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Foreword

The concept of risk has existed since the beginning of human experience.
Almost any human choice or endeavor has potentially unfavorable outcomes
that may include losses with varying degrees of severity. From very early on,
humankind learned to recognize risks, to protect or hedge against them, and
to limit losses, financial or otherwise, resulting from decisions with adverse
consequences. Our understanding of risk has been a slow process that picked
up speed in the last few centuries, and rapidly accelerated in the last few
decades. Today, we understand the factors behind any adverse event with a
lot more clarity than ever before. We have developed analytical tools and risk
management frameworks to effectively address, and limit the losses of, any
unfavorable outcome, from the minor and routine to the most devastating
catastrophe in our realm of possibilities.

Of all the areas of human endeavor, risk is of paramount consequence to
modern finance. In today’s financial markets and financial institutions, risks
and their prudent management have never been more important. Risks and
their management are at the core of the role that financial markets and insti-
tutions are called to perform in the increasingly complex and dynamic present
and future global economic setting. The challenges the current environment
for risk management poses have required a new breed of professionals that are
cross-trained in traditional finance disciplines and sophisticated quantitative
and analytical disciplines.

Were humankind to regress to an economic ‘stone age,’ whereby it would
have little need for the present day financial markets, institutions, instru-
ments, and regulations, the practice of finance would most likely need nothing
more than elementary arithmetic and a healthy dose of genuine gut feeling.
However, in the absence of such unlikely regression, today’s reality remains a
ubiquity of risks, wide variety of risk types, complex channels for risks to flow,
and an ever-growing need for sophisticated tools, methods, and instruments
to manage the risks. Impact and importance of risks and their management
are significant to all - individuals, households, financial firms, non-financial
corporations, business and commercial enterprises, not-for-profit enterprises,
and governments.

Although the regulatory thrust and a large segment of risks, specifically
pure risks, either require or maintain a defensive stance, an all-inclusive and
a robust response to risks must not be in defensive terms alone. Society,
and in fact humanity, will be much better served if risks faced by it are
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viewed in proactive terms and managed for opportunity and reward they may
bring. Therefore, a more prudent development of risk management is one that
adopts and supports a comprehensive, proactive view using appropriate mod-
els, methods, tools, and frameworks to support assessing, decision making,
monitoring, and control of risks.

In light of the above observations, it is a pleasure to note the contributions
Risk Management and Simulation makes. This book strives to construct a
comprehensive view of risks, yet maintains an exposition level that is accessible
to a beginner in the training or practice of risk management. The author begins
the book with building the basic concepts and fundamental framework for
risk, decision making for risk, and risk management. Her introduction to the
subject is accompanied by rigorous development of models and computational
techniques for effective management of a variety of risk types, including market
risk, equity risk, interest rate risk, commodity risk, currency risk, credit risk,
liquidity risk, strategic, business, and operational risk.

Using initial development as the foundation, the author advances the topic
by introducing the reader to a series of topics in modeling and computational
techniques useful for risk management. The emphasis in computational tech-
niques adopted in this book is simulation modeling and analysis, which is
a particularly powerful suite of computational techniques broadly applicable
and particularly useful in large-scale and complex contexts of risks. In the
second half of the book, the author delves deeper into many of the important
risk types, identifying specific issues related to each risk-type and advancing
the models and risk management framework for the risk-type, beginning with
various market risks - equity, interest rate, currency, and commodity risks.

I am particularly impressed by the fact that the book not only develops
credit risk and credit risk management approaches, but it also ties in strategic,
business, and operational risk considerations from the perspective of financial
as well as non-financial firms. For financial institutions, strategic and business
risk management translates to an involved process of asset-liability manage-
ment, which the chapter on this topic aptly includes. Unlike other books in this
space, the author takes the operational risk theme further by also studying the
use of insurance as a mechanism for risk management and risk transfer. This
seamless connection of topics is much needed given today’s increasing blur
between segments of the financial services industry. In summary, this book is
a unique and wonderful combination of risk management and financial sim-
ulation concepts that will set the reader on a strong footing for a rewarding
career in risk management.

Drawing on her experience in teaching risk management and computa-
tional technique courses to undergraduate and graduate students for a decade
and a half, the author offers an accessible book on an increasingly important
topic. Her explanation of the complex models and computational techniques is
well thought-out and well-motivated, which should make reading the material
both inviting and appealing. Whether you are reading this book as a text-
book for a course in risk management or computational finance, or using it
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as a self-study guide as a beginner practitioner, the exercises and MATLABr

guidance the book provides should additionally aid your learning.
Our ability to manage risks well is the key to our success as individuals,

firms, governments, and society. Therefore, mastering risk management skills,
with a comprehensive understanding of various types of risk, and the modeling
and quantitative techniques for each of the risk types, as well as an awareness
of present day challenges, are a must for any finance professional. I wish you
well in your efforts of learning and training using this book, and hope it opens
doors for further exploration and enquiry for you.

Emmanuel (Manos) D. Hatzakis, Ph.D., CFA, FRM
Risk, Structuring and Analytics Expert, UBS





Preface

I am delighted to introduce this book on mathematical modeling and compu-
tational development of risk management. Instead of narrowly defining risk
management as a defensive activity, my take on it is positioning as a proactive
opportunistic view of risk and its management. Moreover, it has been my effort
in this book to keep the material at an approachable level for undergraduate
seniors and master’s level students.

The book is structured to offer a comprehensive view of issues in risk
management, scoping a broad range of risk types both in speculative and
pure categories. Management of risks in different contexts and in different
kinds of enterprises can have varied goals and objectives. These seemingly
disparate goals and objectives can be served well by creating a framework for
risk management. Implementing the framework utilizes a rigorous, quantita-
tive analysis approach, but also necessitates an individual and organizational
awareness and responsibility toward risks and their management.

The rigorous, quantitative analysis to support risk management needs ever
more sophisticated modeling and computational techniques. In this book, we
begin with elementary models for risk, and then develop dynamic models for
risks evolving over time. Sophisticated, complex models for risk rely on com-
putational techniques for obtaining insights and for solving problems in risk
management. Our emphasis throughout the book is based on computational
techniques that help solve the problems of risk management.

Part I of the book focuses on developing the concepts and framework for
risk management. In the first chapter, after defining risk and distinguishing
its properties from what we label as uncertainty, a detailed typology of risk
is developed. We begin developing formal models for quantitative definition
of risk, fundamental to the models for risk management developed in later
chapters. In this part of the book, we also develop the necessary constructs to
be able to assess the exposure and management of risks under a formal risk
management framework. A detailed discussion of each stage of the risk man-
agement framework and appropriate tools for each stage are discussed. Lastly,
in order to give a practical perspective for the risk management context, an
overview of regulatory systems in place and their historical evolution for some
key segments of the US financial sector are included in this part of the book.
The intention here is not to give a comprehensive description of the regula-
tory environment, but to present some salient features of it to motivate the
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importance of the contexts of risk management problems, issues, and models
developed in the rest of the book.

In Part II of the book, the emphasis is on modeling and computational
techniques for solving risk management problems. We begin with developing
the simulation framework crucial for computationally solving risk management
problems. We set down the principles to follow for constructing a simulation
framework, where each step must be given its due importance, including model
development, verification, validation, designing simulation experiments, and
conducting appropriate output analysis. Many types of risks in the risk typol-
ogy need to be considered and managed in a dynamic setting. To facilitate this
requirement, in the rest of this part of the book, we develop time-dependent
models for evolution of risk and methods to solve these models.

The largest part of the book, Part III, is devoted to specific issues of risk
management in the range of risk types. The interest rate risk and equity risk
component of market risk are discussed at length, utilized to advance the
issues and approaches adopted for risk management. Following market risk,
the attention is shifted to another important risk type, credit risk, where
risk management issues and modeling approaches specific to credit risk are
developed. Strategic, business, and operational risks are addressed, leading
from the speculative to the pure risk types in risk management considerations.
Finally, insurance as a mechanism for risk management and risk transfer is
studied.

Part IV develops the computational thrust of the book by pushing it one
large step forward. It is devoted to looking at some advanced concepts and
techniques for risk management, along with developing methods that improve
computational efficiency when solving risk management problems.

Suggestions for how this book may be used for courses in Financial Engi-
neering/Quantitative Finance curricula follows. For a course on risk manage-
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Symbol List

Symbol Description

Ω The sample space of a ran-
dom variable.

µ Mean of return of an asset or
portfolio.

σ Standard deviation of return
of an asset or portfolio.

ρ Correlation in the return of
two assets or portfolios.

Π Value of a portfolio.
∆ Change in value of what fol-

lows, or a small increment in
value.

s.t. Short for ‘such that.’
w.p. Short for ‘with probability.’
max Short for ‘maximum of’ or

‘maximize.’
min Short for ‘minimum of’ or

‘minimize.’
sup Short for ‘supremum.’
inf Short for ‘infimum.’
∀ For all values of a quantity

that follow the symbol.
∈ The quantity preceding is

contained in the object fol-
lowing the symbol.∪
Union of sets.

∩
Intersection of sets.

⊆ The set preceding is con-
tained in the set following
the symbol.

I{A} An indicator of function of
whether event A has oc-
curred or not.∑
Summation of elements that
follow the symbol. This is of-
ten indicated with the range
of summation.

→ Indicates either ‘maps to’ or
‘tends to.’

≃ The two quantities are ap-
proximately equal to.

∼ The random variable fol-
lows the distribution given
by what follows.

∂ Partial derivative with re-
spect to one of the indepen-
dent variables of a function.

mod The modulo function that
produces the remainder af-
ter dividing the first number
by the second number.





Part I

Risk and Regulation





Chapter 1

Defining Risk

The awareness that happenings of the future cannot be determined with cer-
tainty must have arrived quite early to prehistoric man. However, completely
grasping the notion of risk remains an ongoing process. The reason for this is
over the millennia, and especially in the past few centuries, we have created
an increasingly complex and interdependent habitat. Man no longer fends for
himself and his small family unit by growing food and building shelter. In-
stead we depend on people and their efforts across the globe for every single
and simplest of our needs. Therefore the happenings of the future at far and
wide locations of the globe that cannot be determined with certainty hold the
potential of affecting our happiness, well-being, and even subsistence.

The gravity of the situation has not gone unnoticed. Human enquiry has
made significant efforts to grasp the implications of non-certainty of hap-
penings of the future. That is, while certainty is unattainable, what can we
comprehend and say about the future happenings that can help improve the
condition. In fact, humanity has thrived through the ages due to its capac-
ity and capability to create mechanisms to manage risks. The efforts to un-
derstand and tame risk have been nontrivial, defining fields and disciplines
of study that have engaged our energies for centuries. From mathematician
Daniel Bernoulli’s pioneering work and contributions in probability and statis-
tics [9] to the contributions of some of the eminent Nobel laureate economists
of the 20th century, such as, Harry Markowitz, Bill Sharpe, Franco Modigliani,
Merton Miller, Fischer Black, Myron Scholes, and Robert Merton – all have
attempted to grasp the implication of risk and significance of its management
in human enterprise.

The non-certainty of future happenings and risk is not all bad. In fact, quite
the contrary. Every new age, every new development, every new technology has
posed, and will continue to pose, a new challenge to humanity of tackling a new
spectrum of risks. Tackling risks and management of risk creates opportunities
for growth and reaching new heights of prosperity. Since risk is ubiquitous and
permanent, humanity’s continued success lies in its ability to develop skills to
out-smart the risks and make decisions in light of the risks that are sustaining
and thriving.

From the above discussion, it may appear that we are suggesting the non-
certainty of happenings of the future to be the definition of risk. This may
be a workable definition, but to make the definition more effective, we will
choose to make an additional qualification through the definition of risk. By

3
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non-certainty we imply that a certain specific thing may or may not happen
in the future. But the key question we would like addressed is, if a certain
specific thing may or may not happen, what are the things that can happen?

In many cases, we may have a pretty good idea of what all may happen in
the future, even if nothing is certain. But in some cases our mental cognition or
our collective experience doesn’t allow for us to imagine some specific outcomes
that can happen. For instance, a devastating meteor decimating life as we know
it on our planet earth tomorrow. This brings us to the distinction between
possibility and probability. A devastating meteor is a possibility, since at a
stretch of imagination one may be convinced that it can happen. However
assigning it a believable probability will not be that easy.

Twentieth century economist Frank H. Knight was the first to make the
distinction between risk and uncertainty [49]. Those future outcomes that are
measurable and their corresponding probabilities of occurrence can be assessed
ex-ante are termed as risk. While those future non-certain happenings whose
outcomes are only known as possibilities, and ex-ante probabilities are hard to
assess, are defined as uncertainty. Then there is also the domain of ‘unknown
unknowns.’ These are happenings of future that we are not even capable of
identifying as possibilities. We will not be able to devote much attention to
the ‘unknown unknowns ’ in this book.

Risk. We simply define risk as variability that can be quantified in terms
of probabilities. With this definition of risk, the tools for management of fu-
ture non-certainties can be most effectively applied. But all bets are not off
when we must wander out of the domain of risk into the territories of uncer-
tainty. In today’s increasingly connected and complex world, also evidenced
by recent financial crises, there is a lot of grey region between risk and un-
certainty. Surprises spring up every so often, and we must acknowledge the
presence of and be ready to deal with uncertainty. Tools based on simulation
help us also assess the impact of uncertainty, and thus, provide insights for
better management of uncertainty. We will bring the reader’s attention to this
wherever appropriate. Predominantly, however, we will be concerned with risk
in our discussions of measuring and management of non-certainties of future.

If risk is the variability in future happenings that can be quantified in terms
of probabilities, one distinction is needed in terms of subjective and objective
probabilities. Each one of us, based on our beliefs, historical data and evidence
can have a subjective view of probabilities of future outcomes. These are sub-
jective probabilities. Objective probabilities are those that can be backed with
observational evidence, not just subjective estimates. The objective probabil-
ity assigns a likelihood for an event to occur based on an analysis of recorded
observations and data. Unavailability of relevant or insufficient data can often
result in the boundary between objective and subjective probabilities to be-
come rather thin. We will need to bear this in mind and visit this distinction
where relevant.

Management of risk, and for that matter uncertainty, in any context re-
quires understanding the sources for this risk. A full grasp of the sources of
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risk is greatly helped if the risks are classified by a meaningful taxonomy.
In the next section, we will develop a structure of additional definitions to
support developing this taxonomy of risks.

1.1 Types of Risk

Studying risks in a specific context requires understanding the context
and identifying quantities to observe to develop a measurable quantification
of the risk. In our context, the impact of risk will uniformly be measured in
financial and/or monetary terms, although sometimes assigning a financial
measure to a risk becomes extremely tricky. For instance, what is the right
financial/monetary value of a life of a 10-year-old killed by an intoxicated,
reckless automobile driver. For the management of risks even such tragic events
must be evaluated, and the financial/monetary value assigned will end up
depending on from whose perspective the assessment is being done.

Understanding the sources for risk exposures is an essential prerequisite
for a viable and effective management of the risks in any context. A full grasp
of the sources of risk is greatly helped if the risks are classified by a meaningful
taxonomy. Taxonomy of risk needs to be developed depending on the nature of
the entity developing a risk management plan and strategy. The sources of risk
from an individual’s and a household’s perspective would be quite different
from those of a multinational manufacturing enterprise or a large financial
institution. The taxonomy, however, should aim to be versatile to benefit a
variety of entities in their risk management efforts.

The first most important classification we will develop is on the basis
of pure versus speculative risk. Once these are explained, we will elaborate
on the next level of classification for each of the two risk types. As stated
earlier, risk is not all bad. Risk has a fundamental linkage with reward, which
makes us expose ourselves to risk in the first place. Rarely do people expose
themselves to risk for the risk’s sake. In these cases, the risk itself may be the
seeker’s reward. People take up jobs and professions, travel long distances,
firms take up investment projects, engage customers, collaborate with other
enterprise, each of which exposes them to new and additional sources of risk.
They nevertheless engage in these activities in pursuit of benefits or rewards
from these activities.

The nature of reward defines the first classification of risk we present next.

1.1.0.1 Pure Risk

Each of us as individuals or as a part of a larger group, organization or
enterprise identify a certain mode of operation to be the normal condition. We
expect this to be the status quo for our activities of normal living, in order to
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perform our base level of functions of life. When we return home from work,
we expect to find our house more or less how we left it in the morning. When
we take a flight or a road-trip, we expect to arrive at the destination intact and
roughly in some expected duration of time. This normal status quo outcome is
the best case scenario that lets us perform the activities of our life peacefully
and conveniently.

However, mishaps happen, events can happen that can throw us off the
normal status quo. When we get thrown off the status quo in such cases, it is
due to the occurrence of an unhappy event resulting in losses. For instance, the
house may be found ransacked by burglars, the automobile may breakdown
resulting in extended delay in arriving at the destination, the flight may have
to be rerouted, or worse yet, crash due to equipment malfunction or very rough
weather. These are examples of variability in outcome that categorically result
in either normal status quo to be maintained or suffer loss.

Pure risk. We define pure risk as variability quantified in terms of prob-
abilities that can either result in realization of losses or no losses. Occurrence
of damage due to earthquake, floods, hurricane, fire, theft, sickness, accident,
death, unemployment, fraudulent action of an employee, machinery malfunc-
tion, and computer hacking, are all examples of loss events that would qualify
for pure risk.

1.1.0.2 Speculative Risk

Risk has an integral connection with the hope for reward. This linkage
is at the core of the definition of speculative risk. Any risk we choose to ex-
pose ourselves to that can yield both attractive, profitable outcomes as well
as loss outcomes is speculative in nature. Individuals, firms, and governments
voluntarily expose themselves to speculative risk in an attempt to create pos-
sibilities that help improve their condition, while at the same time signing up
for the possibility they could end up being worse off. But then again, there is
no gain for no pain.

Speculative risk. We define speculative risk as variability quantified in
terms of probabilities that can result in realization of both gains and losses.
Firms launch new products and services in the hope of attracting new cus-
tomers and increasing sales, but constantly face the risk of weak demand or
competitors beating the firm to market. This is an example of speculative risk,
since both gain and loss outcomes can occur. The firm must choose and man-
age the risk wisely so the outcomes and their likelihood are most favorable.

Individuals must decide to allocate their savings in investment vehicles,
such as, stocks, mutual funds, saving deposits, real estate, etc. All these in-
vestments can work out to provide high returns to the investor, but can also
suffer losses due to a variety of reasons. This is quintessential speculative risk.
Investors should choose their risk exposures that yield the desired level of
reward for the right level of risk.
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Types of Risk Risk 

Pure Risk Speculative Risk 

Personal 
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FIGURE 1.1: Classification structure for types of risk.

1.1.1 Classification of Pure Risk

After the definition of pure and speculative risk, we need to extend the
classification further to build the taxonomy of risks. A taxonomy is a critical
tool for effective risk management. This remains true for pure risk, therefore we
consider classification of pure risk into personal, property, liability, operational
and legal categories. A summary of the taxonomy is provided in Figure 1.1.

Personal risk. This is the risk from events that can cause loss to one’s
person. These constitute a variety of individual risks. It can be a loss of health
due to illness or accident. Premature death of the head of a household can
cause distress to the household due to unfulfilled obligations. Loss of regular
income due to unemployment can cause disruptions to the life of an individual
and his/her dependents. When an individual’s savings for financial support
through retirement starts to fall short, it can result in considerable hardship.

Property risk. Persons or firms own property that is exposed to risk
of damage or loss due to various causes, such as, fire, earthquake, lightning,
tornados, vandalism, or theft of property. This can result in direct loss due
to property being damaged, and indirect loss due to the property not being
available for use by the owner.

Liability risk. One is legally liable if something we do results in bodily
harm or property damage to someone else. This is a very real risk for indi-
viduals and firms. Moreover, there is no upper limit on the amount of loss
for liability risk, since value of someone else’s property and harm can be ar-
bitrarily high. To settle the determination and indemnification of losses very
high legal costs may also be incurred as an indirect effect. This can result in
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a lien being placed on the individual’s income and financial assets to satisfy
the legal judgment.

Operational risk. Losses can be incurred by a firm due to inadequate
systems, management failures, and faulty control. Losses can also be incurred
by an organization due to fraudulent behavior of its employees, or simply
due to lapse in judgment or human error. In today’s high-tech workplaces,
computer system breakdown or malfunction can result in significant losses,
including human errors by misuse of technology, such as pushing the wrong
button, accidentally destroying files or entering wrong values for parameters.
In banking there are numerous examples where a trader or an employee fal-
sifies or misrepresents risks incurred in a transaction, resulting in very heavy
damage to the firm, both monetary and reputational.

Legal risk. A firm or an individual can incur significant losses due to
knowingly or unknowingly not following the rule of law or regulatory require-
ments for a variety of reasons. A customer or a counterparty can reasonably or
unreasonably conduct legal action against a firm, resulting in significant losses
from legal fees. A counterparty may not have legal or regulatory authority to
engage in a transaction, and the counterparty may sue to avoid meeting its
obligations on losing money in the transaction.

Finally, pure risk can be of particular kind or of fundamental kind. Partic-
ular pure risk affects a single individual or a small group of individuals, while
fundamental pure risk has much more macro-level effects. A stray attack in a
dark alleyway on the way back from work is a particular risk, while genocide
due to ‘ethnic cleansing’ is a fundamental risk. A tornado passing through a
community and causing damage to property is an example of particular risk,
while global warming is a fundamental risk. This important distinction is an
indication of the size and enormity of loss, meriting a fundamentally different
approach to manage the risk.

1.1.2 Classification of Speculative Risk

Speculative risk arguably includes a larger class of risks. The risks here are
also of a vast variety, covering the range of contexts where risk management is
a worthwhile activity. In banking and financial institutions, the fundamental
role of the organization is to help manage the risks of a society’s economic ac-
tivities. Banks offer credit to individuals and firms in the economy to support
investment, innovation, and growth. In doing so, they expose themselves to a
variety of speculative risks, which they should manage very deliberately.

Insurance companies take over pure risks underlying a society’s economic
activity, in exchange for a fee, of course. The insurance firms must appropri-
ately allocate these accumulated funds from fees to remain viable, thus ex-
posing themselves to a range of speculative risks. Markets are ‘places’ where
agents exposed to various speculative risks come to trade the risks, and in the
process discover the economic value of the risk. Finally, all non-financial firms
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and individuals must deal with speculative risks in their day-to-day decisions,
as well as long-term decisions, as they navigate the risk-reward terrain.

The speculative risks can be categorized as market risk, credit risk, liq-
uidity risk, strategic, business, and reputational. Each of these risks can be
further broken down into further subcategories, for instance, subclassification
of market risk can be seen in Figure 1.1. We describe each of these risks in
more detail next.

Market risk. As markets attempt to discover the economic value of risks
that agents trade in any market, there is a high degree of variability in the
value of instruments being traded. This is termed market risk, that is the risk
that changes in market prices and/or rates will reduce or increase the dollar
value of a security or an investment portfolio. In order to get a sense of the
aggregate market risk, instead of per security, we track general market risk in
terms of the market as a whole (in terms of a market index) falling or gaining
value. The aggregate market risk can affect all securities in the market, not
just because all the securities in the market make up the aggregate, but also
because sentiments towards the aggregate can filter to specific securities.

Financial markets can be broken down into four major segments: equity
market, fixed-income (interest rate) market, commodities market and foreign
exchange market. These markets are for financial securities or assets of four
primary types, designed for specific objective of activity in the global economy.
Other specific types of additional risks that a financial product or an entity
may be affected by are, for example, fixed income products have risk of default
of the issuer. This risk links market risk to credit risk. An investment fund
may be tracking the performance of a certain aggregate market benchmark,
and in doing so may be exposed to tracking error risk. In some cases, basis
risk may be important that measures the breakdown in relationship between
price of a product and the price of an instrument used to manage the risk of
the product.

We discuss the subclassification of market risk in a little more detail, since
these are the most important risks we will study in this book.

Equity risk. Simply put, this is the volatility in stock prices, and sensitivity
of an instrument or portfolio value to change due to changes in the value
of a single stock or the level of aggregate stock market indices. We label
specific or idiosyncratic risk of equity to be the characteristics specific to
the firm, its line of business, quality of its management, or breakdown in its
production process. The general equity market risk is termed systematic risk,
since according to the result of portfolio theory, this risk cannot be eliminated
through diversification, while specific risk can be diversified away.

Interest rate risk. Simplest form of interest rate risk is seen when the value
of a fixed-income security, like a bond, falls due to increase in market interest
rates. In a more complex portfolio of fixed-income instruments, differences in
maturities, nominal values, reset dates of instruments, and cash flows (longs
and shorts) can add more variety of interest rate risks. For instance, curve
risk arises due to the shifts in the term-structure of interest rates that affect
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instruments with different maturities differently, and as a result, can create
imbalance in long-short positions in a portfolio. Basis risk, which was men-
tioned earlier, can arise when instruments with the same maturity respond to
interest rates differently causing a mismatch due to rates being imperfectly
correlated. Gap risk arises as a result of difference in sensitivities of assets and
liabilities to changes in interest rates.

Foreign exchange risk. Increasingly more firms must transact in different
currencies due to global operations or markets for their goods. Currency or
foreign exchange risk arises from open or imperfectly hedged positions in a
particular currency. This exposure can arise as a natural consequence of busi-
ness operations, not necessarily due to explicitly taking a position in a cur-
rency. It can have a pretty drastic impact on a firm by potentially sweeping
away profits. It can place a firm at a competitive disadvantage, can generate
huge operating losses, and in the end, inhibit growth and investment. Foreign
exchange risk arises from an imperfect correlation between currency prices,
international interest rates, and domestic interest rates.

Commodity risk. The variability in price of raw materials that are cru-
cial for the production economy constitute this risk. Price risk of commodi-
ties behave differently from interest-rate and foreign exchange risk, because
commodity prices are often controlled by few suppliers, which can magnify
volatility. Fundamentals affecting commodity prices include market liquidity
(or illiquidity), degree of ease, and level of cost of storage of the commodity.
Due to these reasons, commodity prices have higher volatility and display sud-
den large changes or jumps. Commodities can be classified into the following
groups, based on some common shared properties.

Hard (nonperishable): Precious metals (gold, silver, platinum), base met-
als (copper, zinc, tin)

Soft (perishable short shelf life and hard to store): Agricultural prod-
ucts (grains, coffee, sugar, orange juice)

Energy: Oil, gas, electricity

Credit risk. When banks issue a loan, they expose themselves to the risk
that either the interest or the principal itself may not be paid, or may not
be paid on time. This is credit risk. While default is the extreme case (i.e.,
a counterparty is unable or unwilling to fulfill its obligation), credit risk also
includes changes in the credit quality of a counterparty, since this affects the
value of the loan or portfolio of loans. Institutions are also exposed to the
risk that a counterparty, which may be another institution or a government,
is downgraded by a rating agency.

Credit risk is an issue when the position has a positive replacement value
(i.e., is an asset), where either all the market value of the position is lost, or
more commonly, part of the value of the asset is recovered after a credit event.
This defines the terms recovery value or recovery rate, and the amount that is
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expected to be lost is the loss given default amount. Credit risk is often called
counterparty risk when the security in question is other than bonds and loans.

Liquidity risk. Liquidity is having access to cash when needed. Liquidity
risk is identified as either funding liquidity risk or asset liquidity risk. Funding
liquidity risk refers to a firm’s ability to raise necessary cash to meet its
immediate cash needs, such as, for rolling over its debt, or to meet the cash,
margin or collateral requirements of counterparties. Asset liquidity risk is when
an institution cannot convert the value of an asset to cash. This would arise
if the institution is not able to execute a transaction at the prevailing market
price because at the time there is no appetite for the deal on the other side of
the market. Liquidity risk can result in substantial losses, but this risk is hard
to quantify. It affects an institution’s ability to manage and hedge market risk,
and capacity to fund shortfalls in funding by liquidating assets.

Business risk. This is the classic risk of conducting business arising due to
demand uncertainty, fluctuation in prices, cost of production, supplier costs,
and availability. These are managed through core tasks of management, by
choice of channels, products, suppliers, marketing, etc. It is important to con-
nect business risk management within a formal enterprise risk management
framework, by integrally combining market risk, credit risk with business risks.

Strategic risk. Strategic risks are those arising when generating a long-
term plan for business growth and new product introduction. Plans for new
business development and growth often require very significant investment, for
which there may be a high degree of uncertainty in store. On the other hand,
it carries the potential of great profitability. Examples are incorporating new
unproven technologies in products, offering products to new market segments,
and taking up a massive advertising campaign to generate a new brand image.

Reputational risk. As firms conduct their business, they create a repu-
tation by the quality of their products, how they treat their customers, and
how ethically they manage their affairs, both financial and managerial. Ac-
counting scandals that defrauded bondholders, shareholders, and employees
of many major corporations during the late 1990s have made this risk promi-
nent. Corporate scandals like those at Enron, WorldCom, and Global Crossing
are devastating for the image and the value of a firm. Reputation is also very
important for banks and financial institutions, where trust and confidence of
customers, creditors, regulators, and the marketplace are important.

With the taxonomy of risk built, we are now ready to advance to the next
level of sophistication necessary for management of risk. We need to begin
developing models to characterize risk, where the models would belong in a
framework built to perform risk management.
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1.2 Getting Started with Modeling Risk

In the previous section, we made a distinction between risk and uncer-
tainty observed in the world to establish risk as being measurable and quan-
tifiable. Our goal in this section is to take this definition further by giving a
well-grounded basis for a mathematical assessment of risk. The analysis and
management of the various types of risks identified under the general cate-
gories of pure and speculative risks in Section 1.1 are greatly facilitated by
developing some abstractions. We will call these abstractions models for these
risks.

For developing a model abstraction for a risk, we first need to determine
the possible realizations the risk can have. This collection of possibilities is
often called the sample space for the risk. A typical and simple example of
the sample space is if we were interested in comprehending the possibilities
for the top-face upon rolling a fair die on a flat surface. These possibilities
will obviously be the six faces of the die – {1, 2, 3, 4, 5, 6}. We would call this
the sample space for the risk of what might happen when we roll a die. For
the risk in the price of your favorite stock a year later, an appropriate sample
space may be [0,∞), even if the stock price exceeding a certain high-enough
value may be practically zero.

Based on the model describing a risk, one often wants to identify specific
values or sets of values of interest as Events. For a variety of events and set
of events, it is natural to want to assess the likelihood of their occurrence.
Events and the probability of their occurrence is fundamental to assessing
risks. For instance, the stock of your interest exceeding a set target in a year
is an event, one for which you would like to assess the likelihood. Similarly, the
risk of your stock falling below the price at which you bought it is an event.
Defining models for risk, their sample space, events set, and likelihood with
mathematical rigor create a language to develop risk management frameworks
in the rest of the book. We will spend the rest of this chapter laying down the
essential constructs of this language.

1.2.1 Random Variable and Probability

A random variable is a variable representing a risk that takes on a certain
set of values, but every time one makes an evaluation (observation) of the
variable, it takes on the values randomly. The sample space, Ω, as described
earlier, is the collection of possibilities for the risk. While elements in a sample
space may not be numeric, such as, the two sides of a coin on the toss of a
coin, we want random variables to take on numeric values. Hence, we denote
a sample space to be a domain for the random variable, where the random
variable maps the (possibly non-numeric) elements in Ω to a set of real values
(X : Ω → R). Consider a dartboard in a room. When I throw a dart, all
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possible points of impact make up the sample space, Ω. This includes every
point of the dartboard, much of the wall, and even parts of the floor or ceiling,
if I am not good with darts. My score X(ω) ( ω ∈ Ω ), however, is a finite set
of values between 0 and 60. The symbol ‘∈’ reads as ‘belongs to’, or simply,
‘in.’

Suppose instead of a single coin, n coins are tossed, where n could be 10,
20, or even 100, if you have the patience. Since each coin has only two faces,
‘Head (H)’ or ‘Tail (T),’ the sample space for a single coin is, Ω1 = {H,T}. A
random variable that assigns a numerical value to the outcomes of a toss is set
to be, X(H) = 1, X(T ) = 0. Now, if Y is the total number of heads shown by
n coins tossed, the sample space, Ωn, will be built of elements with a sequence
of n H’s and T’s. In this case, for each ω ∈ Ωn, Y (ω) ∈ {0, 1, 2, · · · , n}. If none
of the n tosses land on heads, Y (ω) = 0, while if all the tosses result in heads,
Y (ω) = n. A random variable with such a discrete set of outcomes is often
called a discrete random variable, to distinguish it from random variables that
can take a continuum of values, such as the temperature in Timbuktu on a
lazy summer noon. In the sub-Saharan summer heat of Timbuktu, there is not
much else one would like to be up for than to be lazy. A random variable with
a continuum of values making its sample space is called a continuous random
variable. Besides being a discrete random variable, the n coin tosses random
variable is also finite, i.e., its sample space is finite.

Once a random variable is defined to describe a risk, the natural next
question to ask would be, what is the likelihood of it realizing any of its various
different possibilities. How likely is it for the n-coin toss random variable to
get 7 ‘H’s when the n = 10? For that matter, how likely is it for there to be 7
or more ‘H’s on the 10-coin toss random variable? Or how likely is it for me
to score 40 or above when I throw the dart? To accomplish such assessment
of likelihoods, we construct a special set of sets that denotes the category
of values a random variable can take, called the σ-algebra, denoted by A.
We also define a probability measure, P , that measures the likelihood of the
random variable taking on certain value or set of values. The three constructs
presented so far are often written together as (Ω, A, P ), which is called a
probability space.

The σ-algebra for the dartboard game would include all values on the
dartboard and sub-intervals of the range of scores [0, 60], while the probability
measure for my scoring those values will depend on my skill level of throwing
darts. In case of the n-coin toss random variable, the σ-algebra will contain all
values and subsets of the set: {0, 1, 2, . . . , n}. If the coin tossed and the tossing
itself is done without any bias, the heads and the tails will be equally likely.
The probability measure in that case will be a well-known distribution, the
binomial distribution. This makes the n-coin toss random variable a binomial
random variable. We will study this and other well-known random variable
models later in this chapter.

As a well-defined mathematical construct, the σ-algebra defined above
should satisfy the following properties:
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1. Ω ∈ A.

2. If A1, A2, . . ., ∈ A, then
∪∞

i=1 Ai ∈ A.

3. If A, B ∈ A, then A−B ∈ A.

These properties essentially deliver a meaningfulness to the definition of a σ-
algebra, in saying that if we insert some events in the σ-algebra, then all unions
and differences of these events will also make for events that should belong to
the σ-algebra. Hence, a σ-algebra should contain all possible events of interest
for a risk. Correspondingly, the measure of likelihood of these events should
satisfy certain properties for the probability measure to be well-defined. The
definitional properties for the probability measure are:

1. ∀A ∈ A, P (A) ≥ 0.

2. If A1, A2, · · · , ∈ A are pairwise disjoint, then P (
∪∞

i=1 Ai) =
∑∞

i=1 P (Ai).

3. P (Ω) = 1.

Properties 1 and 3 are intuitive in saying that likelihoods of all events should
be non-negative and the event of the entire sample space is a certainty, since
the sample space exhaustively includes everything that can happen for a risk.
Property 2 yields an important characteristic to the probability measure in
terms of likelihoods of events that have nothing in common, in that their
likelihoods can be added to determine the collective likelihood of all the events.

It should be noted that as an implication of the above properties of σ-
algebra and probability measure, P (∅) = 0. By properties 1 and 3 of σ-algebra,
Ω−Ω = ∅ and ∅ ∈ A. The rest can be deciphered from properties 2 and 3 of
probability measure, since ∅

∩
Ω = ∅ and P (∅

∪
Ω) = P (Ω) = P (Ω) + P (∅).

This allows defining for any event A ∈ A, if P (A) = 1, we say that the
event A occurs almost surely (a.s.) or with probability 1 (w.p. 1). By a similar
derivation, for any event, A ∈ A, P (A) = 1 − P (Ac), where Ac is called
A-complement, and is defined as Ac = Ω−A.

1.2.1.1 Summarizing Random Variables

For a random variable, X, we seek a comprehensive summary of its proba-
bilities of assuming different values in a single function called the probability
density or mass function. Density is relevant when the random variable is a
continuous random variable, and mass is relevant for discrete random vari-
ables. Therefore, for X : Ω → R, we define f(x) as P (X(ω) = x). This
definition is good for discrete random variables, but strictly speaking, it is in-
accurate for continuous random variables. For a continuous random variable,
at points of continuity of the density function, P (X(ω) = x) = 0. There-
fore, for continuous random variables, the summary probability description is
accomplished using cumulative probability function.

Cumulative density (or distribution) function or cumulative mass function
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does exactly that, it accumulates probability from lowest to higher values of
a random variable. Therefore, F (x) is defined as

∑
xi≤x f(xi), where {xi} are

all the values of the discrete random variable, X. For a continuous random
variable, F (x) =

∫ x

−∞ f(y)dy = P (X(ω) ≤ x) is the accumulation of proba-
bilities up to x, summarized in the cumulative density (distribution) (CDF)
function. By the properties of a probability measure, we have F (−∞) = 0
and F (∞) = 1. In the continuous case, the derivative of the CDF, dF

dx , is the
probability density function. Moreover, since P (X(ω) = x) = 0 at points of
continuity of the density function, F (x) = P (X(ω) ≤ x) = P (X(ω) < x) for
such points.

The probability density function (PDF) and CDF provide a comprehensive
summary of the probabilities of a random variable, and can be used to com-
pute probabilities for all events concerned with the random variable. However,
sometimes we are interested in a single number summary of the properties and
characteristics of a random variable. This is achieved by taking weighted ‘av-
erages’ of the random variable, where the weights are the probability of the
outcomes of the random variable. This is defined by the notation and the
formula as follows,

E[X] =

∫ ∞

−∞
xf(x)dx, (1.1)

=
∑
{xi}

xif(xi), (1.2)

where Eqn. (1.1) is for continuous random variables and Eqn. (1.2) for discrete
random variables. The expected value or expectation of a random variable,
E[X], is called the mean of the random variable, and is often depicted by
the symbol, µ. More generally, we would like to find expectation (weighted
average) of any function, g(x), of the random variables (risks). This can be
achieved by the following modification of Eqns. (1.1) and (1.2),

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx, (1.3)

=
∑
{xi}

g(xi)f(xi), (1.4)

where g(X) is a function of the random variable, X. One specific function use-
ful to measure the deviations of the random variable from its expected value
is, g(x) = (x−E[X])2. This defines the variance of the random variable. The
square root of the variance is called standard deviation of the random vari-
able, often denoted by the symbol, σ. In formulas the variance (and standard
deviation, σ) of a random variable are defined by,

σ2 =

∫ ∞

−∞
(x− E[X])2f(x)dx, (1.5)

=
∑
{xi}

(xi − E[X])2f(xi). (1.6)
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We are often interested in the expectation of higher order polynomial func-
tions of random variables, specifically g(x) = xk or g(x) = (x − E[X])k for
positive integer, k. Expectation of these functions of the random variable are
called k−th order moments and central moments, respectively. These higher
order moments help characterize random variables beyond their mean and
variance. For instance, the third-order central moment indicates the degree
of asymmetry in the distribution, or skewness, while the fourth-order central
moment measures ‘heaviness’ of tails of the distribution. Tail of a distribution
is the shape of the density function at the far extreme values, and if these are
somewhat high, the tail is said to be heavy or fat. The distribution is called a
heavy-tailed or fat-tailed distribution.

1.2.1.2 Several Random Variables and Correlation

In risk management, more often than not, we would need to handle many
risk factors simultaneously, therefore we need to develop the vocabulary of
joint properties of several random variables, Xi; i = 1 . . . n. To begin with,
we will take n = 2, and define joint density function, f(x1, x2), for the
pair of discrete random variables, (X1, X2), as f(x1, x2) = P ({X1(ω1) =
x1}

∩
{X2(ω2) = x2}). As in the case of single random variable, definition

on the exact same lines for continuous random variable will not work. Hence,
we will need to define the joint cumulative distribution function, F (x1, x2),
for a pair of continuous random variables as,

F (x1, x2) =

∫ x1

−∞

∫ x2

−∞
f(y1, y2)dy1dy2, (1.7)

=
∑

{x1(i)<x1}

∑
{x2(j)<x2}

f(x1(i), x2(j)), (1.8)

where Eqns. (1.7) and (1.8) are for continuous and discrete random variables,
respectively.

For higher than one-dimensional random variables, some additional prop-
erties must be defined. One such measure is a joint centrality measure that
captures how a pair of random variables move relative to each other, i.e., when
one takes higher values than its mean, whether the second tends to take values
higher or lower than its mean. We will call this joint centrality moment the
covariance of the random variables, defined by,

Cov(X1, X2) =

∫ ∞

−∞

∫ ∞

−∞
(x1 − E[X1])(x2 − E[X2])f(x1, x2)dx1dx2, (1.9)

=
∑

{x1(i)}

∑
{x2(j)}

(x1(i)− E[X1])(x2(j)− E[X2])f(x1(i), x2(j)). (1.10)

We can also write this in more compact notation as, Cov(X1, X2) = E[(X1−



Defining Risk 17

E[X1])(X2−E[X2])], where expectation is taken as a double integral or sum-
mation using the joint density function. Expectation of other functions of the
two random variables can be similarly determined. The covariance is used to
create a normalized measure of correlation between a pair of random variables,
defined by,

ρX1,X2 = Corr(X1, X2) =
Cov(X1, X2)

σX1σX2

, (1.11)

where σX1 and σX2 are standard deviations of random variables X1,X2, re-
spectively.

From the joint density of multiple random variables, the distribution func-
tion for one of them can be extracted, which is termed as the marginal distri-
bution function, defined by,

FX1
(x1) =

∫ x1

−∞

∫ ∞

−∞
f(y1, y2)dy1dy2, (1.12)

=
∑

{x1(i)<x1}

∑
{x2(j)}

f(x1(i), x2(j)), (1.13)

where Eqns. (1.12) and (1.13) are for continuous and discrete random vari-
ables, respectively.

For several random variables, one important property is that of indepen-
dence. Knowing that two or more risks are independent gives the benefit of
studying them and making decisions for them independently. Independence
of two (or more) random variables implies that each of them takes values
independent of each other. In terms of the probabilities and distribution
function, this means P ({X1(ω1) ≤ x1}

∩
{X2(ω2) ≤ x2}) = P ({X1(ω1) ≤

x1})P ({X2(ω2) ≤ x2}), and F (x1, x2) = FX1(x1)FX2(x2) for all x1, x2. An
implication of independence of random variables on expectation of functions
of the random variables is that, E[g(X1)h(X2)] = E[g(X1)]E[h(X2)], for any
function g(X1) and h(X2). It is worth noting that this property arising from
independence of random variables implies that the random variables have zero
correlation, although zero correlation between two random variables may not
imply independence of the random variables. Therefore, independence is a
stronger inter-relational property between random variables.

1.2.1.3 Conditional Probability

Suppose we know that some event has occurred, perhaps defined in terms
of a random variable, that will affect our judgment on the likelihood of other
events, possibly defined in terms of a set of other random variables. Following
the dart example, if we know that the dart I threw did land on the dart-
board, then the probability assessment of my scores would become different,
hopefully better! The modified probabilities on having extra information are
the conditional probabilities. Let’s say B is an event in the σ-algebra, A,
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which could be defined in terms of a random variable X1. For example, B
could be that an even number of ‘H’s show up when 10 coins are tossed. This
will modify our judgment on the probability of the event of getting 2 ‘H’s. In
this example the second event is defined in terms of the same random variable,
however in general this may not be the case. The conditional probability can
be computed as follows:

P (X1(ω1) = 2|B) = P ((X1(ω1) = 2)
∩

B)/P (B), where P (B) > 0. (1.14)

It is, however, possible that occurrence of an event A has no bearing on that of
another event, B. Then P (A|B) = P (A). In this case we say that the events
A and B are independent. If A is an event defined in terms of random
variable, X1, and event B is defined in terms of random variable, X2, and
X1 and X2 are independent random variables, then this implies events A and
B would be independent. This is the direct implication of independence of
random variables on conditional probability of events defined by the random
variables.

This allows us to define the conditional probability density (mass) function,
f(x|B), defined by the Eqn. (1.14). We can see that f(x1|B) ≥ 0, and show
that

∫∞
−∞ f(x1|B)dx1 = 1. The conditional density function allows us to define

conditional expectation, as follows,

E[X1|B] =

∫
x1

x1f(x1|B)dx1, (1.15)

where the event B could be defined in terms of a second random variable X2

or in terms of random variable X1 itself. Additionally, the following properties
can be shown for relationship between conditional expectation and (uncondi-
tional) expectation.

E[X1] = E[X1|B]P (B) + E[X1|Bc]P (Bc), (1.16)

E[X1] =
∑
i

E[X1|Bi]P (Bi) where
∪
i

Bi = Ω,

P (Bi) > 0, Bi

∩
Bj = ∅, i ̸= j, (1.17)

E[X1|A
∩

B] = E[X1|A] where A ⊆ B. (1.18)

If we have a set covering of the sample space, Ω, as in Eqns. (1.16) and (1.17),
the unconditional expectation of a random variable, X1, can be computed in
terms of conditional expectations based on the elements of the set covering.
The last property in Eqn. (1.18) simply brings to light that when we condition
on the event A

∩
B, with A ⊆ B, only the occurrence of A matters.

After this general development of constructs to develop models of risk, in
the next section we will look at some specific models of risk. These will be
useful throughout the rest of the book.
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1.2.2 Specific Models of Risk

Risks abound. In their management it is always beneficial to be able to
characterize each risk by a model. A model is never perfect, but if one is
able to capture the most important characteristics of a risk, relevant for the
context of risk management, then this greatly facilitates the process of risk
management. We devote this section to the discussion of properties of well-
known standard random variable models that may be chosen to model various
risks. This overview should help the risk manager get familiar with the first
set of risk models available, although the space of random variables is vast,
only restricted by the number of distribution functions a modeler can imagine.

Besides discussing the properties of the model in formulas and equations,
we provide ample display of figures and graphs for a visual appreciation of the
properties of these models. As a support for implementation of these models,
we also provide suggestions for commands in the MATLAB mathematical
software tool [20]. We begin with the widely used and celebrated bell-shaped
distribution.

1.2.2.1 Normal Distribution

It won’t be too much of an exaggeration if we said that normal distribu-
tion is the most popular distribution in finance and risk management. It is a
distribution with the familiar symmetric bell-shape, with the tip of the bell
defining the mean of the distribution, and the thinness of the bell defining the
degree of variability summarized in variance. The probability density function
of a normal distribution is given by,

f(x;µ;σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (1.19)

where −∞ < x < ∞, µ is the mean and σ is the standard deviation of
the distribution. The PDF of the normal distribution looks straightforward,
however it should be noted that finding its integral to determine the CDF for
normal distribution cannot be done analytically. For this purpose, integration
must be done computationally in tools like MATLAB.

This distribution is also called the Gaussian distribution, which is good
to know since later in the book we will define a Gaussian process. When
the mean is set to zero, µ = 0, and the standard deviation is set to one,
σ = 1, the distribution becomes standard normal, denoted by N(0, 1). In
days when computing was done in paper-and-pencil, printed tables with CDF
values for standard normal distribution were used to compute probabilities
for a general normal distribution. This was facilitated by the fact that σX+µ
has a general normal distribution, N(µ, σ), when X ∼ N(0, 1). Therefore,
µ can be considered the location parameter of the distribution and σ is the
scale parameter. A plot of PDF and CDF of normal distribution is provided
in Figure 1.2, for different choices of µ in the PDF.

Due to the symmetry of the distribution about its mean, P (X ≤ x) =
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FIGURE 1.2: (a) Probability density function for normal distribution. (b)
Cumulative distribution function for normal distribution.

P (X ≥ 2µ − x). The bell-shape of the distribution centered at µ results
in majority of the probability to be concentrated around the mean of the
distribution, therefore the event (µ− σ ≤ x ≤ µ+ σ) has 66.67% probability
for any choice of µ and σ. Therefore, if σ is small, the density function is a
peaked curve, getting flatter as the σ increases, as shown in Figure 1.2. Beyond
variance, the third-order central moment for normal distribution, which is a
measure of asymmetry in the distribution, is zero for all values of µ and σ.
Therefore, E[(X−E[X])3] = 0. The tails of the normal distribution, measured
by the fourth-order central moment (also called Kurtosis of the distribution),
defines the benchmark for fatness. A distribution with a fatter tail than normal
distribution is termed a fat-tailed distribution.

1.2.2.2 Uniform Distribution

The uniform distribution is the simplest possible distribution, and as the
name suggests, its density function is a flat-level curve. We can construct a
discrete version of the uniform distribution also, with finite, say n, number of
outcomes equally spaced in an interval. The continuous uniform distribution
has a density function given by,

f(x; a; b) =
1

b− a
, for a ≤ x ≤ b, (1.20)

= 0, otherwise, (1.21)

where a and b are any real values. The distribution is denoted by U(a, b),
and standard uniform distribution is obtained for a = 0 and b = 1, which
is U(0, 1). The mean of the uniform distribution is the middle point of the
support of the density function, i.e., where the density function is positive.

Therefore, µ = a+b
2 . Standard deviation of uniform distribution is σ2 = (b−a)2

12 .
In Figure 1.3, the probability density and cumulative distribution function for
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FIGURE 1.3: (a) Probability density function for uniform distribution. (b)
Cumulative distribution function for uniform distribution.

uniform distribution is displayed for different choices of a and b. The uniform
distribution may appear to be too simple to be useful. However, in Chapter 4
we will show that this distribution plays a fundamental role in the simulation
of risks.

1.2.2.3 Central Limit Theorem

As a small detour, we introduce an important result that highlights
the significance of the normal distribution. If we have N random variables,
{Xi; i = 1, . . . , N}, all of them have identical distribution, as well as mutually
independent, we will call such set of random variables i.i.d., short for indepen-
dent, identically distributed. Lets say they all have U(a, b) distribution. We

define a new random variable, YN =
∑N

i=1 Xi

N , which is essentially the sample
mean of the N i.i.d. random variables.

The Central Limit Theorem, in short CLT, states that the random variable
YN has an approximately normal distribution, with the approximation getting
better as N gets larger. Therefore, in the limit (hence ‘Limit’ theorem) we
have, ∑N

i=1 Xi

N
→ N(

a+ b

2
,

√
(b− a)2

12N
), as N →∞. (1.22)

This result is true for any set of i.i.d. random variables, no matter what their
distribution. In fact, the result is stronger than we state here; the reader should
refer to Billingsley [11] or Durrett [22] for more details.

In Figure 1.4, we display histograms for YN for increasing values of N .
With increasing value of N , the histograms remain located at value a+b

2 = 0.5,
whereas the variance reduces significantly. The overlaid red curve is a fitted
normal density function, which shows an improving fit with increasing value
of N .
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FIGURE 1.4: Display of Central Limit Theorem. (a) N = 1,000 (b) N =
5,000 (c) N = 10,000 (d) N = 100,000.
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FIGURE 1.5: (a) Probability mass function for binomial distribution. (b)
Cumulative distribution function for binomial distribution.

1.2.2.4 Binomial Distribution

This is the first discrete random variable we consider. Binomial distribu-
tion is built based on Bernoulli distribution, which describes a Bernoulli trial.
Bernoulli trial is any risk that has only two possible outcomes - marked ‘suc-
cess’ and ‘failure’. For example, a bet on a toss of a coin will either make you
win when a heads is realized, or lose when a tails shows up. In a duration of a
year, a bond will either not default (labeled as ‘success’) or end up defaulting
(labeled as ‘failure’).

Binomial distribution looks at a collection, say of sizeN , of Bernoulli trials,
and measures the number of times success is obtained among the N trials.
Therefore, the range of values for a binomial random variable is {0, 1, . . . , N}.
The probability mass function for a binomial distribution is given by,

f(xi;N, p) =
N !

xi!(N − xi)!
pxi(1− p)N−xi , for xi ∈ {0, 1, . . . , N}, (1.23)

where p is the probability of success in each of the N Bernoulli trials and x!
denotes x-factorial. The mean and variance of binomial distribution are Np
and Np(1 − p), respectively. The probability mass function and cumulative
distribution function for a set of values for N and p are given in Figure 1.5.

1.2.2.5 Poisson Distribution

The most popular distribution for the study of queues is the Poisson dis-
tribution. Like binomial distribution, Poisson is a counting distribution, i.e.,
it is discrete and takes integral values from 0 to∞. Therefore, while in theory
it can assume an arbitrarily large value, we will observe that the probability
of large values drops sharply. Study of queues is a vast and important topic,
since queues are encountered in numerous contexts where people or things
must wait to get jobs processed or service received. Efficiency of these pro-
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FIGURE 1.6: (a) Probability mass function for Poisson distribution. (b)
Cumulative distribution function for Poisson distribution.

cesses and services is highly dependent on how well the queue structures are
organized, which is studied in the discipline of queuing theory.

Simply put, Poisson distribution measures the number of arrivals or occur-
rence of events in a duration of time or space. Customers arriving at a bank
teller or ATM, applications for auto insurance arriving for processing, number
of errors showing up in an application for loan, etc. are all examples of risk
where Poisson distribution may be useful. For our purposes, this will turn out
to be an important distribution since in a later chapter we will develop the
distribution into the Poisson process.

The probability mass function of a Poisson distribution is given by,

f(xi;λ) =
λxie−λ

xi!
, for xi ∈ {0, 1, . . . ,∞}, (1.24)

where λ defines the rate of arrival or occurrence of the event and, as before,
x! denotes x-factorial. λ is a single parameter that defines this distribution,
which also happens to be the mean and the standard deviation of Poisson
distribution, and is stated as a rate. Figure 1.6 displays the probability mass
function and cumulative distribution function for a set of choice of λ param-
eters. We notice that the probability mass function peaks around the mean
value, λ, and decays rapidly on both sides of the peak. Hence, even though
theoretically there can be infinite outcomes, the probability of the arbitrarily
large values being realized is minuscule.

1.2.2.6 Exponential Distribution

We switch our attention back to continuous random variables, and look at
a distribution that is closely related to the Poisson distribution. Exponential
distribution is a positive valued distribution, and as it turns out, has a simple
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FIGURE 1.7: (a) Probability density function for exponential distribution.
(b) Cumulative distribution function for exponential distribution.

probability density function given by,

f(x;λ) = λe−λx, for 0 ≤ x <∞, (1.25)

= 0, for x < 0,

where λ is the only parameter needed to describe the distribution. The mean
and variance of the distribution are 1

λ and 1
λ2 , respectively. In Figure 1.7, we

plot the probability density and distribution function for a set of λ values. As
can be seen from the probability density plot, exponential distribution is an
asymmetric function with a faster decay for increasing value of λ, as is also
evident from the functional form of the PDF in Eqn.(1.25).

The cumulative distribution function for an exponential random variable
is equally straightforward, as shown in Figure 1.7 (b), given by,

F (x;λ) = (1− e−λx), for 0 ≤ x <∞, (1.26)

= 0, for x < 0.

For exponential distribution, the CDF is not only straightforward, it is also

easy to invert it to obtain the inverse-CDF, given by F−1(y) = − ln(1−y)
λ . We

will revisit the inverse-CDF of exponential in Chapter 4 when we describe
methods for simulation of risks.

The relationship between the Poisson distribution and exponential distri-
bution should be noted before moving on. The λ parameter used in the two dis-
tributions is in fact the same quantity. In Poisson distribution, the parameter
describes the rate of occurrence of events, and in the exponential distribution
it is the time or space between occurrence of events. That explains why the
mean of the exponential distribution is the reciprocal of rate of occurrence
in the Poisson distribution. Additionally, exponential distribution possesses
the ‘memoryless’ property, namely P (X > x + y|X > y) = P (X > x) for
x, y > 0. Being memoryless here refers to the fact that knowing an event has
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FIGURE 1.8: (a) Probability density function for Weibull distribution. (b)
Cumulative distribution function for Weibull distribution.

not occurred for a certain amount of time provides no information on how
much longer it might take for the event to occur.

1.2.2.7 Weibull Distribution

Weibull distribution is again a two parameter distribution, defined by its
shape β and scale α parameter. It is most closely related to the exponential
distribution, as will be evident from the probability density function. Like ex-
ponential, Weibull is also a positive valued random variable. Moreover, Weibull
distribution with a shape parameter less than 1 is also an example of a heavy-
tail distribution. The distribution is most commonly used for modeling risk of
failure of machinery, and is also utilized in insurance models. The probability
density of the Weibull distribution is given by,

f(x;β, α) =
β

α
(
x

α
)β−1e−( x

α )β , for 0 ≤ x <∞, (1.27)

= 0, for x < 0.

Therefore, when shape parameter β = 1, the PDF simplifies to the expo-
nential distribution with λ = 1

α . In Figure 1.8, some probability density and
distribution functions are displayed for different values of the shape param-
eter, β, clarifying why the parameter has earned the name. For β < 1, the
density function has the shape of the letter J , racing to∞ near 0. When shape
parameter lies in the interval (1, 2), the density approaches zero at x = 0, but
has infinite slope at this point. The slope at x = 0 becomes finite for β = 2.
And finally, for β > 2, the density is zero and has a zero slope at x = 0.
The density of the Weibull distribution is unimodal, which means it has one
point where it peaks. The mean and variance for the Weibull distribution are
described in terms of the gamma function, Γ(.).
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FIGURE 1.9: (a) Probability density function for lognormal distribution.
(b) Cumulative distribution function for lognormal distribution.

1.2.2.8 Lognormal Distribution

Next to the normal distribution in terms of popularity for modeling risk in
finance is the lognormal distribution. As the name of the distribution suggests,
the lognormal distribution is related to the normal distribution in that natural
logarithm of the random variable is normally distributed. Keeping with this
relationship, a lognormal random variable, Y is denoted to have lnN(µ, σ)
distribution, implying that the logarithm of the random variable has normal
distribution with mean, µ, and standard deviation, σ. For lognormal distri-
bution, µ continues to be a location parameter and σ, a scale parameter. Put
another way, if X ∼ N(µ, σ) then eX is lognormally distributed. The probabil-
ity density function, obtained by change of variable in the normal probability
density, is given by,

f(x;µ;σ) =
1√

2πσ2x2
e

−(ln x−µ)2

2σ2 , for −∞ < x <∞. (1.28)

As opposed to the normal distribution, precisely due to the nature of change
of variable, the lognormal distribution is a positive valued random variable.
This is a particular advantage in modeling risks that must be positive in
value, such as equity prices. Moreover, for different choice of parameter σ, the
distribution takes different shapes. This is demonstrated in the probability
density plots of Figure 1.9. The mean and standard deviation, expressed in
terms of mean (µ) and standard deviation (σ) of the underlying normal, are

eµ+
σ2

2 and (eσ
2 − 1)e2µ+σ2

, respectively.

1.2.2.9 Chi-Square Distribution

The sum of random variables may or may not have the same distribution
as the individual random variables. This property is an important one, since in
many risk management contexts the quantities of interest are sums of random
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FIGURE 1.10: (a) Probability density function for Chi-square distribution.
(b) Cumulative distribution function for Chi-square distribution.

variables. For instance, return of a portfolio is expressed in terms of sum of
return of individual asset in the portfolio. If X1, X2, . . . , XN are N random
variables with, say normal distribution of possibly different parameters and
not necessarily independent, then the sum YN = X1+X2+ . . .+XN also has
a normal distribution. The precise parameters of the distribution depend on
the parameters of each of Xi’s and their correlations.

The distributions we are now turning to are sums of other random vari-
ables, since more often than not the sum of random variables does not follow
the same distribution. We will consider the sum of square of normally dis-
tributed random variables. As seen above, the sum of normally distributed
random variables is normal. However, the sum of square of independent (stan-
dard) normally distributed random variables follows the Chi-square distribu-
tion. Chi-square distribution is stated with its degrees of freedom k, as χ2(k),
which is the number of normally distributed random variables added to pro-
duce the Chi-square distribution. This definition of Chi-square distribution
implies that the sum of independent Chi-square random variables also has
a Chi-square distribution, with degrees of freedom added. The probability
density for Chi-square distribution is given by,

f(x; k) =
1

2k/2Γ(k/2)
x

k
2−1e−

x
2 , for 0 ≤ x <∞, (1.29)

= 0, for x < 0.

The mean and standard deviation of Chi-square distribution is k and
√
2k,

respectively. We display probability density and distribution functions for Chi-
square distribution in Figure 1.10. From its nature of construction, Chi-square
distribution is positive valued, and its PDF takes on different shapes for in-
creasing value of degrees of freedom.

Chi-square distribution is extensively used in inferential statistics, such as
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FIGURE 1.11: (a) Probability density function for gamma distribution. (b)
Cumulative distribution function for gamma distribution.

in goodness-of-fit tests. If the normal random variables being used to con-
struct a Chi-square random variable do not have a zero mean, then the sum
of square of normal random variables has non-central Chi-square distribu-
tion. Chi-square and non-central Chi-square distribution are also used for the
analysis of key financial risk factors.

1.2.2.10 Gamma Distribution

While the list of distributions we can potentially explore is long, our in-
tention here is not to attempt to be exhaustive. The intent is to provide a feel
for the basic examples of models of risk, and some extensions of them, in sup-
port of our future modeling developments and applications in the book. With
this in mind, the last distribution we consider is the sum of exponentially dis-
tributed random variables. Sum of exponentials is not exponential, instead it
makes the Gamma distribution. Gamma distribution is denoted as Γ(x;α, k),
where α is the scale parameter and k gives the distribution its shape. The
probability density is given by,

f(x;α, k) = xk−1 ex/α

αkΓ(k)
, for 0 ≤ x <∞, (1.30)

= 0, for x < 0.

The mean and variance of the Gamma random variable are kα and kα2,
respectively. We display some plots of probability density and distribution in
Figure 1.11. As a sum of exponential random variables, it is naturally used in
reliability models, waiting times between defects. The model is also useful in
modeling insurance claims, loan defaults, and other crucial risk factors.
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1.3 MATLABr Tools for Distributions

MATLAB mathematical software has a vast array of functions for working
with probability distributions in its Statistics Toolbox. We list a few of these
functions here. The reader is advised to look up the extensive help documen-
tation available with MATLAB to see the details of these and other related
functions. At the bottom of each function description in MATLAB help doc-
umentation, look for ‘See Also’ to explore other related functions. Resources
such as MATLAB Primer [20] are also useful.

Normal distribution: normpdf, normcdf

Uniform distribution: unifpdf, unidpdf, unifcdf, unidcdf

Binomial distribution: binopdf, binocdf

Poisson distribution: poisspdf, poisscdf

Exponential distribution: exppdf, expcdf

Weibull distribution: wblpdf, wblcdf

Lognormal distribution: lognpdf, logncdf

Chi-square distribution: chi2pdf, chi2cdf, ncx2pdf, ncx2cdf

Gamma distribution: gampdf, gamcdf

Other: hist, histfit

1.4 Summary

Risk is ubiquitous, therefore for living a better life in the personal or pro-
fessional realm, one needs to understand the meaning and implication of risk.
This understanding should translate to a smarter management of risk. In this
chapter, we defined risk and developed a typology of risk. The classification
of risk helps isolate properties of risk that will help determine the appropriate
tools for managing the risk. After the classification of risk, formalization for
the quantitative definition of risk was developed. Definition of random vari-
ables and the properties of probability measure developed in this chapter are
fundamental to the models for risk management developed in later chapters.
Finally, we introduced certain specific models of risk and studied their prop-
erties, as examples of the general concept of probability distribution. These
specific models of risk will be useful in various risk management applications.
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1.5 Questions and Exercises

Review Questions

1. What is risk? Why is it important to manage risk?

2. Discuss the differences between risk and uncertainty.

3. How are objective probabilities different from subjective probabilities?
Why is this distinction important?

4. How can a classification of risks by a meaningful taxonomy aid in risk
management?

5. What is the difference between pure and speculative risk? Give specific
examples of pure and speculative risks.

6. What are the sub-classifications of pure risk? How do these differ from
one another.

7. What are the sub-classifications of speculative risk?

8. What is market risk? What are the major sub-classifications of market
risk? Give specific examples of each.

9. Getting too embedded in the risk classification is dangerous from the
point of view of missing their interactions. Discuss how some of the sub-
classes of speculative risk may interact, and what the implication of this
interaction may be.

10. Why is the development of models for risks important?

11. Define the following terms for models of risk:

(a) Sample space

(b) Events

(c) σ-algebra

(d) Random variable

(e) Probability measure

(f) Probability density function

(g) Cumulative distribution function

(h) Mean

(i) Standard deviation

12. What is the meaning of independence of events? When are random vari-
ables independent?
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13. Define the following terms for models of several risks:

(a) Joint distribution functions

(b) Marginal density function

(c) Covariance

(d) Correlation

(e) Conditional probability

14. What is the definition of n-order central moment of a random variable?

15. What are skewness and kurtosis of a random variable? What is the
skewness of a normal distribution?

16. What are the statement and significance of the Central Limit Theorem?

17. What is the relation between Bernoulli random variable model and the
binomial random variable model?

18. How are the normal and the lognormal distribution related?

19. The Poisson distribution is said to be closely related to the exponential
distribution. Elaborate the role of the parameter, λ, in this relation.

20. How is the Weibull random variable model an extension of the exponen-
tial model? What risks is the model used for?

21. How are the Chi-square and the Gamma random variable models con-
structed from the simpler distributions? What risks are the models used
for?

Exercises

1. In a hurricane prone area, the hurricane season is graded on a dis-
crete 0-6 scale, where ‘0’ represents a mild season and ‘6’ represents
the most severe season. Historical data on hurricanes in this area
have been used to assign probabilities for these grades of the hur-
ricane season, summarized as: {0.1, 0.2, 0.1, 0.3, 0.14, 0.11, 0.05}. This
pure risk causes loss to property in amounts (in millions of USD) from
{0, $5, $80, $140, $200, $500, $2000}, corresponding to the grades of the
hurricane season. Use MATLAB to perform the following computations.

(a) What is the probability of extremes in a hurricane season?

(b) What is the probability of greater than a ‘3’ grade hurricane season?

(c) If a season is predicted to be greater than a ‘3’ grade hurricane
season, what is the expected loss?

(d) What is the mean, median, mode, and standard deviation of losses
due to hurricanes in a hurricane season?
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2. Annual demand forecast is being developed for a new product launch.
The estimated probability density constructed based on survey data is
given as,

f(x; p, λ) = λpeλ(x−300), for x < 300, (1.31)

= 0, for x = 300

= λ(1− p)e−λ(x−300), for x > 300.

This is the double-exponential risk model, where we will set p = 0.3 and
λ = 0.02. All demands are in thousand (000) units. Use MATLAB to
perform the following computations.

(a) From the above probability density function, construct the cumula-
tive distribution function for the projected annual demand for the
new product.

(b) How likely is the demand for the new product to be less than 350
per year?

(c) What is the probability that the demand will at least be as high
as 250 per year?

(d) What is the probability the demand will exceed 400 per year?

(e) What is the mean annual demand for the product? What is the
standard deviation?

3. Two risks that co-evolve are being modeled by the following joint density
function,

f(x, y) = ce(−x−y), for x > 0, y > 0, (1.32)

= 0, otherwise.

(a) For what value of ‘c’ is this a legitimate joint density function?

(b) What is the probability of the first risk exceeding in value than the
second, i.e., P (X > Y )?

(c) Determine P (X + Y > 1).

4. The relation between two risks is summarized in the following joint den-
sity function,

f(x, y) = ye−y(x+1), for 0 ≤ x, y >∞, (1.33)

= 0, otherwise.

(a) What is the marginal density function of each risk, X and Y ?

(b) Using the joint density, obtain the covariance of the two risks, and
also their correlation.

(c) What is the Conditional Density of X given Y ?



34 Risk Management and Simulation

5. The price of a stock is being modeled as a Lognormal distribution, where
you are given that the natural log of the price, ln(S), is normally dis-
tributed as, N(2, 0.6).

(a) What are the mean and variance of the price of the stock?

(b) Utilize MATLAB routines to compute the probability for the stock
price to exceed $10.

(c) How likely is it for the price of the stock to fall below $7?

6. If the time to the arrival, T , of the next customer at a drive-through teller
at a bank is modeled as an exponential distribution, knowing that it has
been 2 minutes since the previous customer left the teller does not help.
This is the ‘memoryless’ property of the exponential distribution, i.e.,
P (T > s+ t|T > s) = P (T > t). Show that the exponential distribution
possesses the ‘memoryless’ property.

7. In a portfolio of 600 loans, any single loan is likely to default in the
next year with p = 0.03 probability. If loans are expected to default
independent of one another, what model of risk would you like to use to
assess the total number of loans that default in the portfolio in the next
year? After selecting a model, compute the following quantities using
MATLAB.

(a) What is the mean number of defaults that should be expected in
the portfolio in the next year? What is the standard deviation?

(b) How likely would be more than 20 defaults in the portfolio?

(c) What is the probability that the number of defaults will be less
than 5?



Chapter 2

Framework for Risk Management

Risk management is perhaps one of the most important activities of any en-
terprise or household in support of its smooth and efficient operation. This
is especially true when we are ready to see the goal of mastering risk as not
restricted to be on defensive terms. Risk management is about how individ-
uals and firms actively, proactively, or sometimes reactively, select the types
and levels of risk that are appropriate and beneficial to assume. Some have
held a defensive view of risk management, which makes sense from a pure risk
perspective, that is if the focus of risk management was solely on pure risk.
However, as was studied in Chapter 1, the range of risks is wide, with pure
risk being important but only a subset of the risks.

For speculative risks, the risk-reward link is so integral to the risk that ap-
proaching these risks in defensive terms seems downright inappropriate. Mak-
ing risk management an integral part of the management and control process
for running a firm or a household allows for sounder economic management of
the enterprise. Depending on the nature and extent of risk exposures, individ-
uals, households, and firms may employ varied degrees of effort and resources
towards their risk management goals. Irrespective of the degree of effort and
level of resources, integrality of risk management to the firm’s or household’s
functioning implies keeping the consideration of risk and response at the core
of awareness of the firm’s employees and members of a household.

For many regulated sectors, risk management is not a luxury or a choice,
but an obligation. Banking, insurance, telecommunication, transportation, oil
and gas, electricity, and drugs and pharmaceuticals, are all examples of sec-
tors that are regulated, under some version of regulatory settings in many
nations. What is also important to note is that the regulatory framework
under which many of these sectors have functioned has changed, and will con-
tinue to change, sometimes quite dramatically. This implies that the firms of
the sector, or those of related activities, must align their risk management
efforts to an evolving regulatory context.

Risk management is a continual process of corporate risk monitoring, con-
trol, reduction, and management. While it may not be an activity undertaken
just to satisfy regulators, the regulatory demands for risk management can
result in a major impetus behind implementation and upgrades of risk man-
agement systems. For instance, in banking, the Basel Committee on Banking
Supervision (BCBS), an international extension of regulatory bodies of the
major developed countries, has been evolving the guidelines for regulatory

35
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control for decades, with a new impetus infused from the challenge of finan-
cial crises. Banks across the world have had to work diligently to comply
with the risk management requirements, and will have to continue to do so.
Therefore, management of risks is easier said than done.

Multitudes of risks that can affect a firm, an individual, or a household,
their increasing complexity, the global interconnectedness of risk factors, com-
pounded with the burden of regulatory requirements make risk management
a non-trivial endeavor. In this chapter, we will focus on a formal and rigorous
framework to support the risk management efforts and activities of individu-
als and enterprise entities. Concepts to support deliberation of the impact of
risks and making choices in light of risks will be developed, with an attempt
to retain their applicability for individuals, managers, and firms.

2.1 How to Handle Risk

The first prerequisite to managing risk is to identify and understand it.
In Chapter 1, we defined risk as variability that can be quantified in terms of
probabilities. The definition differentiated risk from uncertainty, which refers
to those future non-certain happenings whose outcomes are only known as
possibilities, and ex-ante probabilities are hard to assess. What we seek to
manage under a rigorous risk management framework are future non-certain
variabilities that are quantifiable both in terms of their outcomes and like-
lihoods. However, while learning to understand and manage risk, we should
attempt not to narrow down our skills too much so as to find ourselves totally
helpless in face of uncertainty. Since in today’s increasingly connected and
complex world, there is a lot of grey region between risk and uncertainty.

If risk is the variability in future happenings that can be quantified in
terms of probabilities, one more distinction is needed in terms of subjective
and objective probabilities. This distinction gets to the point of understand-
ing risk, based on which choices regarding it must be made. Each one of us,
based on our beliefs, historical data, and evidence can have a subjective view
of probabilities of future outcomes. Objective probabilities are those backed
with observational evidence, not just subjective estimates. Unavailability of
relevant or insufficient data can often result in the blurring of boundary be-
tween objective and subjective probabilities. This distinction is crucial for the
discussion of choices and choice-criteria for risk management.

In any context, understanding the possible sources for risk exposures is an
essential prerequisite for viable and effective risk management. A full grasp
of the sources of risk is greatly helped by a meaningful taxonomy of risks.
A taxonomy of risks was developed in Section 1.1, which would need to be
customized and applied depending on the nature of the entity developing a
risk management plan and strategy. For instance, the sources of risk from an
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individual’s and household’s perspective would be quite different from those
of a financial or non-financial firm. The most important classification of risk
was on the basis of pure versus speculative risks. Pure and speculative risks
can in their own turn be broken down into subclassifications, which highlight
the source and nature of the risk exposures.

Once risks are identified, an effort supported by a risk taxonomy, man-
aging risks in a specific context requires understanding the context so that
quantities to observe are identified in order to develop measurable quantifi-
cations of the impact of the risks. For our purposes, the impact of risk will
uniformly be measured in financial and/or monetary terms. A measurable and
quantifiable indicator for risk in financial and/or monetary terms, though it
bears shortcomings and challenges, helps in approaching risk management in
a disciplined, consistent framework.

Management of risk, depending on the type of risk and nature of entity
engaged in risk management, requires discovering modes by which the risks
may be managed, i.e., controlled, altered, endured or avoided. This discovery
phase of modes for risk management is just as important as the discovery of
risk exposures themselves. Since in the end, the mapping of risk exposures
with modes by which they will be managed dictates the efficacy of a risk
management strategy. Once the risks are mapped with modes for managing
them, an ongoing assessment of efficacy of the mapping must be in place in
terms of a set of pertinent risk measures.

2.1.1 The Risk Management Framework

In Figure 2.1, the risk management process is depicted as sequentially-
aligned activities of the above discussed steps for risk management. At the
top is identifying risk exposures. In the taxonomy of risks, from the range of
speculative risks to the variety of pure risks, one needs to identify the risks a
firm will be exposed to during the course of its activities, in the foreseeable
future. At this point, a sense of degree of importance of the risk exposures
may also emerge for the enterprise and its divisions, which can then be verified
by the quantifiable risk measures.

Identification of risks must be supported by a significant effort to have
access to ample data and observational evidence for the anticipated risk ex-
posures. In many cases, data may be hard to come by, hence a significant
effort may be necessary for this step. Data and observational evidence from
sources outside of internal resources may have to be acquired. This can come
at a significant cost, which will need to be justified for the use the data must
be put to. Models for risk discussed in Chapter 1, developed based on data
and observational evidence, as well as those that will be developed in later
chapters, will be needed to conduct the rest of the analysis to support risk
management. Some models of risk must also help indicate how the risks will
evolve in time; for this purpose a dynamic model for risk must be developed.
These are developed in Chapters 5 and 6.
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FIGURE 2.1: The overall flowchart for the Risk Management Process.

After the identification of risks, as we follow the path of risk management
process in Figure 2.1, there is a bifurcation of activities. In the first line of
activity, we design appropriate measures for quantifying the impact of risks,
their interactions, and their eventual effect on the bottom-line for the firm or
household. Bottom-line here refers to quantities that in the end matter to the
firm or household. In the second branch of activities, a process of discovery
must be undertaken to identify mechanisms by which risk may be controlled,
modified, reduced or transferred. This includes the exact modes, methods,
contracts, terms, and conditions by which risk may be managed, along with
costs incurred and benefits received from undertaking these approaches.

The two bifurcations in the process merge again in the core step of the
risk management process. In this stage, the risk exposures, their quantifiable
measures of individual risks, as well as their interaction and joint impact,
must be juxtaposed with the mechanisms discovered and available for the
management of risk. The theme followed here is summarized in the ‘avoid-
mitigate-transfer-keep’ shorthand. We will discuss each of these terms in detail
in Section 2.1.5. They refer, in summary, to how the mechanisms for risk
management discovered in one branch can be optimally matched with risk
exposures and their impact measured in the second branch so that the benefit
of risk management is maximized. The dependencies between lines of business,
integration and interactions among their risk exposures are also critical.

Evaluation of effectiveness of risk management efforts must be an ongoing
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activity. For this purpose, not only the appropriate and quantifiable overview
measures and guidelines must be in place, but also an organizational structure
should be established in a firm or a household that facilitates communication
and allows familiarizing all concerned of the risk management strategy and
its effectiveness. The organizational structure, the quantifiable overview mea-
sures and guidelines are all ways by which the risk management strategy is
continually assessed. When the strategy is judged to be losing effectiveness, it
should trigger going back to the ‘avoid-mitigate-transfer-keep’ drawing board.
The loss of effectiveness may be triggered by any changes in specific risk types,
sources of exposure, division, or activity of the organization.

Finally, in the dynamic, changing world we live in, there is only one thing
we can be certain of. That is change. Over time and after some specific regime
shifts, change can be so significant that the entire risk management strategy
will require a thorough assessment for relevance and effectiveness. This may
indeed require one to go back to the top of the process, i.e., the top box in
Figure 2.1, to generate the new best response. This is captured in the final
dashed arrow in Figure 2.1, which completes the circle of the risk management
process, indicating it to be a continual process.

Therefore, the only way a risk management framework has value to an
enterprise is if it fundamentally affects its way to do business. It must be
integral in influencing decisions and actions of the agents - members of house-
hold, employees and managers of firms; otherwise, it is a mere decoration,
an artifact of display with no real ability to add value. In a firm’s or house-
hold’s organization and functioning, risk management should not be a mere
‘check-the-box’ activity, since if used well, it can help an enterprise achieve
and sustain optimal long-term performance and goals.

In summary, for effective management of risks, an enterprise needs to un-
derstand and assess its risks, and equally importantly needs to embrace the
culture of active consideration of risks. This consideration should guide the
establishing of short and longer-term strategy, organizational goals and ob-
jectives, and assign responsibilities and tasks for minimizing the likelihood
and adverse effect of risks. Everyday decisions must be in concurrence and
accordance to the short- and long-term strategy. With changing times, the
strategy, enterprise’s goals, and responses to risks must be adjusted.

It is very easy to fall into the trap of identifying and assessing risks every
quarter, talking in terms of a high level risk response (e.g., accept the risk, or
hedge it using xyz instrument) rather than actually managing the risks day-
to-day. It is clearly not enough to understand risks for daily decisions, without
paying active attention to managing them. Application of a risk management
framework should not be a periodic exercise, it should be a way of life for a
firm or a household.
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2.1.2 Risk Preference vs. Risk Aversion

Comprehending and managing risk is all about making the right trade-off
between risk and rewards. This trade-off is the byproduct of the appetite for
risk an individual or a firm holds. Making choices in the presence of risk, in
order to make the best risk-reward trade-off, can benefit from the concepts
developed in the economic theory of choice. Theory of choice develops the
framework by which individuals make choices when faced with alternatives.
The simplest version of the theory addresses choices when there are alter-
natives, but the outcome of the choices is not risky. We will begin with the
discussion of the non-risky case, then move on to choices made in the presence
of risk.

An individual or a firm faced with a decision chooses from a set of alter-
natives. Let X denote this set of alternatives. Among all elements of X the
decision-maker weighs the merit and de-merits of each option against others
and attempts to select the option that suits best. This requires a more precise
definition of ‘best.’ Therefore, in more rigorous terms, we need to define an
ordering for the set of alternatives that makes it possible to compare every
element of the set with every other element. We denote this ordering by ’≽,’
then if x, y ∈ X, x ≽ y will imply that the decision-maker prefers x to y, and
x ≻ y would imply x is strictly preferred to y.

When a decision-maker faces a choice among a number of risky alter-
natives, often referred to as lotteries, the possible outcomes of these alter-
natives could be N possible levels of monetary payoffs. Therefore, a risky
alternative is characterized by the vector of probabilities of the outcomes
in that alternative, and the decision-maker is assumed to know the prob-
ability of each outcome in each alternative. The alternatives are depicted
by (x̃,p) pair, where x̃ constitutes the possible outcomes of an alternative
and p are the corresponding probabilities of the outcomes. For instance, I
may try to (unsuccessfully) trick my smart six-year-old nephew to get $10
pocket-money when the red-six face shows up on the roll of a die, ver-
sus getting $5 for heads on the toss of a coin. The two alternatives will
be summarized as, x = ({10, 0, 0, 0, 0, 0}, {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}) and
y = ({5, 0}, {1/2, 1/2}).

The preference relation, for both non-risky and risky alternatives, defined
above is said to be rational if it satisfies certain axioms of choice. These axioms
are reflexivity, completeness, and transitivity, and they are formally defined
as follows (see Varian [89], MasColell [60]):

Reflexivity For all x ∈ X we have x ≽ x.

Completeness For all x, y ∈ X we have either x ≽ y, y ≽ x or both.

Transitivity For all x, y, z ∈ X, if x ≽ y, y ≽ z then x ≽ z.

Additional properties imposed on the preference relation allows summarizing
the preference relation in terms of a utility function, U(x). These properties
are as follows:
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Continuity For any x, y, z ∈ X such that x ≽ y ≽ z, then there is an α ∈
[0, 1] such that y ∼ αx+(1−α)z. The symbol ∼ designates indifference
between two alternatives.

Independence For any x, y, z ∈ X and α ∈ (0, 1), we have x ≽ y if and only
if αx+ (1− α)z ≽ αy + (1− α)z.

A utility function summarizes the preference relation, so that when x ≽ y,
U(x) ≥ U(y). The utility derived from a risky alternative is called an expected
utility, if the utility function is the expected value of utility derived from each
outcome of the alternative. This is defined in the following,

U(x̃) =
N∑
i=1

uipi, (2.1)

where ui is the utility derived from each realized outcome xi of the alternative
x̃ with its corresponding probability, pi. It is worth noting that while the
outcomes (and their probabilities) of an alternative are objective, the utility
derived from each outcome is subjective. Therefore, this construct helps define
the risk preference versus aversion of the decision-maker. In cases where the
outcomes are a continuum of values, such as wealth outcomes ranging from 0
to ∞, the summation in Eqn. (2.1) must be replaced by an integral, U(x̃) =∫∞
0

u(x)f(x)dx, where u(x) is the utility derived from the outcome x.
We define risk aversion as a view towards risk that favors ‘equivalent’

non-risky alternatives over the risky ones. More rigorously, we define risk
aversion as,

U(x̃) =

∫ ∞

0

u(x)f(x)dx ≤ u(

∫ ∞

0

xf(x)dx), (2.2)

for any probability density for the outcomes, f(x). Therefore, expected utility
of a risky alternative is less than utility of the expected value of the alternative.
If the inequality in Eqn. (2.2) is strict, we call it risk aversion. However, if
the relation is satisfied with equality, which will happen if the utility function,
u(x), is a linear function, then we would call the decision-maker risk neutral.
A risk-preferring or risk-loving decision-maker will prefer a risky alternative
over the equivalent non-risky alternative, therefore we have,

U(x̃) =

∫ ∞

0

u(x)f(x)dx > u(

∫ ∞

0

xf(x)dx), (2.3)

for a risk-loving decision-maker for all probability density for the outcomes,
f(x).

The risk-aversion, risk-neutral, and risk-loving preferences of a decision-
maker translate to the concavity, linearity, and convexity of the corresponding
utility function, u(x). This in turn can be indicated by the sign of the second
derivative of the utility function, u′′(x). When u′′(x) < 0, we obtain concavity
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FIGURE 2.2: (a) Plot of the exponential, constant absolute risk aversion
(CARA) utility function. (b) Plot of the power, constant relative risk aversion
(CRRA) utility function.

of the utility function, and hence risk aversion of the preference relation. Sim-
ilarly, with u′′(x) > 0, we obtain a convex utility function, which results in a
risk-loving preference relation. This is obtained from the well-known Jensen’s
inequality, discussed in Chapter 5.

The Arrow-Pratt measures for risk aversion [40] provide a single number
indication of the nature of risk preference in a preference relation. The Arrow-

Pratt coefficient of absolute risk aversion is defined as, −u′′(x)
u′(x) . Given u′(x) >

0 for a preference relation, which implies that the decision-maker derives a
higher utility from a larger monetary outcome, the coefficient of absolute risk
aversion is larger when the marginal utility of wealth declines faster. The
degree of absolute risk aversion of the decision-maker measures the curvature
of the utility function, but is also invariant for linear transformations of the
utility function, α+βu(x). A linear transformation of a utility function doesn’t
change the essential characteristics of the utility function. The higher the
coefficient of absolute risk aversion, the more risk averse the individual is.

A decision-maker with a decreasing absolute risk aversion is willing to
accept more risky alternatives as his wealth level increases. For a decision-
maker with constant absolute risk aversion, the willingness to accept risky
alternatives remains the same for all levels of wealth. We may wish to define
a measure for risk aversion that is independent of the decision-maker’s cur-
rent wealth level. This is the Arrow-Pratt coefficient of relative risk aversion,

defined as, −xu′′(x)
u′(x) . If a decision-maker has a constant relative risk aversion,

he would be willing to invest the same proportion of wealth in a risky asset
independent of the current level of wealth.

In Figure 2.2(a), we provide a display of a constant absolute risk aver-
sion utility function, u(x) = a − be−µx, where µ is the coefficient of absolute
risk aversion. For this utility function, popularly called the exponential utility
function, u′(x) = bµe−µx and u′′(x) = −bµ2eµx, therefore u′(x) > 0 (increas-



Framework for Risk Management 43

ing) and u′′(x) < 0 (concave) for all x. In Figure 2.2(b), we provide a display
of a constant relative risk aversion utility function, u(x) = a + bx1−γ , where
γ is the coefficient of relative risk aversion. This is popularly called the power
utility function, while the utility function with a constant relative risk aversion
of 1, u(x) = a+ b ln(x), is the logarithmic utility function.

Although at first sight the axioms of choice, and the related constructs of
utility function, may look quite reasonable, it is worth taking a closer look.
Imposition of these axioms has enormous implications in practical terms. Re-
flexivity is the weakest and most acceptable axiom. The completeness axiom
implies that the decision-maker has done the investigation and introspection
of all possible alternatives, however far removed they may be from the realm
of common experience. It will at the least need serious work of reflection on
the individual’s or firm’s preferences. Considering the transitivity axiom, on
the other hand, implies that in a sequence of pairwise choices, there is no pos-
sibility of cycles, no matter how the options are framed or presented. Under
any circumstance, the decision-maker is able to rank all of them in an order
that contains no cycles. In practice, from a variety of real-world contexts,
behaviorists find significant deviations from these assumptions.

2.1.2.1 Normative vs. Behavioral Choice

The axioms of choice listed in the previous section form the normative
theory of choice. A decision-maker who satisfies these axioms is said to be
rational. It is possible to represent the preferences in terms of a utility function,
which is a map from the set of alternatives to the real line. Further assumptions
of continuity, monotonicity and convexity of the preference relation imply that
the utility function obtained is a continuous, increasing and concave function.
Much research in economics and finance has developed elegant and elaborate
theory on the basis of assumption that the decision-makers’ preferences satisfy
the normative axioms of choice.

As was observed in the previous section, it may be a difficult proposition
for an average decision-maker to satisfy all the axioms of choice. Following this
thought, many behavioral scientists and economists have attempted to under-
stand the decision-making processes among ordinary people through experi-
ments and studies of various kinds (see Wright [91], Bell [8]). These attempts
also try to quantify the choice making process, but try to be parsimonious
in their assumptions. They constitute what is called the descriptive theory of
choice. The five major phenomena of choice that violate the standard model of
normative theory are listed as: framing effects, nonlinear preferences, source
dependence, risk seeking, and loss aversion.

These phenomena of choice have been confirmed in a number of experi-
ments, with both real and hypothetical payoffs. These phenomena are defined
as follows.

Framing Effect: Lack of description invariance implying that variations in
the framing of alternatives yield systematically different preferences.
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FIGURE 2.3: Plot of the loss-aversion utility, an example of behavioral
utility function.

Nonlinear Preference: The expectation principle of utility theory states
that utility of risky prospects is linear in outcome probabilities. However,
experimental evidence indicates that people tend to transform proba-
bilities nonlinearly, overweighing small probabilities and underweighing
moderate and high ones.

Source Dependence: Willingness to bet on a risky alternative depends not
only on the degree of risk, but also on its source.

Risk Seeking: As opposed to the generally assumed risk aversion in eco-
nomic analysis, in certain situations people prefer more risk to less. For
instance, people prefer a small probability of winning a large prize over
the expected value of that prospect.

Loss Aversion: Carriers of value are gains and losses defined relative to a
reference point. The losses loom larger than the gains, that is, an amount
of loss elicits more “unhappiness” than the same amount of gain elicits
“happiness.”

In Figure 2.3, we display a behavioral utility function, the loss-aversion
utility from the prospect theory. Tversky and Kahnemann [88] developed an
alternative theory to the expected utility theory of normative choice, called
the prospect theory. The salient features of this alternative descriptive theory
are:
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Reference dependence: The carriers of utility are gains and losses defined
relative to a reference point.

Loss aversion: The utility function is steeper in the negative than in the
positive domain, relative to the reference point, implying that losses
loom larger than corresponding gains.

Diminishing sensitivity: The marginal utility of both gains and losses de-
creases with their size.

The utility function, as seen in Figure 2.3, is continuous and increasing, but
the above properties give it an asymmetric S-shape. The utility is convex and
much steeper below the reference point, and concave and less steep above it,
hence the derivatives don’t match at the reference point.

Behavioral finance is a fast growing field of research. In this framework,
researchers have made an attempt to understand and explain the investment
style, response to risky alternatives and preferences, as well as other market
characteristics from a descriptive standpoint. In any risk management con-
text, it is essential to be aware of this alternate preference structure as one
implements the risk management framework, making amends to the ‘rational’
normative approach where necessary.

2.1.3 Risk Measures

Preference relations summarize the risk preference of an individual or a
firm towards a single or several risk factors. However, various enterprises can
be complex entities, with each concerned decision-maker motivated by differ-
ent incentives and objectives. Therefore, in many contexts of risk manage-
ment, appropriate criteria for guiding the goals of risk management must be
constructed. For instance, the aggregate of the risk factors and their com-
bined impact on a firm’s solvency, an investment portfolio’s profitability, or
a project’s viability must be understood. Risk measures are designed to pro-
vide a single-number indicator for the joint impact of multiple risk factors in
potentially complex contexts.

A risk measure is a real-valued mapping, ρ, on a set of risk factors. If
X̃ is a set of risk factors (random variables), ρ : X̃ → R, so that it gives
a numeric summary of the combined impact of the risk factors. Given that
the risk measure must be computed based on historical observations of the
risk factors, a risk measure can also be described as a statistical measure that
summarizes the aggregate portfolio-level, project-level, business-unit level, or
firm-level risk due to the risk factors.

Some examples of risk measures include variance or standard deviation
of portfolio returns, which are functions of risk factors affecting assets in the
portfolio and the portfolio weight for each asset. Beta (β) is a risk measure
used as an indicator of the impact of systematic risk due to market or a bench-
mark index portfolio. Alpha (α) and R-squared (R2) are also risk measures
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relative to the market or a benchmark index portfolio. Sharpe ratio (
r̄−rf
σ )

is a risk measure that assesses risk relative to the reward or expected return
of a portfolio, as an indicator of the level of risk exposure yielding the level
of reward obtained. Each of these risk measures is unique in how it measures
risk, and hence how it would be applicable in specific contexts. We will discuss
these in detail later.

Risk measures are also defined to determine the amount of capital or cash
required in reserve in order to withstand adverse impact of risk factors. The
purpose of this reserve can be motivated by regulatory objectives to ensure
that the risk exposures of a financial institution, such as a bank or an insur-
ance company, do not threaten its stability and solvency, or may be guided
internally in a firm towards the same goal. Examples of risk measures geared
towards this objective are Value-at-Risk (VaR), Conditional Value-at-Risk
(CVaR). We will discuss these risk measures in detail later.

Risk factors are often added or removed from the set of risks relevant in a
context of risk management. Therefore, we demand properties of risk measures
that keep them consistent as risk factors are added or removed from the set
of relevant risks. These properties define risk measures to be convex and/or
coherent risk measures.

Coherent Risk Measures
A risk measure, as defined earlier, is a mapping from a set of risk factors

(random variables) to the real numbers, ρ : X̃ → R. Therefore, the general
notation for a risk measure is ρ(X̃), for the risk factors, X̃. Let X̃1 and X̃2

be two sets of risk factors, we define properties of risk measures as follows
(Artzner et. al [6]).

Translation Invariance: This property of a risk measure implies if risk-free
cashflow is added to the risk factors, it reduces the risk as measured
by the risk measure by the exact same amount. Mathematically, we can
summarize this as follows for any risk-free cashflow, c,

ρ(X̃1 + c) = ρ(X̃1)− c. (2.4)

Monotonicity: The risk measure should be such that it assigns a higher
value for a more risky set of risk factors. That is, if X̃1 ≥ X̃2 for almost
all realizations of the risk factors, this implies that X̃1 is less risky than
X̃2, therefore we have,

ρ(X̃1) ≤ ρ(X̃2). (2.5)

Convexity: The risk measure favors diversification, i.e., risk is reduced when
it is spread over more risk factors/assets.

ρ(αX̃1 + (1− α)X̃2) ≤ αρ(X̃1) + (1− α)ρ(X̃2), (2.6)

for all α ∈ [0, 1].
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FIGURE 2.4: Display of Value-at-Risk and Conditional Value-at-Risk.

Positive Homogeneity: The risk measure scales linearly in the degree of
risk exposure to risk factors X̃1.

ρ(αX̃1) = αρ(X̃1), (2.7)

for positive values of α.

A risk measure that satisfies the top three properties listed above is called a
convex risk measure, while a risk measure that satisfies all the four prop-
erties is called a coherent risk measure. By these properties, we can show
that variance (or standard deviation) as a risk measure is neither a convex
nor a coherent risk measure. This is because it does not satisfy the translation
invariance or monotonicity properties.

A risk measure made popular through its use in regulatory guidelines in
the banking sector is the Value-at-Risk (VaR) measure. Value-at-risk measure
reports how bad things can get at a certain confidence level as a quantile of
risk factor outcomes. We can define Value-at-Risk (V aRα) at confidence level
of α by,

V aRα = inf{q ∈ R|P (X̃ ≤ q) ≤ 1− α}. (2.8)

Therefore, V aRα does not tell us what the maximum loss level might be. As
so defined, Value-at-Risk is not a convex or coherent measure in general. It
does not universally satisfy the convexity property, and thus does not always
favor diversification.

The Conditional Value-at-Risk (CV aRα) measure is a related risk measure
to the V aRα measure, also stated in terms of a confidence level, α. It coincides
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with the expected shortfall or tail conditional expectation measures, and is
defined as follows.

CV aRα = E[X̃|X̃ ≤ V aRα]. (2.9)

It can be shown that CV aRα is a coherent risk measure. In Figure 2.4, we
display the V aRα and CV aRα risk measures for the probability density of
the risk factors, X̃.

Risk measures can also be constructed based on a utility function, U :R→
R, which is a strictly increasing and concave function. The utility-based risk
measure is defined for a risk factor X̃ as follows,

ρU (X̃) = inf{u ∈ R|E[U(X̃ + u)] ≥ U(0)}. (2.10)

For instance, if U(x) = ax+b is a linear utility function, ρU (X̃) is the smallest
value u such that E[X̃] + u ≥ 0, since a > 0. A utility-based risk measure can
be shown to be a convex risk measure.

2.1.4 Risk Management

Why do firms engage in risk management? In fact, it is also appropri-
ate to ask, should firms engage in risk management? Academicians have ad-
dressed this question, and in doing so, have provided valuable insight to this
question. As mentioned in Chapter 1, among the Nobel laureates whose sig-
nificant contributions have advanced our abilities of comprehension of risk,
and its management, are Franco Modigliani and Merton H. Miller. Modigliani
and Miller (M&M) are credited with propositions that address the question
of value added by managers’ financial decision making for a firm [64]. This
includes decisions managers may make for risk management. The Modigliani
and Miller propositions conclude that managers cannot increase a firm’s value
solely by financial transactions.

As is true for any theoretical analysis, it must be made under certain ide-
alizations of the context. M&M propositions are made under the assumption
that firms and investors make their decisions and choices in a perfect financial
market. Financial markets are assumed to be highly competitive, there are no
transaction costs, informational asymmetry, or taxes. Under these stringent
assumptions, managers cannot increase value of a firm by choosing a certain
financing structure for the firm or by engaging in financial transactions for risk
management. In competitive, liquid financial markets with no informational
asymmetry, investors and shareholders can themselves make their investment
or risk management choices.

The M&M proposition does not include decisions managers must make
to manage business, strategic or operational risk. Therefore, even under the
assumptions of the M&M world, risk management of these risks is important
for a firm to create value for its shareholders. In fact, no management of risks is
a type of risk management, by adopting the ‘keep’ strategy of risk management
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from Figure 2.1. A firm can choose to hedge the price of a commodity in order
to create synergies for its operations. For example, airline companies engage
in hedging jet fuel price risk by trading in crude oil futures. Failing to do
so can erode their profits entirely, and threaten their solvency. Hedging the
price of a commodity essential to its production process or service delivery can
stabilize a firm’s costs. This can translate to pricing policies that make the
firm more competitive in the marketplace. Performing due diligence for capital
budgeting regarding large-scale strategic investments is also an exercise in risk
management.

Firms also transfer a range of operational risks by taking out insurance
policies for these risk exposures. The policy offers indemnification in case
of events that may cause damage to the property or other assets of a firm.
The indemnification can also safeguard against disruption in the production
process and in the delivery of services. A number of different liability insurance
products are also utilized, or are required for firms to hold, in order to minimize
their own risk of loss or loss to the public due to negligence. Engaging in these
risk transfers is also a key risk management activity.

The M&M propositions apply specifically to financial contracts, i.e., deriva-
tives transactions, put in place for the purpose of managing financial risks in
the balance sheet of a firm. But even this must be questioned due to the
stringent assumptions under which the propositions are constructed. In prac-
tice, firms do pay taxes based on a complex taxation system. All segments of
markets are not always highly competitive and there is ample informational
asymmetry between managers and investors. Moreover, managers are often
biased by their objectives for the firm and for their self-interest. Therefore,
firms do engage in financial risk management in a variety of ways.

Informational asymmetry between managers and investors (or sharehold-
ers) of a firm is in terms of a significantly higher level of knowledge managers
have of the business and financial activities of the firm. Managers are, there-
fore, disinclined to give a variable signal to investors regarding the financial
health of the firm. Variability can also be interpreted as arising due to man-
agerial incompetence. A firm seen to have less variable income and sound
financial health also has higher debt capacity and easier access to financing.
A lower variability in income also assures that funds will be available when
attractive investment opportunities come by for a firm. Moreover, financial
distress is very costly for a firm, hence managed variability helps in lowering
the possibility and probability of a firm landing in a financially distressed
state. A nonlinear corporate tax structure also encourages making taxable in-
come more uniform through quarters and years. Lastly, but quite importantly,
managers’ personal risk aversion may play a significant role in dictating which
risk they consider managing actively.

Empirical evidence of risk management of financial positions of a firm is
ample [83][66] for currency, interest-rate, commodities risk, etc. Sometimes
firms don’t need to take explicit positions to create the hedge, since there is a
natural hedge in the firm’s activities. For instance, if a firm has a supplier in a
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country, as well as sales in the same country, a significant amount of demand
risk and currency risk can be naturally hedged. Despite market imperfections,
it is not obvious that all firms should manage risks in their financial posi-
tions. In the case of small and medium-sized firms, resources may be already
stretched that allocating them to dedicated risk management (using hedges)
may not be feasible. Hedging financial risk based on half-baked knowledge and
half-clear intent can be more harmful than helpful, irrespective of the size of
the firm.

Besides following the flowchart in Figure 2.1 for performing risk manage-
ment, a firm must define its risk appetite, that is applicable at the firm-level as
well as at the different business-unit levels. Risk appetite expressed in terms
of a variety of risk measures aids more robust risk control and oversight. A
firm should aspire to develop an organizational structure to support and im-
plement risk management strategies and inculcate a culture for responsible
participation by managers and employees. An organizational structure that
permeates top-down vision and bottom-up involvement creates the necessary
engagement to deliver the desired goals of risk management.

Performance evaluation measures utilized for business units and for firm-
wide assessment of risk management framework help determine the value
added from these efforts and strategies. Risk-adjusted Return on Capital
(RAROC) and Shareholder Value Added (SVA) are commonly used measures.
Firms may consider static as well as dynamic strategies for different risk ex-
posures. The static approach makes a one-time response, implements it and
allows the world to respond. Adjustments to the strategy, if needed, are made
once the outcomes of the strategy are known, and if the outcomes are found
to not meet the objectives of risk management. Dynamic strategies respond
to the world’s responses on the fly; as a sequence of risks unfold, the strategy
changes and adapts the response. Clearly the dynamic strategies are more
complex than the static ones, and must be utilized for the clear advantage
they may offer. Sophistication of strategies developed must be commensurate
to skills of both developers of the strategy and their implementers.

2.1.5 Elements of the Framework

In Section 2.1.1, the risk management framework was presented as a
flowchart of a logical sequence of activities. The end goal of these activities
was to have a firm-wide or a business-unit specific strategy for the manage-
ment of its risks. Built into the framework was an assessment of the strategy,
as well as assessment of the entire implementation of the framework. These
are crucial for the efficacy of the risk management framework, as the identified
risk exposures change and as new risk exposures appear. The most important
component of the flowchart in Figure 2.1 is at the bottom of the flowchart,
where ‘avoid-mitigate-transfer-keep’ decisions must be made for each risk ex-
posure. We discuss each action component of a risk management strategy in
detail next.
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2.1.5.1 Avoid

Individuals and firms knowingly or unknowingly avoid many risk expo-
sures. The purpose of including ‘avoid’ as a risk management action is to
make the decision of avoiding a risk exposure a conscious one. A conscious
decision makes the decision-maker weigh the pros and cons of the risk expo-
sure and evaluate its impact on the individual or the firm. It also makes the
decision-maker explore if there were possible ways by which the harmful effects
of the risk can be reduced, without giving up the beneficial consequences of
the risk exposure. There can also be related risks that get ignored if the first
risk is not carefully evaluated, where the related risks can offer possibilities of
higher gains. Therefore, ‘avoid’ is not a decision one arrives at without careful
thought. However, after careful consideration, it may turn out that for a risk
the cons significantly outweigh the pros, in which case, the risk exposure is
rightly avoided.

A mining company could be scoping a mining project for the viability of
its copper deposits, and as such it may not appear to be a profitable project.
However, if the firm considers the prospect of recovering significant amounts of
gold and other precious metals along with the copper from the mining project,
it may have to reconsider its ‘avoid’ decision. Similarly, a pharmaceutical
company could be evaluating a research and development project for a drug.
As such even if the project doesn’t look attractive for its profitability, and the
firm may be inclined to ‘avoid’ the risks of the project, the R&D for the drug
may have the potential to lead to other drug discoveries.

2.1.5.2 Mitigate

Mitigate is a risk management action of risk reduction by taking on multi-
ple risks. Consider two risks, R1 and R2, that a firm can select to be exposed
to for the rewards they can offer. The firm can choose either of the risks by
allocating all its resources to that single risky project, or it can choose to
allocate a fraction of available resources to both the risky projects. If the firm
uses standard deviation of the outcomes of the risky projects to be the risk
measure, and mean value to be the measure for reward, the ‘mitigate’ action
dictates how mixing the two risks can improve the firm’s prospects of these
risk exposures.

In Figure 2.5, we plot the mean and standard deviation for the combination
of two risks for a range of allocation, (w, 1−w), in the two risky projects. The
mean and standard deviation of the combined risk is given by,

µπ = wµ1 + (1− w)µ2, (2.11)

σπ =
√

w2σ2
1 + (1− w)2σ2

2 + 2ρw(1− w)σ1σ2, (2.12)

where µ1, µ2 are mean of the two risks, respectively, σ1, σ2 are the standard
deviations, and ρ is the correlation between the two risks. In Figure 2.5(a), the
first risk has a mean of µ1 = 10% and a standard deviation of σ1 = 15%, while
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FIGURE 2.5: (a) Plot of mean and standard deviation of combined risk for a
range of weights on two individual risks. (b) Plot of mean and first percentile
of combined risk for a range of weights on two individual risks, assuming
normal distribution of combined risk.

the second risk has a mean of µ2 = 16% and standard deviation of σ1 = 30%.
As Figure 2.5(a) shows, with changing allocation, w, in the two risks, the firm
can benefit by exploring other risk-reward options. In some cases, it is possible
to reduce the risk below either of the options, while improve on the reward
relative to at least one of the two options. This is the benefit of the ‘mitigate’
action of risk management.

When the correlation between risky projects is positive, there is a possibil-
ity to reduce risk by choosing multiple risky projects, as is seen in Figure 2.5(a)
for ρ = 20%. However, when the correlation is negative, the possibility of risk
reduction can be significantly further improved. In Figure 2.5(b), a plot of
mean and first percentile of the combined risk is plotted for a range of allo-
cations to the two risks, under the assumption that the combined risk has a
normal distribution. The first percentile is chosen as a measure of downside
risk, therefore the higher first percentile value is the better. We again see
in this figure that combining risks makes it possible to explore options with
lowered downside risk.

Benefits of the mitigate action extend beyond the example of two risky
projects discussed above. One key assumption made in the results is that there
are no transaction costs, and taking on two projects doesn’t change the reward
and risk characteristics of each risky project. Therefore, while mitigation is
an important mode for risk management, its benefits must be cost-effectively
achievable.

In the case of operational risk, or more generally for pure risk, the ‘mit-
igate’ action is not necessarily applied by taking on multiple risks. Instead,
in this case, mitigation is achieved by educating the stakeholders for correct
behaviors, appropriately securing property assets, and making processes and
systems robust so that the likelihood of occurrence of loss events is reduced.
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2.1.5.3 Transfer

Risks that are not avoided and cannot be controlled by mitigation can be
considered for a transfer. Transferring of risk entails passing a specific portion
of the risk and its impact to another entity, firm or enterprise. Risk transfer
strategy has to be carefully constructed since the transfer is effected at a cost.
In the case of operational risk, and in general for pure risk, the insurance
mechanism provides the opportunity to transfer risk. For different types of
market risks, the vast variety of derivative instruments can enable risk trans-
fers. Strategic and business risk management can benefit from transfer of risk
in terms of joint ventures in strategic projects, partnerships, and subcontract-
ing and outsourcing opportunities.

A variety of pure risk can be transferred by individuals and firms by pur-
chasing insurance contracts. However, insurance is not available for all kinds
of pure risk, since many of the pure risks are not insurable. As discussed in
Section 1.1.1, particular pure risk affects a single individual or a small group
of individuals, while fundamental pure risk has much more macro-level effects.
Therefore, private insurance has a higher likelihood of being able to profitably
offer insurance for particular pure risk, while governments often have to pro-
vide support for fundamental pure risk. When insurance is available for a
specific pure risk, it should be available at an affordable premium. Premium
is dependent on the type of coverage and the extent of risk transfer sought,
therefore determination of exact risk transfer strategy through insurance con-
tracts is a carefully constructed decision.

Derivative instruments are created to allow the transfer of market risk and
credit risk. Market price risk of equity, interest rates, currency and various
commodities is transferred by utilizing these derivative instruments. Deriva-
tives can be broadly classified into option contracts, forwards/futures con-
tracts, and swaps. Some of the contracts are traded on exchanges, while oth-
ers are set up as bilateral agreements, also called ‘over-the-counter’ contracts.
Derivatives for credit risk are mostly designed as swaps or options. Options
are so named since they give the buyer the right to perform an action or exer-
cise the option. Swaps, forwards/futures don’t offer a right, instead they are
obligatory. Depending on the risk exposures and the objectives of risk man-
agement, choice of derivatives and the strategy for taking positions in them
must be determined for the optimal risk transfer.

A forward contract allows buying or selling a security, commodity, or in-
strument at a future time for a set price. The set price of settling the contract
in future is called the ‘forward price’. Therefore, a forward contract helps set
the future price of buying or selling the underlying asset. A manufacturer or a
producer of a raw material or commodity has interest in being able to sell its
product or produce at a reasonable price, and thus eliminate large fluctuations
in its revenues. A manufacturer or producer that utilizes these raw materials
or commodities also benefits from reducing fluctuations in its costs by utiliz-
ing forward contracts. The optimum level of forward contract utilization for
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risk management depends on the degree of exposure to the underlying risk
and the firm’s chosen measure of risk.

Forward contracts are designed so that no premium is charged upfront.
However, option contracts require payment of a premium. In an option con-
tract, the buyer of the option gets the privilege, while the seller (or writer)
of the option takes over the obligation to fulfill the terms of the contract.
For this privilege, the buyer must pay a premium upfront. A call option is
designed to allow buying the underlying asset in the future at a set exercise
price or strike price, while a put option is designed for selling the underlying
asset. For instance, a firm that would want to sell the underlying asset in
the future, but wants to eliminate the downside risk, can take a position in
put options. Determination of the exercise price and extent of position in put
options depends on the level of exposure to the underlying risk, cost of put
options, risk measure used for the risk management objectives of the firm, as
well as the firm’s risk aversion.

2.1.5.4 Keep

Finally, after the avoid, mitigate, and transfer considerations are explored,
and included in the risk management strategy, what is left behind is essentially
the ‘keep’ action. However, it should not be assumed that the keep action is
a default and passive action. The risk kept must be continually monitored,
measured and evaluated. The goal is as time progresses, the kept risk has the
same characteristics as was intended originally. If the properties of the kept
risk change beyond an acceptable level, the strategy for risk management
must be reassessed and reconstructed. Additionally when adverse outcomes
are realized of the kept risks, the firm should be prepared to cushion the
impact of the adverse outcome to ensure solvency of the firm. When firms
operate under a regulatory structure, the ability to cushion losses from kept
risk is not an option, but a requirement.

2.2 Example Contexts to Apply the Framework

The risk characteristics of the multitudes of risk exposures of a firm must
be summarized in meaningful ways to aid the development of a risk manage-
ment strategy. The avoid-mitigate-transfer-keep actions produce a response
to specific risk characteristics, guided by the objectives of risk management.
In this section, we elaborate on some of these specific characteristics that are
of greatest importance.
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FIGURE 2.6: (a) Unimodal distribution of risk and its central tendencies.
(b) Bimodal distribution of risk.

2.2.1 Analysis Using Central Measures

A measure of central tendency provides the typical value of the risk. Mean,
median, and mode of a distribution are summaries of the risk that provide this
information. In this regard, it is worth noting that these summaries provide
information about the central tendency if the distribution is unimodal. For a
bimodal or a multi-modal distribution, there are multiple tendencies, there-
fore mean and median may not strictly summarize the central tendency of the
distribution. In a unimodal distribution, if the density function is increasing
or decreasing, only mean and median provide the information of central ten-
dency. In Figure 2.6, these central tendencies are marked for a unimodal and
a bimodal distribution of risk. In case of bimodal, the mean and median are
not indicative of the actual values the risk will realize with high likelihood.

Dispersion from a measure of central tendency is a risk measure. The
most common risk measure of this type, one which we have already looked
at, is variance or standard deviation. This measure was formally defined in
Chapter 1 as, σ2 = E[(X −µ)2], where X is the risk and µ is its mean. In the
consideration of mitigation, the commonly used measure of central tendency
and dispersion are mean and variance, respectively. We discussed formulation
of objective for risk management via risk mitigation in terms of these measures
in Section 2.1.5.2.

Dispersion or spread from the central tendency can also be measured as
a mean-absolute deviation, defined as E[|X − µ|]. This measure can also be
used for optimally mitigating risk by allocating resources among several risky
projects, as discussed in Section 2.1.5.2. Mean-absolute deviation, as a mea-
sure of spread or dispersion, does not square the distance from the mean,
therefore the influence of extreme observations is less than it is in the defi-
nition of variance or standard deviation measures. Mean-absolute deviation
as a measure of risk has been used for risk mitigation [80, 53, 52], which has
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some implications. One of the implications is that the risk mitigation prob-
lem can be formulated as a linear programming problem. The formulation
would not require information regarding covariance (or correlation) between
risky projects under consideration. Moreover, mean-absolute deviation risk
measure doesn’t distinguish positive deviations from negative ones, similar to
variance, which may be a disadvantage.

Median absolute deviation is a modification on mean absolute deviation,
where mean is replaced by median in accounting for deviations of the risk.
Median, p1/2 or the 50th-percentile of the risk, is known to be a more robust
measure of central tendency, since compared to the mean value of the risk it is
much less affected by the extreme values of the risk. Median absolute deviation
is a robust estimator of dispersion of risk for the same reason, however it is
a somewhat more complex risk measure to work with for the development of
an optimum risk mitigation strategy.

2.2.2 Tail Analysis

In Section 2.1.4, we discussed the motivations and reasons for firms to en-
gage in risk management. One reason was that they don’t have a choice, since
the regulatory structure for their industry, such as in banking and insurance,
requires them to actively engage in risk management. The motivation for the
regulatory structure is to prevent financial weakness of one firm causing a
chain-effect, commonly referred to as a domino-effect, resulting in many more
firms in the industry and beyond to suffer. Hence, their focus is on the down-
side risk or the risk of financial distress of the firms in the industry. Systemic
risk arising from many firms in these industries simultaneously suffering dis-
tress can be very detrimental to the nation’s economy, with possible spillover
effects on the global economy. Even if a firm is not affected by a regulatory
structure dictating its risk management goals, as stated in Section 2.1.4, the
firm’s risk management goals may include controlling the possibility of fi-
nancial distress. Assessing downside risk requires zooming into the tails of
probability distributions.

Risks and their probability distributions can have a variety of tail char-
acteristics, and since by definition events of the tail are less likely to occur,
the data to support statistical analysis of tail risk is meager. Depending on
the context, characteristics of either the left, right, or both tails of a distri-
bution may be important from a risk management perspective. Tails can also
be thin (light) or fat (heavy). Heaviness of a tail can be roughly defined as
when probability of extreme value does not decay rapidly enough as the value
gets increasingly extreme. Mathematically, this can be summarized as, there
exists a positive parameter α > 0 such that,

P (X > x) ∼ x−α, x→∞. (2.13)

Examples of single fat-tailed (or one-tailed) distribution include Pareto
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FIGURE 2.7: Probability density plot displaying light-tail and heavy-tail.

distribution, lognormal distribution, Weibull distribution with shape parame-
ter less than 1, while examples of two-fat-tailed distributions include Cauchy
distribution and t-distribution. Figure 2.7 displays the tails of a light and a
heavy-tailed distribution. Although both curves go down to zero as x decreases
to −5, the probability density for t-distribution decays much more slowly. For
the range (−5 to −1.5), the density curve of the t-distribution is significantly
higher than that of the normal distribution. This is the fatness of the tail of
t-distribution, resulting in higher probability of occurrence of extreme events.

For a set of observations, detecting the heaviness of the tail of the underly-
ing distribution is the first investigation of tail analysis. A simple probability
plot is revealing in this investigation. In Figure 2.8, probability plots for two
datasets are given. Figure 2.8(a) is a sample drawn from a normal distribution,
hence a normal probability plot yields an undeviating straight line. While in
Figure 2.8(b) the sample is drawn from a t-distribution, but is plotted on a
normal probability plot to indicate how the tails deviate from the straight
line. Both the extreme ends of data deviate significantly from the straight
line, indicating that the underlying distribution of the data has left and right
fatter tails than the normal distribution. Goodness of fit tests, such as the
Kolmogorov-Smirnov (KS) test, the Berk-Jones test and the score test [51],
can be applied to quantitatively verify fatness of tail of the risk distribution.

A typical example of tail risk measure is the Value-at-Risk (VaR) risk
measure defined and discussed in Section 2.1.3. Other measures discussed
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FIGURE 2.8: (a) Probability plot for a dataset that matches the light-tailed
normal distribution model. (b) Probability plot for a dataset that displays
heavy-tail deviations from the normal distribution model.

in that section that apply to tails of a distribution were Conditional Value-
at-Risk (CVaR) and expected shortfall. We will explore these risk measures
further in later chapters in the context of specific risk types.

2.2.3 Scenario Analysis

Risk monitoring and assessment is an important component of risk man-
agement. This is captured in the top left branch after identification of risk
exposures in Figure 2.1. It is also utilized at the bottom loop of the flowchart
where a strategy for management of risks on the avoid-mitigate-transfer-keep
theme is created and implemented, but a continuous performance evaluation
of the strategy is required.

Scenario analysis conducts a specific kind of risk assessment; it is a pro-
cess of estimating the expected impact of risk exposures over a given period
of time, assuming that specifically identified outcomes of risks are realized.
To obtain valuable insights from scenario analysis, the specifically identified
outcomes for the risks must be carefully picked. To that goal, scenario anal-
ysis commonly focuses on estimating the impact of risks in the unfavorable
outcomes, or the ‘worst-case’ scenarios. One method could be to apply two to
three standard deviation outcomes of the risks to see their combined impact
on the performance of the firm or portfolio. In this way, the range of impact
of risks is ascertained for the given time period.

In general, however, there are many different ways to approach scenario
analysis. In fact, scenario analysis does not have to rely on historical data,
and does not need to assume that past observations must be the only ones
valid for the future. Instead, scenario analysis can be developed to try and
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consider possible developments, modifications, and evolutions by which future
outcomes may transpire, which may be disconnected from the past.

Scenario analysis is commonly used for business and strategic risk anal-
ysis, where little is known about probabilities associated with risks due to
uniqueness of a firm’s experience with these risks. Scenarios may be created
as a ‘normal’ case, ‘pessimistic,’ or ‘optimistic’ case to examine the range of
performance the project may have, and economic soundness of taking it up.
Scenarios may also be constructed based on secondary or tertiary risk factors
not considered in the core analysis to develop an improved understanding of
the impact of these broader sets of risks on the project. For instance, a truck-
ing company may consider price of fuel, demand for its services, risk of labor
cost fluctuation, and equipment failure risk as its primary risks, but would
benefit from a secondary analysis of considering scenarios for weather and
hurricane risks for its service geography.

2.2.4 Stress Testing

Some would consider scenario analysis as a tool within stress testing, while
others may treat stress testing as a special case of scenario analysis. In essence,
they are both attempting to do the same thing - that is, without providing
the entire probability distribution, picking outcomes of risks and assessing
their impact on the firm, project or portfolio. Even if the distinction between
scenario analysis and stress testing is not agreed upon, the fact remains that
they are both indispensable for risk assessment, monitoring, and management.

Stress testing can be considered to have at least one distinct component
from scenario analysis. Stress testing can imply physically applying stress or
force on a physical system. It is a form of testing where the strength and
stability of a physical system or its prototype is determined by testing it
beyond its normal operational capacity, often to a breaking point, in order to
observe the results. For example, in reliability engineering, systems may be
put through extreme stress to determine their modes of failure and to ensure
stability when they are used in a normal environment.

Alternately, stress testing can be applied to a non-physical object, such as
a software or a model, with the goal of assessing the object’s strength, integrity
and soundness. Stress testing a model evaluates the model with extreme choice
of inputs to determine what the response of the model might be. If under these
extreme settings the model can produce behavior expected of the system it is
an abstraction of, this clearly instills greater confidence in the model.

The word ‘stress’ in stress testing suggests consideration of impact of ex-
treme outcomes of risk. Therefore, the objective of stress testing is to com-
plement tail analysis conducted on the basis of VaR or CVaR measures of
risk. Estimates of these tail risk measures must rely on historical data, under
an assumption of stationarity and repeatability in the future of these past
observations. However, this could be far from reality, since a changing and
evolving world changes the risk exposures and their characteristics in funda-
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mental ways. By not demanding probability assessments, and focusing only
on possibility of outcomes, stress testing relieves itself of relying heavily on
past observations. In doing so, it provides the opportunity to look deep in
the tail, beyond what VaR or CVaR can report about tail risk based on past
observations.

Stress testing is important and valuable for market risk, but is also use-
ful to obtain insights about tail risk in credit, operational, liquidity, business
and strategic risks. It is of great significance to note that under stressed eco-
nomic conditions, the usual silos of risks break down. New interactions of
risks, not seen in normal economic conditions, emerge that require special at-
tention. Stress testing can explore the modalities by which such interactions
may emerge, and assess their impact on the firm or portfolio.

Once the risk exposures are identified, in the most simplistic way, stress
testing can be applied by developing stress shocks for each risk exposure. A
stress shock is a significant level of change in parameters that define the risk
characteristics of a risk exposure. Examples could be interest rates applied
to a bond, probability of default of loans, mean return of a stock, correlation
between assets, or volatility of a commodity. These shocks can be applied one
at a time on the performance measure for the firm or the portfolio, in order
to see the impact of the stressed level, as well as to assess the degree of their
influence on the firm.

In reality, stress shocks don’t arrive in a piecemeal manner. Therefore, a
more advanced approach of stress testing would require combining the stress
shocks of all the risk exposures in meaningful ways to construct stress en-
velopes. Meaningfulness of the stress envelope can be guided by events of
the past, an intuitive understanding of the context, and a stretch of imagi-
nation. This is where we must venture into the domain of uncertainty. Since
the demand of assigning objective probabilities to the occurrence of the stress
envelopes is removed, exploration and assessment of uncertainty is possible for
the much needed insight. Moreover, inspired by past experience of a stressed
sequence of events, market crashes, and failures, stress envelopes capturing
the dynamic evolution of circumstances should also be constructed and eval-
uated for their impact. The sequentiality of events is also very important to
understanding risk beyond looking at stress envelopes as static, one-period
events.

2.3 MATLAB Tools for Risk Measures

MATLAB mathematical software has an array of functions for working
with statistical and risk measures in its Statistics and Finance Toolbox. We
list a few of these functions here. The reader is advised to look up the extensive
help documentation available within MATLAB to see the details of these
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and other related functions. At the bottom of each function description in
MATLAB help documentation, look for ‘See Also’ to explore other related
functions. Resources such as MATLAB Primer [20] are also useful.

Heavy-tail test: kstest

Central Tendencies: mean, median, mode

Measures of Dispersion: var, mad (used for both mean/median absolute
deviation), range

2.4 Summary

In this chapter, we developed the necessary constructs to be able to assess
the exposure and management of risk. The constructs include a risk manage-
ment framework, in which all risk management problems can be broken down
into stages, and each stage is facilitated by appropriate tools. We developed
a detailed discussion of each stage of the risk management framework and
appropriate tools for each stage, including risk discovery, models for risk pref-
erence, definition and properties of various risk measures. Finally, we applied
the risk management framework to some example contexts. Each example con-
text is developed with a certain risk management objective, and is applicable
to broad risk types discussed in Chapter 1. In later chapters, we will develop
these example contexts for specific risk types.

2.5 Questions and Exercises

Review Questions

1. Why is it important to construct a framework for risk management?

2. What are the steps adopted for implementing a risk management frame-
work?

3. What are the major actions that constitute a risk management strategy?

4. How does an appropriate organizational structure support effective risk
management?

5. What are axioms of choice? What purpose do they serve?
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6. When is a decision-maker considered risk-seeking, risk-averse, and risk-
neutral?

7. What are the Arrow-Pratt measures of risk aversion? How does the
coefficient of absolute risk aversion differ from the coefficient of relative
risk aversion?

8. What is the descriptive theory of choice? How does it differ from the
normative theory?

9. What is a risk measure? How can risk measures be useful?

10. What are the properties of a convex risk measure? Coherent risk mea-
sure?

11. What are the Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) measures? For a risk distribution, which of the two will be
higher?

12. Why do firms engage in risk management?

13. How can the discrepancy between the practice of risk management and
the Modigliani-Miller (M&M) propositions be resolved?

14. Why are financial institutions, for instance, banks and insurance com-
panies, required to do risk management?

15. Why should the ‘avoid’ decision in a risk management strategy be an
active decision?

16. What is the goal of ‘mitigate’ decision of a risk management strategy?
In the case of speculative risk, how is this goal achieved?

17. In the case of pure risk, how is the ‘mitigate’ response to risk achieved?

18. How is transfer of risk accomplished in case of pure risks and speculative
risks?

19. Why is there a premium requirement for some derivative instruments
designed to transfer risk, while no premium requirement for others?

20. How is the ‘keep’ response to risk not a default and passive response?

21. What is the central tendency of risk? What is central measure of risk?
Give two examples of both.

22. What is a bimodal distribution? How does it differ from a unimodal
distribution of risk, in terms of central tendency of risk?

23. Why is tail analysis of risk important? Why is it challenging?

24. How is heaviness of tail of a risk distribution detected?
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25. What is scenario analysis? How is it different from stress testing?

26. How can scenario analysis and stress testing be used to make decisions
under uncertainty?

Exercises

1. What may be the implication of the descriptive theory of choice on risk
management?

2. Find some examples from recent history of failures of risk management.
Discuss the causes for these failures, and how they could have been
avoided.

3. Determine the coefficient of absolute risk aversion and coefficient of rel-
ative risk aversion for the following utility functions:

(a) Exponential utility function: u(x) = a− be−µx

(b) Power utility function: u(x) = a+ bx1−γ

(c) Logarithmic utility function: u(x) = a+ b ln(x)

4. Demonstrate that variance as a risk measure does not satisfy the trans-
lation invariance property of risk measures. Demonstrate the same for
the monotonicity properties.

5. Demonstrate that the Value-at-Risk (V aRα) in general is not a convex
or coherent risk measure.

6. Demonstrate that the Conditional Value-at-Risk (CV aRα) is a coher-
ent risk measure. What advantages does Conditional Value-at-Risk have
over Value-at-Risk risk measure?

7. What is the advantage of the influence of extreme observations being
less in the definition of a risk measure?

8. Compute the mean-absolute deviation and median-absolute deviation of
the following distributions, and compare them with the standard devia-
tion of the distributions.

(a) Normal distribution

(b) Uniform distribution

(c) Lognormal distribution

9. How is it a disadvantage that the mean-absolute deviation or the vari-
ance risk measures don’t distinguish between positive versus negative
deviations from the central tendency of a risk?
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10. Which risk management responses, among ‘avoid-mitigate-transfer-
keep’, will heaviness of the tail of a risk distribution affect more? Explain
how.

11. For the following example contexts, after identifying potential relevant
risk exposures, develop stress shocks, stress envelopes, and scenarios to
conduct a meaningful stress testing and scenario analysis.

(a) A well-diversified equity fund

(b) A multinational automobile manufacturer

(c) A property and casualty insurance company



Chapter 3

Regulations and Risk Management

Everyone seems to agree that some form of government control of business is
necessary, however there are differences of opinion regarding the exact purpose
and mechanism of control. One camp believes the government’s principal role
is to maintain competition, supported by the view that an efficient market and
maintaining competition will generally produce benefits to the society. The
other camp doesn’t place as much trust on the markets; it believes that there
are ample lessons from history to suggest that governments should focus on
preventing abuse of consumers, and regulations should be imposed to prevent
market failures. As a result, government’s control of business takes two forms,
antitrust focuses on maintaining competition, while regulation applies certain
performance standards to the firms of an industry.

The focus of antitrust is to curtail monopoly power from forming by pre-
venting collusion and opposing mergers that may lead to excessive concentra-
tion. The hope is if government prevents monopoly and unfair competition,
it will lead to healthy competition in an industry resulting in public welfare.
The classical view is that competition serves consumers by forcing inefficient
firms out of the market, that failure of some firms from time to time leading
to ‘survival of the fittest’ is a wholesome phenomenon. There is a flaw in this
view, especially when it pertains to industries like banking and insurance,
which makes regulation a more important channel for government control for
these industries.

The rationale for regulation in banking and insurance is that these indus-
tries are vested in the public interest. They are pervasive in their influence,
therefore a failure of one firm in these industries can affect persons other than
those directly involved with the failing firm. Contracts in these industries
are long-term in nature, for instance, individuals purchase insurance to pro-
tect themselves against financial loss at a later time, therefore it is important
that insurers promising to indemnify the insured for future losses keep their
promise. Unless there is a way to seamlessly transfer all the liabilities of a
bank or insurer to another institution, letting ‘unfit’ banks or insurers fail in
favor of competition is not a solution. This is where regulation comes in.

Regulation is a more direct involvement of government in the affairs of a
business, to ensure that the enterprise runs robustly. A strong enterprise can
in turn create a healthy industry. The firms in banking and insurance sectors
hold vast sums of money in trust for the public, therefore should be subject
to government regulation due to their fiduciary nature. Beyond the solvency

65
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aspect of the rationale for regulation, these industries conduct business with
their customers through varying degrees of complex contracts. Regulation is
deemed necessary to ensure that the contracts offered are fair and are fairly
priced.

The linkages between regulations and activities of risk management are
fundamental. Even when risk management is not considered a high priority
activity in an organization, the regulatory framework can force the organi-
zation to conduct at least the minimally necessary level of active risk man-
agement, monitoring and reporting. However, regulations are neither costless,
nor perfect. In this chapter, we provide an overview of evolution of regulatory
bodies and their roles, and of the regulatory framework affecting and influ-
encing risk management in the finance sector. The intent here is not to be
comprehensive in addressing this topic, which is clearly not achievable in a
book of this nature. The intent here is to develop a regulatory context for
risk management, from which the practical issues underlying the rest of the
chapters can be better appreciated.

3.1 Regulations Overview

So how much regulation is enough, and how should the regulatory structure
of the industries that require regulation for robust functioning be organized?
These are non-trivial questions, ones we don’t have crisp, clear and conclusive
answers for. The bigger issue is, even if we knew the answers to these ques-
tions, since the development of regulatory structures may have happened in
a somewhat organic fashion, making a complete revamp may be impossible.
Countries that started later in their regulatory efforts get the opportunity to
learn from the successes and failures of others. One thing is however definite,
regulatory environment is always on the move, sometimes at a rather fast
pace, and at others not rapidly enough. Sometimes in retrospect it even seems
to have proceeded with some trial-and-error or with misguided objectives. In
this section, we provide an overview of changes over the years in the regulatory
environment for banking, securities and insurance sectors, primarily from the
US perspective.

Figure 3.1 shows a summary of regulatory bodies for banking, investment
banking and insurance for the G8 countries. Group of Eight or G8 is a forum
of governments of the world’s eight largest economies, which originated in
1975 with six original members (G6), namely France, Germany, Italy, Japan,
the UK, and the US. Soon after, Canada was included to form the Group
of Seven or G7 countries, and in 1997, Russia’s addition created the current
G8 countries. The EU is represented within the G8, but cannot host or chair
summits, while China and Brazil, which are among the top 8 economies by
nominal GDP, are not included. The G8 + 5, however, includes the heads of
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Country/Sector Banking
Securities (Investment 

Banking)
Insurance

US

Federal Reserve System;

State Regulators;

OCC; FDIC

SEC; CFTC; FINRA; State 

Securities Regulators; State 

Attorneys General

State Regulators; 

NAIC

UK FSA FSA; FRC FSA

Japan JFSA; BOJ JFSA; SESC JFSA

Germany BaFin BaFin BaFin

Italy Banca d’Italia CONSOB ISVAP

Canada OSFI; CDIC
CSA; IIROC; Provincial 

Securities Commissions
OSFI

France
Commission Bancaire

(Banque de France)
AMF CCA

Russia FFMS FFMS FFMS

FIGURE 3.1: The table shows the main regulatory agencies for the Group of
Eight (G8) countries for banking, investment banking, and insurance industry,
as of 2012.

state of the five leading emerging economies - Brazil, China, India, Mexico, and
South Africa. The G8, or expanded less formal groups, coordinate or discuss
future efforts for coordination on several themes, including those pertaining to
their respective finance ministries. There have been other efforts underway for
international coordination of regulatory activities, which we will touch upon
in later sections.

3.1.1 Regulatory Evolution for Banking

Alexander Hamilton, on becoming the first Secretary of the Treasury, re-
ceived approval from the US Congress to create the Bank of the United States
(BUS) in 1791, using the Bank of England as the model. However, at that
time, BUS was not the only bank, and not the only bank issuing notes. Be-
tween 1782 and 1837, 700 banks sprang up in the US, while there still was
no national currency. Given the number of active banks, some states started
some rudimentary banking regulation, with Massachusetts, New Hampshire
and New York leading the way. As BUS was growing as a premier bank with
broad presence across the US, it was seen as a threat to the state banks, and
the Congress refused to renew its charter in 1811!

Promoting competition to create a robust banking industry was not the
priority at this time, since a second effort to revive a Second BUS failed
purely due to political forces in the 1812-1832 period, after which an era
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of state banking prevailed. As a response to the aftermath of the Second
BUS shutting its doors in 1836 and the ensuing events leading up to the
panic of 1837, New York created the first bank supervisory authority and
formal banking commission, which imposed reserve requirements. Leading up
to the US Civil War, there still was no common US currency, and the bank
notes issued by hundreds of state banks served as currency, with serious issues
regarding circulation of counterfeit notes.

After the US Civil War, the ‘greenback’ was created, and a national bank-
ing system was established as well, backed by the National Banking Act of
1863. The state banks’ notes were gradually taxed out of existence. The na-
tional banks being regulated by the federal government with the aid of the
Office of Comptroller of the Currency (OCC) resulted in a dual banking reg-
ulation system. By 1899, the Secretary of the Treasury was using national
banks, and their clearinghouse certificates, as a means to stabilize money
markets during times of uncertainty.

As regulations for commercial banking took strength, trust companies
picked up in popularity as a mechanism for avoiding functional regulation
being imposed on commercial banking. In 1907, the Knickerbocker Trust col-
lapsed with deposits in excess of $60 million, sending ripples of panic, while
the federal government appeared helpless in dealing with this crisis. An in-
dividual, J.P. Morgan, served as a ‘one-man Federal Reserve Bank’ through
this crisis. The panic of 1907 resulted in the enactment of the Federal Reserve
Act of 1913, which in fact further fragmented banking regulation. Besides the
state regulation, the federal bank regulatory authority was split into the OCC
at the Treasury and the Federal Reserve System. OCC retained the respon-
sibility for examining and regulating national banks, while the Fed became
responsible for monetary issues.

The Fed found itself struggling with monetary policy from its inception.
Moreover it was marred with power struggles within the Federal Reserve sys-
tem, specifically the New York Federal Reserve Bank’s efforts to gain promi-
nence over the other Reserve Banks in the system. There were grave conse-
quences of this fight for power in the events that led to the stock market crash
of 1929. Disputes with the New York Federal Reserve Bank, and specifically
dealings of Charlie Mitchell with National City Bank (now Citibank), the then
director of New York Fed, largely paralyzed monetary policy during almost
the entire year of 1929.

Meanwhile the McFadden Act of 1926 had allowed national banks to es-
tablish branches under conditions similar to those permitted by state banks.
Restrictions on branch banking were resulting in a large number of very weak
banks that would be unable to cope with a serious economic downturn. Bank
failures reached epidemic proportions after the stock market crash of 1929. In
1923, there were 91 national and 580 state banks that had a total of over 2000
branches. By 1932, one in four banks in the US had failed. During Franklin
Roosevelt’s US presidency, new legislation was enacted to strengthen the bank-
ing system. The Federal Deposit Insurance Corporation (FDIC) was created
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to protect customer bank deposits to avoid bank runs. The Glass-Steagall Act
of 1933 sought complete divorcement of commercial and investment banking.
After the World War II decree of the Treasury to keep interest rates at arti-
ficially low levels, the Treasury-Federal Reserve Accord of 1951 strengthened
the role of the Fed in more independently managing federal monetary policy.

The 1960s marked the beginning of an era in which financial services firms
sought to expand and diversify their business across regulatory boundaries.
Banks began looking for loopholes to expand business and avoid banking
regulations. The Bank Holding Company Act of 1956 restricted the ability of
bank holding companies to enter in other lines of business or to purchase other
banks. Such activities required Fed approval, but the BHC Act of 1956 did
not apply to one-bank holding companies. The number of one-bank holding
companies grew rapidly as this loophole was exploited. In response Congress
acted to close the one-bank holding company exception through the Bank
Holding Company Act Amendments of 1970.

Increasing competitive pressures, for instance by money market funds be-
coming alternatives for customer deposits, made customer deposits become a
smaller factor in banking. Banks were exploring new markets, including in-
ternational markets, such as in Latin America, which caused huge losses to
the industry later. On the other hand, banks in other countries were getting
stronger, and the World War I domination of US banking in world finance was
dwindling with only 4 of the top 20 banks in the world being American. During
the middle of the 1980s, over 40 US banks failed each year. In 1984, the FDIC
had a list of over 500 ‘problem’ banks, which doubled to 1000 institutions by
1986. Artificial regulatory restraints on their business and disintermediation
was the root cause of these problems.

When the congress lifted the interest rate ceilings for deposits, there were
major interest rate mismatch issues between bank assets and liabilities. Major
S&L (Thrift) crises emerged after the Depository Institutions Deregulation
and Monetary Control Act of 1980, when Thrifts began exploring speculative,
perhaps questionable, investment opportunities, building up to the 1987-1988
banking debacle, when 700 banks and over 1000 S&Ls were closed down,
with cost to taxpayers predicted to range from $500 billion to $1 trillion. All
pointing to less than adequate risk management practices used at banks.

The rapid evolution of the banking industry continued, with 1980s seeing
a change from relationship banking to transactional banking. Securitization
of assets made banks into conduits for loans, as their underwriters and dis-
tributors. Banks were more engaged in ‘mezzanine’ finance - funding in the
middle of corporate capital structure. Banks became less and less like tradi-
tional banks and more like financial services firms. First they were edging their
way into securities, followed by beginning to provide insurance products, such
as life insurance, annuities, etc. The bottom line was, banks could not depend
on deposits business as their prime source for generating revenue. In response
to these changes, the SEC attempted to adopt a rule in 1985 that would have
required banks to register with it if the banks engaged in securities business.
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The Senate didn’t support this on grounds that the SEC was extending be-
yond its power. While in the early 1990s, only six states allowed interstate
bank branches, by the middle of 1990s every state was permitting multi-office
banking. The Riegle-Neal Interstate Banking and Branching Efficiency Act of
1994 opened doors widely to interstate banking, and the continuing waves of
mergers and acquisitions changed the industry terrain.

When in October 1999, the Gramm-Leach-Bliley Act of 1999 finally re-
pealed the Glass-Steagall Act of 1933, many argued that the Glass-Steagall
Act was already ‘dead.’ The Gramm-Leach-Bliley Act of 1999 or the Finan-
cial Services Modernization Act of 1999 authorized the creation of financial
holding companies that could engage in a broad array of financial services,
including commercial and investment banking, securities and insurance. The
historical functional regulatory system was, however, maintained as is, as the
basis for regulating the expanded activities of the banks and their holding com-
pany structures. This meant traditional commercial banking activities would
be regulated by bank regulators, securities by the SEC and state securities
commissions, futures and options by CFTC, and insurance by multiple state
insurance regulators!

The current answers to how much regulation is enough, and how should
the regulatory structure for banking be organized will appear very suboptimal
even to the most naive eyes. The differences between products of banks and
non-bank financial firms have become increasingly blurred. The emergence of
similar products by different firms operating under different regulatory regimes
results in complicated competitive and regulatory issues. Some of these issues
are being addressed, however functional regulation does not reflect current
realities. Banking evolution has continued; with increasing popularity of In-
ternet banking and credit cards, cash has become an increasing anachronism.
Adaptability of the national banking system is increasingly important as ad-
vances in technology and telecommunications accelerate the rate of changes.
Attention is needed for the realities of the marketplace.

The financial crises of 2007-2008 shook US banking in unprecedented ways
and magnitude. In 2012, the aftereffects are still felt in almost all parts of the
globe. Although there were many culprits to the creation of the crisis, the ‘too
big to fail’ financial institutions became the centerpiece of everyone’s headache
and a $700 billion to trillions of dollars of cost to the US taxpayer, depend-
ing on the way one looks at it. Regulatory reforms in response to the crises
are taking shape all over the world. The Dodd-Frank Wall Street Reform and
Consumer Protection Act of 2010 was signed into law by President Barack
Obama on July 21, 2010. The Act implements financial regulatory reforms
passed as a response to the 2008 financial crisis and ensuing recession. It is
said to be the most significant financial regulation change in the US since the
regulatory reform after the Great Depression, which significantly affects all
federal financial regulatory agencies and almost every aspect of the financial
services industry [7].
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3.1.2 Regulatory Evolution for Investment Banking

Investment banks are intermediaries. Unlike commercial banks that accept
deposits from customers and make consumer or commercial loans, investment
banks don’t accept deposits, they sell investments. The securities originated
by an investment bank are typically not held by the bank, but are instead sold
to third parties, investors. Investment banking practices have existed for cen-
turies, such as through the merchant banks that helped finance foreign trade,
overseas voyages and investments. In the US, investment banking received a
boost during the Civil War. Around this period, banking houses were syndi-
cated to meet the federal government’s need for money to fund its war efforts.
Jay Cooke launched the first mass securities selling operation in US history,
selling $830 million worth of government bonds to a wide group of investors,
followed by war bonds worth $1.5 billion to the general public. This marked
the first mass-market securities sales operation in the US, a practice that
continued later in the 1800s to finance the expansion of the transcontinental
railroads.

Through the late nineteenth century, the investment banking industry was
dominated by two distinct groups, the German-Jewish immigrant bankers and
the so-called ‘Yankee houses’, both of which had ties with their respective
merchant banking operations in London. One exception of Kuhn, Loeb had
ties with European sources of capital through the German investment banking
community. The 1800s saw the emergence of some of the most famous firms in
investment banking, including JP Morgan (1871) and Goldman Sachs (1869).
Goldman Sachs was among the pioneers of the initial public offering (IPO),
and managed one of the largest IPOs at that time, for Sears, Roebuck and
Company in 1906. We have already discussed the role of J.P. Morgan through
the panic of 1907.

In the early twentieth century, there was no legal requirement to separate
the operations of commercial and investment banks. Therefore, deposits from
the commercial banking side of the business served as an in-house supply of
capital that could be used to fund the underwriting business of the investment
banking side. The investment banking industry was highly concentrated and
was dominated by an oligopoly of firms. In this period, investment banking
expanded dramatically. One reason was an increase in the number of indi-
viduals who owned stocks, as a result of the prosperous years after the First
World War.

In 1913, the Pujo Committee unanimously determined that a small syn-
dicate of financiers had gained consolidated control of numerous industries
through the abuse of public trust in the US. The chair of the House Com-
mittee on Banking and Currency, Representative Arsne Pujo, had convened a
special committee to investigate a ‘money trust’, whose report found that the
officers of JP Morgan & Co. sat on the boards of directors, a total of 341 direc-
torships, of 112 corporations, thus had gained control of major manufacturing,
transportation, mining, telecommunications, and the financial markets of the
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US. The report revealed that a handful of men held manipulative control of
the New York Stock Exchange and attempted to evade interstate trade laws.
These findings generated support for the passage of the Federal Reserve Act
in 1913 and the passage of the Clayton Antitrust Act in 1914, which built on
the Sherman Antitrust Act of 1890.

The post World War I run-up in stock prices created an unsustainable
bubble that finally collapsed in 1929. The US plunged into one of the worst
depressions in history. By the beginning of 1933, the banking system in the
United States had effectively ceased to function. More than 11,000 banks failed
or merged, and a quarter of the population was out of work. We have already
discussed in the context of banking, the reform steps taken by the incoming
President Franklin Roosevelt administration, and the incoming Congress in
response to the Great Depression, including the Glass-Steagall Act of 1933 for
the separation of commercial and investment banking. In order to comply with
this new regulation, most large banks split into separate entities. For example,
J.P. Morgan split into three entities: J.P. Morgan, which continued to operate
as a commercial bank, Morgan Stanley, which became an investment bank,
and Morgan Grenfell, which operated as a British merchant bank.

The Securities Act of 1933 was legislated pursuant to the interstate com-
merce clause of the Constitution, and required that any offer or sale of secu-
rities using the means and instrumentalities of interstate commerce should be
registered. This 1933 Act was the first major federal legislation to regulate the
offer and sale of securities, prior to which regulation of securities was chiefly
governed by state laws. The Securities Exchange Act of 1934 governed the
secondary trading of securities, such as stocks, bonds, and debentures, in the
US. It was a sweeping piece of legislation, which formed the basis of regula-
tion of the financial markets and their participants in the US. The 1934 Act
also established the Securities and Exchange Commission (SEC), the agency
primarily responsible for enforcement of US federal securities law. These Acts
required full disclosure of accurate information for publicly offered securities
and a prospectus filed with the SEC.

After the 1933-34 reforms, major Wall Street investment banks focused on
deal-making, serving as advisers to corporations on mergers and acquisitions,
as well as public offerings of securities. In the 1980s, with the advances in com-
puting technologies and use of sophisticated mathematical models, investment
banks began developing and executing trading strategies, and the emphasis
shifted from deal-making to trading. Prominent investment bank firms, such
as Salomon Brothers, Merrill Lynch and Drexel Burnham Lambert, earned
an increasing amount of their profits from trading for their own account. The
high frequency and large volume of trades enabled them to generate a profit
by taking advantage of small changes in market conditions. Financial inno-
vations, such as popularized use of high yield debt, also called junk bonds,
got used in corporate finance, especially in mergers and acquisitions. This
new source of capital sparked investment banks’ contribution in an explosive
increase in leveraged buyouts (LBOs) and hostile takeovers.
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As discussed in the context of banking, the 1999 repeal of the Glass-
Steagall Act by the enactment of the Gramm-Leach-Bliley Act of 1999 re-
moved the separation that was created in 1933 between investment banks
and commercial banks. The subprime crisis of 2007 fundamentally involved
investment banks, leading to the largest US investment banks being the cen-
ter stage of the 2008 financial crisis. Investment banks Lehman Brothers and
Bear Stearns, over 80-100 years old, collapsed. Merrill Lynch was acquired
by Bank of America, which remained in trouble. Goldman Sachs and Mor-
gan Stanley converted themselves into a traditional bank holding company so
they could be eligible to receive emergency taxpayer-funded assistance. Ini-
tially, banks received part of a $700 billion Troubled Asset Relief Program
(TARP) funds, which was intended to stabilize the economy and thaw the
frozen credit markets. Eventually, taxpayer assistance to banks reached many
trillions of dollars. As discussed earlier, the post-crisis regulatory reforms un-
der the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010
will have wide ranging impacts, also on issuance and trading of securities.

3.1.3 Regulatory Evolution for Insurance

The regulation of insurance companies in the US began around the US
Civil War (1861-1865), with New Hampshire being the first state to estab-
lish its insurance commission in 1851, followed by New York in 1859. Within
ten years, in the Paul vs. Virginia case of 1869, the US Supreme Court ruled
that insurance was not an interstate commerce, and that states rather than
the federal government had the right to regulate the insurance industry. This
decision applied for the next 75 years, when in 1944, in a price fixing case
against the South-Eastern Underwriters Association (SEUA) in violation of
the Sherman Antitrust Act of 1890, SEUA was found guilty. In this landmark
case, the US Supreme Court ruled that insurance was, in fact, interstate com-
merce when conducted across state lines, and therefore, was subject to federal
regulation. This ruling led to significant turmoil in the industry and among
state regulators. It was the conflict between the regulation and the antitrust
roles of government control, with the antitrust component being a federal is-
sue, while state regulators had had a strong hold on insurance regulation for
decades.

In 1945, the McCarthy-Ferguson Act was passed by the US Congress,
which made regulation and taxation of the insurance industry a state respon-
sibility. It also stated that federal antitrust laws apply to insurance only to
the extent that the insurance industry is not regulated by state law. The Sher-
man Antitrust Act of 1890 is still applicable to insurers. Since the passage of
the McCarthy-Ferguson Act, or the Public Law 15, states have had the pri-
mary responsibility of regulating insurance. This is done through the states’
Commissioner of Insurance and the National Association of Insurance Com-
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missioners (NAIC), founded in 1871. Quick summary of regulatory entities for
insurance in the US and seven other G8 countries is given in Figure 3.1.

There has been a continued dialogue of state versus federal regulation of in-
surance in the interim years, with advantages and disadvantages of both being
weighed in, as well as allegations of state regulators not being able to meet
consumer interests satisfactorily. After the Financial Modernization Act of
1999, from convergence of financial services, state regulators have experienced
an increasing challenge of regulating activities in the insurance markets. Com-
mercial banks started offering insurance products, and vice versa, and product
innovations have made the importance of coordination and cooperation be-
tween different regulators of financial institutions a necessity.

The International Association of Insurance Supervisors (IAIS), which was
formed in 1994, is an international effort on the same lines as the Basel Com-
mittee for banking. In the US, since insurance is under state regulators, and
NAIC is a voluntary federation of 50 separate Commissions, it isn’t equipped
to offer global leadership. Europe is at the forefront of this effort, defining the
Solvency II framework for life and non-life insurers and reinsurers. Solvency
II enforcement should begin in 2014.

3.2 Regulations and Banking

In the previous section, we provided a quick historical overview of evolution
of regulatory changes in the US banking, investment banking and insurance
industries. The repeal of the Glass-Steagall Act of 1933 by the Gramm-Leach-
Bliley Act or the Financial Services Modernization Act of 1999 erased the
distinction between commercial banks, investment banks and insurance com-
panies. There were many regulatory entities before the 2007 subprime crisis
to oversee different segments of the financial services industry. A summary
of regulatory authorities for G8 countries was provided in Figure 3.1. The
reforms post 2007-2008 crisis by the Dodd-Frank Wall Street Reform and
Consumer Protection Act of 2010 have, in fact, increased the number of reg-
ulatory authorities. In this section, we provide a brief snapshot description of
the banking-related regulatory authorities and their roles.

US Federal Reserve System

The Federal Reserve System is the central bank of the US, and was founded
in 1913, as stated earlier. Similar to the functions of central banks of most
developed countries, the role of the Federal Reserve is to provide a safer, more
flexible, and stable monetary and financial system. Over the years, its role
in banking and the economy has expanded, with today its four general roles
being:
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1. Conducting the nation’s monetary policy by influencing the monetary
and credit conditions in the economy in pursuit of maximum employ-
ment, stable prices, and moderate long-term interest rates.

2. Supervising and regulating banking institutions to ensure the safety and
soundness of the nation’s banking and financial system and to protect
the credit rights of consumers.

3. Maintaining the stability of the financial system and containing systemic
risk that may arise in financial markets.

4. Providing financial services to depository institutions, the US govern-
ment, and foreign official institutions, including playing a major role in
operating the nation’s payments system.

The Fed is composed of a central, governmental agency - the Board of Gov-
ernors - in Washington, DC, and twelve regional Federal Reserve Banks. The
Board and the Reserve Banks share the above responsibilities of the Fed.
A major component of the System is the Federal Open Market Committee
(FOMC), which is made up of the members of the Board of Governors, the
president of the Federal Reserve Bank of New York, and presidents of four
other Federal Reserve Banks, who serve on a rotating basis. The FOMC over-
sees open market operations, which is the main tool used by the Federal
Reserve to influence overall monetary and credit conditions in the economy.

The Federal Reserve implements monetary policy through its control over
the federal funds rate - the rate at which depository institutions trade balances
at the Federal Reserve. It exercises this control by influencing the demand for
and supply of these balances through the following means:

• Open market operations - the purchase or sale of securities, primarily US
Treasury securities, in the open market to influence the level of balances
that depository institutions hold at the Federal Reserve Banks

• Reserve requirements - requirements regarding the percentage of certain
deposits that depository institutions must hold in reserve in the form of
cash or in an account at a Federal Reserve Bank

• Contractual clearing balances - an amount that a depository institution
agrees to hold at its Federal Reserve Bank in addition to any required
reserve balance

• Discount window lending - extensions of credit to depository institutions
made through the primary, secondary or seasonal lending programs

The goal of the Fed’s monetary policy is to promote effectively the goals of
maximum employment, stable prices and moderate long-term interest rates.
Stable prices in the long run are a precondition for maximum sustainable out-
put growth and employment as well as moderate long-term interest rates.
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Office of Comptroller of the Currency

The primary mission of the Office of Comptroller of the Currency (OCC)
is to charter, regulate, and supervise all national banks and federal savings
associations. OCC also supervises the federal branches and agencies of foreign
banks. OCC’s goal in supervising banks and federal savings associations is to
ensure that they operate in a safe and sound manner and in compliance with
laws requiring fair treatment of their customers and fair access to credit and
financial products. As discussed in Section 3.1.1, the OCC predates the Fed,
since the OCC was established in 1863 as an independent bureau of the US
Department of the Treasury. The President, with the advice and consent of
the US Senate, appoints the Comptroller to head the agency for a five-year
term.

The OCC is headquartered in Washington, DC, with four district offices
plus an office in London to supervise the international activities of national
banks. The OCC’s nationwide staff of bank examiners conducts on-site reviews
of national banks and federal savings associations (or federal thrifts) and pro-
vides sustained supervision of these institutions’ operations. Examiners an-
alyze loan and investment portfolios, funds management, capital, earnings,
liquidity, sensitivity to market risk, and compliance with consumer banking
laws for all national banks and federal thrifts. They review internal controls,
internal and external audit, and compliance with law, as well as evaluate man-
agement’s ability to identify and control risk. The OCC functions with four
objectives in support of the agency’s mission to ensure a stable and competi-
tive national system of banks and savings associations:

• Ensure the safety and soundness of the national system of banks and
savings associations.

• Foster competition by allowing banks to offer new products and services.

• Improve the efficiency and effectiveness of OCC supervision, including
reducing regulatory burden.

• Ensure fair and equal access to financial services for all Americans.

For serving its mission, the OCC has the power to regulate the national banks
and federal thrifts as follows:

• Examine the national banks and federal thrifts.

• Approve or deny applications for new charters, branches, capital, or
other changes in corporate or banking structure.

• Take supervisory actions against national banks and federal thrifts that
do not comply with laws and regulations or that otherwise engage in
unsound practices. Remove officers and directors, negotiate agreements
to change banking practices, and issue cease and desist orders as well as
civil money penalties.
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• Issue rules and regulations, legal interpretations, and corporate decisions
governing investments, lending, and other practices.

The OCC’s operations are funded primarily by assessments on national banks
and federal savings associations. National banks and federal thrifts pay for
their examinations, and they pay for the OCC’s processing of their corpo-
rate applications. The OCC also receives revenue from its investment income,
primarily from US Treasury securities. By law, the OCC is prohibited from
releasing information from its safety and soundness examinations to the pub-
lic. National banks and federal savings associations must, however, submit
regular reports of their condition and income to the FDIC, available on its
Web site.

Federal Deposit Insurance Corporation

The Federal Deposit Insurance Corporation (FDIC) is an independent
agency created by the Congress to maintain stability and public confidence in
the nation’s financial system by insuring deposits, examining and supervising
financial institutions for safety and soundness and consumer protection, and
managing receiverships. The FDIC is a recognized leader in promoting sound
public policies, addressing risks in the nation’s financial system, and carrying
out its insurance, supervisory, consumer protection, and receivership manage-
ment responsibilities. As discussed in Section 3.1.1, the FDIC was created in
1933 in response to the thousands of bank failures that occurred in the 1920s
and early 1930s, as an independent agency of the federal government. Since
its inception on January 1, 1934, no depositor has lost a single cent of insured
funds as a result of a failure. The FDIC insures more than $7 trillion of de-
posits in U.S. banks and thrifts; deposits in virtually every bank and thrift in
the country.

The FDIC insures deposits only. It does not insure securities, mutual funds
or similar types of investments that banks and thrift institutions may offer.
The FDIC directly examines and supervises more than 4,900 banks and sav-
ings banks for operational safety and soundness, more than half of the insti-
tutions in the banking system. Banks can be chartered by the states or by the
federal government. Banks chartered by states also have the choice of whether
to join the Federal Reserve System. The FDIC is the primary federal regulator
of banks that are chartered by the states that do not join the Federal Reserve
System. In addition, the FDIC is the back-up supervisor for the remaining
insured banks and thrift institutions.

The FDIC also examines banks for compliance with consumer protection
laws, including the Fair Credit Billing Act, the Fair Credit Reporting Act, the
Truth-In-Lending Act, and the Fair Debt Collection Practices Act, to name a
few. Finally, the FDIC examines banks for compliance with the Community
Reinvestment Act (CRA) which requires banks to help meet the credit needs
of the communities they were chartered to serve.

To protect insured depositors, the FDIC responds immediately when a
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bank or thrift institution fails. Institutions are generally closed by their
chartering authority, which may be a state regulator or the Office of the
Comptroller of the Currency. The FDIC has several options for resolving in-
stitution failures, but the one most used is to sell deposits and loans of the
failed institution to another institution. Customers of the failed institution au-
tomatically become customers of the assuming institution. Most of the time,
the transition is seamless from the customer’s point of view.

The FDIC is headquartered in Washington, D.C., but conducts much of
its business in six regional offices, three temporary satellite offices and in field
offices around the country. It is managed by a five-person Board of Directors,
all of whom are appointed by the President and confirmed by the Senate, with
no more than three being from the same political party. The FDIC receives
no Congressional appropriations, it is funded by premiums that banks and
thrift institutions pay for deposit insurance coverage and from earnings on
investments in U.S. Treasury securities.

Regulatory Expansion from Dodd-Frank Act of 2010

The Dodd-Frank Act of 2010 has neither simplified supervision nor de-
creased the number of regulators [56]. There are new agencies created, which
include the Financial Stability Oversight Council (FSOC), the Office of Finan-
cial Research (OFR), and the Consumer Financial Protection Bureau (CFPB).
Financial Stability Oversight Council performs comprehensive monitoring to
ensure the stability of the US financial system. The Council is charged with
identifying threats to the financial stability of the US; promoting market dis-
cipline; and responding to emerging risks to the stability of the US financial
system. The Council consists of 10 voting members and 5 nonvoting mem-
bers and brings together the expertise of federal financial regulators, state
regulators, and an insurance expert appointed by the President.

The Office of Financial Research will produce, promote, and sponsor finan-
cial research aimed at developing the analytical tools needed to assess threats
to financial stability. This research will support the work of the Financial Sta-
bility Oversight Council in assessing potential risks to the financial system.
The OFR will also establish forums and networks to bring together experts
within and outside the regulatory system in research on these issues. The OFR
will work with academia and the private sector to promote best practices in
risk management through publications and forums.

The Consumer Financial Protection Bureau (CFPB) will be working to
give consumers the information they need to understand the terms of their
agreements with financial companies. Congress established the CFPB to pro-
tect consumers by carrying out the federal consumer financial laws. Among
other things, CFPB conducts rule-making, supervision, and enforcement for
federal consumer financial protection laws, restricts unfair, deceptive, or abu-
sive acts or practices, takes consumer complaints and promotes financial ed-
ucation. It is engaged in research of consumer behavior, monitors financial
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markets for new risks to consumers, and enforces laws that outlaw discrimi-
nation and other unfair treatment in consumer finance.

Bank for International Settlements

International efforts have been underway for decades to coordinate regu-
lation of banking, especially given the increasingly global footprint of US and
foreign banks. The Bank for International Settlements (BIS) was established
in 1930, making it the world’s oldest international financial organization. The
mission of the BIS is to serve central banks in their pursuit of monetary and
financial stability, to foster international cooperation in those areas and to act
as a bank for central banks. As a broad outline, the BIS has been pursuing
its mission by:

• Promoting discussion and facilitating collaboration among central
banks.

• Supporting dialogue with other authorities that are responsible for pro-
moting financial stability.

• Conducting research on policy issues confronting central banks and fi-
nancial supervisory authorities.

• Acting as a prime counterparty for central banks in their financial trans-
actions.

• Serving as an agent or trustee in connection with international financial
operations.

Headquartered in Basel, Switzerland, BIS has two other representative offices
in the Hong Kong Special Administrative Region of the People’s Republic of
China and in Mexico City. Since central banks and international organizations
are its customers, the BIS does not accept deposits from, or provide financial
services to, private individuals or corporate entities.

Basel Committee on Banking Supervision, under the auspices of the BIS,
has constructed a series of accords for defining sound regulation of banks. Basel
I, which was the first round of deliberations by central bankers from around
the world, in 1988 published a set of minimum capital requirements for banks.
This was also known as the 1988 Basel Accord, and was enforced by law in the
G10 countries in 1992. The world changed with financial innovations and new
financial conglomerates. Therefore, a more comprehensive set of guidelines,
known as Basel II, were developed. Basel II focussed on three pillars.

Pillar I: The first pillar deals with maintenance of regulatory capital cal-
culated for three major components of risk that a bank faces - credit
risk, operational risk and market risk. The credit risk component can
be calculated in three different ways of varying degree of sophistication,
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namely standardized approach, Foundation Internal Rating-Based Ap-
proach (IRB) and Advanced IRB. For operational risk, there are three
different approaches - basic indicator approach (BIA), standardized ap-
proach and the internal measurement approach (IMA). An advanced
form of IMA is the advanced measurement approach (AMA). For mar-
ket risk the preferred approach is Value-at-Risk (VaR).

Pillar II: The second pillar deals with the regulatory response to the first
pillar, giving regulators much improved ‘tools’ over those available to
them under Basel I. It also provides a framework for dealing with all the
other risks a bank may face, such as systemic risk, concentration risk,
strategic risk, reputational risk, liquidity risk and legal risk, which the
accord combines under the title of residual risk. It gives banks a power
to review their risk management system.

Pillar III: The third pillar aims to complement the minimum capital require-
ments and supervisory review process by developing a set of disclosure
requirements which will allow the market participants to gauge the cap-
ital adequacy of an institution.

Before Basel II could be fully developed and adopted, the financial crisis of
2007-2008 occurred. The crisis has highlighted the importance of liquidity
risk and stress testing. Basel III strengthens bank capital requirements and
introduces new regulatory requirements on bank liquidity and bank leverage.

The Financial Stability Forum (FSF) was established in 1999 as a group of
major national financial authorities such as finance ministries, central bankers,
and international financial bodies. The Forum was to promote international fi-
nancial stability, facilitate discussion and co-operation on the supervision and
surveillance of financial institutions, transactions and events. FSF was man-
aged by a small secretariat housed at the Bank for International Settlements
in Basel, Switzerland. The 2009 G-20 London summit decided to establish a
successor to the FSF, the Financial Stability Board (FSB). The FSB includes
members of the G20, who were not all members of the FSF.

3.3 Regulations and Investment Banking

The world of investing is fascinating and complex, but with the right ap-
proach to navigate, it can be very fruitful. Unlike the banking world, where
deposits are guaranteed by the federal government, stocks, bonds and other
securities can lose value. Our discussion of the evolution of banking and se-
curities in Section 3.1 talked of crashes, failures, and panics, many of which
were results of speculation and issues related with financial intermediaries
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that support the investment activities of the society. Even though the Finan-
cial Services Modernization Act of 1999 removed the separation of commercial
banking from investment banking, the regulatory authorities have maintained
a functional regulation framework. We now look at regulatory authorities that
regulate securities.

Securities and Exchange Commission

The mission of the US Securities and Exchange Commission (SEC) is to
protect investors, maintain fair, orderly, and efficient markets, and facilitate
capital formation. SEC recognizes the need for individual investors when it
states, ‘as more and more first-time investors turn to the markets to help
secure their futures, pay for homes, and send children to college, our investor
protection mission is more compelling than ever.’ On the other hand, as the
securities exchanges have evolved into global for-profit competitors, there is
even greater need for sound market regulation. The SEC also defines the
significance of its actions with an eye toward promoting capital formation
that is necessary to sustain economic growth.

The SEC oversees the key participants in the securities world, including
securities exchanges, securities brokers and dealers, investment advisors, and
mutual funds, where the SEC is concerned primarily with promoting the dis-
closure of important market-related information, maintaining fair dealing, and
protecting against fraud. Crucial to the SEC’s effectiveness in each of these
areas is its enforcement authority. Each year the SEC brings hundreds of civil
enforcement actions against individuals and companies for violation of the se-
curities laws. Typical infractions include insider trading, accounting fraud, and
providing false or misleading information about securities and the companies
that issue them.

All investors, whether large institutions or private individuals, should have
access to certain basic facts about an investment prior to buying it, and so
long as they hold it. To achieve this, the SEC requires public companies to dis-
close meaningful financial and other information to the public. This provides
a common pool of knowledge for all investors to use to judge for themselves
whether to buy, sell, or hold a particular security. Only through the steady flow
of timely, comprehensive, and accurate information can people make sound
investment decisions. To help support investor education, the SEC offers the
public a wealth of educational information on its website, which also includes
the EDGAR database of disclosure documents that public companies are re-
quired to file with the commission.

The Securities Act of 1933 and the Securities Exchange Act of 1934, which
created the SEC, were designed to restore investor confidence in US capital
markets after the 1929 stock market crash and the Great Depression, by pro-
viding investors and the markets with more reliable information and clear
rules of honest dealing. The main purposes of these laws can be reduced to
two common-sense notions, first that companies publicly offering securities for



82 Risk Management and Simulation

investment dollars must tell the public the truth about their businesses, the
securities they are selling, and the risks involved in investing. Second, people
who sell and trade securities - brokers, dealers, and exchanges - must treat
investors fairly and honestly, putting investors’ interests first.

The Division of Risk, Strategy, and Financial Innovation at SEC was estab-
lished in September 2009 to help further identify developing risks and trends
in the financial markets. This new division is providing the commission with
sophisticated analysis that integrates economic, financial, and legal disciplines.
The division’s responsibilities cover three broad areas: risk and economic anal-
ysis; strategic research; and financial innovation. The emergence of derivatives,
hedge funds, new technology, and other factors have transformed both capital
markets and corporate governance.

The division is working to advise the commission through an interdisci-
plinary approach that is informed by law and modern finance and economics,
as well as developments in real world products and practices on Wall Street
and Main Street. Among the functions being performed by the division are:
(1) strategic and long-term analysis; (2) identifying new developments and
trends in financial markets and systemic risk; (3) making recommendations as
to how these new developments and trends affect the commission’s regulatory
activities; (4) conducting research and analysis in furtherance and support of
the functions of the commission and its divisions and offices; and (5) providing
training on new developments and trends and other matters.

Commodities and Futures Trading Commission (CFTC)

US Congress created the Commodity Futures Trading Commission
(CFTC) in 1974 as an independent agency with the mandate to regulate
commodity futures and option markets in the US. The agency’s mandate has
been renewed and expanded several times since then, most recently by the
Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010. In
1974 the majority of futures trading took place in the agricultural sector. The
CFTC’s history demonstrates, among other things, how the futures industry
has become increasingly varied over time and today encompasses a vast array
of highly complex financial futures contracts.

Today, the CFTC assures the economic utility of the futures markets by en-
couraging their competitiveness and efficiency, protecting market participants
against fraud, manipulation, and abusive trading practices, and by ensuring
the financial integrity of the clearing process. Through effective oversight, the
CFTC enables the futures markets to serve the important function of provid-
ing a means for price discovery and offsetting price risk.

Title VII of the Dodd-Frank Wall Street Reform and Consumer Protection
Act of 2010 amends the Commodity Exchange Act to establish a comprehen-
sive new regulatory framework for swaps and security-based swaps [79]. The
legislation is enacted to reduce risk, increase transparency, and promote mar-
ket integrity within the financial system by, among other things: (1) providing
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for the registration and comprehensive regulation of swap dealers and major
swap participants; (2) imposing clearing and trade execution requirements
on standardized derivative products; (3) creating robust record-keeping and
real-time reporting regimes; and (4) enhancing the SEC’s rule-making and
enforcement authorities with respect to, among others, all registered entities
and intermediaries subject to the SEC’s oversight.

Financial Industry Regulatory Authority (FINRA)

The Financial Industry Regulatory Authority (FINRA) is the largest in-
dependent regulator for all securities firms doing business in the US. FINRA’s
mission is to protect investors by making sure the securities industry oper-
ates fairly and honestly. FINRA oversees about 4,400 brokerage firms, about
162,930 branch offices and approximately 630,020 registered securities repre-
sentatives. It has approximately 3,200 employees and operates from Washing-
ton, DC and New York, NY, with 20 regional offices around the country.

FINRA touches virtually every aspect of the securities business, from regis-
tering and educating industry participants to examining securities firms; writ-
ing rules; enforcing those rules and the federal securities laws; informing and
educating the investing public; providing trade reporting and other industry
utilities; and administering the largest dispute resolution forum for investors
and registered firms. When rules are broken, FINRA can fine, suspend or ex-
pel firms or individual brokers from the business. FINRA can require firms to
return money to investors who have been harmed.

Every investor deserves a fundamental protection when investing in the
stock market, whether they are investing in a 401(k) or other thrift, a savings
or employee benefit plan, a mutual fund, an exchange-traded-fund (ETF) or
a variable annuity, FINRA works to ensure that:

• Anyone who sells a securities product has been officially tested, qualified
and licensed.

• Every securities product advertisement used is truthful, and not mis-
leading.

• Any securities product promoted or sold to an investor is suitable for
that investor’s needs.

• Investors receive complete disclosure about the investment product be-
fore purchase.

On the lines of international coordination in banking through Bank for In-
ternational Settlements (BIS), International Organization of Securities Com-
missions (IOSCO) has been addressing cross-border issues faced by securities
regulators. The role of IOSCO became more significant after many cross-
border consolidations in exchanges, which has now resulted in securities mar-
kets being dominated by a small number of global intermediaries. IOSCO grew
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out of an association of stock exchange commissions of the Americas set up
in 1974. By 1983, it had become a global organization. Since then, effectively
all securities regulators have become members, including second regulators in
some cases (CFTC of the US).

IOSCO’s role is to assist its members to promote high standards of regula-
tion and to act as a forum for national regulators to cooperate with each other
and other international organizations. Its main objectives can be summarized
as follows.

• Cooperate together to promote high standards of regulation in order to
maintain just, efficient and sound markets.

• Exchange information on their respective experiences in order to pro-
mote the development of domestic markets.

• Unite their efforts to establish standards and an effective surveillance of
international securities transactions.

• Provide mutual assistance to promote the integrity of the markets by
a rigorous application of the standards and by effective enforcement
against offenses.

3.4 Regulations and Insurance

Even though we motivated the need for regulation of insurance from the
fiduciary responsibility of insurers toward the customers in terms of insurance
contracts, their fair definition and pricing, the scope of regulation of the in-
surance industry goes further. It addresses entry into market by licensing of
insurance companies, investment practices of insurers, and similar aspect of in-
surer solvency. Complexity of insurance products requires regulatory scrutiny
and licensing of practitioners to ensure their competence.

Although regulation in many sectors aims at enforcing competition and
preventing artificially high prices, insurance regulations were designed for the
reverse objective. They were designed to prevent excessive competition, hence
the regulation of entry into market and licensing. It was feared that excessive
competition will lead insurers into providing products at unsustainable prices,
which is a serious risk in insurance, since cost of production in insurance often
is not known until the contract has completed full term. Moreover, as insurers
vie for customers in an excessively competitive environment, issues related
with adverse selection can significantly damage the health of the industry. The
original goals of regulation of insurance, solvency, and equity, are expanded
to availability and affordability of insurance. One may sense an inkling of
contradiction of these new additional goals, especially with the original goal
of solvency.
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In the US, regulation of insurers is by state regulators through the state’s
commissioner of insurance, who is appointed by the governor of the state. The
commissioner of insurance is responsible for administration of insurance laws
and general supervision of the insurers’ business in the state. The National
Association of Insurance Commissioners (NAIC) is the medium for exchange
of information and coordination of regulatory activities among the states.
Since 1989, in order to establish minimum standards for financial regulation
of insurers by states, NAIC created the Financial Regulation Standards Ac-
creditation Program (FRSAP). The accreditation program includes 16 model
laws and rules affecting regulation of insurers for managing general agents,
credit for insurance, examination processes, liquidation proceedings, reinsur-
ance intermediaries, and risk retention. By 1995, 45 states and the District of
Columbia were accredited by this program, which once accredited requires an
annual evaluation process and recertification review every five years.

We now provide an overview of the scope of regulatory authority the state’s
commissioner of insurance must conduct. The power to license insurers is per-
haps the most important activity. The license is a certification of the company
with regards to its financial stability and soundness, therefore to qualify an
insurer should have a certain amount of capital and surplus. Regulatory re-
quirement dictates insurers’ accounting standards, which significantly differ
from the generally accepted accounting principles (GAAP). The set of ac-
counting procedures used by insurers is called statutory accounting, which
emphasizes the insurer’s ability to fulfill its obligations under the contracts
it issues. Statutory accounting is mostly ultraconservative. For instance, in
their balance sheets insurance companies recognize only those assets that are
readily convertible into cash.

In insurance, the premium is collected in advance of the delivery of the
service, therefore insurance laws require specific recognition of the insurer’s
fiduciary obligations by maintaining policy reserves and risk-based capital.
Insurers maintain unearned premium reserve and loss reserves to respect the
difference in timing of premium payment and service delivery, or loss event and
indemnification. The accumulated premium must be invested by the insurer,
and there are also restrictions for investment. Investment is allowed in US and
Canadian government bonds, mortgage loans, certain high-grade corporate
bonds, and to some extent in preferred or common stock. Property and liability
have lesser investment restrictions than life insurers, where the latter can
invest only a small percentage of their assets in common stocks.

Regulators also oversee the insurance rates, where the requirement is that
rates must be adequate, not excessive, and not unfairly discriminatory. The
unfairly discriminatory implies insurers may not charge significantly different
premiums for two customers with approximately similar risk profiles. Any
variation of rates must have an actuarial basis. In rates and in sales practices,
regulators check for unfair practices. For a failing insurer, the regulators take
steps to rehabilitate the company; this may involve reinsuring a substantial
portion of the firm’s business or a merger with a stronger insurer. Finally, every
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licensed insurer active in a state, both foreign and domestic, must submit an
annual report to the state’s commissioner of insurance. The report details the
insurer’s asset and liabilities, its investments, income loss payments, expenses,
and additional information as required by the commissioner.

3.5 Summary

Risk management is a crucial activity in all firms and all households, but
in certain firms and institutions it is fundamentally important. This well-
recognized fact has led to the development of a regulatory environment in
various segments of the financial sector. The regulatory environment is an in-
tegral and evolving feature of the financial sector. In this chapter, we presented
an overview of regulatory systems in place and their historical evolution for
some key segments of the US financial sector. The intention here was not to
give a comprehensive description of the regulatory environment, but to present
some salient features of it to demonstrate the importance of the contexts of
risk management problems, issues, and models developed in the rest of the
book.

3.6 Questions and Exercises

Review Questions

1. Why is government control of business necessary?

2. What is the antitrust objective of government control of business?

3. How does competition among firms benefit society?

4. What is the role of regulation as a government control of business?

5. Why is competition not always considered good for the banking and
insurance industry?

6. What is the link between regulations and risk management in financial
services firms?

7. What are the regulatory agencies active in US and Canada?

8. Why did the first and the second attempt at a Bank of United States
fail?



Regulations and Risk Management 87

9. When was the first federal regulatory authority for banking created that
is currently active?

10. What was the significance of the Knickerbocker Trust collapse in 1907?

11. What role did Charlie Mitchell play in the Federal Reserve System, and
how did it affect the Federal Reserve’s management of events of 1929?

12. What were the major developments in the regulation of the financial
services sector after the Great Depression?

13. How was the banking environment changing in the 1960-1980 period?

14. What was the impact of the ceiling for depositary interest rates? What
was the impact of lifting this ceiling?

15. What were the magnitude and impact of the 1987-88 S&L crisis?

16. What were the regulatory implications of the repeal of the Glass-Steagall
Act of 1933 by the Financial Services Modernization Act of 1999?

17. What were ‘too-big-to-fail’ financial institutions through the 2007-2008
financial crises?

18. What is the scope of the Dodd-Frank Wall Street Reform and Consumer
Protection Act of 2010?

19. What were the findings of the 1913 Pujo committee, and what were the
implications of these findings?

20. How did J.P. Morgan split in response to the Glass-Steagall Act of 1933?

21. What were the major federal legislations and regulatory authority cre-
ated for securities in the post Great Depression era?

22. What was the impact of the 2008 financial crisis on US investment
banks?

23. What was the vacillation in US regulation of insurance regarding insur-
ance being interstate commerce or not?

24. After the Financial Modernization Act of 1999, what are the challenges
for the state insurance regulators?

25. What is the International Association of Insurance Supervisors (IAIS)?

26. When and how is the US Federal Reserve System organized?

27. What are the roles of the Fed?

28. How does the Federal Reserve implement its monetary policy?
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29. What is the primary role of the OCC? How is the OCC funded?

30. What power does the OCC have in regulating banks and federal thrifts?

31. What is the Federal Deposit Insurance Corporation? How expansive is
its role in regulating banks?

32. What are the new regulatory agencies created under the Dodd-Frank
Act of 2010? What are their roles?

33. What is the Bank for International Settlements? What is its mission?

34. What is the progression of the Basel Accords from Basel I to Basel III?

35. What is the SEC and what is the scope of its activities?

36. What is the SEC’s EDGAR system?

37. What is the role of the new Division of Risk, Strategy, and Financial
Innovation at the SEC?

38. What role does CFTC fulfill in the regulatory needs of the financial
sector?

39. How does the Dodd-Frank Act of 2010 change the role of CFTC?

40. What is the International Organization of Securities Commissions
(IOSCO)? What are the objectives of IOSCO?

41. Why were regulations in insurance built to prevent excessive competi-
tion?

42. What is the scope of activities of a state’s Commissioner of Insurance
in the US?

43. What is NAIC’s Financial Regulation Standards Accreditation Program
(FRSAP)?

44. How do accounting standards in insurance differ from those of GAAP?

45. What reserves and investment restrictions do insurers maintain/observe?

Exercises

1. Write an essay on the role competition has played in the history of
banking in the US.

2. What lessons can the rest of the world learn from the historical evolution
of regulations in banking, securities, and insurance in the US?

3. Write an essay on the proactive versus reactive nature of regulations in
the financial services sector.
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4. What were the reasons for the 2007-2008 global financial crises?

5. Read the cited article by E.A. Ludwig [56] and discuss the strengths
and weaknesses of the Dodd-Frank Wall Street Reform and Consumer
Protection Act of 2010.
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of Risk





Chapter 4

Principles of Simulation and
Generating Random Variates

Making decisions in the face of risk, however significant its impact, can be
quite challenging. The greater the impact of a risk on a person, property or
wealth, the higher the level of care necessary to make choices in order to ensure
the outcomes are as desirable as possible. The risk management framework
of Chapter 2 formulated a guideline to develop a strategy for handling risk;
however, the actual implementation of the framework requires quantifying the
relevant risks and their impacts. We developed models for the quantification
of risk in Chapter 1. To assess the impact of risk, as is fundamentally needed
for the implementation of a risk management framework, in today’s complex
financial markets and institutions requires a well-developed and versatile tool-
set. The regulatory environment in place for various segments of the financial
sector described in Chapter 3 makes assessment and management of risk under
stipulated constraints not only a desired goal, but a mandatory activity of the
institutions.

4.1 Principles of Simulation

One key tool in the tool-set to assess, measure, and manage risk is simula-
tion. Simulation modeling and analysis constitutes a set of quantitative tools
and methodologies, and indeed software systems, to facilitate delving into the
role risk plays in an environment. The intentional use of a general reference
to an ‘environment’ is to establish the fact that simulation is a versatile tool,
relevant and widely used in many sectors and areas of study beyond risk man-
agement and finance. In fact, the modeling techniques underlying simulation
are broad, not all of which incorporate randomness; some ‘simply’ describe
how a complex system evolves deterministically over time. Models built using
complex systems of ordinary or partial differential equations and solved by
numerical techniques fall in this category. For us, however, simulation will be
used to model and analyze risk in order to answer important risk management
questions. The rest of the chapter will define and lay-out the basics of how to
use simulation for this purpose.

93
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4.1.1 What Is Simulation?

The word ‘simulation’ is derived from the Latin word simulatus, past par-
ticiple of simulare, which means to copy, represent. Simulation is an attempt
to duplicate the operation of a system or the behavior of a quantity of interest
without incurring the expense and expending the effort to build or operate
the system, or generate observations for the quantity of interest by natural
means. More operationally, simulation involves creating an experimental set-
up to study the dynamics of the system or the quantity of interest. Instead
of ‘solving’ the system, a simulation analyst operates a ‘model’ of the sys-
tem in the experimental set-up under different conditions to assess the system
behavior.

The model of the system almost always is an abstraction of the relatively
complex reality, where a simplified description is constructed for the purpose
of gaining insight into the system behavior. Modeling involves not only creat-
ing abstractions, but also coding it in an appropriate computing environment,
which is used for running experiments. There are dedicated commercial prod-
ucts to facilitate building simulation models for different industry segments -
manufacturing, communications networks, civil infrastructure, such as road-
ways, railways and air-traffic control, medical and health care services, and
indeed, financial services. The objectives of a simulation study can range from
asset pricing, performance analysis, capability analysis, comparison studies,
sensitivity analysis, optimization study, or constraint analysis.

Models are abstractions of the real system, where a system is viewed as a
group of objects or quantities joined together in some regular interaction or
interdependence. Models developed for facilitating simulation are constructed
with a view of using them to conduct specific experiments, predict events,
or determine a future course of action that would in some sense be best. In
short, models are built with a definite use in mind, hence models themselves
are not the focus, the use they would be put to is. Models are a means to
an end. Identifying the objective of a simulation study helps determine the
level of scope and detail appropriate in the model of a system for the set goal.
Abstraction in model building is justified since it brings perspective to the
need for detail, introducing a level of detail that improves understanding of
system behavior and the necessary modifications of the system. Controlling
details allows the analyst to have more control over variations to the system
studied, and to organize beliefs and empirical observations.

Conducting a simulation analysis of a problem can be organized in logi-
cal stages, laid out in Figure 4.1, as the structure a simulation study. Once
the objective of the study is stated, including the measures for evaluating the
outcomes, appropriate data must be acquired, and equations and algorithms
need to be defined to describe the model. It is generally useful to run a sim-
plification of the model or just a portion of the model for testing the model’s
validity. After reviewing the usefulness and robustness of the model, translat-
ing the mathematical model into the desired computational environment can
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The Structure of a Simulation Study

Formulate Problem

and Objective of  Study
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Run the Simulation

Analyze Output Data

Document and
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Define a Model

Valid?

Construct a

Computer Program

and Verify

Valid?

No

No

FIGURE 4.1: The guideline for how to structure a simulation study.

be initiated. Developing portions of the model separately and putting these
modules together makes for a more robust strategy. A well-tested computer
model should be the basis of running the necessary designed experiments, and
the corresponding simulation runs. The output data needs to be analyzed to
achieve the goals of the simulation study.

It is often tempting to jump into writing up the computer model to perform
the simulation runs and experiments, and generate the output results, cutting
short the due diligence on the conceptual model development. This can lead
to erroneous assumptions or implementation for the intended problem and ob-
jectives. Figure 4.2 emphasizes the two stages for a simulation study. The first
stage is where the conceptual model building and assessment in natural lan-
guage and mathematical formalism takes place. The second stage would then
translate the conceptual model into a computer representation of the model
in a chosen simulation software using appropriate programming structures.

We have looked at models of risk in Chapter 1. In the next chapter, we will
advance the modeling of risk so that its evolution in time may be described.
All subsequent chapters will continue to advance the modeling approaches ap-
propriate for specific contexts of risk management. Therefore, proficiency in
conceptual and mathematical modeling of risk for the objectives of risk man-
agement will be developed throughout the book. In the rest of this chapter, we
will focus on the core of a simulation model – generating random variates for
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FIGURE 4.2: The stages to build the simulation model.

the various models of risk. We will also discuss methods for testing, validating,
and running simulation models.

4.2 Random Number Generation

Simulation is to copy, therefore for simulating risk, the inherent nature
of risk - generating random outcomes - needs to be copied. Before digital
computers came into existence, random numbers were directly obtained from
actual random processes: for example, by rolling a die, tossing a coin, elec-
tronically by the noisy output of a valve. Obviously, such numbers were not
statistically reliable, and a particular sequence of random numbers could not
be reproduced for comparative studies.

Today digital computers allow the implementation of simple determin-
istic algorithms to generate sequences of random variables, quickly and re-
producibly. Such numbers are, strictly speaking, not truly random, but with
sufficient care they can be made to resemble random numbers by most of
their properties. Hence, these numbers are called pseudo-random numbers.
Actually, pseudo-random numbers is a term reserved for random numbers
corresponding to the simplest of models of risk - the uniform random vari-
able, U(0, 1). Random numbers generated for other models of risk, such as,
normal, lognormal, Weibull, etc., are called random variates.

We will first describe methods for generating pseudo-random numbers,
followed by methods for generating other random variates. This order of pre-
sentation is particularly meaningful, since pseudo-random numbers are the
building block for all other random variates. Two basic deterministic, recur-
sive methods for creating a sequence of pseudo-random numbers follow.
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4.2.1 Linear Congruential Generator

The Linear Congruential Generator (LCG), a basic iterative method for
generating pseudo-random numbers, is based on the primary relation as fol-
lows,

Xn+1 = aXn + b (mod c), (4.1)

where a, c (> 0) are positive integers, and b (≥ 0) is a non-negative integer.
The recursion needs to start from a number,X0, which is called the ‘Seed.’ The
‘mod’ operator is short for ‘modulo,’ representing the remainder after division
of a number by another number. For instance, 7(mod 3) = 1, 9(mod 5) = 4,
etc. Therefore, the LCG recursion generates a sequence of numbers taking
integer values from 0 to c− 1; the remainders when aXn + b is divided by c.
When a, b, and c are picked appropriately,

Un = Xn/c, (4.2)

seem uniformly distributed in the unit interval [0, 1]. For example, a =
16, 807 = 75, b = 0, c = 231 − 1 (prime) is a relatively carefully selected
set of values for these parameters.

The congruential algorithm is widely used, but there is one problem with
it. It displays a looping characteristic, captured by the ‘period’ of a random
number generator. Period of a random number generator is defined as the
smallest positive integer p which satisfies Xi+p = Xi for all i > k, for some
k ≥ 0. In a large-scale simulation on a supercomputer, this becomes a major
weakness, for example, a 32-bit LCG will have a period less than 232. For a su-
percomputer this sequence will get exhausted in just a few minutes. Therefore,
a, b, and c need to be chosen with care, with not only long period in mind,
but also good statistical properties, such as apparent independence, compu-
tational and storage efficiency, reproducibility (same seed!), and facilities for
separate streams (change the seed).

There are alternatives to random number generation than using the LCG.
These alternatives are also based on iterative procedures, developed with the
goal of achieving the desirable properties listed above. One of them is the
lagged Fibonacci generator.

4.2.2 Lagged Fibonacci Generator

An alternative random number generator to the Linear Congruential gen-
erator is the lagged Fibonacci generator. The recurrence relation for the lagged
Fibonacci generator is

Xn = Xn−r op Xn−s, (4.3)

where s and r are the lags with 0 < s < r and n ≥ r and op is a binary
operator. For example, the binary operator could be ‘addition (mod c)’ or
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‘subtraction (mod c).’ If op is ‘addition (mod c),’ the lagged Fibonacci gen-
erator will become, Xn = Xn−r +Xn−s(mod c). It should be noted that the
lagged Fibonacci generator iterations begin from n ≥ r, therefore the first
r iterates, {Xk; k = 1 . . . r}, have to be obtained from some other scheme.
The linear congruential generator can be used for initialization of the lagged
Fibonacci generator.

A good property of the lagged Fibonacci generators is that extremely long
periods are possible with these generators, and several have been shown to
exhibit good global properties if the parameters are chosen carefully. Excellent
references for more detailed information on random number generators are
books by Law and Kelton [55], Glasserman [30], and Knuth [50]. These books
offer a more rigorous discussion of properties and implementation issues for
various random number generators.

While performing a simulation-based analysis, it is good to know where
the random numbers are coming from. The particular random number gener-
ator in use may have some artifacts that can sometimes result in misleading
conclusions. Hence, it may even be advisable to test run the simulation model
with two different random number generators to make sure the results are
genuine, and not artifacts of the properties of the generator.

4.3 Generation of Discrete Random Variates

Pseudo-random numbers are the building block for generating all other
random variates. Therefore, the basis for generating random variates for all
other models of risk with good properties is getting good pseudo uniform
random numbers. We will now describe methods for generating other models
of risk, starting with simple discrete models of risks. The common aspect
of these methods for generating other models of risk from pseudo-random
numbers is an appropriately designed transformation of the latter. We begin
with a very simple risk model, a random variable that has a finite number of
outcomes, two or more.

4.3.1 n-Outcome Random Variate

Two-point random variable, X, is one that takes two values x1 < x2 with
probabilities p1 and p2(= 1−p1), respectively. Even though this is a very sim-
ple model of risk, it is popularly used in describing time-dependent models of
risk, such as the binomial tree model, the random walk model, etc. The trans-
formation of pseudo-random numbers, U(0, 1), that can be used to generate
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FIGURE 4.3: N-outcome discrete random variate generation.

random variates for a two-point random variable is,

Xn = x1 if 0 ≤ Un ≤ p1, (4.4)

= x2 if p1 < Un ≤ 1, (4.5)

for n ≥ 1. Therefore, for every pseudo-random number generated, a random
variate for the two-point random variable model is produced. This is not
always the case for other methods and for other models of risk.

The method for the two-outcome random variable can be easily extended
to N-state random variable taking values x1 < x2 < . . . < xN , with non-
zero probabilities p1, p2, . . . , pN , respectively. From the rules for probability
distributions, we have that

∑N
i=1 pi = 1. We will define s0 = 0, sj =

∑j
i=1 pi

for j = 1, . . . , N , and using these quantities generate the N-point random
variates as follows,

Xn = xj+1 if sj ≤ Un ≤ sj+1 j = 0, . . . , N, (4.6)

for n ≥ 1. Figure 4.3 is a pictorial depiction of the above algorithm, which
shows that the above algorithm is effectively an inversion of the cumulative
mass function.

Not all discrete random variables have a finite number of outcomes; some
can have an infinite number of outcomes. If a discrete random variable has
infinite outcomes, the above transformation has to be modified into an iter-
ative procedure. We describe this next in the context of the Poisson random
variate.

4.3.2 Poisson Random Variate

Poisson random variate is a counting discrete random variate with an
infinite number of outcomes starting from n = 0. Poisson risk model was one
of the example risk models studied in Chapter 1. Examples of risks that can be
modeled using the Poisson model are number of customers arriving at a ticket
counter per unit time, the number of defects per unit square centimeter of a
semiconductor, or number of breakdowns of a server per month. The possible
outcomes of a Poisson random variable are 0, 1, 2, . . .. Given the parameter
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λ, the probability that there will be j number of occurrences of event of
interest by this model of risk are given by pj = e−λλj/j! (the probability mass
function of the Poisson distribution). The following algorithm generalizes the
transformation for finite outcome discrete random variable to generate random
variates by the infinite outcome Poisson distribution.

Step 1: Initialize Set s1 = 0, s2 = p1, j = 1 and generate a uniform random
number Un;

Step 2: Check If s1 ≤ Un ≤ s2, then Xn = j.
And exit.

Step 3: Else Update s1 = s2, s2 = s2 + pj+1, j = j + 1;
Go to Step 2.

Therefore, the method transforms every pseudo-random number Un generated
into a Poisson random variate, Xn, for all n ≥ 1. However, the generation of
random variates now needs more work than was needed in the N-outcomes
random variate case.

4.4 Generation of Continuous Random Variates

We now move from discrete random variables to considering continuous
random variables. We have, in fact, already seen one example of a continu-
ous random variate generation, the uniform distribution, U(0, 1). The uniform
random variates generated by the random number generators were key to gen-
erating the discrete random variates. They will continue to be so for continuous
random variates. Let X be a continuous random variable with a probability
distribution function, FX(x). Therefore, by the property of probability dis-
tribution functions, FX : R → [0, 1]. This basic property of all probability
distribution functions is exploited in the first method presented, the inverse
transform method.

4.4.1 Inverse Transform Method

The principle behind the inverse transform method for generating random
variates for a random variable, X, is as follows. Let U (0 < U < 1) be a
uniform random variate generated by a random number generator. If we can
find an X such that X(U) = F−1

X (U) for every uniform random variate, U,
generated, then X will be the desired random variate. Here F−1 is the inverse
of the probability distribution function of the random variable, X, assuming it
exists and can be computed with sufficient ease. In general, if the cumulative
distribution function of the random variable, X, is not continuous, we will
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FIGURE 4.4: A pictorial depiction of the principle behind the inverse trans-
form method.

define X(U) = inf{x : U <= FX(x)}. Figure 4.4 shows the principle behind
the inverse transform method pictorially.

The inverse transform method is very effective for generation of random
variates for the exponential random variable model. In Chapter 1, the proba-
bility distribution function for the exponential random variable was given to
be, FX(x) = 1−e−λx, for the parameter λ > 0. Applying the inverse transform
method gives,

Xn(Un) = F−1
X (Un) = −(ln(1− Un))/λ = −ln(Un)/λ for 0 < Un < 1, (4.7)

where n ≥ 1. The last equality in Eqn. (4.7) is true since, if Un is U(0, 1), then
so is 1−Un. Therefore, given a sequence of random numbers, Un, generated by
a random number generator, Xn = −ln(Un)/λ is a sequence of exponentially
distributed random variates. This is a very simple and efficient transformation.

In principle the inverse transform method should be all one should need
to know about continuous random variates generation. But, this is mostly not
efficient, since computing the inverse of many probability distribution func-
tions is not easy. Consider the normal distribution as an example. As was
discussed in Chapter 1, in the case of normal distribution, the integrals of
the probability density function to compute the distribution function must be
evaluated numerically. Therefore, inverting the probability distribution func-
tion is not an efficient option. In such cases other techniques are needed. We
develop some methods to generate other continuous random variates.

4.4.2 Acceptance-Rejection Method

The acceptance-rejection method, as the name suggests, builds an iterative
procedure by which in every iteration the output is either accepted as a valid
random variate outcome or is rejected. The method is useful when the inverse
transform method or any other simple method is not available for a random
variable model. For a random variable, X, with a probability density function,
fX(x), the method relies on a second random variable, Y , with a probability
density function, gY (y). The key determinant for the selection of the second
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random variable, Y , is that a method for generating random variates for Y
should be available. The acceptance-rejection method will use this fact as a
basis for generating random variates for X by the probability density, fX(x).

The method requires picking a constant, c, such that fX(y)
gY (y) ≤ c; for all y.

We have assumed for the definition of the constant c that the two random
variables, X and Y , are defined on the same sample space, say Ω. The algo-
rithm behind the acceptance-rejection method is as follows.

The Acceptance-Rejection Algorithm

Step 1: Generate Yn with probability density gY (y).

Step 2: Generate a random number Un.

Step 3: If Un ≤ fX(Yn)
(cgY (Yn))

, set Xm = Yn (Accept); m← m+ 1.

Otherwise Reject, and return to Step 1.

In Figure 4.5, we give a pictorial description of the acceptance-rejection
method. Every time a Yn is generated by its probability density, gY (y), for
which we have an easier method for generating random variates, we also gen-

erate a uniform random variate, Un. The probability that Un ≤ fX(Yn)
(cgY (Yn))

is
fX(Yn)

(cgY (Yn))
, which is the probability that the Yn generated could also be a re-

alization of X generated by fX(x). Hence, it is accepted in this scenario, but
rejected otherwise. Therefore, for every random variate generated for density,
fX(x), there are at least two uniform random numbers needed, one to generate
Yn and the other for the acceptance-rejection decision.

While one may be concerned about the efficiency of this method on the
grounds of frequency of rejection versus acceptance, it is reassuring that the
following result can be proven for the acceptance-rejection method.
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Theorem: The random variates generated by the acceptance-
rejection method, in fact, have the density fX(x). The number
of iterations of the algorithm that are needed to create a desired
random variate is a geometric random variable with mean c.

For the proof of this result, the reader may refer to Nelson [67].

Therefore, the acceptance-rejection is in contrast to the inverse transform
method, where every uniform random number generated produces a random
variate by the desired distribution. In the acceptance-rejection method, num-
ber of iterations before obtaining the next random variate by the desired
distribution is not deterministic. The lower the value of c, fewer may be the
iterations needed before successfully generating a random variate for X. The

trick, therefore, is to find the smallest constant, c, such that fX(y)
gY (y) ≤ c.

Let’s consider an example to demonstrate the application of the
acceptance-rejection method. Let gY (y) = exp(−|y|)/2 defined on (−∞,∞),
which is the double-exponential density. The inverse transform method can
be easily modified to generate random variates for the double-exponential
distribution, as follows.

Step 1: Generate two random numbers, U1 and U2.

Step 2: Let Yn = −ln(U1).

Step 3: If U2 ≤ 1
2 , then set Yn ← −Yn.

Otherwise return Yn.

If fX(x) = exp(−x2/2)√
2π

, which is the probability density function for the stan-

dard normal distribution model. As stated earlier, for the normal distribution
the integrals of the probability density function to compute the distribution
function must be evaluated numerically. Therefore, inverting the probability
distribution function to apply the inverse transform method is not an efficient
option. In order to apply the acceptance-rejection method, we need to find a

constant c, such that fX(y)
gY (y) ≤ c for all y. It can be shown that fX(y)

gY (y) ≤ 1.3155

in this case, hence we can take c = 1.3155.
The acceptance-rejection method is a good method to generate random

variates for the normal distribution; however, the normal distribution is such
a popular model of risk that specialized methods have been developed to
generate random variates for it. We study some of these next.

4.4.3 Normal Random Variate

As we will study in Chapters 5 and 6, the normal random variable model
of risk is a very popular and a frequently used model of risk. In Chapter 5,
we will be using the normal distribution to describe the evolution of risk over
time, while in Chapter 6 we will use simulation to solve these models. Due
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to the frequent use of the normal distribution model, we will describe two
specialized methods for generation of normal random variates.

4.4.3.1 Box-Muller Method

The Box-Muller method avoids using the probability distribution function
for generation of normal random variates. It instead uses the fact that if U1

and U2 are two independent U(0, 1) uniformly distributed random variables,
then G1 and G2 defined by the following transformation are two independent
standard normal (Gaussian) random variates. As described in Chapter 1, by
standard normal random variates, symbolically N(0, 1), we mean outcomes
for a normal random variable with a mean of 0 and standard deviation of 1.

G1 =
√
−2 ln(U1) cos(2πU2) (4.8)

G2 =
√
−2 ln(U1) sin(2πU2) (4.9)

Now, if the two uniform random numbers, U1 and U2, are truly independent,
we would have generated two independent standard normal variates. However,
if the two uniform random numbers are two successive random numbers from
a congruential random number generator, this will not be the case; the two
normal random variates, (G1, G2), will make a spiral structure in the R × R
space. Therefore, to be able to use both the normal random variates generated
in one calculation, where independent normal random variates are necessary,
the two uniform random numbers must come from different linear congruential
streams - corresponding to different seeds.

The transformation underlying G1 and G2, i.e., Eqns. (4.8) and (4.9),
are simple, but there is one disadvantage of the Box-Muller method. The
transformations require computing trigonometric functions (sin, cos), which
are somewhat computationally demanding, thus resulting in inefficiency in
normal random variates generation. An alternate method that bypasses this
computational burden is the Polar-Marsaglia method.

4.4.3.2 Polar-Marsaglia Method

The Polar-Marsaglia method is based on the fact that if U is a uniformly
distributed random variable, U(0, 1), then V = 2U − 1 is U(−1, 1), i.e., V
is uniformly distributed on the interval (−1, 1). If V1 and V2 are independent
and distributed as U(-1,1), obtained by transforming as above two independent
standard uniform random variables, U1 and U2, then we define W = V 2

1 +V 2
2 ,

when V 2
1 + V 2

2 ≤ 1. Therefore, W lies in the unit circle.
It can be shown that W so defined is uniformly distributed as U(0, 1).

This can be visualized by considering the pair (V1, V2) as points on the R×R
plane. Since the points (V1, V2) are equally likely to fall anywhere in the unit
circle inscribed with the box, [−1, 1]× [−1, 1], their distance from the origin,
(0, 0), is equally likely to be between 0 and 1. Similarly, the angle made by
(V1, V2) on the positive x-axis, θ, is uniformly distributed as U(0, 2π), and is
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FIGURE 4.6: A pictorial depiction of the construction of the Polar-Marsaglia
method.

independent of W . See Figure 4.6 for a pictorial representation of the (W, θ)
pair constructed.

The square defined by the values (V1, V2) has an area of 4, whereas the
area of the circle inscribed by W is πr2 = π. Therefore, the area of the circle
is π/4 fraction of the area of the square in Figure 4.6. The point (V1, V2)
will fall inside the circle with a probability of π/4. When that happens, W =
V 2
1 + V 2

2 ≤ 1, and we can use the random numbers, V1, V2, to make the
following computations,

cos θ = V1/
√
W, (4.10)

sin θ = V2/
√
W. (4.11)

This allows rewriting the Box-Muller method by replacing the sin and cos
functions as follows,

G1 = V1

√
−2 lnW/W (4.12)

G2 = V2

√
−2 lnW/W (4.13)

In the above modification of the Box-Muller method, θ replaces 2πU2, since it
has the same distribution as 2πU2. W plays the role of U1 in the Box-Muller
method, again due to distributional similarity.

The Polar-Marsaglia method can also be seen as an example of the
acceptance-rejection method. As seen in the previous section, there are other
acceptance-rejection methods for generation of normal random variates, where
acceptance/rejection is the central theme of the method. Here the accep-
tance/rejection was implemented depending on whether the (V1, V2) pair fell
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inside the unit circle or not. If it fell inside the circle, the algorithm could con-
tinue and generate a pair of independent normal random variates, otherwise
not. Therefore, although a proportion of the generated uniformly distributed
random numbers are discarded, this method is often computationally more
efficient than the Box-Muller method, especially when a large quantity of
normal random variates are to be generated.

In simulation experiments, since often a very large number of random
variates need to be generated to serve the purpose of the simulation study,
the efficiency of the random variates generator algorithms is of significant
concern.

4.4.3.3 Generation of Multi-Variate Normal

The Box-Muller and Polar Marsaglia methods give independent normal
(Gaussian) random variates with zero mean and standard deviation of 1,
when uniform random numbers U1 and U2 used are independent and uni-
form, U(0, 1). In practice, often a pair, (X1, X2), or an n-dimensional set,
(X1, . . . , Xn), of correlated Gaussian random variates are required. Let X1,
X2 be jointly Gaussian with mean µ1, µ2, and variance σ2

1 , σ
2
2 , respectively,

and covariance of ρσ1σ2. We now describe how the independent standard nor-
mal random variates can be transformed to be a correlated pair of normal
variates, of a given correlation structure.

To begin with, assume µ1, µ2 = 0 and σ1, σ2 = 1. We first generate Y1,
Y2, and Y3 random variates that are independent, standard normal, N(0, 1).
Using these three independent standard normal random variates, we define
the following,

X1 =
√

1− |ρ|Y1 +
√
|ρ|Y3, (4.14)

X2 =
√

1− |ρ|Y2 ±
√
|ρ|Y3, (4.15)

where in Eqn. (4.15), ‘+’ is used when ρ ≥ 0 and ‘−’ for ρ < 0. The
(X1, X2) pair thus obtained is jointly standard normal, with desired corre-
lation structure. In order to get random variates with the general mean and
standard deviation characteristics, the following transformations are applied,
X1 ← µ1 + σ1X1 and X2 ← µ2 + σ2X2.

The method described above for bi-variate normal random variates with
general correlation structure can be extended for n-dimensional (n > 2) corre-
lated normal random variates. This requires using the Cholesky factorization
of the correlation matrix, given as Corr = RRT . Once an n-dimensional stan-
dard, independent normal variates, Y are produced, the desired correlation
structure is introduced as, X = RY . Following this, as done for 2-dimensional
case, required mean and variance can be introduced for each element of X.
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4.4.4 Chi-Square and Other Random Variates

In Chapter 1, several additional specific models of risk were presented
and discussed. Some of these, such as the lognormal distribution and Weibull
distribution, are extensions of more basic models of risk. Therefore, if a method
is known for generating random variates for the simpler model, the method
can be extended to create random variates for the extended models of risk. For
instance, we discussed a few methods for generating normal random variates
in Sections 4.4.3.1 and 4.4.3.2. If a normal random variate, Xn, is produced
by any of these methods, after appropriately choosing its mean and standard
deviation, the desired lognormal random variate can be produced as, Vn =
exp(Xn).

The Weibull distribution was presented as a more general distribution than
the exponential model of risk in Chapter 1. The inverse transform method is
efficiently utilized for generating random variates for the exponential model
of risk. The same can be applied to generate Weibull random variates. Simi-
larly, the gamma risk model, Γ(x;α, k), was discussed as a sum of exponential
random variables in Chapter 1. This relation can be utilized for generating
gamma random variates.

Finally, we consider the chi-square, χ2
d, distribution, where d is a positive

integer denoting the degrees of freedom. If Y1, . . . , Yd are independent stan-
dard normal random variates (N(0, 1)), then Y 2

1 + . . .+Y 2
d has a χ2

d distribu-

tion. Moreover, for constants α1, . . . , αd, the distribution of
∑d

i=1(Yi+αi)
2 is

noncentral chi-square with d degrees of freedom and noncentrality parameter,
ν =

∑d
i=1 α

2
i , χ

2
d(ν). This relationship between chi-square and normal models

of risk can be utilized for generating chi-square random variates. In general,
however, for more general values of parameters, such as degrees of freedom,
d, in the case of chi-square and scale-shape (α,k) parameters in the case of
the gamma model, more specialized methods for random variates generation
would be needed.

We have so far seen some basic methods for random variates generation,
both for discrete and continuous models of risk. The intention of this intro-
ductory view was to give the reader a sense of the building blocks behind the
sophisticated simulation software available today, and the underlying assump-
tions and issues. We next move to discussing testing of random variates for
their quality and accuracy.

4.5 Testing Random Variates

Once appropriate methods for random variates generation are created, they
may be used to perform the required experiments for the simulation study. The
quality and reliability of the experiments, however, will rely on the correctness
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FIGURE 4.7: Display of output from a linear congruential generator. (a)
1000 numbers generated lie on three parallel lines. (b) The 1000 numbers
after implementing shuffling.

and quality of random variates generated. Therefore, testing the outputs of the
random number generators and the random variates generating algorithms is
an important step for assuring the validity of a simulation analysis. Since the
random numbers are the basic building block for all other random variates, it
is necessary to have independence wherever this is a requirement. We begin
with testing the independence of the uniform random numbers.

4.5.1 Testing for Independence of Random Numbers

Statistical independence is usually a difficult property to test. No single
test for it is totally satisfactory and fully reliable. Among the random number
generators, a generator like the linear congruential generator (LCG) is an
important case to consider to test independence of its output, since in the
linear congruential iterations each random number is determined only by its
immediate predecessor. If the generator fails one of the independence tests, a
remedial strategy may be developed.

Different plotting techniques is one approach for testing independence.
Autocorrelation plot and scatter plots are some of the plotting techniques that
may be used. A simple test for independence involves plotting the successive
pairs (Un, Un+1) for n = 1, 2, 3, . . . as points in the unit square of the R × R
plane, with the Un on the x-coordinate and Un+1 on the y-coordinate. If the
random numbers generated by the random number generator are independent,
the plots will scatter about with no apparent patterns.

Applying this plotting technique to the output from a linear congruential
generator reveals that the points lie on one of c different straight lines of
slope a/c. We display this for a simple generator to enhance the pattern, with
a = 6, b = 3, c = 11, in the left panel of Figure 4.7. For a more sophisticated
LCG with parameters suggested in Section 4.2.1, a large number of random
numbers generated should fairly evenly fill the unit square. The presence of
patches without any of these points is an indication of bias in the generator.
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These patterns can be eliminated by applying additional remedial procedures
to the numbers produced by a generator.

4.5.1.1 Shuffling Procedure

A shuffling procedure attempts to introduce greater ‘randomness’ in the
deterministic output from a random number generator. Sample steps of a
shuffling procedure can be as follows,

1. Generate 20 or more random numbers from a random number stream:
{U1, ..., U20}.

2. Pick one of these 20 numbers with equal probability, 1/20. This will re-
quire generating another random number from a different stream, V1.
The randomly generated index ranging from 1 . . . 20 is obtained as, j =
floor(20 ∗V1)+ 1. Assign the random number from the U(1 : 20) stream
corresponding to the randomly picked index, say Uj , to the shuffled ran-
dom number stream W , i.e., W1 = Uj .

3. Replace the random number picked from the U stream, say Uj , with the
next random number in the U sequence, i.e., U21.

4. Repeat Steps 2-3. This results in a shuffled sequence of random numbers,
W , of the initial sequence, U .

Note that this procedure requires two-times more random numbers gener-
ated than an unshuffled sequence of the same length. This is because a random
number stream also needs to be generated to determine the index of a ran-
domly picked number from a set of 20 or so numbers. Shuffling procedures have
been found to be effective in reducing patchiness in poor generators. They also
provide a possibility to lengthen the periods when using linear congruential
generators.

In the right panel of Figure 4.7, we apply a shuffling procedure to the
output of the left panel from a simple linear congruential generator. The shuf-
fling improves the output, although it doesn’t make this generator attractive
for practical use. Shuffling improves the independence properties of a random
number generator, but how about its reproducibility? Remember experiments
being reproducible is a desired property for a simulation environment. As long
as a randomly picking index in the shuffling procedure can be reproduced, the
shuffling procedure retains the random number generator’s reproducibility.

Besides plotting strategies to test independence, other quantitative hy-
pothesis tests can also be conducted to test the independence of the output
of a random number generator. The most useful hypothesis tests for this pur-
pose are the Runs Tests, such as, Runs above and below the Median, Runs
Up, Runs Down, etc. Besides independence, for the uniform distribution and
other general distributions, we will also need to test if the random variates
generated are truly representative of the desired distribution.
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FIGURE 4.8: Display of Probability Plots. (a) Lognormal probability plot.
(b) Weibull probability plot.

4.5.2 Testing for Correctness of Distribution

Testing accuracy of the distribution of random variates generated is not
any different from statistical inference for testing the distribution of data
acquired from real-world experiments. As in standard statistical inference for
real-world data, one simple way to test correctness of distribution is to plot
a histogram for the output of a random variates generator and compare it
visually with the graph of the true density function it is supposed to simulate.
This is the simplest assessment possible, and remains a subjective evaluation.

A less subjective evaluation is to produce a probability plot for the simu-
lated data. For instance, if the random variates are supposed to be representing
a normal probability distribution, one can plot the data in a normal probabil-
ity plot. If the points fall effectively on a straight line, the hypothesis that the
data represent a normal probability model cannot be rejected. In Figure 4.8,
we plot lognormal and Weibull probability plots in the left and right panel,
respectively, for lognormal data generated using the Polar-Marsaglia method.
The lognormal random variates are obtained by taking the exponential of the
output of the Polar-Marsaglia method, i.e., exp(G1), where G1 is defined in
Eqn. (4.12). The probability plots are constructed using the probplot function
in MATLAB [61]. The lognormal probability plot is arguably a straight line,
and would pass the so-called ‘fat-pencil ’ test, i.e., if a fat-pencil were put on
the points in the plot, it would hide all the points. However, the Weibull prob-
ability plot, which was chosen to create a contrast, is by no means a straight
line.

For more rigorous quantitative evaluation, we would set up standard statis-
tical tests for testing validity of a hypothesized distribution for the simulated
random variates data. The tests are developed based on quantifying the ‘dis-
tance’ between the histogram of the simulated data and the true probability
density. The first test is more suitable for discrete models of risk.

4.5.2.1 The χ2 Goodness of Fit Test

Using the designed random variates generator, we generate a large number,
N , of independent and identically distributed random variates. We form a
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cumulative frequency histogram FN (x) for these random variates, which we
wish to compare with the true cumulative mass function, F (x). The procedure
requires subdividing the random variates data into k + 1 mutually exclusive
categories and counting the numbers, N1, N2, . . ., Nk+1, of them falling into
each of these categories. Clearly, N = N1 +N2 + . . .+Nk+1.

Breaking the data into k + 1 categories works easily for discrete random
variables, with possibly each discrete outcome of the random variable making a
category. For continuous random variables, one needs to set arbitrarily chosen
break-points. Following the categorization of the data, the true probability for
each of the categories is computed, say p1, p2, . . ., pk+1. In the discrete case,
this would essentially be the probability mass function of the random variable.
Given the true probability for each category, the (true) expected number of
values falling in each category should be Np1, Np2, . . ., Npk+1.

The Pearson statistic is designed to test the hypothesis whether the simu-
lated data represents the hypothesized distribution. We measure the ‘distance’
between the true expected number of observations in each category and the
observed number of observations in each category, as follows,

χ2 =
k+1∑
j=1

(Nj −Npj)
2

Npj
. (4.16)

If the hypothesis is supported, in other words, if the random variates are
generated from the desired distribution, the statistics should have a small
value. The Pearson statistic is asymptotically (as N goes larger) distributed
according to the χ2-distribution with k degrees of freedom. The expected
value of χ2 with k degrees of freedom is, E[χ2] = k, and V ar(χ2) = 2k, as
discussed in Section 1.2.2.9. Therefore, to complete the hypothesis test, we
pick a significance level 100α% and determine a value of 2χ2(1 − α, k), such
that,

P (χ2 ≤ χ2(1− α, k)) = 1− α. (4.17)

Restating the Eqn. (4.17) for the probability of the complementary event,
χ2 > χ2(1− α, k), gives,

P (χ2 > χ2(1− α, k)) = α. (4.18)

The event, χ2 > χ2(1 − α, k), is the event of Type I error, when the null
hypothesis is rejected when in fact it is true. The null hypothesis in our case
is that the simulated data are accurate, i.e., they represent the desired model
of risk. However, the particular sample of size N is finite, and hence, there is
a possibility that the distance measured in Eqn. (4.16) comes out to be large,
leading to the erroneous conclusion of rejecting the null hypothesis when in
fact it is true. The probability of Type I error measures the probability of
making this error, rejecting the null when the null is true, in Eqn. (4.18).
Therefore, 0 < χ2 ≤ χ2(1 − α, k) defines our acceptance region for the null
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hypothesis that χ2 ∼ 0, or the ‘distance’ between the observed number of
observations and true expected observations in each category is essentially
zero. If the χ2 value computed by Eqn. (4.16) satisfies χ2 ≤ χ2(1− α, k), we
accept (or as is stated in Statistics texts, fail to reject) the null hypothesis at
the significance level of 100α%. If however, χ2 > χ2(1−α, k), then the null is
rejected, which implies that the random variates are not acceptably generated
according to the desired distribution.

4.5.2.2 Kolmogorov-Smirnov Test

For a continuous random variable, the discrete categories of the χ2 good-
ness of fit test are (i) artificial, (ii) subjective, and (iii) do not fully take
into account the variability in the data. These disadvantages are avoided in
the Kolmogorov-Smirnov test, which is based on the Glivenko-Cantelli theo-
rem [11, 48]. If {Xi; i = 1 . . . N} are the N random variates generated for a
continuous model of risk with a cumulative distribution function, F (x), then
the cumulative frequency function, FN (x), for the random variates generated
can be described as,

FN (x) = (#ofX ′
is ≤ x)/N. (4.19)

Therefore, if the sample {Xi} is sorted in increasing order to get {X(i)}, then

FN (X(i)) = i/N, i = 1, 2, 3, . . . , N. (4.20)

The Glivenko-Cantelli theorem states that the cumulative frequency func-
tion, FN (x), will converge to the true cumulative distribution function, F (x),
as the number of random variates generated, N , becomes large. Formally, it
states the following,

DN = sup
−∞<x<∞

|FN (x)− F (x)| → 0 a.s. as N →∞. (4.21)

In order to apply the Kolmogorov-Smirnov (KS) one-sided test at 100α%
significance level, based on the above result, for the null hypothesis: H0 :√
NDN = 0, we follow the following steps. The test utilizes the fact that

the test statistic,
√
NDN , follows a Kolmogorov distribution with cumulative

density function, H(x). The steps involve first computing the test statistic,
followed by defining the acceptance region for the chosen significance level, and
finally, checking if the computed test statistic falls in the acceptance region.

1. Compute the value of the test statistic,
√
NDN , from the random variates

as follows.

Define D+
N = max1≤i≤N{ i

N − F (x(i))}.

Define D−
N = max1≤i≤N{F (x(i))− i−1

N }.

Compute DN = max{D+
N , D−

N}.
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2. Find the acceptance region (0, x1−α), where x1−α value is such that
H(x1−α) = 1− α, where H is the Kolmogorov distribution function.

3. Finally, if
√
NDN < x1−α then we accept (or as in Statistics texts, fail

to reject) the null hypothesis at 100α% significance level; otherwise the
null hypothesis is rejected and the random variates are concluded to not
represent the desired distribution.

Being based on asymptotic results, the sample size or number of random
variates generated to conduct the test, N , is important, both for the χ2 good-
ness of fit test and the Kolmogorov-Smirnov test. A guideline suggests that
N > 35 suffices for these tests, but in a simulation lot many random variates
can be generated without much problem, hence sample size is not an issue.

We have spent considerable effort in describing the procedures for testing
random variates’ independence and accuracy. The primary motivation for this
description was to understand the nuts-and-bolts behind the otherwise black-
box simulation software routines, including those available in MATLAB. Just
as random variates generation can be conveniently accomplished by using the
packaged routines in a simulation software, most statistical software (including
MATLAB) come packaged with functions and routines to conduct the above
tests. For instance, in MATLAB, KS test can be conducted using the kstest
routine, which requires giving the input random variates data, specifications
for the desired distribution, and the significance level, α, to conduct the test.
The χ2 goodness of fit test can be performed using the chi2gof function in
MATLAB.

4.6 Validation of Model

The models developed for complex systems, even after considerable ab-
straction and simplification, can be quite complex. Each module or compo-
nent of the model can have several variables, each described by various models
of risk, with complex interaction between the variables, as well as the model
components, to determine the overall system behavior or performance. We
have so far discussed the principles behind building a model for a simulation
study and the methods underlying capturing the riskiness of various variables
of the model. Besides capturing the riskiness of the variables by generating
random variates by various probability distributions, we also looked at meth-
ods to test the accuracy of the models of riskiness. We now need to move to
the higher level of testing the accuracy of simulation models.

Testing the accuracy of the simulation model can be broken down into
two major pieces: testing the accuracy of the computer representation of the
model (right-most box in Figure 4.2) and testing the accuracy of the model
for its ability to capture desired characteristics of the real system (the top



114 Risk Management and Simulation

loop in the right box in Figure 4.1). Testing of programming accuracy is often
referred to as model verification, and includes programming error detection
and debugging, while testing the model accuracy is model validation. Model
validation can ask fundamental questions about whether the conceptual model
correctly reflects the real system, or whether the conceptual model is really
capable of addressing the necessary issues about the real system. The results
of a validation analysis may result in going back to the drawing board, as
suggested in Figure 4.1.

Clearly, model verification and validation is a very important exercise,
since without a level of confidence on the model accuracy, its recommen-
dations cannot be trusted. Despite its importance, often a modeler can miss
paying sufficient attention to this step. Moreover, a key point to note is, model
validation should be a continuous, ongoing activity throughout the time the
model is being used to make decisions. This is important, since no model is
good for all times and under all conditions; as times and conditions change,
the assumptions underlying a model may no longer hold, and hence, must be
assessed. Reasons for overlooking the need for testing model accuracy can be
multi-fold, ranging from good-old laziness or ignorance, to overconfidence on
one’s modeling capabilities, or pressures of time and budget.

The challenge behind testing models is, while model building is a fun
and creative activity, model testing can be quite effortful and a drag. But,
being skeptical of one’s own work is a good rule to follow throughout model
building and model usage. The gap between model verification and validation
can be nicely summarized by, if the computer program representation of a
model runs, it does not mean it is OK! As in the planning for any other
project, explicitly setting aside time and resources for model testing is a good
practice to combat pressures of time and budget, or as a means for instilling
the discipline to overcome laziness.

4.6.1 Techniques for Model Verification

Errors creeping into model building can be classified as syntactical or se-
mantical. Syntactical errors are unintentional addition, omission, or misplace-
ment of notation that either prevents the model from running or causes it
to run incorrectly. Misplaced decimal points or parentheses can have a dra-
matic impact on the outcome. Semantical errors are errors in the meaning or
intention of the modeler, such as a wrong condition inserted in an if-then-
else statement. Semantical errors are harder to detect, but can have a very
damaging effect on the usefulness of the model.

Best practice for developing good models is that the entire development of
the simulation project should be done so that it facilitates testing its accuracy.
Writing spaghetti software code, or other poor organization of code, such as
without good descriptive variable names, descriptive comments, good flow of
code logic, that makes the code hard to understand even by its own creator,
is clearly not advisable. A stitch in time does, indeed, save nine, if not more!
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As stated in Section 4.1.1, the code for a simulation model should be built
modularly, starting simple and gradually growing to capture the complexity
of the model, with staged verification, and preferably, validation. Step-wise
refinement and progressively adding complexity to the model, verifying and
validating the model in each step, develops the model in several passes, and
ensures the model’s accuracy, along with guaranteeing that the model pos-
sesses the right level of complexity needed for the purpose of the simulation
study. Use of unstructured control, such as ‘goto’ type statements, should be
avoided, instead logic control should be structured, such as using ‘if-then-
else’, ‘do-while’, etc. statements. Not only model code and its logic, but also
data supporting the model should be thoroughly and clearly documented.
This helps detect and remove unintentional errors in model data, logic, and
construction. It also facilitates communication and collaboration for efficient,
error-free model building and usage.

Performing a top-down and bottom-up model code review helps in a thor-
ough inspection of the code and its accuracy. A top-down review begins with
looking at the major module and works its way to the lower level modules,
while a bottom-up review begins looking at the smallest modules and builds
up the verification process towards the upper major modules. Running the
model, provided it runs, to check for reasonable output can also help identify
semantical errors. Plotting outputs provides a visual aid for verification, where
some errors can be detected visually that may otherwise go unnoticed. The
plots of outputs provide help in identifying a problem, rather than discovering
the cause of a problem. For aid in locating syntactical errors or tracing the
code to identify semantical errors, software tools come with debuggers, which
help uncover the source of the error.

To a seasoned programmer, most of the points made here would be triv-
ialities, or second nature to account for when building the model, but for a
newbie learning the discipline they can save many hours of neck-breaking,
mind-numbing debugging work.

4.6.2 Techniques for Model Validation

Model validation tests if the model is a meaningful and accurate represen-
tation of the real system for the purpose of the simulation study. Validation of
models should be a continuous activity throughout the time the model is be-
ing used to make decisions. As stated earlier, this is important, since as times
and conditions change, the assumptions underlying a model may no longer
hold, and hence, must be assessed. Validation is not only of the model struc-
ture, but begins at the data-gathering stage to support building the model.
As is said, ‘garbage-in, garbage-out.’ The validation looks for functional va-
lidity, namely that the model’s output behavior has sufficient accuracy for
the model’s intended purpose. Therefore, among other things, model valida-
tion helps develop a trust that simulation results may be used for real-world
decisions.
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FIGURE 4.9: Display of Validation Cost vs. Risk Cost Curve.

Validation is a hard and painstaking process, but just as important, if
not more, than any other activity in a simulation study. Therefore, the more
novel ideas generated for performing validation, the better. We suggest some
ideas here. It helps to compare the simulation results with other models, or
simpler versions of the same model, for which analytical results may be avail-
able. Conducting the simulation under degenerate or extreme parameters or
conditions should give anticipated degenerate or extreme output, for instance,
should X0 = 0 imply XT = 0, or if investment weights wi

t = 0 (for all i and t),
what should be the anticipated portfolio performance, similarly, if the strike,
K = 0, what should the option be worth, etc. On the other hand, reasonable
values should result in reasonable outcomes. Not only that, if you show the
results from the model to a knowledgeable expert, would he/she agree that the
results seem reasonable and representative of the real system. In this regard,
the simulation model can be subjected to a Turing test, where we ask the
knowledgeable expert to discriminate between model and system outputs. If
the expert cannot detect a difference, there is more evidence for model validity.

As in model verification, plots and summary statistics of output variables
are useful means for model assessment. Comparing these with similar informa-
tion for the real system creates a context for judging if the model is capturing
the necessary system characteristics. Conducting sensitivity analysis with the
model involves changing some input parameters to determine their effect on
the model’s behavior and output. These effects of sensitivity analysis on the
model should be similar to how the real system would behave under similar
changes. Current and historical data for the system is useful to support the
validation.

Although validation is a continuous process, and should be performed
throughout the simulation study, there is still an optimum level of effort on
validation, beyond which returns may be less valuable. Overdoing is not good,
although this is hardly ever the problem in practice. A balance is needed be-
tween validation costs and cost incurred due to risk of making decisions based
on an invalid model. This trade-off is illustrated in Figure 4.9, where the low-
est total cost point between the validation cost curve and the risk cost curve is
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sought. Some models meant for ongoing use need continued validation, which
should be performed only in a controlled modification mode to prevent un-
wieldy growth of the model that hurts its robustness.

4.7 Output Analysis

A simulation model is a computer-based statistical sampling experiment,
therefore appropriate statistical techniques must be used to design and an-
alyze the simulation experiments. Once the verification and validation steps
are satisfactorily accomplished, in the final box of Figure 4.1, the simulation
model is used for running the required simulation experiments and simulation
output analysis. Very often a great deal of time and money is spent on model
development and ‘programming,’ while little effort is made for analyzing sim-
ulation output data appropriately. A little more care and attention is needed
for designing and implementing the output analysis in a simulation study.

The level of effort or precision required in a simulation output analysis
depends on several factors, such as the nature of the problem, importance
of decision, validity of the input data, and availability of a verified and valid
model. In some cases a rough analysis using judgmental procedures may suf-
fice, while in others a detailed statistical analysis will be necessary. We will
focus here on statistical analysis of simulation data.

As with statistical analysis of data obtained from the real system, statisti-
cal analysis of simulation output comprises descriptive and inferential statis-
tics. The goal of descriptive statistics, as the name suggests, is to describe the
properties of the system based on the statistical properties of the simulated
data obtained from running experiments using the model. The data generated
by running experiments using the model is finite, depending on the design for
sample size sought, and is hoped to be representative of the population. In-
ferential statistics tries to make conclusions or infer knowledge about the
population based on the sample data produced by running simulation experi-
ments, assuming the data are representative of the population. These concepts
of sample and population, and descriptive or inferential statistics, are similar
to those in statistical analysis of data obtained from the real-world.

The simulation output variables of a model are in their turn random vari-
ables, potentially a complex function of the input risk factors and their interac-
tions in the model. An experimental sample, called replications, are intended
to be independent observations of the output variables obtained after every
‘run’ of the simulation model. The independence of observations of the output
variables from different runs of the simulation model depends on the properties
of the random number generator in use, such as long cycle period and ability to
use different seeds. A reasonable number of replications (sample size) is a good
indicator of what can be expected in any subsequent replication. Clearly, the
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sample size, amount of data generated from simulation experiments to make
descriptive or inferential statistics, determines the accuracy and quality of in-
ferences made from the data. Independence of observations in the simulated
data is a requirement of most descriptive and inferential statistics procedures.
The idea is to generate a large enough sample to draw valid inferences about
the population, where more is always better, but sample generation time and
computing cost are the primary constraints.

4.7.1 Descriptive Output Analysis

Let the simulation output quantity of interest or the performance measure
for the simulation study be θ. Using the replications, we want to estimate the
value of the performance measure. We can seek two types of estimates under
a descriptive output analysis.

Point Estimator: A formula for a single value estimate of the performance
measure, denoted by Θ̂.

Point Estimate: The actual value a point estimator takes when specific data
values are plugged into the formula, denoted by θ̂.

Interval Estimate: Gives a range of values the performance measure will
have with a degree of confidence. It is also called a Confidence Interval.

For example, the descriptive statistic of interest of an output variable could
be its mean, µ. To create an estimate of the mean, we can use a point estimator
or an interval estimator. Sample mean estimator, defined by

X̄ =

∑N
i=1 Xi

N
, (4.22)

is a point estimator, while a confidence interval based on sample mean is an
interval estimator. The confidence interval estimator will be,

(X̄ − zα/2
σ√
N

, X̄ + zα/2
σ√
N

), (4.23)

if the standard deviation of the performance measure, σ, is known, otherwise
will be,

(X̄ − tN−1,α/2
s√
N

, X̄ + tN−1,α/2
s√
N

), (4.24)

where s is a point estimator for the standard deviation of the performance
measure. zα/2 is the 1 − α/2-th percentile of a standard normal distribution
and tN−1,α/2 is the 1−α/2-th percentile of a standard t-distribution withN−1
degrees of freedom. When we substitute the values forXi’s to be data obtained
from N runs of the simulation model, say xi, we obtain point estimates and
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interval estimates for the mean. The interval estimates are created so that with
100(1− α)% confidence the true mean, µ, lies within the confidence interval.

The narrower the confidence interval, the better the accuracy of the in-
terval estimate. However, there is an inverse relationship between confidence
level, 100(1 − α)%, and the width of the confidence interval. If we desire a
higher confidence level, the width of the confidence interval becomes bigger.
On the other hand, if we require a tighter confidence interval, the confidence
level will drop. For a given confidence level, getting a tighter confidence inter-
val can be accomplished by increasing the number of observations generated.
In particular, for a confidence interval with width 2e and a confidence level of
100(1− α)%, number of observations exceeding,

N > (
zα/2σ

e
)2, (4.25)

will suffice. If the standard deviation of the output variable, σ, is not known,
a point estimate for it is used to get an approximate number of observations
needed for the desired interval estimate accuracy.

Mean of the output variable is one example of a performance measure.
Often other summary descriptive statistics are required for the output vari-
ables of a simulation study. A general functional of the output variable, X,
that may be defined as, θ = E[f(X)], or can be a conditional expectation,
θ = E[f(X)|g(X)]. Functions f(.) and g(.) are appropriately well-defined func-
tions. For instance, variance of the output variable can be computed by picking
function, f(x) = (x− µ)2. Similarly, semi-variance, conditional variance, per-
centiles, Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), etc. can be
estimated. For each functional, a point estimator needs to be used to cre-
ate the point estimate or the interval estimate. We will introduce these point
estimators in the later chapters, where the functionals are used in specific
contexts. Here our objective was to introduce the general concepts underlying
simulation output analysis.

4.7.1.1 Designing Simulation Run by Properties of Estimators

Every point estimator for a functional of a simulation output random vari-
able, f(X), has properties that should be understood. These properties would
guide the development of design of simulation experiments. An estimator is
said to be unbiased if in expectation it gets right what it is attempting to
estimate, i.e., in our earlier notation E(Θ̂) = θ. Clearly, being unbiased is a
good property for a point estimator to have. However, beyond bias, there is a
second important property of an estimator to consider, which is the variance
of the estimator, V (Θ̂). The higher the variance of an estimator, the poorer
the estimator, since for any given simulated data, the estimate produced by
the estimator can be quite off from the true population value for that func-
tional of the output variables, θ = E[f(X)]. In that, one seeks a minimum
variance unbiased estimator, MVUE, for the functionals of interest.

Bias and variance of an estimator, in the simulation approach to solving
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problems, depends heavily on the computational effort made. The greater the
computational budget, the lower the level of achievable variance of an esti-
mator. However, computational budget is never infinite, just as compute time
is rarely unlimited. Therefore, design of a simulation study must determine
the trade-off between bias, variance and compute time for various quantities
being estimated.

The general guideline for the design of simulation runs the decision process
is as follows:

1. If the compute time for each replication to generate θi is fixed, say τ ,
and the estimator is unbiased, select number of runs to fit V (Θ̂)τ within
the computational budget.

2. If the compute time for each replication to generate θi is stochastic, say
τ̃ , and the estimator is unbiased, select number of runs to fit V (Θ̂)E[τ̃ ]
within the computational budget.

3. If more than one estimators are available, select one with least Mean-
square error (MSE(Θ̂) = bias(Θ̂)2 + V (Θ̂)). Follow guideline for step 1
or 2, depending on the nature of replication compute time.

4.7.2 Inferential Output Analysis

Inferential analysis of simulation output variable is in essence identical to
the inferential analysis of real-world data. The analyst postulates a hypothesis
regarding the value of a functional of a simulation output variable and utilizes
the data generated from simulation experiments to test if the hypothesis has
support or not. The test is conducted on the basis of a test statistic, which is
essentially a point estimator for the hypothesized functional. For instance, the
sample mean, X̄, estimator for the population mean functional, µ = E[X].

Developing the test statistic utilizes knowledge of the sampling distribution
of the estimator. The sampling distribution of the sample mean estimator, X̄,
is an asymptotically normal distribution, by the central limit theorem. This
fact is used to construct the test statistic,

X̄ − µ

σ/
√
N

, (4.26)

if σ is known. And,

X̄ − µ

s/
√
N

, (4.27)

when σ is not known, and is estimated using the point estimator, s. In the σ un-
known setting, the test statistic (Eqn. (4.27)) is approximately a t-distribution
with N − 1 degrees of freedom.
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Under the hypothesis that the true population mean of the output variable,
µ = µ0, an acceptance region is constructed as,

(µ0 − zα/2
σ√
N

,µ0 + zα/2
σ√
N

), (4.28)

in the case when the standard deviation of the performance measure, σ, is
known. Otherwise, the acceptance region becomes,

(µ0 − tN−1,α/2
s√
N

,µ0 + tN−1,α/2
s√
N

), (4.29)

when σ is not known. If the computed sample mean, X̄, falls in the acceptance
region, the simulated data supports the hypothesis of the mean output variable
level being µ0. If the computed sample mean does not fall in the acceptance
region, the hypothesized value of mean can be rejected. As before, zα/2 is
the 1 − α/2-th percentile of a standard normal distribution and tN−1,α/2 is
the 1 − α/2-th percentile of a standard t-distribution with N − 1 degrees of
freedom. The value α is called the significance level, which is the probability
of making an erroneous conclusion, namely rejecting the hypothesis when it is
in fact true (Type I error). Clearly, we would like to minimize the probability
of making an erroneous conclusion, but we cannot indefinitely reduce this
probability without creating another problem, that of not being able to reject
the hypothesis when it is in fact false (Type II error).

The principle applied above to the mean functional, µ = E[X], can be
applied to any other functional for which inferential analysis is needed. A
point estimator, its sampling distribution, and a hypothesized value of the
functional of the output variable will need to be defined. Using these and a
chosen significance level, an acceptance region will be constructed and the
test performed. We will consider specific details of other inferential analysis in
the context of specific problems in later chapters. Here our objective was to
introduce the basic principles behind inferential simulation output analysis.

4.8 MATLAB Tools for Simulation

MATLAB mathematical software has a vast array of functions for simulat-
ing random variates in its Statistics Toolbox. We list a few of these functions
here. The reader is advised to look up the extensive help documentation avail-
able with MATLAB to see the details of these and other related functions.
At the bottom of each function description in the MATLAB help documen-
tation, look for ‘See Also’ to explore other related functions. Resources such
as MATLAB Primer [20] are also useful.

Random Number Generator: rand
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Normal distribution: normrnd

Uniform distribution: unifrnd, unidrnd

Binomial distribution: binornd

Poisson distribution: poissrnd

Exponential distribution: exprnd

Weibull distribution: wblrnd

Lognormal distribution: lognrnd

Chi-square distribution: chi2rnd, ncx2rnd

Gamma distribution: gamrnd

Debugging support: assert, echo, error, keyboard, return, warning

Other: probplot, kstest, chi2gof

4.9 Summary

In this chapter, we set down the principles to follow for constructing a
simulation framework. The logical steps needed to accomplish a simulation
study were laid out, followed by discussing each step in detail. A simulation
study can be successfully performed if each step is given its due importance,
including model development, verification, validation, designing simulation ex-
periments and conducting appropriate output analysis. In order to not leave
the nuts-and-bolts of a simulation framework as a black-box, and be a more
informed user of simulation software and tools, we also learned various algo-
rithms to generate and test various random number and random variates. The
principles of simulation developed in this chapter will be utilized in all future
chapters to address various risk management problems.

4.10 Questions and Exercises

Review Questions

1. What is simulation? When is simulation used?

2. What are the advantages and disadvantages of simulation analysis?
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3. What role do models serve when solving a problem using simulation
analysis?

4. Discuss the steps that should be adopted for a successful implementation
of a simulation study.

5. Why is it advised that a simulation model be developed in stages?

6. What is a random number generator? What are random variates?

7. What are the desirable properties of a random number generator?

8. What is a linear congruential generator? How does it differ from a lagged
Fibonacci generator?

9. Describe the shuffling procedure applied to a linear congruential gener-
ator. Why is a shuffling applied to a random number generator?

10. In what terms can random number generators and random variates gen-
erated by various algorithms be tested for their required properties?

11. What is the χ2 goodness of fit test? When and how is it applied?

12. What is the Kolmogorov-Smirnov test? When and how is it applied?

13. What is model verification? What is model validation? Why are these
activities considered an important part of addressing problems using
simulation analysis?

14. What are the techniques utilized for model verification?

15. How can model validation be effectively implemented?

16. What is the purpose of a descriptive versus an inferential simulation
output analysis?

17. What is a point estimator? Point estimate? How is it related to an
interval estimate?

18. How does the number of replications in a simulation experiment relate
with the accuracy of an estimate of the output variables?

19. What is bias, variance and mean square error of an estimator? How can
these be utilized for providing a guideline to design simulation runs?

20. What are Type I and Type II error of inferential analysis?

Exercises

1. Implement your version of the linear congruential generator (LCG) in
MATLAB with parameters set as, a = 16, 807 = 75, b = 0, c = 231 − 1.
Pick a seed, X0, of your choice.
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2. Construct a lagged Fibonacci random number generator given by, Xn =
Xn−r + Xn−s(mod c), in MATLAB with parameters, r = 7, s = 3,
c = 231 − 1. Initiate the iteration using the LCG of Exercise 1.

3. Computing software, like MATLAB, comes packaged with random num-
ber and variate generation functions. We can get to see how this is done
by implementing some of these ourselves. Construct your own functions
in MATLAB that generate 1000 realizations by the following:

(a) Binomial random variates, with n = 10, p = 0.7.

(b) Poisson random variate, with λ = 5.

4. Implement the following specialized methods in MATLAB for generating
standard normal random variates.

(a) Box-Muller method

(b) Polar-Marsaglia method

5. Utilize your normal random variate generators from the previous exercise
to produce a pair of correlated normal random variates, (X1, X2), with
the following correlation matrix.

ρ =

(
1 0.4
0.4 1

)
(4.30)

The mean and standard deviation of the two random variables is given
as, E[X1] = 3, E[X2] = 10, and σX1 = 2, σX2 = 4.

6. Construct and implement an acceptance-rejection method for generat-
ing standard normal random variates in MATLAB using the double-
exponential density.

7. For a sequence of random numbers generated by the linear congruential
generator (LCG), {Un}, plot the successive pairs (Un, Un+1) for n =
1, 2, 3, . . . as points in the unit square of the R × R plane, with the Un

on the x-coordinate and Un+1 on the y-coordinate. Use the following
simple choice of parameters for this LCG: a = 6, b = 3, c = 11.

8. Generate a sequence of random numbers, {Un}, from MATLAB’s built-
in random number generator (rand) and plot the successive pairs
(Un, Un+1) for n = 1, 2, 3, . . . as points in the unit square of the R × R
plane, with the Un on the x-coordinate and Un+1 on the y-coordinate.
Compare the plot with a similar plot for the LCG of the previous exer-
cise.

9. Apply the shuffling procedure described in Section 4.5.1.1 to a linear con-
gruential generator with parameters, a = 6, b = 3, c = 11. Plot the shuf-
fled sequence as successive pairs (Un, Un+1) for n = 1, 2, 3, . . . as points
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in the unit square of the R×R plane, with the Un on the x-coordinate
and Un+1 on the y-coordinate. How does this shuffled sequence compare
to a similar plot of unshuffled sequence.

10. Generate 1000 random variates by the MATLAB routines for the fol-
lowing discrete models of risk and test that the sample generated truly
represents the intended distribution using the χ2 goodness of fit test.
Use an α = 0.05.

(a) Uniform distribution by unidrnd.

(b) Binomial distribution by binornd.

(c) Poisson distribution by poissrnd.

11. Generate 1000 random variates by the MATLAB routines for the follow-
ing continuous models of risk and test that the sample generated truly
represents the intended distribution using the Kolmogorov-Smirnov test.
Use an α = 0.05.

(a) Normal distribution by normrnd.

(b) Weibull distribution by wblrnd.

(c) Gamma distribution by gamrnd.

12. Consider a portfolio of 100 loans, where the loans can be classified into
three categories per their credit risk characteristics: the low, medium,
and high risk loans. The portfolio has 20 high risk loans, each of principal
100K, 30 medium risk loans, each of principal 150K, and 50 low risk
loans, each of principal 200K. In the duration of a year, a high risk
loan has 20% probability of default independent of any other loan, a
medium risk loan has 10% probability of default, and a low risk loan
has 5% probability of default. The recovery rate on default for low,
medium, and high risk loans is modeled as, U(0.7, 0.9), U(0.6, 0.8), and
U(0.5, 0.7), respectively.

(a) Formulate an expression (formula) for the value of the loan portfolio
in one year.

(b) Create an estimator for the expected value of the loan portfolio in
one year. Similarly, create an estimator for the standard deviation
of the loan portfolio value in one year.

(c) After generating some scenarios in MATLAB, compute a point es-
timate of mean and standard deviation of the loan portfolio value
in one year. At a chosen confidence level, 1−α%, construct a con-
fidence interval for the mean loan portfolio value in one year.

(d) If the desired accuracy for the mean loan portfolio value is 5% at
a confidence level of 99%, how many scenarios are needed for this
level of accuracy?
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(e) Create a measure for assessing the tail risk of the value of the loan
portfolio in a year. Construct a point estimator for this measure,
and compute an estimate for this tail risk measure.

(f) How well does a normal distribution fit the value of the loan port-
folio in a year?



Chapter 5

Modeling Risk Evolving over Time

Risks are not static, and least so in the world of finance. In the real-world, the
risk factors discussed in Chapter 1 are dynamic, evolving quantities mimicking
the forces of change in finance. For instance, after a one-period return modeled
by a lognormal distribution, what happens in the next period? After a bank
sees a surge in the number of defaults in its loan portfolio in a quarter, what
would it expect of the risk in the subsequent quarters? This dynamic evolution
of risk is an essential feature to capture for risk management.

In the development of methodologies for risk management, we are now
ready to put together our knowledge of models of risk from Chapter 1 to cre-
ate stochastic processes. Stochastic processes are, simply put, time-dependent
extensions of random variables used to model risk. In this chapter, we will
develop these time-dependent models of risk and discuss their properties and
related concepts. This will help in the modeling of specific risks discussed in
the rest of the book, along with developing a framework for their management.

5.1 Stochastic Processes

In Chapter 1, we defined a random variable as a variable representing a risk
that takes on certain values, but every time one makes an evaluation of the
variable, it takes on values randomly. The sample space, Ω, was described as
the collection of possibilities for the risk, which was the domain for the random
variable. A random variable mapped the (possibly non-numeric) elements in
Ω to a set of real values (X : Ω → R). A risk evolving over time can be
depicted by a sequence of random variables, X1, X2, X3, . . ., often describing
the evolution of a risky, probabilistic system over discrete instants of time,
t1 < t2 < t3 < . . .. This set of random variables put together in a sequence to
describe evolution of a risky system constitutes a stochastic process.

In some cases, we would be interested in observing a risk factor evolve
in the continuum of time, or at least there is no logical discrete instants of
time that are obvious. In these cases, we will model the evolution of risk in
continuous-time. Therefore, if we continuously observe a system that contin-
uously changes, the stochastic process will need to be defined for all time
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instants in a bounded interval, such as [0, 1], or in an unbounded interval,
such as [0,∞). Consistently, the nomenclature we use for a stochastic process
described for discrete instants of time is called a discrete-time stochastic pro-
cess, while a process describing the evolution of risk in a continuum of time is
termed a continuous-time stochastic process.

A stochastic process is not an arbitrary combination of random variables,
rather they form a family of random variables, where each random variable in
the family is related to others by a defined relationship. The nature of these
relationships results in the variety of stochastic processes. Let T be the time
under consideration, which could be {t1, t2, . . .}, [0, 1], or [0,∞), and assume
that there is a common underlying probability space (Ω, A, P ) for the family of
random variables. Therefore, a stochastic process X = {X(t, ω), t ∈ T, ω ∈ Ω}
is a function X : T× Ω→ R of two variables.

When we describe a stochastic process as a two-dimensional entity, it be-
comes imperative for the modeler to understand what either of the two di-
mensions imply for the stochastic process. When we instantiate for a specific
time, t, leaving the other dimension free to take any value, i.e., X(t, .), it is
a random variable for each t. If, however, we instantiate on a specific ω ∈ Ω
and let t be free to take any value, i.e., X(., ω) : T → R, it is a realization,
sample path or trajectory of the stochastic process for each ω ∈ Ω.

When working with a stochastic process, conditional probabilities can also
be determined based on events defined on the basis of the stochastic process
taking certain specific values at a prior time or time period. For example,

P (X3 ∈ A3|X2 ∈ A2, X1 ∈ A1) for discrete−time, (5.1)

P (Xt ∈ B2|Xs ∈ B1 for 0 ≤ s < t) for continuous−time. (5.2)

Based on the above conditional probability relations between a family of ran-
dom variables within a stochastic process, some specialized stochastic pro-
cesses are defined. We begin looking at some such specific stochastic processes,
beginning with those defined for the discrete time.

5.2 Discrete-Time Evolution of Risk

Many time-evolving risks naturally unravel themselves at discrete points
of time. For instance, a government’s, firm’s or customer’s creditworthiness
can change from one month to the next, demand for a firm’s products can
change from one quarter to the next, inventories for finished goods or raw
materials can change from day to day, number of fraudulent charges on credit
accounts can increase from one month to the next. Even when the risk doesn’t
seem to, strictly speaking, unravel itself at discrete points of time, a modeler
may choose to model them by a discrete-time risk model due to their ease



Modeling Risk Evolving over Time 129

0 Time

X
(t
, 
)

t2 …t1 t3 t5t4
0 Time

X
(t
, 
)

t2
…t1 t3

(a) (b)

FIGURE 5.1: (a) A typical sample realization for a discrete-time stochastic
process. (b) The binomial tree example of a discrete time stochastic process.

of use. For example, stock price evolution, interest rate changes are routinely
modeled by binomial tree or trinomial tree models, which are discrete-time
models.

In Figure 5.1, we display a typical sample path realization for a discrete-
time stochastic process, as well as display the state space for a binomial tree.
At each time point, {ti}, the process takes the value of a node of the tree
indicated for that time point. Therefore, at t1 there are two possible outcomes
for the stochastic process, while by t3 the stochastic process can have eight
(23) possible outcomes.

We next discuss and develop some technical concepts for a special kind of
stochastic process, of which binomial tree is a special case, called a Markov
chain.

5.2.1 Discrete-Time Markov Chains

Markov chains are named after a Russian mathematician, Andreyevich
Markov, for his contributions to research in stochastic processes. Markov
chains are stochastic processes that satisfy the Markov property. Therefore,
in order to define Markov chains, we need to first explain what is meant by a
stochastic process being Markovian. Moreover, Markov chains can be discrete-
time, i.e., evolving over discrete points of time, or continuous-time, implying
they could evolve in the continuum of time. However, in either case their out-
comes are a discrete set of outcomes, no matter whether they are finite or
infinite in number. The reader may recall that in Chapter 1, we had made a
distinction between finite-valued discrete random variable (e.g., binomial dis-
tribution) versus infinite-valued random variable (e.g., Poisson distribution).
In the discussion of this section, we will focus on discrete-time Markov chains.

Discrete-time Markov chains are useful for modeling risks that seem to
‘forget’ what happened in the distant past (or even recent past), and the
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FIGURE 5.2: A pictorial depiction of states of a Markov chain, transitions
following Markovian property, and transition probabilities.

values it takes at the immediate future time depends only on the state of
the process at the present time. This is a key temporal property of stochastic
processes, known as the Markov property. Therefore, only the present value
ofXn need be known to determine the future value (and distribution) ofXn+1;
the past values of X1, X2, · · · , Xn−1 don’t directly determine Xn+1. They only
indirectly determine the value of Xn+1 through Xn. More rigorously, this can
be summarized in terms of conditional probabilities as follows,

P (Xn+1 = xj |Xn = xi) = P (Xn+1 = xj |X1 = xi1 , X2 = xi2 , · · · , Xn = xi),(5.3)

for all possible xi, xj , xi1 , xi2 , · · · , xin−1 in a given state space for X and all
n = 1, 2, 3, · · · . Therefore, what values the stochastic process took for t =
1, 2, . . . , n, has no bearing on the conditional probability distribution of Xn+1

once Xn is known. This is depicted pictorially in Figure 5.2. When a stochastic
process satisfies this property, we call the process Markovian.

In other words, one can say that all the information needed to describe
what happens at the next time point, n+1, is already accumulated in the value
of Xn, therefore nothing more of the past is needed to be known. The exam-
ples of discrete-time stochastic processes listed earlier can all be reasonably
modeled by Markov chains, albeit under certain assumptions. For instance,
a government or a firm’s changing creditworthiness, change in demand for a
firm’s products, inventories for finished goods or raw materials, or number of
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fraudulent charges on credit card accounts. Even if the assumptions made to
utilize this dynamic model of risk could appear somewhat simplistic, Markov
chains have many desirable properties that aid the study of these risks. We
discuss some of the properties and develop some constructs that help in the
study of Markov chains.

For a discrete-time Markov chain with a finite number of states, Ω =
{x1, x2, . . . , xN}, we can define anN×N transition matrix, P (n) = [Pij(n)],
which summarizes the probability of transition from state i to state j. The
components of the matrix are given by,

Pij(n) = P (Xn+1 = xj |Xn = xi), (5.4)

for i, j = 1, 2, . . . , N and n = 1, 2, 3, . . .. Properties of probabilities in general
lead to the conditional probabilities of the transition matrix to satisfy,

1. 0 ≤ Pij(n) ≤ 1

2.
∑N

j=1 Pij(n) = 1

for all i, j and n. The conditional probabilities, Pij(n), are called the transition
probabilities of the Markov chain at time n, shown in Figure 5.2. Besides the
conditional probability of the transitions, we would also like to identify the
unconditional probability of the stochastic process being in any of its states at
a given time, or the probability distribution ofXn for all n. This is summarized
in an (unconditional) probability vector for Xn, as a row vector p(n) =
(p1(n), p2(n), . . . , pN (n)). Each element, pi(n) of p(n) defines the probability
of random variable Xn reaching a state i at time n, i.e., pi(n) = P (Xn = xi)
for i = 1, 2, . . . , N .

The unconditional probabilities are dependent on the conditional transi-
tion probabilities, which is a dependency we can utilize to compute the un-
conditional probability for all time, n. If we know the transition probability,
P (n), for all n, then we would obtain the unconditional probability by using
the relation,

p(n+ 1) = p(n)P (n), (5.5)

where p(n + 1) is the probability vector for Xn+1. Specifically, if the initial
state is known for the Markov chain, i.e., p(0) is known, we determine p(1)
by applying Eqn. (5.5) to obtain p(1) = p(0)P (0). In Eqn. (5.5), by taking
a step back in time and applying the equation to n − 1, we have p(n) =
p(n− 1)P (n− 1). On substituting this back in Eqn. (5.5), we obtain,

p(n+ 1) = p(n− 1)P (n− 1)P (n). (5.6)

On continuing this backward recursion, if we know the probability vector for
t = 0 (the present time), p(0), then we can obtain the unconditional proba-
bility vector for all the subsequent times using the transition probabilities by
applying the following equation.

p(n+ 1) = p(0)P (0)P (1)P (2) . . . P (n− 1)P (n). (5.7)
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In its most general form, Eqn. (5.7) is quite demanding in terms of number
of transition matrices that must be constructed to obtain the probability dis-
tribution for Xn at each time, n. One simplification often utilized is that the
transition matrix does not depend on n, and is the same for all n. The modeler
must assess if this assumption makes sense for their context. Even if it does
not totally match the risk characteristics, it is a valuable simplification for the
tractability it offers. The Eqn. (5.7) then simplifies to p(n + 1) = p(0)Pn+1,
and we call such a Markov chain a homogeneous Markov chain. ‘Homo-
geneous’ refers to transition matrices being the same for all transitions.

For a homogeneous Markov chain, the probability vector for the Markov
chain at time n, Xn, is p(0)P

n. If a sufficiently large amount of time elapses, a
key question is what happens to the distribution of the Markov chain. If we can
find a probability vector, p̄ > 0, such that limn→∞ p(n) = p̄, it also satisfies
p̄ = p̄P , then such a probability vector is a stationary probability vector
for the homogeneous Markov chain. Markov chains with unique stationary
probability vector p often possess an important property called ergodicity.
This property relates long-term averages of the Markov chain’s realization
to the spatial averaging with respect to the stationary distribution. We next
define ergodicity formally.

Ergodic: For any bounded function f : X → R, the time average of the
values of f(Xn) taken as a sequence of random variables X1, X2, . . . , Xn, . . . ,
generated by the Markov chain is given by,

1

T

T∑
n=1

f(Xn). (5.8)

We say that a Markov chain is ergodic if for every initial X0, the limits of
the time average in Eqn. (5.8) exist and are equal to the average of f over X
with respect to the stationary probability p̄, that is, if

lim
T→∞

1

T

T∑
n=1

f(Xn) =

N∑
i=1

f(xi)p̄i, (5.9)

where the convergence is in distribution, i.e., the distributions of the right-
hand and the left-hand side of Eqn. (5.9) become indistinguishable as T gets
larger.

An alternate definition of ergodicity is given in terms of a Markov chain
being irreducible, aperiodic and positive recurrent, but we leave readers to refer
to a book on Markov chains to expand their knowledge on this topic [46, 47,
72]. In essence these properties impose on the Markov chain that it does not
get stuck in some subset of the state space, doesn’t start visiting states in set
frequencies, and makes sure it visits all states. The relevance and significance
of ergodicity for us is that when a Markov chain, for that matter any stochastic
process, is ergodic, we can substitute spatial averages with a long-run time
average for the stochastic process. This is valuable, since in the case of many
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time-evolving risks of interest, we do not have the luxury of observing more
than one realization of the stochastic process. But we must routinely compute
a variety of spatial risk measures to make risk management decisions. The
property of ergodicity comes to the rescue.

We look at some useful examples of discrete-time Markov chains next.

5.2.2 Simple Random Walk

In 1973, a book rose to great fame and has since been published umpteen
number of times. The book made the term ‘Random Walk’ more famous than
it would ever have otherwise been. This was Burton G. Malkiel’s A Random
Walk Down Wall Street [58]. In his book, Malkiel defines a random walk as, ‘a
random walk is one in which future steps or directions cannot be predicted on
the basis of past history.’ The definition captures the essence of the Markovian
property. The author goes on to say, ‘when the term is applied to the stock
market, it means that short-run changes in stock prices are unpredictable.’ The
ensuing discussion presents the difference in views on this statement among
academics and practitioners. Our goal here, however, is to understand how
the random walk model of risk is defined.

A simple random walk is a specific example of a discrete-time Markov
chain, therefore it has a discrete set of outcomes and possesses the Markovian
property. The state space of this process is all integers, which is the simple
version of random walk. More general random walks can be constructed on
similar principles. The simple random walk evolves with S0 = 0 and Sn =∑n

i=0 Xi, where Xi’s are independent, identically distributed (i.i.d.) random
variables with the following distribution,

Xi = 1 w.p. p1,

= 0 w.p. p2,

= −1 w.p. (1− p1 − p2), (5.10)

where 0 ≤ p1, p2 ≤ 1. If p1 = 1/2 and p2 = 0, the process is called a stan-
dard symmetric random walk. It is easy to check that Sn is a Markov chain.
This is obtained from the fact that Sn is constructed using i.i.d. random vari-
ables, Xi’s, therefore P (Sn = j|Sn−1 = i) = P (Sn = j|Sn−1 = i, Sn−2 =
in−2, . . . S0 = 0). Once the transition probability is constructed, a stationary
distribution can also be determined. This is provided as an exercise to the
reader. A simple random walk is also ergodic.

In general, the independent identically distributed random variables used
to construct a random walk don’t have to be of the special kind with
three possible outcomes, 1, 0, or −1. They can take a set of integer val-
ues, P{Xi = j} = pj for j = 0,±1, . . . ,±K. The resulting process, Sn, is
a general random walk. In some modeling contexts a more appropriate pro-
cess may be a bounded version of a random walk. Let’s consider a random
walk that is bounded between (−a, b), where a, b > 0. In a random walk with
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FIGURE 5.3: (a) Three realizations of a simple random walk. (b) Three
realizations of simple symmetric random walk. (c) Three realizations of general
random walk. (d) Three realizations of simple random walk with upper barrier
set at 10.
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barrier or bounds, once the process reaches either of its barriers, it is either
‘reflected’ back or gets ‘absorbed’ in the barrier. This is summarized in the
special transition probabilities at the bound or barrier as follows,

P{Sn = −a|Sn−1 = −a} = pa,

P{Sn = −a+ 1|Sn−1 = −a} = 1− pa; (5.11)

P{Sn = b|Sn−1 = b} = pb,

P{Sn = b− 1|Sn−1 = b} = 1− pb. (5.12)

Eqn. (5.11) indicates what happens when the random walk reaches the lower
barrier, −a. The process either stays at −a with probability pa, or returns
to the nearest higher outcome, −a + 1 with probability 1 − pa. Eqn. (5.12)
depicts a similar behavior at the upper barrier, b. Two special cases of bounded
random walk are when a barrier perfectly absorbs (pa = 1 or pb = 1) or
perfectly reflects (pa = 0 or pb = 0).

In Figure 5.3, we display sample path realizations for several versions of
random walks discussed in this section. These simulations are achieved by uti-
lizing the random variate generation of two-outcome and n-outcome random
variables discussed in Section 4.3.1 of Chapter 4. Comparing Figure 5.3(a)
with 5.3(b), one can see how the simple random walk differs from simple sym-
metric random walk, where symmetric random walk sample paths are more
jittery since the process must either go up or down at each time point. The
process in Figure 5.3(c), which is a general random walk, has outcomes at
each time point ranging from −4 to 4, therefore the levels the process reaches
are much larger. We see the obvious truncations (bounds) to the process in
Figure 5.3(d), when compared to Figure 5.3(a).

5.2.3 Geometric Random Walk

The random walk stochastic processes discussed in the previous section are
all capable of becoming negative in their realizations, as is evident from the
plots in Figure 5.3. For some risks it is necessary that the model does not let
the risk factor become negative, since in reality the risk factor is inherently
non-negative. For modeling the evolution of such a risk factor a variant of
the random walk model is considered; this is the geometric (or lognormal)
random walk.

In this process the changes are not added (or subtracted), but instead are
multiplied. For two parameters ru, rd, where ru > 1 and 0 < rd < 1, the
stochastic process evolves as follows,

Sn = Sn−1 ∗ ru withprobability p

= Sn−1 ∗ rd withprobability (1− p), (5.13)

where the process starts at S0 = 1 and 0 < p < 1. Since the parameters, rd
and ru are positive, Sn is always positive. Geometric random walk is a Markov
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chain, and a stationary distribution for the process can be determined. Many
of the discrete-time models, such as binomial tree (Figure 5.1(b)) or trino-
mial tree models, used for market risk factors essentially utilize the geometric
random walk.

5.3 Continuous-Time Evolution of Risk

Many risk factors evolve in a continuum of time, therefore to address cer-
tain risk management problems capturing this nature of risk using continuous-
time models is a necessity. In other cases, a modeler chooses to model a risk
using a continuous-time model for their flexibility in instantiating to any time
granularity. For instance, a continuous-time model can be observed at any
desired frequency, with no additional effort. In this section, we will discuss a
range of continuous-time stochastic processes, beginning with the continuous-
time counterpart of Markov chains. We will also develop the widely used
continuous-time stochastic process of Brownian motion, extensively used in
finance, and study some of its properties and extensions.

5.3.1 Continuous-Time Markov Chains

A continuous-time Markov chain is a Markov chain that evolves in the
continuum of time. This modification from discrete-time Markov chain makes
the technical description of the stochastic process a bit more involved. This
higher level of technical content is well worth it, since these models of risk find
widespread use. The Poisson process and the birth-death process are perhaps
the most popular examples of continuous-time Markov chains, which we will
study in this section. Most constructs from the discrete-time case carry over to
the continuous-time Markov chains, albeit with some necessary modifications.

Let the continuous-time Markov chains be, X(t), with its state space con-
tinuing to be a finite or infinite discrete set of outcomes, Ω = {x1, x2, . . . , xN}
or Ω = {x1, x2, . . . , xn, . . .}, respectively. The Markov chain continues to have
an N -dimensional (or infinite-dimensional) probability vector p(t) for each
t ≥ 0, whose elements pn(t) define the probability, P (X(t) = xn).

The Markovian property applied to continuous-time Markov chain takes
the form

P (X(t) = xj | X(s1) = xi1 , X(s2) = xi2 , . . . , X(t0) = xi)

= P (X(t) = xj |X(t0) = xi), (5.14)

for all 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn < t0 ≤ t1 and all xi, xj , xi1 , xi2 , . . . , xin in Ω,
where n = 1, 2, 3, . . .. Therefore, now the transition matrix doesn’t convey the
move from one discrete time point to the immediate next one of the process.
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Instead any two arbitrarily picked time points must be summarized in the
transition matrix, and the Markovian property relates this pair of time points
to any prior time point in the process’s history. Therefore, the essence of the
Markovian property is accurately translated. The transition matrix can now
be defined for each pair of time points, t0, t1 (0 ≤ t0 ≤ t1), component-wise
by the following:

P i,j(t0; t1) = P (X(t1) = xj |X(t0) = xi), (5.15)

for all i, j = 1, 2, 3, . . . , N . The transition probabilities are summarized in the
transition matrix, P (t0; t1), with its ij−th element given in Eqn. (5.15).

Clearly P (t0; t0) = I (I is the identity matrix), i.e., instantaneously the
Markov chain can’t translate to a different location. Any transition requires
a finite non-zero time to transpire. As in the discrete case, the probabil-
ity vectors p(t0) and p(t1) are related by p(t1) = p(t0)P (t0; t1). For any
time points t0, t1, t2, such that t0 ≤ t1 ≤ t2, we have p(t2) = p(t0)P (t0; t2),
p(t1) = p(t0)P (t0; t1), and p(t2) = p(t1)P (t1; t2). Combining the latter two re-
lationships, we obtain p(t2) = p(t0)P (t0; t1)P (t1; t2). Therefore, there are two
ways by which transition from t0 to t2 can be described for any t0 ≤ t1 ≤ t2.
Moreover, since this is true for any probability vector p(t0), we can conclude,

P (t0; t2) = P (t0; t1)P (t1; t2), (5.16)

for all t0, t1, t2, a non-decreasing sequence of times. This gives a useful guide-
line for how transition matrices for a longer time-span can be constructed
from those of the shorter subset of durations we already know.

As in the discrete case, we will benefit from bringing in some simplicity to
the definition of the transitions rule for the Markov chain, otherwise we must
define the transition matrix for every choice and combination of times t0, t1.
When the transition matrix P (t0; t1) depends only on the time difference,
t1 − t0, that is P (t0; t1) = P (0; t1 − t0), for all 0 ≤ t0 ≤ t1, we say that the
continuous-time Markov chain is homogeneous. We write P (t) for P (0; t),
since it is no longer important what the start time is, the only thing that
matters is the duration of time for which the transition is being described.
The relation in Eqn. (5.16) reduces to P (s + t) = P (s)P (t) = P (t)P (s), for
all s, t ≥ 0.

Besides defining a transition matrix, homogeneity can also help summarize
the transition rule into a rate of transition. We define an N × N intensity
matrix A = (ai,j) (or transition rates) for a homogeneous continuous-time
Markov chain with components defined as follows,

ai,j = lim
t→0

Pi,j(t)

t
i ̸= j, (5.17)

vi = lim
t→0

1− Pi,i(t)

t
= −

∑
j ̸=i

ai,j , (5.18)

where vi is the transition rate at which the chain exits state i. These transition
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rates, together with the initial probability vector p(0), completely characterize
a homogeneous continuous-time Markov chain. The waiting time for a ho-
mogeneous continuous-time Markov chain, that is the time between transition
from a state xi to any other state, is exponentially distributed with intensity
parameter λi =

∑
j ̸=i ai,j .

We say a continuous-time Markov chain is ergodic if for each bounded
function f ,

lim
T→∞

1

T

∫ T

0

f(X(t))dt =
N∑
i=1

f(xi)p̄i, (5.19)

where p̄ is the stationary probability vector, such that p̄P (t) = p̄ for all t, and
p̄ ≃ p(t) for all large enough t(≥ 0). The time average now has an integral
form, and the convergence is still taken in the distribution. The stationary
probabilities may be computed by solving the system of equations, p̄A = 0,
where A is the intensity matrix for the Markov chain and ai,i = −vi, as defined
in Eqn. (5.18).

We next consider several examples of stochastic processes that are
continuous-time Markov chains. These examples are key ingredients for mod-
eling risks whose impact appears episodically, however the random lengths of
intervals between episodes is a key characteristic of the risk. We begin with
the widely-used Poisson process, which as the reader would have guessed, is
an extension of the Poisson distribution discussed in Section 1.2.2.5.

5.3.2 Poisson Process

The Poisson process is an example of a continuous-time Markov chain, and
is often referred to as a counting process. It serves as a process for counting the
number of times an event occurs up to time t. This suggests that this process
has a discrete set of outcomes, and more precisely, the set of outcomes is the
set of non-negative integers. The Poisson process is said to have an intensity
λ > 0, which is the key term in the intensity matrix of this continuous-time
Markov chain process. Additionally, we will define this stochastic process,
X = {X(t), t ≥ 0}, to have the following properties.

Property 1. X(0) = 0; this suggests that the counting by the Poisson process
begins at zero.

Property 2. X(t) − X(s), which is generally called the increments of the
stochastic process, is a Poisson distributed random variable with param-
eter λ(t − s), for all 0 ≤ s < t. This is the direct connection between
Poisson distribution and Poisson process.

Property 3. The increments X(t2)−X(t1) and X(t4)−X(t3) are indepen-
dent for all 0 ≤ t1 < t2 ≤ t3 < t4. This property is crucial for the process
to have the Markovian property.
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FIGURE 5.4: Three sample path realizations of a Poisson process with varied
levels of λ.

The above three properties fully characterize the Poisson process, and can be
used to simulate realizations of the Poisson process.

Simulation of a sample path realization of a Poisson process holds a chal-
lenge in that we don’t know how much time to advance before the next event
occurs, which the process counts and increases its level by one on the event’s
occurrence. This is especially an issue when the intensity parameter is time-
dependent, λt, for a non-homogeneous Poisson process. If, however, the inten-
sity parameter is a constant, we are able to utilize the relationship between
Poisson process and exponential distribution with the same parameter, λ. This
relationship states that the inter-arrival time between events in a Poisson pro-
cess have the exponential distribution, with parameter λ. Taking advantage of
this relationship, we can simulate paths of the Poisson process by the following
steps.

Step 1. Set X(0) = 0. Set t∗ = 0.

Step 2. Generate an exponential random variate (Y ) with parameter λ. Set
X(t∗ + Y ) = X(t∗) + 1, and X(s) = X(t∗) for t∗ < s < t∗ + Y.

Step 3. Set t∗ = t∗ + Y.

Figure 5.4 displays some trajectories of a Poisson process with different choices
of λ. For λ = 1 per month, the counting process mounts up rapidly, while for
λ = 0.1 per month, only a few event realizations are observed, so the counting
process rises gradually.

Poisson process is an example of a non-stationary stochastic process with
independent increments. It is possible, however, to determine the spatial mean,
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variance and covariances of the Poisson process as follows,

µ(t) = E[X(t)] = λt; ∀ t > 0 (5.20)

σ2(t) = E[(X(t)− µ(t))2] = λt; ∀ t > 0 (5.21)

C(s, t) = E[(X(s)− µ(s))(X(t)− µ(t))]

= λmin{s, t} ∀ s, t > 0. (5.22)

We next study an extension of the Poisson process, which simultaneously
counts events of two kinds. This is the birth-death process. The Poisson pro-
cess is actually a special case of a birth-death process, and in this connection
can be called either a pure birth process or a pure death process.

5.3.3 Birth-Death Process

The trajectories of a simple random walk process should be a reminder
of another process, the birth-death process. The primary difference between
a random walk and the birth-death process is, while a random walk changes
its values at fixed points of time, a birth-death process changes values at
stochastic points of time. The process is thought to represent the size of a
population, and when the process increases by 1, a ‘birth’ event is said to
have happened, and when it decreases by 1, a ‘death’ event has occurred.
This suggests that the process takes integral values, but since it indicates
the size of a population, it is restrained from becoming negative. When the
process is at state i (the population size is i), the time until the next birth
is exponentially distributed with rate λi and is independent of the time until
the next death, which is also exponentially distributed with rate µi.

In the case of a birth-death process the intensity matrix can be constructed
based on the above description as,

ai,i+1 = λi, ∀i ≥ 0, (5.23)

ai,i−1 = µi, ∀i ≥ 1, (5.24)

ai,i = −(λi + µi), ∀i ≥ 1. (5.25)

If all the terms in the intensity matrix are not state-dependent, i.e., λi =
λ and µi = µ for all i, the birth-death process would be a homogeneous
continuous-time Markov chain. A classic example of a birth-death process
is the number of customers in an M/M/1, or more generally, in an M/M/s
queuing system. These are systems studied in queueing theory, which has
widespread application in real-world applications.

Simulation of a birth-death process is similar to that of a Poisson process.
The major difference is that in a birth-death process, for each time that an
event must be registered, and its impact on the process determined, two inde-
pendent exponentially distributed random variates must be generated for the
inter-arrival times between events. One of the two exponentially distributed
random variates is used to indicate inter-arrival of a ‘birth’ event, and the
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other the inter-arrival of a ‘death’ event. The smaller of the two exponentially
distributed random variates dictates whether the birth-death process will next
experience an increment or a decrement.

5.3.4 Markov Process

In our progression of studying stochastic processes of greater complex-
ity, we now arrive at studying stochastic processes that are defined for a
continuous-time and continuous-space evolution of risk. A Gaussian process
is an example of a continuous-time, continuous-space stochastic process.
For a process that evolves both in time and spatial domain in continuum,
as a continuous-time, continuous-space stochastic process does, the technical
definitions for the rules of evolution of the stochastic process must be ap-
propriately advanced. We develop some of these technical definitions before
exploring specific processes at greater depth.

The counterpart of a Markov chain when the spatial dimension also be-
comes continuous is a Markov process. As described before, a continuous-time,
continuous-space stochastic process qualifies to be called a Markov Process
when it satisfies the Markov property, similar to Eqn. (5.14). The Marko-
vian property equation must be customized for the continuous-space case as
follows,

P (X(t) ∈ Bj | X(s1) = xi1 , X(s2) = xi2 , . . . , X(t0) = xi)

= P (X(t) ∈ Bj |X(t0) = xi), (5.26)

for all 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn < t0 ≤ t1, all values realized by the process in
the past xi, xi1 , xi2 , . . . , xin in Ω, and any set of values it may realize at time
t, Bj ⊂ Ω.

For Markov processes, we can’t define transition matrices or intensity ma-
trices, as done for discrete-time or continuous-time Markov chains, since the
spatial dimension is a continuum of values. We must instead define transition
densities. We define the transition probabilities of a Markov process, as you
would expect, as,

P (s, x; t, B) = P (X(t) ∈ B|X(s) = x), 0 ≤ s < t. (5.27)

The transition probability, P (s, x; t, B), is associated with a transition prob-
ability density, given by

P (s, x; t, B) =

∫
B

p(s, x; t, y)dy. (5.28)

This relation is similar to the relationship between a cumulative distribution
function and probability density function of a continuous random variable.
The only difference is that Eqn. (5.28) is for conditional distribution based on
two instants of observation of a continuous-time stochastic process.
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A Markov process with transition probability p(s, x; t, y) is called a dif-
fusion process if the following three limits exist for all ϵ > 0, s ≥ 0 and
x ∈ R.

Property 1. limt↓s
1

t−s

∫
|y−x|<ϵ

p(s, x; t, y)dy = 0,

Property 2. limt↓s
1

t−s

∫
|y−x|<ϵ

(y − x)p(s, x; t, y)dy = a(s, x),

Property 3. limt↓s
1

t−s

∫
|y−x|<ϵ

(y − x)2p(s, x; t, y)dy = b2(s, x).

Property 1 prevents a diffusion process from experiencing instantaneous
jumps. The quantity a(s, x) is called the drift of the diffusion process and
b(s, x) its diffusion coefficient at time s and position x. Property 2 implies
that

a(s, x) = lim
t↓s

1

t− s
E[X(t)−X(s)|X(s) = x]. (5.29)

This makes a(s, x) the instantaneous rate of change in the mean of the process,
given that X(s) = s. Similarly, it follows from property 3 that the squared
diffusion coefficient is given by,

b(s, x)2 = lim
t↓s

1

t− s
E[(X(t)−X(s))2|X(s) = x]. (5.30)

This denotes the instantaneous rate of change of the squared fluctuations
of the process, given that X(s) = x. Therefore, properties 1-3 summarize
the instantaneous evolutionary characteristics of the process at any time and
location. This helps visualize how the realizations of a diffusion process might
look; they are continuous, with no jumps, and have a tendency of drifting from
a location depending on the present time and the location, but this tendency
is appended with a variability summarized in the diffusion coefficient.

5.3.5 Gaussian Process

Stochastic process, X(t), is a Gaussian process if the joint probability dis-
tribution of any finite observations of the process is Gaussian, or normally
distributed. The reader is reminded that a Gaussian or normal random vari-
able is a continuous random variable that takes values in the interval (−∞,∞).
Therefore, a Gaussian process can be indicated as, X(t) ∼ N(µ(t), σ2(t)), for
all t ∈ T, where σ(.) and µ(.) are some given functions of time.

If there is a constant µ and a function c : R → R+ such that the mean,
variance and covariance of a stochastic process satisfy µ(t) = µ, σ2(t) = c(0),
and C(s, t) = c(t − s), for all s, t ∈ T, then we call the process wide-sense
stationary. This means that the process is stationary with respect to its first
and second moments only. Therefore, a wide-sense stationary Gaussian process
has a constant mean and variance, and a correlation structure that depends
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FIGURE 5.5: (a) Three sample path realizations of an Ornstein-Uhlenbeck
process. (b) Three sample path realizations of Ornstein-Uhlenbeck process
with different risk levels.

on the temporal distance between observations made of the stochastic process.

Ornstein-Uhlenbeck Process: A special example of a Gaussian, Markov
process is the Ornstein-Uhlenbeck process, in short, O-U process. It is defined
as, X = {X(t), t ≥ 0} with parameter γ > 0 and initial value X0 = N(0, 1).
It is a Gaussian process with mean and covariances given by,

µ(t) = 0, C(s, t) =
σ2

2γ
e−γ|t−s|, (5.31)

for all s, t ≥ 0. This implies that besides being Gaussian and a Markov process
(not demonstrated here), the O-U process is wide-sense stationary. In fact, an
O-U process is a diffusion process and is strictly stationary. In Figure 5.5, we
display some realization paths for the O-U process. We display several paths
for one process in panel (a) of the figure, and a path with three different risk
levels (σ) in panel (b). The sample paths with high volatility diverge rapidly,
while low risk fluctuates about the initial value of zero. We will revisit the
O-U process in later chapters, both as a model and in context of applications,
since the O-U process finds widespread application in finance. It is utilized for
modeling interest rates, currency exchange rates, commodity prices, and even
certain trading strategies.

One important diffusion process is the standard Brownian motion, also
known as the Wiener process, named after botanist Robert Brown and math-
ematician Norbert Wiener, respectively. The Brownian motion is perhaps the
most popular stochastic process used in continuous-time finance and risk man-
agement. We will next discuss the Brownian motion in detail.
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5.3.6 Brownian Motion

Standard Brownian motion or Wiener process is another example of a
continuous-time Markov process that is also a diffusion. Some like to make
a distinction between the Brownian motion, to denote the physical process
denoted by the erratic motion of a grain of pollen on a water surface due to
its being continually bombarded by water molecules. This was the botanist
Robert Brown’s observation. Wiener process denotes the mathematical rep-
resentation of this process. However, we will interchangeably use either name
for the process. Wiener process is a Gaussian process, hence the process has
an infinite state space, Ω = (−∞,∞).

We will define the standard Wiener process or Brownian motion,
W = {W (t), t ≥ 0} to be a Gaussian process with independent increments
such that

W (0) = 0, with probability 1, (5.32)

E[W (t)] = µ(t) = 0, (5.33)

V ar(W (t)−W (s)) = t− s, (5.34)

for all 0 ≤ s ≤ t. Therefore, the Wiener process is a Gaussian process that
is wide-sense stationary. By this definition, increments of the Wiener process,
W (t)−W (s), are distributed by the normal distribution, N(0, t−s) for all 0 ≤
s < t. Given W (t) is a Gaussian process, the joint distribution of (W (s),W (t))
is Gaussian, for all 0 ≤ s < t. Therefore, W (t)−W (s) is also Gaussian, with
E[W (t) −W (s)] = 0 from Eqn. (5.33) and V ar(W (t) −W (s)) = t − s from
Eqn. (5.34). By definition, the increments W (t2)−W (t1) and W (t4)−W (t3)
are independent for all 0 ≤ t1 < t2 ≤ t3 < t4.

In Figure 5.6, we show a few realizations of sample path of the Wiener
process. The steps for the simulation of the Wiener process are as follows,

Step 1. Set W (0) = 0. Set the duration for which the Wiener process evolves,
[0, T ].

Step 2. Set a time increment, ∆t, for advancing time, and construct a time
discretization {t0, t1, . . . , tN}, such that ti+1−ti = ∆t, for every i, t0 = 0,
and tN = T .

Step 3. Generate a normal random variate Y ∼ N(0,
√
∆t). Set W (ti+1) =

W (ti) + Y .

Step 4. Set i = i+ 1 while i < N . Go to Step 3.

The above definition is sufficient for simulating paths of the Wiener process,
and developing an understanding of the probabilistic properties of the process.
However, in the next section we demonstrate a construction of the Wiener pro-
cess from a simpler process we studied earlier, the simple symmetric random
walk. This construction serves two purposes: first, it provides a better visual-
ization of the Wiener process, and second, it relates a continuous-time process
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FIGURE 5.6: Three sample path realizations for the standard Brownian
motion or the Wiener process.

as a limit of discrete-time processes. The latter objective sets the stage for the
development in Chapter 6.

5.3.6.1 Approximating Brownian Motion by a Random Walk

Often visualization of Brownian motion path realizations are aided by
constructing Brownian motion using limiting random walk processes. This is
because we can approximate a standard Wiener process in distribution on any
finite time interval by means of a sequence of scaled random walk processes.
We start with a simple random walk, SN , constructed in Section 5.2.2 using
independent random variables, Xk, taking values +1 or −1 with equal prob-
ability. Utilizing the i.i.d. random variables, we make a minor modification to
the process, SN , to define

SN (t
(N)
k = (X1 +X2 + · · ·+Xk)

√
∆t, (5.35)

where 0 < t
(N)
0 < t

(N)
1 < . . . < t

(N)
N = 1. This scaling modification is done

since we are trying to approximate the Wiener process over the interval, [0, 1],
on N equidistant points taken in this interval of length, ∆t = 1

N , each. The
values between these points are obtained by a linear interpolation as follows,

SN (t) = SN (t
(N)
k ) +

t− t
(N)
k

t
(N)
k+1 − t

(N)
k

(SN (t
(N)
k+1)− SN (t

(N)
k )), (5.36)
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for t
(N)
k ≤ t ≤ t

(N)
k+1 and for k = 1, 2, . . . , N − 1, where SN (0) = 0. SN (t)

constructed by the above method is a step-wise continuous symmetric ran-
dom walk, with independent, equally probable steps of length ±

√
∆t in each

subinterval of time. It can be shown by invoking the central limit theo-
rem that SN (t) converges in distribution to the standard Wiener process as
N →∞. A review of the central limit theorem was provided in Section 1.2.2.3.
Implementing this approximation is provided as an exercise at the end of this
chapter.

Before we proceed to study additional properties of the Wiener process, we
take a short digression to define the different convergence rules for sequence of
random variables. In this section, and earlier for the definition of ergodicity,
we have utilized the definition of convergence in distribution, without formally
defining it. In the next chapter, these definitions will be required again.

5.3.6.2 Convergence of Random Variables

Assume there is a sequence of random variables, {Xn}. These can also be
a sequence of stochastic processes observed at a specific time point, t, i.e.,
{Xn(t)}. When we wish to conclude that the sequence of random variables
converges to a random variable, X, or a stochastic process observed at the
same time, t, i.e.,X(t), the convergence can be interpreted and applied in a few
different ways. For instance, convergence can be in distribution, in probability,
almost sure convergence, or convergence in mean or moment. We describe the
meaning of each of these manners of convergence.

1. Convergence in Distribution: {Xn} converges in distribution to X, if
their cumulative distribution functions Fn(x) converge to the cumula-
tive distribution function F (x) of the random variable, X, at all points
of continuity of F .

2. Convergence in Probability: {Xn} converges in probability to X, if for
any ϵ > 0, P (|Xn −X| > ϵ)→ 0 as n→∞.

3. Almost Sure Convergence: {Xn} converges almost surely (a.s.) to X,
if for all ω outside a set of zero probability Xn(ω) → X(ω) as n → ∞.
This implies that the actual realizations of Xn fall arbitrarily close to
those of X, for almost all ω.

4. Convergence in Mean: {Xn} converges in mean to X, if E[|Xn|] < ∞
and E[|Xn−X|]→ 0 and n→∞. In general, convergence in rth (r ≥ 1)
moment may be defined, if E[|Xn|r] < ∞ and E[|Xn − X|r] → 0 and
n→∞.

The strongest criterion for convergence of the above is ‘almost-sure con-
vergence’. Therefore, if almost sure convergence is known for a sequence of
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random variables, this directly implies that the sequence converges in proba-
bility as well. Similarly, if we have convergence in probability for a sequence of
random variables, this implies that the sequence also displays convergence in
distribution. Finally, if we have convergence in rth moment, for all values of r,
it can be shown to be equivalent to convergence in probability. This compar-
ison also points out that convergence in distribution is the weakest criterion
for convergence of random variables.

5.3.6.3 Properties of the Wiener Process

Standard Brownian motion or Wiener process was defined as a Gaussian
process with independent increments, W (0) = 0, and W (t) − W (s) is dis-
tributed by normal distribution, N(0, t − s) for 0 ≤ s < t. We now discuss
some additional properties of the Wiener process.

1. V ar(W (t)) = t;

By the definition above, V ar(W (t)−W (0)) = V ar(W (t)) = t−0. There-
fore, variance of the Wiener process grows without bound as time passes,
while the mean always stays at zero. So, typical sample paths must take
larger and larger positive and negative values as time increases. This is
evident in the trajectories of Figure 5.6 as they diverge away with time.

2. Using the Law of Large Numbers we get limt→∞
W (t)

t = 0 in the mean
square sense or as convergence in 2nd moment. Therefore, in an asymp-
totic sense (in the sense of a limit) this gives an estimate for the growth
rate of the Wiener process.

3. Sample paths of the Wiener process are continuous, but not differ-
entiable. You can test this numerically. Theoretically it is because
the increments of the Wiener process are independent and behave like√
∆t, and not ∆t. Therefore, the limit that defines the derivative,

lims→0
W (t+s)−W (t)

s , is not finite.

4. C(t, s) = Cov(W (t),W (s)) = min(t, s). This can be shown by using the
independence of increments property of Brownian motion.

5. Brownian motion possesses Markov property. This can be shown using the
moment generating function.

6. Brownian motion is a martingale.

We need to elaborate on the last property, and in particular, define a
martingale and its significance. This property tells us whether at any point of
time it can be stated that the process is expected to go up or down relative to
its current value, given its past history. In our discussion of Malkiel’s book [58]
Random Walk down Wall Street, we pondered if the stock market can in fact
be predicted, or if nothing of great conviction can be said about its expected
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bias of movement, up or down, from where it is right now. In order to define
a martingale formally, we will need to develop the technical construct of a
‘filtration’.

We define Ft = σ(W (u), u ≤ t) as the smallest σ-field (which is a synonym
for a σ-algebra) that contains all sets of the form {a ≤ W (u) ≤ b} for all
0 ≤ u ≤ t, a, b ∈ R. A σ-field is a collection of events for a random variable
which is closed, i.e., also contains, with respect to unions and intersections of
events for that random variable (this was formally defined in Section 1.2.1).
Here our concern is the family of random variables of a stochastic process,
therefore a filtration denotes the information available to an observer of W up
to the time t. A filtration F is a family of increasing σ-fields (or σ-algebras),
Ft, for all time, t for the family of random variables of a stochastic process.
Therefore, F specifies how the information is revealed in time regarding a
stochastic process. As a mathematical construct, the property that a filtration
is increasing corresponds to the fact that once the information is revealed, it
is not forgotten.

To say that a stochastic process, W (t), is a martingale implies that the
stochastic process satisfies the following relation,

E[W (t)−W (s)|Fs] = 0, ∀t > s. (5.37)

or

E[W (t)|Fs] = W (s), ∀t > s. (5.38)

This implies that the stochastic process is non-anticipatory, that is, knowing
the information of its past does not give you an inkling of its expected value
in the future, more than knowing its current value. Not only can we show that
the Wiener process,W (t), is a martingale, we can also show that the stochastic
process, W (t)2−t, is also a martingale. Therefore, E[W (t)2−t|Fs] = W (s)2−
s. As is the exponential function of the standard Brownian motion, S(t) =

euW (t)−u2

2 t, for any real number u. S(t) is related to the moment generating
function of the Wiener process, and is called an exponential martingale.

Similarly to the concept of a martingale is the notion of a supermartingale
and submartingale. Each of these deviations from the notion of a martingale
is that the expectation of future values of a stochastic process is lower or
higher than its current value, given the history of the process. A stochastic
process, Xt, may be a supermartingale if E[Xt|Fs] ≤ Xs, and a submartingale
if E[Xt|Fs] ≥ Xs. Therefore in the case of a supermartingale the stochastic
process is expected to go downhill from its present value, while it is expected
to go uphill in case of a submartingale. If we invoke the Jensen’s inequality
for a random variable, X, and any convex function f(.), given by,

E[f(X)] ≥ f(E[X]), (5.39)

we can conclude that a convex function of a martingale is a submartingale,
and similarly, a concave function of a martingale is a supermartingale.
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Finally, we define the quadratic variation of a stochastic process. This
definition supports the advancement we present in Chapter 6 for being able
to define new processes based on the standard Wiener process. Quadratic
variation of Brownian motion in a duration [0, T ] is defined on a discrete
set of points of time, 0 = tn0 < tn1 < . . . < tnn = T , as follows,

QV (W ) = lim
n→∞

n∑
i=1

|W (tni )−W (tni−1)|2, (5.40)

where the limit is taken over all partitions of [0, T ], such that δn = maxi(t
n
i −

tni−1)→ 0 as n→∞. The quadratic variation of Brownian motion on interval
[0, T ] can be shown to be T . Quadratic variation of other stochastic processes
can be similarly defined and one can study the properties of this variation. In
the case of the Wiener process, its quadratic variation lends desirable proper-
ties to the advancement explored in Chapter 6.

5.3.7 Brownian Motion with Drift and Geometric Brownian
Motion

Two useful new processes can be constructed using the Wiener process.
One of them is the geometric Brownian motion, which we have already referred
to in the context of discussion of a martingale. We define it more formally as a
stochastic process obtained as a function of the Wiener process as, Yt = eW (t).
This modification of the Wiener process is similar in nature as the geometric
random walk was from the simple random walk. The process is always positive,
and is useful for modeling risks when it is the percentage change in the quantity
being modeled that is independent and identically distributed, i.e., Yt/Yt−1,
and not the absolute increments, just as in the geometric random walk. An
example of this consideration is the rate of return of stocks or any other
financial instrument, where the per period rate of return is assumed to be
independent, identically distributed.

To work with this process, one needs to be reminded of the moment
generating function of a normal distribution, noting that W (t) ∼ N(0, t).

E[esW (t)] = ets
2/2. (5.41)

With this knowledge, one can compute the mean of the process at any time,
t, as E[Yt] = et/2, and V ar(Yt) = e2t − et. As stated earlier, a special version

of geometric Brownian motion is a martingale. This is, S(t) = euW (t)−u2

2 t, for
any real number u.

We define a new process, Yt = W (t) + µt, and call it understandably,
Brownian motion with drift. This new process is still a continuous Gaussian
process with independent increments, with Y (0) = 0 with probability 1. Yt,
so defined, is normally distributed with mean µt and variance t. Therefore,
Brownian motion with drift is a process that tends to drift off at a rate µ.
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FIGURE 5.7: (a) Three sample path realizations for the standard Brownian
motion or Wiener process with drift. (b) Three sample path realizations for
geometric Brownian motion.

In Figure 5.7 we display trajectories for the two new processes introduced
in this section. Panel (a) displays trajectories for Wiener process with drift.
The sample paths look quite similar to those of the Wiener process in Fig-
ure 5.6, with the difference that they don’t symmetrically diverge away; in-
stead the sample paths have a tendency to increase in the positive direction.
This is because the drift of the process is set at 10%. In panel (b), we display
trajectories for geometric Brownian motion. These trajectories remain posi-
tive, as is expected. They sometimes increase in an exponentially rapid scale,
while hovering at low levels in other cases. These correspond to whether the
underlying Wiener process wandered off in the positive range or the negative
one. The simulation of both these processes is a trivial modification of the
simulation of the Wiener process. Once a Wiener process trajectory is ob-
tained, we make the desired functional transformation to obtain sample paths
of these new processes.

Both geometric Brownian motion and Brownian motion with drift can be
shown to be solutions of certain Stochastic Differential Equations (SDEs).
This will be developed in detail in Chapter 6.

5.3.8 Additional Concepts for Stochastic Processes

When stochastic processes are used to model the evolution of risks for any
risk management objective, we often consider the stochastic process reaching
some level, or exceeding some value to be an indicator of an important risk
event. For instance, when the equity of a firm drops too low, it can be a sign
of distress for the firm, or when the firm value decreases to a level close to
the firm’s debt level, this can trigger a significant credit rating drop. Sev-
eral derivative instruments are defined so they generate a pay-off, or become
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worthless, when the underlying risk factor hits a barrier. Therefore, depending
on the dynamic models of risk under consideration, such events are important
to analyze, and their evaluation must be done either in analytical terms or by
simulation.

An important concept from this point of view for a stochastic process is
that of a stopping time. Stopping time is a stochastic time, τa, that records
the following event for a stochastic process X(t).

τa = min t|X(s) < a for 0 ≤ s < t;X(t) = a. (5.42)

Therefore, it is the (stochastic) time when the stochastic process reaches the
level B for the first time. Stopping time in its own turn is a random variable,
with a state space, Ωtaua = [0,∞]. One can analytically derive the distribution
of the stopping times based on one’s understanding of the stochastic process
defining the stopping time. Simulation is an available alternative for deter-
mining this distribution, especially when analytical results are not accessible.

Examples of stopping time are exit times or hitting times. Define a
(random) hitting time by, Ta, the first time a Wiener process (or any other
process) hits level a. One may want to develop an understanding of the dis-
tribution of hitting times, depending on the application, i.e., P (Ta ≤ t).
We will begin with P (W (t) ≥ a).

P (W (t) ≥ a) = P (W (t) ≥ a|Ta ≤ t)P (Ta ≤ t)

+ P (W (t) ≥ a|Ta > t)P (Ta > t). (5.43)

note that P (W (t) ≥ a | Ta > t) = 0, (5.44)

and P (W (t) ≥ a | Ta ≤ t) = 1/2, (5.45)

since by symmetry, after hitting a, it is just as likely for the process to be above
a or below a at time t (increments are normally distributed). Therefore,

P (Ta ≤ t) = 2P (W (t) ≥ a). (5.46)

This final probability can be computed, since we know W (t) ∼ N(0, t). There-
fore, in the case of standard Brownian motion the exact distribution of the
hitting times can be obtained. In general, simulation analysis may be necessary
to estimate these distributions.

In some applications, it is the maximum or the minimum of the
Wiener process, or any other diffusion process, that is important, i.e., Yt =
max0≤s≤t W (s). In others, it is the arithmetic or geometric average of

the process that becomes important, i.e., Yt =
1
t

∫ t

0
W (s)ds. Therefore, an un-

derstanding will need to be developed for distribution and properties of these
new processes. Simulation analysis is versatile for being applied to assess the
properties of these new processes.
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5.4 Modeling Correlation

So far we have focused on a single stochastic process, focusing on a sin-
gle risk and its evolution in time. In real-world applications, we encounter
many risk factors simultaneously evolving with possible co-dependence and
correlation. We need to define ways by which this simultaneous evolution of
multiple risk factors can be modeled. In Section 1.2.1.2, we had developed the
definition of correlation and covariance between multiple random variables.
We need to extend this to stochastic processes.

5.4.1 Correlated Brownian Motion

Consider an N -dimensional independent Wiener process, [W i
t ]i=1:N , with

mean [0]N and standard deviation [
√
t]N . If instead of independent Wiener

processes, we need to model a correlated set of Wiener processes, we will need
to make a transformation to introduce the correlation between original N in-
dependent Wiener processes. A similar transformation can also help transform
N -dimensional correlated Wiener processes into independent ones.

We wish to create an N -dimensional correlated Wiener processes,
[Bi

t]i=1:N , with mean [0]N and standard deviation [
√
t]N with covariance for

a pair of Brownian motions to be given by,

E[Bi(t)Bj(t)] = ρijt for i = 1 . . . N ; j = 1 . . . N. (5.47)

The parameter ρij can be identified as the correlation coefficient, since stan-
dard deviation of each Brownian motion Bi(t), Bj(t) is

√
t. This also implies

that ρii = 1 for all i = 1 . . . N .
For transforming the N -dimensional independent Wiener process,

[Wi(t)]i=1:N , to N -dimensional correlated Wiener processes, [Bi(t)]i=1:N ,
we must first construct a Cholesky factorization of the correlation matrix
[ρij ]i=1:N ;j=1:N , given by,

[ρij ] = RRT . (5.48)

Once the Cholesky factors are available, the correlated Brownian motion is
obtained by making the following transformation of the independent Brownian
motion,

[Bi(t)]i=1:N = R ∗ [Wi(t)]i=1:N . (5.49)

It can be shown that each Brownian motion in [Bi(t)]i=1:N thus obtained
is indeed a standard Brownian motion, but collectively they are no longer
independent.

Let’s consider a simple example of N = 2, where we seek two correlation
Brownian motion processes, and wish to construct them from two independent
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Brownian motion processes. Their desired correlation coefficient is ρ, therefore
the correlation matrix is,

[ρij ] =

(
1 ρ
ρ 1

)
. (5.50)

The Cholesky factor of the above correlation matrix is,

R =

(
1 0

ρ
√
1− ρ2

)
. (5.51)

Therefore, the new correlated Brownian motion processes are obtained as
B1(t) = W1(t), B2(t) = ρW1(t) +

√
1− ρ2W2(t).

This derivation can be extended to non-constant or time-dependent cor-
relation (or covariance) relationship, ρij(t), between the i − j pair of corre-
lated Wiener processes [81]. Rather than be exhaustive in recounting how
correlation can be incorporated in all the stochastic processes discussed in
this chapter, we have provided the Brownian motion case as a demonstration
here. The reader should explore for their specific context how correlation can
be introduced, say between random walks, Poisson processes, Markov chains,
etc.

5.4.2 Copulas for Correlation

We now discuss an approach to model correlation between N random vari-
ables, known as copulas, and generating random variates from N -dimensional
distribution. This is possible to do directly for a small set of N -dimensional
distribution function, such as normal distribution or t-distribution. In general,
especially also when the marginal distributions are not all the same, generating
N -dimensional joint distributed random variates is not straightforward.

A copula is a distribution function that allows combining univariate dis-
tributions to create a joint distribution function with a particular, chosen de-
pendence structure. Thus, using a copula to build multivariate distributions
is a flexible and powerful technique. It decomposes the choice of dependence
between random variables from the choice of each random variable’s marginal
distribution, with no restrictions placed on the marginal distributions.

The word ‘copula’ is a Latin noun, meaning ‘something that connects,’
‘a link or a bond.’ Mathematically, a copula is itself a distribution function,
defined on [0, 1]N , with uniform marginal distributions. Each of the marginal
distributions produces a probability of the one-dimensional events. The copula
function then takes these probabilities and maps them to a joint probability,
enforcing a certain relationship on the probabilities. If we know the marginal
distribution of the N random variables, {Xi; i = 1 : N}, copulas help in
constructing the joint distribution of the N random variables with the desired
correlation and dependence characteristics. Therefore, a copula is a function
that describes the joint distribution of the N random variables in terms of the
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marginal distributions of the random variables. A copula is called a normal
copula, a t-copula, etc. depending on the type of distribution used to construct
the joint distribution. In our description, we will initially follow the normal
copula function, followed by providing directions for how other copulas may
be utilized.

We assume that the marginal distributions of the random variables are
given by their cumulative distribution functions, {Fi(xi); i = 1 : N}, which
don’t all have to be the same for all i. The desired joint distribution function
is, F (x1, x2, . . . xN ). We define a copula C as a distribution function on [0, 1]N

with a uniformly distributed marginal distribution. A copula, defined as such,
is utilized to transform the marginal distributions, {Fi(xi); i = 1 : N}, to the
desired joint distribution, F (x1, x2, . . . xN ), as follows,

F (x1, x2, . . . xN ) = C(F1(x1), F2(x2), . . . , FN (xN )). (5.52)

A key question remains, given the marginal and desired joint distribution for
random variables, {Xi; i = 1 : N}, how is the copula constructed. The answer
lies in a re-hash of Eqn. (5.52), by defining the copula distribution as,

C(u1, u2, . . . uN ) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
N (uN )), (5.53)

where Fi’s are the N marginal distributions and F is the correlated joint
distribution function. Even if this re-hash is not immediately more instruc-
tive, it gives us a guideline for steps for generating random variates by the
N -dimensional joint distribution. Therefore, in order to simulate dependent
(correlated) multivariate random variates using a copula, we need to specify
and follow the following steps.

1. Identify the copula family by which to generate N -dimensional random
variates. This includes any correlation or shape parameters for the dis-
tribution.

2. Generate random variates by the N -dimensional distribution. (This as-
sumes one knows how to do this.)

3. Compute the component-wise (one-dimensional) cumulative distribution
function for the N generated random variates, to obtain ui’s. This is the
N → 1 decomposing stage.

4. Invert the marginal distribution, Fi, to obtain the desired multi-
dimensional dependent random covariate with the set marginal distri-
butions, Xi = F−1

i (ui).

In Figure 5.8, we display two marginal distributions in panels (a) and (b).
Panels (c) and (d) of the figure provide the two-dimensional random variates
generated for the pair of marginal distributions in panels (a) and (b), by
utilizing Gaussian and t-copula, respectively. The effect of positive correlation
of ρ = 0.7 is quite visible in both plots (c) and (d). In Figure 5.8(d), the
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(a)   Beta distribution (a=2, b=2)
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(b)   Weibull distribution (scale = 0.15, shape = 0.8)
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(c)   Random Variates by Gaussian Copula, rho=0.7
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(d)   Random Variates by t-Copula, rho=0.7, nu=1

FIGURE 5.8: (a) Marginal CDF for first random variable, chosen to be beta
distribution with parameters, a=2, b=2. (b) Marginal CDF for second random
variable, chosen to be Weibull distribution with parameters, a=0.15, b=0.8.
(c) Scatter plot of 1000 random variates generated by Gaussian copula with
ρ = 0.7. (d) Scatter plot of 100 random variates generated using t-copula with
ρ = 0.7, ν = 1.
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impact of tail characteristics due to t-Copula are distinct from those of the
Gaussian copula of panel (c).

Copulas have become popular for modeling correlation and codependence
between random variables, and are utilized for correlation modeling in credit
risk and risk underlying insurance contracts. It is important to note that
correlation is only one measure for codependence, other measures include tail
dependence and rank correlation. Different types of copula functions may be
used for these other kinds of dependency as desired. A wide range of copula
functions exist, and a practitioner must choose which one to use. Frequently
the choice is dictated by the usual criteria of familiarity, ease of use and
analytical tractability. The most commonly used copulas are the Gaussian
copula for linear correlation, the t-copula for dependence in the tail, and the
Gumbel copula for extreme distributions.

5.5 MATLAB Tools for Modeling Risk Evolving over
Time

MATLAB mathematical software has a vast array of functions and pro-
gramming constructs to support writing code efficiently. Simulation of stochas-
tic processes done in this chapter were performed in MATLAB, using a few
lines of code. We list a few of functions used, and also list functions avail-
able for copula modeling. The reader is advised to look up the extensive help
documentation available with MATLAB to see the details of these and other
related functions. At the bottom of each function description in MATLAB
help documentation, look for ‘See Also’ to explore other related functions.
Resources such as MATLAB Primer [20] are also useful.

Conditioning: if-elseif-else-end, if-else-end

Loop: for-end

Multivariate distribution: mvnrnd, mvtrnd

Copula: copulaparam, copulacdf, copulapdf, copularnd

5.6 Summary

Many types of risks in the risk typology need to be considered and managed
in a dynamic setting. To facilitate this requirement, in this chapter, we devel-
oped some time-dependent models of evolution of risk. These time-dependent
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models utilized the one-period model of risk developed in Chapter 1. Depend-
ing on the goals of a risk management problem and solution techniques the
modeler plans to utilize, the models of risk can be constructed to evolve in
discrete-time or continuous-time. We studied a set of examples from both cat-
egories, along with their properties. The examples considered in this chapter
are well-known dynamic models of risk, and will be extensively utilized in the
rest of the chapters in this book.

5.7 Questions and Exercises

Review Questions

1. What are stochastic processes? How and when can they be useful for
serving risk management objectives?

2. How do discrete-time stochastic processes differ from their continuous-
time counterparts? When and why would a modeler choose to model
using discrete-time versus continuous-time stochastic process models?

3. What is the Markovian property of stochastic processes? What is the
significance of this property?

4. When is a Markov chain considered homogeneous? When will the need
for modeling risk using a non-homogeneous Markov chain arise? What
are the related challenges?

5. What is the relationship between conditional and unconditional prob-
abilities of a Markov chain? How can this relationship be used to de-
rive the unconditional distribution of multiple transitions of the Markov
chain?

6. What is the meaning of a stationary distribution for a stochastic process?
How can it be determined for a discrete-time Markov chain?

7. What is ergodicity? Why is important for the study of dynamically
evolving risk models?

8. What is a simple random walk? How can the process be generalized into
a general random walk?

9. How is a random walk modified into a bounded random walk? Why
is this modification useful? What properties can the boundaries of the
bounded random walk possess?
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10. Why are continuous-time Markov chains summarized by an intensity
matrix? How do the diagonal entries of an intensity matrix differ from
the off-diagonal entries?

11. What is meant when a process is said to have independent increments?

12. What is the Poisson process? When is a Poisson process called non-
homogeneous? Give examples of risks appropriately modeled using ho-
mogenous and non-homogeneous Poisson processes.

13. What is a birth-death process? Give examples of risks appropriately
modeled using a birth-death process.

14. What is a Gaussian process? Give an example of a Gaussian process
which also satisfies the Markovian property.

15. What is a diffusion process? What are the properties of a diffusion?

16. What is meant by wide-sense stationary? Give an example of a wide-
sense stationary process.

17. What is a standard Wiener process? Discuss the most important prop-
erties of the Wiener process.

18. What are the different manners in which convergence of random vari-
ables can be described?

19. What is a martingale? What is the implication of this property of a
stochastic process? Give some examples of a martingale.

20. What is quadratic variation of a stochastic process? What is the
quadratic variation of Brownian motion?

21. What is hitting time of a stochastic process? What modeling purpose
may this concept serve in risk management?

22. What is a copula? How is it used for modeling correlation between risks?

Exercises

1. A frog hunting a fly moves between rock 1 and 2 (in a pond) according
to a Markov chain with transition matrix,

P1 =

(
0.8 0.2
0.2 0.8

)
(5.54)

starting on rock 1. The fly, unaware of the frog, starts on rock 2 and
moves according to a Markov chain with transition matrix,

P2 =

(
0.3 0.7
0.7 0.3

)
. (5.55)

The frog catches the fly and the hunt ends whenever they meet on the
same rock.
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(a) What is the probability that the hunt will end in one transition?
What about in two transitions?

(b) Show that the progress of the hunt, except for knowing the rock
on which it ends, can be described by a three-state Markov chain.
Where the hunt ends represents what is known as an absorbing
state, and the other two that the frog and the fly are on different
rocks.

(c) Obtain the one-step transition matrix of this new chain.

(d) What is the probability that the hunt will continue for 10 transi-
tions?

2. Set up a function in MATLAB to generate sample paths of a simple
random walk. Generalize the code to create sample paths of a more
general random walk, with i.i.d. Xi’s distributed as,

Xi = 2 w.p. p1,

= 1 w.p. p2,

= 0 w.p. p3,

= −1 w.p. p4,

= −2 w.p. (1− p1 − p2 − p3 − p4), (5.56)

with 0 < p1, p2, p3, p4 < 1.

3. Create a MATLAB function to simulate a bounded simple random walk.
Estimate the probability distribution and expected value of time it takes
the random walk to hit the upper boundary, τb, for different choices of
the level of upper boundary, b.

4. Construct the transition matrix and determine the stationary distribu-
tion for a simple random walk, Sn.

5. If Sn is a simple random walk, what kind of process is |Sn|?

6. Demonstrate that a geometric random walk is a Markov chain.

7. Simulate a Poisson process after choosing an intensity parameter, λ.

8. Simulate a birth-death process after choosing appropriate birth rate, λ,
and death rate, µ, parameters. Estimate the mean and standard devia-
tion of the process using your simulation.

9. Develop a simulation of the converging sequence of interpolated symmet-
ric random walks, and demonstrate in distribution the limiting sequence
matches the distribution of the Wiener process.

10. Set up a MATLAB function to simulate the standard Wiener process.
Additionally, implement the transformations that produce sample paths
for Brownian motion with drift, as well as geometric Brownian motion.
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11. Demonstrate for the Wiener process, W (t), that
C(t, s) = Cov(W (t),W (s)) = min(t, s).

12. Demonstrate that the Wiener process, W (t), and function of Wiener
process, W (t)2 − t, are both martingales.



Chapter 6

Building and Solving Models of Risk

Time-dependent evolution of risk is modeled using stochastic processes. In
Chapter 5, we introduced and discussed several models for the temporal evo-
lution of risk. Utilizing these models, it is possible to create structures that al-
low constructing new stochastic processes. These processes can be constructed
with chosen, desired properties. The structure is developed by extending or-
dinary calculus to the stochastic case, by developing principles of stochastic
calculus. We begin with introducing the basic construct of ordinary differen-
tial equations for modeling a risk-free asset, and then introduce stochasticity
to the model. The rest of the chapter is devoted to determining solutions to
the stochastic models, by mostly focusing on simulation based analysis.

6.1 Deterministic Financial Modeling

Assets that increase in value by a risk-free rate can be modeled in the
most simple terms, if the risk-free rate and the frequency of its application
to determine the accrued interest is known. A modeler takes advantage of the
fact that some quantities can be modeled as evolving in discrete-time, while
if it suits the context, shift to modeling them in continuous-time. This is the
motivation for building a continuous-time model for a risk-free asset in this
section, although one can debate whether the asset value evolves truly in a
discrete or a continuous manner.

One classic extension of the model of risk-free asset evolution would be the
price of a share of the stock of a firm. It is well known that stock prices evolve
stochastically. Stocks are traded and quoted in ‘tick’ values, and prices are
known only for times at which a trade occurs. Therefore, does it make sense
to model a stock price evolution by a continuous-time, continuous-state pro-
cess? Continuous models have been successfully used for financial modeling,
therefore we explore the flexibility of modeling asset price evolution in contin-
uous and discrete-time. A continuous-time model also gives the flexibility of
migrating to a discrete-time model of any frequency of observation with ease,
as will be seen in later sections of this chapter.

Assume a bank account that guarantees a certain fixed interest rate, r%,

161
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applied daily to the balance in the account. Say we deposited a certain amount,
B0, in that account today, and left it that way for 100 days. On the nth day
the balance in the account, assuming no interim withdrawals, will be

B(n) = (1 + r)nB0. (6.1)

If, however, the interest is applied every hour at a rate r2%, the amount avail-
able in the account on the nth day, again assuming no interim withdrawals,
will be

B(m) = (1 + r2)
mB0, (6.2)

where m is the conversion of n days into hours, including the hour of the nth

day we check the balance. Figure 6.1 displays the value of a risk-free asset
for a progression of frequency of accrual of interest rate. Continuing this at a
more granular level gives us in the limit,

B(t) = B0e
at, (6.3)

where ‘a’ is the instantaneous interest rate. We call this interest rate the
continuously compounded interest rate. Given that the interest rate is applied
continuously, change in the value of the account for an infinitesimally short
period ‘dt’ is rB(t). Therefore, value of the account, B(t), is a solution of the
deterministic ordinary differential equation,

dB

dt
= aB(t), (6.4)

along with the initial condition, B(0) = B0.
Bank deposits that earn guaranteed interest might be one vehicle of in-

vestment, while many other short-term bonds, loans, certificates of deposits,
etc. are utilized in organized economies. These different vehicles of investment
would have different levels of returns. Obviously the higher the return, the
better the investment, but along with greater returns comes greater risk. The
link between risk and reward was discussed at great length in Chapters 1
and 2. One example of such high risk, possibly higher return, investment is
investing in the shares of the stock of a company traded in a stock exchange.
To model the return or price of a stock, the above model will need to be
appropriately extended.

This section provided a brief introduction to modeling of a variable that
requires a continuous but deterministic approach to modeling. For some of
these asset value variables, introducing randomness in their parameters will
remarkably improve the quality of the model. We begin with discussing such
enhancements in the context of risky assets, specifically focusing on price of
the stock of a publicly traded firm.
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(a) Annual Accrual of Risk-free Interest
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(b) Monthly Accrual of Risk-free Interest
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(c) Daily Accrual of Risk-free Interest
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(d) Hourly Accrual of Risk-free Interest

FIGURE 6.1: Applying different frequency of interest rate accrual for a
risk-free investment. (a) Annual accrual applied for five years. (b) Monthly
accrual applied for five years. (c) Daily accrual applied for five years. (d)
Hourly accrual applied for five years.
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6.2 Introducing Stochasticity in the Modeling

Let’s begin with considering the model for stock price dynamics in which
the rate of growth of the stock price at any point of time is proportional to
the price of a share of the stock. In the previous section, we assumed this pro-
portionality constant to be a deterministic interest rate, but the model will
be more realistically applicable for stock price evolution if this proportionality
constant has a random component. Since there is a deterministic component
r(t) that is known precisely, we introduce an additional random effects com-
ponent to obtain, a(t) = r(t)+ “noise.” Therefore, after a refinement of the
model that incorporates the random fluctuations in the relevant quantities of
the model, the model becomes,

dS

dt
= (r(t) + “noise”)S(t), (6.5)

where S(t) is the stock prices of a publicly traded corporation. We now need
to identify an appropriate stochastic process that will represent the “noise”
term in this model.

Let us denote the noise process by a quantity, Vt. If this quantity truly
captures the noise-effects that happen at random, such as weather fluctua-
tions, variations in demand, and variations in supply of goods, etc., then the
following properties will be expected for the noise process:

1. For two time points, t1, t2, such that t1 < t2, we should have independence
of Vt1 and Vt2 , since these are random fluctuations in the rate of return
of the asset.

2. Vt is stationary, i.e., the distribution of the noise process remains the same
for all time. Mathematically, distribution of the k-dimensional stochastic
process {Vt1+t, . . . , Vtk+t} is independent of t.

3. Finally, being random fluctuations, the mean of the noise process at any
time is zero, or E[Vt] = 0 for all t.

With these requirements imposed on what the noise term captures about
the asset price evolution, we fall into some technical difficulties. There is no
‘reasonable’ stochastic process that can satisfy these requirements, especially
requirements 1 and 2. The technical difficulty is that such a process, Vt, cannot
have continuous paths. Moreover, if we require that the variance of the noise
is a standard level, i.e., V ar(Vt) = 1, then Vt cannot even be a measurable
function.

In order to respond to these technical difficulties arising from our first
attempt at introducing stochasticity in the asset value evolution model, we
make an alteration by rewriting the equation in a form that will suggest a
more appropriate stochastic process. The new form is one in which we will
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describe the price change in infinitesimal time interval ‘dt’, as we did for the
risk-free asset in Eqn. (6.4). However, as an intermediate step, we approximate
the change in asset price over a finite, positive time interval, ∆t, and intro-
duce the yet-to-be-finalized noise term in this approximation. The asset price
change in this short time interval is approximated by creating an approximate

of the derivative using the Euler method, as ∆S(t)
∆t . As a second attempt of

introducing stochasticity, the stochastic term is introduced as follows,

Sk+1 − Sk = r(tk)Sk∆tk + SkVk∆tk, (6.6)

where Sk = S(tk), Vk = V (tk), and ∆tk = tk+1 − tk, for k ∈ {0 . . . N} with
t0 = 0 and tN = T .

We introduce a crucial modification to the last term, the noise term, by
renaming it as Vk∆tk = ∆Wk. Now imposing the requirements 1, 2 and 3 listed
above for the noise term implies that the Wt process should have stationary,
independent increments with mean 0. We have a perfect candidate for this
role, since as it turns out, the only process endowed with these properties
that also has continuous paths is the Wiener process, or the Brownian
motion. In Chapter 5, we had studied the Wiener process at length, including
constructing it as a limit of random walks. With this modification, Eqn. (6.6)
becomes,

Sk+1 = Sk + r(tk)Sk∆tk + Sk∆Wk. (6.7)

By applying Eqn. (6.7) to all values of j and adding from 0 to k gives,

Sk+1 = S0 +
k∑

j=0

r(tj)Sj∆tj +
k∑

j=0

Sj∆Wj . (6.8)

We have succeeded in incorporating a noise term into the model, how-
ever, this is not the original model we wanted for the asset value evolution
in continuous-time and continuous-space. It is only an approximate version
of the original model constructed for a specific time discretization, {tk}, for
k ∈ {0 . . . N} with t0 = 0 and tN = T . In order to now retrieve the orig-
inal, continuous counterpart, we need to find what happens if we take the
∆tk terms to be gradually smaller, or in the limit as ∆tk → 0. Invoking the
definition of the Riemann integral, we obtain,

St = S0 +

∫ t

0

r(s)S(s)ds+ “

∫ t

0

S(s)dWs”, (6.9)

where the last term is roughly defined, with a pending formal definition.
The second term in Eqn. (6.9) is an integral with respect to the Wiener

process, and needs to be defined as an extension of the Riemann integral of
Riemann calculus. This development will be the topic of the next section.
Assuming for now we accept a meaningful existence of the second term in
Eqn. (6.9), the model extension will prove useful to model stock dynamics, as
well as other risk types, in later chapters.
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6.3 Defining New Integrals

In Section 6.1, we developed a model for the evolution of a risk-free asset,
B(t). If in fact the asset experiences fluctuations in its rate of return, we
would more likely expect the instantaneous interest rate a to be replaced by
a + “noise.” This will transform the equation, dB

dt = aB(t), into

dS

dt
= (a+ “noise”)S(t). (6.10)

We applied an argument in favor of desired properties of the noise term, trans-
formed the structure of the equation, utilized the Wiener process to model the
noise term and obtained,

S(t) =

∫ t

0

aS(s)ds+

∫ t

0

S(s)dWs. (6.11)

This model represents the dynamics of the value of a risky investment. In par-
ticular, this model may be used to model the stock price dynamics of a pub-
licly traded company. It assumes a specific meaning to the term, ‘

∫ t

0
S(s)dWs’,

which is the integral of the stock price path, S(s), with respect to the Wiener
process. We formally define this integral next.

6.3.1 Ito Integral

The construction of the new integral, leading on to a new calculus, is similar
to how the Riemann integral is defined in real analysis in college-level calculus.
Given a discretization of the time interval, (0, T ), the Riemann integral for a
continuous function, f(t), was defined as follows,

N∑
j=0

f(tj)∆tj →
∫ T

0

f(t)dt, as ∆tj → 0, ∀j. (6.12)

The Riemann integral is defined for sufficiently well-behaved functions. In
particular, if f(t) is a bounded function defined on a closed, bounded interval
[0, T ] and f(t) is continuous except at countably many points, then f(t) is
Riemann integrable.

In a similar manner, the integral can also be defined in terms of the Wiener
process. Construction of this integral is necessary because in order to introduce
randomness in the model considered in earlier sections, a derivative of the
Wiener process cannot be used, since such a derivative does not exist. Instead
we consider the integral of the Wiener process to do this job. The integral
will be defined very similarly to the definition of the Riemann integral, with
increments in time being replaced by increments in the Wiener process, as
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follows,

N∑
j=0

f(t∗j )[Wtj+1
−Wtj ]→

∫ T

0

f(t)dWt, as ∆tj → 0, ∀j, (6.13)

where t∗j ∈ [tj , tj+1].
Unlike in the case of the Riemann integral, where t∗j can be any point

in the interval [tj , tj+1], in the case of integral with respect to the Wiener
process, it matters what value t∗j is made to take in the interval. For instance,
if t∗j = tj , i.e., the lower end of the interval, the integral is called an Ito

integral, however if t∗j =
tj+tj+1

2 , i.e., the middle point of the interval, the
integral is a Stratonovich integral. The properties of the two integrals are
quite different.

Physically realizable processes are often smooth with at least a small degree
of autocorrelation. When the Wiener process is used as an idealization of a
smooth real noise process, Stratonovich is the more appropriate definition to
use. On the other hand, if the Wiener process is an idealization of a real noise
process that is not necessarily autocorrelated, and, in fact, has a good reason
not be so, then Ito definition is more appropriate.

In engineering and physical sciences, problems are studied using ordinary
differential equations, which are obtained based on physical or phenomeno-
logical laws governing the system. Stochastic differential equations (SDEs),
defined in terms of integral with respect to the Wiener process, are arrived at
for improvement in models by including random fluctuations in the ordinary
differential equations. The underlying systems being modeled are usually con-
tinuous both in time and space domains, hence the fluctuations are expected
to be smooth. In contrast, for example in biological systems, the variables are
discrete in either time or space, or both. In genetics or population dynamics,
the population size is integer valued, successive generations may not overlap in
time, breeding may occur in separate seasons, and environmental parameters
may only change at discrete instants. In this case, an Ito description would
be more appropriate.

From a mathematical viewpoint, both the Ito and Stratonovich definitions
are correct. Of course, which one you use depends on such system specific
extraneous reasons. Once the choice has been made regarding the integral
definition to use, one needs to stay consistent in all the remaining development
for the calculus one performs for the system. One can always use the other
definition when it is considered advantageous, after appropriately modifying
the stochastic differential equation.

The above limits in Eqn. (6.13), and therefore the integral, will be well-
defined for a sufficiently well-behaved function, f(t). To facilitate discussion
of properties of the Ito integral with more care, we rigorously define the prop-
erties of function, f(t), for which the Ito integral is well-defined. We define,
Υ = Υ(S, T ) as a class of functions, f(t, ω) : [0,∞)× Ω→ R, such that,

1. f(t, ω) is B×F-measurable. Here B refers to the Borel σ-algebra on the
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interval, [0,∞) and F is a σ-algebra defined on the state space, Ω. We
employ usage of the word ‘measurable’ in a special mathematical sense.
It refers to the structure-preserving property of the function, in a sense
similar to the property of a continuous function mapping continuous
intervals of the domain space to continuous intervals in the range space
in the context of Riemann calculus.

2. f(t, ω) is Ft-adapted, i.e., all events defined by function f(t, ω) up to
time, t, belong in the σ-algebra, Ft.

3. The function, f(t, ω), is square-integrable in time-domain, i.e.,

E[
∫ T

S
f(t, ω)2dt] <∞.

Such a class of functions, Υ, can be shown to have a well-defined Ito integral. It
is worth noting in the above properties that it allows f(t, ω) to be a stochastic
process in its own right. For greater depth and detail of definition of these
concepts and constructs, refer to a book on real analysis [73, 74, 75] and
stochastic calculus [68, 45].

6.3.2 Properties of the Ito Integral

There are many properties of the Ito integral that make working with
them attractive. It is important for the risk modeler utilizing these models
to be aware of these properties. We next discuss the major properties, and
as before, the more inquisitive reader is advised to refer to the mathematical
sources [68, 45] for more details. The Ito integral can be shown to satisfy the
following properties for all functions, f(t, ω) and g(t, ω), for which the Ito
integral is well-defined, where the first two properties are inherited from its
Riemann-Stieltjes counterpart.

Property 1. When we define the Ito integral for a time range, [S, T ], we can
compute the integral at once for the entire interval, or break it down in
subintervals whose union is the original interval, [S, T ]. Therefore, we

have,
∫ T

S
f(t)dWt =

∫ U

S
f(t)dWt +

∫ T

U
f(t)dWt for 0 ≤ S < U < T .

Property 2. Ito integral allows defining the integral of linear function of
functions in terms of linear function of the Ito integral of the functions.

We have,
∫ T

S
(cf(t) + g(t))dWt = c

∫ T

S
f(t)dWt +

∫ T

S
g(t)dWt.

Property 3. The remaining properties of the Ito integral are obtained from
the fact that integral here is with respect to the Wiener process, and
outcome of the integral is itself a random variable. From the property
of increments of Wiener process, E[∆Wt] = 0, and definition of the Ito
integral, we have that expectation of the Ito integral of any function is

zero. Therefore, E[
∫ T

S
f(t)dWt] = 0.

Property 4. The fact that all events defined by the function f(t, ω) up to
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time, t, belonged to the σ-algebra, Ft, was required for the Ito integrabil-
ity of the function, f(t, ω). If the Wiener process, Wt, is FT -adapted, the
random variable defined by the Ito integral of f(t, ω) is FT -measurable.

Therefore,
∫ T

S
f(t)dWt is FT measurable.

Property 5. The concept of a martingale was defined in Section 5.3.6.3,
where a process is a martingale if it is non-anticipatory about the future.
From the independent increments property of the Wiener process and
the definition of the Ito integral, we obtain that Mt =

∫ t

0
f(t, ω)dWs is

a martingale with respect to the σ-algebra, Ft.

Property 6. The Ito Isometry property is derived from the quadratic varia-
tion of the Wiener process, discussed in Section 5.3.6.3. The quadratic
variation of the Wiener process is defined as,

∑
j(∆Wtj )

2, over a time-
discretization of the interval, (0, t). It can be shown to converge to∑

j(∆Wtj )
2 → t in mean-square sense, i.e., in L2(P ). Utilizing this

property, it can be shown that the expected value of squared Ito inte-
gral is the expectation of the Riemann integral of the squared function.

Mathematically, E[(
∫ T

S
f(t, ω)dWt)

2] = E[
∫ T

S
f2(t, ω)dt].

To develop a better feel for the Ito integral and how it is determined, let
us find the Ito integral for some simple functions. We begin by considering
the integral of the Wiener process itself. Therefore, we are seeking

∫ t

0
WsdWs.

It can be shown that this integral is equal to 1
2W

2
t − 1

2 t. Note that by the
definition of the Ito integral we have,∫ t

0

WsdWs = lim
∆tj→0

∑
j

Wtj∆Wtj , (6.14)

where {∆tj} is a time-discretization for the interval, [0, t). We observe that,

∆(W 2
j ) = W 2

j+1 −W 2
j = (Wj+1 −Wj)

2 + 2Wj(Wj+1 −Wj) (6.15)

= (∆Wj)
2 + 2Wj∆Wj , (6.16)

where we have employed simplification of notation, Wj = Wtj , for the time-
discretization, {∆tj}, of the interval, [0, t). Since the standard Wiener process
has W0 = 0, we have,

W 2
t = W 2

t −W 2
0 =

∑
j

∆(W 2
j ) (6.17)

=
∑
j

(∆Wj)
2 + 2

∑
j

Wj∆Wj , (6.18)

where Eqn. (6.18) is obtained by applying Eqns. (6.15) and (6.16). We re-
arrange terms from Eqns. (6.17) and (6.18) to obtain the desirable expression
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to determine the integral we sought to find in Eqn. (6.14).∑
j

Wj∆Wj =
1

2
W 2

t −
1

2

∑
j

(∆Wj)
2. (6.19)

As we let, ∆tj → 0, required in the definition of Ito integral in Eqn. (6.14),
we need to determine the impact on the second term on the right-hand side in
Eqn. (6.19). We invoke the result that

∑
j(∆Wj)

2 → t in mean-square sense
as ∆tj → 0. We had earlier defined this as the quadratic variation of the
Wiener process. Therefore, the value of the integral is established.

As another example, we compute the Ito integral of the simple function,
f(t) = t. Therefore, we seek

∫ t

0
sdWs. It can be shown that,∫ t

0

sdWs = tWt −
∫ t

0

Wsds. (6.20)

We first observe that the Ito integral of f(t) = t is defined as,
lim∆sj→0

∑
j sj∆Wj and that we can express the terms in the summation

as follows, ∑
j

∆(sjWj) =
∑
j

sj∆Wj +
∑
j

Wj+1∆sj . (6.21)

After rearranging terms in Eqn. (6.21) and substituting in the definition of the
Ito integral, we obtain the integral as we apply the limit of ∆sj → 0. Following

up on the above examples, it can be shown that
∫ t

0
W 2

s dWs =
1
3W

3
t −

∫ t

0
Wsds.

Now that we have defined the new integral with respect to the Wiener
process, and also seen it applied to compute the integral of some simple func-
tions, we can start to utilize it to define more general models. The models will
be written, with more generalization introduced later, as,

dXt = µ(t)X(t)dt+ σ(t)X(t)dWt, (6.22)

which will refer to the more precise meaning of,

Xt = X0 +

∫ t

0

µ(s)X(s)ds+

∫ t

0

σ(s)X(s)dWs. (6.23)

However before we continue with building new models and solving them, we
need to look at one important result of Ito calculus. This is the chain rule of
Ito calculus.

6.3.3 Chain Rule of Ito Calculus - The Ito Formula

In Riemann calculus, when we define a function of a function, and wish
to consider change in the composite function with respect to the underlying
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variable, we construct a chain rule. The chain rule for Riemann calculus for a
function, f(g(x)), is constructed as,

df(g(x))

dx
=

df(g(x))

dg

dg(x)

dx
. (6.24)

We wish to extend this to a process defined by the Ito integral. Con-
sider an Ito process, Xt, defined by the solution of the model, dXt =
a(t,Xt)dt + σ(t,Xt)dWt. Let us define a new process, Yt, constructed as a
function, Yt = f(t,Xt), of the original process, Xt. If the function, f(t, x), is
twice continuously differentiable, then the chain rule under Ito calculus gives,

dY (t) = (
∂f

∂t
+ a(t,Xt)

∂f

∂x

+
1

2
σ2(t,Xt)

∂2f

∂x2
)dt+ σ(t,Xt)

∂f

∂x
dWt. (6.25)

This is popularly known as the Ito Formula. Although we don’t provide a
detailed derivation of the formula, we suggest a few important comments for
why the chain rule works out as it does in Ito calculus. This can be seen by
taking a Taylor expansion and looking at the leading terms. Roughly speaking,

the 1
2σ

2(t,Xt)
∂2f
∂x2 term in the Ito formula comes about since in the Taylor

expansion the dWt.dWt ≃ dt, where as dt.dWt = dt.dt = dWtdt = 0.

6.4 Analytical Solutions

We have the ability to construct a variety of new models utilizing the newly
defined integral with respect to the Wiener process. The keen reader will have
noticed by now that when we define a process by a stochastic differential
equation, as in Eqn. (6.22), we simply state that the concerned process must
satisfy this equation. The actual process itself is left to be determined by
solving the stated stochastic differential equation.

In the development since Section 6.2, an appropriately defined random
component in the differential equation model provided us a well-defined mech-
anism of how risk can be modeled dynamically evolving in time. In Section 6.2,
we motivated the model construction to describe the evolution of the value of
a risky asset. In the notation developed since, the risky value of an asset, St,
evolves as follows,

dSt = µ(t, St)dt+ σ(t, St)dWt, (6.26)

where µ(t, St) is called the drift term and σ(t, St) is called the diffusion term
of the model. The reader may recall that the terms ‘drift’ and ‘diffusion’
were discussed in the context of a diffusion process in Section 5.3.4. Specific
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functions chosen for the drift and diffusion terms result in specific properties
of the risky asset value.

A continuous-time version of the price dynamics equation lends a desirable
property. It lets the modeler discretize the model to any chosen time frequency.
This feature also offers an opportunity to computationally obtain a solution
of the stochastic differential equation. We consider the Euler-method based
discretization, which may be used to get a numerical solution of the system.
If the current value of the asset is known, S0, then the subsequent values can
be obtained in an iterative procedure by the following equation,

Sk+1 = Sk + µ(tk, Sk)∆tk + σ(tk, Sk)∆Wk, (6.27)

where ∆Wk ∼ N(0,∆tk) and {∆tk} is a time-discretization of the interval,
[0, T ). Sample paths for the risky asset value, Sk, are constructed by generating
the appropriate normally distributed random variates.

When we can exactly solve the stochastic differential equation, we call
the solution an analytical solution. When, however, we utilize simulation to
numerically realize the solution of the stochastic differential equation, the so-
lution is a numerical solution. It is a challenge in general to analytically solve
all stochastic differential equation models. The techniques and methods avail-
able constitute a vastly developed area of applied mathematics. We explore
solutions to some of the simple equations in the next section. Since the empha-
sis in this book is to primarily discuss the numerical or simulation techniques
for these models, we will not delve intp the general approaches for analytical
solutions to stochastic differential equations. However, the reader is advised
to refer to some good books for learning more about analytical methods for
solving ordinary and stochastic differential equations, such as Tenenbaum and
Pollard [85], Coddington and Landin [16], and Oksendal [68].

6.4.1 Solving the Model Exactly

We consider solving a simple version of the risky asset dynamics model
exactly (or analytically). In practice, whenever it is possible to obtain the exact
solution, the modeler should attempt to obtain it. The simplest stochastic
model we have obtained thus far is,

dSt = µStdt+ σStdWt, (6.28)

where µ is the drift coefficient and σ is the volatility, which is usually a positive
constant. Both coefficients can be generalized to vary with time, µ(t), σ(t).
This is an Ito stochastic differential equation describing the evolution of a
risky asset value over time.

In Section 6.1, we had demonstrated for the deterministic case that the
solution for the related deterministic equation displays an exponential growth
in the asset value over time (Figure 6.1). The deterministic case can motivate
the solution exploration in the stochastic case. The equation we seek to solve
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is given in Eqn. (6.28), which is a much simplified version of Eqn. (6.26). We
rewrite the Eqn. (6.28) in a favorable way that motivates the steps adopted
thereafter to determine its solution.

dSt

St
= µdt+ σdWt. (6.29)

If we integrate both sides of Eqn. (6.29), we obtain,∫ t

0

dSs

S(s)
= µt+ σWt. (6.30)

Eqn. (6.30) shows that the integral of instantaneous return of the risky asset
is µt + σWt. The structure of the left-hand side of Eqn. (6.30) motivates us
to consider a guess function, ln(St). From this motivation, we apply the chain
rule of Ito calculus, in short the Ito formula, to the process ln(St). This gives
us,

d(lnSt) =
1

St
(µStdt+ σStdWt) +

−1
2S2

t

σ2S2
t dt. (6.31)

Eqn. (6.31) can be simplified to obtain,

d(lnSt) =
dSt

St
− 1

2
σ2dt. (6.32)

If we rearrange the terms in Eqn. (6.32), we obtain another form for the
quantity dSt

St
, as follows,

dSt

St
= d(lnSt) +

1

2
σ2dt. (6.33)

Expressing the same quantity in two different ways (Eqns. (6.30) and (6.33))
gives us the opportunity to combine the two representations to obtain,

µdt+ σdWt = d(lnSt) +
1

2
σ2dt. (6.34)

Rearranging the terms once again, and integrating both sides of the equation
yields,

ln(
St

S0
) = (µ− 1

2
σ2)t+ σWt (6.35)

Finally, taking an exponential of both sides of Eqn. (6.35), and letting the
initial asset price S0 move to the right-hand side, gives the solution of the
stochastic differential equation in Eqn. (6.28) as follows,

St = S0 exp((µ−
1

2
σ2)t+ σWt). (6.36)



174 Risk Management and Simulation

The reader is reminded that in Section 5.3.7, we had introduced a stochastic
process called geometric Brownian motion, which has a structure very similar
to the process in Eqn. (6.36). We will also call the process in Eqn. (6.36) a
geometric Brownian motion, with parameters µ and σ determining its
time-evolution characteristics.

The trends of such a process can be summarized as follows. The process
exponentially increases or decreases in time at the (µ− σ2/2) rate, with dis-
persions determined by the size of the volatility parameter, σ. Additionally,
we observe:

1. If µ > 1
2σ

2, then St →∞ as t→∞ almost surely.

2. If µ < 1
2σ

2 then St → 0 as t→∞ almost surely.

3. If µ = 1
2σ

2, then St will fluctuate between arbitrarily large and small values
as t→∞ almost surely.

4. Finally, if µ = 0, the process St becomes a martingale, as discussed in
Section 5.3.7.

As stated earlier, in general, analytical solutions are hard to come by for
stochastic differential equations. They can be solved exactly only in special
cases. Simulation techniques must be utilized to obtain the solution and un-
derstand their properties. This will be the emphasis of the rest of the chapter.
The above simple risky asset dynamics model is not totally realistic! There are
many improvements one can consider to bring greater realism to the model
dynamics. With these improvements comes greater analytical intractability of
the model, where a simulation-based solution will become more valuable.

Moreover, value of assets often does not evolve in isolation. They are af-
fected by a basket of other risk factors and value of other risky assets. Such
interactions may be beneficial, neutral or harmful to the value of each asset.
These characteristics can be incorporated by considering a system of stochas-
tic differential equations similar to the one in Eqn. (6.28), one for each asset
(or risk factor) evolution. The system of equations together describe the co-
evolution of all the assets hypothesized to be interrelated.

A stochastic model for the multi-asset context with the joint evolution of
the asset price dynamics can be written as follows,

dSi
t = (µiS

i
t +

d∑
j=1

bi,jSj
t )dt+ σiS

i
tdW

i
t , for i = 1 . . . d, (6.37)

where we consider d assets, bi,j is the interaction drift coefficient that affects
the rate of change of one risky asset based on the value of other risky assets.
In Eqn. (6.37), we have retained the diffusion term to remain unaffected by
other assets or risk factors in the basket. More generally, the diffusion term
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may be modeled as,

d∑
j=1

σi,j(S1
t , S

2
t , . . . S

d
t )dW

j
t , (6.38)

where each of the d Wiener processes, W i
t , driving the system are allowed

to interact with one another by the d-dimensional function, σ(·, ·, . . . , ·). It is
possible to write the combined model of Eqns. (6.37) and (6.38) in a single
compact equation by utilizing matrix notation. The reader can judge from
these general models that there is significant room for innovation in models
by picking specific forms for the coefficient, bi,j , and term, σi,j(S1

t , S
2
t , . . . S

d
t ).

These generalizations put even greater burden on the ability to find analytical
solutions. Therefore, numerical techniques must be developed and resorted to
in order to obtain and analyze the solutions. We move on to this investigation
next.

6.5 Solving Models Using Simulation

When analytical solutions of stochastic differential equations describing
time-dependent evolution of risks are not readily available, we must resort
to numerical techniques using simulation analysis. In this section, we develop
these simulation techniques, as well as develop the terminology for assessing
the accuracy of these numerical solutions. In order to develop the methodology
for simulation-based solutions of stochastic differential equations, we will need
to recall material covered in Chapter 4, as well as develop the basic principles
of numerical solutions of deterministic differential equations.

The primary idea employed is to approximate the differential equation
based representation of the model to a difference equation based model on a
chosen time-discretization of the interval on which the solution is required.
The solution can then be obtained by an iterative procedure, once the initial
condition of the stochastic process is known. As stated earlier, the advantage
of modeling risks by a continuous-time model, even though one is not able to
solve these models analytically, is that an arbitrary choice of discretization can
be picked to achieve the desired accuracy of the numerical solution. We begin
with investigating the simplest of methods for simulation-based solutions of
stochastic differential equations, which is the Euler method.

6.5.1 The Euler Method for Solving Differential Equations

We first apply the Euler scheme to solve differential equations in the de-
terministic case. Let x = x(t; t0, x0) be the solution of an initial value problem
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(IVP)

dx

dt
= a(t, x), (6.39)

with x(0) = x0. An initial value problem (IVP) consists of a deterministic
differential equation based model, where the initial value of the function sat-
isfying the differential equation is known. Suppose we want to solve the system
given in Eqn. (6.39) on a time interval, [0, T ]. We will begin with creating a
discretization of the interval into subintervals, 0 = t0 ≤ t1 ≤ . . . ≤ tN = T .
We may keep the gap between these discretized time-points equidistant or
not. If we choose to keep them equidistant, although this is not essential, we
have for any, n, such that 0 ≤ n ≤ N , the time-gap, tn − tn−1 = ∆ = T

N .
We will control the value of ∆ to achieve the desired accuracy. In general,
what is essential is that the maximum of all subinterval lengths gets smaller
for improved accuracy.

In Eqn. (6.39), we first approximate the first derivative by a simple differ-

ence scheme. The difference scheme is, dx
dt ≃

x(tn)−x(tn−1)
∆ . This allows us to

write the following approximation of the model in Eqn. (6.39),

yn+1 = yn + a(tn, yn)∆ for n = 1 . . . N, (6.40)

where we are careful to indicate the approximate solution by a new symbol,
indicating yn ≃ x(tn). Using this approximate equation, the approximate
solution yn, for n = 1 . . . N , can be obtained iteratively. Once we set y0 = x0,
then y1 can be obtained from Eqn. (6.40) by plugging in the value of y0, and
so on.

In Figure 6.2, we apply the Euler scheme to a problem for which we know
the analytical solution. We also compute the simulation-based numerical solu-
tion to demonstrate how well the numerical solution approximates the analyt-
ical solution. In general, we don’t have this luxury of comparing the analytical
solution with the numerical one, since the reason we seek a numerical solution
is that we do not know a way to obtain the analytical solution. In this simple
case we get to make this comparison, and see that the numerical solution gets
very close to the analytical solution for reasonably coarse discretization (here
N = 100). Figure 6.2 displays the solution of the following problem and its
discretized approximation.

dx

dt
= t2, (6.41)

yn+1 = yn + t2n∆ for n = 1 . . . N, (6.42)

where the initial condition is taken as, x(0) = y0 = 1
2 .

We now consider a general stochastic differential equation model for a
process, Xt, given as,

dXt = a(Xt)dt+ b(Xt)dWt, t ∈ [t0, T ], (6.43)
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FIGURE 6.3: Comparison of exact and numerical solution for an example
stochastic differential equation.

with the initial value of the process given as, X0 = x0.
An Euler approximation of the original model in Eqn. (6.43) can be ob-

tained and simulated to obtain an approximate solution. Once again, we con-
struct the discretization, t0, t1, t2, t3, . . . , tN−1, tN = T , of equidistant points
with a time-step of length, ∆ = (T − t0)/N . The Euler approximation in this
case is a continuous-time stochastic process Y = {Y (t), t0 ≤ t ≤ T} satisfying
the iterative scheme,

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn. (6.44)

The main difference in the stochastic case is that here ∆Wn needs to be gener-
ated as a random variate with the appropriate distribution. Given the proper-
ties of the Wiener process, these Wiener increments are independent Gaussian
random variables with mean, E[∆Wn] = 0, and variance, E[(∆Wn)

2] = ∆.
In Figure 6.3, we apply the Euler scheme to a problem for which we know

the analytical solution. We also compute the simulation-based solution to
demonstrate how the numerical solution compares with the analytical one.
Figure 6.3 displays the solution of the following problem we have studied
before, as well as its discretized approximation.

dXt = µXtdt+ σXtdWt, (6.45)

Yn+1 = Yn + µYn∆+ σYn∆Wn, for n = 1 . . . N, (6.46)
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FIGURE 6.4: Comparison of distributional properties of the exact solution
(in left panel) and numerical solution (in the right panel) for the example
stochastic differential equation.
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where the initial value of the asset is taken as, X(0) = Y0 = $15, the drift is
taken as µ = 14% and volatility is σ = 20%. As seen in Figure 6.3, the refined
approximation, which corresponds to N = 100, performs much better than
the coarse approximation, and is already picking up the characteristics of the
analytical solution.

In the simulation approach, not only is the {Yn} sequence obtained from
applying the Euler scheme in Eqn. (6.44) an approximation of the actual so-
lution, Xt, of the original model in Eqn. (6.43), it is also only observed at
discrete time-points of the time discretization, t0, . . . , tN−1, tN = T . To make
the Y (t) process a continuous-time stochastic process, the value at the inter-
mediate points must be determined by interpolation, for example, as follows,

Yt = Ynt , nt = min{0, 1, 2, . . . N ; tn < t}. (6.47)

The interpolation done in Eqn. (6.47) is a piece-wise constant interpolation.
Instead of a piece-wise constant, linear interpolation can also be used, as is
done for sample paths in Figure 6.3. In either case, whether we do a linear or
a piece-wise constant interpolation, the fine structure of sample paths of the
general diffusion processes that they inherit from the Wiener process will not
be captured. The finer the grid-size, the finer will be the structure inherited.
The question of quality of approximation in the approximate solution still
remains.

In Figure 6.4, we plot the histogram of the approximate and analytical
solution of the example problem in Eqns. (6.45) and (6.46) at the terminal time
point, t = 1. Since we know the properties of the analytical solution, namely
that it is the geometric Brownian motion, we also plot a lognormal probability
plot for both the analytical and simulation based solution in Figure 6.4. In
both cases, the lognormal distribution is supported. The difference in mean
and standard deviation of asset value at t = 1 by the two solutions is of order
10−2.

We next turn our attention to creating precise measures for accuracy of
solutions, and how they respond to improved accuracy as time-discretization
is refined.

6.5.2 Evaluating Simulation Solutions

When attempting to solve a differential equation using numerical tech-
niques, two important questions must be addressed. For any specific method
of discrete approximation of the continuous problem and for a specific selected
time-discretization, how ‘far’ will the approximate solution end up being from
the actual solution. Second, for a specific method of discrete approximation
of the continuous problem, as the time-discretization is refined, how rapidly
does the approximate solution become ‘closer’ to the actual problem. The first
inquiry is termed error analysis, while the latter is called rate of conver-
gence of an approximate method. We begin with defining the latter.



Building and Solving Models of Risk 181

6.5.2.1 Convergence Properties of Solutions

We have so far looked at only one method of approximating the continu-
ous problem, the Euler scheme. The Euler method was utilized to define an
approximate solution in the deterministic and stochastic examples in the pre-
vious section. We can measure the goodness of the approximate solution in
two ways. There is the local discretization error, which is the error made
in a single time step, or a single iteration of the numerical procedure to ob-
tain yn in Eqn. (6.40). This is obtained assuming that the exact solution at
tn, x(tn), is known, and matches yn, then the difference between x(tn+1) and
yn+1 is observed. This error is usually not going to be zero.

Once several such steps of the iteration are made to obtain a sequence of yn
values, the (local discretization) errors accumulate. Global discretization
error is all the errors accumulated up to a time-point, t. Therefore, global
discretization error can be seen as the sum of propagated truncation error and
local discretization error at any point of the iterative procedure. The size of
this error, and how rapidly it can go down as discretization is refined, provides
us the definition of convergence rate.

Order of convergence: A method converges with order γ if there exists
a constant K (< ∞) such that the |x(tn+1) − yn+1| = |en+1| can be
bounded from above by K∆γ , for all ∆ ∈ (0, δ0), for some 1 > δ0 > 0.

By this definition of order of convergence, the Euler method can be shown to
have an order, γ = 1.0. However, it should be noted that the above definition
of order of convergence is stated assuming that there are no round-off errors. In
practice, due to round-off errors, there is a minimum time-discretization level,
∆m, below which we cannot hope to improve accuracy by taking finer time-
discretization levels. Therefore, in order to get more accurate approximate
solutions, we need to consider methods with higher orders of convergence.
Different discretization schemes may be explored and adopted, each with a
level of accuracy and computational burden.

6.5.2.2 Error Analysis - Absolute Error Criterion

In Section 6.5.2.1, a definition of order of convergence was developed with
a focus on deterministic problems. When instead we apply simulation to solve
a stochastic differential equation, the solution is not a deterministic function.
The solution is a realization of a stochastic process. From the point of view
of accuracy of the solution, a question arises regarding the sense in which the
approximate solution converges to the actual one. Is it path-wise? Or is it in
distribution?

In fact, quality of a discrete-time approximate solution can only be judged
on the basis of the main goal of simulation. There are two basic tasks con-
nected with the simulation of solution of a stochastic differential equation: 1.
when a good path-wise approximation is required, and 2. when an approx-
imation of expectation of a functional of an Ito process is required, such
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as, probability distribution or its moments. Depending on the requirement, an
appropriate error criterion needs to be used. We first define the criterion for
path-wise convergence of approximate solution.

Absolute Error Criterion is defined as:

ϵ = E[|XT − Y (T )|] (6.48)

which gives a measure of path-wise closeness at the end of the time inter-
val [0, T ]. In case of the deterministic initial value problem (IVP), where the
function b(.) = 0 in Eqn. (6.43), the absolute error criterion coincides with the
usual deterministic error criterion for the absolute global discretization error.

Method to estimate the absolute error: Generate N sample paths for
the Wiener process in [0, T ] and compute the discrete solution Y (t) for each
sample path of the Wiener process. Using the same sample paths, compute
the exact solution (provided this is known). Denote the quantities obtained
from the kth simulation by Y (T, k) and the corresponding exact solution by
XT,k. Then the absolute error can be estimated as:

ϵ̂ =
1

N

N∑
k=1

|XT,k − Y (T, k)|. (6.49)

Confidence interval for the Absolute Error Estimate: The estimated
absolute error, ϵ̂ is a random variable. It will be asymptotically (or in the
limit) Gaussian, if |XT,k − Y (T, k)| is believed to have the same distribution
for all k. The estimated absolute error, ϵ̂, will converge in distribution to the
non-random expectation ϵ as N → ∞. These facts can be used to create a
confidence interval estimate of the true absolute error, ϵ.

This requires getting an estimate of the standard deviation, σϵ of the
estimated absolute error, ϵ̂. This is accomplished by performing M batches
of N simulations each. Now, XT,k,j will be the kth exact solution in the jth

batch and Y (T, k, j) will be the kth discrete approximate solution in the jth

batch. Compute the absolute error for the jth batch as follows,

ϵ̂j =
1

N

N∑
k=1

|XT,k,j − Y (T, k, j)|. (6.50)

Then compute the overall absolute error across batches,

ϵ̂ =
1

M

M∑
j=1

ϵ̂j =
1

MN

M∑
j=1

N∑
k=1

|XT,k,j − Y (T, k, j)|. (6.51)
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Once the batch mean and grand mean across batches is computed, the esti-
mated variance of the absolute error estimates can be computed as follows,

σ̂2
ϵ =

1

M − 1

M∑
j=1

(ϵ̂j − ϵ̂)2. (6.52)

This implies that,

t =
ϵ̂− ϵ

σ̂ϵ/
√
M

(6.53)

will have a t-distribution with M − 1 degrees of freedom, since if we knew
the variance of absolute error precisely, the ratio would be approximately nor-
mally distributed. We select a confidence level of 100(1 − α)% for getting a
confidence interval for ϵ, then the interval will be obtained as (ϵ̂−∆ϵ, ϵ̂+∆ϵ)
where ∆ϵ = t1−α/2,M−1

σ̂ϵ√
M

and P (−t1−α/2,M−1 ≤ t ≤ t1−α/2,M−1) = 1− α.

Convergence by Absolute Error Criterion

A discrete-time approximation Y with maximum time step size δ con-
verges strongly to X at time T , if limδ→0 E[|XT − Y (T )|] = 0. In order to
compare schemes for the quality of solutions they give, we develop the measure
for their order of strong convergence. We say a discrete time approxima-
tion Y converges strongly with order γ > 0 at time T , if there exists a
positive constant C, which does not depend on δ and a δ0 > 0, such that,

E[|XT − Y (T )|] ≤ Cδγ , (6.54)

for each δ ∈ (0, δ0). This is a direct extension of the definition in the determin-
istic case of order of convergence, and reduces to it when the diffusion term is
zero. The Euler scheme studied earlier was the simplest useful scheme, but in
general is not particularly efficient. The Euler scheme has an order of strong
convergence, γ = 0.5.

Let’s look at a new scheme that has a higher order of strong convergence,
the Milstein scheme, which when applied to the model in Eqn. (6.26) gives,

Yn+1 = Yn + a(Yn)∆n + b(Yn)∆Wn +
1

2
b(Yn)b

′(Yn)(∆W 2
n −∆n). (6.55)

This is obtained by a Taylor expansion of X(t) about X(t0), and truncating
after the first three terms. The strong order of convergence for Milstein scheme
is 1.0.

6.5.2.3 Error Analysis - Mean Error Criterion

At other times we may be interested not in the paths of an Ito process, but
instead might want to capture some distributional information about them,
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such as specific moments, probability of events, etc. Under such circumstances,
the requirements are less stringent than for the path-wise case. Here we are
seeking a good approximation in moments of the solution, and will need to
define order of weak convergence. Let’s begin with estimating the error in ap-
proximate solution of a stochastic differential equation when the criterion is
being able to match the mean of the Ito process. Therefore, we are interested
in computing the E[XT ] using the discrete-time approximation, Y (T ), and its
mean E[Y (T )].

Mean Error Criterion: We define the error by,

µ = E[Y (T )]− E[XT ]. (6.56)

Note that the mean error can take both negative and positive values. The
estimated values of mean error will be obtained by running the simulation
N times and calculating the mean of these outcomes of the Y (T ), as follows.

µ̂ =
1

N

N∑
k=1

Y (T, k)− E[XT ]. (6.57)

As in the case of estimating absolute error, if we want to construct a confidence
interval for the mean error estimate, we will generate M batches with N
simulations each and estimate the above mean error for each batch.

µ̂j =
1

N

N∑
k=1

Y (T, k, j)− E[XT ]. (6.58)

Using this set of estimates, we compute the overall average across batches,

µ̂ =
1

M

M∑
j=1

µ̂j =
1

MN

M∑
j=1

N∑
k=1

Y (T, k, j)− E[XT ]. (6.59)

Combining the batch mean and overall mean, we compute the standard devi-
ation of mean error estimate as follows:

σ̂2
µ =

1

M − 1

M∑
j=1

(µ̂j − µ̂)2. (6.60)

This implies that,

t =
µ̂− µ

σ̂µ/
√
M

(6.61)

follows t-distribution with M − 1 degrees of freedom. As before, if we knew
the theoretical variance of absolute error, the ratio in Eqn. (6.61) would be
approximately normally distributed. Now if we select a confidence level of
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100(1− α)% for constructing a confidence interval for µ, then the confidence
interval will be obtained as,

(µ̂−∆µ, µ̂+∆µ), (6.62)

where ∆µ = t1−α/2,M−1
σ̂µ√
M

and P (−t1−α/2,M−1 ≤ t ≤ t1−α/2,M−1) = 1− α.

Convergence by Mean Error Criterion

In general, there could be a general functional to be estimated for the
Ito process, say, E[g(XT )]. Then we would do a similar computation using
the simulated value Y (T ) as we would do for the mean, E[XT ]. We will say
that a general discrete-time approximation Y (T ) with maximum step-size, δ,
converges weakly to X at time T as δ → 0 with respect to a class C of test
functions g : R→ R, if we have

lim
δ→0
|E[g(XT )]− E[g(Y (T ))]| = 0, (6.63)

for all g ∈ C. So, if C contains all polynomials, then all moments of Y (T )
converge to the moment of the true process.

We say a discrete time approximation Y converges weakly with order
β > 0 to X at time T as δ → 0, if for each polynomial g(x) there exists a
positive constant C, which does not depend on δ, and a finite δ0 > 0, such
that,

µ(δ) = |E[g(XT )]− E[g(Y (T ))]| ≤ Cδβ , (6.64)

for each δ ∈ (0, δ0). The Euler scheme has an order of weak convergence of 1.0.
We will next look at another scheme with a higher order of weak convergence.

The important point to note is that weak and strong convergence criteria
lead to development of different discrete time approximations, which are only
efficient with respect to one of the two criteria. This fact makes it important
to clarify the aim of a simulation before choosing the approximation
scheme. The question to ask is whether a good path-wise approximation of
the Ito process is required or if the approximation of some functional of the
Ito process is the real objective.

Weak Higher Order Methods
The Euler scheme has a weak order of convergence of 1.0. We consider a

discretization scheme with a higher order truncation of Ito-Taylor expansion.
The resulting scheme is as follows,

Yn+1 = Yn + a(Yn)∆n + b(Yn)∆Wn +
1

2
b(Yn)b

′(Yn)(∆W 2
n −∆n)

+a′(Yn)b(Yn)∆Zn + (
1

2
a(Yn)a

′(Yn) +
1

2
a′′(Yn)b

2(Yn))∆
2
n

+(a(Yn)b
′(Yn) +

1

2
b′′(Yn)b

2(Yn))(∆Wn∆n −∆Zn), (6.65)
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where ∆Zn is normally distributed with mean E[∆Zn] = 0, V ar(∆Zn) =
1
3∆

3
n

and cov(∆Zn, ∆Wn) =
1
2∆

2
n. This method has an order of weak convergence

of 2.0.

6.5.3 Higher Order Methods

When solutions with better quality of approximation are required, new
methods for discretization must be developed. In Section 6.5.2, we developed
two different error criteria by which solutions may be assessed depending on
the intended use of the approximate solution. We also presented a higher order
scheme for an improvement over the Euler scheme by both the error criteria.
Developing higher order methods in general is not always strict science (or
math). Some of it is just more akin to art. The reader may have heard of the
concept of ‘art of simulation’ ! Here we will look at some types of higher order
methods.

6.5.3.1 Trapezoidal Method

In the case of deterministic differential equations, the trapezoidal method
is an improvement over the Euler scheme. It belongs to the class of implicit
schemes, since iteration at time t requires knowing the next value, yn+1. There-
fore, in an actual implementation, each iteration step requires solving a non-
linear equation. A trapezoidal scheme applied to the problem in Eqn. (6.39)
is given as,

yn+1 = yn +
1

2
(a(tn, yn) + a(tn+1, yn+1))∆ for n = 1 . . . N, (6.66)

where ∆ is the equidistant time step-size. The (deterministic) order of con-
vergence for the trapezoidal scheme can be shown to be 2, for small enough
step-size. The trade-off for the higher accuracy, however, is the higher level
of computations required, due to the need to solve a non-linear equation in
each iteration. Also, in general this non-linear system may not be solved al-
gebraically (analytically).

To avoid this computational burden of solving a non-linear equation, we
consider a modification. We will first use the Euler scheme to approximate the
yn+1 on the right-hand side, then use this approximate ȳn+1, to obtain the
next iterate value, yn+1. This is the modified trapezoidal method given
by,

ȳn+1 = yn + a(tn, yn)∆, (6.67)

yn+1 = yn +
1

2
(a(tn, yn) + a(tn+1, ȳn+1))∆ for n = 1 . . . N. (6.68)

This method is also known as improved Euler or Heun method. It is a simple
example of a predictor-corrector method, the first equation being the
predictor, and the second one the corrector. The order of convergence for
modified trapezoidal is still 2.
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A further higher order accuracy can be obtained by using information from
previous discretization intervals. An example of this is the 3-step Adams-
Bashford method, applied to the problem in Eqn. (6.39), given by,

yn+1 = yn +
1

12
(23a(tn, yn)− 16a(tn−1, yn−1) + 5a(tn−2, yn−2))∆

for n = 1 . . . N. (6.69)

This method has a 3rd order global discretization error. A one-step method
may be used to generate values to get the multi-step procedure started.

Other higher order schemes can be obtained by truncating Taylor expan-
sions of x(t). These are sometimes not very practical because they involve
higher order derivatives of a(t, x), which may be complicated and hard to
compute. The Taylor expansion applied to x(t) of problem in Eqn. (6.39)
would look like,

x(tn+1) = x(tn) + a(tn, x(tn))∆ +
1

2!
(
∂a

∂t
+ a

∂a

∂x
)∆2 +O(∆3). (6.70)

Truncating this before ∆3 term gives a 2nd order truncated Taylor expansion
method, with an order of convergence of 2. Truncating after the third term,
after it was explicitly written, would give the 3rd order Taylor expansion
method with an order of convergence of 3, and so on. However, note again
that the later terms will have multiple derivatives of the a(t, x) function,
which may not be easy to compute in all cases.

Runge-Kutta methods avoid the use of derivatives to provide higher order
accuracy. The classical 4th order Runge-Kutta method is an important explicit
method. This method applied to the problem in Eqn. (6.39) is given as,

yn+1 = yn +
1

6
{k(1)n + 2k(2)n + 2k(3)n + k(4)n }∆, (6.71)

where k(1)n = a(tn, yn), (6.72)

k(2)n = a(tn +
1

2
∆, yn +

1

2
k(1)n ∆), (6.73)

k(3)n = a(tn +
1

2
∆, yn +

1

2
k(2)n ∆), (6.74)

k(4)n = a(tn+1, yn + k(3)n ∆). (6.75)

Another important issue about using simulation methods for solving deter-
ministic systems is instability. Instability occurs when the errors end up
oscillating with increasing amplitude. Convergence of a simulation approach
is guaranteed when the method may be demonstrated to be stable and con-
sistent, approximating the true equation to a degree. Therefore, convergence
is result of a combination of consistency and stability of an approximation
scheme.

In this section, we have given an overview of a variety of improved meth-
ods for deterministic differential equations, along with principles on which
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these improved methods get constructed. For additional improved schemes for
stochastic models, the reader is advised to refer to Kloeden and Platen [48].

6.6 Estimating Parameters

In this chapter, we have constructed a framework for developing new mod-
els for dynamic evolution of risks utilizing the standard Wiener process. Simi-
lar constructions can be done using other processes, those discussed in Chap-
ter 5 and beyond. These will likely involve developing new definition of inte-
grals, as we did with the Ito integral in this chapter, and the related calculus.
We will explore utilizing the Poisson process for this purpose in later chap-
ters of the book; however, developing new integrals beyond the Ito integral is
beyond the scope of this book.

Once a model is constructed, described by a stochastic differential equa-
tion, it can be solved analytically or numerically. The reader will have noticed
that each model gets stated in terms of some crucial parameters. Unless some
meaningful values of these parameters can be identified, the models cannot
be used. In this section, we present some methods for calibrating the models
developed in this chapter and in Chapter 5.

6.6.1 Geometric Brownian Motion

The simplest stochastic model we obtained in earlier discussions of this
chapter was,

dSt = µStdt+ σStdWt, (6.76)

which was used to describe price dynamics, St, for a risky asset, along the
initial value of the asset know to be, S0. Analytical solution was obtained for
this model as, St = S0 exp((µ− σ2/2)t+ σWt). However, the two parameters
in the model, namely µ and σ, remain to be estimated in order to use the
model.

Estimation of these parameters requires data, say M historical observa-
tions of the risky asset price, {St1 , St2 , . . . , StM }. It is noted that for these
observations, given they are all realized by the model in Eqn. (6.76), we have

Stn = Stn−1 exp((µ−
σ2

2
)(tn − tn−1) + σ(Wtn −Wtn−1)), (6.77)

for all values of n ∈ {1, 2, . . . ,M}. Rearranging the terms in Eqn. (6.77) gives,

ln(
Stn

Stn−1

) = (µ− σ2

2
)(tn − tn−1) + σ(Wtn −Wtn−1), (6.78)
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where ln(
Stn

Stn−1
) = rtn is called the log-return of the asset. If tn’s are equi-

spaced, (µ− σ2/2)(tn − tn−1) + σ(Wtn −Wtn−1) are independent, identically
distributed (i.i.d.) by the normal distribution. The estimation of the parame-
ters can be accomplished by first estimating the variance of the i.i.d. normal
observations, followed by their mean. We obtain the following estimates,

σ̂2 =
1

(tn − tn−1)
variance(ln(

Stn

Stn−1

)), (6.79)

µ̂ =
1

(tn − tn−1)
mean(ln(

Stn

Stn−1

)) +
σ̂2

2
. (6.80)

These estimates utilize the fact that the distribution of log-returns are known
to be normal in this geometric Brownian motion model. Since the estimates are
obtained utilizing the first and the second moments of the normal distribution,
we can call this approach the method of moments. We discuss this method in
more detail later. However, there is one other method these estimates can be
obtained by; we discuss this important method next.

6.6.2 Method of Maximum Likelihood

We describe the maximum likelihood method for calibrating models in
general terms, which utilizes the knowledge of distributional properties of
the variable being modeled. Assume that the model describes the risky asset
dynamics, St, and we can describe the probability distribution of a function
of these risky asset price dynamics. For example, the log-returns described in
the previous section, i.e., rt = ln St

St−∆t
. Consider a sample of observations for

log-return of the risky asset are available, {rt0 , rt1 , ..., rtN }, where t0 = 0 and
tN = T are two time end-points of the sample. Desirably the observations are
equi-spaced, i.e., ∆t apart, which will make the notation simpler.

If we know the distributional properties of rtk , even if they are conditional
on precisely knowing the value of rtk−1

, we can make this useful in this param-
eter estimation method. Let’s say the conditional distribution for rtk , given
rtk−1

, is denoted by, f(rk|rk−1; θ), for k = 1 . . . N and with the set of param-
eters to be estimated in the model being, θ = [a; b; c; d]. For instance, if the
conditional distribution of rtk , given rtk−1

, is normally distributed, we would
have,

f(rk|rk−1; θ) =
1√

2πσ(rk−1, θ,∆t)
e
−

[rk−µ(rk−1,θ,∆t)]2

2σ2(rk−1,θ,∆t) , (6.81)

for k = 1 . . . N , and µ(rk−1, θ,∆t) and σ(rk−1, θ,∆t), the mean and standard
deviation expressed in terms of the parameters, θ = [a; b; c; d], and a given
value of rk−1. In particular, in the geometric Brownian motion case, we can
describe σ(rk−1, θ,∆t) = c

√
∆t, and µ(rk−1, θ,∆t) = a∆t.

We construct the likelihood function utilizing the conditional distribution
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of all the N observations as follows,

L(θ) =

N∏
k=1

f(rk|rk−1; θ)f(r0). (6.82)

The maximum likelihood estimate of parameters attempts to find those values
of the parameters, θ, for which the likelihood that the observations resulted
from the purported conditional distribution is the highest (maximized). Noting
that the maximizers of a function also maximize the logarithm of that function,
we define the log-likelihood function. Taking the logarithm of the likelihood
function gives us the log-likelihood function as,

lnL(θ) =

T∑
k=1

ln f(rk|rk−1; θ) + ln f(r0). (6.83)

The advantage of a log-likelihood function over the likelihood function is that
the former has less cumbersome summations of conditional density, while the
latter has a product of conditional density. In particular, for the normal dis-
tribution case, we have

lnL(θ) =

T∑
k=1

−1
2

ln[2πσ(rk−1, θ,∆t)]

− [rk − µ(rk−1, θ,∆t)]2

2σ(rk−1, θ,∆t)
+ ln f(r0). (6.84)

In order to maximize the log-likelihood function, which is the same as
maximizing the likelihood function, we take the first derivative of the log-
likelihood function with respect to all the four parameters, θ = [a; b; c; d], and
equate each of them to zero to obtain,

∂ lnL(θ)

∂a
= 0, (6.85)

∂ lnL(θ)

∂b
= 0, (6.86)

∂ lnL(θ)

∂c
= 0, and finally, (6.87)

∂ lnL(θ)

∂d
= 0. (6.88)

For the specific geometric Brownian motion case, these equations become,

∂ lnL(θ)

∂a
=

N∑
k=1

2∆t[rk − a∆t]

2c2∆t
= 0, (6.89)

and

∂ lnL(θ)

∂c
=

N∑
k=1

−1
c
− [rk − a∆t]2

c3
√
∆t

= 0. (6.90)
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Solving Eqns. (6.89) and (6.90) yields, â∆t = 1
N

∑N
k=1 rk, and ĉ2∆t =

1
N

∑N
k=1(rk−a∆t)2. These estimates are not too different from those obtained

in Eqns. (6.79) and (6.80) utilizing the method of moments, and are in fact

identical if the variance is defined as a biased sample variance,
∑N

i=1(xi−x̄)2

N .
Therefore, in the case of normal distribution, the estimates obtained from
method of moments and maximum likelihood method are the same.

6.6.3 Method of Quasi-Maximum Likelihood

The method of maximum likelihood is applicable only when the exact den-
sity of the risk factor is known. When this is the case, the method produces
the most efficient way to determine the parameters that drive the risk. How-
ever, in many cases, the exact density for the risk factor, as suggested by the
model, may not be determined or stated in the closed-form. In such cases, one
can benefit from making an approximation to the density, by picking a density
which is tractable, and yet in some way not too far improved from the true
density of the risk factor.

This approximated method of maximum likelihood is generally called
the quasi-maximum likelihood method or the pseudo-maximum likelihood
method. Once the true density is approximated by an approximate density,
the actual procedure for determining the quasi-maximum likelihood estimates
follows the steps of the maximum likelihood method. Suppose the true density,
f(rk|rk−1; θ) is approximated by the density,

g(rk|rk−1; θ), (6.91)

with k = 1 . . . T and θ = [a; b; c; d]. Using the approximate density, the quasi-
maximum likelihood function is constructed in the same manner as for the
likelihood function, as follows,

LQ(θ) =
T∏

k=1

g(rk|rk−1; θ)g(r0). (6.92)

Taking the logarithm to simplify the product into a summation yields,

lnLQ(θ) =
T∑

k=1

ln g(rk|rk−1; θ) + ln g(r0). (6.93)

We then maximize the log-quasi likelihood function to determine the param-
eters that best describe the data coming from this approximate Likelihood
function. The reader may be rightly unconvinced about this method generat-
ing good estimates. The benefit of the method lies in making a good approx-
imation of the density, and also in conducting an analysis of the consistency
of the estimated parameters. Detailed analysis of consistency of the estimated
parameters is beyond the scope of this book. The reader is referred to books
on econometric analysis [33] and financial econometric analysis [13].
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6.6.4 Method of Moments

In some cases, it may be difficult to extract the exact, or even approximate,
density for the process, St. Therefore, applying maximum likelihood or quasi-
maximum likelihood methods will not be an option for estimating the model
parameters. One may still be able to determine some key moments of the
process, St, in terms of the model parameters, θ = [a; b; c; d], which may lead
to constructing a system of equations. The solution of the system of equations
would yield parameter estimates of the model, θ̂ = [â; b̂; ĉ; d̂].

Consider the first four moments for the process, St, are known functions of
the parameters, θ = [a; b; c; d]. We will construct the following four equations:

E[St] = f1(θ), (6.94)

E[S2
t ] = f2(θ), (6.95)

E[S3
t ] = f3(θ), and finally, (6.96)

E[S4
t ] = f4(θ), (6.97)

and solve them simultaneously to obtain the parameter estimates. Sometimes
the moments known are not pure moments, but functions of the process St

or ∆St, etc. The method of moments can accommodate these variations, as
long as the right-hand side of the system of equations can be written in terms
of just the parameters, and perhaps uniform time increment, ∆t. This will
allow solving the system of equations for the model parameters. An example
of application of method of moments is considered next.

6.6.4.1 Ornstein-Uhlenbeck Process

In Section 5.3.5, we introduced a specific Gaussian process, some of whose
properties were presented in that section. We had stated that the O-U process,
besides being an example of a Gaussian process, is also a Markov process and
is strictly stationary. In fact, the O-U process is a diffusion process and can
be shown to satisfy the following stochastic differential equation,

dXt = −γXtdt+ σdWt. (6.98)

This stochastic differential equation can be solved analytically by guessing
an integrating factor, e−γt. Considering d(e−γtXt), the solution can be ob-

tained as, Xt = X0e
−γt + e−γt

∫ t

0
σeγsdWs. For the solution of the SDE, thus

obtained, it can be shown that the mean of the process is given by,

E[Xt] = X0e
−γt, (6.99)

which comes straight from the properties of the Ito integral (Property 3)
discussed in Section 6.3.2. While the variance is given by,

V ar(Xt) =
σ2

2γ
e−2γt(e2γt − 1), (6.100)
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obtained from the Ito isometry property of the Ito integral (Property 5) dis-
cussed in Section 6.3.2. These two moments in Eqns. (6.99) and (6.100) can be
used to estimate the parameters, γ and σ. Once an estimate of γ is obtained
from Eqn. (6.99), it can be applied in Eqn. (6.100) to obtain an estimate for
σ.

A variant of the simple O-U process is the mean-reverting O-U process,
given to satisfy the following stochastic differential equation,

dXt = (µ−Xt)dt+ σdWt. (6.101)

A more general version of a mean-reverting O-U process is given by the
stochastic differential equation,

dXt = γ(µ−Xt)dt+ σdWt. (6.102)

For both models in Eqns. (6.101) and (6.102), we can find the explicit solution.
It is more convenient, however, to work with the moments of the process. It
can be shown that the mean, variance and covariance of the mean-reverting
O-U process are as follows,

E[Xt] = X0e
γt + µ(1− e−γt), (6.103)

V ar(Xt) =
σ2

2γ
e−2γt(e2γt − 1), (6.104)

Cov(Xs, Xt) =
σ2

2γ
(e−γ(t−s) − e−γ(t+s)), (6.105)

for s < t. These moments can be utilized by the method of moments to
generate estimates of the parameters, µ, γ, and σ.

6.7 MATLAB Tools for Building and Solving Models of
Risk

MATLAB mathematical software has a vast array of functions for working
with differential equations, where the emphasis is on deterministic differential
equations. The reader will benefit from browsing these functions and their
descriptions to improve their general grasp of differential equations. We list a
few of these functions here. As always, the reader is advised to look up the
extensive help documentation available with MATLAB to see the details of
these and other related functions. At the bottom of each function description
in MATLAB help documentation, look for ‘See Also’ to explore other related
functions. Resources such as MATLAB Primer [20] are also useful.

Deterministic differential equations: ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb, pdepe



194 Risk Management and Simulation

Calibrating models: polyfit, roots, fzero, fsolve, normlike, explike,
wbllike, lognlike

6.8 Summary

In this chapter, we developed the mathematical framework to define new
dynamic models of risk. These dynamic models of risk were constructed based
on a new integral, the Ito integral, and calculus developed for this new in-
tegral. Ito processes described in terms of the Ito integral offer versatility of
creating various continuous-time dynamic models of risk with desired prop-
erties. After constructing and defining the Ito integral and Ito processes, we
discussed analytical solution of Ito stochastic differential equations. In absence
of analytical solutions, numerical solutions can be sought for the stochastic
differential equations by means of simulation. We developed techniques for
solving stochastic differential equations using simulation, and evaluated the
performance of the simulated solutions. To complete the general discussion
of developing models for risk management, we concluded this chapter with
procedures for estimating model parameters. With this chapter we end our
general discussion of models to support risk management framework. For the
remaining chapters in the book, we will look at risk management problems of
specific types of risk.

6.9 Questions and Exercises

Review Questions

1. How are ordinary differential equations used for modeling dynamic
changes in a system? How are these models modified to incorporate
randomness arising in system behavior?

2. How is the Ito integral with respect to the Wiener process defined? How
does it differ from the Stratonovich integral?

3. In modeling using integrals with respect to the Wiener process, when is
it advised to use the Ito definition versus the Stratonovich definition?

4. What are the most important properties of the Ito integral? Discuss
each property for its implication.

5. What is the chain rule of Ito calculus? Why does the unexpected term,
1
2σ

2(t,Xt)
∂2f
∂x2 , appear in the chain rule?
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6. Discuss the properties of the following process for different values of
parameters, µ, σ.

St = S0 exp((µ−
1

2
σ2)t+ σWt). (6.106)

7. How is the Euler scheme applied to a deterministic ordinary differential
equation and to a stochastic differential equation?

8. What is local discretization error, and how does it compare with global
discretization error?

9. What is the definition of order of convergence of a numerical method for
solving an ordinary differential equation?

10. What is absolute error criterion for solution of a stochastic differential
equation? When should one use this criterion to judge the accuracy of
a method?

11. How does absolute error criterion compare with the mean error criterion?
When should one use the mean error criterion to judge the accuracy of
a method?

12. Discuss some of the higher order methods for solving stochastic differ-
ential equations, and when is it appropriate to use them.

13. Discuss some of the higher order methods for solving ordinary differential
equations. What are the orders of convergence of these methods?

14. What is the method of maximum likelihood for estimating parameters
of a model? What is the principle behind the method?

15. What is the quasi-maximum likelihood method for estimating parame-
ters of a model? When does this method work well?

16. Discuss how the method of moments is applied to estimate parameters
of a model.

Exercises

1. Show that the Ito integral of the square of the Wiener process is as
follows,

∫ t

0
W 2

s dWs =
1
3W

3
t −

∫ t

0
Wsds.

2. Solve the following model of a stock price evolution in MATLAB using
the Euler scheme in the interval, [0, 1]. Apply a higher order method to
solve the problem in order to obtain a better path-wise accurate solution.

dXt = γ(µ−Xt)dt+ σ
√
XtdWt, (6.107)

where µ = 30, σ = 1.5 and γ = 6.0; the initial value of the stock is
X0 = $32.
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3. Identify three time points in the interval, [0, 1], at which you must evalu-
ate the accuracy of the solution obtained in Problem 2. For different in-
creasing refinement of time-discretization, ∆t, compute point estimates
of the absolute error and confidence interval of absolute error. Comment
on how the absolute error changes with:

(a) the time points selected in the interval, [0, 1],

(b) improved refinement of the time-discretization, and

(c) the two different solution methods utilized.

4. Solve the following model for return evolution of a risky asset in MAT-
LAB using the Euler scheme in the interval, [0, 1]. Apply a higher order
method to solve the problem in order to obtain a better approximation
of some functional, such as E[ 1

Rt
], of the Ito process.

dRt = µe−Rtdt+ σR2
tdWt, (6.108)

where µ = 0.2, σ = 0.1; The initial value of return is R0 = 1.042.

5. Identify three time points in the interval, [0, 1], at which you must eval-
uate the accuracy of the solution in Problem 4. For different increasing
refinement of time-discretization, ∆t, compute point estimates of the
mean error and confidence interval of mean error. Comment on how the
mean error changes with:

(a) the time points selected in the interval, [0, 1],

(b) improved refinement of the time-discretization, and

(c) the two different solution methods utilized.

6. Download the daily closing price of your favorite stock for a duration of
a year. In MATLAB, write a function to calibrate the following model
using these data.

St = S0 exp((µ−
1

2
σ2)t+ σWt). (6.109)

The model may or may not be a good representation for your favorite
stock, however our goal here is to practice estimation of parameters.

7. Utilizing the data from the previous question, calibrate the following
model for evolution of the stock price.

dXt = γ(µ−Xt)dt+ σXtdWt. (6.110)
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Chapter 7

Managing Equity Market Risk

In the chapters thus far in the book, we have discussed the general notion of
risk and developed frameworks for the management of risks. We extensively
developed rigorous constructs for the modeling of risks of different types, and
developed methods for solving and analyzing these models. In this segment
of the book, we turn our attention to specific types of risks. We will develop
models for specific types of risks, with the objective of serving specific goals
of risk management for these risk types. Along the way, we will take advan-
tage of the contexts to further advance the development of risk management
frameworks for these risk types. We begin in this chapter with equity risk.

Stock of an enterprise as a way to finance the ventures of the enterprise
was an exciting financial innovation, and has been around for centuries. The
British and the Dutch East India Companies successfully embraced this fi-
nancing model to fund their risky voyages in the sixteenth and seventeenth
centuries. The modern corporation is where the financing model got more
comprehensively tested and has enjoyed much success. Shares of the stock of
a firm offer the possibility to general investors of bite-sized ownership of the
firm. Well-developed stock markets in the developed economies, and rapidly
developing ones in emerging markets, allow investors to acquire or relieve
themselves of the ownership stakes in these corporations.

Shares of a firm offer the exciting ownership proposition, but are designed
to have a residual claim on the firm’s assets. Therefore, the risks underlying
the firm’s projects and ventures are primarily borne by the equity holders. One
can only imagine the extremely wide range of risks a diverse range of firms
and their projects expose the investors to. Nevertheless, the enthusiasm for
investing in stocks of firms ranks high among asset classes, both by individual
and institutional investors. The justification for this high enthusiasm lies in the
potential of high returns for the shareholders, should the firms’ projects turn
out to be successful. From the comfort of the trading desk (or online brokerage
account) investors can partake in ownership stake in firms, provided they have
comprehended the risk-return prospect offered by the firm and its projects.

Analysis of equity valuation of a firm can be pursued on two threads, and
combinations thereof. The first thread comprises a fundamental approach,
hence ‘fundamental analysis,’ where an investor evaluates the firm’s financial
statements, current projects, and prospects of future project to assess the
equity valuation of the firm. The second thread of analysis takes a stand by a
version of efficient markets hypothesis, in the claim that markets are promptly
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incorporating available information for the firm into the firm’s stock price.
Technical analysis focuses on the trajectory of evolving stock prices of the
firm to project what the future trends, levels and risk of the stock price may
be.

In this chapter, we begin analysis of equity risk from the perspective of
the mitigate objective of risk management. In the process, we will develop
a rigorous framework for risk mitigation. The rest of the chapter will be de-
voted to developing methodologies for valuation and utilization of instruments
designed for transferring equity risk.

7.1 Mitigating Equity Risk

Investors expose themselves to equity risk in an attempt to take advan-
tage of the potential return they may receive from this investment. The precise
approach for how the investor may choose to determine the investment strat-
egy would depend on a variety of factors. The approach could be completely
subjective, based on the intuition the investor has developed for the markets,
sectors, industries and specific firms. Alternatively, the approach could be ob-
jectively driven, strictly by model-driven quantitative analysis set to respond
to stated goals of the investment strategy. More practically, the approach tends
to be a mix of model-driven quantitative analysis, complemented by expert
judgement and intuition of how the investment strategy may fare.

Unless the investment strategy is constructed entirely intuitively, the in-
vestor must explicitly state the goals of the investment strategy in order to
construct it. As discussed in Chapter 2, the risk preference versus aversion of
the investor guides the construction of risk measures. Risk measures may be
gainfully used to construct and state the investment objectives.

The other dimension by which an investment strategy is defined, which
may in fact require renaming the activity as a trading strategy, is the time
dimension. This is the frequency with which actions are expected to be taken
to respond to the risk-return profile of the investment assets to achieve the
investor’s desired objectives. The frequency can be low enough to be stated in
months or years, to high enough so as to be restricted only by the speed of light
traveling on communication networks for implementing trades. At the lowest
frequency, the investment strategy may be constructed in a static analysis;
however at the high frequencies, a dynamic analysis is inevitable. We begin
evaluating the process in the static setting.

7.1.1 Portfolio Diversification

Let W0 be the total resources or funds available for investment for a period
of time, [0, T ]. The investor must allocate the wealth among N stocks whose
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FIGURE 7.1: Plot of risk-reward trade-off of individual stocks. The combi-
nation of the individual stock helps mitigate the risk in the frontier.

T -period return is stochastic, depicting the risk underlying the investment.
A model-driven quantitative approach will require describing the T -period
return of the N stocks by an appropriately chosen model. Lets say the T -
period return of the ith stock is ri. If the investor chooses to invest wi fraction
of the initial wealth, W0, in the ith stock, the overall T -period return from
the investment, rπ, can be written in terms of wi and ri as follows.

rπ =

N∑
i=1

wiri, (7.1)

where the wealth at time, T , is given as, WT = (1 + rπ)W0.
The goal of mitigation or diversification of risk is to expose oneself to many

more risks, so that the joint impact of the risks is an improvement over each
individual risk. In order to achieve this goal, a precise measure of risk, as well
as reward, must be identified. In Figure 7.1, individual stocks are placed in
the graph for the risk-reward pairing they offer, along with the risk-reward
curve achievable by combining the stocks in order to mitigate the individual
risks.

7.1.1.1 Classical Mean-Variance Reward-Risk Measures

The classical portfolio theory, credited to Markowitz, Sharpe, Lintner, and
Mossin, chooses the mean of a portfolio return, E[rπ], for the reward measure
of risk, and variance of the return, V ar(rπ), as the risk measure. With this
selection of risk and reward measures, if the mean, variance, and covariance
information is known for the individual stock returns and all pairs of stock re-
turns, respectively, the portfolio measures can be conveniently created. These
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are given by applying Eqn. (2.12) in the more general form, as follows,

E[rπ] = µπ =
N∑
i=1

wiE[ri], (7.2)

V ar(rπ) = σ2
π = wTCov w, (7.3)

where w = [w1;w2; . . . , wN ] and Cov is the covariance matrix of stock re-
turns. Each entry of the covariance matrix must be constructed as, Cov(i, j) =
Cov(ri, rj).

In the mean and variance choice of reward-risk measures, it is possible
to easily demonstrate the benefit of risk mitigation. In Chapter 2, this was
displayed graphically (Figure 2.5). We now illustrate it mathematically, where
it suffices to show that going from one stock to two stocks helps reduce risk
without necessarily lowering the reward, or can improve reward without taking
on greater risk. The more general N stock case can be similarly illustrated by
considering portfolios of N − 1 stocks and N th stock.

Consider two stocks with T -period return of r1 and r2, respectively. The
investment weight for the first stock is w, while that of the second one is
(1−w). The correlation between the two stock returns is given by ρ. For any
w ∈ [0, 1], by applying Eqns. (7.2) and (7.3) to this case, we have the portfolio
mean return and variance of return given by,

E[rπ] = µπ = wE[r1] + (1− w)E[r2], (7.4)

σ2
π = w2σ2

1 + (1− w)2σ2
2 + 2ρw(1− w)σ1σ2, (7.5)

where σ2
1 = V ar(r1), σ

2
2 = V ar(r2). Without loss of generality, assume E[r1] ≤

E[r2] and σ2
1 ≤ σ2

2 . The other case of E[r1] ≤ E[r2] and σ2
1 ≥ σ2

2 can be
similarly illustrated, even though with such risk-reward profile, r1 appears to
be a rather undesirable stock.

For 0 < w < 1, we have E[r1] < E[rπ] < E[r2], since

E[rπ] = wE[r1] + (1− w)E[r2]

> wE[r1] + (1− w)E[r1] = E[r1], and (7.6)

E[rπ] = wE[r1] + (1− w)E[r2]

< wE[r2] + (1− w)E[r2] = E[r2]. (7.7)

Therefore, the reward from the portfolio exceeds that of one of the two stocks.
We now show that the risk of the portfolio is lower than the riskier stock.

σ2
π = w2σ2

1 + (1− w)2σ2
2 + 2ρw(1− w)σ1σ2

≤ w2σ2
2 + (1− w)2σ2

2 + 2ρw(1− w)σ2σ2

= 2(1− ρ)(w2 − w)σ2
2 + σ2

2 < σ2
2 , (7.8)

since 1− ρ > 0 and w2 − w < 0, as 0 < w < 1.
It is also worth noting how the portfolio reward and risk depend on the
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correlation between the two stocks. As seen in Eqn. (7.5), the portfolio reward,
i.e., mean return, does not depend on the correlation between the stocks.
Variance of portfolio return, however, depends on the correlation, and for the
correlation range of −1 ≤ ρ ≤ 1, we can determine the lower and upper bound
of portfolio risk. For any portfolio weight, w, if correlation between stocks is
perfect, i.e., ρ = 1, we have,

σ2
π = w2σ2

1 + (1− w)2σ2
2 + 2w(1− w)σ1σ2

= (wσ1 + (1− w)σ2)
2. (7.9)

Therefore, the standard deviation of the portfolio return is a linear combi-
nation of the standard deviation of return of the individual stocks. For any
investment weight, w, this is the upper bound on the portfolio risk. Similarly,
if the two stocks have a perfect negative correlation, i.e., ρ = −1, we obtain
the lower bound on portfolio risk for any investment weight.

σ2
π = w2σ2

1 + (1− w)2σ2
2 − 2w(1− w)σ1σ2

= (wσ1 − (1− w)σ2)
2. (7.10)

For a specific choice of investment weight, in presence of perfect negative cor-
relation, it is possible to make the standard deviation (or variance) of portfolio
return to be zero. This weight choice is obtained by equating Eqn. (7.10) to
zero, as w∗ = σ2

σ1+σ2
. In reality, a perfect positive or negative correlation

between stocks is hard to find. Therefore, these bounds remain theoretical
bounds, that one can attempt to approximate, but not exactly achieve.

In Figure 7.2, we depict the feasible region in a mean-standard deviation
plot of reward-risk as it depends on the investment weight and correlation
between the two stocks. Perfect correlation, negative and positive, defines the
borders of the region.

7.1.1.2 Dynamic Investment Strategy

From the static, single-period case discussed thus far, we move to the
consideration of dynamic investment strategies. If the total resources available
for investment initially are W0, the investor must allocate the wealth among
N stocks. Now instead of making one decision for investments for a T -period
horizon, the intention is to make a sequence of decisions. At certain time
points, T , in the T -period of time, the investor must determine the investment
weights for the N stocks. The time points can be discrete, 0 ≤ t0 < t1 <
. . . < tM = T , or a continuum, [0, T ]. The dynamic investment decisions are,
{wi(t)|t ∈ T }.

As in the static case, a model-driven quantitative approach will require
describing the price or return evolution of the N stocks by an appropriately
chosen model. Let’s say the initial price per share of the N stocks is given by,
Si(0). We will utilize the modeling approach developed in Chapter 6 for the
price evolution of the N stocks. Each of the N stock’s price evolves by the
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FIGURE 7.2: Plot of mean and standard deviation of two stock returns.
The correlation of ρ = 1 and −1 define the right and left extents of the region,
respectively.

following stochastic differential equation model,

dSi(t) = µiSi(t)dt+ σiSi(t)dBi(t), (7.11)

where the N Wiener processes or standard Brownian motion processes, Bi(t),
are correlated. We employ a different notation for the Wiener process in this
section, in order to reserve ‘W ’ for the wealth process. The correlation between
the N Wiener processes can be described by,

E[dBi(t)dBj(t)] = ρijdt for i = 1 . . . N ; j = 1 . . . N. (7.12)

The parameter ρij is the correlation coefficient between increments of Wiener
processes Bi(t) and Bj(t), with ρii = 1 for all i = 1 . . . N .

If the investment weight for the ith stock at a time, t, is maintained at,
wi(t), then we can derive that the wealth, W (t), will accumulate or evolve by
the following equation:

dW (t) =
N∑
i=1

wi(t)W (t)(µidt+ σidBi(t). (7.13)

If wi(t)’s are Ft-adapted, then W (t) is also Ft-adapted, where Ft is the fil-
tration of the N Wiener processes, {Bi(t); 0 ≤ i ≤ N}. Moreover, if the fund
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intends to maintain a withdrawal rate of C(t) as part of this investment strat-
egy, for either immediate consumption or for running expenses, the wealth
evolves by the following model,

dW (t) = −C(t)dt+
N∑
i=1

wi(t)W (t)(µidt+ σidBi(t). (7.14)

Once the wealth evolution based on an investment strategy is defined, as in
Eqns. (7.13) or (7.14), various investment strategies can be evaluated and
compared for selection of the ‘best’ one. Simulation of the wealth evolution
model in Eqns. (7.13) or (7.14) can be an alternative for this task, utilizing
the discretization based simulation schemes developed in Chapter 6. Apply-
ing the simplest Euler scheme to Eqns. (7.13) and (7.14), respectively, with
discretization, 0 = t0 < t1 < . . . < tM = T , yields,

W (tk+1) = W (tk) +
N∑
i=1

wi(tk)W (tk)(µi∆tk + σi∆Bi(tk), (7.15)

W (tk+1) = W (tk)− C(tk)∆tk +
N∑
i=1

wi(tk)W (tk)(µi∆tk + σi∆Bi(tk), (7.16)

for k ≥ 0, where W (t0) = W0, wi(tk) are the investment weight decisions
made for ith stock at time, tk, and as usual, ∆tk = tk+1 − tk and ∆Bi(tk) =
Bi(tk+1)−Bi(tk). As done for the static mean-variance risk-reward framework,
assessment of an investment strategy must also be done against the goals
set for the investment strategy. Once the investment strategies’ performance
metrics are set, one can seek to do the best one can by them. We explore this
next.

7.1.2 Portfolio Optimization

The goal of risk mitigation is to reduce risk. However, in the process of risk
reduction, risk optimization can seek the best risk-reward profile to adopt in an
investment strategy. For constructing the best risk-reward trade-off, one must
first clearly define the criteria for ‘best’, followed by developing a method-
ology for seeking the best option. Moreover, the approach should be able to
accommodate the mix of subjective and objective views of the investor for
the markets, sectors, industries, and specific firms, while allowing definition
of risk measures suitable for the investor’s risk management objectives. We
advance the development of this section thus far to construct portfolio opti-
mization frameworks for optimal risk-reward trade-off, both in the static and
the dynamic case.

7.1.2.1 Optimum Risk-Return Trade-Off

The classical mean-variance framework, developed in Section 7.1.1.1, views
risk of a portfolio as the variance of the portfolio return, defined in Eqn. (7.3).
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The reward is captured by the expected or mean portfolio return for the
period, given by Eqn. (7.2). Expressed as a function of portfolio weights,
w = [w1;w2; . . . , wN ], variance of portfolio return is an N -dimensional
quadratic function, while expected portfolio return is an N -dimensional linear
function, provided the parameters in the two equations, µi’s and Cov(i, j)’s,
are identified.

An optimum risk-return trade-off can be constructed by selecting portfolio
weights that minimize portfolio risk, while not letting the expected portfo-
lio return fall below a certain chosen threshold, rth. This optimum portfolio
weight selection problem can be summarized in the following quadratic pro-
gramming optimization problem.

Obj : minV ar(rπ) = wTCov w, (7.17)

S.t. : E[rπ] =

N∑
i=1

wiE[ri] ≥ rth,

N∑
i=1

wi ≤ 1. (7.18)

The final constraint in Eqn. (7.18) should be added to retain feasibility re-
garding the funds invested in all stocks to not exceed the initial funds, W0,
available.

The above risk-reward trade-off problem is the simplest statement for the
problem, with portfolio weights, w = [w1;w2; . . . , wN ], left free to take any
value, provided they satisfy the constraint in Eqn. (7.18). Therefore, the port-
folio weights can be negative, implying that the investor is allowed to borrow
or short-sell any stock to any capacity. Unlimited level of short-selling of stocks
may neither be permitted nor desirable, therefore lower bounds, li, will be in-
troduced for each portfolio weight, wi, in the portfolio optimization problem.
When no short-selling is permitted, lower bound will be set at zero, i.e., li = 0,
for each i.

Solution of a quadratic programming problem given in Eqns. (7.17)-(7.18)
can be obtained numerically using any standard optimization software, in-
cluding the optimization toolbox in MATLAB, with suggestions for specific
functions provided in Section 7.4. Figure 7.3 shows the minimum risk of the
optimum portfolio, σ∗

th, corresponding to the choice of expected portfolio re-
turn threshold, rth. A range of expected return thresholds chosen generates
the ‘efficient frontier ’ of optimum risk-return trade-off portfolios.

Variance is a central measure of risk, and as discussed in Section 2.2.1, due
to squaring of deviations from the mean, it gets heavily influenced by extreme
observations. This can be a concern if there are outliers present in the histori-
cal data used to estimate variance of equity returns for portfolio construction.
Alternative central measures of risk, such as mean-absolute deviation, can be
considered to alleviate this concern, if the investor’s risk management objec-
tives must be defined in terms of a central measure of risk. The advantage of
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FIGURE 7.3: Plot of mean and standard deviation space spanned by return
on portfolio of stocks. For a choice of expected portfolio return threshold,
the optimum risk-return trade-off is made on the left most feasible points.
The dashed curve is the efficient risk-return trade-off points, or the efficient
frontier.

using mean-absolute deviation as the objective in Eqn. (7.17) is also that the
portfolio optimization problem can be formulated as a linear programming
problem.

When portfolio return is anticipated to not have a symmetric distribution,
the characteristics of the upper tail of the portfolio return distribution can be
quite different from that of the lower tail. Variance or other central measures
of risk tend not to differentiate between positive and negative deviations from
the mean (or other central tendencies chosen, such as the median). Therefore,
these measures of risk would penalize both positive and negative deviations
from the central tendency in the portfolio construction.

Empirical evidence for equity returns shows asymmetry in their distribu-
tions, therefore an un-diversified or ‘lumpy’ portfolio will retain the asym-
metry in its return distribution. In such cases, tail measures of risk may be
considered more appropriate to capture the adverse scenarios. Risk-reward
trade-off can be considered by combining semi-variance or semi-absolute devi-
ation versus mean of portfolio return. Mean versus Value-at-Risk (VaR) and
mean versus Conditional VaR (CVaR) portfolio optimization have also been
considered [71, 1, 2]. In the cases when the normal distribution provides a
good representation of the portfolio return distribution, a direct relationship
between mean-variance efficient frontier and the mean-VaR or the mean-CVaR
efficient frontiers can be established.
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7.1.2.2 Simulation Analysis for Portfolio Decisions

When mean-variance is used as the definition of reward and risk, respec-
tively, expected return and variance of portfolio return can be computed ex-
plicitly using the formulas given in Eqns. (7.2) and (7.3), provided individual
stock mean return and pair-wise covariance of equity returns were known.
Moreover, as stated earlier, if the normal distribution provides a good repre-
sentation of the portfolio return distribution, the central or tail measure of
risk can be explicitly expressed in terms of mean and variance of portfolio
return. In all other cases, simulation can prove to be useful to assess the risk
and reward of a portfolio.

In the general distribution case, where return of each stock is governed by
a chosen distribution that best fits the historical observations for the stock,
generating random variates by the chosen distribution provides scenarios for
future equity returns for each stock. Procedures for generating random vari-
ates by different distributions were described in Chapter 4. For a given choice
of portfolio weights, w = [w1;w2; . . . , wN ], the individual stock return scenar-
ios can be combined to create portfolio return scenarios, rπ. Estimates of the
reward-risk measures for the portfolio can be constructed based on these sce-
narios, with sufficiently large sample of scenarios providing desired accuracy.
Confidence intervals created at a certain confidence level for the risk-reward
measure estimates provides an indication of the accuracy.

An additional issue with mean-variance portfolio optimization, or any
other parametric set-up for the risk-reward trade-off, is how reliable are the
parameters used to state the problem. The optimum risk-reward trade-off
obtained as the outcome of portfolio optimization is a function of these pa-
rameters, and a reliable implementation of the portfolio optimization results
must ascertain that the decisions don’t significantly change due to a small
perturbation of the parameters. As the parameters are typically estimated
based on historical return data, they are in fact prone to be imprecise.

Simulation analysis can help assess the parametric impreciseness for their
impact on the portfolio risk-reward characteristics. Historical data available
can be used to assess degree of parametric preciseness, through confidence
intervals on accuracy of estimates for the parameters, as well as guided by the
subjective view of how well the investor believes the past is representative of
future stock returns. Parametric scenarios thus generated can feed into stock
return random variates generation to eventually create portfolio return sce-
narios for given portfolio weights, w = [w1;w2; . . . , wN ]. As before, portfolio
return scenarios can be used to create risk-reward assessments of the portfolio.
Figure 7.4 shows this tiered assessment of portfolio risk-reward characteristics.

Simulation analysis can provide insights in case of parametric uncertainty
and in attempts to incorporate investor-specific views about the parameters in
portfolio construction and analysis. However, more rigorous approaches exist
that are developed for specifically addressing both these cases. Techniques in
robust portfolio optimization develop rigorous optimization frameworks that
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FIGURE 7.4: Simulation analysis of risk-reward of a portfolio based on
equity returns scenarios and parametric scenarios.

integrally incorporate parametric uncertainty in the process of determining
optimal portfolio weights. Construction of ‘robust’ portfolios using such frame-
works has been an active and rapidly growing area, with an excellent summary
provided in Fabozzi et al. [23].

On the other hand, investors often have independent, proprietary views
for future stock returns. Black-Litterman portfolio framework [12] was cre-
ated to incorporate these views, or ‘priors’, as an extension to the traditional
Markowitz’s mean-variance portfolio optimization framework. Such extensions
follow the Bayesian learning view of formulating the portfolio optimization
problem, that combines the long-term, short-term and investor-specific views
into the portfolio construction process [92].

Finally, in Section 7.1.1.2, we presented the models for developing dynamic
investment strategies. The aspects of portfolio analysis and optimization we
have investigated so far in the single-period static case can be extended to
the dynamic case. The simulation methodologies developed in Chapter 6 for
models of risk evolving over time are applied to evaluate dynamic investment
strategies. The risk-reward of the strategy must also be assessed in a dynamic
manner, or if the context of the investment justifies, at the planning horizon.
Utility function based performance measures, discussed in Chapter 2, can be
constructed to evaluate the investment strategies. For instance,

U(W ) =

∫ T

0

E[u(W (t))], (7.19)

where in the notation of Section 7.1.1.2, W (t) is obtained as a result of invest-
ment decisions, wi(t), for each stock. The optimal investment strategy will be
obtained that maximizes the utility, U(W ).

In this section we have examined the ways by which simulation analy-
sis aids portfolio decisions for the purpose of risk mitigation. In Chapter 12,
simulation-based optimization, or simply simulation optimization, will be de-
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veloped that can be applied for performing single-period and dynamic portfolio
optimization.

7.2 Transferring Equity Risk

Along with a high level of interest in equity investment comes the high
level of need to transfer equity risk to carve out the desired risk-reward char-
acteristics for the investment. Equity options, and generally equity derivatives,
constitute key risk transfer instruments for equity market risk. Moreover, as
residual claim on a firm’s assets and profits from the firm’s projects and ven-
tures, the risks underlying shares of the stock of the firm are high. As discussed
earlier, the enthusiasm for investing in stocks of firms ranks high among asset
classes nevertheless, both by individual and institutional investors. Investors’
high enthusiasm arises from the potential of high returns from equity invest-
ment. In this regard, beyond simply investing in the shares of the firm’s stock,
equity options allow a higher degree of speculation on a firm’s future prospects.
We will discuss these roles of equity options in detail in this section, along with
making equity options a context for developing a theoretical framework for
derivative pricing and hedging strategies.

The simplest of equity options are plain-vanilla European call and put
options. A European call option gives the buyer of the option the right (and
seller the obligation) to buy (sell) the underlying stock, St, at a set price, K,
at a set time, T , in the future. The time T is called the maturity of the option
and K is the exercise or strike price. Similarly, a European put option gives
the buyer the right to sell the underlying stock at a set price, K, at a set time,
T , in the future. The right to buy or sell the underlying stock is obtained
by paying a premium, which is the price of the option. We will utilize these
simple options as the context for developing a derivative pricing framework
in Section 7.2.1. Pricing derivatives is crucial to developing risk transfer or
hedging strategies.

The ‘plain-vanilla’ adjective is applied to distinguish these simplest options
from more exotic ones that allow different kinds of transactions with respect
to the underlying stocks. Once we have developed the analysis of pricing of
plain-vanilla European options, we will extend the analysis in the coming
sections to the exotic variety of options. Plain-vanilla American options are
counterparts of corresponding European options, which give the buyer of the
option the flexibility to exercise the option, i.e., buy or sell the underlying
stock, at any time prior to maturity of the option, T . This order of developing
analysis of types of options is inconsistent with their popularity and trading
volume. In fact, the exchange traded equity options on single stocks are of
American variety, hence command a dominant trading volume among a va-
riety of options. After exploring a variety of options in this section, with the
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motivation of obtaining more accurate equity option prices, we will consider
a few modeling enhancements for the underlying equity prices.

7.2.1 Option Pricing - Black-Scholes-Merton Approach

Let St be the price of a share of the stock of a firm; we need to describe in
a model how the stock price may evolve with time. We are interested in being
able to represent the price evolution of the stock in a time period relevant for
the equity option we wish to price, hence up to the maturity of the option, T .
At maturity of the option, given that it is a plain-vanilla European option, the
pay-off in the case of a call option can be written as, max(ST −K, 0), while
in the case of a put option can be written as, max(K − ST , 0). At maturity
of the option, a rational investor will exercise the option only if purchase (or
sale) price, i.e., the strike price K, is attractive relative to the market price of
the stock at the time of maturity, i.e., ST .

Based on whether the option is in the attractive range, that is if one had
the flexibility of exercising it immediately, if it is worth exercising, the option is
said to be ‘in-the-money ’. In the case of a European call option, this coincides
with St > K scenario, while for the corresponding put option, option is in-
the-money if St < K. In the unattractive zone, which is St < K for call option
and St > K for put option, the option is said to be ‘out-of-the-money ’. At
the transition point, the option is said to be ‘t-the-money ’, i.e., St = K. In
any scenario, option premium is the price for buying the option, denoted by
c(t, St) in the case of a call option, and p(t, St) in the case of a put option. We
have assumed that option premium must change with time, as well as depend
on the price of the underlying stock.

Price of an option, or option premium, should depend on other factors also,
such as the strike of the option, time to maturity of the option, etc. As we
develop the option pricing framework, we will learn that the option premium
does depend on these and some other parameters. From the moneyness of an
option, which is its current status of either being in-the-money, at-the-money,
or out-of-the-money, it may be concluded that the option premium should at
least be as much as the moneyness of the option at any time, in other words,
c(t, St) ≥ max(St −K, 0), for all t in the case of a call option. In the case of
an American option, this is very evident. For European options, being in-the-
money at any time provides a stronger prospect of remaining in-the-money at
the same or greater level at maturity. Hence, a commensurate premium. This
implies that even some out-of-the-money options will command a non-zero
premium when there is still some time to maturity for the prospect that at
maturity they may turn in-the-money.

If an investor purchases a call option at t0 for c(t0, St0) or a put option
for p(t0, St0) with a strike price, K, and maturity, T , the pay-off of the option
at maturity is shown in Figure 7.5. The option doesn’t yield positive profit
as soon as the option turns in-the-money at maturity when one accounts
for the option premium paid. The option profit curve, also drawn for both
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FIGURE 7.5: (a) Display of pay-off and profit curve for a plain-vanilla Eu-
ropean call option with strike price, K=$80. (b) Display of pay-off and profit
curve for a plain-vanilla European put option with strike price, K=$80.

call and put options in Figure 7.5, is max(ST −K, 0) − c(t0, St0) for the call
and max(K − ST , 0) − p(t0, St0) for the put option, if time-value of money
is ignored for the option premium. It is also instructive to see the pay-off
and profit curve from the perspective of the seller or writer of the options,
as shown in Figure 7.6. This is also called a short position in the call or the
put option. From the figure, it is evident why a writer of an option will be
motivated to take a short position in the option; it provides the opportunity of
a positive profit with no further cash flow in all cases when the option matures
out-of-the-money, at-the-money and slightly in-the-money.

Figures 7.5 and 7.6 provide the value of the European options at maturity,
c(T, ST ) = (ST − K)+ in the case of a call option, and p(T, ST ) = (K −
ST )+ in the case of a put option. We have utilized an alternative notation
of max(x, 0) = x+ here, which we will use interchangeably in the rest of this
section. The central goal here, however, is to develop a formal framework to
determine the option premium for any time, 0 < t < T . One may be tempted
to price an option by applying the net present value concept, i.e., price of the
option should be the discounted expected cash flow at maturity, given by,

c(t, St) = E[e−α(T−t)(ST −K)+]. (7.20)

One of the problems with this approach is which discount rate, α, to use for the
present value computation. For instance, if everyone applied their respective
opportunity costs of capital for discount rate, there would be no agreement
on trading price of the option. Therefore, for pricing derivatives we need to
develop an alternative to the net present value framework.

We will develop the alternative asset valuation framework in an idealized
economy, which will serve as a theoretically sound setting for discovering the
fair value of an equity option. In this idealized economy, continuous trading
of underlying stock and the equity option will be possible. There will be no
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(a) Short position in a Call Option
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FIGURE 7.6: (a) Display of pay-off and profit curve for a short position in
a plain-vanilla European call option with strike price, K=$80. (b) Display of
pay-off and profit curve for a short position in a plain-vanilla European put
option with strike price, K=$80.

transaction cost associated with the trades. Moreover, the economy will allow
risk-free short-term borrowing and lending at the same rate.

In this idealized economy, the price of the stock, St, will be modeled to
evolve by the following stochastic differential equation model.

dSt = µ(t, St)dt+ σ(t, St)dWt, (7.21)

where Wt is the standard Wiener process and Ft is its filtration. We have
extensively studied the definition and simulation-based solution methods for
such models in Chapter 6. For the special case of µ(t, St) = µSt and σ(t, St) =
σSt, we also derived the exact solution of the model in Section 6.4. The solution
obtained was as follows,

St = S0 exp((µ−
1

2
σ2)t+ σWt), (7.22)

where S0 is the initial or current price of the stock. The value of a risk-free
short-term bond, Bt, was also modeled in Chapter 6 to evolve by the following
deterministic differential equation model.

dBt

dt
= rBt, (7.23)

where ‘r’ is the continuously compounded interest rate. The solution of this
deterministic differential equation was obtained as,

Bt = B0e
rt, (7.24)

where B0 is the initial value of the risk-free bond.
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Since the equity option is a derivative defined on the underlying stock,
price risk for the equity option is dictated by the price risk of the underlying
stock. Therefore, it is possible to create a portfolio of investment in the stock
and the stock option that is instantaneously risk-free. If this portfolio can
be dynamically adjusted, it can be continuously maintained to be risk-free,
where stock option position perfectly offsets the risk of the stock price. Let’s
construct such a portfolio, Π(t), as follows.

Π(t, St, c(t, St)) = w1c(t, St) + w2St, (7.25)

where we have arbitrarily set the weights of equity option and the stock at
w1 and w2, respectively. If we consider constructing the portfolio from the
option writer’s perspective, we would set w1 = −1, or from the option buyer’s
perspective, we would set w1 = +1. Let us proceed from the former perspec-
tive, with the knowledge that from the option buyer’s perspective the opposite
positions will be required.

In order to determine the weight on the stock in the portfolio, so that
the portfolio becomes instantaneously free of risk, we need to utilize the Ito
formula developed in Section 6.3.3 and apply it to the option price, c(t, St).
By the application of the Ito formula, we obtain that the option price must
evolve by the following equation.

dc(t, St) = (
∂c

∂t
+ µ(t, St)

∂c

∂x
+

1

2
σ2(t, St)

∂2c

∂x2
)dt+ σ(t, St)

∂c

∂x
dWt. (7.26)

We have utilized the notation ‘ ∂c∂x ’ simply to indicate that the partial derivative
of function, c(t, St), is with respect to the spatial (second) coordinate, x, even
though the spatial coordinate in this case is the stock price, St. If we want
the portfolio, Π(t), to evolve risk-free, the diffusion terms in Eqns. (7.21) and
(7.26) should match, and cancel each other. This implies that the portfolio
weights for the portfolio, Π(t, St, f(t, St)), must be selected as follows.

c(t, St) : −1 (7.27)

St :
∂c

∂x
. (7.28)

With this choice of portfolio weights assigned to the equity and equity option
in the portfolio, the portfolio becomes,

Π(t, St, c(t, St)) = −c(t, St) +
∂c

∂x
St. (7.29)

We again apply the Ito’s formula to examine how the portfolio,
Π(t, St, f(t, St)), evolves in time. We obtain,

dΠ(t, St, c(t, St)) =
∂c

∂x
dSt − dc(t, St) (7.30)

= −(∂c
∂t

+
1

2
σ2(t, St)

∂2c

∂x2
)dt. (7.31)
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By using two risky instruments, albeit one being a derivative of the other,
we have successfully created a portfolio that evolves risk-free. As we stated
earlier, in this economy a risk-free bond is already available to investors. A
second risk-free instrument, in the form of the portfolio just constructed, cre-
ates an opportunity for investors. If either of the two risk-free investments,
namely the risk-free bond and risk-free portfolio constructed, provides better
return, investors can borrow as much as possible of the lower return risk-free
instrument and invest in the higher return risk-free instrument, thus creating
unbounded amounts of profit. Clearly such ‘free-lunch’ can’t be available for-
ever, since either of the two counterparties will wise up and change prices to
eliminate the ‘free-lunch’. In other words, when everyone attempts to profit
from this free-lunch opportunity, prices will move in directions that eliminate
the availability of two risk-free interest rates. Therefore, in equilibrium such
profits will not be available, which gives us a relation for the constructed port-
folio to satisfy. We take a pause to define such ‘free-lunches’, which is called
an arbitrage.
Arbitrage:. Any trading strategy that allows the possibility of gaining pos-
itive cash flows now or in the future, with no net liabilities now or in the
future, is an arbitrage. This clearly sounds like ‘free-lunch’. Arbitrage profits
are possible when two or more securities are mispriced with regards to fun-
damentals that relate the prices of the securities. In the above discussion, the
fundamental relationship between equity price, equity option price and risk-
free interest rate offers an opportunity for arbitrage profits due to mispricing.
If two different investments or trading strategies produce the exact same pay-
off, they must also cost the same, failing which arbitrage can be constructed.
On the basis of this principle, we will soon consider a relationship between
vanilla European call option price and put option price with the same strike
and maturity, called the put-call parity.

Mathematically, the notion of arbitrage can be summarized as a trading
strategy yielding a portfolio, Ψ(t), where the initial value of the portfolio is
Ψ(0) = 0. However, at some time T in future, the strategy yields a portfolio
value Ψ(T ), such that, P (Ψ(T ) ≥ 0) = 1 and P (Ψ(T ) > 0) > 0. Therefore, this
portfolio has no liability now or in the future, but offers a positive probability
of positive gain in the future.

Arbitrage-free price of the option, as concluded from the above discussion,
should imply that the risk-free portfolio, Π(t, St, c(t, St)), constructed by ap-
propriately choosing positions in the stock and equity option, should evolve
at the risk-free rate. In the idealized economy with risk-free borrowing and
lending available for the same rate, r, in order to eliminate arbitrage oppor-
tunities, the risk-free portfolio should evolve at the economy’s risk-free rate,
r. Therefore, in addition to Eqn. (7.31), an alternative formula the portfolio,
Π(t, St, c(t, St)), can be described to evolve by is,

dΠ(t, St, c(t, St)) = rΠ(t, St, c(t, St))dt. (7.32)

We combine the two definitions for evolution of the portfolio, Π(t, St, c(t, St)),



216 Risk Management and Simulation

in Eqns. (7.31) and (7.32) to obtain,

−(∂c
∂t

+
1

2
σ2(t, St)

∂2c

∂x2
)dt = r(−c(t, St) +

∂c

∂x
St)dt, (7.33)

or

(
∂c

∂t
+

1

2
σ2(t, St)

∂2c

∂x2
+

∂c

∂x
rSt − rc(t, St))dt = 0. (7.34)

Now Eqn. (7.34) should be true for any arbitrary choice of small time incre-
ment, dt. This will be the case if in fact the option price, c(t, St), satisfies the
following partial differential equation.

∂c

∂t
+

1

2
σ2(t, St)

∂2c

∂x2
+ rSt

∂c

∂x
= rc(t, St). (7.35)

This is the Black-Scholes Partial Differential Equation (PDE) for op-
tion pricing. For solving this partial differential equation, we will also need
to specify an end condition, which describes what is known about the option
price at maturity of the option. The end condition in the case of a vanilla
European call option will be give by,

c(T, ST ) = (ST −K)+. (7.36)

We have developed the derivation of pricing of options using European call
option as the reference equity derivative, however we could have equally well
taken European put option, p(t, St), as the demonstrative example. In this
case, the portfolio would require a short position in the put option and a posi-
tion ∂p

∂x in the stock. The rest of the derivation would proceed exactly as done
for the European call option, with European put option price, p(t, St), satis-
fying the exact same partial differential equation, with one crucial difference.
The end condition we would use for the European put option would be,

p(T, ST ) = (K − ST )+. (7.37)

There is however an easier way available to find the European put option price
once one has obtained the price of a call option of the same strike price and
maturity. This is done by utilizing the following put-call parity.

c(t, St) +Ke−r(T−t) = p(t, St) + St. (7.38)

As stated earlier, the principle behind existence of the put-call parity is elimi-
nation of arbitrage. We will examine this further in Section 7.3, in the context
of hedging (and arbitrage) strategies.

7.2.1.1 Solving Black-Scholes Partial Differential Equation

For solving the Black-Scholes partial differential equation, with the chosen
end condition, we must invoke the Feynman-Kac theorem. For a process
satisfying,

dSt = rStdt+ σ(t, St)dWt, (7.39)
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a measurable function h(y) and fixed time T > 0, we define g(t, x) =
E[e−r(T−t)h(ST )|St = x], then g(t, x) satisfies

∂g

∂t
+

1

2
σ2(t, x)

∂2g

∂x2
+

∂g

∂x
rx = rg(t, x), (7.40)

with terminal condition,

g(T, x) = h(x), ∀x. (7.41)

Applying the Feynman-Kac theorem gives us the Black-Scholes solution
for call option price to be,

c(t, St) = E[e−r(T−t)h(ST )|St], (7.42)

where in the case of European call option with strike, K, h(ST ) = (ST −K)+.
The stock prices, St, satisfies the following Ito stochastic differential equation,

dSt = rStdt+ σ(t, St)dWt. (7.43)

One should observe two important points, first Eqn. (7.42) holds stark
resemblance with Eqn. (7.96), however the discount rate used in Eqn. (7.42)
is the risk-free rate. Second, the model to evolve the price of the underlying
stock in Eqn. (7.43) for computing the option price has changed from the
original model in Eqn (7.21). We will come back to discuss both these points
later in this section.

We have done the entire derivation for option pricing in quite a general
case, where the Feynman-Kac theorem is applied to a general cases of drift,
µ(t, St), and diffusion, σ(t, St), terms appearing in the underlying equity price
evolution model. If specific simple cases are picked for drift and, more impor-
tantly, diffusion, the price can be more explicitly determined. We consider the
case of a simpler diffusion term, σ(t, St) = σSt, in order to derive the well-
known Black-Scholes option price formula. The European call option price is
given by,

c(t, St) = E[e−r(T−t)(ST −K)+|St], (7.44)

with stock price evolving by the following equation,

dSt = rStdt+ σStdWt, (7.45)

or,

St = S0 exp((r −
1

2
σ2)t+ σWt). (7.46)

Once the exact solution of Eqn. (7.46) is substituted in Eqn. (7.44), after
many steps of derivation utilizing the log-normal distribution of stock price
at T , we obtain the call option price to be,

c(t, St) = StΦ(d1)−Ke−r(T−t)Φ(d2), (7.47)
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FIGURE 7.7: (a) Display of pay-off and price curve for a plain-vanilla Eu-
ropean call option with strike price, K=$35, σ = 23%, T − t = 1/2 year, and
short-term interest rate of r = 2%. (b) Display of pay-off and price curve for
a plain-vanilla European put option with the same set of parameters as the
call option.

where Φ(x) is the cumulative distribution function of the standard normal
distribution (N(0, 1)), and

d1 =
ln(St

K ) + (r + σ2

2 )(T − t)

σ
√
T − t

, (7.48)

and

d2 =
ln(St

K ) + (r − σ2

2 )(T − t)

σ
√
T − t

, (7.49)

= d1 − σ
√
T − t. (7.50)

Applying the put-call parity given in Eqn. (7.38) provides the price of the
corresponding put option as,

p(t, St) = Ke−r(T−t)Φ(−d2)− StΦ(−d1), (7.51)

where d1 and d2 are as defined in Eqns. (7.65) and (7.66), respectively.
For the interested reader, we formally state the Feynmann-Kac theorem

in a somewhat more general form. The version below is for a single spatial
dimension, however the theorem can be extended to multiple spatial dimen-
sions, which we will utilize in some cases later in the chapter. For the devel-
opment of the proof of the theorem, the reader should refer to Oksendal [68]
or Shreve [81].
Feynmann-Kac theorem: Given a partial differential equation,

∂g

∂t
+

1

2
σ2(t, x)

∂2g

∂x2
+ r(t)x

∂g

∂x
= rg(t, x), (7.52)
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where r(t) is time-dependent interest rate and the terminal condition is given
by,

g(T, x) = h(x), ∀x, (7.53)

for a measurable function h(x) and fixed time T > 0, a function g(t, x), defined
as follows is a solution.

g(t, x) = E[e−
∫ T
t

r(s)dsh(ST )|St = x], (7.54)

where St satisfies the following stochastic differential equation,

dSt = r(t)Stdt+ σ(t, St)dWt, (7.55)

with S0 given to be a constant.

For the proof of this result, the reader may refer to Oksendal [68].
We have developed the option pricing using the partial differential equa-

tions framework. An alternative pricing framework for an option, which uti-
lizes probabilistic constructs instead of partial differential equations, can also
be developed. This is developed by constructing an equivalent martingale mea-
sure (EMM) by the application of the Girsanov theorem, and obtains the
option price in a similar form as in Eqn. (7.42) under the EMM. For more
details, please refer to Shreve [81].

7.2.1.2 Estimating Option Price by Simulation

The option pricing formula given in Eqn. (7.42) is useful, but to determine
the actual numeric value of the price, some additional work is required. In
the case of a simple choice of diffusion coefficient, i.e., σ(t, St) = σSt, we
were able to obtain the exact pricing formula, as given in Eqn. (7.64). For
other more general diffusion coefficients, σ(t, St), one would have to either
analytically resolve Eqn. (7.42) or apply simulation to obtain estimates of the
option price.

The algorithm for simulation-based option price estimation will have the
following structure in the case σ(t, St) = σSt.

For i=1:n
Generate Zi ∼ N(0, 1);

Si(T ) = S0 exp((r − σ2

2 )T + σ
√
TZi);

Ci = e−rT max(Si(T )−K, 0);
End
Ĉ(n) =

∑n
i=1 Ci

n ;

This may in itself not be so useful, since in this case the exact formula for
the option price is known analytically. This simulation, however, provides the



220 Risk Management and Simulation

opportunity to test the accuracy of the simulation relative to the theoretical
price. In the above algorithm, Ĉ(n) is an estimator for the option price. As
we know, for any estimation task, constructing a confidence interval around
the estimate is essential to highlight the accuracy of the estimate. Confidence
interval for a (1 − α)100% confidence level will be obtained by adding the
following steps to the above algorithm.

σ̂C = standard deviation of Ci’s;
α = 0.05;
zα/2 = Inverse of Normal Distribution(α/2, N(0, 1));

Ĉl(n) = Ĉ(n) + zα/2
σ̂C√
n
;

Ĉu(n) = Ĉ(n)− zα/2
σ̂C√
n
;

The (1−α)100% confidence interval for the option price, (Ĉ(n)±zα/2
σ̂C√
n
),

can be compared with the analytical price of the option obtained from
Eqn. (7.64). In the more general case of the diffusion term, σ(t, St), if the
analytical solution of terminal stock price, ST , as a solution of the stochastic
differential equation in Eqn. (7.21) is not known, the above algorithm has to
be adapted as follows.

∆t = T
M ;

For i=1:n
For t = 0 : ∆t : T ;

Generate Zit ∼ N(0, 1);
Si(t+∆t) = rSi(t)∆t+ σ(t, Si(t))

√
∆tZit;

End
Ci = e−rT max(Si(T )−K, 0);

End
Ĉ(n) =

∑n
i=1 Ci

n ;

In the above, we have implemented an Euler scheme to develop numerical
solution of the stock price evolution. More general schemes discussed in Chap-
ter 6 can be applied as needed. The extension to compute confidence interval
remains as presented above.

7.2.1.3 Making Model Simpler - Binomial Tree Approach

In this section, we explore simpler representation of the stock evolution,
which is in fact consistent with the continuous-time stock evolution models
we have considered thus far. We develop the option pricing framework under
the binomial tree stock evolution model to reinforce the risk-neutral pricing
approach developed in continuous-time setting of Section 7.2.1.1.

The binomial tree model of stock price evolution is a discrete-time stochas-
tic process with discrete, specifically two (‘bi’-nomial), outcomes in each time
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FIGURE 7.8: (a) Single period binomial tree model for stock price evolution.
(b) Multi-period binomial tree model for stock price evolution.

step. Consider a time-step, ∆t, where at the start of this time-step the stock
price is, St, while at the end of the time-step, stock prices either go up with
a factor of ‘u’ or go down with a factor, ‘d’. We depict the first outcome by,
Su, which has the value, uSt, while the second outcome is depicted by, Sd,
with a value, dSt. The probability of the ‘up’-outcome can be taken to be p,
while that of the ‘down’-outcome would be, (1 − p). Figure 7.8 displays the
one time-step of the binomial tree in the left panel.

If we trace the evolution to another time-step, the realizations of the stock
can be identified to be, {u2St, udSt, d

2St}, in the three distinct outcomes.
The fact that two of the outcomes merge after two time-steps is why this tree
would be called a recombining binomial tree. The right panel of Figure 7.8
displays the two-step binomial tree. Similarly, a multiple-step binomial tree
can be constructed. An appropriate number of time-steps may be needed in
the binomial tree depending on the size of the time-step, ∆t, chosen, in order
to span the time period, [0, T ], for the purpose of option pricing.

There are three parameters in the binomial tree stock evolution model,
namely u, d and p, that must be estimated to calibrate the model before
putting it to any use. Our intended use here is to price a stock option. In order
to develop a binomial tree model that is consistent with the Black-Scholes-
Merton stock evolution model discussed in Section 7.2.1.1, we can calibrate
the parameters of the binomial tree to match the moments of the geometric
Brownian motion model for stock evolution. We take the probability of the
up outcome, p, to be half, in order to match the symmetry of the normal
distribution of Wiener process increments that drive the geometric Brownian
motion. Calibration by matching the first two moments yields the following
two equations for u and d, which can be simultaneously solved to obtain
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estimates of u and d consistent with the geometric Brownian motion.

1

2
(u+ d) = eµ∆t; (7.56)

1

2
(u− 1

2
(u+ d))2 +

1

2
(d− 1

2
(u+ d))2 = e2µ∆t(eσ

2∆t − 1); (7.57)

Alternatively, if the estimates of µ and σ are not readily available, the two
equations (Eqns. (7.57) and (7.56)) can be modified to match the moments
obtained from observations of the stock price at ∆t interval. If stock price
observations at ∆t interval are provided as, {St0 , St1 , . . . , StN }, with ti+1−ti =
∆t for all i, the right-hand side of Eqn. (7.56) would be substituted by the

sample mean of {Sti+1

Sti
}. The right-hand side of Eqn. (7.57) will be substituted

by sample variance of {Sti+1

Sti
}.

Pricing an equity option in the binomial tree framework will employ sim-
ilar arbitrage-free principle for derivative pricing as developed at the start of
Section 7.2.1. We will construct a portfolio of the stock and risk-free short-
term bond that matches the pay-off of the European call option at maturity.
We assume that every dollar invested in the risk-free short-term bond yields
$R in a time-step of ∆t. Assume that the maturity of the call option is in ∆t
time. Therefore, given a strike price K of the call option, the option will be
worth, (uSt−K)+, at maturity in the up scenario. We label this outcome for
the call option by, cu. Similarly, the down outcome at maturity of the option
will be, cd = (dSt −K)+.

The replicating portfolio, Π, is constructed at time, t, by buying x dollars
worth of stock and b dollars worth of risk-free asset. Therefore, the portfolio is
worth, Πt = x+ b. The exact values of x and b will be determined so that the
portfolio matches the up and down scenario of the option at maturity. The
two equations we should simultaneously solve to obtain x and b are as follows.

Πu = ux+Rb = cu; (7.58)

Πd = dx+Rb = cd. (7.59)

Solving Eqns. (7.58) and (7.59) simultaneously yields the following values of
x and b, respectively.

x =
cu − cd
u− d

; (7.60)

b =
1

R
(
ucd − dcu
u− d

). (7.61)

We have constructed a portfolio that matches the pay-off of the European call
option in all scenarios of the option at maturity, ∆t. If the portfolio value at
t doesn’t match the value of the call option at t, an arbitrage strategy can be
constructed that takes advantage of this mismatch in prices. In order for the
arbitrage to be eliminated, prices will need to modify so that we obtain the
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following.

Πt = x+ b = ct, (7.62)

where ct is the price of the European call option at time, t. Substituting the
values of x and b from Eqns. (7.60) and (7.61), after some rearrangement,
yields that the European call option price at time, t, is as follows.

ct =
1

R
(
R− d

u− d
cu +

u−R

u− d
cd). (7.63)

One should note that this formula matches in principle the expected dis-
counted pay-off of the option at maturity formula given in Eqn. (7.42), where
expectation is taken with respect to probabilities, q = R−d

u−d and (1− q). These
are the risk-neutral probabilities. Moreover, we have derived pricing in the
binomial tree framework for a single time-step, ∆t. In reality, one would want
to include several time-steps of the binomial tree to span the time to maturity,
T , of the option.

This extension would be achieved by applying the above derivation to
each node of the binomial tree, starting with nodes at T − ∆t. Specifically,
in the right panel of Figure 7.8, we would first apply the above derivation to
obtain the values of cu and cd, in terms of {cu2 , ccd, cd2}. The value of option,
c, is obtained in terms of {cu, cd} by applying the derivation once again. In
multiple-time steps of the binomial tree, the price at the base node is obtained
by recursively applying the derivation from T −∆t backward.

The method developed for pricing of vanilla European call options can be
extended to other European-style options by changing the terminal pay-offs,
and conducting the backward recursive steps exactly as described above.

7.2.2 Implied Volatility and Calibration for Risk-Neutral
Pricing

To say that volatility, σ, stays constant, as suggested in the Black-Scholes
option price formula in Eqn. (7.64), would be a bit of an unrealistic stretch
of imagination. On the other hand, of all the factors that determine the price
of an option, volatility may very well be the most crucial factor, both for the
valuation and for risk management of an option. In light of a time-varying
volatility, historic volatility estimates may not be the most valuable predictor
of future volatility. Therefore, we lay a note of caution here. While the cali-
bration we have presented in the previous sections has been based on historic
prices of the stock, for the purpose of option pricing, information for better
predictive estimates of volatility would be needed.

The notion of implied volatility is very useful to assess suitability of his-
toric volatility estimates in predicting future volatility. Using historic stock
data alone to estimate future volatility would be quite risky if higher or lower
volatility is expected in the market for the future. Implied volatility is the
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volatility implied by the market price of options traded in a liquid options
market. This volatility offers crucial information about the market’s expecta-
tion of future volatility.

Implied volatility would be computed, however, by first assuming a model
by which the market is purportedly transforming volatility to the option price.
This transformation could be explicit, as the analytical Black-Scholes option
price formula, or indirect, in which case implied volatility must be iteratively
inferred. In any case, implied volatility is not explicitly observed, it must
be inferred from the observed market price of options. For instance, if we
assume the market determines option price by the Black-Scholes option pricing
formula, implied volatility will be obtained by solving the following for σimpv.

cmkt(t, St) = StΦ(d1)−Ke−r(T−t)Φ(d2), (7.64)

where d1 =
ln(St

K ) + (r +
σ2
impv

2 )(T − t)

σimpv

√
T − t

, (7.65)

and d2 = d1 − σimpv

√
T − t. (7.66)

In Figure 7.9, we plot the range of implied volatility corresponding to a range
of strike prices, or moneyness, of the option defined on a stock with a histor-
ical volatility of σ = 23%. We observe that the market anticipates a higher
volatility for both upward and downward movement of the stock, with the
downward move seemingly more volatile than the upward move.

The second insight obtained from a plot of implied volatility, as in Fig-
ure 7.9, is whether and to what extent does the lognormal distribution of the
underlying stock evolution model capture the true tail risk of the stock price.
The fact that the options deep in-the-money and out-of-the-money have much
more enhanced implied volatility than the near at-the-money options suggests
that the lognormal distribution is failing to capture the tail risk in the future
stock price. More so for the lower tail than the upper tail of the stock price
distribution. The implied volatility curve, often called a ‘volatility smile’ or
‘volatility smirk’ based on the shape of the curve, is indicative of this model
inaccuracy.

Volatility smirks, a skew to the left, are indicative of investors’ worry
about sudden large downward movement of the stock, or more adversely, a
market crash. Appropriate adjustments should be sought to make up for this
model inaccuracy, some of which will be discussed in Section 7.2.6. Moreover,
calibration of models for risk-neutral pricing of options should account for the
importance of volatility estimates. With this in view, for risk-neutral pricing
of options, the binomial tree model is often calibrated by modeling the up

and down factor in a single-step of evolution as, u = eσ
√
∆t and d = 1

u ,
respectively. This singles out the volatility parameter, allowing the modeler
to utilize appropriate volatility estimates, instead of relying on historical stock
price based estimates alone.

Volatility smiles and smirks have shown up and become more prevalent for
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FIGURE 7.9: Implied volatility obtained from the Black-Scholes option pric-
ing formula for plain-vanilla European call option with stock price, St =$35,
σ = 23%, T − t = 1/2 year, and short-term interest rate of r = 2%.

equity options after the US stock market crash of October 1987. Today implied
volatility is so important that traders and brokers often quote options by their
implied volatilities rather than dollar prices. Implied volatilities may be used
as an input into the Black-Scholes model to calculate the price of a slightly
different options series with different exercise prices or maturities. Implied
volatilities produce an entire volatility surface, once the options series by times
to maturity and strikes are both accounted for. Finally, implied volatility is
not directly observed, instead it must be inferred based on a model for option
pricing. This can be a source of operational risk.

7.2.3 Sensitivity to the Parameters

Options, and in general all derivatives, derive their value from the value of
their underlying instruments and depend on the few parameters that define
the option contract. The underlying instrument, in turn, depends on a set
of parameters. As we studied in the previous section, volatility and other
parameters defining an option can change. Therefore, the hedging, speculative
or arbitrage objectives the option is being used to serve would be affected
by these changes. Sensitivity of the price of an option with respect to its key
parameters helps measure the impact of the changes of these parameters on the
hedging, speculative or arbitrage objectives. These sensitivities are depicted
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FIGURE 7.10: The chart marks the dependence of European and American
vanilla call and put option prices on parameters that determine the price.

by some symbols of the Greek alphabet, and therefore in short are called the
Greeks.

Figure 7.10 displays the nature of dependence of plain-vanilla European
and American call and put options on the relevant parameters. The first col-
umn indicates the parameter going up, and each cell displays by the arrow if
the price of that option goes up (up arrow) or down (down arrow). The value
of the underlying going up, shown in the first row, results in call options’
values going up, while put options’ values go down. This is obvious from the
pay-off structure of call and put options, respectively. The reverse character-
istic is seen for the strike price going up, again seen from the pay-off structure
of the options.

Increase in volatility of the underlying stock uniformly increases the value
of all the options. The intuition behind the relationship between option price
and short-term interest rate lies in the fact that in the risk-neutral world,
the stock evolves with a drift of r. If the interest rate increases, it essentially
has the effect of the stock price increasing. Therefore, relationship between
option price and interest-rate matches the relationship between option price
and stock price in Figure 7.10. The precise dependence can be measured in
terms of the Greek, ρ = dC

dr , which is obtained in the case of the Black-Scholes
option price formula below.

As the time to maturity, T , increases, it offers more opportunity to the
American style option for a higher pay-off. Therefore the American option
price has a positive relation with time to maturity, when time to maturity
decreases, the American option price also decreases. This is usually also true
for the corresponding European-style options, but not always since European
options are only exercised at a specific time, rather than in the entire period
leading up to maturity.
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We describe each Greek of an option in detail, along with providing exact
formulas in the case of the Black-Scholes European call option pricing for-
mula. The formulas for Greeks for European put options in the Black-Scholes
framework can be similarly obtained.

Delta or ∆ is the rate of change of the option price with respect to the
underlying.

∆ =
dC

dS
= Φ(d1), (7.67)

where Φ() is the cumulative distribution function for standard normal
distribution, N(0, 1), and d1 was defined in Eqn. (7.65).

Gamma or Γ is the rate of change of Delta or ∆ with respect to the price of
the underlying stock. Gamma is the largest for near-the-money options.
This can be seen in Figure 7.7, where the option price curve has the
highest curvature around at-the-money range. Gamma can be explicitly
computed for the Black-Scholes option price as follows.

Γ =
d(dC)

dS2
=

ϕ(d1)

(S0σ
√
T )

, (7.68)

where ϕ() is the probability density function of standard normal distri-
bution, N(0, 1).

Vega is the all important measure of change in value of the option due to
increase (or decrease) of volatility of the underlying stock. It tends to be
largest for near in-the-money options, and can be computed explicitly
for Black-Scholes option price formula as follows.

V ega =
dC

dσ
= S0

√
Tϕ(d1). (7.69)

Theta or Θ of a derivative is the rate of change of the value of the derivative
with the passage of time or as the time to maturity shortens. The theta
of a call or a put option is usually negative. This is always true for
American put and call options, that is, as the time to maturity nears,
the value of an American call or put option decreases. Therefore, as time
passes with the price of the underlying asset and its volatility remaining
the same, the value of a long position in the call or put option declines.
Theta (Θ) for European call option can be computed from the Black-
Scholes option price formula as follows.

Θ = −S0ϕ(d1)σ

2
√
T

− rK exp(−rT )Φ(d2). (7.70)

Rho or ρ is the rate of change of the value of an option with respect to the
short-term interest rate, and is computed as follows.

ρ =
dC

dr
= KT exp(−rT )Φ(d2). (7.71)
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When the Greeks cannot be computed explicitly by taking the desired
derivative (or differentiation) of a closed-form pricing formula, they should
be estimated using simulation. Following is a sample algorithm for computing
the vega of a derivative. A similar algorithm can be developed for estimation
of all the remaining four Greeks.

For i=1:n
Generate Zi,1 ∼ N(0, 1);

Si,1(T ) = S0 exp((r − σ2

2 )T + σ
√
TZi,1);

Generate Zi,2 ∼ N(0, 1);

Si,2(T ) = S0 exp((r − (σ+δσ)2

2 )T + (σ + δσ)
√
TZi,2);

Ci,1 = e−rT max(Si,1(T )−K, 0);
Ci,2 = e−rT max(Si,2(T )−K, 0);

End

V̂ ega(n) =

∑n
i=1 Ci,1

n −
∑n

i=1 Ci,2
n

δσ .

Beyond estimating the point estimate of the Greeks, confidence interval
for the Greeks can be developed at the desired confidence level, (1−α)100%.
The sampling distribution for difference in mean estimator, (X̄1 − X̄2), un-
der the case of known and unknown standard deviation would be useful for
creating these confidence intervals. This is because the form of estimator,∑n

i=1 Ci,1
n −

∑n
i=1 Ci,2

n

δσ for V̂ ega(n), resembles the difference in mean estimator.
All of the above sensitivities are relevant for a portfolio of options on

the same underlying stock. Portfolio Greeks can be obtained by computing
individual instrument’s Greeks and combining together by portfolio weight for
each instrument. Therefore, if a portfolio of options on an underlying stock is
defined as, Πt =

∑N
i=1 niXi(t, St), where Xi(t, St) is the value of a derivative

instrument in the portfolio, then portfolio Delta, ∆Π is obtained as follows.

∆Π =

N∑
i=1

ni∆Xi(t, St). (7.72)

Similarly, all the other Greeks for the portfolio may be obtained. At the port-
folio level, being able to define portfolio Greeks also provides the opportunity
to craft portfolios that are delta-neutral, gamma-neutral, vega-neutral, etc.
This implies that the portfolio weights are chosen so that the portfolio Greeks
are zero. One or more Greeks being zero implies that the portfolio is desensi-
tized to (small) changes in the specific parameter. Re-balancing the portfolio
weights, mostly by small adjustments, can maintain delta-, gamma-, and vega-
neutrality.



Managing Equity Market Risk 229

S
t

t

Stock price at T1Initial Stock price 

T
1

T
2

Stock price at T2

FIGURE 7.11: Trajectories for valuation of a compound option.

7.2.4 Exotic Options

Options with pay-offs determined in a more complex manner than by just
comparing the price of the underlying with a strike are called exotic options.
These non-vanilla options have been mostly over-the-counter bi-lateral con-
tracts, which has allowed a high degree of innovation in these products. Pay-
offs of exotic options may also depend on the entire path of the underlying
stock during the ‘life’ of the option. For this property of the pay-off structure
of these options, they earn the name ‘path-dependent options.’ Some exam-
ples of path-dependent options include Asian options, barrier options, and
lookback options. Actually to think of it, American options are also path-
dependent options, since they are exercised along the path of the life of the
option, whenever it is considered beneficial to exercise. However, American
options are mostly not referred to as path-dependent options.

We consider a few exotic options here, as a sampling of vast variety of ex-
isting exotic options, in order to demonstrate the fact that the option pricing
and risk management consideration goes far beyond the plain-vanilla Euro-
pean or American options we have studied thus far. For evaluating the price of
these exotic options, either analytical formulas may be obtainable, or binomial
tree framework may be good in some cases. In other cases, simulation proves
to be a useful alternative, where better accuracy may be obtained for more
realistic models. For instance, path-dependent options like the barrier options
are only approximately implemented in the binomial or even trinomial tree,
but by using simulation they can be more accurately implemented.

We describe some of the simple exotic options, that are not path-
dependent, defined on a single underlying stock.

Binary Option: This option provides a set pay-off, Q, based on whether the
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FIGURE 7.12: Pay-offs of an up-and-out barrier call option and a down-
and-in barrier call option.

underlying asset is below or above a strike price. Therefore, the pay-off
of a binary option is described as, h(ST ) = QI{ST≥K}.

Compound Option: A compound option is an option on an option, which
means it gives the buyer of the compound option the right to buy an
underlying option to buy or sell the underlying stock at a future date.
Therefore, the buyer of a compound option has the right to buy a call
or a put option at a time T1 for K1 that will in its own turn mature
at time T2 > T1. The underlying option has its strike set at K2, which
is the price the underlying stock may be bought or sold at depending
on whether it is a call or put option. The pay-off of a compound option
is, h(ST1) = max(c(T1, S(T1)) − K1, 0) in the case of a compound op-
tion on a call, and h(ST1) = max(p(T1, S(T1)) −K1, 0) in the case of a
compound option on a put. Pricing of a compound option, when utiliz-
ing simulation, requires nested simulation of stock evolution as shown
in Figure 7.11. For each stock price realization at T1, in order to deter-
mine the pay-off of the compound option, the underlying option must be
priced. This is accomplished by continuing to simulate stock evolution
until the underlying option’s maturity, T2.

Chooser: In a way this is a compound option. It gives the buyer the right
to choose to buy either a call or a put option for K1 at time T1 that
may be exercised at T2 for a strike K2. The pay-off of a chooser option,
therefore, is h(ST1) = max(c(T1, S(T1))−K1, p(T1, S(T1))−K1, 0). More
complex chooser options can be created by a different combination of
strikes and maturities.

The following options have weak or strong dependence on the path of the
underlying stock leading up to the maturity of the option. The precise rules
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of pay-off and the way a buyer may utilize these options differ by the risk
management objectives of the buyer.

Shout Option: In this option, the owner (buyer) of the option gets one
chance to ‘shout,’ then the pay-off gets determined as European pay-
off or the intrinsic value at the time of the shout, whichever is higher.
In other words, the option gives the buyer the right to reset the rights
features of the option. A shout call option, therefore, will have the fol-
lowing pay-off, h(ST ) = max(ST −K,Sτ −K, 0), where τ is the time of
the shout. Since the buyer gets to choose when to shout, the option bor-
rows some features of an American option, where one must determine
the optimal exercise policy. In the case of a shout option, the buyer must
determine the optimal shout strategy.

Bermudan Option: A Bermudan option resembles an American option,
however early exercise is restricted to certain dates during the life of
the option. Due to this restriction, a Bermudan option would be less
costly than its American counterpart, however the mechanism for pric-
ing the option would resemble that of pricing an American option.

Lookback Option: A lookback option earns that name because it deter-
mines its pay-off by looking back at what levels the stock price had
realized during the life of the option. The pay-off of this option is de-
termined from the maximum or minimum value of the stock price dur-
ing the life of the option. There may be a fixed strike price utilized
against this minimum or maximum value of the stock. Alternatively,
the minimum or maximum value of the stock may serve as the strike,
relative to the terminal value of the stock. Therefore, a sample pay-off
of a lookback option could be, h(ST ) = max(max0≤t≤T {St} −K, 0) or
h(ST ) = max(ST −min0≤t≤T {St}, 0).

Barrier Option: This option utilizes a barrier above or below the current
stock price to define the pay-off of the option. The barrier (up or down)
is used to define either the activation or deactivation of the option.
Therefore, an up-and-out barrier option will yield a pay-off only if the
stock does not hit the up-barrier, while an up-and-in barrier option will
yield a pay-off only if the stock does hit the barrier during the life of the
option. Similarly, one can define down-and-in or down-and-out barrier
options. Moreover, the pay-off can be call or put type pay-off defined
in terms of a strike price, K. Figure 7.12 provides a display of a few
trajectories indicating which ones yield positive versus zero pay-offs.

Asian Option: Asian options determine their pay-off in terms of averaging
the stock price through the life of the option. These could be discrete-
time averages or continuous-time averages, and averages could be arith-
metic or geometric. For instance, the arithmetic continuous-time average
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of stock through the life of the option is given by,

S̄C =
1

T

∫ T

0

Stdt, (7.73)

while arithmetic discrete-time average over chosen times of observations,
{t0, t1, . . . , tN < T}, is given by,

S̄D =
1

N

N∑
i=1

Sti . (7.74)

Similarly, the geometric average can be defined for the life of the option
as,

S̄G = exp(
1

T

∫ T

0

ln(St)dt). (7.75)

As is in the case of a lookback option, the average of the stock price can
serve either as a strike or be compared to a fixed strike price, K, for
determining the pay-off of the Asian option.

Options may also be constructed as a bundle of other derivatives or on a
bundle of underlying stocks. We present some examples of these options.

Ladder: Ladders may be described as a mix of lookback and barrier type
options. The ‘ladder’ is constructed by a sequence of increasing barriers,
as each one is hit, a critical level of pay-off is ascertained. The fact
that the pay-off remembers the maximum (or minimum) level of stock
levels through the life of the option invokes resemblance with a lookback
option.

Range Forward: A range forward is best described as a bundle of long-
position in plain-vanilla European call and a short-position in a put
option with different strikes but the same maturity. Usually the strike
of the call is above the strike of the put option. The combined effect of
the call and put package is the ability to buy the underlying for a range
of price lying between the lower and the upper strike price. Therefore,
a range forward resembles a forward contract, with the difference that
a range forward will need a premium at the initiation of the contract.

Exchange: An exchange option essentially depends on several underlying
assets, rather than a single underlying, essentially allowing exchange of
assets. In the case of stocks, an exchange option can be designed to buy
certain shares of one stock in exchange for certain shares of a different
stock. There is no fixed strike price involved. If S1t and S2t are the two
stocks on which an exchange must be defined, the pay-off of the option
can be constructed as, h(S1T , S2T ) = max(q1S1T − q2S2T , 0). This pay-
off implies that the buyer of the option will have the right to buy q1 units
of the first stock in exchange for q2 units of the second stock whenever
this transaction is in her favor.
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Two-Color Rainbow: Two-color or multi-color rainbow option is an option
that depends on two or more underlying assets. The option pay-off is
defined in terms of two or all the underlying stocks moving together
in the intended direction. Therefore, a rainbow option is considered an
option on the correlation between underlying stocks.

Basket: A basket option’s pay-off is defined in terms of the value of a portfolio
or a basket of assets/stocks. Therefore, the underlying instrument for a
basket option is a weighted sum of different stocks, for instance an index
option or an option on a stock portfolio.

Where relevant, the above options can be of American or European style,
which implies that they can be exercised at any time during the life of the
option or only at maturity.

7.2.5 American Options

American options are designed for complete flexibility on when the buyer
exercises her right to utilize the option. For this reason, an American option
is worth at least as much as the corresponding European option. Therefore,
C(t, St) ≥ c(t, St), and P (t, St) ≥ p(t, St). However, in order to determine
the precise value of an American option, we need to determine the optimal
exercise policy alongside pricing the option. There is some chance that an
American option will be exercised early, before the option expires. Whenever
an American option is exercised early, its value would differ from its European
counterpart. In the case of an American call option defined on a non-dividend
paying stock, it can be shown that an early exercise is suboptimal.

In Figure 7.13, we display the algorithm to determine the price of an
American option by utilizing the binomial tree model. The algorithm begins
by first finding the terminal value of the option at maturity of the option.
Following this, the algorithm progresses with backward recursion. At each
step or node, one should determine whether an early exercise is better than
the continuation value. If an early exercise is a better option, the node is
marked as an early exercise node, and its value is that of an early exercise or
the intrinsic value of the node. Once the backward recursion folds over to the
initial time, the price of the American option is the initial node value.

The binomial tree approach is a popular way to compute the price of an
American option due to its ease of implementation. The theme of the binomial
tree based approach can be extended to continuous-time stock price evolution
models for obtaining the price of an American option. The following sketch of
an algorithm can be adopted to develop simulation based pricing of an Amer-
ican option under continuous-time evolution of the underlying stock price.
Assume an American option matures at time, T , with a strike price, K, and
the underlying stock evolves by a general model, such as in Eqn. (7.43), in the
risk-neutral world.
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FIGURE 7.13: Pictorial display of algorithm to determine the price of an
American option using the binomial tree model.

1. Generate a large sample of paths for the stock price evolution using
any time-discretization, and analytical or simulation-based approach to
solving the stock evolution model of Eqn. (7.43).

2. Discretize the time to maturity into any chosen granularity that matches
the sample paths generated for stock evolution.

3. Begin the backward recursion starting with determining the intrinsic
value of each terminal point (node) of each sample path, VT = max(ST−
K, 0).

(a) For each time point and each scenario of the stock price along the
sample paths, determine the intrinsic value of the American option,
Vi = max(St −K, 0), and the continuation value, Vc = e−r∆tVt+1,
where ∆t is the time discretization being used and Vt+1 is the value
of the node one time step in the future on the same sample path.

(b) Fit a quadratic, (a+ bSt+ cS2
t ), or any other higher degree polyno-

mial, least squares interpolation between the continuation values,
Vc, obtained for all nodes on sample paths at time, t.

(c) Compute the fitted continuation value, V ′
c = â+ b̂St+ ĉS2

t for each
node on the sample paths at time, t. This step is done to achieve
better accuracy in estimating continuation value by incorporating
information from all nodes at time, t, instead of just considering
the discounted value from a single node on each sample path.
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(d) Compare and assign the value of each node as the higher of the
fitted continuation value and intrinsic value, Vt = max(V ′

c , Vi).

(e) Advance the recursion back to the previous time step.

4. Once the backward recursion reaches the initial time, t = 0, the value of
the initial node, V0, is the price of the option. Therefore, C(0, S0) = V0,
and all the exercise points along all the sample paths define the optimal
exercise policy.

In the case of European options, once the European call option was priced,
the put-call parity could be used to price the corresponding put option. In
the case of American options, the put-call parity reduces to the following
inequalities,

St −K < C(t, St)− P (t, St) < St −Ke−r(T−t). (7.76)

Therefore, once the price of an American call option is determined, it will
only provide a range for the price of the corresponding American put option.
In order to determine the precise price, the above algorithm will need to be
adopted to compute the price of the American put option.

7.2.6 Generalizing the Models in Black-Scholes-Merton

In Section 7.2.2, we entertained a long discussion regarding implied volatil-
ity and the insights it can offer us. Volatility is by far the most important fac-
tor in derivatives pricing. The notion of implied volatility is considered very
useful to assess suitability of historic volatility estimates in predicting future
volatility. By using market price of options traded in a liquid options market,
implied volatility offers crucial information about the market’s expectation of
future volatility.

Insight obtained from the shape of the volatility curve, as shown in Fig-
ure 7.9, or the entire volatility surface, also shows the extent to which the
lognormal distribution of the underlying stock evolution model captures the
true tail risk of the stock price. If deep in-the-money and/or deep out-of-the-
money options have much more enhanced implied volatility than the near
at-the-money options, this suggests that the lognormal distribution is failing
to capture the tail risk in the future stock price. Moreover, asymmetries in
the volatility curve, such as in a volatility smirk with a skew to the left, are
indicative of investors’ worry about sudden large downward movement of the
stock, or more adversely, a market crash.

In this section, we present a few enhancements of the Black-Scholes ge-
ometric Brownian motion model for stock price evolution, with an intent to
expand the modeling toolkit that addresses the above challenges in predicting
future stock price characteristics more accurately. Our intent here is only to
provide an overview that serves as pointers to directions for further explo-
ration to the reader. For more detailed development of these more advanced
models, please refer to other sources [45, 81, 27, 18, 25, 77].
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7.2.6.1 Constant Elasticity of Variance (CEV) Model

A simple generalization of the Black-Scholes model is obtained by modi-
fying the diffusion term in the stochastic differential equation, as follows.

dSt = µStdt+ σSα
t dWt, (7.77)

where either α > 1 or 0 < α < 1. Of course, if α = 1, then the model
reduces to the geometric Brownian motion model. This modification of the
diffusion term gives us the opportunity to explore some variety of behavior
in stock volatility. Note that now the coefficient σ does not retain the same
interpretation as the geometric Brownian motion model, i.e., it is no longer
the volatility of the log-return of the stock price.

When 0 < α < 1, volatility of the stock increases as the stock price de-
creases, resulting in a heavy left-tail and less heavy right-tail. This lends a
skewness to the log-return distribution. As stated above, it captures the asym-
metry in the volatility curve when the implied volatility for different strikes
is different displaying a volatility smirk. Similarly, a choice of α > 1 models
a stock whose volatility increases with increase in stock price. This will result
in a heavier right-tail than left-tail. Therefore, this model modification is
suitable to capture asymmetric volatility smiles or volatility smirks.

The price of a European call option on the stock, or any other European
style option on the stock, is a function, c(t, St). Applying the Ito formula, the
price of the option must evolve by the following equation,

dc(t, St) = (
∂c

∂t
+ µSt

∂c

∂x
+

1

2
σ2S2α

t

∂2c

∂x2
)dt+ σSα

t

∂c

∂x
dWt. (7.78)

The rest of the derivation for option pricing follows as developed for the general
case in Section 7.2.1. The solution for the price of the option is obtained as,

c(t, St) = E[e−r(T−t)(ST −K)+], (7.79)

where the stock evolves in the risk-neutral world as follows.

dSt = rStdt+ σSα
t dWt. (7.80)

The price of the option can be obtained by simulation as described in Sec-
tion 7.2.1.2

Although we know how the option would be priced under the CEV model,
its actual value would be obtainable only if the parameters of the model are
determined. We first look at model calibration under the real-world measure.
Clearly, if the model is a better representation of the stock evolution than the
geometric Brownian motion model, the model can also be used for developing
optimal investment or hedge strategies. In these cases, the stock evolves by its
real-world model of Eqn. (7.77). Therefore, we calibrate the real-world CEV
model by first applying the Euler scheme to the model in Eqn. (7.77).

∆St ≈ µSt∆t+ σSα
t ∆Wt, (7.81)
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which is rearranged to obtain,

∆St − µSt∆t

Sα
t

≈ σ∆Wt. (7.82)

At this stage, estimates of the parameters, α, µ and σ, can be obtained by ap-
plying the quasi-maximum likelihood method. The quasi-maximum likelihood
method will utilize the fact, σ∆Wt ∼ N(0, σ

√
∆t). The method of moments

will utilize the first two moments of the same distribution. However one draw-
back of the method of moments in this case is that the parameter α will need
to be determined by some other means, since the distribution of N(0, σ

√
∆t)

is completely determined by its first two moments. The method of moment
essentially implies solving the following two moment equations,

E[
∆St − µSt∆t

Sα
t

] ≈ 0, (7.83)

V ar(
∆St − µSt∆t

Sα
t

) ≈ σ
√
∆t. (7.84)

We solve for µ and σ in the above two equations, by first solving for µ̂ from
Eqn. (7.83), followed by substituting this value in Eqn. (7.84) to obtain σ̂.

We have computed the price of an option under the CEV model using
simulation and calibrated the model using the method of moments with the
goal of following the simplest approach. In actuality, analytical solution of
the CEV model is obtainable. Moreover, the price of the European call and
put option can also be obtained in closed-form, albeit as a more complicated
formula than the Black-Scholes option pricing formula. Both of these can be
utilized for calibrating the model in the real world, as well as calibrating the
model under the risk-neutral probability measure.

Suppose the closed-form price of European call and put option under
the CEV model are ccev(t, St;Ki, Ti) and pcev(t, St;Ki, Ti), respectively, for a
range of strike prices, {Ki}, and maturities, {Ti}. If data for the market price
of these options is available, cmkt(t, St;Ki, Ti) and pmkt(t, St;Ki, Ti), then the
parameters, α and σ, can be obtained by minimizing the sum of squared dif-
ference between CEV model-based price and market price of the options [41],
as follows.

min
α,σ

∑
i

(ccev(t, St;Ki, Ti) − cmkt(t, St;Ki, Ti))
2 (7.85)

+(pcev(t, St;Ki, Ti) − pmkt(t, St;Ki, Ti))
2.

The calibrated risk-neutral CEV model can then be used to price other options
defined on the underlying stock.

7.2.6.2 Model for Several Correlated Stocks

In Section 6.4.1, we had presented a multidimensional asset price evolution
model, given in Eqn. (6.37). We will now apply the model to the evolution
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of a pair of correlated stock prices. The model can then be easily generalized
to a more general case of d-dimensional correlated stock price evolution. In
the following model, the two stocks, S1t and S2t, individually evolve by the
geometric Brownian motion model, however the two Wiener processes driving
the two stock prices, W1t and W2t, are correlated. The model is summarized
as follows.

dS1t = µ1S1tdt+ σ1S1tdW1t, (7.86)

dS2t = µ2S2tdt+ σ2S2tdW2t, (7.87)

cov(dW1t, dW2t) = E[dW1tdW2t] = ρdt. (7.88)

From the above model, we first note that individually the two stocks follow
the geometric Brownian motion process, however the correlation between the
two driving Wiener processes, corr(dW1t, dW2t) = ρ. We can alternatively
choose any other model for the two stocks, such as model one or both using
a CEV model if there is justification for this choice, keeping the correlation
structure between the two driving Wiener processes the same.

Suppose we want to price an option defined on the two stock, f(t, S1t, S2t),
then by applying the two-dimensional Ito formula, the price of the option will
satisfy the following stochastic differential equation.

df(t, S1t, S2t) = (
∂f

∂t
+ µ1S1t

∂f

∂x1
+

1

2
σ2
1S

2
1t

∂2f

∂x2
1

(7.89)

+ µ2S2t
∂f

∂x2
+

1

2
σ2
2S

2
2t

∂2f

∂x2
2

+
1

2
ρσ1σ2S1tS2t

∂2f

∂x1∂x2
)dt

+ σ1S1t
∂f

∂x1
dW1t + σ2S2t

∂f

∂x2
dW2t.

In order to create a risk-free portfolio towards pricing the two-stock option, we
would need to invest in the two-stock option and both the stocks, as follows.

Π(t, S1t, S2t, f(t, S1t, S2t)) = w1f(t, S1t, S2t) + w2S1t + w3S2t, (7.90)

where in order to eliminate the risky terms arising from the two Wiener pro-
cesses, (dW1t, dW2t), we will opt for portfolio weights as follows.

f(t, S1t, S2t) : −1, (7.91)

S1t :
∂f

∂x1
, (7.92)

S2t :
∂f

∂x2
. (7.93)

The above choice of portfolio weight makes the portfolio risk-free, therefore it
should evolve by the following equation to eliminate arbitrage.

dΠ(t, S1t, S2t, f(t, S1t, S2t)) = rΠ(t, S1t, S2t, f(t, S1t, S2t))dt. (7.94)
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As done in the case of an option based on a single stock, we match the two
definitions for the evolution of the replicating portfolio, to obtain the following
partial differential equation for the price of the two-stock option.

∂f

∂t
+

1

2
σ2
1S

2
1t

∂2f

∂x2
1

+
1

2
σ2
2S

2
2t

∂2f

∂x2
2

+
1

2
ρσ1σ2S1tS2t

∂2f

∂x1∂x2
(7.95)

+rS1t
∂f

∂x1
+ rS2t

∂f

∂x2
= rf(t, S1t, S2t),

along with the end condition, f(T, S1T , S2T ) = h(S1T , S2T ). We invoke the
two-dimensional version of the Feynmann-Kac theorem to obtain the price of
the option to be given as,

f(t, S1t, S2t) = E[e−r(T−t)h(S1T , S2T )], (7.96)

with the stocks evolving in the risk-neutral world as follows.

dS1t = rS1tdt+ σ1S1tdW1t, (7.97)

dS2t = rS2tdt+ σ2S2tdW2t, (7.98)

cov(dW1t, dW2t) = E[dW1tdW2t] = ρdt. (7.99)

Calibration of the individual stock parameters, µ1, µ2, σ1, and σ2, would be
as before, depending on whether this calibration is required in the real-world
or the risk-neutral world. The remaining parameter, correlation coefficient ρ,
will be estimated as follows.

ρ̂ = corr(ln(
S1(t+∆t)

S1t
), ln(

S2(t+∆t)

S2t
)) ∼ corr(

∆S1t

S1t
,
∆S2t

S2t
). (7.100)

For a higher dimensional set of correlated stocks, both the derivation for option
price formula, as well as calibration, will proceed as developed above. For
option price, the results for higher-dimensional Ito formula and Feynmann-
Kac theorem will be utilized, where writing in matrix notation will simplify the
presentation. For calibration, pair-wise correlation between Wiener processes
will proceed as above.

Finally, in order to simulate trajectories of a pair of correlated stocks, or
in fact a d-dimensional set of correlated stocks, we will need to refer to Chap-
ter 4. In Section 4.4.3.3, the method for generating bi-variate and multi-variate
normal random variates was developed, starting from a set of independent
standard normal random variates. In our case here, increments in the Wiener
process (∆W1t,∆W2t) are normally distributed with mean (0, 0), variance
(∆t,∆t), and correlation coefficient corr(∆W1t,∆W2t) = ρ. The algorithm
in Section 4.4.3.3 can be applied to these settings for generating correlated
Wiener increment for simulating trajectories of the pair (or set) of stocks.

7.2.6.3 Extensions in Option Pricing - Stochastic Volatility

The motivation for this section was to develop models that more closely
capture the empirically observed characteristics of stock price evolution.
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FIGURE 7.14: Monthly observations of VIX index from January 2005
through mid-2012. The variability in the stock market is captured in this
index through the financial crises of 2008 and euro crisis evolving through
2011-2012.

Black-Scholes option pricing formula assumes the volatility of the stock to
be constant. In reality, stock prices do not seem to satisfy this assumption. In
Figure 7.14, we display the time-varying volatility of the stock market (VIX
index) over a period of seven years. The plot makes the point about volatility
not being constant rather evident.

VIX is the ticker symbol and shortened name of CBOE (Chicago Board
Options Exchange) Market Volatility Index. VIX is a weighted sum of implied
volatility for a range of options on the S&P 500 stock index. It is quoted in
percentage points and translates, roughly, to the expected movement in the
S&P 500 index over the upcoming 30-day period, which is then annualized.
In 2004, futures on the VIX index began trading, followed by VIX options in
2006.

In our discussion of implied volatility in Section 7.2.2, we observed that
if the implied volatility is plotted for a range of strike prices or a range of
moneyness, the plot is not a straight line. If the assumptions of Black-Scholes
framework were true, the plot would be a straight line. But for the case of
most stocks this is a convex curve, with a skew to the left, earning the name
volatility smirk. The leftward skew of the volatility curve for stocks is often
termed the leverage effect, implying that investors become extra nervous when
stock price goes too low for a debt financed firm.

In practice, stock returns show skewness, excess kurtosis, serial correlation
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and time-varying volatility. Focusing on the time-varying volatility, we now
develop an extension to the Black-Scholes framework, where we make the
volatility of a stock not only time-varying, but also stochastic. This extension
brings with it new complexities, such as, first, volatility of a single stock is not
spanned by traded assets in the economy, and second, risk related with the
volatility cannot be eliminated by usual arbitrage methods. Finally, in order
to address the ‘incompleteness’ of the market for volatility risk, market price
of risk due to volatility appears in the option price derivation. We provide an
overview of these enhancements.

We consider the following extension of the Black-Scholes stock evolution
model, where the volatility of the stock price, σt =

√
vt, evolves by a separate

model given as follows.

dSt = µStdt+
√
vtStdW1t, (7.101)

dvt = −γ(vt − v̄)dt+ η
√
vtdW2t, (7.102)

whereW1t,W2t are taken as independentWiener processes, or as a further gen-
eralization, they can be modeled as correlated Wiener processes, as in the two
stock case in Section 7.2.6.2. The equation for stock evolution, Eqn. (7.101),
is similar to the usual Black-Scholes stock price equation, with the volatility,√
vt, being time-dependent and stochastic. The stochastic volatility model,

Eqn. (7.102), is a typical square-root process model of Cox, Ingersoll, and
Ross (CIR), seen again in Chapter 8 for modeling interest rates. The above
stochastic volatility model is the popular Heston model [39].

In the Heston model, the drift term for the stock variance, vt, has a specific
form, −γ(vt − v̄), which lends mean-reversion to the volatility. This implies
that when the volatility becomes too high (or too low), it has a tendency
to revert to its long-run mean, v̄. The rate of mean reversion is captured by
the parameter, γ. The model picks after the empirical evidence in volatility
being mean-reverting, also visible in the VIX time series in Figure 7.14. The
constant, η, is the volatility of the volatility of the stock.

We shift our attention to pricing options under stochastic volatility models
for stock evolution. The price of an option now depends on two variables, due
to two sources of risk from two Wiener processes. Therefore, let’s say the price
of an option is, f(t, St, vt). By applying the two-dimensional Ito’s formula
we obtain that the price of the option will satisfy the following stochastic
differential equation.

df(t, St, vt) = (
∂f

∂t
+ µSt

∂f

∂x1
+

1

2
vtS

2
t

∂2f

∂x2
1

(7.103)

− γ(vt − v̄)
∂f

∂x2
+

1

2
η2vt

∂2f

∂x2
2

+
1

2
ηvtSt

∂2f

∂x1∂x2
)dt

+
√
vtSt

∂f

∂x1
dW1t + η

√
vt

∂f

∂x2
dW2t.

In order to create a risk-free portfolio now, we will need the option, the stock,



242 Risk Management and Simulation

as well as another asset whose value depends on the variance, vt. We call this
asset, Vt. The portfolio is constructed as follows.

Π(t, St, vt, f(t, St, vt)) = w1f(t, St, vt) + w2St + w3Vt, (7.104)

where in order to make this portfolio risk-free, we need to eliminate the risky
terms arising from both the Wiener processes, (dW1t, dW2t). We will opt for
the following portfolio weights to achieve this.

f(t, St, vt) : −1,

Vt :

∂f
∂x2

∂V
∂x2

,

St :
∂f

∂x1
− [

∂f
∂x2

∂V
∂x2

]
∂V

∂x1
. (7.105)

One can test that the above choice of portfolio weights makes the portfolio
risk-free, therefore it should evolve by the following equation to eliminate
arbitrage.

dΠ(t, St, vt, f(t, St, vt)) = rΠ(t, St, vt, f(t, St, vt))dt. (7.106)

As done in the case of simple option pricing derivation, we match the two
definitions for the evolution of the replicating portfolio. However, this time we
separate the terms depending on f(t, St, vt) and Vt as follows.

∂f
∂t + 1

2vtS
2
t
∂2f
∂x2

1
+ 1

2ηvtSt
∂2f

∂x1∂x2
+ 1

2η
2vt

∂2f
∂x2

2
+ rSt

∂f
∂x1
− rf

∂f
∂x2

=

∂V
∂t + 1

2vtS
2
t
∂2V
∂x2

2
+ 1

2ηvtSt
∂2V

∂x1∂x2
+ 1

2η
2vt

∂2f
∂x2

2
+ rSt

∂V
∂x1
− rV

∂V
∂x2

. (7.107)

The key observation we make here is that the left- and right-hand sides of
Eqn. (7.107) depend on arbitrarily picked option, f(t, St, vt) and asset, Vt.
Therefore, the two sides of the equation must depend only on terms that
are independent of f(t, St, vt) and V (t, St, vt). Without loss of generality, we
choose this term to have the form, ϕ(t, St, vt) = γ(vt − v̄) − η

√
vtλ(t, St, vt),

where λ(t, St, vt) is a yet-to-be-defined term. Therefore, the option price under
stochastic volatility should satisfy the following partial differential equation.

∂f

∂t
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vtS

2
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1

+
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ηvtSt
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η2vt
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(7.108)

+rSt
∂f

∂x1
+ (γ(vt − v̄)− η

√
vtλ(t, St, vt))

∂f

∂x2
− rf(t, St, vt) = 0,

along with the end condition at option’s maturity, T , given by, f(T, ST , vT ) =
h(ST ). We can show that the solution of the above equation is,

f(t, St, vt) = E[e−r(T−t)h(ST )], (7.109)
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where the stock evolves in the risk-neutral measure by the following equations,

dSt = rStdt +
√
vtStdW1t, (7.110)

dvt = (γ(vt − v̄)− η
√
vtλ(t, St, vt))dt + η

√
vtdW2t. (7.111)

The quantity we introduced in Eqn. (7.109), λ(t, St, vt), is called market
price of risk for the non-tradable risk factor, vt. This is defined as the ratio
of difference of mean of the variable and risk-free return to the volatility of
the variable. Therefore, if µv is the drift and σv is the diffusion of the non-
tradable risk factor, then market price of this risk is defined as, λ = µv−r

σv
. Let’s

see why this term is called market price of risk. If we consider the portfolio
we constructed in the simple (non-stochastic volatility) case, we would have,
Π1 = −f + ∂f

∂x1
St. If we apply the Ito’s lemma to determine the change in the

value of this portfolio, we obtain the following by utilizing the fact that the
option price, f(t, St, vt), satisfies Eqn. (7.109).

dΠ1(t, St, vt)− rΠ1dt = η
√
vt

∂f

∂x2
(λ(t, St, vt)dt+ dW2t). (7.112)

This derivation shows that the portfolio which became risk-free in the simple,
non-stochastic volatility case, now must offer some excess return. The excess
return per unit of volatility, dW2t, is given by λ(t, St, vt), hence it is called the
market price of volatility risk.

Finally, there is the issue of calibrating the model, both in real-world and
risk-neutral measure. There are now additional parameters to estimate be-
yond those in the non-stochastic volatility cases. Specifically, the initial value
of volatility (v0), market price of volatility risk (λ), long-run volatility (v̄),
volatility of volatility (η), and the mean reversion rate (γ).

We apply the Euler scheme to discretize the model in Eqns. (7.101)
and (7.102), or alternatively to calibrate the model in the risk-neutral world
discretize the model of Eqns. (7.110) and (7.111), on a time discretization,
{t0, t1, . . . , tN}, to obtain the following.

Stk+1
= Stk + µStk∆t+

√
vtkStk∆W1tk , (7.113)

vtk+1
= vtk − γ(vtk − v̄)∆t+ η

√
vtk∆W2tk . (7.114)

On re-writing the above two equations as follows,

Stk+1
= Stk(1 + µ∆t+

√
vtk∆W1tk), (7.115)

vtk+1
= γv̄∆t+ vtk(1− γ∆t) + η

√
vtk∆W2tk . (7.116)

we observe their resemblance to the well-known and widely popular
GARCH(1,1) econometric model of stochastic volatility.

Sk+1 = Sk(1 + µ̃+ σkϵ1k), (7.117)

σ2
k+1 = ω + βσ2

k + αϵ2k. (7.118)
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If we had used higher-order discretization schemes for the original continuous-
time model, they would be equivalent to the more general GARCH(p,q)
models. In order to calibrate the GARCH models, therefore their equivalent
continuous-time models of stochastic volatility, we refer the reader to extensive
literature on estimating parameters of Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) models [13, 76]. Stock return data would be uti-
lized for calibrating the model in the real-world, while for risk-neutral world,
implied volatility data based on market prices of options will be necessary.
Once parameters are estimated, stock price trajectories can be obtained by
simulation using the same discretizations as given in Eqns. (7.113) and (7.114)
or higher order ones.

7.2.6.4 Large Sudden Changes in Prices - Jump Diffusion Model

Skewness and excess kurtosis in stock returns arise from one other empir-
ical characteristic, sudden large changes either in the stock price or volatility,
or both. This is the last direction of enhancement we consider in modeling
stock price evolution. For incorporating sudden large changes, we utilize the
continuous-time Markov chain process studied in Chapter 5. We specifically
utilize the Poisson process described in Section 5.3.2.

Poisson process, Nt, as stated above, is a continuous-time Markov chain.
It is a counting process with events happening at inter-arrival times that are
independent, exponentially distributed. The Poisson process has an intensity,
λ, for any t > 0, and for any time t, the probability distribution is,

P (Nt = n) = eλt
(λt)n

n!
. (7.119)

Therefore, we can also show that at any time, t, the expected number of events
occurred is E[Nt] = λt, while the variance is, V ar(Nt) = λt. Poisson process
has independent and stationary increments. Independent increments implies,
if s > 0, Nt+s − Nt is independent of Ft, where Ft = σ(Ns, s ≤ t) is the
filtration generated by the Poisson process. Poisson process has stationary
increments since Nt+s −Nt has the same distribution as Ns −N0 for all s, t.

The jump-diffusion process is a mixture of jump process, such as the Pois-
son process indicating the arrival of a jump, and diffusion process. The process
mostly evolves diffusively, interrupted by jumps causing discontinuities in the
trajectory of the process. The Poisson process captures the random occur-
rence of events, the actual impact, i.e., size of the jump must be additionally
described. We define a sequence, Uj , of independent, identically distributed
random variables taking values in the interval, [−1,+∞], to model the size of
the jumps. Therefore, jth jump arriving by the Poisson process is of size Uj .
Therefore, the cumulative effect of jumps up to time t is, Yt =

∑
UjIj≤Nt ,

where I is an indicator function. The Yt process is called a compound Poisson
process.

If τi are random times when jumps occur, in the time interval [τj , τj+1), the
jump-diffusion process follows the Black-Scholes model, dSt = µStdt+σStdWt,
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or any other advanced diffusion model. At time τj , the impact of jump on the
stock prices is given by ∆Sτj = Sτj − Sτ−

j
= Sτ−

j
Uj , where Sτ−

j
refers to the

left-limit of the diffusive evolution as t ↑ τj . Thus, Sτj = Sτ−
j
(1 + Uj).

Combining the joint impact of diffusion, arrival of jumps and the size of
jumps the stock evolution is given as follows.

St = S0

Nt∏
j=1

(1 + Uj)e
(µ−σ2/2)t+σWt , (7.120)

using the convention
∏0

j=1 = 1. The process thus constructed is a right-
continuous process, adapted to a filtration constructed by union of filtration
of each component of the process. And finally, on each interval [0, t], it has
only finitely many discontinuities. We have constructed one example of a jump-
diffusion process; other varieties can be constructed by picking different choices
for each component of the process.

Pricing of derivatives under jump-diffusion processes becomes more in-
volved. Constructing a replicating portfolio is achievable, however the replica-
tion would break down should there be a jump in the stock price at the time
of maturity. In order to deal with this complication, the derivation becomes
a little more involved. The derivation follows the objective of minimizing the
risk of mismatch of the replicating portfolio due to jump occurring at option
maturity. It can be proven that an option defined on the stock evolving by
the above jump diffusion process will be priced as [90],

f(0, S0) = E0[e
−rTh(ST )], (7.121)

where ST = S0

NT∏
j=1

(1 + Uj)e
(r−λm−σ2/2)T+σWT . (7.122)

As usual, h(ST ) represents the pay-off of the option at maturity, T , and m =
E[Ui]−1. Among other generalizations, one that may be useful is when λ, the
rate of arrival of jumps, is also made time-dependent, i.e., λ(t). We will use
this feature in Chapter 9 for default risk modeling.

In Section 5.3.2, we had described one method for simulating trajectories
of the Poisson process. This can be combined with outcomes of the diffusive
component to simulate the trajectories of the jump-diffusion process. Alterna-
tively, one can also utilize the fact that ∆Nt ∼ Po(λ∆t) for generating Poisson
trajectories, especially when one is attempting to match Poisson trajectories
on a time discretization created for the diffusive component. This may be
needed, for instance, for pricing path-dependent options. The latter approach
will also be required when the rate of arrival of jumps is time-dependent, λ(t).

We have seen several examples of extensions beyond the Black-Scholes
model for stock evolution in this section. The more general class of processes
that have been applied to problems in finance, with Poisson process, Wiener
process, and jump-diffusion processes being special cases, is Lévy processes.
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A stochastic process that almost surely starts at zero, has independent and
stationary increments, and whose trajectories are right-continuous with left-
limits is a Lévy process. This is clearly a very general definition, and also
includes processes that have infinitely many small jumps in a finite interval,
(0, t]. For exploring this topic further, the reader may refer to a dedicated
book on this topic [77].

7.3 Equity Hedging Strategies

Stocks are a pure investment asset class. While firms issue shares of their
stock for financing their investments in exchange for a residual claim on the
firm’s assets and earnings, investors seek the upside potential of obtaining
high returns from their stock investment. Stocks expose investors to varying
levels of high risk, therefore depending on their goals of investment, investors
must determine their preferred equity risk-return profile and ways by which
this would be achieved. Inclusion of equity derivatives in the development
of investment strategies can help crave out precise strategies to achieve the
investment goals of the investor. We will develop equity hedging strategies
keeping this as one of the motivating contexts. Exposure to equity derivatives
is not only done to reduce risk, but they may also be utilized to enhance the
upside potential or for speculation.

Writing options, whether vanilla ones or the large range of exotic equity
options, is very risky. The downside of the long position in options is losing
the initial premium, while the upside may be unlimited. Therefore, options
are considered highly leveraged instruments. The reverse is true for the option
writer. The upside of writing an option is limited, but the downside can be
huge. Option writers and market makers for equity options must perform very
active risk management of their options portfolios. Some of the strategies we
will discuss are geared to address this challenge.

In the development of this chapter thus far, we have focused heavily on eq-
uity options, both vanilla and exotic ones, on single stocks. There is a broader
kind of equity derivatives that should be included in the discussion at this
point. Instruments beyond equity options we have not seen so far include eq-
uity futures, equity swaps, index options, equity basket derivatives, and fund
derivatives. As discussed in the context of stochastic volatility models in Sec-
tion 7.2.6.3, over the years equity volatility has emerged as another asset class.
The variety of instruments in this category includes VIX futures and options,
which we mentioned earlier, variance swaps on indices as well as single stocks,
variance derivatives, such as conditional variance, options on variance, and
correlation.

Some of the strategies we will construct are static in nature, implying once
the positions are established in relevant instruments with desired features, the
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positions are maintained until the derivatives mature. Static strategies are cost
effective and low-maintenance, therefore are attractive to consider whenever
it is possible to achieve the hedging objectives using static strategies. In other
cases, the hedge positions must be modified in response to changing conditions
of the risk factors. Clearly, such strategies would require active monitoring,
taking periodic action to implement the strategy and to achieve the goals
of the strategy. Periodic action can also result in incurring high transaction
costs. Finally, the fundamental principle for pricing derivatives is to eliminate
arbitrage opportunities. No-arbitrage conditions are theoretical motivations
for interrelation of derivative prices and price of the underlying stocks or
stock indices. In practice, arbitrage opportunities can emerge in the equity and
equity derivative prices, and strategies that are designed to take advantage of
these opportunities are called arbitrage strategies.

In order to create the best risk management response to equity risk, using
equity derivatives, we must utilize frameworks that help determine optimal
hedge decisions in all the contexts we have discussed above. In Section 7.3.2,
we will pick some of the discussed contexts as illustration to develop an optimal
hedge framework that can be applied to other cases.

7.3.1 Static Hedging Strategies

Consider a long position in a stock: for the duration of time the investor
intends to maintain this position, she is exposed to the risk of the stock price
dropping, say relative to her purchase price, S0. A protective put strategy
adds a long position in a plain vanilla European put option with the desired
maturity, depending on the availability of maturities of put options and the
investor’s planning horizon to hold the stock. The strike of the put option
depends on the level of protection sought by the investor, keeping in mind that
the higher the strike price, the higher the cost of the hedge. The resulting pay-
off of this strategy is shown in the left panel of Figure 7.15. The combination
of a long position in a stock and put option resembles a long position in a call
on the underlying asset with the same strike as the put option, as expected
from the put-call parity.

Moreover, the strategy may be applied to an equity portfolio or to a stock
index by utilizing a basket put option or an index put option. In these cases,
one must also address the issue of basis risk, i.e., the protective put option
not exactly matching the underlying portfolio, thus not resulting in a perfect
protective put hedge. Purchasing put options against the assets held in a
portfolio is synonymous with taking out an insurance on those assets. The
reverse of a protective put or a short protective put strategy is shown in the
right panel of Figure 7.15.

If a market maker has written a call option, it is exposed to the downside
risk of the option being exercised, which can result in an unlimited loss. One
way the option writer can protect itself of this loss is to take a long position
in the underlying stock. This hedge will come at the cost of the current price
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FIGURE 7.15: (a) Profit and individual positions of a protective put. (b)
Profit and individual positions of a reverse protective put.
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FIGURE 7.16: (a) Profit and individual positions of a covered call. (b) Profit
and individual positions of a reverse covered call.
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FIGURE 7.17: (a) Profit and individual positions of a bull spread using call
options. (b) Profit and individual positions of a bear spread using put options.

of the underlying stock, but will protect the option writer from having to buy
it at a potentially higher price should the option be exercised at maturity.
Figure 7.16 displays the pay-off of the covered call strategy in the left panel,
and reverse of a covered call in the right panel. Again as expected, the combi-
nation of a short call and long stock, (−c+ S), takes the form of a short put,
as the put-call parity would indicate.

Options theory has proven invaluable to portfolio and risk management,
since the rudimentary pay-off function of a call or put option on an underlying
stock can be combined to create a staggering variety of pay-off structures.
One may be reminded that piece-wise linear functions as basis functions can
be used to approximate functions of any support and shape, provided put and
call options with the desired strike prices are available at affordable prices.
Therefore, portfolio managers can dynamically tailor investment positions to
reflect changing expectations, market conditions, and client needs.

Purchasing and selling combinations of calls and puts can help investors
maneuver in volatile and uncertain markets. If an investor or portfolio manager
has a bullish or bearish view on a stock, portfolio or index, she can act on this
view to try to benefit should it come true. A call option on the underlying
is the natural bullish instrument for the prospects of the underlying, offering
reward with much leverage. This would be a naked call strategy, however
depending on how the investor picks the strike price of the call, it can turn
out to be quite costly.

As an alternative to a naked call, the investor can construct a bull spread,
which is one of the most popular spread strategies. In a bull spread, the long
call with a strike at K1 is combined with a short call on the same underly-
ing and maturity, but at a higher strike, K2(> K1). The result is the cost
of the combination reduces relative to a naked call with strike, K1, along
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with of course a reduction in the upside potential. We show the bull spread
constructed using call options in Figure 7.17 in the left panel. In fact, a bull
spread can also be created using put options, however this construction is not
shown in the figure. For a bull spread using put options, the investor will long
a put option with strike K1 and short a put with strike K2(> K1). Given,
p(t, St;K1) < p(t, St;K2), whereas c(t, St;K1) > c(t, St;K2), a bull spread
using calls is more costly than the bull spread constructed using put options.

Similarly for an investor with a bearish view on the market, an index
or an individual stock, she can either long a put option on the underlying,
or construct a bear spread. The bear spread can be constructed by a long
position on a put with strike (K2) combined with a short position in a put
option of the same maturity but a lower strike (K1). Therefore the cost of the
bear spread using put options is p(t, St;K2) − p(t, St;K1), which is positive
and can be lowered by either increasing the lower of the two strikes, K1, or
decreasing the upper strike price, K2. Either of these moves will lower the
profit from the strategy. The pay-off of a bear spread using puts is shown in
the right panel of Figure 7.17. Just as in the case of bull spread, bear spread
can be constructed using call options.

We have considered some examples of hedge strategies, followed by a couple
of speculative, higher-return seeking strategies. We now develop a strategy to
take advantage of an arbitrage opportunity. As per the put-call parity, a call
option, a put option on the same underlying stock, with the same strike and
maturity should satisfy the following relationship.

c(t, St;K) +Ke−r(T−t) = p(t, St;K) + St. (7.123)

Suppose the above relationship is seen to not hold for a time t, then the
following strategy will result in arbitrage profit. Suppose we have, c(t, St;K)−
p(t, St;K) > St−Ke−r(T−t), then we borrow funds in the amount,Ke−r(T−t),
at the risk-free rate, r. With these funds we would buy the stock at St, short
a call option and long a put option leading to a net cashflow, c(t, St;K) −
p(t, St;K) − St +Ke−r(T−t) > 0. At maturity, either the call or the put will
be exercised. If the put is exercised, this implies K > ST , the proceeds from
selling the stock at price K is used to settle the risk-free loan. Thus, there is
a positive cashflow at t for no later obligation. On the other hand, if the call
option is exercised, this implies K < ST , again the proceeds from selling the
stock at price K is used to settle the risk-free loan. We have again created
arbitrage profit.

Let’s now consider the reverse case to be true. Suppose the put-call parity
is violated at a time t, with c(t, St;K) − p(t, St;K) < St − Ke−r(T−t). In
this case, we short the stock and use the proceeds to long a call option, short
a put option and invest Ke−r(t−t) of the rest in the risk-free bond, leading
to a net cashflow, −c(t, St;K) + p(t, St;K) + St − Ke−r(T−t) > 0 at t. At
maturity, either the call or the put will be exercised. If the put is exercised,
this implies K > ST , the proceeds from the risk-free investment are used to
buy the stock at price K. The stock is used to settle the short position in
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FIGURE 7.18: (a) Profit and individual positions of a butterfly spread.

the stock. Thus, there is zero net cashflow at T . On the other hand, if the
call option is exercised, this implies K < ST , we would still buy the stock
at K and use it to settle the short position in the stock, thus again making
arbitrage profit.

Bull and bear spreads were constructed with a view that the stock, portfo-
lio or market was going to either go up or down. What if for a stock, a sector
or the market, it is believed that it is going to stay where it is for a period
of time. We construct a more complex spread of four call options of the same
maturity, long one call of strike (K1), short two calls of a higher strike (K2),
and long one call of a yet higher strike (K3). The combined pay-off of these
positions is shown in Figure 7.18. The strategy pays off if the stock remains in
the neighborhood of its current price, and not if the stock wanders far away
in either direction. This is the butterfly spread.

Volatility is increasingly becoming an asset class in itself, for indices as
well as for single stocks. We now consider an aggressive strategy that bets
on the volatility of a stock or an index. The strategy is called a straddle and
is constructed by a long position in a call and a put of the same strike and
maturity. The resulting pay-off is shown in the left panel of Figure 7.19. This
strategy pays off only if the stock moves far enough away from its current
value, no matter in which direction, hence a bet on the volatility. A straddle
may be quite costly, therefore on a similar theme we can construct a less costly
strategy called a strangle. The difference in a strangle is that we employ two
strike prices, K1 and K2, with K1 < K2. The put option has a strike K1 and
call option has a strike of K2.

Straddle and strangle can also be mixed with a directional bias, which
results in a strip and a strap, as shown in Figure 7.20. A strip has a bias to
a higher likelihood of a downward move, thus taking a 2:1 long position in a
put and call option of the same strike and maturity. Similarly, a strap has a
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bias to a higher likelihood for the stock to move up, thus taking a 2:1 long
position in a call and put option of the same strike and maturity.

We have so far constructed strategies for single stocks, portfolios or in-
dices using only vanilla European call and put options. Strategies using exotic
options can also be constructed as and where deemed appropriate. Exotic op-
tions are more complex and have so far been traded over-the-counter, hence
there are additional issues to consider when engaging in a risk management
strategy using exotic options. The investor should completely understand the
terms of the exotic option contract, and ensure that the exotic option will help
meet their hedging needs better than the vanilla options. This is true because
by virtue of being over-the-counter contracts, exotic options carry additional
counterparty risk.

Instead of a put option, in order to develop a protective strategy for a long
position in a stock or a portfolio, one can seek a knock-out put option or a
compound option with the right to buy a put option in the future with set
strike price and time to maturity. In both cases, the hedge could be as effective,
but end up being much less costly. A chooser option strategy can achieve
the goal of strategies like a straddle, strangle, strip, or strap, but in much
more cost-effective terms. Similarly, lookback options, Asian options, spread
options, and basket options can be tied into risk management strategies; since
all these options have a way to reduce or access risk to construct the desired
risk-return profile.

We have provided an overview of some important strategies to cover the
grounds of themes by which equity hedging strategies are developed. The
reader should consult other sources for further building their knowledge on
this topic [17, 41].

7.3.2 Optimal Hedge Problem

All the hedging strategies constructed in the previous section were devel-
oped based on a theme for the objective of the strategy. However, in developing
these strategies we didn’t seek the best setting for the strategy to achieve the
objective. All the strategies, in fact, had key parameters that could be used
to fine-tune the strategy for reaching the strategy’s objectives optimally. For
instance, the protective put strategy must determine the strike price of the
put option to construct a cost-effective insurance against downside risk of the
stock.

We now develop a framework to facilitate this fine-tuning, as well as de-
velopment of new strategies that offer optimal hedges. Since equity is purely
an investment asset, the key quantity that summarizes performance is the
investment return. In contexts other than equity risk, the key quantity that
may define risk management objectives could be cashflow of a project, annual
firm-level cashflow, or at the highest level, the value of the firm or the share-
holder value of the firm. Along with the appropriate quantity that defines the
risk management objective, one must also choose a suitable risk measure. In
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some cases expected shortfall, semi-variance, or other measures of tail risk
or downside risk may be considered relevant, whereas in others volatility of
return may be the guiding risk measure to develop the optimal hedge strategy.

If V is the quantity that defines performance of a firm or portfolio given its
risk exposures, R, and ρ(V ) is the chosen risk measure, then our objective is
to find a hedge instrument, X(θ), and its weight h, so that risk is minimized.
We can formulate this problem in its general form as follows,

min
θ,h

ρ(V (R, hX(θ)), (7.124)

where the solution to the optimization problem, (θ∗, h∗), would be called the
optimal hedge ratio or the optimal hedge weight.

As a specific case, let’s consider the return of a portfolio, V = RΠ, being the
quantity of interest, where the risk measure chosen is the volatility of return.
If an index futures contract is being considered to construct the hedge, with
return of the futures position being, Rf , then we seek the minimum variance
hedge h∗ that minimizes the volatility of the hedged portfolio, ΠH , given as
follows.

min
h

var(RΠH ) = min
h

var(RΠ) + h2var(Rf )− 2hρΠfσRΠσf , (7.125)

where ρRΠf is the correlation between the portfolio and the hedge instrument -
index futures contract, and σRΠ , σf are standard deviation of portfolio return
and index futures, respectively. In order to minimize the risk, we take the first
derivative, equate it to zero and solve the equation to obtain the following
solution.

h∗ = ρRΠf
σRΠ

σf
. (7.126)

Taking second derivative confirms this to be the optimal hedge; we call it
the minimum variance hedge. The above static hedge framework can be cast
as a dynamic hedge problem by allowing all state and decision variables to
be time-dependent. In the next section, we develop some dynamic hedging
strategies.

7.3.3 Dynamic Hedging Strategies

The covered call static hedge, discussed in Section 7.3.1, protects an option
writer of a call option, by eliminating the unlimited downside risk of the
naked call option. The advantage of a static strategy of this kind is that once
implemented, it doesn’t require any further monitoring and control. However,
as seen in Figure 7.16, the covered call exposes the option writer to a significant
amount of downside risk of the stock. We now consider a dynamic hedge to
avoid the disadvantage of the static hedge.

The stop loss strategy is the simplest dynamic hedge which takes an action



Managing Equity Market Risk 255

S
t

t

Stock Price 

at T
Initial Stock 

Price

T

Strike Price: K

K+  

K-  

FIGURE 7.21: The points of time along the life of an option when trades
must be made to cover the naked short call position. A margin around the
strike, K, is created of width 2ϵ to avoid rapid trades when the option is near
at-the-money range.

only if the need for a cover is anticipated. In the case of a short position in a
call option, this happens when stock prices goes above the strike price, or when
the option becomes in-the-money. When the option becomes in-the-money, the
writer buys the underlying stock to cover the written call option, and holds
the position until the intrinsic value of the option remains positive. If the
option matures in the money, the writer is covered due to the long position
in the stock; however, if the option’s intrinsic value becomes zero during the
life of the option, the writer unwinds the long stock position. Therefore, the
writer is long in the stock whenever St > K, and holds a naked call when
St < K. Figure 7.21 shows the response of the strategy for different sample
paths of the stock until maturity of the option.

One practical issue with the strategy is that if the stock price hovers in
the vicinity of the strike price, the writer may end up buying and selling the
stock in quick succession, raking up the transaction costs from these trades.
In order to avoid this undesirable aspect of the strategy, we create a band
of width 2ϵ around K, and don’t execute the buy and sell decision for the
stock until stock price goes above K+ ϵ or falls below K− ϵ, respectively. The
band of execution is also shown in Figure 7.21. Despite this adjustment, the
strategy still has the flaw of swinging in and out of the entire stock position,
which can prove to be quite costly.

For the derivation of the arbitrage-free price of an option, we constructed a
portfolio, Π(t, St) = −c(t, St)+

∂c
∂xSt, which was instantaneously risk-free. We

take advantage of this fact in constructing an improvement on the stop loss
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FIGURE 7.22: Delta hedge strategy takes advantage of the fact that the
slope of the option price curve will converge to the terminal pay-off level as
option reaches its maturity.

strategy. For a written call option, we take a long position in the stock with a
weight, ∆ = ∂c

∂x , which is the first Greek of the option (delta). This is called
delta hedging. This portfolio is instantaneously risk-free, but as the stock
price changes, the delta of the option also changes. Hence, the hedge position
should be adjusted. With responsive adjustments, as shown in Figure 7.22,
as the option approaches maturity, the hedge weight converges to where it
should be.

The frequency of adjusting the hedge or the size of adjustment to the hedge
needed when using delta hedging can be reduced if we add another hedge
instrument, say another option on the same underlying stock, to neutralize
the second order sensitivity of option price, c(t, St) to the underlying, which
is the gamma of the option. This is called delta-gamma hedging. We would
simultaneously solve the following pair of equations for (w1, w2).

∂c

∂x
+ w1 + w2

∂c2
∂x

= 0, (7.127)

∂2c

∂x2
+ w2

∂2c2
∂x2

= 0, (7.128)

where c2(t, St) is a second option defined on St chosen to construct the gamma
hedging along with using the underlying stock St for the hedge.

Additionally, the volatility underlying the stock may itself be time-varying,
as discussed in the stochastic volatility model in Section 7.2.6.3. In order to
neutralize the impact of changing volatility on the option price, a second op-
tion on the underlying would be added to construct the hedge. This is called
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delta-vega hedging. We simultaneously solve the following two equations, in-
stead of Eqns. (7.127) and (7.128), to obtain (w1, w2).

∂c

∂x
+ w1 + w2

∂c2
∂x

= 0, (7.129)

∂c

∂σ
+ w2

∂c2
∂σ

= 0, (7.130)

where c2(t, St) is the second option on the underlying included to construct
the vega hedge along with using the underlying stock St for the hedge.

Finally, in order to simultaneously neutralize the option price for the
changing volatility and second order changes in stock price, a third instrument
or a third option on the underlying can be added to construct the hedge. We
would now solve the following three equations simultaneously for (w1, w2, w3).

∂c

∂x
+ w1 + w2

∂c2
∂x

+ w3
∂c3
∂x

= 0, (7.131)

∂2c

∂x2
+ w2

∂2c2
∂x2

+ w3
∂2c3
∂x2

= 0, (7.132)

∂c

∂σ
+ w2

∂c2
∂σ

+ w3
∂c3
∂σ

= 0, (7.133)

where c3(t, St) is the third option on the underlying added to the hedge to
achieve a delta-gamma-vega hedging.

Usually the above hedges will not need to be constructed individually for
every single option exposure, since all the above sensitivities are relevant for a
portfolio of options defined on the same underlying, Πt (refer to Eqn. (7.72)).
Portfolio Greeks can be obtained by weighted sum of individual instruments’
Greeks, with weights being the portfolio weights for each instrument. There-
fore, delta, gamma, vega, gamma-vega, etc. hedging can be done for the entire
portfolio by adding additional options as above, and simultaneously solving
the following equations for (w1, w2, w3).

∂Πt

∂x
+ w1 + w2

∂c2
∂x

+ w3
∂c3
∂x

= 0, (7.134)

∂2Πt

∂x2
+ w2

∂2c2
∂x2

+ w3
∂2c3
∂x2

= 0, (7.135)

∂Πt

∂σ
+ w2

∂c2
∂σ

+ w3
∂c3
∂σ

= 0, (7.136)

where c2(t, St) and c3(t, St) are options on the same underlying added to
construct gamma-vega neutrality in the portfolio, Πt.
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7.4 MATLAB Tools for Equity and Portfolios

MATLAB mathematical software has a vast array of functions for working
with equity analysis, equity derivatives, and optimization methodologies in
its Financial and Optimization Toolboxes, respectively. We list a few of these
functions here. The reader is advised to look up the extensive help documen-
tation available with MATLAB to see the details of these and other related
functions. At the bottom of each function description in MATLAB help doc-
umentation, look for ‘See Also’ to explore other related functions. Resources
such as MATLAB Primer [20] are also useful.

Portfolio optimization: quadprog, fmincon, plotFrontier, estimateFrontier,
estimatePortReturn, estimatePortRisk

Equity analysis: corrcoeff, cov, priceandvol, movavg

Equity options: blsprice, blsimpv, binprice, opprofit

Greeks: blsdelta, blsgamma, blsvega, blsrho, blstheta

GARCH: ugarch, ugarchllf, ugarchpred, ugarchsim

7.5 Summary

Equity market risk is the most important component of risk in the market
risk segment, both in terms of volume and broad impact on firms and investors.
Therefore, in this chapter we focused on the risk management of equity risk. In
the context of equity risk, we introduced principles of portfolio management
and risk diversification. Derivatives are used extensively for the management
of equity risk. We developed the option pricing techniques for a variety of
options, as well as methods for estimating sensitivity of these prices for the key
parameters. Knowing the price and price sensitivity of the equity derivatives
is important, both for the buyer and the writer of the option, in order to
determine its impact on their respective overall hedging strategy. We also
considered pricing of options under more advanced models, which are well-
known improvements over the standard Black-Scholes-Merton framework for
pricing derivatives. Finally, we developed rigorous frameworks for developing
optimal hedging strategies, starting with assessing some standard examples of
hedging strategies and their objectives.
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7.6 Questions and Exercises

Review Questions

1. What is the implication of role of equity in the capital structure of a
firm?

2. How does fundamental analysis of equity differ from technical analysis?

3. What is the trade-off between objective, strictly model-driven quantita-
tive analysis, and intuition investors may have developed for the markets,
sectors, industries, and specific firms?

4. What is the goal of mitigation or diversification of risk?

5. How are the mean and variance of portfolio return constructed in terms
of mean and variance of individual stock returns?

6. What is the impact on the return of a portfolio of two stocks, when
there is perfect positive or negative correlation between returns of the
two stocks?

7. What is a short-selling constraint in a portfolio optimization problem?
How is it defined and specified?

8. What is the efficient frontier?

9. How does mean-variance portfolio optimization differ from mean-mean-
absolute-deviation portfolio optimization?

10. When should one use tail measures of risk in portfolio optimization?

11. How can simulation analysis be utilized for portfolio decisions?

12. What are the approaches available for addressing parametric uncertainty
in portfolio optimization?

13. What are a plain-vanilla European call and put option? For a chosen
strike price, K and maturity, T , draw the terminal pay-off function of a
short and long position in a call and a put option.

14. What are an at-the-money, in-the-money, and out-of-the-money options?

15. What is arbitrage?

16. What is a binomial tree, how can it be used to model stock evolution?

17. What are risk-neutral probabilities?

18. What is implied volatility? What is the significance of this quantity?
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19. What are the Greeks of an option? Give some examples and their exact
definition.

20. How can one compute the Greeks of a portfolio of options on the same
underlying?

21. What are delta-, gamma-, vega-neutrality of a portfolio of options?

22. What are exotic options? Give some examples.

23. What is a compound option? How does it differ from a chooser option?

24. How is a shout option different from it European or American counter-
part? How will its price compare?

25. What are an up-and-out and a down-and-in barrier option?

26. What are the different varieties of Asian options?

27. What is a rainbow option? Why is it considered an option on correlation
between underlying stocks?

28. How does the put-call parity change when applied to American call and
put options?

29. When is the Constant Elasticity of Variance (CEV) model useful for
modeling stock price evolution?

30. When is a stock price evolution model described and calibrated under
the real-world measure versus risk-neutral measure?

31. What is VIX index?

32. What is a volatility smirk? What is a smirk indicative of?

33. What is a stochastic volatility model for stock evolution? When is this
model enhancement important?

34. What is a jump-diffusion process? When is such a model useful for stock
evolution?

35. What are the protective put and covered call static hedge strategies?

36. What are a bear spread and a bull spread? When is each spread con-
structed?

37. What is the butterfly spread, how and when is it constructed?

38. What are a straddle and a strangle? What is the cost of these two
strategies?

39. What are a strip and a strap? How do these differ from a straddle?
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40. What is a minimum variance hedge? What is optimal hedge ratio?

41. What is a stop loss strategy? What is the drawback of this dynamic
hedging strategy?

42. What is delta hedging? How is delta-gamma hedging an improvement
over delta hedging?

43. What is delta-vega hedging? When would this hedge be required?

44. What is delta-gamma-vega hedging?

Exercises.

1. Consider three stocks with the following summary information regarding
their annual returns. The mean annual return of three stocks is estimated
to be, µ⃗ = [0.09; 0.05; 0.16]; the annual standard deviation of returns is
σ⃗ = [0.10; 0.06; 0.25], and the correlation matrix is given as follows.

ρ =

 1 0.3 0.1
0.3 1 −0.05
0.1 −0.05 1

 (7.137)

Assuming a planning horizon of one year, construct and analyze the
following portfolios in MATLAB.

(a) Construct the minimum variance optimal portfolio under no short-
selling constraints.

(b) Choose a desired target mean return, rth, which should serve as a
lower bound for the optimal portfolio return. Compute the mini-
mum variance portfolio under no short-selling constraint. Relax the
no short-selling constraint and re-optimize your portfolio. How do
your portfolio weights change?

2. Consider a continuous-time stock price evolution model for three stocks
of the form,

dSit = µiSitdt+ σiSitdWit, (7.138)

for i = 1, 2, 3, where initial stock price is, S⃗0 = [19; 53; 26], µ⃗ =
[0.09; 0.05; 0.16] and σ⃗ = [0.10; 0.06; 0.25]. The three correlated Wiener
processes are described by the following correlation matrix.

ρ =

 1 0.3 0.1
0.3 1 −0.05
0.1 −0.05 1

 (7.139)

Assume a monthly trading strategy for an annual planning horizon, and
a chosen terminal wealth performance measure, U(WT ) = E[u(WT )],
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where u(x) = xγ−1
γ is a constant relative risk aversion utility. Analyze

different investment strategies for these three stocks in MATLAB using
simulation for different choices of coefficient of relative risk aversion, γ.
Pick a γ < 0 for degree of high risk aversion and a γ > 0 for low risk
aversion. Explore how the optimal strategy may be constructed in each
case using simulation.

3. Consider a stock price evolving by the following model,

dSt = 0.19Stdt+ 1.2S0.8
t dWt, (7.140)

where the current price of the stock is, S0 = $20.

(a) Determine the price of a European vanilla call option with strike
price K = $18 and time to maturity, T = 0.25 years. The short-
term risk-free interest rate is 2.3%. If put-call parity holds, what is
the price of the corresponding European put option?

(b) Assume that the accurate representation of the real-world stock
prices is by the model in Eqn. (7.140). Irrespective of this fact, if
we want to represent stock evolution by the Black-Scholes model,
what parameters would you describe the Black-Scholes stock price
evolution by that are consistent with the above model? What will
be the price of the two options in the Black-Scholes world? How
different are the prices of the two options?

4. For the stock evolving by the model in Eqn. (7.140), define a call-on-call
and a call-on-put compound option with a maturity of T = 0.1 years.
Price the compound option, assuming the short-term risk-free interest
rate is 2.3%. Define and determine the price of a chooser option with
same maturity as the compound option, and compare the prices of the
two options.

5. A discrete-average Asian option is defined on the stock evolving by the
model given in Eqn. (7.140) with the current price of the stock being,
S0 = $20. The Asian call option pay-off is determined by the arithmetic
average of weekly closing price of the stock, with a maturity of T = 0.25
years and strike price K = 20. Estimate the price of the option using
simulation. Assume that the short-term risk-free interest rate is 2.3%.

6. Define an up-and-out Barrier call option and down-and-in Barrier put
option on the stock evolving by the model in Eqn. (7.140). Estimate price
of these options, and compare the price with the corresponding vanilla
call and put options. Assume that the short-term risk-free interest rate
is 2.3%.

7. Consider a stock evolving by the following Black-Scholes model

dS2t = 0.10S2tdt+ 0.24S2tdW2t, S20 = $45. (7.141)
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Define an exchange option between this stock and the stock defined in
Eqn. (7.140) with initial price of S0 = $20. Estimate the price of the
exchange option, assuming that the correlation between the two driving
Wiener processes is, ρ = −0.15 and the short-term risk-free interest rate
is 2.3%.

8. Price an American put option with strike price K = $28 and time to
maturity, T = 0.25 years, using simulation analysis for the stock evolving
by the model in Eqn. (7.140). Approximate this model by a recombining
binomial tree representation and estimate the price of the American put
option using the binomial tree. Compare the prices obtained by the two
approaches.

9. Obtain the market price of options defined on your favorite stock for
range of strikes and maturities. Plot implied volatility curves and sur-
faces, and comment on the properties of these plots regarding assump-
tions of constant volatility.

10. Define a bull and a bear spread for the stock defined to be evolving
by Eqn. (7.141). Compute the cost of the spreads and summarize the
distribution of the profit from the spread by a histogram, and in terms
of mean and variance.

11. Consider a European vanilla call option written on the stock evolving
by the model in Eqn. (7.140) with strike price K = $18 and time to
maturity, T = 0.25 years. Implement a stop loss strategy for this position
in order to estimate the cost of this dynamic hedge strategy.

12. Consider the Barrier options defined in Problem 6. Implement a delta
hedge and a delta-gamma hedge strategy for these options for the same
frequency of adjustment to the hedge. Report some statistics for the
comparison of the performance of the two hedges.

13. Consider the following portfolio of written options on the stock evolving
by the model in Eqn. (7.140), reported by number of option contracts
(100 shares/contract), maturity, strike, and plain vanilla European call
versus put.

(a) n1 = 1000; T1 = 0.1 years, K1 = $22, plain vanilla European put.

(b) n2 = 2000; T2 = 0.13 years, K2 = $20.50, plain vanilla European
call.

(c) n3 = 1200; T3 = 0.15 years, K3 = $17.00, plain vanilla European
call.

(d) n4 = 500; T4 = 0.2 years, K4 = $20, plain vanilla European put.

(e) n5 = 200; T5 = 0.25 years, K5 = $19.80, plain vanilla European
put.



264 Risk Management and Simulation

(f) n5 = 2000; T6 = 0.4 years, K6 = $21, plain vanilla European put.

By adding the underlying stock and additional options of your choice,
construct a delta-gamma hedge and delta-vega-gamma hedge for the
portfolio.



Chapter 8

Managing Interest Rates and Other
Market Risks

In an introductory finance course, the first concept explained is that of Time
Value of Money. This is an important and fundamental concept at the core of
all monetary transactions with a temporal element, and the core mechanism
by which monetary resources move in an economy to be allocated for their
most beneficial use. The entity extending credit by parting with some idle
monetary resources expects to get them back, but expects to be rewarded for
the act of parting with its resources. One can consider this reward to be the op-
portunity cost of the entity extending the credit using its monetary resources.
This opportunity cost constitutes the interest rates involved in borrowing and
lending in an economy.

This is a simple description for interest rates, albeit giving an impression
that an interest rate is a static, universally applied quantity to assess the
time value of money. That is, in fact, how it is dealt with in an introductory
exposition, and the way we will begin here. However, in the real world there
are a multitude of interest rates used depending on the nature of entities at
the two ends of contracts, borrower’s financial health, duration of borrowing
and lending, collateral used, economic conditions, and the monetary policy,
to name a few. Changing market and economic conditions also put pressures
on interest rates to move, change, and fluctuate. This is the risk we study in
this chapter, along with its impact and management.

Entities that concern themselves with interest rates and the underlying
risks range from individuals, governments, corporations, investment institu-
tions, banks, and insurance firms. Therefore, interest base for interest rates
is broad. Interest rate risk is closely related with two other risks - credit risk
and liquidity risk - both of which we will study in later chapters.

Other market risks important in an increasingly globally connected pro-
duction economy are risks underlying the value of commodities and various
currencies firms may buy and sell materials, products, and services in. After
developing a detailed discussion of risk management of interest rate risk, in
the later part of this chapter, we will also study important features of these
two additional market risk segments.
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FIGURE 8.1: Cash flow from a bond with maturity, T years, and annual
coupon of c%.

8.1 Pricing Fixed Income Instruments

Fixed income instruments get their name from the nature of underlying
cash flow due to the buyer over the life of the instrument. In order to receive
this ‘fixed income’ cash flow, an investor buys the instrument for a price. The
currently applicable interest rates determine the price the investor will pay for
a specific fixed income instrument. The changing interest rates in the market
for the fixed income instruments will dictate change in their prices, therefore
volatility of interest rates is the fundamental risk underlying fixed income
instruments. This underlines the importance of the relation between interest
rates and prices of fixed income instruments, as well as their risk management.

Banks, pension funds, insurance companies, etc. take positions in fixed
income instruments, not only as assets (long positions), but also as liabilities
(short positions). Therefore, interest rate risk can affect these institutions in
complex ways, depending on what fixed income instruments constitute their
assets and liabilities. In order to characterize these complex risks, interest rate
risk is further classified as ‘curve risk,’ ‘basis risk,’ ‘gap risk,’ etc. Valuation
of the fixed income instruments is the basis for measurement of these risks,
which can help quantify the impact of the risk on the firm’s interest.

8.1.1 Bond Pricing

A bond constitutes a loan to the bond-issuer, where the bond-issuer
promises to repay the loan principal in a set duration of time, called the
‘maturity’ of the bond. The issuer may also pay interest in the interim period
on the loan, which is called a ‘coupon.’ The coupon level, expressed as a per-
centage of the principal, is set at the time of issue of the bond in accordance
of the prevalent interest rates. Once set, the coupon level and frequency stays
fixed for the life of the bond. Figure 8.1 shows a stylized cash flow diagram
for a bond with an annual coupon level of c%, a principal value, F , which is
repaid in T years.
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FIGURE 8.2: Different shapes of the term structure of interest rate by ma-
turity. (a) Constant (b) Upward sloping (c) Inverted.

To price this bond at a time point after it is issued, one would need to
determine the present value of all the (deterministic) cash flow from the bond
using an appropriate discount rate. If the relevant market interest rate is a
constant, say R, arising from a flat term-structure of interest rates, as shown
in Figure 8.2(a), this serves as the discount rate. The price of the bond can
then be stated as,

P0 =
T∑

j=1

cF

(1 +R)j
+

F

(1 +R)T
. (8.1)

A bond’s price sensitivity to interest rate is an important input for risk man-
agement. If the interest rate goes up or down, in this case a parallel shift of the
flat curve in Figure 8.2(a), the price of the bond will change. This dependence
is nonlinear, as is clear from the formula in Eqn. (8.1). If the risk underly-
ing interest rate change, ∆R, can be described by a distribution, fR(∆t), its
impact on bond price change can be evaluated using the following simulation.
Algorithm:

Step 1: Generate ∆R with probability density fR(∆t).

Step 2: Compute Price of Bond with new interest rate: P1 =
∑T

j=1
cF

(1+R+∆R)j +
F

(1+R+∆R)T
.

Step 3: Repeat until sufficient sample is generated.

Step 4: Compute appropriate summary statistics for bond price change:
∆P = P1 − P0

Well known and widely used quantities, albeit deterministic in nature, exist
that measure sensitivity of bonds to (small) interest rate changes, such as,
duration, modified duration, convexity. We will discuss these in Section 8.2.1.

The other significant complexity in pricing bonds comes from the fact that
interest rates are rarely ever the same for all ranges of maturities or timings
of cash-flow, as in Figure 8.2(a). Instead the shape of term-structure given in
Figure 8.2(b) is the one more commonly observed, which lends it the name,
normal shape of the yield curve. Sometimes the inverted shape in Figure 8.2(c)
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is also observed. For either of these shapes, the term-structure must be qual-
ified by a range of values, {Rt0 , Rt1 , . . . , RtN }, depicting the applicable rates
for different maturities or timing of cash flow, {t0, t1, . . . , tN}. If these rates
were fixed and known, the price of the bond would become:

P0 =
T∑

j=1

cF

(1 +Rj)j
+

F

(1 +RT )T
, (8.2)

where {Rj}Ti=1 ⊂ {Rt0 , Rt1 , . . . , RtN }.
Now when there are T different interest rates used in the formula to price

the bond, it is not possible to simply restate the sensitivity of bond price
on interest rate changes, since it would have to capture the change of all
combinations for the N applicable rates. However, it is a relief to note that
these N rates don’t move completely out of sync of each other, the smoothness
of their moves relative to each other can be utilized in modeling the term
structure of interest rates. We will explore this in the next section. The other
option we have is to attempt to summarize the impact of these N rates on
the price of the bond using one representative discount rate, the internal rate
of return of the bond. We will call this the ‘yield to maturity (YTM)’ of the
bond. It is the internal rate of return for the cash flow of the bond with respect
to the quoted price of the bond, and can be obtained by solving the following
equation for ‘y’.

P0 =

T∑
j=1

cF

(1 + y)j
+

F

(1 + y)T
, (8.3)

where P0 is the quoted market price of the bond. Using this single-number
summary of interest rates for the bond, the algorithm described earlier in this
section can be applied to quantitatively measure bond price risk due to yield
changes described by a distribution, fy(∆t).

Impact of interest rate risk on bond prices, and other fixed-income in-
struments, is most amenable to be modeled by considering interest rates to be
continuously compounded. This is, in fact, how the modeling of risk in financial
models was demonstrated in Chapter 6. Equivalent continuously compounded
interest rate, r, can be obtained from discretely compounding rates, R, by the
following equation,

r =
1

T
ln(1 +

R

m
)Tm, (8.4)

where m is the frequency of compounding per annum. For instance, if m = 2,
the compounding is semi-annual, and therefore in a T = 3 year period, there
are Tm compounding periods. Using the continuously compounded interest
rates, the price of a bond equation becomes:

P0 =
T∑

j=1

cFe−rjtj + Fe−rTT , (8.5)
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where {rj}Ti=1 ⊂ {rt0 , rt1 , . . . , rtN } is the equivalent continuously compounded
term structure of interest rates.

Based on the current term structure of interest rates, a crucial implied
term structure derivable is that of interest rates applicable for times in the
future. These are termed as the forward rates, and the corresponding term
structure defines the forward curve. The forward curve plays a crucial role for
risk management and interest-rate derivatives. Forward rates can be derived
from the current spot rates by an arbitrage argument. For instance, the rate
applicable one-year later for a duration of one-year can be derived in terms of
the current one-year rate and the current two-year rate. By shorting a one-year
Treasury-note and buying a two-year Treasury-note of the same face value,
the one-year interest rate can be locked for the time one year in the future.
The forward curve is summarized by, f(t, T ), where t signifies the time in the
future when the interest rate will be applicable, and T − t is the duration for
which it will be applicable.

When interest rates are stated for discrete compounding, the forward rates
can be computed by repeated application of the arbitrage argument for the
bond instruments of the appropriate maturities, t and T . For any face value,
F , we must have F (1 + Rt)

t(1 + F (t, T ))(T−t) = F (1 + RT )
T , to eliminate

arbitrage. From this relationship, F (t, T ), can be derived as,

F (t, T ) = [
(1 +RT )

T

(1 +Rt)t
]1/(T−t). (8.6)

If the compounding is at a higher than annual frequency, or if T or t are not
whole multiples of years, the formula will need to be appropriately adjusted.
With continuous compounding, the relation to eliminate arbitrage needs to be
Ferttef(t,T )(T−t) = FerTT . Therefore, the continuously compounded forward
rate becomes,

f(t, T ) =
rTT − rtt

T − t
. (8.7)

If we reorganize the terms in Eqn. (8.7) to obtain the following restatement,

f(t, T ) = rT +
(rT − rt)t

T − t
(8.8)

we can see how the forward rate f(t, T ) relates to the current shape of the
term-structure of interest rates. For instance, if the term-structure is upward
sloping (i.e., rT − rt > 0), as in the middle panel of Figure 8.2, the for-
ward curve is above the spot curve (i.e., f(t, T ) > rT ). Similarly, if the term-
structure is downward sloping (i.e., rT − rt < 0), as in the right panel of the
figure, the forward curve falls below the spot curve (i.e., f(t, T ) < rT ). This
relationship is summarized in Figure 8.3

The forward rate and interest rate concepts discussed in this section are
utilized to define stochastic interest rate models, and define risk measures and
risk management strategies for fixed-income instruments. We begin developing
the stochastic interest rate models next.
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FIGURE 8.3: Relation of the forward curve to the spot curve for different
shapes of the term structure of interest rates.

8.1.2 Stochastic Interest Rate Models

There are several theories that describe the theoretical or the empirical
properties of the term structure of interest rates. These theories, such as the
expectations theory, the market segmentation theory, or the liquidity prefer-
ence theory, provide the justification for the shape and movement of the term
structure of interest rates. Since the price and risk underlying fixed-income
instruments is derived from the shape and movement of the term structure of
interest rates, the models developed attempt to capture, and are judged on the
basis of their ability to capture, these properties. Moreover, the models can be
developed based on these theories as they pick on specific economic factor(s)
to describe interest rates, or are developed with the sole purpose of fitting
the current price data accurately without any specific economic motivation.
The former are often called equilibrium models, while the latter are termed
no-arbitrage models. No matter the motivation for the model, the models for
interest rates are developed in the risk-neutral world, since interest rates are
observed through prices of fixed-income instruments.

We will explore stochastic models for term structure of interest rates from
both the equilibrium and no-arbitrage motivation following two significant
themes. The first approach attempts to capture the term structure dynamics
by utilizing models for the evolution of short-term interest rates. The sec-
ond approach allows higher degrees of freedom by utilizing several factors to
capture the entire term-structure dynamics.

8.1.2.1 Short Rate Models

A short rate model attempts to capture the entire term structure of interest
rates in terms of short-term interest rates and their evolution in time. In this
approach, the short-term interest rate becomes the single factor in the one-
factor representation of the term structure. For modeling short-term interest
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rate dynamics, albeit in the nominal terms, one must pay heed to certain
properties of short-term interest rates. For instance, nominal interest rates
should not be negative, and if the interest drops to near zero level, it doesn’t
get stuck at that level. Empirically, when interest rates are too low, they tend
to go up, and when they are too high, they tend to adjust downward. This
can be captured by, for instance, incorporating mean-reversion in the process
dynamics.

The short rate models are often defined in the risk-neutral world, where
the driving Wiener process is governed by the risk-neutral measure. This is
done so that the term structure of interest rates is consistent with the bond
prices that will be used to calibrate the model. A general short rate model
may be described by,

drt = (u(rt, t)− λ(rt, t)w(rt, t))dt+ w(rt, t)dWt, (8.9)

where Wt is a Wiener process in the risk-neutral measure, u(rt, t) −
λ(rt, t)w(rt, t) is the drift term of specific structure that lends to mean-
reversion, and w(rt, t) is the diffusion coefficient. Having stated the general
structure of the single factor model, we will be quick to state a simpler ver-
sion of the model for ease of handling of the model. In this attempt, we will
make the drift term take the form: u(rt, t) − λ(rt, t)w(rt, t) = η(t) − γ(t)rt,
and the diffusion term w(rt, t) =

√
α(t)rt + β(t). This simplification in the

model structure results in simpler bond price formulas obtained based on these
model, which in turn helps in the calibration of the models.

In order for these models to show evolution properties that match those
of the real-world interest rates, we will need to impose some additional con-
straints and bounds on the terms, α(t), β(t), γ(t), η(t). These bounds and con-
straints are geared towards keeping the interest rates positive and bounce back
from the lower boundary of (near) zero rather than remain stuck at it. The
properties α(t), β(t), γ(t) and η(t) must satisfy are as follows.

• If α(t) > 0 and β(t) ≤ 0, then interest rates can be bounded below by a
positive number, chosen to be near-zero. If, however, in a specific model
we choose α(t) = 0, then we must have β(t) > 0, i.e., β(t) must be
strictly positive.

• The condition we must have satisfied so that the interest rates don’t
remain stuck at the lower bound, once they hit the lower bound is that

η(t) ≥ −β(t)γ(t)
α(t) + α(t)

2 .

• Finally, we observe that when interest rates are too low, they tend to
go up, and when they are too high, they tend to adjust downward. The
form of drift term as η(t)− γ(t)rt assures the mean-reversion property.

The single factor interest models we will explore are of the form,

drt = (η(t)− γ(t)rt)dt+
√
α(t)rt + β(t)dWt, (8.10)
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but before we begin looking at specific examples of these models, we demon-
strate the derivation of pricing of bonds using these single factor models. This
relationship is crucial for the calibration of the interest rate models.

Pricing a bond using stochastic interest rate model
We take the stochastic interest rate process in the real-world measure to

evolve by the following equation,

drt = µ(rt, t)dt+ σ(rt, t)dWt, (8.11)

where µ(rt, t) is the drift term, σ(rt, t) is the diffusion term, and Wt is a
Wiener process in the real-world measure. We have reverted to the real-world
measure in order to clarify why stochastic interest rate models for pricing
bonds are developed and calibrated under the risk-neutral measure. It should
also be clarified that, even while the interest rate is now stochastic, if it is an
interest rate applicable to a default-free bond, the interest rate is referred to
as a risk-free interest rate.

Pricing a bond under stochastic interest rates is harder than pricing an
equity option, because there is no underlying asset to hedge the risk away.
This is because in the stochastic interest rate case, a bond essentially be-
comes a derivative contract defined on the interest rate process. When the
standard replicating portfolio based arbitrage-free derivatives pricing argu-
ment cannot be applied, we construct a portfolio of two bonds, each with
an arbitrarily chosen maturity of T1 and T2, respectively. We consider two
zero-coupon bonds, for simplicity of the derivation, the price of each at time
t being P1(t;T1) and P2(t;T2), respectively. We hold 1 bond contract of the
former and −∆ contracts of the latter. Thus, the value of the portfolio is
Π = P1(t;T1)−∆P2(t;T2).

Change in the portfolio value, dΠ, can be obtained using Ito’s formula as
follows.

dΠ = (
∂P1

∂t
+ µ(t, rt)

∂P1

∂x
+

1

2
σ(t, rt)

2 ∂
2P1

∂x2
)dt (8.12)

+ σ(t, rt)
∂P1

∂x
dWt

− ∆[(
∂P2

∂t
+ µ(t, rt)

∂P2

∂x
+

1

2
σ(t, rt)

2 ∂
2P2

∂x2
)dt

+ σ(t, rt)
∂P2

∂x
dWt].

For this portfolio to be risk free, we would want to eliminate the dWt term.
This can be achieved by selecting the position in the second bond appropri-
ately. The choice of ∆ that would do the trick is,

∆ =
∂P1

∂x
∂P2

∂x

, (8.13)
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and with this choice of ∆, the portfolio value should instantaneously in-
crease at the risk-free interest rate, rt, i.e., dΠ = rtΠdt. This and the one
in Eqn. (8.13) are representations of change in the same portfolio. We match
the dt terms in the two representations and shuffle the terms so that all terms
involving the first bond, P1, that matures at T1 are on one side of the equa-
tion, while all the terms involving the second bond that matures at T2, are on
the other side, as follows.

∂P1

∂t + 1
2σ(t, rt)

2 ∂2P1

∂x2 )− rtP1(t, rt)
∂P1

∂x

(8.14)

=
∂P2

∂t + 1
2σ(t, rt)

2 ∂2P2

∂x2 − rtP2(t, rt)
∂P2

∂x

.

The key observation we must make at this time is that these maturities were
arbitrarily picked, therefore the two sides of the equation should be a value
that is independent of bond maturity, say a(rt, t). Without loss of generality,
we will choose a special form for a(rt, t) = σ(rt, t)λ(rt, t) − µ(rt, t), where
λ(rt, t) is a yet-to-be-defined term. Therefore, either of the bonds, and for
that matter any zero-coupon bond based on this interest rate term structure,
should satisfy the following equation.

∂P

∂t
+

1

2
σ2 ∂

2P

∂r2
+ (µ− λσ)

∂P

∂r
− rP = 0. (8.15)

The end condition is P (rT , T ) = F , where T is the bond’s maturity. We can
show that the solution of the above equation, along with the end-condition,
is,

P (t, rt) = E[e−
∫ T
t

r(s)dsF ], (8.16)

where the short-term interest rate, r(t), evolves driven by a Wiener process,
Wt, in the risk-neutral measure by the following equation,

drt = (µ(rt, t)− σ(rt, t)λ(rt, t))dt+ σ(rt, t)dWt. (8.17)

The fact that the price of the contract is the expected discounted pay off
at the termination of the contract using the risk-free rate for discounting
confirms that the valuation is under the risk-neutral measure. What remains
to be shown is the role and meaning of the term, λ(rt, t), that was intro-
duced in the derivation. For this purpose, we will describe the change in
the price of the bond, P (t, rt), in the real-world measure by applying Ito’s
formula. In the real-world, interest rate was taken to evolve by equation,
drt = µ(rt, t)dt+ σ(rt, t)dWt, where Wt is a Wiener process under real-world
probability measure. Change in price of a bond is described by,

dP = (
∂P

∂t
+ µ

∂P

∂r
+

1

2
σ2 ∂

2P

∂r2
)dt+ σ(rt, t)

∂P

∂r
dWt (8.18)
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From the earlier derivation, price of a bond also satisfies Eqn. (8.15), which
we substitute in the above Eqn. (8.18) to obtain,

dP − rPdt = σ(rt, t)
∂P

∂r
(dWt + λdt)). (8.19)

Eqn. (8.19) indicates that the excess return of a bond (left-hand side of the
equation) in the real world must be dictated by the degree of unhedged risk
due to non-tradability of the underlying risk factor. λ(t, rt) is therefore the
expected rate of reward per unit risk exposure, Wt, also called the market
price of risk. After incorporating this reward into the drift term of the
interest rate dynamics, hence transforming the measure to the risk-neutral
measure, the price of a bond simply becomes the expected discounted face
value by risk-free discounting. The reader should note that this derivation
is valuable not just in this context of pricing a zero-coupon bond, but also
for other fixed income instruments and interest rate derivatives, as well as in
other contexts where an underlying risk factor is not tradable. For instance, if
a bond has a fixed given frequency of coupon payments, these can be seen as
a bundle of zero-coupon bonds. Price of such a coupon-bearing bond can be
determined additively by pricing each known cashflow through the life of the
bond. We will consider other fixed income instruments and derivatives later
in this chapter. For now, we bring our attention back to specific single-factor
interest rate models.

Equilibrium Stochastic Interest Rate Models
There are numerous single-factor interest rate models proposed, developed

and utilized in the past decades. The fundamentally desirable property of any
model is that it is useful. For usefulness of a model, it should be flexible in
capturing a variety of situations, consistent with market prices, yet simple
to facilitate fast numerical computations. Equilibrium models approach the
model development based on capturing macroeconomic justifications, both
from the real sector and the monetary sector, for the dynamics of the interest
rates themselves. Once an interest rate model is identified, pricing of bonds
and other instruments can be achieved, which in turn allows judging consis-
tency and coherence of the model relative to market prices. An increasing
complexity to the models may be brought in with an intention of improving
model properties, albeit at the expense of higher computational burden.

As a reminder, we will explore single factor interest models of the following
form.

drt = (η(t)− γ(t)rt)dt+
√
α(t)rt + β(t)dWt. (8.20)

Vasicek Model: In this model, we will modify Eqn. (8.20) by taking α = 0
and β > 0, while all the other parameters are constants. The model thus
becomes,

drt = (η − γrt)dt+
√
βdWt. (8.21)
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The model shows mean-reversion due to the structure of the drift term, but
interest rates can become negative. The greatest attraction of this model is
its tractability in terms for determining closed-form prices of bonds and other
interest-rate derivatives. Moreover, the model is able to capture the different
shapes of the yield curve observed in the real world, as discussed in Sec-
tion 8.1.1 (Figure 8.2).
Cox Ingersoll Ross (CIR) Model: In the CIR model, we set β = 0 and
α > 0. The model becomes,

drt = (η − γrt)dt+
√
αrtdWt. (8.22)

This model retains the mean-reversion property, and if we ensure that η > α
2 ,

then the short-term interest rate stays positive. This model is more complex
than the Vasicek model, thus becoming relatively less tractable, but is more
realistic. The lower tractability comes from a square-root diffusion term, and
the difficulty with obtaining closed-form solutions.

Both the Vasicek and the CIR models are examples of affine short-term
interest rate models, implying that the zero-coupon rate implied by these
models is affine function of the short-term rate. Other models in this cat-
egory include Merton (1973), Pearson and Sun (1994), while other popular
equilibrium short rate models include Dothan (1978), Brennan and Schwartz
(1980).

No Arbitrage Stochastic Interest Rate Models
While equilibrium models approach modeling interest rate dynamics on

the basis of fundamentals of the economy, no-arbitrage models take a greedy
approach to design models that capture the current prices and yield curve
accurately. Their name indicates this objective, in that the model’s attempt to
capture prices of all bonds consistently so that there is no arbitrage possibility.
We will present some examples of single-factor no-arbitrage models, where in
some cases their multi-factor extensions are also available, since a single-factor
model lacks the degrees of freedom to truly capture the entire yield curve
consistently.
Ho and Lee Model: This is the simplest of models in this category, where the
model is created so that a zero-coupon bond price is of the form, eA(t,T )−r(T−t),
where T is the maturity of the bond. A(t, T ) is the term that has more complex
time-dependence to allow the model to fit different shapes of the yield curve.
The model for interest rate evolution is therefore one with α = γ = 0, β > 0
constant, and η(t) as a function of time lends the flexible time-dependence to
A(t, T ) function. The model is,

drt = η(t)dt+
√
βdWt. (8.23)

This model shows good yield-curve fitting capability among the one-factor
models.
Hull and White Model: This single-factor model is an extension of the
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Vasicek model, where the drift term, η(t), is made time-dependent in order to
better fit the yield curve. Therefore, the model is,

drt = (η(t)− γrt)dt+
√
βdWt. (8.24)

This model is also an example of an affine interest rate model, with zero-
coupon bond prices working out to be of the form, eA(t,T )−rB(t,T ). The func-
tions A(t, T ) and B(t, T ) are a lot more complex than in the Ho-Lee model
case.

Other single-factor no-arbitrage models include Black and Karasinski
(1991), Black, Derman, and Toy (1990). These are both improvements on
the above two models, in order to avoid the short-term interest becoming neg-
ative. They achieve this by instead modeling the evolution of natural-log of
interest rate, ln r, although this brings in considerable additional complexity.

8.1.2.2 Multi-Factor Interest Rate Models

Single-factor models face significant challenges in capturing the complex
dynamics of the term structure of interest rates. Multi-factor improvements to
both equilibrium and no-arbitrage models are considered. The Brennan and
Schwartz (1982) model identified the two factors to model as short-term and
long-term interest rates, and described the evolution of this pair to capture
the term-structure of interest rates. The long-term rate is taken to be the
consol rate l(t), and the joint evolution is captured by the following model,

drt = (η1 − γ1(lt − rt))dt+ α1rtdW1t, (8.25)

dlt = (η2 − γ2rt − λlt)dt+ α2ltdW2t, (8.26)

where W1t and W2t are correlated Wiener processes with instantaneous cor-
relation coefficient, ρ.

Other models, such as, Fong and Vasicek (1991) and Longstaff and
Schwartz (1992) can be described as stochastic volatility short-rate models,
where the volatility of the short-rate is itself seen to evolve by a stochastic pro-
cess, driven by a second Wiener process. Whereas Chen (1996) and Balduzzi-
Das-Foresi-Sundaram (1996) models describe the interest rate dynamics by
three factors, short-term interest rate, its volatility, and its long-run mean.

In the no-arbitrage category, the Hull and White (1994) model is a
two-factor model that is similar to the Brennan and Schwartz (1982) model,
however it follows the single-factor Hull and White model in its development
by keeping the drift term, η(t), to be time dependent. The second factor is not
consol rate, as in the Brennan and Schwartz model, but instead an adjustment
to the mean-reversion level of the short rate. This adjustment factor has its
mean reversion level of zero. Therefore, the two-factor Hull and White model
can be summarized as,

drt = (η(t) + ut − γ1rt))dt+ β1dW1t, (8.27)

dut = −γ2utdt+ β2dW2t, (8.28)
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where W1t and W2t are correlated Wiener processes with instantaneous cor-
relation coefficient, ρ.

Heath Jarrow Morton (HJM) Model: This last model we discuss
takes an approach that can be said to be infinite dimensional, since it models
the entire yield curve and its evolution. The HJM model describes the dynam-
ics of the instantaneous forward rate, F (t, T ), for time t and all future time,
T , and in the most general case states these dynamics so that all the previous
models discussed so far are special cases of this model. The instantaneous
forward rate is modeled to evolve by,

dF (t, T ) = µ(t, T )dt+ σ(t, T )dWt, (8.29)

where µ(t, T ) and σ(t, T ) are general drift and diffusion coefficients, and Wt is
a Wiener process. Given F (t, t) = r(t), i.e., the instantaneous forward rate at
time t is the spot rate, specific choices of the drift and diffusion coefficient can
yield the one-factor models discussed. In the risk-neutral world, the instanta-
neous forward rate is related to the price of a zero-coupon bond, P (t, T ), by
the following relation,

P (t, T ) = Fe−
∫ T
t

F (t,s)ds, (8.30)

where F is the face value of the zero-coupon bond. Although we don’t demon-
strate it, this relationship between zero-coupon bond price and forward rate
entails that the drift and the diffusion coefficient in Eqn. (8.29) are related by
the following relation,

µ(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds. (8.31)

It is also important to note, in the most general case, the HJM model results in
the spot interest rate, r(t), to be non-Markovian. This implies that r(t) at any
time is not memoryless, it depends on the path taken by the interest rates in
the past. This property makes it considerably more difficult to work with this
model, hence simulation methods must be utilized, which can also be slow.
Simplifications, such as by considering the most significant explanatory factors
by, say, principal component analysis, are developed, or simple cases of the
volatility term, σ(t, T ), are considered that bring the Markovian property back
in effect. The latter approach will result in models similar to those considered
earlier. We will consider simulation techniques in the next section, for the
various interest rate models developed here.

8.1.2.3 Other Fixed-Income Instruments

So far in our discussion of fixed income instruments, we have focused on
zero-coupon bonds to develop the modeling approach for interest rates in
the simplest context. We now expand the space of instruments where the
models developed so far will find use. First, different governments issue bonds
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in different markets (domestic, Eurobond, Sovereign bonds) with different
maturities (from days to tens of years) and payment structures (coupon type,
rate and frequency) to fund their projects. For instance, the US Treasury
issues T-Bills, Notes, and Bonds, the German government issues Bunds, the
UK has Gilts, and Japan has Japan Government Bonds (JGBs), etc.

Besides national treasuries and central banks, state and local governments,
such as counties, districts, cities and towns issue bonds, called municipal
bonds, to raise funds for public projects. Separate Trading of Registered
Interest and Principal, in short STRIPs, are zero-coupon bonds created by
stripping government bonds of the G7 countries. Among bond issuers, agen-
cies that issue bonds to fulfill specific public purpose, such as home loans or
student loans, are also significant contributors to bond markets. Finally, cor-
porations fund their investment projects by raising funds by issuing corporate
bonds.

Beyond the vanilla zero-coupon or coupon-bearing bonds, there are a va-
riety of bond types defined by how the payments underlying the bond are
determined. Floating rate notes (FRNs) are bonds with coupon rates that
can change with time, either determined by a short-term market reference
interest rate, like 3-month LIBOR, or federal funds rate. Inflation-adjusted
bonds are bonds that offer coupons and principal adjusted for future inflation
rates. There are also bonds that are designed to be paid off sooner than their
term, called callable bonds, and bonds that can be converted into another
type of security, such as equity of a corporation, called convertible bonds.

At the far end of the maturity range spectrum is the very short term debt
instruments, which constitute the money market instruments. These maturi-
ties can range from a few hours, for example overnight, to several days and
months, but less than a year. Governments, central banks, commercial banks,
corporations issue instruments in this market to serve their needs for funds,
as well as in case of central banks, to control the money supply in the econ-
omy. Treasury bills or T-Bills are short-term debt instruments that mature in
one year or less, and pay no coupons. T-Bills are often used as collateral for
borrowing funds for short durations, such as in the overnight money markets.
This borrowing rate is called a Repo rate, short for repurchase agreement
rate. It is a repurchase agreement since the buyer of a repurchase agreement
sells a security for funds needed with a promise to buy the security back at
a (near) future time for a set price. The counterparty of this transaction is
engaged in a reverse-repo. Repo rates and federal funds rates are key rates
that cascade through the whole spectrum of interest rates in the economy,
affecting the demand and supply of funds.

Banks also issue certificates of deposits (CDs) with weeks, months to years
maturities to finance their lending activity. CDs can have a fixed or floating
interest rate, and counterparties may be commercial or retail customers. Sim-
ilarly for short-term borrowing, corporations issue commercial paper. These
run in maturity of less than a week to almost a year. Firms issue commercial
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papers to either raise short-term funds or as bridge financing until favorable
long-term debt issuance opportunity arrives.

We have provided an overview of interest rate models and fixed-income
instruments in this section. The interested reader should look at some of the
references listed to expand on the limited description provided here of the
models, their extensions and the variety of instruments. Some suggestions
include, Wilmott [90], Martellini et al. [59], and Sundaresan [84].

8.1.3 Simulation of Interest Rate Models

The generic short-term interest rate model we studied in the last section
is,

drt = (η(t)− γ(t)rt)dt+
√
α(t)rt + β(t)dWt. (8.32)

The simplest approach to simulate this process for any pricing or risk manage-
ment objective is by discretizing the model using the Euler scheme. If we need
to simulate the interest rate process on time interval, [0, T ], the Euler scheme
on a discretization of time, {ti : i = 1 . . . N, t1 = 0, tN = T}, is obtained as,

r(ti+1) = r(ti) + (η(ti)− γ(ti)r(ti))∆ti +
√
α(ti)r(ti) + β(ti)∆W (ti), (8.33)

where ∆W (ti) are increments of the Wiener process in time steps ∆ti. In
specific cases, one can do better than the Euler scheme in terms of improving
upon the discretization error entailed by the scheme by taking advantage of
known properties of the model. For instance, when α(t) = 0, as is the case
for Vasicek, Ho, and Lee, and Hull and White models, the short rate process
becomes a Gaussian process. The solution of these models takes the form,

rt = eΛ(t)r0 +

∫ t

0

e(Λ(t)−Λ(s))η(s)ds+

∫ t

0

e(Λ(t)−Λ(s))
√

β(s)dWs, (8.34)

where Λ(t) =
∫ t

0
−γ(s)ds. This solution can be mapped onto the time dis-

cretization, {ti : i = 1 . . . N, t1 = 0, tN = T}, for more accurate results from
a simulation-based solution. We display the solution on a time discretization
for a simpler case where γ(t) and β(t) are constants.

r(ti+1) = e−γ(ti+1−ti)r(ti) + γ

∫ ti+1

ti

e−γ(ti+1−s)η(s)ds (8.35)

+

√
β

∫ ti+1

ti

e−2γ(ti+1−s)dsZi+1,

where Zi is drawn from standard normal distribution, N(0, 1). In the yet
simpler case, where η(s) is a constant, Eqn. (8.36) becomes,

r(ti+1) = e−γ(ti+1−ti)r(ti) + η(1− e−γ(ti+1−ti)) (8.36)

+

√
β

2γ
(1− e−2γ(ti+1−ti))Zi+1.
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In Eqn. (8.32), if α(t) is a non-zero constant, the model is a general square-root
diffusion model. We encountered it in Chapter 7 in the context of stochastic
volatility models. In order to improve upon the application of the Euler scheme
to solve this model, we utilize the knowledge of distributional properties of the
short rate under this model. The conditional distribution of r(t), given r(s) for
s < t, is shown to have noncentral Chi-square distribution. More specifically,
for a time discretization, {ti : i = 1 . . . N, t1 = 0, tN = T},

r(ti+1)
α(1− e−γ(ti+1−ti))

4γ
χ2
d(

4γe−γ(ti+1−ti)

α(1− e−γ(ti+1−ti))
r(ti)), ti+1 > ti, (8.37)

where d = 4η
α is the degrees of freedom of the χ2

d (Chi-square) distribution.
We have provided a brief discussion of simulation of a set of interest rate

models. For a comprehensive discussion on this topic, the reader is encouraged
to refer to Glasserman [30].

8.2 Interest-Rate Risk Management

Fixed income instruments and their derivatives are affected by the move-
ments in the term structure of interest rates. As such the yield curve can be
thought to have infinite degrees of freedom. However, the movements in the
yield curve can be captured to a high degree of accuracy by a few principal
properties, namely the level, slope, and curvature. This is demonstrated by
a principal component analysis, a methodology designed to extract the most
important explanatory factors to summarize variations in high-dimensional
random variables. With this understanding, assessing risk in fixed income
instruments is reasonably well-served by assessing the impact of changes in
level, slope, and curvature in the yield curve on the instruments. We begin
with defining measures that capture these sensitivities.

The primary risk that affects valuation of fixed income instruments is the
interest rate structure and its dynamics. However, it should be noted that
there are at least two other important factors that affect fixed income instru-
ment valuation. Bond and all the other instruments discussed in Section 8.1.2.3
are primarily fixed income instruments that are fundamentally affected by
credit risk. Credit risk is realized when either the interest (coupon) or the
principal underlying the instrument is not paid or is not paid on time. While
default is the extreme case, where the counterparty is unable or unwilling
to fulfill its obligation, credit risk is also realized with changes in the credit
quality of a counterparty, since this also significantly affects the value of the
fixed income instruments. For instance, an institution or a government may
get downgraded by a rating agency. We will study this risk in Chapter 9.

Participants in the fixed income market are often participating in the mar-
ket for their long-term objectives. For instance, insurance companies must
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support their long-term liabilities by investing in long-term bonds. This may
imply that their portfolio of assets is not traded actively. This results in illiquid
markets for a large segment of fixed income instruments. This is often incor-
porated in the price of the bonds as liquidity risk premium. However, changes
in liquidity of fixed income instruments can result in price fluctuations. Liq-
uidity risk is also realized when an institution is unable to convert the value
of a fixed income instrument to cash due to lack of depth in the market. Since
interest rates affect fixed income instruments of different maturities and class
differently, this can result in funding liquidity risk, where a firm is unable to
raise necessary cash to meet its immediate cash needs. We will study liquidity
risk in the context of asset liability management in Chapter 10.

For the rest of this section, we will focus on the impact of interest rate
risk. We will first develop some measures for assessing the impact of interest
rate risk. This is followed by considering some portfolio level issues for fixed
income instruments, since more often than not, risk management must be
done not for single instrument exposures. Finally, we will study some interest
rate derivatives and strategies for managing interest rate risk by using these
instruments.

8.2.1 Interest-Rate Sensitivity in Fixed-Income Instruments

A one-quantity summary of the entire term-structure of interest rates sim-
plifies the effort of measuring the impact of interest rate risk. We will begin
with defining some measures based on this summary, and explore the extent
of effectiveness of this one-quantity summary. In fixed-income products, the
simplest risk measure traders use is the ‘DV01’ measure. This refers to change
in value of a security, DV or Delta V, after a change in yield or change in in-
terest rate of 1 basis point or 0.01%. It is a bond valuation calculation showing
the dollar value of a one basis point decrease (or increase) in interest rates.
It shows the change in a bond’s value compared to a decrease (or increase) in
the bond’s yield.

A more rigorous definition of measuring sensitivity of price of a bond with
respect to interest rates is defined by the bond’s Duration. The one-quantity
summary of the entire term-structure of interest rates, as is relevant for the
bond in question, is captured in the yield to maturity (YTM) of the bond.
This was discussed at length in Section 8.1.1, defined in Eqn. (8.3). Duration
is a measure consistent with DV01 in measuring sensitivity of bond price to
interest rates. Duration is defined as the weighted average of the dates (in
years) of each cash flow of the bond, where weights are the present value of
the cash payment divided by the sum of the weights, which is the price of the
bond. Therefore, duration is computed by the following formula,

D =
T∑

j=1

j cF
(1+y)j

P0
+

T F
(1+y)T

P0
, (8.38)
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FIGURE 8.4: Bond price as a function of increasing yield.

where T is the bond maturity and the annual coupon rate is c%. From the
formula, it is clear that duration of a coupon-bearing bond will always be less
than the maturity of the bond. It will be exactly equal to the maturity of the
bond if the bond bears no coupons. For any set coupon rate and frequency of
coupon payment, the longer the maturity of a bond, the higher its duration.
Based on duration, we define modified duration as, D∗ = D

(1+y) , which is a

better indicator of bond sensitivity to interest rate risk since,

−1
P0

dP

dy
= D∗. (8.39)

Therefore, the higher the duration, the greater the sensitivity of the bond price
to change in yield. While modified duration is a measure of relative sensitivity
of bond price to interest rate changes, albeit summarized in a single number
- YTM, ‘DV01’ is the dollar sensitivity of the bond price to interest rate
changes, also measured in terms of YTM. For this reason, ‘DV01’ is also often
termed as $Duration.

Eqn. (8.39) is accurate for an infinitesimally small change in the yield.
However, yield changes can and will be greater than infinitesimally small! For
larger than infinitesimally small changes, we use the symbol ∆y, and the ‘=’
relation in Eqn. (8.39) must be replaced with ‘≃’. As the ∆y becomes larger,
the modified duration becomes increasingly less accurate in determining the
change in price of the bond.

To understand this better, we must look at the functional dependence of
the price of a bond, P0 on the yield level. In Figure 8.4, we draw the function
given in Eqn. (8.3). The curve is far from linear, therefore the accuracy of
the first derivative term (the slope) in determining the change in price of a
bond is going to be limited as ∆y gets larger. The price-yield relationship for
a bond is nonlinear, therefore duration is only the first-order approximation
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of impact of change in yield on the price of a bond, or in other words, it gives
a good approximation of sensitivity of price to yield only in small variations
of the yield.

The convex curve defining the dependence of price of bond (y-axis) on
yield (x-axis) in Figure 8.4, must be captured by a measure beyond the linear
approximation measure of modified duration. A second order adjustment to
more accurately predict change in value of a bond due to larger changes in
yield is needed. This is motivated from the following Taylor expansion of price
of bond around y,

P (y +∆y) = P0 +
1

1!

dP

dy
∆y +

1

2!

d2P

dy2
∆y2 +

1

3!

d3P

dy3
∆y3 +O(∆y4). (8.40)

We consider the convexity, C, of bond price, defined by,

C =
1

P0

d2P

dy2
. (8.41)

More strictly speaking, this is the relative convexity of the bond. Similar to
‘DV01’ or $Duration, there is also a notion of $Convexity, defined simply

as, $C = d2P
dy2 . Both measures of convexity, absolute or relative, are positive-

valued measures. This is also seen in the shape of the curve in Figure 8.4.
Increase in maturity, all else kept constant, increases the convexity of a bond.
The coupon rate of a bond has an inverse relationship with convexity, whereas
a direct relationship with $Convexity.

Putting together modified duration and convexity in the Taylor expansion
shows that the two measures together provide a much better measure of change
in bond price due to interest rate changes. Instead of these relative sensitivity
measures, the absolute ones, namely ‘DV01’ and ‘$Convexity,’ can also be
used.

P (y +∆y) = P0 −
1

1!
P0D

∗∆y +
1

2!
P0C∆y2 +O(∆y3). (8.42)

The order of accuracy is O(∆y3), which implies that a 1bp (basis point)
change in yield (∆y = 10−4) will result in the price to be off by O(10−12).
This is good accuracy, however for large changes in interest rates, the size
of unaccounted change in bond price may still be quite large, also depending
on the level of exposure. Therefore, more accuracy is desired. Moreover, we
have summarized changes in interest rates by a single measure of yield to
maturity, not acknowledging the exact source of the change in yield. That
is, it is oblivious of whether change in level, slope, or curvature of the term
structure of interest rates is causing the change in yield. This is an additional
inaccuracy in measuring the impact of interest rate risk.

In this section, our discussion of interest rate risk has been in terms of dis-
cretely compounding interest rates, Rtj , as used in Eqn. (8.2). Continuously
compounding interest rates for different maturities, as may be obtained from
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the short rate models of Section 8.1.2, can be transformed into discretely
compounding equivalent by Eqn. (8.4). Interest rates for different maturi-
ties do not always move in the same direction and magnitude. This is the
cause for changes in slope and curvature of the yield curve. Moreover, long-
term interest rates are known to be less volatile than short-term rates. We
will now like to capture the changes in the term structure of interest rates,
{Rt0 , Rt1 , . . . , RtN }, in terms of a much lower number of factors. By doing so,
we would like to develop improvements in the measures for interest rate risk
underlying fixed income instruments.

Let’s say there are M number of factors chosen to capture the changes,
∆Rtj , in interest rates, where M << N . As stated earlier, the three principal
components capturing level, slope, and curvature of the term-structure are
capable of describing a high percentage of changes in interest rates. Therefore,
we would like to describe the changes as,

∆Rtj =
M∑
i=1

fjiFi + ϵj , for j = 1 . . . N, (8.43)

where Fi’s are the factors and ϵj is the residual from the factors describing the
change in interest rate. In this set-up, to determine the change in price of a
fixed income instrument due to interest rate changes, multi-variable calculus
and Taylor expansion is required, since price of a bond, for instance, is given
by,

P0 =
T∑

j=1

cF

(1 +Rtj )
j
+

F

(1 +RtT )
T
, (8.44)

where each of Rtj is a variable. Moreover, change in each of Rtj is captured in
terms of factors Fi, as per Eqn. (8.43). The multi-variable Taylor expansion
will give,

∆P =
1

1!

N∑
i=1

∂P

∂Rti

∆Rti +
1

2!

N∑
i=1

N∑
j=1

∂2P

∂Rti∂Rtj

∆Rti∆Rtj +O(∆R3), (8.45)

where ∆R = max{i=1...N} ∆Rti . Changes in bond price will be obtained from
Eqn. (8.45), in similar flavor as applying the combined effect from duration

and convexity, by applying the dependence on key factors, ∆Rtj =
∑M

i=1 fjiFi.
A more comprehensive risk measure, such as Value-at-Risk (VaR), Con-

ditional Value-at-Risk (CVaR), does not rely on first-order or second-order
sensitivity of prices to risk factors. Instead, they seek out the forward distri-
bution of prices, and summarize the distribution in a risk measure. Both VaR
and CVaR are tail risk measures, discussed in several earlier chapters, such as
Chapters 2 and 7. The forward distribution of the price can be obtained by
simulating (or analytically deriving from) the appropriate short rate model,
such as those discussed in Section 8.1.2. The price of a fixed income instrument
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VaR
 P

CVaR
 P=E[ P|  P<VaR P]

VaR and CVaR for Bond Price

FIGURE 8.5: Value at Risk (VaR) and Conditional Value at Risk (CVaR)
display for bond price.

for a future time, t+∆t, providing the forward distribution can be obtained
from,

P (t+∆t, r(t+∆t, ω)) = E[e−
∫ T
t+∆t

r(s)dsF |r(t+∆t, ω)]. (8.46)

The VaR or CVaR at a certain confidence level, say α = 99%, indicates how
low the price of the bond can fall with (1 − α) probability. While VaR is a
percentile measure, CVaR is the expected value of the price (change) given
it falls below the α-percentile. Figure 8.5 provides a visual display of these
measures for the forward distribution of the bond’s price (change). VaR and
CVaR can be applied to a single fixed income instrument, but they are most
commonly applied at the portfolio level, where interactions of all risk factors
pertinent to the constituents of the portfolio must be evaluated. We evaluate
the impact of interest rate risk in the portfolio context next.

8.2.1.1 Bond Portfolio Immunization

In almost all contexts, it is not single bonds whose risk we would want
to manage. Instead, it is several bonds put together either as a well-defined
portfolio under a set investment strategy or to meet a given future liability.
Therefore, the sensitivity and other risk measures developed in this section
must be extended to portfolios of fixed income instruments. The price sen-
sitivity (changes) of instruments’ prices from the same yield curve can be
aggregated from individual sensitivities by calculating the weighted-average
duration of the instruments held in the portfolio. This helps define portfolio
duration, given as

DΠ = − 1

Π

dΠ

dy
= − 1

Π
(w1

dP1

dy
+ w2

dP2

dy
) ≃ 1

Π
(w1D

∗
1P1 + w2D

∗
2P2), (8.47)
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where D∗
1 and D∗

2 are modified duration of bond 1 and bond 2, respectively,
and w1, w2 are portfolio weights for the two bonds. Similarly the notion of
convexity can be extended to bond portfolios, as follows,

CΠ =
1

Π

d2Π

dy2
=

1

Π
(w1

d2P1

dy2
+ w2

d2P2

dy2
) ≃ 1

Π
(w1C1P1 + w2C2P2), (8.48)

where C1 and C2 are convexity of the two bonds, respectively. Therefore both
modified duration and convexity of the portfolio are weighted sum of individ-
ual bond’s modified duration and convexity in the portfolio.

The notion of portfolio modified duration and convexity is helpful in craft-
ing certain risk characteristics of the portfolio. These desired risk characteris-
tics could be arising for a certain investment goal or designed to meet certain
future liability cash flow. The idea is that the designed bond portfolio has
similar or identical response to interest rate risk as the future liability would
have, or as the investment goal dictates. This matching ‘immunizes’ the bond
portfolio to interest rate risk as measured by the chosen measures as far as
the future liability or the chosen investment goal is concerned. This is termed
bond portfolio immunization.

If w1, w2 and w3 are portfolio weights for three (for illustration purposes)
candidate bonds included in an investment portfolio, they should be chosen
so that,

w1P1 + w2P2 + w3P3 = Πtarget, (8.49)

w1D
∗
1P1 + w2D

∗
2P2 + w3D

∗
3P3 = DtargetΠtarget, (8.50)

w1C1P1 + w2C2P2 + w3C3P3 = CtargetΠtarget, (8.51)

where Πtarget, Dtarget, and Ctarget are the present value of future liability,
its duration and convexity, respectively. In practice, Eqns. (8.49)-(8.51) can
be extended to an arbitrarily large number, N , of bonds. In this case, the
three conditions in Eqns. (8.49)-(8.51) will leave N − 3 degrees of freedom for
portfolio weight determination, which must be set by some other criteria.

As for a single bond, for a general portfolio of fixed income instruments
the most general and robust method for risk measurement is in terms of for-
ward distributions and its summary characteristics, such as by VaR or CVaR
methodology. This will require models for future term-structures of interest
rate for all relevant interest rates for fixed income instruments in the portfolio.
In Section 8.1.2.3, we had discussed a variety of fixed income instruments. To
determine the forward distribution of prices of these instruments in the port-
folio, not only is the spot rate model for the relevant interest rates needed,
but also the correlation structure must be described between the set of inter-
est rates in consideration. Modeling correlation was discussed in Chapter 5,
however a detailed discussion of modeling correlation in this specific context
is beyond the scope of this book.

Based on the interest rate models, the forward distribution for the change
in portfolio value can be determined using Eqn. (8.46) for each instrument in
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the portfolio and portfolio weights relevant for the time window (t, t + ∆t).
Once the forward distribution of change in value of the portfolio is determined,
we obtain the 1-day or 10-day VaR or CVaR, as indicated in Figure 8.5,
by appropriate choice of ∆t. In summary, VaR or CVaR combines both the
duration and convexity adjustment into change in the value of a portfolio.
Albeit with a much higher modeling and computational effort required.

8.2.2 Interest-Rate Derivatives

In support of the ‘avoid-diversify-transfer-keep’ paradigm for risk manage-
ment, we have thus far developed models and risk measures to support the
avoid, diversify and keep decisions for interest rate risk, with the greatest fo-
cus of methodological development on the diversify component. We now move
our attention to the transfer mode. There are numerous instruments used for
hedging and transferring interest rate risk. This list includes forwards, fu-
tures, swaps, bond options, exotic options, caps, floors, captions, floortions,
and swaptions, to name a few. In this section, we will provide an overview of
properties of these instruments, since these are key derivative instruments used
by investors, corporations, and financial institutions to manage interest-rate
risk.

Some of these instruments are exchange traded, but many are over-the-
counter (OTC) contracts. As always, the exchange-traded derivatives are
mostly of the simpler kind, but the OTC ones can be highly customized,
sometimes to a rather high degree of complexity. Due to the bilateral nature
of the OTC contracts, they tend to be less liquid and their execution is backed
only by the capital of the provider or the dealer, hence the key players in the
OTC derivatives market are financial institutions with good credit standing.
The worldwide government debt is enormous! And that is an understatement.
Something that is creating a significant unease among the Western economies
through the 2008-2011 financial crisis.

Coupled with corporate bonds and bank loan portfolios, which are all fixed
income instruments, it makes for a huge pool of assets and liabilities that are
sensitive to changes in various interest rates. Therefore, it is not surprising
that the OTC market for interest-rate derivatives was $450 trillion in notional
value in 2010, and growing. In fact, the OTC market for derivatives is domi-
nated by interest rate products. See Figure 8.6 for comparison of interest rate
OTC derivatives broken down by currencies. From these facts, it is clear that
interest-rate derivatives make for an essential tool for managing interest-rate
risk.

Forward and Futures Contracts. A forward contract on an instrument
is a contract to purchase or sell specific units of the instrument at a specific
price and at a specific time in the future. These are over-the-counter con-
tracts. Forward contracts are binding contracts, the buyer has to buy/sell the
underlying at the agreed-upon price, and the seller is obliged to sell/buy the
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FIGURE 8.6: Volume of over-the-counter (OTC) interest rate derivatives in
2008-2010 period (Courtesy Bank for International Settlements (BIS) Report).
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underlying. Besides interest rate instruments, forward contracts are commonly
used for foreign currency.

Initial payment associated with a forward contract is zero, except that
sometimes a security deposit is required of both parties. No cash changes
hands before settlement date. Forward price, F , is the price that is applied to
the sale/purchase of the underlying at delivery. This price is negotiated so the
initial value of the contract is zero, i.e., the value of the contract is zero when
it is initiated. Forward contract is also defined directly on interest rates, such
as forward rate agreements (FRAs). Interest-rate forwards are cash settled,
i.e., one party pays the other the difference between the set forward rate and
its spot value at maturity date. Forward contracts on bonds allow selling and
buying bonds at set prices. Pricing of forward contract, i.e., determining an
arbitrage-free forward price, can be done in the same framework as used for
pricing the bond, by changing the end-condition in Eqn. (8.15).

Futures are forwards, but these contracts are traded in an exchange. A
margin account is maintained with the broker for each trading party, and
positions are marked-to-market every day. Daily installments, positive or neg-
ative, that correspond to the change in daily market value of the futures price
is paid for the daily settlement. The total of daily installments and payment
made at maturity equals the futures price set when the contract was initiated.

Swaps. Swaps are over-the-counter agreements between two parties to
exchange the cash flows of two different securities throughout the life of the
contract. These can be seen as a series of forward contracts and, as with
forwards, the contract is binding on both sides of the transaction. Interest-
rate swaps are by far the most popular hedging instrument, used by treasurers
for asset-liability management, and by portfolio managers to reduce or extend
duration of an open position.

A common form of interest-rate swap is fixed-to-floating interest-rate swap,
where the ‘fixed’ side (or leg) pays a fixed interest rate on a notional amount,
and the ‘floating’ side pays a floating rate on the notional amount. The ref-
erence rate on the floating side could be LIBOR or any other reference rate
agreed upon by the parties of the contract. A spread is added to the reference
rate reflecting the ‘fixed’ rate to be exchanged. There is no exchange of the
principals, as the principals on both sides of the swap cancel out, both at the
inception and at the maturity of the contract.

As in forwards and futures contracts, no up-front fee is payable when a
swap is initiated, as all swap transactions are priced initially so that the net
present value of both legs of the swap is the same. LIBOR (London InterBank
Offered Rate) refers to any of a number of short-term indicative interest rates
compiled by the British Bankers Association (BBA) at 11:00 am London time
each business day. For a given currency and maturity, LIBOR represents the
simple interest rate at which banks are willing to lend to each other. As a
practical matter, it is the rate other banks must pay to borrow.

Interest-rate swaps offer a great advantage to a hedge strategy, since either
counterparty doesn’t have to transact in large volumes of underlying fixed in-



290 Risk Management and Simulation

come instruments, and yet, change the interest rate risk characteristic of their
portfolio. Therefore, interest-rate swaps are advantageous for corporations or
financial institutions in allowing them to change the nature of payments on
loans either from fixed to variable or from variable to fixed rates to match
their income stream. Swap transactions are often used by corporate treasur-
ers as a way of bridging the gap that tends to exist between the particular
needs of a company and the demands of the investors.

For example, Bank 1 and Bank 2 enter into a 3-year interest-rate swap with
notional value of $100 million. Bank 1 will pay Bank 2 each year, at year-end,
a sum equal to $100 million times a fixed interest rate, say 2%, and will receive
from Bank 2 a sum equal to $100 million times the 1-year T-Bill rate plus a
spread of, say, 1.5%. In practice, a netting procedure is applied, i.e., only the
difference in the fixed and floating rate is paid. Therefore, if the T-Bill rate at
the beginning of the year is less than 0.5%, Bank 1 pays Bank 2 the difference
between 2% and T-Bill rate + 1.5% times $100 million. If 1-year T-Bill rate is
0.8%, then Bank 2 will pay Bank 1 the sum of ((0.008 + 0.015)− 0.02) ∗ $100
million = $300, 000. Therefore, without making large payouts, both banks
transform the nature of their interest rate risk exposure.

Beyond the plain vanilla fixed-to-floating or floating-to-floating swaps is a
vast variety of non-plain vanilla swaps, such as, basis swap, forward-starting
swap, inflation-linked swap, accrediting, amortizing, and roller coaster swaps,
etc.

Options. Options on fixed income instruments function exactly as they
were discussed to work for stocks in Chapter 7. A bond option gives the buyer
the right to buy (call) or sell (put) the underlying for the set strike price at
maturity. This is the European-style bond option. Since bond prices decrease
with interest rate increase, a stand-alone put option on a bond functions as
a bet on the decline in the value of the bond, or equivalently, a bet on an
increase in the interest rates. Similarly, a stand-alone call option is a reverse
bet. Beyond the European options, there are fixed income exotics, American,
Asian-style, and path-dependent options.

As discussed in the previous chapter, put options also allow the holder of
an open position in the underlying to insure against a loss of value, exactly
like the protective put stock option strategy. Other combinations obtained
by the no-arbitrage principle hold. For instance, a forward contract can be
constructed by buying a call option and simultaneously selling a put option
on the same underlying with exercise price equal to the forward price of the
bond. A call option on a bond can be constructed by buying a forward contract
and also buying a put option on the same underlying. These are all byproducts
of a put-call parity for bond options.

A large number of hedging strategies can be constructed for interest-rate
risk by buying-selling call and put options at different exercise prices for dif-
ferent maturities. A straddle is a bet on increased volatility in interest rates;
the investor is insuring against major increase or major decrease in price of
the underlying. In the case of interest rate risk, an investor sells an anticipated
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volatility in interest rates by selling a straddle. Traders may often resort to
using straddles when an announcement about a change in key interest rate is
expected and when the outcome of the announcement is uncertain, or before
some other major macroeconomic decision by a government or central bank.
As discussed in Chapter 7, volatility can be purchased somewhat more cheaply
by buying a strangle instead of a straddle. A strangle will involve buying a
put option at a lower exercise price than current value of the underlying and
buying a call option at a higher exercise price than current value of the un-
derlying. Options on futures are also an important option category for fixed
income instruments, giving the buyer the right to buy or sell a futures contract
at the maturity of the option.

Caps, Floors, and Collars. These are best explained in terms of
adjustable-rate mortgages (ARMs). The interest rate applicable to ARMs
might be based on a floating rate, such as the rate of a 6-month T-Bill, for the
upcoming 6 months. The borrower will need to pay that rate plus a spread,
say, an additional 2% per annum, for the interest payment for the next 6
months. Often adjustable rate (AR) borrowers are offered ‘caps’ on interest
rates for their long-term loans, so that in case the short-term interest rates
rise above a predetermined level, say 5% in this example, the borrower doesn’t
pay more than the 5% cap plus the pre-set spread. A cap on the floating rate
is definitely attractive for interest rate risk management, but it comes at a
cost, paid as a fee upfront.

In order to reduce cost of the cap, the borrower may also be offered a
‘floor.’ The floor sets a minimum interest payment per period when short-
term rate declines substantially; the borrower doesn’t fully benefit from this.
For instance in the above example, it may be set at a T-Bill rate of 2% plus
the spread. Therefore, if the T-Bill rate drops to 1.5%, the borrower must still
pay 2% plus the spread on his loan. The floor and the cap may be set at such
a level that their premiums offset each other; such an arrangement is called
a ‘zero-cost collar’ or a ‘zero-cost cylinder.’ Both these terms are used in the
context of options strategy also. As extension to caps and floors, one can also
purchase a ‘caption’ or a ‘floortion’ as options to enter a ‘cap’ or a ‘floor’ with
certain terms at a future time.

In a similar vein, a swaption is an options on swaps, which gives the right to
the buyer to enter a swap on or before a specified date at currently determined
terms. And there is a wider variety of exotic options, such as barrier caps and
floors, cancelable swaps, extendible swaps, moving average caps and floors.

8.2.3 Interest-Rate Hedging Strategies

The interest rate derivatives discussed in Section 8.2.2 can be utilized for
the transfer of interest rate risk. Their precise use, however, depends on the
objective of risk management. For a single bond, with price P , or a bond
portfolio, Π, the goal of risk management could be to neutralize the effect of
interest rate risk. The optimal risk management strategy, based on transfer
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of risk, depends on creating the optimal hedge for the chosen measure of risk.
A detailed discussion of optimal hedging strategy was given in the context of
equity risk in Section 7.3 of Chapter 7. We will advance this discussion here
for the context of fixed income instruments.

For interest rate risk, in this chapter we developed a few new measures of
risk for the first- and second-order effect of changes in the term structure of
interest rates on price of bonds and portfolio of bonds. Those focused on yield
of the bonds were modified duration and convexity, for first- and second-order,
respectively. Suppose we intend to hedge a bond portfolio Π with a yield to
maturity y1 using a hedge instrument, such as a swap or a futures contract,
F1, with a yield y2. We wish to construct a hedged portfolio that is insensitive
to small interest-rate variations. In other words, for small changes in yield
from parallel shifts of the yield curve, dy = dy1 = dy2, we want no change in
value of the hedged portfolio. This can be achieved by taking a position h∗

in the hedge instrument to construct a hedged portfolio, Πhedged, which from
Eqn. (8.47) should satisfy,

∆Πhedged ≃ (D∗
ΠΠ(y1) + h∗

DD∗
H1

H1(y2))∆y = 0, (8.52)

where D∗
Π and D∗

H1
are the modified durations of the portfolio and the hedge

instrument, respectively. The Eqn. (8.52) allows us to obtain the optimal
hedge, h∗

D, to be,

h∗
D = − D∗

ΠΠ(y1)

D∗
HH(y2)

. (8.53)

We can extend this to second order sensitivity by considering a convexity
hedge, but for this we will need a second hedge instrument, H2(y3). The hedge
weights, h∗

1C and h∗
2C , for the two hedge instruments, H1(y2) and H2(y3), can

be obtained by simultaneously solving the following two equations.

∆Πhedged ≃ (CΠΠ(y1) + h∗
1CD

∗
H1

H1(y2) + h∗
2CD

∗
H1

H1(y2))∆y = 0 ,(8.54)

∆2Πhedged ≃ (CΠΠ(y1) + h∗
1CCH1H1(y2) + h∗

2CCH1H1(y2))∆y2 = 0 .(8.55)

By this hedge, ∆Πhedged = ∆2Πhedged ≃ 0, therefore from a Taylor expansion
the portfolio will not respond to changes in the yield up to second-order accu-
racy (refer to Eqn. (8.40)). However, this is assuming that the yield changes
due to a parallel shift in the yield curve, or if it is not a parallel shift the
net effect on the yield of all bonds in the portfolio is identical. These are rea-
sonable approximations, given the simplicity of obtaining the hedge weights
under these assumptions.

For the development of a more accurate hedging strategy, one can choose
a set of factors, such as by principal component analysis, and describe the
term structure of interest rates, {Rt0 , Rt1 , . . . , RtN }, in terms of a much lower
number of factors. If there are M factors chosen to capture the changes, ∆Rtj ,



Managing Interest Rates and Other Market Risks 293

in interest rates, we will describe the changes as,

∆Rtj =
M∑
i=1

fjiFi + ϵj , for j = 1 . . . N, (8.56)

where Fi’s are the factors and ϵj is the residual from the factors describing
the changes in interest rates. In this set-up, change in the portfolio value can
be described in terms of weights of each bond in the portfolio and change in
price of each bond given by Eqn. (8.44). Moreover, change in each of Rtj is
captured in terms of factors Fi, as per Eqn. (8.56). The change in value of
chosen hedge instruments, {Hj ; j = 1 . . .M}, can also be expressed in terms
of the factors, Fi’s. The hedge weights, {h∗

j ; j = 1 . . .M}, can be obtained
by solving a system of equations obtained by equating ∂Πhedge/∂Rti to zero.
This results in obtaining a first order hedge. For a second order hedge, a much
larger set of hedge instruments and system of equations will need to be solved
to obtain the optimal hedge. A second order hedge will attempt to equate
∂2Πhedge/∂Rti∂Rtj to zero, for all i, j, besides setting the first derivatives to
zero.

Finally, in some cases hedge instruments may not be accessible or available
for the exact term-structure of interest rates on which the bond portfolio is de-
fined. This will require constructing a cross-hedge. Cross-hedging is when one
attempts to utilize a hedge instrument based on one risk factor as a substitute
for hedging risk of an asset or portfolio based on another risk factor. This is the
genesis for basis risk, where while the hedge was constructed to neutralize risk,
since the two risk factors are not identical, therefore not perfectly correlated,
mismatches can arise that result in risks not remaining neutralized.

The determination of cross-hedge weight can follow the above approach,
with an intermediate crucial step of describing one risk factor in terms of the
second. If the hedge instruments are based on a different term-structure of
interest rates, {R̃t0 , R̃t1 , . . . , R̃tN }, then we would describe each of the factor
R̃ti in terms of factor Rti , for instance by a linear regression model, R̃ti =
βiRti + ϵi. We proceed by using this relationship between R̃ti and Rti in the
above derivation.

Although in the above discussion we have chosen to remain abstract in
terms of specific hedge instruments that are and can be used for the hedging
objectives, many of the instruments we discussed in Section 8.2.2 fit the bill
perfectly. Vanilla swaps, non-vanilla swaps, bond futures, option on futures,
and bond options are all candidate hedge instruments one can consider. For
each kind of hedge instrument, the modified duration, convexity, and other
sensitivity measures will need to be developed, and the hedge weights will
then be derived from the above formulations.

In the chapter thus far, we have focused on interest rate risk, measures
designed specifically for interest rate risk, and instruments for managing the
risk. We next begin considering the third important class of market risk, com-
modities risk. In the next section, we will begin with a general discussion of
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commodities and their price risk, followed by features of their risk character-
istics and instruments for risk management.

8.3 Managing Commodities Risk

Commodities are broadly defined as physical (with some exceptions, like
electricity, bandwidth) products that can be traded in an organized market-
place. These physical products are crucial raw materials for the production
economy, and hence the variability in prices of these raw materials is an im-
portant risk affecting the production of goods and services. The variability in
prices of these raw materials constitutes commodities risk. Risk in commodity
prices behaves quite differently than equity, interest-rates or foreign exchange
risks, and are often more complex. This is because price of commodities are
often affected by specific demand and supply features of the commodity, in-
cluding the possibility of supply being controlled by a few suppliers. Interest
in commodities doesn’t arise solely from actual business use of the commodi-
ties; investors expose themselves to commodity price risk also as a means to
diversify their investments or to simply speculate.

The variabilities in demand and supply for a commodity, as well as specific
properties of the commodity, dependence of its availability on factors such as
weather, political issues, etc. can magnify volatility in commodity prices. The
fundamentals affecting commodity prices can include the extent of market
liquidity or illiquidity, and degree of ease of storage and cost of storage, also
called cost of carry. Prices may be affected by seasonality in demand and
supply of the physical product, besides being affected by the usual business
or economic cycle. Due to all these reasons, commodity prices have higher
volatility, and can display sudden large changes or jumps.

Commodities can be classified into the following groups, based on some
common shared properties.

Hard (nonperishable): Precious metals (gold, palladium, platinum, silver),
base metals (aluminium, copper, iron ore, tin, zinc)

Soft (perishable, short shelf life and hard to store): Agricultural prod-
ucts (grains, soybean, salt, coffee, sugar, orange juice, live cattle, lean
hog, cotton, dairy)

Energy: Crude oil, ethanol, natural gas, heating oil, gasoline, diesel, coal,
electricity

Therefore, soft commodities are goods that are agricultural or farm products
that perish in time if not used, and hence have a shorter shelf life. While hard
commodities are ones that are extracted through mining, and are nonper-
ishable. The energy commodities, with exception of electricity, can be stored.
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FIGURE 8.7: Prices for some commodities of different type, from January
2002 through 2012.
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FIGURE 8.8: Level of volatility in commodity indices (Courtesy Reserve
Bank for Australia (RBA) Bulletin, June 2011).

Therefore, storage and the related cost is a common feature to different extents
for all commodities. A display of ten-year evolution of commodities prices is
provided in Figure 8.7, with the top panel representing an index for energy,
metal, and agricultural commodities, respectively. The high volatility in prices
is quite evident, especially enhanced at times for certain commodities, such
as crude oil prices towards the end of 2010, uranium price in mid-2007, and a
surge in price of cotton in early 2011, each representing several fold increase
in price of the commodity.

A high level of volatility of commodities is not a recent phenomenon. Fig-
ure 8.8 displays volatility of three commodity indices, metal, agricultural and
aggregate, over a much longer time period. It is in fact true that the prices
of Figure 8.7 correspond to an enhanced volatility regime, but this is not un-
precedented. Other than the generic market price risk of commodities, another
type of risk relevant for commodities is basis risk, arising from the differential
in price movement of different related commodities, such as among energy
commodities, metals, and agricultural products. In Figure 8.7, some evidence
for joint movement of some commodities is visible. Additionally, interest rate
risk can result in change in the cost of carry, which is an important component
for determining commodity and commodity derivative prices.

In the next section, we will develop model enhancements as relevant for
commodity price risk, followed by advancing the discussion of risk manage-
ment of commodity risk. We will introduce a special case for the optimal
hedging decisions framework for commodity price risk, followed by providing
an overview of derivative instruments applicable for commodity risk.
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8.3.1 Modeling Commodity Spot Prices

As discussed above, commodity prices show certain unique characteristics
that the models used for commodity risk management should attempt to cap-
ture for the analysis to be meaningful. The continuous-time modeling frame-
work developed in Chapters 5 and 6, and extensively utilized in Chapter 7
and this chapter so far, are useful here. Whenever appropriate, discrete-time
approximations to the continuous-time models, such as by using binomial or
trinomial trees, can be developed. Our focus in the discussion here will be on
continuous-time models.

Many commodities are known to show seasonality, arising from either the
demand-based or supply-based seasonality. For instance, energy commodities
are affected by user needs and behavior in summer’s heat and summer travel,
while agricultural commodities are affected by production based on crop cycle.
Cyclicalities may also arise in different time scales, such as diurnal cyclicality
due to day-and-night temperatures or human activities, or in years arising
from lag in investment for increase in production capacity for a commodity.

The simplest version of the Black-Scholes model used for modeling stock
price evolution in Section 7.2 can be modified to capture the seasonality or
cyclicality in commodity prices as follows.

dYt = µ(t)Ytdt+ σYtdWt, (8.57)

where Yt is the price of a commodity with time-dependent drift, µ(t) = µ0 +
µ1 sin(2παt), which is chosen to depict the seasonality or cyclicality in the
commodity price. The parameter µ1 is the amplitude of the cycle and α is the
frequency, while σ is the commodity price volatility, as always, taken to be a
constant in the above model. In reality, the cyclicality of most commodities
may not be so strict as depicted in Eqn. (8.57), instead the price may have
a tendency to show seasonality, but may wander significantly away from this
pattern. A mean-reverting model, first studied in the context of stochastic
volatility in Chapter 7 and later used in this chapter for modeling interest
rates, can be utilized for this purpose, as follows.

dYt = −γ(Yt − µ(t))dt+ σYtdWt, (8.58)

where µ(t) now serves the role of long-run mean and γ is the rate of mean-
reversion to the long-run mean.

Although in the above two models we have taken the volatility of commod-
ity price to be a constant, in the price trajectories of individual commodities
and commodity indices shown in Figures 8.7 and 8.8, there is ample evidence
for the volatility to not be constant, and instead be stochastic in its own right.
We advance our modeling in response by introducing a stochastic volatility
model for commodity prices as follows.

dYt = −γ1(Yt − µ(t))dt+
√
vtYtdW1t, (8.59)

dvt = −γ2(vt − v̄)dt+ η
√
vtdW2t, (8.60)
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where W1t, W2t are taken as independent Wiener processes, or as a further
generalization, they can be modeled as correlated Wiener processes. The vari-
ance of commodity price, vt, also shows mean-reversion with the rate of mean
reversion taken as, γ2, and long-run mean as, v̄, while η is the volatility of the
volatility of commodity price. Finally, commodity prices show occasional, sud-
den large changes due to either a demand shock or a supply shock, or some
other fundamental event, such as a political event. A jump-diffusion model
first introduced in Chapter 7 can be applied here, keeping the mean-reversion
intact in the commodity price evolution as follows.

dYt = −γ(Yt − µ(t))dt+ σYtdWt + νdNt, (8.61)

where Nt is a homogeneous Poisson process with parameter λ and ν is
the jump amplitude. Generalization on the Poisson process being non-
homogeneous or the volatility being stochastic, as in the stochastic volatility
model of Eqn. (8.60), can be introduced in the above model.

As discussed earlier, commodity prices are affected by many factors, which
can either be theoretically justified or empirically tested. This explicit depen-
dence on or relation with factors can be explicitly incorporated in factor mod-
els, where the factors Zit, for i = 1 . . .K evolve along with commodity price
Yt as follows.

dYt = µ(t, Yt, Z1t, . . . , ZKt)dt+ σ(t, Yt, Z1t, . . . , ZKt)dW0t, (8.62)

dZit = αi(Z1t, . . . , ZKt)dt

+ ηi(Z1t, . . . , ZKt)dWit, for i = 1 . . .K, (8.63)

where [W0t,W1t, . . . ,WKt] are K + 1 correlated Wiener processes, with cor-
relation coefficient, corr(dWit, dWjt) = ρij . The K factors can be stochastic
convenience yield, which we will define in the context of commodity futures,
long-term trends of commodity price, price of other commodities, such as oil
price, macroeconomic variables, such as real interest rate, etc.

In some cases, the factors are not modeled as a diffusion as in Eqn. (8.63),
but instead are described as a continuous-time Markov chain in order to depict
regime switching for the commodity price evolution. A regime-switching model
is used to describe a change in fundamentals, namely regime, that makes the
rules for evolution of the commodity price change. If Z1t is a continuous-
time Markov chain with M states, each state of the chain is a regime. The
commodity price evolution by any of the models discussed thus far can then
be stated with a regime-switching effect [14, 15]. We apply regime-switching
to the seasonal mean-reversion model in Eqn. (8.58) to obtain the following
regime-switching model.

dYt = −γ(Z1t)(Yt − µ(t, Z1t))dt+ σ(Z1t)YtdWt, (8.64)

where γ(Z1t), µ(t, Z1t), σ(Z1t) are all taken to be functions of the regime-
indicator state variable, Z1t. As the state of the regime-indicator variable
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changes, these crucial terms of the model change form or level. Therefore, the
commodity evolves by different rules in different regimes.

In this section, we have presented a sequence of models with increasing
complexity to capture the properties of various commodities. Our model de-
scriptions here have been in the real-world measure, treating commodities as
an asset class for investment. For risk transfer and derivative pricing, we leave
the discussion of the models in risk-neutral measure for Section 8.3.2. The va-
riety of commodities, as listed earlier in this section, is large. It is beyond the
scope of this book to discuss specific models for all the commodities. However,
we consider some specific examples in the energy commodities, and the newer
segments of electricity and weather risk models next.

8.3.1.1 Energy, Electricity, and Weather Risk

Every firm, small or large, and every household is exposed to energy, elec-
tricity, and weather risk, irrespective of whether they actively manage them or
not. In this section we consider some specific examples for these commodities.
Crude oil or petroleum, one of the fundamental sources of energy and other
highly useful byproducts, is drilled and pumped from the ground at various
regions in the world, such as the Middle East, West Africa, the Americas,
and Asia. It is shipped in tankers to oil refineries, where through a complex
series of distillation processes common distillates, such as gasoline, jet fuel,
kerosene, diesel fuel, and a range of other useful byproducts are obtained. Oil
refinery profits are tied directly to spread between the price of crude oil and
the prices of products that result from refining crude oil, such as gasoline,
diesel fuel, jet fuel, and heating oil. Therefore, models for both crude oil and
‘crack’ spread, price difference of crude oil and its distillates, are valuable for
risk management.

Almost all the models discussed in the previous section have been con-
sidered for modeling evolution of crude oil price. The Schwartz [78] model
described price of crude oil, Yt, to evolve by the following model.

dYt = α(L̄− ln(Yt))Ytdt+ σYtdWt. (8.65)

In a more recent study, however, geometric Brownian motion with jumps was
found to be the best model for crude oil price compared to the other commonly
used continuous-time stochastic processes [43].

Natural gas is an important energy resource used as a less expensive energy
source than electricity in retail settings, as well as for power generation and
heating. Natural gas accounts for about a quarter of total energy consump-
tion in North America. After the deregulation of the natural gas industry in
1978, the natural gas market has evolved into a dynamic, highly competi-
tive market with significant price volatility. New York Mercantile Exchange
(NYMEX) was the first to launch natural gas futures. Standardized contracts
of relatively small size, fungibility, performance requirements, with lack of
requirement of physical delivery have led producers, distributors, processors,
utilities, consumers, and speculators to participate in this market.
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There are a number of fundamental factors that drive the price of natural
gas, such as extraction, storage, transport, weather, technological advance,
new reserves discovery, etc. As a result, gas price shows mean-reversion, where
the mean-reversion seems to have correlation with summer heat waves, floods,
and other news that develops into supply or demand imbalances. Dissipation
of the news or temperatures reverting to normal range results in the reversion
to the mean for natural gas price. The long-term mean for gas is determined
by cost of production and long-run demand level. Seasonality is also seen in
gas prices, arising from the heating use of gas.

We describe one model where the natural gas spot price is taken as a sum
of seasonal factor, f(t), and a non-seasonal factor, Zt, i.e., Yt = f(t) + Zt,
where each component is described as follows.

f(t) = β0t+

N∑
i=1

β1i cos(
2πit

365
) + β2i sin(

2πit

365
), (8.66)

dZt = −γ1(Zt − Lt)dt+ σZtdW1t, (8.67)

dLt = −γ2(Lt − L̄)dt+ ηLtdW2t, (8.68)

where f(t) is a sinusoidal function fitted to yearly seasonality, and Zt is per-
turbation from the seasonal characteristics. Zt in its own right has a long-run,
time-varying, stochastic mean, Lt, and a mean-reversion rate, γ1. The long-run
mean, Lt, is also mean-reverting with reversion rate, γ2. Therefore, natural
gas price in this model evolves by seasonal variation and mean-reverting per-
turbations around this variation.

Electricity is (mostly) non-storable and follows laws of physics for trans-
portability, which are essential features of electricity in explaining behavior of
electricity prices. Moreover, off-peak and on-peak demand for electricity, and
their variation by seasons, are important aspects for electricity price risk, risk
models, and electricity markets. One expects electricity spot prices to show
high dependence on temporal and local supply-demand levels. Disruptions in
transmission lines and power outages due to rare and extreme events can re-
sult in a steep rise in prices. Electricity prices display mean-reversion, like
natural gas prices, and as discussed, are affected by factors such as weather
and load. We present one example model for electricity spot prices, Yt.

dYt = −γ1(Yt − µt)dt+ σYtdWt + νtdNt, (8.69)

µt = µ1It∈Ton−peak
+ µ2It∈Toff−peak

, (8.70)

where µt is an off-peak versus on-peak mean that electricity prices revert
to at the mean reversion rate of γ. Prices are affected by arrival of jumps
by the Poisson process, Nt and jump size, νt. The jump size is a product
of two random variables, one that dictates the sign and other the size, such
as a product of a Bernoulli distribution for sign and exponential for size of
jump. Therefore, the above electricity price model is a regime-switching, mean-
reverting, jump-diffusion model.
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Weather derivatives are the newest kinds of derivatives traded over-the-
counter and on exchanges. Weather risk constitutes most significantly the tem-
perature, but it also includes frost, hurricanes, snowfall, and rainfall. Over-the-
counter derivatives for weather appeared after the changed weather patterns
due to El Niño in 1997. Chicago Mercantile Exchange (CME) started trading
weather derivatives in 1999. As seen in the above discussion, dependence of
electricity and natural gas prices on temperature implies that producers and
service providers in these sector will find weather derivatives very advanta-
geous. As such, weather derivatives are also useful for other businesses, such
as in entertainment and leisure, agriculture, grocery supermarkets, and even
consumers, especially the temperature related derivatives. Hurricane, frost,
rainfall or snowfall can be utilized for risk management objectives of insur-
ance providers, as we will discuss in Chapter 11. An additional attractive
feature of weather derivatives is that they offer an opportunity to manage not
just price risk, but also producers’ quantity risk, i.e., the amount of produce
they are able to generate due to weather phenomena.

Weather risk, like electricity, is non-storable and non-transportable, and
weather, unlike all the commodities considered so far, is not delivered. We
describe a model for temperature based weather risk; where most temperature
derivatives are designed as Asian, barrier or lookback options. Temperature
shows seasonality and daily patterns, and also displays long range dependence
or high degree of autocorrelation. Pricing of these derivatives is done based
on temperature models, such as the following.

dTt = −γ1(Tt − Tµt)dt+ σtdWt, (8.71)

Tµt = b0 + b1t+ b2 sin(ωt+ θ), (8.72)

where temperature is taken to evolve as a mean-reverting Ornstein-Uhlenbeck
process, with the long-run mean Tµt taking on a very definite sinusoidal form.

8.3.2 Management of Commodity Risk

Applying the avoid-mitigate-transfer-keep framework for risk management
to commodity risk requires specific consideration, since as stated before, com-
modities serve as crucial raw materials for the production economy. A producer
or manufacturer exposed to one or more commodity’s price risk doesn’t have
the luxury of too many alternatives for the diversify or mitigate response of
risk management. Avoiding the risk is not an option since the commodity risk
exposure is crucial to the producer’s or manufacturer’s business. Therefore,
producers or manufacturers may be left with the keep or transfer responses
for risk management.

There is a significant participation in commodity markets for investment,
as seen in Figure 8.9. Investors exposing themselves to commodities price risk
with the purpose of speculation or diversification can utilize the models devel-
oped in earlier chapters and in Section 8.3.1 for the purpose of risk manage-
ment. In this context, the mitigate or diversify objective of risk management
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Although a large share of ETPs track precious metals 
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FIGURE 8.9: Participation in commodities markets for diversification ben-
efits (Courtesy Reserve Bank for Australia (RBA) Bulletin, June 2011).

will be served well by utilizing the framework for portfolio optimization devel-
oped in Section 7.1, where commodity indices or specific commodity products
may be treated as assets considered for investment from an asset class. This
broader participation in the commodities markets also implies that the risk
transfer objectives of the participants will be broader than of those engaged in
the production economy utilizing these resources. Therefore, a larger type of
instruments to serve a variety of risk management objectives may prove use-
ful. Therefore, our focus in this section remains the transfer or keep responses
of risk management.

Consider a manufacturer of confectionery goods who needs 100, 000 pounds
of sugar for use in the next month. The manufacturer can either purchase the
sugar in a spot contract at the next month’s spot price of sugar, thus exposing
itself to sugar price risk. Alternatively, if a forward contract to purchase sugar
at $0.35 cents per pound is available for delivery next month, then the manu-
facturer can enter such contracts to the anticipated level of sugar requirement
for next month and lock in the price.

As discussed in Section 8.2.2, a forward contract on a commodity is a con-
tract to purchase or sell a specific amount of the commodity at a specific price
and at a specific time in the future. These are over-the-counter (OTC) con-
tracts, and the contract is binding. Pay-off of the contract will be determined
by price of sugar next month. If the spot price is $0.40 cents per pound, the
contract will be worth $0.05 cents per pound, but if the price of sugar next
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month is $0.32 cents per pound, there would be a loss of $0.03 cent/pound.
A producer or manufacturer may still be interested in such a contract since it
helps lock in a price, and guarantees the availability of the required raw mate-
rial at the set price and required time. For this advantage offered by forward
contracts, these contracts have been around for thousands of years.

In some cases the future level of need for the crucial raw material may
not be known precisely or a perfect substitute forward contract may not be
available. In such cases, the minimum variance hedge or optimal hedge frame-
work developed in Section 7.3.2 can be applied, where the producer’s or man-
ufacturer’s risk management objective would be appropriately captured by
variability of cash flow.

Let the forward price, F0, be the price that is applied at delivery, which
is set initially so that the initial value of the contract is zero. A minimum
variance hedge, or in general an optimal hedge, is constructed by picking the
optimal level, x∗, of forward contracts in order to obtain the lowest variance
of cash flow. If the producer is expecting to have Q units of a commodity to
sell (or buy) at a future time, T , which is stochastic with known distribution.
Let ST be the stochastic spot price of the underlying commodity at maturity
of the forward contract. Therefore, the anticipated cash flow at maturity of
the forward contract is,

Y = xF0 + (Q− x)ST , (8.73)

where x units of the underlying commodity will be sold using the forward
contracts and (Q − x) units will be sold on the spot market. It should be
noted that depending on the choice of x and outcome of Q, (Q− x) can turn
out to be negative, implying that the producer will need to buy the commodity
on the spot market in order to fulfill the obligation of the forward contracts.
The stochastic component of the cash flow in Eqn. (8.73) is,

Z = (Q− x)ST , (8.74)

which will remain the focus in the determination of optimal hedge. We define
the variance of the cash flow as,

σ2(Y ) = σ2(Z) = E[Z2]− E[Z]2 (8.75)

= E[((Q− x)ST )
2]− (E[Q]E[ST ]− xE[ST ])

2, (8.76)

where the last term is obtained under the assumption that the quantity pro-
duced by the producer, Q, and the spot price at T , ST , are independent. From
Eqn. (8.76), the following steps of simplification yield an equation from which
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the minimum variance hedge, x∗, is determined.

σ2(Z) = E[(Q− x)2S2
T ] (8.77)

−(E[Q]2E[ST ]
2 + x2E[ST ]

2 − 2xE[Q]E[ST ]
2),

= E[Q2 + x2 − 2Qx]E[S2
T ] (8.78)

−(E[Q]2E[ST ]
2 + x2E[ST ]

2 − 2xE[Q]E[ST ]
2),

= E[Q2]E[S2
T ] + x2E[S2

T ]− 2xE[Q]E[S2
T ] (8.79)

−(E[Q]2E[ST ]
2 + x2E[ST ]

2 − 2xE[Q]E[ST ]
2).

From Eqn. (8.79), candidate minimum variance hedge is found to be, x =
E[Q]. An optimality test using the second derivative confirms that this choice
of hedge minimizes the variance of cash flow.

8.3.2.1 Commodity Futures and Other Derivatives

Volume of trades of commodity futures in 2011 at 81 worldwide exchanges
was at 2.5 billion contracts, which was in fact down from 2.8 billion in 2010.
Although this dwarfs before number of equity and interest rate futures and
options contracts traded on these exchanges, it remains a sizeable volume.
Given the significant participation in commodity markets for investment, as
seen in Figure 8.9, as well as variety of commodities relevant for the production
economy, this volume is not surprising. We first defined forwards and futures
as general risk transfer instruments in Chapter 2, and since then have looked at
specific examples of forward and futures contracts for equity and interest rate
risks. Forwards and futures are the simplest kind of derivative instruments, as
well as given their popularity for commodities, we begin with discussing some
aspects of commodity futures, followed by some other commodity derivatives.

We develop a model-free price for a futures contract. If Yt is the spot price
of a commodity and F (t, T ) is the futures price of a contract that matures at
T , we show that,

F (t, T ) = Yte
(r+u)(T−t), (8.80)

where u is the storage cost per unit time as a percent of the underlying com-
modity value and r is the short-term risk-free interest rate. We call c = r+u the
cost of carry for the commodity. We arrive at the futures price in Eqn. (8.80)
by an arbitrage argument. If F (t, T ) > Yte

c(T−t), we would borrow Yte
u(T−t)

at the risk-free rate for T − t period, we will sell a forward contract maturing
at T , buy the underlying commodity for Yt and keep the rest of the cash for
the storage cost of the commodity until T . At time T , the commodity is used
to close the short position in the futures contract, with a net positive cash
flow. This is an arbitrage profit, since the initial cost was zero. In response,
the prices will move so that the arbitrage profit is no longer available.

Let’s consider the reverse possibility of F (t, T ) < Yte
c(T−t). In this case,

the firms who hold the commodity will sell the commodity and long a futures
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contract to buy it back at T for a cheaper price, F (t, T ). The cash from sale of
commodity is invested in the risk-free asset. At time T , from the savings of not
having to store the commodity and the return from the risk-free investment,
the merchant will have Yte

c(T−t), which will be used to settle the futures
contract. The firms get to bag the difference as arbitrage profit. In order to
eliminate the arbitrage opportunity, the prices should move so that Eqn. (8.80)
holds.

In reality, this doesn’t always happen, since the firms holding the com-
modity aren’t always willing to part with their commodity holdings with the
intent to acquire it back later. One reason for this, which is the fundamental
property of commodities, is that commodities support the production econ-
omy and the firms may need the commodity for their production activities.
Therefore, for a consumption asset, we have F (t, T ) ≤ Yte

c(T−t). We define a
quantity called the convenience yield of the consumption asset, y, so that

F (t, T ) = Yte
(c−y)(T−t). (8.81)

In practice, convenience yield must be estimated from the observed futures
prices. The convenience yield measures the market’s expectation regarding
future availability of the commodity. The higher the likelihood of shortage of
the commodity in future, the higher the convenience yield. If inventories of
the commodity are running high, there is a lower chance of shortage, hence
the lower convenience yield.

Other types of derivatives for commodities include commodity vanilla Eu-
ropean options, exotic options, commodity swaps, and options on futures or
futures options. For pricing these derivatives, since the underlying commod-
ity is often not liquid, non-storable, and is often bulky and difficult to trade
and store, the price derivation and the corresponding portfolio replication is
done based on commodity futures as the underlying contract. The advan-
tage of this is commodity futures are liquid, taking short or long position
is equally straightforward. If the commodity spot price evolved by any of the
models discussed in Section 8.3.1, and given the futures price is determined by
Eqn. (8.81), we can apply Ito’s formula to determine the change in the futures
price with time. If we want to price a commodity option, c(t, Yt), the replicat-
ing risk-free portfolio, Π(t, Yt), can be constructed as in Section 7.2.1, using
the option and the futures contract, f(t, T ). The rest of the derivation will
follow as we have seen in several previous contexts, including in Section 7.2.1.

Commodity options can be used to develop hedging strategies, as discussed
in the context of equity risk in Section 7.3.1, or can be applied to develop
an optimal hedge or minimum variance hedge. The objective of the optimal
hedge problem can be to minimize the return or cash flow from commodity
risk exposure, where the former was developed in the context of equity risk in
Section 7.3.2 and the latter was developed earlier in this section.



306 Risk Management and Simulation

8.4 Managing Foreign Exchange Risk

Financial firms function in a variety of global markets, in addition to mak-
ing products available to their customers that expose them to currency risk.
Currency or foreign exchange risk arises from open or imperfectly hedged po-
sitions in a particular currency. Increasingly many non-financial firms must
transact in different currencies due to global operations or markets for their
goods. This currency risk exposure arises as a natural consequence of busi-
ness operations, not due to explicitly taking a position in a currency. For
non-financial firms, currency risk can have a pretty drastic impact in terms
of sweeping away profits. As a result, it can place a firm at a significant com-
petitive disadvantage, generate huge operating losses, and in the end, inhibit
the firm’s growth and investment.

Purchasing power parity, a general equilibrium hypothesis, claims that
the exchange rate should be such that the purchasing power in one currency
matches the purchasing power in the other currency. This might suggest that
exchange rates should more or less remain constant, and adjust only periodi-
cally and gradually. This is far from today’s reality. There is also a well-known,
macroeconomically-motivated relationship between currency exchange rates,
domestic interest rates and foreign interest rates, known as the international
Fisher effect. It is based on a hypothesis in international finance that the differ-
ence in the nominal interest rates between two countries determines how their
currency exchange rate will change. Therefore, interest rates and markets’
perception of future interest rates have a direct impact on currency exchange
rates.

If the interest rate in one country is high, the demand for that currency
increases, which in turn makes the currency stronger relative to other curren-
cies. The reverse is true for currency with low interest rates. An appreciating
currency can lead to higher inflation and a riskier economy. The standard
risk-return linkage holds. Therefore, currencies are like any other investment
asset, albeit with a stronger macroeconomic and monetary policy underpin-
nings. When a currency thus becomes more risky, risk-averse investors sell off
their positions, thus resulting in the currency’s fall in value.

In Figure 8.10, we display a sample of nine exchange rates for key devel-
oped and emerging economies from all continents over the duration of several
months. Even in this short duration snapshot from October 2011, one observes
all exchange rates to fluctuate, some significantly more than others. In this
period, the US dollar is fluctuating at par level with the Australian dollar
(AUD) and the Canadian dollar (CAD), while through the Greek debt crisis,
the euro and British pound seem to be moving with a high level of correla-
tion. After the March 2011 tsunami disaster, the Japanese yen evolved under
many pressures, and experienced significant devaluation against the US dollar
in this period.
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FIGURE 8.10: Sample of key exchanges for developed and emerging econ-
omy countries from all continents, as of March 2012.



308 Risk Management and Simulation

 

0

100

200

300

400

500

600

700

800

900

1986 1989 1992 1995 1998 2001 2004 2007 2010

58
129 167

244
351

254

461

664

817

Unadjusted

Adjusted*
870

Chart 1:  Daily U.S. Foreign Exchange Turnover
Includes Spot, Forwards, and FX Swaps.  In $ billions equivalent.

508

287

405

295
230

183

77

*  Adjusted for double reporting by participating dealers.

709

FIGURE 8.11: United States turnover of foreign exchange, all currencies.
(Courtesy Federal Reserve Bank of New York (FRB NY) Report, April 2010).

If a firm, financial or non-financial, has any extent of international foot-
print, it inherently has exposure to currency risk. In such a case, the firm can
have several motivations to explicitly manage currency risk, just as in the case
of commodity risk when this exposure is fundamental to a firm’s operations.
The motivations can range from attempting to coordinate cash flows and in-
vestment, minimize expected taxes, likelihood of financial distress, or simply
due to managerial risk aversion. Currency risk may be explicitly managed
also due to incentives for smoothing earnings, obtaining competitive pricing
advantages for the firm’s products.

Figure 8.11 shows the daily turnover of the US dollar for all currencies. The
daily turnover shown for an extended period of approximately 25 years shows
a steady upward trend, touching a staggering daily turnover of a trillion US
dollars in 2010. In Figure 8.12, the daily turnover is split by currency, both for
US dollar and the euro. The US dollar has the highest fraction of its turnover
for the euro. Additionally, it is not surprising that the next three highest
currencies for US dollar turnover are the British pound, Japanese yen, and
the Canadian dollar. Such large daily foreign exchange turnover volumes both
indicate and justify active currency risk management.

Among the avoid-mitigate-transfer-keep response of risk management, if a
firm has seen a strategic advantage in expanding its operations and/or sales to
other countries, then the limitations of implementing the ‘avoid’ response are
evident. The ‘diversify’ response for risk management must be explored. In
international financial investment strategies, however, diversifying across cur-
rencies (and economies) is regularly practiced, and in principle is not different
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Chart 5:  Daily FX Volume by Currency 
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from what we discussed at length in Chapter 7. Therefore, in the discussion
here our focus will be on the hedging component of risk management.

8.4.1 Models for Spot and Forward Exchange Rates

Various models have been utilized for the spot exchange rate, many of
which we have already applied to equity, interest rate and commodity risks.
For instance, mean-reversion is utilized in the models since exchange rates are
expected to be at a fundamental level commensurate to the purchasing power
parity or international Fisher effect. Additionally, stochastic volatility [62] and
jump-diffusion extensions [42] have also been studied for modeling currency
risk. In some cases, in order to capture fundamental changes in the monetary
policy in a country or other regulatory changes, regime-switching models have
also been applied to exchange rate risk [82]. Models for currency risk are
needed either to price options contract or to determine hedging strategies.
Pricing of currency forwards can be done in a model-free setting, which we
describe next.

The relationship between spot exchange rates and exchange rate forwards
is crucial, as discussed in the previous section. Let Xt be the spot exchange
rate for a currency and F (t, T ) be the forward exchange rate for a forward
contract maturing at a future time, T . Let’s say the domestic short-term risk-
free interest rate is r and the foreign short-term risk-free interest rate is rf . A
firm intends to convert one unit of foreign currency into its domestic currency,
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FIGURE 8.13: Spot and forward exchange rates hold a key relationship.

say US dollar, which it anticipates using at a future time, T . The firm has
two options. First, it can convert the funds immediately at the current spot
exchange rate of Xt, and have the funds appreciate at the domestic risk-free
interest rate, r, becoming worth Xte

r(T−t) at time, T .
Alternatively, the firm can enter a long position in a forward contract to

buy US dollars at T at the forward rate, F (t, T ). Until time T each unit of
foreign currency held appreciates at the foreign short-term risk-free interest
rate of rf , becoming worth erf (T−t) at time, T . At time T , the firm executes
the forward contract to obtain F (t, T )erf (T−t) US dollars. Following either
alternative, the firm ends up with a certain amount of US dollars in a risk-free
manner. If these amounts are different, i.e., Xte

r(T−t) ̸= F (t, T )erf (T−t), then
it opens an arbitrage opportunity. Therefore, a foreign currency is analogous
to a security providing a dividend yield, where the continuous dividend yield
is the foreign risk-free interest rate, rf . It follows that the currency forward or
currency futures price should satisfy, F (t, T ) = Xte

(r−rf )(T−t). This relation
is summarized in Figure 8.13.

8.4.2 Currency Derivatives

We have discussed the role of currency forward contracts in the context
of developing models for exchange rates in Section 8.4.1. Figure 8.14 displays
the relative significance of currency spot and forward contracts in terms of
their daily turnover. It is no surprise that the trajectory of daily spot contract
turnover mimics the evolution of daily volume seen in Figure 8.11. The daily
forward contract volume shows a steady increase over the 18 year period, with-
out being affected by the modulations of the spot contract volume. However,
the volume of currency forward contracts is surpassed by that of currency
swaps throughout this period. In this section, we will consider currency swaps
and other derivatives that may be used to serve the risk transfer objective of
currency risk management.
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FIGURE 8.14: Daily turnover comparison for foreign exchange spot, forward
and swaps. (Courtesy Federal Reserve Bank of New York (FRB NY) Report,
April 2010).

Currency Swap. Currency swaps provide two counterparties the oppor-
tunity to periodically exchange the two underlying currencies for a set period
of time at a set exchange rate. A principal is also identified in each cur-
rency to define the reference amount in each currency that the swap rate
will be applied to determine the amount exchanged periodically. For example,
a currency swap may be defined to pay 5% on a British pound principal of
£10,000,000 and receive 6% on a US dollar principal of $18,000,000 every year
for 5 years. While in an interest rate swap the principal itself is not exchanged,
in a currency swap the principal is usually exchanged at the beginning and
the end of the swaps life. Therefore, a currency swap can help in converting
an investment or a liability in one currency to an investment or a liability in
another currency, if the firm is more comfortable to maintain this investment
or liability in the second currency. A currency swap can be considered as a
bundle of forward contracts, where a common price is set for all the forward
contracts in the bundle.

The above example was a fixed-to-fixed currency swap, or a vanilla cur-
rency swap. Other currency swaps can be constructed where one or both legs
of the swap pay a floating rate. For example, a fixed-to-floating or a floating-
to-floating currency swap. In the fixed-to-floating currency swap, the fixed rate
is the swap rate, while in the floating-to-floating currency swap the spreads
applied to either of the floating legs is the swap rate.

Currency Options. Beyond currency forwards and a variety of swaps,
various currency options may also be useful for risk management. Vanilla
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FIGURE 8.15: Distribution of the change in portfolio value, ∆Π, in order
to compute Market Value-at-Risk.

European call and put are the simplest choice to buy or sell a currency when
the exchange rate is favorable. Other options to consider are a barrier option
or a compound option. A down-and-in put or an up-and-out put can be more
cost-effectively way to sell a currency at a required time. A compound option
postpones the decision of having to sell the currency using an option by waiting
to see if the currency moves in the favorable direction or not. A gap option is
an interesting exotic option, which can serve the role of a ‘pay-later’ strategy,
which implies the option buyer will have a zero premium upfront, but at option
maturity will need to give up some of its pay-off. The pay-off of a gap put
option is, g(t,Xt) = (K1 −Xt)IXt<K2 , where K1 < K2 is the case when the
premium can be zero.

8.5 Value-at-Risk and Stress Testing for Market Risk
Management

Our emphasis in this and the previous chapter has been on creating the
avoid-mitigate-transfer-keep responses of risk management for the spectrum
of market risks. We have developed portfolio analysis and optimization frame-
work for the mitigate objective and hedging framework for the transfer ob-
jective. One of the important tasks of risk management is to monitor the
performance of risk management decisions, and assess the level of risk kept as
an outcome of avoid-mitigate-transfer-keep choices. This corresponds to the
feedback loop at the bottom box of Figure 2.1.

Monitoring of risk management strategy is rarely done for single risk ex-
posure or a single instrument. Instead the entire portfolio of assets must be
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collectively assessed for the impact of all relevant risk exposures. This is im-
portant since risk exposures rarely evolve independently of each other. Moni-
toring may also be developed at two levels, one that utilizes models chosen for
each risk exposure and creates a model-based assessment of risk management
strategy. The other level ‘stresses’ the models, so that model risk doesn’t lead
us into misguided conclusions.

For the first level assessment, a measure of performance must be decided,
along with a threshold that allows judging if the strategy is performing sat-
isfactorily according to the performance measure. This can be done with two
themes, namely that good aspects of risk management strategy are good
enough or bad aspects of the strategy are not too bad. A tail measure chosen
as a performance measure would follow the latter theme (see Figure 8.15),
while an upside measure will address the first theme. A popular tail measure
used, for instance, in the Basel Accord, is the Value-at-Risk (VaR) measure.
At a certain confidence level, a certain threshold or risk limit must be chosen,
and the risk management strategy is assessed by the VaR measure against the
set risk limit.

At the level of a business unit, a portfolio or enterprise-wide, along with
a risk-limit, a time duration must also be chosen in which impact of risk
is assessed. The value of the portfolio (business unit or enterprise value) is
assessed at the start of the time period, Π0, and at the end of the period, Π∆T .
The change in value of the portfolio, ∆Π = Π∆T −Π0 is the key distribution
to which the performance measure, in this case VaR, is applied.

For the market risk sensitive instruments in the portfolio, one needs to
specify all the relevant risk factors. We also need to specify the dynamics
of evolution of each of the risk factors, i.e., stochastic processes, parameters
estimated volatilities, correlations, mean-reversion, stochastic volatility, etc.
As such, three different levels of sophistication may be applied to estimate
portfolio VaR for the period, ∆T , the Historical or Non-parametric approach,
Analytic Variance-Covariance or Delta Normal approach, and Monte Carlo
Simulation approach.

Historical or Non-parametric Method: This is the simplest of ap-
proaches, where no analytic assumptions are necessary for the risk factors.
However, 2-3 years of historical data are necessary for meaningful results,
since the approach treats the past observations as the population of possibil-
ities the future will be sampled from. With this in mind, the steps followed
here are as follows.

1. Using the historical observations, changes in relevant market prices and
risk factors are sampled, keeping consistency regarding the time of ob-
servation for all the factors. This may need to evaluate price of derivative
instruments, based on underlying asset values, if the corresponding his-
torical market price for them is unavailable.

2. Based on the scenarios of change in market price of constituent instru-
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ments, and portfolio weights, portfolio under examination is revalued
to create a distribution of change in value of the portfolio for which
VaR needs to be computed. Each simulated change in the value of the
portfolio becomes an observation in its empirical distribution.

3. Construct a histogram of portfolio values and identify the absolute VaR
that isolates the α-th percentile of the distribution in the left-end tail.
After the computing the empirical mean in change in value of the port-
folio, VaR is computed as the difference of mean change in portfolio and
absolute VaR.

The major attraction of this approach is that it is completely nonparamet-
ric, where no assumptions about distributions of the risk factors are necessary.
If the historical data shows fat-tails, the empirical distribution for the future
retains it. Assumptions and calibration of variances, correlations, etc. of risk
factors are not needed, since historical volatilities and correlations are already
reflected in the data set.

The drawback of the approach is its complete dependency on the particular
set of historical data and their idiosyncrasies. Since one is fully committing to
the notion that the past is a perfectly reliable representation of the future, one
must that much more carefully respond to which past is a perfectly reliable
representation of the future? Whereas on the other hand, sufficient variety of
observations in the population will necessitate including a larger window of
past as being relevant. In some cases, data may simply be limited, which will
make the population to sample from rather small. Historical method does not
allow any innovation in what may happen in the future that is different from
what was seen in the past, such as periods of unusual low or high volatility,
market crashes, or structural changes in the market.

Analytic Variance-Covariance or Delta Normal Method: This ap-
proach assumes that the risk factors and the portfolio values are lognormally
distributed, or equivalently, their log-returns or natural logarithm of returns
are normally distributed. This assumption is useful since normal distributions
are completely characterized by their first two moments, namely mean and
variance. One describes the mean and the variance of the portfolio return dis-
tribution from the mean, variance and correlation between the risk factors,
and the composition of the portfolio. If there are nonlinear instruments, such
as derivatives contracts, in the portfolio, their return is also assumed to have a
normal distribution and are included in the VaR computation as stated above.

The caution to maintain here is how sure can we be that return distribu-
tions of all risk factors are normal. A large amount of evidence suggests that
returns exhibit fat-tails. For instance, Figure 8.16 shows the histogram and
normal probability plot for two years of equity log-return data for two stocks,
both of which show deviations from normal distribution at the tails. This is
even more true for nonlinear instruments. In case of fat-tails, there are more
observations away from the mean than the normal distribution. Therefore, the
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FIGURE 8.16: Histogram and normal probability plot of two years of equity
return for Microsoft (MSFT) and Exxon-Mobil (XOM).

analytic variance-covariance method may end up underestimating VaR, since
the actual VaR values may fall farther out, perhaps much farther out.

All is not lost however, since even if returns of individual risk factors do
not follow normal distribution, it is reasonable to expect that returns of a well-
diversified portfolio will still exhibit (near) normal distribution. This is due to
the central limit theorem. In practice, therefore, managers can assume that
a portfolio has normal distribution of return, provided the portfolio is fairly
well-diversified and the risk factors’ returns are sufficiently independent from
one another, even if they are not themselves normal. However, for nonlinear
instruments, which will be naturally correlated with underlying assets they are
meant to hedge in the portfolio, fat tails in returns of underlying assets, less
diversified lumpy portfolio, highly correlated risk factors should be treated as
sources of warning signals, where analytical variance-covariance can be risky
to rely on. In such cases, one must resort to using more sophisticated, and
realistic, models, which will require the simulation approach to estimate VaR.

Monte Carlo Simulation Method: In the simulation approach, price paths
must be constructed by using appropriate simulation techniques for each
stochastic process model for risk factors, incorporating correlations and multi-
variate distributions where necessary. The non-linear contracts, such as deriva-
tives contracts, in the portfolio have to be priced to determine their value in
the future for each scenario of underlying asset(s) values. All the models and
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techniques developed earlier in this chapter and Chapter 7 will be necessary
for achieving this task.

Value of the portfolio is determined in each scenario, where each sce-
nario corresponds to possible value of the portfolio at the target horizon.
A large number of scenarios creates a good approximation of the distribution
of change in value of the portfolio. From this generated distribution, shown
in Figure 8.15, we estimate the 1st percentile, or in general α-th percentile, of
change in value of portfolio, ∆Π1%, and mean change in value of the portfolio,
E[∆Π]. Then V aR99% = E[∆Π]−∆Π1%.

No matter which method is adopted to compute the VaR, if the estimated
VaR is higher than the stipulated risk-limit, this is an indication that the
risk management strategy is not producing desirable performance. Sources of
excess risk must be identified and a change in risk management response must
be developed. One must note that there is nothing uniquely special about the
VaR measure for the performance assessment of risk management. In fact,
as we observed in Section 2.1.3, VaR is neither a coherent nor a convex risk
measure in general. Conditional Value-at-Risk, or CVaR, or expected shortfall
are also well suited, and must be included as alternative measures to evaluate
risk management strategies by.

Distinction is also made for VaR in terms of whether it is evaluating the
portfolio under normal conditions of the market or under stressed conditions.
For so called ‘stressed VaR,’ the models are calibrated for periods of stress for
the portfolio, and VaR is computed based on these models. The second level
of assessment is conducted by scenario analysis and stress testing. Section 2.2
provided a detailed guideline for conducting these analyses. For all the relevant
risk factors for a portfolio, different shock levels need to be picked that are
in the realm of possibility and imagination, guided by past experience and
expert judgement. The guidelines for what is considered a shock include:

• Parallel yield-curve shifts of +/- 100 bp.

• Yield-curve twist of +/- 25 bp.

• Equity index values change of +/- 10%.

• Currency value changes of +/- 6%.

• Volatility changes of +/- 20%.

The goal is to unravel weaknesses in the portfolio not picked by the VaR or
stressed VaR assessment. As such, stress testing and scenario analysis is as
much an art as a science, therefore the exercise should be structured so that
it instigates discussion to benefit from insights and experience from various
angles.

The stress tests designed and applied, as well as calibration of those tests,
should reflect the nature of the unit being assessed, as well as hedging and
trading strategies used by the unit. The stress shocks are applied indepen-
dently to assess their impact, as well as being combined together to create
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stress envelopes. The aim is to estimate the expected losses under a range
of scenarios. The creative, but justifiable, definition of scenarios is impor-
tant since in a stressed environment, new interdependencies emerge that were
theretofore unseen.

For creating a response to the stress shocks and scenarios, assessment
of the time it might take to manage risks under severe market conditions
should also be incorporated. Moreover, as the instruments, risk profile, and
trading/hedging strategies change, the stress tests should be duly updated to
continue to be representative of the unit’s condition. Historical stressed peri-
ods and events can provide a good guideline for plausibility and sequentiality
of interplay within a market segment and interdependencies between markets.
Finally, to be useful a good stress testing program should generate insightful
visualization and summary of the impact of multitudes of risk factors, shocks,
stresses, and scenarios it evaluates.

8.6 MATLAB Tools for Fixed Income, Commodities,
and Exchange Rates

MATLAB mathematical software has a vast array of functions for working
with financial variables and methodologies in its Financial Toolbox. We list a
few of these functions here relevant for interest rate, fixed income instruments,
commodity and currency derivatives. The reader is advised to look up the
extensive help documentation available with MATLAB to see the details of
these and other related functions. At the bottom of each function description
in MATLAB help documentation, look for ‘See Also’ to explore other related
functions. Resources such as MATLAB Primer [20] are also useful.

Present value, future value calculations: pvfix, pvvar, fvfix, fvvar

Bond price: bndprice, prtbill

Bond duration: bnddury, bnddurp, bnddur, bndkrdur

Bond convexity: bndconvp, bndconvy

Commodity derivatives: blkprice, blkimpv

Currency options: blsprice, blsdelta, blsgamma, blsvega, blstheta,
blsrho, blslambda, blsimpv
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8.7 Summary

We began this chapter with the second important market risk segment of
interest rate risk. Interest rate risk affects the valuation of a variety of bonds,
both government-issued and corporate bonds, but also a host of other instru-
ments collectively called fixed-income instruments and their derivatives. We
studied the valuation of bonds and some of the other fixed-income instruments
and derivatives. As in the case of equity market risk, the primary motivation
behind studying the valuation and sensitivity of instruments to interest rate
risk is to support developing hedging strategies. From interest rate risk, we
moved to the other two important components of market risk, commodity risk
and exchange rate risk. For some firms, one or both of these two market risk
components may be very significant to their risk management objectives. We
applied the valuation and hedging principles developed in the context of other
market risk components to these components, and discussed some examples.
We also discussed some unique features of these market risk components and
the related challenges. Finally, in this chapter, to summarize the discussion
of market risk, we applied the concept of Value-at-Risk to portfolios that are
exposed to market risk factors and discussed methods for its computation.

8.8 Questions and Exercises

Review Questions

1. What is interest rate risk? Discuss its most important characteristics.

2. Who are the major participants in the fixed income markets? Discuss
the purpose of their participation.

3. What are curve risk, basis risk, and gap risk in the context of interest
rate risk?

4. Given the term structure of interest rates, in the simple setting how are
bonds priced? What is the yield to maturity of a bond?

5. What are the different possible shapes of the term structure of interest
rates? What are the implications of a changing term structure of interest
rates?

6. What are continuously compounding interest rates? How are they use-
ful?
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7. What are forward rates? How are they computed? How are forward rates
used?

8. What is short rate? What theories are stochastic short rate models con-
structed by?

9. Give examples of equilibrium and no-arbitrage short rate models.

10. What is market price of risk? How is it arrived at, and what does it
achieve in the pricing of bonds?

11. What are the multi-factor extensions of single-factor short rate models?
Why are these extensions needed?

12. Discuss the types of fixed income instruments, by issuers, maturities,
and other terms of the instruments.

13. How are interest rate sensitivities measured? What are duration, modi-
fied duration and convexity measures of sensitivity?

14. When are modified duration and convexity measures of interest rate risk
not sufficient for risk measurement and management?

15. What are the three factors that capture well the movements of the term
structure of interest rates?

16. How can dynamics of term structure of interest rates be captured
through movements of key factors?

17. What is bond immunization? What risk measures is the immunization
achieved by?

18. What are exchange-traded interest rate derivatives? What are the over-
the-counter interest rate derivatives?

19. Discuss the different interest rate derivatives, and their major charac-
teristics.

20. What is floating-to-fixed interest rate swap? What hedging objective
can this instrument serve?

21. What are cap, floor, and collar contracts for interest rate risk?

22. How are hedging strategies for interest rate risk constructed? What risk
measures are optimal hedges constructed by?

23. How does commodity price risk differ from that of interest rates risk or
exchange rate risk?

24. What is the classification of commodities? What are the shared charac-
teristics in this classification?
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25. What general characteristics of commodities do different price models
capture?

26. Why is mean-reversion or jumps seen in many commodity prices?

27. What are factor models, why are they useful for modeling commodity
prices?

28. What is regime-switching and how is it relevant for price evolution of
commodities?

29. What are the risk characteristics of each of the following commodities,
and how do models capture them?

(a) Crude oil

(b) Natural gas

(c) Electricity

(d) Weather

30. Why are commodities considered an attractive asset class for invest-
ment?

31. What is the minimum variance hedge under cashflow objective?

32. When and why are firms reluctant to sell down their inventory of com-
modities, even when there is arbitrage opportunity?

33. What is convenience yield? What is cost of carry?

34. Why are firms increasingly exposed to foreign exchange risk?

35. Why should firms manage their currency risk exposure?

36. What is purchasing power parity? What is the international Fisher ef-
fect?

37. What are the different type of currency swaps?

38. What is a gap option? What is the advantage of using a gap option?

39. How does Value-at-Risk serve the objective of monitoring a risk man-
agement strategy?

40. What is the historical method of computing VaR? What are its advan-
tages and disadvantages?

41. What is the analytic variance-covariance method of computing VaR?
What are its advantages and disadvantages?

42. What is stressed VaR?
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43. Why is stress testing important for risk management?

Exercises

1. Calibrate the following interest rate models using MATLAB for histor-
ical interest rate data.

Vasicek Model: drt = (η − γrt)dt+
√
βdWt

Ho and Lee Model: drt = η(t)dt+
√
βdWt

Cox Ingersoll Ross Model: drt = (η − γrt)dt+
√
αrtdWt

Use data for the following interest rates, obtainable from Federal Reserve
Economic Research & Data website Selected Interest Rates - H.15.

• 1-month, Nonfinancial commercial paper

• 1-month, Financial commercial paper

• 4-week, Treasury bills rate

• Aaa Moody’s Corporate bonds rate

• Baa Moody’s Corporate bonds rate

Comment on which model provides a good representation for these in-
terest rates.

2. Price the following bonds using appropriately chosen interest rates and
corresponding calibrated model from Problem 1.

Bond 1 : US Treasury T-Note, Annual Coupon Rate: 3.25% (paid semi-
annually); Maturity: 6 Years; Rating: AAA

Bond 2 : US Treasury T-Bond, Annual Coupon Rate: 7.25% (paid
semi-annually); Maturity: 12 Years; Rating: AAA

Bond 3 : Corporate Bond, Issuer: Johnson & Johnson; Coupon Rate:
5.55% (paid semi-annually); Maturity: 5 years; Rating: AAA

Bond 4 : Corporate Bond, Issuer: Southwest Airlines; Coupon Rate:
7.375% (paid semi-annually); Maturity: 15 years; Rating: BBB

3. Define a bond option on the following bonds and determine the price of
the bond option.

(a) US Treasury T-BOND, Annual Coupon Rate: 7.25% (paid semi-
annually); Maturity: 12 Years; Rating: AAA

(b) Corporate Bond, Issuer: Southwest Airlines; Coupon Rate: 7.375%
(paid semi-annually); Maturity: 15 years; Rating: BBB

4. Consider the following portfolio of US Treasury notes and bonds with
weights for each bond given as number of bonds held in the portfolio.
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• US Treasury T-Note, Annual Coupon Rate: 3.25% (paid semi-
annually); Maturity: 6 Years; Rating: AAA, Weight: 10,000

• US Treasury T-Bond, Annual Coupon Rate: 6.25% (paid semi-
annually); Maturity: 12 Years; Rating: AAA, Weight: 22,000

• US Treasury T-Note, Annual Coupon Rate: 2.25% (paid semi-
annually); Maturity: 3 Years; Rating: AAA, Weight: 14,000

• US Treasury T-Bond, Annual Coupon Rate: 6.625% (paid semi-
annually); Maturity: 15 Years; Rating: AAA, Weight: 18,000

(a) Compute the current value, duration, and convexity of the above
bond portfolio.

(b) If the target liability being matched with the above portfolio re-
mains the same, however the duration of the liability increases by
10% and convexity of the liability increases by 8%, by changing
the weights as you see appropriate of the bond portfolio, immunize
the bond portfolio for small changes in interest rates against the
liability.

5. In Problem 3, a bond option was defined on the 12-year US Treasury
bond. The portfolio of Problem 4 has dominant weight on this bond.
Construct a hedge for the bond portfolio in Problem 4 using the bond
option defined and priced in Problem 3. Define the objective of the hedge
and determine the hedge ratio. How does the hedge change the duration
and convexity of the portfolio?

6. Calibrate the following model for crude oil. Use publicly available data
from International Monetary Fund (IMF) website; IMF Primary Com-
modity Prices available for 8 price indices and 49 actual price series from
1980 - current.

dYt = α(L̄− ln(Yt))Ytdt+ σYtdWt. (8.82)

7. Using crude oil futures prices from Chicago Mercantile Exchange, deter-
mine the cost of carry and convenience yield for crude oil.

(a) Determine the futures price for other crude oil futures contract you
define.

(b) Define a European call option on crude oil, and determine the price
of the call option.

8. A wheat producer anticipates producing 60,000 bushels of wheat at the
upcoming harvest. The farmer cannot be definite about the amount of
produce at harvest. The farmer expects to experience a variability of
8000 bushels. A lognormal distribution with the above mean and stan-
dard deviation would make a good representation of the wheat produc-
tion of the farmer. If price per bushel at harvest is expected to be 85
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cents per bushel, with a standard deviation of 7 cents per bushel, what
futures contract hedge do you recommend to the farmer? What assump-
tions did you make to construct this hedge? Assume 5,000 bushels per
futures contract.

9. Obtain exchange rate data for the following currencies from the Inter-
national Monetary Fund (IMF) website, Exchange Rate Query Tool, to
calibrate an appropriately chosen model for exchange rate evolution for
each of the following currencies. Assume that the domestic currency is
USD.

• Euro

• Chinese yuan

• Australian dollar

• Indian rupee

(a) Define a forward contract and a gap option for the exchange rate
for any of the above currencies, and determine forward price and
the price of the gap option.

(b) If you anticipate a need to pay 0.5 million Euros in 2 months,
construct an appropriate hedge using i) the forward contract and
ii) the gap option.

(c) If you expect to receive INR 20 million in 1 month, construct an
appropriate hedge using i) forward contract and ii) the gap option.

10. Consider the following stocks and bonds from which different portfolios
are being constructed.

• US Treasury T-Note, Annual Coupon Rate: 3.25% (paid semi-
annually); Maturity: 6 Years; Rating: AAA

• US Treasury T-Bond, Annual Coupon Rate: 7.25% (paid semi-
annually); Maturity: 12 Years; Rating: AAA

• Corporate Bond, Issuer: Johnson & Johnson; Coupon Rate: 5.55%
(paid semi-annually); Maturity: 5 years; Rating: AAA

• Corporate Bond, Issuer: Southwest Airlines; Coupon Rate: 7.375%
(paid semi-annually); Maturity: 15 years; Rating: BBB

• Consider three stocks evolving by continuous-time stock price evo-
lution model of the form,

dSit = µiSitdt+ σiSitdWit, (8.83)

for i = 1, 2, 3, where initial stock price is, S⃗0 = [19; 53; 26],
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µ⃗ = [0.09; 0.05; 0.16] and σ⃗ = [0.10; 0.06; 0.25]. The three corre-
lated Wiener processes are described by the following correlation
matrix.

ρ =

 1 0.3 0.1
0.3 1 −0.05
0.1 −0.05 1

 (8.84)

Compute the Value-at-Risk at a desired confidence level and duration
of time for the following portfolios given by the number of bonds and
shares of above stocks held.

(a) w⃗ = [10,000; 22,000; 15,000; 20,000; 0; 0; 0]

(b) w⃗ = [0; 0; 0; 0; 30,000; 8,000; 20,000]

(c) w⃗ = [10,000; 22,000; 15,000; 20,000; 30,000; 8,000; 20,000]

For each of the above portfolios, construct some hedges by using bond or
stock options with desired strikes towards your chosen risk management
objectives. Recompute the VaR for the hedged portfolio and compare
with the VaR of the unhedged portfolio.

11. Perform a detailed stress testing of the stock-bond portfolio in Problem
10.



Chapter 9

Credit Risk Management

Genesis of credit risk would not have trailed far behind development of trade
and commerce in earliest human society. Therefore, it can easily be dated back
at least three to four thousand years. Yet credit risk remains a risk type that
still poses significant challenges for assessment and management. There are
several reasons for this, the most important of which is that credit risk, at all
times past and present, has reflected the needs, aspirations, and goals of indi-
viduals, business enterprise and financial intermediaries. It has also reflected
the environment, both economic and social, the individuals and the business
enterprise function in. As these aspirations and goals have evolved, and as
the environment for these decisions has gotten increasingly more complex,
the characteristics of credit risk have also continued to evolve. An evolving
risk is expected to continue to pose challenges for accurately assessing and
monitoring it, and to optimally manage it.

Credit risk would arise when individuals or enterprises acquire goods or
services in return for a promise of future payment for them. Such arrangement
enables the individual, household or business enterprise to create the possi-
bility of generating value by using the goods and services, without initially
having the resources to acquire the goods or services. Whatever the terms, du-
ration or form for the payment for the goods or services, credit risk arises with
the likelihood that the individual or the enterprise will breach the contract
for the payment.

In discussing equity risk in Chapter 7, we viewed equity ownership as a
mechanism for financing ventures of an enterprise. As an alternative to equity
financing, historically and at the present time, enterprises have also resorted
to borrowing funds for financing their ventures with a promise of repayment
in the future in set form, terms, and duration. Individuals, households, and
governments of different times, levels, and regions also utilize this mechanism
for financing their projects. In each of these cases, financing of projects with
such terms of future repayment also gives birth to credit risk.

Credit risk is also embedded in a variety of other contracts beyond those
used for financing ventures or acquiring goods and services with a promise of
repayment in the future. All the derivatives contracts we have studied thus far,
and will continue to study in this and later chapters, carry credit risk arising
from the fact that the counterparties engaged in the contract will not deliver
their due, as per the contract. This is frequently labeled as counterparty risk.

From the reasons for the genesis of credit risk, a fundamental link between
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interest rate risk and credit risk is established. Repayment of funds or payment
for goods and services is done over a duration of time. In order to compensate
the creditor for the time value of money, as extensively discussed in Chap-
ter 8, a term-structure of interest rates may be applicable to the payments.
Moreover, the extent of likelihood of a counterparty not fulfilling the payment
requirement as per the contract may also translate into an increase in the
interest rate applied. This increase in interest rates applied to an account of
heightened credit risk is often called credit spread.

To manage and mitigate credit risk, creditors would like to have as much
information as possible regarding the debtors and the use they intend to put
the funds or goods and services to. In this regard, the nature of credit risk
differs significantly depending on the type of counterparty. Individuals and
households as debtors have distinct characteristics when compared with busi-
ness enterprise, while both of these differ in characteristics from governmental
enterprise. Additionally, creditors would want to utilize every available and
feasible mechanism to lower the adverse impact of credit risk. Subordination
of funding sources utilized by the debtor and assurance using collateral are
some such mechanisms, which we will study later in this chapter.

Assessing and managing credit risk not only entails determining and min-
imizing the likelihood of adverse events, it also involves determining what the
repayment level may pan out to be should the counterparty hit financially
turbulent terrain. This assessment is crucial for the assessment and monitor-
ing of the loss from credit risk to the creditor. The percentage of original
amount of funds due that are recovered is termed the recovery rate. Recovery
rate will, in its own turn, depend on various factors, including the collateral
and subordination characteristics of the credit. All the issues discussed above
chart the platform on which topics of this chapter are developed. We begin
with considering credit risk pertaining to individuals and households.

9.1 Retail Credit Risk

Retail banking is a segment of banking that serves individuals’ and house-
holds’ banking needs, but also often includes services for small business en-
terprises. Financial needs and credit risk characteristics of small businesses
resemble those of individuals and households, as small businesses are often
structured as sole proprietorships and size of funds are comparable. There-
fore, retail banking or consumer banking offers deposit services, checking,
savings, etc., as well as providing credit in the form of a variety of loans to
small businesses and consumers.

Once perceived to be non-glamorous, retail banking has transformed over
the last decade due to widespread access to banking using Internet technolo-
gies, deregulation facilitating innovations in products and marketing, cus-
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tomized to consumer needs, and greater emphasis and need for risk man-
agement. Some call the retail credit market a sleeping giant of the modern
economy [87], at least up until the trigger of financial crises in 2007.

The ‘giant’ part of the sleeping giant title is justified by the following
observations. In the US, retail banking and consumer lending is almost double
the size of corporate lending. Household debt in the US was in excess of $13
trillion in 2010, where US corporate debt stood higher than $6.0 trillion in
2010. Home mortgages and home equity loans account for almost $11 trillion
of this amount, in excess of 80% of the total retail credit market. The next
largest category is consumer credit-card debt.

Retail credit has various different forms to meet the needs and demands for
credit of households and small businesses. Given home mortgages make such
a sizeable fraction of consumer loans, these can be further classified into two
major groups, fixed-rate mortgages (FRMs) and adjustable-rate mortgages
(ARMs), each with a variety of loan terms. In home mortgages, the concept
of loan-to-value ratio (LTV) is an important one that defines the proportion
of property value that is debt-financed versus equity-financed. It is a key
risk variable. Home equity loans are a hybrid between consumer loans and
mortgage loans, created by utilizing home equity as collateral. Other consumer
loan types include installment loans, revolving loans, such as personal lines
of credit that may be used repeatedly up to a specified limit (credit cards),
automobile loans, and similar loans secured for education, personal property,
and financial assets.

A similar variety of loans may be taken out by small businesses to meet
their investment and operations needs, which are secured by the assets of the
business. Usually loans of up to $200,000 would qualify for being considered
within retail banking. Two new types of consumer loans that are attracting
significant interest at present are micro-credit and payday loans. Micro-credit
loans are very small loans given out to those in poverty in order to help them
launch a business. Giving this opportunity to these individuals, which helps
them sustain themselves and their families, can become a path out of poverty.
Payday loans, on the other hand, are small emergency need loans with very
short-term durations. They carry extremely high interest rates and effectively
serve as an advance on an individual’s next paycheck.

Differentiation between retail and commercial banking is justified based on
certain fundamental differences in their characteristics both from a business
as well as a risk management perspective. These differences will guide us in
the rest of the chapter in developing risk management methods for retail and
commercial credit risk. So, in what ways are retail credit risk characteristics
different from those of commercial credit risk?

1. Each individual unit of retail credit exposure is in bite-sized pieces when
compared to the overall assets of a bank. Therefore, default of a single
customer is not costly enough to threaten the bank’s solvency. This
may not be true in case of commercial credit, since single exposure in
commercial credit could be a significant fraction of a bank’s total assets.
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2. Individuals and households function as independent units, therefore re-
tail customers tend to act financially independent of each other. This is
not the case for commercial credit risk. Firms function in an interdepen-
dent environment, manufacturers depending on suppliers and retailers,
and vice versa, firms are simultaneously affected by cost and availabil-
ity of raw materials, market risks, and other macroeconomic factors.
Therefore, commercial credit risk is economically intertwined in partic-
ular geographical or industry sectors.

3. Due to the above two characteristics of bite-size individual exposure in a
large pool that are also independent of each other, retail banks can make
better predictions of percentage of portfolio expected to default and the
losses it may cause. While this more reliable estimate of expected loss
number in retail banking can be treated as operations cost, in commer-
cial credit losses can be a threat to a bank’s solvency and must be dealt
with using a multi-prong response of risk management.

4. In retail banking, since the expected loss rate dominates the bank’s
credit risk exposure, it is possible to price it in the products to the cus-
tomers. According to the riskiness of customers, retail credit products
can be designed to have higher price for higher expected loss customers.
In commercial credit, pricing of products cannot be an effective mecha-
nism to recoup losses, since it is the unexpected or the upper-tail losses
that dominate the credit risk exposure.

5. Consumer behavior is more easily observed, especially with the advent
of information technologies, making it possible for the well-run banks
to make it a priority to collect and mine consumer data for possible
signals for occurrence of default or failure to make some payments. This
ability to monitor gives the bank time to take preventive actions to
reduce credit risk. The counterparties in the case of commercial credit
are complex entities, not amenable to close monitoring or easy prediction
of future financial health, therefore the luxury of a preemptive action is
not afforded in the case of commercial credit.

With the above distinctions in sight between retail and commercial credit
risk, we need to define the goals and objectives of credit risk management,
and develop methods for measuring and tools to effect the management of it.
Since banking, both consumer and commercial, plays a fundamental role in
supporting the economic activity in an economy, several of these goals are also
driven by the regulatory environment in place for the proper functioning of
the banking sector. Regulators recognize the differences in the characteristics
of retail and commercial credit, and appropriately respond to the needs for
risk management. In Chapter 3, the evolution of the Bank for International
Settlements (BIS) supported Basel Accord was briefly reviewed. The Accord’s
central focus on credit risk will repeatedly emerge in this chapter.

Measures for credit risk are developed based on three important statistical
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quantities. The three statistical measures summarize credit risk both at indi-
vidual exposure level, as well as at the portfolio level, and can be combined
to create measures for the overall impact of credit risk on a credit portfolio or
a bank. The statistical quantities are as follows.

Probability of default (PD): This measure is an estimate of the likelihood
of a default to occur for an underlying contract in a given period of time.
Default refers to a debtor not meeting his or her legal obligations ac-
cording to the debt contract, for instance, being unable or unwilling
to make a scheduled payment, or violating a condition as per the debt
contract. When the underlying is a credit portfolio, the probability of
default would further need to be specified as probability of first default,
second default, and so on. Probability of nth default refers to the likeli-
hood of nth default to occur in a portfolio in a period of time, no matter
which specific units cause the n defaults.

Exposure at default (EAD): When a counterparty defaults, it can put a
specific amount at risk for the creditor, depending on the terms of the
debt contract. It could be either a specific installment, or a specific com-
ponent of a specific installment, or the entire principal. Once the contract
is in place, the creditor may not have additional control for modulating
the EAD, but must estimate the EAD to determine the possible extent
of loss due to default. However, the creditor can incorporate the EAD
in the design of the credit product in response to the riskiness of the
counterparties. EAD for single exposures can be combined to create the
EAD for a credit portfolio.

Loss given default (LGD): This is the actual loss the creditor will suffer
when a counterparty defaults. Once probability of default and exposure
at default are determined, estimation of loss given default is the third
crucial quantity that completes the assessment of impact of credit risk.
The covenants included in a debt contract are designed to maximize the
likelihood and extent of recovery from a default event. The collateral
and other assurances are put in place for a high recovery rate.

For regulatory monitoring, banks must also provide estimates of the three
statistical quantities for clearly differentiated segments of their retail credit
portfolios. Segmentation of credit portfolio is performed by an individual ex-
posure’s riskiness in the portfolio, riskiness measured in terms of credit score
or an equivalent measure, and vintage of exposure. With the above three cru-
cial quantities defined for credit risk, we move on to developing methods for
assessing them at the individual exposure level.

9.1.1 Measuring Retail Credit Risk

Information is power. In the information age, banks have continually at-
tempted to develop better models for predicting credit risk of individuals
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in terms of the three measures described above. These models, that go as far
back as the 1950s, are a constant effort to elicit more reliable and better usable
knowledge from the information. Information about individuals or households
is available in the form of ‘Characteristics,’ where each characteristic has sev-
eral ‘Attributes.’ The goal of any model attempting to convert information
into knowledge is to assign the attributes of the set of characteristics of an
individual into an indication of their probability of default and the loss given
default of the individual under given settings.

Let Ci for i = 1, . . . , N be N characteristics identified as important for
determining credit risk of an individual or household. Let’s say each charac-
teristic has Ai = {ai1, ai2, . . . , aiMi}) attributes, with Mi different levels for
ith characteristic. For example, household income is a characteristic, and its
attributes can be identified as eight different brackets of annual income levels.
If Y is an indicator of whether an individual will default in a given period of
time, and L is the amount of loss suffered due to default, then a model sought
gives a relation between Ci’s and (Y, L), as follows.

Y =
N∑
i=1

wiCi + ϵY , (9.1)

L =
N∑
i=1

λiCi + ϵL, (9.2)

where ϵY and ϵL are the error terms of the two prediction models.
Eqns. (9.1) and (9.2) hold stark resemblance with linear regression models,

where C’s are the independent variables and Y and L are dependent variables
in their respective equation. Regression based prediction determines the pre-
dictive contribution or weight, wi and λi, of each variable, Ci, to determine
the outcome, Y or L. These methods are generally called statistical classifica-
tion methods, set to classify ‘good’ customers from ‘bad’ customers, so that
credit may be extended suitably towards a bank’s risk appetite.

One of the earliest methods applied to credit risk prediction is discrim-
inant analysis (DA), which focuses on Eqn. (9.1). Note that the dependent
variable Y in Eqn. (9.1) is a binary variable, taking value ‘1’ when there is a
default, and ‘0’ when there is none. If there are K observations of past default
experiences and the corresponding attributes for the N characteristics, each
row of the [C]KxN matrix is a point in an N -dimensional space. The goal of
discriminant analysis is to draw a hyperplane, Cw = b, that separates max-
imum number of ‘1’ responses from the ‘0’ responses of each row of matrix,
[C]. This problem has been successfully cast and solved as a variety of linear
programming problems [31].

Even though Eqns. (9.1) and (9.2) predict the exact default outcome in a
period of time and loss given default anticipated, most classification methods
are designed to assign a score to each individual based on his or her attribute
for each characteristic. Therefore, standard classification methods result in a
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scorecard, a mapping of characteristics to a score for the individual. A score
is an ordinal indicator, higher the score better the creditworthiness, lower the
credit risk. The user of the credit score must identify a cut-off score, so that
individuals with scores above the cut-off are considered ‘good,’ and would be
offered more favorable products, credit limit, attractive interest rates, while
those below the cut-off score are classified as ‘bad,’ and would either be denied
service or given more stringent terms. In order to keep the scorecards current,
the process of building them and determining a cut-off should be repeated
frequently.

Credit scoring is extended to behavioral scoring, on similar statistical prin-
ciples of classification, to assess the credit risk of existing customers, as well
as new applicants. Behavioral scoring is not only intended to make the deci-
sion of whether or not to grant credit to a specific applicant, but is geared
towards life-cycle management of new and current customers. Therefore, the
dependent or target variable is either whether the borrower would default in a
given period of time, or what revenue he/she would generate, etc., in a given
period of time, based on the available information on the borrower’s recent
repayment and purchase history. Such scores may also be used for marketing
new products to the customers, adjust the terms of existing contracts, such
as more/less attractive interest rates, or more/less attractive credit limits.

Growth in the automated receiving and processing of applications through
the Internet, and through phone before the popularity of the Internet, meant
applications were essentially private and so the products could be customized
for the applicants’ characteristics. Customization in terms of pricing strength-
ens the prospects for profitability and more effective risk management for
a bank. Therefore, banks continue to use and improve their credit scoring
methodologies to support their business objectives of profitability and market
share, by optimizing all their decisions about their customers, from whether or
not to offer the borrower a standard loan product to how to use credit scoring
methodologies to help make variable pricing decisions and to determine the
long-term profitability of a customer.

As stated earlier, profitability is as much about designing the ‘right’ prod-
uct for a customer and marketing to the ‘right’ customer-base as it is about
risk assessment and management. The credit scoring methodologies can be
used by both marketers and risk management teams of a bank to make more
concerted, robust decisions for a bank’s credit risk management. As it turns
out the models used by the marketers for customer segmentation by propen-
sity to purchase different product types are very similar to the ones used by
risk managers to build scorecards and for risk management.

Whatever the scope of scoring models being utilized in a bank, it is im-
perative that the models are frequently tested and adjusted for currency. It
is known that economic conditions result in behavioral changes of individ-
uals and households towards credit, moreover models suffer ‘wear-and-tear’
of becoming outdated due to individuals ‘learning’ to beat the model. This
was, in fact, a major criticism meted out to Fair Isaac Corporation (FICO),
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a pioneer credit scoring company, during the 2007-2008 credit crises [26]. An
alternative, albeit much more challenging and ambitious, would be to build a
dynamic model for customer creditworthiness, which would allow forecasting
the future dynamic behavior of the customer.

Regulatory requirements are also important in this context. As described
earlier, credit scoring is focused on describing the ordinality of customer cred-
itworthiness, i.e., whether one customer has higher creditworthiness relative
to another. The precise implication of these scores in terms of actual probabil-
ity of default and loss given default experience is an important validation for
accurate measurement of credit risk. Prediction of default risk should be ex-
tendible to longer periods of time, rather than being focused on just the next
couple of years, which has been an emphasis of credit scoring models. Clearly,
since many retail products, such as home mortgages, extend into decades, and
given the high fraction home mortgages make of the total pool of outstanding
retail credit, longer-run prediction of probability of default would be quite
valuable. Finally, even the fanciest of models cannot be blindly relied upon.
Stress testing the models should be an integral part of decision making using
the credit scoring models.

9.1.1.1 Credit Scoring Methods

The US Federal Trade Commission’s Equal Credit Opportunity Act pro-
hibits credit discrimination on the basis of race, color, religion, national origin,
sex, marital status, or age. Creditors may not use this information when de-
ciding whether to grant credit or when setting the terms of the credit. This
makes it unlawful to deny credit on any other basis than financial, using factors
like income, expenses, debts, and credit history for determining creditworthi-
ness. Therefore, statistically based approaches are not just desirable, but are
essential to justify consumer credit decisions.

Credit scoring is a principal tool for consumer credit risk management. In
fact, every time you apply for a credit card, open an account with a telephone
company, a utility company, submit a medical claim, apply for auto or home
insurance, you are subject to a credit risk scoring model, sometimes without
your explicit knowledge. This is because in almost all these cases, implicitly
the service provider is exposed to credit risk based on your creditworthiness.
Therefore, credit scoring is a widespread technique used beyond banking, by
telecommunication companies, utility companies, and insurance providers, etc.
to examine the likelihood that a potential customer is unable to make good
on the due payments for the services.

Several statistical methodologies are utilized for developing credit scores.
We provide a brief overview here of some of the methodologies adopted for
credit scoring models; for more details, the reader should refer to a dedicated
resource on this topic, such as [86]. Credit scoring is a statistical procedure that
converts information about a credit applicant into a score, where the score is an
indicator of the individual’s creditworthiness, that is probability of repayment
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or probability of default (PD). As stated earlier, this is an ordinal number
with a higher score indicating lesser likelihood of a customer to default.

Credit scores are created using credit scorecards, each containing several
characteristics Ci, and each characteristic contains several attributes Aj . Each
attribute is associated with a weighting number, which is assigned to the indi-
vidual if the attribute describes the individual. A weighting is an indicator of
odds of repayment given the attribute based on past performance. A range of
statistical techniques get employed to generate the weights based on attribute
information.

From Default Rates to Credit Scores
As for any statistical procedure, data for past default and non-default

instances are required along with corresponding characteristics and attributes
for developing credit scoring models. Based on this information, a score, S(C),
is then constructed as a function of the characteristics C = {Ci, 1 ≤ i ≤ N}
of a potential borrower. This score is translated into the probability estimate
that the borrower will be ‘good.’ The strength of prediction of ‘good’ (no
default) from ‘bad’ (default) in test data is indication of quality and accuracy
of a scoring model. Once a scoring model is built, the critical assumption
thereafter in the use of the model is that the score is all that is required for
predicting the probability of an applicant being ‘good.’

At the start of this section, we examined one method for building a score-
card based on discriminant analysis (DA). We now develop logistic regression
based credit scoring model, which is one of the most common approaches in
use. Assuming again K past observations of default and corresponding infor-
mation of attributes for all characteristics, we seek the following prediction,

P (Y = 1|C) = π(C) =
eS(C)

1 + eS(C)
, (9.3)

therefore,

P (Y = 0|C) = 1− π(C) =
1

1 + eS(C)
, (9.4)

Applying Eqns. (9.3) and (9.4) for probability of Bernoulli distribution of Y ,
we obtain the likelihood function as follows.

L(S(C)) =
K∏
i=1

π(Ci)
Yi(1− π(C))1−Yi , (9.5)

where {(Yi,Ci), i = 1, . . . ,K} are the observations being used to construct the
scoring model. The likelihood function in Eqn. (9.5) is maximized to obtain
the scores, S(C).

There are strong contenders to linear or logistic regression approaches
to developing credit scoring models. One popular alternative to logistic re-
gression is the use of classification trees. Classification and regression tree
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(CART) analysis finds its origins both in statistics and machine learning.
CART analysis identifies rules based on characteristics’ values to get the best
split in observations based on the dependent variable, Y or L, using notation
of Eqns. (9.1) and (9.2). Once a rule is selected to split a node into two, the
process is recursively applied to the ‘child’ node, until no further gains can
be made by splitting or some pre-set stopping rules are met. Each branch of
the tree ends in a terminal node, where each terminal node can be described
by the sequence of rules used to arrive at the node from the top-most node.
Therefore, each terminal node is uniquely defined by a set of rules and each
observation falls into one and exactly one terminal node.

CART analysis, therefore, does not end up with a scorecard, instead a
group of customers are described by different combinations of their charac-
teristics, where each group is classified as either ‘good’ or ‘bad,’ or any other
desired label. To apply a CART-based model to make decisions, information
regarding attributes for different characteristics of an individual are used to
determine which group the individual belongs to, and whether that group has
been labeled ‘good’ or ‘bad.’

Beyond logistic regression and CART analysis, neural nets, support vector
machines, genetic algorithms, nearest neighbor methods and ant colony opti-
mization are also used for retail credit risk models. If one is expected to explain
why an applicant’s application was rejected for credit, a ‘black box’ method,
such as neural nets and support vector machines, would become unsuitable.
One can still attempt to devise a classification tree that mimics the perfor-
mance of the ‘black box’ neural nets or support vector machine based model,
and hence provide reasons for concluding an applicant as ‘bad’ or ‘good.’ An
additional way for improving credit scoring models is to combine methods. For
example, classification trees can be developed where one of the characteristics
is in its own turn a ‘score’ obtained using a logistic regression method. Simi-
larly, one may develop a regression model where one characteristic is chosen
as the different nodes of a classification tree.

From Credit Scores to Default Rates
Obtaining credit scores, or similar indicators for probability of default

based on classification trees, neural nets, etc., for a customer-base is a crucial
first step in credit risk management. The next step is to determine a cut-
off score for a specific product, under the knowledge that no predictive tool
is 100% accurate. In order to determine a cut-off, besides the credit scores,
default and no-default data is also used. This is done to obtain insight on the
extension of impact of predictive inaccuracy of the model.

False ‘bads’ and false ‘goods’ based on any cut-off score provide the lost
profits and undesirable credit risk the bank is taking on, respectively. False
bads and goods are similar to Type I and Type II error of statistical inference,
when you reject a hypothesis when in fact it is true and when you fail to reject
a hypothesis when in reality it is false. Any conclusion made for the population
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FIGURE 9.1: Distribution of the population by their credit score, as well
as distribution of individuals who have defaulted and who have not defaulted
on their loans by their credit score. The figure also indicates a selected cut-off
score, with its implication on false ‘bads’ and false ‘goods.’

based on limited data is bound to have this condition. Figure 9.1 shows the
false good and false bad based on the choice of a cut-off score.

The cut-off score is the first risk management tool or knob for effecting
risk management at the individual exposure level. Based on a choice of cut-off,
a bank can first judge the quality and accuracy of the scoring model. For a
model with satisfactory accuracy, the choice of cut-off determines the loss rate
and profitability of the retail product it is being applied to. Over time, still
utilizing the same scoring model, one can fine-tune the knob to continue to
maximize profit margin. As stated earlier, a running business has opportunity
to collect plenty of real-time data and update key knobs frequently, perhaps
monthly or quarterly.
Estimating Loss Given Default in Retail credit

Estimating loss given default based on historical observation is a more
tricky task, even though there is regulatory emphasis on this component of
credit risk. In some cases, such as home mortgages and auto loans, the predic-
tion task is split into two steps. In the first, one determines if the house or car
must be repossessed, and then in the second step a forecast for resale price for
the property is estimated. In other unsecured consumer credit cases, where
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an obvious collateral is not in place to secure the recovery rate, the recovery
rate depends on the decisions of the creditor and the uncertainty around the
borrower’s ability and intention to repay. A decision-tree based strategic re-
sponse may be developed to decide whether to collect the debt in-house, use
an agent or sell off the debt.

In general, modeling the recovery rate or loss given default in terms of
the characteristics of the debtor and the debt product is challenging. Some
approaches based on linear regression, logistic regression, non-linear transfor-
mation so as to fit beta or log-log distributions, mixture models, and quantile
regression have been developed, however the performance of these models
leaves more to be desired.

One of the advantages of a robust credit scoring framework adopted by
a bank is that it allows for automation of the product marketing, underwrit-
ing and management, and brings consistency and reduced load for the bank
with millions of customers. As discussed earlier, if done right, credit scoring
can be used for more than just to decide whether to extend credit to a spe-
cific customer. It can also be used to customize the product to a customer’s
creditworthiness and needs. Moreover, credit scoring can be used to ensure
that the products offered by a bank remain profitable, where profit margin is
what remains once operating and default expenses are subtracted from gross
revenues.

Banks don’t necessarily have to develop the entire credit scoring framework
in-house. There are three ways a bank can approach this issue. First, the bank
can entirely depend on what is offered by standard credit bureaus. Credit
bureau scores are created by methodologies developed by the Fair Isaac Corp
(FICO), and are maintained and supplied by companies like Equifax and
TransUnion. These are generic scores, therefore are lower cost, but are not
tailored for any specific products. The FICO scores range from 300-850, where
below 660 defines sub-prime lending. The second approach would be to use a
pooled model. Pooled models are also built by outside vendors, like FICO, but
they are based on data from a range of lenders with similar credit portfolios.
These pooled models are tailored to a specific industry, such as credit card,
home mortgages, etc. The third option is to develop a custom model, which
is an in-house model built for a specific product and specific lines of business.
The third approach is indeed the most costly approach, but if done well, it
can offer a very significant competitive edge in selecting the best customers
and offering the best risk-adjusted prices.

9.1.2 Retail Credit Risk Management

The credit scoring framework primarily focuses on the avoid versus keep
actions of risk management. The goal of a good credit scoring system is to
reliably differentiate ‘good’ from ‘bad’ customers, and attract as many ‘good’
customers as possible to construct a large credit portfolio. A large portfolio
of credits that are each bite-size relative to the overall notional value of the
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portfolio, as well as their independence of each other with regards to credit
risk, implies that the expected loss of the portfolio is a good estimate of
the actual loss given defaults in the portfolio. Therefore, mitigation of risk
is naturally achieved if the retail credit portfolio is constructed with these
properties. As discussed earlier, transfer of credit risk is possible through risk-
based pricing, which also requires accurate models for predicting credit risk of
customers. Additional transfers of credit risk is pursued using securitization,
which we will discuss in Section 9.3.2.1.

It is fair to conclude that the most critical component for robust retail
credit risk management is a reliable credit scoring framework. A credit scoring
framework is built around methodologies that convert information about the
customers, or customer characteristics, to indicate whether they would be
‘good’ customers or ‘bad’ ones, based on scorecards or similar constructs.
For maintaining this robustness, it is important to measure and monitor the
performance of scorecards and other constructs. The goal of a scorecard, by
the type of questions it asks and interpretation it assigns to the response in
terms of repayment versus default, is to minimize the overlapping area of the
distribution of the ‘good’ and ‘bad’ credits in Figure 9.1.

How do we assess when to adjust or rebuild scorecards? The most popular
validation technique employed for this purpose is a cumulative accuracy pro-
file (CAP). Numerically, this accuracy is summarized in the related summary
statistic, called the accuracy ratio (AR). The concept behind the CAP curve
and the AR statistic is quite straightforward. It compares the performance
of the existing model in predicting observed defaults relative to two extreme
models. First is the perfect model, which attributes all the observed defaults
to the lowest scored customers in the pool, and the second is a random model,
that spreads the observed default evenly through the entire range of credit
scores of the customer pool. The actual model is represented by a curve indi-
cating how the defaults actually spread along the range of credit scores of the
customer pool.

Figure 9.2 shows on the horizontal axis the credit scores of the pool in
increasing order, while the vertical axis shows the observed fraction of defaults
in the pool. In the figure, the perfect model is depicted by the line quickly
rising in the left from zero to all the observed defaults attributed to the lowest
credit score customers. The area under the corresponding piece-wise linear
curve is labeled Ap, for the area under the perfect model. Similarly the curve
that gradually rises from zero to all the observed defaults counted as per the
actual credit scores of the defaulting customers is the actual model curve. The
area under this curve is labeled, Ar. The straight line spreading the observed
defaults evenly through all customers is for the random model. Since the area
under this line is common to both the area under the perfect model and the
actual model, it can be subtracted from both, thus making Ap the area under
the perfect model above the random model and Ar, the area under the actual
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FIGURE 9.2: Level of accuracy in a specific credit scoring model relative
to a perfect and a random model. This is summarized in the accuracy ratio,
which is the area under the curve below the actual model profile relative to
the perfect model profile.

model above the random model. The CAP statistic, AR, is constructed as,

Accuracy Ratio(AR) =
Ar

Ap
. (9.6)

The closer the value of this statistic is to 1, the better the performance of
the credit scoring methodology. The performance of a credit scoring model
or other constructs, such as classification trees or neural nets, can thus be
monitored at desired frequency through a CAP curve. When the accuracy
ratio (AR) deteriorates to a critical level, the model must be reviewed for
improvement or replacement.

Changes in credit risk of individuals may come about for a variety of
reasons. Over time, customer mentality changes, or at specific financially
stressed times, tighter circumstances may change customer behavior. Changes
in bank’s products or business model can also trigger changes in how cus-
tomers respond, thus changing their credit risk characteristics. There is a gen-
eral movement towards improving credit scoring and assessment of customer
pools, including a higher emphasis on risk-based pricing of products.
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Dependence of consumer credit risk on economic and market conditions
points towards considering the possibility that while creditworthiness of in-
dividuals is time independent, how that translates to probability of default
and loss given default may depend on economic or market factors. This sug-
gests that consistent with empirical observations, the probability of default of
customers varies with economic conditions, even if the creditworthiness of the
individuals is not changing with time. Therefore, point in time credit scoring
based estimates of probability of default must be converted into through-the-
cycle probability of default estimates. There are efforts underway to include
economic factors either directly into regression scorecard or utilizing survival
analysis for this inclusion of economic factors.

Survival analysis estimates the default hazard rate, h(t), where h(t)∆t is
the conditional probability of default in the time interval, (t, t + ∆t], given
there has been no default in the time interval, (0, t]. For instance, in the
proportional hazard model, the hazard function for default in time period
(t, t+∆t] for a customer with characteristics, C, is constructed as a product
of the baseline hazard function, h0(t), multiplied by an enhanced credit risk
due to customer’s characteristics. Namely,

h(t,C) = e−S(C)h0(t), (9.7)

where S(C) is as before a credit score, such that the higher the score the less
likely the borrower is to default. Both specific parametric or semi-parametric
baseline hazard functions can be constructed to define the model. The survival
analysis approach is extensively applied to commercial credit risk, which we
will study in the next section.

Credit scoring methodology has many advantages for effective retail credit
risk management, however as discussed above, there are still challenges ahead
for continuing to improve these models. The drawbacks and challenges to
the credit scoring framework involve reliance on historic data, which implies
for new products where little or no data is available, the models may have
limited effectiveness. Incorporating the impact of changing economic factors
or societal norms regarding acceptance for default remains a challenge. Fi-
nally, complete automation or even semi-automation based on scoring models
implies judgement of a human decision maker is taken out of the process. Au-
tomation can also exacerbate incentive misalignments in loan issuance. From
a customer perspective, this can become an issue when customers ‘learn’ the
system and begin to ‘game’ it. Therefore, beyond the efforts to improve credit
scoring frameworks, there is a need to complement the credit risk management
objectives by implementing a thorough stress testing routine.
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9.2 Commercial Credit Risk

Commercial credit is when the obligor or debtor is not an individual or a
household, but instead is a medium to large business, corporation, financial
or non-financial institution. When governments of different levels of a country
issue bonds to raise funds, these instruments also fall under commercial credit.
Therefore, the obligors of commercial credit are complex entities, and a very
broad range of instruments qualify as commercial credit. Traditional corporate
loans, commercial loans, corporate bonds of different maturities, commitments
and revolving lines of credit, and commercial contracts such as trade credits
and receivables are all examples of commercial debt. While consumer credit is
primarily meant to support consumption of goods and services by consumers,
commercial credit is used to fund operations of a firm or government, or is
used to finance new projects and investments.

Unlike retail credit, commercial credit exposure is not bite-sized, therefore
default of a single obligor can threaten a bank’s solvency. Commercial oblig-
ors may be directly or indirectly financially interdependent. They are often
economically intertwined in particular geographical or industry sectors. When
defaults occur in commercial credit, the losses can be quite large, making the
unexpected loss dominate the overall credit risk exposure of a commercial
bank. This also implies pricing the risk into debt contracts is not a feasible
mechanism to manage this risk. Finally, due to the complexity of the obligors
and their lack of transparency, signals are not received in advance for occur-
rence of default or change in creditworthiness. Therefore, commercial banks
need to make an extra effort to assess their credit risk exposure.

Assessing commercial risk is a complicated task. There are many uncertain
elements determining probability of default and loss given default. In order
to address the challenge of measuring and monitoring commercial credit risk,
many different approaches exist. Some of them utilize regression models based
on information available for firms, while others make use of equity market
or bond market data available for publicly traded firms to track likelihood
of default. Others work only at the portfolio level to assess losses due to
credit risk using mathematical and statistical techniques, such as those used
in insurance.

Similar to credit scoring methodology in retail credit, the traditional ap-
proach for commercial risk is based on a credit rating system (CRS). Two
rating agencies that have led the credit rating services in the US from early
part of the 20th century are Moody’s (from 1906) and Standard and Poor’s
(S&P)(from 1916). Moody’s and S&P’s have access to corporations’ internal
information, which they use for generating the ratings. In this section, we will
present several approaches for modeling commercial credit risk, starting with
the credit rating methodology.
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9.2.1 Credit Rating System

A credit rating system (CRS), like the credit scoring methodology in retail
credit, creates a credit assessment of a firm based on complex attributes of
the firm. Unlike in retail credit, where only financial information about the
individual or household may be used to develop the scorecards, in credit rating
systems, financial, managerial, quantitative as well as qualitative and legal
information is used to construct the ratings.

Ratings must ascertain the financial health of a firm, whether earnings and
cash flows are sufficient to cover the firm’s debt obligations, analyze quality
of assets of the firm, examine its liquidity position, as well as nature of the
industry and clients, and status of new clients. Ratings should also account
for the potential effect of macroeconomic factors on the firm, political risk,
currency risk, etc. A firm’s competitiveness in its industry, expected growth of
the industry, anticipated technological changes, regulatory changes, and labor
relations can also impact a firm’s creditworthiness.

Therefore, a credit rating system needs to have a way to organize and sys-
tematize all the information about firms and develop procedures so that credit
analysts can rationally, consistently, coherently and comparably generate rat-
ings for across the firms and time. The rating agencies develop public credit
ratings of small and large corporations and government issued debt, while
banks devote significant resources to develop their in-house (internal) credit
ratings for small and large firms, especially those that lack public rating.

These ratings, public or internal, are used for a range of credit risk man-
agement decisions, such as decisions regarding loan origination, loan pricing,
and loan trading. They are used for monitoring the credit risk at the portfolio
level, where consistency in the rating system matters a lot. Capital allocation
and capital reserve determination, profitability analysis, and management re-
porting also utilize credit ratings. Based on a CRS the probability of default
(PD) and loss given default (LGD) statistics are estimated, which serve as
key inputs for regulatory capital calculation. We will examine this method in
the next section.

As stated earlier, Moody’s and Standard and Poor’s (S&P) are the oldest,
most well-known and reputable credit rating agencies that provide publicly
available ratings for a very large set of debt instruments. A third important
rating agency is Fitch Ratings, and together the three rating agencies control
more than 55% of the ratings market. There are other rating agencies active
in the US, and there are several rating agencies in different countries, focused
on their domestic credit markets. Rating agencies emphasize that the credit
rating service they provide is not meant to be an investment recommendation
for a security. The focus of the rating assessments is on the potential downside
loss, rather than an outlook on the potential upside gain.

Ratings are issued for the issuers of bonds or for the obligor; these are called
issuer credit ratings. These ratings assess the overall capacity of the obligor to
meet its financial obligations. Additionally ratings may be issued for specific
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issues of debt, which are the issue-specific credit ratings. These issue-specific
ratings for long- and short-term debt account for creditworthiness attributes
of the issuer as well as the terms of the issue, such as subordination, collateral,
and creditworthiness of any guarantor.

Unlike credit scoring, where a numeric score from 300-850 is assigned to an
individual, rating agencies assign an ordinal symbol to obligors or issues. S&P
rating categories start at the highest creditworthiness of ‘AAA,’ followed by
the lower levels of, ‘AA,’ ‘A,’ ‘BBB,’ ‘BB,’ ‘B,’ ‘CCC,’ ‘CC,’ ‘C,’ and ‘D.’ ‘D’
indicates that the obligor has already defaulted on its debt. Modifiers of ‘+’ or
‘-’ are used to further refine these rating levels. On the other hand, Moody’s
rating categories start at ‘Aaa,’ dropping to lower levels of, ‘Aa,’ ‘A,’ ‘Baa,’
‘Ba,’ ‘B,’ ‘Caa,’ ‘Ca,’ and ‘C.’ S&P’s ‘AAA’ to ‘BBB’ rating levels and Moody’s
‘Aaa’ to ‘Baa’ are generally considered investment grade, while ratings below
that are considered to have significant speculative characteristics.

9.2.1.1 Risk Assessment by Credit Rating Migration

Default is an event, when an obligor is unable or unwilling to make a
scheduled payment, or violates a condition as per the debt contract. The
focus of credit rating agencies cannot just be the occurrence of default. Their
objective is to create a perspective on the creditworthiness of obligors at all
times. Therefore, at discrete points in time, they assess and consider revising
their credit ratings of obligors, depending on how their creditworthiness has
evolved. This evolution of credit quality is very important for banks, insurance
companies, investors, and other financial institutions holding a portfolio of
commercial loans or corporate bonds.

The change in credit rating over time is called credit migration or debt
migration. If substantial amounts of historical observation of these migrations
are available, they can be used to summarize average transition rates for all
rating levels. These transition rates are summarized in a debt migration ma-
trix. One can consider the rating level of a bond, Rt, at time t to be a Markov
chain. We had studied Markov chains in Chapter 5 as discrete-space stochastic
processes. Discrete-time Markov chains are stochastic processes whose value
in the immediate future time period depends only on the state of the process
at the present time, and is independent of the values of the process in the past.
This key temporal property of stochastic processes is known as the Markov
property. The debt migration matrix would serve as a transition matrix of
the Markov chain, Rt.

Figure 9.3 shows an example of a debt migration matrix, built based on
credit migration observations of S&P rating histories for the period 1981-
2004. Estimates of migration based on data from a period of 23 years indi-
cates that these estimates are aggregates through business cycles and eco-
nomic conditions. Each row of the matrix is a probability distribution of the
change in rating of a bond in one year, given its current rating. For instance,
{0.03%, 0.26%, 4.05%, 89.70%, 5.05%, 0.76%, 0.07%, 0.083%}, is the probabil-
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From/To AAA AA A BBB BB B CCC/C D

AAA 93 6.18 0.66 0.07 0.08 0.01 0 0

AA 0.61 91.03 7.53 0.64 0.09 0.08 0.01 0.005

A 0.08 1.99 91.69 5.55 0.49 0.18 0.01 0.008

BBB 0.03 0.26 4.05 89.7 5.05 0.76 0.07 0.083

BB 0.04 0.11 0.56 5.26 83.8 8.95 0.73 0.548

B 0 0.07 0.23 0.5 4.67 84.36 5.71 4.448

CCC/C 0.06 0.01 0.34 0.56 1.1 7.99 47.02 42.896

D 0 0 0 0 0 0 0 100

FIGURE 9.3: An example of debt migration shown in a year, a bond which
started with a given rating has range of probability of migrating to all the
other rating levels. This debt migration matrix is a one-year constructed using
S&P’s rating histories, from 1981-2004. Estimation method is cohort method
and all values are in percentage points.

ity distribution of the rating of a bond that has a rating of ‘BBB’ at the start
of a year. The corresponding states are, {‘AAA,’ ‘AA,’ ‘A,’ ‘BBB,’ ‘BB,’ ‘B,’
‘CCC’/‘C,’ ‘D’ }, where three ratings are merged into a single category for
the purposes of credit migration assessment.

Along the diagonal, we have probabilities of a bond retaining its current
rating. We notice that as the rating falls below ‘BBB’, the rating has increasing
tendency to migrate away from its initial rating. The probability of default
is also steadily increasing as the rating drops, with a peak of 42.89% for the
‘CCC/C’ rating group. Once a bond defaults, it is assumed to stay in that
state. This is shown in the last row of the debt migration matrix, thus making
default an absorbing state in Markov chain terminology.

If we can assume the Markov chain to be a stationary process, which means
its migration matrix remains the same for all years, we can construct a multiple
year migration matrix using the single-year migration matrix. If P is a single
year credit migration matrix, the two-year migration matrix is obtained by the
matrix product of the one-year matrix with itself, P 2 = P × P . Similarly, n-
year credit migration matrix can be constructed as, Pn, each row of this matrix
is interpreted as probability distribution of rating of a bond in n years, given
it started with a certain rating initially. In a study it was shown that when
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Seniority Mean Median Standard Deviation

Senior Secured 56.4 55.0 28.0

Senior Unsecured 36.5 26.0 29.0

Senior Subordinated 30.5 23.0 25.8

Subordinated 32.2 29.0 22.7 

Junior Subordinated 27.1 15.3 25.8

Preferred Stock 10.1 4.2 21.1

FIGURE 9.4: Descriptive statistics for recovery rates by debt seniority. Cal-
culations are based on Moody’s data for period 1970-2008, taken from Mora
(2012).

an additional year of data is used to create the transition matrix estimate,
it only has a modest impact on the estimates of the migration matrix [63].
Therefore, even while not entirely accurate, a reasonable approximation for
multi-year impact of credit risk can be assessed using a multi-year transition
matrix constructed assuming stationarity.

Transition matrices play a major role in credit risk evaluation systems,
such as in the pioneer credit risk assessment system released by J.P. Morgan
in 1997, called CreditMetricsTM . If the current value of a bond with rating,
R0, is V0, in a year its rating could be any of the other levels with the prob-
ability distribution given by the applicable row of the debt migration matrix.
Corresponding to each potential future rating, R1, of the bond, its value can
be assessed as V1. For this valuation, forward rates would be required and the
appropriate bond pricing approach developed in Chapter 8 will need to be ap-
plied. Additionally, for the case of default, an estimate of recovery rate will be
needed to determine the value of the bond in case of default. As such, predict-
ing recovery rate is tricky. The table in Figure 9.4 shows statistics for recovery
rates by the seniority of the bond. More customized models for recovery rates
may be considered in specific cases [65].

The change in bond value in one year is, ∆V = V1−V0. In order to create
a credit risk measure, we construct the Credit Value-at-Risk (Credit VaR)
by reporting how the ‘worst’-case scenario at a chosen confidence level, c, is
relative to average change in value of the bond. The average change in value
of the bond is, E[∆V ] = E[V1− V0] = E[V1]− V0. We denote, P (c), to be the
change in value of the bond in the worst-case scenario, at the (1− c) percent
confidence level (therefore for a 99% confidence level, we have c = 1%). Credit
VaR at (1−c)% confidence level is, (E[V1]−V0)−P (c). Figure 9.5 displays the
Credit VaR quantity for the change in bond value distribution due to credit
migration.

Considering measures for credit risk of a single bond is not as useful as
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doing the same for a portfolio of bonds. In the case of a portfolio, V0 is the
current marked-to-market value of the portfolio of N bonds, expressed as a
linear combination of portfolio weights, {wi, i = 1 . . . N}, and current value
of each bond in the portfolio. For determining the future value of each bond,
a credit migration matrix will need to be applied to each bond, picking rows
from the matrix as relevant for the bond’s initial rating. Even when the credit
migration of the bonds is considered independent of each other, creating all
combinations of the bonds’ simultaneous migration in a portfolio of more than
two bonds becomes quite cumbersome. Simulation analysis can be applied to
create a large sample of possible joint migrations of the bonds.

For j=1:SampleSize
For t = 1 : N

Generate R1i by using the 8-outcome probability distribution
for the current rating, R0i, of i

th bond;
Determine the future value of the bond, given its future

rating, R1i;
End
V1j =

∑N
i=1 wi future value of the ith bond;

End

As before, P (c) is the change in value of the portfolio in the worst-case
scenario at the (1-c)% confidence level. If the bonds in the portfolio do not
migrate in the year, the portfolio’s forward value (FV ) is obtained by future
price of the constituent bonds under their current rating. This allows comput-
ing of the promised rate in absence of credit risk, PR, by the following relation,
FV = V0(1 + PR). Similarly, using the realizations of V1, the expected value
of the portfolio, E[V1], is obtained, which allows computing of the expected
return of the portfolio in presence of credit risk, E[V1] = V0(1 + ER), where
ER is the expected return. This allows computing the expected loss due to
credit risk as, EL = FV E[V1] = V0(PR − ER). Credit VaR at (1 − c)%
confidence level is again obtained as, (E[V1]− V0)− P (c).

We have presented the credit VaR computation and analysis in the sim-
plest setting. There are many improvements worth considering in response
to empirical features of credit risk. For instance, we have stated summary
statistics for recovery rates, however in practice, recovery rate or loss given
default may need to be more accurately estimated to complete this analy-
sis. Regression-based models have been developed that seek to relate recovery
rates with economic factors, characteristics of the loan and the obligor in the
corporate setting [3].

Both default rates and recovery rates vary with time; moreover they display
a negative correlation in their movement, which is non-trivial at the level of
−0.40 [65]. When aggregate default rates go up, recovery rates become lower.
Recovery rates display procyclicality, with the aggregate recovery rate closely
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Credit VaR = (EV – V0) – P(c) 

P(c) EV–V0 FV–V0

FIGURE 9.5: Display of change in portfolio value due to credit risk.

tracking the business cycle. Aggregate recovery rate is seen to have a positive
correlation with real GDP growth, with a correlation coefficient equal to 0.45
for the period 1978-2010 [65]. Defaults also tend to cluster around periods of
economic slowdown, with the frequency of defaults increasing substantially
during recessions. However, all recession periods don’t seem to have the same
impact on default frequencies, for instance the 2001-2002 period was much
worse than the 1990-1991 period in terms of default experience.

In assessing credit risk, the first most important factor is the credit stand-
ing of specific obligors. If a bank focuses on investment grade (‘AAA’-‘BBB’)
obligors, this will result in low probability of default of any individual obligor
in its portfolio. However, if a bank’s strategy is to create a market share in
more risky speculative-grade obligors, who pay a much higher coupon rate on
their debt, the pricing of debt is a significant issue. The institution should
charge the appropriate interest rate spread to each obligor to compensate for
the excess risk exposure. Pricing alone does not safeguard the bank against
credit risk. The bank should also set aside the appropriate amount of risk cap-
ital, in order to limit the chance of itself defaulting due to significant losses
from obligors’ defaults.

In the case of consumer credit, obligors are expected to be independent in
terms of their default risk. In commercial credit, risk can easily get concen-
trated if attention was not paid, since obligors are not independent in terms
of their credit risk. Attempting diversification of obligors in terms of number
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of obligors, their geography and industry is a valuable exercise. A bank with
only a few big-ticket corporate clients, most of which are, say, in commercial
real estate, is rightly considered more risky than a bank with many corporate
loans to obligors distributed over many industries. Banks catering to narrow
geographical regions would suffer from a slowdown in economic activity of
that particular region. Extension to the credit migration methodology to in-
corporate correlations can be developed, for instance by Bernoulli random
variables based coupling to create degree of dependency by rating classes and
the sectors of the debtors [44].

As discussed above, state of the economy has a non-trivial impact both on
default frequency and recovery rates. During the times of economic growth, the
frequency of default falls sharply, whereas the reverse phenomenon is observed
during periods of recession. Periods of high default rates are also characterized
by a low rate of recovery on defaulted loans, i.e., banks tend to find that
the various assurances and collateral that they use to secure the loans are
less valuable during a recession. Therefore, a bank’s credit risk management
strategy should account for this.

The factors discussed above, namely individual obligor’s credit risk, its
correlation with other obligors, and the effect of economic conditions, can also
interact with one another. Interaction of concentration and economic down-
turn further enhance their individual impact. Economic downturns uncover
hidden tendencies of obligors to default together, which is the clustering of
default phenomena. Finally, the maturities of loans in a portfolio is also impor-
tant. Longer-term loans are generally considered more risky than short-term
loans. Therefore, if banks can build a portfolio that has time diversification,
i.e., it is not concentrated in particular maturities, it can reduce portfolio
maturity risk, which also helps in managing liquidity risk.

We next develop other models for credit risk, which may be used as alter-
natives to credit migration methodology.

9.2.2 Models for Credit Risk

The traditional way in which rating agencies and large banks rate the
credit risk of bonds and corporate loans is a combination of qualitative, judg-
mental and quantitative assessment. Our continued goal is to put objective
and absolute numbers on the risk of default of single obligors and measure the
credit risk in a bank’s entire credit portfolio using statistical and economic
tools. Much of this effort is an attempt to apply successes in modeling market
risks to modeling credit risk. This involves utilizing continuous-time stochastic
processes to model key quantities so that credit risk can be measured uniquely
for a single obligor, instead of applying an aggregated credit migration frame-
work. Secondly, observing evolution of credit risk in any time granularity is
important, rather than just annual migration through potentially different
ratings.

The mathematical sophistication that made such a difference to manage-



348 Risk Management and Simulation

ment of market risks and derivative pricing and trading for market risk, has
penetrated credit risk with varying degrees of impact. We begin with first con-
sidering a classical firm-specific regression-based model for predicting credit-
worthiness of a firm.

Altman’s Z-Score Method
In 1981, Edward Altman and James La Fleur developed a credit scor-

ing model for firms using a combination of traditional financial ratio analy-
sis and discriminant analysis [4]. An objective overall measure of corporate
health, called the Z-score, was arrived at by combining five measures based
on reported accounting and stock market variables. Therefore, the score is
constructed for a publicly traded company based on publicly available infor-
mation. The Altman’s Z-Score model is the following linear model, in which
the five measures are objectively weighted and summed to arrive at an overall
score, Z. The overall Z-score is used to classify the firm into a predetermined
grouping of creditworthiness.

Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 0.999X5, (9.8)

where X1 is the ratio of Working Capital to Total Assets of the firm, hence
measuring liquidity of the firm, X2 is the ratio of Retained Earnings to Total
Assets, X3 is the Earnings Before Interest and Taxes (EBIT) to Total Assets
ratio, which is a measure of Return on Assets (RoA). The fourth variable, X4,
is the ratio of Market Value of Equity to Book Value of Total Liabilities of
the firm, which measures leverage of the firm, and the final variable, X5, is
the Sales to Total Assets ratio, which measures efficiency of the firm.

The Z-score is interpreted as the higher the Z-score, the stronger a firm’s
financial health is. In particular, if Z > 3.0, the company is considered un-
likely to default. For Z-score lying in the range 3.0 > Z > 2.7, we should be
‘on alert’, in the case of 2.7 > Z > 1.8, there is a good chance of default.
Finally, in the case of a low enough Z-score, 1.8 > Z, the probability of finan-
cial embarrassment is very high. As in any statistically motivated prediction
scheme, there is room for Type I error, where a firm that was predicted to
not go bankrupt according to the Z-score, actually did go bankrupt. Similarly
the reverse error, Type II error, also occurs where according to the Z-score
the firm should have very high probability of default, and it actually ends up
surviving the financial turbulence.

9.2.2.1 Structural Model of Credit Risk

Altman’s Z-score model is a fundamental model, which means it digs into
the financial statements of a firm to detect the firm’s financial health and
the likelihood of the firm hitting financial distress. Structural models of credit
risk take a similar theme. They develop models for the evolution of the total
assets of the firm or the firm value, Vt, and utilize this model to determine
the probability of default and loss given default.
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The contingent claims approach (CCA) utilizes option pricing concepts
for assessing credit risk. Given a model for the evolution of value of the firm,
Vt, it considers the equity of the firm, Et as an option on the firm’s asset,
Vt. Hence the name, contingent claims approach. Therefore, if V0 is the value
of the assets of a firm initially, we choose a future time T , and identify VT

to be the value of assets of the firm at time T . If E0 is the value of equity
of the firm initially, and ET is the future value of equity at time T , then
ET = max(VT −DT , 0). Here DT is the amount of the firm’s debt maturing
at T .

The form of the function, max(VT − DT , 0), matches that of the pay-off
at maturity of a call option on value of assets with the strike price set at
DT . If the firm value falls below the debt maturing at T , DT , then the firm
defaults, and equity value of the firm is zero. Assuming the Black-Scholes
option pricing formula applies, where the volatility of the value of the firm is
σv, the probability that firm will default on its debt at time, T , is P (VT <
DT ) = Φ(−d2), where

d2 =
ln( V0

DT
) + (r − σ2

v

2 )T

σv

√
T

, (9.9)

and Φ(.) is the cumulative distribution of the standard normal random vari-
able. In practice, the volatility of value of the firm, σv may not be easily
obtainable. In this case, volatility of the equity of the firm, σe, is used as a
proxy.

Therefore, the contingent claims approach is able to estimate probability
of default in a rather simplistic way, customized to the risk of a specific firm.
Its limitation, however, is that it considers debt maturing only at one specific
time, and is not able to give an estimate of loss given default. The Moody’s
KMV (Kealhofer, McQuown, and Vasicek) approach uses a concept called
‘distance to default’ and translates this into an estimate of probability of
default and recovery rate. It doesn’t lock itself to a specific time of maturity of
debt, and treats debt level as a combination of short-term and long-term debt
of the firm. Figure 9.6 displays the evolution of firm value and the ‘distance’
of the firm value from the debt level of the firm, summarized as the ‘Distance
to Default’ quantity.

If the firm value evolves by the model,

dVt = (α− δ)Vtdt+ σvVtdWt, (9.10)

where α is the return on asset for the firm and δ is the cash payout made to
claimholders, then the distance to default, E[VT −DT ], for some future time
T , normalized by the standard deviation, is estimated as,

E[
ln(VT )− ln(DT )

σv

√
T

] =
ln(V0) + (α− δ − σ2

v/2)T − ln(DT )

σv

√
T

. (9.11)

The expected recovery rate, conditional on default, is estimated as, E[VT |VT <
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FIGURE 9.6: Display of evolution in firm value over time relative to debt
level of the firm for measuring distance to default.

DT ]. The expected recovery rate can be derived as,

E[VT |VT < DT ] = V0e
(α−δ)T (

Φ[−
ln(

V0
DT

)+(α−δ+σ2
v/2)T

σv

√
T

]

Φ[−
ln(

V0
DT

)+(α−δ−σ2
v/2)T

σv

√
T

]

). (9.12)

Although several enhancements of the above structural models for estimat-
ing commercial credit risk have been developed, the challenge of utilization of
a structural model remains their need for firm-specific data in order to build
the model for the firm, which may not always be readily available. Moreover,
however complex these models may be made, they must still make significant
simplifying assumptions regarding the firm’s debt and asset characteristics.

9.2.2.2 Reduced-Form Model of Credit Risk

Instead of using the total firm value, debt and equity level of a firm for
predicting default and loss given default, a reduced-form model of credit risk
uses prices of traded debt instruments of the firm to elicit estimates of credit
risk of the firm. Specifically, the difference in prices of risk-free bonds and
risky-bonds issued by firms are used to assess the likelihood of the firms to
default. Therefore, the reduced-form models are also customized to the risk
of a specific firm. Assumption behind the approach is that the credit spread
is solely due to increased default probability.

As suggested in consumer credit modeling using survival analysis, we define
a default intensity or a hazard rate, ht, for a firm. The probability of default
for the firm in ∆t period of time is, ht∆t. As an extension of the bond pricing
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derivation of Section 8.1.2, it can be shown that the price of a risky bond
satisfies the following differential equation.

∂P

∂t
+

1

2
σ2 ∂

2P

∂r2
+ (µ− λσ)

∂P

∂r
− (r + h)P = 0, (9.13)

along with the end condition, P (rT , T ) = F , where T is the bond’s maturity.
Price of a risky bond, as a solution of the above equation and end-condition
is

P (t, rt) = E[e−
∫ T
t

r(s)+h(s)dsF ], (9.14)

where the stochastic short-term interest rate, r(t) evolves driven by a Wiener
process, Wt, in the risk-neutral measure by the following equation,

drt = (µ(rt, t)− σ(rt, t)λ(rt, t))dt+ σ(rt, t)dWt. (9.15)

As a further generalization, the default intensity, h(t), is modeled to be time-
dependent and stochastic, governed by the following model.

dht = γ(t, rt, ht)dt+ δ(t, rt, ht)dW2t. (9.16)

This is the doubly stochastic default intensity reduced-form model. Default
intensity is estimated using historical data on risky bonds prices, as well as
various credit derivatives, such as credit default swaps. Since the reduced-form
models are calibrated using price data, the calibration is in the risk-neutral
measure, not the real-world measure. Therefore, the model is not used in
estimating real-world probability of default or loss given default. Reduced-
form models are extensively utilized for pricing credit derivatives.

9.3 Credit Risk Hedging Instruments

Innovation in credit risk transfer is obviously important for banks, but
actually it has had a significant effect in the much wider world. Different types
of credit derivatives ended up playing a prominent role in the occurrence and
evolution of the financial crises of 2007-2008, which triggered the regulatory
changes for broadly defined ‘swaps.’ Figure 9.7 shows the volume of net credit
protection sought over a period of two years by protection seekers and by the
nature of underlying debt the protection was sought for. Data from the period
after the crises also shows the recovery of volumes in this market.

Credit derivatives and securitization are not only useful for the banking
industry, they are also relevant to the management of credit risks borne by
leasing companies and large non-financial corporations, in the form of account
receivables. This is seen by the participation of non-financial corporations in
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FIGURE 9.7: Volume of net credit risk protection bought by reporting deal-
ers from different counterparty groups using credit default swaps in 2010-2011
period taken as a snapshot of time after the 2007-2008 credit crises. Acronyms
used are: BSDs: banks and securities dealers; IFGCs: insurance and financial
guaranty companies; SPVs: special purpose vehicles; OFCs: other financial
companies; NFIs: non-financial institutions; HFs: hedge funds. (Courtesy BIS
Quarterly Review, December 2011)

Figure 9.7. For instance, for producers of capital goods, which are often pro-
vided to the customers for long-term credit or at long-term leases. Credit
derivatives also allow non-banking institutions to participate in credit risk
and get a piece of the risk-return benefit of credit risk. Private and institu-
tional investors, hedge funds, and insurance companies also participate in this
market, as seen in Figure 9.7.

The traditional way of mitigating credit risk, beyond diversification, was
by the use of bond insurance, collateral, guarantees, early termination, or
selling off a portion of the loan in the secondary loan market. These mech-
anisms have drawbacks of being too close to the customer, hence customer
relations and reputation can sour should things go wrong. Since these tradi-
tional mechanisms are a mutual agreement between the transacting parties of
the underlying debt, they don’t allow separating credit risk from the underly-
ing positions, hence don’t allow redistribution of credit risk among a broader
class of financial institutions and investors. The essential advantage of credit
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derivative instruments is to allow spreading the risk so that its effect on a
single entity is not devastating.

Credit derivatives have so far been off-balance-sheet arrangements that
allow one party, the beneficiary or protection seeker, to transfer the credit
risk of a reference asset to another party, the guarantor or protection seller,
without actually selling the underlying reference asset. This mechanism has
made it possible to strip credit risk from the market risk of the underlying
asset, and transferring credit risk independent of funding and relationship
management concerns.

Securitization is the other arm in managing credit risk, where a pool or
portfolio of credit-risk exposures are segmented and a variety of securities with
different risk profiles are extracted from it. We mentioned securitization as one
mechanism for credit risk transfer in the context of retail-credit, mortgages and
credit-card receivables. Similar credit restructuring techniques are also applied
to the corporate credit sector, to enable lenders to repackage corporate loans
to notes, securities or credit derivatives with a variety of credit-risk features.
A side-benefit from credit derivatives and securitization is they help in ‘price
discovery’ of credit risk, i.e., they make clear how much economic value the
market attaches to a particular type of credit risk. This can in turn lead to
more liquidity, more efficient market pricing, and more rational credit spreads
for all credit-related instruments.

In the still evolving credit markets, credit risk is not simply the risk of
potential default. It is also the risk that credit spreads will change affecting
the relative market value of the underlying corporate bonds, loans and other
derivative instruments. In effect, the ‘credit risk’ of traditional banking is
evolving into the ‘market risk of credit risk.’ In more efficient capital markets,
large investment-grade firms can borrow directly from investors via issuing
bonds, rather than going to banks. As a result, the environment has changed
for banks, with a greater exposure to less credit-worthy obligors, their port-
folios of loans and other credit assets have become more concentrated in risk.
As discussed earlier, lower creditworthy obligors have more severe problems
with defaults and decreased recovery rates in economic downturns.

Banks have had to develop response strategies, which has helped and has
been helped by the growth in the credit derivatives market. Banks don’t have
to simply make loans and hold them until they mature. Instead they have
adopted the ‘underwrite and distribute’ business model. The broad strategy
for credit risk management of bank credit portfolio includes distribution of
large loans to other banks through secondary loans market or by participation
in large loans through bank syndication. Utilization of credit derivatives can
help reduce loan exposure by hedging concentrated loan positions or by selling
down concentrated loan positions. And finally, focusing on high-risk obligors,
while selling or hedging low-risk, low-return loan assets to free-up some bank
capital.

As is necessary for any contract, in the context of credit derivatives, coun-
terparties must make sure they understand the amount and nature of risk that
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is transferred by the derivative contract and how much is retained. It is also
important to understand the impact of correlations between underlying assets,
economic factors, and counterparty risk of credit derivatives, which relates to
enforceability of the contracts. Through the credit crises of 2007-2008, some
tough lessons were learned in this regard.

We present an overview of the most important credit derivative instru-
ments used for hedging credit risk in the following sections.

9.3.1 Single-Name Credit Derivatives

Both the pace of innovation and volume of activity in the credit deriva-
tives markets have soared in the last decade, leading up to the financial crises
of 2007-2008. After more than a decade of rapid growth, the volume of out-
standing credit default swaps peaked at roughly $60 trillion in 2007. After that
it nearly halved, even though the turnover has continued to rise. The Bank
for International Settlements (BIS) has reported that in December 2010 the
notional amount of credit derivatives outstanding stood at a total of $29.89
trillion, with a gross market value of $1.35 trillion. $29.89 trillion is a non-
trivial figure in its own right, and is a sizeable fraction of $158 trillion of
outstanding global stock of debt as of 2010.

With the strengthening credit derivatives market, the role of traditional
players, such as bond insurers, declined, while hedge funds and other insti-
tutions have started playing an increasingly prominent role, as also seen in
Figure 9.7. Credit derivatives offer a cheaper access to high-yield markets since
these instruments allow unsophisticated institutions to piggyback on the mas-
sive investments in back-office and administrative operations made by banks.

Among different credit derivatives, single-name ones are the simplest. They
are called single-name because the underlying asset is issued by a single
obligor, for which protection is being sought. For example, consider two banks,
one bank has special expertise in lending to the airline industry and has a $10
million worth, A-rated loan exposure to an airline company. The other bank
is in an oil-producing region and has an outstanding loan of $10 million worth
to a A-rated energy company. If the two banks have a natural concentra-
tion in airline and energy industry, respectively, they are not diversified, and
therefore, are vulnerable to a downturn in their favored industry.

Since an airline company is generally better off with declining energy
prices, and an energy company is better off with rising energy prices, there
is a negative correlation between credit risk arising from these two sources
at the two banks. Since it is less likely that airline and energy industries will
run into difficulties at the same time, the two banks could sell their loans to
each other. However, this runs the risk of upsetting their customers, since the
loan will now be serviced by an unfamiliar bank. Alternatively, both banks
can swap just some of the credit risk underlying the two loans. Say, they de-
cide to swap 50% of the principal of the two loans, i.e., $5 million of each
other’s loans. After this swap, should either loan suffer losses due to default,
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the other bank will be responsible to make up for 50% of the losses. After
swapping their risks, both banks can be reassured, and can continue to ex-
ploit their proprietary information, economies of scale and existing business
relations with corporate customers by extending more loans to their natural
customer base.

This is a simple example of a credit swap, where both banks are acting
simultaneously as protection buyer and protection seeker. The key point, how-
ever, is that they are seeking or selling protection for a single underlying loan,
hence participating in a single-name credit derivative. We now look closer
at perhaps the most popular single-name credit derivative, the credit default
swap or CDS.

9.3.1.1 Credit Default Swaps

Credit default swaps (CDS) are the most popular credit derivatives, with
single-name CDS making up for a total notional amount of $18.14 trillion
in 2010, and a market value of $884 billion. Credit derivatives are mostly
structured or embedded in swaps or options, and are normally of a shorter
maturity than the underlying loans or bonds, which is the case for credit
default swaps.

CDS can be thought of as an insurance against default of some underlying
instrument or as a put option on the underlying instrument. For instance, a
credit default swap may specify that a payment be made if a 10-year corporate
bond defaults at any time in the next 2 years. The protection buyer, or seller
of credit risk, makes periodic premium payments to the protection seller of a
negotiated basis points times the notional amount of the underlying bond or
loan. The party buying the credit risk makes no payment unless the issuer of
the underlying bond or loan defaults. In the event of a default, the protec-
tion seller pays the protection buyer a default payment equal to the notional
amount times a pre-specified recovery factor.

Figure 9.8 shows an example of cash flow implication of a credit default
swap. An appropriately defined credit event relative to the underlying being a
single credit risk bearing instrument, a loan or a bond, triggers the protection
response. The protection is in terms of recovering from the default event. The
recovery factor captures what the bank may recover of the notional value
after default from collateral, etc. The default should be clearly defined in the
contract. There is often a materiality clause requiring that the change in credit
status be validated by third-party evidence.

CDS is a par-value product, therefore it does not hedge the loss on the
bond from its market value, which may be an issue if the bond is trading far
from its face value. The CDS will end up under-hedging if the bond is selling
at a premium, and over-hedging if the bond is selling at a discount. Variations
on the plain CDS are designed, such as an amortizing default swap, where the
face value amortizes as the maturity is approached, or a binary credit default
swap, in which a fixed amount is paid in the event of a default.
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Bank 1: Protection Buyer

Underlying Asset: 
• Single Loan or Bond.

Or
• Portfolio of Loans or Bonds
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FIGURE 9.8: Display of cash flow and structure of single- or multi-name
credit default swap.

The periodic premium paid by the protection buyer until a default event is
called the CDS spread, which is determined so that the expected net present
value of cashflows between the protection buyer and seller is zero. We utilize
the reduced-form approach of credit risk modeling to give an overview of
pricing a CDS. Let s be the CDS spread for a CDS contract maturing in
T1 years for a bond maturing in T2(> T1). Assume that the protection buyer
pays the periodic premium at times, {t0, t1, . . . , tN}, where we assume tN = T1

for simplicity. Then the CDS protection buyer leg has the following expected
present value,

N∑
i=0

P (0, ti)E[sIτ>ti ], (9.17)

where the expectation is in risk-neutral measure, τ is random time of default,
I is the indicator function used to indicate occurrence of default, and P (0, ti)
is the price of a zero-coupon bond with a face value of $1 maturing at ti. If
the recovery rate of the bond is R, then the payment of the protection seller
per dollar of nominal value of the CDS contract is 1−R. Therefore, the CDS
protection seller leg has the following expected present value:

E[P (0, τ)(1−R)Iτ<T1 ]. (9.18)

By matching the two legs, we obtain the CDS spread to be the following.

s =
E[P (0, τ)(1−R)Iτ<T1 ]∑N

i=0 P (0, ti)E[Iτ>ti ]
, (9.19)

The quantities, E[Iτ>ti ], are estimated using the hazard rate h(t) calibrated
under the risk-neutral measure.
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9.3.1.2 Spread Options

We have seen several times in the earlier discussions of credit risk that
credit risk is about more than just default risk. Credit risk is also in the de-
terioration or improvement in creditworthiness of an obligor. These changes
result in significant loss in value of debt instruments, therefore is another cru-
cial credit risk to consider hedging. A spread option is a single-name credit
derivative, with its pay-off depending on the credit spread of a single under-
lying credit-risk sensitive asset or a bond. More specifically, the option has
its underlying as the credit spread of the underlying bond, which is the yield
spread between a specified corporate bond and a government bond of the same
maturity.

The strike price of the spread option is set as the forward spread at matu-
rity of the option, and the pay-off is the greater of 0 or the difference between
the market-observed spread at maturity and the strike price, times the mul-
tiplier. The multiplier is meant to convert the spread into a dollar value, and
is usually taken as, duration of the underlying bond times notional amount.
Therefore, the pay-off of a spread option is given as,

max(sT − fs, 0)FDB , (9.20)

where fs is the forward spread, F is the face value of the bond and DB is the
duration of the bond. Given that a bond is itself a derivative of the underlying
interest rate and default intensity process, the risky bond pricing framework
can be applied to determine the price of a spread option. Therefore, the price
of a spread option is obtained as,

s(0, r0, h0) = E[e−
∫ T
t

r(s)+h(s)ds max(sT − fs, 0)FDB ], (9.21)

where the risk-free interest rate, rt, and the default intensity, ht, evolve by
the following equations.

drt = (µ(rt, t)− σ(rt, t)λ(rt, t))dt+ σ(rt, t)dW1t, (9.22)

dht = γ(t, rt, ht)dt+ δ(t, rt, ht)dW2t. (9.23)

We next look at some examples of multi-name credit derivatives.

9.3.2 Multi-Name Credit Derivatives

The multi-name credit derivatives are defined on a portfolio of credit-risk
sensitive instruments. There are a variety of multi-name credit derivatives,
those that are defined on real assets and others that are synthetically con-
structed. It is in the case of multi-name credit derivatives that the default
correlation between obligors takes on great significance. As discussed earlier,
default correlation is an important risk factor, since in retail credit risk, while
we assume it to be low, in strained economic conditions, default behavior of
obligors can change and default correlation can emerge. In commercial credit
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risk, default correlation is always an important factor. As a result, a less di-
versified portfolio of credit-risk sensitive instruments can have a significantly
higher risk due to default correlation.

We first consider some multi-name credit default swaps; later in this sec-
tion, we will focus on the large segment of securitization products, as examples
of multi-name credit derivatives. In a multi-name credit default swap, the pro-
tection buyer pays a premium up to the specific default the swap is meant to
provide protection for. At the event of the specific default alone the protec-
tion seller pays the lost payment due to the default. Refer to Figure 9.8 again,
where in the case of first-to-default swap the swap is defined on a portfolio of
loans or bonds as the underlying, and the first credit event from the incep-
tion of the swap will trigger the protection seller to make up for the loss of
the protection buyer. Multi-name CDSs make up a comparable volume as the
single-name CDSs, for a total notional amount of $11.73 trillion in 2010, and
a market value of $467 billion.

The first-to-default spread will lie between the spread of the worst individ-
ual credit in the portfolio and the sum of the spreads of all the credits in the
portfolio, therefore these are cheaper for the protection buyer than buying a
CDS for each credit in the portfolio. First-to-default swap can be extended to
nth-to-default swap, where a bank will seek help with recovering losses related
with nth credit risk event from the inception of the swap. First-to-default swap
is clearly the most valuable protection, however a bank may want protection
up to a certain depth of losses in its loan portfolio. These swaps give the
flexibility of credit risk management strategy a bank may want to construct.

9.3.2.1 Collateralized Debt Obligations

Collateralized debt obligations (CDOs) is a specific application of secu-
ritization to a portfolio of debt instruments. Given the variety of debt in-
struments, CDOs take specific form depending on the specifics of the debt
instruments in the collateral pool. Accordingly, we have mortgage-backed se-
curities, which have home mortgages in the pool of debt instruments, asset-
backed securities have other kinds of retail credit instruments, such as leasing
receivables, automobile loans, personal loans, and revolving loans, such as
credit card receivables. Similarly, in the commercial credit space, collateral-
ized loan obligations (CLOs) or collateralized bond obligations (CBOs) are
also examples of collateralized debt obligations (CDOs), where these securi-
ties are collateralized by means of high-yield bank loans or corporate bonds.

Securitization is the process by which a set of cash flows from a retail
credit portfolio, such as mortgage payments on a mortgage portfolio, or com-
mercial credit portfolio, such as a portfolio of commercial loans or bonds,
is transformed into payouts of securities through various legal and financial
engineering procedures. Terms like mortgage-backed securities (MBSs), asset-
backed securities (ABSs), collateralized mortgage obligations (CMOs) have
existed for decades, and have been made particularly well-known through the
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FIGURE 9.9: Display of cash flow and structure of securitization to create
collateralized debt obligation securities.

financial crisis of 2007. This process of securitization started in the mortgage
segment of credit instruments in the 1970s, and got steadily stronger and
more broadly applied over the years. In an increasingly competitive environ-
ment, banks found it advantageous to not issue loans and hold them until
maturity. Freeing up capital to find new profitable avenues for investment cre-
ated a much desired liquidity in banks’ assets. Moreover, banks often also saw
securitization as a means to free up some regulatory capital.

Beyond the retail segment, CMBSs or commercial mortgage-backed secu-
rities, applied the same principle to commercial mortgages, as did the CMOs,
which primarily differ in the temporal structure of expected payments. CMO
introduced the notion of tranches, where payments for the securities issued
are divided into tranches, the first tranche receiving the first set of payments,
other tranches taking their turn. A tranched bond follows the seniority struc-
ture as in classes of senior and subordinated bonds. Figure 9.9 displays the
cash flow underlying the creation of a CDO structure. The CDO structure, of
which a CMO is a special case, is shown to have tranches that result in what
is known as a ‘waterfall’ of cash flows.

Advancing this to create CLO and CBO was an efficient securitization
structure that allowed cash flows from a pool of below investment grade loans
or bonds to be pooled together and prioritized, so that some of the resulting
securities could achieve investment-grade rating. The main difference between
CLOs and CBOs is of course the type of collateral, but this implies that
one benefits from a better recovery rate given default compared to the other.
The recovery rate given default is much lower (30-40%) for unsecured bonds
versus the 70% for secured loans. This is because loans are periodically paid off
and loans have shorter duration than high-yield bonds. It is therefore easier to
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produce securities with investment-grade ratings from CLOs than from CBOs.
Beyond these, there are synthetic CDOs, which have a pool of CDSs as the
collateral. There are also CDO2 and CDO3, which are CDOs of CDOs.

A CDO is issued through a special purpose vehicle (SPV), special pur-
pose entity (SPE), or a trust, which issues the securities. The proceeds are
used to buy high-yield notes that constitute as collateral. The collateral is the
bank-originated credit market assets, for instance, home mortgages, credit
card receivables, or auto loans, or a portfolio of high-yield corporate bonds.
The SPV creates a set of securities based on pooling together many similar
assets serving as collateral, whose aggregate income provides returns on the
issued security. Therefore, the pool of collateral is the SPV’s assets, while the
securities issued, which form the CDO, are the SPV’s liabilities. Finally, once
the securities are sold to outside investors, the corresponding asset-liabilities
are taken off the bank’s books. However, if the securities are not fully sub-
scribed/sold, the bank must buy them back.

The objectives and benefits of securitization are plenty. By securitization,
both commercial and retail banks can generate liquidity, since banks obtain a
principal payment up front. This can be lent out again to other customers, thus
putting the bank’s assets to work more efficiently. If the CDO issue is well-
subscribed, banks can substantially shift the credit risk of their loan portfolio
to the investors, and therefore through this process reduce the economic risk
and the economic capital. However, in cases where only a small portion of
the economic risk of the portfolio is transferred to reduce the amount of risk
capital regulators require banks to set aside, this is referred to as regulatory
arbitrage.

Financial engineering supporting securitization must develop an estimation
of default risk. As stated earlier, in multi-name credit derivatives, default cor-
relation becomes very important. Therefore, the approach to modeling single-
entity credit risk, such as by the contingent claims approach or reduced-form
approach, must be extended to incorporate the interdependence in credit risk
of obligors. Correlation of defaults and loss given default or recovery rate for
the pooled assets must be estimated. Based on these models for portfolio-level
assessment of credit risk and its impact on portfolio loss in an extended period
of time supports the design of CDO tranches.

A definition of each tranche must define a lower and an upper attachment
point for each tranche. An attachment point is an indicator of the amount of
losses in the collateral pool before it hits the tranche; and detachment point
is the level of losses experienced by the collateral pool which entirely erases or
wipes-out the tranche. Therefore, attachment and detachment points of each
tranche must be determined based on the default risk, both in terms of proba-
bility of default (PD) and loss given default (LGD), of each instrument in the
collateral pool. Moreover, the interdependence of these credit risk character-
istics, as well as the impact of economic or business cycles on the collateral,
must be considered in the portfolio-level credit risk assessment.

The attachment and detachment point of each tranche determines the risk
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underlying the securities of that tranche. Accordingly, the risk premium in
terms of yields or spread must be determined for the tranche, corresponding
to the loss probabilities. The spreads are often stated with a reference inter-
est rate, such as LIBOR or Treasury rates. Rating agencies must then grant
ratings to each tranche depending on the quality of collateral, guarantees,
tranche definitions and yield spread.

Securitization has several advantages, and for the successful and effective
use of this mechanism for credit risk management attention must be paid
to some issues. Securitization provides a significant motivation for efforts in
improving consumer and commercial credit risk modeling, in order for a more
robust risk transfer by banks using securitization. The upside of increasing
liquidity of credit risk is washed away if credit is transferred to a broader
segment of the economy based on poor understanding of the underlying risk,
poor design of instruments or incentives, or lack of transparency in the issuance
of securities through securitization.

Portfolio credit risk is in itself a complex entity, on top of that designing
increasingly complex securitization based products poses an added danger. It
is important that a bank recognizes the true economic value of any credit-risk
cash flow that it retains from securitization. The residual assets can be sizable
in nominal value but very concentrated in their riskiness, which can result in
insolvency. Moreover, investors participating in this market should recognize
the nature and riskiness of securities they expose themselves to, and use the
information available to make sound investment decisions.

9.4 Portfolio Credit Risk Management

In this chapter so far, we have considered several aspects of credit risk
and credit risk management. In this section, we summarize the considerations
for credit risk management at the portfolio level. The first distinction we had
made based on fundamental differences in risk characteristics was between
retail and commercial credit risk. The risk management strategy must be de-
veloped for a credit risk portfolio based on this distinction, since the individual
obligor risk characteristic lend the portfolio definite and distinct risk charac-
teristics. As discussed in Section 9.1, retail credit risk is bite-sized, with lim-
ited financial interdependency between obligors. However, we also noted that
consumer behavior changes with time, and also depends on the economic con-
ditions. In the case of commercial credit risk, single exposure is not bite-sized,
therefore default of a single obligor can threaten a bank’s solvency. There
is a significantly high degree of direct or indirect financial interdependence
between commercial obligors, by business relationships, particular geography
or industry, and sectors. Moreover, economic conditions exasperate the de-
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fault frequency in commercial credit risk, as well as seem to induce stronger
correlation.

The mitigate response of risk management is an effective response for both
retail and commercial credit. Given the fundamental role of banking, both
commercial and retail, banks must stay in the business of offering credit to
individuals and firms. However, improvements towards better and updated
models, based on better information about their counterparties, are a key to
risk mitigation decisions in retail and commercial credit risk. Based on these
models, banks can construct their strategy of preemptive efforts for selecting
customers and determining their market share. The goal of developing business
is to diversify obligors by industry, geography, and time.

Each of the credit risk modeling approaches developed in previous sections
- credit migration, structural models, reduced-form models, among others -
can be utilized for developing a risk mitigation assessment. However, once
risk characteristics of a portfolio are captured in models, the models may be
utilized for guiding risk mitigation, transfer, as well as for the keep response
of portfolio credit risk management. The portfolio-level view of default risk,
probability and number of defaults in a window of time, loss experience due
to defaults, beyond similar assessment of individual obligors, requires models
for correlation between credit risk of obligors. In a portfolio of N debt in-
struments, where N could be quite large, assessing every pair-wise correlation
could be prohibitively large. This challenge is often surmounted by utilizing
factor models, where a relevant, few significant factors, and their mutual cor-
relation, is used to describe the default correlation between N obligors in the
portfolio.

The credit migration, reduced-form or structural models are advanced for
portfolio credit risk assessment by adopting this fundamental principle for in-
corporating default correlation between obligors, which may then be utilized
for various risk management considerations. In credit migration methodology,
this correlation in credit migration, and hence occurrence of default, is cap-
tured via asset return of the obligor. For instance, equity return of the N
obligors may be modeled using correlated N -dimensional normal distribution,
and equity return distribution of each obligor is mapped onto migration prob-
ability distribution for each obligor. Thereafter, correlated credit migration
is obtained by simulating the N -dimensional equity returns of the obligors.
Equity returns for N obligors, in turn, may be modeled in terms of K factors
capturing systematic risk, industry risk, sector risk, country risk, and global
economic risk affecting the obligor.

In the structural model or reduced-form model, correlation can be in-
corporated by making the driving stochastic processes for firm-value (in
Eqn. (9.10)) and default-intensity (in Eqn. (9.16)), respectively, to be cor-
related. Here again, to maintain tractability the pair-wise correlation between
driving stochastic processes may be described in terms of a few key factors. Fi-
nally, the copula approach for capturing correlation described in Section 5.4.2
can also be applied here. This approach would be specifically applied to de-
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fault time, τi, and corresponding survival function pi(.), of each obligor. For
more details on modeling correlation in credit risk models, the reader may
refer to Duffie and Singleton [21], and Ammann [5].

There are multiple mechanisms for transfer of credit risk, appropriate for
different types and different levels of credit risk exposures. In the retail credit
segment, there is an increasing effort to develop risk-based pricing, which
prices products in response to the risk the customer exposes the bank to.
This is feasible in the case of retail credit, since risk is bite-sized in this do-
main. When defaults occur in commercial credit, the losses can be quite large,
making the unexpected loss dominate the overall credit risk exposure. This
implies that transferring the risk by pricing it into debt contracts is not a
feasible mechanism to manage the default risk in a commercial setting.

In Section 9.3, we discussed many single-name and multi-name credit
derivatives, including securitization, which are effective tools for transferring
portfolio credit risk. In a lumpy commercial credit portfolio, if there are a
few key large exposures, these can be managed by traditional credit risk man-
agement approaches, or can be managed by hedge instruments like credit
default swaps. If the portfolio has several large but similar sized exposures,
with no single one standing out in its risk profile, a multi-name credit default
swap may be a better suited risk transfer. The portfolio credit risk models
discussed above provide the necessary information regarding the default risk
characteristics of the portfolio. Depending on the depth of protection sought,
first-to-default through n-th-to-default swaps can be utilized, up to the right
level of n(≤ N).

In the case of retail or commercial credit risk, when possible, securitiza-
tion is an effective mechanism for risk transfer. This is provided the design of
the securitization is done based on responsive and robust models and analy-
sis. Again, the portfolio credit risk models are crucial to this design, as dis-
cussed in Section 9.3.2.1, for identifying the attachment-detachment points
of tranches, as well as pricing each tranche for its credit risk. Unsubscribed
securities of securitization must be accurately acknowledged as retained risk,
with risk characteristics of the tranches the unsubscribed securities belong to.
In general, the risk left-over after mitigation and transfer responses of credit
risk management is retained risk. Any portfolio credit risk management strat-
egy must conduct detailed assessment of characteristics of retained risk. The
credit VaR framework developed in Section 9.2.1.1 is one such assessment.
Credit VaR, as in the case of market risk, must be complemented with stress
testing.

We discussed the different challenges to commercial credit risk, and its
modeling, in Section 9.2.1.1. Given default rates and recovery rates vary with
time, as well as display marked dependence on business cycles, stress testing
should design stress shocks and scenarios to elicit the impact of these non-
stationarities in credit risk. Defaults also tend to cluster around periods of
economic slowdown, with the frequency of defaults increasing substantially
during recessions. Moreover, all recession periods don’t seem to have the same
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impact on default frequencies. The factors regarding an individual obligor’s
credit risk characteristics, their correlation with other obligors, and the ef-
fect of economic conditions, can also interact with one another. Interaction of
concentration and economic downturn further enhances their individual im-
pact. Economic downturns uncover hidden tendencies of obligors to default
together, which is the clustering of default phenomena. All these features of
retained portfolio credit risk must be evaluated through stress testing. Banks
need to safeguard their solvency in light of retained risk through sufficient
availability and management of economic capital, while also satisfying the re-
quirements of regulatory capital. Finally, the portfolio credit risk that cannot
be satisfactorily managed by the above responses should be avoided.

9.5 MATLAB Tools for Credit Risk

MATLAB mathematical software has a vast array of functions for working
with financial variables and methodologies in its Financial Toolbox. We list a
few of these functions here relevant for credit risk assessment. The reader is
advised to look up the extensive help documentation available with MATLAB
to see the details of these and other related functions. At the bottom of each
function description in MATLAB help documentation, look for ‘See Also’ to
explore other related functions. Resources such as MATLAB Primer [20] are
also useful.

Credit migration: transprob, transprobbytotal, portvrisk

Credit scoring: classify, classregtree

9.6 Summary

Credit risk is one of the oldest of financial risks. It is an important risk for
everyone, but of particular importance to some firms whose business model
requires extending credit in some form or another to its customers, clients,
suppliers, etc. Depending on the nature of the counter-party exposing a firm
to credit risk, we separated the discussion of credit risk management by retail
and commercial credit risk. In the initial part of the chapter, we developed
modeling techniques for retail credit risk, where as for market risk, the deci-
sions for risk management include selection, followed by management. From
retail, we moved to commercial credit risk, and presented a discussion of cur-
rently used and newly developing models for commercial credit risk manage-
ment. We followed the presentation of the credit risk models by their use
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in the valuation of a variety of credit risk derivatives, both single-name and
multi-name. Finally, we looked at ways to manage the credit risk of a portfolio
of credit risk-sensitive instruments utilizing the risk management framework
developed in Chapter 2. After the credit crunch and the financial crisis of
2007-2008, credit risk and its management have taken a front-seat. We will
discuss the current advances for portfolio credit risk management.

9.7 Questions and Exercises

Review Questions

1. What is credit risk? Despite being one of the oldest risks, why does
credit risk continue to pose significant challenges for assessment and
management?

2. What is counterparty risk?

3. What is the link between interest rate risk and credit risk? What is
credit spread?

4. Besides charging a credit spread, how do creditors safeguard their inter-
est regarding credit risk?

5. What is retail banking? Who does it serve, and how?

6. What is the variety of consumer credit products? What are micro-credit
loans and payday loans?

7. How are retail credit risk characteristics different from commercial credit
risk characteristics?

8. What are the three important statistical measures used to summarize
credit risk?

9. What are characteristics and attributes of individuals or households used
to model retail credit risk? Give 3 examples of each.

10. What is discriminant analysis? How is it useful in retail credit risk mod-
eling?

11. What is credit scoring? How are the scores interpreted?

12. What is behavioral scoring? How are these scores different from credit
scores, and how are they used?
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13. What opportunities does improving credit scoring methodologies offer
banks? Why is it imperative that the models are frequently tested and
adjusted for currency?

14. How widespread is the usage of credit scores?

15. What is logistic regression, and how is it used to construct credit scores?

16. What are the contending approaches to developing credit scoring or
retail credit prediction models?

17. What are false bads and false goods in applying credit scoring to ac-
cepting or rejecting a loan application? How does it compare to Type I
and Type II error of statistical inference?

18. How does a cut-off score determine the loss rate and profitability of a
retail credit product?

19. What are the methods and challenges in estimating loss given default in
retail credit?

20. What are the three ways a bank can approach the effort of building
credit scoring models? What are the advantages and disadvantages of
each?

21. What is Cumulative Accuracy Profile? What is it used for?

22. What is the Accuracy Ratio (AR) statistic? How does it help monitor
the accuracy of a credit scoring model?

23. What are the reasons for the credit risk of individuals to change with
time?

24. How can economic factors affect individual credit risk? How can this
relationship be incorporated in retail credit risk models?

25. What challenges do credit scoring methodologies face going forward?

26. What is commercial credit? Who are the typical obligors in commercial
credit? Give examples of commercial credit instruments.

27. What is a credit rating system? What are rating agencies? Give some
examples.

28. What information is incorporated in assessing creditworthiness in a
credit rating system?

29. How are credit ratings used for credit risk management?

30. Why are credit ratings not meant to be an investment recommendation?

31. What is the difference between issuer versus issue-specific credit rating?
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32. What are the rating levels in S&P and Moody’s rating systems? What
do these levels mean?

33. What are investment grade and speculative grade ratings?

34. What is a discrete-time Markov chain? What is Markov property?

35. What is an absorbing state of a Markov chain?

36. When is a Markov chain stationary? How can this property of debt
migration be utilized for multi-year credit risk assessment?

37. What is credit VaR? How is credit VaR of a portfolio of loans computed?

38. Empirically how are default rates and recovery rates related through
economic cycles?

39. What are the important factors in assessing credit risk using credit mi-
gration methodology?

40. What is Altman’s Z-score? How does this model predict default risk?

41. What is a structural model of credit risk? How is Altman’s Z-score model
an example, albeit a simple one, of a structural model?

42. What is a reduced-form model for credit risk? How are these models
calibrated and used?

43. What is doubly stochastic default intensity reduced-form model?

44. What is a credit default swap? What is CDS spread?

45. What is amortizing default swap and a binary credit default swap?

46. Describe how the CDS spread is computed.

47. What is a spread option? How is the pay-off of the option stated?

48. What is first-to-default swap? How does the first-to-default spread com-
pare with the spread of the worst individual credit in the portfolio?
Explain.

49. What is nth-to-default swap? How are these swaps useful for credit risk
management of a portfolio of credits?

50. What is securitization? What are MBSs and ABSs?

51. How does an MBS differ from a CMO? What are CDOs?

52. What is a synthetic CDO?

53. What are the benefits of securitization? What are the cautions or dis-
advantages of securitization?
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54. What are the financial engineering tasks behind securitization?

55. What are the mitigation responses for portfolio credit risk?

56. How is portfolio credit risk managed by transfer of risk?

57. What should be the emphasis of stress testing for a portfolio of credit
risk?

58. What is the purpose of Credit VaR framework for portfolio credit risk?

Exercises

1. The 100,000 customers in a retail credit portfolio have credit scores given
by the following distribution, 270 ∗ Beta(1.2, 1.5) + 580. Therefore the
cutoff score used for this product is 580. The portfolio experiences a
total of 5% default. The default experience by credit score in this port-
folio is described by the following distribution, χ2(5)+580. What is the
distribution of false goods? Extrapolate by an appropriate distribution
to determine the profile of false bads.

2. Construct the cumulative accuracy profile curve and Accuracy Ratio
(AR) statistic for the retail credit portfolio in Problem 1. Is this admis-
sible by your chosen accuracy requirement?

3. Consider the following portfolio of US Treasury notes and bonds with
weights for each bond given as number of bonds held in the portfolio.

• Corporate Bond, Issuer: Johnson & Johnson; Coupon Rate: 5.55%
(paid semi-annually); Maturity: 5 years; Rating: AAA

• Corporate Bond, Issuer: Southwest Airlines; Coupon Rate: 7.375%
(paid semi-annually); Maturity: 15 years; Rating: BBB

• Corporate Bond, Issuer: Spring Nextel Corp; Coupon Rate: 9.25%
(paid semi-annually); Maturity: 10 years; Rating: B

• Corporate Bond, Issuer: Royal Caribbean Cruises Ltd; Coupon
Rate: 7.25% (paid semi-annually); Maturity: 6 years; Rating: BB

Compute the annual Credit Value-at-Risk in MATLAB at a desired
confidence level for the following portfolios given by the number of bonds
held.

(a) w⃗ = [10,000; 0; 0; 0]

(b) w⃗ = [30,000; 8,000; 0; 0]

(c) w⃗ = [10,000; 22,000; 15,000; 20,000]

Assuming stationarity of transition matrix, compute 2-year and 3-year
Credit VaR for all the above portfolios.
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4. Compute the Z-score of a firm picked from the following four sectors,
and comment on the (relative) default likelihood of these firms.

(a) A utility company

(b) A pharmaceutical company

(c) Consumer goods

(d) Airline company

5. For a company with a total debt,DT , of $10 million, all of which matures
in 1.5 years, what is the probability of default, if the volatility of firm
value, σv = 17% and current firm value, V0 = $25 million. Consider the
short-term risk-free interest rate to be 2.3%.

6. For the firms you selected for Problem 4, under what assumptions are
you able to apply the structural approach to estimate the probability of
default in a chosen period of time?

7. In Problem 5, if the firm has an annual return on asset of 18% and an
annual claimholder payout of 10%, what is the distance to default for a
time-period of 1.5 years and expected recovery rate, given default?





Chapter 10

Strategic, Business, and Operational
Risk Management

The specific risk types we have studied thus far most prominently figure in
financial markets and institutions. In this chapter, we turn our attention to
risks that appear more broadly and are relevant for a broader variety of firms.
Firms engaged in producing a variety of products and services must evaluate
forward-looking prospects at different timescales, and assess the impact of
different risk exposures on the firm’s financial health and profitability. Based
on the extent of forward view the firm adopts for this risk assessment, we label
the risk management effort as strategic, business, and operational. Figure 10.1
summarizes the relative temporal scope of strategic, business, and operational
risk management.

In this chapter, we address several issues of strategic, business, and oper-
ational risk management from the broader corporate risk management per-
spective. The risk management objectives are developed on specific themes
for these risk types in order to provide an overview of an otherwise rather
vast topic. For non-financial firms, a framework developed for integrally, com-
prehensively and consistently managing all relevant risks of the firm is called
enterprise risk management. We also utilize the temporal range of strategic,
business, and operational risks as a context to present asset-liability manage-
ment objectives of financial services firms in this chapter.

10.1 Strategic Risk Management

Even if risk management may not be an explicitly stated activity in a non-
financial corporation, management of risks happens in various garbs. In gen-
eral, non-financial firms tend to focus more on risk mitigation, as opposed to a
financial institution’s approach of risk optimization, i.e., constructing optimal
risk-return trade-off. Focusing on its core business, a typical non-financial firm
has greatest incentives to conduct its business with the least negative impact
of risks. This has also to do with these firms’ inability to swiftly shift the
markets they function in due to potentially high capital investment required
for their products and services.

371
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FIGURE 10.1: Overview of strategic, business, and operational risk for their
temporal scope.

Theoretical justification for explicit risk management effort of firms goes
back to the results developed by Nobel laureates Franco Modigliani and Mer-
ton Miller in the 1950s. Irrelevance of corporate financing and risk manage-
ment decisions arises from the basic notion that in an efficient market, which
offers investors a variety of investment opportunities, the investors can per-
form risk management on their own rather than relying on a firm’s managers.
The assumptions behind irrelevance of risk management extend the results to
several other types of irrelevance - irrelevance of choice of capital structure,
debt and leverage, security holder indifference, and hedging and insurance ir-
relevance. In reality, the stringent assumptions behind these results don’t hold.
Therefore, while these results provide valuable theoretical insight to these is-
sues, in practice managers actively make these financial management decisions
for a firm.

Firms devote significant attention to increasing expected cash flows from
their projects, or reduce the variability of these cash flows, with an eye to-
wards reducing the cost of capital by managing risk. Managing risk helps
reduce the conflict of interest between security holders and managers, as it
aligns the agent’s (manager’s) incentives with those of principal (owners) of
the firm. Risk management of the firm’s risks also reduces conflict among secu-
rity holders by minimizing the possibility of risk shifting between debt-holders
and shareholders. Another side benefit of active risk management is the op-
portunity it offers for controlling and exploiting informational asymmetries.
Risk management undertaken by the managers can function as a substitute for
monitoring, for instance by increasing the signal to noise ratio behind man-
agerial risk management decisions in presence of informational asymmetry.
While active risk management may be a valuable activity for a firm to devote
resources to, half-baked efforts can back-fire. There are numerous instances of
strategic risk management failures one can cite.
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10.1.1 Objective of Strategic Risk Management

Capital allocation and budgeting is a fundamental activity undertaken in
the financial management of a firm, where strategic decisions about a firm’s
investments are made. Risk management must be an integral part of this ac-
tivity, whether this is explicitly acknowledged or not. The question one must
address is what objective(s) should the manager serve while making these
risk management decisions, which indeed are a subset of broader financial
management decisions. Managers make these decisions on behalf of the se-
curity holders of the firm, therefore normatively speaking, managers should
maximize the security-holder welfare through risk management decisions.

If Et is the market value of outstanding shares of equity at a time, t, and
Dt is the market value of debt outstanding at the time, then the value of the
firm at time t is Vt = Et + Dt. If the firm pays δt dividend and it interest
to shareholders and debtholders, respectively, earns a net cash flow of Ct and
makes investment of It in new projects in the next period, then the firm’s
cash flow in the period is, δt + it = Ct− It. This is assuming that the number
of securities outstanding remains constant for this period, where appropriate
adjustments can be made when there is a change in number of securities
outstanding. Combining the two relations, we obtain the total wealth of the
security holders at the end of the period in terms of value of the firm, net cash
flow and new investments as follows.

Vt + Ct − It = (Et + δt) + (Dt + it). (10.1)

Therefore, the security holder welfare is maximized by maximizing Vt+Ct−It.
However, net cash flow, Ct, is obtained based on prior investment decisions,
therefore the firm should maximize, Vt − It, which is the excess of the firm’s
value over the investment expenditures needed in the period to generate that
value. One may further note that value of the firm, Vt, can also be expressed
as,

Vt =
∞∑
i=1

Et[Ct+i − It+i]

(1 + ρ)i
, (10.2)

where ρ is the cost of capital of the firm. Therefore, maximization of the value
of the firm is equivalent to maximizing the expected discounted value of all
future net cash flows and new investments of the firm. For increasing firm
value, the manager can either increase the expected future net cash flow or
decrease the cost of capital of the firm through risk management decisions.

Increasing the firm’s expected future net cash flow can be pursued strate-
gically for the entire firm, or for each future project of the firm. The latter
forms the core of capital allocation and budgeting decisions. One may assume
that projects refer to cost reduction efforts, launch of new product or services,
expansion to new markets, however from the risk management perspective,
the project could also be how to change the impact of corporate tax-structure
on the net cash flow of the firm.
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10.1.2 Approaches for Strategic Risk Management

In capital budgeting, the ‘avoid’ or ‘keep’ responses from the avoid-
mitigate-transfer-keep decisions of risk management are well-represented.
When a project’s risks are seen as unfavorable, it is avoided, while when
it seems to fit within the manager’s risk appetite for its risk-reward offering,
the project may be adopted. The usual mitigate decision of portfolio opti-
mization, by taking advantage of correlation between asset returns, can also
be applied here, however additional constraints and limitations must be ac-
counted for here. Negative correlation between future cash flows of two or
more projects can help increase the expected future net cash flow of the firm.
Such opportunities must be cost-effectively exploited whenever possible.

One of the major sources of destruction of a firm’s value is when the firm
falls on financial distress. Pure risk, by definition occurrence of which results
in losses without any gains, can result in significant financial distress to a
firm, pushing the firm in many cases to the brink of bankruptcy. Direct and
indirect costs of bankruptcy, or even being at the brink of bankruptcy, can
eat away a firm’s value. In the case of pure risk, mitigation must be taken
on the risk-reduction interpretation, and a firm must strategically identify its
pure risks to construct a risk reduction strategy. Risk reduction or control
lowers the loss due to pure risk events, and in doing so, improves the expected
future net cash flow from a firm’s projects. Risk management of pure risk is
discussed at greater length in Chapter 11, specifically in Section 11.4.

Insurance contracts play a significant role for the transfer of pure risk. An
insurance contract, much like an option contract utilized for risk transfer in
case of speculative risk, is a state-contingent claim which pays off beyond an
agreed-upon level, called the deductible, in certain states of the world. As for
option contracts, in an insurance contract the firm seeking risk transfer must
pay a premium to the protection seller, or insurer. Despite these similarities,
the terminology used in insurance and options differ significantly, and most
books on one topic do not discuss the other at all.

As will be discussed at length in Chapter 11, not all pure risks are in-
surable, or affordably insurable, by a firm. Additionally, a firm can explore
alternative risk transfer (ART) tools as a range of non-traditional transfer
of risks. These alternatives include comprehensive risk policies or ‘total risk’
policies, multi-trigger policies, self-insured retentions, risk retention groups,
liquidity provision facilities in presence of pure risk events, securitization, and
weather derivatives, to name a few. These non-traditional risk transfer prod-
ucts have become possible and popular due to a closer integration of insurance
companies and capital markets. For more details on ARTs, the reader should
refer to Culp [19] and Lam [54].

Risk mitigation or control for a firm’s future projects also has a temporal
or a sequential component. This must be a crucial aspect of project evaluation
and implementation, and in fact of corporate strategic planning and capital
budgeting. The real options framework is an important valuation framework
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that responds to the sequential opportunities in projects, where decisions are
made regarding an investment strategy of a firm depending on how project
risks unfold. The framework can incorporate sequential responses to the risks,
including decisions of timing of investment, timely scaling up or scaling down
of a project, and exiting a project.

Real options can essentially be seen as bundling of standard options on
a project’s or firm’s assets, however these options are not tradable. There-
fore, valuation of real options must be done using cost of capital in the net
present value framework. We discuss several types of real options embedded
in sequential assessment of projects.

Waiting to Invest: When the risk about the project is not so much about
the future cash flows the investment on the project will generate, but
instead about the risk in interest rate that will be used for discounting
future cash flows. In light of this risk, this option considers delaying
investment in capital-intensive projects.

Option to Defer: This option is a generalization of the ‘waiting-to-invest’
option, where riskiness about many more aspects of a project make it
worthwhile to consider delaying implementation of the project. Invest-
ment cost of the project, time until the opportunity remains, improves
or disappears, or other relevant market and credit risk factors affecting
the project need to be included in this analysis. The option of acquir-
ing or undertaking the project at a future time resembles exercising a
call option. Such options often arise in the context of extracting natural
resources, or real estate development.

Option to Abandon: This is the reverse of the ‘option to defer’ real option,
where a decision regarding termination of all production and operations
must be taken, along with selling the current assets utilized for produc-
tion. Option to abandon is common in capital-intensive industries like
transportation, telecommunication, and resembles a put option on the
value of continuing operations.

Time to Build: This is the option of staged investment coupled with an op-
tion to abandon the investment project as new information is revealed.
This staged structure resembles a compound option. This option is par-
ticularly valuable when information is released gradually, such as in R&D
for pharmaceutical drug development, venture capital financing of young
enterprises, or large-scale construction projects.

Option to Alter Operating Scale: This is a less extreme response to
changing demand than abandoning the project, by deciding to contract,
expand or temporarily shut down and restart production. This should
be seen as a relevant response in fashion and fad sensitive industries,
such as food, entertainment, and fashion apparel.
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Switching Option: This is the option of switching inputs or outputs in the
production process depending on cost, price or other risk factors. For in-
stance, fuels for production may be switched, or fuels to generate electric-
ity may be switched. On the output, sales contracts can be constructed
to allow switching a model from a class of models, as is interestingly
done in the airline industry.

Option for Interactive Growth: Staged investment in a project can result
in opening opportunities for growth in other areas and projects. Merger
and acquisition is a typical example of this kind of option, since an
M&A can result in many other projects benefitting from consolidation
and growth.

In evaluation of these real options, and in general for project evaluation, sim-
ulation analysis can play a significant role. Discrete-time, discrete-space to
continuous-time, continuous-space models developed in Chapter 5 can be ap-
plied as seen appropriate for the cash flows of a project to determine the value
of the project, or to develop the real options strategy.

Firms may seek transfer of risk even for their speculative risk expo-
sures, particularly in presence of deviations from the assumptions underlying
Modigliani and Miller propositions. Firms most significantly have exposure
to speculative risks from fluctuations in the price of their raw materials or
finished products. Depending on the firm’s financing structure, as well as the
firm’s scope of activities, there might also be interest rate, exchange rates and
equity risk exposures. In Sections 7.3.2, 8.2.3, and 8.3.2, we had developed an
optimal hedging framework and its application to various market risk types,
which can be applied here. In these sections, we had also discussed various
types of derivative contracts available for risk management.

For the raw materials or finished goods, firms may utilize spot market,
futures market or maintain high levels of inventories to support their produc-
tion and sales activities. Firms often favor storage of physical commodities
and maintaining inventory of raw material or finished goods. This can be ex-
plained by some important motivations. First, this may be driven by the need
to make sure there is no disruption in the firm’s production process or fulfilling
demand for finished goods. Some firms may engage in precautionary storing
to protect from unanticipated shocks in demand or supply, or solely for spec-
ulative reasons in anticipation of price increase in the future. In some cases,
firms may store commodities as a passive response to avoid transactional cost
of getting rid of it.

There is a crucial relationship between spot prices and futures prices
of commodities, captured by convenience yield discussed in Section 8.3.2.1.
When the demand for immediacy is high, inventories are high, therefore the
relative premium a commodity can command in the future relative to the
present is reasonably small. In this case the convenience yield is small and
the term-structure of futures prices is upward sloping. We call this a contango
market. However, when inventories start to deplete, the spot price starts to rise
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as the demand for the commodity increases. Spot price being higher relative to
the futures price of the commodity is an indication that inventories are tight
today relative to the future. A resulting downward sloping term structure of
futures prices is called a backwardation, depicted by a high convenience yield.
In some cases, the term structure of future prices can show both contango and
backwardation, indicating that after a time-point in the future, the market
expects the inventories to run out. Therefore, convenience yield and its volatil-
ity is a strong indicator of inventory levels of a commodity in the market, and
relative levels of spot and futures prices of the commodity. This insight also
helps us understand how demand or supply shocks to a commodity will move
the term structure. A firm’s hedging strategy should take into account these
issue in light of the firm’s specific operations needs for the commodities.

Earlier in this discussion, we had concluded that risk management should
attempt to increase firm value by either increasing the expected future net
cash flow or decreasing the cost of capital of the firm. Moreover, active risk
management can give managers opportunities for controlling and exploiting
informational asymmetries, and in the process better manage the conflict of
interest between security holders. One such strategic risk control available to
managers is by utilizing structured liabilities or debt. Structured debt instru-
ments are defined as debt instruments whose cash flow is linked to the value of
some underlying asset, reference rate, or index. Structured liabilities can help
the issuer manage its credit risk, decrease cost of capital, as well as increase
its debt capacity. Credit rating sensitive notes, putable bonds or convertibles
are examples of such structured liabilities. When the manager believes the
firm’s prospects are going to significantly improve in the future due to its la-
tent or intangible assets, such as R&D, intellectual property, patents, but the
capital market has not caught up to this, structured liabilities can be used for
exploiting this informational asymmetry.

The avoid-mitigate-transfer-keep responses form the pillars of management
of projects’, and therefore the firm’s, strategic risks. Unfortunately, many firms
have forgotten that an effective overall corporate strategy combines a set of
activities a firm plans to undertake with an adequate assessment of the risks
included in those activities. In other words, there can be no real strategic
management without risk management, and risk management needs to be in-
terwoven into all aspects of the firm’s business. Strategic decisions about what
activities to undertake should not be made unless senior management under-
stands the risks involved. In fact, failures of strategic management arise from
organizational gaps in understanding, developing and implementing strategic
risk management. Firms can, in fact, select to approach strategic risk manage-
ment as a total or selective risk management effort depending on how much
resources they can afford for this activity.

In summary, while strategic risk management points the direction, business
risk management must translate it into guidelines for conducting the business
of the firm. Organizational structure must be developed and the culture in-
culcated that facilitates this translation in a seamless way, where the vision,
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limits and boundaries set forth by strategic risk management decisions guide
the business to be run profitably.

10.2 Business Risk Management

Key revenue generating activities of a medium to large business enter-
prise are usually organized by strategic business units by geography, customer
group, product, or some combination of all these in a matrix structure. These
business or line units account for the majority of assets and employees, and
also are the primary source of business, market, credit and operational risk.
The strategic risk management guidelines developed in the previous section
must be translated to each business unit. In the end, the business or line units
have the closest contacts with customers and suppliers, therefore can provide
unique perspectives on what is working and what is not and generate feedback
on whether the strategy is effective and complete. The business units must
also develop tactical risk management responses for any gaps in the strategic
risk management guidelines. Therefore, failing to connect strategic risk man-
agement to proper running of the business can cause significant loss in firm
value, numerous lost opportunities, and in some cases, a failed business.

A few different business models are utilized for translating strategic risk
management guidelines for running a business. The first is that of a classical
risk controller approach, where resources are allocated for risk management
exclusively to avoid losses in excess of strategic risk tolerance. In this ap-
proach, risk management is not seen as a source of opportunity. Therefore for
assuring compliance, significant effort is put into risk measures and procedures
reviews, evaluation of effectiveness of hedging strategies, credit risk manage-
ment and monitoring, and cash management. The second business model is
that of firms who have evolved beyond the defensive view of risk management,
and look to risk management as an opportunity for overall efficiency enhance-
ment in the firm. These firms are still internally bound, creating their own
solutions for proactively connecting strategic and business risk management.
The third most evolved case is of firms that don’t only see risk management as
an opportunity for improving efficiency and profitability of the firm, but also
provide products and solutions that make risk management standard for their
industry. Whichever business model a firm may operate by for its risk man-
agement function, incentive alignment for eliminating any conflicts between
a business unit’s focus on revenue maximization and risk limits and policies
provided for strategic risk management must be in place for a lasting positive
impact.

As stated earlier, the business risk management strategy is obtained by
translating strategic risk management responses as relevant for different busi-
ness units of a firm, and developing them beyond what is relevant for the
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business unit. The fundamental risk of running a business is demand risk, the
risk of how low or high demand for the products and services of the business
unit will end up being in the relatively near future, say in the next quarters or
year. Demand being much higher or lower than expected, both create signif-
icant challenges for the business unit in attempting to adjust its production
and resource management to cater to the demand. Significant development in
data analytics is driven by the need to better predict demand. Demand for
different products and services may show cyclicality, daily, weather or seasonal
dependency, or change structurally over time. Diversification in product and
service offering can help mitigate some demand risk. Pricing is an effective tool
for responding to demand risk, where increasingly the emphasis of business
intelligence and analytics is on dynamic pricing based on customers’ char-
acteristics, behavior and propensity to pay. Finally, businesses can develop
contracts for their products and services that are loyalty enhancing.

Integrally connected with demand risk is the risk of competition taking
away part or all of demand for the business unit’s products and services. Part
of business risk management, including at the strategic level, must address how
a firm will manage competition risk. Moreover, a firm that manages its de-
mand risk well, along with effectively translating its strategic risk management
guidelines to how business units are run, stands a good chance of managing
competition risk well. Strategic guidelines should render a good mechanism
to manage risk of quality of products and services delivered to the customer.
Systems must be in place for robust customer relations management, and cus-
tomer feedback should be systematically translated in improving business unit
operations as well as in strategic planning.

A business unit is also exposed to the typical market risks, such as com-
modity risk and exchange rate risk, depending on the type of raw materials
and finished products the firm and the business unit is engaged in, as well as
in the global markets it is active in. Strategic guidelines for managing these
risks must be applied while filling in the specifics where needed. The usual
approaches of applying risk management for these market risk components
discussed in Chapters 7 and 8 would be applicable here. In cases where a
business unit offers its products on credit, interest rate risk and credit risk
also become integrally relevant to the business unit’s risks. The market risk
analytics for interest rates, as developed in Chapter 8, and credit risk ana-
lytics for business risk decisions, as relevant for retail and commercial clients
developed in Chapter 9, should be applied.

The pure risk exposures of a business unit is best understood at the busi-
ness unit, since here is where the ground reality is visible to the manage-
ment. The strategic guideline obtained for management of pure risk must be
evaluated and supplemented at the business unit level as seen appropriate.
Insurance contracts may have to be evaluated for their relevance with chang-
ing environments and characteristics of the business unit. The risk reduction
methods will need to be tested and reviewed for their efficacy. Programs that
promote risk monitoring, reduction, and control must be kept current. Beyond
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the traditional pure risk transfer mechanism discussed thus far, for business
risk management, as in the case of strategic risk management, application of
alternative risk transfer (ART) tools can also be utilized by a business unit.
Finally, risk capital corresponding to the retained pure risk of the business
unit will need to be periodically determined and reported.

Firms are constantly impacted by changing regulations, government poli-
cies, as well as industry trends. Technology risk or other innovation risk also
can’t be ignored in business risk management. At the strategic level, real op-
tions framework is a powerful method for evaluating the impact of these risks
on the firm’s interests. At the business unit level also real options framework
can be applied with higher granularity of detail relevant to the risk for the
business unit to guide in generating fine-tuned risk management responses.

The purely financial component of business risk lies in managing cash flows
of the firm or business unit so that the liabilities of the business unit are well
supported. Identifying, measuring, and monitoring liquidity risk are important
components of business risk management. In the next section, we will develop
an asset-liability management framework, which integrally addresses liquid-
ity risk management issues primarily from a financial institution perspective.
However, this framework may also be applied in non-financial corporations to
develop a strategic assessment of liquidity risk, which provides a sound basis
for liquidity risk management at the business unit level. As discussed in the
previous section, sound strategic risk management can help enhance the bor-
rowing capacity of a firm, which in turn helps manage liquidity risk. Along
with improved debt capacity, tactical risk control for liquidity shocks can be
done through actual and synthetic asset divestiture, such as securitization.

Strategic uncertainties such as business plan assumptions, competitor re-
sponses, and technology changes should be measured and managed through
robust business risk management. Even a company with a well-thought-out
strategy must establish feedback mechanisms and contingency plans to ensure
that the company’s strategy is sound over time. Companies with unbending
strategies can face extinction. Therefore, it is fair to say that a nimble business
is a successful business. Finally, business risk management needs to connect
management of business risks with the business unit’s and, at a comprehen-
sive level, the firm’s operational risk; these are the disruptions to ‘business
as usual’ for the firm or business unit. Before we delve into operational risk
management, we next present a framework for interlacing strategic-business-
operational risk into asset-liability management for a financial institution.

10.3 Asset-Liability Management

Asset-liability management (ALM) is balance-sheet risk management. De-
scribed as such, it constitutes stitching together strategic, business and op-
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erational risk management to insure short-term viability and long-term prof-
itability of an enterprise. Asset-liability management is most practically and
integrally important for firms whose core role is financial intermediation, such
as financial services firms, thrifts, banks, financial subsidiaries, insurance com-
panies, leasing companies, and pension funds. Some non-financial firms, such
as nimble manufacturing firms and trading firms, that must actively manage
their balance sheet for the purpose of running their business, can also benefit
from the principles of asset-liability management.

In the late 1970s, the focus of monetary policy switched from stabilizing
interest rates to controlling monetary aggregates, thus interest rates became
more volatile. The sudden sharp rise in interest rates between 1980 and 1982
precipitated many banks and thrifts to become insolvent, and they ultimately
had to be liquidated. This triggered an enhanced attention to asset-liability
management. In this backdrop, ALM was considered an important risk man-
agement activity because the traditional business model of financial institu-
tions, such as commercial banks, was to finance long-term loans with relatively
short-term liabilities. This position of significance for ALM faded away in the
more stable 1990s, when the practical importance of ALM and liquidity man-
agement took a back-seat yielding to other short-term priorities of the firms.

The financial crisis of 2008 triggered a renewed interest and greater em-
phasis on asset-liability management. Through these crisis years, even the
largest of multinational financial institutions were significantly stressed by
liquidity risk and needed to seek external help to ensure survival. Manage-
ment of large institutions, regulators, and even the general public witnessed
how well-reputed and trusted institutions folded up and were not able to
adequately respond to the deep liquidity crisis. Thereafter regulators have at-
tached a higher importance to management of liquidity risk, which is a subset
of ALM, by expressly bringing it into overall risk management frameworks
and developing new measures to ensure sound liquidity management.

As will be evident to the reader, asset-liability management is essential for
the seamless and profitable growth of a firm. Although the primary focus of
ALM is managing balance sheet risks, it must also focus on balancing prof-
itability with managing risks. In the process, objectives of asset-liability man-
agement can proactively seek to guard the firm’s bottom line as well as max-
imize profitability. As stated above, liquidity risk management has emerged
as an important function of asset-liability management. Liquidity risk, more
specifically funding liquidity risk, is defined as the risk of not meeting the
expected and unexpected immediate and future cash flows needs effectively.
A well managed liquidity function must include a liquidity contingency plan,
buffers of liquid assets, and liquidity policies and limits set at acceptable and
manageable levels.

As an integration of strategic, business and operational risk to ascertain
smooth functioning in the short-run and profitability in the long-run, asset-
liability management constitutes activities of comprehensive and challenging
scope. In Figure 10.2, we display the essential components of asset-liability
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FIGURE 10.2: Elements of asset-liability management and its relation with
liquidity risk management.

management, including liquidity risk management, structural gap risk and
net interest income risk or net earnings risk. The figure also indicates some of
the tools available to address each of the ALM tasks and objectives. We next
examine these components and tools of ALM in detail.

10.3.1 Components of Asset-Liability Management

Financial institutions perform the essential intermediary function of cre-
ating and absorbing liquidity in the financial system. In other words, financial
institutions facilitate the fundamental transformation of financial resources
into maturity structures needed in the economy at a time. In the process, fi-
nancial institutions undertake significant maturity mismatch risk, interest rate
risk, credit risk and foreign exchange risk. The role of ALM, along with its
components of structural gap risk, net income risk and liquidity risk manage-
ment, is to help manage and mitigate the adverse impact of these risks, while
maintaining them within accepted levels. In its comprehensive scope, while
managing these risks ALM should help achieve profitability and an optimal
allocation of capital.

The following are the components of asset-liability management and an
overview of tools designed to achieve the above goals. The components clearly
span the strategic, business and tactical range of financial institution’s risk
management considerations.

Managing Structural Gap: This component most squarely tackles the
strategic issues in a firm’s balance sheet. A mature ALM function of
a financial institution actively and continuously monitors all the assets
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and liabilities on a firm’s balance sheet. More specifically, it organizes
this information in the form of the gap between asset and liabilities over
different ranges of time horizons. The emphasis in this assessment is
first on creating a summary view of the relative status of asset against
liabilities, and then on balancing maturities and cash flows from both
sides of the balance sheet.

The goal here is not to eliminate any maturity or cash flow mismatches,
for these mismatches may well be the source of profitability of the firm.
The objective is to identify the mismatches and manage them to keep
them within the risk tolerance of the firm. Therefore, the tools for man-
aging structural gap respond by strategically balancing the gaps by issu-
ing timely guidelines to business units to focus on appropriate products,
investments and strategies for modifying and managing the gap. Liq-
uidity management also deals with cash flow mismatches emerging from
assets and liabilities, but it is focused on the short term of less than a
year.

Following are the main tools for managing structural gap.

Static Gap: This is an as-it-stands analysis that summarizes assets
and liabilities maturing in short, medium and long term after seg-
menting the planning horizon into bins. The analysis seeks the dif-
ference in cash flows from asset and liabilities in each bin as per
their maturity structure. The gap in each period points to the ex-
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pected funding gap and excess funds available at different time-
points. A gap structure is constructed in Figure 10.3

Cumulative Gap: As assets and liabilities mature through the plan-
ning horizon, the funding gaps and excess funds accumulate and
cancel each other out. Cumulative gap, which is the accumulation
of all prior periods’ gaps, constructs an as-it-stands temporal view
of these accumulations and cancelations. Therefore, cumulative gap
shows the time-points when assets fully support liabilities, or brings
out any weaknesses in this regard. Cumulative gap is also a static
analysis.

Duration Gap: It is true that neither assets nor liabilities remain
static, therefore static gap provides a snapshot, but fails to provide
how the gaps may change with time. Therefore, as gaps dynami-
cally evolve, they need continuous monitoring as the balance sheet
changes. Modified duration, defined in Chapter 8, as a measure of
interest rate sensitivity is used to assess the impact of interest rate
risk on the gap. Moreover Macaulay’s duration is a measure of ef-
fective maturity or center of gravity of discounted cash-flows of an
asset and a liability. Therefore, duration gap measured as difference
in Macaulay’s duration of asset and liability is also informative. Be-
yond duration, for the second-order sensitivity, gap convexity can
also be assessed as part of this analysis.

Long-Term Asset/Liability Ratio: A common financial ratio of
comparing long-term assets, those maturing beyond a year, against
liabilities of similarly long maturity serves as an indication of long-
term balance sheet performance. As a risk management response,
acceptable limits may be set to this ratio. Implementation of this
acceptable limit combined with liquidity gap controls can help to
eliminate any imbalances and help maintain a structurally sound
balance sheet.

Dynamic Gap: Besides interest rate risk, there are other risks listed
above that are relevant in their effect on assets and/or liabilities.
Dynamic gap simulates the future gap positions as a consequence of
these broader sets of risk factors, and in terms of more advanced,
broader risk measures than interest rate sensitivities. In this dy-
namic analysis of impact of risks, risks like business volume risk,
early repayment risk, deposit roll-overs risk, etc., can also be incor-
porated.

Managing Net Interest Risk: A financial institution relies on the above
measures, namely gap, cumulative gap, duration gap, gap convexity,
and other measures developed in dynamic gap analysis, to evaluate the
impact of interest rate risk. This is the most significant risk for ALM.
Based on the levels of these measures, appropriate strategic or tactical
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responses must be developed for modifying the undesirable effect of the
risk. As stated earlier, other risk types can also be included in preparing
a response towards the firm’s asset-liability management goals. Finan-
cial institutions must also assess the impact of interest rate changes,
new business models, change in product-types and mix, and roll-over of
deposits on net interest income. Gradual changes or significant shocks to
the net interest income must both be noted, and their impact on balance
sheet of the firm should be determined.

Managing Liquidity Risk: Daily or monthly gaps on short-term asset-
liabilities ladders ensures that cumulative gaps will operate within pre-
set limits. Liquidity gaps must be adequately managed by optimizing
borrowing capacity in the money-market, liquidity contingency plan,
liquid asset buffers, and setting liquidity policies and limits in tune with
level of risk considered acceptable and manageable in the firm, as well
as per regulatory guidelines.

In the next section we develop the risk management framework applied to
asset-liability management further by developing each of the above measures
and responses for achieving the ALM objectives.

10.3.2 Risk Management in ALM

The scope of ALM is broad, and therefore to perform risk management
within asset-liability management, a multi-tier strategy may be necessary.
Each tier is designed to give a level of insight on the implication of assets and
liabilities, their maturities, cash flow and risk exposures for the firm. We first
consider static and stochastic gap analysis.

10.3.2.1 Gap Analysis

Gap is defined as the difference between the amounts of interest rate-
sensitive (and/or other risks sensitive) assets (A) and interest rate-sensitive
(and/or other risks sensitive) liabilities (L) maturing or repricing within a
specific time period or bin (shown in Figure 10.3). Therefore, the primary
objective of static or dynamic gap analysis is to measure interest rate risk (or
other risks) as it affects assets and liabilities. For the rest of this presentation,
we will focus on interest rate risk, although the framework and terminology
can be extended to other relevant risks.

The measure of static gap risk is rather rudimentary in just considering
the nominal value of assets and liabilities maturing during a time period.
The assessment horizon [0, T ] is broken down into specific periods of time,
{t1, . . . , tN}, and gap is defined for each period as,

G(ti) = A(ti, ti+1)− L(ti, ti+1), (10.3)

where G(ti) (or Gi in Figure 10.3) is the gap for period (ti, ti+1), A(ti, ti+1)
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are the nominal value of assets maturing in that time period, while L(ti, ti+1)
is the nominal value of liabilities maturing in the period. The gap of each
period relates to interest rate risk by the fact that it is affected by the same
segment of the term structure of interest rates. This is assuming asset and
liabilities in a bin derive value from the same yield curve. When this is not
true, addition factors, such as credit spread, must be incorporated to assess
the gap risk for each bin.

Positive-gap in a specific period of time results from A(ti, ti+1) >
L(ti, ti+1), and when there is positive gap in short-term bins, we say that
assets reprice before liabilities. This implies that short-term assets are funded
by long-term liabilities. An increase in short-term interest rates will therefore
lead to an increase in net interest income (NII), while decrease in interest
rates will lead to a decrease in NII. Similarly, negative-gap in a specific pe-
riod of time arises from A(ti, ti+1) < L(ti, ti+1), and when there is negative
gap in near-term bins, it is liabilities repricing before assets. This implies
that long-term assets are funded by short-term liabilities, which is the case in
Figure 10.3. Here an increase in interest rates leads to decrease in NII.

Issues to consider while developing a gap analysis include the time inter-
vals, or bin widths, to consider for determining the gaps. Time slots defined
of varying duration allows focusing the gap in the near-term more closely
than that at distant-future. Therefore, we may construct the gap for up to
one month, (1-3] months, (3-6] months, (6-12] months, (1-3] years, (3-5] years,
and above 5 years, etc. This non-uniform bin-width is the approach taken in
Figure 10.3.

Once gaps are defined, management of risk can be achieved by setting a
gap-limit for specific time-slots. This is the maximum allowable difference be-
tween assets and liabilities within a specific bucket. For example, if short-term
interest rates go up and assets reprice before liabilities in the gap structure,
in the presence of non-parallel shift of the term structure interest rates, the
asset values will fall and gap will narrow down. For the gap dropping below
a gap limit, a response with an appropriate gap management strategy must
be developed. Use of derivatives, such as interest-rate futures, swaps or swap-
tions, can help modify the interest rate sensitivities of assets or liabilities,
thus changing characteristics of the gap risk without changing positions in
the assets or liabilities.

The time intervals or bin-widths for gap analysis may appear arbitrary,
and moreover there could be timing mismatch within a bin. Although a bin is
idealized as one time point, within a bin, in reality an asset may reprice at the
end-time of the bin, whereas a liability may reprice toward the beginning of
the bin. Moreover, when we compare assets with liabilities in their maturity
times in gap analysis, limitations may also appear from the fact that there may
be lag in the timing of interest rate changes as they affect the assets versus
liabilities maturing in a bin. These lags could be due to internal lag in making
decision for increasing loan rates. Finally, many assets, for instance loans, may
have embedded options, such as early repayment of mortgage, or liabilities, as
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early withdrawal from savings account. For including these complexities, the
next tiers of ALM must be implemented. Gap analysis remains attractive for
its simplicity as the first tier of ALM analysis.

10.3.2.2 Cumulative Gap Analysis

While the time intervals or bin-widths of gap analysis may appear arbi-
trary, this can be partially addressed by considering cumulative gaps. Cumu-
lative gap aggregates the gap over several bins to consider the cumulative
impact of asset-liability mismatches. Accumulation of gap over several bins
makes each bin less relevant, while emphasizing how over time assets balance
out with liabilities. Therefore, cumulative gap is defined as,

CG(ti) =

i∑
k=0

(A(tk, tk+1)− L(tk, tk+1)), (10.4)

for i = 0 to i = N , where preferably for the ALM horizon CG(tN ) = 0, since
by the planning horizon, all positive and negative gaps should have canceled
each other out. If, however, the cumulative gap remains negative in the long-
run, this would not bode well for the firm’s long-term viability. Appropriate
response must be constructed in this case towards the firm’s strategy for
managing the cumulative gap.

Cumulative gap complements gap analysis, however it still misses captur-
ing sensitivity of asset and liabilities to different risk factors discussed above.

10.3.2.3 Duration Gap Analysis and Gap Convexity

Gap and cumulative gap analysis are static as far as quantifiable impact of
interest-rate risks or other risks go. It can give some qualitative idea of how the
asset-liability mismatch will change if interest rates change, but falls short of
becoming quantitative regarding this impact. As seen in Chapter 8, duration
is a measure of interest rate sensitivity of any cash flow series. It summarizes
cash flow characteristics taking into account both the size and timing of these
cash flows. It does not hide cash flow timing mismatches within the maturity
bins as gap or cumulative gap analysis can.

We find the market value and duration of the rate-sensitive assets, market
value and duration of the rate-sensitive liabilities. The difference in duration
of assets and liabilities in each bin of gap analysis clarifies what the actual
timing mismatch exists between cash flows of assets and liabilities, and the
extent of interest rate sensitivity this gap carries. Therefore, the duration gap
is defined as,

DG(ti) = DA(ti, ti+1)−DL(ti, ti+1), (10.5)

where DA(ti, ti+1) is the duration of assets maturing in the period (ti, ti+1),
whereas DL(ti, ti+1) is the duration of liabilities maturing in the same period.
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In Section 8.2.3 of Chapter 8, the duration risk measure was used to de-
velop a hedging or risk transfer strategy for obtaining an immunized bond
portfolio. Similarly here, duration and convexity can be used to develop a
hedging strategy for gap risk in bins where the gap risk exceeds risk limits.
Hedging could be done at the macro level, where one type of instrument is
used for a basket of assets or liabilities, or both, or it can be at the micro
level, where a specifically tailored hedge instrument is utilized for hedging the
risk of each asset or liability. Clearly, the former is a coarse approach, while
the latter is painstaking but allows significant customization to the actual
hedging need for each type of risk. One can utilize bond futures, interest rate
swaps, options, swaptions, or interest rate caps and floors, each with its own
advantages, disadvantages, and hedge ratios, as hedge instruments.

Duration as a measure of risk has its shortcomings, the most important
of which is that it only measures first-order impact of interest rate risk, and
only from parallel shifts of the yield curve. Shortcomings of duration as a
measure for immunizing against interest-rate risk carry over to duration gap
analysis. Moreover, only when interest rate changes are small does it provide
an accurate measure of risk. This latter issue can be addressed by similarly
defining gap convexity, which summarizes second-order impact of parallel shift
of the term structure on the gap. Our assumption throughout of applying the
same rate change on assets and liabilities does not incorporate basis risk,
i.e., the interest rates relevant to assets and liabilities may not be perfectly
correlated. The shortcomings of the duration gap and gap convexity analysis
can be eliminated in the third tier of dynamic gap analysis.

10.3.2.4 Dynamic Gap and Long-Term Value at Risk Analysis

ALM related forecasting can be pursued with two themes of analysis, deter-
ministic versus stochastic analysis. The deterministic approach would clearly
be a simpler setup designed to derive some basic intuition of how the balance
sheet may look for the planning period. The deterministic forecast would be
based on the risk manager making explicit assumptions about the interest
rates and other risk factors’ movements, and forecasts for different scenarios
at different time-points in the planning period. These were the tiers of ALM
discussed thus far.

In the stochastic modeling approach of dynamic gap analysis, various fore-
casting models would need to be developed, calibrated and solved, either an-
alytically or by simulation methodologies, to assess the balance sheet charac-
teristics at desired confidence levels over the planning horizon. The modeling
framework additionally allows for simulating the impact of strategic decisions
for asset or liability choices, of hedging strategies, and in determining what
the gap at future time-points might look like. Simulation analysis for a firm’s
balance sheet also allows an assessment of future earnings risk, and the im-
pact of risks on the firm’s earnings can be summarized as earnings-at-risk at
a certain confidence level.
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FIGURE 10.4: Risk types included in balance sheet risk management and
asset-liability management.

In our progression towards dynamic gap approach, duration gap and gap
convexity analysis offered improvements over static gap analysis, at least with
regards to interest-rate sensitivity. However, both frameworks are somewhat
limited, since they do not take into account the fact that the balance sheet
evolves with time, where many more risk factors and issues beyond interest
rate risk determine its health (see Figure 10.4). Inclusion of stochastic mod-
els for risk factors related with other market risks, liquidity risk, and credit
risk shown in Figure 10.4 may also not be enough in some cases. Relevant
risk factors underlying strategic, business, operational, regulatory, and legal
risks may also need to be included for a comprehensive analysis. For instance,
a financial institution may originate new retail products, adopt a new tech-
nology to deliver its products, and maturing assets and/or liabilities may be
rolled over as they approach maturity, not necessarily into instruments with
similar characteristics, or securitization may be adopted in some segments of
assets of the firm. All these aspects should be incorporated in a comprehensive
stochastic analysis in ALM.

Long-term Value at Risk (LT-VaR) is an extension of Value-at-Risk (VaR),
where the time horizon is chosen to be much longer, at least one to several
years depending on the planning horizon for ALM, much on the lines of Credit
Value-at-Risk (Credit VaR). The objective of LT-VaR is to generate the sta-
tistical distribution of net worth of a firm at different time horizons, say next
quarter, end of one or two years, in order to produce the worst-case net worth
at a given confidence level, say 99%. As indicated in Figure 10.1, combining
different horizons into a single analysis is why ALM is a combined strategic-
business-and-operational risk management. Moreover, it is quite comprehen-
sive in its risk types consideration.
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When simulation is used for the purpose of estimating LT-VaR, the fol-
lowing information must be developed for the implementation.

• Correlated term structures of all relevant interest rates.

• Implied volatilities of various instruments in order to price derivatives.

• Stochastic models for evolution of all other relevant risk factors.

• Interest-rate sensitive prepayments of mortgages and other loans, as well
as changes in deposits and savings balances.

• Loan default frequencies and loss given default distributions.

• Renewal/retention or new origination for retail products.

At each step of simulation, pricing models must be used to assess the value
of assets and liabilities at that point of time. The computation then proceeds
as in the case of VaR. That is, we assess the value of assets and liabilities at
present time, as well as after a given amount of time elapses, and construct
the change in value distribution of the stochastic, dynamic gap. Based on this
constructed change in value distribution, the LT-VaR can be determined at
the desired confidence level.

10.3.2.5 Scenario Analysis and Stress Testing

Gap, cumulative gap, and dynamic gap analysis provide insight in qual-
itative and quantitative terms of cash flow weaknesses in the balance sheet
leading to liquidity risk, based on which responses for liquidity risk manage-
ment can be developed. However, liquidity risk can emerge or intensify due
to certain stressed market conditions or sudden exogenous shocks. These sit-
uation can only be anticipated, evaluated, and responded to via a detailed
scenario analysis and stress testing. In today’s highly interconnected financial
institutions, liquidity issues arising in one institution can easily affect other
firms.

Liquidity risk scenarios must be considered from short-term and long-term
perspective. After the financial crisis of 2008, ensuring liquidity buffers for
prolonged and sustained stress scenarios is considered a wise choice. Sce-
nario analysis and stress testing for liquidity risk management should pave
the way for shocking the balance sheet under various scenarios and assump-
tions. This should enable validating liquidity contingency plans, and fine tune
where weaknesses emerge. In order to keep stress testing realistic, it is impor-
tant to ensure that assumptions behind stress scenarios are in anticipation of
changing realities, and capture the impact on liquidity buffers under stressed
conditions. Scenarios for behavioral changes that impact cash flow assump-
tions of a firm must also be included in stress scenarios, early withdrawals,
bank-runs, deposit roll-overs, and prepayment events.

Usually an ALCO, or asset-liability committee, serves as the reviewing
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and approving authority for several key ALM decisions, including balance
sheet structure, gap analysis, capital adequacy ratios, proactive management
of balance sheet, liquidity risk scenarios, and stress testing. Reliability and
accuracy of ALM reports, as well as their dependability for the purposes of
gap forecasts, projected cash-flows, and balance sheet planning are paramount
for achieving the goals of ALM.

Match or mismatch of assets and liabilities and the cash-flows from the
assets and liabilities can be critical for the solvency and creditworthiness of
a firm or subdivisions of a firm. For certain firms, such as banks and insur-
ance companies, asset-liability management makes the core of the firm’s risk
management objectives. We began this section with introducing the risks un-
derlying asset-liability management, which go squarely beyond market risk,
to include credit risk, funding risk, liquidity risk, trading risk, etc. We then
developed tools to assess asset-liability risk and methods to manage them, and
how simulation can be utilized for implementing these tools, especially when
the scope of the asset-liability management is complex. Scenario analysis and
stress testing also significantly aid in asset-liability management to determine
and prepare for the impact of specific conditions on the firm.

10.4 Operational Risk Management

Operational risk is the oldest and yet nearly the newest risk! When com-
pared to many of the risks studied thus far, operational risks are not specu-
lative risks; they don’t have an up-side, only downside. Hence, they are pure
risks. So far the focus on managing these risks has been developing practi-
cal techniques for minimizing the chance of loss, whether this meant putting
security guards or establishing independent internal audit teams, or building
robust computer systems. Putting an economic number on the size of the
operational risks faced, or managing them systematically as a risk class is a
relatively new response, essentially due to regulatory impetuses.

Financial institutions are paying increasingly greater attention to wide-
ranging frameworks for enterprise-wide operational risk management, includ-
ing relating operational risk directly to risk capital. It seemed inappropriate
to leave a whole class of operational risk out of the calculations of risk capital,
which can potentially have very significant, detrimental impact. For oversee-
ing risk management efforts in a firm, along with a chief credit and a chief
market risk officer representation in the overarching risk committees, it seems
logical to have a similar representation of operational risk control.

In the past decades, a series of catastrophic scandals have increasingly
highlighted the importance of operational risk and the need for addressing it
in a more comprehensive manner.
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Nick Leeson and Barings Bank (1995): Founded in 1762, Barings Bank
was Britain’s oldest merchant bank and Queen Elizabeth’s personal
bank. Nick Leeson was employed by Barings to profit from low risk
arbitrage opportunities between derivatives contracts on the Singapore
Mercantile Exchange and Japan’s Osaka Exchange. A scandal ensued
when Leeson left a $1.4 billion hole in Barings’ balance sheet due to his
unauthorized derivatives speculation, causing the 233-year-old bank’s
demise.

Orange County, California (1995): The risky positions of the then
Treasurer-Tax Collector of Orange County, Mr. Robert Citron, led to
the bankruptcy of the county.

Jerome Kerviel, Societe Generale of France (2007): Bank officials claimed
that throughout 2007, Kerviel had been trading profitably in anticipa-
tion of falling market prices; however, they accused him of exceeding
his authority to engage in unauthorized trades totaling as much as 49.9
billion euros, a figure far higher than the bank’s total market capitaliza-
tion. Bank officials claimed that Kerviel tried to conceal the activity by
creating losing trades intentionally so as to offset his early gains.

Kweku Adoboli, UBS trader (Sept 2011): A UBS European equities
trader in London, Mr. Kweku Adoboli, caused the Swiss bank a loss
of over $2 billion, as a result of unauthorized trades. The incident had
raised serious questions regarding the bank’s risk management policies
at a time when it was trying to rebuild its operations and bolster its
flagging client base.

JP Morgan’s trading loss (May 2012): The bank announced a multi-
billion-dollar loss on a soured trade, which is described as a major failure
of the bank’s risk management practices.

JP Morgan, Credit Suisse (Nov 2012): J.P. Morgan Chase & Co and
Credit Suisse Group AG paid a combined $416.9 million to settle U.S.
civil charges that they misled investors in the sale of risky mortgage
bonds prior to the 2008 financial crisis. JP Morgan paid $296.9 million,
while Credit Suisse paid $120 million in a separate case, with the money
going to harmed investors.

The increasing complexity of financial instruments and information sys-
tems increases the potential for operational risk events. Mispricing, ineffective
hedging, and unauthorized actions by employees can result in very large losses
to a firm, not to mention the reputational damage that ensues. Large amounts
of data is processed for running any firm’s operations, and specifically in finan-
cial institutions. Any errors in data feeds can have very significant distortion
in the firm’s assessment of its risks.
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10.4.1 Assessing Operational Risk

To accurately assess these risks, measure them and respond to them re-
quires a precise definition of operational risk. The definition should be so con-
structed that it facilitates comparison of operational risk profile of different
firms. We define operational risk as the risk of loss resulting from inadequate
or failed internal processes, people and systems or from external events. Each
of the components is further elaborated as follows.

People risk: Loss caused due to incompetence, fraud, errors of judgment by
people involved in the firm.

Process risk: This is further subclassified as,

Model risk: Model or methodology error, mark-to-model error, model
implementation or usage error.

Transaction risk: Execution error, product complexity, booking error,
settlement error, documentation, or contract risk.

Operational control risk: Exceeding limits, security risk, or volume
risk.

Systems and Technology risk: System failure, computer breakdowns,
programming error, information risk, telecommunications failure.

Legal risk: Exposure to fines, penalties, punitive damages from supervisory
actions, private settlements.

Above is a long, yet non-exhaustive, list, where the classification serves the
purpose of eliciting this all-pervasive risk type. The list does not include busi-
ness and reputational risk, even though operational risk directly affects these
risk types of a firm.

In order to create a clear demarcation between what qualifies as loss due to
operational risk and what does not, losses should not include cost of controls,
preventive actions, quality assurance, or investments in upgrades, new systems
or processes. These are essentially risk management responses developed as
per the firm’s risk appetite for operational risk. A caution is needed to avoid
double counting a risk as market, credit, business, as well as operational. For
instance, if a loan officer extends a bad loan against bank guidelines, any loss
arising from this must be treated as operational loss, and not credit loss.

Having defined operational risk and its major subtypes, we must next iden-
tify event types so that the extent of loss from these events can be estimated.
A taxonomy of drivers of operational risk, as developed in the Basel capital
accord, contains the following seven loss event types.

1. Internal fraud. This includes acts to defraud, misappropriate property,
circumvent regulations, the law, company policy. For example, inten-
tional misreporting, employee theft, insider trading.
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2. External fraud. These are acts of a third party that defraud, misappro-
priate property, or circumvent the law. For example, robbery, forgery,
damage from computer hacking.

3. Employment practices and workplace safety. Here acts inconsistent with
employment, health and safety laws or agreements are included.

4. Clients, products, and business practices. Loss arising from uninten-
tional or negligent failure to meet a professional obligation to specific
client or nature or design of product. For example, misuse of customer
information.

5. Damage to physical assets. These are events of natural disasters or other
events, such as terrorism, vandalism, earthquakes, fire, floods.

6. Business disruption and system failures. Loss arising from business dis-
ruption or system failures. For example, hardware or software failures,
telecommunication problems, utility outages.

7. Execution, delivery and process management. Failed transaction pro-
cessing, process management, relations with trade counterparties or ven-
dors. For example, data entry errors, collateral management failures,
incomplete legal documentation.

Quantifying operational risk is a key challenge in implementing any op-
erational risk management framework. Defining and classifying operational
losses that may arise from the risk helps. Due to its all-pervasiveness, lack of
rigor and process would make assigning numbers and developing a meaningful
risk management response for operational risk impossible. Operational losses
should be as specific as possible, which we can define in three key terms – cost
to fix, write-downs, and resolution expense.

Cost-to-fix: This is best defined to include only external payments that are
directly linked to the operational risk incident. For example, legal costs,
consultancy costs, costs of hiring temporary staff.

Write-down: This is the loss or impairment in the value of any financial or
nonfinancial assets owned by the firm due to the operational risk event.

Resolution expense: Finally, cost incurred for the process of correcting the
individual event, including out-of-pocket costs and write-downs, and re-
turning to a position or standard comparable to the firm’s original state
before the loss event, including restitution payments to third parties.

With the above assessment of components of loss due to specific operational
risk events, the total cost of a specific operational risk event type can be
estimated as:

Operational Loss = payments to third parties + cost to fix
+ write-downs + resolution expense.
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In an operational loss model, besides the extent of loss estimation from differ-
ent types of operational risk events, for measuring the impact of operational
risk, we also need to assess the frequency with which these events are expected
to occur. The combined frequency of loss and level of loss from operational
risk events produces a complete loss model for operational risk. Data from loss
events, either internally available or acquired from external sources, is crucial
to develop such models.

10.4.2 Managing Operational Risk

Managing operational risk is just as difficult, if not more, as measuring
it. With larger size, broader spread and complex structure of organization of
a firm, and its products and services, the problem becomes that much more
challenging. Adopting a sound and rigorous approach to estimating and devel-
oping loss models for operational risk is the first essential step. However, this
must be complemented with a detailed set of guidelines that aid the risk man-
agement process. The following eight key elements are useful in constructing
this guideline.

1. Common language and agreed-upon terminology for risk identification -
people risk, process risk, system and technology risk - must be identified
for qualitative self-assessment or statistical assessment.

2. Business process maps make the business process associated with the
firm’s dealings with clients, suppliers and customers, so that this is trans-
parent to management and auditors. The process map may be extended
to create a full operational risk catalogue, describing people, process,
systems, and technology risk arising from each organizational unit.

3. Choice of risk metrics for operational risk must be made, using quan-
titative methodology based on historical loss experience and scenario
analysis, to derive loss frequency and loss severity distributions.

4. Establish clear guidelines for practices that monitor, control or reduce
operational risk. For instance, from the point of view of an investment
bank that runs several trading desks, this may translate to policy guide-
lines about the following. Establish policies on

(a) traders and back-office segregation

(b) out-of-hours trading

(c) off-premises trading

(d) legal document vetting

(e) vetting of pricing models that underpin trading decisions, etc.

Some of these are defined, encouraged or required by regulators, others
will be created to define best practices of the firm.
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5. Managing operational risk exposure with appropriate actions to reduce
or hedge operational risk. This involves considering the cost-benefit
trade-off for insuring for those operational risks that can be insured.
Since far from all operational risks are insurable, risk reduction or mit-
igation is also important response to consider.

6. Identifying a risk management reporting scheme, that is which risks and
responses to report more usefully and to whom - senior management,
the board for firm-wide operational risk profile, to operations and ad-
ministration committee, or capital and risk committees.

7. Tools for risk analysis and procedures for when these tools should be
deployed. Appropriate measures, up-to-date databases of internal and
industry-wide operational loss data, well-designed scenario analysis, and
a deep understanding of key risk drivers in the firm’s business lines. All
these should feed into risk financing of retained risk in the calculation
of operational Value-at-Risk (OpVaR).

8. Finally, appropriate attribution of operational risk capital to every busi-
ness, which creates proactive incentives for operational risk manage-
ment.

The risk management response to operational risk is exactly as we have
applied to all other risk types considered so far: avoid-mitigate-transfer-keep.
In order to create the response strategy, we need to evaluate efficacy of mit-
igate, transfer and avoid responses. Further for the monitoring and control
of retained operational risk, a measure must be created that evaluates the
joint impact of all operational risks in one metric. We explore operational
Value-at-Risk, or OpVaR.

10.4.2.1 Risk Measures for Operational Risk

The Advanced Measurement Approach (AMA) is the proposed method
for computing operational Value-at-Risk, or OpVaR, based on analytical tech-
niques that are widely used in the insurance industry to measure the financial
impact of an operational failure. The aim is the determination of OpVaR, for
which we need to determine the following for the retained operational risk
types and events.

1. The expected loss from operational failures

2. The worst-case loss at a desired confidence level

3. Required economic capital for operational risk

4. Concentration of operational risk

The firm’s activities are divided into Lines of Business (LoB), and for each line
of business an Exposure Indicator (EI) is assigned. The EI is determined from



Strategic, Business, and Operational Risk Management 397

Keep

Operational Loss Severity

O
p
e
ra

ti
o
n
a
l 
L
o
s
s
 F

re
q
u
e
n
c
y

Mitigate

Transfer

Avoid

UnexpectedExpected

FIGURE 10.5: Classification of operational risk by severity and frequency
to guide through developing a risk response strategy.

probability of operational risk events in that LoB, as discussed earlier. We term
this probability of event, or PE. We also need the estimates of loss given events
(LGE) for that LoB, which was also discussed in Section 10.4.1. The EI for
all LoB’s are combined to create the firm’s operational risk distribution, and
from that OpVaR is computed at the desired confidence level. Alternatively,
OpVaR can be computed for each LoB separately in order to obtain insight
regarding relative riskiness of each LoB.

10.4.2.2 Operational Risk Management Strategy

For generating the avoid-mitigate-transfer-keep strategy for operational
risk, we need to classify losses from operational risk events into a) expected,
b) unexpected level. This nomenclature is used to simply bisect the overall
loss distribution into segments. The expected losses may be absorbed as cost
of doing business. These failures may be explicitly or implicitly budgeted for
in the annual business plan and covered by the pricing of the products and
services. Therefore, there is no need to try to allocate risk capital against it.
Therefore, the expected loss is kept and funded as regular cost of conducting
business. The unexpected losses, however, are large enough that a response
strategy must be developed for these, including assigning risk capital for kept
unexpected losses. Figure 10.5 sketches the classification of operational risk by
severity and frequency to guide through developing a risk response strategy.
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For developing a risk management response to each operational risk type,
the unexpected losses can be further subdivided into:

Severe loss: These are severe losses from operational risk events, but not
catastrophic. Unexpected severe operational failures should be either
mitigated to reduce their harmful impact or covered by an appropriate
allocation of operational risk capital.

Catastrophic losses: These are the most severe, but also the rarest oper-
ational risk events. However, it is the kind that can destroy the firm
entirely. Firms would want to tighten procedures to protect themselves
against catastrophic events, which is the avoid response of a risk man-
agement strategy. Alternatively, they should consider using insurance
contracts or alternative risk transfer mechanisms to transfer these catas-
trophic risks. Keeping these risks and safeguarding against them using
risk capital may not be feasible due to the sheer magnitude of their im-
pact. If transfer is not feasible, the catastrophic risks should be avoided.

The equi-expected-loss curve in Figure 10.5 gives an acceptable level of
expected loss; management should take appropriate action to mitigate risks
located above the curve. Operational risk is pure risk, therefore more op-
erational risk does not provide higher reward, it only destroys value for all
security holders of the firm. But attempting to mitigate all operational risks
is prohibitively costly, therefore transfer or avoid responses must be invoked
where needed.

Insurance has been historically used to transfer the effects of key opera-
tional risk events. For instance, a firm may purchase insurance to protect itself
from large single losses arising from acts of employee dishonesty, robbery and
theft, loans made against counterfeit securities, and various forms of com-
puter crimes. These are low-probability, high-severity losses. Policies may also
be available for lawsuits and major disasters, such as fire and earthquakes.
However, insurance is a mechanism for pooling and transferring common loss
exposures with the industry or across economies, which we will study in greater
detail in the next chapter.

Availability of insurance for specific risks therefore depends on the ability
of an insurer or group of insurers to generate sufficient premium volume and
an adequate dispersion of risk to make a market and enable them to take on
the risk of others. It also depends on the insurer’s ability to avoid the problem
of moral hazard, i.e., the insured should have a strong interest in preventing
any costly events. Insurance deductibles are one way for insurance providers to
protect themselves against moral hazard. If the policies are not implemented
in honesty, they may get canceled or not be renewed. Problems may also arise
for the insured in the form of counterparty risk if the insurance provider is not
able to pay the benefits at the occurrence of insured risks. Therefore insurance
is a mechanism of transfer for operational risk, but it has its limitations.

Finally, the operational risk retained by the firm must be supported by
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risk capital. Mechanism for attributing capital to operational risk should be
risk-based, transparent, scalable and fair. Capital requirements and policies
should vary directly with levels of verifiable risk, provide incentive to manage
operational risk, improve operational decisions, and should be incorporated in
the determination of risk-adjusted return on capital.

10.5 Summary

In this chapter, we covered the spectrum of strategic, business, and oper-
ational risks of a firm. Clearly, managing these risks is not only of paramount
importance to firms in the financial sector, but is important to address for
any firm of any size. We differentiated the three risk segments by their time-
stamps. Operational risk is the risk of here-and-now, business risk being the
risk of running the operations of a firm profitably for the next year or so, while
strategic risk addresses risks that will impact the firm in the long-run. The
boundaries between the three risk types are not very crisp and the time-stamps
of here-and-now, one year, and the long-run can have a significant overlap.
Moreover, not all risk management problems for these three risk types can be
addressed in a quantitative setting. Therefore, in this chapter, we started with
first distinguishing between the three risk types, along with highlighting where
the boundaries between them blur. This was followed by identifying specific
issues under each of the three risk types and picking specific example contexts
where a quantitative analysis holds merit. We elucidated how simulation can
be useful in addressing these quantitative problems of risk management for
strategic, business, and operational risk. We used this context to develop the
asset-liability management framework for financial institutions, which inter-
twines the three segments for balance sheet management of the firm.

10.6 Questions and Exercises

Review Questions

1. What is strategic risk management? How does it relate to business risk
and operational risk management?

2. What are the Modigliani-Miller results for corporate risk management?

3. Why do firms engage in risk management?

4. What are the major components of strategic risk management for a firm?
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5. What are the objectives of strategic risk management?

6. How are ‘avoid’ and ‘keep’ decisions made in capital budgeting?

7. What is a major source of destruction of a firm’s value? How can this
be avoided?

8. What are alternative risk transfer tools?

9. What are real options? How are they useful in strategic risk manage-
ment?

10. How are futures prices related with spot prices? When do we see a
contango? What is backwardation?

11. What is meant by the term structure of futures prices?

12. How can structured liabilities be useful for strategic risk management?

13. When do firms fail in strategic risk management?

14. What are the different components of business risk management?

15. How does business risk management respond to demand risk?

16. How can competition risk be managed?

17. How can real options methodology be helpful in business risk manage-
ment?

18. How can business risk relate to market risk or credit risk? Give examples
and discuss.

19. How is liquidity risk management related with business risk?

20. What is asset-liability management? What kind of firms can benefit from
explicit efforts for ALM?

21. What are the major components of asset-liability management?

22. What is structural gap?

23. What are the net interest income and net worth of a bank?

24. Why is interest rate risk considered important for ALM?

25. What is gap analysis?

26. What is cumulative gap analysis? How is it an improvement over gap
analysis?

27. What is duration gap analysis? How is this an improvement over gap
analysis?
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28. What is LT-VaR? How is this an improvement over all other methods
of conducting ALM?

29. How can stress testing and scenario analysis be helpful in ALM?

30. What is operational risk? Investigate some historical instances of oper-
ational risk and discuss their impact.

31. What are the different sources of operational risk for a firm? Discuss the
taxonomy of operational risks?

32. How is operational risk quantified?

33. What are the guidelines for managing operational risks?

34. What is Operational Value-at-Risk (OpVaR)? How is it computed for a
line of business (LoB) of a firm and for the entire firm?

35. Why is operational risk segmented into expected and unexpected levels?

36. How are expected operational risks managed?

37. How are unexpected operational risks managed?

38. What role does insurance play in the management of operational risk?

39. What is OpRisk capital? What is it used for?

Exercises

1. The Dord Motors company is considering introducing a new sports
car model, named The Racer. The management is trying to assess the
prospects for this new model. While understanding the project’s prof-
itability is a difficult task, it is an important task before the project is
taken up. For this purpose, they have put together estimates for fixed
and variable costs, projected future sales and prices at which they in-
tend to sell this model. Each of these project features are described in
a model, as follows.

• Fixed cost of developing The Racer is equally likely to be either $3
or $5 billion.

• Variable cost per car manufactured for the first three years are:
For year 1 it is equally likely to be $5000 or $8000, for year 2 it is
going to be 1.05 ∗ (year 1 variable cost), for year 3 it is going to be
1.05 ∗ (year 2 variable cost).

• Sales projections are determined as average sales in year 1 as
200,000, with a standard deviation of 50,000 cars. A normal dis-
tribution is chosen to describe year 1 sales. Average sales of year
2 and 3 are expected to be at the sales level of the previous year,
with a standard deviation of 50,000 cars.
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• Pricing for year 1 is set at $13,000. Years 2 and 3 prices will be de-
termined based on the previous year’s price and sales. Specifically,
year 2 price = 1.05 ∗ (year 1 price)+$30∗(percentage by which year
1 sales exceed expected year 1 sales), year 3 price = 1.05 ∗ (year 2
price)+$30∗(percentage by which year 2 sales exceed expected year
2 sales).

Set up a simulation based assessment framework in MATLAB for the
management’s evaluation of the profitability of The Racer.

2. An oil company has a finite period lease to drill on an unexplored piece
of land with potential reserves, and suppose the following investment
costs must be incurred for various interrelated activities.

(a) The land can be explored for cost Ie any time between t0 to t1.

(b) Construction cost Ic will be incurred for processing facility com-
menced at time t2, where construction will be done only if oil re-
serves are discovered at or before t1.

(c) Construction of the processing facility may be terminated at any
time before its completion at t3.

(d) During construction, from t2 to t3, management can reduce the
scale of extraction facility by α percent and recover a portion Ik of
its latest outlay if demand is perceived to be weak.

(e) After the facility is in production at t4, management can expand
scale of the facility by β percent for an additional investment Iβ .

(f) After the facility is in production at t4, management can temporar-
ily shutdown the plant for one period by paying its variable oper-
ating cost during that period, Iv.

(g) After the facility is in production at t4, management can abandon
the plant and sell the assets or switch the assets to an alternative
use for value Va.

Construct and discuss all the real options embedded in the above
prospects for the oil company.

3. Conduct an asset-liability analysis for the following balance sheet.

Assets: These constitute US Treasury bonds.

• US T-Bonds, Maturity 2-years, Yield 0.25%: $256,125,000

• US T-Bonds, Maturity 5-years, Yield 0.76%: $95,625,000

• US T-Bonds, Maturity 10-years, Yield 1.84%: $230,190,000

Liabilities: These constitute short-term liabilities and equity.



Strategic, Business, and Operational Risk Management 403

• 3-Month LIBOR: $538,295,000

• Equity: $43,645,000

Conduct a gap, duration gap, gap convexity, and dynamic gap analysis
for the above balance sheet.

4. Consider the following distributional fits for loss frequency and loss
severity of 5 operational risks identified in a line of business (LoB) of a
firm.

(a) N1t ∼ Po(λ), Poisson distribution with λ = 15 per year; L1 ∼
Weibull(a, b) with scale parameter a = 5 and shape parameter b =
0.8

(b) N2t ∼ Po(λ), Poisson distribution with λ = 20 per year; L2 ∼
χ2(ν) Chi-square distribution with degrees of freedom ν = 25

(c) N3t ∼ Bin(n, p), Binomial distribution with n = 50 and p = 0.05;
L3 ∼ Lognormal distribution with mean µL = 100 and standard
deviation σL = 15

(d) N4t ∼ NegBin(r, p), Negative Binomial distribution with r = 20
and p = 0.13; L4 ∼ Gamma distribution with shape parameter
a = 5 and scale parameter b = 5

(e) N5t ∼ Bin(n, p), Binomial distribution with n = 5 and p = 0.2;
L5 ∼Weibull(a, b) with scale parameter a = 500 and shape param-
eter b = 0.8

Construct a quantitative assessment in MATLAB of the total annual
loss of each operational risk, as well as the grand total annual loss from
all the operational risks of the LoB combined.

5. In the frequency-severity dimensions of operational loss events, if we
coarsely consider two levels - high-low, give examples of operational risks
due to people, process, system, and technology in each of the following
cases.

(a) Risk Profile: (low, low); Risk Management Response: Retain.

(b) Risk Profile: (low, high); Risk Management Response: Insurance or
Non-insurance transfer.

(c) Risk Profile: (high, low); Risk Management Response: Loss preven-
tion and control.

(d) Risk Profile: (high, high); Risk Management Response: Avoid.

6. For a severity-frequency curve for operational risk given by the following
relation

N̄2

2300 ∗ L̄0.2
(10.6)
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make the avoid-mitigate-transfer-keep decisions for the risks in Exercise
4. N̄ is expressed as number of occurrences per year and L̄ is the total
dollar loss per occurrence.



Chapter 11

Risk Management Using Insurance

Insurance is the transfer of that risk which we mostly don’t like to think
about, but should the need arise, we desperately hope we had thought of and
prepared for it sooner. The goal of risk management using insurance is that we
are well prepared on such occasions to eliminate harsh surprises and facilitate
easier recovery. If we think of insurance as a concept of spreading the risk, then
insurance has been utilized from the advent of human societies. Any device
put in place to recover from an adverse event of fire, flood, wild-cat attack
etc., by extending support to the suffering unit to recover from the event in
material and/or emotional terms is essentially the concept of insurance.

With time, as societies became more complex and enterprises more sophis-
ticated, there are numerous examples of safety nets being put in place by the
rulers of the time or certain trade groups to improve well-being of the subjects
or to encourage better commerce. The concept of a formal insurance contract,
and its widespread availability and demand, is a more modern phenomenon.
According to the fact sheet of The Geneva Association, a leading international
think tank of the insurance industry, the global financial assets under man-
agement of insurers in 2009 were valued at US$22.6 trillion, which was 12%
of global financial assets in 2009. While the worldwide insurance premium
volume in 2009 stood at US$ 4.34 trillion, which is equivalent to almost 7.0%
of global GDP. From these figures, it is clear that insurance has come a long
way from its humble beginnings to becoming a massive worldwide industry
today.

In order to consider insurance for risk management, we will need to look
back at the risk management process developed in Chapter 2. Even though
we are considering insurance for risk management at this late stage in the
book, the traditional view of risk management primarily revolved around in-
surance serving as a key mechanism for management of risks. This was before
derivative markets and the plethora of derivative instruments for every kind of
speculative risk took off, which required and supported expanding the scope
of risk management to speculative risks. Nevertheless, individuals, households
and firms continue to consider insurance as the fundamental tool for risk
management. The utilization and innovation of insurance products remains
unabated, which explains the volume of the industry today.

One difference is that the traditional view of risk management focused on
what we call ‘pure’ risk, while modern risk management doesn’t make that
rigid a distinction, since the boundaries between ‘pure’ and ‘speculative’ risk
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aren’t that obvious and clear. Commodity prices, interest rate risk or credit
risk exposure of a firm may not be due to speculative decisions of some busi-
ness unit of a firm, instead these exposures may be integral to the unit’s
operations. For example, a farmer’s exposure to interest rates or commodity
price risk, a bank’s exposure to interest rates or credit risk, an airline com-
pany’s exposures to interest rates and jet oil price risk are unavoidable to the
enterprise’s core business. Moreover, one may have argued that credit risk, at
least as it pertains to occurrence of default or bankruptcy, is more akin to
pure risk, since it has two states, ‘neutral’ and ‘unfavorable.’ Yet a variety of
instruments, as discussed in Chapter 9, allow for speculation of credit risk.
Later in this chapter, we will examine other pure risks that are edging into
the speculative territory.

We also note that all pure risks are not operational in nature. In the
last chapter, issues regarding operational risk were discussed, along with the
development of methods for operational risk management. Operational risks
were defined as risks that don’t have an up-side, only downside that disrupts
‘business as usual.’ We make a distinction here that while all operational
risks are of the pure kind, all pure risks are not operational. Pure risk can
be strategic in nature, for instance there is a definite certainty that death
will be experienced by all, when that happens may be in the distant future.
Therefore, for risk management of mortality and longevity risk, one must
adopt a strategic perspective. Similarly, pure risk can be a business risk, in
that a large citrus farm must determine the annual damage to crop anticipated
due to hurricanes and incorporate its management as business risk.

With the explosion in risk types to consider for risk management, the mod-
ern view of risk management has created the concept of enterprise-wide risk
management, or simply enterprise risk management (ERM), where attempts
are made to integrally consider and manage all the dimensions and sources
of risks in a comprehensive and consistent way for a firm, as discussed in
Chapter 10. While this is an ambitious goal, it is a worthy one, given the high
interconnectedness of risk exposures in today’s world with changing charac-
teristics and evolving boundaries between them. We have so far seen issues
related with management of several risk components of the ERM spectrum.
We now bring back the traditional view of risk management within the fold
of the modern view of risk management, by studying the role of insurance
in risk management. Insurance, as a pure risk transfer mechanism, plays an
important role in the ERM spectrum, for a variety of types of firms, as well
as for individuals and households.

In this chapter, we will begin with a discussion of basic concepts in insur-
ance. This will include developing an extended classification of pure risk, with
a view to develop a basic understanding of the insurance industry. This will
be followed by developing a formal analysis for the basis of design of insur-
ance contracts. As stated earlier, the notion of spreading of risk pre-existed
the creation of formal insurance contract. We will investigate the mathemat-
ical principle that makes insurance work. This will be followed by creating
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a framework for making risk management decisions that utilize insurance,
along with presenting detailed examples for modeling risk in specific impor-
tant contexts. Finally, we will shift our attention to considering risk man-
agement for an insurer. Specifically, we will consider the pricing, investment,
asset-liability management, securitization, and reinsurance decisions of an in-
surance provider from a risk management perspective.

11.1 Basic Concepts of Insurance

In the world of insurance the focus is on loss, and to avoid losses. This is in
contrast to the risk-reward trade-off perspective of modern risk management,
where risk may be sought to improve prospect of higher reward. For recon-
ciling the emphasis on losses in the case of insurance and our prior emphasis
on risk-return trade-off for risk management, a redefinition of risk may be re-
quired, as the likelihood of suffering loss due to occurrence of certain events.
In the broader view of risk management, however, we had defined risk as the
variability that can be quantified in terms of probabilities. Since the earlier,
broader definition makes no reference to gain or loss, it is in fact inclusive of
this narrower definition.

We still need the distinction we made in Chapter 1 between pure risk
versus speculative risk, even though in some cases the distinction between
the two is somewhat blur. Pure risk pertains to situations in which there are
only possibilities of loss or no loss, i.e., outcomes are either adverse (cause
loss) or are neutral (no loss). Examples we include here are premature death,
job-related accidents, catastrophic medical expense, damage to property due
to fire, lightning, flood, or earthquake. While speculative risk is where both
profit or loss can occur. We have seen many examples of speculative risks in
all the chapters thus far, various market risks, equity price risk, interest rate
risk, strategic, and business risk, etc.

For our study of insurance, we further classify pure risk into the following
three categories.

Personal: Personal risks are risks to the well-being of an individual or mem-
bers of a household. Risk of poor health (health insurance), premature
death (life insurance), insufficient income during retirement (annuities,
social security), and unemployment (government programs), are some
examples of personal risks. For each risk we have listed (in parenthe-
ses) the plausible insurance product that may be used to alleviate the
personal risk.

Property: Individuals, households, and firms own property and physical as-
sets that are exposed to the risk that they will suffer damage or loss due
to various causes, such as fire, lightning, hurricane, earthquake, flood,
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vandalism, break-in, etc. These events can result in direct loss due to
damage to the property or physical asset. Moreover, they may result in
additional indirect loss due to the property or asset not being available
for use. This is the opportunity cost of the asset. A third category, which
may not be as evident at first thought, but is at least as important as
the previous two categories of pure risk is the liability risk due to pure
loss events.

Liability: An individual or a firm is legally liable if something he or it does
results in personal harm or property damage to someone else. This con-
sideration in pure risk category is very important, since for liability risk
there is no upper limit on the amount of loss it can result. As a result, a
lien can be placed on an individual’s income, or a firm’s physical and/or
financial assets, to satisfy the legal judgment. Legal defense costs, which
can be enormous, are an additional cost burden.

Our perceptions of risk very significantly guide our decision making regard-
ing them. With this in mind, it is important to make a distinction between
objective versus subjective risks and probabilities. We had already made this
distinction in Chapter 2, highlighting the fact that our beliefs and experience
lends us some subjective views regarding likelihood of events, which can have
a role to play in the decision making for risk management.

Objective risk: It is a risk that can be assessed based on quantifiable, past
observations. These observations provide an undisputed judgement of
degree of variation in the actual loss. Objective probabilities are the
long-run relative frequency of an event based on the assumption that
the number of observations seen are representative of the population of
such events, and that there is no change in the underlying conditions for
the occurrence of the event.

Subjective risk: A person’s perspective of uncertainty about the future oc-
currence of loss events, which could be affected by the person’s past
experience, state of mind, and mental attitude. Subjective probabilities
that quantify the subjective risk are an individual’s personal estimate
of the chance of loss.

The subjective view of risk was not deemed irrelevant in our earlier discussion
in Chapter 2. In fact, respecting the subjective view was considered specifi-
cally important in the case of unavailability of relevant or insufficient data for
undisputed judgement of the likelihood of risks, which is when the boundary
between objective and subjective probabilities becomes unclear.

Pure risk events occur and cause loss to person or property, or result in a
liability. In order to sharpen our ability to refer to the source of this loss, we
distinguish between peril and hazard.

Peril: It is the cause of loss to person, property, or resulting in a liability
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related loss. For example, in the case of fire burning down a house, fire
is the peril, the cause of loss. The fire spreading into the neighborhood
can create liability loss. Common perils that cause property damage
include fire, lightning, windstorm, hail, tornadoes, earthquakes, theft,
and burglary.

Hazard: Conditions or features of the property or person that creates or
increases the chance of loss are hazards. Hazards can be further classified
into three categories.

Physical Hazard: A physical condition that increases the chance of
loss.

Moral Hazard: A behavioral condition, such as dishonesty or charac-
ter defect in an individual, that increases the chance of loss.

Morale Hazard: A fine distinction with ‘ moral hazard,’ carelessness
or indifference to a loss because of the existence of insurance.

Finally, in order to start our examination of insurability of pure risk and
the ability of an enterprise to provide this insurance, we make a distinction
between fundamental versus particular risk. There are a wide variety of pure
risks, not all of which are readily insurable. The following distinction is crucial
to move forward with the identification of pure risks that are more favorably
managed by insurance.

Fundamental Risk: The risk that affects the entire economy or a large num-
ber of persons or groups within an economy. Examples of fundamental
risk include, rapid inflation, cyclical unemployment, war, major hurri-
canes, and devastating earthquakes.

Particular Risk: The risk that affects only individuals, not an entire com-
munity. For example, car theft, residential fire, and health risk.

Fundamental risks have a more severe, widespread impact. Therefore, they
may require government assistance in management and recovery. In the above
discussion, we have provided the most important terminology and classifica-
tion of pure risk to support the development of risk management using insur-
ance in the rest of this chapter. Additional details on the above classifications
of pure risks can be found in Rejda [70].

11.2 Principle behind Insurance

The American Risk and Insurance Association (ARIA) defines insurance
as the pooling of fortuitous losses by transfer of such risks to insurers, who
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agree to indemnify insureds for such losses, to provide other pecuniary benefits
on their occurrence, or to render services connected with the risk. This is a
very concise and complete definition, since it summarizes what insurance is
and does with a carefully selected choice of words. In this section we explore
what each of these words means, and using this as a context describe the key
principle that makes insurance work.

11.2.1 Characteristics of Insurance and Insurable Risk

An insured is an individual, household or firm seeking protection from
pure risk under an insurance contract. An insured seeks to use insurance for
its ability to transfer pure risk to the insurer as per the insurance contract.
The insured does this transfer of pure risk with the hope that the insurer is
financially stronger than the insured to bear the loss, and will pay for the loss.

Paying for the loss is indemnification. Indemnification is when the insurer
helps restore the insured to his/her approximate financial position prior to
the occurrence of the loss. Clearly, this transfer of pure risk is effected for a
price. The insured pays a periodic, or in some cases a lump-sum, premium for
the purchase of this protection from pure risk.

The basic principle behind insurance provision is the pooling of losses due
to pure risk events. Pooling of losses is the process of spreading of losses
incurred due to pure risk events experienced by a few over the entire group.
Therefore, the insurer makes a business case by having a large set of customers
transfer their pure risk (of a very specific kind) over to the insurer, where at
a time only a small fraction of the insured will experience a loss event. The
accumulated premium collected from the larger group of customers can be
used to indemnify the few who suffer the loss.

This spreading of loss can be done viably by the insurer only if the payment
towards indemnification is for fortuitous losses. Insurance is meant to pay
for fortuitous loss, ones that are unforeseen and unexpected, and occur as
a result of chance. If losses are intentional, and not accidental, insurance is
unlikely to be feasible. Losses being accidental is one of the prerequisites of
the fundamental mathematical principle that supports insurance, namely the
law of large numbers.

11.2.1.1 Law of Large Numbers

Let’s now examine the spreading of losses by pooling a large number of
exposure units more closely. If the loss of each insured in a given period of
time, say annually, is a random variable Li, then summing Li’s for many
insureds, say N of them, results in the average annual loss experienced by the
insurer to be, L̄ =

∑N
i=1

Li

N . The weak law of large numbers states that,

lim
N→∞

P (|L̄− µ| > ϵ) = 0, (11.1)
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where µ = E[Li] for each i. In other words, this states that the (sample) av-
erage loss experienced by the insurer converges in probability to the expected
value of loss from each individual exposure unit. The strong law of large num-
bers makes a stronger claim by stating that the convergence is an almost sure
convergence. In particular,

P ( lim
N→∞

L̄ = µ) = 1, (11.2)

which implies that the sample average loss converges almost surely to the ex-
pected value of loss from each individual exposure unit. Therefore, the two
versions of the law of large numbers give the insurer increasing degree of assur-
ance that only having a large pool of exposure units is enough for predicting
the average loss experienced. Stated slightly differently, the law of large num-
bers gives,

P ( lim
N→∞

NL̄ = Nµ) = 1, (11.3)

where NL̄ =
∑N

i=1 Li is the total loss experienced by the insurer. Therefore,
the insurer has increasingly accurate estimate of total loss experienced as the
size of the pool of insureds gets larger.

The weak or strong law of large numbers (LLN) have given asymptotic
assurances, i.e., what will happen if there are ‘infinite’ customers in the pool.
However, in reality it is feasible to only have finite, hopefully very large, num-
ber of exposure units in a pool. In this situation, what can be said about how
much variability will there be in actual total loss experienced by the insurer.
A related result to the law of large numbers provides some insight regarding
this question.

Consider the central limit theorem, which we stated in Section 1.2.2.3 of
Chapter 1. For applying the central limit theorem, we would need that the loss
experience of individual exposure units, Li, are independent and identically
distributed. It can then be shown that the total loss, TL =

∑N
i=1 Li is ap-

proximately normally distributed, with E[TL] = Nµ and standard deviation
of TL =

√
Nσ, where σ =

√
var(Li).

This implies that the total loss, TL, on average increases at the rate of
number of insured, but with increasingly lowered variability. This means a
more accurate estimate of future losses can be created as the pool of insureds
is increased. In this process, average loss can be substituted for actual loss.
Therefore, if losses from individual exposure units have a mean loss level (µ)
that is not too high, this is good for the mean level of the pooled losses (Nµ).
In Figure 11.1, we have displayed the impact of growing customer pool on the
distribution of the average loss. Even while the individual loss distribution is
far from symmetric and normal, as shown by the density plot in the left-most
panel of the figure, the average loss looks increasingly normal for a larger pool.



412 Risk Management and Simulation

0 50 100
0

0.02

0.04

0.06

0.08

0.1

x

c
h

i-
s
q

u
a
re

 p
ro

b
a
b

il
it

y
 d

e
n

s
it

y

Individual Loss Distribution

5 10 15 20
0

50

100

150

200

250

300

average loss

N = 10

9 9.5 10 10.5
0

50

100

150

200

250

300

average loss

N = 1000

9.95 10 10.05
0

50

100

150

200

250

average loss

N = 100000

0 50 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

W
e
ib

u
ll
 p

ro
b

a
b

il
it

y
 d

e
n

s
it

y

Individual Loss Distribution

0 10 20
0

50

100

150

200

250

300

350

average loss

N = 10

5 5.5 6 6.5
0

50

100

150

200

250

average loss

N = 1000

5.6 5.7 5.8
0

50

100

150

200

250

average loss

N = 100000

FIGURE 11.1: Display of the law of large numbers for two individual loss
distributions.
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11.2.1.2 Requirement of Insurable Risk

With an understanding of the fundamental principle that can support the
design of an insurance product, we can now elaborate on the characteristics
of a pure risk that has the potential of being insurable. Let’s discuss each
characteristic in detail to clarify when insurance works and why.

• The law of large numbers is a result for random variables. If losses from
exposure units are intentional, the insurer would not be able to sup-
port the indemnification of all such losses, and the insurance contract
will not be honored. Therefore, insurable losses must be accidental and
unintentional.

• Before an insurer can design an insurance product that is viable, it must
do extensive analysis of viability of the product. This requires access to
data from past experience of loss due to the underlying pure risk. Once
the contract is put in place, the loss must be measurable and quantifiable
so that the indemnification can be performed. Therefore, losses must be
determinable and measurable, and chance of loss must be calculable.
Insurer must be able to calculate both average frequency and average
severity of future losses with some accuracy. This will be necessary to
assess the benefit of pooling, so that the necessary premium can be
charged that is sufficient to pay all claims and expenses and yield a
profit during policy period.

• The law of large numbers is an asymptotic result, therefore for its con-
clusions to hold, arbitrarily large number of exposure units are desirable.
Therefore, large number of exposure units are necessary for insurability
of a pure risk.

• For insurability, losses should ideally not be catastrophic. This means
that the average loss of a single exposure unit (µ) should not be astro-
nomical and a large number of exposure units should not incur losses
at the same time. The correlation between losses from exposure units
should be low, otherwise the LLN would not apply. If the mean loss of
a single exposure unit is too high, in order to support indemnification
of the incurred losses, it will be necessary to increase the insurance pre-
mium to prohibitively high levels. That is why in case of catastrophic
losses, reinsurance becomes relevant and useful. Geographic diversifica-
tion can also help introduce lower correlation between sub-pools. New fi-
nancial instruments are becoming available for catastrophic losses, such
as cat bonds, catastrophe insurance options, and weather derivatives,
which we will examine later in this chapter.

• Finally, related to the previous point, the insurance premium must be
economically feasible. For insurance to be an attractive mechanism for
risk transfer, the premium should be substantially lower than the face
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value or the coverage of the insurance contract, and should be signifi-
cantly lower than the amount of policy benefits in case of a loss. For this
to be feasible the likelihood of loss should be relatively low.

Most of the above required characteristics for insurability of pure risk are nec-
essary for the application of the law of large numbers. However, the law of
large numbers only states that with an increasing pool, the total loss can be
more accurately estimated. In order for insurance to work, for economic feasi-
bility of insurance provision, the insurance premium should not be too high,
which can make it unattractive for risk transfer. Reinsurance is the shifting
of part or all of the insurance-related risk transfer originally underwritten by
one insurer to another insurer. Reinsurance is a mechanism by which some
catastrophic pure risk can also remain insurable. We will look at reinsurance
again in Section 11.5.2. Due to the above necessary criteria for insurability of
risk, insuring against most market risk, financial risk, production risks, and
political risk are usually not feasible by private insurers.

11.3 Types of Insurance

The first order of classification of insurance is done in terms of life in-
surance versus non-life insurance. This has to do with certain unique char-
acteristic of life insurance, most importantly the extremely long-term nature
of the underlying risk and the eventual certainty of it. The second order of
classification is on the lines we differentiated earlier between personal pure
risk versus property, casualty and liability related pure risk. Private insurers
play a significant role in providing life, health, property, casualty, and liability
insurance products. We look at each closely for an overview of the types of
insurance products available. This overview should help the reader appreciate
the kinds of choice at hand when making risk management decisions using
insurance.

Life insurance pays death benefits to designated beneficiaries when the
insured individual dies. Life insurance products can be broadly classified into
term life or cash-value life insurance. Term life provides insurance for a defined
period of time, and requires renewal at the end of this time period. The terms
can range from one year to as long as 20 years, or run up to a certain age.
Whole life insurance is a cash-value life insurance that provides lifetime pro-
tection, where in one of its sub-types, ordinary life insurance, the face value is
paid if the insured survives the high age limit of the policy, and another sub-
type, universal life insurance, requires flexible premium payments that provide
lifetime protection that unbundles into protection and saving components.

Variable life insurance, on the other hand, requires a fixed premium, how-
ever death benefit and cash surrender value vary according to the investment



Risk Management Using Insurance 415

experience of a separate account maintained by the insurer. Annuities are a
related insurance product that serves the opposite role. It provides income
should the insured outlive her savings, therefore it is a protection against
longevity risk. One would think that living long is a blessing, however, if one
outlives one’s savings and the ability to participate in the labor market, the
blessing can turn into a bane. Annuity products hedge this risk. Therefore,
there are numerous life insurance products, with new ones getting offered
every so often.

Health insurers sell a wide variety of individual and group health insurance
products, where the latter kind are offered through employers as employee ben-
efits. Some of these plans provide broad and comprehensive protection, while
others list numerous exclusions, hence quality of products is varied. Impor-
tant health insurance products are, for example, hospital-surgical insurance,
long-term care insurance, disability-income insurance, and major medical in-
surance. Group insurance creates insurance of many persons under a single
contract. A master contract defines the terms between insurer and group pol-
icyowner for the eventual benefits of individual members. Employers often
offer health and life insurance of various kind to their employees through their
group life and group health insurance contracts.

Property and casualty insurance for individual and households is for risk
transfer related with property and physical assets owned. Other than fire, tor-
nado, etc., causing damage to property or marine insurance, all other prop-
erty related insurance falls under the broad category of casualty insurance.
Therefore, insurance of individual and household interest, such as automo-
bile, burglary and theft, etc. falls under casualty insurance. Probably the most
important property insurance individuals buy in their life is homeowners in-
surance. Homeowners insurance is a package policy, which combines several
separate coverages into a single policy. This bundling helps in reducing gaps
in coverages, and the premium can become more economical. Some personal
liability insurance is also included in homeowners policies, such as personal
liability and medical payment up to certain amounts.

The property and casualty insurance needs of firms can be quite different
from those of individuals and households, and they can also be quite varied de-
pending on the nature of a firm’s operations and assets. Commercial package
policy combines many coverages into a single policy for firms. These coverages
can include commercial property, commercial crime, commercial auto, farm
coverage, boiler, and machinery coverage etc. If both property and liability
line are combined in a single policy, it is called a multi-line policy. Ocean ma-
rine and inland marine insurance are transportation insurance for protection
of goods transported over water and land, respectively, which can be very
valuable for firms.

Earlier we made a distinction between particular and fundamental pure
risks, where fundamental risk is one that affects the entire economy or a large
number of persons or groups within an economy. Due to this property, pri-
vate insurers are mostly incapable for insuring against this risk. Governments
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of nations and states must bear the responsibility of lowering the burden of
these risks. Government provided insurance, such as social security benefits,
Medicare, unemployment insurance, workers compensation, and disability in-
surance, are examples of such efforts.

11.3.1 Benefits and Cost of Insurance to Society

There are many direct benefits to individuals and firms from utilizing all
the variety of insurance types available for the management of different pure
risks. Other than the direct benefits, there are also indirect social and economic
benefits of insurance.

• Indemnification of losses is the obvious benefit of insurance, which is the
sole primary purpose for the contract’s creation.

• Having a risk transfer and assurance of indemnification in place leads
to less worry, anxiety, and fear, thus allowing firms and individuals to
focus on their core activities.

• One side-effect of premium accumulation with the insurers, which they
don’t immediately need, is a collection of funds that must be invested
until indemnification needs arise. Therefore, insurers are a large source
of investment funds.

• A significant component of risk management using insurance is loss pre-
vention. It is in the insurer’s interest to create incentives for the insured
to do active risk reduction.

• Lastly, due to availability of indemnification, insureds have lowered tail
risk due to pure risk events. This helps in enhancing their creditworthi-
ness and debt capacity.

The above benefits come at a cost to the society. The first obvious cost is
the cost of doing the business by an insurance provider. This includes setting
up the operations and workforce to offer and provide insurance and coverage.
An expense loading is added to the premium to cover the expense incurred
in the company’s daily operations. The other costs which can prove to be an
undesirable burden on the society are due to fraudulent claims. Moral hazard
and morale hazard we defined earlier can bring severe inefficiencies in the
insurance market, leading some providers to close shop in extreme cases. A
lesser, but nevertheless damaging, burden comes from inflated claims.

Finally, if insurance providers expand their business into territories of risk
where they don’t have complete understanding and expertise, this can lead to
serious cost to the society due to unfulfilled contracts and cascading effect on
other firm liabilities. In Chapter 3, we had reviewed the historical evolution
of regulation of the insurance sector, and noted the principles underlying the
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government control of the insurance industry. A poorly designed or imple-
mented regulatory environment that fails to assure fair contracts and robust
business practices is an additional cost burden on the society.

11.4 Risk Management Framework for Pure Risk

Enterprise risk management (ERM), with it modern scope beyond the
traditional view restricted to pure risk, is the process of developing a risk
management strategy by following a similar sequence of steps as given in
Figure 2.1 of Chapter 2. In ERM, an enterprise follows the flowchart to develop
a strategy for risk management of all the following components of its risk
exposures.

• Pure risk

• Speculative risk

• Strategic risk

• Operational risk

The risk categories may need to be further refined for getting a handle on the
firm’s multitude of risk exposures, and how they may affect the firm. It will
also be necessary to consider interactions between category of risk types and
specific risk exposures in order to not get too restricted by silos created to aid
risk management process, since in reality risks don’t evolve in isolation.

Our focus in this section is to delve deeper into consideration of techniques
for the management of pure risk. In this section, our reference entity for devel-
opment of risk management strategy is any enterprise or household, while in
the next section, we shift our attention to insurance providers. We consider the
major risk management considerations an insurer must adopt for effectively
managing the large pools of pure risk it collects by nature of its business.

Pure risk, by definition, has no upside. Therefore, the most obvious and
dominant response to managing pure risk should be to avoid it. However,
despite our best efforts, we can’t rid ourselves of a large set of pure risks.
The trick is through a formal risk management process, we are made aware of
the pure risks we have chosen to be exposed to, and have actively developed
a strategy for response should adverse events occur. Methods adopted for
handling risk, with now insurance available as an added tool in our toolkit for
risk management, are as follows.

• Avoidance

• Loss control
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FIGURE 11.2: Relation between pure risk, operational risk, insurable versus
non-insurable pure risk.

• Retention

• Non-insurance transfers

• Insurance

These are not too different from what was given in the flowchart of Figure 2.1.
In developing risk management strategies, insurance serves as a tool for

the transfer of risk, much like derivatives we have studied in previous chap-
ters. Insurance, however, pertains specifically to pure risk. It is interesting
to compare insurance as a new mechanism for risk transfer we are adding
beyond the other hedging instruments we have already investigated for risk
transfer. While both insurance and other hedging instruments result in trans-
fer of risk to a counterparty by means of a formal contract, they aren’t the
same. There are some key differences. An insurance transaction needs pool-
ing of risks, and hence involves the transfer of only an insurable risk. Other
hedging instruments did not have such requirement for the underlying risk
being transferred. Insurance reduces the objective risk of the insurer, again
due to the pooling of risks and the application of the law of large numbers.
The counterparty of other hedging instruments may not necessarily experience
risk reduction due to pooling.

We have seen several components of speculative risk in great detail, and
considered the avoid-mitigate-transfer-keep response to each of them. In the
last chapter, we had developed the assessment of operational risk, which was
our first foray into the pure risk domain. The development of risk management
for operational risk had shed some light on how one would progress with
management of pure risk in general using insurance. However, operational
risk is only a subset of a larger set of risks that fall under pure risks. We
expand our attention to a larger set of pure risks, bearing in mind the ideas
and guidelines brought forth in the context of operational risk, and how they
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FIGURE 11.3: The overall flowchart for the risk management process for
pure risk.

may be useful here. Figure 11.3 is a reproduction of Figure 2.1 with minor
modifications to highlight the use of insurance for pure risk transfer, and the
fact that not all pure risks are insurable. Figure 11.2 highlights the relationship
between operational risk and pure risk, and the differentiation of pure risk into
insurable versus non-insurable.

Following the flowchart in Figure 11.3, we need to first identify potential
pure risk exposures, and identify the loss-levels possible due to each pure risk,
in the personal, property and liability categories. This is the crucial step of risk
identification. The next step is to evaluate and measure the impact of each
risk exposure for the potential losses it can cause. This involves estimating
both loss frequency, i.e., the probable number of loss events that may occur
during a given period of time, and loss severity, i.e., the probable size of loss
that may occur with each event. This is the risk evaluation step. Finally, at the
bottom of the flowchart, the best responses must be generated for each risk
exposure. No risk management strategy is complete without feedback loops for
assessment and maintenance of the strategy for its relevance and effectiveness.

Risk identification is a non-trivial exercise, especially so for the large and
complex structure of a large corporation. However large or small an enterprise,
or even for an individual or a household, a formal process for identifying the
potential pure risk exposures is strongly recommended. It involves using a
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range of tools and techniques to elicit the possible losses a firm or a household
may suffer from different divisions of its organization or different facets of
function. Risk identification tools include risk analysis questionnaires, expo-
sure checklists, insurance policy checklists, and expert systems. Risk analysis
questionnaires must be designed as ‘fact finders’ for discovery of both insur-
able and non-insurable pure risks through a series of detailed and penetrating
questions. Exposure and insurance policy checklists are often produced by in-
surance providers, therefore would have bias to insurable risks and specific
products the provider offers, but nevertheless may be a good guide to risk
discovery. Finally, expert systems can combine the insight of questionnaires
and checklists to help firms identify their potential pure risk exposures.

Techniques for risk identification include orientation, analysis of docu-
ments, interviews, and inspections. The risk management decision makers, risk
managers, should be well oriented to the firm’s organization, its operations
and goals. A detailed evaluation of the firm’s annual reports, financial state-
ments, loss reports, various sales, service lease agreements, building and other
property appraisals, etc., is revealing in terms of exposing risk exposures. Fi-
nally, interviews with key personnel and physical inspection of property may
be ideal to ground data in reality. The classifications developed on several
themes, such as personal, property and liability; particular versus fundamen-
tal; perils and hazards can also serve as a road map to elicit all relevant pure
risks of a firm. Lastly, risk identification points to measures and data to use
to evaluate the impact of pure risks.

11.4.1 Pure Risk Evaluation

Assessing the risk exposures for their loss impact is crucial to developing
a risk management strategy. In this assessment, while frequency is important,
severity is more important, since a single catastrophic loss can wipe out the
entire firm. As a preliminary step of risk evaluation, it helps to have guidance
by considering upper-limit of frequency and severity. Maximum Possible Loss
is the worst loss that could happen, whereas Maximum Probable Loss is the
loss that is most likely to happen, or the mode of a unimodal loss distribution.
For a risk exposure, it may be possible that the maximum possible loss is a
very large quantity, however its likelihood is minuscule, while the maximum
probable loss level is not very devastating. For instance, in Figure 11.4, both
the loss distributions have the same maximum possible loss level, but the
maximum probable loss level of one is much lower than that of the other.
Therefore, these two quantities provide good preliminary guidance on the
general shape of the loss distribution.

There are both direct and indirect losses when pure risk events occur,
both of which should be accounted for while assessing loss distributions. We
had made a similar distinction while assessing impact of operational risk in
Chapter 10, where operational losses were computed in terms of three key
terms, cost to fix, write-downs, and resolution. Direct loss is the loss due to
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FIGURE 11.4: Maximum possible loss and maximum probable loss of two
distributions. The positively skewed distribution is not as risky as the nega-
tively skewed one.

physical damage to real property, machinery, equipment, furnishings, as well
as raw materials and inventories. Indirect losses or consequential losses consist
of other financial losses resulting from the damage in the form of opportunity
cost.

Being able to be as quantitative as possible in risk evaluation is desir-
able so that the risk management decisions can be made based on objective
assessments of all pure risk exposures. Models for risk evaluation must rely
on availability of sufficient data, and where relevant must have the ability to
make a long-term assessment of the risks. As we discussed earlier, many pure
risks are long-horizon and strategic in nature, therefore their impact would
only be known when prediction of the risk can be done for the long-term.

We break the task of risk evaluation into three steps; first our goal is
to construct distributions for frequency of occurrence of each risk exposure
anticipated for the firm. The second step would develop a conditional view
of, when an event occurs, what is the loss impact of the event, both in direct
and indirect terms. The third step combines the two pieces to construct the
annual loss distribution due to risk exposures, or present value of future loss
exposure if the impact of the risk will only be revealed in the long-term future.

The first step involves probabilistic analysis of frequency of occurrence of
loss events under given conditions. For each risk exposure identified in the risk
identification stage, estimates must be created of how likely it is for loss events
to occur for that risk exposure under the status quo, as well as when some
mitigative actions were taken. Loss frequency distributions, using standard
distribution models, such as Poisson, binomial, negative binomial, normal,
etc., can be fitted for each case depending on the summary statistics and
empirical distribution of available data. In case of limited data, best judgment
on the shape of the distribution may be needed, with key observations such as
maximum and minimum frequency of events guiding the actual construction
of the distribution.

The second step develops loss severity distribution, i.e., when an event
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occurs, what is the level of loss incurred. Some of the standard distribu-
tion models considered suitable for severity distribution include lognormal,
exponential, gamma, and Pareto. We had studied all these distributions in
Chapter 1, except Pareto distribution. Pareto distribution is related with the
exponential distribution; if X is exponentially distributed with parameter λ,
then Y = αeX is Pareto-distributed with minimum α and index λ. Therefore,
Pareto distribution is related to exponential distribution in the same way as
lognormal distribution is related to the normal distribution.

A note of caution regarding picking a particular distribution for no other
reason than the familiarity with it. There should be some empirical justifica-
tion for the choice of distributions for the exercise to be sincere to reality. In
the case of both frequency distribution and severity distribution, for lack of
more suitable alternatives, empirical distributions constructed based on ob-
served data may also be used. Finally, regression modeling can prove to be
very useful for predicting losses when loss can be determined as a causal or
correlated relation with much more readily observed quantities. For instance,
there may be a meaningful relation between number of employees on payroll
and the number of workers compensation claims made in a year. Using such
loss predictors by capturing correlation and/or causal relations for predicting
future losses can be an effective tool.

Finally, the models for loss frequency and loss severity must be combined
to construct the total annual loss distribution or discounted life-time loss dis-
tribution. Combining of frequency distribution with severity distributions can
be achieved through convolutions of their individual distribution functions.
The probability distribution of the sum of two or more independent random
variables is the convolution of their individual distributions. If Li is the loss
severity at each occurrence of a loss event, and in a period of time (0, t], num-
ber of loss events experienced is, Nt, then the total loss experienced in the
given time period is,

TL =

Nt∑
i=1

Li. (11.4)

We encountered a convolution of this kind in Chapter 7 in the context of the
impact of sequence of jumps on the stock price in a jump-diffusion model
(Section 7.2.6.4). For a general choice of frequency distributions for Nt among
Poisson, binomial, negative binomial, normal distributions, and choice of loss
severity distribution for Li among lognormal, exponential, gamma, and Pareto
distributions, analytically obtaining the distribution of total loss is non-trivial.
However, estimation using simulation is straightforward. Moreover, the risk
evaluation framework set up in this section will also help assess efficacy of risk
management responses for development of a risk management strategy.
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FIGURE 11.5: Risk management guideline for loss event frequency and
severity for pure risk exposure.

11.4.2 Risk Management Strategies for Pure Risk

The bottom box of the risk management flowchart of Figure 11.3 has deci-
sions regarding avoid, mitigate, transfer using insurance versus non-insurance,
and keep, which must be made for each pure risk exposure of the firm. In the
risk identification and risk evaluation stages, all the pure risk exposures would
have been identified and assessed for their loss impact. This facilitates the next
step of developing a risk management strategy for each of these risk exposures.

Risk evaluation focuses on loss frequency and loss severity, which make
for the two crucial dimensions for developing a risk management response.
On these two dimensions, by identifying two coarse levels of ‘high’ and ‘low,’
a preliminary understanding of risk management response can be developed.
These cases and responses are summarized in Figure 11.5. The preliminary
response can be broken down into the following four guidelines depending
on the combination of loss frequency and severity anticipated from the pure
risk. If the loss frequency and severity from the pure risk events are both
anticipated to be low, it may be quite possible to retain the risk. Retention
of the risk implies that if and when events happen by that pure risk, the
firm must indemnify itself. Therefore, the firm needs to determine the level
of loss the firm should be prepared to withstand, and the amount of funds to
allocate for the purpose of indemnification of retained risk. This is also called
‘self-insurance.’

If the loss frequency is low, but severity of loss can be high when loss
events occur, this would be a good candidate for considering a transfer of the
risk. If insurance is available for this pure risk, the firm should consider this
mechanism for risk transfer. If insurance is not available, then the firm must
explore opportunities for non-insurance transfer, or in fact consider retaining
the risk. Funding this retained risk could be much more costly, hence some
loss control or prevention would be necessary. Non-insurance transfers are
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FIGURE 11.6: Firms’ risk tolerance can be represented as a loss severity
versus frequency curve. Avoid-mitigate-transfer-keep decisions are made rela-
tive to this risk tolerance curve in a systematic and quantitatively supported
way.

methods other than insurance by which pure risk is transferred to another
party, for example, outsourcing, contracts, leases, etc. For pure risks that
are frequent, but less severe, risk control is possibly the best response. This
will consist of developing methods for loss prevention or reduction. Finally,
the high frequency and high severity pure risks should be avoided whenever
possible.

A preliminary sketch of a risk management response can be developed into
a complete rigorous analysis. A firm should construct its pure risk tolerance
profile in terms of a risk frequency and severity frontier. Each pure risk ex-
posure is marked on this frequency-severity grid, where the frequency is a
summary statistic of the frequency distribution, Nt, constructed in the risk
evaluation stage, and the severity is a key summary statistic of the severity
distribution, Li. In the left panel of Figure 11.6, all the firm’s risk exposures
are plotted on the frequency-severity grid. The exact location of each risk on
the grid prompts the development of an appropriate response.

Further to the guideline developed based on the categories of Figure 11.5,
now each risk can be quantitatively assessed for what response may be most
appropriate against the firm’s risk tolerance. The left-most risks are lowest
in severity and fall below the risk tolerance curve, therefore they are perfect
candidates to be retained, and the loss from these events is considered regular
cost of conducting business.

Moving right on the severity axis are risk exposures with relatively higher
loss severity, with one much lower frequency of occurrence, while the other has
a higher frequency than the risk tolerance frontier would permit. The latter
is a perfect candidate to conduct a complete assessment of loss control and
prevention response. Based on the framework for total loss developed in the
risk evaluation stage, an economic assessment of the loss control investment
decision must be conducted. If the difference between expected baseline total
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loss, E[TL], and the expected total loss after investments on loss prevention,
E[TL(p)] is greater than the investment made towards loss prevention, after
accounting for time value of money wherever relevant, then loss prevention is
a suitable response for these risks.

The next set of risks of higher loss severity are candidates for risk transfer.
Even when their frequency-severity is below the firm’s risk tolerance, it may
not be appropriate to self-insure these risks since that may not be the best
use of the firm’s capital and would be an unnecessary digression from the
firm’s core activities. Finally, the far right risks at the highest severity level
are catastrophic, and must be avoided whenever possible. It should be noted
that the scale of the severity axis is relative to a firm’s size, since what is severe
for one firm may not be severe for another larger firm in absolute terms.

Insurance is the most relevant mode for pure risk management when the
pure risk causes a high severity of loss, but with low probability of occurrence.
This happens to be the case when the pure risk may be insurable. When imple-
menting a risk management decision of transferring a pure risk by means of an
insurance contract, the following additional five key issues must be addressed.

• Choice of insurance as a mechanism for risk transfer entails additional
decisions regarding the exact coverage needed under the insurance con-
tract. Pricing of insurance, and therefore cost of risk transfer, depends
on the coverage and deductibles of an insurance contract. Selection of
appropriate coverage should depend on the assessment of the extent of
losses expected, while choice of deductible essentially points to tolerance
of degree of risk retention.

• Along with the features of an insurance contract, a selection of an in-
surer must also be done. Given there are literally thousands of insurance
providers for different kinds of personal, property, and liability insur-
ance, this choice may be non-trivial. Several important factors should
be considered while making this decision, such as, financial strength of
the insurer, risk management services offered by the insurer that cater
to specific customer needs, cost and terms of protection, and after-sale
quality of service.

• As in the case of any bilateral contract the terms of negotiation should
not be neglected. The language and meaning of the contractual provision
should be clear to both parties, and everyone affected by the contractual
provisions. Depending on the negotiation power of the insured, premium,
coverage, etc., may be negotiable.

• Once the contract is in place, it is imperative that all the relevant in-
formation concerning the insurance coverage is properly disseminated.
Efficient and effective implementation of risk management using insur-
ance requires employees to know what services the insurer provides, and
what precautions and preventions are necessary.
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• As stated earlier, no risk management strategy is complete without feed-
back loops for assessment and maintenance of the strategy for its rele-
vance and effectiveness. Therefore, periodic review of insurance program
is necessary.

In the discussion above for developing risk management strategy for pure
risk, we have focused on issues from a firm’s perspective. Even though the
development was done with firms as reference entities, the process is just as
applicable for individuals as for institutional risk management. We consider a
specific example for personal insurance decisions.

11.4.3 Modeling Individual Mortality Risk

The highest level classification of insurance is done as life versus non-life
insurance. This is justified, since according to The Geneva Association, life
insurance accounts for US$2.54 trillion annual worldwide premium volume,
which is 58.44% of total worldwide premium income. We use this context to
develop a dynamic evolution model of health risk, which creates a basis for
a framework where important personal insurance decisions may be made. An
explicit health evolution model is calibrated to assess an individual’s lifespan
distribution [37]. The most commonly used health model in health economics
literature is the Grossman’s [34] health evolution model.

In this framework, health is viewed as a durable stock of capital, whose
inputs are medical care and time, and outputs are consumption and investment
ability, usually defined as the total number of healthy days. An individual is
assumed to inherit an initial stock of health. His health capital depreciates
with age at a time-varying rate, which increases with age after a certain stage
in the life cycle, and the health capital can be improved by health investment.
Death occurs when an individual’s health capital drops to a certain level.
The shadow price of health depends on many other variables, besides the
price of medical care, for instance, on age and education. The model can be
summarized by the following relationship [69]:

Ht+1 = (1− δt) ·Ht + ϵt + θ1 ·Mθ3
t + θ2 · ϵt ·M

θ′
3

t , (11.5)

where Ht and Mt stand for health capital and expenditures on health, re-
spectively, in period t and δt is the health depreciation rate. The health de-
preciation rate is assumed to be time-dependent and can be described as an
increasing function of age, such as aebt, where a and b are parameters. θ1, θ2,
θ3, θ

′
3 are parameters specified to relate the effect of health expenditures on

health capital.
The above model can be calibrated for specific risk class of individuals,

and used for addressing strategic decisions regarding annuity [36], life insur-
ance, and long-term care [35] products from an individual’s or household’s
perspective.
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11.5 Risk Management by Insurers

Enormous volume of risk is collected by insurers through the transfer of
risks via insurance contracts underwritten by the insurers. The 2009 figures
of insurers’ global financial assets under management of US $22.6 trillion,
with worldwide insurance premium volume standing at US $4.34 trillion is
a testimony to this fact. Insurers not only must manage these funds, but
more importantly, must honor the terms of the underwritten contracts and
deliver on their liabilities underlying the contracts. Moreover, as noted in
Chapter 3, firms in banking and insurance sectors hold vast sums of money
in trust for the public, therefore are subject to government regulation due to
their fiduciary nature. Regulations are designed to ensure insurers are well-
prepared to respect their fiduciary responsibilities, and provide their services
fairly and reliably. Therefore, risk management must be at the core of every
single activity of an insurer’s business. In this section, we discuss the risk
management considerations of an insurance provider, from pricing of insurance
contracts, to asset management in support of the liabilities, and securitization
and reinsurance activities of insurers.

11.5.1 Pricing, Investment, and Asset-Liability Management

In insurance, unlike many other products and services, the cost of pro-
duction for the service to a specific insured is not known in advance. This is
because the exact loss exposure due to that insured is not known. Therefore,
setting price for insurance contracts that recover all the costs and possibly
yield a profit is a difficult task. Pricing in insurance is a non-trivial endeavor
for which specialized, well-trained professionals are engaged. These highly
skilled mathematicians specialize in the discipline of actuarial science, and
are called actuaries. The Society of Actuaries (SOA), established in 1889,
which is now a 22,000 strong membership organization, defines an actuary as
follows: ‘An actuary is a business professional who analyzes the financial con-
sequences of risk. Actuaries use mathematics, statistics, and financial theory
to study uncertain future events, especially those of concern to insurance and
pension programs. They evaluate the likelihood of those events, design cre-
ative ways to reduce the likelihood and decrease the impact of adverse events
that actually do occur.’ Professional certification as an actuary is attained by
passing a series of examinations administered by the SOA, which makes them
a Fellow of the society.

Pricing

An actuary determines the rates for different types of insurance products,
in the personal, property, and liability categories using a range of appropriate
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mathematical and statistical tools. In fact as suggested by the SOA definition
of an actuary, actuaries are involved not just in pricing of insurance contracts,
they are engaged in all phases of an insurance company’s operations. The
objectives of pricing or premium determination for an insurance contract are
many fold. Prices are determined to allow paying claims and expenses as they
occur, satisfy any regulatory requirements, to make the business profitable,
and to enable the provider to be competitive with other insurers. Therefore,
the objectives of pricing can be classified as regulatory objectives and business
objectives, both of which must be incorporated into pricing decisions.

As studied in Chapter 3, regulations play a prominent role in the insur-
ance industry. Regulatory objectives of protecting the consumers require that
the rates being charged by the insurers are high enough to pay all losses and
expenses. Failing which the insured and the beneficiaries are at a loss if they
don’t receive the benefits of the insurance. While the rates are adequate, they
should not be excessive. The premium for insurance should not be so high
that the insured ends up paying more than the actual value of their protec-
tion. Finally, in determining the rates, the provider should not be unfairly
discriminatory, i.e., insureds that result in loss exposures of similar risk char-
acteristics and expense should not be charged substantially different rates.

The business objectives of pricing are to build a viable and profitable en-
terprise. Therefore, besides assuring loss recovery, operational expenses, from
a business perspective pricing should also be simple. Simple pricing is easy
to understand and use both by sales agents and customers, therefore reduc-
ing training and operational risk. Prices should be responsive and stable. The
responsiveness of pricing comes from its ability to respond to changing loss
exposure and economic conditions, which also makes the pricing stable. Non-
responsive and rapidly changing prices can result in costly adjustments and
implementation. Given insurance is targeted to pure risk, and the fact that
best response to pure risk is avoidance, the pricing scheme should encourage
responsible behavior towards loss control. This should also be done with an
eye to reduce moral and morale hazards.

Insurance industry utilizes specific terms for the pricing or rate making
of its services. A rate is the price per unit of insurance, while an exposure
unit is considered the unit of measurement used in insurance pricing, which
may differ depending on the type of insurance. For auto insurance, it could
be one car-year of auto insurance, for liability risk, it could be $1000 worth of
liability insurance coverage. Given the different objectives to satisfy by price
determination, pure premium is the portion of the rate needed to pay losses
and loss-adjustment expenses for one exposure unit. The pure premium is
adjusted by a loading, which is the amount that must be added to the pure
premium for other expenses, profit, and margin of contingencies. Combining
the pure premium and loading gives the gross rate, and the gross premium
charged to an insured is the number of exposure units the insured requires
times the gross rate.

The most popular method for insurance pricing is class rating pricing, in
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which exposure units with similar characteristics are placed in the same un-
derwriting class, and the premium rate is determined for the class. Therefore,
it is important to appropriately define a class. The rate then reflects the aver-
age loss experience for the class as a whole. This is very similar in essence to
the credit scoring framework for pricing in consumer credit developed in Sec-
tion 9.1.1 of Chapter 9. The techniques of regression modeling, discriminant
analysis, and classification trees developed in that context would be valuable
here, with the main difference being that the characteristics and attributes to
consider here would differ. While the consideration in credit risk for charac-
teristics and attributes were all only financially motivated, in insurance the
nature of peril and physical hazard relevant to the unit, as well as type of per-
sonal, property, or liability insurance sought will dictate the characteristics
and attributes to consider in the models.

Rate determination using these methods requires data, both from the in-
surance provider’s past loss experience, as well as industry statistics and data
sources, such as from rating organizations like Insurance Services Office (ISO).
A well developed class rating approach achieves most of the pricing objectives
discussed above, except one: creating incentives for the insured to participate
in loss control. Merit rating, as a complementary approach, is when rates may
be adjusted upward or downward due to merits of a specific exposure unit,
such as, some of its special features within a class, past experience, or in other
words, ways to create incentive for loss control.

Investment

Given the volume of global assets under management of insurers, it is safe
to say that investment is an extremely important operation in an insurance
company. Premiums are paid in advance, and are accrued in the statutory ac-
counting over a period of time. However, indemnification happens after varying
degrees of lag from the time of payment of the premium. The accumulated
funds must be invested until funds are needed to pay claims and expenses.
The funds available for investment are derived primarily from premium in-
come, but they are also generated from investment earnings and maturing
investments that must be reinvested. Therefore, the investment activity of an
insurer is often a large asset management enterprise in its own right.

As discussed in Chapter 3, the accumulated premium must be invested by
the insurer, however there are regulatory restrictions imposed on the invest-
ment choices of insurers. The restrictions are imposed to ensure that insurance
companies reliably fulfill their fiduciary obligations. Investment is allowed in
US and Canadian government bonds, mortgage loans, certain high-grade cor-
porate bonds, and to some extent in preferred or common stock. There are
additional restrictions by the lines of insurance products an insurer offers. For
instance, property and liability insurers have lesser investment restrictions
than life insurers, where the latter can invest only a small percentage of their
assets in common stocks.
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Many insurance contracts are long-term, such as life insurance and annu-
ities, and hence make the premium income available for investment for long
durations of time. On the other hand, the value of assets must be preserved
for the long-term, without exposing to significant downside risk along the way,
in order to meet the long duration liabilities. As a result, life insurers have a
large fraction (> 50%) of funds invested in government or corporate bonds for
safety of principal, and maintain only limited exposure to (∼ 20%) equity and
other asset classes. For shorter duration insurance contracts, such as property
and liability insurance, investment needs to be more liquid. Investments are
predominantly in bonds, preferred and common stocks, and not in real estate.

Our analysis of equity risk and portfolio optimization framework developed
in Chapter 7, as well as hedging strategies developed in the context of equity
risk to construct specific risk-return profile of equity investment are clearly
applicable here. Similarly, bond portfolio analysis and interest rate risk man-
agement techniques developed in Chapter 8 are fundamentally relevant here,
given the heavy weight given to investment in this asset class. Additionally,
fixed income derivatives discussed in Section 8.2.2, such as bond futures, bond
options, and exotic option may be utilized for risk management of insurer’s
investment strategies.

For insurers, investment is not just a value-preserving proposition of ac-
cumulated premium, since investment income can time and again prove to be
extremely important in offsetting unfavorable underwriting outcomes. Addi-
tional benefit to society of the funds resulting from accumulated premium and
investment income of insurers is that these funds serve as an important source
of capital for the economy.

Asset-Liability Management

The investments in government bonds, corporate bonds, preferred and
common stocks, and cash held by an insurer constitute the assets of the in-
surer, while the portfolio of outstanding insurance contracts underwritten by
the insurer are the insurer’s liabilities. The cash-flow from assets must sup-
port the cash-flow requirements of the liabilities for the insurer to not default.
Additionally the value of the insurer’s assets should remain higher than the
expected net value of the insurer’s liabilities for the insurer to remain solvent.

Ideally, the risks underlying the assets should match the risks of the liabili-
ties of the outstanding insurance contracts. This is more difficult to achieve for
an insurance provider than it is for a commercial bank, since the risk factors
that drive the value of an insurer’s assets, such as government or corporate
bonds, stocks, etc., can be quite different from the pure risks that generate
the liability cash-flow for the insurer. Part of the risk on the liability side of an
insurer’s balance sheet is managed by how the insurance provider prices and
underwrites its insurance products. The asset-liability management framework
developed in Chapter 10 is applicable here to develop an asset management
strategy that best meets the asset-liability management objectives.



Risk Management Using Insurance 431

Tools of ALM, such as gap analysis, duration gap analysis, and stochastic
gap analysis can be applied to develop insight for mismatch in levels and risk
of assets and liabilities of the insurer. Simulation analysis can be applied to
develop scenarios of balance sheet risks, or to develop estimates of mismatches
in terms of measures like long-term Value-at-Risk (LT-VaR). Usually these
insights can be translated into guidance for short-term (business) and long-
term (strategic) course of action. Being able to better manage the risks in its
balance sheet can give a significant competitive edge to an insurance provider.

11.5.2 Risk Management, Securitization, and Reinsurance

Insurance, like banking, functions under a rigorous regulatory framework.
As discussed in Chapter 3, the objective of the regulatory framework is that
the insurers are not taking on excessive risk without safeguarding the goal
of reliably supporting their liabilities. Therefore insurance laws take specific
note of insurer’s fiduciary obligations, and require them to maintain policy
reserves and risk-based capital. Insurers maintain unearned premium reserve
to respect the difference in timing of premium payment and service delivery,
and maintain loss reserves to respect the gap of time between occurrence of
loss events and their indemnification.

Asset-liability management discussed in the previous section serves the
very important risk management objective of attempting to match the cash-
flow and risks of assets with those of the liabilities. The objective of ALM is
to mitigate the risks in the balance sheet by such matching of assets and lia-
bilities. However, one challenge in insurance is that the risk factors underlying
the liabilities are of a varied kind, and may be quite different from the risk
factors of the assets. There are new instruments emerging that can alleviate
this problem.

As an alternative to investment in traditional assets, an insurer can utilize
new financial instruments developed in the capital markets to help support
indemnification of catastrophe losses. For instance, a property and casualty in-
surer can invest in instruments like catastrophe futures or catastrophe options.
These catastrophe derivatives started trading in 1992 on the CBOT, however
were delisted in 2010 due to limited trading. The value of catastrophe futures
contract increased when catastrophe losses were high and decreased when
catastrophe losses were low. The contract was designed to track catastrophe
loss indices developed by Property Claim Services (PCS), which provided nine
loss indices each day to the Chicago Board of Trade (CBOT) based on the
estimates of insured catastrophe losses in different parts of the US.

Although catastrophic futures and options have discontinued trading on
CBOT, weather derivatives, defined on temperature, hurricane, frost, snowfall,
and rainfall for various geographical locations are traded on the Chicago Mer-
cantile Exchange (CME), which serve as instruments with higher correlation
with cashflow from liabilities, as well as provide geographical diversification.
These instruments can help match property and casualty risk underlying an
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insurer’s outstanding insurance contracts. In the event of a weather-related
catastrophe, if losses are high, the value of the contract goes up and the in-
surer makes a gain that hopefully offsets whatever losses it may incur through
its liabilities. The reverse is also true. If weather-related catastrophe losses are
lower than expected, the value of the contract decreases and the insurer loses
money.

Insurance providers can also securitize the pool of risk underlying their out-
standing insurance contracts. Catastrophe bonds, also called cat bonds, are
special bonds issued by insurers to help them pay for natural disaster losses,
such as losses from hurricanes and earthquakes. These are usually rated be-
low investment grade and pay relatively high yield. The payment structure of
these bonds is adapted to aggregate catastrophe events. If catastrophes are
below a certain level during some specified period, the bond investor receives
the principal with interest. However, if losses exceed the specified level, bond
investors forfeit part or all of the interest or principal, or alternatively the pay-
ment of the principal is deferred. These bonds are attractive for institutional
investors seeking high-yield, fixed-income securities.

Innovations in securitization for mortality and longevity risk is also devel-
oping, which can be utilized by life insurance providers. There are numerous
types of products, ones that already exist and those that are proposed, to
hedge the risks of mortality-sensitive products. Mortality bonds are essen-
tially securitization of mortality risk. The bonds are issued and coupons are
paid, but the principal is preserved only if a chosen mortality index is near
the base level. If the mortality index rises, the principal erodes by a given
schedule of percentage rise of the mortality index relative to the base level.
So far, these are available as reasonably short-term bonds, usually with 3-5
years maturity. Mortality bonds designed for extreme mortality risk, such as
due to a large scale major epidemic, major natural disaster, are catastrophic
mortality bonds.

Longevity bonds are longer maturity bonds with maturities ranging from
20-30 years, where the coupon payments are linked to a defined cohort sur-
vivor index. Therefore, the cash flows of longevity bonds are designed to help
annuity providers and pension plans to hedge their exposure to longevity risk
since they are designed to meet the providers’ commitment of providing level
payments to the reference population over a long time horizon, depending on
the population’s longevity characteristics. The bond provides the investor an
annual mortality-dependent payment up until the maturity of the bond. The
mortality-dependence of the annual payments may be based on a publicly
available death rate index for each age-group published for the year. These
bonds have no terminal repayment of the principal.

Mortality or longevity swaps are mostly over-the-counter contracts, hence
have the attraction that they can be customized to the particular requirements
of a user, but would have a thin secondary market resulting in low liquidity. A
mortality swap is a contract to exchange one or more cash flows in the future
based on the outcome of a stochastic mortality index. A vanilla mortality swap
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may be designed similar to a floating-to-fixed interest rate swap, in which the
fixed leg is linked to a published mortality projection and the floating leg is
linked to the counterparty’s actual realized mortality rate. A formal framework
to assess the effectiveness of hedge using these instruments can be developed
for constructing an optimal hedge strategy [32, 38].

Finally, an insurance provider can seek reinsurance to manage the residual
risk not accounted for by any of the mechanisms discussed thus far. Reinsur-
ance is the shifting of part or all of the insurance originally written by one
insurer to another insurer, which is the transfer response of risk management.
This transfer has a flavor similar to securitization involving repackaging and
transferring of risk. The insurer who initially writes the business is called the
ceding company, and the insurer that accepts part or all of the insurance from
the ceding company is called the reinsurer. The amount of insurance retained
by the ceding company for its own account is called the net retention or re-
tention limit. The amount of insurance ceded to the reinsurer is known as the
cession.

Just as securitization, reinsurance can help increase the underwriting ca-
pacity of an insurer. By transferring some of the tail risk through reinsurance,
an insurer can reduce the volatility in profits. Reinsurance can be an additional
mechanism for obtaining protection against catastrophic loss. It can provide
considerable protection to the ceding company that experiences a catastrophic
loss, since under the reinsurance contract the reinsurer is liable to pay part or
all of the losses that exceed the ceding company’s retention limit.

11.6 Summary

Pure risk, as discussed in Chapter 1, affects everyone, and its impact on
a household or a firm, based on the nature of exposure, can be quite catas-
trophic. Insurance contracts are effective tools for transfer of pure risk, there-
fore, in this book we have treated discussion of insurance as an integral com-
ponent of developing a risk management strategy. To incorporate insurance
as a tool for risk management, we first look at the basic principles behind
insurance contracts, which directly relate to the types of pure risk that can
be insurable. To give a further classification of pure risks, we describe types
of insurance and their features available for individuals and firms to offset
their pure risk, along with issues related with moral hazard that bring ineffi-
ciencies in insurance markets. A specialized risk management framework for
developing a strategy for managing pure risk of a firm or household was de-
veloped, along with a discussion of some example context of application of the
framework. Finally, we studied the tools available to an insurance provider to
manage risks in their own turn through securitization and reinsurance.
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11.7 Questions and Exercises

Review Questions

1. How does the traditional view of risk management differ from the mod-
ern view of risk management?

2. Why are the boundaries between pure and speculative risks getting less
obvious and clear?

3. What is enterprise risk management?

4. What are the distinctions between personal, property, and liability pure
risk?

5. What is the difference between objective and subjective assessment of
pure risk?

6. How are perils distinguished from hazards?

7. Discuss the different types of hazards that can lead to loss.

8. What is the distinction between fundamental and particular pure risk?
Why is particular risk more amenable to being insurable?

9. What is meant by indemnification of losses?

10. What is the basic principle behind insurance provision? What is meant
by spreading the losses from pure risk events?

11. When are losses not fortuitous? For insurance to be viable, why is it
necessary that losses be fortuitous?

12. State the law of large numbers (LLN), both the weak and the strong
version.

13. What are the requirements for a pure risk to be insurable? Discuss the
requirements in detail.

14. Why is the first order of classification of insurance in terms of life versus
non-life insurance? What are the types of life insurance products?

15. What are the different types of health insurance? What are group health
insurance products?

16. What are the different types of property and casualty insurance prod-
ucts? What kind of insurance are homeowners insurance and automobile
insurance?
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17. What are commercial package policies?

18. Give examples of government programs that provide insurance against
fundamental pure risks.

19. What are all the benefits of insurance to the society? What are the costs
of insurance to society?

20. How is hedging using derivatives different from risk transfer using insur-
ance?

21. How does operational risk relate to the larger set of pure risks, as well
as with insurable versus non-insurable risk? Given examples of each.

22. What is risk identification? What is the crucial outcome of risk evalua-
tion?

23. Why are feedback loops for assessment and maintenance of risk man-
agement strategy important?

24. What are the tools and techniques utilized for risk identification?

25. What are the three steps of risk evaluation? How does each step get
accomplished?

26. What are common distributions used to model loss frequency and loss
severity?

27. What is Pareto distribution? How can it be used for modeling losses due
to pure risk?

28. What is self-insurance? When is it advisable to resort to this risk man-
agement response?

29. How is the frequency-severity tolerance curve for a firm useful in devel-
oping a risk management strategy for pure risks?

30. How would you evaluate the cost effectiveness of loss control and pre-
vention response to a pure risk?

31. When implementing a risk management decision of transferring a pure
risk by means of an insurance contract, what additional issues must be
considered?

32. What is actuarial science? What does an actuary do?

33. What are the regulatory and business objectives of rating making in
insurance?

34. What is class rating pricing? How does it achieve the regulatory and
business objective of pricing in insurance?
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35. What is merit rating pricing in insurance? What objective does it
achieve?

36. By what considerations must insurers develop their investment strate-
gies?

37. How is asset-liability management important for insurers? How is ALM
for insurers different from that of banks?

38. How can securitization be used by an insurer to manage risk?

39. What is reinsurance? What risk management objectives can reinsurance
serve?

Exercises

1. Demonstrate the law of large numbers in MATLAB. There are two pure
risks being assessed for their insurability. Based on data available for
the risks, the first risk is summarized as a Chi-square distribution, L1 ∼
χ2(ν) with degrees of freedom ν = 10, and the second risk is, L2 ∼
Weibull(a, b) with scale parameter a = 5 and shape parameter b = 0.8.

(a) Show that the average loss converges to the mean of individual loss
distribution as the pool size increases.

(b) If the range of acceptable premium per exposure unit is in the
range, [$5, $7], do the two pure risks appear to be insurable?

2. Give and discuss three examples of pure risks that you think should be
insurable, and why. Also develop three examples of pure risk that you
assess to be non-insurable, and explain why.

3. Perform a risk identification for the following stylized contexts. Identify
and list all the typical pure risk exposures you anticipate the entity
to have. Conduct necessary online research to explore the possible risk
exposures and their impact on the entity.

(a) A household of five individuals, consisting of two adults active in
the labor market and three school-going kids.

(b) A small service enterprise engaged in offering small business ser-
vices of photocopying, digital printing, signs and graphics, and pro-
fessional finishing services.

(c) A large shipping company that offers various shipping services for
the delivery of packages and freight.

4. For each of the pure risk exposures identified in Exercise 3, conduct a
risk evaluation and assessment. Determine what the possible direct loss
and indirect loss may be in each case. Create a rough assessment in each
case of the maximum probable loss and maximum possible loss.
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5. Consider the following distributional fits for loss frequency and loss
severity of 5 pure risks identified through the risk identification process.

(a) N1t ∼ Po(λ), Poisson distribution with λ = 10 per year; L1 ∼
Weibull(a, b) with scale parameter a = 5 and shape parameter b =
0.8

(b) N2t ∼ Po(λ), Poisson distribution with λ = 15 per year; L2 ∼
χ2(ν) Chi-square distribution with degrees of freedom ν = 25

(c) N3t ∼ Bin(n, p), Binomial distribution with n = 50 and p = 0.05;
L3 ∼ Lognormal distribution with mean µL = 100 and standard
deviation σL = 15

(d) N4t ∼ NegBin(r, p), Negative Binomial distribution with r = 20
and p = 0.13; L4 ∼ Gamma distribution with shape parameter
a = 5 and scale parameter b = 5

(e) N5t ∼ Bin(n, p), Binomial distribution with n = 5 and p = 0.2;
L5 ∼Weibull(a, b) with scale parameter a = 500 and shape param-
eter b = 0.8

Construct a quantitative assessment of the total annual loss of each pure
risk, as well as a grand total annual loss from all the pure risks combined.

6. In the frequency-severity dimensions of loss events, if we consider two
coarse levels - high-low, give examples of risks in each of the following
cases.

(a) Risk Profile: (low, low); Risk Management Response: Retain.

(b) Risk Profile: (low, high); Risk Management Response: Insurance or
Non-insurance transfer.

(c) Risk Profile: (high, low); Risk Management Response: Loss preven-
tion and control.

(d) Risk Profile: (high, high); Risk Management Response: Avoid.

7. For a severity-frequency curve given by the following relation:

N̄2

2300 ∗ L̄0.2
(11.6)

make the avoid-mitigate-transfer-keep decisions for the risks in Exercise
5. N̄ is expressed as number of occurrences per year and L̄ is the total
dollar loss per occurrence.
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Chapter 12

Advanced Simulation Topics

All tasks of risk management benefit from simulation analysis. However, every
problem solved using simulation must deal with the fact that in simulation
tasks are accomplished by generating samples of observations. Estimates for
the quantities of interest are obtained by applying the chosen estimators to
the samples generated. In all the risk management chapters, from Chapter 7
through Chapter 11, simulation was applied for risk assessment, risk monitor-
ing and control, and risk management.

For pricing of derivatives, defined for equity, interest rate, commodities,
exchange rates, and credit risks, when the choice of model for the underlying
risk doesn’t readily yield an analytical solution, simulation offers an alter-
native for price estimation. Simulation analysis is also useful when a variety
of derivatives for all the risks we have studied thus far are used to develop
hedging strategies for those risks. These derivatives may be defined for single
instruments, but can also be defined and utilized for hedging a portfolio of
instruments, such as basket options and n-th-to-default credit swaps.

For a portfolio of instruments, whether it was market risk instruments,
credit risk-sensitive instruments or pure risk instruments, we proposed using
simulation analysis to assess the portfolio level risk for the purpose of mit-
igation, transfer or keep response of risk management. Risk measures, such
as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), often need
simulation analysis for their estimation. At the portfolio level, the models of
individual risks and their interactions become complex enough that analyt-
ical solutions are rarely obtainable. Risk assessment and monitoring at the
portfolio level, especially to address non-stationarity of risk factors, requires
extensive scenario analysis and stress testing. The high dimensionality of these
problems, due to large portfolio sizes and number of risk factors, poses signif-
icant challenge for these assessments.

Finally, the key goal of mitigation response of risk management is to con-
struct portfolios that achieve the desired risk-reward trade-off. These portfo-
lios could consist of a variety of instruments affected by market risks, where
each instrument in the portfolio may be affected by multiple risk factors and
their interactions. Moreover, in Chapter 7, we had posed these portfolio opti-
mization problems in static as well as dynamic settings. Simulation based opti-
mization is an area of simulation modeling and analysis that allows addressing
these optimization problems using simulation analysis, especially when ana-
lytical methods are not available or efficient for solving the problems. This
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methodology is also applicable for determining hedging strategies, both static
and dynamic ones, designed to transfer risk to achieve the desired risk-reward
profile.

Using simulation to solve the above problems based on estimates of key
quantities developed using finite generated samples implies there will always
be some uncertainty regarding the theoretical value of these estimated quanti-
ties. As was discussed in Chapter 4, and then utilized throughout the develop-
ment of the topics of this book, the uncertainty of estimates are summarized
by developing confidence intervals of desired confidence level.

Construction of confidence intervals relies on the distribution of the es-
timator for the quantity of interest, more specifically, on the variance of the
estimator. For example, if the estimator is the sample mean estimator, X̄, then
we utilize the fact that X̄ ≈ N(µ, σ√

N
), under certain conditions. From this

fact, the confidence interval for the theoretical value of the quantity of interest
is obtained as, (X̄ − zα/2

σ√
N
, X̄ + zα/2

σ√
N
). A tighter confidence interval will

assure higher reliability of decisions made based on simulation analysis.
One way to make the confidence interval tighter, or more accurate, is to

increase the sample size, N . We do this as the first response, however there
is a limitation to take this to the extreme due to time and computational
resource restrictions, as discussed in Section 4.7.1.1. The other option available
is to reduce σ2, which is the variance of random sample element, Xi, used to
construct the sample mean estimator. The latter response is the initial focus
of this chapter, which will benefit all the tasks we have proposed to achieve
using simulation in this book.

Once we have explored a variety of variance reduction techniques, we will
move our attention to simulation optimization. As mentioned, optimization
problems show up in a variety of risk management contexts, such as in port-
folio optimization, developing hedging strategies, and in the management of
strategic, business or operational risk. We will develop the principles of simu-
lation optimization, and discuss several methods for implementing simulation
optimization in the second half of this chapter.

12.1 Variance Reduction Techniques

As the name suggests, variance reduction techniques are designed to reduce
the variance of the estimator by means other than simply raising the number
of simulation runs conducted to increase the sample size. Variance reduction
methods are designed on a variety of themes, all geared towards the same goal
of improving the accuracy of quantities estimated using simulation. Although
this topic is included in the ‘Advanced Simulation’ section of this book, in
reality variance reduction is a basic need of almost all simulation analysis,
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since improving efficiency for better decision making is often a necessity, not
an option.

Variance reduction techniques are built around two broad strategies. The
first set of strategies take advantage of tractable features of a model, inter-
relation between variables of the model, to adjust or correct simulation output.
The other strategy adopted in developing variance reduction techniques is by
reducing variability in simulation inputs. We will consider some methods of
both category.

We will discuss and illustrate the following variance reduction methods in
the coming sections.

Control Variate: The control variate method utilizes information regarding
correlation between variables of the model to develop a new estimator,
which is designed to have a lower variance.

Antithetic Variates: This method attempts to reduce variance by modify-
ing how random variate inputs are used to generate a sample of obser-
vation for the quantity of interest.

Stratified Sampling: In this technique, the input random variates are pro-
duced in a controlled manner to reduce the variance.

Latin Hypercube Sampling: The Latin hypercube method is most advan-
tageous for variance reduction as the dimension of the problem increases.

Importance Sampling: This method utilizes the properties of the probabil-
ity distribution of the quantity of interest to design a second probability
distribution which emphasizes the ‘important’ observations of the first
probability distribution.

It is possible, where appropriate, to attempt to combine the application of
more than one variance reduction method for estimation of a single quantity,
or for estimation of different quantities in a decision making process.

In general, in implementing any variance reduction technique, attention
is required for how the simulation study is designed. As discussed in Sec-
tion 4.7.1.1, the important trade-off to construct in any simulation based es-
timation is between bias, variance, and compute-time for an estimator. In
case of unbiased estimators, the focus narrows down to variance and compute
time. We had defined τ as the compute time for each replication towards gen-
erating a sample for estimating the quantity of interest. Including a variance
reduction technique can result in an increase in compute time for each repli-
cation, hence care is needed regarding the computation burden implied by the
variance reduction technique.

The guideline from Section 4.7.1.1 applies, regarding comparing the prod-
uct of compute time and variance of estimators. Let’s say, Θ2 and Θ1 are
two estimators for the quantity of interest, θ, when variance reduction is ap-
plied versus not, respectively. We compare the efficiency of applying vari-
ance reduction by comparing τ1V (Θ1) ≷ τ2V (Θ2), if the compute times, τ1
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and τ2 are deterministic. If the compute times are stochastic, we compare
E[τ1]V (Θ1) ≷ E[τ2]V (Θ2). If the application of a variance reduction tech-
nique ends up reducing the efficiency of the estimation task, it may actually
become counterproductive to use one. Therefore, attention is require for the
design and implementation of the variance technique, including in terms of
efficiency of the code and data management for the implementation of the
technique.

12.1.1 Control Variates

The control variate method is perhaps the most effective and broadly ap-
plicable technique in finance and risk management. The method exploits in-
formation about the errors in estimates of known quantities to reduce the
error in an estimate of an unknown quantity. Hence use of the word ‘control,’
where one variable helps control the variance in estimate of another.

Let Y1, Y2, . . . , Yn be output of n replications of a simulation for a random
variable, Y , where the quantity of interest, θ = E[Y ]. For instance, Yi =
Ci = e−rT (Si(T ) − K)+, where θ = E[e−rT (S(T ) − K)+] is the price of a
European call option defined on the underlying asset, S(t), with strike price
K and maturity T . Yi are independent, identically distributed (i.i.d.), and
in order to estimate E[Y ], we utilize the standard sample mean estimator,
Θ1 =

∑n
i=1

Yi

n .
Suppose for each replication, Yi, we also calculate another output Xi,

where (Xi, Yi) are i.i.d., and the expected value of X, E[X], is known ana-
lytically. We will call the variable X a control variate, which we will use to
create a new estimator of θ = E[Y ]. We first define a modified replication,
Yi(b), as follows.

Yi(b) = Yi − b(Xi − E[X]), (12.1)

where b is a fixed number picked appropriately. We compute the sample mean

of Yi(b), Θ2 =
∑n

i=1
Yi(b)
n , which would be the control variate estimator. It is

clear that this estimator is unbiased, due to the way it is constructed,

E[Θ2] =
n∑

i=1

E[
Yi(b)

n
], (12.2)

=
n∑

i=1

1

n
(E[Yi]− bE[Xi − E[X]]), (12.3)

=
n∑

i=1

1

n
θ. (12.4)

It can also be shown that the estimator, Θ2, is consistent.
We need to assess if the new estimator in fact results in variance reduction,

and what makes this possible. For this purpose, we first compute the variance
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FIGURE 12.1: Scatter plot of replications of discounted European call op-
tion pay-off against replications of the stock price at option maturity. The
dependence of these two quantities is as expected, which results in the strong
positive correlation that the control variate method can be utilized.

of the replications, Yi(b), as follows.

V ar[Yi(b)] = V ar[Yi − b(Xi − E[X])], (12.5)

= σ2
Y − 2bρXY σXσY + b2σ2

X , (12.6)

where σY and σX are the standard deviations of Y and X, respectively, while
ρXY is their correlation. The variance of replications, Yi(b), is lower than the
variance of the original replications, Yi, if we can construct the control variate
replication such that,

−2bρXY σXσY + b2σ2
X < 0. (12.7)

Let’s examine when the condition in Eqn. (12.7) can be achieved. If ρXY ∼ −1,
that is the variables X and Y are strongly negatively correlated, picking an
appropriate negative value of b can satisfy Eqn. (12.7). Similarly, if ρXY ∼ +1,
picking an appropriate positive value of b can satisfy the above condition. We
will be best served if we sought the best possible value of b.

The optimal choice of b is obtained by taking the first derivative of the
expression on the left-hand side of Eqn. (12.7) with respect to b, and solving

for its zero. We obtain the solution to be, b = Cov[X,Y ]
V ar[X] , which is confirmed to

be the optimal by taking the second derivative of the expression on the left-
hand side of Eqn. (12.7) with respect to b. In general, the theoretical value of
b may not be known, therefore it must be estimated from a sample as follows,

b̂n =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
. (12.8)

Using the estimated value of b, the control variate replicates become, Yi(b̂n) =

Yi − b̂n(Xi −E[X]), and the control variate estimator is, Θ2 ==
∑n

i=1
Yi(b̂n)

n .
With this choice of alternate replications, if the correlation between X and Y
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FIGURE 12.2: Scatter plot of replications of discounted Asian call option
pay-off against replications of European call pay-off at option maturity. A
strong positive correlation is visible, which is utilized in design of the control
variate method.

is high, irrespective of its sign, we would achieve variance reduction, since the
variance of the control variate estimator would be lower. We consider some
examples next.

Example 1: Consider the case of pricing a European call option. We utilize
the underlying asset price as the control variate for pricing the option using
simulation. This choice is justified since in the risk-neutral world, we note
that E[e−rTST ] = S(0), therefore the theoretical mean of the control variate
is known. The control variate replications are as follows,

Yi(b) = Yi − b[Si(T )− erTS(0)]. (12.9)

Why should this choice of control variate be successful in variance reduc-
tion? To answer this question, we need to verify the correlation between
Yi = e−rT (Si(T )−K)+ and Xi = Si(T ). In Figure 12.1, we display a scatter
plot of Yi and Xi. As expected, the plot shows the dependence of discounted
pay-off of call option on terminal stock price, which results in the desired pos-
itive correlation.

Example 2: In this example, we go beyond the simple case of pricing a
plain-vanilla European option. Pricing path-dependent options is particularly
challenging, since in the path-dependent option the price of the option de-
pends on the entire trajectory of the underlying asset price during the life
of the option. Path-wise accuracy requires strong-convergence for simulation
approximations, as studied in Section 6.5.2. Therefore, variance reduction can
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provide significant help in maintaining the accuracy and compute burden
trade-off. Let’s consider an arithmetic average Asian option with strike K
and maturity, T .

For the purpose of pricing this Asian option using control variate, we
utilize a tractable option, i.e., an option whose price is known analytically.
We choose the discounted pay-off of a European call option with the same
strike and maturity as our control variate, therefore Xi = (Si(T ) − K)+.
Under the Black-Scholes model, Cbls(0, S0;T,K, σ) = E[Xi], where Cbls is the
Black-Scholes European call option price given in Eqn. (7.64). If the pay-off
of the arithmetic average Asian option is given by,

Yi = e−rT (S̄A −K)+ = e−rT (
1

m

m∑
i=1

S(ti)−K)+, (12.10)

then we create the control variate replication as, Yi(b) = Yi − b(Xi − E[X]).
As stated above, the vanilla call control variate is, Xi = (Si(T )−K)+, where
we know E[Xi] = erTCbls(0, S0;T,K, σ). Similar to example 1, we can ex-
amine the degree of variance reduction obtained in this case by evaluating
ρXY = corr(e−rT (S̄A −K)+, (Si(T ) −K)+). The correlation is quite visible
in Figure 12.2 in which we display a scatter plot of Yi and Xi.

In general, there is no restriction regarding the number of control variates
that may be applied simultaneously. For instance, in the above example one
may simultaneously apply several European call options corresponding to a
range of strike prices as control variates. As seen in Figure 12.2 for a single
vanilla-European call option, each of these options will have a similar corre-
lation resulting in contribution to reduction in variance of the control variate
estimator. A more detailed description and analysis of control variate based
variance reduction can be found in Glasserman [30].

12.1.2 Antithetic Variables

Instead of seeking a second variable, or set of variables, which promise
to have a high correlation with the quantity of interest, as utilized in control
variates, we now create a negative correlation between replications themselves.
This is done in a specific manner, and is successful in variance reduction under
specific circumstances. Replicates are produced in pairs, where one replicate in
the pair is negatively correlated with other, hence the pair is called antithetic
variates.

Antithetic variates can induce a negative correlation by using a few dif-
ferent themes. One theme is that of generating random numbers in pairs,
where the complementary random numbers are produced noting the proper-
ties of continuous uniform distribution. If Uk ∼ U(0, 1), then automatically
1 − Uk ∼ U(0, 1), moreover if Uk is small, 1 − Uk is large, and vice versa.
Therefore, every random number generated, Uk, is accompanied by its an-
tithetic, 1 − Uk, where the pair is used to generate random variates for the
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FIGURE 12.3: Scatter plot of antithetic random numbers and antithetic
exponential random variates.

quantity of interest. The reader should be reminded that random numbers
play a fundamental role in generating all other random variates, as presented
at length in Chapter 4.

The antithetic variates method of variance reduction works when the
method for generating random variates from the uniform random numbers
maintains the monotonicity of the random numbers. For instance, this is
achieved in the direct methods of random variates generation, such as the
inverse transform method described in Section 4.4.1. An antithetic random
variate pair, (X1k, X2k), is generated using the antithetic random number
pair (Uk, 1 − Uk) using the method intended to generate the random vari-
ates by the desired distribution. Figure 12.3 shows a scatter plot of antithetic
random numbers, which show a perfect negative correlation. A strong nega-
tive correlation is maintained in the antithetic exponential random variates.
Therefore, the use of Uk and 1 − Uk must be synchronized, otherwise the
variance reduction may backfire.

Variance reduction is achieved from antithetic variates construction due
to the following reason. Say the quantity of interest is, θ = E[X], and we
generate n replicates X1k, along with their antithetic pairs X2k, we estimate

the quantity of interest as, Θ2 = X̄(n) = 1
2 (

∑n
i=1 X1k

n +
∑n

i=1 X2k

n ). The variance
of this estimator can be computed as follows.

var(X̄(n)) = var(
1

2
(

∑n
i=1 X1k

n
+

∑n
i=1 X2k

n
) (12.11)

=
var(X1k)

4n
+

var(X2k)

4n
+ 2

cov(X1k, X2k)

4n
, (12.12)

=
σ2
X

2n
+

1

2n
cov(X1k, X2k), (12.13)

where σX is the standard deviation of each replicate, X. Therefore, the key
for obtaining variance reduction is if cov(X1k, X2k) < 0. This was in fact the
design for choice of antithetic pairs, therefore the antithetic estimator, Theta2,
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FIGURE 12.4: Sample paths for asset price evolution in antithetic pairs.

has lower variance than the usual sample mean estimator Θ1, that is,

var(X̄(n)) =
σ2
X

2n
+

1

2n
cov(X1k, X2k), (12.14)

<
σ2
X

2n
, (12.15)

= var(Θ1). (12.16)

The above design can also be applied if the quantity of interest is a function,
f(x), of the random variate, X, provided the function is monotonic. A mono-
tonic function, whether it is non-decreasing or non-increasing, maintains the
relationship between antithetic pairs, i.e., cov(f(X1k), f(X2k)) < 0. Therefore,
variance is reduced by applying antithetic variates.

The antithetic design of variance reduction need not be applied only to
uniform random variates. In fact, it can be applied to any symmetric dis-
tribution by observing that once a random variate X1k is generated by that
distribution, we can generate an antithetic pair as, X2k = 2µX −X1k, where
µX is the mean (and the median) of the random variable, X. It can be shown
in this case also that cov(X1k, X2k) < 0, and for a monotonic function, f(x),
cov(f(X1k), f(X2k)) < 0. Therefore, in the numerous contexts of risk man-
agement for market risk or credit risk, where Wiener process is utilized for
risk models, antithetic variates based variance reduction can be applied on
this theme.

Given increments of Wiener process, ∆W ∼ N(0,∆t), we can generate
antithetic variates pairs (∆W1k,∆W2k) = (∆W1k,−∆W1k). Synchronizing
antithetic pairs thus constructed can help generate antithetic trajectories or
sample paths of various Ito processes. Figure 12.4 shows a couple of antithetic
sample paths of an Ito process. Antithetic trajectories can be utilized in vari-
ance reduction, for instance, when pricing an up-and-in barrier option, if one
trajectory is leading to a knock-in of the barrier option, the antithetic trajec-
tory is likely to not lead to a knock-in, and hence have a zero pay-off. This
can yield a negative correlation in replications of barrier option pay-offs, thus
resulting in a variance reduction.
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Feasibility and efficacy of antithetic variates is model dependent. The fun-
damental requirement that a model should satisfy for the antithetic variates
method to work is that the random number or variate generated is transformed
monotonically in the model. Therefore, implementation of antithetic variates
based variance reduction can benefit from care in programming. Programming
tricks that can help in the necessary synchronization for antithetic variates
include random number stream dedication, using inverse-transform wherever
possible, judicious wasting of random numbers, and pre-generation. In some
cases, we can also seek to apply partial antithetic variates, which means only
some quantities of interest in a large simulation utilize antithetically gener-
ated variates, while others are performed based on independent variates. This
may be needed where full synchronization is difficult, and partial application
is both feasible and effective in variance reduction.

12.1.3 Stratified Sampling

The stratified sampling method of variance reduction is built on developing
a sampling mechanism that constraints the fraction of observations drawn
from a specific subset or ‘stratum’ of the sample space. Therefore, the following
constitute the two basic steps of stratified sampling.

1. Break the sample space into several strata or subsets using an appropri-
ately defined rule.

2. Generate a sample of constrained number of observations from each
stratum.

The advantage of this approach for variance reduction stems from the greater
uniformity by which it represents ‘sub-populations’ of the entire sample space,
rather than attempting to represent the entire population at once. We describe
the method in detail in order to elaborate this point.

Let’s say we want to estimate, θ = E[Y ] for a risk factor, Y , where Y is
defined on the probability space (Ω,P,F). We identify, A1, A2, . . . , AK , as the

disjoint subsets of the sample space, Ω, such that
∪K

i=1 Ai = Ω. The stratified
sampling based estimator is designed based on the following relationship.

θ = E[Y ] =
K∑
i=1

piE[Y |Y ∈ Ai], (12.17)

where pi = P(Y ∈ Ai). Based on Eqn. (12.17), we define the new estimator
Θ2 for the quantity of interest, θ, as follows.

Θ2 =
K∑
i=1

piȲi, (12.18)
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FIGURE 12.5: The sample space of the quantity of interest is broken down
into strata, where samples are drawn from each stratum to create the estima-
tor.

where Ȳi =
∑Ni

j=1 Yji

Ni
is the sample mean of observations {Yji} generated from

the subset Ai. Figure 12.5 shows the strata, sampling within each stratum,
and the conditional mean, Ȳi, for each stratum.

In using this variance reduction estimator, a few questions need to be ad-
dressed. How does one decide the specific disjoint subsets, A1, A2, . . . , AK , of
the sample space, Ω, to use and how does one decide the weight pi and num-
ber of replicates to draw from each stratum, Ni, in Eqn. (12.18)? The strata
are often generally defined by using a second random variable, X, as follows
Ai = {X = xi}. For instance, the random variable X may be simply defined
as a K-outcome discrete random variable indicating when Y takes values in a
subset Ai, i.e., I{X=xi} = I{Y ∈Ai}. However, using a second random variable
for defining the strata allows more general definitions of the strata.

The choice of weights, pi, and number of replicates, Ni, is not too far
removed from the stratum selection. For instance, if K subsets are sought,
the weight allocation to each subset may be pi =

1
K and Ni = Npi, if a total

of N replicates are to be generated. This also helps define the stratum as,
Ai = (yi, yi+1] such that P(Y ∈ Ai) = pi. More general definitions of both
weights, pi, and the number of replicates to draw from each stratum, Ni, may
also be used. For a specific choice of design of the stratified sampling based
estimator of θ results in the following variance of the estimator.

var(Θ2) =
K∑
i=1

p2i
Ni

σ2
i , (12.19)
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where σ2
i = var(Y |X = xi), i.e., it is the conditional variance of Y for values

lying within a stratum, Ai. Just as in the case of control variates, the optimum
variance reduction in stratified sampling can be shown to be obtained by the
following choice of Ni.

N∗
i = N

piσi∑K
k=1 pkσk

, (12.20)

where σ2
k = var(Y |X = xk), as defined earlier. Therefore, the number of

observations sampled from each stratum should be proportional to the amount
of variability in the quantity of interest, Y , in that stratum. In Figure 12.5,
we apply stratified sampling to the normal distribution, N(µ, σ), where the
stratum are defined by σ deviations from the mean, µ. Therefore, we haveA1 =
(−∞, µ−3σ], A2 = (µ−3σ, µ−2σ], A3 = (µ−2σ, µ−σ], A4 = (µ−σ, µ], A5 =
(µ, µ + σ], A6 = (µ + σ, µ + 2σ], A7 = (µ + 2σ, µ + 3σ], A8 = (µ + 3σ,−∞).
We define the remaining parameters for stratified sampling by first defining
pi = P(Y ∈ Ai), and then utilize the optimal sub-sample size for each stratum
as per Eqn. (12.20).

If Y is instead a stochastic process, such as an Ito process defined by a
Wiener process driven stochastic differential equation model, then stratified
sampling can be applied if the distribution of the process is known at a spe-
cific time point, t, such as when Y = St has the lognormal distribution. When
applying stratified sampling to the simulation of sample paths of stochastic
processes, where information regarding distribution of increments of the pro-
cess alone may be utilized, the sample size, N , to draw in each increment of
the process, Y , must be determined. This bears resemblance with simulating
a multi-nomial tree of N branches at each time-step, with the difference being
the N outcomes are not fixed. They are instead randomly generated from the
k strata, Ni observations from the ith stratum.

For a general Ito process driven by the Wiener process, the above described
stratified sampling approach for the normal distribution can be applied to the
Wiener increments, ∆Wt ∼ N(0,∆t), in order to generate sample paths for
the Ito process. When N outcomes are generated for the Wiener increment
using stratified sampling, stratified sampling is applied again for each of the N
outcomes in order to create the next N increments per outcome for advancing
the sample paths forward. Hence, the resemblance with a multi-nomial tree.
Similarly, other processes for which the distribution of the process at a specific
time is known or when the distribution of the increments of the process is
known, stratified sampling can be adapted for generating sample paths of the
stochastic process. For instance, for a homogeneous discrete- or continuous-
time Markov chain, such as a homogeneous Poisson process, Y = ∆Nt ∼
Po(λt), stratified sampling can help reduce the variance in the increments.
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FIGURE 12.6: The two-dimensional sample space is broken down into strata
constructed for marginal distribution of each coordinate. The two-dimensional
realizations are constructed by randomly collating single-dimensional out-
comes from single-dimensional stratified sampling.

12.1.4 Latin Hypercube Sampling

Stratified sampling is an effective method for variance reduction, however
as the number of risk exposures increases that must be simultaneously simu-
lated due to their interdependence and joint relevance to the risk management
objectives, stratifying a multidimensional state space becomes prohibitively
cumbersome. Latin hypercube sampling is the extension of stratification for
sampling to the case of multiple dimensional random variables. Multidimen-
sional random variables are inescapable since risks do not appear in singletons
in almost any practical risk management context. Therefore, Latin hypercube
sampling becomes very crucial for portfolios or multi-factor risk models, when
developing stress tests for asset-liability management or VaR calculations for
market or credit risk or other risk management assessments. As stated be-
fore, stratified sampling becomes infeasible in higher dimensions due to the
rapid growth in the number of strata that must be sampled from in the higher
dimensional sample space.

Latin hypercube sampling surmounts the curse of dimensionality by treat-
ing all coordinates of the d-dimensional sample space equally, and sampling
for each coordinate of the higher dimensional space by stratified sampling.
The exponential growth, Kd, of d-dimensional stratified sampling, where K is
the number of strata for each dimension, is avoided by collating the outcomes
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generated for each coordinate. Instead of stratifying the d-dimensional space
and generating outcomes from a d-dimensional hypercube, Latin hypercube
method stratifies the one-dimensional marginal distributions of Yi correspond-
ing to the multi-dimensional joint distribution of Y = [Y1, Y2, . . . , Yd]. It then
permutes and collates each dimension to get the d-dimensional realizations.
Furthermore, randomly permuting the coordinates of the d-dimensional real-
izations creates more realizations, thus more readily filling realizations in the
Kd hypercubes.

In Figure 12.6, we display the two marginal distributions of two-
dimensional risk factors, such as loss distribution from two loan portfolios. The
approach developed in stratified sampling is applied to each dimension, gener-
ating the outcomes shown along the two axes. The two-dimensional outcomes
are generated by randomly picking realizations from a stratum in each dimen-
sion and collating them in a two dimensional vector (indicated by stars in the
two-dimensional space in the figure). As an example, say the two-dimensional
joint distribution is given as,

f(y1, y2) = 2y2e
−y1 , for 0 ≤ y1, 0 ≤ y2 ≤ 1 (12.21)

= 0, otherwise, (12.22)

then the marginal distribution of Y1 is obtained as, fY1
(y1) = e−y1 , which

is an exponential distribution, while the marginal distribution of Y2 is,
fY2

(y2) = 2y2. It is trivial to sample from both these marginal distributions by
applying stratified sampling, followed by randomly permuting the coordinates
and collating to obtain 2-dimensional samples.

As is evident from the plot in Figure 12.6, Latin hypercube sampling is
also well suited for generating scenarios for scenario analysis and stress test-
ing, especially beneficial when high-dimensional risk factors must be studied
for their joint impact. Scenarios generated from single-dimensional marginal
distributions that define stressed outcomes, or simply scenarios of interest
for that dimension, can be picked and collated to create multi-dimensional
scenarios.

12.1.5 Importance Sampling

The importance sampling method of variance reduction attempts to reduce
variance of estimates of a quantity of interest regarding a random variable
by changing the probability measure from which samples are generated to
create the estimate. For performing this change of measure, it recruits another
random variable, much like the control variate method of variance reduction.

The name ‘importance’ sampling is given to this method because in this
method we change measure of the primary random variable of interest to try to
give more weight to the important outcomes of the random variable, thereby
increasing the sampling efficiency. Let’s say we are interested in estimating θ
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given below for a function, h(.), of a random variable X.

θ = E[h(X)] =

∫ ∞

−∞
h(x)f(x)dx, (12.23)

where X is the random variable with f(x) being its probability density. We
select another probability density, g(x), defined on Rd that is positive wherever
the original density function, f(x) is positive, i.e., g(x) > 0 wherever f(x) > 0.
We utilize this new probability density to make the following restatement for
θ,

θ = E[h(X)] =

∫ ∞

−∞
h(x)[f(x)/g(x)]g(x)dx. (12.24)

Alternatively, Eqn. (12.24) can be interpreted as follows,

θ = Ẽ[h(X)
f(X)

g(X)
], (12.25)

where the Ẽ[] corresponds to taking expectation with respect to the new

probability measure. The term, f(X)
g(X) , is called the Likelihood Ratio or the

Radon-Nikodym derivative for the change of probability measure.
Success of importance sampling in variance reduction lies in the selection

of the new probability density, g(X). For variance reduction to materialize,
we need to have the following relations to hold,

Ẽ[(h(X)
f(X)

g(X)
)2] = E[h(X)2

f(X)

g(X)
], (12.26)

< E[h(X)2]. (12.27)

This would definitely be accomplished if f(x) < g(x), for all values of x.
However, this would violate g(x) remaining a probability density function.
Therefore, one must investigate what values of x can we maintain f(x) < g(x)
for a more effective variance reduction while using importance sampling. One
can intuitively surmise that should happen for values of random variable more
likely to occur by the f(x) distribution of random variable, X. Therefore
g(x) > f(x) for values of x more likely to occur, hence importance sampling.

12.2 Simulation-Based Optimization

Numerous problems in finance and risk management either directly involve
solving an optimization problem, or indirectly precipitate into an optimization
problem. Portfolio optimization, optimal asset allocation, development of op-
timal hedging strategy, and asset-liability management are all essentially rife
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with optimization problems. Indirectly, calibration of models of risk, develop-
ing forecasting models for risk, etc., involve solving some form of optimization
problems. In general, optimization problems are classified by their key char-
acteristics, which aids in developing methods for solving the problem.

A canonical optimization problem has an objective function, f(x), where x
are decision variables, and there may be additional constraints that the deci-
sion variables must satisfy. An optimization problem with constraints is called
a constrained optimization problem, while one without constraints is an un-
constrained optimization problem. Therefore, a typical optimization problem
may be stated as,

min
x∈Rn

f(x), (12.28)

such that Ax ≤ b, (12.29)

g(x) ≤ 0, (12.30)

h(x) = 0, (12.31)

l ≤ x ≤ u. (12.32)

where the matrix A of size m × n defines m linear constraints, g(x) defines
a set of non-linear inequality constraints, and h(x) are a set of non-linear
equality constraints. Additionally, l and u may be bounds on the decision
variables. The most significant classification from the perspective of this book
is that between deterministic and stochastic optimization problems. In the
former, the objective function and constraints are obtainable as deterministic
functions of the decision variables. In case of stochastic optimization, presence
of risk factors in the definition of the objective function and/or constraints
makes them a functional of random variables. Therefore, these functions must
be either computed probabilistically or must be estimated statistically.

Suppose r is a set of risk factors, and the objective or constraints of the
optimization problem must be stated in terms of these risk factors, along with
the decision variables, x, since the risk factors in conjunction with the decision
variables determine if the goals of the problem are achieved. The optimization
problems must be modified as follows,

min
x∈Rn

E[f(x; r)], (12.33)

such that E[A(r)]x ≤ b, (12.34)

E[g(x; r)] ≤ 0, (12.35)

E[h(x; r)] = 0, (12.36)

l ≤ x ≤ u. (12.37)

where the matrix A(r) of size m×n is a function of the risk factors, r, defining
m linear constraints for the decision variables, x. The set of non-linear inequal-
ity and equality constraints are defined, respectively, in terms of E[g(x; r)],
and E[h(x; r)]. A stochastic optimization problem would essentially reduce to
a deterministic optimization problem if the functions, E[f(x; r)], E[g(x; r)],
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and E[h(x; r)] can be computed probabilistically or analytically. For instance,
this is the case for linear and quadratic functions of the risk factors, such as
they appear in the mean-variance portfolio optimization problem discussed in
Section 7.1.2.

Optimization problems can also be static versus dynamic, depending on
whether the decision variable is independent or dependent on time, respec-
tively. Developing investment strategies or hedging strategies, or even pric-
ing some path-dependent options, must respond to risks evolving over time.
Therefore, these involve dynamic optimization to obtain decisions that adapt
to evolving risks. In Sections 7.1.1.2 and 7.1.2.2, we had developed a frame-
work for dynamic investment strategy, which would serve as an example of
a dynamic stochastic optimization problem. Exploration of dynamic hedging
strategies, first developed in Section 7.3.3, can be extended utilizing dynamic
optimization formulations.

An additional complexity can arise in some optimization problems when
the decision variables are not continuous or are not quantitative. In some con-
texts for risk management decisions, such as ‘education,’ ‘geographical region,’
or ‘urban-suburban-rural’ characterization of clients for retail credit risk, or
‘advertising or marketing channels’ for business risk or ‘system specifications,’
‘training program choices’ for operational risk, may all be non-ordinal, qualita-
tive choices. Similarly, in other cases, while decision variables are quantitative,
they may not take values in a range of the continuum. For instance, credit
scores or credit rating levels for retail or commercial obligors, number of de-
faults to seek protection for in a loan portfolio, number of tranches designed
in a CDO structure.

In any optimization problem, one must conduct a preliminary assessment
of the above characteristics of the optimization problem. The set of input
factors that define the problem must be identified, along with specification
of whether the factors are qualitative, discrete, or continuous-valued. The in-
put factors may be static or evolving dynamically in response to the evolving
risks. Some of the input factors are controllable, while others may be uncon-
trollable due to a variety of reasons. Optimization can be done with respect
to all the input factors, but will be meaningful to do only for the controllable
ones. Moreover, there may be constraints and bounds required for the control-
lable input factors or decision variables. Finally, a detailed analysis is needed
whether the problem is deterministic or stochastic in nature. In other words,
in the presence of risk factors, can the objective and constraints functions be
determined analytically or probabilistically in terms of the controllable input
factors.

When the objective function or constraints can’t be computed analytically
is when simulation optimization is applicable and useful. We explore this in
detail next.
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12.2.1 Challenges of Simulation-Based Optimization

We will begin with thinking of the problem in terms of a classical mathe-
matical optimization problem. However, the output performance measure or
objective function, R = E[f(x; r)], will be computed using simulation, since
it can’t be computed analytically. The value R takes depends on the values
of input factors, x = [x1, x2, . . . , xk]. As stated earlier, there may be bounds
on the decision variables, li ≤ xi ≤ ui, as well as other constraints. Let’s
first consider the unconstrained stochastic optimization problem, where fur-
ther investigation of the problem will only require considering properties of
the objective function.

In computational optimization, solution for the problem is sought itera-
tively, in each step attempting to make a better guess of the optimum. Seeking
the optimal value of the objective function within the bounds for the decision
variables through the iterative search is greatly facilitated by gaining some
more information along the way of the objective function. If the function is
continuous and differentiable, only continuous but not differentiable, or dis-
continuous, this can be utilized for guiding the search process. The slope or
gradient of a differentiable function provides a direction of descent (or ascent,
in case of a maximization problem). In case of continuous, but not differ-
entiable, objective function, the direction of descent can be approximated
using estimated slope or sub-gradients. When the objective function is dis-
continuous, such guidance is missing, and the search process would need to
accommodate this fact.

Beyond continuity and differentiability of the problem, the objective func-
tion being linear versus non-linear qualifies the difficulty of solving the opti-
mization problem. A linear objective function is continuous and differentiable,
but it is also both convex and concave. Therefore, the optimal solution lies
at the boundary of the feasible region of the problem. This knowledge can be
utilized in obtaining a solution for the problem. When the objective function
is not linear, i.e., it is non-linear, solving the problem may be more challeng-
ing. Determining whether a non-linear objective function is convex or concave
is instructive for the existence and uniqueness of the optimal solution of the
problem.

A function is convex if for any two arbitrarily picked values for the decision
variables, x1 and x2, and for any scalar λ ∈ [0, 1], we can demonstrate that,

E[f(λx1 + (1− λ)x2; r)] ≤ λE[f(x1; r)] + (1− λ)E[f(x2; r)]. (12.38)

If the inequality holds in the reverse for any arbitrarily picked values for
decision variables, the objective function is concave. Whether an objective
function is convex or concave in the entire feasible region, assuming the feasible
region is a convex set, this indicates the optimization problem has a unique
solution. In the case of a convex problem, the solution is an interior point,
while for a concave problem, the solution lies in the boundary of the feasible
region. A convex optimization problem is characterized by the gradient of the
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objective function, ∇E[f(x0; r)], as follows,

E[f(x;r)] ≥ E[f(x0; r)] +∇E[f(x0; r)]
T (x− x0), (12.39)

for all x, x0. For a convex optimization problem, the Hessian of the objective

function, H(x) = [∂
2E[f(x;r)]
∂xi∂xj

], is positive semi-definite. Both these properties

can be utilized for constructing a method for solving the optimization problem.
Local convexity of an objective function, even for a non-convex problem, can
be utilized for guidance in the search for the optimum.

When the objective function of a stochastic optimization problem cannot
be computed analytically, there is good chance the function is not very well-
behaved. Since the objective function, R = E[f(x; r)], does not have a closed-
form, analytical formulation, it can only be estimated with a certain degree of
precision, or at a chosen confidence level. This implies that even if theoretically
the objective function is continuous and differentiable, the gradient or the
Hessian will also need to be estimated with some degree of accuracy. Therefore,
errors in these estimates essentially create additional challenge for the solution
procedures.

Since the objective is estimated with significant computational effort for
the desired high accuracy, solving the optimization problem is a computation-
ally intensive exercise. Moreover, in some cases the objective function may be
highly non-linear, multi-modal, and due to the estimation error, noisy. There-
fore, methods constructed to solve these optimization problems must adapt to
meet these challenges. Despite the challenges, seeking even an approximately
optimal decision set is a worthwhile activity in most cases.

In a constrained optimization problem, attention is needed not just to
the objective function, but also to the linear or non-linear equality and in-
equality constraints in Eqns. (12.34), (12.35), and (12.36) respectively. These
constraints define a feasible region, and remaining within the feasible region
in the process of search for an optimal solution, or at the termination of the
search process, is a must to satisfy the constraints. Various penalty function
or barrier function approaches are developed to this end. For instance, if the
problem is defined by non-linear equality constraints, E[h(x; r)] = 0, we can
define a new objective, as follows,

min
x∈Rn

E[f(x; r)] +
ρ

2
E[h(x; r)]TE[h(x; r)], (12.40)

such that l ≤ x ≤ u. (12.41)

where ρ ≥ 0 is chosen as the penalty parameter. Searching for the optimal
solution to this modified problem implies, depending on the size of the penalty
parameter, ρ, the search may wander into the infeasible region. However, if
the penalty parameter is adjusted to a large enough value, the penalty term
would dominate the objective function of the modified problem, hence the
solution will be feasible by the original problem. A barrier function approach
modifies the objective so that the search process is not allowed to wander
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in the infeasible region due to the barrier introduced in the objective. For
instance, for non-linear inequality constraints, E[g(x; r)] ≤ 0, we can define a
new objective, as follow,

min
x∈Rn

E[f(x; r)] + η

m1∑
i=1

ln(−E[gi(x; r)]), (12.42)

such that l ≤ x ≤ u. (12.43)

where m1 is the number of non-linear constraints and η ≥ 0 is the chosen
barrier parameter. In the barrier function approach the barrier parameter is
initially taken to have a large enough value, but must be gradually decreased
to relax the imposition of a barrier. In the above description, the penalty
and barrier function approach provide an intuitive guidance for constrained
optimization, however in their practical implementation additional issues may
need to be resolved for convergence of search.

The necessary optimality conditions for a constrained optimization prob-
lem are defined by the Karush-Kuhn-Tucker (KKT) conditions. These are
defined in terms of a Lagrangian function for the constrained optimization
problem.

L(x, λ, µ) = E[f(x; r)] +

m1∑
i=1

λiE[gi(x; r)] +

m2∑
i=1

µiE[hi(x; r)]. (12.44)

If the objective function and non-linear constraints are defined in terms of
continuously differentiable functions, and if x∗ is the local minimum of the
constrained optimization problem, then there exist λ∗ ≥ 0 and µ∗, called
KKT multipliers, such that,

1. Feasibility: E[g(x∗; r)] ≤ 0 and E[h(x∗; r)] = 0.

2. Stationarity:
∇E[f(x∗; r)] +

∑m1

i=1 λ
∗
i∇E[gi(x

∗; r)] +
∑m2

i=1 µ
∗
i∇E[hi(x

∗; r)] = 0.

3. Complementary Slackness: λ∗
iE[gi(x

∗; r)] = 0 for all i = 1, . . . ,m1.

These conditions can be utilized to develop search algorithms, where the search
is done for both values of x and the KKT multipliers, λ and µ. We have pro-
vided a brief overview of challenges of constrained optimization, specifically as
it is applicable for simulation-based constrained optimization. For additional
discussion and development of these topics, the reader should refer to Gill et
al. [28], Bertsekas [10], Fletcher [24], Luenberger and Ye [57].

12.2.2 Simulation Optimization Methodologies

Simulation optimization must rely on simulation to compute the value of
the objective function and constraints, and any related constructs developed
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for solving the optimization problem, such as Lagrangian function, barrier
or penalty function. Computational optimization or numerical optimization
is an iterative process of obtaining a better solution for the problem, until
the ‘best’ is obtained. Therefore, for simulation optimization an optimization
routine has to work in tandem with a simulation routine that helps compute
the required quantities that define the optimization problem. A schematic for
this is provided in Figure 12.7.

With this synchronized development in view, the general steps adopted for
simulation optimization as depicted in Figure 12.7 are structured as follows.

1. The process begins at the ‘Start’ with initializing the search process with
a single or a sequence of decision choices.

2. Results from simulating earlier choices (or initial ones) are used to gen-
erate promising new directions to search in the space of possible input
factor combinations.

3. Tradition or heuristic optimization search techniques may be employed.
This stage will require interface with simulation routine to compute the
quantities that define the problem.

4. As search progresses, the process should keep track of the best choices
visited thus far. This is particularly important when objective or con-
straint function(s) are non-smooth, multi-modal functions.

5. Finally, the search must be terminated, which is done either when a good
enough solution is obtained, significant improvements are not happening,
or the process has run long enough.

Implementing a simulation optimization software from scratch is for most
purposes not advisable, especially given the already available good options. In
Section 12.3, we provide a list of functions available in MATLAB that may be
used for computational optimization, and specifically simulation optimization,
depending on the user needs and problem characteristics. In general, for a
reliable, effective, and useful implementation of a simulation optimization tool,
one would seek the following features.

• The foremost important feature is that the quality of solution obtained
in the amount of execution time required should be efficient. For this
purpose different algorithms designed for specific problem characteristics
are developed.

• In many cases, as the search progresses, being able to keep track of a
certain number, say ‘m,’ of best decision choice configurations should be
available to the user. The ‘m’ being user-defined is an added benefit. This
is particularly important in simulation optimization, where objective
and constraints are computed to only a certain degree of precision.
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FIGURE 12.7: Typical interaction between optimization and simulation
model.

• For solving a constrained optimization problem, as discussed in the pre-
vious section, accounting for constraints on decision variables besides
the objective of the optimization problem is required. Specific optimiza-
tion algorithm, function routines, and additional considerations must be
incorporated.

• There should be several stopping rules for the termination of the search
algorithm.

• Given the optimization routine is working in tandem with a simulation
routine to estimate the objective and constraint functions, it is impera-
tive that a confidence interval estimate for these performance measures
corresponding to ‘m’ best decision configurations is available.

• Moreover, in the decision configurations for which variability in the ob-
jective function or constraints is higher, it would be desirable to do more
replications in order to obtain the same degree of precision.

• Finally, in cases where the problem size is large, either due to number of
variables or problem complexity, having access to parallel implementa-
tions can greatly help with simultaneous simulation runs on networked
computers.

With the general framework for simulation optimization laid out and with
an understanding of the desirable features for a simulation optimization im-
plementation, we now begin a discussion of several of the important search
techniques utilized for simulation optimization in the following sections.
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12.2.2.1 Gradient-Based Methods

In cases where the objective function is smooth enough that its derivatives
may be defined, as discussed in Section 12.2.1, this information may be gain-
fully utilized in the search for the optimal solution. For a continuous objective
function, the gradient information, while for a continuously differentiable ob-
jective function, gradient as well as Hessian information may be employed to
direct the search. In simulation optimization, however, the objective function,
its gradient and Hessian must all be estimated using simulation. As opposed
to analytical methods for implementing optimization algorithms, this poses an
additional challenge regarding accuracy of these estimates, and how well they
may guide the search. In response to this challenge, being able to construct a
confidence interval around the estimated objective function value, its gradient
and Hessian can prove helpful.

In these approaches, the flowchart of Figure 12.7 is primarily followed
based on pursuing a single decision choice, xk. The decision choice is iteratively
improved to obtain a ‘better’ iterate, xk+1, by taking a step, sk, of length h.
Therefore the iterations can be summarized as follows.

1. Pick a starting guess x0.

2. Find a direction of descent for the objective function, sk.

3. Determine an appropriate step length, hk ∈ R+, to move along the
descent direction.

4. Update the guess, xk+1 = xk + hksk.

5. Check if termination criteria are met, or else go to Step 2.

The iterations in the search are continued until either a convergence criterion
is met or an iterations limit is reached. Different gradient-based algorithms
adopt specific principles to determine the directions of descent and step length.
As discussed in Section 12.2.1, the above scheme can be applied to constrained
optimization problems by appropriately adjusting the objective function.

The steepest descent or gradient method uses just gradient, i.e., first-order
information in a Taylor expansion, for the direction of descent in each itera-
tion. Therefore,

sk = − ∇E[f(xk; r)]

∥∇E[f(xk; r)]∥
. (12.45)

The step length hk can be chosen by solving a one-dimensional problem
minh≥0 l(h) = E[f(xk+hsk)]. Alternatively, step length can be determined by
creating a local quadratic approximation of the objective function and picking
the minimum of this quadratic fit.

A first-order Taylor expansion based method can be improved by incor-
porating second-order information in the Taylor expansion, provided this is
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available. This is the basis for the Newton’s method or its variant, the quasi-
Newton’s method. In the Newton’s method,

E[f(xk + s; r)] = E[f(xk; r)] +∇E[f(xk; r)]
T s+

1

2
sTH(x)s, (12.46)

where H(x) is the Hessian of the objective function. If the Hessian is positive
definite, implying the function is locally strictly convex, we may find the min-
imizer of the second-order Taylor approximation of the objective as a solution
of the system, H(x)s = −∇E[f(xk; r)]. The solution of the linear system is
taken as the descent direction, i.e., s∗ = sk.

Indeed in simulation optimization, as stated earlier, objective function,
its gradient and Hessian must be estimated. When the gradient and Hessian
information are approximated in each iteration, the method is called quasi-
Newton’s method. In fact, the gradient and/or Hessian may be adjusted itera-
tively as more information regarding the objective is accumulated. Moreover,
in simulation optimization these algorithms will also need to be adapted for
the accuracy with which these estimates are made. For instance, at an iter-
ate, xk, if the variance of f(xk; r) is higher, the search algorithm will need to
generate a higher number of replicates for the same desired level of accuracy.

Beyond the gradient (and Hessian) based strategies for searching for the
optimal decision, we also consider some heuristic strategies next. As stated
earlier, gradient based optimization algorithms are feasible for objective func-
tions that are well-behaved, i.e., those that are continuously differentiable.
For objective functions that are not well-behaved, these algorithms would
have limited applicability. Moreover, when the problem has discrete decision
variables, or when the problem is combinatorial, by definition convexity of the
feasible region is lost. In these cases, heuristic approaches may be necessary.

Additional to the cases when gradient and Hessian information of the ob-
jective is not available, if the simulation-based estimates of these quantities
are too noisy, or are too computationally demanding to compute at the appro-
priate accuracy, heuristic methods must be considered. One need not make an
‘either-or’ decision in this regard, since heuristic algorithms can be combined
with gradient based information to construct hybrid algorithms, where such
an approach holds merit. Since these hybrid methods will venture beyond the
traditional realm of theoretical convergence results of optimization algorithms,
such methods would still be considered heuristics.

12.2.2.2 Simulated Annealing

The key to success of an optimization algorithm is the quality of explorative
search for the optimum decisions. In gradient (and Hessian) based methods,
the exploration is guided by this information. In absence of local slope and
curvature information, the farthest extreme one might swing to is to pick
random selection of candidate solutions in the feasible region. Repeatedly
randomly picking candidate solutions from the entire feasible region may be
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FIGURE 12.8: (a) A sample search trajectory for random search. (b) A
sample search trajectory for simulated annealing.

counter-productive, therefore once an initial solution is guessed, random se-
lection of subsequent guesses may be made from a pre-defined neighborhood
of the previously guessed solutions. Moreover, a randomly selected decision
in the neighborhood of a guessed solution may be allowed to graduate to be
the next guessed solution only if it results in a significant improvement in
the objective function value. This is the random search algorithm, which we
summarize in Figure 12.8(a).

The size of neighborhood to pick the next random solution from is a critical
parameter in the design of random search. If chosen to be big, it will give the
opportunity to explore broad and wide from the current guessed solution.
However, once the guessed solution approaches an optimal solution, a large
neighborhood to select the next solution from carries the risk of wandering
away from the solution. This issue can be remedied by progressively reducing
the size of the neighborhood from which to select the next candidate solution.
This modification results in a new algorithm, called simulated annealing.

In simulated annealing, the logic applied is that as better candidate so-
lutions are obtained, the search space is reduced to avoid wandering away in
the progress toward the optimal solution. This is shown in Figure 12.8(b).
The method initializes as in random search, and progresses similarly with one
important difference. Every time a new candidate solution is adopted, the ad-
missible size of the next neighborhood to select the next candidate solution
from is simultaneously adjusted. The algorithm for simulated annealing would
have the following structure.

Pick an initial guess of a solution, x0,
initial size of neighborhood, d0,
desired reduction in function value in each iteration, ρ, and
reduction in neighborhood size in each iteration, ϵ.

While termination criteria are not fulfilled;
Define a neighborhood, Ni, of size di such that xi ∈ Ni;
Generate a randomly selected candidate xc ∈ Ni;
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Compute E[f(xc; r)] and ∆ = E[f(xc; r)]− E[f(xi; r)];
If ∆ ≤ ρ then xi+1 = xc, and di+1 = max(di − ϵ, ϵ)
Else go to Step ‘Generate a randomly selected candidate. . .’.

End

In the above algorithm, we have made sure that the neighborhood size
doesn’t become zero, or worse, negative. By not changing the neighborhood
size in each iteration, the algorithm would mimic a random search. Moreover,
the reduction in neighborhood size can be iteratively adjusted by making it
depend on the iteration, namely ϵi. Several variations of simulated annealing
may be developed, where in one variation the size of neighborhood is not
always reduced. It is in the contrary expanded in cases where reduction in
objective function is large. This variation can help faster convergence, since it
is adaptive to when better progress is made in the search process.

12.2.2.3 Tabu Search

In random search or simulated annealing, even though the trajectories in
Figure 12.8 paint a rather favorable scenario, in reality there may be instances
where the search process gets misdirected and delays the convergence to an
optimum decision. Tabu search addresses this shortcoming by identifying a
set of candidate solutions that have been marked either inferior or visited,
and must not be revisited in future exploration. This set is called a tabu set,
T , and hence the algorithm is called tabu search. The algorithmic description
of tabu search, as a modification of the simulated annealing algorithm, is as
follows.

Pick an initial guess of a solution, x0,
define an initial size of neighborhood, d0,
desired reduction in function value in each iteration, ρ,
reduction in neighborhood size in each iteration, ϵ, and
a tabu set, T = ∅.

While termination criteria are not fulfilled;
Define a neighborhood, Ni, of size di such that xi ∈ Ni;
Generate a randomly selected candidate xc ∈ Ni\T ;
Assign T = T

∪
{xc};

Compute E[f(xc; r)] and ∆ = E[f(xc; r)]− E[f(xi; r)];
If ∆ ≤ ρ then xi+1 = xc, and di+1 = max(di − ϵ, ϵ)
Else go to Step ‘Generate a randomly selected candidate. . .’.

End

An alternate version of tabu search may be developed that can help avoid
converging to a local optimum. Each time search for an optimum is conducted,
the local optimum obtained is included in the tabu set to avoid revisiting it
in future exploration, thus forcing one to explore alternatives. This version
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of tabu search can be combined with random search or simulated annealing
towards the later iterations, once the search has reached a promising region,
to avoid convergence to a local optima. The algorithm can be structured as
follows.

Pick an initial guess of a solution, x0, and
Define a neighborhood, N0, of size d0 such that x0 ∈ N0;.

While termination criteria are not fulfilled;
Obtain a local optimum, xc = argmin E[f(x; r)] for x ∈ N0\T ;
Assign T = T

∪
{xc};

End
Pick the best solution visited throughout as the solution, xsol.

The above heuristic methods have been examples of the general optimiza-
tion process described in Figure 12.7. More specifically, they have been in-
stances of solution algorithms where a single decision choice is considered in
each iteration. We next develop solution algorithms that work with a set of
decision choices in each iteration, and evolve the entire set in an iteration.

12.2.2.4 Scatter Search

There are many variants of scatter search possible, the common theme of
them will involve creating a set of possible decision choices, selecting the bet-
ter performing ones from this set, creating a new set of solutions based on the
better ones, and continuing this process until satisfactory decision choices are
obtained. This general theme is depicted in Figure 12.9. Specific implemen-
tations of scatter search identify specific mechanisms for accomplishing each
of the three tasks, until sufficient effort is made for the search process and
good enough solutions are obtained, at which point the search is terminated.
The best decision choice in the final set of decision choices is taken to be the
optimum solution.

It is totally conceivable and advisable to apply tabu search after scatter
search, based on treating the solution of scatter search as the initial guess for
tabu search. This allows combining the benefit of scatter search, of allowing a
broad and wide search of the feasible region, with the benefit of tabu search
of not settling into a local optimum. We next present two biologically-inspired
population-based optimization algorithms, that implement specific principles
for accomplishing the three tasks of scatter search.

12.2.2.5 Evolutionary Strategies

Optimization algorithms that base search on objective function value
alone, and not gradient or Hessian information, are often called the class
of direct methods. Evolutionary strategies are population-based direct meth-
ods, where concepts of biological evolution of living species form the thematic
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FIGURE 12.9: Three generations of a population-based scatter search algo-
rithm.

basis. In the Darwinian theory of evolution, a population of a living species
adapts to its environment in order to survive. Survival favors the fittest, while
the poor and weak members of the population fade away. The fittest sur-
vive, get to mate and propagate their genetic material into new generations
of population. Progressively, the population gets fitter and more adapted to
its environment.

Genetic Algorithm
A genetic algorithm is a specific evolutionary strategy for solving opti-

mization problems, where the above theme of evolution is utilized to obtain
better solutions. As in any population-based method, a population of decision
choices are evaluated in every iteration. Considering a population of solu-
tions increases the chances of finding the global optimal. At any stage of the
iterations of the algorithm, there is a population of solutions under consider-
ation, which is in contrast with traditional optimization approaches, such as
gradient-based methods or the first two heuristic methods considered in this
section.

The objective function value corresponding to each decision choice in the
population indicates the fitness of that member of the population. The less
fit, or higher objective function valued (in a minimization problem), decision
choice is a poor solution, and is allowed to fade away. The more fit solutions
are allowed to produce the next generation of a set of decision choices. This
production of a new generation, in genetic reproductive terminology, involves
transfer, cross-over, and mutation of genetic material of parents as it is trans-
ferred to the offspring decision choices.

The main steps of an algorithmic implementation of the genetic algorithm
takes the following form.
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Generate an initial population of solutions of size N randomly scattered
in the feasible region;

While termination criteria are not fulfilled;
Compute the objective value (or fitness) of each member of the
population;

Based on fitness of the decision choices, let a fraction, ρ, of the
population fade away;

Apply idealized-type genetic operators to the remaining ρN
members of the population to produce N ‘offspring’ decision
choices;

End
Pick the best solution from the final population as the solution, xsol.

A variation in the above algorithm may be made in terms of probabilis-
tic fading of a member of a population, where the probability is inversely
proportional to fitness of the member.

The above properties of genetic algorithm make it suitable for simulation
optimization. These population-based methods make no restrictive assump-
tions or require no prior knowledge of topology of response surface. They can
work even if the objective function is high-dimensional, multi-modal, discon-
tinuous, non-differentiable, and stochastic. Their popularity is also justified
by their relative ease of use, as well as reasonable reliability, especially when
combined with tabu search that hones in the final solution obtained from a
genetic algorithm.

As is evident from the description of the algorithm, an evolutionary strat-
egy, and for that matter all population-based strategies, requires a high
amount of objective value evaluation. This can be somewhat tough if the
simulation-based estimates of the objective function are computationally very
intensive. Computation of a population’s fitness is, however, very amenable
to parallelization, therefore implementations of genetic algorithms are favored
on parallel computing environments.

12.2.2.6 Particle Swarm Optimization

This population-based optimization algorithm is also biologically inspired,
more specifically by certain zoological characteristics. If one has seen the col-
lective movement of a flock of birds, a shoal of fish or a swarm of flying
insects, this approach can be visualized as attempting to mimic this move-
ment to achieve the optimum solution. As in any population-based approach,
the algorithm begins with an initial set of decision choices. Thereafter, for
moving all the decision choices of the population in the improved direction,
some ‘leaders’ or best decision choices must be identified. The best decision
choices of a single population and historically best decision choices are used
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to determine how each member of a population migrates to a new location.
This guided movement continues until satisfactory improvement is achieved
and further improvement ceases.

The general direction of improvement for each member of a population
in each iteration can be summarized by a velocity vector, vi. This is used to
advance the progress to the optimum. In each iteration the velocity vector is
modified by the updated information for that iteration to obtain the change in
velocity, ∆vi. The particle swarm optimization algorithm can be summarized
as follows.

Generate an initial population of solutions of size N randomly scattered
in the feasible region;
Compute the objective value of each member of the initial population;
Define the universal best solution, x∗

u, as the best of initial population,
and a vector of movement for the population, v = 0;

While termination criteria are not fulfilled;
Compute the objective value of each member of the
population;

Based on objective function value for the decision choices, pick
the best solution, x∗

i ;

If E[f(x∗
i ; r)] < E[f(x∗

u; r)], update the historically best
solution, x∗

u = x∗
i ;

Use a linear combination of x∗
u and x∗

i to obtain the change
in velocity, ∆vi;

Update every member of the population by new velocity
vector, vi = vi +∆vi;

End
Pick the best solution from the final population as the solution, xsol.

As stated earlier, the particle swarm optimization algorithm can be ap-
pended with a single decision choice based method in the end, such as tabu
search, to further fine-tune the solution. We have provided a set of example
heuristic methods for simulation optimization, as well as gradient and Hes-
sian based methods for optimization. Using the given algorithms, as well as
other heuristic algorithms, hybrid methods can also be constructed to take
advantage of algorithm characteristics that suit the specific problem at hand.
Interested readers should access more dedicated discussion of these algorithms
in Gill et al. [28], Fletcher [24], and Gilli et al. [29].
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12.3 MATLAB Tools for Variance Reduction and Opti-
mization

MATLAB mathematical software has a vast array of functions for working
with random variates and methodologies in its Optimization Toolbox. We list
a few of these functions here relevant for variance reduction and optimization.
The reader is advised to look up the extensive help documentation available
with MATLAB to see the details of these and other related functions. At the
bottom of each function description in MATLAB help documentation, look
for ‘See Also’ to explore other related functions. Resources such as MATLAB
Primer [20] are also useful.

Variance reduction: transprob, transprobbytotal, lhsample

Optimization: classify, fmincon, fminsearch, linprog, quadprog

Global optimization: patternsearch, ga, simulannealbnd, gamultiobj,
GlobalSearch, MultiStart, run

12.4 Summary

In the earlier chapters we developed the principles of simulation (Chap-
ter 4) and models of risk in Chapters 5 and 6. We applied these principles
and modeling techniques to solve various risk management problems in Chap-
ters 7 to 11. In this chapter, we developed some more principles and problem
solving techniques for more advanced users of simulation modeling and anal-
ysis. We began with variance reduction techniques that help in reducing the
computational burden to achieve the desired accuracy in descriptive and infer-
ential statistical analysis. Better accuracy at lower computational effort opens
the door for more sophisticated usage of simulation models. In particular, it
facilitates an efficient use of simulation models to perform simulation-based
optimization. In Section 12.2, we developed principles of simulation-based op-
timization and algorithms to solve these problems. Some of these algorithms
use gradient information for solving the problem, while a set of approaches
presented are classified as heuristic algorithms. In today’s world, as comput-
ing resources are becoming cheaper and more efficient, there is an increased
appetite for the size and complexity of problems we attempt to solve using
simulation.
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12.5 Questions and Exercises

Review Questions

1. In what risk management tasks is simulation analysis useful?

2. What risk management problems can simulation optimization be applied
to?

3. What is the fundamental challenge when solving risk management prob-
lems using simulation?

4. What are variance reduction techniques? What are the two broad strate-
gies on which variance reduction techniques are built?

5. How should attention be paid for efficiently implementing variance re-
duction techniques?

6. What is the basic principle on which the control variate method for
variance reduction is built?

7. How is the control variate constructed? When does it reduce variance?

8. Show that the control variate estimator is unbiased and consistent.

9. Construct examples of the control variate estimator for pricing deriva-
tives.

10. What is the principle behind the antithetic variates method of variance
reduction?

11. What role does monotonicity of functions play in the efficacy of anti-
thetic variates variance reduction?

12. How do uniform random numbers based antithetic variates differ from
those generated for other symmetric distributions?

13. How does stratified sampling achieve variance reduction?

14. What parametric choices are needed for implementing stratified sam-
pling? What role do these parameters play in the method?

15. What is the optimal choice of sub-sample size for stratified sampling?

16. When does Latin hypercube sampling become a useful approach for
variance reduction?

17. How does the Latin hypercube sampling method differ from the stratified
sampling method of variance reduction?
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18. How can the Latin hypercube sampling method be used for scenario
analysis and stress testing?

19. What is the main principle behind the importance sampling method of
variance reduction?

20. When is an optimization problem considered deterministic versus
stochastic? Give examples.

21. What is a canonical constrained optimization problem?

22. How is a static optimization problem different from a dynamic optimiza-
tion problem? Give an example for both.

23. Give examples of discrete variables and qualitative variables for opti-
mization problems.

24. Why is a discrete optimization problem more challenging than a contin-
uous optimization problem?

25. When is an optimization problem convex or concave?

26. What information do gradient and Hessian of the objective function
provide in an unconstrained optimization problem? How is it useful to
solve the problem?

27. What are the challenges of solving a stochastic optimization problem?
When must simulation optimization be used for such problems?

28. Why are constrained optimization problems harder to solve than uncon-
strained optimization problems?

29. What is the penalty function approach to solving constrained optimiza-
tion problems?

30. What is the barrier function approach to solving constrained optimiza-
tion problems? How does this compare with the penalty function ap-
proach?

31. What is a Lagrangian function for a constrained optimization problem?
What are the Karush-Kuhn-Tucker conditions for optimality?

32. What are the general steps of a simulation optimization methodology?

33. What are the features of a simulation optimization tool that provide
reliability and effectiveness?

34. What are gradient-based methods for simulation optimization?

35. How can Hessian information be useful for simulation optimization?
When can this information be beneficially utilized?



474 Risk Management and Simulation

36. What is a random search heuristic for solving simulation optimization
problems? How is simulated annealing utilized beyond random search
for solving these problems?

37. What is tabu set, and how is it utilized in tabu search algorithm?

38. What are population-based methods for simulation optimization? How
is scatter search performed?

39. What are evolutionary strategies? What is the basic theme behind these
strategies? Give an example.

40. What is particle swarm optimization? What is this method inspired by?

Exercises

1. Consider a stock price evolving by the following model,

dSt = 0.19Stdt+ 1.2S0.8
t dWt, (12.47)

where the current price of the stock is, S0 = $20. A discrete-average
Asian option is defined on the stock evolving by the above model. The
Asian call option pay-off is determined by the arithmetic average of
weekly closing price of the stock, with a maturity of T = 0.25 years and
strike price K = 20. Estimate the price of the option using simulation.
Define a control variate for implementing a variance reduction for the
price estimate, and recompute the price by applying the control vari-
ate price estimator. Compare the variance of the price estimator under
no variance reduction versus under control variate variance reduction.
Assume that the short-term risk-free interest rate is 2.3%.

2. Consider a stock evolving by the following Black-Scholes model

dS2t = 0.10S2tdt+ 0.24S2tdW2t, S20 = $45. (12.48)

Define an exchange option between this stock and the stock defined in
Eqn. (12.47) with initial price of S0 = $20. Estimate the price of the
exchange option, assuming that the correlation between the two driving
Wiener processes is, ρ = −0.15 and the short-term risk-free interest rate
is 2.3%. Now define a control variate to improve the performance of your
estimator, apply the control variate estimator and assess its efficiency
in variance reduction.

3. Consider the following distributional fits for loss frequency and loss
severity of three pure risks identified through the pure risk identification
process.

(a) N1t ∼ Po(λ), Poisson distribution with λ = 10 per year; L1 ∼
Weibull(a, b) with scale parameter a = 5 and shape parameter b =
0.8



Advanced Simulation Topics 475

(b) N3t ∼ Bin(n, p), Binomial distribution with n = 50 and p = 0.05;
L3 ∼ Lognormal distribution with mean µL = 100 and standard
deviation σL = 15

(c) N5t ∼ Bin(n, p), Binomial distribution with n = 5 and p = 0.2;
L5 ∼Weibull(a, b) with scale parameter a = 500 and shape param-
eter b = 0.8

Construct a quantitative assessment of the total annual loss of each
pure risk, as well as the grand total annual loss from all the pure risks
combined. Apply wherever possible antithetic variates based variance
reduction and report the efficiency of variance reduction achieved for
each pure risk, as well as the grand total annual loss.

4. The 100,000 customers in a retail credit portfolio have credit scores
given by the following distribution, 270∗Beta(1.2, 1.5)+580. Therefore,
the cutoff score used for this product is 580. The portfolio experiences
a total of 5% default. The default experience by credit score in this
portfolio is described by the following distribution, χ2(5) + 580. Apply
stratified sampling to determine the distribution of false goods and false
bads. How is your efficiency improved by the application of stratified
sampling?

5. A portfolio, w⃗ =[10,000; 22,000; 15,000; 20,000; 30,000; 8,000; 20,000], is
constructed given by number of bonds and shares of stocks. The portfolio
investment is in the following bonds and stocks.

• US Treasury T-Note, Annual Coupon Rate: 3.25% (paid semi-
annually); Maturity: 6 Years; Rating: AAA

• US Treasury T-Bond, Annual Coupon Rate: 7.25% (paid semi-
annually); Maturity: 12 Years; Rating: AAA

• Corporate Bond, Issuer: Johnson & Johnson; Coupon Rate: 5.55%
(paid semi-annually); Maturity: 5 years; Rating: AAA

• Corporate Bond, Issuer: Southwest Airlines; Coupon Rate: 7.375%
(paid semi-annually); Maturity: 15 years; Rating: BBB

• Consider three stocks evolving by continuous-time stock price evo-
lution model of the form,

dSit = µiSitdt+ σiSitdWit, (12.49)

for i = 1, 2, 3, where initial stock price is, S⃗0 = [19; 53; 26],
µ⃗ = [0.09; 0.05; 0.16] and σ⃗ = [0.10; 0.06; 0.25]. The three corre-
lated Wiener processes are described by the following correlation
matrix.

ρ =

 1 0.3 0.1
0.3 1 −0.05
0.1 −0.05 1

 (12.50)
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Apply stratified sampling where appropriate to compute the Value-at-
Risk at a desired confidence level and duration of time for the above
portfolio.

6. Perform a detailed stress testing of the stock-bond portfolio in Problem 5
by applying the Latin hypercube sampling for all risk factor interactions.

7. Consider three stocks with the following summary information regarding
their annual returns. The mean annual return of three stocks is estimated
to be, µ⃗ = [0.09; 0.05; 0.16]; the annual standard deviation of returns is
σ⃗ = [0.10; 0.06; 0.25], and the correlation matrix is given as follows.

ρ =

 1 0.3 0.1
0.3 1 −0.05
0.1 −0.05 1

 (12.51)

Assuming a planning horizon of one year and return of these stocks to be
log-normally distributed, construct and analyze the following portfolios
using simulation optimization.

(a) Construct the minimum variance optimal portfolio under no short-
selling constraints.

(b) Choose a desired target mean return, rth, which should serve as a
lower bound for the optimal portfolio return. Compute the mini-
mum variance portfolio under no short-selling constraint. Relax the
no short-selling constraint and re-optimize your portfolio. How do
your portfolio weights change?

(c) Construct an optimal portfolio under no short-selling constraints
using a downside risk measure, such as expected shortfall. Examine
how the optimal portfolio changes for different percentiles by which
expected shortfall is defined.

8. Consider continuous-time stock price evolution model for three stocks
of the form,

dSit = µiSitdt+ σiSitdWit, (12.52)

for i = 1, 2, 3, where initial stock price is, S⃗0 = [19; 53; 26], µ⃗ =
[0.09; 0.05; 0.16] and σ⃗ = [0.10; 0.06; 0.25]. The three correlated Wiener
processes are described by the following correlation matrix.

ρ =

 1 0.3 0.1
0.3 1 −0.05
0.1 −0.05 1

 (12.53)

Assume a monthly trading strategy for an annual planning horizon, and
a chosen terminal wealth performance measure, U(WT ) = E[u(WT )],



Advanced Simulation Topics 477

where u(x) = xγ−1
γ is a constant relative risk aversion utility. Analyze

different investment strategies for these three stocks using simulation for
different choices of coefficient of relative risk aversion, γ. Pick a γ < 0 for
degree of high risk aversion and a γ > 0 for low risk aversion. Construct
an optimal trading strategy in each case using simulation optimization.

9. The Dord Motors company is considering introducing a new sports
car model, named The Racer. The management is trying to assess the
prospects for this new model. While understanding the project’s prof-
itability is a difficult task, it is an important task before the project is
taken up. For this purpose, they have put together estimates for fixed
and variable costs, projected future sales and prices at which they in-
tend to sell this model. Each of these project features are described in
a model, as follows.

• Fixed cost of developing The Racer is equally likely to be either $3
or $5 billion. At an upfront expense of $200,000, the management
can acquire additional information that helps narrow the fixed cost
to be equally likely at either $3.5 or $4.5 billion.

• Variable cost per car manufactured for the first three years are:
For year 1 it is equally likely to be $5,000 or $8,000, for year 2 it
is going to be 1.05 ∗ (year 1 variable cost), for year 3 it is going to
be 1.05 ∗ (year 2 variable cost). Here again the management has an
option to incur an upfront expense of $100,000 to narrow the first
year variable cost per car to be equally likely at either $6,000 or
$7,000.

• Sales projections are determined as average sales in year 1 at
200,000, with a standard deviation of 50,000 cars. A normal dis-
tribution is chosen to describe year 1 sales. Average sales of year
2 and 3 are expected to be at the sales level of the previous year,
with a standard deviation of 50,000 cars. An advertising company
has advised that an ad-campaign can help increase the first year
sales, where it proposes a 5,000 increase in first year mean sales for
every additional $100,000 spent on the campaign. After $1,000,000
spent on the ad-campaign, the market is expected to saturate and
no further increase in first year sales would be possible.

• Pricing for year 1 is set at $13,000. Years 2 and 3 prices will be de-
termined based on the previous year’s price and sales. Specifically,
year 2 price = 1.05∗( year 1 price)+$30∗( percentage by which year
1 sales exceed expected year 1 sales), year 3 price = 1.05 ∗ ( year
2 price)+$30∗( percentage by which year 2 sales exceed expected
year 2 sales).

Conduct a simulation optimization for the optimal design for the prof-
itability of The Racer.
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mean, 15
mean error, 184
mean-absolute deviation, 55
mean-reversion, 241, 271, 297, 300
method of moments, 192
minimum variance hedge, 303
minimum variance unbiased

estimator, 119
mitigate, 51
model, 12, 94
model risk, 393
modified duration, 267, 282
modified trapezoidal method, 186
Modigliani and Miller propositions,

48, 376
moment generating function, 149
moneyness, 224
moral hazard, 409
mortality index, 432
mortality risk, 432
mortgage-backed securities (MBSs),

358
multi-modal, 469
multi-name credit default swap, 358

National Association of Insurance
Commissioners (NAIC), 73

negative gap, 386
neighborhood size, 466
net interest income, 385
non-differentiable, 469
non-insurance transfers, 418
non-life insurance, 414
non-linear equality constraints, 456
non-linear inequality constraints, 456
nonseasonal factor, 300
normal distribution, 19
normative theory of choice, 43

objective probability, 4
objective risk, 408
obligors, 340
Office of Comptroller of the

Currency (OCC), 68, 76

on-peak demand, 300
operational control risk, 393
operational loss model, 395
operational risk, 418
operational Value-at-Risk, 396
optimal hedge framework, 303
optimal hedge ratio, 254
Ornstein-Uhlenbeck process, 143
out-of-the-money, 211

parallelization, 469
particle swarm optimization

algorithm, 470
particular risk, 409
path-dependent options, 446
path-wise approximation, 181
penalty function, 459
penalty parameter, 459
people risk, 393
perils, 409
Personal risks, 407
plain-vanilla European option, 210,

446
Poisson distribution, 23
Poisson process, 138
pooling of losses, 410
portfolio optimization problems, 441
positive definite, 464
positive gap, 386
price of the bond, 267
principal, 266
Principal Component Analysis, 292
probability density function, 15
probability measure, 13
probability of default, 329
probability space, 13
process risk, 393
properties for the probability

measure, 14
property and casualty insurance, 415
protective put strategy, 247
pseudo-random numbers, 96
purchasing power parity, 309
pure risk, 6, 406
put-call parity, 216
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quadratic programming problem, 206
quadratic variation, 149
quality of collateral, 361
Quasi-Maximum Likelihood method,

191
quasi-Newton’s method, 464

random number generator, 97
random numbers, 96
random search algorithm, 465
random variable, 12
random walk, 133
rate of convergence, 180
real options, 375
real-world measure, 272
realization, 128
recovery rate, 329
regime-switching, 298
regulation, 65
regulatory structure, 66
relative risk aversion, 42
repo, 278
resolution expense, 394
response surface, 469
retail banking, 327
reverse-repo, 278
reward-risk measures, 202
Riegle-Neal Interstate Banking and

Branching Efficiency Act of
1994, 70

Riemann integral, 165
risk, 4
risk aversion, 41
risk identification, 420
risk management framework, 39, 50
risk management process, 37
risk measure, 45
risk neutral, 41
risk preference, 41
risk-neutral measure, 273
risk-neutral probabilities, 223
Runge-Kutta method, 187

sample path, 128
sample space, 12

sampling distribution, 120
scatter search, 467
scenario analysis, 58, 316, 390
seasonal factor, 300
seasonality, 297
Secretary of the Treasury, 67
Securities Act of 1933, 72
Securities and Exchange Commission

(SEC), 72, 81
securitization, 351, 432
security holder welfare, 373
seniority structure, 359
Sherman Antitrust Act of 1890, 72,

73
short rate model, 270
simulated annealing, 465
simulation, 93
simulation-based optimization, 209
single factor interest models, 274
single-name CDS, 355
skewness, 16
soft commodities, 294
Special Purpose Entity (SPE), 360
Special Purpose Vehicle (SPV), 360
speculative risk, 6
spread option, 357
standard deviation, 15
standard normal distribution, 19
standard symmetric random walk,

133
static gap, 383
stationary probability vector, 132
stationary process, 343
statistical classification methods, 330
steepest descent or gradient method,

463
stochastic calculus, 168
stochastic differential equation, 167
stochastic optimization problem, 456
stochastic process, 127
stochastic volatility model, 241
stop loss strategy, 254
straddle, 251
strangle, 251
stratified sampling, 450



Index 491

Stratonovich integral, 167
stratum, 450
stress testing, 59, 316, 363, 390
stressed VaR, 316
STRIPs, 278
strong law of large numbers, 411
structural gap, 382
structure a simulation study, 94
structured liabilities or debt, 377
subjective probabilities, 4
subjective risk, 408
submartingale, 148
subprime crisis of 2007, 73
supermartingale, 148
systems and technology risk, 393

tabu search, 466
tails of a distribution, 56
taxonomy of risk, 11
technical analysis, 200
term structure of interest rates, 268
theta, 227
time-discretization, 175
trajectory, 128
tranche definitions, 361
tranches, 359
transaction risk, 393
transfer, 53
transition probabilities, 131
transition probability density, 141
trapezoidal method, 186

uncertainty, 4
unconstrained optimization problem,

456
unexpected losses, 398
uniform distribution, 20
unimodal distribution, 55
upper attachment point, 360
utility function, 41

value of the firm, 373
Value-at-Risk (VaR), 46, 284, 313,

441
vanilla currency swap, 311
variance, 15

variance of an estimator, 119
variance reduction, 442
vega, 227
volatility smile, 224
volatility smirk, 240

waterfall of cashflows, 359
weak law of large numbers, 410
weather derivatives, 301, 431
Weibull distribution, 26
Wiener process, 144
write-downs, 394

yield curve, 267
yield spread, 357, 361
yield to maturity (YTM), 268
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