equations (12.9) and (12.9a) are identical to at least four decimal
places for any value of PD(T).

Equation (12.9) or (12.9a) is displayed in Figure 12.3.

What is the rationale for making correlation p a function of the
default probability PD(T) as displayed in Figure 12.3? It is assumed
that highly rated companies with a low default probability have a higher
correlation of default since they are mostly prone to systematic factors
such as a recession, in which they default together. However, companies
with a high default probability are more affected by their own idiosyn-
cratic factors and less by systematic risk; hence they are assumed to be less
correlated. This is replicated in equations (12.9) and (12.9a) and
Figure 12.3.

Correlation p as a Function of PD(T)
30%

25%

20% \\
p 15%

\

10%

5%

O,
%w+r—— """ T

0 0.020.040.060.08 0.1 0.120.140.160.18 0.2 0.22 0.24
PD(T)

FIGURE 12.3 Correlation between the Debtors in a Portfolio p as a Function of the
Average Default Probability of the Debtors in the Portfolio PD(T) in the Basel Il Accord

3. See BCBS, “Basel III: A Global Regulatory Framework,” p. 39.
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12.4 CREDIT VALUE ADJUSTMENT (CVA)
APPROACH WITHOUT WRONG-WAY RISK (WWR)
IN THE BASEL ACCORD

Credit value adjustment (CVA) has become an important part of correlated
credit risk modeling in the recent past. Most investment and commercial
banks have CVA quant groups who analyze CVA risk and CVA desks, where
CVA risk is traded and hedged. The importance of CVA is highlighted by
Basel II, which reports that two-thirds of the credit risk losses during the
global financial crisis were caused by CVA volatility rather than actual
defaults. In addition, the derivatives portfolios of investment banks are
typically quite large. When Lehman Brothers defaulted in September
2008, it had 1.5 million derivatives transactions with 8,000 different counter-
parties, stressing the importance of managing derivatives credit risk.

What is CVA? A broad definition of CVA is:

GREDIT VALUE ADJUSTMENT (GVA)

An adjustment to address counterparty credit risk.

The focus of CVA is typically narrower than this definition, as it often
refers to counterparty credit risk in a derivatives transaction. This narrower
CVA framework is applied in the Basel accord:

In addition to the default risk capital requirements for counterparty
credit risk determined based on the standardized or internal ratings-
based (IRB) approaches for credit risk, a bank must add a capital
charge to cover the risk of mark-to-market losses on the expected
counterparty risk (such losses being known as credit value adjust-
ments, CVA) to OTC derivatives.*

We will concentrate on this derivatives aspect of CVA here. With respect
to a derivative, CVA is the difference between the price of a credit-risky
derivative and the price of a default-free derivative, as displayed in equation
(12.10).

4.1bid., p. 31.
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Credit-Risky _ Default-Free

Derivative - Derivative - EVEs

(12.10)

CVA is by definition >0; see also equations (12.11) and (12.12) below.
Hence from equation (12.10) it follows that a credit-risky derivative has a
lower price than a derivative without credit risk. This is because the buyer of
the credit-risky derivative (often referred to as the dealer) lowers the price of
the derivative since he assumes the credit risk of the counterparty (the
derivatives seller). In particular, if the counterparty defaults, the buyer of
the derivative will not receive the payout of the derivative. CVA is an
adjustment since the derivatives buyer adjusts (lowers) the price of the
derivative due to credit risk.

CVA isan integral part of the Basel IIl accord. Figure 12.4 shows CVA and
the associated wrong-way risk (WWR), which will be discussed in section 12.5.

Basel lll - Framework

= ' oDl ol
4 e i oS Leaver: atio upervisory ar et Discipline
Capital Ratios Review Process (Reporting)

[ caoa |

| Operational |

CCR BIA
Derivative =
Standard

H

I:] Brand-new with Basel [Il . Updated with Basel lll Updated with Basal 2.5 l:l No change from Basel Il

FIGURE 12.4 Credit Value Adjustment (CVA) and Wrong-Way Risk (WWR) in the
Basel III Framework
Source: Moody’s Analytics, 2011.
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From Figure 12.4 we observe that CVA has a market risk component and
a credit risk component. We formalize this in equation (12.11).

CVA,.=f(D,.,PD,)

~ =~
Market Cr_eﬁit
risk s}

(12.11)

where

CVA, .: credit value adjustment of entity a with respect to the counter-
party ¢

D™, . netted, positive derivatives portfolio value of entity @ with coun-
terparty ¢

PD_: default probability of counterparty ¢

In equation (12.11), we take only the positive netted derivative portfolio
value, D7, = max <2Da7c, O) ,into consideration. This is because entity a has

credit exposure only if the netted derivatives portfolio between a and c is
positive for a. (In simple terms, a has credit exposure with respect to ¢ only if
¢ is a’s debtor.) Figure 12.5 shows this property.

Figure 12.5 shows that for positive credit exposure, the credit exposure is
identical with the netted portfolio value, also called portfolio marked-to-
market (MtM) value. Credit risk is the risk that the credit exposure changes.
For example, the credit risk for entity a with respect to ¢ would increase if the
credit exposure increases due to an increase in the market value of the
derivatives D, or an increase in the default probability of ¢, PD..

Equation (12.11) also shows that CVA can be viewed as a derivative
itself. It is a complex derivative since it has two underlyings, D* and PD,,

Credit exposure of entity a
with respect to ¢

Netted portfolio value
from the viewpoint of
a with respect to ¢

FIGURE 12.5 Credit Exposure of Entity @ with Respect to Counterparty ¢
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which may be correlated! If they are not correlated, we can multiply the
market risk component and the credit risk component. Adding a recovery rate
of the counterparty ¢, R., we can write:

CVA,.=(D;,. xPD.)(1-R,) (12.12)

Let’s look at an example of equation (12.12).

EXAMPLE 12.2: CALCULATING CVA, ASSUMING
NO CORRELATION BETWEEN MARKET RISK AND
GREDIT RISK

Entity a has a derivatives portfolio with counterparty ¢, which has a
present value of +$100,000,000 for a. The default probability of ¢ for a
1-year time horizon is 5 %. The recovery rate of counterparty ¢ in case of
default of ¢ is expected to be 30%. What is the CVA from the viewpoint
of a with respect to counterparty ¢ for a 1-year time horizon?

Following equation (12.12), itis CVA, .= $100,000,000 x 0.05 x
(1 —0.3) = $3,500,000.

Equation (12.12) is the basis for calculating CVA in the Basel III accord,
when the correlation between market risk and credit risk is assumed to be zero.
However, this is a simplistic assumption, which we will alter in the next section.

12.5 CREDIT VALUE ADJUSTMENT (CVA) WITH
WRONG-WAY RISK IN THE BASEL AGGORD

As mentioned earlier, equation (12.12) assumes that market risk of the
derivative D and credit risk PD are not correlated. However, this is not a
realistic assumption. Market risk and credit risk are clearly related. For
example, if the equity market declines (maybe due to a recession), the default
probabilities of companies typically increase (since debt-to-equity ratios
increase). Conversely, if the default probability of a company increases
(maybe due to bad management or increased competition), the stock price
of the company will decline.

The Basel accord recognizes the correlation between market risk and
credit risk. The Basel accord defines two types of wrong-way risk (WWR),
general wrong-way risk and specific wrong-way risk. Let’s look at general
wrong-way risk first.
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GENERAL WRONG-WAY RISK (WWR)

Exists when the probability of default of counterparties is positively

correlated with general market risk factors.’

Following the Basel II accord, general market risk factors are interest
rates, equity prices, foreign exchange rates, commodity prices, real-estate
prices, and more.

Let’s discuss an example of general wrong-way risk regarding the market
risk factor interest rates, which can be positively correlated with default
probability. We will explain general wrong-way risk with the practical
example of a long bond position, which is displayed in Figure 12.6.

In Figure 12.6 only the bond investor has credit risk with respect to bond
issuer. This is because in case of default of the issuer, the bond investor will not
receive the coupon payments, and, most important, will just receive the recovery
rate of the principal investment of $1,000,000. The bond issuer does not have
credit exposure to the bond investor, since the bond issuer has received all
contractual payments (i.e., the initial investment of $1,000,000 at z,).

A bond price B is mainly a function of the market interest rate level i and
the default probability of the issuer PD; hence B = f (i, PD,,...). There is a
negative relationship between the bond price B and market rates i: The higher
the market interest rates i, the lower is the bond price B, since the coupon of
the bond price is now lower compared to the market interest rate i; formally:
98 < 0. There is also a negative relationship between the bond price B and the

default probability of the issuer PD,: 535- <O0.

The relationship of B, i, and PD, constitutes general wrong-way risk: In a
weakening economy, typically interest rates i decrease and default probabilities

$1,000,000 in ¢,
Bt
Bond PR Bond
B Coupon from ¢, to T and L
$1,000,000 at T

FIGURE 12.6 Cash Flows of a Standard Bond Purchase with Maturity T

5. BCBS, “Annex 4 (to Basel II),” 2003, 211, www.bis.org/bcbs/cp3annex.pdf.
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1‘ —> Higher credit exposure
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2 pp .t —> Higher credit risk

FIGURE 12.7 General Wrong-Way Risk

Decreasing interest rates i lead to higher credit exposure via a higher bond price B.
Decreasing interest rates i in a recession also mean increasing default probability PD, of
the bond issuer. Hence, the higher the credit exposure, the higher is the credit risk (i.e.,
the higher the risk that the issuer can’t meet its obligation to pay coupons and principal).

such as PD, increase. However, from the relationship 2 <0, decreasing
interest rates also mean a higher bond price (i.e., higher credit exposure of
the bond buyer with respect to the bond issuer). But a higher default
probability PD, also means a lower probability that the issuer will be able
to pay the coupons and the principal amount. Hence the higher the credit
exposure, the more likely it is that the bond issuer can’t pay coupons and
principal, which constitutes general wrong-way risk. Graphically this is
displayed in Figure 12.7.
Let’s now look at specific wrong-way risk.

SPECIFIC WRONG-WAY RISK (WWR)

Exists if the exposure to a specific counterparty is positively correlated
with the counterparty’s probability of default due to the nature of the
transaction with the counterparty.®

We can formalize specific wrong-way risk with equation (12.13),

JPD
oo >0 (12.13)

Equation (12.13) reads: If the credit exposure, expressed by the netted
positive derivatives value D" increases, credit risk, expressed as the default
probability PD, also tends to increase. This is clearly not a good situation to
be in. In simple words: The higher the credit exposure, the higher is the credit
risk (i.e., the risk that the debtor can’t meet its obligations).

6. See BCBS, “Basel III: A Global Regulatory Framework,” p. 38.
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Fixed CDS spread s

Investor and € Guarantor g
CDS buyer i Payout of $M(1 - R) (i.e., CDS seller)
million in case of
default of obligor o

$M million Coupon k

Reference asset
of obligor o

FIGURE 12.8 Cash Flows of an Investor i, Who Has Credit Exposure to an Obligor o,
which is Hedged with a Credit Default Swap (CDS) with the Guarantor g. R =
Recovery Rate.

Let’s look at an example of specific wrong-way risk. We had already
briefly mentioned an example of specific wrong-way risk in Chapter 1, section
1.2, in Figure 1.1. Let’s discuss it in detail now.

Figure 12.8 shows the cash flows between the three entities in a CDS.

In Figure 12.8 the terminology and notation of the Basel accord are
applied. In most literature the guarantor g is called counterparty ¢ and the
obligor o is called reference entity 7.

In Figure 12.8, the investor has specific wrong-way risk, if there is a
positive correlation between the default probability of the obligor o and the
guarantor g (i.e., the CDS seller). This means that the higher the default
probability of the obligor PD, is, the higher is also the default probability of
the guarantor PD,.

In particular, if the default probability of the obligor increases, the
market spread of the CDS increases. Therefore the present value for the
CDS buyer increases, since his fixed spread s is now lower than the market
spread. If the CDS is marked-to-market, this is nice from a profit perspective,
but from a risk perspective it means that the credit exposure for the CDS
buyer 7 increases.

Also, with increasing default probability of the guarantor, the credit risk
increases, since it is less likely that the guarantor can pay the payoff in default.
Hence we have increased credit exposure together with increased credit risk,
constituting specific wrong-way risk. Figure 12.9 shows the wrong-way risk
dilemma.
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o PV(CDS) foriT — Higher credit exposure
(PDo n PDg)
Higher credit risk

S P of payoff | —

FIGURE 12.9 Specific Wrong-Way Risk

Specific wrong-way risk of the hedged bond position of Figure 12.8 exists if the
default correlation between the obligor PD,, and the guarantor PD, is positive. Let’s
assume PD, and PD, both increase; that is, (PD, N PD,)T. Hence the present value
of the CDS, PV(CDS) for i increases, which means higher credit exposure for i. In
addition, the increasing probability of default of the guarantor means that the
probability P of the future payoff from the guarantor decreases. Hence we have
increasing credit exposure together with increasing credit risk, constituting specific
wrong-way risk (WWR).

- 4 - :
Put Option Premium

Buyelj of > Put Option Seller
Put Option on PR Deutsche Bank
Deutsche Bank

Payout in Case Put is
in the Money

FIGURE 12.10 Example of Specific Wrong-Way Risk: Deutsche Bank Selling a Put
on Its Own Stock

A further example of specific wrong-way risk (which is mentioned in the
Basel III accord”) is if a company sells put options on its own stock. This is
displayed in Figure 12.10.

Selling a put on its own stock constitutes specific wrong-way risk since
the lower the stock price, the more the put is in the money (i.e., the higher is
the credit exposure for the put option buyer with respect to the put option
seller, Deutsche Bank). But the lower the Deutsche Bank stock price is, the
higher is typically also the default probability of Deutsche Bank. This means
that the higher the credit exposure (when the put is deeper in the money), the
higher is the credit risk (the probability that Deutsche Bank defaults),
constituting specific wrong-way risk.

12.5.1 How Do Basel Il and Ill Quantify Wrong-Way Risk?

Basel IT and IIT have a simple approach to address general wrong-way risk and
specific wrong-way risk. A multiplier o is applied to increase the derivatives

7. Tbid., p. 38.
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exposure D . The multiplier o is set to 1.4, which means the credit exposure

D;C is increased by 40%, compared to assuming credit exposure D;C and
credit risk PD, are independent, as was expressed in equation (12.12). Banks
that use their own internal models are allowed to use a o of 1.2, meaning the
credit exposure is increased by 20% to capture wrong-way risk. Banks report
an actual alpha of 1.07 to 1.1; hence the o of 1.2 to 1.4 that Basel Il requires
is conservative.

Currently models are developed to quantify wrong-way risk in a more
rigorous way. See, for example, Hull and White (2011) or Cepedes et al.
(2010).

12.6 HOW DO THE BASEL ACCORDS TREAT
DOUBLE DEFAULTS?

The Basel accords recognize the credit risk reduction when a CDS is used as a
hedge, as displayed in Figure 12.8. In particular, the investor will lose the
investment to the obligor only if both the obligor and the guarantor default.
Under the Basel accord, banks may use two approaches—the substitution
approach and the double default approach—to address double default.® Let’s
discuss them.

12.6.1 Substitution Approach

For hedged credit exposures as in Figure 12.8, the Basel IT accord allows that
the exposure to the original obligor is replaced with the exposure of the
guarantor. Hence from rewriting equation (12.7) we derive

o NTUPD)+ N (X)) (NTH(PD)+ N (X)
CVaR, (X, T)=N [mln( m , ﬁ

(12.14)
where

CVaR (X, T): credit value at risk for hedged exposures using the substi-
tution approach in the Basel accord for the confidence level X, and

8. BCBS, “International Convergence of Capital Measurement and Capital Standard:
A Revised Framework,” November 2005, www.bis.org/publ.bcbs118.pdf; and BCBS,
“The Application of Basel II to Trading Activities and the Treatment of Double
Default Effects,” 2005, www.bis.org/publ.bcbs116.pdf.
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time horizon T; X is set at 99.9% in the Basel Il approach; compare
with equation (12.7) for unhedged exposures.

PD,: probability of default of the obligor.

PD,: probability of default of the guarantor.

po: copula default correlation coefficient between all assets in the portfo-
lio of the obligor.

pg: copula default correlation coefficient between all assets in the portfo-
lio of the guarantor.

X: confidence level; X is set at 99.9% in the Basel II accord.

Other variables are defined as in equation (12.7).

The Basel accord interprets p,, in equation (12.14) as “the sensitivity of the
obligor to the systematic risk factor [M].”” Strictly speaking, p, is the default
correlation coefficient between all asset pairs in the portfolio of the obligor o. As
discussed earlier, this is a conditional correlation on the market factor M, as
seen in the core equation (12.1) x;=,/pM++/1—pZ; of the one-factor
Gaussian copula model. It is reasonable to approximate the conditional
correlation between the obligor’s assets on the market factor M as the
correlation of the obligor to the market factor M. The same logic applies to p,.

Importantly, p, in equation (12.14) is derived in the Basel accord with
equation (12.9) and therefore takes values between 12% and 24% as shown
in Figure (12.3). From equation (12.14) we also observe that the substitution
approach is more valuable the lower the CVaR of the guarantor (second term
in the min function) compared to the CVaR of the obligor (first term in the
min function). Since in reality typically the default probability of the guaran-
tor PD, is lower than the default probability of the obligor PD,, regulatory
capital relief is often achieved when the substitution approach is applied.

12.6.2 Double Default Approach

The Basel Il accord also allows banks to address credit risk that is hedged with a
credit derivative, as displayed in Figure 12.8, with the double default approach.
This approach is quantified with the bivariate normal distribution M,. We have
already discussed the bivariate normal distribution in Chapter 4 (see Fig-
ure 4.4). A bivariate normal distribution has three input parameters: the
variables X and Y and the correlation parameter between X and Y, p:

My =f(X,Y,p) (12.15)

9. BCBS, “The Application of Basel I,” p. 49.
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To reduce the capital charge for hedged exposures, the Basel accord
defines the variables X and Y as the credit value at risk (CVaR) values of the
obligor o and the guarantor g, which we derived in equation (12.7). These are
correlated with a correlation factor, which correlates the CVaR of the obligor
and the guarantor and includes wrong-way risk. Let’s have a look at this
correlation factor.

From equation (12.1) we derive the default indicator variable x for the
obligor x, and the guarantor x,:

Xo=+/poM++/1-p,Z, (12.1a)
xg:\/@M—k 1—peZ, (12.1b)

The correlation between x, and x, in equations (12.1a) and (12.1b) is
/Popg- This can be seen easily: If p, and pg both are 1, x, and x¢ are equal to M in
every simulation and hence are perfectly correlated. If p, and p, both = 0, x,, and
x, are determined solely by their idiosyncratic variables Z, and Z,, hence are
uncorrelated. Even if either p, o7 p is 0, the correlation between x, and x, is 0.
Let’s assume p, is zero. Hence, the obligor is uncorrelated to the systematic
market factor M. Since all correlation is conditioned on M, there is also zero
correlation between x, and M, and therefore also zero correlation between x,,
and x,. For values of 0 < /p;p, < 1, x,, and x, are partially correlated.

Basel I now adds a correlation factor for wrong-way risk between the
obligor and guarantor, p*(1 — p,)(1 — p,). Altogether, the correlation
between the obligor o and the guarantor g is set to

Pog = \/PoPg +P*1 /(1 = p,)(1 = py) (12.16)

where

Pog: copula default correlation between (the assets of) the obligor o and
the guarantor g.

= means “is set to” or “defined as”.

/Pobg: default correlation (between the assets) of x, and x, without
wrong-way risk (WWR); is the correlation induced by systematic
risk (since it correlates x,, and x, by indirectly conditioning them on
the common market factor M).

p*: correlation coefficient for wrong-way risk.

p*/(1 = p,)(1 —p,): correlation term to address wrong-way risk.
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Other variables defined as in equation (12.14).
Equation (12.16) reminds us of the Pearson correlation approach. From
equations (1A.4) and (1A.5) in the appendix of Chapter 1, we have

E(XY)=EX)E(Y)+p o(X)o(Y) (1A.5a)

However, equations (12.15) and (1A.5a) are fundamentally different.
From p = 0 in equation (1A.5a) it follows that E(XY) = E(X)E(Y), which
means that X and Yare uncorrelated. From p* = 0 in equation (12.16) it follows
that p,, =, /pp,. However, this is not a case of uncorrelatedness. The

correlation between the obligor o and the guarantor g, p,e, will be zero
only if either p, or p, is zero, since from equations (12.1a) and (12.1b), p, and
pgare the correlation parameters that conditionally correlate on the common
factor M.

We are now ready to derive the double default approach for hedged
credit exposures in the Basel accord. We apply the bivariate equation (12.15)
and define the variable X as the CVaR of the obligor 0 and Y as the CVaR of
the guarantor g; see equation (12.7) for CVaR. We solve equation (12.16) for

Pog — \/PoPy

. Hence we derive
(1-p,)(1-p,)

the correlation coefficient p* =

CVaRhDD (X,T)=
)+

My ~!(PD, “UX) NTUPD)+ /0N~ (X)  pog—/Polg
\/— ’ VI=p, T/ T=p)(T=p,)

(12.17)

where

CVaR;,pp(X,T): credit value at risk for hedged exposures using the
double default approach in the Basel accord for a confidence level
of X and time horizon T. X is set at 99.9% in the Basel accord.

M,: bivariate cumulative normal distribution.

po: copula default correlation coefficient between all assets in the portfo-
lio of the obligor, derived by equation (12.9); hence p,, takes values
between 0.12 and 0.24.

pg: copula default correlation coefficient between all assets in the portfo-
lio of the guarantor; p, is set to 0.7 in the Basel accord.

pog: copula default correlation coefficient between the obligor and the
guarantor; p,, is set to 0.5 in the Basel accord.

Other variables are defined as in equation (12.14).
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FIGURE 12.11 Basel Accord Capital Charge for Credit Risk When Applying the
Substitution Approach of Equation (12.14)

The asset correlation of the obligor p, = 0.12, the asset correlation of the guarantor p, =
0.7, and the default correlation between the obligor and the guarantor p,, = 0.5.

From equation (12.16) we can expect a much lower CVaR compared to
an unhedged exposure of equation (12.7) since a joint probability M, is
typically much lower than a single probability N.

Let’s compare the three scenarios with respect to credit value at risk
(CVaR).

1. Unhedged capital charge CVaR for credit risk derived in equation
(12.7). CVaR is the basis for calculating the required capital of
equation (12.8).

2. A hedged CVaR, displayed in Figure 12.8, applying the substitution
approach of equation (12.14), which reduces CVaR.

3. A hedged CVaR, displayed in Figure 12.8, applying the double default
approach of equation (12.17), which also reduces CVaR.

Figure 12.11 shows the reduction in capital charge if the substitution
approach is applied.

From Figures 12.11 and 12.12 we observe the significant capital
charge reduction in the Basel accord when a credit exposure is hedged.
Comparing Figures 12.11 and 12.12, we also see that the double default
approach typically allows a lower capital charge than the substitution
approach does.
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Double Default Approach
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FIGURE 12.12 Basel Accord Capital Charge for Credit Risk When Applying the
Double Default Approach of Equation (12.17)
As in Figure 12.11, p, = 0.12, p, = 0.7, and p,, = 0.5.

The substitution approach has been criticized for its lack of mathematical
foundation and a lack of sensitivity to high risk exposure (since the high risk
exposure is substituted for the guarantor’s risk exposure). The double default
approach, also called the asymptotic single risk factor (ASRF) approach
following a paper by Gordy (2003) has a more rigorous mathematical founda-
tion and is sensitive to both high-risk (obligor) and low-risk (guarantor) debtors.

For a spreadsheet that derives the Basel III capital charge for hedged
credit exposure, see the spreadsheet “Basel double default.xIsm” at www
.wiley.com/go/correlationriskmodeling, under “Chapter 12.”

12.7 DEBT VALUE ADJUSTMENT (DVA): IF
SOMETHING SOUNDS T00 GOOD TO0 BE TRUE...

Let’s first clarify: Credit value at risk (CVaR) derived in equation (12.7)
addresses counterparty credit risk in a portfolio with relatively fixed expo-
sures such as bonds and loans. Credit value adjustment (CVA) derived in
equations (12.12) and (12.13) is a specific capital charge that typically
addresses counterparty credit risk in a derivatives transaction.

There have been two recent developments related to CVA: debt value
adjustment (DVA) and funding value adjustment (FVA). Let’s discuss them.

What is DVA?


http://www.wiley.com/go/correlationriskmodeling
http://www.wiley.com/go/correlationriskmodeling
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DEBT VALUE ADJUSTMENT (DVA)

Allows an entity to adjust the value of its portfolio by taking its own
default probability into consideration.

The Basel accord prefers the term CVA liability instead of DVA.
However, we will refer to it as DVA.

In Figure 12.5 we displayed credit exposure and concluded that credit
exposure can only be bigger or equal zero. Credit exposure for entity a with
counterparty c exists if the counterparty c¢ is a net debtor to a. If we allow
recognizing negative credit exposure or debt exposure, Figure 12.5 would
change to Figure 12.13.

This debt exposure of a with respect to ¢ could theoretically be taken into
consideration when evaluating a portfolio. In particular, debt exposure could
be recognized in derivatives transactions. This debt exposure in derivatives
transactions is the netted negative derivatives portfolio value of entity a with
respect to ¢, D,, . This is weighted, i.e. reduced by the probability of default of
entity a. Including a recovery rate of a, we derive in analogy to equation (12.12)
for CVA, which is: CVA, .= (D x PD.)(1 — R,),

DVA, .= (D, x PD,)(1 - R,) (12.18)

Credit exposure of entity a
with respect to ¢

Netted portfolio value
from the viewpoint of
a with respect to ¢

Debt exposure of entity a
with respect to ¢

FIGURE 12.183 Debt Exposure when the Netted Portfolio Value of Entity a is
Negative with Respect to Entity ¢ (i.e., a is a net debtor for ¢)
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where

DVA, : debt value adjustment of entity a with respect to entity ¢

D, : netted negative derivatives portfolio value of 4 with respect to ¢ (i.e.,
" a is a debtor to ¢)

PD,: default probability of entity a

R,: recovery rate of entity a

Importantly, let’s now consider that in the event of default of entity a,
only the recovery rate of a’s debt is paid out. If this is accounted for,
this decreases a’s debt and increases the book value (defined as
assets minus debt) of a. If we apply this concept to a derivatives
portfolio, the derivatives portfolio value increases and equation (12.10)
expands to

Value of
Derivatives = e - CVA + DVA
. Value
Portfolio

(12.19)

However, there are two critical problems with DVA:

1. An entity such as a would benefit from its own increasing default
probability PD,, since a higher default probability would increase
DVA via equation (12.18), which in turn increases the value of the
derivatives portfolio via equation (12.19).

2. Entity a could realize the DVA benefit only if it actually defaults.

Both properties defy financial logic. Therefore the Basel accord has
principally refrained from allowing DVA to be recognized. In 2008 several
financial firms had actually reported huge increases in their derivatives
portfolios due to DVA. This is no longer possible.

12.8 FUNDING VALUE ADJUSTMENT (FVA)

A further recent development relating to CVA and DVA is funding value
adjustment (FVA). What is FVA?
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FUNDING VALUE ADJUSTMENT (FVA)

An adjustment to the price of a transaction due to the cost of funding
for the transaction or the related hedge.

Funding cost had not been a major issue in derivatives pricing in the past.
However, in 2008, when interest rates especially for poor credits increased
sharply, funding cost could no longer be ignored.

There has been quite a spirited debate in 2012 and 2013 about whether
the cost of funding should be taken into consideration when pricing a
derivative. Hull and White as well as Duffie (Risk 2012(a) and 2012(b))
argue that adding funding costs violates the risk-neutral derivatives pricing
principle. It would lead to arbitrage opportunities, since the same derivative
would have different prices. However, derivatives traders argue that their
treasury departments charge them the funding costs. Hence funding costs
exist in reality and cannot just be ignored. The funding cost should be priced
in and passed through to the end user. See “The FVA Debate” in Risk, July
2012, and “Traders v. Theorists” in Risk, September 2012, for further
details.

Let’s look at the issue of cost of funding. The cost of funding of an entity
is mainly a function of the default probability of the entity. Hence we have

FVA,=f(PD,,...,) (12.20)

There is a positive relationship between FVA and PD, since the higher the
default probability, the higher is the cost of funding:

OFVA,
aPD,

>0 (12.21)

If the cost of FVA is taken into account, the value of a derivatives
portfolio is reduced. Hence equation (12.19) then changes to

Ay Ay Ay Ay Ay
Value of
T | T . CVA + DVA - FVA
A Value
Portfolio

(12.22)

As we see from equations (12.18) and (12.21), both DVA and FVA
increase if the probability of default increases; hence credit quality decreases.
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In a 2012 response to the Basel proposal, the International Swaps and
Derivatives Association (ISDA) has suggested that “CVA liability [i.e.
DVA] should be deducted only to the extent that it exceeds the increase in
FVA.”1%In this case there would be no benefit (i.e., no increase in the value of
a derivatives portfolio) if the default probability of an entity increases, as we
can see from equation (12.22), (since DVA is added only up to the amount
that FVA is subtracted).

12.9 SUMMARY

In this chapter we discussed the way correlation risk is addressed in the Basel
IT and Basel III frameworks. The Basel committee has recognized the signifi-
cance of correlation risk and has suggested several approaches to managing
correlation risk.

Correlation risk is a critical factor in managing credit risk. In the Basel II
and IIT accords, credit risk of a portfolio is quantified with the credit value at
risk (CVaR) concept. CVaR measures the maximum loss of a portfolio due to
credit risk with a certain probability for a certain time frame. Basel II and
Basel III derive CVaR on the basis of the one-factor Gaussian copula (OFGC)
correlation model, which we discussed in Chapter 6.

The required capital to be set aside for credit risk is the CVaR minus the
average probability of default of the debtors in the portfolio. This is because
the Basel committee assumes that banks cover the expected loss (approxi-
mated as the average probability of default) with their own provisions such as
the interest rate that they charge.

Interestingly, the Basel committee requires an inverse relationship
between the default correlation of the debtors in a portfolio with respect
to the default probability of the debtors: The lower the default probabil-
ity of debtors in a portfolio, the higher is the default correlation between
the debtors. This is reasonable, since debtors with a low default proba-
bility are more prone to default for systematic reasons; that is, they more
often default together in a recession. Conversely, low rated debtors
with a high default probability are more affected by their own idiosyn-
cratic factors and less by systematic risk. Hence the default risk of low
rated debtors is assumed to be less correlated. This is supported by
empirical data.

10. See ISDA, “ISDA and Industry Response to BCBS Paper on Application of Own
Credit Risk Adjustments to Derivatives,” 2012, www2.isda.org/functional-areas/risk-
management/page/3.
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A further aspect, which has become a critical factor in credit risk
management, is credit value adjustment (CVA). CVA is a capital charge
to address credit risk, mainly in derivatives transactions. CVA has a market
risk component (the netted derivatives value) and a credit risk component (the
probability of default of the counterparty). Importantly, these market risk
and credit risk components are typically correlated! This results in the
correlation concept of wrong-way risk (WWR). The Basel committee defines
two types of wrong-way risk:

1. General wrong-way risk arises when the probability of default of
counterparties is positively correlated with general market risk factors.

2. Specific wrong-way risk exists if the exposure to a specific counterparty is
positively correlated with the counterparty’s probability of default due to
the nature of the transaction with the counterparty.

The Basel committee requires financial institutions to address wrong-way
risk: Financial institutions have to increase their credit exposure value
(calculated without wrong-way risk) by 40%. Financial institutions that
use their own internal models can apply a 20% increase. This is conservative,
since banks report a numerical value for wrong-way risk of 1.07 to 1.1.

The Basel committee also realizes the risk reduction that is achieved when
a credit exposure is hedged with a credit default swap (CDS). The Basel
committee allows banks to address the credit risk reduction of a CDS in two
ways: (1) the substitution approach, which allows banks to use the typically
lower default probability of the guarantor (CDS seller) in the credit exposure
calculation, and (2) the double default approach, which derives the joint
probability of the obligor and the guarantor defaulting. This joint default
probability is typically much lower than the individual default probability of
the obligor, lowering the overall credit exposure value.

The concept of CVA has recently been extended by the concepts debt
value adjustment (DVA) and funding value adjustment (FVA). Debt value
adjustment (DVA) allows an entity to adjust the value of a position (such as a
loan or a derivative) in a portfolio by taking its own default probability into
consideration. If an entity applies DVA (i.e., takes its own default probability
into consideration), this actually reduces the credit exposure of the entity.
This is highly controversial and has been banned by the Basel committee.

Funding value adjustment (FVA) is an adjustment to the price of a
transaction, typically a derivative, due to the cost of funding the transaction.
FVA has been quite controversially debated in 2012 and 2013. Finance
professors argue that it creates arbitrage opportunities, since different FVA
values lead to different derivatives prices. However, traders argue that the
funding costs are substantial and have to be included in the transaction price.
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PRACTICE QUESTIONS AND PROBLEMS

1. What information does credit value at risk (CVaR) give us?

2. Why don’t we just apply the market value at risk (VaR) concept to value
credit risk?

3. Which correlation concept underlies the CVaR concept of the Basel Il and
III approach?

4. In the Basel committee CVaR approach, what follows for the relationship
between the CVaR value and the average probability of default, if we
assume the correlation between all assets in the portfolio is zero?

5. Suppose Deutsche Bank has given loans to several companies in the
amount of $500,000,000. The average 1-year default probability of
the companies is 2%. The copula default correlation coefficient between
the companiesis 3%. Whatisthe 1-year CVaR ona 99.9% confidence level?

6. In the Basel committee CVaR model, the default correlation is an inverse
function of the average probability of the default of the assets in the
portfolio. Explain the rationale for this relationship.

7. In the Basel committee approach, the required capital to be set aside for credit
risk is the CVaR minus the average probability of default. Explain why.

8. CVA is an important concept of credit risk. What is CVA? Why is it
important?

9. Why can CVA be considered a complex derivative?

10. How can CVA without correlation between market risk and credit risk be
calculated?

11. Including the correlation between market risk and credit, the concept of
wrong-way risk (WWR) arises. What is general wrong-way risk, and
what is specific wrong-way risk?

12. Name two examples of specific wrong-way risk.

13. How does the Basel committee address wrong-way risk?

14. What is DVA? Should DVA be allowed to be applied in financial practice?

15. What is FVA? Should FVA be included in the pricing of derivatives?
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13

The Future of Correlation
Motdeling

Solving the right problem numerically beats solving the wrong
problem analytically every time.
—Richard Martin

n this chapter we discuss new developments in financial modeling that can

be extended to correlation modeling. We address the application of
graphical processing units (GPUs), which allow fast parallel execution
of numerically intensive code without the need for mathematical solvency.
We also discuss some new artificial intelligence approaches such as neural
networks, genetic algorithms, as well as fuzzy logic, Bayesian mathematics,
and chaos theory.

13.1 NUMERICAL FINANCE: SOLVING FINANCIAL
PROBLEMS NUMERICGALLY WITH THE HELP OF
GRAPHICAL PROCESSING UNITS (GPUS)

Some problems in finance are quite complex so that a closed form solution is
not available. For example, path-dependent options such as American-style
options principally have to be evaluated on a binomial or multinominal tree,
since we have to check at each node of the tree if early exercise is rational. In
risk management, especially in credit risk management, thousands of corre-
lated default risks have to be evaluated. While there are simple approximate
measures to model counterparty risk in a portfolio such as the Gaussian
copula model (see Chapter 6), it is more rigorous to model counterparty risk

283
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on a multifactor approach using numerical methods such as Monte Carlo
simulation.

In the recent past, the increase of computer power has made numerical
finance an alternative to analytical solutions. Let’s define it:

NUMERICAL FINANGE

Attempts to solve financial problems with numerical methods (such as
Monte Carlo simulation), without the need of mathematical solvency.

Other terms for numerical finance are statistical finance, computational
finance, and also econophysics. More narrowly defined, econophysics is the
combination of physical concepts and economics. However, the economic
concepts include stochastic processes and their uncertainty, which are also an
essential part of finance.

Why waste good technology on science and medicine?
—Lighthearted phrase of gamers on GPU technology

13.1.1 GPU Technology

Graphical processing units (GPUs) are the basis for a technology that alters
memory in a parallel execution of commands to instantaneously produce
high-resolution three-dimensional images. The GPU technology was derived
in the computer gaming industry, where gamers request high-resolution,
instant response for their three-dimensional activities at low cost. This caught
the attention of the financial industry, which is paying millions of dollars to
receive real-time response for valuing complex financial transactions and risk
management sensitivities.

Hence, over time, financial software providers have started to rewrite
their mathematical code to make it applicable for the GPU environment.
Companies such as Murex, SciComp, Global Valuation Limited,
Hanweck Associates, BNP Paribas, and many others have implemented
GPU-based infrastructures to numerically solve complex derivatives
transactions and calculate risk parameters. The academic environment
has also responded. More than 600 universities worldwide offer courses
in GPU programming.
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13.1.2 A GPU Model for Valuiny Portfolio
Counterparty Risk

Albanese et al. (2011) display a detailed approach that applies GPU technol-
ogy to model counterparty risk in a portfolio. These portfolios typically
consist of thousands of counterparties whose default and transition proba-
bilities are correlated. To evaluate this complex counterparty risk in a
rigorous way, numerical methods are necessary. The model consists of the
following steps:

1. The portfolio data (i.e., the contracts of the loans, swaps, credit default
swaps [CDSs], foreign exchange [FX] contracts, options, futures, etc.)
with each counterparty are netted' and input into the model.

2. The stochastic processes of the underlying input variables such as interest
rates, exchange rates, default intensities, and CDS contracts are
generated.

3. Parallelized pricing of the contracts is done using multithreading? tech-
nology in a GPU framework.

4. The model is calibrated using a large number of liquid assets and
derivatives. It is tested whether backward induction or Monte Carlo
forward induction gives better calibration results.

5. Correlations are integrated in the model via dynamic multifactor copulas;
see Chapter 6, section 6.5.

6. GPU technology allows real-time 3-D visualization of the output.

Figure 13.1 shows the model in graphical form.

13.1.3 Benefits of GPUs
Let’s have a look at the benefits of GPUs.

m Speed. The main benefit of the GPU technology is speed. Thousands of
cores, executing in parallel, are implemented in a GPU, whereas the
central processing unit (CPU) of a standard PC has just multiple cores
(as of 2013). Most software providers claim that the GPUs are 20 to

1. In most sovereign states, legislation allows netting with a specific counterparty. This
is the process of adding together the positive present value (PV) and the negative PV of
all deals with the counterparty. Only if this netted portfolio PV is positive does
counterparty risk exist. See Chapter 12, section 12.4 for details.

2. Multithreading is a technology in which the processor switches between different
programming instructions (threads), which allows the parallel execution of multiple
commands.
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FIGURE 13.1 A GPU Model to Quantify Counterparty Credit Risk
Source: Albanese et al. (2011).

100 times faster than their rival CPUs. In addition, CPU applications and
fast GPU technology have been combined in the recent past to implement
standard CPU applications at high speed easily.

Increasing user-friendliness. Special languages to execute financial code
in the GPU framework, such as CUDA (compute unified device architec-
ture), as well as OpenGL (open graphics library) and OpenCg (C stands
for the computer language and g for graphics), have been developed,
specifically designed for parallel computing in the GPU framework.
Structural efficiency. CPU technology typically depends on a compiler
that translates the source code into an executable language. The GPU
languages such as CUDA, OpenGL, and OpenCg may be more difficult
to program, but do not require compiling. Therefore manipulation of the
language code, for example stress testing or optimization, can be easily
and quickly achieved.

More precision? Advocates of the GPU technology claim that “you can
eat the cake and have it, too,” meaning GPUs are faster and at the same
time more accurate. The faster speed is evident. However, the question of
whether parallel iterative search procedures are more accurate than
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standard mathematical techniques such as finite difference methods,
vector-splitting techniques, and Fourier transforms to solve complex
financial problems is debatable.

13.1.4 Limitations of GPUs

Let’s outline the limitations of GPUs.

m Although there have been efforts to combine CPU and GPU technologies,
GPUs still have a different architecture and require their own distinct
structure of programming and specialized programming languages such
as CUDA, OpenGL, and OpenCg.

m GPUs provide efficient and fast solutions for problems that are complex
but can be represented in matrices, since it is easy to execute matrix
multiplication and manipulation. However, GPUs may not be well suited
for nonlinear, path-dependent structures.

Altogether, the GPU technology is a promising new approach to derive
fast, real-time results for complex financial problems for which analytical
solutions are questionable or unavailable. However, one can argue that if
mathematical techniques are available, although slower, they should have
preference over brute-force nonanalytical iterative search procedures.

13.2 NEW DEVELOPMENTS IN ARTIFICIAL
INTELLIGENGCE AND FINANGIAL MODELING

In this section, we discuss new developments in artificial intelligence (AI) such
as neural networks and genetic algorithms. We also investigate whether
related areas such as Bayesian probabilities, fuzzy logic, and chaos theory are
promising tools for financial modeling.

What is artificial intelligence? Typically it is not a good idea to define a
term and use that same term in the definition. But let’s do it anyway: Artificial
intelligence is the attempt to create artificial intelligence. Less ironical:
Artificial intelligence is the science of creating intelligent machines. One of
the most successful concepts to create artificial intelligence is neural networks.

13.2.1 Neural Networks

Neural networks are the most widely applied artificial intelligence concept in
finance. Neural networks are typically used in trading and investing, trying to
forecast prices and volatilities of stocks, bonds, exchange rates, and the like.
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Several companies such as Tradecicion or BrainMaker offer specific neural
network software to make financial predictions. Neural networks are also
applied in derivatives pricing and credit risk management. Two types of
neural networks currently exist:

1. A biological neural network consists of living systems with neurons
(nerve cells), whose electrical or chemical information is transmitted to
other neurons via synapses.

2. An artificial neural network (ANN), our main interest, is a nonliving
system that tries to mimic the functioning of the human brain, in
particular the ability to learn.

The learning process in an ANN can be achieved by different methods.
One of the most popular is backpropagation (an abbreviation for “back-
ward propagation of errors”), which applies weighting factors. Each
weighting factor has a resistance attached to it. Numerous simulations
(epochs) of different combinations of weighting factors are run. If the
neural network output is close to the target value, the weighting factors are
strengthened; that is, the resistance is turned down. If certain weighting
factors produce bad results, the weighting factors are weakened; that is, the
resistance is turned up.

Meissner and Kawano (2001) show that a neural network can improve
option pricing. The applied neural network is the popular multilayer percep-
tron (MLP) network, which can be mathematically expressed as

H n
YNN = 2 BhTzwihxi (13.1)
h=1 i=1

where ynn: output of the neural network (the option price)

B5: weighting factor of layer node b;, which reflects the strength between
h; and the output ynn (see Figure 13.2)

T: transfer function, usually a simple hyperbolic function such as the
tangent function (this function standardizes weighted input variables
to values between -1 and +1)

wi,: weighting factor of input x;, which reflects the strength between
input x; and the hidden layer node / (see Figure 13.2)

x;: input variable i (the spot/strike S/K, option maturity T, implied
volatility o, and interest rate )

Graphically, an MLP neural network can be expressed as in Figure 13.2.
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FIGURE 13.2 Sample Structure of an MLP Neural Network with Various Input
Variables x;, i = 1...n, One Hidden Layer with Three Units b;,j = 1...3, and One
Output Variable ynn.

Source: Meissner and Kawano (2001).
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Using backwardation techniques together with a GARCH (see Chapter 8,
section 8.3) generated volatility, Meissner and Kawano (2001) show that a
neural network can learn to produce the volatility smile of options, which is
observed in reality. Hence the neural network gives better option pricing
results than the standard Black-Scholes-Merton model.

Other research on neural networks and option pricing exists, such as
Rubinstein (1985); Freisleben and Ripper (1997); White, Hatfield, and
Dorsey (1998); Yao, Yili, and Tan (2000); and Gradojevic, Gengay, and
Kukolj (2009). However, most neural networks in finance are applied to
simply forecasting stock prices, option prices, mutual funds values and the
like, often based on finding technical analysis patterns. For a nice overview on
neural networks applied in finance, although a bit outdated, see Fadlalla and
Lin (2001).

13.2.1.1 Limitations of Neural Networks Naturally neural networks have
their drawbacks. First, they are a black box; that is, the mathematical
algorithm that optimizes the output is hidden. Second, neural networks often
have a fairly slow convergence rate. Third, and most important, neural
networks can get stuck at local optima, not deriving the general optimum.
These reasons have limited the usage of neural networks in reality.

To overcome these drawbacks, neural networks in the recent past
have been combined with other disciplines, for example fuzzy logic,
genetic algorithms, or Bayesian statistics, to improve the neural network
performance.
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13.2.2 Fuzzy Loygic

Fuzzy logic is an exciting field. It alters the traditional concept of reasoning.
In traditional logic a statement can either be true, typically assigned the
value 1, or false, assigned the value 0. Fuzzy logic, however, argues that
there can be a “partial truth” to a statement, assigning truth values ranging
between 0 and 1.

For example, a professor asks the question: “What are the prime
numbers between 10 and 20? The correct answer is the set {11, 13, 17, 19}.
If a student gives the answer {11, 13, 17}, traditional logic would argue that
the answer is false. However, fuzzy logic would argue that the answer is
partially true, actually 75% true.

Fuzzy logic has some real-world applications. For example, it is
applied in Japan to improve the punctuality of trains: If a train is one
minute late, fuzzy logic can assign a punctuality value of close to 1 (totally
punctual), making no action necessary. The later a train arrives, fuzzy
logic can assign gradually lower punctuality values, initiating action for a
train with low punctually values to have priority access to stations so it
catches up to its scheduled time. Hence fuzzy logic often applies flexible if-
then statements to construct specific, flexible commands to address a
problem.

Fuzzy logic can tolerate imprecise information, but lacks learning ability.
Therefore the learning ability of neural networks is often combined with
fuzzy logic. In addition, genetic algorithms are often introduced, creating
genetic fuzzy neural networks (GFNNs).

13.2.3 Genetic Algorithms

Genetic algorithms are based on phenomena found in evolution, such as
selection, crossover, and mutation.

Each individual or element in a genetic algorithm is defined as a vector
with parameters and weights. Selection can be done by various methods:

m Roulette wheel selection. Here a random selection of potentially useful
solutions for recombining the individuals is performed.

m Crossover method. The next generation is created by different “cross-
ings” (loosely speaking, combinations) of the parents’ organism strings to
produce a variety of child organisms.

B Mutation. A change in the genetic property of an individual is typically
quantified as single point mutation, meaning only a single nucleotide
parameter is replaced by a new parameter. This replacement is per-
formed at a certain mutation rate. For example, if the mutation rate is
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specified as 30%, this means that in 30% of the simulations a mutation
will take place.

13.2.3.1 Genetic Fuzzy Neural Networks In finance, numerous studies on
genetic fuzzy neural networks (GFNNs) exist. They are mainly applied to
forecast stock prices or support trading decisions; see Yu and Zhang (2005);
Yang, Wu, and Lin (2008); Li and Xiong (2006); Kuo, Chen, and Hwang
(2001); or Huang (2008). After learning, most of the GFNN models were able
to outperform the benchmark index.

My book was criticized before it was published, which is a
compliment.
—Benoit Mandelbrot

13.2.4 Chaos Theonry

Another interesting field with potential applications in finance is chaos
theory.

Chaos theory is a field that studies the behavior of dynamic systems. It is
mainly applied in meteorology to explain and forecast weather dynamics, but
is also used to explain phenomena in physics, engineering, biology, econom-
ics, and finance. The definition of a chaotic system is not unique. However,
the five main criteria of a chaotic system are:

1. Strong dependence on initial conditions.

This insight was derived in the famous 1972 paper by the mathema-
tician and meteorologist Edward Lorenz: “Predictability: Does the Flap
of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?” Lorenz
argued that a butterfly in Brazil can influence weather conditions, and
even cause a tornado in a region very far away. Earlier, in 1961, Lorenz
had found that changing the number of decimal places from three to six
improved the modeling of weather predictions significantly. This strong
dependence on initial conditions is one reason for the next criterion of a
chaotic system.

2. Predictions are possible for only a short period of time.

Clearly this condition applies to modeling weather. Weather can be
predicted quite well for a short period of time, for example for 12 hours
or 24 hours. However, the longer the time horizon of the prediction, for
example three days or five days, the less predictable weather becomes.
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For an ever longer time horizon, for example 15 or 30 days, a reliable
forecast is virtually impossible, since the weather system is chaotic in the
long term; that is, it is unpredictable.

. Self-similarity.

Chaotic systems typically display self-similarity. This means that an
object is similar or exactly the same as the parts of that object viewed on a
different scale. For example, a coastline viewed from far away often
displays the same patterns as the same coastline viewed from very close.
Self-similarity is a property of fractals, which were introduced by Benoit
Mandelbrot in 1975. Mandelbrot discovered fractals in many natural
phenomena such as mountains, rivers, and blood vessels, and also in
music, paintings, and architecture. Interestingly, Mandelbrot claimed to
have found fractals also in stock price movements. In 2004, he wrote a
book with Richard Hudson, The (Mis)Behavior of Markets: A Fractal
View of Risk, Ruin, and Reward, in which also the Gaussian distribution
of stock price returns is questioned.

. Regime changes.

Chaotic systems do not behave chaotically all the time; they can,
when moving on an attractor, be somewhat predictable. An attractor is a
set toward which a variable, according to a mathematical algorithm,
evolves over time. Loosely speaking, an attractor attracts a variable to
move toward or around the attractor. An attractor can simply be a point,
a curve, or a surface. Complex attractors with fractal structures or with
noninteger dimensions are called strange attractors. The form of a
strange attractor may resemble a butterfly or the number 8, as seen in
Figure 13.3. Figure 13.3 shows a two-dimensional attractor.

FIGURE 13.83 Example of an Attractor

A variable will often stay in one set of rings until a regime change occurs, and then the

variable will move toward a new regime (i.e., a different set of rings with different
dynamics).
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5. Deterministic nature.

A chaotic system is mathematically deterministic. It does not include
random factors, such as a random drawing from a certain distribution,
which is often applied in finance; compare equations (4.1) and (4.2),
equations (8.33) to (8.35), and equation (12.1). However, the determi-
nistic nature of chaos theory is not a sufficient condition for good
predictability of the system in the long run.

13.2.4.1 Chaos Theory and Finance Can chaos theory explain and predict
phenomena in finance?

Criterion 1 of chaos theory, the strong dependence on initial conditions,
is not critical in finance. Low levels of a stock price in #y do tend to have higher
volatilities. For example, a stock price moving by $5 from $100 to $105 hasa
5% increase. A stock price moving by $5 from $10 to $15 has a 50%
increase. In general, though, it is of minor importance at what level the stock
price that we are trying to forecast is in #.

Criterion 2, the possible predictability in the short term, but limited
predictability in the long run, is also not present in finance. It can even be
argued that in this sense finance is antichaotic. Stock market prediction in the
short term, for a day or a week, is often more difficult than longer-term
predictions, for example yearly predictions. This is because longer-term stock
market movements are based on long-term economic conditions such as
recessions or periods of prosperity.

Criterion 3, self-similarity, can be found in finance. For example, the
performance of the Dow Jones Industrial Average shows a similar pattern
when observed monthly, by week, or intraday.

From Figures 13.4 to Figures 13.6, we observe the self-similarity property
for the Dow’s performance. Especially the weekday (Figure 13.5) and
intraday performance (Figure 13.6) are similar. A strong performance in
the beginning of the time period (Tuesday and 10.30 to 11.00) then weakens
and is followed by a negative performance toward the end (Thursday and
14.00 to 14.30) with an uptick at the end (Friday and 15.00 to 16.00). This is
also similar to the monthly performance in Figure 13.4.

Criterion 4, the different regimes in chaos theory, translate well to
finance. We just call them trends. Long-term upward trends during an
economic expansion or long-term downward trends in a recession exist,
as well as short-term intraday upward and downward trends. These trends
are exploited by traders: “The trend is your friend.”

Criterion 5, the deterministic nature of chaos theory, is not an adequate
property for financial modeling. As mentioned numerous times in this book
[see Chapter 4 and equations (4.1) and (4.2) or equations (8.33) to (8.35)],
financial variables can be well modeled with a stochastic process.
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Monthly Performance of the Dow
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FIGURE 13.4 Monthly Performance (Percentage Change) of the Dow (Data from
1968 to 2001)

13.2.4.2 Conclusion: Can We Apply Chaos Theory to Model and Forecast Financial
Variables? From our analysis, we find that chaos criteria 3 and 4, the self-
similarity principle and the regime changes, are also found in finance.
However, criteria 1, 2, and 5, the dependence on initial conditions, the
short-term but not long-term predictability, and the deterministic nature of
chaos theory, are typically not properties in finance. The critical question is
whether criteria 3 and 4 are sufficient to support financial trading decisions.

Some companies believe so. Financial Chaos Theory, a consulting firm,
and Tetrahex, which sells fractal finance software, are using chaos theory to
offer trade support. They apply fractal dimensions (for example the dimension
2.5) and try to find buy and sell signals based by deriving technical indicators

Weekday Performance of the Dow
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Intraday Performance of the Dow
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FIGURE 13.8 Intraday Performance of the Dow (Data from 1968 to 2001)

such as moving average convergence/divergence (MACD), which gives buy and
sell signals when different moving averages cross, as well as identifying trends.

Some research has shown some explanatory power for financial variables
using chaotic dynamics, such as Trippi (1994) and Peters (1996).

So far no attempt has been made to apply chaos theory for correlation
modeling. Since only some of the chaos criteria are appropriate for financial
modeling, it is questionable whether chaos theory is a useful tool for
correlation modeling. But we are always happy to be proven wrong.

13.2.5 Bayesian Probabilities

Bayesian statistics and related probabilities are a further concept with potential

application to financial modeling. The Bayesian approach reinterprets and

extends the classical probability reasoning. Bayesian probabilities were

founded by the English mathematician Thomas Bayes in the eighteenth century

and popularized by the French mathematician and astronomer Pierre Laplace.
At the heart of the Bayesian approach is the Bayes theorem:

P(B|A)P(A)

PIAIB) = —p

(13.2)

It is important to note that the Bayesian theorem (13.2) is algebraically
identical with the classical frequentist probability theory (called “frequentist”
since it draws its conclusion from the frequency of data). In fact, we had derived
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equation (13.2) in the appendix of Chapter 1, in equations (1A.1) to (1A.3).
However, the Bayesian theory reinterprets the variables in equation (13.2).

In frequentist theory, P(A) and P(B) are the probabilities of events A and
B, respectively. P(A|B) is the probability of A, conditionally on B occurring or
having occurred. P(B|A) is the probability of B, conditionally on the proba-
bility of occurring or having occurred. However, in Bayesian theory the
variables in equation (13.2) have the following interpretations:

m P(A) is a prior initial probability. P(A) is the hypothesis before account-
ing for evidence. P(A) can be a personal subjective belief, rather than an
objectively derived probability.

m P(B) is the probability of the evidence B, which will influence the critical
outcome P(A|B).

m P(A|B) is the posterior probability. P(A|B) is the probability of A given
that the evidence B is observed.

m P(B|A)/P(B) is the support that B provides for deriving P(A|B).

From these definitions, two main properties follow:

1. In classical probability theory, a hypothesis is a proposition that is either
true or false, so the probability of the proposition is 0 or 1. In Bayesian
logic, a probability is assigned to a hypothesis (above the hypothesis P
(A)) that can take truth values befween 0 and 1. This adds flexibility to
the process of deriving the conditional probabilities. It is related to fuzzy
logic, which also applies the concept of partial truth (see section 13.2.2).

2. Bayesian logic is a dynamic theory. If new evidence is found incorporat-
ing the values for P(B) and P(B|A), this evidence is incorporated and a
revised outcome P(A|B) is derived. Hence Bayesian theory shows how a
subjective belief changes in time following new evidence.

Let’s look at an example of Bayesian probability.

EXAMPLE 13.1: A NUMERICAL EXAMPLE OF
BAYESIAN PROBABILITIES

An analyst performs some approximate studies and believes that the
default probability of Ford Motor Company is P(A) = 10%. The
economy, as in 2008, is in a severe recession and systemic risk exists
(see Chapter 1, section 1.4). The analyst finds evidence that there is a
positive default correlation between General Motors (GM) and Ford.

(continued)
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In particular, the conditional default probability of GM defaulting if
Ford defaults is P(B|A) = 20%. In addition, the default probability of
GM is P(B) = 15%. What is the default probability of Ford, applying
this new evidence? Using Bayesian equation (3.2), this new posterior
probability P(A|B) is

P(BJA)P(A) 0.2 x0.1
P(B)  0.15

P(A|B) = =0.1333=13.33%

Hence, the initially assumed default probability of 10% for Ford
increases to 13.33% when new evidence is applied via Bayes’ theorem.

Note that in order to apply Bayes’ rule of equation (13.2), a
codependence of A and B has to be sensible. This means that A has to be
dependent on B, and B has to be dependent on A as well, since if P(B|A) > 0,
the result P(A|B) will also be nonzero, assuming P(A) and P(B) are also
nonzero.

For example, let P(A) be the default probability of company A, which
issues a catastrophe bond. Let P(B) be the probability of the catastrophe (for
example a tsunami) occurring. P(A|B) is the probability of the company
default dependent on the catastrophe occurring. P(A|B) > 0, since if the
catastrophe occurs, the default probability of company A increases, as it may
not be able to pay the insurance claims. However, P(B|A) = 0, since the
probability of the catastrophe occurring does not depended on the default
probability of the company. Hence in this case, Bayes’ rule cannot be applied
(see Burke and Meissner 2011 for the valuation of cat bonds).

Bayesian methods have been successfully applied in numerical financial
applications such as financial forecasting, risk modeling, and inferring finan-
cial data such as volatilities and derivatives prices; see Gamerman and Lopes
(2006), Rachef et al. (2008), Hore et al. (2009), or Quintana et al. (2009).
While Bayesian methods are useful in fairly simple, one-parameter estimation
problems, the drawback of Bayesian methods lies in their limitations in
solving complex statistical problems. However, numerical approximations
such as maximum entropy, transformation group analysis, reference analysis,
or sequential Monte Carlo simulations based on particle filtering have
enhanced Bayesian methods in the past; see Hore et al. (2009) for details.

So far no attempt has been made to use Bayesian methods to model or
infer correlations. However, with its flexibility and assisted by advanced
numerical methods, Bayesian methods should be able to enhance correlation
modeling in the future.
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13.3 SUMMARY

In this chapter we discussed new developments in financial modeling, which
can be applied to correlation modeling.

One new methodology to solve complex financial problems is to apply
GPU technology. Graphical processing units (GPUs) have their roots in the
computer gaming industry, where gamers receive instant response for their
three-dimensional activities at low cost. Not surprisingly, the GPU tech-
nology has been adapted to solve complex financial problems such as
evaluating the correlation credit risk of large portfolios or the sensitivities
of complex derivatives. The GPU technology implies that the financial
problems are solved numerically, for example with Monte Carlo simulation
without the need of mathematical solvency. Advantages of the GPU
technology are speed and the special code, which does not require compil-
ing. One of the disadvantages of the GPU technology is the difficulty to
handle nonlinear processes. Some quants are generally apprehensive about
solving financial problems numerically without an underlying mathemati-
cal algorithm.

Neural networks are by far the most widely applied artificial intelli-
gence concept in finance. Neural networks try to mimic the functioning of
the human brain and have therefore the ability to learn. The most popular
learning technique is backpropagation. If the neural network output is close
to the target value, the network strengthens the algorithm that led to
successful outcome by increasing weighting factors. Conversely, if an
output is far away from the target value, the network weakens the algo-
rithm. Neural networks have been applied in finance to improve option
pricing and in trading to forecast stock prices, option prices, volatilities,
and other variables. Limitations of neural networks lie in the facts that the
algorithm is hidden and that neural networks can get stuck at local but not
general optima.

Fuzzy logic is another interesting field with potential applications for
finance. Fuzzy logic alters the traditional concept of truth, in which a
statement is either entirely true or entirely false, by introducing the concept
of partial truth. If the question is “What is the natural number set from 1
and 4, including 1 and 4?” the answer is of course the set {1, 2, 3, 4}. If the
answer given is {1, 2, 3}, then this would be incorrect under traditional
reasoning. However, fuzzy logic would argue that the answer is at least
partially true. Fuzzy logic can handle imprecise information well, but lacks
the ability to learn; therefore it is a good idea to combine fuzzy logic with
neural networks. In addition, generic algorithms are often introduced to
fuzzy neural networks.
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Genetic algorithms apply phenomena found in evolution such as selec-
tion, crossover, and mutation. Each of these phenomena is expressed as a
mathematical algorithm. Selection can be modeled either randomly by
sampling from a statistical distribution or deterministically by applying
parametric inputs. Crossover produces the next generation by different
combinations of parents’ organisms. Mutation (i.e., the change in the genetic
property) can be achieved by introducing a mutation rate. A high mutation
rate parameter means a high rate of mutation from the parents to the next
generation and a low parameter means a low rate of mutation.

Several financial studies exist that combine genetic algorithms, fuzzy
logic, and neural networks, termed GFNN models. Most GFNN models are
able to outperform a benchmark index.

A further interesting field with potential applications to finance is chaos
theory. It was developed in the 1960s and 1970s and is typically applied to
weather modeling but has also been applied in physics, biology, economics,
and finance.

Chaos theory has several criteria: (1) strong dependence on initial
conditions, as shown in the famous butterfly analogy that the flap of a
butterfly’s wings in Brazil can potentially cause a tornado in a different
continent; (2) predictions are possible for only a short period of time; (3) self-
similarity (i.e., patterns found when viewing a system from afar can also be
found when viewing the system up close); (4) regime changes; and (5)
deterministic nature. Investigating whether these criteria apply in finance,
we find that the self-similarity principle and the regime changes translate well
to finance. However, the high dependence on initial conditions, the short-
term but not long-term predictability, and the deterministic nature of chaos
theory do not apply in finance. Nevertheless, some companies provide trading
models based on chaos theory, applying foremost the self-similarity principle
to forecast short-term and long-term stock price patterns.

Bayesian statistics and its redefined probabilities are a further concept
with potential application to financial modeling. The Bayesian approach
reinterprets and extends the classical probability reasoning. Bayesian logic
introduces a prior probability, which is the hypothesis before accounting for
evidence. This prior probability can be based on personal beliefs. In addition,
a posterior probability is derived when additional evidence is considered. As a
consequence, the probability assigned to a hypothesis can have partial truth
values, just as in fuzzy logic. In addition, Bayesian logic is a dynamic theory,
since the posterior probability is revised if new evidence is found. Bayesian
methods have been successfully applied in financial forecasting, risk model-
ing, and financial inference. No attempts have been made so far to apply
Bayesian methods to model financial correlations.
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PRACTICE QUESTIONS AND PROBLEMS

1. GPU technology originated in the gaming industry and has been modified
to solve complex financial problems. What is the general approach of
graphical processing units (GPUs) to solve financial problems?

. What are the advantages of applying the GPU technology in finance?

. What are the disadvantages of the GPU technology in finance?

. What is a general concern when applying GPU technology to finance?

. Neural networks mimic the human brain and therefore have the ability to
learn. How do they learn?

. What are the limitations of neural networks?

7. Fuzzy logic is cool since it alters the traditional logic of a statement being
either true or false. What logic does fuzzy logic apply?

8. Which three main concepts of evolution do genetic algorithms apply?
Explain them briefly.

9. A chaotic system has several properties; name four.

10. Which properties of chaos theory translate well to finance, and which do

not?

11. Which concept does Bayesian logic share with fuzzy logic?

12. What are prior probabilities and posterior probabilities in the Bayesian

theory?
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Glossary

A

accrued interest The accumulated interest of an investment from the last payment
date.

American-style option Option that can be exercised at any time before or at the
option maturity date.

antithetic variable technique A method to reduce computations when simulating
trials (as in the Monte Carlo method) by changing the sign of the random sample.

arbitrage A risk-free profit, achieved by simultaneously buying and selling equiv-
alent securities on different markets. In trading practice, often defined more
widely as a strategy which tries to exploit price anomalies.

asset swap A swap based on the fixed rate of an asset. Typically that fixed rate is
swapped into LIBOR plus a spread.

asset swap spread Spread over LIBOR that is paid in an asset swap. Reflects the
credit quality of the issuer.

association A measure of association is a fairly new statistical term synonymous with
measure of dependence (see also dependence).

attachment point The number or the amount of defaults necessary to trigger a payoff
in a basket default swap or a tranche of a CDO.

autocorrelation The degree of which a variable is correlated to its past values.

B

back-testing Testing how well current value at risk (VaR), credit value at risk (CVaR),
or other methods would have performed in the past.

Bank for International Settlements (BIS) An international organization that fosters
cooperation among central banks and other agencies in pursuit of monetary and
financial stability.

banking book Constitutes the account where a bank’s conventional transactions
such as loans, bonds, and deposits are recorded. These transactions are typically
not marked-to-market (compare trading book).

bankruptcy Refers to a party not honoring its obligations to its creditors and whose
assets are therefore administered by a trustee.

barrier option A type of option that can be knocked in or knocked out, depending on
whether the underlying asset has reached a predetermined price. A barrier option
is cheaper than a standard option.

Basel Committee Committee of the BIS, established in 1975. It functions as a supervi-
sory authority, establishing the regulatory framework for financial institutions.
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Basel Il A set of guidelines developed after the global financial crisis of 2007 to
2009 to strengthen the global financial system and make it more shock
resilient.

basis The difference between the spot price and the futures price of a security. In the
credit default swap market, the difference between the credit default swap
premium and the asset swap spread.

basis point One hundredth of one percentage point (i.e., 0.01%).

basis risk The risk of the basis changing.

bid The price a buyer is willing to pay for a security.

binomial correlation measure Measures the correlation between two variables with
binomial outcomes such as default or no default. It is a limiting case of the
Pearson correlation model.

binomial model A model in which the price of a security can move only two (bi)
ways, typically up or down.

BIS See Bank for International Settlements (BIS).

Black-Scholes-Merton model A mathematical model suggested by Fischer Black and
Myron Scholes and separately by Robert Merton in 1973 to find a theoretical
price for European-style options on an underlying security that pays no
dividends.

bottom-up correlation model A model that derives correlations on an individual
level and aggregates them to an overall correlation measure (compare top-down
correlation model).

Brady bonds Bonds issued by emerging countries in the early 1990s, which were
guaranteed by U.S. Treasury bonds.

C

calibration The process of finding values for the input parameters of a model so that
the model’s output matches market values.

call option The right but not the obligation to buy an underlying asset at the strike
price on a certain date (European style) or during a certain period (American
style).

cancelable credit default swap A swap in which one or both parties have the right to
terminate the swap.

cap A contract that gives the cap owner the right to pay a fixed interest rate (strike)
and receive a LIBOR rate.

capital adequacy Capital requirements set by the Basel Committee for Banking
Supervision of the BIS for different types of risk.

capital asset pricing model (CAPM) A model that demonstrates the relationship
between risk and return.

cash settlement Type of settlement of derivatives where a cash amount is paid to the
profiteer. See also physical settlement.

CDO See collateralized debt obligation (CDO).

collateral An asset pledged by a debtor as a guarantee for repayment.

concentration risk The risk of financial loss due to a concentrated exposure to a
particular group of counterparties.
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collateralized debt obligation (CDO) A tranched debt structure in with the credit risk
of an underlying portfolio is transferred from the CDO seller (originator) to the
CDO investor.

concentration risk The risk of financial loss due to a concentrated exposure to a
particular group of counterparties.

conditionally independent default (CID) correlation model A model that does not
derive the correlation between variables directly, but indirectly by conditioning
on a common (market) factor.

continuously compounded interest rate An interest rate where interest is com-
pounded in infinitesimally short time units (see also instantaneous interest
rate).

control variate technique A method to reduce computations when simulating
trials (as in the Monte Carlo method) applicable for two similar derivatives.

convertible A bond issued by a company that can be converted into shares of that
company during the life of the bond.

convertible arbitrage A long position in a convertible security and a short position in
the underlying stock.

convexity The second (partial) derivative of a function. Measures the curvature of
the function.

copula A function that joins multiple univariate distribution functions to form a
single multivariate distribution function.

Cora A measure of how much a dependent variable changes if the correlation between
two or more independent variables changes by an infinitesimally small amount.

correlation Used quite broadly in practice, referring to the comovement of assets.
Defined more narrowly in statistics, referring to the linear strength of a relation-
ship derived in the Pearson correlation framework.

correlation coefficient A standardized statistical measure in the Pearson correlation
framework that measures the strength of a linear relationship. Takes values
between —1 and +1. Defined as the covariance divided by the product of the
standard deviations of the two variables.

correlation desk A term for an area where traders perform correlation trading.

correlation risk  The risk of financial loss due to the adverse movement in correlation
between two or more variables.

correlation trading  The attempt to generate a profit by anticipating the change in the
correlation between two or more variables.

counterparty A partner in a financial transaction.

counterparty risk The risk of the counterparty not honoring its obligation.

covariance A statistical measure within the Pearson correlation framework that
measures the linear strength between two variables.

covered call writing A short call option position and a long position in the under-
lying security.

credit correlation risk  The risk that credit quality correlations between two or more
counterparties change unfavorably.

credit default swap (CDS) A financial product in which the credit risk of an
underlying asset is transferred from the CDS buyer to the CDS seller.
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credit default swap premium Price of a credit default swap. Also termed credit
default swap spread, fee, or fixed rate.

credit derivative A future, swap, or option that transfers credit risk from one
counterparty to another.

credit event The ISDA 1999 documentation defines six credit events: bankruptcy,
failureto pay,obligationacceleration, obligation default, repudiation/moratorium,
and restructuring.

CreditMetrics A transition-matrix-based model developed by JPMorgan to value
portfolio credit risk.

credit rating  An assessment of the credit quality of a debtor, expressed in categories
from AAA to D.

creditrisk The risk of a financial loss due to an adverse change in the credit quality of
a debtor. Consists of credit migration risk and default risk.

Credit Risk® An actuarially based model developed by Credit Suisse Financial
Products to value portfolio credit risk.

credit risk premium  See credit spread.

credit spread  Also referred to as credit risk premium. The excess in yield of a security
with credit risk over a comparable security without credit risk.

credit triangle An approximate relationship of the credit default swap premium s, the
default probability \, and the recovery rate R (see equation 5.6).

credit value adjustment (CVA) An adjustment to address counterparty credit risk.
Often applied to derivative transactions.

credit value at risk (CVaR) The maximum loss of a portfolio due to credit risk with a
certain probability for a certain time frame. Also called credit at risk or worst-case
default rate (WCDR).

CVaR See credit value at risk (CVaR).

D

debt value adjustment (DVA) Allows an entity to adjust the value of its portfolio by
taking its own default probability into consideration.

default Occurs when a party has not honored its legal obligation to its creditors.

default correlation A measure of joint default probability of two or more entities
within a short time frame.

default intensity The probability of default for a short period of time conditional on
no earlier default. Identical with hazard rate.

default probability The likelihood that a debt instrument or counterparty will
default within a certain time. See also default intensity.

default risk  The risk that a debtor may be unable to honor its financial obligation.

delta The change in the value of a derivative for an infinitesimally small change in the
price (or rate) of the underlying security.

dependence Two events are statistically dependent if the occurrence of one affects
the outcome of another.

derivative A security whose value is at least in part derived by the price of an
underlying asset.
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discount factor The number that a cash flow occurring at a future date is multiplied
by, to bring it to its present value.

discount rate The interest rate that is used in the discount factor.

distance to default A term derived by Moody’s KMV displaying the difference
between the value of assets and the value of liabilities at a certain future
point in time. Mathematically identical with the risk-neutral d, in the Merton
model.

drift rate The average change of a variable in a stochastic process.

duration A measure of the relative change in the value of a bond with respect to a
change in its yield to maturity. Also measures the average time that an investor
has to wait to get the investment back.

E

economic capital Capital to protect against loss; often measured by value at risk.

efficient market hypothesis A hypothesis that asset prices include all relevant
information. Past asset price patterns are irrelevant.

European-style option An option that can be exercised only on the maturity date.

excess yield The difference between the yield of a risky bond and the yield of a risk-
free bond.

exchange option An option to exchange one asset for another.

exotic option An option whose payoff, evaluation, and hedging are different,
typically more complex than those of standard options.

expected default frequency (EDF) A term from Moody’s KMV’s model for the
probability of default. Real-world representation of the risk-neutral N(-d,) in the
Merton model.

F

finite difference method A method to solve differential equations by transferring the
differential equations into difference equations and solving these iteratively.

first passage time model A type of structural model. In first passage time models,
bankruptcy occurs when the asset value drops below a predefined, usually
exogenous barrier, allowing for bankruptcy before the maturity of the debt.

floating rate  An interest rate that periodically changes according a certain reference
rate such as LIBOR.

floor Opposite of a cap. A contract that gives the floor owner the right to receive a
fixed interest rate (strike) and pay a LIBOR rate.

forward A transaction in which the price is fixed today, but settlement takes place at
a future date.

funded transaction A transaction in which the buyer pays an up-front premium to
buy a security (compare unfunded transaction).

funding value adjustment (FVA) An adjustment to the price of a transaction due to
the cost of funding for the transaction or the related hedge.

future A standardized forward that trades on an exchange. Standardized are the
notional, price, maturity quality, deliverability, type of settlement, trading hours,
and so forth.
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G

gamma Second partial derivative of the option function with respect to the under-
lying price. A measure for the curvature of the option function. Gamma is the
change in the delta of an option for an infinitesimally small change in the price of
the underlying.

generalized Wiener process A process in which a variable has a constant,
expected growth rate. Superimposed on this growth rate is a stochastic
volatility term.

general wrong-way risk (WWR) Exists when the probability of default of counter-
parties is positively correlated with general market risk factors (BIS definition).

geometric Brownian motion A process in which the relative change of a variable
follows a generalized Wiener process (see equation 4.1).

Gora Second partial derivative of a function with respect to correlation. A measure
of how much Cora changes if the correlation between two or more independent
variables changes by an infinitesimally small amount.

H

haircut A discount to the value of securities held as collateral, reflecting the price
uncertainty of the security.

hazard rate See default intensity.

hedging Reducing risk. More precisely, entering into a second trade to reduce the
risk of an original trade.

Heston 1993 model One of the most rigorous and useful correlation models for
finance. Correlates the Brownian motions of two or more variables.

I

implied volatility Volatility that is implied by observed option prices.

in arrears Refers to a later date at which a payment is made.

instantaneous interest rate  An interest rate that is applied to an infinitesimally short
period of time (see also continuously compounded interest rate).

interest rate swap An exchange of interest rate payments on a predetermined
notional amount and in reference to predetermined interest rate indexes.

intrinsic value The payoff when the option is exercised. For a call, the intrinsic
value is the maximum of the spot price minus the strike price and zero. For a
put, the intrinsic value is the maximum of the strike price minus the spot price
and zero.

investment grade bond A bond with a rating of BBB or higher.

junk bond A high yield bond with a rating lower than BBB.
K

kurtosis Fourth moment of a distribution; a measure of the fatness of the tails of the
distribution.
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L

LIBOR market model (LMM) A term structure model in which interest rates are
conveniently expressed as discrete forward rates.

liquidity premium A premium that lowers an asset price due to asset illiquidity.

lognormal distribution A distribution with a fat right tail. A variable follows a
lognormal distribution if the logarithm of the variable is normal. Often applied
for stock price behavior, as in the Black-Scholes-Merton model.

London Interbank Offered Rate (LIBOR) An interest rate paid by highly rated
borrowers; fixed daily in London.

long position A trading position that generates a profit if the underlying instrument
increases in price (opposite of a short position).

M

market price of risk See Sharpe ratio.

market risk  The risk of financial loss due to an unfavorable change in the price of a
financial security.

marking to market The adjustment of a transaction price or an account value to
reflect profits and losses.

Markov process A stochastic memoryless process. Hence only present information,
not past information, is relevant.

martingale process A stochastic process with a zero drift rate. Hence the expected
future value of a variable is the current value.

maturity The date on which a transaction or a financial instrument is due to
end.

mean reversion The tendency for a price or a rate to revert back toward its long-term
mean.

migration probability The probability of a firm’s credit rating moving to another
rating state.

migration risk The risk that the credit rating changes unfavorably.

Monte Carlo simulation A technique for approximating the price of a derivative by
randomly sampling the evolution of the underlying security.

N

netting Offsetting contracts with positive and negative values with another
counterparty.

normal distribution Also called Gaussian distribution or bell curve. A standard,
popular probability distribution forming a symmetrical curve. Suffers from the
inability to replicate fat tails found in practice.

notional amount Also called principal amount. Dollar amount of a security or
transaction.

numeraire The price of a security in which other securities are measured.

numerical finance Attempts to solve financial problems with numerical methods
(such as Monte Carlo simulation), without the need for mathematical
solvency.
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o

off balance sheet Refers to a transaction that does not have to be included on the
balance sheet of the party concerned.

one-factor Gaussian copula (OFGC) A shortcut of the standard copula function.
Variables are not correlated directly, but indirectly by conditioning on a common
(market) factor.

operational risk  The risk of direct or indirect loss resulting from inadequate or failed
internal processes, people, and systems or from external events (BIS definition).

over the counter (OTC) Refers to a transaction dealt directly between counter-
parties, hence not on an exchange.

P

Pearson correlation model Measures the strength of a linear dependence. It is the
most popular correlation model in statistics and is also widely applied in finance
but suffers from a variety of problems (see Chapter 3, section 3.2.1).

percentile Value of a distribution under which the percentile value falls. For
example, the 95th percentile is the value under which 95% of values in the
distribution are found.

physical settlement Type of settlement of derivatives in which physical delivery and
payment of the underlying asset take place (see also cash settlement).

premium The price of a financial transaction (see also credit spread).

present value Current value of discounted future cash flows.

principal component analysis A method of trying to find the critical factors (com-
ponents) that explain the variation of a large number of possibly correlated
variables.

put option The right but not the obligation to sell an underlying asset at the strike
price on a certain date (European style) or during a certain period (American
style).

quantile An integer, indicating certain essentially equally sized intervals of a cumu-
lative distribution function. For example, the 2-quantile is the median, and the
100-quantiles are the percentiles (see also percentile).

quanto option An option that allows buyers to exchange their payoff in a foreign
currency into their home currency at a fixed exchange rate.

R

random variable A variable that can take a set of different values, each associated
with a probability.

random walk A term expressing the process of a random variable. The randomness
is often generated by a drawing from a standard normal distribution.

recovery rate The percentage of the notional amount that a creditor receives in case
of default.

reduced form model A type of model that does not include the asset-liability
structure of the firm to generate default probabilities. Rather, reduced form
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models use bonds and credit default swaps (CDSs) as main inputs to model the
bankruptcy process.

reference obligation The obligation that, if in default, triggers the default swap
payment.

repo Repurchase agreement. A securitized loan; in a repo, a security is sold with a
guarantee that it will repurchased at a later date at a fixed, typically higher, price.

risk averse An attitude toward risk that causes an investor to prefer an investment
with a certain expected return to an investment with the same expected return but
greater uncertainty.

risk-free rate  An interest rate that can be achieved without risk. Typically the interest
rate for securities issued by an AAA-rated government or firm.

risk management The process of identifying, quantifying, and, if desired, reducing
risk.

risk-neutral  An attitude toward risk that leads an investor to be indifferent between
investment A with a certain expected return and investment B with the same
expected return but higher uncertainty.

S

Sharperatio Also termed market price of risk; return of a risky asset minus the return
of the risk-free asset, divided by the standard deviation of the risky asset.

short position A trading position that generates a profit if the underlying instrument
decreases in price (opposite of long position).

short selling Selling a security that is borrowed, in anticipation of a decline of that
security.

short squeeze A term for traders buying a security to increase the price since they
know the security has to be bought back by (short) sellers.

skewness Third moment of a distribution function. Measure of the asymmetry of a
distribution.

smile effect A term referring to the higher implied volatilities of out-of-the-money
options and in-the-money options compared to at-the-money options.

special purpose corporation (SPC) See special purpose vehicle (SPV).

special purpose entity (SPE) See special purpose vehicle (SPV).

special purpose vehicle (SPV) Legal entity, separate from the parent entity, typically
highly rated. Often functions as an intermediary in structured financial transactions.

specific wrong-way risk (WWR) Exists when the exposure to a specific counterparty
is positively correlated with the counterparty’s probability of default due to the
nature of the transaction with the counterparty (BIS definition).

spot price The price of a security for immediate (in practice often two days) delivery.

stochastic process A process with an unknown outcome.

stress testing Testing how a portfolio behaves under extreme market movements.

strike price For a call option, the price at which the underlying security may be
bought; for a put option, the price at which the underlying security may be sold.

structural model A type of model that derives the probability of default by analyzing
the capital structure of a firm, especially the value of the firm’s assets compared to
the value of the firm’s debt.
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swap The agreement between two parties to exchange a series of cash flows.

swaption Also called swap option; an option on a swap. A payer swaption allows the
owner to pay a fixed swap rate and to receive a floating rate. A receiver swaption
allows the owner to receive a fixed swap rate and to pay a floating rate.

synthetic structure A financial structure in which exposure is assumed synthetically.
For example, in a synthetic CDO, the SPV assumes credit risk by selling CDSs.

systematic risk  Also called market risk or common risk. Risk associated with the
movement of a market or market segment as opposed to risk associated with a
specific security. Systematic risk cannot be diversified away.

systemic risk The risk of a financial market or an entire financial system collapsing.

T

term structure model A stochastic, binomial, or multinomial discrete or continuous
model, generating the process of short-term interest rates.

theta The change in price of a derivative for an infinitesimally small change in time.

time value The portion of an option’s premium that is attributed to uncertainty.
Time value equals the option price minus the intrinsic value.

top-down correlation model A model that abstracts from individual correlations,
but rather models correlations on an aggregate level (compare bottom-up
correlation model).

trading book Comprises instruments that are explicitly held with trading intent or in
order to hedge other positions (compare banking book).

tranches Segments of deals or structures, typically with different risk levels.

transition matrix A matrix showing the probability of a firm moving to other rating
categories within a certain time frame.

8]

underlying The security that a derivative is based on and that at least in part
determines the price of the derivative.

unexpected loss A loss amount exceeding value at risk (VaR) or credit value at risk
(CVaR).

unfunded transaction A transaction in which the buyer does not pay an up-front
premium as in a swap or a futures contract.

unsystematic risk Also called idiosyncratic risk or specific risk. Risk that can be
largely eliminated by diversification.

A"

value at risk (VaR) The maximum loss in a certain time frame, with a certain
probability, due to a certain type of risk.

vega First partial derivative of the option function with respect to implied volatility.
A measurement of the sensitivity of the value of an option to changes in implied
volatility.

volatility The standard deviation of percentage price changes (returns); see Chapter
1, section 1.3.1.
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vulnerable option An option whose price includes the possibility of default of the
option seller.

A\

Wiener process A process in which the movement of a variable for a certain time
interval is determined by a random drawing from a standard normal distribution,
multiplied by the square root of the time interval.

wrong-way risk (WWR) Two types exist: General wrong-way risk exists when the
probability of default of counterparties is positively correlated with general
market risk factors. Specific wrong-way risk exists when the exposure to a
specific counterparty is positively correlated with the counterparty’s probability
of default due to the nature of the transaction with the counterparty.

Y

yield curve Shows the relationship between yields and their maturities.
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